
1M t 'p# .*'t tid "RiHtlrr7d # ±f4rlWHci*Ph .- ..

DISTRIBUTION LIST
~~--~-~--~~------

B1800/81700 SOFTWARE PRODUCT SPECIFICATIONS
--~-~-------~--~~----~-~-~~~-------~-------

F. White - Prod. Hgmt.
H. Woodrow - Int'l Prod Hgmt
c. Kunkelmann - 8HG
J. McClintock - CSG

o. Cikoski - (Plymouth)
J. H. Pedersen (Plymouth)
w. E.Feeser (Austin)
J. Berta (Downingtown).
G. Smolnik (Paoli)
It. E. Ryan (Tredyffrin)
T. Yama - F&SSG (Mclean)
J. Poterack - f&SSG (McLean)
A.Kosta - ftSSG (Mclean)
A. LaCivita - F&SSG (McLean)

.L. Guell - ftSSG (Mclean)
R. Sutton - FtSSG (McLean)

('""I.. DeBartelo - WADC (Irvine)
./R. Cole (Pasadena)

H. H. Townsend (Pasadena)
N. Cass - Pat. Atty. (Pasadena)
S. Samman (Mission Viejo)
J. lowe (Mission Viejo)

R. Shobe
K. Meyers
R. Bauerle

D. Dahm - Corp. Eng.
Dir.p Pgmg. - SSG
H. nower~ - Corp. TID
D. Hitl - Te. 8H. t SS

J. C. Allan (Glenrothes)
W. McKee (Cumbernauld)
8. Higgins (Livingston)
Hgr. NPSGrp (Ruisiip)
E. Norton (Middlesex)
J. Gerain (Pantin)
J. Cazanove (Villers)
J. C. Wery (Liege)
R. Bouvier (Liege)
G. LeBlanc (Liege)
C. J. T~oth - SSG (London)
J. ·Oreystadt (Wayne)

K. Iwasawa (Tokyo, Japan)

A. van der Linden - 12
J'. A I a j 0 k i - Z

Distribution list current as of 3/10/82

.. " _. . - " ..

P.S. 2212 5405

Burroughs Corporation

fI'1'c; COMPUTe:R SYSTe:MS GROUP

~~ji' SANTA BARBARA PL..ANT

BIOOO SDL (BNF VERSION)

REV

L.TR

G

REVISION
APPROVED BY

ISSUE DATE

3/9/82 P 1-;;-

PRODUCT SPEC IF'ICATION,

Re:VISIONS

Changes for the Mark 11.0 Release.

8-35 Added "SORT DELETE" designator.
9-16 Updated "<ON CLAUSE> ••• "

Deleted "<STATUS> ::= <:ADDRESS GENERATOR>".
Updated "An ON SEQUENCE ••• " paragraph.

12-1 Rewrote first two paragraphs of APPENDIX II.
Deleted "tUNDERSCORE IN FILE NAMES" from

"<CONTROL OPTION WORD>". -
12-5 Deleted "UNDERSCBRES.:IN FILE NAMES", and definition.
12-6 Deleted "Note: All contro 1.:-. If paragraph.
14-2 Changed tI." to "_" on ERROR_LINE, XREF_LINE,

XMAP LINE and IMAGE FILE.
Added "SDL GENERATED FILE NAMES" section.

18-6 Deleted "THE MONITOR FILE" definition.

"THE INFORMATION CONTAtNED IN THIS DOCUMENT IS CONII"DItNTIAL. AND PROPftlETARY TO BURROUGHS

CORPORATION AND IS NOT TO Bit DISCL.OSED TO ANYONE: OUTSIDe: OF BURROUGHS CORPORATION WITHOUT

THE PRIOR WRITTEN REL.ItASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"

Burroughs Corpora.tion m
COMPUTF:'R SYSTEMS GROUP

B1800/B1700 SDL (BNF Version)
2212 5405

SANTA t3AR8ARA PLANT

REV .REVISION
L TR ISSUE DATE APPROVED BY

E 1l/17/71~

RI~CEIVEP

i 1\ I~" 19~O " ,. ,

GEt- p;.RAL MA. N. A [,E~,'Il
SANT BARBARA ~

PRODUCT SPECIFICATION

REVISIONS

Changes to the Mark VIII.O Release

Changed titl~ to B1800/B1700 SDL tBNF Version)

1-2 Changed BNF statement (IDENTIFIER) ::= (IDENTIFIE&) to
(IDENTIFIER) ::= 4-ETTER)

2-5 Replaced "/" with "I"
3-1 Updated STRUCTURE OF AN SDL PROGRAM Section:

Added ,(RECORD STATEMENT) to ~DECLARATION STATEMENT)
5-5 . Replaced 3 NVS BIT(l) with 3 NSR BIT(l) in PL/I-STYLE

STRUCTURE
5-8 Updated NON-STRUCTURE DECLARATIONS BNF;

Replaced (DECLARED PART> wi th ••• , tDECLARED PART. t •..
in (DECLARED ELEMENT.) declaration.

5-18 Updated REFERENCE DECLARATION:
Replaced ~DECLARED REF) REFERENCE with ••• 1 ~DECLARED
REF) REFERENCE I ...

Updated REFERENCE RECORD DECLARATION:
Replaced iDECLARED RECORD REF) REFERENCE with
••• , £DECLARED RECORD REF) REFERENCE a •••
in (DECLARE ELEMENT) DECLARATION.

5-19 Updated FILE DECLARATIONS:
Added I l.PROTECTION PART) and , l.PROTECTION_IO)PART to
'-FILE ATTRIBUTE)

5-21 Updated Syntax
Deleted IREADER PUNCH lDEVICE OPTION)froin (DEVICE
SPECIFIER) -
Added DAT~RECORDER_80 to .!.DEVICE SPECIFIER)

5-22 Updated Format

5-25
5-31
5-32

6-2

7-1

8-12
9-12

10-28

Deleted READER,PUNCH
Added DATA RECORDER 80

Updated Default section of UNBLOCKED RECORD LENGTHS
to

Added Default s~atus of (PROTECTION PART) attribute and
~PROTECTION_IO_PART)
Updated PROCEDURE HEAD:

Added REFERENCE TO'TYP~ PART)
Updated ASSIGNMENT STATEMENTS AND EXPRESSIONS:

Deleted EXPRESSION from ASSIGNMENT STATEME~
Added EXPRESSION LIST to ASSIGNMENT STATEMENT

Description of NULL rewritten
ACCEPT STATEMENT section updated:

Deleted ~END-OF-TEXT SPECIFIER)
Deleted paragraph pertaining to END-OE-TEXT

Updated SEARCH DIRECTORY STATEMENT:

"THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS

CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT

THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"

(--

c

Burroughs Corpora.tion m
COMPUTER SYSTEMS GROUP

B1800/B1700 SDL (BNF Version) .. 212 5405

SANTA BARBARA PLANT

PRODUCT SPECIFICATION
REV REVISION

REVISIONS APPROVED BY
L TR ISSUE OATE

E

F

J(1 elf) n
11/17/7 c • ~- fOG_x ..

/;

Changes for the Mark VIILO Release (cont)

10-28 Updated <SEARCH STATEMENT) :

1O-31

10-39

10-45

Added ON FILE PART
Deleted all other references to SEARCH PART
Deleted 4FILE MISSING PART)
Deleted (FI LE LOCKED PART>
Added (ON FILE PART)

Updated table:
Added PROTECTION
Added PROTECTION 10 -Updaten COMPILE CARD INFO table
Added USERCODE- -
Added FILLER
Added SESSION
Changed CHARGE NUMBER CHARACTER from 6 to 7

Upda ted l"lESSAGE COUNT
Deleted I (FILE IDENTIFIER) [(EXPRESSION»)
Added ~SWITCH FILE IDENTIFIER)

6/25/80 ~ }keChangeS for the Mark 10,0 Release

5-6 Added "<LEVEL NUMBER> <STRUCTURE ELEMENT>" to
<STRUCTURE ELEMENTS>.

5-20 Added "<HOST NAME PART>" to <FILE ATTRIBUTE> 1 is t.

5-33 Added "<HOST NAME PART>" ATTRIBUTE.

8-16 Added "<BINARY SEARCH DESIGNATOR>",
"<DATA LENGTH DESIGNATOR>", "<DATA TYPE DESIGNATOR>"
"<LAST-LIO STATUS DESIGNATOR>", & iT<TIMER DESIGNATOR>"
to "VALUE GENERATING FUNCTIONS" lis t.

8-18 Added "BINARY SEARCH" description.

8-22 Added "DATA LENGTH" & "DATA TYPE" descriptions.

8-28 Added "LAST LIO STATUS" description.

8-39 Added "TIMER" description.

9-2 Added" <;:ON BEHALF OF MODE>" to "<OPEN ATTRIBUTE>."

9-6

Added "<ON BEHALF OF MODE>" to OPEN STATEMENT.

Added "<READ PART> <RESULT MASK>; <ON SEQUENCE>"
to "<READ STATEMENT>."

Added "<RESULT MASK> ::= WITH RESULT MASK <ADDRESS -GENERATOR>" to the READ STATEMENT.

9-7 Added "if the <RESULT MASK> ... " pa~agraph.

"THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS

CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT

THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"

BurrouQhs Corporation m
COMPUTER SYSTEMS GROUP

B1800iBl/00 SDL (BNF Venio!])

REV

L.TR

SANTA BARBARA PLANT

REVISION
ISSUE DATE APPROVED BY

PRODUCT SPECIFICATION

REVISIONS

Changes fo~ the Ma;~]0.0 Relea3e (~on~.·)

9-8 Added "<WRITt!: PAH.T> <RESULT MASK>; <ON SEQUENCE>"
to ttiC: WR I.TE STATEMENT.

ti-9 Added" <KESULT MASK> : :" WITH RESULT MASK
<:ADDRESS GENERATOR>" t.o the WRITE STATEMENT.

9··10 Added "If the, <RESULT MASK>,.." paragraph,

10-15 Added "<DYNAMIC HOST NAME PART>" dnd
"<DYNAMIC OPEN ON BEHALF OF PART>" '.0 -' .. - --
<DYNAMIC FILE ATTRIBUTE> list..

10-2:1 Added "<DYNA.,\fIC HOST NAME PART>" an ..
"<DYNAMIC OPEN __ ON ... BEHALF ... OF>" des:-:-; p ,. iO'1"

10-36 Added "<REFEo{ ADDRESS DESIGNATOR>",
"<REFER L.ENGTH DESIGNATOR>" and
"<REFER--TYPE DESIGNATOR>" 2.S FUNCTION DESIGNATORS.

10-47 Added "REFER ADDRESS" des(r LpLic,'.

10··48 Added "REFER LENGTH" ,lne "REFER TYPE" descriptions

"THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL. AND PROPRIETARY TO BURROUGHS

CORPORATION AND IS NOT TO BE DISCL.OSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT

THE PRIOR WRITTEN REL.EASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"

•

. (~:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

fC-1
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
- P.S. 2212 5405 (G)

BACKUS NAUR FORM ••••••••••••••••••••••
RELATED PUBLICATIONS

1-1
1-2

8ASIC COMPONENTS OF THE SOL LANGUAGE
COMMENTS

• • • • • • • • • •• 2~1

NUMBERS •••••••••••••••••••••• ••
BIT STRINGS
CHARACTER STRINGS
CHAR_ TABLE

• • • • • • • • • • • • • • • • • •

OTHER CONSTANTS ••••••••••••••••••••
STRUCTURE OF AN SOL PROGRAM
PROGRAM SEGMENTATION •••••••••••••••••••
DECLARATIONS

DATA TYPES •••••••••••••• • • • • • • • •
~ECLARE STATEMENT
RECORD STATE~ENT •••••••••••••••••••
NON-STRUCTURE DECLARATIONS
STRUCTURE DECLARATIONS ••••••••••••••••
PAGED ARRAY DECLARATIO~S
DYNAH IC DECLARA T ION S ••••••••••••••••

Restrictions:

2-2
2-3
2-3
2-4
2-5
2-5
3-1
4-1
5-1
5-1
5-2
5-3
5-8

5-11
5-15
5-16
5-17

REFERENCE DECLARATIONS •••
RECORD REFERENCE OECLARATIONS

••••••••••••• 5~18
5-19

FILE DECLARATIONS •••••• • • • • • • • • • • • • 5-20
5-34 SWITCH FILE DECLARATIONS

DEFINE STATEME~T •••••
FORWARD DECLARATION

• • • • • • • • • • • •• • 5-36
5-40

USE STATEMENT •••••••• • • • • • •••••• • 5-43
PROCEDURES 6-1

PROCEDURE HEAD ••
INTRINSIC HEAD

• • • • • • • • • • • • • • • • •• 6-2
6-5

PROCE DURE BOO Y
PROCEDURE ENDING

• 6-6
6-8

ASSIGNMENT STATEMENTS AND EXPRESSIONS •••••••. _ ~ •• 7-1
7-5 UNARY OPERATORS

ARITHMETIC OPERATORS
RELATIONAL OPERATORS

• • • • • • • • • ••••••• • 7-5
7-6

LOGICAL OPERATORS •••••••
REPLACE OPERATORS

• • • • • • • • • • • • 7-7
7-8

CONCA rENA nON ••••••• • • • • • • • • • • • • • 7-11
PRIMARY ELEMENTS OF THE EXPRESSION

CONDITIONAL EXPRESSION ••••••••••••••••
CASE EXPRESSION
BUMP •••••••••••••••••••••••••
DECREMENT
ASSIGNOR •••••••••••••••••••••••
ADDRESS VARIABLES

INDEXING ••••••••••••••••••••
ADDRESS GENERATING FUNCTIONS

8-1
8-1
8-2
8-2
8-4
8-4
6-5
8-5
8-8

C:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

TC-Z
COMPANY CONfIDENTIAL

81000 SOL (SNf Version)
P.S. 2212 5405 (G)

SUBBIT AND SUBSTR •••••••••••••• 8-8
fETCH_COMMUNICATE_HSG_PTR
DESCRIPTORS ••••• ~ ••••••••••

8-10
8-10
8-11
3-12
3-12

MAKE_DESCRIPTOR
NEXT_ITEM, PREVIOUS_ITEM ••••••••••
NULL

ADDRESS GENERATORS • • • • • • • • • • • • ••• 8-13
VALUE VARIABLES a-lit
TYPED PROCEDURES ••••••••••••••••• • • 8-15

8-15 ADORESS AND VALUE PARAMETERS
VALUE GENERATING FUNCTIONS

BASE_REGISTER
• • • • • • • • ••• a-16

BINARY CONVERSION •••••••••••••
8-11
8-18
8-18 BINARY SEARCH

COMMUNICATE_WITH_GISMO
CONSOLE_SWITCHES

• • • • • • • • •• 8-19
8-19

CONTRoL_STACK_BITS •••••••••••
CONTRoL_STACK_TOP
CONVERT ••••••••••••••••••

• • 8-19
8-19
8-20
8-22
8-22
8-2Z
8-22
8-23
8-23
8-24
8-25
8-25
8-25
8-25

DATA_ADDRESS
DATA_LENGTH ••••••••••••••••
DATA_TYPE
DATE •••••••••••••••••••
DECIMAL CONVERSION
DELIMITED_TOKEN ••••••••••••••
DISPATCH
DISPLAY_BASE •••••••• •••••••
DYNAMIC_MEMORY_8ASE
EVAlUATION_STACK_ TOP ••••••••••••
EXECUTE
EXTENDED ARITHMETIC FUNCTIONS • • • • • • • 8-27'
HASH_CODE 8-21
INTERROGATE_INTERRUPT_STATUS ••••••
LAST_LID_STATUS
LENGTH ••••••••••••••••••

• • 8-28
8-2·8
8-28
8-28
8-29
8-29

LIMIT_REGISTER
LOCATION ••••••••••••••••••
NAME_OF_DAY
NAME_STACK_TDP
NEXT_TOKEN

• • • • • • • • • • • • •• 8-30

PARITY_ADDRESS •••••••••••••••
8-30
8-31
8-31 PROCESSOR_TIME

PROGRAM S~ITCHES

SEARCH_LINKED_LIST
• • • • • • • • • • • •• 8-31

SEARCH_SOL_STACKS •••••••••••••
3-32
3-33
8-34 SEARCH_SERIAL_LIST

S_HEH_SIZE, M_MEH_SIZE • • • • • • • • •• 6-35
SORT DELETE
SORT_SEARCH ••••••••••••••••
SORT_STEP_DO~N

SORT_UNBLOCK •••••••••••••••
SPo_iNPUT_PRESENT
SUB8IT AND SUaSTR •••••••••••••
SWAP

8-35
8-35
13-36
8-36
8-31
8-37
8-38

(.~.'
::r

.. C~··"

t .l '.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

TC-3
COMPANY CONfIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

TIME ••••••••••••••••••• 8-39
TIMER 8-39
VALUE_DESCRIP TOR •••••••••••••• 8-40
WAIT 8-40

1/0 CONTROL STATEMENTS •••••••••••••••••• ~-1
OPEN STATEMENT 9-2
CLOSE STATEMENT •••••••••••••••••••• 9-4

READ STATEMENT 9-6
WRITE STATEMENT ••••••••••••••••••• 9-8
SEEK STATEMENT 9-11
ACCEPT STATEMENT ••••••••••••••••••• 9-12
DISPLAY STATEMENT 9-13
SPACE STATEMENT ••••••••••••••••••• 9-14
SKIP STATEMENT 9-15
Olt SEQUENCE ••• _ • • • • • • • • • • • • • • • •• 9-16

EXECUTABLE STATEMENTS 10-1
00 GROUPS •••••••••••••••••••••• 10-2
UNDO 10-4
IF STATEMENT ••••••••••••••••••••• 10-5
CASE STATEMENT 10-7
REFER STATEMENT ••••••••••••••••••• 10-8
REDUCE STATEMENT 10-9

END OF STRING ••••••••••••••••• 10-11
MODIFY STATEMENTS (CLEAR. BUHP. DECREMENT) 10-12
NULL STATEMENT ••••••••••••• ~ • • • • • 10-13
FILE ATTRIBUTE STATEMENT (CHANGE STATEMENT) 10-14
STOP STATEMENT ••••••••••••••••••• 10-26
ZIP STATEMENT 10-21
SEARCH.DIRECTORY STATEMENT ••••••••••••• 10-28
READ.FILE_HEADER. WRITE.FILE_HEAOER 10-30
MAKE_READ.ONLY. MAKE.READ.WRITE ••••••••••• 10-32
COROUTINE STATEMENT 10-33
EXECUTE-PROCEDURE STATEMENT •••••••••••• 10-35
EXECUTE-FUNCTION STATEMENT 10-36

ACCESS_FILE_INFORHATIO~ •••••••••••• 10-31
CHANGE.SlACK_SIZES 10-31
CHARACTER_FILL •••••••••••••••• 10-38
COMMUNICATE 10-38
COMPILE_CARO_INFO ••••••••••••••• 10-38·
DC_INITIATE_IO 10-39
DEBLANK •••••••••••••••••••• 10-40
DISABLE_INTERRUPTS 10-40
DUMP •••••••••••••••••••••• 10-40
DUMP.FOR_ANALYSIS 10-41
ENABLE.INTERRUPTS· ••••••••••••••• 10-41
ERROR_COMMUNICATE 10-41
EXECUTE •••••••••••••••••••• 10-42
FETCH 10-42
FREEZE_PROGRAM •••••••••••••••• 10-43
GROW 10-43
HALT •••••••••••••••••••••• 10-44
HARDWARE_MONITOR 10-44
INITIALIZE_VECTOR ••••••••••••••• 10-44
MESSAGE_CaUNT 10-45

("" .\

i
,,.,/

C·"
..

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

TC-4
COMPANY CONfIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPEND[X
APPENDIX

MONITOR
OVERLAY

• • • • • • • • • • • • • • • • • • •• 10-45
10-45

READ_CASSETTE •••••• • • • • • • • • • • • 10-46
READ_FP9~ WRITE_FPB
READ_OVERLAY, WRITE_OVERLAY

10-46
• • • • • • • • •• 10-41

10-47 REFER ADDRESS
REF ER LEN G TH
REFER TYPE

• • • • • • • • • • • • • • • 10-46
1~-48

REINSTATE •••• • • • • • • • • • • • • • •• 10-48
10-49 RESTORE

REVERSE_STORE
SAVE
SAVE_STATE
SORT

• • • • • • • • • • • • • • • • • 10-49
10-50

• • • • • • • • • • • • • • • • • • • 10-50

..... e· • • • • • • • • e· • • ••

10-50
10-51
10-52

SORT_MERGE
SORT_SWAP
THAW_PROGRAM
THREAD_VECTOR

• • • • • • • • • • • • • • • • • • 10-52
10-52

TRACE ••••••••••••• • • • • • • • • 10-53
TRANSLATE 10-54

I: RESERVED AND SPECIAL WORDS
II: SOL CONTROL CARD OPTIONS
III: PROGRAMMING OPTIHI~ATION
lV: RUNNING THE COMPILER

•••••••••• 11-1
12-1

• • • • • • • •• 13-1
14-1

V: CONDITIONAL COMPILATION •••
VI: SOL PROGRAMMING TECHNIQUES

• • • • • • •• 15-1

VII: SOL PARTIAL RECOMPILATION FACILITY
VIII: SOL MONITORING FACILITY

16-1
••••• 17-1

18 ~1

(
e~e

\

/

ee C

k.. 'as"" ,

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

.... _. '....:. w·· w"

1-1
COMPANY CONfIDENTIAL

BIOoO SOL (BNf Version)
P.S. 2212 5405 (G)

A language used to talk about a language is a metalanguage. The
natural languages are, in fact, metalanguages; for example, the
metalanguage English is used to talk about the structure of an
English language sentence. Backus Naur Form (8Nf), a
metalanguage popularized by its use to describe the syntax of
Algol 60 is used to describe the syntax of SOL. To avoid the
confusion between the symboLs of the metalanguage and those of
the language being described, BNF uses only 4 metalinguistic
symbols. Literal occurrences of symbols other than the the
metasymbols, with no bracketing characters. represent themselves
as terminaL symbols of the language.

A grammar for SOL is written as a set of BNF statements. each of
which has a left part, followed by the metasymbal W::=" followed
by a list of right parts. The left part is a phrase name, and
the rignt parts, separated by the metasymbol -I w• are strings
containing terminal symbols and/or phrase names.

HETASYHBOL ---_ _--.,.
.. -.. -

ENGLISH EQUIVALENT

is defined as

or

<IDENTIFIER> "IDENTIFIER"

USE

separates a phrase name from
its definition.

separates alternate definition
of a ohrase.

The bracketing characters indi
cate that the intervening char
acters are to be treated as a
unit, i.e., as a phrase name.

Each BNF statement is a rewriting rule~ such that we may
substitute any right part for any occurrence of its associated
left part; and we have a choice of right parts which we may
substitute. The following example specifies the usa of these
rules to determine those strings which are grammatically correct
identifiers in SOL.

<LETTER> .. - A 1 B I C 0 E F I G I H I I I J I K I L . . -
N I 0 I P Q R S I T I U I V I W I X I Y
a I b I c d e f I 9 I h I i I j I k I l
n I 0 I p q r s I t I u I y I w I x I y

11
Z
m
z

C·/ .. /

(")
. "

... "Ii'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-2
COMPANY CONFIDENTIlL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

<DIGIT>

<BREAK>

.. -.. -

.. -.. -
<IDENTIFIER> .. -.. -

o I 1 12' 3 , 4 I 5 I 6 171 8 I 9

<LETTER>
<IDENTIFIER> <LETTER>
<IOE~TIFIER> <DIGIT>
<IDENTIFIER> <aREAl(>

XYZ12_B4 is a proper SOL <IDENTIFIER> since it can be generated
as a terminating set of symbols by using the BNF rules.

Proof that XYZI2_B4 i s an <IDENTIFIER> by starting with the fact
that an <ICENTIFIER> can be a <LETTER>.

FORM EXAMPLE ---- ---_ .. _-
<IDENTIFIER> · "- <LETTER> X · .-
<IDENTIFIER> · .- <IDENTIFIER><LETTER> XY o .-

<IDENTIFIER> .0_ <IDENTIFIER><LETTER> XYZ · .-
<IDENTIFIER> · .. - <IDENTIFIER><OIGIT> XYZ1 0.-
< r DEN r I FIE R> .. - <IOENTIFIER><OIGIT> XYZ12 .. -
<IDENTIFIER> · .- <IDENTIFIER><BREAK> XY712_ .. -
<IDENTIFIER> .. - <IDENTIFIER><LETTER> XYZI2_B .. -
<IDENTIFIER> .0_ <IOENTIFIER><DIGIT> XYZ12_B4 .. -

Notice that the 8~F rules do not~ in any way~ limit the number of
letters. digits, and dots which comprise the <IDENTIFIER>. In
such cases~ further semantic rules will be specified; e.g.~ an
SOL <IDENTIFIER> is limited to a ~aximum of 63 characters.

NAME

SOL/UPL COMPILER
81700 SOL S-LANGUAGE
81700 SYSTEMS REFERENCE HANU~L

NUMBER

P.s. 2212 5389%
P.S. 2201 2389
#1057155

----..

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

In order'to understand
wi t h the mos t basic
Language below.

<DIGIT> .. -.. -
<LETTER> .. -.. -

SOL grammar,. the
elements of the

0 1 2

A S C I
I K L H I
I U V W I

2-1
COMPANY CONFIDENTIAL

91000 SOL (BNF Version)
P.S. 2212 5405 (6)

user should be familiar
Software Developmental

3 4 5 6 7 8

0 I E I F G I H J I 1
N I 0 I P Q I R I S I
X I y f Z a I b I c I

9

J
T
d

I e f g I h I i I j k I l I m J n
I 0 I p q I r I 5 I t u I v I w I
I y I z

<SPECIAL CHARACTER> .. -.. - &
$
(

• < J ; f ,. I 1 I 1= I

<BREAK>

<BLANK>

.. -.. -
::=

· ·)
> I >= I = I + I * I
- J <= I [I] I <8LANK>

NOTE: <BLANK> is the occurrence
char act e r " ".

of one non-visible

<IDENTIFIER> .. -.. - <LETTER> I <IDENTIFIER> <LETTER>
<ICENTIFIER> <DIGIT>
<IDENTIFIER> <BREAK>

RESTRICTIONS:

1. An identifier may not contain blanks.

2. An identifier may contain a maximum of 63 characters.

3. Reserved words may not be used as identifiers.

4. "Special" words may be used for segment and DO-group
identifiers without losing their special significance
inS DL.

x

(

BURROUGHS CORPORATION
CDMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-2
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

5. In all other cases, wspecial" words may be used as
identifiers, however, they lose their special
significance throughout the entire program when
declared at Lexic Level O. When declared at any
greater Lexie level, they only lose their special
meaning within the procedure in which they are
declared.

(Also see "Structure of an SOL Program- and "Appendix
I")

6. All reserved and special words must be in all upper
case.

1. Identifiers must contain
where upper and lower case
identical. If an upper-case
is entered in lower case" it

exactly the same letters.
are concerned. to be
identifier, for example,
is a new identifier.

<COMMENT STRI~G> ::= 1* <COMMENT TEXT> *'
RESTRICTIONS:

1. The pair /* preceding the <COMMENT TEXT> must appear
as adjacent symbols. Similarity, the pair *1
following the <COMMENT TEXT> must also appear as
adjacent symbols.

<COMMENT TEXT>

<EMPTY> ::=

.. -.. - <EMPTY>
<COMMENT TEXT CHARACTER>
<COM~ENT TEXT CHARACTER>
<COMMENT TExT>

Note: <EMPTY> is the null set or the occurrence of nothing.

<COMMENT TEXT
CHARACTER> ::=

<CARD TERMINATOR> ::=

<DIGIT>
<LETTER>
<5?ECIAL CHARACTER>

" I ~ I # I %

%

aURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-3
COMPANY CONfIDENTIAL

BI000 SOL (BNF Version)
P.s. 2212 5405 eG)

RESTRICTION: A % is treated as any ~tber string character if
it is contained within a <CHARACTER STRING> or in
<COMMENT TEXT>. However~ in all other cases~ a %
will cause the scanning of the current source
image to terminate and to continue in the next
source image.

<NUMBER> . -.. - <DIGIT> I <NUMBER> <DIGIT>

NOTE: Range of signed numbers -(2 exp 23) to (2 exp 23)-1.
Range of unsigned numbers 0 to (2 exp 24)-1.

lUI ~IEII:LG~

<BINARY DIGIT> ::=

<BINARY DIGITS> ::=

<QUARTAL DIGIT> ::=

<QUARTAL DIGITS> ::=

<OCTAL DIGIT> ::=

<OCTAL DIGITS>

<HEX DIGIT> ::=

.. -.. -

<HEX DIGITS>::=

<BIT GROUP>:::

<BITS>::=

<3IT STRING> • 0-
o .-

o I 1 I <COMMENT STRING>

<BINARY DIGIT>
<BINARY DIGITS> <BINARY DIGIT>

<BINARY DIGIT> I 2 I 3

<QUARTAL DIGIT>
<QUARTAL DIGITS> <QUARTAL DIGIT>

<QUARTAL DIGIT> I 4 I 5 I 0 I 7

<OCTAL DIGIT>
<OCTAL DIGITS> <OCTAL DIGIT>

<OCTAL DIGIT>
8 I 9 I A I B I C I 0 I ElF

<HEX DIGIT>
<HEX DIGITS> <HEX DIGIT>

(4) <HEX DIGITS>
(3) <OCTAL DIGITS>
e2) <QUARTAL DIGITS>
(1) <BINARY DIGITS>

<BIT GROUP> I <HEX DIGITS>
<BITS> <SIT GROUP>
<EMPTY>

Ci

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-4
COMPANY CONfIDENTIAL

Bl000 SOL (BNF Version)
P.S. 221Z 5405 (G)

RESTRICTIONS:

1. If no bit mode is specified (i.e.~ The indicator
digit in parentheses is omitted)~ ·Hex· is assumed.
This can only be assumed if the bit string does not
start with ~ mode indicator; when the mode is
switched to "Hex"~ an explicit "(4)" is required.

2. As noted above~ a <COMMENT STRING> may appear

<STRING>

anywhere within a <BtT STRING>~ but not within the
parentheses bounding the indicator digit. The
presence of a <COMMENT STRI~G> will~ in no way~ alter
the value of the <SIT STRING> containing it. Blanks
may not appear in a <BIT STRING>.

Example:
~(3)6330316260/* THIS */3132301* IS */63302560/* THE *1
4321626360/* LAST */512523465124/* RECORD */~

------ <CHARACTER STRING>
<BIT STRING>

<CHARACTER STRING> · .-· .- "<STR1NG CHARACTER LIST>"

<STRING CHARACTER LIST> .. -_. - <EMPTY>

<STRING CHARACTER>

RE STRI CT IONS:

· ... -
<STRI~G CHARACTER LIST>
<ST~lNG CHARACTER>

<DIGIT> I <LETTER> I <SPECIAL CHARACTER>
ft" I ~ I fI I %

If a quote sign is desired in a character
string~ then two adjacent quote signs must
appear in the text.

--------------------~------

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-5
COMPANY CONfIDENTIAL

BI000 SOL (BNF Versi~n)
P.S. 221Z 5405 (G)

EXAMPLE: DECLARE STRING CHARACTER (6)~
QUOTE CHARACTER (1);

'&liA.fL.lA~..L.E

STRING :=
QUOTE -.- " ;

After execution, STRING will contain: AB"CDE,
. and (WUOTE wi II contain: ".

Note: A <CHARACTER STRING> may contain a maximum of
256 characters.

The translation bit table for the set-membership reduction is
rather cumbersome to construct by hand, so the compiler provides
a convenient notation for table constructs. These constants are
wr i tten:

<TABLE CONSTANT> ::=
<TABLE STRING> ::=

CHAR_TABLE (<TABLE STRING>)
<STRING> I <TABLE STRING> CAT <STRING>

The constant denoted is a 256-bit string with ~{1)1_ 0·.
corresponding to every character in <TABLE STRING>. (When a <BIT ~~

STRING> occurs in the <TABLE STRING>, it is used to denote
non-graphic characters in their hexidecimat (EBCDIC) form.)

<CONSTANT> ::= <NUMBER> I <STRING> I rODAYS_DATE
SEQUENCE_NUMBER
HEX_SEQUENCE_NUMBER
<fABLE CONSTANT>

TOOAYS_OATE represents the date and time of
compilation of the program. It is the same as the
date and time anpearing at the top of the program
Listing. It is a character string with the following
format -- ,

"MM/DO/YY HH:MM"

SEQUENCE_NUMBER represents a <CHARACTER STRING> of 8
characters which is the sequence number of the O.
current source image being compiled.

~-,.-------.-.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

2-6
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

HEX_SEQUENCE_~UMaER represents a bit string of 8
(hex) digits which is the sequence number of the
current source image line being compiled. If this
sequence field is blankp then HEX_SEQUENCE_NUMBER =
~lOOOOOOOO;

If the current source image line sequence number is
12753000, then on this line:

SEQUENCE_~UMBER = "12753000"
HEX_SEQUENCE_NUHBER = ~12753000~

BURROUGHS CORPORATION
COMPUTERSYSTEM~ GROUP
SANTA BARBARA PLANT

<PROGRAM> .. -.. -

<DECLARATION STATEMENT
LIST> ::=

<DECLARATION STATEMENT>

<PROCEDURE STATEMENT
LIST> ::=

. ".. -

<PROCEDURE STATEMENT> ::=

<EXECUTABLE STATEMENT
LIST>:::

<EXECUTABLE STATEMENT> .. -.. -

3-1
COMPANY CO~fIDENTIAL

Bl~OO SDL (BNF Version>
P.S. 2212 5405 (G)

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<EXECUTABLE STATEMENT LIST>
FINI

<EMPTY>
<DECLARATION STATEMENT>
<DECLARATION STATEMENT LIST>

<DECLARE STATEMENT>;
<DEFINE STATEMENT>;
<FILE DECLARATION STATEMENT>;
<SWITCH FILE DECLARATION
STATEMENT>;
<FORWARO DECLARATION>;
<USE STATEMENT>;
<SEGMENT STATEMENT>;
<DECLARATION STATEMENT>;
<RECaRD STATEMENT>;

<EMPTY>
<PROCEDURE STATEMENT>;
<PROCEDURE STATEMENT LIST>

<PROCEDURE DEFINITION>
<SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<EMPTY>
<EXECUTABLE STATEMENT>
<EXECUTABLE STATEMENT LIST>

See SECTION 10 •

A program written in SOL must follow the sequential structure
described in the syntax above. That is, the executable section
of the orogram may not appear until all procedures have been
defined, and procedures may not be defined before the formats of
data items (variables, arrays, etc.) have been declared. "fINI
is not required, but if present must physically occur as the
final statement in the program.

-
•• '.'-~ ~.~~ ·~.-""'~_· __ """"" ____ ~d, •• __ •• _ ~ ••• _ •• " ~ ___ _ ... __ ._ ••• «_ _ _ ~ ..

,

o

(. '~
..

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-2
COMPANY CONfIDENTIAL

B100a SOL (BNf Version)
P.S. 2212 5405 (G)

The procedure statement (including declaration, procedure~ and
executable statements) is the basic structure in SOL. An SOL
program is a colleetion of procedures, each of which can be
described for conceptual purposes as a microcosm of the program.
Any given procedure may contain a collection of other procedures
within itself. This process is known as "Nesting".

The "Lexicographic Level" of any statement in the program is
equal to the number of procedures in which it is nested. The
program itself will always be Lexie Level o~ and no procedure may
have a Lexie level greater than 15. The diagram in Figure 1
illustrates procedure nesting and Lexie levels.

It is important to understand the relationships between these
nested procedures. As Figure 1. indicates~ the name of any
given procedure is contained in the procedure in which it is
nested at the next lower Lexie level. for example, procedure 0
is a Lexie Level 2 procedure, however, its name. "0·, is part of
Lexie Level 1.

The "scope" of any given procedure is recursively defined as:

1) The procedure itself,

2) Any procedure(s) nested within the procedure,

3) Any orocedure (and its nested orocedures) whose name
appears at the same Lexie level and within the same
procedure as its own name~ and

4) The procedure in which its own name is defined.

In Figure 1, one can see that the scope of Procedure B includes:

1) Itself, i.e.~ Procedure B

2) The nested procedures within B (C and 0),

3) Th e other procedures defined at LL 0: E (and its
nested procedures f and G) and pr ocedure H (and its
nested procedures J,. /(, L, M~ N~ and P.

4) The procedure wh ic h defines B, i n this case,. the
program A.

Note: All the Lexie Level 0 procedures have scope to each
other. This occurs because of rule 4 above, wherein
the program itself is thought to be a "procedure-.

- - .-> .- __ - .. ~.-.- • .,.,_._ v_ ~.~ ••• ___ ~ _~ ...- ___ ~_ • ___ -. ___ w_ ~~ _~ ____ __ ". _ _ -. ___ ,. ... __ .,. __ ~ • •

I
I",]' ~:

~.

~.

BURROUGHSCDRPORATION
COMPUTER SYSTEMS GROUP
SANTABARBARA PLANT

3-3
COMPANY CO~FIDENTIAl

BI000 SOL (BMF Version)
P.S. 2212 5405 (G)

In the salle manner, the scope of procedure J includes J,. K,. L"M"
N,. p,. and H.

8y understanding the relationships between the various
procedures, it is possible to determine which procedures may be
invoked by any given procedure. SOL has been defined so that any
procedure X may call or invoke any procedure Y, if the scope of Y
encompasses X.

In Figure 1,. Procedure J may call procedures J"K.L"M,.H"E,. and B
because each of these contains J in its scope.

Note: J cannot call the program A since the na.e
program,. if there is one. exists outside the
and is, therefore,. not compiled; however.
access the data contained in A (i.e.,. Al,. A2"
A4).

of the
program

J IRa y
A3,. and

Figure 2 below shows the relationship between scope and calling
ability f~r pr~gram A.

o

o

o

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA 8ARBARA PLANT

PROGRAM A
DECLARE AI. A2. A3. A4~
PROCEDURE B;

DECLARE a1. 82, 83;
PHOCEOURE C;

DECL4RE Cl. C2, C3;
EXECUTABLE STATEMENTS;'

END C;
PROCEDURE 0;

EXECUTABLE STATEMENTS;
END 0;
EXECUTABLE STATEMENTS;

END 8i
PROCEDURE E;

DECLARE El. E2;
PROCEDURE f;

DECLARE Fl. fl. F3;
EXECUTABLE STATEMENTS;

END Fi
PROCEDURE G;

END G;

DECLARE Gl. G2;
EXECUTABLE STATEMENTS;

EXECUTABLE STATE~ENTS;
END Ei
PROCEDURE H;

END A;

DECLARE HI. H2. H3, H4;
PROCEDURE Ji

PROCEDURE 10
END Ki
PROCEDURE L;
END L;

ENO;
PROCEDURE M;

END 14;

PROCEDURE N;
ENO Hi
PROCEDURE Pi
END Pi

EXECUTABLE STATEMENTS;
FINI

Fig 1. Procedure Nesting

3-4
COMPANY CONfIOENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

A B C
B It *
C *
0 It

E It *
f

Procedure G
H It .-

Scope J
K
L
H
N
P

0
It

A-

*
It

*

E f G H
It It It It

*
*
It It * It

It * It

It * * .- It .- *

J K
It It

It *

II' * .- .-
*
It

II' *

3-5
COMPANY CONfIDENTIAL

81000 SOL (BNf Version)
P.s. 2212 540~ eC)

L H N P
It It It * It

* It * * *

.- .- .- * It

It .- It It .-
.- *
It It

* * .- It *
* * *
* It *

Note: To find the scope of a procedure. find the procedure
in the column of procedure names. The horizontal
rows to the right indicate the procedures in its
scope. The procedures which may be called by a given
procedure are marked in the vertical columns below

o

that catling procedure. r\
~

fig 2. Scope and CatLing Ability

o

(.-....•...•...•.•... I
j

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4-1
COMPANY CONFIDENTIAL

31000 SOL (BMF Version·)
p.S. 2212 5405 (G)

<SEGMENT STATEMENT> ::= <SEGMENT STATEMENT WORD> «SEGMENT PART»;
<SEGMENT STATEMENT WORD> ::= SEGMENT I SEGMENT_PAGE
<SEGMENT PART> ::= <SEG~ENT IDENTIFIER> <PAGE PART> <IMPORTANT PART>

<SEGMENT IDENTIFIER> <IMPORTANT PART> <PAGE PART>
<SEGMENT IDENTIFIER> ::= <IDENTIfIER>
<PAGE PART> ::= <EMPTY> I OF <PAGE IDENTIfIER>
<PAGE IDENTIfIER> ::= <IDENTIfIER>
<IMPCRTANT PART> ::= <EMPTY> I ~ IMPORTANT

As the BNt indicates, the <SEGMENT STATEMENT> ~ay occur anywhere
within an SOL program. Its purpose is to reduce the memory
requirement of the program by allowing segments to overlay each
other.

There is a maximum of 16 pages with 64 segments per page. The
segment names represent a page-number segment-number pair.

It is only necessary to specify SEGMENT_PAGE once for each page.
Every subsequent segment will be compiled to that page until
another SEGMENT_PAGE is encountered.

If there are no SEGMENT_PAGE specifications~ all segments will be
compiled to Page Zero, and there may be no more than 64 segments
total. If a program is to be segmented, the first statement must
be a <SEGMENT STATEMENT>. Otherwise a warning message will
appear in the source listing.

There are two types of segmentation: "permanent" and
"temporary". Every statement following a permanent <SEGMENT
STATEMENT> will be compiled to that segment until another
<SEGMENT STATEHENT> is read. ~on-consecutive statements may be
comoiled to the same segment by using the same <SEGMENT
IDENTIfIER>. Note~ however, that <DO GROUP>s (See "00 GROUPS")
and procedures must end in the same segment in which they begin.
If this is not the case~ the comoiler issues a warning and
inserts code to bring the program back to the proper segment so
that the do-group or procedure may be exited correctly.

The fallowing example illustrates the use af the "permanent
<SEGMENT STATEMENT>.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA' BARBARA PLANT

SEGMENT (XX);

4-Z
CnMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P~S. ZZlZ 5405 (G)

DECLARE At, AZ, A3, A4;
PROCEDURE Bi

DECLARE B1, 82, B3;
SEGMENT Cry);
PROCEDURE C;

•
•
•

END C;
PROCEDURE D;

• '.
•

END 0;
SEGMENT (XX);

•
•
•

END Bi
•
•
•

FINI

Only procedures C and 0 have been compiled to the segment ·YY·.
Segment ·XX· is segment zero and includes everything eLse.

A <SEG~ENT STATEMENT> is treated as "temporary· only when it
precedes a ·Subordinate Executable Sta~ement" within any of the
following statements:

<ACCESS FILE HEADER STATEMENT>
<CASE STATEMENT>

<SEARCH DIRECTORY STATEMENT>
<SEND STATEMENT>

<IF STATEMENT> <SPACE STATEMENT>
<READ STATEMENT> <WRITE STATEMENT>
<RECEIVE STATEMENT> <OPEN STATEMENT>

In these specific cases, ,the segment change applies only to the
subordinate statement following it. For example, the syntax for
the <IF STATEMENT> could be written as follows:

<IF STATEMENT> ::= IF <EXPRESSION>
THEN <SUBORDINATE EXECUTABLE STATEMENT>
IF <EXPRESSION>
THEN <SUBORDINATE EXECUTABLE STATEMENT>
ELSE <SUBORDINATE EXECUTABLE STATEMENT>

---- .-~ .. - ... -

0'
l,1

o

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4-3
COMPANY CONfIDENTIAL

81000 SOL (8Nt Version)
P.S. 2212 5405 (G)

The segmentation of a hypothetical <IF STATEMENT> is presented
below to illustrate the use of a "temporary- <SEGMENT STATEMENT>.

SEGMENT CAl;
PROCEDURE x;

END Xi

•
•
•
IF Y>Z THEN Y:=Z; ELSE
SEGME~T (8);
00 SOME_FUNCTION;

•
•
•

•
•
•

.,
•
" •
"

" Compiled to Segment Ca)

Because the <00 GROUP>7 -SOME_rUNCTION-~ is a subordinate
<EXECUTABLE STATEMENT> in the <IF STATEMENT>, Segment (8)
automatically ends when the <00 GROUP> is terminated. ALL
statements folLowing are compiled to Segment (A).

Notice the distinction between Segment (A)~ a ·permanent-
<SEGMENT STATEMENT>~ and Seg~ent (B), a -temporary· one.

If the construct ,IMPORTA~T appears in the <IMPORTANT PART> of a
segment statement, then the SDL/UPL compiler will set the decay
factor for that segment to seven. If the control oPtion word
SIZE is used, a list of segment names, numbers and sizes will be
printed at the end of the source listing. The segments that have
been marked ,IMPORTANT will be noted.

EXAMPLES:
SEGMENT (SEGZERO , IMPORTANT) ;
SEGMENT_PAGE (SEGONE OF PAGEZERO , IMPORTANT);
SEGMENT CSEGTWO , IMPORTANT OF PAGEONE);

BUR.OUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PRAGMATICS

4-4
COMPANY CONFIDENTIAL

81000 SDl (BNF Version)
P~S. 2212 5405 (G)

The decay factor field in the segment dictionary is three bits
long. It will always have a value of zero or seven. Whatever
value the compiler puts in the code file, the MCP changes it. So
when reading a memory dump, a value of zero means that the memory
priority will decay more slowly. But when looking at code files,
a value of seven means that the memory priority will decay more
slowly.

o

C'~: ,-

C\
-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA SARBARA PLANT

LlAIA Ilff,;j

r ... -- " S 7$"' • 7 ,-

5-1
COMPANY CONfIOENTIAL

B1000 SOL (SNf Version)
P.S. 2212 5405 (G)

Three main types of data may be declared in SOL:

1) BIT
2> CHARACTER
3) FIXED

A bit field consists of a nu~ber of bits specified by a number in
parentheses following the reserved word -SIT-. The field ~ay be
a ~aximum of 65,535 bits.

