
.------------------__,j-- ~ --
Burroughs~

B 1700 Systems

Micro Implementation

Language (MIL)

REFERENCE MANUAL

PRICED ITEM

'-------~~--------~--~
r'ri• _, ;., 1J ~ A.. May 1~77 ·, 02568

Printed in U.S.A.

Burroughs m

B 1700 Systems

Micro Implementation

Language (MIL)

REFERENCE MANUAL

Copyright ell 1977, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

May 1977 1072568

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. 0. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO - West

Section

1

2

3

4

5

6

INTRODUCTION
Background . . .
Related Documents

TABLE OF CONTENTS

MICROPROGRAMMING CONCEPTS .
General
Micro-Instructions
Defined Field Concepts
Interpretation of the Virtual Language

SYNTAX DIAGRAMS
Forward Arrows . .
End of Statement
Continuation
Keywords
Variables

BASIC COMPONENTS OF MIL
General
Identifiers
Labels . .
Card Terminators
Numbers ...
Bit Strings
Character Strings
Literals
Arithmetic Expressions

STRUCTURE OF A MIL PROGRAM

SEGMENTATION
Introduction
Label Addresses .
Segment Statement . .
Code.Segment Statement .

Compiler - Generated Code
Main Code Block . .
External Code Block

DECLARATIONS
Data Types ...
Declare Statement

Non-Structured Declarations
Structured Declarations

Declare Examples
Introduction
Non-Remap Items
Remap Items

General
Reverse

Page

ix
ix
ix

1-1
1-1
1-1
1-1
1-2

2-1
2-1
2-1
2-2
2-2
2-2

3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-7
3-8
3-9

4-1

5-1
5-1
5-1
5-2
5-3
5-5
5-5
5-6

6-1
6-1
6-1
6-2
6-4
6-6
6-6
6-6
6-8
6-8

6-10

iii

Section

7

iv

TABLE OF CONTENTS (Cont)

REGISTERS AND SCRATCHPAD
General
Register Groups
Alphabetic'al Listing of Registers and Key Concepts
Active Registers . . .

X and Y Registers
Field (F) Register
Local (L) Register
Transform (T) Register
Micro-Instruction (M) Register
Base (BR) and Limit (LR) Registers
Address (A) Register
A Stack (TAS)
Top of Control Memory (TOPM) Register
Memory Base (MBR) Register
Control (C) Register
Combinatorial Logic or Functional Box

Result Registers
XORY Result Register
XANY Result Register
XEOY Result Register
CMPX Result Register
CMPY Result Register
MSKX Result Regi~ter
MSKY Result Register
SUM Result Register .
Difference (DIFF) Result Register

Scratchpad
Scratchpad Words "'. 24 Bits Each . ·
Double Scratchpad Words - 48· Bits Each .

Constant Registers
Maximum Main Memory (MAXS:) Register
Maximum Control Memory (MAXM) Register .
NULL Register

Input/Output Registers
Console.Switches
Console Cassette Tape Input (U) Register
Command (CMND) Register
Data Register . . '

Condition Registers
Introduction
Binary Conditions (BICN) Register .
XY Conditions (XYCN) Register .
XY States (XYST) Register
Any .Interrupt Bit
Console Interrupt (CC(3))
Main Memory Read Parity Error Interrupt (CD(O)) .
Main Memory Address Out-of-Bounds Override (CD(l))

Page

7-1
7-1
7-1
7-2
7-6
7-6
7-6
7-6
7-6
7-6
7-6
7-7
7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-8
7-9
7-9
7-9
7-9
7-9

7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-12
7-12
7-13
7-13
7-13

TABLE OF CONTENTS (Cont)

Section

7 REGISTERS AND SCRATCHPAD (Cont)
Read Address Out-of-Bounds Interrupt (CD(2))
Write/Swap Address Out-of-Bounds Interrupt (CD(3))
Field Length Conditions (FLCN) Register
Interrupt Conditions (INCN) Register . .

Register Designations and Areas of Application .
Organization of Fields and Subfields

8 MIL STATEMENTS
Index to Stat('.ments
ADD Scratchpad
ADJUST
AND .
ASSIGN
BEGIN
BIAS
BRANCH.EXTERNAL
CALL
CALL.EXTERNAL'.
CARRY
CASSETTE .. .
CLEAR ... · ..
CODE.SEGMENT
COMPLEMENT
COUNT
DEC
DEFINE
DEFINE.VALUE
DISPATCH .. .
ELSE
EMIT.RETURN.TO.EXTERNAL
END
EOR
EXIT ...
EXTRACT .
FA.POINTS
FINI
GOTO
HALT.
IF
INC ..
JUMP .
LIT ..
LOAD.
LOAD.MSMA .
LOAD.SMEM ..
LOCAL.DEFINES
MACRO DECLARATION

Page

7-13
7-13
7-13
7-13
7-14
7-14

8-1
8-1
8-2
8-3
8-4
8-6
8-7
8-9

8-11
8-12
8-13
8-14 "
8-15
8-16
8-17
8-18
8-20
8-22
8-23
8-24.
8-25
8-27
8-29
8-30
8-31
8-33
8-34
8-36
8-37 .
8-38
8-39
8-40
8-46
8-47
8-48
8-49
8-50
8-52
8-53
8-55

v

:TABLE OF CONTENTS (Cont)

Section

8 MIL STATEMENTS (Cont)
MACRO REFERENCE . .
MAKE.SEGMENT.TABLE.ENTRY
MICRO
M.MEMORY.BOUNDARY .
MONITOR .
MOVE
NOP
NORMALIZE
OR
OVERLAY
PAGE ...
POINT ..
PROGRAM.LEVEL
READ
REDUNDANT.CODE
RESERVE.SPACE
RESET .
ROTATE
SEGMENT .. .
SET
SHIFT/ROTATE T . .
SHIFT/ROTATE X/Y/YX
SKIP
S.MEMORY.LOAD
STORE
SUB.TITLE
SUBTRACTSCRATCHPAD
SWAP
TABLE
TITLE
TRANSFER.CONTROL
WRITE
WRITE.STRING
XCH

9 PROGRAMMING TECHNIQUES
Virtual-Langauge Definitions
Source Image Format
Program Example

Appendix A MIL COMPILER OPERATION

vi

Control Cards
General
Dollar Cards
Ampersand Cards

MIL Compiler Files . .

Page

S.-57
8·-59
S.-60
8·-61
8·-62
8·-63
8·-65
8·-66
8-67
8·-69
8--70
8-71
8-72
8·-73
8·-75
8·}6
8·~77
8·-78
8·-79
8··80
8··82
8--84
8--85
8·-87
8--88
8--89
8--90
8--91
8--92
8--93
8-94
8 .. 95
8--97
8-·99

9-1
9-1
9-1
9-1

A-1
A-1
A-1
A-2
A-5
A-6

Section

Appendix B

Appendix C

Index . . .

TABLE OF CONTENTS (Cont)

HARDWARE INSTRUCTION FORMATS AND TABLES
B 1700 Hardware Tables
B 1700 Hardware Instruction Formats

Bias
Bit Test Branch False
Bit Test Branch True
Branch
Call
Cassette Control
Clear Registers .
Count FA/FL .
Dispatch . . .
Extract From T
Four-Bit Manipulate
Halt
Load F From Doublepad Word
Monitor
Move 8-Bit Literal .
Move 24-Bit Literal
No Operation . . .
Normalize X
Overlay Control Memory
Read/Write Memory
Read/Write MSM . . .
Register Move
Scratchpad Move . . .
Scratchpad Relate FA .
Set CYF
Shift/Rotate T Left
Shift/Rotate XY Left/Rjght
Shift/Rotate X/Y Left/Right
Skip When
Store F Into Doublepad Word
Swap F with Doublepad Word
Swap Memory
Transfer Control . .

Micro-Instruction Timing
B 17.10 Notes
B 1720 Notes . . .

RESERVED WORDS AND SYMBOLS

Page

B-1
B-1
B-5
B-5
B-5
B-6
B-6
B-7
B-7
B-8
B-8
B-9

B-10
B-10
B-11
B-11
B-12
B-12
B-13.
B-13.
B-13.
B-14
B-14
B-15
B-16
B-17
B-17
B-18
B-18
B-19
B-20
B-20
B-21
B-22,,
B-22 ·
B-23
B-24
B-25
B-25

C-1

I-1

vii

Table

8-1
8-2
8-3
8-4
B-1
B-2
B-3
B-4
B-5

viii

AND Truth Table
EOR Truth Table
OR Truth Table .
String Definitions
Register Addressing
Condition Registers
Microinstructions
Variant Field Definitions
Micro-Instruction Timing

LIST OF TABLES

Page

8-4
8-Jl
8-·67
8-97

B-1
B-2
B-3
B-4

B-24

INTRODUCTION

BACKGROUND

The Burroughs Micro Implementation Language (MIL) is a symbolic coding technique that makes available
all the capabilities of the B 1700 Processor. The MIL compiler's machine language output is ready for
execution directly upon the hardware. The user, however, must be prepared to programmatically control
the total environment including bootstrap loading, interrupt servicing, and potential machine malfunction
ing (e.g., parity error detection).

To use MIL properly and efficiently, the programmer must have an extensive knowledge of the available
registers and their capabilities. This manual describes the registers, the syntax and the semantics of the
MIL language and may be used to write programs without prior knowledge of the system.

/

RELATED DOCUMENTS

A description of the Input/Output subsystem and the 1/0 descriptors as well as more detailed information
about the registers can be found in the B 1700 Systems Reference Manual (form 1057155).

ix

1. MICROPROGRAMMING CONCEPTS

GENERAL

Microprogramming is a method for programming a computer hardware architecture. The microprogrammer
is concerned with machine registers which were formerly the domain of the hardware systems designer.
Strings of micro-instructions manipulate those internal registers to present an outward appearance of
system hardware which is more functional for problem-oriented programming. In most machines now in
the market place, read-only memories (ROM's) contain microprograms which convert the unique internal
environment of several different processors into a standard assembly language. Once created, the micro
programs are unalterable and may contain compromises in efficiency because of a limited hardware instruc
tion set.

The Burroughs B 1700 system makes use of the latest technology to implement a writable control memory
and has several microprograms, each optimized for the functions it will perform. The virtual system archi
tectures chosen have been those of the standard (such as COBOL and FORTRAN), problem-oriented,
compiler languages. Other microprogrammers may choose architectures and create languages optimized
for other purposes.

MICRO-INSTRUCTIONS

A micro-instruction is the smallest programmable operation within the system. Each micro-instruction is
fetched from memory and decoded in the (micro) register to be directly executed by the hardware.

DEFINED FIELD CONCEPTS

A defined field concept allows bit-level data addressing with lengths from 1 to 65,535 bits. There are no
visible boundaries or "best" container size for any information contained in main memory. Virtual
machine instruction strings (the B 1700 analog of machine object code) and their data may thus be densely
packed into meaningful fields, saving considerable memory space. The programming problem of packing
and unpacking data fields across hardware container boundaries is completely resolved, saving much pro
gramming effort and processor time. The microprogram fetches groups of bits in meaningful field sizes
from anywhere in main memory as needed.

Special hardware, called a Field Isolation Unit, has been implemented to achieve bit addressability and
variable length fields and to automatically increment addresses. This allows maximum flexibility in defin
ing data fields and resolves the problem of packing and unpacking data fields across hardware container
boundaries.

