
~STRACT

B 1700 DEStGN AND INPLEHE1"TATION

by Wayne T. Wilner, Ph.D

Burroughs Corpora tfon
Santa Barbara Plant
Goleta, California

May 1972

Burroughs Bl700 embodies a unique design tenet: the work done to accorn.rnodate
definable machine structure from instruction to instruction is less than the
work wasted from instruction to instruction when one machine sti:ucture is
used for all applications. In other words·, execution .of machine language
using procrustean hardKare causes more inefficiencies than soft interpreta
tion of arbitrary machine language on protean hard't-.'.'are.

The programs on the Bl700 are not represente~ in Bl700 machine language but
in "S-language", that is, some other computer's machine language or a
machine language invented (by Burroughs or by the user) expres-sly for the
program's application a~cQ.• Interpretation ~f S-language is aided by:
(a) ~_i'L~od~I::~~)~ (b) ~~~~iT~;aE~-Jt~~~i~
~-y*~·fe1Js, (c) equal memory speed on all bit locations and bit string
lengths, {d) clock-by-clock control over the effective width of processor
data paths, registers, and structured logic elements, (e) soft micropr~grams 1
(f) English language microprograrr~-:dng, .(g) execution of microcode in
differently from nain memory or con~rol r..emory, (h) enough control memory
to hold four interpreters ~nd no limit on the number of interpreters that
may be active at any given· instant, (i) ·memory protection, (j) hard and
soft interrupts, (k) stack organization, (1) Master Control Program
taking full responsibility for efficient system ·utilization by means of
interpi~ter multiprograrrming and rau~tiprocessing, user multiprogram.~ing and·
multiprocessing, virtual,r,ontrol memory of 224 (over 16 million) bits,
virtual main memory of 24

q (over 17 trillion) bits, soft int~rpretation of
1/0 commands, and (m) autonatic program profile statistics. Programs .on

May 1972

the Bl700 are ·independent of: location, storage organization, I/O organi
zation, processor organization, peripheral idiosyncrasies, mix size,' and
system configuration (except for unique devices). Priced in the lowest
system range, the Bl700 offers time- and money-saving features not found
on systems 100 times more expensive.

The net result of this advanced system design is ease of use, simpl~ pro
gramming, lack of conversion costs, improved utilization of system com
ponents, and better price/performance.

Keywords: computer architecture, microprograrruning, definable structure,
Bl700, S-language, interpretation ~

· 1. INTRODUCTION

Procrustes was the ancient Attican malefactor who forced wayfarers to· lie
on an iron bed. He either stretched or cut short each persori!s legs to
fit the bed's length. Finally, Procrustes was forced onto his ov.m bed by
Theseus.

Today the story is being reenacted. Von Neumann-derived m_achines are
automatous malefactors "who force prograrmners to lie on many procrustean
beds. Memory cells and processor registers are rigid containers which
contort data and instructions into unnatural fields. As we have painfully
learned, contemporary representations of numbers introduce serious diffi-

_ culties for numerical processing. Manipulation of variable-length in
formation is excruciating. Another procrustea~ bed is machine instruc
tions, which provide a small number of elementary operations, compared to
the gamut of algorithmic procedures. Although each set ~s universal, in
that it can compute any function, the scope of applications for which
each is efficient is far smaller than the scope of applications for which
each is usea. Configuration limits, too, restrict information processing
tasks to sizes which are often inadequate. Worst of all, even when a
program and it~ data agreeably fit a particular machine, they_ are con~
fined to that machine; few, if any, other computers can process them.

In von Neumann's design for primordial EDVAC1, rigidity of structure was
more beneficial than detrimental. It simplified expensive hardware and
bought precious speed. Since then, declining hardware costs and advanced
software techniques have shifted the optimum blend of rigid versus
variable st rue ture2 toward· variability. · As long ago as 1961, hardware
of Burroughs BSOOO implemented limitless main memory using variable
le~gth segments. Operands have proceeded from single ~ords, to bytes,

...

1. See EDVAC, Burks, Goldstine, and von Neumann.

2. See BSOOO, Lonergan and King.

May 1972

to strings of four-bit digits, as on the B3500. The demand for inst~ruc
tion variability has increased as well. The semantics of the growing
number of prograrrming languages are not converging to a small set of
primitive operations. Each new language adds to our supply of _funda
mental data structu~es and basic operations.

This shifting milieu has alte!ed the premises from which new system de
signs are derived. To increase throughput on an expanding range of
applications, general-purpose computers need to be adaptable more
specifically to the tasks they try to perform. For example, if COBOL
programs make up the daily workload, one's computer had better acquire
a "Move" instruction whose function is similar to th~ semantics of the
COBOL verb MOVE. To accommodate future applications, the variability
of computer structures must increase, in yet unkno\-..7n directions. Such
flexibility reminds one of ~.mil, the rnypm:tiqM#A~~--~
tJm§&fil'Pld to that of any creature.

2. DESIGN OBJECTIVE

Burroughs Bl700 is a protean attempt to completely vanquish procrustean
structures, to give 100/o variability, or the appearance of no inherent
structure. Without inherent structure, there are no word sizes or data
formats - operands may be any shape or size, without loss of efficiency;
there are no a priori instructions--machine operations may be any function,
in any form, without loss of efficiency; configuration limits, while not
totally removable, can be beyond state-of-the-art extremes; modularity
may be increased, to allow miniconfigurations and supercomputers using

. the same components.

2.1 Design Rationale_

The B1700's permise is that the effort needed to accomnodate definabilitv
from instruction to instruction is less than the effort wasted from in
struction to instruction \·:hen one svstem design is used for all applica ...
tions. With definable structure, information is able to be represented
according to its own inherent structure. Manipulations are able to be
defined according to algorithms' ov.11 inherent processes. As long as one
can define a machine environment which is more efficient for solving
one's problems than a contemporary machine design, one can attain more
throughput per dollar. As we shall see, there are novel machine designs
which are 10 to 50 times more powerful than contemporary designs, and
which can be interpreted by the Bl 700' s variable-image processor. using
less than 10 to 50 times the effort, resulting in faster running times,
smaller resource demands, and lower computation costs. ,

May 1972

3. GENERAL DESIGN

To accomplish definable structure, one may observe that during the next
decade, something less .than infinite variability is required. As long
as control information and data arc corr.municated to machines through pro
gramming languages, the variability with w~ich machines must cope is
limit~d to that which the languages exhibit. Therefore, it is suffic~ent
to anticipate a unique nachine environ~ent for each programming language.
In this context, absolute binary decks, console switches, assembly
languages, etc., are included as programming language forms of corr.munica
tion. Let us call all such language_s '~1?~~~~" (~re~~- ·
or also for "~"or "~or "~~or "QJma~~'~.).
Machines which execute· S- language directly are called "S-machinesn. The
Bl700's objective, consequently, is·to emulate existing and future S
macQines, whether these are 360's, FORTRAN machines, or whatever. Rather
than pretend to be good at all applications, the Bl700 strives oply to
interpret arbitrary S-language superbly. The burden of performing well
in particular applications is shifted to specific S-machines. Throughput
measurements, reported below, show that the tandem system of:

interpreted by f . . · I $-machine

interpret1d byt

1
Bl700

I application program

is more efficient than a single system when more than one application area
is considered. It is even more efficient than conventional design for
many individual application areas, such as sorting.