A character field is a number of characters. 8 bits each.
specified by a number in parentheses following the reserved word
·CHARACTER". The fielj may be a maximum of 8~191 characters.

A fixed data field is a 24-bit. signed numeric field where the
high order bit is interpreted as the sign. Negative numbers are
represented in 2-s complement form.

The range of signed numbers (i.e •• fixed data fields) is -(2 exp
23) to (2 exp 23}-1. The range of unsigned numbers (bit data
fi~lds) is 0 to (2 exp 24)-1. Bit fields. as noted above~ are
not restricted to 24 bits. However. for arithmetic purposes.
only the low-order 24 bits will be considered except in the case
of the extended arithmetic function.

---_ .. , .- ... _--_ .. _ .. _---_ .. _-_.,- ----_ _----------, - .. __ ._-------------------------- ----------- - --

BURROUGHS CORPORAtION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<OECL4RE STATEMENT> .. -.. -

<DECLARE ELEMENT> .. -.. -

5-2
COMPANY CONFIDENTIAL

B1000 SOL (SNF Version)
P.S. 2212 5405 (G)

DECLARE <DECLARE ELEMENT>
<JECLARE STATEMENT>, <DECLARE ELEMENT>

<DECLARED PART>
<TYPE PART>
<STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>
PAGED <ELEMENTS~PER-PAGE PART>

. <ARRAY IDENTIFIER> <ARRAY·BOUND>
<TYPE PART>
DYNAMIC <COMPLEX DYNAMIC>
<DYNAMIC TYPE PART>
<DECLARED REF> REFERENCE
<DECLARED RECORD REF> REFERENCE

The <DECLARE STATEMENT> specifies the addresses and
characteristics of contents of memory storage areas.

Any number of <DECLARE ELEMENT>s may be declared in one <DECLARE
STATEMENT>, and must be separated by commas. . Best code is
generated if all elements are declared within one <DECLARE
STATEMENT>. (See Appendix VI).

The maximum number of data elements (including fillers. dummys.
and implicit fillers) contained in one structure varies as to the
compiler being used~ (currently: 50 - small version, 75 - large
version). Any attempt to declare more wilt cause a table
overflow error to be detected at compile time.

An array may have a maximum of 65,535 elements,
maximum of 65,535 bits (8,191 characters).

each be; n9 a

The five ty~es of <DECLARE ElEHENT>s are each discussed below.

------_._-------

o

o

o

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<RECORD STA~EHENT>

<RECOHD ICENTIFIE~>

<fIELD LIST> ::=

.. -.. -
.. -.. -

<COSPATIAL FIELD LIST>

<FIELD ELEMENT> ::=

<SIMPLE fIELD ELEM£NT>

<CO"PLEX fIELD ELEMENT>

<SIMPLE IDENTIfIER> ::=

<ARRAY IDENTIfIER>

<ARRAY SOUND> ::=

<FIELD TYPE> ::=

<FIELD SIZE> .. -.. -

.. -.. -

.e_ .. -

:: =

.. -.. -

5-3
COMPANY CONFIDENTIAL

Bl000 SOL (BNF Version)
P.S. 2212 5405 (G)

RECORD <RECORD IDENTIFIER>
<FIELD LIST>

<IDENTIFIER>

<FIELD ELEMENT> J
<fIELD LIST>~ <FIELD ELEMENT>
«COSPATIAL fIELD LIST>]
<fIELD LIST>~ «COSPATIAL FIELD LIST>]

<FIELD ELEMENT>
<COSPATIAL FIELD LIST>~<fIELD ELEMENT>

<SI~PLE FIELD ELEMENT>
<COMPLEX fIELD ELEMENT>

<SI~PlE IDENTIfIER> <fIELD TYPE>
fILLER <FIELD TYPE>

<AR~AY IDENTIFIER> <ARRAY BOUND>
<fIELD TYPE>

<IDENTIfIER>

<IDENTIFIER>

«CONSTANT EXPRESSION»

FIXE D
BIT <FIELD SIZE>
CHARACTER <FIELD SIZE>
<RECORD IDENTIFIER>

«CONSTANT EXPRESSION»

A new mechanism called Record is intended to eventually replace
the Pl/I-style structures currently being used in SOL. for
compatibility~ of course~ no current features will be removed
until they have fallen into disuse. Although records are used
for the same purpose as the current structures, they are
di fferent in declaration, refer~nce, and run-time effect. They
are designed to provide the following benefits:

1. Since fields of records are not represented by
descriptors at run-time~ they do not cause large name
stacks. This removes the need for USE declarations and
elaborate SUB8ITting schemes which have been used in the

BURROUGHS CORPORATIDN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

past.

5-4
COMPANY CONFIDENTIAL

81000 SOL (BNf Version)
P.S.2!1! 5405 CG)

2. Paged arrays .ay be structured using records.

3. Arrays may occur nested in structural levels.

4. Accessing of linked data structures is safer, simpler,
and often faster.

5. The substructure is specified in one pLace, but may be
invoked in many places to declare variable or specify
substructure of other records, thus reducing the
probability of error.

6. The syntax encourages the treat.ent of data structures as
new types, ho~efully imposing better structure on
programs.

A record is an addressing template analogous to a structure
declared REMAPS BASE in the current language. Declaration of a
record causes no data space to be allocated; it only establishes
an addressing schema in the scope of the declaration. An example
of a record declaration is=

RECORD TYPEFIELO
~V 9IT(1),
NSR 8lUth
DATATYPE 81T(6);

RECORD DESCRIPTOR
TYPE T'fPEFIElD,.
LEN 8IT(16),.

[AODR 8If(24),.
VAL 81T(24»);

This two-layered definition provides roughly the same effect as
the following PL/I-style structure:

c

,f-\
\J

o

(... '\ .,
:fl'

C··"'"
J

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-5
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 CG>

DECLARE 1 DESCRIPTOR REMAPS BASE.
2 TYPE,

3 NV
3 NSR
3 DATATYPE

2 LEN
2 AOOR
2 VAL REMAPS ADOR

BIT(l),
BIT(l).
8IT(6),
BIT< 16).
BIT(24),
81T(24);

The conceot of making several fields alternative formats for the
same area, or "cospatial", is expressed by enclosing the list of
alternatives in brackets. This has the advantage of not
requiring a distinguished alternative (the largest) which is
remapped, and it also groups all the alternatives in one spot
te x t ua II y.

Another distinction o,f record is in the nested use of definitions
to achieve the effect of PL/[.level numbers. The advantage here
is that a single record may be used as part of several other
records, at different levels, or even more than once in another
record declaration. This can be done without repeating the
definition of its substructure. thus simplifying modifications.
The use of a record in more than one context. of course. requires
that qualified names be introduced. This is discussed later in
detail.

Each field of a record has a type associated with it in the
declaration (the type may be another record identifier). and may
also be arrayed by noting the array bound after the field
identifier-- similar to an ordinary array declaration. The type
of ~n array field may be a record which also contains array
fields, i.e., arrays may be nested in a way not permitted by the
current SOL structures.

A structure which would be
current SDL structure may be
defined record:

the functional equivalent of the
declared using the previously

DECLARE D DESCRIPTOR;

Declaring this structure allocates storage on the value stack for
the data (48 bits in this case) and allocates one descriptor on
the name stack. A structure array could also be declared (and
paged, in this example):

DECLARE PAGEO(16) OA(256) DESCRIPTOR;

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-6
COMPANY CONFIDENTIAL

81000 SOL CBNf Version)
P.S. 2212 5405 (6)

This causes one array descriptor to be allocated. The space for
the array is not allocated on the value stack in this case
because the array is paged.

The field of a structure is accessed by use of a Qualified name.
for examplep the length field of descriptor "0" is named "O.LEN"
and the type field is named "D.TYPE". The name-value bit of the
type field is named "O.TYPE.'NV". When a component of the name is
an array, a subscript must be mentioned after that component as
in "DA(20).TYPE.NSR". Qualification must be complete and
explicit, unlike that of PL/I or COBOL. The dot notation was
chosen because it is almost a standard among languages using
qualified names. The underscore character C"_") is used as a
replacement for the current use of "." as an identifier break
character.

To provide a link between current and new facilities, a field of
a record may be named by itself (no Qualification) with an index.

o

The effect is the same as indexing a field of a structure {.'.~)i
declared REMAPS BASE. This eases reprogramming since in many ~
applications the structure declaration could be rewritten as a
record without changing the rest of the code.

<STRUCTURED RECORD STATEMENT> ::=
RECORD 01 <RECORD IDENTIfIER> <TYPE>

<STRUCTURE ELEMENTS>

<RECORD IDENTIfIER> ::= <IDENTIfIER>

<STRUCTURE ELEMENTS> ::=
p <LEVEL NUMBER> <STRUCTURE ELEMENT>

<LEVEl NUMBER> <STRUCTURE ELEMENT>
, <STRUCTURE ELEMENTS>

<STRUCTURE ELEMENT> ::=
<fIELD NAME> <TYPE>
<fIELD NAME> <ARRAY BOUND> <TYPE>
fILLER <TYPE>
<fIELD NA~E> REMAPS <REMAPS OBJECT> <TYPE>

(.... ""

,;/

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPAN1 CONFIDENTIAL
81000 SOL (BNf Version)

P.S. 221Z 5405 CG)

Structured Records have been implemented to allow easier
conversion of the current PL/I-sty!e structures to records.

Structured Records have the same capabilities as RECORDS.

Fields declared as an array may not have nested structure.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTABARBARA PLANT

5-8
COMPANY CONFIDENTIAL

B1noo SDL (BNF Version)
P.S. 2212 5405 (G)

<DECLARE ELEMENT> ::= ••• I<OECLARED PART>I •••

<DECLARED PART> ::= <COMPLEX IDENTIFIER> <TYPE PART~
«COMPLEX IDENTIFIER LIST»
<TYPE PART>

<COMPLEX IDENTIFIER

<COMPLEX IDENTIFIER> REMAPS
<REMAP OBJECT> <REMAPS TYPE PART>

LIST> ::= <COMPLEX IDENTIFIER>
<COMPLEX IDENTIFIER>,
<COMPLEX IDENTIFIER LIST>

<COMPLEX IDENTIFIER> :;= <SIMPLE IDENTIFIER>
<ARRAY IDENTIFIER> <ARRAY BOUND>

<SIMPLE ICENTlfIER> ::= <IDENTIFIER>

<ARRAY IDENTIfIER>

<ARRAY BOUND>

<REMAP OBJECT>

<TYPE PART> .. -.. -

.. -.. -

<REMAPS TYPE PART

::=

.-.. -

.. -. --
<RECORD ICENTIFIER> . -.. -
<FIELD SIZE> ::=

<CONSTANT EXPRESSION>

<CONSTANT EXPRESSION
OPERATOR> ::=

ee_ .. -

<IDENTIFIER>

«CONSTANT EXPRESSION»

BASE
<SIMPLE IDENTIfIER>
<ARRAY IDENTIfIER>
<ADDRESS GENERATOR>

fIXED
CHARACTER <FIELD SIZE>
BIT <fIELD SIZE>
<RECORD IDENTIFIER>

fIXED
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

<IDENTIFIER>

«CONSTANT EXPRESSION»

<NUMBER> I <CONSTANT EXPRESSION>
<CONSTANT EXPRESSION OPERATOR>
<NU~BER> I «CONSTANT EXPRESSION»

%+ I - I • I I f MOD

o

C·
"' " :!

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-9
COMPANY CONfIDENTIAL

B1000 SOL (BNf Version)
P.S. 2212 5405 (G)

Data may be declared as simple~

subscripted~ having as many
<ARRAY BOUND>.

having one occurrence, or as
occurrences as specified by the

The <TYPE PART> specifies the type of data in the field and the
field size.

As the syntax indicates, different data fields having the same
type may be declared collectively as a <COMPLEX IDENTIFIER LIST>.

The following examples illustrate the various options available
in this type of <DECLARATION STATEMENT>.

DECLARE A FIXED,

2.

3.

4.

5.

B CHARACTER (10),
C BIT (40).

(0, E, f (5)) BIT (10),
G (20) FIXED~
H (5) CHARACTER (6);

A is a 24-b it signed numeric field.

B is a lO-byte character field.

C is a 40-b it field

0 and E ar e lO-bit fields each.

f is a 5-elel1lent
\

array .of lO-bit fields.

6. G is a 20-element array of 24-bit signed numeric
fields.

7. H is a 6-byte character array with five elements.

Data fields may be re-formatted by the use of the remapping
device:

<COMPLEX IDENTIFIER> REMAPS <REMAP OBJECT> <TYPE PART>

Rel1lapping is subject to the same general rules discussed above.
The following example best illustrates its use.

DECLARE A FIXED, B BIT (50),
AA REMAPS A CHARACTER (3)~
B8(2) REMAPS SUBBIT(B~2) FIXED;

. ~ .- . - ."~-"-- "--",--.~,. .. --- ~".,,- "~.-"-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

5-10
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

Note that BB specifies 48-bits (or 2 elements. 24-bits each).
field may not be remapped larg~r than its original size. If
<REMAPS OBJECT> is an <400RESS GENERATOR> this check cannot
made until run time. The check will be made only when the
compiler option FORMAL_CHECK is set.

A
the

be
the

There is no limit on the number of times a field may be remapped,
A field which has remapped another may itself be remapped. The
REMAP option specifies that the identifier on the left side of
the reserved word REMAPS will have the same starting address as
the identifier on the risht side.

For rules concerning the remapping of dynamic
declarations. see those sections.

or formal

A data fi~ld may be remapped to base which witl give the field a
relative address of zero. For example:

DECLARE X REMAPS BASE BIT(7);

This device is used as a free-standing declaration since it does
not remap a previously declared data item and is used primarily
with data to be indexed (See ADDRESS VARIABLES).

o

Cl

c

(.-.'\
,/

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARE ELEMENT> ::=

<STRUCTURE LEVEL
NUMBER> ::=

<STRUCTURE DECLARED
PART> ::=

<DECLARED PART> ::=

<DUMMY PART> .. -.. -
<ARRAY BOUND PART>

<ARRAY BOUND> ::=

.. -.. -

<STRUCTURE TYPE PART> .. -.. -

5-11
COMPANY CONfIDENTIAL

31000 SOL (BNf Version)
P.S. 2212 5405 (G>

••• I<STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART> I •••

<NUMBER>

<DECLARED PART>
fILLER
<DUMMY PART> REMAPS <REMAPS OBJECT>

See NON-STRUCTURE DECLARATIONS

DUHMY <ARRAY BOUND PART>

<EMPTY>
<ARRAY BOUND>

«CONSTANT"EXPRESSION»

<EMPTY>
<TYPE PART>
CHARACTER I BIT

<TYPE PART> .. -.. - See NON-STRUCTURE DECLARATIONS

SOL allows the structuring of data where a field may be
SUbdivided into a number of sub-fields~ each of which has its own
identifier. The whole structure is organized in a hierarchical
form~ where the most general declaration is at Level 01 (or 1)
and the highest at Level 99. A subdivided field is called a
group item, and a field not subdivided is known as an elementary
item.

When the REMAPS option appears on a declare with level number
greater than one, it is known as an intra-structure remap. In
this case, the <REMAPS OBJECT> ~ust be the last identifier
declared in the same structure with the same level number unless
that identifier was also declared with REMAPS. In that case both
must remap the same identifier.

DECLARE 1 A,
2 a
2 C

2 E
2 f
2 G

BIT(5)~

B1T(40)"
3 D BIT (1),

REMAPS C CHARACTER(l),
REMAPS C fIXED,
fIXED;

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-12
COMPANY CONfIDENTIAL

BI000 SDl (BNf Version)
P.S.Z212 5405 (G)

is legal, but E and F may not remap B or D~

The type and length of data need not be specified on the group
level. All elementary items must indicate type and length, and
the compiler will assume type bit and add the lengths of the
components to determine the length of the group item. For
example:

DECLARE 01 A,
02 C,

03 D BIT(ZO),
03 E 81T(30),

02 0 CHARACTERS(S);

In this example, both A and C are considered group itemsp with A
having a total length of 90 bits and C being 50 bits long-

£.1J.J.t.B

FILLERs may be used to designate certain elementary items which
the program does not reference. If the group item has a length
specified and the FILLER is the last item in a structure, it may
be omittedp and the compiler witl consider the item to be an
implied FIllER. A FILLER may never be used as a group item.

A group item may have a type specified with length omitted. The
compiler will calculate the length from the length of the
sub-items. For example:

DECLARE 01 A
02
02

CHARACTER.
8 FIXED,
C BIT(S);

A witl become type CHARACTER(4) leaving an imDlied 3-bit fitter
after C.

If the 01 level group item is an array. it is mapped as a
contiguous area in memory. However, subdivisions of this array
are not contiguous. In the exa_ple structure below:

01 A(S) 81T(48), 01 A(S)"

o

(~

8URROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

02 a FIXED.
02 C FIXEO;

.... *' 48 bits

or

COMPAN~ CONFIDENTIAL
B1000 SOL CBNF Version)

P.S. 2212 5405 (G)

02 B FIXED"
02 C FIXED;

----~--~--~-------------------~--------------------
I AO I Al I ~2 I A3 I A4 I
I BO I CO I B1 I Cl I 32 I C2 I 83 I C3 I B4 I Cit I

---..
*
*** 24 bits

If a group item is an array" an array specification may not
appear in any subordinate item; that is. only one-dimensional.
arrays are allowed. Down-level carry of array specifications is
implied.

Structured data may be remapped in the same manner as
non-structured data. In addition. structured data may be
remapped with a dummy group identifier. The puroose of this
construct is to allow the user to remap data items without having
to declare another group item which describes the same memory
area. Thus. in the following example:

01 A 8IT(lOO),.
02 8 BIT(20)"
02 C 8IT(80);

WA W might be REMAPped as

01 AA REMAPS A 8IT(100)"
02 BB BIT(30)" or
02 CC aIT(70);

01 DUMMY REMAPS A BIT(lOO)"
02 BS BIT(30).
02 CC BlT(70);

Both A and AA in the above exa.ple refer to the same area in
memory. Hence AA is redundant. During runtime" the descriptor
for AA witl also be on the stack.

BURROUGHS CORPORATION
CO~PUTER SYSTEMS GROUP
SANTA 8ARBARA PLANT

5-14
COKPANY CONFIDENTIAL

91000 SOL (BNF Version)
P.S. 2212 5405 CG)

If DUMMY is substituted for the identifier AA. no descriptor will 0
be generated. however se and CC witl both point to ," in the
correct fashion.

The user should note the distinction between DUMMY and FILLER.
DUMMY is used in conjunction with REMAPS to eliminate the
necessity of declaring a redundant group item. FILLER is used if
one desires to skip over an area of core.

The following restrictions apply to the use of DUMMY REMAPS:

1. DUMMY may only be used with remap declarations.

2. All the restrictions applying to REMAPS apply to
DUHMY REMAPS.

3. DUMMY must not remap another DUMMY.

4. DUMMY group items must have at least one non-filler
component.

o

C·,.".;
Ji

()

c··.··\ .,

BURROUGHS CORPORATION
COMPUTER SVSTEMS GROUP
SANTA BARBARA PLANT

<OECLARE ELEMENT> ::=

<ELEMENTS-PER-PAGE
PART> ::=

<ARRAY IDENTIFIER>

<ARRAY BOUND> ::=

.. -.. -

5-15
COMPANY CONFtDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

••• 1 PAGED <ELEMENTS-PER-PAGE PART>
<ARRAY IDENTIFIER> <ARRAY BOUND>
<TYPE PART>

«CONSTANT EXPRESSION»

<IDENTIFIER>

«CONSTANT EXPRESSION»

The paged array declaration allows the user to segment arrays.
The <ELEMENTS-PER-PAGE PART> specifies the nUllber of array
elements contained in each segment. For example:

PAGED(64) A(4096) BIT(l);

is an array of 4096,
64-element segments.

Restrictions:

1-bit elements,.

1. Paged arrays ~ay not be indexed.

segmented into 64,.

2. Paged arrays may not be part of a structure.

3. Paged arrays may not be remapped.

4. The number of elements per page must be a power of 2,.
and say not exceed 32,768.

5. The <ARRAY aOUND> may not exceed 65.535 but the
bounds may be. subsequently increased to a maxi.ulI of
16,717,215 by use of the GROW statement.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARE ELEMENT> ::=

<DYNAMIC COMPLEX
IDENTIFIER> ::=

<DYNAMIC ELEMENTS
PER PAGE>

<DYNAMIC SUSSCRIPT
BOUNDS> ::=

<DYNAMIC TYPE PART> ::=

<DYNA~IC FIELD SIZE> ::=

.. -.. -

5-16
COMPANY ~ONFIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

.~.I DYNAMIC <DYNAMIC COMPLEX
IDENTIFIER> <DYNAMIC
TYPE PART>I •••

<IDENTIFIER> I <ARRAY IDENTIFIER>
<DYNAMIC SUBSCRIPT BOUNDS>
PAGED <DYNAMIC ELEMENTS PER PAGE>
<ARRAY IDENTIFIER>
<DYNAMIC SUBSCRIPT BOUNDS>

«EXPRESSION»

«EXPRESSION»

BIT <DYNAMIC FIELD SIZE>
CHARACTER <DYNAMIC FIELD SIZE>
FIXEO
<RECORD IDENTIFIER>

«EXPRESSION»

The dynamic declare statement allows the user to declare simple
data with a non-static field length an~/or array bound. For
example:

PROCEDURE ABX;
DECLARE DYNAMIC X BIT(A); ~

where Awi It determine the
<EXPRESSION> appearing in
determine the number of bits
item. If X were an array~

time as well.

length of X. The value of the
the <DYNAMIC FIELD SIZE> is used to
or characters in the declared data
its bounds would be evaluated at run

..-
- - - ~------------------- ---- --------~- -------------

C···~·"······
"

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-17
COMPANY CONfIDENTIAL

BI000 SOL CBNf Version)
P.S. 2212 5405 (G)

1. The variables used in the <DYNAMIC fIELD SIZE> must
have been previously initialized.

2. Dynamics may not appear on Lexic Level o.

Dynamic variables may be remapped~ however a warning message will
appear in the source listing. It is the programmer's
resDonsibility to ensure that a dynamic is not remapped larger
than allowed. If SFORMAL_CHECK is set# this remapping length
will be run time checked.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARE ELEMENT> ::=

<DECLARED REF> ::=

<SIMPLE IDENTIfIER LIST> .. -.. -

5-18
COMPANY CONfIDENTIAL

81000 SDL (BNF Version)
P.S. 2212 5405 (G)

••• I<DECLAREO REF> REFERENCEI •••

<SIMPLE IDENTIfIER>
«SIMPLE IDENTIfIER LIST»

<SIMPLE IDENTIFIER>
<SIMPLE IDENTIFIER>"
<SIMPLE IDENTIfIER LIST>

Reference variables are used as pointers to data and their
declaration does not allocate data space. A reference variable
has a close analog in a for.at para.eter declared VARYING. Suc~
a parameter has onty one type, length, and address associated
with it for each invocation of the procedure in which it is
declared, but it may be different for each invocation. The
formal parameter is bound (to the actual parameter) by the
procedure call mechanism. A reference variable is an extension
of this idea because it may be declared anywhere other variables
may be declare~ and may be rebound at any time using a statement
known as the reference assignment statement or REfER statement.
This statement binds the reference variable to a new referent. A
few other SOL statements may change the referent of a reference
variable also~ but not to any arbitrary address generator as does
the REFER statemarrt.

".,,,,-,~,,,,,·.,,'"' __ ,,,,,,,,,,>.,.~.'.",,,,",,,"'_""' __ ""'· .. n_ .. ""._ ~ _____ dfwt '·· ·jpe · .. ' ~ .. ?_T a_' ' ---..
.ri· ... 'n .tt""" • ', ..) """. ·-...,'T"·"'V"'··C1"""·_,,"# ·,,·,·'''''T' .. ,,~_ .--- ,- -- __ m.n .. __ '1

5-19

C'"
J

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARE ELEMENT> ::=

<DECLARED RECORD REF> e e_ .. -

COMPANY CONfIDENTIAL
B1000 SOL (BNf Version)

P.S. 2212 5405 (G>

••• I<DECLAREO RECORD REf> REfERENCEI •••

<SIMPLE IDENTIfIER>
<RECORD IDENTIFIER>

In some cases~ storage is not to be directly allocated for a
record, but a certain area of an array or large string is known
to have the format specified by a record. This is the case in
which indexing is applied currently_ Record reference variables
are designed to replace this use of indexing.

A record reference variable is declared, say for record
DESCRIPTOR, as

CECLARE DR DESCRIPTOR REFERENCE;

Record reference variables are assigned with a REfER statement
like ordinary reference variabtes, but they may be written in
other statements as though they were structure names, i.e., they
may have field qualifiers attached with the dot notation. Such
an access subfields the current ~emory area described by the
reference variable according to the record specification. For
example,

REFER OR TO SUBBITCMYAREA, 100~ 48);
X := OR.LEN;

assigns X to bits 108 through 124 of the string MYAREA.

All restrictions which apply to normal reference variables are
applicable to record reference variables as well. Record
reference variables may not be used in the REDUCE statement.

BURROUGHS CORPORAT10N
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<fILE DECLARATION
STATEMENT> ::=

<fILE DECLARE
EL EM EN T LIS r> .. -.. -

<fILE DECLARE ELEMENT>

<fILE IDENTIfIER> ::=

<fILE ATTRIBUTE PART>

<fILE ATTRIBUTE LIST>

<fILE ATTRIaUTE> .. -.. -

.-.. -

.. -.. -

.. -.. -

5-20
COMPANY CONfIDENTIAL

B1000 SOL (BNf Version)
P.S. 2212 5405 (G)

fILE <fILE DECLARE ELEMENT LIST>

<fILE DECLARE ELEMENT>
<fILE DECLARE ELEMENT>p
<fILE OECLARE ELEMENT LIST>

<fILE IDENTIfIER><FILE ATTRIBUTE PART>

<IDENTIfIER>

<EMPTY>
«FILE ATTRIBUTE LIST»

<fILE ATTRIBUTE>
<fILE ATTRIBUTE>~ <fILE ATTRIBUTE LIST>

<LABEL PART>
I <DEVICE PART>
I <MODE PART>
I <BUfFERS PART>
I <VARIABLE RECORD PART>
I <LOCK PART>
I <SAVE fACTOR PART>
I <RECORD SPECIfICATION PART>
I <REEL NUMBER PART>
I <DISK fILE OESCRIPTION PART>
I <PACK-ID PART>
I <OPEN OPTION PART>
I <ALL_AREAS_AT_OPEN PART>
I <AREA_BY_CYLINOER PART>
I <EU_ASSIGNMENT PART>
I <HULTI_PACK PART>
I <USE_INPUT_BLOCKING PART>
I <END_OF_PAGE PART>
I <REMOTE_KEY P~RT>
• <NUMBER_OF_STATIONS PART>

<fILE TYPE PART>
<WORK FILE PART>
<LABEL TYPE PART>
<INVALIO CHARACTER REPORTING PART>
<MONITOR SPECIfICATION PART>
<SERIAL NUMBER PART>
<OPTIONAL fILE PART>
<TAPE LABEL PART>
<EXCEPTION MASK PART>
<TRANSLATE PART>
<USER NAMED BACKUP PART>
<PROTECTION PART>
<PROTECTION_IO PART>
<HOST_NAME PART>

J2 0·.-.·"'····

'M¥_~*_ri_, ____ ·_·~"t_'_"_"'_'~'~1~~'_H_* ___ "_&~,_,,t~'="_'~"'~11~'~'~W~"~"'~'-='~"~"~'··~~·~,,",~·~"_'"_'="6~""_,,_~~-%_. __ ,"~ ___ ~.d~'rl~·~e~. __ ~~ ___ ;~ ____ ,

5"21
COMPANY CONfIDENTIAL

81000 SOL (8NF Version)

C~·
. " .~ ..

r~
~.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT P.S. 2212 5405 (G)

All attributes are optional, as the above syntax indicates.
Default status witl automatically be set for omitted attributes
as follows:

SYNTAX: <LABEL PART> ::= LABEL =
<FILE IDENTIFICATION PART>

<FILE IDENTIfICATION PART> ::= <MULTI-fILE IDENTIfICATION>
I <MULTI-fILE

IDENTIfICATION>
<FILE IDENTIFICATION>

<MULTI-fILE IDENTIfICATION> . -.. - <CHARACTER STRING>

<fILE IDE~TlfICATIDN> ::= <CHARACTER STRING>

fORHAT:

DEf A UL T

SYNTAX:

where:

and:

<fILE IDENTIFIER> is a fils or program identifier
by which the program identifies the file.

~MtJLTI-fILE IDENTIfICATION> and <fILE
IDENTIfICATION> are name or contents of
identification field on file label or Disk
Directory by which the system identifies the file.

LABEL = ftNAME_'l- I -NAME_2ft
or
LABEL = "NAME_1"

Example:

Note: The system will use only the first ten characters
of the -NAME".

If LABEL(s) is (are) not specified, the INTERNAL fILE
NAME, i.e., <fILE IDENTIfIER>, is moved to <~ULTI-fILE
IDENTIfICATION>, and blanks are moved to <fILE
IDENTIfICATION> in the fPB (fILE PARAHETER BLOCK).

<DEVICE PART> ::= DEVICE = <DEVICE SPECIfIER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DEVICE SPECIFIER>

<ACCESS MODE> ::=
<DEVICE OPTION> ::=

<BACKUP OPTION> ::=

.. -.. -

<BACKUP SPECIFIER> ::=

<SPECIAL FORMS OPTION>

<REMOTE OPTION> ::=

<QUEUE SIZE> ::=

<QUEUE OPTION> ::=

• *.. -

5-22
COMPANY CONFIDENTIAL

Bl000 SOL (BNF VaTsion)
P.S. 2212 5405 (G)

TAPE
I TAPE_1
I TAPE_9
I TAPE_PE
I TAPE_NRZ
I DISK <ACCESS MODE>
I DISK_PACK <ACCESS MODE>
I DISK_FILE <ACCESS MODE>
I OISK_PACK_CENTURY <ACCESS MOD£>
I OISK_PACK_CAELUS <ACCESS MODE>
I CARD
I CARD_READER
I CARD_PUNCH <DEVICE OPTION>
I PRINTER <DEVICE OPTION>
I PUNCH <DEVICE OPTION>
I PAPER_TAPE_PUNCH

<DEVICE OPTION>
DATA_RECORDER_80
READER_PUNCH_PRINTER
<DEVICE OPTION>

I PUNCH_PRINTER <DEVICE OPTION>
I READER_96
I PAPER_TAPE_READER
, SORTER_READER
I READER_SORTER
I CASSETTE
I REMOTE «QUEUE SIZE» <REMOTE

OPTION>
QUEUE «QUEUE SIZE»
<QUEUE OPTION>

<EHPTY> I SERIAL I RANDOM
<EMPTY>
<BACKUP OPTION>
<SPECIAL FORMS OPTION>
<SPECIAL FORMS OPTION>
<BACKUP OPTION>

<BACKUP SPECIFIER>
OR <BACKUP SPECIFIER>
NO BACKUP
BACKUP I BACKUP TAPE
BACKUP DISK

FORMS

<EMPTY> I FAMILY I WITH HEAOERS
FAMILY WITH HEADERS

<NUMBER>

<EMPTY>

j¥ "ft' t'#::! r A ,l" ,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-23
COMPANY CONFIDENTIAL

81000 SOL (8NF Version)
P.S. 2212 5405 (GJ

FAMILY «FAMILY SIZE»

<FAMILY SIZE> ::= <NUMBER>

FORMAT: DEVICE = CARD
CARD_READER
TAPE
TAPE_7
TAPE_9
TAPE_PE
TAPE_NRZ

.- DISK
** DISK_PACK
*" DISK_FILE
** DISK_PACK_CENTURY -* OISK_PACK_CAELUS
* CARD_PUNCH
• PRINTER
• PRINTER FORMS
• PUNCH
II PUNCH FORMS
.. PAPER_TAPE_PUNCH
• PAPER_TAPE_PUNCH FORMS
• DATA_REtaRDER_SO
* READER_PUNCH_PRINTER
" REAOER_PUNCH_PRINTER FORMS
* PUNCH_PRINTER
* PUNCH_PRINTER FORMS

REAOER_96
PAPER_TAPE_READER
SORTER_~EAOER

READER_SORTER
CASSETTE *.- REMOTE «QUEUE SIZE»

._- QUEUE «QUEUE SIZE»

.. mayor may not be followed by any single option below:

BACKUP
BACKUP TAPE
BACKUP DISK
OR BACKUP
OR BACKUP TAPE
OR BACKUP DISK
NO BACKUP

Note: See <USER NAMED BACKUP PART> for more on backup.

-~-- '.

* • may 0 r may nat be f 0 l lowed .b y any. sin 9 leo p t ian
below:

BURROUGHS CORPORAtION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-24
COMPANY CONfIDENTIAL

81000 SOL CBNf Version)
P.S. 221Z540S (G)

OEf AUL T:

SYNTAX:

SERIAL
,- RANDOtt

*** mayor may not be followed by options applicable to
this -device". See syntax above.

Examples: DEVICE = TAPE
DEVICE = PRI~TER BACKUP
DEVICE = PRINTER fORMS BACKUP TAPE
DEVICE = REMOTE(S) WITH HEADERS

In the absence of any specification,
assumed by the compiler.

disk will be

<HODE PART> ::=

<MODE SPECIfIER> .. -.. -

<fILE PARITY PART> • e-0.-

HODE = <MODE SPECIfIER>

<fILE PARITY PART>
<TRANSLATION PART>

000 EVEN

fORMAT:

<TRANSLATION PART> .. -.·e-
HODE = BCL

EBCDIC I ASCII I BCL I BINA([)

HODE = ASCII
HOOE = EVEN

DEf AUL T: Default is odd or EBCDIC, whichever is applicable.

SYNTAX: <BUffERS PART> ::=

<NUMBER Of BUFfERS>

FORMAT: BUffERS = NUMBER

.. -... -
BUFFERS =
<NUMBER OF BUffERS>

<NUMBER>

DEFAULT: If not specified, buffers will be set to 1 in the FPB.

SYNTAX: <VARIABLE RECORD PART> VARIABLE

fORMAT: VARIABLE

DEFAULT:= Not variable, i.e., fixed-size records. o

. -?tc¥ 5±:t5tfu- T

(, . . ,

. f'

,C+"N'rtF •. r. 7'"--""'"" ~"""a' ""-bW"" "f ?,··ft ,' .

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SYNTAX: <LOCK PART>

fORMAT: LOCK

DEF AUL T: = LOCK is not

.. -.. -

set.

SYNTAX: <SAVE fACTOR PART>

<SAVE FACTOR> .. -.. -
.. -.. -

5-25
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

LOCK

SAVE:: <SAVE FACTOR>

<NUMBER>

FORMAT: SAVE = NUMBER <of days to save file)

DEfAULT: If not specified~ the SAVE specifier will be set to
30 in the fPB.

SY N TAX:

FORMAT:

Note:

<RECORD SPECIfICATION
PART> ::=

<RECORD SIZE SPECIfIER> .. -.. -

<PHYSICAL RECORD SIZE> • e_
• e-

<LOGICAL RECORD SIZE> .. -.. -
<LOG ICAL RECORDS PER
PHYSICAL RECORD> . "-.. -
RECORDS = NUMBER
or
RECORDS = NUMBER I NUMBER

RECORDS = <RECORD SIZE
SPECIfIER>

<PHYSICAL RECORD SIZE>
<LOGICAL RECORD SIZE>
<SLASH>
<LOGICAL RECORDS PER
PHYSICAL RECORD>

<NUMBER>

<NUMBER>

<NUMBER>

<PHYSICAL RECORD SIZE> indicates the number of
characters per block; <LOGICAL RECORO SIZE>~ the number
of characters per record.

Example:

RECORDS :: 1200
or
RECORDS:: 120 I 10

DEfAULT: In the absence of record specifications, unblocked records

~ ... ~ BURROUGHS CORPORATION
COMPUTER SYSTEMS, GROUP
SANTA BARIARA PLA~T

5-26
CO~PANY CONFIDENTIAL

81000 SOL (BHF Version)
P.s. 2212 5405 (G>

SYNTAX:

FORHAT:

DEFAUL T:

SYNTAY::

Format:

ofthefoltowinglengths will be assumed.

Oi sk
Tape
Any paper tape configuration
Any 96 column card configuration
All remaining card configurations
Any printer configuration

180 bytes
80 bytes
80 bytes
96 bytes
80 bytes,

132 bytes
72 bytes All othef's

<REEL NUHBER PART>

<REEL NUMBER> ::=

REEL = 2

.. -.. - REEL = <REEL HUMBER>

<HUMBER>

The fPB assumes '1 in the absence of any specification.

<DISK FILE DESCRIPTION
PART> ::=

<NUMBER OF AREAS>

<PHYSICAL RECORDS
PER ·AREA> :.:=

.-.. -

AREAS = <NUMBER OF AREAS>
<SLASH>
<PHYSICAL RECORDS PER AREA>

<NUMBER>

<NUMBER>

Areas = 'of Areas I 'of Blocks Per Area

Example: Areas = 20 I 8D

DEFAULT:

Note: <PHYSICAL RECORDS PER AREA> indicates the
number of blocks per area. This attribute is
applicable for disk files only.

If areas are not specified~ the FPB will assume 25
Areas with 100 Blocks Per Area. If the record
specifications have been given the compiler will
compute the number of Records Per Area. However~ if
record specifications are omitted~ the FPB will assume
100 records per area. In either case then, whether
areas are specified or not~ the compiler will have
computed the number of records for 'insertion in the
FPB.

" c· .. ""···.·

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-27
COMPANY CONFIDENTIAL

81000 SOL (BNf Version)
P.S. 2212 5405 (G)

SYNTAX:

fORMAT:

DEf AUL T:

SYNTAX:

fORMAT:

Note:

DEfAULT:

<PACK_ID PART>

<PACK
IDENTIfICATION>

". --

. -.. -

PACK_IO :
<PACK IDENTIFICATION>

<CHARACTER STRING>

Note: The system will use onLy the first ten
cbaracters of the "NAME".

If absent, <PACK IDENTIfICATION> will be set to
blanks in the fPB.

<OPEN OPTION>:::

<OPEN OPTION
ATTRIBUTE LIST>:::

<OPEN ATTRIBUTE> ::=

OPEN_OPTION=
<OPEN OPTION ATTRIBUTE LIST>

<OPEN ATTRIBUTE>
<OPE~ ATTRIBUTE> <SLASH>
<OPEN OPTION ATTRIBUTE LIST>

SEE "OPEN STATEMENT"

OPEN_OPTION = ATTRIBUTE / ATTRIBUTE •••

Example: OPEN_OPTION = OUTPUT / NE~

<OPEN STATEMENT> may be separated by commas, and the
<OPEN ATTRIBUTE>s in the <OPEN OPTION> above are
separated by slashes.

If absent,
follows:

the <OPEN ATTRIBUTE>s will be set as

If <DEVICE> is: <OPEN OPTION> is:

CARO
PRINTER
PUNCH
DISK
REMOTE
TAPE
QUEUE

INPUT
OUTPUT
OUTPUT
INPUT
INPUT/OUTPUT
INPUT
INPUT/OUTPUT

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-28
COMPANY CONFIDENTIAL

B1000 SDL (BNf Version)
P~S. 2212 5405{~)

SYNTAX:

fUNCTION:

OEf AUL T:

SYNTAX:

fUNCTION:

OEf AUL r:

SYNTAX:

fUNCTION:

OEfAUL T:

SYNTAX:

fUNCTION:

OEf AUL T:

SY NT AX:

.
... --.-

If this option is set, disk space for each area wilt
be allocated when the file is opened. If
insufficient space is availaole. a SPO message will
indicate that there is no user disk.

Areas are created as needed.

If this option is specified. each area will be placed
at the beginning of a cylinder. If there is no
(more) space at the beginning of any cylinder, a SPO
message will indicate that there is no user disk.

Areas are placed anywhere on disk.

<EU ASSIGNMENT PART> --.. - EU_SPECIAL = <NUMBER>
EU_INCREMENTED = <NUMBER>

The <NUMBER> specifies any integer 0 through 15.
"EU_SPECIAL" is appLicable only with head-per-track
disks and sys~ems disk packs, and specifies the drive
on which the file is to go. "EU_INCREMENTED
specifies the disk drive on which the first area of a
file is to go. Each subsequent area is placed on the
next drive. If, with either option~ the necessary
E.U. is not available, E.U. 0 will be taken.

Space for files and areas is allocated anywhere on
disk,.

<MULTI PACK PART>::=

If this OPtion is specified. the entire file may 'be
put onto several disk packs.

The file will be placed on one disk pack.

<USE_INPUT_BLOCKING
PART> ::=

o

0',' >

o

C~~:,
".", I

("""

" , .. ~-

~\
~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-29
COMPANY CONfIDENTIAL

81000 SOL C3Nf Version)
P.S. 2212 5405 (G)

FUNCTION:

OEf AUl T:

SYNTAX:

FU Ne TI ON:

iJEFAUL T:

SYNTAX:

rUNC TI ON:

DEr AUl T:

SY NT AX:

This option applies to input disk, tape, or card
files. If specified for disk, the record and block
size specifications will be t~ken from the Disk File
Header and the user's specifications will be ignored.
If specified for tape, the tape must be labeled;
otherwise, a run-ti~e error occurs. If specified for
card files, the following record lengths will be
assumed:

eO·col : 80 bytes
96-col : 96 bytes
BIN : 960 bi t s

The record and block size are as stated in the file
declaration. Those options o.itted are set to
default status.

This attribute will cause the <EOF PART> of
STATEMENT> to be executed at the end of a
printer file. Refer to "WRITE STATEMENT"
SEGUENCE~ for details.

No automatic paging action

<REMOTE_KEY PART>:::

a <WRITE
page on a

and ~ON

This atrribute is used only with files of type
"REMOTE". When present, it indicates that a key may
be present on a read ~r write to that file. If
missing, then no key can be used. The format of the
key is given below. Each field of the key is in
decimal characters. The ~ey is a total of 10
characters formatted as follows:

Station Number
Message Length (byte count)
Message Type (must be ~OOO")

No remote key

3 ch ar acter s
4 characters
3 char act er s

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-30
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.s. 2212 5405 CG)

fUNCTION:

DEFAULT:

SYNTAX:

FUNC TI ON:

OEFAUL T:

SYNTAX:

FUNCTION:

DEFAUL T:

SYNTAX:

fUNC HON:

OEFAUL T:

SYNTAX:

FUNCTION:

This attribute is used only with files of type
"REMOTE". When present, it specifies the maximum
number of stations that can be attached to this file.

<FILE TYPE PART>::=

<FILE TYPE SPECIFIER>::=

FILE_TYPE=<FILE TYPE SPECIFIER>

DATA I INTERPRETER I CODE
INTRINSIC I PSR_OECK

This attribute allows SOL programs to specify the
type of the files they are creating. In particular,
the compilers will use the type "COOE" for their
codefiles.

<WORK FILE PART>:::

This attribute causes the job number to be included
as part of the file identifier.

No t a wor let it e

<LABEL TYPE PART>::=

<LABEL TYPE SPECIfIER>::=

LABEL_TYPE=<LABEL TYPE SPECIFIER>

UNLABELED I BURROUGHS

This attribute allows the label type to be specified.

ANSII STANDARD LABEL

<INV_CHAR_REPORTING PART>::= INVALID_CHARACTERS=
<INV_CHAR_REPORT TYPE PART>

<INV_CHAR_
REPORT TYPE PART> ::= o I 1 I 2 I 3

Invalid characters occurring in a print file will be
reported on the SPO to the computer operator, as

(...•.. ~ ...
/'

(..... ~ ..
7

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5"31
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (Gl

specified:

VALUE

a

1

2

3

TYPE

Report all tines containing invalid
characters.
Report all tines containing invalid
characters and then stop program.
Report once that the file contains
invalid characters.
00 not report that the file
contains invalid characters.

DEFAULT: 0

SYNTAX:

FUNCTION:

DEFAULT

SYNTAX:

FUNCTION:

DEF AUL T

SYNTAX:

FUNCTION:

DEF A UL T:

<MONITOR SPEC PART> ::= MONITOR_INPUT_FILE
MONIfOR_OUTPUT_FILE

See Appendix VIII: SOL MONITORING FACILITY

Not present

<SERIAL NUMBER PART> .. -.. - SERIAL = <NUMBER>
SERIAL = <CHARACTER STRING>

The file witl be opened on the output media with the
specified serial number.

Not present

OPTIONAL

If this option is used on an input file~ then the
file may be ;1ssing and the operator may respond with
the OF message to the FILE MISSING message. This
wilL result in the execution of the ON EOF branch on
the execution of the first read of the file.

Rese t

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-32
COMPANY CONFIDENTIAL

BI000 SOL (BNF Versi~n)
P.S. 2212 5405 (G)

SY NTAX:

FUNCTlON:

OEF A UL T:

SY NT AX:

FUNCTION:

<EXCEPTION MASK PART> ::= EXCEPTION_MASK = <BIT STRING>

The exception mask specifies the types of exceptions 0
that the program is willing to handle for this
particular file. See the B1700 HCP Manual for a
description of the bit assignment within the bit
string. Note that this string should generate a
24-bit value.

;}OOOOOO;}

<TRANSLATE PART> ::= TRANSLATE = <CHARACTER STRING>

The MC? wilt do a soft translation on the file using
<CHARACTER STRING> as the file-id for the translate
table file. The multi-file-id for the translate
table file will be "TRANSLATEw.

DEFAULT: DEFAULT: No translation.

SYNTAX:

FUNCTION:

DEf A UL T:

<USER NAMED BACKUP PART>::= USER_HAMED_BACKUP

If the file goes to backuo,
given external name rather
name.

its name will be its
than a system selected

System selects backup file names.