1-1

INTERPRETATION OF THE VIRTUAL LANGUAGE

The traditional approach to supporting a higher-level language is to translate the source statements as
written by the programmer into another language either directly recognized by the hardware, (e.g. 9 machine
object code) or easily translatable into the machine object code (e.g., an assembly language). An alternate
technique is the interpretive execution for each source statement with a logically equivalent routine in some
lower-level language. A microprogrammed system offers the opportunity to combine the best of both
methods. The source statements in the higher-level language are translated into a virtual system code by
a compilation process. This system code, also called S-code or S-language, very closely resembles the
original source language. Micro-instruction routines then interpretively execute each virtual language state
ment. The results are:

a. Faster compilation,

b. System architecture, as expressed in the set of microroutines, which is optimized to the source
language,

c. Reduction in the processor time required to perform the logical equivalent of each source state
ment,

d. Reduction in the memory space required to encode each source language operation.

A set of microprogrammed routines is called an interpreter and effectively creates a virtual system archi
tecture for the source language being executed. That is, when the COBOL interpreter is executing, the
system is effectively a COBOL machine. When the FORTRAN interpreter is executing, the system is a
FORTRAN machine, and so on for any other S-language defined.

1-2

2. SYNTAX DIAGRAMS

The principalmeans of describing MIL syntax is through the syntax diagram, commonly known as "rail
road" notation. The basic conventions are discussed below.

FORWARD ARROWS

Any path traced along the directional flow of the arrows will produce a syntactically valid command. The
following example illustrates the technique:

, :1
OLD ,---_J~..,. STREAM

1
,

L., MILL l., WHERE I

..__ __ ___,. ... RIVERSIDE .. FIRST

LAST

..__ __ ___.. SAW ______ YOU -------"----------------~

FOUND_J (NOT ME BUT YOU)

----------------~ TADPOLES----------------......,

Valid syntax generated from this diagram could be:

DOWN BY THE OLD MILL STREAM
UP BY THE OLD, OLD STREAM
DOWN BY THE RIVERSIDE WHERE I FOUND TADPOLES
DOWN BY THE OLD STREAM WHERE I FIRST SAW YOU (NOT ME BUT YOU)
UP BY THE RIVERSIDE WHERE I LAST FOUND YOU

The bridge over OLD, unless otherwise specified, can be crossed any number of times.
\

END OF STATEMENT \

The completion of a statement is indicated by the following convention:

2-1

CONTINUATION

The following convention indicates that any numbe:r from 0 through 9 is syntactically valid:

KEYWORDS

Upper-case letters indicate keywords which must literally appear in MIL statements.

VARIABLES

Lower-case letters, words, and phrases within angle brackets indicate syntactic variables which require
information to be supplied by the programmer. The following example illustrates the technique:

E;;:3 • (animals) WEHE t IN ~
NEAR

CLOSE TO

Valid syntax generated from this diagram might be:

2-2

THE-TADPOLES WERE IN THE STREAM?
COWS WERE CLOSE TO THE POND?
SOME BIRDS WERE NEAR THE OCEAN?

THE {body-of-water) ___..... ? ----I

. 3. BASIC COMPONENTS OF MIL

GENERAL

To understand MIL grammar the user should be familiar with the following basic elements of the MIL
language.

(point):

(underscore):

(digit):

(letter):

3-1

(special.characters):

--

--

--
--

-=

IDENTIFIERS

(identifier):

______,[t.

3-2

&

@

$

>

<

*

I

%

...

...
• - ampersand --

-

--

--
-
--
-
--..
-

-

-

: -vi · I blank (one non s1b e character)

{letter) l -r 1
n

- (digit). ---- -.. . ::.

Examples

RESTRICTIONS

1. An Udentifier) must begin with a< letter).

2. An< identifier) may not contain blanks.

3. Reserved words may not be used as <identifiers).
(See Appendix C: Reserved Words and Symbols.)

4. An <identifier) is limited to a maximum of 63
characters: only the . first 2 5 characters are used
in uniqueness detection.

TEST.NAME. I T.123.Q ABC LOOP .. 12

LABELS

<label):

r r r : (letter)

J {digit} •

<unique. label):

--------(label) ~

<point.label.declaration):

-------·------11..-.... (label)--.j

<point. label. reference):

: + --------1•• {label)---..j

J

J ~

3-3

(label.reference):

-----------,-----11 <unique• labef) ------..------t.,...ij
.____,..{point• label• refei•ence) .,f

(label. declaration):

--------~---_,....,..., (unique.label) ,,------.-----t•..,.I
~_,...,(point.label.declaration) __ _..., t

(Labels)s may be declared by: (1) starting the (label) anywhere in columns 1 through 5 of a source image,
or (2) starting the (label) immediately after the reserved words TABLE, SEGMENT, or CODE.SEGMENT.
(See also Segmentation: Label addresses.)

Examples

.A.POINT.LABEL

CARD TERMINATORS

(card. terminator):

RESTRICTIONS

1. A (label) must begin with a (letter) or a (digit)

2. A (label) may not contain blanks.

3. A (label) is limited to a maximum of 63 characters:
only the first 25 characters are used in uniqueness
detection.

4. (Unique Label)s may be declared only once.

5. (Point Label)s may or may not be unique.

REGULAR.LABEL LOOP BEGINNING.OF.TEST. I

________ ,_.,.... % ... ,

3-4

NUMBERS

<number):

RESTRICTION

A percent sign(%) is treated as any other string charac
ter if it is contained within a (character.string). How
ever, in all other cases, a% will cause the scanning of
the current source image to terminate.

------.....----•• {decimal. number) ____ __...,..ii
...__ ___ ..,_ {bit·group)---_..,..,..t

(decimal.number):

_______ --1,1..-----11 (digit) ----'-----1•...il

BIT STRINGS

(binary.string):

c 0 ... ,

(quarta/.string):

J

3-5

(octal.string):

El. 0
1

____.__I ~
L ··]

(hex.string):

.. ,

(bit.group):

--------r--,__...,.. (hex· string)--------r---....,.

(bit.string):

i-------11~ (4) (hex· string}-----.-.i

--- (3) (octal· string)-

i-------1..- (2) (quartal ·string)-

__... (1) (binary· string)--

-------........... ~bit·group) ... 1

3-6

RESTRICTION

If no bit mode is specified (i.e., the indicator digit in
parentheses is omitted), then "hex" is assumed.

(string):

:

(character· string)

._ _ _._ (bit· string)-----1.,....,f

CHARACTER STRINGS

(character.string):

(string· character · list) ------t1 1

(string. character.list):

----------.....:*1.-----•~ (string· character)----'-----1..-.-.1

(string. character):

~ (digit)

=~~--... :: (~~::=~ character) __ ... :_t

Examples

"* * THIS IS AN EXAMPLE OF A CHARACTER STRING"
" ROW THE BOAT GENTLY ... "

RESTRICTION

The quotation mark (") cannot be specified as a
(string character). As an alternative, the programmer
can specify a (hex string) instead of a (character.string).

3-7

LITERALS

(literal>:

~---~-~~-.... (numben~---~-T----~~~
~ (string) : '

~ : (declare · special) :-
(declared· identifier) ----1:~

(declare-special):

(declared identifier):

(array.identifier):

: DATA.LENGTH (declared· identifier)------------1 .. -..1
LENGTH.BETWEEN.ENTRIES ((a"ay ·identifier)} J

:

(simple· identlfi'er)
...__ ____ (array · identifier) _____ .,..,t

----·------....... (simple· identifier) . ___ .,_ (array • index) ___ __...,...al

(array.index):

(number) .. ,

DAT A LENGTH ((declared· identifier)) will supp:ty the specified or computed length in bits of the indicated
(declared· identifier). For an (array-identifier), the length will be the length of one of the items in the
array, not the length of the en tire array.

3-8

LENGTH.BETWEEN ·ENTRIES ((array identifier)) will supply the bit difference between the beginning of
one item in the specified array and the next item in the array. Note that in the case of structured arrays
(See Structured Declarations) this will not always be the same as DATA·LENGTH (array.identifier).

Examples:

1587
"STRING"
DATA·LENGTH (AN·ITEM)
ARRAY.ELEMENT (7)

ARITHMETIC EXPRESSIONS

(arithmetic· expression):

----------.L..-..;...,....---------------------..-----1~ (term) ---'----11...i

1--....... (unary • operator) -----------1~

(arithmetic· expression) (adding· operator)

(term):

1-----1=• ~:e:: ~ (multiplying· apc6rator) (/item/) ---~
...._____-il:•(arithmetic • expression) _________ _...,

(unary. operator):

-----------1 ... adding· operator) .. ,

(adding. operator):

: + j
... ,

3-9

<multiplying. operator):

: * J --1

<Arithmetic expression)s yield numerical values by combining< literal)s in accordance with specified
operations. The operators+,-, *,and I have the conventional mathematical meanings of addition, sub
traction, multiplication, and division, respectively.

The sequence in which operations are performed is determined by the precedence of the operators involved.
The order of precedence is:

First: * I
Second: +

When operators have the same order of precedence, the sequence of operation is determined by the order of
their appearance, from left to right. Parentheses can be used in normal mathematical fashion to override
the usual order of precedence.

Parenthesized expressions are treated as (term)s, i.e., they are evaluated by themselves and the resulting
value is subsequently combined with the other elements of the< arithmetic· expression). Thus the normal
precedence of operators may be overridden by careful placement of parentheses.

3-10

4. STRUCTURE OF A MIL PROGRAM

There are two parts or sections to a MIL program: the declarations and the body. The declarations should
contain:

a. A comment description of the function of the MIL program.

b. Any global data structures (DECLARES). Note that "global" refers to use throughout the
program; local refers to use restricted to a part of the program.

c. Any global DEFINEs.

d. Any MACRO definitions.

The body follows the declarations and will contain all code-producing statements. The statements should
be logically grouped iri labeled BEGIN ... END blocks. Each BEGIN ... END block may contain its own
local data structures, LOCAL.DEFINES or labels. The last statement of the body should be FINI.

The following is a basic outline of a MIL program using the above general rules. For specific details on
assembly coding forms and program examples refer to: Programming Techniques.

Declarations

LABEL.A

Body

% descriptive comment
DECLAREs
DEFINEs
MACROs

BEGIN A
(code for A)

ENDA
BEGIN B

(code for B)
ENDB
FINI

4-1

5. SEGMENTATION

INTRODUCTION

Segmentation in MIL is a multi-faceted and somewhat complicated subject. Because MIL is the language
of the B l 700's, and because it is used for many different purposes (Diagnostics, Emulators, Interpreters,
I/O Drivers, MCP Kernels, etc.), it must attempt to satisfy the needs of a wide range of users. Segmentation
plays a particularly important role on the B 1700 because of the READ/WRITE access capability of the
hierarchical memory structure (M-Memory, S-Memory, Disk).

LABEL ADDRESSES

To begin the discussion on segmentation, we must first identify the label types pertaining to address assign
ment. They are: (regular-label) and (physical.label). (These should not be confused with the two types
of label representation:(unique.label) and (point.label). See Basic Components Of MIL: Labels.) The types
are based on how the labels are declared which in turn determines how the address of the label is to be
assigned.

A (label) which is declared by starting it in column 1-5 of a source image is always a (regular. label).

A (label) which is declared by starting it immediately after the reserved words TABLE, SEGMENT, or
CODE.SEGMENT is always a (physical.label>.

A (regular.label) is always given the current (segment.code.address) when the (label) is declared.

A (physical. label) is always given the current (physical. code.address) when the (label) is declared.