To visualize the architectural advantage of implementing the S-machine con
cept, imagine a two-dimensional continuum of machine designs, as in
Figures 1 and 2. Designs which are optimally suited to specific applica
tions are represented by bullets (e) beside the application's name. The
goodness-of-fit of a particular machine design, which is represented as
a point (*) in the continuum, to various applications is given by its·
distance from the optimum-for each application; the shorter the distance,
the better the fit and the·more efficient the machine is. Figure 1
dramatizes the disadvantage of using one design for COBOL, FORTRAN, Emula
t.io~n, and Operating System applications. Figure 2· pictures the advantage
of .Emurating/Interpreting many S-machines, each designed for a specific
application. Note that Emulation inefficiencies must be counted once for
each S-machine, since they are all interpreted.

May 1972

co~pL ·
\

RPG
fl

Operating Systems
. 0

\
\
\

ALGOL
•

,.

Data Base
0

Figure 1. Typical machine design positioned by goodness
. of-fit to application areas. ·

RPG
. COB9l.! ·® ~

·ALGOL

"

0compiling
t

Q Simulation
. 0

FOR~A~Q Numerical Processing
e

Operating System
~ Q .. '

Data Base

©
_Emulation
-~ -- .

Figure 2. Typical Bl700 S-machines positioned by_
goodness-of-fit to application areas.

May 1972

4. HARDWARE REQUIREMENTS

Varying the processor's image for each application area implies. very
specific hardware requirements.

4.1 Defined-Field Capability

All information is represented by fields, which are (recursively) defined
to be either bit strings or strings of fields; i.e., bytes and words do ..
not exist.

(a) All memory is addressable to the bit.

(b) All field lengths are expressable to the bit.

(c) Memory access hardware must fetch and store one
or more bits from any location with equal facility.
That is,· there must be no penalty and no premium
attached to location or length.

(d) All structured logic elements in the processor
can be use9 iteratively and fractionally under
microprogram control, thus effectively co~
cealing their structure from the user. Iterative
use is required for operands which contain more
bits than a functional unit can hold; fractional
use is required for smaller operands.

4.2 Generalized Language Interpretation

(a) The system should be capable of efficient inter
pretation of a variety of instruction formats.

(b) Format of interpreted instructions should not
be predetermined or limited. The structuie of
the system should not cause any significant
difference in efficiency due to selection of
format.

·(c) Interpretation should be by soft microprogram.

(d) Microprograms should be changeable, stored and
executed in main- merr.ory. ~~Jfil&~-bM~
~.~~•frtg ®wir:?i*+e·~,.11 a
~g~~ .·

(e) Hardware must assist with the concurrent execu
tion of many interpreters, to make switching as
rapid as possible.

(f)

(g)

(h)

May 1972

M»f 28 p LO tJ ~~1\i°m::~ e ii; id ii t. a ii d t CC cl LS 10 Ely
~\#._ __ Nicroprograra execution is a critical
part of the Bl700. Some of the objectives in
volved in the design include: fast entry and
exit of microprocedures, compactness of code and
economy of storage, and ease of writing and
maintaining microcode.

Microprograms must not be limited in size. Execu
tion of microprogram should be invisible to the
user and not reflect any variation in microprogram
efficiency due to size~

Microfunctions must implement all present and
foreseeable higher-level ·language functions
efficiently but without prejudicing implementa-
tion of languages. Any function included solely
for a s~ngle language should be in addition to
basic microfunctions which could more generally
implement the function .•

While the hardware requirements for defined-field design and generalized
language interpretation have been stated so as to allow a varying pro
cessor image fron microinstruction to microinstruction, they do not pre
clude taking advantage of a static processor image. For example, the
number of bits to be read, written, or swapped between processor and

.memory can be different in consecutive microinstructions, but if an
interpreted S-machine's memory accesses are of_ uniform length, this
length c~n be factored out of the interpreter, simplifying its code.
In other words, S-memory may be addressed by any convenient scheme; bit
addresses are available, but not.obligatory fo! the S-machine.

With these ·hardware advances, language-dependent features such as operand
length, are unbound inside the processor and memory buss, except during
portions of selected nicroinstructions. Some of these features have,
until now, been bound before manufacture, by machine designers. Language
designers and users have been able to influence their binding only in
directly, and only on the next system to be built. On the Bl700, the
delayed binding of these features, delayed down to the clock pulse level
of the machine, gives language designers and users a new degree of flexi
bility to exploit.

4.3 Advanced Design

oii each newly designed system, professional responsibility dictates that
previously proven advances in system organization be incorporated.

4.3.l

4.3.2

May 1972

Virtual Nemory

(a) S-programs should not be limited in size; all
address fields should be variable.

(b) S-programs should not reflect the storage
organization of the system.

(c) Programmers should be given feedback on the
size and make-up·of their working-sets.

Stack Organization

(a) Programs should be recursive and reentrant.

(b) Subprogram entries and exits should be very
fast, to encourage decomposition of program
ming tasks into small, comprehensible units.

(c) Compilation and execution efficiency should
not be dependent on a manufacturer's ability
to solve register allocation problems.

4.3.3 Dynamic System Configuration

4.3.4

(a) Code should be independcnt·of system con~
figuration, to allow addition and deletion

.of processors, memory modules, I/O channels,
and peripherals while programs are running.

(b) The system itself (not the user) should be
responsible for full resource utilization;
hence code should not have to change when the
system is reconfigured.

Multiprogramming

(a) The system should run as many jobs at once
as are necessary, subject to working-set
limits, to keep each resource fully utilized.

(b) Code should be independent.of the number of
jobs in the mix, to provide equal efficiency
when running alone as wlien running with 100
others.

(c) Memory must be protected from all invalid re
ferences (read or write).

4.3.5

4.3.6

4.3.7

4.3.8

May 1972

(d) Hard interrupts are ne~ded to manage asynchronous
events with minimum overhead.

Multiprocessing

(a) The system should allow extra processors to be
added to memory-rich or peripheral-rich installa
tions, to balance the system to user workloads.

(b} Program state sho
0

uld be maintained outside of
processors, to al lo\·l execution by any pr:ocessor
without excessive switching time.

Descriptor-?rganized I/O

(a) System 1/0 is itself a unique application, deserving
its own S-language and interpreter.

(b) The 1/0 S-language interpreter may be soft micro
program or a separate, wired processor, incapable
of interpreting other S-languages.

(c) With self-describing I/O requests, processor parti
cipation in I/O is reduced, improving the syste~'s
ability to keep many peripherals in operation
simultaneously. ·

Soft Interrupts

(a) Asynchronous and infrequent events should not require
explicit code for their individual detection.

Prof~le statistics

(a) Program behavior should be analyzed ~nd reported
back to the prograrruner, or filed for overall system
analysis,

(b) Reports should be in terms·of source language.

(c) Reporting ~hich parts cons~me the most execution
time is of primary importance.