SYNTAX: <PROTECTION PART>::= PROTECTION = <PROTECTION TYPE PART>
<PROTECTION TYPE PART>::= 0 I 1 I 2 I 3

FUNCTION: (See HCP Control Syntax product specification in File
Attribute descriPtion.>

SYNTAX: <PROTECTION_IO_PART>::= PROTECTION_IO = <PROTECTION_IO TYPE

FUNe TI ON:

PART>
<PROTECTION_IO TYPE PART::= 0 I 1 I 2 I 3

(See MCP Control Syntax product specification in File
Attribute description.> C· " ..

~/

(""''''.'.~
"

"#

r."""""'. ~'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-33
COMPANY CONfIDENTIAL

BlOOG SOL (BNf Version)
P.S. 2212 5405 CG)

SYNTAX: <HOST_NAME PART>:= HOST_NAME = <CHARACTER STRING>

FUNCTION: Specifies the name of the host system for this file.

DEFAUL T: No host specified.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SWITCH FILE
DECLARATION STATEMENT>::=

<SWITCH FILE
DECLARE ELEMENT LIST>::=

<SWITCH FILE
DECLA~E ELEMENT>

5-34
COMPANY CONFIDENTIAL

81000 SDL (BHF Version)
P.S. 2212 5405 (G)

SWITCH_FILE <SWITCH FILE
DECLARE ELEMENT LIST>

<SWITCH FILE DECLARE ELEMENT>
<SWITCH FILE DECLARE ELEMENT>r
<SWITCH FILE DECLARE ELEMENT LIST>

<SWITCH FILE IDENTIFIER> «FILE
ID£NTIFIER LIST»

<SWITCH FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER LIST>::= <FILE IDENTIFIER>
<FILE IDENTIFIER>, <FILE IDENTIFIER LIST>

A switch file declaration specifies the elements of a ·CASE",
these elements being files. A subscripted <SWITCH FILE
IDENTIFIER> may be used anywhere that a <FILE IDENTIFIER> may be
used. If there are N fite. in the <FILE IDENTIFIER LIST>, then
the Subscript must range from 0 to N-1. The value of the
subscriPt selects one of the N files in the list, depending upon C·
ordinal position (the files in the <FILE IDENTIFIER LIST> are ; j

numbered from left to rightr begining with 0). If all files in
the <FILE IDENTIFIER LIST> are of type "REMOTE", then the switch
file identifier is of type "REMOTE".

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-35
COMPANY CONfIDENTIAL

Bl000 SOL (BNF Version)
P.S. 2212 5405 (G)

The following example copies card images from cards, tape. or
disk to cards, printer~ tape, or disk:

fILE

fILE

CARDSCOEVICE=CARD)
,TAPEI(D£VICE=TAPE,USE_INPUT_BLOCKING)
,OISKI(DEVICE=DISK,USE_INPUT_BLOCKING) . ,

PUNCHCCEVICE=PUNCH)
.lINECDEYICE=PRINTER)
.TAPEO(OEYICE=TAPE,RECORDS=80/4)
,DISKOCDEVICE=DISK,RECORDS=80/9)
;

SWITCH_fILE
INPUT(CARDS,TAPEI,OISKl)
,OUTPUT(PU~CH,LINE,TAPEO,OISKO)
;

DECLARE
INPUT_TYPE 81T(24)

,OUTPUT_TYPE B1T(24)
,BUfFER CHARACTER(SO)
;

DISPLA"Y ".**** INPUT TYPE";
ACCEPT INPUT_TYPE;
INPUT_TYPEIBINARYCSU8STRCINPUT_TYPE.O,1» HOD 3;
DISPLAY" ••••• OUTPUT TYPE";
ACCEPT OUTPUT_TYPE;
aUTPUT_TYPEIBINARY(SUBSTRCOUTPUT_TYPE.O,l» MOO 4;
OPEN INPUTCINPUT_TYPE) INPUT;
OPEN OUTPUT(OUTPUT_TYPE) OUTPUT, NEW;
DO FOREVER;

READ INPUT(I~PUT_TYPE) (BUfFER);
ON EOF UNDO;

WRITE OUTPUTCOUTPUT_TYPE) (BUffER);
END;
CLOSE OUTPUTCOUTPUT_TYPE) WITH LOCK;
STOP;
FINI

--"-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARATION STATEMENT>

<DEFINE STATEMENT> ::=

<DEFINE ELEMENT> ::=

<DEFINE ICENTIFIER> ::=

<FORMAL PARAMETER PART>

<FORMAL PARAMETER LIST>

<FORMAL PARAMETER> ::=

<DEFINE STRING> ::=

<HELL-FORMED CONSTRUCT>

<BASIC COMPONENT> .. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

5-36
COMPANY CONFIDENTIAL

81000 SOL (8NF Version)
P.S. 2212 5405 (G)

••• I<DEFINE STATEMENT>;I •••

DEFINE <DEFINE ELEMENT>
<DEFINE STATEMENT>,
<DEFINE ELEMENT>

<DEFINE IDENTIFIER>
<FORMAL PARAMETER PART>
AS <DEFINE STRING>

<IDENTIFIER>

«fORMAL PARAMETER LIST»
L<FORHAL PARAMETER LIST>]

<EMPTY>

<FORMAL PARAMETER>
<FORMAL PARAHETER>~
<FORMAL PARAMETER LIST>

<IDENTIFIER>

#<WELL-FORMED CONSTRUCT>#

<EMPTY>

<BASIC COMPONENT>
<WELL-FORMED CONSTRUCT>

<RESERVED WORD>
<IDENTIfIER>
<SPECIAL CHARACTER>
<COMMENT STRING>
<CONSTANT>

XSEE APPENDIX

The <OEFI~E STATEMENT> assigns the text enclosed between the ",.
signs foLlowing the reserved word AS to the <DEFINE IDENTIFIER>.
Invocation of the <DEFINE IDENTIFIER> causes the text to replace
the identifier, thereby providing a form of shorthand code.

At decLaration time~ the comoiler is unconcerned with the
contents of the <DEFINE STRING>. However~ when the <DEFINE
IDENTIFIER> is invoked, the <WELL-FORMED CONSTRUCT> must conform
to the syntactical requirements of the statement containing the
identifier.

(.~ .. t
'~;

C .. · i·,
;pi'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BAR3ARA PLANT

5-37
COMPANY CONfIDENTIAL

81000 SOL (BNF·Version)
P.S. 2212 5405 (G)

There are two types of <DEFINE STATEMENT>s: Simple and
Parametric. where the parameters are enclosed in parentheses or
brackets following the <DEFINE IDENTIFIER>. BeLow are examples
of both types:

DEFINE A AS 'IF X>10 THEN PROCX#.
CH AS #CHARACTER#.
B(Y.Z) AS #IF Y<Z THEN Y:=Z #,
CCH) AS 'X:=M; A t;

Notice that <DEFINE STATEMENT>s may be factored,
separating each element.

with commas

The <DEFINE IDENTIFIER> has scope in the same manner as any other
identifier (except for SEGMENT and DO-GROUP identifiers).

Restrictions on the use of DEFINEs:

1. Reserved words may not be used as <DEFI~E

2.

IOENTIFIER>s, however, an identifier may define a
reserved word.

·Special" words may be used as <DEFINE IDENTIFIER>s,
however. their special significance is lost within
the the scope of that <DEFINE STATEMENT>.

3. <DEFINE INVDCATION>s may appear within a <WELL-FORMED
CONSTRUCT>. i.e., a <DEFINE IDENTIfIER> may appear
within another <DEFINE ELEMENT>. <DEFINE
IOENTIFIER>s may be nested no more than 12 levels
deep.

4. The identifiers listed below are never looked up in
the list of define names.

DECLARE. DEFINE. PROCEDURE, and FDRHAL IDENTIFIERS,

SEGHENT and DO-GROUP IDENTIFIERS.

FILE, OPEN, and CLOSE ATTRIBUTES.

<FILE ATTRI3UTE STATEMENT> attribute names

"ON" condition names (EOF. EXCEPTION, FILE_MISSING,
Q_FULL, Q_EMPTy.NO_INPUT, FILE_LOCKED, INCO~PlETE_Ia)_

"ACCEPT"I"DISPLAY" specifiers: END_OF_TEXT
and CRUNCHED.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GRDUP
SANTA BARBARA PLA~T

5-38
COMPANY CONfIDENTIAL

BI000 SOL (BNf Vetsion)
P.5. 2212 5405 (G)

If one of these id&ntifiers happens to be the same as a <DEfINE
IDENTIfIER>, no substitution occurs. The <WELL-fORMED CONSTRUCT>
of the define will not replace the identifier. Note, however,
that duplicate identifiers may not appear within the same Lexie
level; an error message results.

5. Tbere may be no more than eight <FORHAl PARAMETER>s
in a <fORMAL PARAMETER LIST>.

6. Refer to Appendix V for rules concerning conditional
inclusion cards within defines.

The following syntax illustrates the format used in the
invocation of a <DEfINE IDENTIfIER>:

<DEfINE INVOCATION> ::=

<SIMPLE DEfINE
IDENTIfIER> ::=

<PARAMETRIC
DEFINE IDENTIfIER>

<DEFINE ACTUAL
PARAMETER LIST>

<DEfINE ACTUAL
PARAMETER> ::=

.. -.... -

--.. -

<SIMPLE DEfINE IDENTIfIER>
<PARAMETRIC DEfINE IDENTIFIER>
«DEFINE ACTUAL PARAMETER LIST»
<PARAMETRIC DEfINE IDENTIFIER>
[<DEfINE ACTUAL PARAMETER LIST>]

<DEfINE IDENTIfIER>

<DEfINE IDENTIfIER>

<DEFINE ACTUAL PARAMETER>
<DEFINE ACTUAL PARAMETER>,
<DEFINE ACTUAL PARAMETER LIST>

<WELL-fORMED CONSTRUCT>

A <DEFINE INVOCATION> may occur anywhere within an SOL program
except in the cases listed above in Restriction 4. As indicated
by the above BNF, the actual parameters of a define are not
confined to constants and variables but may have a wide range of
constructs. For example, the <DEFINE STATEMENT> mentioned above:

DEFINE A AS 'If X>10 THEN PROCX',
CH AS 'CHARACTER',
B{Y,Z) AS 'IF Y<Z THEN Y:=Z "
C(M) 4S , X:=M; A ,;

might be invoked as follows:

which expands to:

C~"·
,./

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-39
COMPANY CONFIDENTIAL

al000 SOL (BNF Version)
P.S. 2212 5405 (G)

x:=Z; BUMP ItR,S]; IF X>10 THEN PROCX;

The following restrictions apply to the use of the <DEFINE
INVOCATION>:

1. No unpaired bracketing symbols, i.e., () or (], may
appe ar •

2. Within a <DEFINE ACTUAL PARAMETER LIST>. commas not
enclosed within paired bracketing symbols act to
delimit the <DEFINE ACTUAL PARAMETER>s. Therefore a
<WELL-FORMED CONSTRUCT> not enclosed in bracketing
symbols may not contain commas. For example:

and invoked as:

would result in the error message:

DEFINE INVOCATION HAS TOO MANY PARAMETERS

Proper invocation is possible by
removing the parens from the define
and placing them in the invocation:

DEFINE X(A,B) AS : A a #;
Z:=X(M,(lhR,S»;

3. Comments are allowed but will be deleted from the
actual parameter text.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECLARATION STATEMENT> ::=

<FORWARD DECLARATION> • e_ .. -
<COMPOUND PROCEDURE
HEAD> ::=

<PROCEDURE HEAD> e ._ .. -

<BASIC PROCEDURE HEAD>

<PROCEDURE NAME> ::=

<PROCEOURE IDENTIFIER>

<TYPED PROCEOURE
IDENTIFIER> ::=

<NON-TYPED ~ROCEDUR£
IDENTIFIER> ::=

<fORMAL PARAMETE~ PART>

<FORMAL PARAMETER LIST>

<FORMAL PARAMETER> ::=

.. -.. -

e ._ e.-

.. -. '.-

<PROCEDURE TYPE PART> ::=

<FORMAL TYPE PART> ::=

<TYPE PART> ::=

<TYPE VARYING PART> .. -.. -

<fORMAL PARAMETER DECLA
RATION STATEMENT LIST> ::=

5-40
COMPANY CONfIDENTIAL

81000 SOL (BNf Version)
P.S. ZZlZ 5405 (6)

••• I<FORWARO DECLARATION>I •••

FORWARD <COMPOUND PROCEDURE HEAD>

<PROCEDURE HEAD>
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>;

<PROCEDURE NAME>
<FORMAL PARAMETER PART>

PROCEDURE <PROCECURE IDENTIFIER>

<TYPED PROCEDURE IDENTIFIER>
<NON-TYPED PROCEDURE IDENTIFIER>

<IDENTIFIER>

<IDENTIFIER>

<EMPTY>
«FORMAL PARAMETER LIST»

<FORMAL PARAMETER>
<FORHAl PARAMETER>,
<FORMAL PARAMETER LIST>

<IDENTIfIER>

<EMPTY>
<FORMAL TYPE PART>

<TYPE PART>
<TYPE VARYING PART>

FIXED
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

VARYING
BIT VARYING
CHARACTER VARYING

<EMPTY>

o

c:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<FORMAL PARAMETER
DECLARATION STATEMENT> ::=

5-41
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 540S (G)

<FORMAL PARAMETER DECLARATION STATEMENT>;
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

FORMAL <FORMAL ELEMENT>
FORMAL_VALUE <FORMAL ELEMENT>
<FORMAL PARAMETER DECLARATION STATEMENT>,
<FORMAL ELEMENT>

<FORMAL EL EHENT> 0<_ .0- «FORMAL IDENTIFIER LIST»
<FORMAL TYPE PART>
<FORMAL IDENTIFIER>
<FORMAL TYPE PART>

<FORMAL INOENTIFIER LIST> 00_ .0- <FORMAL IDENTIFIER>
<FORMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>

<FORMAL IDENTIFIER> o 0_
o .- <COMPLEX IDENTIFIER>

<CO~PLEX IDENTIFIER> .. -.. -
I <VARYING ARRAY SPECIFIER>

<SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>

<ARRAY BOUND>

<VARYING ARRAY SPECIFIER> ::= <ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND> • 0_ .0-

Before a procedure may be called, SOL specifies that it must have
been previously declared. A contradiction arises when one
procedure calls another procedure which in turn references the
first. In this case, whichever procedure appears first must
necessarily contain at least one reference to the second which
has not yet been declared.

The <FORWARD DECLARATION> allows the programmer to use recursive
references by providing a te~porary procedure declaration. The
<FORWARD DECLARATION>, however, does not eliminate the need for
the normal procedure declaration which must follow in the program
and-must have the same scope.

The parameters mentioned in th~ <fORWARD DECLARATION> must be the
same formal parameters (in type and size, but not in name) that
the procedure itself witl declare.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5-42
COMPANY ·CONf lOE,NT 1 AL

B1~OO SDL (BNF Version)
P.S. 2212 5405 (G)

Procedures may be either typed or non-typed depending on their
use. formal data types may either be static or varying. again
depending on the progra •• These specifications will be discussed
in the section entitled "THE PROCEDURE STATEMENT".

The following examples illustrate the use of the <FORWARD
DECLARATION>:

FORWARD
fORWARD

PROCEDURE X CHARACTER VARYING;
PROCEDURE JeKpL*M);
FORMAL K(t) aIT VARYING,
Le1S) CHARACTER (8),
H FIXED;

o

o

c

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<USE STATEMENT> ::=

<SIMPLE IDENTIFIER
LIST> ::=

<SIMPLE IDENTIFIER>

<DEfINE ICENTIFIER>

• e-
• e-

:: =

5-43
COMPANY CONfIDENTIAL

alOOO SOL (BNf Version)
P.S. 2212 5405 CG)

USE «SIMPLE IDENTIFIER LIST»
OF <DEFINE IDENTIFIER>

<SIMPLE IDENTIFIER>
<SIMPLE IDENTIfIER LIST>, <SIMPLE IDENTIFIER>

<IDENTIFIER>

<IDENTIfIER>

The purpose of the <USE STATEMENT> is to allow the programmer to
declare specific elements in a defined structure within a
procedure. By specifying only the desired elements, the Name
Stack size is kept to a minimum, and program maint.enance is
simplified. The compiler will generate the structure using
fillers and the specified elements.

The following restrictions apply to the <USE STATEMENT>:

It must appear within a procedure (i.e., on a Lexie
level greater than 0).

2. The referenced <DEFINE IDENTIFIER> must define one
structured declare statement.

3. The structure may not contain arrays.

4. The outermost level of the structure (01) must be a
"DUMMY REMAPS".

EXAMPLE:

DEFINE X AS ,
DECLARE 01 DU~HY

02 8
REMAPS A~ % MIGHT ALSO REMAP BASE

BIT(S),
03 B1
03 82

02 C
02 0
02 E
02 F

PROCEDURE FIRST;

8IT(2),
811(3),
CHARACTER(lO),
BIT(l)'
FIXED,
81T(24)#;

USE (C,D) OF X;

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

From the above <USE STATEMENT> the
following structure:

01 DUMMY REMAPS
02 FILLER

03 fILLER
03 FILLER

02 C
02 0
02 fILLER
02 FILLER

A.
BIT(S)'
BIT(2),
BIT(3)~ -
CHARACTER(lO),
BIT(l)'
FIXED,
BIT (24H

,-4"
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

compi ler witl generate the

Note that fitler was substituted for the group item B. This
would normally generate a syntax error, and is allowable only in
the <USE STATEMENT>.

o

o

C~.·)

C:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

<PROCEDURE STATEMENT>

<PROCEDURE CEFINITION>

<SEGMENT STATEMENT>::=

<PROCEDURE BODY> ::=

.. -.. -

.. -.. -

6-1
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

<PROCEDURE DEFINITION>
<SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<COMPOUND PROCEDURE HEAD>
<PROCEDURE BODY>

SEE "THE SEGMENT STATEMENT"

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

Procedures are self-contained functional units within an SOL
program which may be accessed according to specific rules
discussed under "BASIC STRUCTURE OF THE SOL PROGRAM". Procedures
may be created by preceding setf-contained statements with a
<COMPOUND PROCEDURE HEAD>, and terminating it with a <PROCEDURE
ENDING>.

The <PROCEDURE DEFINITION> is composed of three basic parts:
heading, bodY' and ending_ Identifiers declared in a procedure
may be accessed only in the procedure in which they are declared,
and in procedures nested within the declaring procedure.

Procedures may be either "TYPED- or "NON-TYPED". A "TYPED"
procedure returns some value of the type specified in the
procedure declaration to the expression where the procedure was
invoked. See ·VALUE VARIABLES" for details. A "NON-TYPED"
procedure performs a function, does not return a value, and is
invoked in an <EXECUTE PROCEDURE STATEMENT>. See "EXECUTE
PROCEDURE STATEMENT".

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA P(ANT

6-2
COMPANY CONfIDENTIAL

B1000 SOL (8Nf Version)
P.S. 2212 5405 (G)

The syntax for the procedure heading is:

<COMPOUND PROCEDURE
HEAD> :: =

<PROCEDURE HEAD> .. -.. -

<BASIC PROCEDURE HEAD>

<PROCEDURE NAME> ::=

.. -.. -

<PROCEDURE IDENTIFIER> ::=

<TYPED PROCEDURE
IDENTIF IER> ::=

<NON-TYPED PROCEDURE
IDENTIFIER> ::=

<INTRINSIC IDENTIFIER>

<TYPED INTRINSIC
IDENTIFIER> ::=

<NON-TYPED INTRINSIC
IDEN TIf IER> :: =
<FORMAL PARAMETER PART>

<FORMAL P~RAMETER LIST

<FORMAL PARAMETER> ::=

.. -.. -.

::=

.. -.. -

<PROCEDURE TYPE PART> ::=

<FORMAL TYPE PART>

<TYPE PART> .. -.. -
--.. -

<PROCEDURE HEAD>
<FORHAL PARAMETER DECLARATION
STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>

<PROCEDURE NAME>
<FORMAL PARAMETER PART>

PROCEDURE <PROCEDURE IDENTIFIER>
INTRINSIC <INTRINSIC IDENTIFIER>

<TYPED PROCEDURE IDENTIFIER>
<NON-TYPED PROCEDURE IDENTIFIER>

<IDENTIFIER>

<1 CENT IF lEft>

<TYPED INTRINSIC IOENTIFER>
<NON-rYPEn INTRINSIC IDENTIFER>

<IDENTIFIER>

<IDENTIFIER>

<EHPTY>
«FORMAL PARAMETER LIST»

<FORMAL PARAMETER>
<FORHAL PARAMETER>,
<FORHAL PARAMETER LIST

<IDENTIFIER>

<EHPTY>
<FORMAL TYPE PART>

<TYPE PART>
<TYPE VARYING PART>

fIXED

o

c

C·''·· .,
" •• " ~,j

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<FIELD SIZE> ::=

<TYPE VARYING PART> • e.. -

<FORMAL PARAMETER DECLA
RATION STATEMENT LIST> ::=

6-3
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

CHARACTER <FIELD SIZE>
BIT <fIELD SIZE>
REFERENCE

«CONSTANT EXPRESSION»

''1ARYING
BIT VARYING
CHARACTER VARYING

<E/IIPTY>
<FORMAL PARAHETER DECLARATION STATEMENT
LIST>;

<fORHAL PARAMETER
DECLARATION STATEMENT> ee_ .. -

<FORMAL PARAMETER DECLARATION>

FORHAL <FORMAL ELEMENT>
FORMAL_VALUE <FORMAL ELEMENT>
<FORMAL PARAMETER DECLARATION STATEMENT>,
<fORMAL ELEMENT>

<FORHAL ELEMENT> e e_ .. -

<FORMAL IDENTIfIER
LIST> ::=

<fORMAL IDENTIFIER> ::=

<COMPLEX IDENTIFIER> ::=

<VARYING ARRAY
SPECIFIER> ::=

«FORMAL IDENTIFIER LIST»
<FORMAL TYPE PART>
<FORMAL IDENTIFIER>
<FORMAL TYPE PART>

<fORMAL IDENTIFIER>
<fORMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>

<COMPLEX IDENTIFIER>
<VARYING ARRAY SPECIFIER>

<SIMPLE IDENTIFIER>
<ARRAY IDENTIfIER>
<ARRAY aOUND>

<ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

<VARYING ARRAY BOUND> ::= (.)

The procedure heading, i.e., <COMPOUND PROCEDURE HEAD>, contains
the <PROCEDURE ~AH£>, for~al parameters (if any), and the
<PROCEDURE TYPE PART>, i.e., the field type of the value to be
returned if the procedure is "TYPED". Far example:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PROCEDURE X (M.N) FIXEO;
fORMAL (M,N) VARYING;

which corresponds to the following syntax:

6-4
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

PROCEDURE <TYPED PROCEOURE IDENTIFIER>
«FORHAL PARAMETER>,<FORHAl PARAMETER»
<PROCEDURE TYPE PART>;

FORMAL «FORMAL IOENTIFIER>,<FORHAl IDENTIFIER»
<FORHAl TYPE PART>;

In this case, the value returned to the point of ihvocation
should be fixed. There is, however, no check for this at compile
time. If the control card option FORHAL_CHECK is present, the
returned values will be checked against the procedure type at run
time.

The -NON-TYPED- procedure follows the same format except that the
<PROCEDURE TYP-E PART> is o.itted since no value is returned. For
instance:

PROCEDURE A (J.K,l)J
FORMAL J FIXED, (K,L) BIT VARYING;

which syntactically is the same as:

PROCEDURE <NON-TYPED PROCEDURE IDENTIFIER>
«FORHAl PARAHETER>,<FORMAL PARAMETER>.
<FORMAL PARAMETER»;

FORMAL <FORMAL IDENTIFIER> <FORHAL TYPE PART>,
«FORHAL IOENTIFIER>,<FORHAl ICENTIFIER»
<FORHAL TYPE PART>;

When a formal parameter is declared as FORMAL_VALUE, the actual
parameter will always be passed by value. See the section on
ADDRESS and VALUE PARAMETERS.

The field type of formal paramet.rs (i.e., compon~nts of the
<FORMAL TYPE PART» may be static (BIT, CHARACTER, or FIXED) or
variable (BIT VARYING. CHARACTER VARYING. or VARYING).

The <F I E lOS I Z E> m u s t be a < CON S TAN T E X PRE S S ION> (i. e • • an
expression whose value can be determined during compilation).

o

o

o

~~_"..,.;.;. " ... " "_""' ,,""", " _"' "'"','''"''' '''''",'"-'v"'''"'' ,, '""" .. ,,,,,.'_,,,,',,,",',,,,,,,,"",,,"" ' ,""",="~ .. ",,,,'_"=" ""-"""-'.,_,,.,'~'''~,,'_,.;·~'''_*~''''~.h ~. ~",~", ____ ,,,,,' _ --.. ~ ~_=-_~~

(',"'" "

I
_-to-

c'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

6-5
COMPANY CONFIDENTIAL

alooa SOL (BNF Version)
P.S. 2212 5405 (G)

Often however, it is impossible to determine the data type at
compile time especially if the actual parameters are passed to
the procedure from different points in the program and under
differing circumstances. SOL allows the user to specify variable
data fields in the formal declaration. The actual parameters
passed to that procedure will provide the specifics. Thus
formals may be declared as waIT VARYING·, "CHARACTER VARYING-, or
-VARYI NG".

In a variable bit or character field, the type of data passed
must be that which is specified (i.e~, BIT or CHARACTER). The
length, however, remains variable. Formals specified as
·VARYING- may accept any type of data of any length.

The data types of corresponding formal and actual para.eters will
not be checked at compile time and only at run ti~e when
FORMAL.CHECK has been specified as a control card option.

Varying formals may be remapped, but it is the programmer's
responsibility to ensure that the remapped formal para.eter and
its corresponding actual parameter match. A warning message will
appear in the source listing where the remapping has occurred.

SOL also allows formally declared arrays to have a variable
number of elements by substituting "*" for the number following
the <AaRAY IDENTIFIER>. For instance:

PROCEDURE X (A,S);
FORMAL A (*) FIXED, a C*> VARYING;

The word "INTRINSIC" may be used interchangeably with the word
"PROCEDURE". It is, however, intended onLy for use by the SOL
group in order to provide SOL intrinsics.

The use of "INTRINSIC" forces the intrinsic to have as entry
point the displacement 0 within a new segment.

BURROUGHS CORPrrRATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

6-6
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

The body of the procedure follows the heading. Included are
dectaration of local data (discussed under "THE DECLARATION
STATEMENT"), nested procedures (also see "BASIC STRUCTURE OF THE
SOL PROGRAM")~ executable statements, and an ending. The syntax
for the <PROCEDURE EXECUTABLE STATEMENT LIST> follows:

<PROCEDURE SODY> ::=

<PROCEOURE EXECUTABLE
STATEMENT LIST> ::=

<PROCEDURE EXECUTABLE
STATEMENT> ::=

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

<PROCEDURE EXECUTABLE STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT LIST>

<EXECUTABLE STATEMENT>
<RETURN STATEMENT>
<SEGMENT STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT>

The <EXECUTABLE STATEMENT>s will be discussed in the section
entitled "EXECUTABLE STATEMENTS-. As indicated by the above
syntax, executable statements within a procedure may be
segmented. However, a procedure must end in the same segment in
which it begins. For other segmentation restrictions see "THE
SEGMENT STATEMENT".

The syntax for the <RETURN STATEMENT> is:

<RETURN STATEMENT> .. -.. - <TYPED PROCEDURE RETURN STATHENT>
I <NON-TYPED PROCEDURE RETURN STATEHENT>

<TYPED PROCEDURE
RETURN STATMENT> .. -.. - RETURN <EXPRESSION>

<NON-TYPED PROCEDURE
RETURN STATEMENT> ::= RETURN

RETURN_AND_ENABLE_INTERRUPTS

The <RETURN STATE~ENT> takes one of two forms
type of the procedure encompassing it.
-TYPED", an <EXPRESSION> must be returned
invocation. In a "NON-TYPED" procedure~ only
needed. For expression specifications refer
entitled "EXPRESSIONS" and "PRIMARIES".

depending on the
If the procedure is

to the point of
a simple return is

to the sections

(•... "'
j

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

,,,,t· J ·"!,.I· ' p;. " •...• - ¥"'" 7"' ... '""bi'" - 'oov-r,,"'OO'-''''';;&; ~";.

6-7
COMPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (G)

Type checking on a <RETURN STATEMENT> is done only at run ti.e
when FORMAL.CHECK appears as a control card option.

Within any given procedure (at any Lexic level), certain
statements are nested within other statements and are accessed,
much like a procedure, by an address generated by the larger
statement. The most general' nesting level is zerop and the
nesting level of any statement appears on an SOL listing under
the column "NL". The most common instance of statements
occurring at Nesting Levell or greater are:

1. The conditionally executed statements following
-THEN" and "ELSE" in the <IF STATEMENT>.

2. Statements contained within a <CASE STATEMENT>.

3. <OO-GROUP>s.

If the compiler cannot find a <RETURN STATEMENT> on NL 0, it will
generate one directly preceding the <PROCEDURE ENDING>. This is
merely a safety measure to insure that a procedure can always be
properly exited.

(~) A cOlllpiler-generated return work's essentially in the same manner
as an explicit return. In a non-typed procedure, control is
returned to the point of the procedure's invocation. In a typed
procedurep the following values are returned.

If the procedure is typed:

BIT

CHARACTER
FIXED
BIT VARYING
CHARACTER VARYING
VARYING

the compiler wi II return:

BITS CONTAINING 0
OF LENGTH SPECIFIED
BLANKS OF LENGTH SPECIFIED
FIXED ZERO
8-BITS OF ZERO
ONE BLANK
FIXED ZERO

RETURN_ANO_ENABLE_INTERRUPTS is for Mep use only. It will cause
a norMal procedure exit to take place, and will enable interrupts
as well.

II It ..

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

6-6
COMPANY CONfIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (~)

The <PROCEDURE ENDING> is the final statement of a procedure~ and
the syntax is:

<PROCEDURE ENDING> ::= END
END <PROCEDURE ICENTIfIER>

The identifier following the reserved word "END" is optional.
Its sole purpose is to simplify the documentation of the program.
If an identifier is supplied by the user, the compiler will
perform a syntax check to guarantee that the <PROCEDURE ENDING>
is appropriately placed.

(.~ .. '
!

.!i'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ASSIGNMENT STATEMENT> ::=

<ADDRESS VARIABLE>

<REPLACE> ::=

<EXPRESSION> ::=

.. -.. -

<STRING EXPRESSION> .. -.. -

<OR-ING OPERATOR> ::=

<LOGICAL FACTOR> ::=

<LOGICAL SECONOARY> ::=

<LOGICAL ?RI~ARY>

<RELATION>

< A R I TH ME TIC
EXPRESSION> .. -.. -

.. -.. -

<ADDITIVE OPERATOR> .-.. -
<TERM>::=

<MUL TIPLICATIVE
OPERATOR> ::=

7-1
COMPANY CONfIDENTIAL

B1000 SOL (BNf Version)
P.S. 2212 5405 (G)

<ADDRESS VARIABLE>
<REPLACE>
<EXPRESSION>

SEE "ADDRESS VARIABLES"

. -.-
<STRING EXPRESSION>
<STRING EXPRESSION>
CAT <EXPRESSION>

<LOGICAL FACTOR>
<LOGICAL FACTOR>
<OR-[NG OPERATOR>
<STRING EXPRESSION>

OR EXOR

<LOGICAL SECONDARY>
<LOGICAL SECONOARY>
AND <LOGICAL FACTOR>

<LOGICAL PRIMARY>
NOT <LOGICAL PRIMARY>

<ARITHMETIC EXPRESSION>
<ARITHMETIC EXPRESSION>
<RELATION>
<ARITHMETIC EXPRESSION>

< I <=
LSS I
GEQ I

<TERM>
<TERM>

I = I 1= I >=
LEQ I EQL
GTR

<ADDITIVE OPERATOR>
<ARITHMETIC EXPRESSION>

+ J -

<SIGNED PRIMARY>

> I
NEQ

<SIGNED PRIMARY>
<MULTIPLICATIVE OPERATOR>
<TERM>

* I MOD I 1

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SIGNED PRIMARY>::=

<UNARY OPERATOR> .. -.. -

<PRIMARY>

7-2
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

<UNARY OPERATOR>
<PRIMARY>

+ I -

()

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

.. t' ~ "T- , ,. ~ .. ' r'··

1-3
COMPANY CONfIDENTIAL

BIOOO SOL (BNf Version)
P.S. 2212 5405 (G)

The following is a list of the SOL operators fro~ highest

(~" precedence to lowest. This tist or the table in fjgure 3 may be
j used when evaluating an expression.

c

+ , - «UNARY OPERATOR»
*, /, MOO
+, - «ADDITIVE OPERATOR»
<, /=, =, <=, >=, >
NOT
AND
OR, EXOR
CAT

1. The assignment operator has higher precedence than
any operator to its left and lower precedence than
any to its right.

2. The order of evaluation of operators having equal
precedence is always fro~ left to right.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

NEG + -

P
R
E
V
I
o
U
S

o
P.

NEG

*
.. -
=

NOT

AND

OR

CAT

-.-
(

)

BT

>

<

<

<

<

<

<

<

<
<

<

>

>

<

<

<

<

<

<

<
<
>
<

>

>

>

<

<

<

<

<

<
<
>
<

=
>

>

>

>

<

<

<

<

<
<
>
<

7-4
COMPANY CONfIDENTIAL

B1000 SOL (SNf Version)
P.S. ZZlZ 5405 (G>

PRESENT OPe

NOT AND

<

<

<

>

<

<

<

<
<

<

>

>

>

>

>

>

<

<

<
<
>
<

OR CAT

>

>

>

>

>

>

>

<

<
<
>
<

>

>

>

>

>

>

>

>

<
<
>
<

..-
<

<

<

<

<

<

<

<

<
<
>
<

(

<

<

<

<

<

<

<

<

<
<

<

)

>

>

>

>

>

>

>

>

>
=
>

>

>

>

>

>

>

>

>

>

>
=

fORMULA: PRECEDENCE <PREVIOUS OP> <RELATION> PRECEDENCE <PRESENT OP,(~,

NOTE: NEG
*
=
BT
ET

UNARY OPERATORS
MULTIPLICATIVE OPERATORS
RELATIONAL OPERATORS
REPLACE OPERATORS
INfERRED BEGINNING TERMINATOR
INfERRED ENDING TERMINATOR

fig 3. Operator Precedence Table

c:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

+

7-5
COMPANY CONFIDENTIAL

81000 SOL (8NF Version)
P.S. 2212 5405 (G)

The unary operator acts upon one operand and may never appear as
an infix operator between two operands. It may appear to the
right of any other operator, including itself.

The UNARY MINUS (-l generates the two's complement of the operand
associated with it (i.e ... -x = (NOT Xl+l). The operand, fRay be
any data type. If it is fixed, the UNARY MINUS has the effect of
reversing the sign. and the result is labeled on the Evaluation
Stack as fixed.

If the operand
low-order 24 bits
wi II be padded
complement of the
as type fixed.

is either a character or bit string, only the
will be evaluated. Strings less than 24 bits
with leading zeroes to 24 bits. The two's
string is generated and returned to the stack

The SOL compiler generates no code for the unary plus (+) which
exists solely for the convenience of the programmer.

+ Addition
Subtraction

• Multiplication
MOO Division yielding integer value of remainder
I Division yielding integer value of quotient

The arithmetic operators perform 24-bit arithmetic on two
operands of any of the three data types. Sign analysis wilt be
done only if both operands are fi~ed. With any other combination
of data types, the magnitudes of the operands are evaluated.

BURROUGHS CORPO~'ATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

-.----~-

For both bit and character data,
bits, only the low·order 24 bits
is less than 24 bits, leading
left.

7-6
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 CGJ

if the field is greater than 24
will be evaluated. If the field
zeroes wilt be supplied from the

A 24-bit result will be returned to the Evaluation Stack. If
both operands are fixed, the result will be fixed. Otherwise,
the result will be type bit.

SOL division results in an integer value.
tr unca ted thus:

Any remainder is

7 / 3 =2
3 1 7 = 0

Note this means that ft._ and -/" do not associate.
(A • B) 1 C does not equal A * (8 I C).

In general,

The HOD operation is division resulting in the integer value of
the remainder. It is evaluated by the following formula:

Y MOO Z ;: Y-(Z*CY/Z» using integer djvision explained above.

For example:

7 MOO 3 = 7-(3 * 2) = 1
-7 MOO 3 = -7-{3*(-Z)) ;: -1

3 MOO -7 = 3-«(-7)*(-0» = 3
-3 MOD -7 ;: (-3)-«-7) * 0) ;: -3

Note: For negative arguments, this definition is not the same as
the traditional definitions from mathematics.

;: EQl EQUAL TO
1= NEQ NOT EQUAL TO

> G fR GREATER THAN
< LSS LESS THAN

>= GEQ GREATER THAN OR EQUAL TO
<=. LEQ LESS THAN OR EQUAL TO

o

0

o

c

C .,

,;, as

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

7-1
COMPANY CONfIDENTIAL

BI000 SDL (BNF Version)
P.S. 2212 54Q5 (G>

The relational operators do a comparison between two operands of
any data type. A 1-bit result is returned ~(1)1~ if the
condition is true, ~Cl)O~ if the condition is false.

If both
compare.
is padded
magn it ude

operands are fixed, the operator does a true signed
If both operands are ~haracter strings, the shorter one
on the right with blanks, and a character by character
compare by collating sequence is done.

for all other operand cQmbinations, leading zeroes are supplied
to the shorter of the two. No sign analysis is done. and
operands are treated as positive ~agnitudes.

NOT
ANO
OR
EXOR

The logicaL operators perform a bit by bit analysis on all three
data types. NOT is considered to be a unary operator, and may
appear to the right of any other operator (including itseLf).

The other operators require two operands. The shorter of the two
is padded on the left with zeroes to duplicate the length of the
larger. The following chart illustrates the use of each
op er ator •

IF X = Q 0 1 1
IF y = 0 1 0 1
NOT X = 1 1 a 0

NOT Y = 1 0 1 0

X AND Y = 0 0 a 1

x OR y = a 1 1 1

X EXOR y = a 1 1 0

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ASSIGNMENT STATE~ENT>

<REPLACE> ::=

<ASSIGNOR> ::=

<NON-DESTRUCTIVE
REPLACE> ::=

<REPLACE, DELETE
LEFT PART> ::=

<REP LA CE, DELE TE
RIGHT PART> ::=

.. -.. -

7-6
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.s. 2212 5405 (G)

<ADDRESS VARIBLE>
<REPLACE>
<EXPRESSION>

. -, .-
<ADDRESS VARIABLE>
<NON-OESTRUCTIVE REPLACE>
<EXPRESSION>

<REPLACE, DELETE LEfT PART>
<REPLACE, DELETE RIGHT PART>

:=

::=

NOTE: <REPLACE, DELETE RIGHT PART> symbol "::=" is the sa~e
as the aNF definition symbol.

There are two basic types of repLace operators: The destructive
<REPLACE> associated with the <ASSIGNMENT STATEMENT>, and the
<NON-DESTRUCTIVE REPLACE> which occurs only within an expression.

The destructive <REPLACE> operator causes the expression on its
right to "REPLACE" the variable on its left. The Evaluation
Stack is flushed since this replace is necessarily the tast
operation in the statement.

The <NON-DESTRUCTIVE REPLACE> takes two forms~ ·OELETE LEFT" and
"DELETE RIGHT". The "DELETE LEFT" causes the expression to the
right of the operator to replace the variable on its teft. The
variable is then deleted from the top of the Evaluation Stack,
and the expression is left on the top of the stack.

The "DELETE RIGHT" causes the same replacement. However, the
expression to the right of the operator is deleted from the
Evaluation Stac~, and the variable to the left remains on the top
of the stacie.

---~----

c

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

81000 SOL (BNF Version}
P.S. 2212 5405 (G)

The following example illustrates the use of the <NON-DESTRUCTIYE
REPLACE>:

PROCECURE GOOD BIT VARYING;
DECLARE X 61T(48);
RETURN X ::= -RESULT";

END GOOD;
PROCEDURE BAD 9IT VARYING;

DECLARE Y 81T(48);
RETURN Y := "RESULT-;

END BAD;

PROCEDURE GOOD wilt execute properly since x~ declared as bit~ is
associated with the procedure type--bit varying. Notice~
however~ that in PROCEDURE BAD~ Y is deleted from the stack and
the character string "RESULT- remains. Unless the control card
option FORHAl.CHECK is set at compile ti.e~ there will be no
indication that the data types (as in PROCEDURE BAD) do not match
the procedure type. If FORHAL.CHECK is specified, the fallowing
execute tile error message will be printed:

"TYPE ERROR IN RETURNED VALUE"

l·f both operands associated with any replace operator are
character fields~ and the receiving field is longer than the

(~\ sending field, trailing blanks wilt be added. If the receiving
/ field is shorter, characters will be truncated from the right.

With every other comoination of data types, when the recelvlng
field is not equal in length to the sending field, leading binary
zeroes will be appended to the larger receiving field~ or
high-order bits are truncated from the larger sending field.

Inconsistant results may be obtained in cases such as

(i.e., where the sending field and the recelvlng field are simple
primaries less than 24 bits apart). This problem can be avoided
by enclosing the SU8STR in parentheses.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

1-10
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

Also see the reverse store operation in the section entitled
-EXECUTE-FUNCTION STATEMENT-.

o

o

c.'···· .,
. ,;i

SURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA SARBARA PLANT

7-11
COMPANY CONFIDENTIAL

81000 SOL CBNF Version)
P.S. 2212 5405 (G)

Data items may be linked together (concatenated) by using the
·CAf" operator. Although this operator is intended to
concatenate bit strings or character strings, it may be used with
any combination of data types. The result of any concatenation
may not be greater than 8,191 characters or 65,535 bits.

If all the operands are character strings. the result is a
character string. For any other combination of data types, the
result is a bit string. For example:

LET A = "BW 1 CHARACTER
B = ~(1)101. 3 BITS
C = 10 FIXED

THEN
B CAT 8 = ~(l)101101~ BIT STRING, LENGTH 6
A CAT A = "SS" CHARACTER STRING. LENGTH 2
A CAT a = .(1)11000al0101~ BIT STRING, LENGTH 11
e CAT C = .(3)500000012. 8IT STRING. LENGTH 27

(EXPRESSED IN OCTAL)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<PRIMARY>

<VARIABLE>

.. -.. -

.. -.. -

<CONSTANT>
I <VARIABLE>
I «EXPRESSION»

8-1
COMPANY CONfIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G>

I <CONDITIONAL EXPRESSION>
I <CASE EXPRESSION>
J <BUMPOR>
I <OECREMENTOR>
I <ASSIGNOR>

<ADDRESS VARIABLE>
<VALUE VARIABLE>

A primary is the most basic component of the SOL expression. To
avoid unnecessary repetition, see "BASIC COMPONENTS OF THE SOL
LANGUAGE" for discussion of constants# and see "ADDRESS
VARIABLES· and "VALUE VARIABLES" for discussion of variables.

<CONDITIONAL EXPRESSION> ::= IF <EXPRESSION>
THEN <EXPRESSION>
ELSE <EXPRESSION>

The expression following the reserved word "IF" is evaluated. If
the low·order bit of the result is 1, the expression following
"THEN" is evaluated. Otherwise, the expression following "ELSE"
is evaluated. Unlike the <IF STATEMENT>~ the "ELSE" part of the
expression must be present.

c.·.·"···· ,.
·'i

(...
'~.',' "

,;I

~........,'"",",_~~. _*.-..., ' ' ' ."",,' ' , "'"'.' ,,"'"' · ',· "'..,.;,'_,,· ,,_,_ '''w''""'' ·, '' "'""""", ~ .. "'-''''~'.''''-'",''"",' ~"""""~.~~,,~F'_.,. ___ . ,; ". .., ""''''BIII'Z'''''''

I , -

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<CASE EXPRESSION>

<EXPRESSION LIST>

.. -... -

.. -.. -

COMPANY CONfIDENTIAL
BI000 SOL (BNf Version)

P.S. 2212 5405 (G)

CASE <EXPRESSION>
Of «EXPRESSIO~LIST»

<EXPRESSION>
<EXPRESSION>.
<EXPRESSION LIST>

In the <CASE EXPRESSION>. the value of the <EXPRESSION> following
the reserved word "CASE" is used as an index into the list of
expressions. The expression thus selected is evaluated. and the
other expressions in the list ignored. The range of the index is
fro. zero to N-t. where N is the nu.ber of <EXPRESSION>s in the
list. An example of an <ASSIGNMENT STATEMENT> containing a <CASE
EXPRESSION> follows:

A:=CASE I Of (A.B. A-B, A*B. AlB. A HOD B) •
CASE J Of (Q*f-5, 9, 34+8. (A+B) MOO B, C)

if 1=2 and J=3, the statement will be evaluated as follows:

<BUMPOR> ... -... -

<HODlf.tER> ... -.. -

A:=(A*8> + (A+B) MOD B;

BUMP <ADDRESS VARIABLE>
<MODIFIER>

<EMPTY>
BY <EXPRESSION>

BUMPOR leaves on the Evaluation Stack, a descriptor of the
variable which has been incremented by the value of the modifying
<EXPRESSION>. If <MODIFIER> is <EMPTY>, then the variable is
incremented by 1. The results of the following expressions
(where A is an <ARRAY IOE~TtFIER» are equivalent:

BUMP A(X+Y) BY N
A(X+Y> ::= A(X+Y) ... N

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-3
COMPANY CONfIDENTIAL

81000 SDL (BNf Version)
P.S. 2212 5405 (G)

The advantage of using <BUMPOR> is that the code for putting the
descripto~ on the stack is executed only once. Thus it is more
efficient.

Like any variable, «BUMPOR» will cause a value to be loaded to
the top of the stack. Hence:

PCBUMP X BY C-O);

passes X by address but,

P((BUMP X BY C-O»;

passes X by value.