The (segment.code.address> is updated by 16 as each micro-instruction is generated and can be changed to
a new value by the appearance of a SEGMENT or CODE.SEGMENT statement.

The (physical. code.address> is also updated by 16 as each micro-instruction is generated and can be changed
to a new value by the appearance of an ADJUST LOCATION statement. (See MIL Statements: ADJUST).

Both the (physical.code.address) and the (segment.code.address> are initialized to 0 (zero) when a compila
tion begins.

5-1

SEGMENT STATEMENT

Syntax.

:
~ NEWSEGMENT

.__---11_ ... (label)----....... ~' CAT
t~

:

ADDRESS (label) - ,-1.,..~

----(literal) .,

Semantics

NOTE

The (literal> must be MOD 16, meaning the last four
bits must be @ (1) 0000 @.

Through the use of the SEGMENT statement, the user has the means to divide his/her MIL program into
several parts such as a single (primary.code.block) and one or more (segment.block) (s). The (primary.
code. block) should provide one or more areas suitable for containing the individual (segment. block) (s).
These areas are designated by declaring one or more (regular.label)(s) somewhere within the (primary. code.
block). Quite often there will be only one designated area for (segment. block)(s), and it will begin at the
end of the (primary.code.block).

The purpose of the SEGMENT statement is to inform the compiler exactly where the (segment. block) will
be (relative to the (primary. code. block)) when its code is executed. In this way the compiler can generate
the correct branch/call displacements whenever a statement in the (primary.code.block) branches to or
calls a routine in one of the (segment. block)(s). ln the same way, a statement in one of the (segment.
block)(s) may branch to or call a routine in either the (primary.code.block) or in any of the <segment.
block)(s). (See MIL Statements: EMIT.RETURN.TO.EXTERNAL, CALL.EXTERNAL, BRANCH.
EXTERNAL.)

All code is assumed to be in the (primary .code.block) until the first SEGMENT statement is encountered.
From this point one, all code is assumed to be in that segment until the next SEGMENT statement is
encountered, and so on.

The SEGMENT statement may also be used to specify logical breaks within a continuous stream of code.
In this case, only the name of the segment needs to be specified since the code addresses are to continue
linearly. The entire program and all of the (segment. block)(s) are given entries in the segment dictionaries
as part of the parameter blocks associated with a MIL code file. From these dictionary entries and from
the segment name-to-num her correspondence table the addresses and lengths of each segment are available
and can be used to do sophisticated static binding prior to execution of the code. (See MIL Statements:
MAKE.SEGMENT, TABLE.ENTRY).

5-2

CODE.SEGMENT STATEMENT

Syntax

CODE.SEGMENT-----• (label)---1•~1

Semantics

Another form of segmentation in MIL is used when a microprogram is running with the MCP, or under MCP
control. All of the interpreters as well as GISMO are examples of this situation. With this mechanism, a
microprogrammer is able to specify which portions of the program are to reside on disk until they are
actually needed for execution. This provides the programmer with the same facility normally only found
in higher level languages.

In order to use this facility, the programmer must follow certain rules and remember some restrictions.
First, some definitions:

(main. code. block):

(external. code. block):

(main. code. base):

(mbr. topm):

all code generated until the first CODE.SEGMENT statement is
encountered; this may encompass the (primary. code. block) and
one or more (segment. block)(s).

all code generated between a given CODE.SEGMENT statement
and the next CODE.SEGMENT statement, or the end of the
program, whichever comes first.

the M-Memory bit address of the first micro-instruction in the
(main. code. block). If no part of the (main. code. block) resides
in M-Memory, then the (main.code.base) should be 0.

If the processor is an S-Memory processor, then the (main. code. base)
should be the memory address of the first micro-instruction in the
program. (See MIL Statements: MAIN .CODE.BASE.)

a 24-bit bucket containing the MBR value for the (main.code.block).
In addition, since the MBR value is always a MOD 16 number, the low
order 4 bits of (mbr. topm) should be the TOPM value of the
(main. code. block).

The microprogrammer must provide the following items in a program:

a. A define for MAIN.CODE.BASE to indicate the Scratchpad word containing (main.code.base).

Example:

DEFINE MAIN.CODE.BASE= Sl4B#

b. A define for MBR.TOPM to indicate the Scratchpad word containing (mbr. topm).

Example:

DEFINE MBR.TOPM = SlSA

5-3

NOTE

The above defines must be included in the < main. code.
block) and must not be defined within some LOCAL.
DEFINE scope. In addition, the two Scratchpad
locations must be initialized by the interpreter when
it is given control from GISMO.

c. A routine labeled GO. TO.EXTERNAL.SEGMENT to interrogate the interpreter dictionary and
generate a communicate (if necessary) to guarantee that the requested< external.code.segment)
is present in S-Memory. In addition, it must perform the initial transfer to the <external. code.
segment).

Example:

GO.TO.EXTERNAL.SEGMENT

5-4

% T CONTAINS SEGMENT NUMBER
% L CONTAINS BIT DISPLACEMENT WITHIN SEGMENT

SHIFT T LEFT BY 6 BITS TO X % T * 64
SHIFT T LEFT BY 4 BITS TOY % T * 16
MOVE SUM TO FA %T*80
ADD ADDR.INTERP.SEG.DICT TO FA
READ 2 BITS TO X
IF LSUXTHEN

BEGIN PRESENT
COUNT FA UP BY 32

% THE SEGMENT IS PRESENT

READ 24 BITS TO X % SEGMENT BASE ADDRESS
IF SUBSET THEN INCLUDE % FORS-MEMORY PROCESSORS

BEGIN
MOVE LTO Y
MOVE SUM TOA

END ELSE
BEGIN

END

MOVE 0 TO TAS

MOVE LTOT
MOVE XTO L
TRANSFER.CONTROL

END PRESENT
MOVE T TO L
MOVE 58 TOT

SHIFT T LEFT BY 16 BITS
SET L(O)
GO TO GIVE.UP.CONTROL.

% NECESSARY FOR
% M-MEMORY SYSTEM
% NEW A AND TOPM VALUE
% NEW MBR VALUE

% COMMUNICATE NO.FOR
% NON PRESENT SEGMENT

% ONE LEVEL SEG DICT.
% SAVE STATE AND XFER TO
% MCP VIA GISMO

NOTES

a. The initial "T" and "L" values are supplied by the
compiler prior to entering the above routine.

b. Other registers may. be destroyed depending on
how the routine is written.

c. The routine must push a 0 (zero) onto the A stack
for the M-Memory Processor. This is necessary so
that an exit within an (external.code.block> can
be trapped into a routine that will transfer control
back to the (main.code.block). This also implies
that parameters may not be passed via the A stack
when initially transferring to an (external.code.
block).

The compiler will provide all other routines necessary to effect the transfer to and from (external.code.
block)(s).

The only kind of transfers allowed are calls.and branches from the (main.code.block) to an (external.code.
block) and from an (external.code.block) to the (main.code.block>. Transfers between (external.code.
block)(s) are not allowed. In addition, such calls and branches must be syntactically separated from calls
and branches with the same (code.block). Instead of CALL, the command CALL EXTERNAL must be
used. Instead of GO TO, the command BRANCH.EXTERNAL must be used. (See MIL statements: EMIT.
RETURN.TO.EXTERNAL, CALL.EXTERNAL and BRANCH.EXTERNAL.)

Compiler - Generated Code

Following is the code the compiler generates when CODE.SEGMENTs are used. (All (label)s used in the
examples are shown for clarity only: the compiler has its own internal representation for the labels.)

MAIN CODE BLOCK

a. For each different (label) occurring after a CALL.EXTERNAL or BRANCH.EXTERNAL
statement in the (main.code.block), the compiler will divert the call or branch to the following
code which is generated at the end of, and part of, the (main.code.block):

MOVE ADDRESS (label) TO L
MOVE (label.segment.number> TOT
GO TO GO.TO.EXTERNAL.SEGMENT

b. If the program executes on an M-Memory Processor (B 1726), the following code will be emitted
in the main.code.block:

EXIT.TO.EXTERNAL
MOVE TASTO L
MOVETASTOT
MOVE LF TO TF
MOVE OTO LF
TRANSFER.CONTROL

5-5

EXTERNAL CODE BLOCK

5-6

a. If the program executes on an M-Memo1ry Processor (B 1726), the following code will be emitted
at the beginning of every (external.code.block):

MOVETASTOT
LEAVE.EXTERNAL.SEGMENT

MOVE MBR TOPM TO L
MOVE LFTOT
SET LF TO 0
TRANSFER.CONTROL

b. For each different (label) occurring afte:r a CALL.EXTERNAL or BRANCH.EXTERNAL
statement in the (external. code. block), the compiler will divert the call or branch to the follow
ing code which is generated at the end of, and part of, the (external.code.block):

1. If the program executes on an S-Memory PRocessor (B 1712 - B 1 714) the following
code is generated:

MOVE ADDRESS ((label)) TO X
GO TO SUBSET.BRANCH.TO.MAIN

2. If the program executes on an M-Memory Processor (B 1726) the following code is
generated for each different (label> in a BRANCH.EXTERNAL statement:

MOVE ADDRESS (<label)) TO X
GO TO BRANCH.TO.MAIN

3. If the program executes on an M-Memory Processor (B 1726) the following
code is generated for each different (label) in a CALL.EXTERNAL statement:

MOVE ADDRESS (<label)) TO X
GO TO CALL.TO.MAIN

c. At the end of every (external. code. block) the following code is emitted.

1. For S-Memory Processor (B 1712 -· B 1714):

SUBSET.BRANCH.TO.MAIN
MOVE MAIN.CODE.BASE TO Y
MOVE SUM TOA

2. For M-Memory Processors (B 1726):

BRANCH.TO.MAIN
MOVE TASTO NULL
MOVE MAIN.CODE.BASE TO Y
MOVE SUM TOT
GO TO LEAVE.EXTERNAL.SEGMENT

CALL. TO .MAIN
MOVE MAIN.CODE.BASE TOY
MOVE SUM TOT
MOVEMBR TO L
MOVE TOPM TO LF
MOVELTOTAS
MOVE ADDRESS (EXIT.TO.EXTERNAL) TO X
MOVE SUM TO T AS
GO TO LEAVE.EXTERNAL.SEGMENT

NOTES

a. When branching from the (main. code. block> to an
(external; code.block) the T and L registers are
used, plus whatever registers the GO.TO.EXTER
NAL.SEGMENT routine uses.

b. When calling or branching to a routine in the
(main.code.block), the X and Y registers are used:
This means that they cannot also be used for
passing parameters. In addition CP should be
equal to 24, otherwise the transfer may not take
place correctly.

Also, on an M-Memory Processor, the T and L
registers, as well as the A stack are used. Thus, a
good rule of thumb is to avoid using X, Y, T, L,
and TAS when passing parameters to/from the
(main.code.block) and (external.code.block)(s).

c. The code for S-Memory Processors is different
than the code for M-Memory Processors. Thus,
CODE.SEGMENTS cannot be used if the program
is to execute interchangeably on either the B 1710
or B 1720 Series processors. (See Appendix A:
$ NO EXTERNAL).

5-7

6. DECLARATIONS

DATA TYPES

Three main types of data fields may be declared in MIL:

1. BIT
2. CHARACTER
3. FIXED

A bit field consists of a number of bits specified by a number in parentheses following the reserved word
BIT.

A character field consists of a number of 8-bit characters specified by a number in parenthesis following
the reserved word CHARACTER.

A FIXED data field is the same as a BIT (24) field but is allowed in order to keep declare syntax con
sistent with SDL.