(d) Compilers writers ought to be told how their
languages are being used.

(e) By instrumenting soft microprogram interpreters for
profile statistics gathering, overhead can be kept
under 1%.

PROCESSOHS

M-MEMOHY

I /0 CJL\N:i'.1: LS

.__. -- --------
----~-----

_---==1
c=~1.._ __
..__.. ---. ... _....___
...._.. ---- ·- -

•. ...,. ___ _ ... -- - --·---· ··

- - --· ------
Each processor mny have oithor
l-8 1/0 chnnnols or 1-4 micro
program memory modules of
16,364 bits each.

Figure 3.

·• .

FIELD
I SOlJ\TI ON
UNITS

Bl700 Organization

S-MEMOnY

--- ----+----+---....

-- ---...

·-----4--- ·---·
·--~•---+--- -----
-~--+-----~---~--1

-- ---·---lf--

---- ·---+----+---·
--..----1----·

-----t---+-

--- -----+---
-- +---·t----··+-------

·------ ··- ..:. .. ---·- -----· - .

---+---~---·

1-1 ,-----,-· --, . ---- -· --- - .. --- - . -- ---·-
-- ; _____ ----- - - -· --.. __ . - . . . - - .. _ _ -
--- ----~- ·---- --· ---·

Each system may hnvc
2-256 systems memory
modules of 65,53G bits
each.

Available peripherals include - CarCI Readers: 300-1400 cpm models, 80. col.; 300-1000 cpm
models, 96 col.; Card Punch, 300 cpm, 80 col.; Card Read-Punch-Print-Sort, 1000/1000/120/
l?O cpm, 96 col.; Card Record-Read-Punch-Print-Sort, 300/60/60 cpm, 96 col.; Line Printers.
i. _-900 lp:n models, 137 col.; Paper Tape Pcriphera:s; Disk Sto:age 5ms-40ms models, Head- ·
g-Track 2200-4400 bpi models, movable arm, cartridge; Hagnet1c Tape 7/9 Track, NRZI/PE
models; Sorter-Reader 600-1625 dpm models; Data Corrununications 150Hz-48KHz+models; Graphics;
Terminal Computers, Teller Machines, etc.

May 1972

5. SYSTEM ORGANIZATION

Extreme modularity improves the Bl700 's ability ·to adapt to an install· :::ion's
requirements. There may be 1-8 processors connected to one ~nother al to
2-256 65,536-bit main Gernory modules, interfaced by one or more field~
isolation units, described later. Each processor also connects to 1-8 I/O
c~anncls or to 1-4 microprogram memory modules. (See Figure 3.)

With only one processor, the port interchange may be eliminated, as in
Figure 4.

Lli2 __ :ym 96_:.::ol. MFCU Ji--_ -~I con;;a.i'i . ""MY
• ,channel rocessor

· rro0Tp--;--_1J2S;i. printer µ, f- 1
1

--- - -- L...C.Ql"l...LJ:.O~"--ichannel I I

fiu

dual spindle~!·----~--~~~rco-nrr~chanriel
20 ms. disk _ _

Figure 4= One of the smallest Bl700'se

Rental of the system in Figure 4 is expected to be under .$1500/month.

S-memory

May 1972

6. EMULATION VEHICLE

Any computer which can handle the Bl700's p'ort-to-port message discipl~ne
may employ a Bl700 for on-line emulation. (See Figure 5.)

M-memory Processor Port lnterchpng~ FIU S-memory

32K
bits+-----

Communication line ----to host computer

t----0----- 192K bits

Figure 5. Bl700 as an Emulation Vehicle.

Programs and djta are sent to the Bl700 for execution; I/O requ~sts are
sent back to the host which uses its ow11 peripherals for them. Inter
preters are loaded via the B1700's console cassette drive. Present
interface specifications expect one interpreter to be in M~memory at a
time. Rental of the system in Figure 5 is expected to be under $2200/month.

7. . DEFll\lED-FIELD DESIGN

7.1 ., Ei"14Ws

The mechanisms by which the processor and microinstructions.automatically
handle variable operand lengths and formats have come to be called "bias"
facilities. In addition to a normal complement of registers, functional
units, and data paths, each processor has

~

'JiH pbj &AjiiW{ ~£ip friCiikfCZl~tl ; fi8irh4Ah§l45£ E Gp LG
as many as the.processor can handle, and

'efU rhich specifies the unit of information, viz., bit,
.. BCD, USASCII byte, EBCDIC byte, along with some

open codes for future use.

May 1972

~to determine ·i;..-hcn carries occur out of the apparently hif;hest
bit position. Me~ory-accessing microinstructions oay choose to access
only as many bits as· CPL specifies. ror. .. --t 6~'!! e&~~~~~~
'f'&Men~~~~C!~~e&~Tha:rur:t"aSit!M~i~~-B-S~~
~'t:trrg-1"~fn~Jlfi&?~1mat-M;eS>ta:~. Thus, microprogram sequences
which load CPL and CPU from data descriptors (or even from the computer
operator's keyboard) during an instruction interpretation behave correctly
whether binary or decimal operands are supplied and whatever size the .
operands are. The microprograms are invariant to actual operand details,
so the Bl700 hardwa:e appears not to have inherent structure.

Iteration over operands ~hich are longer than ·the processor can handle
is accomplished by two unique microinstructions, Bias and Count F •