<BUMPOR> operates on all three data types. Character strings are
treated as if they were bit strings. For fields greater than 24
bits, only the low·order 24 bits are evaluated. If the field is
less than 24 bits, it is padded with leading zeroes to 24 bits.

o

c

(":r
./

, #d:r£i" "l¥" "'3' '""rimh,., "¢ "rIM'" Hi), Ii

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DECREHENTOR>

<MODIFIER> .. -.. -

.. -• e-

8-4
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

DECREMENT <ADDRESS VARIABLE>
<MODIfIER>

<EMPTY>
ay <EXPRESSION>

The <OECREHENTOR> works exactly like <BUMPOR> except that the
variable is decreased by the value of the <EXPRESSION>. See
above.

<ASSIGNOR> e e_
• e- See REPLACE OPERATORS in Chapter 7.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ADDRESS VARIABLE> .. -.. -

<SIMPLE VARIABLE>" ::=

<SIMPLE IDENTIfIER> ::=

<SUBSCRIPTED VARIABLE>

<ARRAY IDENTIfIER> ::=

.. -.. -

8-5
COHPANY CONfIDENTIAL

81000 SOL (BNf Version)
P.S. 2212 5405 <G)

<SIMPLE VARIABLE>
<SUBSCRIPTED VARIABLE>
<INDEXED VARIABLE>
<ADDRESS-GENERATING fUNCTION DESIGNATOR>

<SIMPLE IDENTIfIER>

<IDENTIfIER>

<ARRAY IOENTlfIER>«EXPRESSION»

<IDENTIfIER>

As noted above. <ADDRESS VARIABLE>s may take the form of a
<SIMPLE IDENTIFIER>. or an <ARRAY IDENTIFIER> followed by an
«EXPRESSION» designating the array element in Question. In
addition. simple and array identifiers may be indexed.

<INDEXED VARIABLE> .. -' .. - <SIMPLE IDENTIfIER> <INDEX PART>
<ARRAY IDENTIfIER> <INDEX PART>

<INDEX PART> .. -.. - [<EXPRESSION LIST>]

Each of the expressions in the <INDEX PART> is evaluated. and the
sum of these is formed. This will be called the index.

The indexing operation occurs functionally as follows:

1. The simple or array descriptor is loaded to the top
of the Evaluation Stack.

2. If the descriptor is an array descriptor. then it is
converted to a simple descriPtor which describes the
first (zero) element of the array.

3. The address field of the descriptor is modified by
adding to it the index.

"'?if'" 'I tb, -... -

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-6
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

c:~ Note that self·relative data items (i.e., data items whose length
is not greater than 24,. which are not in a structure,. and which
do not remap some other data item) may not be indexed.

()

("

'0 •• 1'

There are two methods of indexing:

1. The descriptor provides the address, and the index
provides the offset from this address.

2. The descriPtor provides the offset, and the index
provides the address.

Example:

--------------~--~--~--~----------------------: N BITS : 5 BITS: 2 : 3 :

----------~---~---------------.-----------<---C----><O-><E->

fieLd D may be accessed using either method (1) or method (2).
Assume N contains the offset to B.

He t h od (1):

DECLARE
01 A BIT(5000),

02 B,
03
03
03

N 8IT(Z4),
X Blf(2);

C BIT(5),
o Blf(Z),.
E BIT(3)"

WILL MOVE 0 (WITH THE OFFSET /* THE NEXT STATEMENT
GIVEN BY N) INTO X */

X I D[N);

!? ."

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

Method (2):

DECLARE
A 8IT(5000),
01 BB REMAPS BASE,

02 CC BIT(5)"
02 DO BIr(Zh
OZ EE BIT(3),

N BI T (Z 4),"
X BIT(Z);

1* THE NEXT STATEMENT WILL HOVE DO

8-7
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

(WITH THE OFFSET GIVEN BY N) INTO X *1
X I DOrN, DATA_AOORESS(A)];

Note the fotlowing:

1. The structure above, comprised of BS, CC" DO, and EE,
which remaps base is called a "template".

Z. This template may be applied to any data area merely

3.

by providing the address as part of the index. This
is riot the case when methode!) indexing is used.

The example above is contrived -- in method (Z)" if N
contained the address of B rather than the offset to
B from the beginning of A, then the statements which
store 0 into X would be identical: X J OOCN];

(

C)

C·· \
,I

C ... ,·r, 1...;

- Mfti*wah'tttH , '- * ";,.::0/"'"'",,., , ,,","

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-8
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

<ADDRESS-GENERATING
FUNCTION DESIGNATOR>

<SUB-STRl~G ADDRESS
DE SIGNA TOR> ::=

<SUB-STRING fUNCTION
IDENTIFIER> ::=

<STRING ADORESS> ::=

<ADDRESS GENERATOR>

<OFFSET PART>

<LENGTH PART>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<sua-STRING ADDRESS DESIGNATOR>
<FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR>
<DESCRIPTOR DESIGNATOR>
<DESCRIPTOR-GENERATOR DESIGNATOR>
<ADDRESS-MODIFIER DESIGNATOR>
NUll

<sua-STRING FUNCTION IDENTIFIER>
«STRINGADDRESS>,<OFFSET PART»
<SUB-STRING FUNCTION IDENTIFIER>
«STRING ADDRESS>,<OFFSET PART>,
<LENGTH PART»

SUSBIT I SUBSTR

<ADDRESS GENERATOR>

SEE "ADDRESS GENERATOR"

<EXPRESSION>

<EXPRESSION>

SUBSTR yields a sub-string of a character string identified by
the <STRING ADDRE.5S>. The beginning character of the sub-string
is specified by the <OFFSET PART> (where the first character of
the string is zero). The <LENGTH PA'RT> specifies the length of
the sub-string. If omitted, the rest of the string from the
·OfFSET" character is assumed. for example:

If X = "CHARACTER"
C = "COALITION-

then

SU8STReX,4) := SUBSTR(C,0,4)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

yields the character string:

WCHARCOAL "

8-9
COMPANY CONfIDENTIAL

81000 SOL (BNf Version)
P.S. 2212 5405 (G)

Like all character-to·character store operations,' if the
receiving field is larger than the sending field. the sendi-ng
field is padded with blanks on the right. If the sending field
is longer, characters are truncated from the right. Note that
this is a function of the store operator and not substr.

SUBBlT yields a sub-string of a bit string id~ntified by the
<STRING ADDRESS>. The beginning bit of the sub-string is
specified by the <OffSET PART> (Note: The first bit of the
string is 0). The length of the sub-string is specified by the
<LENGTH PART> which. if omitted, ~itt be assumed to be the rest
of the string.

EXAMPLE:

If A = ~(1)OOl01011~1~
B = ~(1)0000111101~

then

results in:

a(1)10111101.

and

results in:

a(1)OlOl101000011.

('.~ .. ' .. '

",

~, J/

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR> ::=

COMPANY CONfIDENTIAL
B1000 SOL (BNF Version)

P.S. 2212 5405 (G)

See the 81700 MC? Reference Manual for a description of the run
structure.

If the RS_HC?_BIT is set, then RS_COMMUNICATE_HSG_PTR is
accessed. Otherwise, RS_REIN5TATE_MSG_PTR is a~cessed. The
accessed field is assumed to be a descriptor and is placed on the
top of the Evaluation Stack.

EXAMPLE:

DESCRIPTORCCOMH_MSG) :=
VALUE.DESCRIPTOR(fETCH_COMHUNICATE_MSG_PTR);

COMH_MSG now describes the com~unicate message, assuming that the
message was described by a non-selt-relative descriptor.

<DESCRIPTOR DESIGNATOR>::= DESCRIPTOR «SIMPLE IDENTIFIER»
DESCRIPTOR «ARRAY ICENTIFIER»

·DESCRIPTOR" places on the Evaluation Stack, a descriptor which
describes the descriptor of a <SIMPLE IDENTIFIER> or an <ARR~Y
IDENTIFIER>. The descriptor tunction may aopear as the object of
a replacement, thereby providing easy access to any part of a
descriptor.

EXAMPLE:

1. SU8BITCOESCRIPTOReX),4,2) := 2;

2. DESCRIPTDR(X) := DESCRIPTOR(Y);

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

8-11
COHPANY CONFIDENTIAL

Bl000 SOL (BNF Version)
P.S. 2212 5405 (G>

Example (2) forces both X and Y to describe the same
data name. Note, however, that if X and Yare not
either both simple items or both arrays, the result
will be incorrect.

<DESCRIPTOR-GENERATOR
DESIGNATOR> ::= HAKE_DESCRIPTOR«EXPRESSION»

The value which is generated by the <EXPRESSION> is assumed to be
a descriptor. This descriptor replaces on the Evaluation Stack,
the descriptor representing that <EXPRESSION>. If the name-value
bit of the expression's descriptor on the Evaluation Stack is
set, then the value of the <EXPRESSION> is removed from the ~alue
Stack.

A <DESCRIPTOR GENERATOR DESIGNATOR> may appear as the object of a
replacement, however the program.er is responsible to see that
the descriptor built generates an address. There is no syntax
checil: for this.

The following exampLes illustrate the relationships between the
descriptor functions:

DESCRIPTOReX)=VALUE_DESCRIPTOR(X),
where X is non-self-relative

HAKE_DESCRIPTOR (DESCRIPTOR(X» = X,
where X is non-self-relative

HAKE_DESCRIPTOR (VALUE_OESCRIPTOR(E» = £,
where E is an <AOORESS GENERATOR>

VALUE_DESCRIPTOR (HAKE_OESCRIPTORCE» = E,
where the vaLue of E is a valid <AODRESS GENERATOR>

C···~.~··

j/

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ADDRESS-MODIFIER
DESIGNATOR> ::=

<ADDRESS-MODIFIER
FUNCTION IDENTIFIER> ::=

8-12
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

<ADDRESS-MODIFIER FUNCTION IDENTIFIER>
«SIMPLE IDENTIFIER»

NEXT_ITEM
PREVIOUS_ITEM

The NEXT_ITEM function causes the length field of the descriPtor
represented by the <SIMPLE IDENTIFIER> to be added to the address
field of that descriptor. This modified descriptor is put back
onto the Name Stack, and also moved to the top of the Evaluation
Stack. Moving the modified descriptor to the Evaluation Stack
is, in effect, a load address of the new item described by the
<SIMPLE IDENTIFIER>. Hence, aNEXT_ITEM" may be used as the
object of a replacement. For example, the following statements:

DECLARE 01 CHAR_STRING CHARACTER(1000),
02 NEXT_CHAR CHARACTERCl);

NEXT_ITEM (NEXT.CHAR)I"D";

have the effect of storing "0" into the second character of
CHAR_STRING, which is:

The PREVIOUS_ITEM function is identical to NEXT_ITEM except that
a subtraction (of length from address) is performed.

This function generates an address of type character with zero
length. A store into this address is essentially a no·op. NULL
is used primarily in conjunction with the REFER statement.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<ADDRESS
GENERATOR LIST> .. -.. -

<ADDRESS GENERATOR>

<8UMPOR> ::=

<OECREHENTOR> . -.. -
<CONDITIONAL ADDRESS
GENERATOR> ::=

<CASE ADDRESS
GENERATOR> ::=

<ADDRESS-GENERATING
ASSIGNOR> ::=

.. -.. -

8-13
COMPANY CONFIDENTIAL

BI000 SDL (eMF Versionl
P.S. 2212 5405 (G>

<ADDRESS GENERATOR>
<ADDRESS GENERATOR>.
<ADDRESS GENERATOR LIST>

<ADDRESS VARIABLE>
<BUHPOR>
<DECREMENTOR>
<CONDITIONAL ADDRESS GENERATOR>
<CASE ADDRESS GENERATOR>
<ADDRESS-GENERATING ASSIGNOR>

See "BUHPOR-

See "OECREHENTOR"

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADORESS GENERATOR>

CASE <EXPRESSION>
Of (<ADDRESS GENERATOR LIST»

<ADDRESS VARIABLE>
<R~PLACE. DELETE LEFT PART>
<ADDRESS GENERATOR>
<ADDRESS VARIABLE>
<REPLACE. OELETE RIGHT PART>
<EXPRESSION>

The <ADDRESS GE~ERATOR> inclUdes any primary which leaves an
address on the top of the Evaluation Stack. See "PRIMARY
ELEMENTS OF THE EXPRESSION" for more explicit detail.

·0

C'~' ,.J

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<VALUE VARIABLE> .. -
• 0-

<FILE DESIGNATOR>

<TYPED PROCEDURE
DESIGNATOR> ::=

<TYPED PROCEDURE
IDENTIFIER> ::=

.e_ .. -

<ACTUAL PARAMETER PART>

<ACTUAL PARAMETER LIST>

<ACTUAL PARAMETER>

<ARRAY DESIGNATOR>

<ARRAY IDENTIFIER>

.. -.0-

.. -
o .-

.. -• e-

.0_ .. -

8-14
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

<VALUE-GENERATING fUNCTION DESIGNATOR>
<TYPED PROCEDURE DESIGNATOR>
«ADDRESS VARIABLE»
<fILE DESIGNATOR>

<fILE IDENTIFIER>
<SWITCH fILE IDENTIFIER>«EXPRESSION»

<TYPED PROCEDURE IDENTIFIER>
<ACTUAL PRAMETER PART'>

<IDENTIFIER>

<EMPTY>
«ACTUAL PARAMETER LIST»

<ACTUAL PARAMETER>
<ACTUAL PARAMETER>,
<ACTUAL PARAMETER LIST>

<EXPRESSION>
<ARRAY DESIGNATOR>

<ARRAY IDENTIfIER>

<IDENTIFIER>

Notice from the above syntax that any <ADDRESS VARIABLE> enclosed
in parens, such as (SUB81T (A,I,J», witl be treated as a value
variable.

The value generated by a <FILE DESIGNATOR> is the FPB number of
the specified file. A warning message wilt be issued when a
<FILE DESIGNATOR> is used as a value, i.e., not in an 1/0
statement.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

~---------------------------~--~--~~--------'V=-l."-7---~_... -- .----~

COMPANY CONFIDENTIAL
81000 SOL (BNF Version)

P.S. 2212 5405 (G)

The TYPED procedure (a procedure which returns a value) is
invoked within an expression according to the above syntax. The
procedure identifier, followed by its parameters (if any),
enclosed within parens, is treated as an operand in the
expression. for details on passing parameters, see ADDRESS AND
VALUE PARAMETERS. The procedure is evaluated and the returned
value replaces the <TYPED PROCEDURE DESIGNATOR>. For example:

DECLARE Z FIXED;
PRCCEDURE X(A,B) FIXED;

FORHAL (A,B) FIXED;
•
•
•

END x;
Z := XCBUHP M,R)+l;

Actual parameters may be passed to a procedure either by address
(which passes the address of the actual parameter) or by value
(which passes a duplicate copy of the actual parameter).

If an <ACTUAL PARAMETER> (See VALUE VARIABLES and
EXECUTE-PROCEDURE STATEMENT) is passed by address~ then any
change to the corresponding <FORHAL PARAMETER> in the procedure
will result in a change to the original value of the <ACTUAL
PARAMETER> •

If a parameter is passed by value, then only the duplicate copy
of the <ACTUAL PARAMETER> can be changed. The original value
remains unaltered, and the duplicate copy is erased when the
procedure is exited.

An <ACTUAL PARAMETER> may be any expression or an <ARRAY
IDENTIfIER>. SOL has specified that array identifiers may only
be passed by address. An array element, however, may be passed
either by address or by value.

C' ",~i/

rt'
~'

reS"'··· "rl*&" d¥'''id* ±

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

COMPANY CONfIDENTIAL
81000 SOL (BNf Version)

P.S. 2212 5405 (G)

Expressio~s may be divided into two groups:

1. Those which lIay be passed either by address ·or by
value, and

2. Those which lIay only be passed by value.

An <ADDRESS GENERATOR> is passed by address unless it is enclosed
within parentheses, or unless the formal parameter to which it
corresponds has been declared as FORHAL_YALUE. In these two
cases <ADDRESS GENERATOR>s will be loaded by value. All other
expressions are loaded by value only.

Examples of parameters passed by address:

P(BUMP X, A)
P{B(BUMP H), SUaaITeX,S»
P{NEXT_ITEM(Bl, A:IC+D)

Exallples of parameters passed by vatue:

PCCBUHP X), CAl, 3)
P(CBCBUMP M», A+B)
PCSWAPCA,O), (SUaSTRCA,5,3»)

<VALUE-GENERATING
fUNCTION DESIGNATOR> .. -.. - <SASE REGISTER DESIGNATOR>

-~--

I <BINARY CONVERSION DESIGNATOR>
I <BINARY_SEARCH DESIGNATOR>
I <COMMUNICATE WITH GISMO FUNCTION>
I <CONSOLE SWITCHES DESIGNATOR>
I <CONTROL STACK aITS DESIGNATOR>
I <CONTROL STACK TOP DESIGNATOR>
I <CONVERT DESIGNATOR>
I <DATA ADDRESS DESIGNATOR>
I <DATA_LENGTH DESIGNATOR>
I <DATA_TYPE DESIGNATOR>
I <DATE FUNCTION DESIGNATOR>
I <DECIMAL CONVERSION DESIGNATOR>
I <DELIMITED TOKEN DESIGNATOR>
I <DISPATCH DESIGNATOR>

•• " ~ t8 •• ' -.-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-17
COMPANY CONfIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

I <DISPLAY BASE DESIGNATOR>
t <DYNAMIC MEMORY BASE DESIGNATOR>
I <EVALUATION STACK TOP DESIGNATOR>
I <EXECUTE OPERATOR FUNCTION>
I <EXTENDED ARITHMETIC FUNCTION>
I <HASH CODE DESIGNATOR>

o
I <INTERROGATE INTERRUPT STATUS DESIGNATOR>
I <LAST LIO STATUS DESIGNATOR>

<BASE REGISTER
DESIGNATOR> ::=

I <LENGTH DESIGNATOR>
I <LIMIT REGISTER DESIGNATOR>
I <LOCATION DESIGNATOR>
I <NAME-OF-DAY fUNCTION DESIGNATOR>
t <NAME STACK TOP DESIGNATOR>
I <NEXT TOKEN DESIGNATOR>
I <PARITY_ADDRESS DESIGNATOR>
I <PROCESSOR_TIME fUNCTION DESIGNATOR>
I <PROGRAM_SWTICHES DESIGNATOR>
I <SEARCH_LINKED_LIST DESIGNATOR>
I <SEARCH_SOL_STACKS DESIGNATOR>
I <SEARCH SERIAL LIST DESIGNATOR>
I <MEHORY SIZE DESIGNATOR>
I <SORT_SEARCH DESIGNATOR>
I <SORT_STEP_DOWN DESIGNATOR>
I <SORT_UNBLOCK DESIGNATOR>
I <SPO INPUT PRESENT DESIGNATOR>
J <SUS_STRING VALUE DESIGNATOR>
I <SWAP DESIGNATOR>
I <TIME FUNCTION DESIGNATOR>
I <TI~ER DESIGNATOR>
f <DESCRIPTOR_VALUE_GENERATOR DESIGNATOR>
I <WAIT fUNCTION>

A value of type BIT(24) is returned. The value is the absolute
address of the base of the program. It should be noted that two
separate executions of BASE_REGISTER may not yield the saMe
results, since the MCP may have moved the program in Memory.

o

c··'.·.·\
.-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<BINARY CONVERSION
DESIGNATOR> ::=

8-18
COMPANY CONFIDENTIAL

61000 SOL (BNF Version)
P.S. 2212 5405 (G)

BINARY «EXPRESSION»

The <BINARY CONVERSION DESIGNATOR> returns a fixed value which is
the binary representation of the <EXPRESSION>. The <EXPRESSION>
is assumed to be a character string containing decimal digits.
Only the low·order 8 characters will be converted. Zone bits are
ignored.

If the conversion results in a binary value greater than 24
(i.e.. if the decimal number is greater than 16.777.215).
the left-most bits witl be truncated.

bits
then

If the decimal number is ~reater than 8.388,607 (i.e.. (2 exp
23)-1). then the returned value will appear to be negative (i.e ••
the high-order bit is 1).

<BINARY_SEARCH FUNCTION>::=

<START_RECORD>::=
<COMPARE_FIELD>::=
<COMPARE_VALUE>::=
<NUHBER_OF_RECORDS>::=

BINARY_SEARCH
«START_RECORD>. <COMPARE_FIELD>,
<COMPARE_VALUE>. <NUM8ER_OF_RECoRDS»

<EXPRESSION>
<TEMPLATE>
<EXPRESSION>
<ADDRESS GENERATOR>

BINARY_SEARCH searches an ordered list of items that start at
(START_RECORD> for <NUMBER_OF_RECORDS> for a match.

The occurrence number of the entry that matches will be returned.
or if there is no match, the occurrence nu~ber of the first entry
that is greater wilt be returned.

Note: The comparison is always left justified and uses the
length of <COMPARE VALUE>.

___________________ . ______ .~ ____ ~~ _____ , __ ~ __________ ~ ______________ · ___ ~~~_~_~_~_~_~~"~~c"~=,~~~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARaARA PLANT

<COMMUNICATE WITH GISMO
FUNCTION> ::=

8-19
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. ZZlZ 5405 (G)

COMMUNICATE_WITH_GISMO «EXPRESSION»

The value of the operand is made non-self-relative by pushing its
value to the Va(ue Stack, if necessary. The absolute address of
the value is copied into the T-register, and the length is copied
into the L-register. The proper swapper value is put into the
X-register and control is passed to GISMO. Any value returned by
GISMO will be described by the same descriptor on the Evaluation
Stack as was used to pass a value to GISMO.
COMMUNICATE_WITH_GISMO say be used either as a statement or as a
function.

<CONSOLE SWITCHES
DESIGNATOR>::= CONSOLE_SWITCHES

Note: Tnis function has meaning only BiT20·series systems.
It leaves on the top of the Evaluation Stack a
Z4-bit, self-relative value of the 24 console
switches.

<CONTROL STACK
BITS DESIGNATOR>::=

This function leaves on the top of the Evaluation Stack a Z4-bit,
self-relative value of type bit which is the number of bits left
in the control stack until overflow.

<CONTROL STACK TOP
DESIGNATOR> ::=

c

';lkritmWHfdtfri±W$" d" Ff-

c

" . ij·rt . wr&nt" , '''¥rb'' "i 1"' .t' '." iHttffiM'

BURROUGHS CQRPORATION
COMPUTER SYSTEMS GRUUP
SANTA BARBARA PLANT

" "1 '*'\5' ·"tt¥,;.: .. ·· -" .. -. -'1'"'" , """- ""7"

8-20
COMPANY CONFIDENTIAL

Bl000 SOL (BNF Version)
P.S. 2212 5405 (G)

A value of type 8IT(24) is returned. The value is the base
relative address of the next entry to be placed on the control
stack.

<CONVERSION DESIGNATOR>

<CONVERSION PART> .. -.. -

<CONVERSION TYPE> ::=

<BIT GROUP SIZE> ::=

.. -.. - CONVERT «EXPRESSION>,
<CONVERSION PART»
CONV «EXPRESSION>p
<CONVERSION PART»

<CONVERSION TYPE>
<CONVERSION TYPE>.
<BIT GROUP SIZE>

B1 T CHARACTER

1 121 3 I 4

FIXED

The <EXPRESSION>p which may be of any data type. will be
converted as specified by the <CONVERSION TYPE>. The converted
<EXPRESSION> will be returned as a value.

The <BIT GROUP SIZE> is used only with bit-to·character or
character-to-bit conversions. It specifies the number of bits
(of the bit string) whicn correspond to a character in the
character string.

Note: Bit-to-character conversion does not yield 'decimal
digits. If a bit string is to be converted to
decimal digitsp it should be stored in a fixed
variable. and the fixed variable converted.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-21
COMPANY CONFIDENTIAL

81000 SOL (8MF Version)
P.S. 2212 5405 (G)

The following table shows the possible conversion
combinations:

OUTPUT: BIT CHARACTER FIXED

INPUT: ********.**-*******.*.*.*.*.****-*************** •• **.****
*

BIT * No change

-ft

* Convert to CHAR. * Return 24 BITS *
* under control of * providing lead- *
* <BIT GROUP SIZE>;* ing zeroes or *
.. if omitted use. 4 * left truncation,*

*

* CHARAC- ..
TER *

*

-

Convert to bits *
under control of* No change
<BIT GROUP SIZE>;
if o.itted use 4*

- as necessary.

•
* See Note.
•
•

*

* -*
*

*.***********.**.**.***.***************.********-.--*.***

-*******-.**** •• **.************************.*-********._*
* * Oecimal conver- *
* Chan ge type * sion wI leading *

FIXEO * to BIT * zero 5 & sign not * No change
• • suppressed • (7 •
• -digits + SIGN). *

Note: The character string may have leading blanks, sign
(or none), more blanks, and decimal digits. A plus
sign is ignored. The decimal digits (only the
lo~-order 7) are converted to a binary number that is
right-justified in a 24-bit field. If the sign was

-minus, then the 2'5 comple_ent of the 24-bit field is
returned.

EXAMPLES:

CONVERT ("-72581",FIXEO)
CONVERT (~(3)152~,CHARACTER,4)

CONVERT (~(1)11011;,FIXEO)
CONVERT ("132",BIT,2)
CONVERT ("132",BIT,4)
CONVERT ("2",81T)

r etur ns -72581
-lEA"

27
~(2)132;

;)(4)132~

;)(4)211

•
*
*
*
•

o

o

*#b;5 t'M'
,', .. "). "±,'b" ~ "z"' •• ",:3' ±'b A I' ·,·U"'·",¥;w;:,·, !!::Ih!.fi" '",

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DATA ADDRESS
DESIGNATOR> ::=

<ADDRESS GENERATOR> .. -.. -

8-22
COMPANY CONfIDENTIAL

B1000 SOL (BNf Version)
P.S. 2212 5405 (G)

DATA_ADDRESS «ADDRESS GENERATOR»

See ADDRESS GENERATORS

The <DATA ADDRESS DESIGNATOR> returns a value of type BIT(24)
which is the base relative address generated by the <ADDRESS
GENERATOR>.

<DATA_LENGTH DESIGNATOR>::= DATA_LENGTH «EXPRESSION»

Returns the length in bits of <EXPRESSION>~
data type.

regardless of the

<DATA_TYPE DESIGNATOR>::= DATA_TYPE «EXPRESSION»

Returns the type bits of <EXPRESSION>.

Jl!l£

<DATE FUNCTION
DESIGNATOR> ::=

<DATE FaRHAT> ::=

<REPRESENTATION> ::=

DATE
DATE «DATE FDRMAT>~ <REPRESENTATION»

JULIAN I MONTH I DAY I YEAR

BIT I DIGIT I CHARACTER

The <DATE FUNCTION DESIGNATOR> returns a bit or character string
which is the date of the execution of the function.

---- -

~t••. '
~
(.

~

~I

~.·:I ,

I

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-23
COMPANY CONfIDENTIAL

BI000 SOL (BNF' Version)
P.S. 2212 5405 (G>

DATE and DATE (MONTH~CHARACTER) are equivalent.

The formats (in bits) of the returned strings are:

BIT DIGIT CHARACTER

JULIAN (YYOOO) 7+9=16 8+12=20 16+24=40
MONTH (MMOOYY) 4+5+1=16 8+8+8=24 16+16+16=48
DAY (ODMMYY) 5+4+7=16 8+8+8=24 16+16+16=48
YEAR (YYMMOO) 7+4+5=16 8+8+8:24 16+16+16=48

Example: DECLARE D CHARACTER(5);
o := DATE (JULIAN~CHARACTER);

<DECIMAL CONVERSION
DESIGNATOR> ::=

<DECIMAL STRING SIZE> ::=

DECIMAL «EXPRESSION>~
<DECIMAL STRING SIZE»

<EXPRESSION>

The value of the first <EXPRESSI~N> foLlowing the reserved word
DECIMAL is converted to a string of decimal characters. If the
value of the <EXPRESSION> generates more than 24 bits, then only
the low·order 24 bits are used.

The number of characters returned is given by the value of the
<DECIMAL STRING SIZE>. A maximum of 8 deci.al characters will be
returned, even if the value of the <DECIMAL STRING SIZE> is
greater. If the <DECIMAL STRING SIZE> is less than the Dumber of
decimal characters, then characters are truncated from the left.

<DELIMITED TOKEN
DESIGNATOR>::=

<fIRST CHARACTER>::=

<DELIMITERS>::=

DELIMITED_TOKEN (<fIRST CHARACTER>,
<DELIMITERS>, <RESULT»

<IDENTIfIER>

<CHARACTER STRING>
<BIT STRING>

o

o

+;+4' "$-&* -bet"' '00

(
".~

-)

8-21.
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

COMPANY CONFIDENTIAL
81000 SOL (BNF Version)

P.S. 2212 5405 (G)

<RESULT>::= <IDENTIFIER>

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examined. <DELIMITERS> will generate 16
bits of information. each of the a-bit bytes being used as a
delimiter. For SOL. <DELIMITERS> will be X; for COBOL.

~7FOl~ (Quote followed by ETX).

DELIMITED_TOKEN will leave on the top of the Evaluation Stack the
descriptor of the string of characters from (and including)
<fIRST CHARACTER> up to (but not including) whichever deli~iter
was found. The descriptor of <RESULT> witl be replaced by this
descriptor. The address field of <fIRST CHARACTER> will be
changed to point to the delimiter which stopped the scan.

<DISPATCH DESIGNATOR>

<PORT.CHANNEL> ::=

<110 DESCRIPTOR
ADDRESS> ::=

.. -.. - DISPATCH«PORT.CHANNEL>.
<110 DESCRIPTOR ADDRESS»

<EXPRESSION>

<EXPRESSION>

The rightmost seven bits of the value of <PORT, CHANNEL> contain
the following jnfor~ation from left to right:

3 BITS 4 aITS

---------------------------------: PORT : CHANNEL :

The rightmost 24 "bits of the value of the <110 DESCRIPTOR
ADDRESS> is the absolute address of the 1/0 descriptor.

Using these two values. an 1/0 oDeration is initiated.
value with the following meanings is returned:

o = DISPATCH REGISTER LOCK 3IT SET
1 = SUCCESSFUL DISPATCH
2 = SUCCESSFUL. DISPATCH. BUT MISSING DEVICE

A bit

BURROUGHS CORPOR~rlON
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLA~T

8-25
COMPANY tONFIDENTI4L

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

<DISPLAY BASE
DESIGNATOR>::= DISPLAY_BASE

This function leaves on the top of the Evaluation Stack a 24-bit,
self-relative value of type bit which is the base-relative
address of the base of the Display Stack.

<DYNAMIC MEMORY
BASE DESIGNATOR> .. -.. -

The <DYNAMIC MEMORY BASE OESIGNATOR> returns a 24-bit value which
is the base relative address of the program's dynamic memory.
Refer to the SOL S-Language documentation for discussion of the
use of dynamic memory.

<EVALUATION STACK
TOP DESIGNATOR>::=

This function leaves
self-relative value
address of the top
this function).

<EXECUTE OPERATOR
fUNCTION>::=

<EXPRESSION LIST>::=

on the top of the Evaluation Stack a 24-bit,
of type bit which is the base-relative
of the Evaluation Stack (before execution of

EXECUTE «EXPRESSION LIST»

<EXPRESSION>
<EXPRESSION LIST>, <EXPRESSION>

Note: The EXECUTE function is intended only for use by
interpreter writers in the experimental design of new
opcodes.

'O,.··.··.~' .;.j

(.. '"
........ \

,.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-26
COMPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (G)

The value of the tast expression may be expected to be an opcode
which may then be executed by the interpreter. EXECUTE may be
used as a statement as well as a <VALUE GENERATING FUNCTION
DESIGNATOR>.

This statement or <VALUE GENERATING FUNCTION DESIGNATOR> when
used with released interpreters will result in a -BRANCH TO
INVALID OP COOEft condition.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-27
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P.S.2212 5405 (G)

O
~"o"

.. :f.' ',I

<EXTENDED ARITHMETIC
FUNC TI ON>: := <EXTENDED ARITHMETIC FUNCTION DESIGNATOR>

«EXPRESSION>. <EXPRESSION»

<EXTENDED ARITHMETIC
FUNCTION DESIGNATOR>:

The indicated operation is performed on the two operands.
are treated as bit strings. The operation is perforMed on
full length of the operands, not just the tow·order 24 bits.
length of the result is derived as described below:

which
the
The

Addition (Subtraction): If the two operands are of different
lengths. then the shorter is padded on the left with binary
zeroes. The length of the sum (difference) wilL be equal to the
length of the longer of the two operands. . The result will be in
two's complement notation.

Multiplication: The length of the product will be the sum of the
1 eng t h S 0 f the two operands. (This sum may not exceed 65.535
bits.)

Division (Modulo): The Length of the quotient (residue) wilt be
length of the dividend (modulus).

For X_SUB. X_DIY. and X_HOD. the second argument represents the
subtrahend. divisor. and modulus. respectiveLy.

<HASH CODE DESIGNATOR>:::

<TOKEN>::=

HASH_CODE «TOKEN»

<EXPRESSION>

The HASH.CODE will leave on the EvaLuation Stack a descriptor of
type BIT and length 24. The value will be computed from the
characters of <TOKEN> and the length of <TOKEN>. (If <TOKEN> is
longer than 15 characters, only the first 15 are considered.)

To be effective~ the value generated by HASH.CODE must be used
modulo a prime number (which is then the hash table size).

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::=

" ',-, "±"' +;-',.:, , 'C",,",' ," ,,,-, ... ,'tt~''''--"',,,,,--'.-,,,.'#~~,,,,,,,-,,,,;;,.~,o.<;,,'',~"-~C''~' ___ "';""""~ .. "
v." _ ,_~~. _.~_,,~ ~~~. • .~".'_'_. __ """""~'_"''' __ '''_~'~~"''<'''' ,> •

8-28
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

A 24-bit data item of type bit is returned. The value represents
the interrupt bits of the M-machine. The applicable H-machine
interrupt bits are reset. Note that the INCN bits will not be
reset.

<LAST LIO STATUS
DESIGNATOR>::=

Returns the last logical 1/0 status as type bit with a length of
RS_LAST_LIO_STATUS_SIZE.

<LENGTH DESIGNATOR> .. -.. - LENGTH «EXPRESSION»

The <LENGTH OESIGNATOR> returns a 24-bit, type bit field
containing the number of units in the <EXPRESSION>. If the
<EXPRESSION> is type character, then each character is a unit.
Otherwise, each bit is a unit.

<LIMIT REGISTER
DESIGNATOR> ::= LIMIT_REGISTER

The <LIMIT REGISTER DESIGNATOR> returns a value of type BIT(24)
which is the base relative address of the program's Run Structure
Nucleus. For further explanation, please refer to the 81700 HCP
Manual.

~
:

!
[I
l
tl
'I
I

I

BURROUGHS CORPORATION
COM·PUTER SYSTEHS GROUP
SANTA8ARBARA PLANT

8-29
COMPANY CON~InENT(Al

81000 SDL (BNF Version)
P.S. 2212 5405 (G)

<LOCATION DESIGNATOR> --.. - LOCATION «PROCEDURE ICENTIFIER»
1 LOCATION «SIMPLE IDENTIFIER»
I LOCATION «ARRAY IDENTIfIER»

<PROCEDURE IDENTIFIER>

<SIMPLE IDENTlfIER>::=

<ARRAY IDENTIFIER>::=

<IDENTIfIER>

<IDENTIFIER>

< I I1EN TIFI ER>

For procedures~ the <LOCATION DESIGNATOR> returns a 33-bit value
(typed BIT) containing~ from left to right:

ADDRESS TYPE~ CONTAINING ~(3)6a
SEGMENT NUMBER
PAGE NUMBER
DISPLACEMENT

4 BITS
6 BITS
6 BITS

20 BITS

This 33-bit value is the address of the procedure in question.

A forward declaration is required only during recompilation or
Create-Master for any procedur~ on which a location is performed.
An error is given if this is not done

For simple and array identifiers. the <LOCATION DESIGNATOR>
returns a 16-bit value (typed BIT) containing~ from left to
right:

ADDRESS TYPE CONTAINING a(Z)Oa
LEXIC LEVEL
OCCURRENCE NUMBER

<NAME OF DAY FUNCTION
DESIGNA"rOR> :.:=

2 BITS
4 BITS

10 BITS

A character string~ which is the name of the day of the week. is
returned as a 9-characterstring. The name is left justified.

Example: DECLARE DAY CHARACTER(9);
DAYINAHE_OF_DAY

o

(.. ...•. , .. ' . ..
"*,.,v'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<NAME. STACK
TOP DESIGNATOR>::=

8-30
COMPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (G)

This function leaves on the top af the Evaluation Stack a 24-bit,
seLf-relative value of type bit which is the base-relative
address of the top of the Name Stack.

<NEXT TOKEN DESIGNATOR>::=

<FIRST CHARACTER>::=

<SEPARATOR>::=

<NUMERIC-TO-ALPHA
INDICATOR>::=

NEXT_TOKEN «FIRST CHARACTER>,
<SEPARATOR>, <NUMERIC-TO-ALPHA INDICATOR>,
<RESULT»

<IDENTIFIER>

<CHARACTER STRING>

SET I RESET

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examined. This will usually be the first
character of the token. The <SEPARATOR> is the token separator:
"_" for SOL, "-" for COBOL, etc. It must be a single character;
if none is needed, use "AW. <NUMERIC-TO-ALPHA INDICATOR>
is set if symbols such as 235AB are allowed. It is RESET

otherwise.

NEXT_TOKEN will leave on the top of the Evaluation Stack the
descriptor of the next token. This token will be an identifier,
a number, or a special character. The descriptor of <RESULT>
will also be replaced by th~s descriptor. The address field of
<FIRST CHARACTER> will be changed to point to the character
following this token. NEXT_TOKEN assumes that <fIRST CHARACTER>
describes a non-blank character.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-31
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S .ZZlZ5405 (G)

<PARITY ADDRESS
DESIGNATOR> ::=

for HCP use only.

PARITY_ADDRESS

The <PARITY_ADDRESS DESIGNATOR> returns a 24-bit value which is
the address of the first parity error encountered in S-Hemory.
If no parity error is found. ~FFFFfF~ is returned.

<PROCESSOR_TIME FUNCTION GENERATOR> ::= PROCESSOR_TIME

PROCESSOR_TIME witl yield the accumulated processor time since
BOJ in tenths of a second as a BIT(20) data item.

Example:

DECLARE (PROC_TIME,HOURS,KINUTES,SECONOS,TENTHS)

PRoe_TIME :=
1*

PROC_TIME :=
HOURS :=
MINUTES :=
SECONDS :=
TENTHS :=

1* EAR l Y COO E 1*
P RD CE S S OR_ T I ME;

COO E T 0 8 E T I H E 0
PROCESSOR_TIME - PROC_TIME;
PROC_TIME I 36000;
PROC_1IME MOO 36000 1 600;
PROC_TIME MOO 600 I 10;
PROC_TIME HOD 10;

1* L ATE COD E

BIT(20);

*/

<PROGRAM_SWITCHES
DESIGNATOR> ::= PROGRAM_SWITCHES

PROGRAM_SWITCHES «EXPRESSION»

o

o

c··.··.··.·.
..

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-32
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

This function is used to read the program switches which have
been specified by the Program's Parameter Block (PP8)~ a control
card or a SPO input. If a parameter is specified, the
corresponding switch (0 through 9) is returned as a 4-bit
Quantity. A parameter which is less than zero or greater than
nine will yield a run time error of invalid substring. If no
parameter is specified, a~l ten switches are returned as a 40-bit
result. SDL provides no means to modify the program switches.

<SEARCH_LINKED_LIST
DESIGNATOR> ::=

<START RECORD> ::=

<COMPAiE fIELD>

<COMPARE VALUE>

<RELATION> ::=

<LINK fIELD> ::=

<TEMPLATE> .. -.. -

.. -.. -

.. -.. -

SEARCH_LINKED_LIST
«START RECORD>,<COHPARE fIELD>~
<COMPARE VALUE>.<RELATION>,
<LINK FIELD»

<EXPRESSION>

<TEMPLATE>

<EXPRESSION>

< I <= I :; I 1=
LSS I LEQ I EQL
GEQ I GTR I

< TEHPLA TE>

>= j >
NEQ I

<ADDRESS GENERATOR>

1. The <START RECORD> is the first structure to be
examined. Typically. it is an <ADDRESS GENERATOR>.
but an <EXPRESSION> is allowed.

2. The <COMPARE FIELD> is a template which gives the
relative offset and size in the structure. of the 24
(or less) bit field being compared with the <COMPARE
VARIABLE>.

3. The <COMPARE VALUE> is the value against which the
specified field in the structure is compared.
<COMPARE VALUE> is considered "on the left" of the
relation.

4. The <RELATION> specifies the desired relation in the
comparison of the two values.

5. gives the
of the 24

of the

The <LINK FIELD> is a template which
relative offset and size in the structure,
(or tess) bit field containing the address

;:

t
':

i

I
I

,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTABARBARA PLANT

- - ____ .m --".- • '-----8_ +3-3"

COMPANY CONfIDENTIAL
81000 SDL (8Nf Version)

P .S. 2Z12 5'405 (G)

next structure to b-e-examined (if comparison with the
current structure fails).

A template is an address generator whose address is relative to
the beginning of a structure rather than base relative. A field
in a structure declared REMAPS BASE has such an address.

The last structure in the linked list contains all 1 bits in the
field described by the <LINK fIELD>.

The linked list is searched until the desired co.parison succeeds
or until the co.p~rison fails with the last structure.

If the search succeeds. the base-relative addr~ss of the current
structure is returned as a 24-bit value. If the search fails.
~rfffff~ is returned.

<SEARCH_SOL_STACKS
DESIGNATOR>::=

<STACK BASE>::=

<STACK TOP>::=

<COMPARE BASE>::=

<COMPARE TOP>::=

SEARCH_SOL_STACKS
«STACK BASE>. <STACK TOP>.
<CO~PARE BASE>. <COMPARE TOP»

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

<EXPRE SS ION>

The four ~aram~ters are expected to generate values which are
base-relative addresses of the base and top of a stack of SOL
descriptors and of an address range. respectively. The stack
wilt be searched for a non-array. non-self-relative SOL
descriPtor whose address is within the given range. If the
search is successful ;(1)1; witl be returned; otherwise. ;(l)O~
will be returned.

c

• • " ... _ "" -.. __,.. .~ ... M~

c·.·.··.'.·.'.·.··· ..

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SEARCH SERIAL
LIST DESIGNATOR> " ".. -

<SSL COMPARE VALUE> ::=

<SSL COMPARE TYPE> ::=

<SSL COMPARE fIELD>::=

<SSL FIRST ITEM>::=

<SSL TABLE LENGTH>::=

<SSL RESULT VARIABLE>::=

<TEMPLATE> ::=

8-34
COMPANY CONfIDENTIAL

Bl000 SOL (BNF Version)
P.S. 2212 5405 (G)

SEARCH_SERIAL_LIST «SSL COMPARE VALUE>,
<SSL COMPARE TYPE>~ <SSL COMPARE FIELD>,
<SSL FIRST ITEM>~ <SSL TABLE LENGTH>,
<SSL RESULT VARIABLE»

<EXPRESSION>

< I <= I = I 1= I >= I >
LSS I LEQ I EQL I NEQ I GEQ t GTR

< fEI1PLA TE>

<ADDRESS GENERATOR>

<EXPRESSION>

<ADDRESS GENERATOR>

<ADDRESS GENERATOR>

SEARCH_SERIAL_LIST searches a serial list of items beginning with
the structure described by <SSL FIRST ITEM>. <SSL COMPARE VALUE>
is compared (as specified by <SSL COMPARE TYPE» against the
field of the field described by <SSL COMPARE FIELD> «SSL COMPARE
FIELD> is a TEMPLATE) until a match has been found, or until <SSL
TABLE LENGTH> number of bits has been searched.

When the relation is non-commutative. the comparisons are made as
though <SSL COMPARE VALUE> was ·on the left~ of the relation.

If the search succeeds, the base relative address of the item
containing the successful <SSL COMPARE FIELD> is stored in <SSL
RESULT VARIABLE> and a ~(1)1~ is returned.

If the search fails, then the end address of the table if stored
in <SSL RESULT VARIABLE> and a ~(l)O~ is returned.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<MEMORY SIZE
DESIGNATOR> ::=

8-35
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. ZZlZ 5405 (6)

The requested memory size is returned as a Z4-bit data item of
type bit.

<SORT_DELETE
DESIGNATOR> ::=

For ~se by sort only.

<SORT_SEARCH
DESIGNATOR> ::=

<TABLE ADDRESS>

<LIMIT> .. -.. -
.. -.. -

For use by sort only.

SORT_DELE TE
«PARAH1>~ <PARAMZ»

SORT_SEARCH
«TABLE AOORESS>.<LIMIT»

<ADDRESS GENERATOR>

<EXPRESSION>

The <SORl SEARCH DESIGNATOR> provides the information to evaluate
a record for sorting purposes. The <TA8LE ADDRESS> contains the
address~ in an array of re-cords~ of the first' record to be
examined and the condition under which records will be selected.

The <LIMIT> specifies the last record to be exaMined.

o

o

o

BURROUGHS CORPORATION
COHPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SORT_STEP_OOWN
DESIGNATOR:> ::=

<RECORD 1>

<RECORD 2>

::=

.. -.. -
<KEY TABLE ADDRESS> . -.. -
For use by sort only.

8-36
COMPANY CONfIDENTIAL

B1000 SOL (BNf Version)
P.S. 2212 5405 (G)

SORT_STEP_DOWN
«RECORD l>.<RECORD 2>.
<KEY TABLE ADDRESS>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

The <SORT_STEP_DOWN DESIGNATOR> provides the information
necessary to compare two records. <RECORD 1> and <RECORD 2> are.
respectively. the first and second records which are to be
compared. The <KEY TABLE ADDRESS> specifies the sort key used in
the compa,.i son.

<SORT_UNBLOCK
DESIGNATOR> :::

<MINI FIB ADDRESS>

<LENGTH>

<SOURCE>

.. -.. -
--.. -

<DESTINATION> --_.-

.. -.. -

for use by SORT only.