DECLARE STATEMENT

Syntax

DECLARE
r· -------.......... (declare· element) __ ___.__--1.., ..

' ,
Semantics

The DECLARE statement specifies the addresses and characteristics of contents of memory storage areas.

The maximum number of data elements (including fillers, dummys, and implicit fillers) allowed in one
structure is 50. Any attempt to declare more will cause a table overflow error to be detected at compile
time.

An (array) may have a maximum of 65535 elements, each being a maximum of 65535 bits (8191 charac
ters).

The two types of (declare.elements) are discussed separately below.

6-1

Non-Structured Declarations

(declare.element):

-.---t~ (identifier)--------------~-,.---.---------.-~ BIT((#)) ------r-..
(a"ay ·id)((#)) REVERSE CHARACTER((#>)

FIXED

(~en;fi;=:i_)
. L:.(:ay · id;«~#)~

BIT((#)) I

CHARACTER(/;#)) j L REVERSE _j
FIXED (identifier) _J

(array· id) ((#))

CREMAPS _.,. BASE.ZERO

~ ABSOLUTE (literal) -

~ADDRESS((unique~ label))

~(identifier> -----,--1~

__...(array· id) -----·--ti~

Note: {<#)) = ((number.))

Data may be declared as simple, having one occurrence, or as subscripted, having as many occurrences as
specified by the (array bound). In the latter case, array subscripts are considered to range from
zero to (array bound)- I .

BIT, CHARACTER or FIXED specifies the type of data in the field and the field size.

REVERSE specifies that an item or a structure is to be accessed in a reverse manner or in a reverse direction
from some base. The easiest way to remember what is happening is to realize that the compiler will simply
compute the address of a declared (identifier) normally, and then, if reverse is specified, subtract the
(identifier)'s length from the address to get the starting address of the (identifier).

As the syntax indicates, different data fields having the same format may be declared collectively inside
parenthesis ().

The following example illustrates the various options available in this type of (declaration statement).

Example

DECLARE

6-2

PRIDE
COVETOUSNESS
GLUTTONY
(LUST, ENVY, ANGER (5))
SLOTH (20)
WRATH (5)

FIXED
CHARACTER (10),
BIT (40),
BIT (10),
FIXED,
CHARACTER (6);

where
PRIDE is a 24-bit numeric field;
COVETOUSNESS is a 10-byte character field;
GLUTTONY is a 40-bit field;
LUST and ENVY are each 10-bit fields, as is each of the five elements

comprising ANGER;
SLOTH occurs twenty times, each element being a 24-bit numeric field;
WRATH is a six-byte character field occurring five times.

Data fields may be re-formatted by the use of the REMAPS option. Remapping is subject to the same
general rules discussed above. The following example best illustrates its use:

B FIXED, C BIT (50),
BB REMAPS B CHARACTER (3),
CC (2) REMAPS C FIXED;

Note that CC specifies 48-bits (or 2 elements, 24-bits each). The last two bits will be considered as an
implied filler by the compiler. A field may not be remapped larger than its original size.

There is no limit on the number of times a field may be remapped. A field which has remapped another
may itself be remapped. The remap option specifies that the (identifier) on the left side of the reserved
word REMAPS will have the same starting address as the (·identifier> on the right side.

A data field may be remapped to BASE.ZERO which will give the field a relative address of zero. For
example:

DECLARE Q REMAPS BASE.ZERO BIT (7);

This device is used as a free-standing declaration since it does not remap a previously declared data item.

6-3

Structured Declarations

(declare.element):

(level) (identifier)----------... ---.-------------------------.-__..

(a"ay. id)((#)) -------....--i

(r=- (ident;fi;---i -)
-C(array. id}~-#-;;:r-

FILLER -----------"'

(identifier) -------.-........

a"ay. id)((#>)------...
DUMMY _______ _....,

LREMAPS

({#})

BASE.ZERO

ABSOLUTE (literal} --....-i

ADDRESS (unique. labeli

(identifier) --------i-.i
(a"ay. id).------11 ...

REVERSE BIT {(#))-----i..i

CHARACTER {(#))

FIXED

BIT({#))-------..------~

CHARACTER ((#)) REVERSE

FIXED

Note: {<#)) = ((number))

MIL allows the structuring of data where a field may be subdivided into a number of sub-fields, each of
which has its own (identifier). The whole structure is organized in a hierarchical form, where the most
general declaration is a (level) 01 (or 1). ·No declaration may be on a (level) greater than 99. A sub
divided field is called a Group Item, and a field not subdivided is known as an Elementary Item.

The type and length of data need not be specified on the group level. All Elementary Items must indicate
type and length; the compiler will assume type bit and add the lengths of the components to determine
the length of the Group Item. Note that the length of the Group Item is the sum of the lengths of its
Elementary Items.

In the following example, both A.A and C.C are considered Group Items; A.A has a total length of 90 bits,
and C.C is 50 bits in length.

Example

6-4

DECLARE
l

2

2

3
3

A.A,
c.c,
D
E
H

BIT (20),
BIT (30),
CHARACTER (5);

Fillers may be used to designate certain Elementary Items which the program does not reference. If the
filler is the last item in a structure, it may be omitted; the compiler will consider the Group Item to have
an implied filler. A filler may never be used as a Group Item.

If the 01 level group item is an (array), it is mapped as a contiguous area in memory. However, sub
divisions of this (array) are not contiguous as shown in the example structure below:

Example

DECLARE

00

RO

1 Q(S)
2 R
2 w

BIT(48),
FIXED,
FIXED;

(each item of 0) 48 bits

01

WO R1 W1

(each item of R and W) 24 bits

DECLARE
or 1 Q(S)

2 (R, W) FIXED;

02 03 04

W1 R2 R3 W3 R4 W4

If a Group Item is an (array), an (array specification) may not appear in any subordinate item; that is, only
one-dimensional < array)s are allowed. An (array specification) is implied for all subordinate items.

If a Group Item is declared with the REVERSE option, then REVERSE is also implied for all subordinate
ite,ms in that group. Specification of the REVERSE option for subordinate items would be redundant.

Structured data may be remapped in the same manner as non-structured data. In addition, structured data ~
may be remapped with a dummy group identifier. The purpose of this construct is to allow the user to
remap data items without having to declare another Group Item which describes the same area in memory.
Thus in the following example:

Example

DECLARE
1 YAK

2 AARDVARK
2 SEA.OTTER

YAK might be remapped as:

DECLARE
1 AA REMAPS

2 cc
2 DD

BIT(lOO),
BIT(20),
BIT(80);

YAK BIT(lOO),
BIT(30),
BIT(70);

DECLARE
1 DUMMY REMAPS YAK BIT(IOO),

or 2 CC BIT(30),
2 DD BIT(70);

Both YAK and AA refer to the same area in memory: hence AA is redundant.

6-5

If a remapped item contains the REVERSE option, then REVERSE is also implied for the remapping item.

The user should note the distinction between DUMMY and FILLER. DUMMY is used in conjunction with
REMAPS to eliminate the necessity of declaring a redundant Group Item. FILLER is used if one desires
to skip over a part of the structure.

The following restrictions apply to the use of DUMMY REMAPS;

1. DUMMY may only be used with (remap declarations).

2. All restrictions applying to REMAPS apply to DUMMY REMAPS.

3. DUMMY must not remap another DUMMY.

4. DUMMY Group Items must have at least one non-filler component.

DECLARE EXAMPLES

Introduction

Let us illustrate by example exactly how declarations might be used in a MIL program, and note the
associated relevant points.

The DECLARE statement in MIL is one which allows the user to logically assign names to physical or
relative memory address in a structured manner. This facility allows one to construct data structures
in a format that is simple to understand and easy to change when the occasion arises.

Non-Remap Items

The MIL compiler maintains a variable which is initialized to 0. When an item is declared, it is assigned
the current value of this variable and the variable is incremented by the bit length of the declared item.

Example

DECLARE
DISPATCH.REGISTER
GLOPl
ADDR.GISMO
LOCN.MAKE.MCP.BE.HERE
GLOP2
ADDR.MCP.LIMIT

BIT(24),
BIT(48),
BIT(24),
BIT(36),
BIT(29),
FIXED;

Note that the DECLARE statement is completely free form, must begin with the world "DECLARE", must
end in a";", and that each element must be separated from its predecessor with a",".

Each element thus declared is used exactly as a (literal) and most often represents a memory address.

6-6

Example

MOVE ADDR.GISMO TO FA
READ 24 BITS TO X

This would assign the literal 72 (= 24+48 = ADDR.GISMO) to register FA and would cause the contents
of memory at address 72 to be read into register X.

Should the compiler encounter another DECLARE, it will merely start assigning addresses where it left
off previously.

Example

DECLARE
GLOP3 BIT(lO)
CHAR.SAVE.AREA CHARACTER(8);

GLOP3 above would be assigned the value of the aforementioned address-counting variable, in this instance
185.

DECLARE elements may also be structured such that some names overlap pieces of memory described
by other names.

Example

DECLARE
1 TRACE.BITS

5 FILLER
5 TB.FLAGS
5 TB.TYPE

8 · FILLER
8 TB.STORES.ONLY
8 TB.BRANCHES
8 TB.THE.REST

5 TB.GET.SPACE.TYPE,
99 (TB.STORES.ONLY,

TB.BRANCHES,
TB.REMAINDER)

This example illustrates the following points:

BIT(27),
BIT(l 5),
BIT(l),
BIT(4),
BIT(l),
BIT(l),
BIT(l),
BIT(l),

BIT(l);

1. The address picks up where the previous DECLARE leaves off. This is not true, however, where
the previous item or structure is a "remap item". The compiler's internal variable used for
default address assignment is maintained and incremented only for non-remap items or structures.

2. DECLAREs may be structured such that some fields are denoted as being contained within
other fields.

3. "FILLER" can be used in structures as often as necessary to increment the address-counting
variable past an area of memory which the programmer does not intend to reference by a
symbolic name.

6-7

4. Items with the same type and length can be put into a list surrounded by parentheses, with the
type and length specified only once at the end.

5. The length of an item need not be specified if it has sub-items whose lengths can be determined.

NOTE

Structures must begin with an "O l" level identifier.
Substructures may then have any level from 02 to 99
inclusive, with the substructure always having higher
level numbers than the superstructure.

Remap Items

GENERAL

It is possible to temporarily suspend the mechanism which causes addresses to be assigned based on where
the last DECLARE left of by using remaps structures.

For example, if we wish to declare a "template", where the declared addresses are added to some base prior
to actual use, we would do the following:

DECLARE
1 SYSTEM.DESCRIPTOR REMAPS BASE.ZERO,

2 SY.MEDIA BIT(2),
2 SY.LOCK BIT(l),
2 (SY.IN.PROCESS,

SY .INITIAL,
SY.FILE) BIT(l),

2 FILLER BIT(10),
2 SY.TYPE BIT(4),
2 SY.ADDRESS BIT(36),

3 FILLER BIT(12), % PORT AND CHANNEL
3 SY.CORE BIT(24),

2 SY.LENGTH BIT(24);

One might use the above structure as follows:

DEFINE SYS.DESC.BASE = S14A#
%
MOVE SY.TYPE TO FA
ADD SYS.DESC.BASE TO FA
READ DATA.LENGTH (SY.TYPE) BITS TO X

Note the use of a new reserved word, "DAT A.LENGTH". This construct allows one to use the length of a
declared item without having to define it elsewhere.