. ~~JM~M¥arh5i-aawe4~ na-rs
~~~~1.P~ These have 24-oit subregisters, FA and SFA, for the· 
data'~S~~ss, 16-bit subregisters 7 FL and SFL, for the data's 
length (bit strings are thus limited to 65,535 bits), and 4-bit sub
registers, FU and SFU, for format information. The Bias instruction 
computes the format and number of bits to bring to the processor for an· 
iteration by setting CPU from FU or SFU and by setting CPL to FL, SFL, 
itself, a literal value., or the minimura of any set of these. The Count 
F micro uses CPL or a literal value by which to increment and decrement 
FA and FL; this indexes through an operand by defining contiguous sub
fields on ~~1ich the processor may operate. To handle indefinitely long 
operands, then, one first writes a microprogram which assu~es that the 
·processor registers are indefinitely long. One suffixes the program 
with a Branch micro to repeat the code. One prefaces the program with 
a Count F and Bias pair, the Count F to define suboperands that are small 
enough to fit in the physical processor, and the Bias to coffipute the 
suboperand length (so that the operand need not be a multiple of the 
processor width), to· load the bias registers, to test for completion, 
and to bypass the program when the long operand is completely processed. 
Such a microsequence can handle zero-bit to 65,535-bit operands indis
criminately. 

7.2 Bit-oriented Memory 

To implement bit-oriented memory at low cost, one uses conventional 
memories and a memory-requester interface which is called a field isola
tion unit, or F.I.U. (see Figure 6). The FIUs tasks are to convert 
bit addresses, field lengths, and field directions (i.e., address refers 
to.most- or least-significant-bit) into conventional addresses, to align 
iequest~r bit strings with actual memory containers, and to mask off 
nonparticipating bits. During memory operations, bytes are read out 
of memory into the Memory Information Register, MIR, a bit string is 
extracted or inserted as the informa.tion passes through the rotator 
into either buffer, and then the buffer is gated to its destination. 



24 24 

Write HIR 

24 24 

Hold Address 

64. 

Mask 

Gene ~tion 

t 
Data 

- - - --"Control 

Figure 6. Field Isolation Unit (Memory/Reqtiestor Interface) 



May 1972 

Any port on the interchange (see Figure 3) .may read bit strings from 
memory. The port must supply a bit location, a string length (in bits), 
and a field direction (one bit meaning forward Qr reverse) to the FIU; 
which places the inf.ormation into its Memory Address Register. Because 
fields may be manipulated in either direction, locations actually refer 
to between-bit positions, as illustrated in Figure 7. The thirteen bits 
from location 13 forward are the same "thirteen as accessed from loca
tion 26 backward. This sirr.plifies microprograrrmingby naming bit 
strings in a manner similar to the way in which we think about them. 

-13 
.• 

Figure 7. Defined-field addresses labelling between-bit positions. 

Given a field location, the FIU calculates which byte in the conventional 
memory contains the leading bit. On the Bl700, there are four 9-bit 
memories (one bit of which is used for parity). Consequently, the low 
three bits of an address specify a bit position within a word, the next 
two bits specify one of the four memories, and the high 19 bits con
stitute a conventional address. The leading bit is in the word specified 
by the high 21 address bits. This word, and the corresponding words in 
the other memories, are brought to the FIU's Read HIR. For example, the 
accessed words which satisfy a request £or the 13-bit field beginning 
at location 13, forward, are shaded in Figure 8. The field itself is 
doubly shaded. From the low _three bi ts and direction of a request, 
ih~ FIU. is told how many positions and in wh~t direction to rotate the 
received field in order to right-justify it. The request length is used 
to create a mask which zeros the unneeded high bits. The isolated field 
is then sent to the port interchange, as shown in Figure 9. 



Request: 
Location--· 

0000000000000000000 
01 

101; 
Length--

0000000000001101; 
Direction--

O; 

word, 
memory,. 
bit 

May 1972 

Bit Address 

· inem ·_o mem ·1 mem 2 mem 3 

(Parity bits not shown) 

Figure 8. Words· (shaded cells) delivered to FIU satisfying 
request for 13 bits beg~nning with location 13, 
forward. 

32 bits 

Word 

8 
32 Read MIR 

from f S-memory 

· Figure 9. Read field isolate. 



May 1~72 

On the Bl700, the field is available·at a processor's port 668 nsec after 
the read request is initiated, assuming the port interchange and memory are 
both free. The port a~d FIU are ·involved during the last 500 nsec. 

To write bit strings into memory, the FIU accepts a request (i.e., location, 
length, direction) and performs ~ read cycle to bring the receiving memory 
field to the Read MIR and right-justified through the rotator. It then 
accepts a bit string from the port interchange which goes through the Write 
MIR and is masked into the memory field at the rotator. Then the rotator 
returns the information to wortl-align.TD.ent, and passes it through to the 
write buffer, where it returns to memory. Write cycl_es involve ports for 
500 nsec and the FIU for 1169 nsec. 

Since writes are performed as Read-Modify-Write, the address.ed field, as 
it was before modification, is available in the read buffer for the re
questing port. Thus, fields may be swapped between memory and a processor 
by one microinstruction. It is also possible to force two back-to-back 
requests, which. gives any processor the ability to test and set, and re
store a bit string in one uninterruptable operation. This is vital for 
administering multiprocessor, multiprogramming environments because it 
can be used to prevent system deadlocks. 

Eecause the amount of information which resides with the processor is so 
large (registers plus N-memory), one processor uses only 20io of the 
available S-reemory cycles, which enables one FIU to support seve~al 
processors. In addition, almost 80io of processor requests are reads. 

Of the 41 bits required to specify a memory request, typic~lly 5-10 come 
from the S-instruction. The rest come from other S-machine state. They 
represent the context within 't·:hich the S-machine is working. The length 
field, for example, constantly is 16 when the S-rnachine is the IBM 1130. 
Consequently, little work is needed to maintain such large address fields.· 

8. SOFT INTERPRETATION 

All Burroughs-supplied interpreters rely on the Bl700's Master Control 
Program (NCP) for all input/output, virtual S-memory, virtual M-memory, 
multiprogramming and multiprocessing of user programs, multiprogramming 
and multiprocessing of interpreters, and standard functions. The }lCP 
is written entirely in a higher-level language (a synergism of features 
from COBOL, PL/I, and XPL) :which is interpreted itself. To provide for 
smooth change of control, a microprogram.~ed interpreter interfacing 
routine, named Gismo, exists in the beginning memory locations. By 
16ading·~ pointer to another program into a processor register and clearing 
the microprogram address register, each interpreter transfers to Gismo. 
Cismo uses the program pointer to establish processor context· within the 
new interpreter. Subsequent microinstructions are taken from the new 
interpreter. 



May 1972 

8.1 Interpreter-Machine Interface 

Given this interpreter interface, simple, hardware-oriented tasks such as 
interrupt decoding and priority resolution, M-memory overlay, and I/O 
transfer, can be inciuded in the interface routine, simplifying the re
quirements of an interpreter. 

An interpreter ha·s control of a processor until interrupted by another 
element in the system or by prograrnmatic interrupt. Between each S
instruction interpretation (aRproximately every 3~ usec.), every inter
preter raust examine the processor's interrupt register to detect the need 
for change of control. If an interrupt is present, the interpreter calls 