SORT_UNBLOCK (<MINI fIB ADDRESS>,
<LENGTH>.<SOURCE>.<OESrINATION»

<ADDRESS GENERATOR>

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

The <SORT_UNBLOCK DESIGNATOR> 1I0ves a record to or from a buffer.
updating the buffer pointer and block count. It normaLly returns
a zero. When the block count goes to zero. it restores the
original buffer pointer and block count. and returns a 1,
signalling the need for an 1/0.

i' ,
" ~,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PL~NT

8-37
CO,MfANY CONFIDENTI AL

BI000 SOL (BNF Version)
, P .S. 22125405 (G)

A bit on the mini-FIB signals SORT_UNBLOCK to create sort tags.
for this functianp it uses the sort key table and selec~s only
the key information to move from the buffer. A value in the
mini-fIB represents the length of the receiving field.

<SPO INPUT
PRESENT DESIGNATOR>::=

A special, SPO_INPUT_PRESENT, has been added to atlowthe
presence of SPO input to be tested before having to perform an
accept to the HCP.

<SUB-STRING VALUE
DESIGNATOR> ::=

<SUB-STRING fUNCTION
IDENTIfIER> ::=

<STRING VALUE> ::=

<OffSET PART>

<LENGTH PART>

. -.. -
_. -.'. -

<SUB-STRING FUNCTION IDENTIFIER>
«STRING VALUE>,<OfFSET PART»
<SUB-STRING FUNCTION IDENTIfIER>
«STRING VALUE>#<OFfSET PART>,
<LE NG TH PART>)

SUBSIT I SUBSTR

<EXPRESSION>

<EXPRESSION>

<EXPRESSION>

The <SUB-STRING VALUE DESIGNATOR> and the <SUB-STRING ADDRESS
DESIGNATOR> are identical except that the former returns a value
if its <STRING VALUE> is not an <ADDRESS GENERATOR>. Please see
SUB8IT AND SUaSTR under ADDRESS VARIABLES for the specifics of
the function.

The folLowing examples iLLustrate some of the uses of the
<SUB-STRING VALUE DESIGNATOR>:

XISUBSTR(A CAT 8.5,10);
MAKE_DESCRIPTOR(G148~ CAT SUBBITCA OR B. 0, 16) CAT X) I ••• ;
If SUBSTR(Gl06Gl CAT ABC. OJ = Y THEN ••• ;

o

c

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-38
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G>

<SWAP DESIGNATOR> .. -.. - SWAP {<ADDRESS GENERATOR>,<EXPRESSION>l

The length of the value described by the <ADDRESS GENERATOR> is
used as the length, l, of the data to be SWAPped. However, if
the length of the value is greater than 24 bits~ l will be 24
bits, and only the law-order 24 bits of the <ADDRESS GENER~TOR>
will be ~odified.

SWAP is indeed a true swap operation: that is, the ite~s are
exchanged in one "virtual" memory cycle. This is necessary for
the synchronization of independent processes (e.g., Mep and
GISMO).

The rightmost L bits of the value described by the <ADDRESS
GENERATOR> are iso.lated, and become the destination field.

The rightmost
are isolated.
value is less
source field.

L bits of the value generated by the <EXPRESSION>
Leading zeroes are supplied if the length of the

than l bits long. This field is known as the

The source field is stared into the destination field, the
original value of which is the value returned. The returned
value is of type bit and of length l.

Exallple:

AIO;
IF SWAP (A,l) THEN DO

ELSE DO
•••
•••

END;
END;

In the above example, the ELSE part of the statement is
evaluated. since A was originally set to 0 (i.e., false). At the
end of the SWAP, 1 has been stored into A, and 0 returned to the
top of the Evaluation Stack.

-
,.-..... ~.~~.~ "':~~"".II>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8-3!J
COMPANY CONFIDENTIAL

B1000 .SOL (BNF Version)
P.S. 2212 5405 (G)

<TIME FUNCTION
DESIGNA TOR> ::= TIME

"--.-

TIME «TIME FORHAT>,<REPRESENTATION»

<TIME fORMAT> ::=

<REPRESENTATION> ::=

COUNTER I MILITARY I CIVILIAN

BIT I DIGIT I CHARACTER

The <TIME fUNCTION DESIGNATOR> returns a bit or character string
which is the time of the function's execution. The <TIME FORMAT>
may have three basic formats:

COUNTER: Returns the time of day in tenths of seconds.

MILITARY: Returns the time of day in the following form
HHMMSST (Where T=Tenths of seconds).

CIVILIAN: Returns HHHHSSTAPCWhere AP=AM OR PM).

The time of day may be represented in either bitsr
characters in the following form~ts:

BIT DIG.I T

digitsr

CHARACTER

or

o

COUNTER
MILITARY
CIVILIAN

20 BITS
5+6+6+4=21
4+6+6+4+16=36

24 BITS
8+8+8+4=26
8+8+8+4+16=44

43 BITS
16+16+16+8=56
16+16+16+8+16=72

NOTE: TIHE and TIME (CIVILIANrCHARACTER) are equivalent.

<TIMER DESIGNATOR>::= TIMER

A value of type 81T(24) is returned.
setting of the TIME register.

The value is the current

c

c'

c

W"I/o • '.' .. -

BURROUGHS CORPORATION
COMPUTER SYSTEMS GaOUp
SANTA BARBARA PLANT

<DESCRIPTOR-VALUE GENERATOR

8-40
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

DESIGNATOR> ::= VALUE_DESCRIPTOR «ADDRESS GENERATOR»

<ADDRESS GENERATOR> ::= See ADDRESS GENERATORS

The <ADDRESS GENERATOR> is represented by a descriptor at the top
of the Evaluation Stack. This descriptor is moved to the Value
Stack. In its place on the Evaluation Stack is left a descriotor
describing the one just moved to the Value Stack.

The Name-Value bit is set in the descriptor left in the
Evaluation Stack.

j!.l!

<WAIT fUNCTION>

<START POSITION>

<EVENT LIST>

<EVENT> ::=

.. -.. -

.. -.. -
.. -.. -

<QUALIfIED EVENT> .. -.. -
<SIMPLE EVENT> ::=

<fILE SPECIF'IER> .. -.. -

WAIT <START PDSITION> «EVENT
LIST»

[<EXPRESSION>] <EMPTY>

<EVENT> I <EVENT LIST>, <EVENT>

<SIt'4PLE EVENT> <QUALIfIED EVENT>

<SIMPLE EVENT> WHEN <EXPRESSION>

TIME_TENTHS «EXPRESSION»
I SPO_INPUT_PRESENT
1 SPO_INPUT_PRESENT
I DC_IO_COMPLETE
I READ_OK «fILE SPECIfIER»
I WRITE_OK «fILE SPECIfIER»
I Q_WRITE_OCCURRED «fILE IDENTIFIER»

<FILE IDENTIFIER>
<FILE IDENTIfIER> {<EXPRESSION>]