6-8

The remap structures that are permitted are:

1. REMAPS BASE.ZERO
2. REMAPS ABSOLUTE (literal}
3. REMAPS ADDRESS ((unique.label})
4. REMAPS (identifier}
5. REMAPS (array.identifier}

If one knew the absolute address of some data structure in memory, the following could be done:

DECLARE

SAVE.AREA REMAPS ABSOLUTE 1024,
2 SA.FIRST.ITEM FIXED,
2 SA.SECOND.ITEM CHARACTER(200),
2 SA.THIRD.ITEM BIT(256);

The following technique could be used when a (label) denoting the start of a table of constants was
present in a program:

DECLARE
1 TRACE.TABLE(lO) REMAPS ADDRESS (TRACE.MNEMONICS),

2 ADDR.TRACE.NAME CHARACTER (4);%

%
TRACE.MNEMONICS

TABLE
BEGIN

END
%

"LA "
"ALA "
"STN "
"STD "
"LIT "
"ILA "
"STO "
"CASE"
"IFTH"
"IFEL"

MOVE ADDR.TRACE.NAME (2) TO FA
READ 24 BITS TO X INC FA
READ 8 BITS TO Y

Note the use of (array) in the above example. If the programmer does not know the index to use at
compile time, the following could be done:

6-9

DEFINE TRACE.INDEX = SOB
%
MOVE TRACE.INDEX TO X
MOVE LENGTH.BETWEEN.ENTRIES (TRACE.TABLE) TOY
CALL MULTIPLY .X. Y
% AND SO FORTH
%
MULTIPLY.X.Y

% MULTIPLICATION CODE
EXIT

The above examples have shown, among other things, two of the "specials" that are included in MIL syntax
to augment usage of DECLAREd items. They are:

DATA.LENGTH ((declared.identifier))
LENGTH.BETWEEN.ENTRIES ((array. identifier))

Note that when (array) names are used with the specials, the subscript is not included; it is syntactically
invalid to do so.

Another type of remaps is one that remaps a previously declared structure. In this case, the addresses of
the remap ·structure will begin at the address of the remapped structure.

Example

DECLARE
1 SAVE.AREA.CHARS REMAPS SA.SECOND.ITEM

2 SA.NAME CHARACTER(30),
3 (SA.PACK.ID,

SA.FAMILY.NAME,
SA.OFFSPRING NAME) CHARACTER(IO),

2 SA.OWNER.NAME CHARACTER(14);%
% THE RIGHTMOST 156 CHARACTERS OF SA.SECOND.ITEM ARE NOT REMAPPED HERE

REVERSE

"REVERSE" is an attribute that may be applied to a remapping simple item or structure. The presence of
this reserved work causes the address associated with a (declared identifier) to be the normally-calculated
address minus its declared length.

For example, suppose a programmer wishes to spt:~cify a structure that describes the top memory and wants
to list the (identifier)s from the top of memory downward. The following could be done:

6-10

DECLARE
1 TOP.OF.MEMORY REMAPS BASE.ZERO REVERSE,

2 FILLER BIT(32),
2 ADDR.INTERRUPT.QUEUE. BIT(SS3),
2 ADDR.SAVED.A.STACK BIT(240),
2 ADDR.GISMO.WORK.SPACE BIT(384),
2 ADDR.TEMP.FIB BIT(920),
2 ADDR.TRACE.SPACE BIT(2232),

3 ADDR.TRACE.CODE BIT(24);

These (identifier)s could then be used in MIL statements as follows:

MOVE ADDR.INTERRUPT.QUEUE TOY
EXTRACT ADDR.TRACE.CODE FROM T TO X

6-11

7. REGISTERS AND SCRATCHPAD

GENERAL

This section is intended only as a brief overview of the registers within the processor. It is assumed that
the reader is familiar with the contents of the B 1700 Systems Reference Manual (form 1057155). (See
also Appendix Bin this manual).

REGISTER GROUPS

NOTE

The most-significant (left-most) bit in any register is
identified in the MIL syntax as bit 0 (zero), the next
most-significant as bit l, etc. This is particularly
advantageous in a bit-addressable machine since, for
software purposes, it is often desirable to think of a
register as being an extension of main memory. It
should be noted that this convention is at variance
with the hardware bit numbering convention where,
generally, all bits are numbered right to left, 0 through
N. This difference has particular significance when
any bit data is to be OR'ed into the M register at
run time.

The registers briefly described in this section are divided into the following logical groups:

Active registers
Result registers
Scratch pads
Constant registers
Input/Output registers
Condition registers

7-1

Source\ & Sink 4-bit Source

* TOPM
x
y

T

L

A

M

BR

LR

FA

FB

TAS

CP

*MSMA

*MBR

--

7-lA

& Sink

T subregistEir F B subregister

4-bit so source & sink

TA

urce&sink ~
TCTD~ TB FU FT FL

L subregister C su bregister

4-bit source & sink ~ source & sink

LA LB LC LO ~ CA CB CC *CD * *CP

MSMA, TOPM, MBR and the low order 3 bits of CD are not

physically present in the S-Memory Precessor. When addressed

as a source they will yield a binary value of zero. When

addressed as a sink (destination) the data is lost.

CPU, a 2-bit subregister of CP, is not addressable as a

source or a sink.

RESULT REGISTERS

Source

SUM
CMPX
CMPY
XANY
XEOY
MSKX
MSKY
OXRY
DIFF

CONSTANT REGISTERS

Source

MAXS
MAXM

CONDITION REGISTERS

4-bit Source

BICN
FLCN

*INCN
XYCN
YXST

Single Scratchpad

Source & Sink

SOA

S15A

SOB

S15B

Source

u

INCN is not physically present on the

S-Memory Processor. When addressed as

a source it yields a binary value of 0.

When addressed as a sink (destination)

the data is lost.

SCRATCH PAD

Double Scratchpad

Source & Sink

so

S15

INPUT/OUTPUT REGISTERS

Sink Source & Sink

CMND DATA

7-lB

ALPHABETICAL LISTING OF REGISTERS AND KEY CONCEPTS

7-2

A

BICN

BR

c

CA

CB

cc

CD

CMND

CMPX

CMPY

Console
Switches

Control
Memory

CP

CPL

CPU

CYD

CYF

CYL

DATA

DIFF

F

Length
In Bits

*

4

24

24

4

4

4

4

24

24

24

24

16-bit
words

8

5

2

1

24

24

48

Source
Sink

so &sk

source

so &sk

so & sk

so &sk

so & sk

so &sk

sink

source

source

source

so &sk

so &sk

so & sk

so & sk

source

Control Memory Micro-instruction Address
* 24 (1726), 19 (S-1), 20 (S-2)

boolean conditions

Base Register or low address
S-Memory protection

Control; not addressable as a unit

subfield of C; general purpose

subfield of C; general purpose

subfield of C; interrupts and flags

subfield of C; interrupts and flags

I/O Command Register

Result: complement of X; masked by CPL

Result: complement of Y; masked by CPL

the 24 toggle switches located on the Console
front panel

Location of micro-instructions on M-Memory
Processor

Control Parallel; subfield of C

Control Parallel Length; subfield of CP

Control Parallel Unit; subfield of CP

Carry Difference or carry of borrow

Carry Flip-Flop; subfield of CP

Carry Level or carry of sum; masked by CPL

I/O Data Register

result of X-(Y + CYF); masked by CPL

Field in S-Memory; FA and FB concatenated

Length Source
~ In Bits Sink Note

FA 24 so & sk Field Address in S-Memory

FB 24 so & sk Concatenation of S-Memory Field Unit (FU),
Field Type(FT), and Field Length(FL)

FL 16 so & sk Field Length in S-Memory

FT 4 so & sk subfield of FB

FLC 4 so & sk subfield of FL

FLD 4 so & sk subfield of FL

FLE 4 so & sk subfield of FL

FLF 4 so & sk subfield of FL

FLCN 4 source boolean Field Length Conditions

FU 4 so & sk S-Memory Field Unit size; subfield of FB

INCN 4 source boolean dispatch Interrupt Conditions
M-Memory Processor

L 24 so & sk Local register also used in DISPATCH, OVERLAY,
TRANSFER.CONTROL, READ/WRITE MSML
ANDS-MEMORY ACCESS

LA 4 so & sk subfield of L

LB 4 so & sk subfield of L

LC 4 so &sk subfield of L

LD 4 so & sk subfield of L

LE 4 so & sk subfield of L

LF 4 so & sk subfield of L

LR 24 so & sk Limit Register or high address S-Memory
protection

M 16 so & sk current Micro-instruction register

MBR 24 so & sk Main Memory Micro-instruction Base
Register; not on S-Memory Processor

MAXM 24 source hardwired Constant; number of 16-bit
words of M-Memory

7-3

Length Source
Name In Bits Sink Note

MAXS 24 source Constant; size in bits of available S-Memory

MSKX 24 source Result; mask of X; length by CPL

MSKY 24 source Result; mask of Y; length of CPL

MSMA 16 so & sk Control Memory addressed by the A register;
M-Memory Processor only

Main S-Memory
Memory

NULL 24 so & sk always zero

PERR 4 source Parity Error Register; reflects error conditions
from S & M-Memory, and cassette

READ 24 source Console switch position; reads S-Memory
addressed by FA to Console lights (A on 1714)

SFL 16 subfield of SOB corresponding to FL in FB

SO-S 15 48 so & sk Double Scratchpad Words

SI SA-Sl SB 48 so & sk Single Scratchpad Words of Sl5

S-Memory Main Memory

SU 4 subfield of SOB corresponding to FU in FB

SUM 24 source Result (X + Y + CYF) length; masked by CPL

T 24 so & sk Transform - will ROT A TE, SHIFT or EXTRACT
bits; used also in S-MEMORY ACCESS and
TRANSFER.CONTROL

TAS 24 so & sk Top of A Register-Stack

TA 4 so & sk subfield of T

TB 4 so & sk subfield of T

TC 4 so & sk subfield of T

TD 4 so & sk subfield of T

TE 4 so & sk subfield of T

TF 4 so & sk subfield of T

7-4

Length Source
Name In Bits Sink Note

TOPM 4 so & sk Top of Control Memory; not on S-Memory
Processor

u 16 source cassette input only

WRIT 24 Console position switch; writes Console
switches to address of memory contained
in FA (A on 1714)

x 24 so & sk input to Function Box

XANY 24 source Result; X and Y; length by CPL

XEOY 24 source Result; X EOR Y; length by CPL

XORY 24 source Result; XOR Y; length by CPL

XY 48 source X AND Y concatenated

XYCN 4 source boolean XY Conditions

XYST 4 source boolean XY States

y 24 so & sk input to Function Box

7-5

ACTIVE REGISTERS

The following are descriptions of the active registers:

X and Y Registers

The X and Y registers (both, of which are 24 bits wide) are used as inputs into the 24-bit Function Box
(see below). All functions are performed under control of the C (Control) register, which regulates the
length of the operation, class of arithmetics, and least-significant carry input. The X and Y registers are
capable of being shifted or rotated individually or as a unit and may receive or transmit data from or to
main memory.

Field (F) Register

The F register is divided into FA and FB, each sub-register being 24 bits wide. The FA (Field Address)
portion is used to address main memory. FB is divided into FU (Field Unit, consisting of four bits used
to indicate arithmetic unit size; FT (Field Type), a general-purpose 4-bit field; and FL (Field Length),
consisting of 16 bits used to indicate the length of fields in main memory. FL is subdivided into FLC,
FLD, FLE and FLF, each four bits in length.