(instead of transfers to) Gismo, leaving a constant in a register which 
directs Gismo to decode the interrupt. For simple functions such as timer 
interval or I/O transfer, Gismo actually performs the required actions. 
For other interrupts, Gismo returns an appropriate description to the 
calling interpreter. 

If the interpreter can handle the interrupt, it does so and continues 
with the next S-instruction if all interrupts are quiet~ If it cannot, 
it moves its S-machine's state outside of the processor, loads a constant 
which means "call NCP", and transfers to Gismo. Very little state needs 
to be saved because no S-instruction is in the middle of interpretation. 

Real-time interrupts are distinguished by hardware, but are handled in 
exactly the same way. When Gismo is told to "call NCP", it may select 
a non-HCP program to process real-time {nterrupts (such as a COBOL routine· 
·which performs a pocket select for a document-sorter). 

Gismo is also called by the MCP to move interpreter segments into M-memory, 
by all programs to initiate 1/0, anq by the computer operator to perform 
some s~art-up or post-mortem utility functions. 

8.1.1 S-machine Switching 

Note that change of control is between S-machines, which does not necessarily 
mean a different interpreter is needed. (When all user programs are written 
in the MCP's language, only one ~terprcter is active.) Each job is re
presented in S-memory according to Figure 10. All but one segment is read
only code. The one is called the "run structure" and consists of: 1/0 
buffers; data; descriptions of devices and operands; and the. run structure 
nucleus which contains the:job's S-machine state and MCP-needcd control in
formation. All segments (except the run structure nucleus) move into memory 
under control of the HCP. The data section may or may not be administered 
inferna·lly by a virtual memory discipline. Note that code segments never 
are written out of memory because they never change. The space they 
occupy is always available fo~ other uses. 



May 1972 

The MCP's run structure includes an interpreter dictionary, each entry of 
which describes an interpreter (either active in S-memory or on disk). 

Overlayable data _J 
segments 

-··- . 

::.machine_.s.tate.. .. _(_run st n1:c tu re) · 
Data d£finitions i 

~--; 

File definitions I 

t File buf ~er~ I 

Overlayable program segments 

1-10· D i . . 
t 

I s 

t· ! 
f 

J 

Figure 10. Program components. 

To reinstate a user's interpreter, the MCP extracts from the user's 
S-machine state the name of the interpreter being used. The interpreter 
name is looked up in the interpreter dictionary to yield a pointer to 
the interpreter code in S-memory. The }tCP's interpreter then saves its 
.S-machine state, loads the pointer into a hard register, and resets the 
Microprogram Base Register and Microprogram Address Register (to leave 
the MCP's interpreter's code space). The next micro is brought from 
Gismo, which uses the hard register to load the Microprogram Base 
Register, transferring microinstruction fetches to the new interpreter's 
code space. Associating S-machines and interpreters symbolically allows 
such things ~s several COBOL interpreters active in one mix--one de
signed for speed, anothtr for code compaction, etc.,--all employing the 
same S-language expressly designed for COBOL (that is, a COBOL-machine· 
definition). 

To switch back to the HCP interpreter, a user interpreter obtains a 
pointer to the MCP's run structure from the user program's run 
structure and performs the identical procedure. 

Interpreter switching i~ i~dependent of ~ny execution considerations. 
It may be performed bel\-.7ecn any two S-instructions, even without switch
ing S~instruction streams. That is, an S-program may direct its inter
preter ~to surrunon another interpreter for itself. This facility is use
ful for changing between tracing and non-tracing interpreters during 
debugging. 



May 1972 

Interpreter switching is also independent 0f M-memory. The Microprogram 
Address Register al~ays actually addresses S-memory. In case H is 
present, special hardware diverts fetches to it, whenever the Microprogram 
Limit Register indicates that M'.s contents mirror the portion of S-memory 
being addressed. Without M, no fetches are diverted, and 9ismo sits in 
low S-memory. 

8.2 Interpreter Management 

Entries in the interpreter dictionary are added whenever a job is in
itiated \.:hi ch requests a new interp~eter. Interpreters usually reside on· 
disk; but may be read in from tapes cards, cassettes, data co~m, or other 
media. They have the same status in the systen that object code files, 
source language files, data files, compiler files, and MCP fites all share: 
symtolically-named, media-independent bit strings. While active, a copy . 
is brought from disk, to be available in main memory for direct 'execution. 
Th~ location may chan_ge during interpretation due to virtual S-memory 
management, so microinstructions are location-independent. 

At each job initiation and termination, the MCP rearranges M-memory for 
the processor being readied according to five strategies: 

{a) Abundant M 

. (b) 

(c) 

Condition: All active interpreters can fit in M. 
Action: Place all interpreters into M • 

Ample M 

Condition: 

·Action: 

Adequate M 

Condition: 

Action: 

All active interpreters can be granted at 
least their minimum M request (usually 

·1000 words= 1000 16-bit micros). 
Divide M evenly and place part of each 
interpreter in M. 

Several interpreters can be given their 
minimums, but not all. 
Give the MCP's interpreter about 1000 
words; divide the rest into 1000-word 

: o~ocks and swap all user interpreters 
· in and out durfng reinstate operations. 

(d) Precious M 

Condition: Only two interpreters can be given their 
minimums. 

Action: Give the NCP its minimum; swap all users 
in and out of the rest. 



May 1972 

(e) Bare M 

Condition: Only one interpreter can be given a minimum 
demand. · · 

Action: At each interpreter switch,· place one inter
preter into all of M. 

Interpreter profile statistics show that 1000 micros (1000 words) 
account for over 99% of all instructions executed, even though 
most interpreters are 2000 ~ords long. If a microprogrammer is 
prudent enough to rearrange his code acco~ding to usage, then an 
interpreter reques~ing 1000 .words of M as a ~inimum may be as 
efficient as one requesting·2000 words. 

8.3 Ease of Microprogramming 

Writing microprograms for the Bl700 is as simple, and in some ways simpler, 
than wtiting FORTRAN subroutines: 

(a) Microprograms consist of short, imperative English sentences 
and narrative corrm1ents• For example, one subroutine in 
the FORTRAN interpreter-reads as follows:. 

* Decimal to bin~ry conversion 
*. Source: addressed by F; 1-13 digits 
* Destination: L Y, initiaiiy zero 
Decimal-to-binary 

Read 8 bits to T counting FA up and FL down obtain a char 

Move T to X 
Call A~d-X-to-LY 
If FL=O then exit 
Move L to X 
Call Mui tiply-XY-by-10 
Move L to Y 
Move T to L 
Go to Decimal-to-binary. 

and address the.next one 
strip off zone bits 
LY ~ LY + X add to partial sum 
quit after last char 
allow another digit: 
TL+- 10 x XY 
LY .
LY ... 
repeat 

(b) Knowledge of microinstruction forms is not beneficial. 
Although microprogrammers on other machines need to know 
which bits do what, on the Bl700, there is no way to use 
that information. Once the function is given in English, 
its representation is immaterial. The Bl700 microprogrammer 
~as only one set of formats to worry about: those belonging 
to the s~language which he is interpreting. 



May 1972 

(c) Multiprogramming of microprograms is purely an MCP function, 
carried out without the microprogrammer's knowledge or 
assistance. .Actually, there is nothing one would do differently, 
depending_on whether or not other interpreters are running 
simultaneously. 

(d) Use of M-memory is purely an MCP function; the resident 
interpreter interface alone can move information in 