The WAIT function returns a fixed value whiCh is the ordinal
position of a true event in the <EVENT LIST>. If no event is
true, the process will be blocked until one of the events occurs.
If more than one is true, the value that is returned is the
position of the first event found true in a left to right
circular scan starting fro. <START POSITION>. If <START
POSITION> is empty, zero is assumed. If <START POSITION> is


~~~ ---------

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

8-41 
COMPANY CONFIDENTIAL 

BI000 SOL (aNF Version) 
P.S. 2212 5405 (G) 

greater than or equal to the number of items in the 
the HCP wilL terminate the job. In the case of 
EVENT># the event will never become true unless 
<EXPRESSION> evaluates to true~ i.e •• its lowest 
one. 

<EVENT lIST>. 
a <QUALIFIED 

the Qualifying 
or der bit is a 

The various events are true when the condition(s) below are 
satisfied: 

EVENT -----
TIME_TENTHS «EX

PRESSION» 

CONDITIONCS) 
-------------

The spec;fied number of tenths of sec
onds have elapsed since the WAIT began 
execution. 

A message from the operator has been 
Queued for the WAITing program. 

A previously initiated data communications 
10 has been completed. 

READ_OK «FILE 
SPECIF IER» 

The buffer for the specified fite contains 
a record wa i t i n9 to be read. If ..(--,\ 
{ < E X PRE S SID N > J iss p ec i fie d ,. j tis t a i:'lJ 
to be a subscript of a queue file family. 
If the file is a queue file family and no 
subscript is specified. the event is 
always true. 

WRITE_OK «FILE 
SPECIF IER» 

Q_ WRI T E_DC CURRED 
(<FILE IDENTIFIER» 

Restrictions: 

A buffer for the specified file is empty. 
waiting for" a write operation. See above 
for Queue file families. 

A write operation has been done (by 
another process) on a member of a Queue 
file famiLy named in the time sinc~ the 
WAIT began execution. This ~vent will be 
correct onLy when preceded by 
MESSAGE COUNT. 

1. If TIME.TENTHS is in the list. it must be at the extreme 
left. 

2. The maximum number of tenths of seconds is 864~OOO, 
i.e •• 24 hours. (.-"." ·c 

f 

_ , ___ w •• __ • ..- .... __ ~ •• , ._._ _ _ • ••• _-" __ ~ ~ •• _ •• _, 

-:-~ ~~"-";:::'~-'::':::::::'~------':'-=:'-=::'-:-==~-==~'''''''''~'-'-'~''~'':=-'''"'''''-:''''-''----~'::.':' " , 
..... _ .• -_ r~_"-: .. _:::_-:;_~:'_ -: ___ ~'. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<1/0 CONTROL STATEMENT> .. -.. -

9-1 
COMPANY CONfIDENTIAL 

BlOOO SOL (BNf Version) 
P.S. 2212 5405 (G) 

<OPEN STATEMENT> 
<CLOSE STATEMENT> 
<READ STATEMENT> 
<WRITE STATEMENT> 
<SEEK STATEMENT>; 
<ACCEPT STATEMENT>; 
<DISPLAY STATEMENT>; 
<SPACE STATEMENT> 
<SKIP STATEMENT>; 

Each file is numbered sequentially, beginning with zero. - This 
number is the <FILE NUMBER> and will eventually be used as an 
index into the FIB dictionary_ The file declaration will be used 
to construct an fPB in the code file. 



BURROUGHS CORPORATION 
COMPUTER S YS-TEHS GROUP 
SANTA BARBARA PLANT 

<OPEN STATEMENT>::= 

<OPEN PART>::= 

<FILE DESIGNATOR>::= 

<OPEN ATTRIBUTE PART> 

<OPEN ATTRIBUTE LIST> 

.. -... -

.. -.. -

<ATTRIBUTE SEPARATOR>::= 

<OPEN ATTRIBUTE> ::= 

<INPUT-OUTPUT MODE> 

<LOCK HaDE> ::= 

<OPEN ACTION HaDE> 

<"FCU HOOE>::= 

.. -.. -

e_._ .. -

<ON BEHALF OF HOOE>:= 

<FILE MISSING PART>::= 

<FILE LOCKED PART>::= 

FORMAT OPTIONS: 

<OPEN PART>; 

9-2 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<OPEN PART>; <FILE HISSING PART> 
<OPEN PART>; <FILE LOCKED PART> 
<OPEN PART>; <FILE HISSING PART> 
<FILE LOCKED PART> 

OPEN <FILE DESIGNATOR> 
<OPEN ATTRIBUTE PART> 

<FILE IDENTIFIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

<EMPTY> 
<OPEN ATTRIBUTE LIST> 
WITH <OPEN ATTRIBUTE LIST> 

<OPEN ATTRIBUTE> 
<OPEN ATTRIBUTE> <ATTRIBUTE SEPARATOR> 
<OPEN ATTRIBUTE LIST> 

, I <SLASH> I <EMPTY> 

<INPUT-OUTPUT MODE> 
<LOCK HOOE> 
<OPEN ACTION HODE> 
<MFCU MODE> 
<ON BEHALF OF MODE> 

INPUTt OUTPUT I NEW 

LOCK I LOCK.OUT 

NO_REWIND I REVERSE 

PUNCH I PRINT I 
INTERPRET I STACKERS 

ON_BEHALF_OF <EXPRESSION> 

ON FILE_MISSING <EXECUTABLE STATEMENT> 

ON FILE_LOCKED <EXECUTABLE STATEMENT> 

If no attributes are specified, INPUT is assu.ed. 

o 

'( .. ~'." " "I 

,{/ 
/ 



.-c·-.. ·.····'·' 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

2. OPEN DECLARED_FILE 

3. OPEN DECLARED_FILE WITH 

fOLLOWED BY: 

INPUT 
OUTPUT 
NEW * 
INPUT, OUTPUT 
OUTPUT, NEW 

9-3 
COMPANY CONfIDENTIAL 

Blooa SOL (SNf Version) 
P.S. 2212 5405 (6) 

AND/OR: 

LOCK 
LOCK_OUT 
NO_REWIND 
REVERSE 

INPUT, OUTPUT, NEW 

LOCK. NO_RE\HND 
LOCK, REVERSE 
LOCK_OUT, NO_REWIND 
LOCK_OUT. REVERSE 

* NEW alone assumes OUTPUT, NEW. 

Note: The combination INPUT, NEW resuLts in a syntax error. 

If the <OPEN ATTRIBUTE>s have been explicitLy or implicitly 
included in the file declaration, then the file need not be 
explicitly opened here. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<CLOSE STATEMENT>::: 

<FILE DESIGNATOR> ::= 

<CLOSE ATTRIBUTE PART> 

<CLOSE ATTRIBUTE LIST> 

<ATTRIBUTE SEPARATOR> 

<CLOSE ATTRIBUTE> 

<CLOSE MODE> .. -.. -

FORMAT OPTIONS: 

.. -.. -

.. -· .-

· .-· .-

.-.. -

1. CLOSE DECLARED_FILE; 

There is no default. 
file attributes. the 
terminates abnormally. 

2. CLOSE DECLARED_FILE 

9-4 
COMPANY CONFIDENTIAL 

BI000SDL (BNf Version) 
P.S. 2212 5405 (G> 

CLOSE <fILE DESIGNATOR> 
<CLOSE ATTRIBUTE PART>; 

<FILE IDENTIFIER> 
<SWITCH fILE IDENTIfIER> «EXPRESSION» 

<EMPT Y> 
<CLOSE ATTRIBUTE LIST> 
WITH <CLOSE ATTRIBUTE LIST> 

<CLOSE ATTRIBUTE> 
<CLOSE ATTRIBUTE> <ATTRIBUTE SEPARATOR> 
<CLOSE ATTRIBUTE LIST> 

, I <SLASH> I <EMPTY> 

<CLOSE MOOE> 
CRUNCH I ROLLOUT I PURGE I REMOVE 

REEL I RELEASE I PURGE I REMOVE 
NO_REWIND I LOCK 

If LOCK is specified as part of the 
file is LOCKed if the program 

Otherwise. the file is not LOCKed. 

fOLLOWED BY 

o OR ONE OF: 

ROLLOUT 
CRUNCH 
IF _NOT_CLOSED 

AND/OR ONE OF: 

REEL 
RELEASE 
PURGE 
REMOVE 
NO_REWIND 
LOCK 

* 

* If more than one option is specified. only the final 
one is used by the compiler. 

c··.'.}.·······', " i l 



c 

- rtti±iri . t H t." "z . b#h h' 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

d",,-·o·j!···;i)"·Y'Z'··'"X'" _.f ... * .w'....;., ... ··• .. ;Mt .............. "HM'" fl __ ffi4e-... ··,;,· ... t!!:,..,i>:~., 
... .- ... - .~.... " 

9-5 
COMPANY CONfIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G> 

fiLes need not be explicitLy cLosed. However, closing a fiLe 
when finished with it wiLL free memory space for other uses. 



BURROUG~S CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA 8ARBARA PlAHT 

<READ STATEMENT> 

<READ PART'> .. -.. -

.. -.. -

<READ SPECIFIER> ::= 

<FILE OESIGNATOR> ::= 

<DISK READ SPECIFIER> 

<RECORD AODRESS PART> 

<RECORD ADDRESS> .. -.. -

::= 

.. -.. -

<REMOTE READ SPECIfIER> .. -.. -

<REMOTE KEY PART> 

<REMOTE KEY> ::= 

.. -.. -

<QUEUE READ SPECIFIER> 

<QUEUE F AMIL Y 
MEMBER PART> ::= 

<QUEUE FA~ILY MEMBER> 

<RESULT MASK>::= 

.. -.. -

.. -.. -

<READ PART>; 

9-6 
COMPANY CONFIDENTIAL 

81000 SOL (BNF 'ersio~) 
P.S. 2212 5405 (G) 

<READ PART>;<ON SEQUENCE> 
<READ PART><RESULT MASK>; <ON SEQUENCE> 

<READ SPECIFIER> 
<DISK READ SPECIFIER> 
<REMOTE READ SPECIFIER> 
<QUEUE READ SPECIFIER> 

READ <FILE DESIGNATOR> 
«ADDRESS GENERATOR» 

<FILE IDENTIFIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

READ 
<FILE DESIGNATOR> 
<RECORD ADDRESS PART> 
«ADDRESS GENERATOR» 

<EMPTY> 
[<RECORD ADDRESS>] 

<EXPRESSION> 

READ <fILE DESIGNATOR> 
<REMOTE KEY PART> 
«ADDRESS GENERATOR» 

<EMPTY> 
«REMOTE KEY>] 

<ADDRESS GENERATOR> 

READ <FILE DESIGNATOR> 
<QUEUE fAMILY MEM8ER PART> 
«ADDRESS GENERATOR» 

<EMPTY> 
[<QUEUE FAMILY MEMBER>] 

<EXPRESSION> 

WITH RESULT_MASK <ADDRESS GENERATOR> 

o 

c 



( .....• ". 
~' 

BURROUGHS CORPORATION, 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

9-7 
COMPANY CONFIDENTIAL 

Bl000 SOL (BNF Version) 
P.S. 2212 5405 (6) 

The <READ STATEMENT> provides the necessary information to read a 
file: A file identifier, record address, data inforllation, and 
instructions to be executed if an end-of-file or a parity error 
is detected. 

The <READ STATEMENT> separates files into fOUT categories: disk 
files, remote files, queue files, and all others (card, tape, 
papertape. etc.). If the file attributes indicate a random disk 
file, the user may specify <RECORD ADDRESS>. In all cases, the 
user need only give the <FILE DESIGNATOR> and <ADDRESS 
GENERATOR>. 

If the file is of type REMOTE, and the REMOTE_KEY ATTRIBUTE is 
set then a <REMOTE KEY> may be used. (For the format of this, 
see the discussion under REMOTE_KEY in the FILE OECLARATION 
SECTION.) If the REMOTE_KEY attribute is not set, then a <REMOTE 
KEY> may not be used. After performing the read, the REMOTE KEY 
will have been stored in the field specified as the <REMOTE KEY>. 

If the file is of type QUEUE and is a multi-queue family, then a 
<QUEUE FAMILY MEMBER> may be used. This is an expression whose 
value will specify which member of the family to read from. If 
this is omitted, then the oldest message in all of the queues 
will be read. 

If the <RESULT MASK> OPtion is used, the occurrence of an 
exception in the mask is signalled by the ON EXCEPTION seQuence. 



8URROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA 8ARBARA PLANT 

<WRITE STATEMENT> 

<WRITE PART> .. -.. -

<WRITE SPECIFIER> 

<FILE DESIGNATOR> 

.. -· .-

.. -· .-

: := 

<CARRIAGE CONTROL PART> .. -.. -

<CARRIAGE CONTROL 
SPECIFIER> ::= 

<SKIP-TO-CHANNEL> · .-· .-
<CHANNEL NUMBER> ::= 

<DISK WRITE SPECIFIER> 

<RECORD ADDRESS PART> 

<RECORD ADDRESS> 

<REMOTE WRITE 
SPECIFIER>::= 

.. -.. . -

<REMOTE KEY PART>::= 

<REMOTE KEY>::= 

<QUEUE WRI TE 

.. -.. -

::= 

<WRITE PART>; 

9-8 
COMPANY CONFIDENTIAL 

81000 SOL (eNF Vertion) 
P.S. ZZIZ 540S (G) 

I <WRITE PART>;<ON SEQUENCE> 
I <WRITE PART> <RESULT MASK>; 

<ON SEQUENCE> 

<WRITE SPECIFIER> 
I <DISK WRITE SPECIFIER> 
I <REHOTE WRITE SPECIFIER> 
I <QUEUE WRITE SPECIFIER> 

WRITE <FILE DESIGNATOR> 
<CARRIAGE CONTROL PART> 
«EXPRE SSION» 

J WRITE <FILE IDENTIFIER> 
<CARRIAGE CONTROL PART> 

<FILE IDENTIFIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

<EMPTY> 
<CARRI~GE CONTROL SPECIFIER> 

NO I SINGLE 1 DOUBLE I PAGE 
I <SKIP-TO-CHANNEL> t NEXT 

<CHANNEL NUMBER> 

1 I 2 I 3 I ••• I 11 I 12 

WRITE 
<FILE DESIGNATOR> 
<RECORD ADDRESS PART> 
«E XPRE SSlDN» 

<EMPTY> 
«RECORD ADDRESS>] 

<EXPRESSION> 

WRITE <FILE DESIGNATOR> 
<REMOTE KEY PART> 
«EXPRESSION» 

<EMPTY> 
[<REMOTE KEY>] 

<ADDRESS GENERATOR> 

o 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

SPEC IF IER>::= 

<FILE DESIGNATOR>::= 

<TOP> . -.. -
<QUEUE fAMILY 
MEMBER PART>::= 

<QUEUE fAMILY MEMBER>::= 

<RESULT MASK>::= 

9-'1 
COMPANY CONfIDENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

WRITE <fILE DESIGNATOR> 
<QUEUE FAMILY MEMBER PART> <TOP> 
«ADDRESS GENERATOR» 

<FILE IDENT1FIER> 
<SWITCH fILE IDENTIFIER> «EXPRESSION» 

<EMPTY> I TOP 

<EMPTY> 
[<QUEUE fAMILY MEMBER>] 

<EXPRESSION> 

WITH RESULT_MASK <ADDRESS GENERATOR> 

The <WRITE STATEMENT> provides the necessary information to write 
a file. The <WRITE STATEMENT> treats disk files separately from 
other fiie types by allowing the user the option of specifying 
<RECORD ADDRESS> on his random disk files. The <CARRIAGE CONTROL 
PART> is intended for use with a printer file. 

If the file is of type R£HOTE, and the REMOTE_KEY attribute is 
set then a <REMOTE KEY> .ay be used. (For the format of this~ 
see the discussion under REMOTE_KEY in the fILE DECLARATION 
section.) If the REMOTE_KEY attribute is not set, then a <REMOTE 
KEY> may not be used. The <REMOTE KEY> will specify the terminal 
to which the write is to be performed. 

If <DISK WRITE SPECIFIER> is used when the actual device is a 
data recorder, the <RECORD ADDRESS> will be used to select a 
stacjcer. 

If the file is of type QUEUE and is a multi-queue family, then a 
<QUEUE FAMILY MEMBER> ~ay be used. This is an expression whose 
value will specify which _ember of the family to write to. If 
TOP is specified, the message will be written to the front of the 
queue. 

If the <END-Of-PAGE PART> is set in the file attributes~ then 
when en~-of-page is detected on a printer file, the <EOF PART> 
will be executed. This facilitates, for example, printing totals 
and/or headings without keeping a line counter. 



-! 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

9-10 
COMPANY CONFIDENTIAL 

81000 SOL (8NF Version) 
P.S. 2212 5405 (G) 

If the <RESULT MASK> option is used, the occurrence of an 
exception in the mask is signalled by the ON EXCEPTION sequence. .• ~ 0·'" 



( "'" 
j 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<SEEK STATEMENT> .. -.. -

<fILE DESIGNATOR>::= 

<RECORD ADDRESS> ::= 

SEEK 

9-11 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<fILE DESIGNATOR> 
{<RECORD ADDRESS>] 

FILE IDENTIFIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

<EXPRESSION> 

The <SEEK STATEMENT> calls up a record from- a random disk file in 
preparation for a read on that record. This statement should 
only be used with disk files that are being read using a random 
access technique. 

A <SEEK STATEMENT> performed immediately prior to a <READ 
STATEMENT> is less effective than merely reading the record. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<ACCEPT STATEMENT> .. -.. -

9-12 
COMPANY CONfIDENTIAL 

BI000 SOL CBNF Version) 
P.s. 2212 5405 (G) 

ACCEPT <ADDRESS GENERATOR> 

The <ACCEPT STATEMENT> causes the execution of a program to halt 
until the appropriate information is entered via the SPO by the 
operator. The message keyed in will be read into the area 
specified by the <ADDRESS GENERATOR> following the reserved word 
ACCEPT. 

See ADDRESS VARIABLES for the syntax of the <ADDRESS GENERATOR>. 

c····· ... ''' .. . ,' 

" 



C? 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

1U1f!U! ~l!l~~l 

<DISPLAY STATEMENT> 

<CRUNCH SPECIfIER> 

::= 

--.. -

9-13 
COMPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

DISPLAY <EXPRESSION> 
<CRUNCH SPECIfIER> 

<EMPTY> 
, CRUNCHED 

The <DISPLAY STATEMENT> prints an output message on the SPO. As 
noted, the <CRUNCH SPECIfIER> is optional. If, CRUNCHED is 
specified, the system will delete trailing blanks and substitute 
one blank for each occurrence of multiple embedded blanks. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<SPACE STATEMENT> 

<SPACE PART> . -.. -

<fILE DESIGNATOR> 

.. -.. -

. -.. -

<SPACING SPECIFIER> ._.. -

<SPACE PART>; 

9-14 
COMPANY CONfIDENTIAL 

Bl000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

<SPACE PART>; <ON SEQUENCE> 

SPACE <fILE DESIGNATOR> 
<SPACING SPECIfIER> 

<fILE IDENTIfIER> 
<SWITCH fILE IDENTlfIER>«EXPRESSION» 

<EXPRESSION I TO <EXPRESSION> 
TO_EOf 

The <SPACE STATEMENT> allows the user to skip over c~rtain 
records in a sequential file. 

The <SPACING SPECIfIER> may take three forms. An <EXPRESSION> 
alone will indicate the number of records to be spaced. It may 
be a negative number indicating reverse spacing. TO <EXPRESSION> 
wilt always be a positive number and indicates the number Gf the 
record to space to. TO_EOF will cause the file to space to its 
current end. 

• 

·o·'··.·· .. '·~·' , ';"'! 



(: 

C·' .. 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BAR8ARA PLANT 

<SKIP STATEMENT> .. -.. -
<fILE DESIGNATOR> ::= 

<CHANNEL NUMBER> ::= 

9-15 
COMPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

SKIP <fILE IDENTIfIER> TO <CHANNEL NUMBER> 

<fILE IDENTIfIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

1 I Z I 3 I ••• 11 I 12 

The <SKIP STATEMENT> causes the line printer 
specified channel nU8ber on its carriage tape. 
numbers control the verticaL spacing of data on a 
and are defined by the carriage tape on the device. 

to skip to a 
The channel 
printed page 



i 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BAR.BARA PLANT 

<ON SEQUENCE> .. -.. -

<ON CLAUSE> .. -.. -

9-1f» 
COMPANY CONFIDENTIAL 

81400 SDL. (BNf Versiqn) 
P.S. 22125405 (G)-

<ON CLAUSE> <EXECUTABLE STATEMENT> 
<ON SEQUENCE> <ON CLAUSE> <EXECUr
TABLE STATEMENT> 

ON EOF f ON INCOMPLETE_IO 
ON EXCEPTION 

An ON SEQUENCE is used to ex~mine the status of the 110 reQuested 
by the preceding statement. When any qf the <ON CLAUSE>s are 
true, the corresponding <EXECUTABLE STATEMENT> will be executed 
before proceeding. Only one condition witl be true. 

The <EXECUTABLE STATEHENT>s of the <ON SEQUENCE> are considered 
sUbordinate to the <WRITE STATEMENT>. Therefore' segmentation of 
these statements is temporary (See THE SEGMENT STATEHENT). 

No te: Exceptions may be masked by the EXCEPTION_MASK clause in 
the fite declaration. 

.t(\. 

",~ 

(~ 
./ 



c 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<EXECUTABLE STATEMENT 
LIST> ::= 

<EXECUTABLE STATEMENT> .. -.. -

<ASSIGNMENT STATE~ENT> ::= 

<1/0 CONTROL STATEMENT> 

<SEGHENT STATEHENT> ::= 

.. -.. -

10-1 
COMPANY CONFIDENTIAL 

BI000 SOL CBNF Version) 
P.S. 2212 5405 CG) 

<EXECUTABLE STATEMENT> 
<EXECUTABLE STATEMENT> 
<EXECUTABLE STATEMENT LIST> 

<00 GROUP>; 
<GROUP TERMINATION STATEMENT>; 
<IF STAT~HENT>; 
<CASE STATEMENT>; 
<ASSIGNMENT STATEMENT>; 
<REfER STATEMENT>; 
<REDUCE STATEMENT>; 
<EXECUTE-PROCEDURE STATEMENT>; 
<EXECUTE-fUNCTION STATEMENT>; 
<110 CONTROL STATEMENT> 
<MODIFY INSTRUMENTS>; 
<NULL STATEMENT> 
<FILE ATTRIBUTE STATEMENT>; 
<STOP STATEMENT>; 
<ZIP STATEMENT>; 
<SEARCH STATEMENT>; 
<ACCESS FILE HEADER STATEMENT>; 
<ARRAY PAGE TYPE STATEMENT>; 
<COROUTINE STATEMENT>; 
<SEGMENT STATEMENT> 
<EXECUTABLE STATEMENT> 

SEE ASSIGNHENT STATEMENTS 
AND EXPRESSIONS 

SEE 110 CONTROL STATEMENTS 

SEE THE SEGMENT STATEMENT 



~If .. ·.· ... ,. 
" 
~ 

~": 
BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-2 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<00 GROUP> e e_ 
• e-

<GROUP HEAD> 

<GROUP NAME> 

. -ee-

• e_ .. -

<GROUP HEAD> 
<GROUP aODY> 

<GROUP NAME> 
<FOREVER PART>i 

00 
00 <GROUP IDENTIFIER> 

<FOREVER PART> . -.. -

<GROUP IDENTIFIER> .e_ .. -

<EMPTY> 
FOREVER 

<IDENTIFIER> 

<GROUP BODY> ::= <EXECUTABLE STATEMENT LIST> 
<GROUP ENDING> 

<GROUP ENDING> .. -.. - END 
END <GROUP IDENTIFIER> 

The <DO GROUP> is a collection of <EXECUTABLE STATEMENT>s which 
functions as a routine. It is executed once unless FOREVER 
appears after the <GROUP NAME>. 

If FOREVER is present~ the <00 GROUP> 
iteratively until a specific condition is met. 
TERMINATION STATEMENT> (UNDO) or a <TYPED 
STATEMENT> {RETURN) can get the program out of 
the following example: 

00 THIS FOREVER; 
READ CARD (Ali ON EOF UNDOi 
IF 55 GTR BUMP X 

THEN WRITE PRINTER (A); 
ELSE DOi 

END THISi 

XI!; 
WRITE PRINTER PAGE (4); 
ENDi 

executed 
<GROUP 
RETURN 

See 

will be 
Only a 

PROCEDURE 
this loop. 

If it is necessary to execute the statements in a <DO GROUP> from 
different points in the program, more efficient code is generated 
by making the body of the group a procedure rather than by 
repeating the <DO GROUP>. 



~' ~Y 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

RESTRICTIONS: 

10-3 
COMPANY CONFIDENTIAL 

al000 SOL (BNF Version) 
P.S. 2212 540S (G) 

1. If a <GROUP IDE~TIFIER> is included in the <GROUP 
NAME>~ it must also appear in the <GROUP ENDING>. 

2. If the <GROUP NAME> does not include an identifier~ 
the <GROUP ENDl~G> must not contain one. 

3. FOREVER is not a reserved word and may appear as the 
<GROUP IDENTIfIER>. 00 fOREVER; is considered to be 
the <GROUP HEAD> of an un-named, iterative <00 
GROUP>. DO FOREVER FOREVER is a legal heading for a 
named, iterative group. 

4. Nested <00 GROUP>s may not have duplicate 
iden~ifiers. If this occurs, a warning message will 
appear on the program listing. 

S. <00 GROUP>s ~ay be nested 32 levels deep. However, a 
<GROUP TERMINATION STATEMENT> can UNDO only a maximum 
of 16 levels. 

• 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<GROUP TERMINATION 
STATEMENT> ::= UNDO 

10-4 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Ver~ion) 

P.S. 2212 5405 (6) 

U~CO <GROUP IDENTIFIER> 

<GROUP IDENTIFIER> .. -.. - <IDENTIFIER> 

The <GROUP TERMINATION STATEMENT> will cause the execution of a 
<DO GROUP> to cease,. and will transfer control to the next 
statement following the <00 GROUP> which has been UNDONE. The 
statement may take one of three forms: 

1. UNDO will transfer controtout of the <DO GROUP> 
which contains the statement. 

2. UNDO <GROUP IDENTIFIER> takes control out of the <DO 
GROUP> specified by the identifier. 

3. Another form,. UNDQ(*},. is now considered obsolete. 
It transfe~red control out of the outermost <DO 
GROUP>. 

Note: UNDO <IDENTIFIER> can undo a maximum of 16 levels. 

EXAMPLE: 
1. DO ONE; 
2. DO TWO FOREVER; 
3. IF <EXPRESSION> THEN 
4. DO THREE; 
5. CASE <EXPRESSION>; 
6. UNDO; 1* SAME AS UNDO THREE; *1 
T. UNDO TWO; 
8. END CASE; 
9. END THREE; 
10. END TWO; 
11. END ONE; 

Execution of line 6 transfers control to line 10. 
Execution of line 7 transfers control to the statement 
following line 11. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<IF STATEMENT> 

<IF CLAUSE> .. -.. -

.. -.. -

10"5 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<IF CLAUSE> 
<EXECUTABLE STATEMENT> 
<IF CLAUSE> 
<EXECUTABLE ST4TEMENT> 
ELSE <EXECUTABLE STATEMENT> 

IF <EXPRESSION> THEN 

The <EXPRESSION> is evaluated. If the low-order bit of the 
result is 1 (i.e., true), the statement following THEN is 
executed. If the low"order bit is a (i.e., false), the statement 
following ELSE Cif present) is executed. If the resuLt of 
the<EXPRESSION> is false. and the ELSE part is omitted, control 
is transferred to the next statement after the <IF STATEMENT>. 

<IF STATEMENT>s may be nested. The outermost <IF CLAUSE> and the 
corresponding ELSE, if any. are on Nesting Level o. The 
<EXECUTABLE STATEMENT>s following THEN and ELSE are on Nesting 
Level 1. Nesting may be no deeper than 32 levels. 

When using nested <IF STATEHENT>s, the user must maintain 
correspondence between the delimiters THEN and ELSE on each 
level. The innermost ELSE will always be associated with the 
innermost THEN. from this point continues an outward progression 
(i .e.. from highest nesting level to lowest> of THEN-ELSE 
assoc;ation. 

Thus, if an <IF STATEMENT> on Nesting Level N is to have an ELSE 
associated with it. then every <IF STATEMENT> on a nesting level 
greater than ~ must also have ELSEs associated with them. If the 
user wishes to execute nothing on a false condition~ then ELSE 
followed by a <NULL STATEMENT> may be used. 



BURROUGKS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

EXAMPLE: 

10-6 
COMPANY CONfIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

let E-1, E-2, E-3~ and E-4 be <EXPRESSION>s, and let S-2, 5-3, 
and 5-4 be <EXECUTABLE 5TATEMENT>s. 

If E-1 
THEN IF E-2 

THEN If E-3 
THEN IF E-4 

THEN S-4; 
ELSE; 

El SE S-3; 
ELSE 5-2; 

All statements here are the IF-THEN-ElSE type, except the first 
IF which has no corresponding ELSE. 

( ·.·.'.·10. b ,-\ 

/' 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<CASE STATEMENT> 

<CASE HEAO> 

<C ASE aODY> 

.. -.. -

.. -.. -
<CASE ENDING> .. -.. -

.. -.. - <CASE HEAD> 
<CASE SOOY> 

10-7 
COMPANY CONFIDENTIAL 

81000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

CASE <EXPRESSION> 

<EXECUTAaLE STATEMENT LIST> 
<CASE ENDING> 

END CASE 

The <EXPRESSION> serves as an index into the list of <EXECUTABLE 
STATEMENT>s. The statement selected is executed, and the others 
ignored. Control is then transferred to the statement following 
the <CASE ENDING> unless. of course. the statement causes a 
RETURN or an UNDO to some other location. 

If there are N number of statements in the list, then the range 
of the value of the <EXPRESSION> may be from 0 through N-l. 

The statements in the 
STATEMENT>' allowed in SOL. 
in a given case, the 
st at emen t. 

list may be any legal <EXECUTABLE 
If the user wishes to execute nothing 

<NULL STATEMENT> is an appropriate 



~ 
~l 

11 , 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<REFER STATEMENT> 

<REF VAR>::= 

.. -.. -

10-8 
COMPANY CONFIDENTIAL 

81000 SOL (8NF Version) 
P.S. 2212 5405 (G) 

REFER <REFVAR> TO <ADDRESS GENERATOR> 

<IDENTIfIER> 

The statement will make <ADORESS GENERATOR> become the new 
referent of <REf VAR>. Since an <ADDRESS GENERATOR> in SOL can 
locate any arbitrary area of memory <using MAKE.DESCRIPTOR. 
indexing~ etc). the reference variable may do likewise, but in 
UPL the restriction to a safe subset of <ADDRESS GENERATOR>'s 
also guarantees the safety of reference variables. 

The only exception to this safety is the classic dangling 
reference problem:. Suppose. white executing a lexic level one 
procedure, that a reference variable declared at lexiclevel zero 
is bound to a locally declared referent. If that reference 
variable is then used after the procedure is exited. its referent 
will not exist and an unpredictable piece of data or garbage will 
be accessed. 

Technically, this error can only be detected at run time, but its 
occurrence can be precluded altogether by making a strong 
restriction in the syntax: the lexie level of the <ADDRESS 
GENERATOR> may not be greater than that of <REF VAR>. This 
cann~t be checked for some <ADDRESS GENERATOR>s, notably 
MAKE.DESCRIPTOR, but it can be cheCked in all cases for UPL. 

An <ADDRESS GENERATOR>, NULL, is available so that reference 
variables may be re-bound to such. Testing for NULL is done by 
checking for length of zero. 

o 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-9 
COMPANY CONFIDENTIAL 

Bl000 SOL (BNF Version) 
P.S. 2212 5405 (G> 

<REDUCE STATEMENT> ::= REDUCE <OBJECT REFERENCE> <SETTING 
RESULT REFERENCE PART> UNTIL 
<FIRST OR LAST> <EQL OR NEQ OR IN> 
<EXPRESSION> 
<ON EOS_CYCLE PART> 

<OBJECT REFERENCE ::= <IDENTIFIER> 

<SETTIN~ RESULT REFERENCE PART> ::= <EHPTY> I SETTING <RESULT 
REFERENCE> 

<RESULT REFERENCE> ::= <IDENTIFER> 

<FIRST OR LAST> ::= FIRST I LAST 

<EQL OR NEG OR IN> ::= EQL J NEQ I IN I = I 1= 

<ON EOS_CYCLE PART> ::= <EMPTY> I ON EOS_CYCLE <EXECUTABLE STATEMENT> I 
ON EOS <£XECUTABLE STATEMENT> 

Reduction is a flexible and efficient means for scanning 
character strings which uses reference variables rather than 
integers as pointers which select substrings. The basic function 
of reduction is to truncate a reference variable from the Left 
until its first character satisfies some condition. No change is 
actually made to the data; the reference variable is simpLy 
rebound to a substring of its former referent. For example, the 
original referent of Rl is a string -ABCOEFW. 

* ABC 0 E F * 
* * * * * * * * * 

* 
* Rl 

After the statement 

REDUCE RI UNTIL FIRST = ·0"; 

is executed the referent of R1 is ·OEF-. 

ABC 0 E F 
* * 
******* 

* Rl 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-10 
COMPANY CONFIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

If the. character string deleted is of interest~ another reference 
lIIay be referenced to it by the variation: 0 1 

REDUCE Rl SETTING R2 UNTIL FIRST = "0"; 

Starting with Rl's original referent~ "ABCDEF", this leaves 

* ABC * 0 E F * 
*.***.** * •• ***** 

• * 
* * 

R2 Rl 

thus dividing the original string according to the condition 
FIRST = ftO". 

The entire operation lIIay also be done in reverse {scanning right 
to left> in which case the last character of Rl ~ust satisfy the 
condition. 

REDUCE Rl SETTING R2 UNTIL LAST = "0"; 

results in the new binding 

* ABC 0* E F * 
*****.***** ****** 

• • 
It * 

Rl R2 

Three types of conditions may be specified: 

= scans for a character which is the same as the specified 
character. 

1= scans for a character which is different from the 
specified character. 

IN scans for a character which, when translated to by the 
specified bit table, yields a ~(1)1~. See CHAR-TABLE for a 
convenient means for specifying bit table constants. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-11 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

( ., In the first two cases, a sinqle character must be given as a 
,,/ scan argument. In the third case~ a bit string of length 256 

c 

bits must be given as a table. 

The <EXPRESSION> must evaluate to either CHARACTER(l) or BIT(3) 
or 81T(256) depending upon the condition type. Improper type on 
this <EXPRESSION> is the only possible run-time error froll 
reduction. 

The REDUCE statement terllinates when either a character 
satisfying the condition is found or the length of the <OBJECT 
REfERENCE> has been reduced to zero, i.e., it is NULL. Since the 
latter termination is often of separate interest its occurrence 
may be detected using syntax analogous to that for detection of 
special conditions on 110 statements. The syntax was shown 
above. The <EXECUTABLE STATEMENT> is executed if and only if the 
original reference has been reduced to NULL. (If a <RESULT 
REfERENCE> was specified, it wilt then refer to the original 
referent of the <OBJECT REfERENCE>.) 

frequently, the end-of-string code will reset the <OBJECT 
REFERENCE> to sOlie new data, perhaps by reading a new card. In 
this case, control returns from the EOS_CYCLE back to the REDUCE, 
thus effecting scanning over record boundaries without additional 
coding. If the <OBJECT REFERENCE> remains NULL after execution 
of the EOS_CYCLE code, control passes to the following statement 
as usual. These semantics lay seem awkward at first, but they 
have the desirable effect of guaranteeing the proper exit 
conditions of a REDUCE statement--either the condition is 
satisfied by the first (or last) character of the <OSJECT 
REfERENCE> or the <OBJECT REFERENCE> is NULL--regardless of 
whether or not an EOS_CYCLE has been specified. This principle 
can be ~iolated only by a branch instruction (UNOO~ RETURN) in 
the EOS code. 

If ON_EOS is used in place of EOS_CYCLE, 
passes to the next statellent. 

then control always 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<MODIFY INSTRUCTION> 

<CLEAR STATEMENT> .. -.. -

.. -.. -

<ARRAY IDENTIFIER LIST> .. -.. -

10-12 
COMPANY CONfIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

<CLEAR STATEMENT> 
<BUMP STATEMENT> 
<DECREMENT STATEMENT> 

CLEAW <ARRAY IDENTIfIER LIST> 

<ARRAY IDENTIfIER> 
<ARRAY IDENTIfIER>. 
<ARRAY IDENTIFIER LIST> 

As the syntax indicates, the <CLEAR STATEMENT> may only clear 
arrays. If the array has been declared bit or fixed, zeroes are 
moved to each element. If it was declared as character. blanks 
are moved to each element. Paged arrays may not be cleared. 

<BUMP STATEMENT> ::: 

<ADDRESS VARIABLE> 

<MODIfIER> ::= 

.. -.. -

<DECREMENT STATEMENT> .. -.. -

BUMP <ADDRESS YARIABLE><HODIFIER> 

See ADDRESS VARIABLES 

<EMPTY> 
BY <EXPRESSION> 

DECREMENT <ADDRESS VARIABLE><HODIFIER> 

The bump and decrement statements perform the same functions as 
their counterparts in the <EXPRESSION> (BUMPDR and DECREMENTOR). 
See those sections for specific usage. Since these constructs 
exist as statements in their own rights. and not merely as parts 
of the <EXPRESSION>, they are included h~re. 

o 



BURROUGHS CCRPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

(:~ tly.LJ. .slili~tlU 

<NULL STATEHENT> ::= ; 

10-13 
COMPANY CONfIDENTIAL 

BI000 SOL CBNF Version) 
P.S. 2212 5405 CG) 

The semi-coton is considered to be a statement in its own right. 
It may be used in any construct where the syntax requires that an 
<EXECUTABLE STATEMENT> be present, but the user wishes to execute 
nothing_ It is most commonly used in the <IF STATEMENT> and the 
<CASE STATEMENT>, but may also be functional in the read, write, 
and space statements. Refer to the individual descriPtions for 
more specific details. 

EXAMPLE: 

CASE <EXPRESSION>; 
If <EXPRESSION> THEN; 

ELSE <STATEMENT>; 
; 
00; 
<EXECUTABLE STATEMENT LIST> 
ENOi 

END CASE; 

%CASE () 

%CASE 1 
%CASE 2 

Notice that the above <CASE STATEMENT> contains three <EXECUTABLE 
STATEMENT>s: An <If STATEMENT>, a <NULL STATEMENT>, and a <DO 
GROUP>. If the value of the <EXPRESSION> following CASE is 1, 
then nothing is executed._ In addition, the; following THEN is 
a <NULL STATEMENT>. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<FILE ATTRIBUTE 
STATEMENT> ::= 

<FILE DESIGNATOR> .. -.. -

<DYNAMIC FILE 
ATTRIBUTE LIST> 

<DYNAMIC FILE 
ATTRIBUTE> ::= 

-----------'--------~ 

.. -.. -

10-14 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 .( G) 

CHANGE <fILE DESIGNATOR> 
TO (<DYNAMIC FILE ATTRIBUTE LIST» 

<FILE IDENTIfIER> 
<SWITCH FILE IDENTIFIER> «EXPRESSION» 

<DY~AHIC FILE ATTRIBUTE> 
I <DYNAMIC FILE ATTRIBUTE>, 

<DYNAMIC FILE ATTRIBUTE LIST> 

o 

<DYNAMIC MULTI-FILE IDENTIFICATION 
<DYNAMIC FILE IDENTIFICATION PART> 
<DYNAMIC PACK_ID PART> 

PART> 

<DYNAMIC DEVICE PART> 
<DYNAMIC TRANSLATION PART> 
<DYNAMIC FILE PARITY PART> 
<DYNAMIC VARIABLE RECORD PART> 
<DYNAMIC LOCK PART> 
<DYNAMIC BUFfERS PART> 
<DY~AHIC SAVE FACTOR PART> 
<DYNAMIC RECORD SIZE PART> 
<DYNAMIC RECORDS-PER-BLOCK PART> 
<DYNAMIC REEL NUMBER PART> 
<DYNAMIC NUMBER-Of-AREAS PART> 
<DYNAMIC BLOCKS-PER-AREA PART> 
<DYNA~IC ALL-AREAS-AT-OPEN PART> 
<DYNAMIC AREA-BY-CYLINDER PART> 
<DYNAMIC EU_SPECIAl PART> 
<DYNAMIC EU_INCREMENTED PART> 
<DYNAMIC USE_INPUT_BLOCKING 
DESIGNATOR PART> 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-15 
COMPANY CONfIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<DYNAMIC MULTI-PACK PART> 
<DYNAMIC END-Of-PAGE PART> 
<DYNAMIC OPEN-OPTION PART> 
<DYNAMIC REMOTE-KEY PART> 
<DYNAMIC NUHafR-OF-STATIONS PART> 
<DYNAMIC QUEUE-FAMILY-SIZE PART> 
<DYNAMIC FILE TYPE PART> 
<DYNAMIC WORK FILE PART> 
<DYNAMIC LABEL TYPE PART> 
<DYNAMIC INVALID CHARACTER 
REPORTING PART> 

I <DYNAMIC OPTIONAL FILE PART> 
I <DYNAMIC SERIAL NUMBER PART> 
I <DYNAMIC EXCEPTION MASK PART> 
I <DYNAHIC QUEUE SIZE PART> 
I <DYNAMIC HEADER PART> 
I <DYNAMIC SOfT TRANSLATE PART> 
I <DYNAMIC HOST_NAME PART> 
I <DYNAMIC OPEN_ON_BEHALF_OF PART> 

The <FILE ATTRIBUTE STATEMENT> allows the user to dynamically 
change the attributes of his file during the execution of his 
program. This statement may occur at any point in the program~ 
but the change will not become effective until the file is 
opened. That is, if the file in question is open when the <FILE 
ATTRIBUTE STATEMENT> is executed, then the change wilL not occur 
until the file is closed and re-opened. 

; 

Each <DYNAMIC FILE ATTRIBUTE> should be consistent with the 
for~at and restrictions of its counterpart listed in the FILE 
DECLARATIONS. Exceptions to this are specifically stated below. 

If a <DYNAMIC FILE ATTRIBUTE> is omitted, the attribute remains 
as it was previously set. 

It should be noted that the following process is ~andatory when 
changing the attributes of an open file which is to be re-opened: 

1. Close the file with an attribute which causes space for the 
FIB to be returned: i.e., LOCK, RELEASE, etc. (If CLOSE is 
used without attributes, the fIB will not be rebuilt fro~ 

the FPB~ and the attribute will remain unchanged). 

2. Change the desired attributes. 

3. Open the file. 



_______ ~ ___ ~ __ ~~".-~-~_ ••. _--'-_~ __ - --_---'-- __ ~ _____ ____'_____:~~ _ _. __ ~ ___ ~~ __ ~_~~ ____ -.,_=._=_- __ • _ _"~ -'_-~~'----.,"_--,-----,--c-_,~._==--:.--,--=------_- " 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

" 

10-16 
COMPANY CONfIDENTIAL 

B1DOO SOL (BNF Version) 
P.S. 2212 5405 (G) 

<DYNAMIC MULTI-fILE 
IDENTl~ICATION PART> MUlTI_fILE_ID := 

<DYNAMIC MULTI-FILE IDENTIfICATION> 

<DYNAMIC MULTI-FILE IDENTIfICATION> ::= <EXPRESSION> 

<DYNAMIC FILE IDENTIfICATION PART> ::= FILE_ID := <OYNAMIC FILE 
IDENTIFICATION> 

<DYNAMIC FILE IDENTIfICATION> ::= <EXPRESSION> 

<DYNAMIC PACK_IO PART> ::= PACK_IO := 
<OYHAHIC PACK IDENTIfICATION> 

<DYNAMIC PACK IDENTIfICATION> ::= <EXPRESSION> 

The <EXPRESSION>s of these four attributes are each assumed to be 
character strings. If they are bits, however, they will be 
converted to characters in the following manner: 

1. The bits are left justified. 

2. Trailing blanks are appended. However, if the bits 
are not a multiple of a, then the string witl appear 
to be invalid characters. 

EXAMPLE: 
CHANGE F TO (FILE_ID := ~fOE~); 

WILL RESULT IN THE <FILE IDENTIfICATION> 
BEING EQUAL TO: 

4fOE40404040404040404~ 

'e· -... ~ .••.• 

r 



( "',,"". / 

-~ '<, C,','""',',',',,, 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC DEVICE PART> ::= 

<DYNAMIC DEVICE SPECIFIER> 

~~= ,~,.;.~,",~"c=c"~,",~,,,"~~,,,,,,"",;",,",,~.,_~,,",",_,""" 

" .. ,,,-",,,,.~,"~---' 

10-11 
COMPANY CONfIDENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

DEVICE := <DYNAMIC DEVICE SPECIfIER> 

<EXPRESSION> 

The low-order 10 bits of the <EXPRESSION> must be coded as 
follows (where the variant is the high order four bitsr and the 
hardware is the low-order six): 

DEVICE -------
CARD 
TAPE 
TAPE_9 
TAPE_I 
TAPE_PE 
TAPE_NRZ 
DISK 

DISK_PACK 
DISK_FILE 
DISK_PACK_CENTURY 
DISK_PACK_CAELUS 
PRI N TER 

PRINTER FORMS 
CA RD_REA DE R 
CARD_PUNCH 
CARD_PUNCH fORMS 
PUNCH 
PUNCH fORMS 
READER_PUNCH_PRINTER 
REAOER_PUNCH_PRINTER fORMS 
PUNCH_PRINTER 
PUNCH_PRINTER fORMS 
PAPER_TAPE_PUNCH 
PAPER_TAPE_PUNCH fORMS 
PAPER_TAPE_READER 
REAOER_96 
SORTER_READER 
READER_SORTER 
CASSETTE 
REMOTE 
QUEUE 

HARDWARE 

21 
27 
28 
25 
26 
24 
11 

16 
12 
15 
14 

8 

8 
21 

2 
2 
2 
2 
5 
5 
5 
5 

20 
20 

6 
19 
10 
10 
30 
63 
61 

VARIANT 
-------

o = SERIAL 
1 = RANDOM 
(SAME AS DISK) 
(SAME AS DISK) 
(SAME AS DISK) 
(SAME AS DISK) 
o = BACKUP TAPE OR DISK 
1 = BACKUP TAPE 
2 = BACKUP DISK 
3 = BACKUP TAPE OR DISK 
4 = HARDWARE ONLY 
5 = BACKUP TAPE ONLY 
6 = BACKUP DISK ONLY 
7 = BACKUP TAPE OR DISK 0 
a • PRINTER VARIANT 

(SAME AS PRINTER) 
(SAME AS PRINTER fORMS) 
(SAME AS PRINTER) 
(SAME AS PRINTER fORMS) 
(SAME AS PRINTER) 
(SAME AS PRINTER fORMS) 
(SAME AS PRINTER) 
(SAME AS PRINTER FORMS) 
(SAME AS PRINTER) 
(SAME AS PRINTER fORMS) 



aURROUGHSCORPOIATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC TRANSLATION 
PART> ::= 

<DYNAMIC TRANSLATION 
SPECIFIER> ::= 

10-18 
COMPANY CONfiOENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G> 

TRANSLATION :: 
<DYNAMIC TRANSLATION SPECIFIER> 

<EXPRESSION> 

The low·order 3 bits of the <EXPRESSION> 
translation as follows: 

determi nes the 

000 = EBCDIC 

001 : ASCII 

010 = BCl 

<DYNAMIC OPEN-
OPTION PART>::: OPEN_OPTION :: 

<DYNAMIC OPEN
OPTION SPECIFIER>::: 

<DYNAHIC OPEN_OPTION SPECIFIER> 

<EXPRESSION> 

The low-order 12 bits of the expression determine the type of 
open as follows (bits are numbered from left to right within the 
12 ): 

BIT 

0 
1 
2 
3 
4 
5 
6 
7 
8 

<DYNAMIC PARITY PART> 

= 
: 

= 
= 
: 

: 

= 
= 
: 

.. -.. -

fUNCTION (If 1) 

INPUT 
OUTPUT 
NEW 
PUNCH 
PRINT 
NO_REWIND. INTERPRET 
REVERSE, STACKERS 
LOCK 
LOCK_OUT 

PARITY := <DYNAMIC PARITY SPECIFIER> 

0, 
" 

o 



S I't ttl 'b 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC PARITY 
SPECIFIER> ::= 

<DYNAMIC VARIABLE 
RECORD PART> ::= 

<DYNAMIC VARIABLE 
RECORD SPECIFIER> .. -.. -
<DYNAMIC LOCK PART> 

<DYNAMIC LOCK 
SPECIFIER> ::= 

<DYNAMIC ALL-AREAS
AT-OPEN PART> ::= 

<DYNAMIC ALl-AREAS
AT-OPEN SPECIFIER> 

<DYNAMIC AREA-BY 
CYLINDER PART> ::= 

<DYNAMIC AREA-BY
CYLINDER SPECIFIER> 

<DYNAMIC USE_INPUT_ 
BLOCKING PART> ::= 

<DYNAMIC USE_INPUT_ 
BLOCKING SPECIFIER> 

<DYNAMIC END-OF
PAGE PART> ::= 

<DYNAMIC END-OF
PAGE SPECIFIER> 

<DYNAMIC HULTI
PACK PART>::= 

<DYNAMIC HULTI
PACK SPECIFIER> 

<DYNAMIC REMOTE
KE Y PAR T > : : = 

.. -.. -

.. -.. -

.. -.. -

. -.. -

.. -.. -

.. -.. -

F t "3"~ ,. 

<EXPRESSION> 

VARIABLE :.= 

10-19 
COMPANY CONFIDENTIAL 

S1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<DYNAMIC VARIABLE RECORO SPECIFIER> 

<EXPRESSION> 

LOCK := <DYNAMIC LOCK SPECIFIER> 

<EXPRESSION> 

ALl_AREAS_AT_OPEN := 
<OY~A"IC ALL-AREAS-AT-OPEN SPE~IFIER> 

<EXPRESSION 

AREA_SY_CYLINDER := 
<DYNAMIC AREA-BY-CYLINDER SPECIFIER> 

<EXPRESSION> 

USE_INPUT_BLOCKING := 
<DYNAMIC USE_INPUT_BLOCKING SPECIF1ER> 

<EXPRESSION> 

END_OF_PAGE_ACTION := 
<DYNAMIC END-OF-PAGE SPECIFIER> 

<EXPRESSION> 

MUl TI_PACK := 
<DYNAMIC MULTI-PACK SPECIFIER> 

<EXPRESSION> 

REMOTE_KEY := 
<DYNAMIC REMOTE-KEY SPECIFIER> 



BURROUGHS CORPORATION 
COftPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC REMOTE
KEY SPECIfIER>:~::: 

<DYNAMIC WORK 
fILE PART>::= 

<DYNAMIC WORK 
fILE SPECIFIER>::= 

<EXPRESSION> 

WORK_fILE :::: 

10-20 
COMPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

<DYNAMIC WORK FILE SPECIFIER> 

<EXPRESSION> 

C' 
, ..• ~ 

Only the tow·order bit of each of the above <expression>s is used 
to determine the value of the attribute. The code definitions 
are as follows: 

PARITY 

VARIABLE 

LOCK 

AREA_BY_CYLINDER 

USE_INPUT_BLOCKING 

MULTI_PACK 

REMOTE KEY 

<DYNAMIC EU_SPECIAL 
PART> ::= 

<DYNAMIC EU_SPECIAL 
SPECIfIER> ::= 

o = ODD 
1 = EVEN 
o = fIXED 
1 = VARIA8LE 
a = NOT LOCKED 
1 = LOCKED 
o = ALLOCATE AREAS AS NEEDED 
1 = ALLOCATE ALL SPACE AT OPEN TIME 
o = PUT AREA ANYWHERE ON DISK 
1 ::: ONE AREA PER CYLINDER AT BEGINNING, 
o ::: TAKE ATTRIBUTES FROH rILE OECLARATlcf ' 
1 ::: TAKE ATTRIBUTES FROM DISK fILE HEADE'''-/ 

See FILE ATTRIBUTES 
o ::: NO DETECTION Of ENO-OF-PAGE 
1 ::: BRANCH TO <EOf PART> OF <WRITE 

STATEMENT> AT END Of PAGE ON 
PRINTER fILE 

1 ::: PLACE fILE ON MULTIPLE OISK PACKS 
a = PLACE FILE ON SINGLE DISK PACK 
1 = REMOTE KEY IS PRESENT ON ALL READS 

AND WRITES TO THE fILE 
o ::: REMOTE KEY IS NOT PRESENT 
1 = INSERT JOB NUMBER IN FILE IDENTIfIER 
o = LEAVE FILE IDENTIfIER ALONE 

EU_SPECIAL:= 
<DYNAMIC EU_SPECIAL SPECIFIER> 
EU_SPECIAL := 
<DYNAMIC EU_SPECIAL SPECIFIER> 
EU_DRIVE := 
<DYNAMIC EU_SPECIAL SPECIFIER> 

<EXPRESSION> 

( ' 
...... )' 



C'·'' 
, .. ): 

'" " TWit:; "The@ 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC EU_DRIVE 
SPECIFIER> ::= 

<DYNAMIC EU_ 
INCREMENTED PART> .. -.. -

<DYNAMIC EU_INCREMENTED 
SPECIFIER> ::= 

<OYtUHIC EU_ 
INCREMENT SPECIfIER> 

<EXPRESSION> 

10-21 
COMPANY CONfIDENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

EU_INCREMENTED := 
<DYNAMIC EU_INCREMENTED SPECIFIER> 
EU_I~CREMENTED := 
<DYNAMIC EU_INCREMENTED SPECIfIER>~ 

EU_INCREMENT := 
<DYNAMIC EU_INCREMENT SPECIfIER> 

<EXPRESSION> 

<EXPRESSION> 

The low-order bit of the EU_SPECIAL and EU_INCREMENTED specifiers 
serves to indicate whether or not the attribute is set (O=Off~ 
1=On). If the attribute is off~ then inclusion of the EU_DRIVE 
and EU_INCREMENT specifiers is unnecessary. 

C~;, If these attributes are set on~ then the drive and increl1lent 
parts should be included, and should conform to the 
specifications in the FILE DECLARATIONS. If ol1litted~ the 
<DYNAMIC EU_DRIVE SPECIFIER> is not changed. If the <DYNAMIC 
EU_INCREMENT SPECIFIER> has never been set (i.e.~ it is'O), then 
it is set to one; otherwise" it too remains unchanged. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC BUffERS PART> 

<DYNAMIC NUMBER 
Of BUffERS> ::= 

<DYNAMIC SAVE 
FACTOR PART> ::= 

<DYNAMIC SAVE fACTOR> 

<DYNAMIC RECORD 
SIZE PART> ::= 

<OYNAMIC RECORD SIZE> 

<DYNAMIC RECORDS
PER-BLOCK PART> ::= 

<DYNAHICRECOROS
PER- BLOCK> ::= 

<DYNAMIC REEL 
NUMBER PART> ::= 

<DYNAMIC REEL NUMBER> 

<DYNAMIC NUMBER-Or
AREAS PART> ::= 

<DYNAMIC NUMBER
OF-AREAS> ::= 

<DYNAMIC BLOCKS-PER
AREA PART> ::= 

<DYNAMIC BLOCKS-PER 
AREA>::= 

<DYNAMIC QUEUE-fAMILY
SIZE PART>::= 

<DYNAMIC QUEUE
FAMILY-SIZE>::= 

<DYNAMIC NUMBER-Or
STATIONS PART>::= 

<DYNAMIC NUMBER-OF
STATIONS SPECIFIER>::= 

.. -.. -

• e_ .. -

.e_ .. -

.. -.. -

10-22 
COMPANY CONFIDENTIAL 

BI000 SOL (BNt Version) 
P.S. 2212 5405- (G) 

BUffERS := <DYNAMIC NUMBER Of BUffERS> 

<EXPRESSION> 

SAVE := <DYNAMIC SAVE fACTOR> 

<EXPRESSION> 

RECORD_SIZE := <DYNAMIC RECORD SIZE> 

<EXPRESSION> 

RECORDS_PER_BLOCK := 
<DYNAMIC RECORDS-PER-BLOCK> 

<EXPRESSION> 

REEL := <DYNAMIC REEL NUMBER> 

<EXPRESSION> 

NUMBER_Of_AREAS := 
<DYNAMIC NUMBER-Or-AREAS> 

<EXPRESSION> 

BLDCKS_PER_AREA := 
<DYNAMIC BLOCKS-PER-AREA> 

<EXPRESSION> 

QUEUE_fAMILY_SIZE := 
<DYNAMIC QUEUE-fAMILY-SIZE> 

<EXPRESSION> 

NUMBER_Of_STATIONS := 
. <DYNAMIC NUMBER-Of-STATIONS SPECIfIER> ,c::: 

<EXPRESSION> 



c·.'-.····· "' -" 

.' 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-23 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

The above <EXPRESSION>s return a bit string which should be 
consistent with the for~ats and restrictions listed in the FILE 
DEClARATIONS_ 

<DYNAMIC FILE TYPE PART>::= FILE_TYPE := 
<DYNAMIC FILE TYPE SPECIFIER> 

<DYNAMIC FILE TYPE SPECIFIER>::= <EXPRESSION> 

The value of the expression deter~ines the file type: 

VALUE TYPE 

DATA o 
7 
8 
9 
12 

I NT ERPRET ER 
CODE 

<DYNAMIC LABEL 
TYPE PART>::: 

<DYNAMIC LABEL 
TYPE SPECIFIER>::= 

DATA 
INTRINSIC 

LABEL_TYPE := 
<DYNAMIC LABEL TYPE SPECIFIER> 

<EXPRESSION> 

The value of the expression deter~ines the label type. 

VALUE TYPE 

ANSII o 
1 
2 

UNL ABELED 
BURROUGHS STANDARD 

<DYNAMIC INVALID 
CHARACTER REPORTING> .. -.. -

<DYNAMIC IN~ALID CHARACTER 
REPORTING TYPE> ::= 

INVALID_CHARACTERS := 
<DYNAMIC INVALID CHARACTER REPORT 
TYPE> 

<EXPRESSION> 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BAR8ARA PLANT 

10-Z4 
COMPANY CONFIDENTIAL 

81000 SOL (8NF Version) 
P.S. Z21Z 5405 (G) 

The value of the expression determines the type of ~~porting: 

VALUE 

o 

1 

2 

3 

<DYNAMIC OPTIONAL 
FILE PART> ::= 

TYPE 

Report all lines containing invalid 
characters. 
Report all lines containing invalid 
characters and then stop program. 
Report once that the file contains 
invalid characters. 
Don't report that the file contains 
invalid characters. 

OPTIONAL:= <EXPRESSION> 

The low-order bit of the expression determines whether or not the 
file may be optional. If the value is 1, the file may be 
optional; if 0, it must be present. 

<OYNAMIC SERIAL 
NUM8ER PART> ::= SERIAL := <EXPRESSION> 

The expression should generate a &-character string, each of the 
characters of which are a decimal digit. This number will be 
used as the tape serial number. 

<DYNAMIC EXCEPTION MASK 
PART> ::= EXCEPTION_MASK:= <EXPRESSION> 

The low order 24 bits of the value of the expression will be used 
as the EXCEPTION HASK. See <EXCEPTION MASK PART> under <FILE 
DECLARATION STATEMENT> in Section 6. 

C, '" .... ,.: .. 



C-~i 
' .. # 

$' 'm' ( .tnt - t¥±tm% ' 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<DYNAMIC QUEUE SIZE 
PART> := 

Sets size for queue files. 

<DYNAMIC HEADER PART> := 

\ 10-25 
COMPANY CONfIDENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

QUEUE_MAX_MESSAGES := <EXPRESSION> 

REMOTE_HEADERS := <EXPRESSION> 

. Sets headers boolean for re.ote files. 

<DYNAMIC SOfT 
TRANSLATE PART> --. -- TRANSLATE := <EXPRESSION> 

TRANSLATE_FILE := <EXPRESSION> 

TRANSLATE sets a boolean. turning the translation option on or 
off white TRANSLATE_fILE changes the file-;d of the translate 
table file. 

<DYNAMIC HOST_NAME PART>::: HOST_NAME:: <EXPRESSION> 

Sets Host name for BNA. 

<DYNAMIC OPEN_ON_BEHALf_Of 
PART>::= 

----



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA 8ARaARA PLANT 

<STOP STATEMENT> ::= STOP 

10-26 
COMPANY CONFIDENTIAL 

81000 SDL (8NF Versi1»n) 
P.S. 2212 5405 (G) 

STOP <EXPRESSION> 

The <STOP STATEMENT> is a communicate to the HCP that the program 
has finished. It should not be confused with fINI which is the 
final sta~e.ent in the program. 

STOP <EXPRESSION> is intended for use by the compilers only. The 
<EXPRESSION> communicates the nu.ber of syntax errors to the HCP. 

0.'·'· ., 

o 

() 



c 

C-.~L. 
" . ....., 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<ZIP STATEMENT> . -.. -

10-27 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 CG) 

ZIP <EXPRESSION> 

The <ZIP STATEMENT> allows the user to pass control instructions 
to the Hep. The <EXPRESSION> should generate a character string 
whose value is a valid MCP control statement as defined in the 
81700 Software Operational Guide. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<SEARCH STATEMENT> 

<SEARCH PART> ::: 

<SEARCH OBJECT> 

<SEARCH RESULT> 

.. -.. -

.. -.. -

.. -.. -

<SEARCH RESULT HODE> .. -.. -
<ON FILE PART> .. -.. -

10-28 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S.2212 5405 iG) 

<SEARCH PART>; <ON FILE PART> 

SEARCH_DIRECTORY «SEARCH OBJECT>~ 
<SEARCH RESULT>~<SEARCH RESULT MODE> 

<ADDRESS GENERATOR> 

<ADDRESS GENERATOR> 

BIT I CHARACTER 

<EMPTY> I ON FILE_HISSING <EXECUTABLE 
STATEMENT> 

ON FILE_LOCKED <EXECUTABLE STATEMENT> 
ON FILE_HISSING <EXECUTABLE STATEMENT>; 
ON FILE_LOCKED <EXECUTABLE STATEMENT> 
ON FILE~LOCKED <EXECUTABLE STATEMENT>; 
ON FILE MISSING <EXECUTABLE STATEMENT> 

The <SEARCH STATEMENT> allows the user to extract 
information contained in the disk file header specified 
<SEARCH OBJECT>. 

certain 
by the 

The <SEARCH OBJECT> is expected to be 30 characters in length 
where the first 10 characters are the pack identification, the 
second 10 characters are the multi-file identification, and the 
third 10 are the file identification. File names less than 10 
characters gust be left-justified in their respective fields with 
trailing blanks appended. If only one file naae exists, that 
name should be left-justified in the multi-file identification 
field. and the file identification should be blan~. 

The <SEARCH RESULT> specifies the receiving field and should be 
360 bits long if bit mode is specified, or 59 bytes if character 
mode is specified. 

The information is returned in the following format~ 

----------~--- ~~-

c 



( .. -.•.... " 
:;../ 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

01 FILE_HEADER_FORMAT, 
02 OPEN_TYPE 
OZ r~O_USERS 

OZ RECORD_SIZE 
02 RECORDS_PER_BLOCK 
02 EOF_POINTER 
OZ SEGMENTS_PER_AREA 
02 USER_OPEN_OUTPUT 
OZ FILE_TYPE 
Q2 PERMANENT_FLAG 
02 BLOCKS_PER_AREA 
02 AREAS_REQUESTED 
OZ AREA_COUNTER 
OZ SAVE_FACTOR 
Q2 CREATION_DATE 
02 LAST_ACCESS_DATE 

10-29 
COMPANY CONFIDENTIAL 

31000 SOL (BNF Version) 
P.S. 221Z 5405 (G) 

BIT (24), 
BIT (24), 
BIT (Z4), 
BIT (24), 
BIT (Z4), 
BIT (24)" 
BIT (24), 
BIT (24), 
BIT (24)" 
BIT (24)" 
BIT (Z4), 
BIT (24), 
BIT (Z4)" 
BIT (24), 
BIT (24), 

% CHARACTER (1) 

% CHARACTER (Z) 

% CHARACTER (4) 

% CH A R A C TE R (4) 
% CHARACTER (8) 
% CH ARACTER (8) 
% CHARACTER (1) 

% CHARACTER (Z) 

% CHARACTER (Z) 

% CHARACTER (0) 

% CHARACTER (3) 
% CH ARACTER (3) 

% CH A R ACT E R (3) 
% CHARACTER (5) 

% CH A R ACT E R (5 ) 

Note: This format may be subject to change. 

The <FILE MISSING PART> and <FILE LOCKED PART> allow the user to 
specify the course of action should either of these conditions 
arise. 



i 

I 

'! 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

--

10-30 
COMP~NY CONFIDENTIAL 

B1000 SOL (BNF Versi~n) 
P.S. 2212 5405 (G> 

BtAU-EILt-~~AU£B' HBllt_flL£-H~AQtB 

<ACCESS FILE HEADER 
STATEMENT> ::= 

<ACCESS FILE HEADER 
PART> ::= 

<fILE NAME> ::= 

<DESTINATION fIELD> 

<SOURCE FIELD> ::= 

<FILE MISSING PART> 

.. -.. -

.. -.. -
<fILE LOC~ED PART> ::= 

<ACCESS FILE HEADER PART>; 
<ACCESS FILE HEADER PART>; 
<FILE HISSING PART> 
<ACCESS FILE HEADER PART>; 
<FILE LOCKED PART> 
<ACCESS FILE HEADER PART>; 
<fILE MISSING PART> 
<FILE LOCKED PART> 

READ_fILE_HEADER 
«fILE NAME>, <DESTINATION FIELD» 
WRITE_fILE_HEADER 
«fILE NAME>, <SOURCE fIELD» 

<ADDRESS GENERATOR> 

<ADDRESS GENERATOR> 

<ADDRESS GENERATOR> 

ON FILE_MISSING <EXECUTABLE STATEMENT> 

ON FILE_LOCKED <EXECUTABLE STATEMENT> 

The <ACCESS fILE HEADER STATEMENT> is intended for use in systems 
programs only. It enables the programmer to either read or write 
a file header. 

The <FILE NAME> is expected to be a 30-character field where the 
first 10 characters are the PACK_ID, the second 10 characters are 
the MULTI-fILE IDENTIFICATION and the third 10, the FILE 
IDENTIfICATION. file names less than 10 characters are 
left-justified in their respective fields. If only one file name 
exists, it is left-justified in the multi-file identification, 
and the file identification should be set to blanks. 

The <SOURCE FIELD> or 
respectively. the sending or 
be 57& to 4320 bits in length 
aLlocated. Information is 
Refer to the B1700 MCP Manual 

<DESTINATION fIELD> specifies, 
receiving field, and is expected to 
depending upon the number of areas 

passed in the file header format. 
for specifics. 



tW !.%"*,5 ". G" If· id+ttt· """'""ihfj + 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-31 
COMPANY CONfIDENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G> 

The <fILE MISSING PART> and <fILE LOCKED PART> enable the 
programmer to specify the course of action should either of these 
conditions arise. 

Note that extreme caution is advised when writing a file header. 

-----



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10"32 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<ARRAY PAGE TYPE 
STATEMENT> ::= <ARRAY PAGE TYPE DESIGNATOR> 

«PAGED ARRAY NAHE>,<PAGE NUMBER» 

<ARRAY PAGE TYPE 
DESIGNATOR> ::= 

<PAGED ARRAY NAME> 

<PAGE NUH8ER> ::= 

.-.. -
MAKE_READ_ONL Y 
MAKE_READ_WRITE 

<IDENTIFIER> 

<EXPRESSION> 

.The <ARRAY PAGE TYPE STATEMENT> allows the user to .ark certain 
paged array pages as READ-ONLY. When this is done, a page will 
not be written out to disk every time it is overlaid. 

HAKE_REAO_WRITE allows the user to change information on a 
array, and to have that array written on disk wben 
overlaid. It is only necessary to specify HAKE_READ_WRITE 
a HAKE_READ_ONlY specification. 

paged 
it is 
after 

It is the programmer's respons;bility to ensure that the 
information in a page marked READ-O~LY is not changed. In 
addition, the user is responsibie for guaranteeing correct page 
number specifications. There is no syntax check for either. 

EXAMPLE: 

DECLARE PAGED (32) P (1024) 8IT(30), Tl FIXED 
T1 := -1; 
DO FOREVER; 

MAKE_READ_ONLY (P, 8UMP Tl); 
IF T1 = 31 THEN UNDO; 

END; 
• 
• 
• 

o 



"" is' -·w'*" '" FW'ihrt' ""tneert j'" 

C'" 
'.y 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<COROUTINE STATEMENT>::= 

<COROUTINE 
ENTRY STATEMENT>::= 

<COROUTINE 
TABLE SPECIFIER> ::= 

<COROUTINE 
EXIT STATEMENT>::= 

10-33 
COMPANY CONFIDENTIAL 

81000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

<COROUTINE ENTRY STATEMENT> 
<COROUTINE EXIT STATEMENT> 

ENTER_COROUTINE 
«COROUTINE TABLE SPECIFIER» 

<ADDRESS GENERATOR> 

EXIT_COROUTINE 
«COROUTINE TABLE SPECIFIER» 

The <COROUTINE TABLE SPECIFIER> associated with ENTER_COROUTINE 
and EXIT_COROUTINE is assumed to describe a table with the 
following format: 

DECLARE 
01 

; 

TABLE 
,02 
,02 
.02 

NUMBER_Of_ENTRIES 8IT(4) 
ENTRY_ADDRESS BIT(32) 
PPS_COPf(lG) 8IT(32) 

A. ENTER_COROUTINE: The <COROUTINE TABLE SPECIFIER> is assumed 
to have the format described above. The current code 
aijdress is pushed on to the Program Pointer Stack. The 
number of elements of PPS.COPY that is specified by 
NUMBER_OF_ENTRIES is pushed onto the Program Pointer Stack. 
The address of the next instruction is taken from 
ENTRY_ADDRESS. 

B. EXIT_COROUTINE: The <COROUTINE TABLE SPECIFIER> is assumed 
to describe a table of the format given above. The current 
nesting level is stored in NU~BER_OF_ENTRIES. The current 
code address is stored in ENTRY_ADDRESS. The number Cas 
specified by NUMBER_Of_ENTRIES) of entries on the top of the 
Program Pointer Stack is copied to PPS_COPY(O) through 
PPS_COPYCNUHBER_OF_ENTRIES-l). If NUMBER_Of_ENTRIES is O. 
then nothing is copied. An UNDO is performed, using 
NUMBER_Of_ENTRIES as the number of entries on top of the 
Program Pointer Stack. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-34 
COMPANY CONFIDENTIAL 

BI000 SOL C3NF Version) 
P.S. 2212 5405 (G) 

Note: Upon first execution of ENTER_COROUTINE, the table must 
already be set up. The easiest way t~ accomplish this is to make 
the first executable statement in the coroutine to be entered an 
EXIT.COROUTINE statement. The first entrance to the coroutine is 
then accomplished by a catl statement. 

Note: This is not a general coroutine mechanism--i.e.~ It is not 
symmetric. The routine executing the ENTER_COROUTINE is a master 
to the slave routine which contains the EXIT_COROUTINE'S. 

Note: EXIT_COROUTINE can onty appear within procedures with no 
parameters and no local data; i.e., those procedures which do 
not change the Control Stack. 

EX AMPLE: 

DECLARE I FIXED; will display 
DECLARE TABLE 8IT(4+17*32); 
PROCEDURE SLAVE; 

EXIT_COROUTINECTABLE); %SETS UP TABLE 
00 FOREVER; 

END; 

BUKP I BY 2; 
DISPLAY DECIKAL(I~&); 
EXIT_COROUTINECTABL£); %RESETS TABLE 

END SLAVE; 
PROCEDURE KASTER; 

SLAVE; %CALL FOR SETUP 
I := 0; 
DO FOREVER; 

BUHP I BY 3; 
DISPLAY DECIMALCI,&); 
ENTER_COROUTINECTABLE); %USES TABLE 

END; 
END HAS TER; 

·000003" C 1) 
"000005" (2) 
"000008" (3) 

"000010" (4) .. .. 
" .. 
" .. 

"S*n" (2n) 
"S*n+3" (2n+l) .. .. 

" .. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<EXECUTE-PROCEDURE 
STATEMENT> ::= 

<NON-TYPED PROCEDURE 
DESIGNATOR> ::: 

<NON-TYPED PROCEDURE 
IDENTIFIER> ::= 

<ACTUAL PARAMETER PART> 

<ACTUAL PARAMETER LIST> 

<ACTUAL PARAMETER> .. -.. -

<ARRAY DESIGNATOR> ::= 

::= 

.. -.. -

10-35 
COMPANY CONFIDENTIAL 

Bl000 SOL (BNF Version) 
P.S. ZZlZ 5405 (G) 

<NON-TYPED PROCEDURE DESIGNATOR> 

<NON-TYPED PROCEDURE IDENTIFIER> 
<ACTUAL PARAMETER PART> 

<IDENTIFIER> 

<EMPTY> 
«ACTUAL PARAMETER LIST» 

<ACTUAL PARAMETER> 
<ACTUAL PARAMETER>~ 
<ACTUAL PARAMETER LIST> 

<EXPRESSION> 
<ARRAY DESIGNATOR> 

<ARRAY IDENTIFIER> 

A non-typed procedure, i.e., a procedure which performs a 
function and does not return a value, is invoked through an 
<EXECUTE-PROCEDURE STATEMENT>. The na~e of the procedure is 
fallowed by its parameters enclosed in parens. Refer to the 
section ADDRESS AND VALUE PAR~HETERS for information concerning 
passing parameters. 

For a description of the invocation of typed procedures, see 
VALUE VARIABLES. 



BURROUGHS CORPORATIO~ 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<EXECUTE-fUNCTION 
STATEMENT> ::= 

<fUNCTION DESIGNATOR> 

) 

.. -.. -

10-36 
COMPANY CONfIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (6) 

<fUNCTION DESIGNATOR> 

<ACCESS FILE INFORMATION DESIGNATOR> 
I <CHANGE STACK SIZE DESIGNATOR> 
I <CHARACTER FILL DESIGNATOR> 
J <COMMUNICATE DESIGNATOR> 
I <COMPILE-CARD-INFO DESIGNATOR> 
I <DC_INITIATE_IO DESIGNATOR> 
I <DEBLANK DESIGNATOR> 
I <DISABLE_INTERRUPTS DESIGNATOR> 

<DUHP OESIGNATOR~ 
<DUMP-fOR-ANALYSIS DESIGNATOR> 
<ENABLE_INTERRUPTS DESIGNATOR> 
<ERROR COMMUNICATE DESIGNATOR> 
<EXECUTE DESIGNATOR> 
<fETCH DESIGNATOR> 
<FINO DUPLICATE CHARACTERS DESIGNATOR> 
<FREEZE-PROGRAM DESIGNATOR> 
<GROW DESIGNATOR> 
<HALT DESIGNATOR> 
<HARDWARE MONITOR DESIGNATOR> 
<INITIALIZE_VECTOR DESIGNATOR> 
<MESSAGE COUNT DESIGNATOR> 
<MONITOR DESIGNATOR> 
<OVERLAY DESIGNATOR> 
<READ CASSETTE DESIGNATOR> 
<ACCESS-FPB DESIGNATOR> 
<REFER_ADDRESS DESIGNATOR> 
<REfER_LENGTH DESIGNATOR> 
<REfER_TYPE DESIGNATOR> 
<REINSTATE DESIGNATOR> 
<RESTORE DESIGNATOR> 
<REVERSE DESIGNATOR> 
<SAVE DESIGNATOR> 
<SAVE_STATE DESIGNATOR> 
<SORT DESIGNATOR> 
<SORT_MERGE DESIGNATOR> 
<SORT_SWAP DESIGNATOR> 
<THAW_PROGRAM DESIGNATOR> 
<THREAO_YECTOR DESIGNATOR> 
<TRACE DESIGNATOR> 
<TRANSLATE DESIGNATOR> 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<ACCESS FILE INFORMATION 
DESIGNATOR> ::= 

<FILE DESIGNATOR> 

<RETURN TYPE> 

<DESTINATION> 

· .-· .-
.. -· .-

.. -... -

10-37 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

ACCESS_FILE_INfORMATION «fILE DESIGNATOR>, 
<RETURN TYPE>, <DESTINATION> 
<FILE IDENTIFIER> 
<SWITCH FILE IDENTIfIER> «EXPRESSION» 

BIT I CHARACTER 

<ADDRESS GENERATOR> 

The <ACCESS FILE INFORMATION OESIGNATOR> returns the end-ot-tile 
pointer and the device type from the FIB of the specified f;le to 
the specified destination. 

The intor~ation may be returned as either bit or character. The 
format is as follows: 

01 DESTINATION_FIELD, 
02 EOF_POINTER 
02 DE VI CE_ TYPE 

81T(24) .. 
BIT(6); 

% 
% 

CHARACTER(S) 
CHARACTER(2) 

To insure that the FIB exists.. this communicate should only be 
used on open files. 

<CHANGE STACK 
SIZES DESIGNATOR> 

<VSSIZE> 

<NSSIZE> 

<C SSI ZE> 

<ESSIZE> 

• e_ .. -

.-.. -
· .-· .-

<PPSSIZE> ::= 

<DYNAMIC SIZE> ::= 

.. -.. - CHANGE_STACK_SIZES «VSSIZE> .. 
<NSSIZE>, <CSSIlE>, <ESSIZE> .. 
<PPSSIlE> .. <DYNAMIC SIZE» 

<NUMBER> 

<NUMBER> 

<NUM8ER> 

<NUMBER> 

<NUMBER> 

<NUMBER> 



Ii 
I 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-38 
COHPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

This statement is restricted to Lexic level Zero of programs with 
no global data. Atsq~ due to technical incompatibilities. it may 
not be used in a program that invokes profilingp timing. or 
monitoring facilities. Note that the parameters are in an order 
corresponding to the order of the stacks in memory. 

The result of the execution of the statement is to change the 
program's stack sizes to the values given. 

<CHARACTER fILL 
DESIGNATOR> ::= 

<Of DESTINATION> 

<Of SOURCE> ::= 

.. -.. -
CHARACTER_fILL «Of DESTINATION>. 
<Of SOURCE» 

<ADDRESS GENERATOR> 

<EXPRESSION> 

The high-order 8 bits of the <Cf SOURCE> will be spread 
throughout the <Cf DESTINATION>. 

<COMMUNICATE DESIGNATOR>::= COMMUNICATE «EXPRESSION» 

The <EXPRESSION> is expected to be a valid communicat~ message. 
This is intended only for experimental testing of communicates. 

<COHPILE-CARD-
INfO DESIGNATOR>::: COMPILE_CARD_INfO 

«Cel DESTINATION fIELD» 

<ceI DESTINATION fIELD>::= <ADDRESS GENERATOR> 

l,···-."···· >'" 



"** " 'CM"t' #nI • t '·'t· ·"eg., 'w fr' ftM} ri'dW .. r:tHtrit#'· :rlf'id'mbb'ti!S '. *Hd;'= E+l.- l.fW 
- ., .. ~- .. ··S t" 

C···'· 
., 

' .. ~~ .. 
~; 

BURROUGHS CORPORATION 
tOHPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-39 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

This function is intended for use by the compilers only. The 
information on the compile card is returned in the following 
forllat: 

OBJECT NAME 
EXECUTE TYPE (DECIMAL) 

01 
02 
03 
04 
05 
06 
07 

COMPILER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 
FILLER 

EXECUTE 
COMPILE AND GO 
COMPILE FOR SYNTAX 
COMPILE TO LIBRARY 
COMPILE AND SAVE 
GO PART OF COMPILE AND GO 
GO PART OF COMPILE AND SAVE 
PACK IDENTifIER 
INTERPRETER NAME 
INTRINSIC NAME 
PRIORITY (DECIMAL) 
SESSION NUMBER 
JOB NUMBER (DECIMAL) 
1ST AND 2ND NAMES Of RUNNING PROGRAM 
CHARGE NUMBER 

COMPILATION DATE ANO TIME COMPILED 
FILLER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 
COMPILER 

USERCODE 
PASSWORD 
PARENT JOB NUMBER 
PARENT QUEUE IDENTiFIER 
LOG SPO 

JlLllIIIAlLl.Q 

CHARACTER (30) 
CHARACTER (2) 

CHARACTER (10) 
CHARACTER (30) 
CHARACTER (to) 
CHARACTER (2) 
CHARACTER (6) 
CHARACTER (6) 
CHARACTER (20) 
CHARACTER (7) 
CHARACTER (1) 
BIT (36) 
BIT( 4) 
CHARACTER (10) 
CHARACTER (10) 
CHARACTER (04) 
CHARACTER (20) 
CHARACTER (1) 

<OC_INITIATE_IO 
DESIGNATOR> ::= OC_INITITATE_IO «PORT>. <CHANNEL>. 

<10 OESC ADDRESS> 

<PORT> ::= 

<CHANNEL> ::= 

<10 DESC ADDRESS> .. -.. -

<EXPRESSION> 

<EXP.RESSION> 

<EXPRESSION> 

See MCP documentation for DC_INITIATE_IO <communicate verb 40). 



II 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PbANT 

<DEBLANK C£SIGNATOR>::= 

<FIRST CHARACTER>::= 

10-40 
COMPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 (G> 

OEBLANK «fIRST CHARACTER» 

<IDENTIfIER> 

The <FIRST CHARACTER> is a simple identifier which describes the 
first character to be examined. Deblank repeatedly increments 
the address field of the descriptor for <fIRST CHARACTER> until 
<FIRST CHARACTER> describes a non-blank character. 

<DISABLE_INTERRUPTS 
DESIGNATOR> ::= DISABLE_INTERRUPTS 

For MCP use only. 

The <DISABLE INTERRUPTS DESIGNATOR> suppresses aLL interrupts 
until an <ENABLE INTERRUPTS DESIGNATOR> is encountered. 

Note that this construct cannot be executed by normal state 
programs. 

<DUMP DESIGNATOR> . -.. - DUMP 

The MCP wiLL create a dumpfile, 
continue after the dump. 

and program execution will 



tpi4p!'$ in 

C· 
. ~/ .. 

c: 

o 

tt·- M-e±§ 

8URROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA 8AR8ARA PLANT 

<DUMP-fOR-
ANALYSIS DESIGNATOR>::= 

. 5" "",' .... , .• ""_ . ., <'W'""Q".-r .... '"X"9''' .... , - 7" 

10-41 
COMPANY CONfIDENTIAL 

81000 SOL (8Nf Version) 
P.S. 2212 5405 (G) 

Execution of this function will cause a dumpfile to be created 
and execution to continue. 

<ENABLE_INTERRUPTS 
DESIGNATOR> ::= 

for Me? use only. 

ENABLE_INTERRUPTS 

The <ENA8LE INTERRUPTS DESIGNATOR> causes the MC? to return to 
the normal interrUPt-processing mode after the <DISABLE 
INTERRUPTS CESIGNATOR> has changed that mode. See above. 

Note that this construct cannot be executed by a normal state 
program. 

<ERROR COMMUNICATE 
DESIGNATOR> ::= ERROR_COMMUNICATE «EXPRESSION» 

The value of the expression should be in the following form: 

2 BITS 6 BITS 16 Bl TS 24 BITS 

-------------------------------------------: 0 . . N . • o . • o . . 
----~~~--~----------------~----------------

where N is the error number. 



BURROUGHS CORPORATION 
COHPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-42 
COMPANY CONFIDENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

The value of the expression witl be put on the Evaluation Stack 
as a descriptor, and an KCP communicate will be performed. 

If N = 29 then the HCP wilt use the 16-bit fieid as a 
and the Z4-bit field as a base relative bit address of 
message to be printed on the SPO. Otherwise, 
HCP-defined error message number. 

See <EXECUTE OPERATOR DESIGNATOR> in Section 8. 

bit length 
the error 

N i s the 

<FETCH DESIGNATOR> .-.. - <FETCH SPECIFIER> «110 REFERENCE 
ADDRESS>, <PORT, CHANNEL ADDRESS>, 
<RESULT OESCRIPTOR ADDRESS» 

<FETCH SPECIFIER>::= 

<lID REfERENCE 
ADDRESS> ::= 

<PORT"CHANNEL 
ADDRESS> ::= 

<ADDRESS GENERATOR> 

<RESULT DESCRIPTOR 
ADDRESS> ::= 

--.. -

<EXPRESSION> 

<ADDRESS GENERATOR> 

See ADDRESS GENERATORS 

<ADDRESS GENERATOR> 

The <FETCH DESIGNATOR> fetches the result of an 1/0 operation. 
If there is a high priority interrupt" then that interrupt will 
be reported. Otherwise, if the <110 REFERENCE ADDRESS> is 
non-zero" then only an interrupt on an lID descriptor with the 
reference address the same as the <110 REFERENCE ADDRESS> will be 
reported. The PORT (3 BITS) and CHANNEL (4 BITS) of the 
interrupt are stored frail! left to right in the low-order 7 bits 
of <PORT, CHANNEL ADDRESS>. The 110 RESULT OESCRIPTOR REFERENCE 
ADDRESS is stored in the low·order 24 bits of the <RESULT 
DESCRIPTOR ADDRESS>. If there were no interrupts, then these two 
fields will be zero. FETCH_AND_SAVE js obsolete as of the 5_1 
release. 

C• .. "' ....... -.-. ~j 
£/ 



+'--ntiedt--? t t trt1WsheW' 4-"ltE' ' rl'·'tfttt··· .. c' PM:-' rl··W'f, +>Gt+!;-,a",.W;--...... · .... 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<FINO DUPLICATE CHARACTERS 
DESIGNATOR> ::= 

<FOC TEXT> .. -.. -
<DUPLICATE COUNT> .. -.. -
<DUPLICATE CHARACTER> 

<NON-DUPLICATE TEXT> ::= 

10-43 
COMPANY CONflnENTIAL 

B1000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

FINO_DUPLICATE_CHARACTERS 
«FOC TEXT> ~ <DUPL1CATE COUNT>, 
<DUPLICATE CHARACTER> , <NON-DUPLICATE 
TEXT» 

<SIMPLE IDENTIFIER> 

<ADDRESS GENERATOR> 

<ADDRESS GENERATOR> 

<SIMPLE IDENTIFIER> 

The text to be scanned for contiguous duplicate characters is 
described initially by <fOC TEXT>. The text will be scanned 
until three or more contiguous duplicates are found. Upon 
return, <fDC TEXT>'s descriptor will be reduced to describe the 
text beyond the duplicate; <NON-DUPLICATE TEXT>'s descriptor 
will be modified to describe the non-duplicate text that was 
scanned; <DUPLICATE COUNT> will contain the number of duplicate 
characters; and <DUPLICATE CHARACTER> wilt describe the 
duplicate character. 

<FREEZE-PROGRAM 
DESIGNATOR>::= 

Execution of this function will prevent the program from being 
moved in memory or from being rolled out of memory. 

iiB1H! 

<GROW DESIGNATOR>::= GROW «PAGED ARRAY IDENTIFIER>. 
<EXPRESSION» 

This statement dynamically increases the array bound of the 
specified paged array by the value of the expression. The 
expression .ay not be negative (the bound may not be decreas~d) 
and the resulting array bound must not be larger than 16277215. 



I 
! 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GRDUP 
SANTA BARBARA PLANT 

J:lALI 

<HALT DESIGNATOR> .. -.. -

10-44 
COMPANY CONfIDENTIAL 

B1000 SOL (8NF Ve~sion) 
P.S. 2212 5405 (Gl 

HALT «EXPRESSION» 

The <HALT DESIGNATOR> causes the value of the <EXPRESSION> to be 
moved to the M-Hachine T-Register. If the value is longer than 
24 bits. only the low-order 24 bits are moved. If the value is 
less than 24 bits. the value is right-justified and leading 
zeroes are added. 

After the value is moved, an M-Hachine halt is executed. 

EXAMPLES: 

DECLARE X BIT(24); 
HALT (X:IHEX_SEQUENCE_NUMBER); 

HALT (SUBBIT (HEX_SEQUENCE_NUMBER. o. 24»; 

<HARDWARE HONITOR 
DESIGNATOR> ::= HARDWARE_HONITOR «EXPRESSION» 

The monitor micro~opcode will be executed using the low·order 8 
bits of the <EXPRESSION> as its operand. 

1~11lAL1Zf-1f&I~B 

<INITIALIZE_VECTOR 
DESIGNATOR> ::= 

<T ABLE ADDRESS> .. -.. -

For use by SORT only. 

INITIALIZE_VECTOR «TABLE ADDRESS» 

<ADDRESS GENER~TOR> 

c 



.. tIJ.t w',', 

C' 
;7 

~."-.\. 
~/ 

··'fnst#fr~fy·t 1M,"., ·')'rtvdrr tst C'd"±"tfH'W'-trt"C ";""*2'-"+ 

BURROUGHS CORPORATION 
'COMPUTER SYSTEHS GROUP 
SANTA BARBARA PLANT 

. "\,*' "4,,,,*+-,, , '."",,{. 'ij·w .. 1 r'm"tj't . "rWr ''fhre!MCwf ... ,.fH'i-im' "i+ffii6 * ._" ., ,." .. , " * 

10-45 
COMPANY CO~FIOENTIAL 

BI000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

The <TABLE ADDRESS> points to the table containing the vector 
address. the vector level-l address. the key table address# and 
the vector limit address. 

<MESSAGE_COUNT 
DESIGNATOR> ::= MESSAGE_COUNT (FILE DESIGNATOR>. 

<ADDRESS GENERATOR> 

<FILE DESIGNATOR> .. -.. - <FILE IOENTIFIER> 
<SWITCH FILE 10> «EXPRESSION» 

The <FILE SPECIFIER> is assumed to be a queue file and the number 
of messages in the queue will be returned as a fixed number into 
<ADDRESS GENERATOR>. If <FILE SPECIFIER> is a queue file fa.ily. 
an array of values. one for each family member, will be returned 
into <ADDRESS GENERATOR>. 

See Appendix VIII: SOL MONITORING FACILITY 

<OVERLAY DESIGNATOR> .. -.. - OVERLAY «EXPRESSION» 

The <EXPRESSION> will be used as an index into the 
dictionary by the interpreter swapper. The 
dictionary entry will specify the action to be taken. 
B1700 HCP Reference Manual. 

in terpr e ter 
interpreter 

5 ee the 



BURROUGHS CCRPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<READ CASSETTE 
DESIGNATOR>: := 

<DESTINATION SPECIFIER>::= 

<HASH_TOTAL SPECIFIER>::= 

<RESULT SPECIfIER>::= 

10-46 
CUMPANY CONfIOENTIAL 

B1000 SOL (aNf Version) 
P.S. 2212 5405 CG} 

READ_CASSETTE «DESTINATION SPECIfIER, 
<HASH_TOTAL SPECIFIER>. <RESULT SPECIFIER» 

<ADDRESS GENERATOR> 

HASH_TOTAL 
NO_HASH_TOTAL 

<ADDRESS GENERATOR> 

The <READ CASSETTE DESIGNATOR> causes the number of bits 
specified by the <DESTINATION SPECIFIER> to be read from the 
console cassette to the address specified by that <DESTINATION 
SPECIFIER>. This number of bits must be eQual to the record size 
minus the hash-total size (if it is present) of 16 bits. The 
<HASH_TOTAL SPECIFIER> indicates whether or not a hash-total is 
expected at the end of the record. 

A value of 0 or 1 will be left 
indicating that the HASH-TOTAL was 
respectively. 

in the <RESULT SPECIFIER> 

<A CC ESS-fPB 
DESIGNATOR> .. -.. -

incorrec t 

<ACCESS-FPB IDENTIFIER> 
«FILE SPECIFIER>, 

or correct, 

<SOURCE OR DESTINATION fIELD» 

<ACCESS-FPB IDENTIFIER> ::= READ_FPB I WRITE_FPB 

<FILE SPECIFIER> ::= 

<FILE DESIGNATOR> 

<FILE NUMBER> ::= 

.. -.. -

<SOURCE OR DESTINATION 
FIELD> ::= 

<ADDRESS GENERATOR> ::= 

<FILE DESIGNATOR> 
<f rLE NUM BER> 

<FILE IDENTIFIER> 

.. 

<SWITCH FILE IDENTIFIER> «EXPRESSION» 

<EXPRESSION> 

<ADDRESS GENERATOR> 

See ADDRESS GENERATORS 



It - T"" "'--_. ts" "±"..-"WPtWllt"ztfut b" ..• M; 511&'_"","",,- "-"F-

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

10-47 
COMPANY CONfIDENTIAL 

81000 SOL (BNF Y~rsion) 
P.S. 2212 5405 (G) 

The File Parameter alock of the file indicated by the <FILE 
SPECIFIER> is read into~ or written from the <SOURCE OR 
DESTINATION FIELD>. 

Note that the <SOURCE OR DESTINATION FIELD> should be 1440 bits 
in length. 

<ACCESS OVERLAY 
DESIGNA TOR> ::= 

<ACCESS OVERLAY 
IDEN TIF IER> :: = 

<ACCESS OVERLAY IDENTIFIER>«EXPRESSION» 

The value of the <EXPRESSION> is assumed to be a 16-bit field 
with the following format from high-order to low-order: 

BITS ----
0-3 
4-27 
28-51 
52-75 

CONTENTS -- .. -------
EU = 0 (Not used) 
Base relative beginning address 
Base relative ending address 
Oisk address (Relative to user area) 

The area described by the beginning and ending addresses is read 
to, or written fro. the user disk at the (relative) DISK AODRESS 
given. 

<REFER_ADDRESS 
DESIGNATOR>: := REFER_ADDRESS «REF VAR>, <EXPRESSION» 

The value of <EXPRESSION> is stored in the address part of <REF 
'liAR>. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<REFER_LENGTH_ 
DE SIGNA TOR>::= 

10-48 
COMPANY CONFIDENTIAL 

BI000 SOL (8NF Version) 
P.S. 2212 5405 (G) 

REFER_LENGTH «REF VAR>, <EXPRESSION» 

The value of <EXPRESSION> is stored in the length part of <REF 
VAR> • 

<REFER_TYPE_ 
DESIGNATOR>::= REFER_TYPE «REF VAR>, <EXPRESSION» 

The value of <EXPRESSION> is stored in the type part of <REF 
VAR>. 

!ltl~I!!f 

<REINSTATE DESIGNATOR> 

<REINSTATED PROGRAM> ::= 

The <REINSTATED PROGRAM> 
RS_COMHUNICATE_~SG_PTR of 
reinstated (See descriPtion 
Reference Manual). 

REINSTATE (<REINSTATED PROGRAM» 

<ADDRESS GENERATOR> 

is assulled 
RS_NUCLEUS 

of the RUN 

to describe the field 
of the program to be 

STRUCTURE in 81700 HCP 

The reinstating program's M-Hachine state is stored in the 
appropr i ate par ts 0 fits RS_NUCLEUS. The address of the 
reinstating program's RS_NUCLEUS is stored in the reinstated 
program's RS_COMMUNICATE_LR. 

The program whose RS_COHMUNICATE_MSG_PTR 
<REINSTATED PROGRAM> is then reinstated. 

is described by 



l.;'@r",,"¢tzffft""'t'M 

(/ 

)"' '" titatWnit 1M" "MyS"'j I y.'"" .. " tx t"";* 

BURROUGHS CQRPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

BllIJUif 

<RESTORE DESIGNATOR> 

<ADDRESS GENERATOR 
LIST> ::= 

.. -.. -

"" '"""'iii"""n 'K'd' .... .i.f. "w"1:t ... , 'r(-WM't'i PM 

10-49 
COMPANY CONfIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

RESTORE «ADDRESS GENERATOR LIST» 

See ADDRESS GENERATORS 

The <RESTORE DESIGNATOR> assigns the current value on the top of 
the Evaluation Stack to each <ADDRESS GENERATOR>. from right to 
left, in the list. This operator is used in conjunction with the 
<SAVE DESIGNATOR>. See above. 

EXAMPLE: 

• 
• 
• 

NOTE THAT RESTORE (A.a.C) IS THE SAME AS: 

RESTORE (CH 
RESTORE (B); 

. RESTORE (A); 

<REVERSE STORE 
DESIGNATOR> ::= 

<ADDRESS GENERATOR 
LIST> ::= 

REVERSE_STORE 
«ADDRESS GENERATOR LIST>.<EXPRESSION» 

See ADDRESS GENERATORS 

The REVERSE_STORE OPERATION has the effect of evaluating multiple 
store operations from left to right instead of from right to 
left. See THE REPLACE OPERATORS. 

for example: 

has the same effect as: 



I 
il 
.; 

:1 
I 

BURROUGHS CORPORATION 
COMPutER SYSTEMS GROUP 
SANTA BARBARA PLANT 

l -- Mi .-
M -- Ni .-
N -- Pi .-
P -- X+li --

10-50 
COMPANY CONfIDENTtA,l 

81000 SOL (BNf Version) 
P .S. 2·212 5405 (G) 

With the REVERSE_STORE, however, the descriptor for each <ADDRESS 
GENERATOR> in the list is determined only once. 

Note: 
REVERSE_STORE (L,H.N.P.X+l); 

is not the same as 
l:=H:=N:=P:=X+l; 

<SAVE DESIGNATOR> ::= SAVE «EXPRESSION lIST» 

Each of the <EXPRESSION>s, from left to right. will be evaluated, 
and the value of each left on the Evaluation Stack (and Value 
St ac k, if nece ssar y ). .see <RE S TORE DES IGNA TOR>. .t~ 

<SAVE STATE DESIGNATOR> . -.. -

~ 

The state of the interpreter will be stored in RS.M.HACHINE (See 
B1700 HCP Reference Manual). Execution will then continue. 

<SORT DESIGNATOR> .__. -

<SORT INfORMATION TABLE 
SPECIfIER> ::= 

SORT «SORT INFORMATION TABLE SPECIFIER>, 
<SORT KEY TABLE SPECIFIER>. 
<INPUT fILE DESIGNATOR>, 
<OUTPUT FILE DESIGNATOR> <TRANSLATE 
fILE DESIGNATOR» 

<ADDRESS GENERATOR> 
c 



( "we" j"'b±tiW"-

: c···· 

"f"'"Mdte"' abet'StiWi"" rftHnf""W¥Firw.!r " 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<SORT KE,( TABl E 
SPECIFIER> ::= 

<INPUT FILE DESIGNATOR 

<TRANSLATE fILE 
DESIGNATOR> ::= 

<OUTPUT FILE 
DESIGNATOR> ::= 

<FILE DESIGNATOR>::= 

.. -.. -

10-51 
COMPANY CONFIDENTIAL 

BI000 SOL (BNf Version) 
P.S. 2212 5405 (G) 

<ADDRESS GENERATOR> 

<fILE DESIGNATOR> 

<EMPTY> I • <fILE DESIGNATOR> 

<fILE DESIGNATOR> 

<FILE IDENTIfIER> 
<SWITCH fILE IDENTIFIER> «EXPRESSION» 

The <SORT DESIGNATOR> is a communicate which requests the 
transfer of recor~s from the input file to the output file 
according to the SORT key table. The SORT information table 
includes codes for SORT type, hardware available. and other 
options. 

For formatting specifications of the SORT infor~ation table. 
refer to SORT documentation. 

<SORT_MERGE DESIGNATOR> 

<INPUT TABLE SPECIfIER> 

.. -.. -

.. -.. -

SOR T_MERGE 
«SORT INFORMATION TABLE SPECIfIER>, 
<SORT KEY TABLE SPECIfIER>. 
<INPUT TABLE SPECIfIER>, 
<OUTPUT fILE DESIGNATOR> 
<TRANSLATE FILE OESIGNATOR» 

<ADDRESS GENERATOR> 

See SORT STATEMENT for ather parameters, and SORT documentation 
for table for~ats and semantics. 



BURROUGHS CORPORATION 
CUMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<SORT_SWAP CESIGNATOR> 

<RECORD 1> 

<RECORD 2> 

.e_ .. -

.. -.. -

.. -.. -

10-52 
COMPANY CONFIDENTIAL 

81000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

SORT_SWAP «RECORD 1>,<RECORD 2» 

<ADDRESS GENERATOR> 

<ADDRESS GENERATOR> 

While the <SORT SWAP DESIGNATOR> is intended to be used by the 
SORT, its application is such that it may be generally useful. 

This designator allows the user to swap or exchange two records 
in memory without allocating a third area for storing one of the 
records. 

Specifically, the record pointed to by <RECORD 1> is exchanged 
with the record pointed to by <RECORD 2>. 

Note: The interpreter being used must contain the SORT_SWAP 
operator. 

<T HA W-PROGRA H 
DESIGNATOR>::: 

Execution of 
out of memory. 

<THREAD_VECTOR 
DESIGNATOR> ::= 

this function witl allow the program to be rolled 
It will not force it to be rolled out. 

<TABLE ADDRESS> ::= 

THREAD_VECTOR «TABLE ADDRESS>,<INDEX» 

<ADDRESS GENERATOR> 

<INDEX> ::= <EXPRESSION> 

0·· .. ···"···· ~~) 

('.'~.'. 
,.j,' 



c···.·C\ .. -\ 

..... :j 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

For use by sort only. 

la-53 
COMPANY CONFIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

The <T ABLE 
information 
provides the 
record to be 

ADDRESS> points to the table containing the 
described under INITIAlIZE_VECTO~. The <INDEX> 
offset fram the beginning of the vector to the next 
used for comparison. 

<TRACE DESIGNATOR> • e_ .. - TRACE I NOTRACE I TRACE «EXPRESSION» 

The TRACE will cause the SOL instructions of the normal state 
program to be traced on the line printer. NOTRACE will turn off 
the trace. Tne trace will only be effective when the program is 
run with an SOL trace interpreter. 

TRACE «EXPRESSION» provides greater control of the tracing to 
be done. The low-order 10 bits are used in the following way 
(numbering of the 10 is from left to right): 

Bit Use 

o Trace all commands except those which modify data or 
change the program painter stack. Normal state only. 

1 Trace commands which ~odify data items (e.g., CLR, 
SHOlp etc.). Normal state only. 

2 Trace commands which change the program pointer stack 
(e.g., IFTH, CASE, EXIT, etc,). Normal state only. 

3 Not used. 

Same as 0-2, but for MCP. 
(GETSPACE, FORGETSPACE, and 
traced. 

Several HCP routines 
others) will not be 

7-9 Same as 0-2, but will trace those MC? routines not 
traced by 4-6. 

Note that TRACE(J380a) is the same as TRACE~ while TRACE(O) is 
the same as NOTRACE. 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

<TRANSLATE CESIGNATOR> 

<TRANSLATE SOURCE> ""-" .-
<TRANSLATE SOURCE ITEM 
SIZE> . ,,-.. -
<TRANSLA TE TABLE> .. -.. -
<TRANSLATE TABLE ITEM 
SIZE> .. -.. -
<TRANSLATE RESUL T> .. -.. -

.. ,,".-

10-54 
COMPANY CON~IDENTIAL 

BI000 SOL CBNF Version) 
P.S. 2212 5405 (G) 

TRANSLATE «TRANSLATE SOURCE>, 
<TRANSLATE SOURCE ITEM SIZE>, 
<TRANSLATE TA9LE> , <TRANSLATE TABLE 
ITEM SIZE> , <TRANSLATE RESULT» 

<ADDRESS GENERATOR> 

<EXPRESSION> 

<EXPRESSION> 

<EXPRESSION> 

<ADDRESS GENERATOR> 

<TRANSLATE SOURCE> is assumed to consist of items of size 
<TRANSLATE SOURCE ITEM SIZE>. Each of the items in <TRANSLATE 
TABLE> and <TRANSLATE RESULT> are assumed to be of size 
<TRANSLATE TABLE ITEM SIZE>. Each of the source items is used to 
subscript into the table to obtain an item which is placed into 
the result field in the position corresponding to the position of 
the original item obtained from source. This process continues 
until the source is exhausted, the result is full .. or an error 
occurs. 

If either source or result is not a multiple of its respective 
item size, then the translation of the last item is undefined. 

Both source and table item sizes must be less than or equal to 
24. The table must be large enough to accomodate atl items in 
source. If either of these is violated, a run-time error will 
occur. 

() 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT , 

11-1 
COMPANY CONfIDENTIAL 

B1000 SOL (BNF Version) 
P.S. 2212 5405 (G) 

The following is a list of reserved words in SOL, complete as of 
May, 1978. These words may only be used as reserved words. 

ACCEPT AND AS 

BASE BIT BUMP BY 

CASE CAT CHANGE CHARACTER CLEAR CLOSE 

DECLARE DECREMENT DEfINE DISPLAY 00 DUMMY OYNAMIC 

ELSE END EQl ENTER_COROUTINE EXIT_COROUTINE EXOR 

FILE FILLER FINI FIXED FORMAL FORMAL_VALUE FORWARD FROM 

GEQGTR 

IF INTRINSIC 

LE Q LOCK LSS 

MOD 

NEQ NOT 

OF ON OR OPEN 

PAGED PROCEDURE 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