Local (L) Register

The L register is 24 bits wide and is subdivided into LA, LB, LC, LD, LE and LF, each four bits in length ..
L and its subdivisions are generally used to temporarily hold the contents of other processor registers.
It is also used as a source and destination for main memory access and has implicit use in the DISPATCH,,
OVERLAY, READ/WRITE MSML and TRANSFER CONTROL micro-instructions.

Transfom1 (T) Register

The T register is a 24-bit transformation register used extensively for interpretation of virtual-language
operators. It is subdivided into TA, TB, TC, TD, TE and TF, each four bits in length. T has strong
SHIFT and EXTRACT logics associated with it and is the principal formatting register of the processor.
This register also has the capability of receiving or transmitting data from and to main memory.

Micro-Instruction (M) Register

The M register is a 16-bit register which holds the micro-operator for decoding and subsequent execution
by the hardware. It is addressable as a source and sink register; when used as a sink register the source is
bit-ORed with the upcoming M-op, except in TAPE mode.

Base (BR) and Limit (LR) Registers

The BR and LR registers are each 24 bits wide and are used to hold the main memory base and limit
addresses for the currently active main memory process. The M- Memory processor hardware uses these
registers to determine if addresses in the Field Address (FA) register are within the base/limit boundaries ..

7-6

Address (A) Register

The A register is the microprogram address register which contains the bit address of the next micro
instruction. Values in the A register are always MOD 16; i.e., the low-order four bits are always zero.
It is capable of addressing 16,384 micro-instructions located in either control memory or main memory
or both. The A register is automatically incremented to the next micro-instruction before the current
micro-instruction is executed. It is also capable of having any value from 0 to 4,095 added to or sub
tracted from it to facilitate microcode branching.

A Stack (TAS)

The A stack is a 32-element-deep, 24-bit wide, push-down, pop-up memory, i.e., a last-in-first-out (LIFO)
storage structure. The A stack is used to nest microroutine linkages and allows highly shared routines,

. thus reducing control memory requirements. Although the A stack was intended for microcode addresses,
it has been made 24-bits wide to allow for any operand storage.

NOTE

The S-Memory Processor A stack has only 16 storage
elements.

Top of Control Memory (TOPM) Register

M-Processor Only

The TOPM register is four bits wide and is used to det¢rmine which memory (control or main) contains the
next micro-instruction. If the A register is equal to or greater than (TOPM*512*16), the next micro
instruction will be fetched from main memory rather than control memory. The TOPM register is address
able as a source or as a sink (destination). The fetch from S-Memory takes place at address
A+MBR.

Memory Base (MBR) Register

M-Processor Only

The MBR register is used with the A and TOPM registers to obtain the main memory address of the next
micro-instruction. (See above formula). The MBR register is addressable as both a source and as a sink.

Control (C) Register

The C register is a 24-bit control register for the microprocessor. It contains the 24-bit Function Box
controls and carry input plus some of the processor interrupts and flags. It is subdivided into CA, CB,
CC, CD, each four bits wide; and CP, eight bits wide. CA and CB may be used as general-purpose regis
ters. CC and CD represent processor interrupts and flags (see discussion under Condition Registers
below). CP contains Function Box controls: CYF (0 bit of CP), CPU (1 and 2 bits of CP), and CPL
(3 ,4,5 ,6, and 7 bits of CP). CYF (Carry Flip Flop) notifies the Function Box that a previous unit carry
must be added to its summary results. CPU (Control Parallel Unit) notifies the Function Box of the type
of unit contained in X and Y: 00 = binary, 01 = 4-bit decimal. CPL (Control Parallel Length) specifies
the Width, in bits, of the Function Box and Read/Write micro-instructions.

7-7

Combinatorial Logic or Functional Box

The Combinatorial Logic, often called the Function Box, produces the Result Registers. Inputs are the
X register, the Y register and the Carry Flip-Flop (CYF). The inputs are combined under control of the
Conrol Parallel Unit (CPU) register and the Control Parallel Length (CPL) register. When values are loaded
into the X and Y registers, a large collection of output values and comparisons (called Result Registers) is
made available to all subsequent micro-instructions.

RESULT REGISTERS

The Result registers are outputs from the 24-bit Function Box. Their contents are produced immediately
and automatically from the inputs to the Function Box (X, Y and CYF) and cannot be changed except by
changing inputs or by changing CPU (Control ParaUel Unit) or CPL (Control Parallel Length). If the value
of CPL is less than 24, then the (24~CPL) most-significant bits of all Result registers will be zero.
These registers are source registers only and therefore cannot be used as the sink (destination) register in
a MOVE or in any other instruction.

XORY Result Register

This register contains the INCLUSIVE OR of the X register combined with the Y register. This is a bit by
bit operation with corresponding pairs of bits treated independently.

XANY Result Register

This register contains the AND of the X register combined with the Y register. This is the logical product
of the X register and the Y register. Corresponding pairs of bits are treated independently.

XEOY Result Register

This register contains the EXCLUSIVE OR of the X register and Y register.

CMPX Result Register

This register contains the l's complement of the X register.

CMPY Result Register

This register contains the l's complement of the Y register.

MSKX Result Register

Masked X contains the low-order bits of the X register. The value of CPL determines the number of bits
placed in MSKX. All other high-order bits are zero. If CPL is equal to 24, then MSKX is identical to the
X register.

MSK Y Result Register

Masked Y contains the low-order bits of the Y register. The value of CPL determines the number of bits
placed in MSKY. All other high-order bits are zero. If CPL is equal to 24, MSKY is identical to the Y
register.

7-8

SUM Result Register

SUM is the decimal or binary value (determined by CPU) of the X register plus the Y register plus the
CYF register. Corresponding pairs of bits are grouped by CPU control, and grouping may be binary or
4-bit decimal. If the sum of (X + Y + CYF) is larger than the size specified by CPL, then the CYL;
(Carry Level) will be true (one). CYL may be gated into CYF through use of the CARRY micro-instruction.

Difference (DIFF) Result Register

DIFF stores the amount resulting from the subtraction of the sum of the contents of the Y and CYF
registers from the contents of the X register. The contents of the CPU register determine whether the
subtraction is decimal or binary. Corresponding pairs of bits are grouped by CPU. If the difference is
negative, X-(Y+CYF) 0, then Diff Result will be in 2's complement form of I O's complement form
depending upon the mode, either binary or decimal respectively; and CYD (Carry Difference) will be
true (one).

SCRATCHPAD

NOTE

The CYD register is not conditioned by CPL; it is
always based on a 24-bit comparison. The programmer,

. therefore, must know what is in the high-order positions
of the X register and the Y register if CPL is less than
24.

The scratchpad can be used for temporary storage of active registers. The scratchpad may be addressed
as sixteen, 48-bit double words or thirty-two, 24-bit words.

Scratchpad Words - 24 Bits Each

SOA S4A SBA SI2A
SOB S4B S8B Sl2B
SIA SSA S9A Sl3A
SIB SSB S9B S13B
S2A S6A SIOA SI4A
S2B S6B SIOB SI4B
S3A S7A SllA SlSA
S3B S7B SllB SISB

Double Scratchpad Words - 48 Bits Each

so S4 S8 SI2
SI SS S9 SI3
S2 S6 SlO S14
S3 S7 Sll SIS

(Sn = SnA and SnB concatenated, where n = 0 through l S)

7-9

CONST ANT REGISTERS

The following is a description of the constant registers.

Maximum Main Memory (MAXS) Register

The 24-bit MAXS register is set by the field engineer and contains the value of the maximum installed
number of main memory bits. ~It is addressable as a source only. Main memory addresses begin at zero.
The lower 15 bits are always zero, i.e., MAXS has a 4096 byte (32K bit) resolution.

Maximum Control Memory (MAXM) Register

The 24-bit MAXM register is set by the field engineer and contains the value of the maximum installed
number of control memory words, each word comprising 16 bits. It is addressable as a source only. The
lower 10 bits are always zero, i.e., MAXM has a 1024 word resolution. On the B 1710 series MAXM
will always contain zero.

NULL Register

The NULL register is a 24-bit, addressable field of zeros. It may be addressed as source of sink; in the
latter case it accepts the data but remains zero.

INPUT/OUTPUT REGISTERS

The following is a description of the Input/Output registers.

Console.Switches

M-Processor Only

This 24-bit register reflects the current state of the 24 Console Switches on the processor.

Console Cassette Tape Input (U) Register

The U register accumulates the data read from the tape cassette on the Console control panel. It is
addressable as a source in the RUN mode with the MOVE REGISTER micro-instruction and in the TAPE
mode with the MOVE 24-BIT LITERAL micro-instruction. (See MIL Statements: LOAD.MSMA.) It
is not addressable as a sink.

Command (CMND) Register

The CMND register is used to transfer commands to the 1/0 controls. It is 24 bits wide and is address
able as a sink only.

Data Register

The DATA register is used to transfer data to and from the 1/0 controls and their peripherals. It is 24
bits wide and is addressable as a source or as a sink.

7-10

CONDITION REGISTERS

Introduction

There are five Condition registers:

Binary Conditions (BICN)
Field Length Conditions (FLCN)
Interrupt Conditions (INCN)
X AND/ORY registers(s) Conditions (XYCN)
X AND/ORY registers(s) States Conditions (XYST)

Each Condition register consists of four bits. The bits are identified from left to right and are assigned
the position numbers 0 through 3, with 0 being the most-significant bit.

All Condition registers are source registers only. They may be moved to another register or tested, using
the IF and SKIP instructions, for their current contents. They may not be the sink (destination) register of
any micro-instruction.

BIT BICN XYCN XYST FLCN INCN

0 LSUY MSBX LSUX FL= SFL NO-DEVICE
1 CYF X=Y ANY.INTERRUPT FL SFL HI-PRIORITY
2 CYD x y YNEQO FL SFL INTERRUPT
3 CYL x y XNEQO FLNEQO LOCKOUT

Binary Conditions (BICN) Register

LSUY is true if the least-significant unit of the Y register is 1 and the Control Parallel Unit (CPU) register
specifies binary (CPU= 0); or 9 and the CPU register specifies decimal (CPU= 1).

The Carry Flip-flop (CYF) register indicates the value of the carry-in in the Control Parallel (CP) register.
The CYF register may be manipulated as part of the CP register and by the CARRY instruction.

The Carry Difference (CYD) register is true if X-(CYF + Y) 0. This condition is not affected by CPL,
i.e., a 24-bit compare is always made.

The Carry Level (CYL) register is true if (X + Y + CYF), limited by the Control Parallel Length (CPL)
register, overflows.

XY Conditions (XYCN) Register

MSBX is true if the most-significant bit of the X register, as determined by the Control Parallel Length
(CPL) register, is a 1.

NOTE

The comparisons of the X register to the Y register are
not affected by CPL; they are always 24-bit compares.

7-11

XY States (XYST) Register

LSUX is true if the least-significant unit of the X register is 1 and the Control Parallel Unit (d>U) register
specifies binary (CPU= 0); or is 9 and the Control Parallel Unit (CPU) register specifies decimal (CPU == I).
The comparisons of the X register or the Y register to zero are not affected by CPL; all 24 bits of the X
register and/or the Y register are used in the comparisons.