and out of M. Other than rearranging one's interpreter 
according to usage, there is nothing one should microprogram 
differently depending on whether microinstructions are 
execut·ing out of rt-memory or s.:.memory. · ·Maximizing use of 
system resources is beyond th~ scope of any individual pro
gram; responsibility lies solely with the MCP and the machine 
designers. 

(e) Since all references are made symbolically, protection is 
_easy to assure. Microprograms can reference only what they 
.can name, and they can only name quantities beloriging to 
themselves and their S-machines. Moreover, names cannot 
be. artifically generated, as they can in FORTRAN (e.g., by 
negative subscripts, or by call-by-value parameters used 
in call-by-reference constructs). 

(f) Calling out interpreters is simplified by the continuation 
of Burroughs' "one-card-of-free-form-English" philosophy 
of job control language. Figure 11 shows the control informa
tion which creates a new interpreter (1) from cards, and 

_(2) from a disk file named XCOBOL/SOURCE. 

(1) ? CONPILE XCOBOL/INTERP WITH MIL; DATA CARD· 

. (2) ? CO~tPILE XCOBOL/INTERP WITH MIL; MIL FILE CARD = 
XCOBOL/SOURCE 

Figure 11. Typical NCP control information 
for creating interpreters. 

(g) Association of interpreters and S-language files occurs at 
run-time. Figure 12 shows the control information which 
executes a GOBOL program named FILE/UPDATE with (1) the 
usual COBOL· iriterpretcr, and (2) another interpreter named 
XCOBOL/INTERPRETER. 



(h) 

May 1972 

(1) ? EXECUTE FILE/UPDATE 

(2) ? ~ECUTE FILE/UPDATE; INTERP = XCOBOL/INTERPRETER 

Figure 12. Typical NCP control information 
for executing programs. 

There is no -limit to the number of interpreters that may be 
in the. system (except that no more than ·244 bits are capable 
of being managed by the Bl700's present virtual memory 
property, so a 28,000-bit average interpreter length means 
there is a practical limit of 628,292,362 interpreters ••• 
many more than the number of S-languages in the world). · 

9 • VIRTUAL ?-!EMORY 

On the B1700, S-language addresses may be 44 bits long (disregarding the 
possibility of using r.:agnetic tape as a backup for main memory), even 
though each system will· have 16 million bits of S-memory or less. M
addresses are 24 bits- long, eYen though each system will have 65,536 bits 
of N-mcmory or less. Virtual memory ls the mechanism by which the Bl700 
accormnodates memory references to more bits than are physically .attachable. 

·9 .1 Virtual M-rnemory 

As control is switched to an interpreter, two registers are set by the 
M-memory manager: ~-it~.crQeJ~~~-~er;~iGdUBIU:mll$~ 
•ureinotr~~L.Ei~....tlie~~'f:ir.st.:'< · -- ···-: - · ~l'.JJQ.t:i~~nd~ 
Ntcrop·r-0~4j'~~¥-t""1{e-r~, which con ta ins the "(5..la.t3.Y£hfliirl.LJ.Q.l)S.~ 
fa@SZ~:t~am-~. Micros are always addressed relative to the 
start of an interpreter. \~1~1kiff1&imik4?A~~~-~~~~~~~.$~ 
- tKt¥#E@tla-1iQpueua~rtdetiMto~t=eei45teJf·!i!~ 
•togpezef?"".-l'@tP r!r~Mn'~ .1 .. 

This is not a true virtual memory scheme since early interpreter locations 
are always in M-memory, and later locations never are. It does have the 
necessary property, however, that the actual amount of M-mernory never 
impacts the program. Interpreters execute identical sequences of instruc
tions for a given task as the amount of N-memory varies. The micro
pr<?grammer never takes cognizance of the actual amount of M-memory that 
is.pres~nt. (He should, of course, arrange his interpreter with the most 
often used parts first.) 



May 1972 

9.2 Virtual S-rnemory 

The Bl700 NCP maintains a large disk area for program pieces that are not 
in use and can be kept outside of main memory. These pieces may be any 
number of bits long ·(up to 224 ). Whether they are segments, pages, arrays, 
or otherwise, depends on the S-machine from whose environment they came. 
All Burroughs S-machines designed for specific programm.ing languages (e.g., 
COBOL, FORTRAN, RPG, BASIC, ALGOL) make references through descriptors, or 
interpretable pointers. These descriptors define ateas within an S-machine's 
data or code space; references are relative to th~ start of the described 
area. The descriptions themselves are relative to the start of the 
S-machine's space, or to an MCP back-up area. When a reference selects an 
area which is not in memory, the NCP initiates a disk request and temporarily 
·runs another job. When the absent area is brought in, its descriptor is 
changed to indicate the new location. · The re-ference is retrie·d when the 
job' is selected again. 

S-machines are free. ~o manage their ov.-n data and code spaces, with and 
without the MCP's assistance. 

Within an S-machinc, only its own data and code spaces are accessable. 
Each machine environ~ent is represented as if it bega~ in location zero 
and extended throughout all memory, possibly up to 244 (over 17 trillion) 
bits' worth. The Bl700 monitors all references to main memory to verify 
that they lie between locations contained in the hardware's Base and Limit 
registers which are set by the MCP during reinstating. Illegal references 

. cause a hard interrupt which transfers control from a user interpreter 

. back to the MCP's interpreter, preventing meddling in other S-machine's 
areas. 

lo.· . STACK ORGANIZATION 

EaW1W'.1JlO!Ffr.JLw.M5Q!#Pk"*"i!f~~Ritt~MiM'i41iMiimtM 
~fi.Gtl 'l'°' d ___ f-o.l:ely ~,~?.r;~).:7~.-C:ft.VW::Sf&Eam:yr.gouXji;i~,"Ajfiff"ti'.g~tlttEfi&WJJfbi;rmzm:h= 
~-mgi.e;s:,;·in&·ti~@l:"!:en'~ Present interpreter switching assumes that no 
information remains pushed into the stack. 

Other hardware makes S-machine stacks easy to implement. The ability to 
read and write in both directions in S-rnemory, and to count field defini
tion registers' subfields up and down independently give microprograms 
read-and-pop and write-and-push op~rations which can be carried out by one 
microinstruction. · · 



May 1972 

11. DYNAMIC SYSTEM CONFIGURATION 

Since no information (other than a few MCP tables) contains absolute 
memory locations, the presence or absence of particular memory modules 
is irrelevant. Sho~ld one fail, it may be taken off-line and repaired 
without disturbing the rest of the system. Conversely, when memory 
modules are added to the system, the s·l 700' s location- independent 
segments c3n be placed in them as soon as they are brought on-line. No 
code in the MCP nor in any user program beed ever be revised due to 
memory reconfiguration. 

Likewise, the identity of any processor, I/O ch3nnel; or periph~ral is 
not represented in any user program or HCP routine.. When particular 
devices are needed, their identity is looked up using a symbollc reference 
each time a device is accessed. Consequently, devices may leave the · 
system without inhibiting any prdgram from running (unless the HCP is. 
not able to create a pseudodevice to hold the I/O requests until the 
real device is available again). Further, devices may enter the system 
and be fully utilized without changing any user or MCP code. 

12. MULTIPROGRAMMING 

A misunderstood concept·, multi.programming refers to the interlaced pro
cessing of independent programs using as much of an entire system's 
resources as are required. It is usually confused ~ith partitioning, 
which is the interlaced execution of independent programs using part 

.of a system's resources. Under multiprograrr.ming, two three-tape sorts 
which use 24K of core can be run together on a three-tape, 24K system 
(the NCP must utilize three pseudo-tapes); a partitioned system needs 
six tapes o; 48K or both. 

A simple way to implement multiprogramming is to represent each program 
in main memory exclusively; that is, no state information or temporary 
results are kept in a processor ••• everything is available in memory. 
On the Bl700, this is true of each S-machine. To interlace process·ing 
of each program, imagine directing the processor to execute exactly one 
instruction from each program, in round-robin fashion. Since ~verything 