~~~ -----------~----------.- -~~. 

11-2
COMPANY CONfIDENTIAL

BIOOO SOL (BNf Version)
P.S. 2212 5405 (G)

READ READ_fILE_HEADER RECORD REDUCE REfER REfERENCE REH~PS

RETURN RETURN_AND_ENABlE_INTERRUPTS

SEARCH_DIRECTORY SEEK SEGMENT SEGMENT_PAGE SKIP SPACE STOP

SUBSIT SUBSTR SWITCH_rILE

THEN TO

UNDO USE

VARYING

WRITE WRITE_riLE_HEADER

ZIP

c··-.-.'·······
'J' _,,'

'!I:!,_W' - ." dt' "W" '<"$ t"::ij .'. Hi t- it - '"", t, e . dt

" .. ~.\' ~

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

11-3
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

The following is a list of special words in SOL, complete as of
December, 1976. Each special word has a particular meaning,
however it may be used as an identifier. In that case, it loses
its special significance in SOL.

BINARY

CHARACTER_FILL CHAR_TABLE COMMUNICATE

COMPILE_CARD_INFO COMMUNICATE_WITH_GISMO CONTROL_STACK_BITS
CONTROL_SlACK_TOP CONSOLE_SWITCHES CONY CONVERT

DATE DC_INITIATE_IO DEBLANK DECIMAL

DELIMITED_TOKEN DESCRIPTOR DISABLE_INTERRUPTS DISPATCH
DISPLAY_BASE OMS_CALL DUMP DUMP_FOR_ANALYSIS DYNAMIC_MEMORY_BASE

ENABLE_INTERRUPTS ERROR_COMMUNICATE EVALUATION_STACK_TOP

EXECUTE

FETCH

FIND_DUPLICATE_CHARACTERS FREEZE_PROGRAM

GROW

HALT HARDWARE_MONITOR HASH_CODE HASH_UNPACK

INITIALIZE_VECTOR INTERROGATE_INTERRUPT_STATUS

LE NG TH LIMIT_REGISTER LOCATION

MAKE_DESCRIPTOR

NAME_OF_DAY NAME_STACK_TOP NOL_OP NEXT_ITEM NEXT_TOKEN NOTRACE

NULL

OVERLAY

PARITY_ADDRESS

READ_CASSETTE

REVERSE_STORE

READ_OVERLAY REINSTATE RESTORE

BURROUGHS- CORPORA T I ON
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

11-4
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

SAVE SAVE_STATE SEARCH_LINKED_LIST SEARCH_SERIAL_LIST S_MEH~SIZ1CJ

SEARCH_SOL_STACKS SORT SORT_DELETE SORT_FILE_FIXUP SORT_MERGE ".';'
SORT_RETURN SORT_SEARCHSORT_STEP_DOWN SORT_SWAP SORT_UNBLOCK
SWAP SPO_INPUT_PRESENT

TIME TRACE TRANSLATE

VALUE_DESCRIPTOR

WAIT

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

12-1
COMPANY CONfIDENTIAL

BIOOO SOL (BNF Version)
P.S. 2212 5405 (G)

C AU.E1Hlll 11: ill ~1:i!B.~U. "BJl llJ!!l'c1Jl

There are a nu~ber of options available to allow control at
various compiler features during compilation. These options must
obey the syntax given below.

The "S- or 8,_ must appear in column one of the control card. If
"S" is used, the control card witl not be included in the new
source file generated by the co_piler; if "&- is used. the
control card will be included in the new source file.

The BNf for these co_piler options is as follows:

<CONTROL CARD> ::=

<CONTROL STATEMENT> .. -.. -
<CONTROL OPTION LIST> .. -.. -

<CON TROL OP TI 0 N> .-.. -

<CONTROL OPTION WORD>

<DEBUG OPTION> .. -.. -

.. -.. -

S <CONTROL STATEMENT>

<CONTROL OPTION LIST>
<VOID OPTION>

<CONTROL OPTION>
<CONTROL OPTION>
<CONTROL OPTION LIST>

<CONTROL OPTION WORD>
I NO <CONT~OL OPTION WORD>
I <DEBUG OPTION>
I <SEQUENCE OPTION>
I <PAGE OPTION>
I <MERGE OPTION>
1 <STACK SIZE LIST>
I <INTERPRETER OPTION>
I <INTRINSIC OPTION>
J <RECOMPILE OPTION>
I <LIBRARY PACK OPTION>

LIST I LISTALL I SINGLE
SGL I DOUBLE I CODE
CONTROL I NEW I SUPPRESS
XMA? I CHECK I PROFILE I PPROFIlE
DETAIL I AMPERSAND I NO_DUPLICATES

NO_SOURCE I MONITOR
XREF I XREF_DNLY I EXPAND_DEFINES
SIZE I FORMAL_CHECK .
TIME_PROCEDURES 1 TIME_BLOCKS
PASS_END I ERROR_FILE
FREEZE I NEST_PROCEDURE TIMES
ADVISORY I LOCKI
USEDOTS I CONVERTOOTS
TIME_Mep

DEBUG <NUMBER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<NUM EER> ::=

<SEQUENCE OPTION> -.. -
<SEQUENCE PARAMETERS>

<BASE> ::=

<INCREMENT>::=

<PAGE OPTION> ::=

<MERGE OPTION> ::=

<STACK SIZE LIST> ::=

<STACK SIZE
DESIGNATOR> -... -
<STACK DESIGNATOR>

<STACK SIZE> ::=

<VOID OPTION> ::=

· .. -... -

<TERMINATING SEQUENCE
fIELD> ::=

.... -""-

<INTERPRETER OPTION> ::=

<INTERPRETER NAME>

<INTRINSIC OPTION>

<INTRINSIC fAMILY
NAME> ::=

<fILE fAMILY NAME>

<HFIO> ::=

· ,,.. -
· .-· .-

",,· .-

12-2
COMPANY CONfIDENTIAL

Bl000 SDL (BNf Version)
P.S. 2212 5405 (G)

<UNSIGNED INTEGER, 8 OR LESS DIGITS>

NO SEQ
SEQ <SEQUENCE PARAMETERS>

<BASE>
<INCREMENT>
<BASE> <INCREMENT>

<NUMBER>

+ <NUMBER>

PAGE

MERGE

<STACK SIZE DESIGNATOR>
<STACK SIZE DESIGNATOR>
<STACK SIZE LIST>

<STACK DESIGNATOR> <STACK SIZE>

VSSIZE
CSSIZE

<NUMBER>

NSSIZE I ESSIZE
PPSSIZE 1 OYNAMICSIZE

VOIO <TERMINATING SEQUENCE fIELD>

<EMPTY>
<EXACTLY 8 CHARACTERS>

INTERPRETER <INTERPRETER NAME>

<EXTERNAL fILE NAME>

INTRINSIC
<INTRINSIC fAMILY NAME>.

<IDENTIfIER> I <CHARACTER STRING>
<fILE fAMILY .NAME>

<MULTIfILE 10>
<PACK_ID/MULTIfILE 10>

<CHAR STRING>

<CHAR STRING>
(_ .. ,
,
- ~;~

'~.-,
~.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SA~TA BARBARA PLANT

12-3
COMPANY CONfIDENTIAL

BI000 SOL (BNf Version)
P.S. 2212 5405 (G)

<LIBRARY PACK OPTION> .. -.. -
<RECOMPILE OPTION>::: CREATE_MASTER

RECOMPILE

Note: Default is OFf except where specified as ON.

AOVISORY

AMPERSAND

CHECK

CODE

CONTROL

CONYERTDOTS

CSSIZE

DEBUG

DE TA IL

DOUBLE

DYNAHICSIZE

Prints advisory Messages
Default is ON.

on the listing.

Prints those ampersand cards which are examined.
Default is ON.

The merged source will be checked for sequence
errors. Default is ON. Sequence checking is
done after any resequencing due to a SSEQ is
complete.

Prints generated code.

Prints control cards.

Converts dots ."." to underscores "_" when used
as separators in identifiers. The conversion
will be reflected in all compiler. output
including the listing and NEWSOURCE files.
RECORD constructs ~ay not be used with dot
separators in identifiers.

See Appendix VII_

Control Stack size.

Compiler debug use only.

Prints expaosion of define invocations.

Double spaces listing when printing.

Amount of memory used for paged array pages.

A separate error file will be produced
containing only errors and warnings and the
source images to which they apply.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

12-4
COMPANY CONFIDENTIAL

81000 SOL (BNf Version)
P.S. 2212 5405 (G)

ESSIZE

EXPAND_DEFINES

FREEZE

FORMAL.CHECK

INTERPRETER

INTRINSIC

LIST

LISTALL

LOCKl

MERGE

MONITOR

NEST _PROCE
DURE_TIMES

NEW

NO

Evaluation Stack size.

Causes define expansions to be cross-referenced
(used in conjunction with XREF or XREF_ONLY1.

The FREEZE bit wilt be set in the program's fBP.
preventing the program from being rolled out
during execution.

Procedure actual parameters and values returned
frail typed procedures will be checked
respectively against their corresponding formal
parameters and procedure formal types.

Changes the interpreter n~lIe.

Changes the family na.es of intrinsics to be
used.

Assumes all library files are on the pack
specified.

Lists the source input which was compiled. NO
LIST will also turn off LISTALL. Default is ON.

Lis t sal LSD L sour c e i n put (w h e the r 0 rna t
conditionally excluded). LISTALL turns on list.
but NO LISTALL "ill not turn off list.

Intermediate work files witl be tocked into the
disk directory as they are created. (See
Appendix IV: RUNNING THE COMPILER).

The pri.ary source file is on tape or dis~ which
witl have the cards. from the card reader.
!Berged wi th it.

See Appendi x VIII: SOL MONITOR FACILITY

See Appendix III.

Creates a new source file.

NO preceding an option (which allows it) will
turn that option off.

Newly declared identifier will not be checked
for uniqueness. The programmer must guarantee
that there are no duplicates before using this
option. It will reduce compile time fOT large
programs on t y .•

(~\
\.~'--~/

c:!

(

c.·····.'
-

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

12-5
COMPANY CONFIOENTIAL

B1000 SOL CBNF Version)
P.S. 2212 5405 (G)

HSSIZE

PAGE

PPSSIIE

Program source images will not
shortening the compiler work
listing will be possible when
specified. This should be
programs only.

Name Stack size.

Page eject if Listing.

be saved, thereby
file. No source

this option is
used with Long

The total elapsed time and the number of errors
witl be printed at the end of each pass.

Program Pointer Stack size.

RECOMPILE See Appendix VII.

RECOMPILE_TIMES The start and stop times of each of the phases

SEQ

SINGLE (SGL)

SIZE

SUPPRESS

TIME_BLOCKS

TIME_PROCEDURES

TIME_MCP

USEDOTS

VOID

of the "bind" pass of a CREATE_MASTER or
RECOMPILE will be printed on the listing.

Resequences new source file using base and
increment specified. Default increment is 1000,
default base is the sequence nu~ber of the tSEQ
card. If the SSEQ card has no seq number the
default base is 1000.

Single spaces listing when ·printing. Default is
ON.

Prints segment sizes by na~e at end of compile.

Suppresses warning messages. To suppress
sequence error messages, turn off CHECK.

See Appendix III.

Allows the use of dots, ".", as separators in
identifiers. Otherwise, underscores, "" will
be required (See CONVERTDOTS).

The VOID option will void records in the prj~ary
file which have sequence fields less than or
equal to the <TERMINATING SEQUENCE FIELD>. If
the fieLd is omitted, only the record with the
sequence number corresponding to the VOID card
sequence number will be deleted. The VOID
option will not delete i~ages in a secondary
(card) source file.

BURROUGHS CORPORATION
COMPUTER 'SYSTEMS GROUP
SANTA BARBARA PLANT

12-6
COMPANY CONfIDENTIAL

81000 SDL (SNF Version)
P.S. 2212 5405 CGl

VSSIZE Value Stack size.

XHAP

XREf

XREf_ONLY

Specifies the working set size of the object
program as used by MCPI. This OPtion has no
effect on programs to be run under KCPII.

Creates an extended code map file for post
compilation analysis. The name of the file
passed to SOL/XHAP is ·XHAPHMOOYY/<TIHE>·, where
HH is the month, 00 is the day of the month~ YY
is the year, and <TIME> is the time of day of
the cOllpile.

Produces a cross-reference listing of the
program. The nalDe of the file passed to
SOL/XREf is "XREfHHOOYY/<TIHE>", where HH is the
month, 00 _ i s the day of the month, YY is the
year, and <TIME> is the time of day of the
compile.

Produces a cr'oss-reference l j sti ng, and then
terminates the compilation. The name of the
file passed to SOL/XREf_ONLY is
"XREFHMDOYY/<TIME>", where MH is the 1I0nth~ DO
is the day of the month, YY is the year, and
<TIME> is the time of day of the compile.

c

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

13 "1
COMPANY CONfIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

(~' Ae.et1:L!U! 111: l!!Ulm3!l!.t11!Hi !lfl1l!11AIIJHi

~ •..•. C.· .• •· ••• · •.••• I

~!

The following control card options can be useful to the
programmer who wi shes to deter ilIj ne the most ti me consumi ng
partes) of his program. The purpose of these control options is
to point out the parts of the program which are the most time
consuming and/or heavily used.

PPROfILE

PROFILE

<HARDWARE HONITOR
DESIGNATOR> ::=

Establishes a dyna.ic array~ each ele.ent of
which is a counter for one procedure. The index
n~.ber for each procedure appears in the listing
following the <PROCEDURE IDENTIFIER>. The value
of the counter will reflect the number of
entrances to the procedure in question. Those
with the highest counters should be investigated
with the PROFILE option.

Establishes a dynamic array, each element of
which is a counter for one branching operation
«00 GROUP>, <IF STATEMENT>, or <CASE
STATEMENT». The index into the array will
appear in the listing following the statement in
question. Those branches with the highest
counter values are the branches most heavily
used.

HAROWARE~MONITOR «EXPRESSION»

The 81100 is equipped with a hardware monitor which may be
manually wired to suit the needs of the program~er. The device
can be useful as a timer or a counter to monitor program
efficiency.

The low·order 8 bits of the <EXPRESSION> is used as the low·order
8 bits of the H-instruction lonitor. For wiring instructions of
the hardware device see Computer Performance Monitor II: . Syste.
SUlDlIaryHanual.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

13-2
COMPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 CS)

A high-resolution timer and the means to access it are available
on select B1720-5eries systems. This timer is accessed directly
by the interpreter, bypassing the Hep and its inherent effects on
tim i n g a c cur ac y.

Timing of procedures and/or blocks is initiated by the use of
control options: STIME_PROCEOURES and STIME_BLOCKS. The
appearance of either of these options turns it on; the
appearance of the option preceded by NO turns it off. The
setting of the option at the time of parsing of the procedure
head or of the block head (DO and DO FOREVER, in the case of 00
groups) determines whether or not the attendant body of code is
to be tilled.

For each item to be timedr a timer cell number is assigned. Upon
entrance to the body of code, the timer value is subtracted from
the proper cell and upon exit, the timer value is added to the
cell. Procedures are not timed around calls of other procedures,
so that procedure times reflect onty the elapsed time spent
within that procedure. Block timing works the same way, i.e.,
times of nested blocks are added to those of enclosing blocks,
but times of procedures which are catted are not included in the
times of the calling procedure or blocks. The times of called
procedures WILL be added to those of the caller by specifying the
option NEST_PROCEDURE_TIMES.

At the time of executionr an intrinsic will be invoked which will
print the timing celts ordered by value. The contents of these
cells are the number of microseconds spent in the timed bodies of
code. If the job terminates abnormally, then DUMP/ANALYZER will
print the contents of the timing celts.

It is intended that the timing functions witl be used in the
following manner: First, all the procedures in a program will be
timed. Upon isolation of the ~hot· proceduresr block timings
will be requested for those blOCKS contained in these procedures.
If both block and procedure timings are requested for large
programs, an inordinate amount of memory will be allocated for
the timing cells, which are 48 bits in length.

This scheme is usable by the Mep. The $-oPtion $TIME_MCP must be
included at compile time. The timing celts are printed with a
SPO message.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

14-1
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

(": !fJ!tliQ.1! l~: 1U!.HIi.11::!~ ltft g]J:!fll.~R

c···.'.·.'~' ..

There are two basic deck setup formats. They are:

A. The primary source file is on cards.

<SYSTEM COMPILE CARD>
* <fILE EQUATE CARD FOR FILE NEWSOURCE>

DATA CARDS
fr S NEW

<seL PROGRAM>
FINI
END

If the primary source file is to be saved on tape or
disk, these cards must be included.

B. The primary source file is on disk.

<SYSTEM COMPILE CARD>
<FILE EQUATE CARD FOR FILE SOURCE>

• <FILE EQUATE CARD FOR FILE NEWSOURCE>
DATA CARDS

, MERGE
• S NEW

<PATCHES TO SOL PROGRAM>
END

* If the merged file is to be saved, these cards must
be included.

Note: Refer to the B1700 MCP Software Operational Guide for
the e~act format of the compile and file equate
cards.

CARDS

SOURCE

NEWSOURCE

Card input file (80 or 90 byte records)

Primary source fite if $ MERGE is used (80
or 90 byte records)

Updated source file if S NEW is used (90
by t e r ec or d s)

BURROUGHS.CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT '., .

..

LI,~E. ,

ERROR_LINE

XREf_LINE

XHAP_LINE

PFILE

IFILE

IHAGE:"FIlE

Line printer file

14-Z
COMPANY CO~fIDENTIAL

81000 SOL (BNF Version)
- P.S. ZZlZ 5405 (G)

Separate error file (produced when
SERROR_FILE is used)

Lists file for XREF. Allows file e Quat i on
in the compiler •.

lists file for XMAP. Allows file equat i on
in the cOllpiler

Intermediate file produced by the pre-pass.

Interllediate file produced by the first
pass.

Source image file produced by the pre-pass.

In addition to the code file which is always produced by the
cOllpiler (unless SYNTAX is specified)~ three more files are
optionally produced. These files are created if certain dollar
options ~re specified.

The name of these "extra" files is the same as the code fite
name, except that Z characters are appended to the front of the
file-ida These characters are "M_" for the monitor file, "P_·
for the profile file, and··T~· for the tilling file. For example~
monitoring the code file "A/8" creates an additional file called
-A/M_8-.

The compiler will notice if the operator gives it SPO input
during any of the first three passes (SOLP~ SOll~ SOLZ). SPO

o

(1\
\ }
~

input will be ignored during SOL3. the partial recompilation C
binder. The operator lIay give any of the following COllmands in .. :
the AX message:

.,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

14-3
COMPANY CONfIDENTIAL

81000 SOL (BNf Versioni
P.S. 2212 '5405 (d)

STATUS

LIST

NO LIST

NO PASS_END

LOCK!

NO lOCKI

~jH. Bt~IAB!

The cOllpiler will display the curr'e'nt pass
executingr sequence number being compiled_ and
errors detecied so far.

The compile~ wiLL begin listing in whatever
pass is currently executing.

Stops listing in whatever pass is currently
execut i ng,.

Sets option to display a message as each pass
completes.

rese~s PASS_END option.

The compiler will lock intermediate fiLes as
they are created and will lock any that have
already been created but not released. The
inter~ediate files may then be used to restart
the co_piler if necessary (see below) or be
analyzed with SOL/IA (not released outside the
company).

Inter~ediate files not already locked will not
be locked.

If intermediate files have been saved (see lOCKI above) and a
compile is terminated in SOll, SOL2, or SOl3 due to machine
failures, it .ay be restarted in SOll or SOL2 to avoid repeating
the entire compite.Program switch zero is normally se"tto zero
indicating a full compile. It lIay be set on the compile card,
however, to one (indicating an SOll restart) or two (indicating
an SOl2 restart). SOL3 cannot be restarted; instead the
operator ~ust restart SOl2.

The compiler will expect tn9 following files when restarted:

SOLl PfILE

SDL2

IMAGE.fIlE
HASTER/tNF (if CREATE_MASTER compile)

IFILE
IMAGE.FILE
HASTER/INF (if CREATE_MASTER compile)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

14-4
COMPANY CONFIDENTIAL

Bl000 SOL (BNF Version)
P.5. 2212 5405 (G)

fites witl have been saved under these names if (a) the operator
entered a LOCKI message or (b) SLOCKI appeared on a compiler
control card.

C'·'
' ... -~>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

15-1
COMPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (G)

The conditional compilation facility allows
selectively compi.Le blocks of code without
physically adding or re.oving records.

the user to
the necessity of

<CONDITIONAL INCLUSION> records are always written to a new file
Cif one is created), whether or not they are compiled. If
conditional compilation records are to be printed with the source
listing. then LISTALL must appear on the I-card. If not
specified, only those conditional compilation records which were
compiled are printed.

The BNF for the conditional compilation is as fallows:

<CONDITIONAL INCLUSION>

<SET STATEMENT> ::=

<SET SYMBOL LIST> ::=

<SET SYMBOL> ::=

<BOOLEAN SYMBOL> .. -.. -

<RESET 'STATEMENT> ::=

<RESET SYMBOL LIST> ::=

<RESET SYMBOL> ::=

<PAGE STATEMENT> ::=

<LIBRARY STATEMENT>

<FILE NAME>::=

.. -.. -
J

<SET STATEMENT>
<RESET STATEMENT>
<PAGE STATEMENT>
<LIBRARY STATEMENT>
<IF BLOCK>

SET <SET SYMBOL LIST>

<SET SYMBOL>
<SET SYMBOL LIST>
<SET SYHBOl>

<BOOLEAN SYMBOL>

<LETTER>
<BOOLEAN SYMBOL> <LETTER>
<BOOLEAN SYMBOL> <CIGIT>

RESET <RESET SYMBOL LIST>

<RESET SYMBOL>
<RESET SYMBOL LIST>
<RESET SYMBOL>

<BOOLEAN SYMBOL>

PAGE

LIBRARY <FILE NAME>

<MULTI-FILE IDENTIFIER>
<MULTI-FILE IDENTIFIER>
<FILE IDENTIFIER>
<PACK IDENTIFIER> I
<MULTI-FILE IDENTIFIER>

I

I

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<PACK ICENTIFIER>::=

<HULTI~FILE IOENTIFIER>::=

<FILE IDENTIFIER>::=

<IF BLOCK> ::=

<IF STATEMENT> ::=

<BOOLEAN EXPRESSION>

<BOOLEAN FACTOR> .. -.. -

. --.-

<BOOLEAN SECONDARY> .. -.. -

<BOOLEAN PRIMARY> .. -.. -

<INCLUSION BLOCK> .. -... -

<SOL SOURCE
IMAGE BLOCK> .. -.. -

<END STATEMENT>

<TRUE PART>::=

.. -.. -

<ELSE STATEMENT> ::=

15-2
COMPANY CONFIDENTIAL

BI000 SOL (BNF Version)
P .5. 2212 5 405 (G)

<PACK IDENTIFIER> I
<MULTI-FILE IDENTIFIER> I
<FILE IDENTIFIER>

<IDENTIFIER>

<IDENTIFIER>

<IDENTIFIER>

<IF STATEMENT>
<INCLUSION BLOCK>
<END STATEMENT>
<IF STATEMENT>
<TRUE PART>
<INCLUSION BLOCK>
<END STATEMENT>

IF <BOOLEAN EXPRESSION>

<BOOLEAN FACTOR>
<BOOLEAN EXPRESSION> OR
<BOOLEAN FACTOR>

<BOOLEAN SECONDARY>
<BOOLEAN FACTOR> AND
<BOOLEAN SECONDARY>

<BOOLEAN PRIMARY>
NOT <BOOLEAN PRIMARY>

<SET SYMBOL>
<RESET SYMBOL>

<SOL SOURCE IMAGE BLOCK>
<IF BLOCK>

<EMPTY>
<1 OR HORE SOL SOURCE IMAGES>

END

<INCLUSION BLOCK> <ELSE STATEMENT>

ELSE

All records containing conditional compilation statements Must
have an ampersand (t> in column 1 (except the <SOL SOURCE IMAGE
BLOCK». In addition, a complete conditional inclusion statement
must be contained on one &-CARO. Columns 2-12 are free-field,
and columns 13-80 .ay contain sequence numbers.

c

c

--.-~- .

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

15-3
COMPANY CONFIDENTIAL

B1000 SOL (BNt Version)
P.S. 2212 5405 (G>

Note that <BOOLEAN EXPRESSION>s may contain the logical operators
(from lowest precedence to highest): OR, AND, and NOT.

The <PAGE STATEMENT> will cause a page eject if the source file
is being listed. The <LIBRARY STATEMENT> will cause.the.j~ages
from the file specified by <fILE NAME> to be included in the
source program.

~ '" • .!'"' -.,

,~ ,." , ' .. "

As an example, consider the folLowing SOL source statements
illustrating nested conditional compilation statements and <SOL
SOURCE IMAGE BlOCK>s.

COL 1

& SET A 8 C
& RESET 0 E
DECLARE (A,B) fIXED;
& IF A AND E
A := Bi
& ELSE

FREE-fIELD: COlS 2-72

A := X CAT Y+Z; % WHOLE SOURCE IMAGE IS INCLUDED
& IF C
B := Ai
& END
& END
& 1 F a OR 0
SUMP ai
& ELSE
BUMP Ai
& END

SEQ: 73-80

0100
0200
0300
0400
0500
0600
0700
0800
0900
1000 .
1100
1200
1300
1400
1500
1600

The compilation of the foLlowing statements would resul·t.

DECLARE (ApS) FIXED; 0300
A := X CAT Y+Z; % WHOLE SOURCE IMAGE IS INCLUDED 0700
8 := Ai 0900
BUMP Si 1300

Note that every IF must be paired with either an ELSE or an END.
Every ELSE must have an END associated with it.

BURROUGHS (ORPORATION
COHPUT~R ~~STEHS GROUP
SANtA BARBARA PLANT

16-1
COHPANY CONFIDENTIAL

B1000 SOL (BNF Version)
P.S. 2212 5405 (G)

This section contains coding suggestions and examples which
result in decreased source code and/or object code.