Any .Interrupt Bit

This bit is true if any of the following conditions in registers CC, CD, of INCN (M-Memory Processor)
are true:

Event

MISSING DEVICE

PORT INTERRUPT

I/O SERVICE REQUEST INTERRUPT

CONSOLE INTERRUPT

MAIN MEMORY READ PARITY
ERROR INTERRUPT

MEMORY WRITE/SWAP ADDRESS
OUT OF BOUNDS INTERRUPT

Register (Bit Position)

INCN (0)

INCN (2)

cc (2)

cc (3)

CD (0)

CD (3)

The CC and CD registers are both 4-bit source and sink (destination) registers within the C register. The
bits in each are numbered 0 through 3, with bit 0 being the most significant. They have been assigned
the following uses and meanings:

cc (0)
cc (1)
cc (2)
cc (3)
CD (0)
CD (1)
CD (2)
CD (3)

STATE LIGHT
TIMER INTERRUPT
I/O SERVICE REQUEST INTERRUPT
CONSOLE INTERRUPT
MAIN MEMORY PARITY ERROR
MAIN MEMORY WRITE/SWAP ERROR OVERRIDE
MAIN MEMORY READ OUT OF BOUNDS ERROR
MAIN MEMORY WRITE/SWAP OUT OF BOUNDS ERROR

All bits in the CC and CD portions of the C register, once set, remain set even though the conditions that
caused them to be set may no longer exist. Therefore, if it is desired to clear any of these bits to zero,
this must be done explicitly. CD (1), CD (2), and CD (3) of the C register are always zero in the S-Memory
Processor but still may be addressed and tested.

7-12

Console Interrupt (CC(3))

This bit is set when the interrupt toggle switch on the Console control panel is turned on. It remains set
as long as the switch is on. It can be reset programmatically but not by turning the Console toggle switch
off. This bit is also reported in ANY.INTERRUPT when it is on.

Main Memory Read Parity Error Interrupt (CD(O))

This bit is set when a main memory parity error is detected during a READ or a READ portion of a SW AP
operation or when an attempt is made to access non-existent main memory.

Main Memory Address Out-of-Bounds Override (CD(l))

M-Processor Only

This bit is tested if the Field Address (FA) register setting is less than the Base Register (BR) setting or
greater than or equal to the Limit Register (LR) setting; then WRITE or SW AP operations will be inhibi
ted unless this bit is set (one). The state of this bit does not affect the setting of CD (2) or CD (3).

Read Address Out-of-Bounds Interrupt (CD(2))

M-Processor Only

This bit is set when a READ operation is attempted and the Field Address (FA) register setting is either
less than the Base Register (BR) setting or greater than or equal to the Limit Register (LR) setting. The
READ operation is not inhibited.

Write/Swap Address Out-of-Bounds Interrupt (CD(3))

M-Processor Only

This bit is set when a WRITE or SW AP operation is attempted and the Field Address (FA) register setting
is either less than the Base Register (BR) setting or greater than or equal .to the Limit Register (LR) set
ting. This bit, when on, is also reported in ANY.INTERRUPT.

Field Length Conditions (FLCN) Register

All conditions are based upon comparisons between the 16 bits of the FL register and either zero or the
corresponding low-order 16 bits of the first word in the Scratchpad (SOB).

Interrupt Conditions (INCN) Register

M-Processor Only

NO DEVICE is true if an interrupt message is present in the dispatch buffer for a port or channel which
does not have a device attached to it. This condition is normally cleared by the processor with a DIS-
p A TCH READ AND CLEAR instruction.

HI PRIORITY is true if there is a high-priority message present in the dispatch buffer.

7-13

INTERRUPT is true if there is a message present in the dispatch buffer for the processor. This condition
is normally cleared by a DISPATCH READ AND CLEAR instruction. It is also reported in ANY.INTER
RUPT.

LOCKOUT is true if the interrupt system is locked (marked as "in use").

REGISTER DESIGNATIONS AND AREAS OF APPLICATION

The following is a list, arranged by areas of application, of registers and their associated designations.

MICRO-INSTRUCTION CONTROL

A
M
TAS
TOPM
MBR

(Micro-instruction Address)
(Current Micro-instruction)
(Top of Address Stack)
(Logical Top ofM-Memory)
(Micro-instruction Base Register)

S-MEMORY CONTROL

BR (Base Register)
LR (Limit Register)
FA (Field Address)
FL (Field Length)
CP (Control Parallel)

INTERRUPT CONTROL

cc
CD
INCN

PARALLEL WIDTH CONTROL

c
CP
CPL
CPU

ORGANIZATION OF FIELDS AND SUBFIELDS

The following is a description of the organization of register fields and subfields, expressed in the notation
of MIL structured data declarations.

7-14

C BIT(24),
2 CA BIT(4),
2 CB BIT(4),
2 CC BIT(4),
2 CD BIT(4),
2 CP BIT(8),

3 CYF BIT(l),
3 CPU BIT(2),
3 CPL BIT(S);

NOTE: C does not exist as a composite,
only as subfields.

1 L BIT(24),
2 LA BIT(4),
2 LB BIT(4),
2 LC BIT(4),
2 LD BIT(4),
2 LE BIT(4),
2 LF BIT(4);

F BIT(48),
2 FA
2 FB

3
3
3

1 T BIT(24),

BIT(24),
BIT(24),
FU BIT(4),
FT BIT(4),
FL BIT(16),

4 FLC BIT(4),
4 FLD BIT(4),
4 FLE BIT(4),
4 FLF BIT(4);

2 TA BIT(4),
2 TB BIT(4),
2 TC BIT(4),
2 TD BIT(4), .
2 TE BIT(4),
2 TF BIT(4);

7-15

8. MIL STATEMENTS

INDEX TO STATEMENTS

Following is an alphabetical list of MIL statements found in this section.

Statement

ADD SCRATCHPAD
ADJUST LOCATION
AND
ASSIGN
BEGIN
BIAS
BRANCH.EXTERNAL
CALL
CALL.EXTERNAL
CARRY
CASSETTE
CLEAR
CODE.SEGMENT
COMPLEMENT
COUNT
DEC
DEFINE
DEFINE.VALUE

*DISPATCH
EMIT.RETURN.TO.EXTERNAL
ELSE
END
EOR
EXIT
EXTRACT
FA.POINTS
FINI
GOTO
HALT
IF
INC
JUMP
LIT
LOAD

*LOAD.MSMA
LOAD.SMEM
LOCAL.DEFINES
MACRO

Page

8-2
8-3
8-4
8-6
8-7
8-9
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-20
8-22
8-23
8-24
8-25
8-29
8-27
8-30
8-31
8-33
8-34
8-36
8-37
8-38
8-39
8-40
8-46
8-47
8-48
8-49
8-50
8-52
8-53
8-55

Statement

MAKE.SEGMENT.TABLE.ENTRY
MICRO

*M.MEMORY.BOUNDARY
MONITOR
MOVE
NOP
NORMALIZE
OR

*OVERLAY
PAGE
POINT
PROGRAM.LEVEL
READ
REDUNDANT.CODE
RESERVE.SPACE
RESET
ROTATE
SEGMENT
SET
SHIFT/ROTATE T
SHIFT/ROTATE X/Y/XY
SKIP
S.MEMORY.LOAD
STORE
SUB.TITLE
SUBTRACTSCRATCHPAD

*SWAP
TABLE
TITLE
TRANSFER.CONTROL
WRITE
WRITE.STRING
XCH

*Available on B 1720 systems only.

Page

8-59
8-60
8-61
8-62
8-63
8-65
8-66
8-67
8-69
8-70
8-71
8-72
8-73
8-75
8-76
8-77
8-78
8-79
8-80
8-82
8-84
8-85
8-87
8-88
8-89
8-90
8-91
8-92
8-93
8-94
8-95
8-97
8-99

8-1

ADD SCRATCHPAD

Syntax

ADD -------••(scratchpad· word)------- TO FA----•~I

Semantics

This instruction adds the left half of any scratch pad word (SOA ... SI SA) to the Field Address (FA) regis
ter. The result is placed in FA; the contents of< scratchpad. word) remain unchanged. (See also:
SUBTRACT SCRATCHPAD.)

Example

ADD S9A TO FA

8-2

ADJUST

Syntax

ADJUST LOCATION TO

____ .., LOCATION -----.~---~- PLUS ----11~

Semantics

This pseudo-operation adjusts the <physical. code. address> of the compiler. The value of the <physical.
code.address> specifies the location (control memory address) into which the next generated micro
instruction is to be placed, generally by a user-developed loader. (See also Segmentation: Label Addresses.)

LOCATION PLUS(+) OR MINUS(-) increments/decrements the (physical.code.address> by the value of
the (literal). If this option is not used, the <physical. code.address> is set to the value of the <literal>.

The <literal> must have a value of 0 MOD 16.

NOTE

This instruction is generally used to compensate for
disposable loader routines.

Examples

ADJUST LOCATION TO@lOO@
ADJUST LOCATION TO LOCATION+ 32
ADJUST LOCATION TO LOCATION MINUS 128

8-3

AND

Syntax

AND -----••{source· sink· register) ___ WI TH -...------1: ... (source . register)

----{literal} _____,.,..,,

.. ,

Semantics

This instruction logically ANDs the contents of a 4-bit source and sink (destination) register with the bit
configuration of the (literal> or the contents of a 4-bit source register. The result is placed in (source.
sink.register); the contents of (source.register) remain unchanged. (See also: OR and EOR.)

The register may be any of the following:

(source.sink.register)

CA CB *CC *CD
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on Bl 720 only)

(source.register)

(source. sink.register)
BICN
FLCN
INCH (available on B 1 720 only)
PERR (available on B 1720 Model II only)
XYCN
XYST

*CC and CD represent processor interrupts and flags

The (literal> has a decimal range from 0 to 15.

Table 8-1 : AND Truth Table

Source . Sink . Register (Literal) or (Source.Register) Source . Sink . Register

0 AND 0 Yields 0

0 AND 1 Yields 0

1 AND 0 Yields 0

1 AND 1 Yields 1

8-4

'

Example

AND TB WITH 3

TA TB TC TD TE TF

T 0000 1010 1111 0011 0001 0010 before (OAF312)

-- 0011 -- -- -· -- literal (3)

T 0000 0010 1111 0011 0001 0010 after (02F312)

8-5

ASSIGN

Syntax

ASSIGN --.----11:=• ARCHITECTURE.NAME--,_.=

i-----1~ .. COMPILER.LEVEL---
1
-,__.. =

1----11::• MCP. LE VE L ------11•~1

1----11:--• GI SMO. LEVEL ----11 ... 11111

---11i.i-. (character· string) ------r"'......i

--•- (literal) ---------.i

..__--11::-• ATTRIBUTE (literal) AS (identifier) ---~ =

Semantics

This statement assigns values to the various interpreter verification attributes. These attributes occupy
fields in the IPB (Interpreter Parameter Block) of all interpreters. They are accessed at BOJ (Beginning of
Job) time by the MCP and are used to verify that the proper interpreter has been chosen.

The (character.string) for ARCHITECTURE.NAME must be a string of IO or fewer (character)s.

<literal) has a decimal range from 0 to 255 for COMPILER.LEVEL, MCP.LEVEL, and GISMO.LEVEL;
and from 0 to 79 for ATTRIBUTE.

Examples

ASSIGN ARCHITECTURE.NAME= "GISM0.26"
ASSIGN MCP.LEVEL = 197
ASSIGN ATTRIBUTE 64 AS ITEM.O 1=1

8-6

BEGIN

Syntax

BEGIN----.----.. - (label) ---.----11.,-.1
J

Semantics

This statement is paired with the END statement to combine MIL statements into logical blocks. If the
BEGIN/END block is labeled, the MIL program listing will reflect the first ten letters of the block name on
every line of the block (See example in Programming Technique section).