.necessary for any instruction's execution is represented in memory, no 
difficulties ar~ encountered in passing from one program to the next. 
Such an approach, however, denies the eff iciencics which can be obtained 
by successive instruction executions in one processor. The Bl700 takes 
an intermediate approach which is made feasible by its descriptor-
o rga n i. zed vi rt u a 1 memory scheme • rnmqiflig£MfriWi&Hl&tiAiii¥b5Wtt iiii ··• 
~~' either for 1/0 or virtual memory management, (Q11I 

~ffata:iJee¥r~ilhS+&£• When a program can go no further by itself, 



May ~972 

its state is recorded in memory and another task is taken up. It is a 
·happy discovery that such breakpoints occur often enough to keep the MCP 
attentive to the needs of many jobs. This scheme is further refined by 
allowing programs to. become dormant, which permits their state informa
tion to be taken out of main memory. Subsequent I/O operations on ~hich 
dormant programs ~ay be waiting carry some form of identification which 
ties them to the dormant program, and causes program state information 
to be brought back. 

13. MULTIPROCESSING 

Multiprocessing is the concurrent execution of more than one processor on 
independent programs. The processor-independent program state, which is 
used to keep multiprograr..ming simple, automatically allows any program 
to be resumed by any proce$sor, as long as each processor can address all 
of memory, coc~unicate with the entire 1/0 system, and has access to the 
interpreter na~cd in the program's run structure (see Figure 10). All 
of these conditions are always true of Bl700 processors. 

14.- DESCRIPTOR-ORGANIZED I/O 

Because I/O processing is often not directly dependent on subsequent pro
gram steps, greater throughput can be achieved by overlapping I/O pro
cessing with other processor activity. So, to reduce B1700 processor 
involvement with 1/0, requests take the form of descriptors (interpret
able programs) whose effect, when interpreted, is the 1/0 function. To 
·activate a request, a processor sends a port-to-port message across the 
port interchange. The message locates an 1/0 descriptor in main memory 
which an 1/0 processor will interpret. Non-1/0 processors are thus 
relieved of the intricacies of device and channel communication. 

On one~processor B1700 systems, the only I/O descriptors which are fab
ricited are self-evident to the device controls themselves. Each contains 
a literal device name and an opcode for the device, as well as the . 
addresses to be used for information transfer in and out of memory. On 
multi-processor Bl700 systems, the opportunity to create arbitrary des
criptors is present, enabling file-oriented activities, such as record 
accessing, searching, and sorting, to be carried out in the I/O realm. 
In addition, new device disciplines can be accommodated by new microcode 
for the 1/0 processors. · 

15. SYSTEM PERFORMANCE MONITORING 

15~1 Profile Statistics 

Whereas hardware receives extensive and penetrating scrutiny while it is 
being designed, software is normally constructed with only the programmer's 
intuitions about its efficiency to guide its design. The performance 



May 1972 

~easurement technique of profile statistics, the as~ociation of code usage 
with a program's source language, has been reported to help improve a 
prograr.1's running tir.!e by a factor of t,\~o to ten. (See Darden and Heller, 
or Knuth [Profile] ). To help Bl700 users obtain the greatest throughput 
per dollar, each Burroughs interpreter can gather profile statistics about 
a program which it is interpreting and present them at the end of .a run. 

At compile time, a user may indicate which portions of his program are to 
receive more or less scrutiny. These indications define a set of program 
segments whose usage is to be recorded by means of an inserted S-language 
mon~toring command. 

The compiled progr.am consists of: the code segments expanded with monitors 
(by less than 1%), textual information which will be used to describe the 
participating program segQents in terms of source language, and an array. 
of cells for the frequency counts... Inte.rpretation of the monitors appears 
to extend execution times by less than 1:2io. After execution, the weighted 
frequency counts show ,\·hich program segoents account for most of the 
running time. Reprogramming these critical scgraents for efficiency will 
reduce running times the most. 

Microprogranu~ing can easily allow dynamic measurements of other properties 
as well, with similarly· small overhead. 

15.2 "Monitor" Microinstruction 

.One microinstruction, Monitor, simply presents a user-specified bit pattern 
at designated pins in the processor backplane and frontplane. This allows 
unique software 11 events" to be identified by external hardware, which 
greatly simplifies the task of knowing what the system is doing. 

Each higher-level language has been extended to include a construct which 
generates a :Monitor S-instruction for each interpreter to carry into an 
identical microinstruction. Event flagging is thus available to all 
programmers. 

16. EVALUATION 

The Bl700's ability to ·provide profile statistics at negligible cost voids 
all known system performance measures. Cons~der benchmarks, which measure 
more system parameters tha~ any other technique. 

Any benchmark program which runs on the Bl700 develops not only an observed 
r.u~ning time, but also an indication of how to reduce that time (often by 
more tn~n 50%). What, then, is the t~ue performance on the system? Not 
the observed time, because inefficiencies are pin-pointed. Half the time? 



May 1972 

Not until the bench~ark has been changed. The point of benchmarks is to 
have a standard reference which allows the customer to characterize his 
work and obtain a cost/performance measure. What custooer ~ould be 
satisfied with an inefficient characterization? If the Bl700 can show 
that a program is ndt using the system well, what good is it as a bench
mark? If ~e change the program to remove the inefficiencies, it is no 
longer stand~rd. This is a pernicious dilem.~a. · 

Even the sinplest measure, add time, still published as if i~ hasn't been 
a misleading and unreliable indicator for the past 15 years, is void. 
What is the relative performance of two machines, one of which can do an 
almost infinite var.iety of additions and the other of which can do only 
one or two? The 81700 can add two 0-24 bit binary or decimal numbers 
in 187 risec; how fast must a 16-bit binary machine be in order to have 
an equivalent add time? 

Assuming reasonable benchmark figures are obtainable, they would say 
nothing about the intrinsic value of a machine which can execute another 
machine's operators, for both existing and imaginary cotnputers; which 
can interpret any current and presently conceivable programrn.ing language; 
which can always accept one more job into the mix; which can add on one 
more peripheral and one more memory module, to grow with the user; which 
can interpret one c:ore ·application-tailored S-machine; which can tell a 
progracmer where his program is least efficient; which can continue 
operation in spite of failures in processing, memory, and I/O modules. 
These characteristics of the Bl700, shared by few other machines--no 
·machine shares them all--save time and money, but are not yet part of 
any performance measurement. 

Despite the nullification of measures with which we are familiar and the 
gargantuan challenge of measuring the Bl700's advancements of the state
of-the-art, there are, nevertheless, some quantifiable signs that the 
system gives more performance than comparably-priced and higher-priced 
equipment. 

16.1 Utilizcrtion of Memory 

Defined-field design's major benefit is that information can be re
presented in natural containers and formats. Applied to language inter
pretation, defined-field architecture allows $-language definitions which 
are more efficient in terms of memory utilization than machine architec