As many non-structured declarations as possible (up to
a maximum of 32) should be declared in one <declare
STATEMENT>. Example:

DECLARE A FIXED, (B,C) 81T(24);

generates more efficient code than:

DECLARE A FIXEO;
DECLARE (B,C) BIT{Z4);

2. A <DEFINE ACTUAL PARAMETER> (See DEfINE INVOCATION) may
be a series of SOL statements. for example:

DEfINE COHPARE(TS,S) AS#
IF TOKEN_SYMBOL=TS

THEN DO;
S;
U~DO THIS_ONE;

END';

o

(/

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

10-2
COHPANYCONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 ~4a5 (G)

lay be invoked as:

00 THIS_ONE FOREVER;
COMPARE ("SINGLE", SINGLE_SPACE := TRUE);
COMPARE ("MERGE", IF LASTUSED + a

THEN UNDO THIS_ONE;
LASTUSEO := 2;
OPEN SOURCE INPUT;
READ SOURCE (TAPEHORK»);

COMPARE (••• , •••);
•
•
•

1. Procedures from highest efficiency to lowest are:

PARAI4ETERS
----~- .. -- ...

NO
NO
YES
YES

LOCAL DATA

NO
YES
NO
YES

1. When the value returned by a typed procedure 1S to be
ignored:

IF P(X-Y) THEN;

is more efficient than:

TEMP := P(x-n;

2. Use "I" at the beginning of a comment rather than
"/* ••• */" as delimiters. The "%" stops the scanning of
that record. If the "/* ••• */" form is used, scanning
must continue to detect the ending terminator. Thus
compile time is increased.

3. The expression:

SUaSTR("0123456789ABCOEf",N,1)

'BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA'BAR8ARA plANT

16-3
COMPANY CONFIDENTIAL

81000 SOL (8NF Version)
P.S. 2212 5405 (G)

~'" '"~ > 5

generates much less code than
" ~",

:4. ... T h"e f act t hat abo 0 lea n e x pre s s ion e val u ate s t 0 a 0 n e

5.

~rz~ro can often be used to advantage. for example,
tne statement:

X := A>O;

is more efficient than

X := IF A>O THEN 1 ELSE 0;

and the results are the same.

8UMPA := s; stores B into A and bumps B, and BUMP
A :;= 8; stores B into A and bumps A.

&. REVERSE_STORE (IF <CONDITION> THEN A ELSE B, C;)
selectively stores C into A or B.

7. Consider the following:

In a compiler, for example, assume that all calls on
the error routine follow a THEN/ELSE or are in a <CASE
STAT£HE~T>. Example:

1. IF <CONDITION> THEN ERRORCE005);
2. CASE N;

· .r

· .,
· • r

ERRDRCE137);
· .,

END CASE;

It is sometimes desirable to put these
separate segment, especially when
represent character strings (i.e.,
MESSAGEs>.

For example:

calls into a
E005 and E137
in-line ERROR

DEFINE ERRORCN) AS #SEGMENT (ERROR_CALLS);
ERROR_ROUTINE (~)';

Because of the temporary nature of segmenting
subordinate executable statements, only the calls witl
be in separate segments.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

lo~4
COMPANY CONFIDENt~~l

B 1 000 SOL (BNFVers,i on.)
P.S. 2212 5405 (G)

8.
. ' ,:

When two or more elements of a <CASE STATtMENT> or an
<IF STATEMENT> have identical code, more efficient code
is generated if the code is put into a separate
procedure (with no parameters or data). In both cases,
execution time witt be identical, b1Jt, object code
savings could be substantial.

9. Use conditional compilation statements to remove
debugging code~ rather than physically removing the
code. See Appendix VII."

BURROUGHS CORPORATION
CQ"~UTER;"ST£"S GRnUp
~A~TA)}4R~A~~ PLANT :

17-1
COHPANY CONfIDENTIAL

81000 SOL (ON' Version)
P.S. 2212 5405 (G)

} ,:':;, :1' It:" '. t:"r: "

tefUDU 111= < ~L J!ABlliL B.t~.Q.HJ!lL!ll.tW E.A&lJ.lll

• .., ~,~ ~. ., (;.j. • .,.,c., ~. • i -, . '. '
~fie~SO~~~Q,pl1.r include5 a facitity whereby it is possible to
savj~Lf~'~jmation froll one~ompilation which will enable the
compiler to recompile only one (or more) Lexic Level Zero
pr::9ged4re~:...in:subSeQuent runs" thus reducing computer time for
the recompltatl0ns.

A.' SAVING THE HASTER COHPI.LER IN'ORHATtON

-~~; ~~ ... ~- .'~ '\ ,," .3 f "; .~'{! ... ,. ~~ '-! (' f

The '1!I~§ter- cOllpile inforllation,is saved·~,y;.the compiler in the
f~llQwing, tiv~ files: ';',:

Internal Name , ,

NEW~OURCE

" NEW_INfO_f ILE
NEW_SECONOARY_'ILE
NEW_BLOCK_AODRESS_'IlE
NEW_'PB_FILE

Def~~tt~External Name
.... ". j.. --_ -.' .. ----_

-NEW"I"SOURCE
. ·,~EW·I·INf"
- "NEW"I"SEC·
"NEW"I"e"'"
"NEW"/wf'PS"

;. .,,~ r', ': ff, 00 0 ' -:.

Note that tbe file NEWSOURCE is identi~.l to, and
same w",Y .. ,as.: the f-i1e created with thsSNEW card.
will be c~e~~ed-~ith the compiler l-ootion (Note:
indicate optional specifications):

created in the
All five files

Brackets here

SCREATE HASTER [rePACK ID>/l<HULTIFILE_IO>] - ... ~

If specified,- ~~ULTIfILE_IO> will be-~~ed' instead of the default
multifile id~ r ~NEW·. for all the filis. If also specified,
<PACK_ID> will direct atl the files to the named user disk pack
or cartridge instead of system dis~. <PACK_IO> and <MULTlfILE_
~D>.ust be Quoted character literals.

Notes,:-
. .

,.0' .

1. The CREATE_MASTER option must be on the first card in
the compile deck (file "CARDS"), and that card may
contain no other dollar options (except RECOMPILE--See
the following section).

c··' ..
_¥l

(~

C'"
•••••••••••

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

11-2
COHPANY CONFIDE~TIAL

81000 SOL C~N~ '~r~ionj
P.S. 2212 5405 (G)

- ~ ~ '''', ':;<.: (:; ~,
l; "..;:.,' 4~;" '.,,'_ h~' ,'~:'" _, ,,.,-' _ :;,,;.

2. The new source file must be completely sequenced, so

3.

SSEQ should be used to assure this if nece$$ary.
This includes all &~CARDS~ as they wilt b~:f~~l~d~d f~
the new source fi l e. ". .. ',/,

SNEW option has
CREA TE_1-4 ASTER.

8. PARTIAL RECOMPILATION
~'. :" .

--, .

By supplying the information saved during a CREATE_HASTER
compile, one may riaveonly those Lexie Level Z~fd ~~~ciau'e~
recompiled which have actually been patched. The patch d~ek -Ii
perfectly ordinary except that no patch cards may change Lexic
Le~el Zero code, dec(arations or orocedure heads.""

Partial recompilation will ,be invoked with the S-option (Note:
Brackets here indicate optional specifications):

" .,)

SRECOHPILE {[<PAC~_IO>']<HULTIFILE~tO]

The compiler wiLL then expect the following six files as input:

Internal Name
............ - ... _------
SOURCE
HASlER_INFO_FIlE
HASTER_SECONOARY_FIlE
HASTER_8LOCK_AOORESS_FILE
HASTER_FPB_FILE :
HASTER_HPT_FILE

~ ,";, -:.~ > '\ ,;;

Default External Na'~

-------------~~~---- ..
"HASTER"("SOURCE"
-MASTER"I"INf'"
-MASTER-'''SEC·
-HASTERft'"BAF"
"MASTER","FPS" 1 '9'~
"MASTER"I-HPT" ' .. ;'

.'.~,

If specified in the RECOMPILE option, <MULTIFILE_IO> witl be ~sed
instead of the default id "HASTER". If also specified, the files
will be expected to be found on user pack or cartridge <PACK~10>~
<PACK_IO> and <MULTIFILE_IO> must be quoted character literals.

No te s:

1. The RECOMPILE option must be on the first card in the
compile deck (file "CARDS") and that card may contain
no other doLlar options (except CREATE_MASTER, see
previous section).

I

I

'I

~U~ROUGHS CORPORATION
ttlKP.uTER~S:Y ST:EHSGROU P
'SAtfJ~A"i ~A~BA,RA PLANT

17-3
COMPANY CONFIOENTIAl

BI000 SOL (BNF Version)
P.S. 2212 5405 (G)

C.

"
2. The patch deck may contain S-CAROs and 1SET and &RESET

cards fotlowsd by patch cards. If &-CAROs are used,
however, they will onty apply to procedures being
rec~mpited and may, therefore, cause unwanted effects.

, J...'

3.:~eith~r SSEQ nor SMERGE iaybe used with SRECOHPILE.

SIMULTANEOUS RECOHPILE ANO'CRtiTE MASTER
i -.

New master information may be saved from a recompilation run with
very tittle overhead. a~th RECOKPIL~ andCREATE_HASTER options
(See above.) must be on the'ftr~tca'rdof the compile deck. All
restrictions noted in A and B'should lle'Observed.

O. GENERAL CONSIDERATIONS

1. All input and output files must b.'on disk. (This does
not apply to the SOURCE fil~ for a straight
CREATE_MASTER which is read in the normal way as the
result of a SHERGE card. It does apply to SOURCE when
doing RECOMPILE.)

2. File equation cards for recompilation f~les will be
ignored unless no <PACK_IO> or'<MUlTIFllE_IO> has been
specified on the

S-CARO ..

3 • 1) uri ng r e com p it at ion the 0 n l y sou r c e w hie h can be
listed is that which is actually b,eing recompiled.

4. S-CARDs for timing. monitoring~ ~nd PROFILE may be
added during recompitation. They will onLy affect
those procedures being recompile~, however. even if
they are at the begihning of t~e patch deck.

5. A CREATE_MASTER comoilation reporting syntax errors
which are strictly local to Lexie level zero procedures
witl produce usable master files~ These may then be
used torecompite the offending procedures. Since the
CREATE_MASTER produced no object file. however. some of
the S-Card information witt be missing for the
recompilation--specifically stack size cards. These
must be included in the recompile deck.

6. SXMAP is incompatible with partial recompilation and
may not be specified if CRE~TE_MA5TER or RECOMPILE have
been invoiced.

E. EXAMPLES

(,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

) . i •. ' , " ·ll~4
COM P A NYC P NlfJ D:,~,N,T 4~ L

B 1 a a 0, sol. (Bt,if: c¥ers"j.()I1)
P.S. 2212 5405 (G)

1.

2.

3.

CREATE_MASTER compil~tion

?COMPILE HYPROG"WITH SOL TO LIBR'ARY
?fILE SOURCE ~AME H¥PROG/OLOSOURCE
?DATA CARDS

TAPE;

SCREATE_~ASTEq. "HYPROG ff
SHERGE SEQ :(I5T' .

. <',::" .

(Patch Cards]
?END

?DUH~ TO[A(rl~E/~t~OMP HYPROG/~i
Partial re~o~~iljtion(from user pack)

..... ...;"

?LOAD TO HYPACK fROM MYTAPE/RECOHP HYPROG/:;

?COMP ILE HYN EWPROG WITH SOL TO L IBRAR't .. ;
?DATA CARDS
SRECO~PILE "HYPACK"/"MYPROG"
SL lsi'
[Patd'h Cards]
?END

S i JJJU l taneous :oper a tj on s

?LDAD fROM ~YTAPE/RECOHP MYPROG/=;

?COMPILE MY~EWPROG WITH SOL TO LIBRARY
?OATA CARDS
SRECO'H~ILE "MYPHOGff CREATE_MASTtR "HYPROG'"
(Patch Cards 1
?END .,'

'!' " .

?DUMP to HYNEWTAPEIRECOHP MYNEWPROG/~;

: BURROUGHS CORPORATION
·Cnk~~rEj~jisTi~$GROUP
~SA~'. BAilARA j~LANr

18-1
-COMPANY CONFIOENTIAL

BIOOO SOL (BNF Version)
P.S. 2212 5405 (G)

:' ' ;. ~ ;:. ::'~ :._~ ~_' 't 0-'

.!ff.E.WU.l jl.11: ~lU. tUB:ill.a!U.w! EAkll.lll

Procedure entry and exit can., b.e dynamically monitored via
!featLlf'!<a~tttfat '-ar';e available th't-oughthe SOL comoiler. Use of the
monitoring feature proceeds in two steps. First, at compilation
time, the user specifies via c.ontrol cards that various

::-pl' ocie.d.U,..:es·:a;r'e t·o be ftc and ida t e 5, lor :. ~onj tor i n9" ins ub se Q ue n t
executions of the program. rhen at execution time the user
specifies via a RUN-TIME MONITOR c;rATEM.ENT that some subset of
:th·e":.icandi;dateprocedures are to be 1II0'n(itored for this run. The

/-, " , ',"

R:U''N-··T'lrfE'H:ONITOR STATEMENT can be input\ through the SPO, or from
sOlDe user file,. at prograM BOJ or during the execution of the
program via execution 9f built-in fuftctjons~
:<\-t. "" • -f~ i; '" :: " "' " -" w>-~, ', •

. ~

Assullli a~~roced~r. named PROC is being moriiiored and that it has
two parameters X and Y. An invocation of PROC would produce the
following monitor information:

'l __:_~lk' i'b tanks' ------r k] PROC cc;cccCCC,";~»'d;dd ddddd
... ..;--.;.: ... k+fblan~,s------y= the "value of",l ,at the point of invo
cat fan" a's' an SOL tit eral
- .. ----k+l·blan'ks------X= the vat ue pf X at the poi nt of
catTon as an SOL literal

\,'

jnvo-

Here ~ describes the nesting lev~l of th~ call, cccccccc is the
sequ'elice,·,'nu'mber' of the invocation point, and dddddddd is the
sequence nUlllberof the procedure head of P'ROC.

When PROC is exited~ the following line is e.i~ted:

------~ blanks------(kl exit PROC at eeeeeeee

If'PROC 1s' a,function,. the following Un~ will also be emitted:
S't,. ,

-~~~~-~.lblanks------PROC~ th~ value"if PROC specified as an
'. soL " li t$r a 1

Tfie:&utpti(data may be directed to any file. This is done by
as'ocf~tfng the file attribute MONITOR_OUTPUT_FILE with some file
in the prcrgram. The foHowing restrictions hold.

';'.e;

c

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

r .~ I. - ., '<'

-,) f~';... ~~

1. The feature is not dyna.II'j.c. CIt canno.tbe ,ch:ang:e'q; wi.~"th

2.

3.

a CHANGE statement). ,'.,,') ,'; if'
.""

The
more

l en g tho f a:~ r ~ cor din the 0 u t D ut . f iJ e,; sn.A u! d'lb~
t han 7 1 chat a c t~r s •

, .~.

, .
If several fiUn: are
attribute, t~~ ~la~t
18 0 nit 0 r 0 u t pat' {'l'e~:

'~ -' f:

given
.' fjJe

1) ; : ~ '::.\ ~l l~

the H 0 NIT OR _,O'UTrP,UT F,1"',£
so declared hl.c9~Rle;t\he

4. If any proced~~es are declared to be candid~ie~ for
monitor then a monitor output file should be declared.
If it is not, the cOllpiler will append a file to the
program for this purpose.

5. The file must be sequential with fixed Lengtli"rijco"rd~."

G. The user should never issue an explicit ,open on the
fiLe.

If the value of a parameter or a procedure is being written and
current output record is insuffici.ent in length, tJ\,ei li.ter..aL~wilL
be continued to therf'e"Xt record fo·r as many' r,ec·or.d.$.. ",a,s is
necessary. !ndent:atfon is not peforllled onsu'b"sequ'a.n,;t: A}J1es.
Indentation of the first Line ceases within 60 spaces of,."t·,ha .. , end
of the monitor output record. Values of length"zero ar.e.noted
appropriately regardless of type. If 3 chara~ter value contains
unprintable data, the value will be printed as three asterisks
followed by a hex representation of the data._ OnlY,thefir,st, .3,0,.
characters of any pr"ocedure naRle and the fir.s.t l~rch~ract~r'S'I"o;,f~
any formal nalle are used. ",' '.' .

;'4, I"'~ ." 1 '.--i; .,.... "~' 1"

! :.

The user specifies that procedures are candidates for monitoring
with the'dollar card OPtions MONITOR and MONITOR Off.,,· the'
qualifier NO is meaningful 1n front of both words." The'
discussion of MONITOR OFF will be deferr~d to a lat,r.section.
However, for the purpo~es 0* qualificition; the two QPtions,are
se~antically equivalent. Specifically, if MONITOR is ON wh~~the
procedure name first appears (either in its forward or its head)"
then the procedure becolles a candidate for monitoring. N(),t~,c~hd\t·
the MONITOR aptian relates to procedures and not ,t.o ,:JJ.~oc,~d;u.:~,Et,
invocations. There is no way to speci fy the con.cap.t,.th,at ~
procedure is a candidate for monitoring but that some' parficular
invocation of that procedure is not to be monitored. Also note
that it is the state of the OPtion when the FORWARD (if present)

BURROUGH'S,' teO RPORA TID N
C,t:lt1P.UT£ft !'STEJ4S GROUP
Sa\NTA BARBARA PLANT

18-3
COMPANY CONFIDENTIAL

81000 SOL (BNF Version)
P.S. 2212 5405 (G)

is encountered that is important.
, ; -, ," f,,; ' .. .-'

Ther ~onc~pt of a RUN-TIME'MONITORING statement was previously
introduced. This statement will be read into the program at BOJ
fro. any file that the user specifies. This is done by giving
the attribute HONITOR_INPUT_FILE to some file declared in the
progra~. The following restrictio~s hold:

Restrictions:

2. If no file is declared with the attributes
HCNI TOR_INPUT _ FILE and procedures ar e dec 1 ar edto be
candidates for monitoring then the program issues

,,", .. , ~'accepts at the beginning of johto' obtain the necessary
. infor.ation from the SPO •.

3. If a file is declared to be the MONITOR_INPUT_FILE then
the monitoring information must be the first record(s)
oft he f i l e., . \'

The RUN-TIME MONITOR statement consists of a run-time monitor
expression that is terminated by a semicolon. Formal
specification of the RUN-TIME MONITOR expression syntax is
deferred to a' later section. The following examples will
(hopefully) illustrate the salient features of the statement.
Her"~teas.read"atl procedures" as "all orocedures which are
candidates for monitoring".

EXAMPLE

,1. SALL;

2. SNONE;

3. XU

MEANING ----... '._-
Monitor all procedures

Monitor no procedures

Monitor atlprocedures whose name is
Xl.

1("'.·.·
.... /

rMtt)ntfttWS$

()

-Iaa.. ··tt· t fib tittri"'

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

4·. *"" ***
• Xl XZ; *

" "
* Xl"XZ; *
* *
Ir Xl OR XZ; " .. *
* Xl + XV "
*** .**

5. *** " ... *

" NO T Xl; * .~ t. r~

... ...
" -Xl; "": ", i.

" " " "!'ut

l~t t: r:
6. 00000000-01999999; "~;

';u

7. *."

8.

... 00000000-01999999 ...

" " ANO NOT SCAN; "

" " * 00000000-01999999 "
* " * * - SCAN *
* ;; *
*** ***

••• dl' **
* ooaooaOO-019999~?'*
*
" *' SCAN;

,~ ;

*
*""

9. **'* "*" * 01426000-01579000 "
" or *

,,'
, .

18-4
COM P:A.N¥ .~ Ctl Nf,I;DE,NTl:A'L

BI000~SDt=tSNf N.r~iQa'
. p .s;. Z212~ S~05": ~{GJ

(All four statements are equivalent>.

'MOnitor~all procedures na~ed~~l O~r~
or. X2.

! " :\", , '

'i

:JCSoth state.ents~a~eeQui.alent).
Monitor all procedures whose name is

:not ,Xl. .,
,. . ~

,

'.
KonitDT all procedurescwhose forwards
or jprocedure heads "oecutNid on or be
tween the two sequer.ce nUlllbers.

Sallie as (6.) above except that proce
dures name SCAN are not to be moni-
tored. ' ,;""'''" .,,'

" ,'. ~.. ~ .
. _" '1 !

"
.:.. ~. !

Monitor all procedures,Aa~e~c$~A~ ,~in
the range descr ibed.. , 51 n;, I :."1 ::

* 02748300-9ge99~99,"1 Monitor all procedures in the ,t wo
procedure
elf' these

" or " ranges specified plus any
*' SCAN;, * n-allled;SCA N wh i ch is out

"*,, ranges.
"

. , , . ,

<, BU'REtOUGlRS::; CORfltJRA T ION
(I COHPlJ1ER':,S Y STEMS' GROUP
,,: SA t4:T A'~ BAas. R A, ·PL AN r

18-5
COMPANY CONfIDENTIAL

81000 SOL (BNf Version)
P.S. ZZlZ 5405 CG)

The SHOff I TOR_OfF option and the three specials MONITOR_SET,
MONITOR_RESET. and ~ONITOR_CHANGE are added to SOL to allow
program control of monitoring. If the SMONITOR_OFF option was
ever on. the program will not require a RUN-TIME MONITOR
stattment at 80J and witt behave a~ if the RUN-TIME MONITOR
statement ·SNONE;- had been read.

Eacl:of the three specials is an unvalued procedure with one
argument, a RUN-TIME MONITOR statement expressed as an expression
which generates a', char,actar string" e.g., MONITOR_SET
(-Xl,XZ;");. MONITOR_RESET causes monitoring to be discontinued
for 'all procedures satisfying its argum~'rlt~ ~ If a procedure is
notcurrenttybeing monitored but stilts~a\isfies MONITOR_RESET's
argument. it wilt continue not ~t()i' be moriito'red.

MONITOR_SET causes .onitoring to be commenced on atl procedures
satisfying its argument. If a procedure is satisfied by
MONITOR_SET·s argument and is currently being monitored, it
con~tnues to be monitor~d. If a procedure is currently being
$pnitored and does not satisfy MONITOR~SET's argument~ it
coot i.nues to be moni tored.

After the execution of a MONITOR_CHANGE only those procedures
refer.nced by its argument will be monitored.

There are no problems of sy •• etry on calls and returns; i.e.,
one can begin .onitoring a procedure that has already been
entered or discontinue the monitoring of some procedure that has
currently been entered. The only loss is that the monitor output
information is "thrown out of sync· in terms of the nesting level
for a while.

" ~'

"<STA,TEMENT> .. - (EXPRESSION>; 1 .. -
< .,,' ~

lSALL; 2

I SHONE; 3

<EXPRESSION> --- <TERM> 4 .. -
I<TERM> <OR> <EXPRESSION> 5

<TERM> .. - <FACTOR> 6 .. -
(

(,'

(,

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

18-&
COMrAN,)"" CQ;tU"IDE:N'J:l AL

, a 10 a 0 sot:..: '(aNf~: VerlsWo n)

"P ~ S,,' 2212,: 5405,;;(G)

<f ACTOR>

l<fACTOR> <AND> <TERM>

"".. - <PRIME>

I<NOT> <PRIME>,

7

J ' 8

<PRIME> ::= «EXPRESSION» I ;""','

I<RANGE> 11

'<LIST> '12: '

<RANGE> ::= <8 DIGIT SEQC>-<8 DIG,lT SEQ ,>
\ ~~ A:J 1 ~" : .. \' i L ..

"'" ,,' ,~, if'. ' . ~. . ~."

<ll ST ::= <SOl_IOENT IflE:R),· - 14"

<OR> . 0-. e-

<AND> · . -· . -

<NOT> · 0-· .-

ltllli~

I <SO L_I D.E.~,;(r;riIER> ~ <Lis T;>

I<SDL_IOENTIFIER><LIST>
" '';it

" ,.
OR " " ".- .

1+ , ." ' i" -,,~.

..
AND

I ..
I NOT " ,

I-

t'· "

..

,

,1,5

16

17 "

20
" t

" 2-1 '~

22
'~. J' ;: .

i.

1. The <8 DIGIT SEQ I>s referred to in line 13 must
be such that the first is less than or equal to
the sec 0 n d • ,~

2. The <SOL_IOENTIFIER>s referred to in (14-16) are
na.es of procedures in the prllgram. ·,OnlY; Ute
first 30 characters are used.

; .'

BURROUGHS CORPORATION
• COMPUTERSYSTEHS GROUP
~~~JA;'A~IARA \P~~~T 

IX-l 
COMPANY CONfIDENTIAL 

BI000 SOL (BNF Yersion) 
1'.5. 2212 5405 (G) 

ACCEPTSTATEMENT'~~i?<-i2 . 
ACcESS_FILE_IN~OR"ATIO~;' 10-37 
ADORES S A ND·VA.bUE; ,P;\~·~,H~lF;~S 8-15 
ADDRESS GENERo\T1PH+~F·.u~.CT:IQ'~S 8-8 
ADDRESS GENERATORS i' ::: ~,"'tl~; ~.:. ~,,; 
ADORES S HODIF lEft, 8-:·t~ '.. ~:' 
ADDRESS Y>\RI ABLES ,. t8;,~,,'1' E " 
AOY IS0RY lZ~3 .. " "A',~' '.' 
AlL_AREAS_AT_OPEN S~Zf:J ~";" 

,. 10-19.·'·.';a:~ ,·.:~!".ft 

AMPERSAND·.OPT ION ~,:, A-Z";3· J~'" 7' . 

APPENDIX 1: RE$E'RVEDANO (SPfi~IA'L WORDS 11-1 
APPEND I X I I: SDi 'CONTROL CA'R 1f 'OPT IONS 12-1 
APPENDIX III:· PROGRAfoJMI~~ti,·O'PTtMIZATION 13-1 
APPENDIX IV: RUNNING THE~nMPILER 14-1 
APPENDIX V: CONDF'fIONALC1lrtJHLATION 15-1 

0··,······· 
., 

':'.:' ,: 

APPENDIX VI: SOL PROGRAM"U'NG~ TECHNIQUES 16-1 
APPENDIX VII: SOL P:A,RTIAL ~fc'ffl'lPILATIDN FACILITY 17-1 
APPENDIX VIII: SOL MONIloRt'NG {.AqiLITY 18-1 
AREA_BY_CYLINDER 5~28 ,,' " 

, 10",1'9 . ~_ ." ~r:y 
ARITHMETIC OPER~Toas 1~~' 
ARRAY 5-2 
ARRAY STRUCTURE 5"".13 .', 
ASSIGNMENT STATEMENT 7-8 
ASSIGNMENT STATEMENTS AND E}(PRESSIONS 1-1 
ASSIG'NOR 8-4 '~¥ 

BACKUS NAUR FO~H 1~1 
BASE_REGISTER 8-11: : /,,',. 
BASIC COMPONENTS Of. THE ;SQ:l 
BINARY cnNVERSIO~' 8-1a· 
BINARY SEARCH 8-18 
BIT STRINGS ~ 2-3 
BUffERS 5-24, 10-22 
BUMP 6-2, 10-1~. > . 

CALLING ABILITY 3-.5 
CASE EXPRESSiON 8-2· 
CASE STATEMENT 1~-7 

, 
.1 

2-1 

CHANGE STATEMENT (fILE ATTRIBUTE STATEMENT) 
CHANGE_STACK_SIZEj 10-31 
CHAR_TABLE 2-5 
CHARACTER STRINGS 2-~ 

CHARACTER_FILL 10-38. 
CHECK OPTION 12-3 
CLEAR STATEMENT 10-12 

10 -14 



he'" "-a"t'"'H' e'· 'X" .. i W ,. ·er*rtrtnti"'f±1r*W¥#,.-·,· ,t '-?·!2? .. :.:::''::- '""*t2,t'¥iH" ~..:. ~._ ....... _ .. ". __ 

, -.. "_ .. -- ~-"-

C",· ~ ::; 

., " <; "':' • 'r'; r:'";,, 'I ~ •• ;,: ' 
; I. /, ...... ~ '~ •• :~. -,:", ,,' l' ~ - Z 

BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

COM~jNt:eb~'IDeiTt~l 
81000 SOL CBNF Version) 

P.S. 2212 5405 (G) 

CLOSE STATEMENT 9-4 
CODE OPTION !a~1~ 
COMMENTS 2-2 
COMMUNICATE 10-38 
COHMUNICATE_~I~H_GISMO 8-19 
COMPILE CARD -::r~f'O "10-38 
CONCA TENA T IO'N 1 ~r"'\li',' 
CON 0 I T i 0 N-A L~;'C'G'MP~I LA:r:t o'N 1 5 -1 ' 
CONDITIONAl,:tiXP-RESS"ItJN 8-1 
CONSOLE SWi,TC}~ES >:;L8'.t9 
CONTROL -OPTfGN'- 12--:] : 
CONTROL STAC'?tr~~BITS ' '8-19 ' 
CONTROL:S T -,!C)<:TOP . -8 "'19 
CONVERT ~2'cr ; , -
CONVERTOOTS OPTION- ' 12-3 
COROUTINE STA'T~MENT; ;',710-33 
C S~s"It£.·:O~P lION ,; :i':·t2,"'3'; 

'.;C ,~}~ .. :'~';~ "'.,,!' '.' t' '. 

DAT'\ ':Si,RU'tl'U'R"itNG": ::5-3 ' 
D AT 'A' :ripe: S~· 5"'"1·' 
DATA; :A:mf.wrss ,,' '8i-22: 
DAtA~La*~lH 8~22' 
o AT'At;~T-"tPE : :B ·'2'2 " 
DATE) ~,;,-a:'''ZZ ' " ," 
DC IN 1 T I ATE St:tr:; 10:"39 - -DEBLANK 10-40 !,. , 

DEBUG OP'f:I1l'N 12-3 
DECIMAL CONVEQSIOH 8-23~' 

DECLARATION SJKrE~ENT 3~1· 
DEClARATI~~S 5~1 
DECLAft~~T1TEMENT 5-2 
OECREHENT 8-4. 10-12" 

-DE f' IN E I N va CAn 0 N 5 -38 
DEFINE STATEH'E"NT '5-36' 

'. i 

DELIMITED_TOKEN" ;8-23 ,>, "w ,.;~ 
DESCIfIPT-OR·S ::<~-10 i., ,;, .~, 

DETAIL OPTION 12~l, 
DE V ICE 5 - 22 p 1'0 --11 
D I SA8LE_ INTERRUPT S 10'::40 
DISK AL L 0 CAT I O-N J ,5 - 28 
DISK DRIVE ASSIGNMENT' 5-2'8 
DISK FILE 5-26. 10-22 
DISPATCH 8-2'4-' , 
DISPLAY STATEME_T 9~'3 
DISPLAY_BASE . 8~25 
00 GROUPS 10"2'~ 
DOUBLE OPt·ION; 12~3' .- .. 

DUMMY 5-13 
DUMP lO-40c 

DUMP_FOR_ANALY,SIS 10-41 -" 
DYNAMIC DECLARATIONS 5 .. 16" 
DYNAMIC FILE CHANGE '10-14 . , .... , 

DYNAMIC_MEMORY_SASE 8-25 
OYNAHICSIZE OPTION 12-3 



"--

IX-3 
COMPANY CONfIDENTIAL 

81000 SOL (BNf Version) 
P.S. 2212 5405 CG) 

, " 

',oS. "',; 

HEHA8LE_I N lERRyptt:,l Q-'41" , 
END OfSt"RING"'!:"fO:-li t , ...• '.;. 

END_OF _PAGE_Ac.'rtaN, '5:-29 
p '10-19 ~' .. " 

E NTER_COROUr I NE", .J.O- 33, ': 
ERROR fILE O~lIq~ '~~~37 
ERROR_COMHlHU'CAT£ <tq~"J 

~~S!i~I ~~~~~,~,i,:;~;·,,, :,Y:' ~~, ' 
E ViLU A TIOH_S T AC'K_:TQP, t :: '~'-25 t 

EXCE:PTION HASK PA.~T;: .;5..ii,l'l,i 
.:, ." .i;"' . ,. 

EXECUTABLE STATEN'ENT d_ 3-J: .. "",, 
EXECUTABLESTATEKEN;fs.'" '~··.~Q.~:i " 
EXECUTE '8-25, 10-'.Z ,,,,:,,". 
EXECUTE-fUNCTION STA,TEYi't1'fl . 1'0-36 
EXECUTE-PROCEDURE',STATEMENT'< -10-35 
E X I T _ COR OUT IN E 1,,0 -.3 ,3: ':. : ; ~,,; :i i' 
EXPAND_DEr INE;S _, ft~;4 
£XPR£,SSIQHS ; 7~1 ", ,.' ;r.". , 

"EXTENOtd'ARI'THMETIC fUNCTtq'tiS'~':',<8-27 
, f o. ., ~ ':". 

,~ • ~ " '.... < " • 

fETCH 10-42 ' ,,"~~";" " " 
,;" fETCH_ANO_SA,VE .1'0-,42"" .. <: ", j 

FE'TCW COMH'UNICA'TE M5G P,lR :.a~"10 
F'ILt AT T R1 BU,T E ~Sl'ATEKtN:r(CK'\:N!GE ST AT EHEN T) 

, , ftL,E DECLARAT IUN,S .. '5-;Z~.:- :' . ',I 
Y~.ifiLlER' 'S-12 ." ~I',:.i .. r'" 

, f IND_OUPl.ICA TE_CHARAC;TERS 10 ... 42 
fIN1 3-1 
fORHAL.CHECK 5-41 
fORMAL CHECK S-10,.5'-17~' ".\: " ' 

- , 5-36,. 6.,~4",&':5:::, ,;, 
fORHAL_VALUt: 6;;';'4,,'8~J6' 1" ';;. ' 

fORHALCH£CK OPTI,ON lZ~~, ,'",' 
fORWARD DECLARATION ;;~";4'O~~ 'c. 

FRE EIE 12,-4:,,;,; 0:; ' •• ', 

fREEZ'E_PROGR'A'H' ,.' :10~43r ,,"; .~. , 

GROW 10-43 '1' ',...... ".' 
i . . 'I.- _ >' ., 

.... :.~.~~~ .. ." 

H AL J 1 0-44 ' ..'~ . , 
HARDWARE M'ONI TOiR, ,13-1' 1 7,:: : ~ ~ :_ 
HARDWARE_MONI TOR ". 10-'4'4;. ~ "I, , 

HA SH~C.DDE 8-27 ~ ~ ~:.~ ~ 
HEX_SEQUENCE_NUhBER, ~~t5~. 

," \j w 

110 CONTROL STATEMENTS 9-1 
IDENTIfIER 5-37 
IDENTIfIERS 2-1' 
IF STATEMENT 10-5 . 
INDEXED FIELD REFERENCES 5-6. 
INDEXING 8-5 
INITIALIZE_VECTOR' 10-44 

10-14 

o 

( '''.' 
" 



BURROUGHS CORPORATION 
COMPUTER SYSTEMS GROUP 
SANTA BARBARA PLANT 

INTERPRETER OPTION 12-4 
INTERROGATE_~NTERRUPT~STATUS ·8-2~ 
INTRA-STRUCTURE~EMAP 5-11 
I NTRI NS Ie HE4r) ;'l'~S 
INTRINSIC OPTION' ~:)2.~4 

,".' f'. : 
LAB EL 5 - a lol\ .1 o· -1.6 
LAS T _L IO_ S,TAJ.l1S.8.-28 , 

t ~~ ~ ~ ~ GR A ~'~ i ~ 'L~i\/EL 3- i ... 
LIHIT_REGISJER C'" 6-2~ 
LIS T OPTtO-~:< It~4~. ',,- ,- " 
LISTALL O'PTrON, .'12-~ ... 
LOCATION' "8-29"'. ',' < f 

~ ''';,~ f, ~ ',_ " .-,~ . 

LOCK '5-'2'5,. 1.0-r9. 
LOCK!: 12":-",, .::. 'v' 
~OGI:CAL,OP.£R.~ T,O;R,S ,~.~. ?-T 
H:..,MEM_SI ZE \a:-3,5: ',,, 
HAKE OESCRIPTO"'Fi' '-; a-1T;' ,:' 
HAKE:~E,;Nl1-'D~L 'f ~ MAt(t,..~E,AO':W:RI{TE - - ~0-32 
HERGE"OPiIO'N' 12-4" , - ' 
HESSAGE_COUNT 10-45 
HOOE S-24, 10~18 

~WOlf_'( S T AT£:;H~~:T5 (,CLf,AR, 8U,MPr .. O'E-:CREl1E NT) 
HONlJ.Pf~r. -_ 10"~'5, 1~,:~4 
HONITttR'SPEC: 'PART ", ,5-31 . 
HONITOR_OUTPUT_fIL'r' frEstRJCTIONS i 18-1 

. - ~ 18-6' 
MULTI PACt( '5~28, 10-19 

NAME_Of_DAY 8-29. 
..'; . 

NAME STAC~ TOP 6-10 
NEST:PROCEDU~E_T'Ii'4~S " f,,2-4 
NESTING 3-2" .. 
NESTING LEVEL 6~1' 
NEW 0 P T I O'N" "{ 12 - 4 '." 
NEXT_ITEM, PREVIOUS_IlE:M 
N EXT _ T OK E N '8'':'3 0 '! ' 

NO OPTION 12-4 
NO_DUPLICATES OPTION 12-4 
NO_SQURCE_BPTION 12-5 

~~~~~~R~~~~~~.DEi~~~~ T~,O;N~ 
NULL 8-12<'-:~,
NUL L S TAT E j1,p·n ; 1 0 7 J,l ' ::.
NUMBER_Of _ STATIONS 'S-30
NUMBERS 2-3 .'...- ,r

ON SEQUENCE 9-16
OPEN OPTION 5-27 .
OPEN STATEMENT 9-2
OPERATOR PRECEOtNCE TA~LE
OPTIONAL fILE PART _ 5~31

8-1,~ -

S-,8

, 't'

>, !

10-12

, :a9~Rguc;~~ F. C08FPRAT ION
, ~pMrVJt.JL~1S TtMS GROUP
. ,SANJ4 iAR~A~A PLANT

IX-5
COMPANY CONFIDENTIAL

81000 SOL (BNf Version)
P.S. 2212 5405 (G)

'< '-,' ,'-' •

OIHERCO'STANTS 2-5·
OVERLAY~: ;10-4$

I, ," -.

PACK_IO 5-27,19-16,
PAGE OPTION ",lZ-S .'. ,,'
PAGED ARRAY dECLARAtIONS . 5-15

~::~i;_!ri~~~~;¢Af;~~l :. 'lO~16
PAS5 END. OPT tON ,l,~-~, ;' .
P,OLISH NOT~,TJqN ',t~2' ."
PPROfILE 13-1. , _ .
P P 5 51 Z E OPT ION 12-5 , .
PREVIOUS_ITEMtt":"lZ ~"~ ,'1 'r .

PRIMARY ELEMENTS 'OF T:HE:£.X~R~SSION 8-1
p'RDCEDURE BOQY~.: 0";'" >::.:, ,:~ t::
.,ROCEOURE . E~l) I NG ,0-8·, i' l' . ~ .,-
PROCEDUR E HEAD 6-:2,,' . ' .. t.'
PROCEDURE ~tSJINGI::' 3-4 '':,: , ,
PROCEDURE STATEMENt 3J-'f' ,,:,' <. ,

~ .' - " ~

PROCEDUR(S 6~1 ~ '~ ", '
PROCESSOR_TIME 8~31 . c.

PROfILE ,13 -1, .. ' ,>, Ii" ,,~:,
PROf ILE,. PPROFI LEOP,TION ,., ~j2-f5
PROGRAM SEGMENT"TIO:N :/f~i:" .
PROGRAM SWITCHES' .' ,s-31 '
PRO. G RAM TIM INti, ,13 -2;..;;, ; . ::
PROGRAMMINGOPTIMIZATI~N:,: :t f3-1
PRO GRAMM I NG TEC HN!-.Q.UE S ")lrJ:;.~"':-l

READ STATEMENT 9-6 i
READ_CASSETTE 13-40.
REA 0_ F IL E _ HE A D ER ~ WR IT E:_tlL,E-iHE:AD E R
READ_fPS .. WRI TE_fPB U)-46
READ_OVERLAY,., W~ITE_OV£R1A"r .. ' 'l.Q,:-47
RECOHPILATION fACILITY , 11;~~;, .
RECo.HP ILE_ TIH.E,S .. OPT I O,~ l' 1~;"5t '"
RECORD ,,5-4 , " ;'.: / -:,' i

REC,ORD IIEFERENCt.D;t'CLA'rU:rION'S, '5-19
RECORD REFERENCE VARI AS,L.ES: , ~~-19
RECORD SIZE 5-25,. 10-22 ," '
RECORD Sf ATE,MENT 5-),' :," ..
REDUCE S TATE"MENT 'Hf:-) , . . ';
REEL NUMBER5-2o~1:'();"Z2' :' 'n- ~ \" -:-, :', .,;. \,,~' \., ~ .
REFER ADDRESS 10-47 !:~'
REF E R. LiE N GT,H. ,.10 ·,4$" '.:
REFER STArtiotENT 1()';'8
REFER TYPE 10-48:
REF ERENCE DEClAf:tATIONS,; S-18
REINSTATE 10~48
RELATED PUBLICATIO~S 1-2
RELATIONAL OPER.ATORS~1-6
RE~APPING 5-9,. ~-ll
REMOTE KEY 5-2'
REPLACE OPERATORS 1-8 ,J,.,_ i

10-30

c· .. ·,,·'·· J';.

r

(.

'. $ r t --en

c'

"•. U·

'$ rd .' t - tt $' tt- t tr'

BURROUGHS CORPORATIUN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

. ,,... ,.~.I X .-6
~OM~~,,~~o~tIDg.t~iL

81000 SOt!(9"[~~~i~16~)
P ~S.' 22iz·J~5 405'" it;)

REPLACE, OESTRUCTIVE "}-8'
RESERVED WORDS 11~1;-11-3'
RESTORE 10 -49~. • .~
Res t ric t ion s: '. . . ,'-1 r " ,
RETURN STAT~"~'T~:~~~~
RETURN_A~D.::.EN A~(£~~NrE~ijU,PT 5.6-6
REVERSE STORE . 10-49"

- t :';' po .. • i!.)'" l.~ 4: .:' •.. • .', . ,.

S_HEM_SI lE, r+':"~H_S {~.~ .~>~8-,35 ' .
SAVE 5-25, iO· ... '22,. 'to-50 . ~. ,'-~." - ,
S A V E S fA TEl 0 -5 0 l ;' , .
SCOPE 3-5 ""~:t ,', ";,
SCOPE; ,OJ=: . P,RQ,CEO'U'R£;$ li3~"'2
SEAR'CH..::n~rREC10RY ':: <10-t8 .', c': i:;t

SEARCH_DIRECrOlfl ;'ST,AJ:EMENT' . 10-'28
SEARCH_LINKEIf~L.lST .' ~ '8:"32'"
SEARCH_SOl_ST A:CKS .• ",8:,-,3'3 :,.. :,:' .'.~
SEARCH_SER.I.A,'.L...:llr~;r:;:~ ;:,8~-:34.',." ; '~.' ~ ..
SEEK STAT E'M£N T "9"~1'1' . :,' . "t.,

, ,.... " .. ' >1/
SEGMENT,. SEGMENT PA'GE 4-1"'" .;;. ,

; '. ~ i.. 11· .' ~' .. ~ "',' ~',,'

SEQ OPTION 12-5 :'" ', •.....
SEQU~N.C(_NUH,B,ER . 2-5 , .. , ... ,
SERIAL; 'NUMB'£R'P"'ARl' "5-31' • ':".
SINGLE Spi'AC'(OPr.'IU" ' 12-5 '\
SIZE OPTION:'" t'~·5 :,,: ' ',. ' :
SKIP S TAT £ HEN T: " :-9 -15" I', . ;.: .
SORT''' , .l.10-9'({~· ., ."., I. .• '" " , ." 'i: .. '. '
SORT 0'Et'EJTE0·S;.!·J5"r' '.JJi .:~:

SORT_MERGE 10-51
SORT_SEARCH 8-35
SORT_S1:,EP _oaWN 8-36
SOR''T'!~A.p" -1 ()-52
SORT-UNai.OC~' 8''':36,;
SPACE StA7,£,:",E·NT· ·,i9'-J.4,i~. ., "."
SPO_I N:'{{r' PREfSENT: . 'a.-3i ': ", c; ':
STOP ~'fA'T·EMEN't'· to-'26' . d, ':' .' ,

.. /.,""';. ..
srRUCTV~fi .o~~"l~,RArI.~~,S". :?:-11~:":~ '.'
STRUCTURE,;.trfAN $'OV ·P'R.OGRAM :, 3~.1·'
STRUcluR ('0.: 'RtiCORO S fA TEMENT "5· ... 6···
STRUCTURES:" 5-5' . .
suaBIT AND SU'SSTR . 8-8,',

~ 8"';.37' ~ ,
SUPPRESS Of:tnON "i'lZCo5)';:~
SWAP 8 • 3 6'; ,'''" ;)~ ,i' :"'... . .'
SWITCH FILE o Ec;'rAR Af I ON'S , 5';'34" r .,.... :i.: j' ,f./ .. ~ .':; j t . . : . : ;

THAW_PROGRAM, ,JO:'~·~.
THREAD VECTOR'> 10-52""
TIME -8-39 ~~.
T IHER 8-39' ". , r,
TIHING OPTttiN :le-5
TOOAYS_DATE 2.5~·· r

.,. ~.

~\ .. '

.,
: ,,;.'.. .'.'7"'.'

TRACE 10-53 ' . ,:,','
TRANSLATE io-s4 !~':" ~. :!'.

r • ,
...;;:.,.." " .'

;1,

'., .

. ,:~ .

, '

,X,..AOO ,8-21
'X_Ol V 8-27

X_HOQ 8-21
, XI1Ul'" -8-27 ,
X::SOB8-Z7
XHAPOPTION 12-6
XREF 12-6
XREF_ONLY 12-6

ZIP S TAT,EHENT' 1,0-21 -,. " .
. " ',>0-", .••

IX-7
,~"COMPANY . COHF I DENT I AL

, ,'B,lQ'OO .. Sl)t (SNF Version)
7 P~S. 2212 5405 (G)

8;'1~ . ,

.' :

,r'"
i'

'-J