tures which have word- or byte-oriented ·architecture. For example, short 
addresses may be encoded in short fields, and long addresses in long 
{i~lds (assuming the interpreter for the language is programmed to decode 
the different sizes.). Alternatively, address field size may be a run
time parameter determined during compilati~n. That is, programs with 
fewer than 256 variables may be encoded into an S-language that uses 



May 1972 

eight-bit data address fields. Even the fastest microcode that can be 
written to interpret address fields is able to use a dynamic variable 
to determine the size of the field to be interpreted. 

. . 
Just how efficient this makes S-languages is difficult to say because no 
standard exists. What criterion will tell us how well a given computer 
represents prograras? wnat "standard" size does any particular program 
have? · We ¥:ould like a measure that takes a program's semantics into 
account, not just a statistical measure such as entropy. 

If we simply ask how much memory is devoted to representing the object 
code for a set of programs, we find the foliowing statistics: 

Language Aggregate Aggregate Other 10 Improved Bl700 
of Sample Size on Bl700 Size on Other System Utilization 

FORTRAN 280KB 560KB System/360 5070 
FORTRAN 280KB 450KB B3500 4070 
COBOL· 450KB 1200KB B3500 60% 
COBOL 450KB 1490KB System/360 70% 
RPG II 150KB 310KB SystE.m/3 507. 

In short, the B1700 appears to require less than half the memory needed 
by byte-oriented systems to represent programs. Comparisons with word
oriented systems are even more favor.able. 

As to memory utilization, the advantage of the B1700 is even more apparent. 
Consider two systems with 32KB (bytes) of main memory, one a System/3, the 
other a Bl700. Suppose a 4KB RPG II program is running on each. If we 
ask how much main memory. is in use, we find: 

Svstem Bytes in Use % Comment 

Systern/3 32K 100 28K is idle without multi-
programrning and virtual· memory. 

Bl700 lK 3 Assumes SOOB run structure 
and SOOB of program and data 
segments. 

In other ~ords, the utilization at any given moment may be 30 times better 
on the Bl700 than on the Systcm/3 •. At least, with all program segments in 
core, it is seven times better (4.5KB vs. 32KB). Even if we assume that 
the RPG interpreter {s in main memory and is not shared by other RPG jobs 
in·· the ~i:nix, the comparison varies from 6: 1 to 4: 1, 5KB to 8KB (vs. 32KB), 

· 84i. to 15i. better utilization. As more and more RPG jobs become active in 
·t~e mix, the effect of the interpreter diminishes, out then comparison 



May 1972 

becomes meaningless, because other low-cost systems cannot handle so large 
a mix. (Note that these figures change when a different main memory size 
is considered, so the cooparison is more an illustration of the advantage 
of the Bl700's variable-length segments and virtual memory than of its 
memory utilization.) 

16.2 Running Time 

Although program running time is said to involve less annual cost at 
installations than the unquantifiable parar:ieter which we may call "ease 
of use", let us mention some current observations. When the Bl700 inter
prets an RPG II program, the average S-instruction time is about 35 micro
seconds, compared to System/3's 6 microsecond average instruction time. 
On a processor-limited application (specifically, calculating prime numbers), 
the identical RPG program runs i~ 25 seconds on a Bl700 and 208 seconds on 
a System/3 model 10. Both systems had enough main memory to contain the 
complete program; only the memory and processor were used. 

The particular configurations leased for $3500 (Bl700) vs. $2000 (System/3). 
In terms of cost, the Bl700 run consumed 30c while the System/3 run took 
$1.60. In terms of instruction executions, the B.1700 was 50 times faster. 
That is, each individual interpreted RPG instruction, on the average, con
tributed as much to the final solution as 50 System/3 machine instructions. 
When one considers that RPG is the only programming language on the 
Syste~/3, it is incredible that System/3 seems so poorly equipped to run 
RPG programs. It is even more incredible because the Bl700 really has no 
S-language expressly for RPG; it uses the COBOL S-language_ instead. The 
likelih_ood of an S-machine more than 50 times more efficient than System/3 
is almost certain. -This seems to support the Bl 700 philosophy, that in
terpretation of S-machines for each application is more efficient than 
using a general-purpose architecture. 

Using another set of benchmark programs {for banking applicaiions), and 
another Bl700 which leases for $2000, throughput comparisons are again 
astounding. Ori the one hand, we are comparing a defined-field, soft
interpreting, soft-1/0-processing machine using pre-release corr.pilers, 
interpreters, and NCP routines, under multiprogra~ming, multiprocessing, 
virtual memory systems design, against, on the other hand, a byte-oriented, 
hard-wired system with two years' field testing, five software releases, 
batch-processing, one cpu, and 32K maximum main memory. Despite all of 
the Bl700 features, which ~upposedly trade speed for flexibility, the 
Bl700 executes RPG· programs in 50% to 75% of the System/3 time, and 
co~piles them in 110% of the System/3 time, for the same monthly rental. 
In-applications of this type, compilation is expected annually (monthly 
at worst) ~hile execution is expected daily. (Systems used for this 
comparison included a multi-function card unit to read, print, and punch 
96-column cards, a 132-position 300 lpm printer, a dual spindle 4400 bpi 
disk cartridge drive, and operator kcyboa~d. The System/3 could read 
cards at 500 cpm, while the Bl700 could read at 300 cpm.) 



May 1972 

17. - CONCLUSION 

Microprogramming, firmware, user-defined operators, and special-purpose 
minicomputers are being touted as effective ways to increase throughput 
on specific applications ~hile decreasing hardware costs. Standard 
system modules may be tailored to an installation's needs. Effective 
as these approaches are, they are all held back by procrustean machine 
architecture. Burroughs Bl700 appears to eliminate inherent structure 
by its defined-field and soft interpretation implementation. Both are 
advancements of the state-of-the-art. Now one machine can execute every 
machine language well, eliminating nearly all conversion costs. One 
machine can interpret every programming language welr, reducing problem
solving time and expense. The B1700 does not waste time or memory over
coming its own physical characteristics; it works directly on the 
problems. Furthermore, these innovations are available in low-cost 
systems that yield better price/performance ratios than conventional 
mach.inery. 

18. ACKNOWLEDGENENT 

·Many of the design objectives were first articulated by R. s. Barton 
[BARTON]. The author wishes to thank Brian Randei1, R. R. Johnson, 
Rod Bunker, Dean Earnest, and Harvey Bingham for their conscientious 
criticism of various drafts of this article~ 

19. BIBLIOGRAPHY 

BARTON Barton, R. s., "Ideas for Computer Systems Organization: 
A Personal Survey", Software Engineering, vol. 1, Academic 
Press, New York, 1970, pp. 7=16. 

B5000 Lonergan, W., and King, P •. "Design of the BSOOO System", 
Datamation, vol. 7, #5, (May 1961), pp. 28-32. 

EDVAC 

PROFILE 

Burks, A. W., Goldstine, H. H., and von Neumann, J., 
"Preliminary Discussion of the Logical Design of an 
Electronic Computing Instrument", in Taub, A. H. (ed.), 
Collected Works of John von .Neumann, vol. 5, The Macmillan 
Co., New York, 1963~ 34-79. 

Also in Bell, C. G., and Newell, A., Computer Structures: 
Readings and Examples,. McGraw-Hill Book Co., 1971, pp. 92-119. 

Darden, S. C., and Heller, S. B., "Streamline Your Soft
ware Development", Computer Decisions, vol. 2, ltlO 

. (October 1970), pp. 29-33. 

Knuth 5 D. E., "An Empirical Study of FORTRAN Programs", 
Software--Practice and Experience; vol. 1, #2 (April- 1971), 
P.P• 105-134. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