The BEGIN/END block is useful in an IF statement when more than one statement is necessary following
a condition.

Example

IF condition THEN
BEGIN TRUE.CONDITION

END TRUE.CONDITION
ELSE
BEGIN FALSE.CONDITION

END FALSE.CONDITION

BEGIN/END blocks may be nested to fifteen levels, meaning that no portion of a MIL program may reflect
more than fifteen BEGIN's without matching END's.

(See also: END statement and LOCAL.DEFINES statement)

8-7

Example

8-8

BLOCK
NESTING

LEVEL

0
0
1
1
2
2
2
2
3
3
3
2
2
1
I

BEGIN BLOCK. I

BEGIN ANOTHER.BLOCK

BEGIN INNERMOST.BLOCK

END INNERMOST.BLOCK

END ANOTHER.BLOCK

END BLOCK.I

BIAS

Syntax

F~c=:~--A_N_o_-,--.. ____ s~·---~

L..cP

~----~TEST

AND F

Semantics

This instruction sets the Control Parallel Length (CPL) register and the Control Parallel Unit (CPU) register
to values calculated from the given operands.

NOTE

All references to register S refer to the SFL or SFU
registers in the second half of the first scratchpad word,
e.g., the SFL (low order 16 bits) part of the SOB
register.

The CPU register will be set to 1 if the value of the Field Unit (FU) register is set to 4 or 8; otherwise
CPU is set to 0. This is done for all variations of BIAS except BIAS BYS, which sets the CPU register
from SFU rather than from the FU register.

BIAS BY ... sets the CPL register equal to 24 or to the value in the specified register if it is less than
24. BIAS BY UNIT sets the CPL register equal to the FU register (4 for 4-bit decimal, 8 for 8-bit
decimal, or any other value less than 16 for binary).

If the TEST option is used the above actions are performed, and the next micro-instruction is skipped
if CPL has not been set to zero.

Examples

BIAS BY F

BIAS BY F AND CP

This instruction sets the CPL register to 24 or to the value of the Field
Length (FL) register, if it is less than 24. It also sets the CPU register
equal to the unit in the FU register.

This instruction sets the CPL register to 24, to the value in the FL
register, or to the value in the CPL register, whichever is the smallest.
It also sets the CPU register to the unit in the FU register.

8-9

BIAS BY UNIT

8-10

This instruction sets the CPL register equal to the length of the unit of
the type specified by the FU register. It also sets the CPU register equal
to one unit of the type specified in the FU register, i.e., 4-bit decimal,
8-bit decimal, or binary.

NOTE

In all cases except UNIT, CPU is set to 1 if FU (or
SFU) is 4 or 8; otherwise CPU is set to 0. If UNIT
is specified, CPL is set directly to the value in FU.

BRANCH.EXTERNAL

Syntax

BRANCH.EXTERNAL -----..... To -----11 < label)----1 I

Semantics

This instruction transfers control to the external segment location specified by (/abeD. (See: Segmenta
tion.)

(Label) must be associated with a run-time address that has a displacement from the BRANCH.EXTERNAL
instruction of less than 4096 micro-instructions.

Example

NOTE

If an external segment does not exist because $NO
EXTERNAL has been specified, BRANCH. EXTER
NAL is equivalent to GO TO.

BRANCH.EXTERNAL TO EXTERNAL.SEGMENT.LABEL

8-11

CALL

Syntax

CALL --E-. -~-3-. -~ ... (label)___,

Semantics

This instruction stores the address of the next micro-instruction in the A stack, then branches to the loca
tion specified by (label).

The location specified by the label may be a maximum of 4095 micro-instructions away from the CALL
instruction.

Example

CALL MULTIPLICATION.ROUTINE
CALL M.IN.OUT
CALL +ABC

8-12

CALL.EXTERNAL

Syntax

CALL.EXTERNAL----.. - (label)----11~...il

Semantics

This instruction stores the address of the next micro-instruction in the A stack, then branches to the
external segment location specified by (label). (See: Segmentation.)

(Label) must be associated with a run-time address that has a displacement from the CALL.EXTERNAL
instruction of less than 4096 micro-instructions.

Example

NOTE

If an external segment does not exist, becuase $NO
EXTERNAL has been specified, CALL.EXTERNAL
acts identically to CALL.

CALL.EXTERNAL BEGINNING.OF.LOOP. I

8-13

CARRY

Syntax

CARRY E ~---------=~~~
SUM -------11-=-~

DIFFERENCE----11.:=-..,

Semantics

This instruction sets .the Carry (CYF) register to either 0 or 1. CARRY 0 or CARRY 1 sets the CYF
register to 0 or 1 respectively. CARRY SUM sets the CYF register to the value of CYL single bit.
CARRY DIFFERENCE sets the CYF register to the value of the Carry Difference (CYD) register:

If: X>Y X=Y AND CYF=O X==Y AND CYF=l X<Y
----·---~--------------------·---------·----------·--

CYD is set to: 0 0 I I

The CYD register, unlike the CYL register is not conditioned by the CPL register. That is, all 24 bits of
the X and Y registers are compared when setting CYF by the CYD register. The programmer should,
therefore, know what is in the high-order position of the X and Y registers when using the CYD register
if the CPL register is set to less than 24.

8-14

CASSETTE

Syntax

CASSETTE--..-~---11• START

~STOP~--.--~~--------~---~

Semantics

WHEN X --~-11• EOL Y

L., NEOY

This instruction causes the system cassette tape to start or stop a READ operation at the next inter-record
gap.

The information read from the cassette is loaded into the U register and remains there for a maximum of
two clock cycles before the U register is cleared.

Example

CASSETTE STOP

NOTE

The data on the cassette is duplicated every eight
bits to ensure its validity. The cassette will discrimi
nate against parity incorrect data and, if necessary,
use the duplicate eight bits. If both copies are in
error, the load will be aborted. If the STEP-RUN-
T APE switch is in the TAPE position (see: LOAD.
MSMA) and the START button is pushed, the
successive 2-byte increments will be moved from
the U register. If the instruction being executed
is a 24-bit literal MOVE TO MSMA, then the next
16 bits (2 bytes) that appear in the U register are
loaded into control memory at the address indica-
ted by the A register. The A register is then incre
mented by 1.

CASSETTE STOP WHEN X NEQ Y

8-15

CLEAR

Syntax

CLEAR ~register) __j
L__:_;scratchpad. word)

Semantics

This instruction sets the specified register(s) or 24··bit scratchpad word(s) to zero.

The following may be cleared:

A
BR

(register)

CA CB *CC *CD CP CPU
FA FB FL FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF TAS
TOPM (available on Bl 720 only)

(scratchpad. word)

SOA

SlSA

SOB

SlSB

*CC and CD represent processor interrupts and flags

Each register clear takes one clock cycle; each scratchpad word clear takes two clock cycles.

NOTE

MOVE NULL TO (register) will be generated for each
register specified on B 1710 systems. ·

Example

CLEAR SIOA
CLEAR BR L CB S4B TOPM FU

8-16

CODE.SEGMENT

Syntax

CODE.SEGMENT----11••(label)__.,

Semantics

See Segmentation: CODE.SEGMENT

8-17

COMPLEMENT

Syntax

COMPLEMENT (regi.ster) ((literal))----------------J-.---1.,..a\
. r .,._AND (register) ((literal))

Semantics

This instruction COMPLEMENTs (switches the state of) the specified bit. By using the options, more than
one bit in any on~ register can be complemented with the same instruction IF ALL BITS ARE IN THE
SAME 4-BIT REGISTER. (See also: SET and RESET.)

The< register) may be any 4-bit source and sink (destination) register below:

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU
FLC FLO FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on Bl 720 only)

It may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The literal has a decimal range from 0 to 3 for a 4-bit register; from 0 to 15 for the FL register; and from
0 to 23 for the FB, L, and T registers.

Example

L

L

8-18

0

LA

0001

0001

LB

0010

0010

3 4 7 8

COMPLEMENT LD(O) AND L(l 3)

LC LD LE LF

0011 1000 0101 0110 before (123856)

001,1 0100 0101 0110 after (123456)
_j_1_

11i,15 16 17 18 23

0 ~L 13 LD()

It should be noted that most registers can be addressed in either of two ways:

LA LB

0 3 0 3 0

0 . . . 3 4 7 8
A -r::- L(O)

or
LA(O)

LC LO

3 0 1 2 3

. .. 11 12 ... 15
.l A

LD(O)Jt.. L 13 ()
or

L(12)
or

LD(1)

LE

0

16

LF

3 0 3

19 20 . .. 23

8-19

COUNT

Syntax

COUNT

Semantics

FA[UP LAND FL DOWN~
DOWN

LAND FLT-. UP----.-~
L.....,.DOWN

FLIUP

L... DOWN~.--~~~~~·~~~~~--.-
L AND FA~UP---..-1~

L...,.DOWN

c: AND FA DOWN

BYCCPLc:r~
(literal-) .

BITS

This instruction increments or decrements the designated registers by the value of the < literal> or the
contents of the Control Parallel Length (CPL) register. If the value of< literal> is 0, the value contained
in the CPL register is used.

If the FA register is counted down, it may pass through 0 (i.e., if FA=O and is counted down by 1, it
will be set to hexadecimal FFFFFF). If the FL register is counted down, it will not become less than 0.

If either the FA or FL register overflows, wraparound to or through 0 will occur; e.g., if either is equal to
the maximum value it can contain and is counted up by 1, it becomes equal to 0.

The <literal) has a maximum decimal value of 72.

8-20

Example

Count FA Up and FL Down by 10

FA 0000 1001 1010 0111 1111 1011 before (09A 7FB)

-- -- -- -- -- 1010 (literal) +A

FA 0000 1001 1010 1000 0000 0101 after (09A805)

FL 0000 0000 0000 1000 before (0008)

-- -- -- 1010 (literal) -A

FL 0000 0000 0000 0000 after (0000)

FA is counted up by decimal 10 (hexadecimal A), while FL is counted down by 8 to its minimum value.

8-21

DEC

Syntax

DEC ----1 ... • (source. sink. register)---.. - BY

1
__. (source· register)

__...(literal) ..,I L TEST __J

Semantics

This instruction decrements the contents of a 4-bit <source.sink.register> by the value of the< literal) or
the contents of a 4-bit <source.register>. The result is placed in< source.sink.register); the contents of
(source.register) remain unchanged. (see also: INC.)

The registers may be any of the following:

<source.sink.register)

CA CB *CC *CD
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE IF
TOPM (available on B 1720 only)

<source. register)

<source. sink. register)
BICN
FLCN
INCN (available on B 1720 only)
XYCN
XYST

*CC and CD represent processor interrupts and flags

The (literal) ·has a decimal range from 0 to 15.

If the TEST option is used and (source.sink.register) underflows (is decremented beyond 0, the smallest
value it can contain), the next micro-instruction is skipped. If underflow does not occur or if the TEST
option is not used, the next micro-instruction is executed.

Example

DEC TB BY 7

:'.\TOTE

All 4-bit registers count modulo 16; e.g., if a register
contains a value of 0 and is decremented by 2, it
underflows to a value of 14.

DEC FLO BY LC TEST

8-22

DEFINE

Syntax

DEFINE----11•~ (identifier)= L. _J I _j
(string) L.. #

.. 1

Semantics

This declaration assigns a name ((identifier)) to a string of characters. Any subsequent reference to the
(identifier) is replaced by the(string). The pound sign merely clarifies the end of the DEFINE (string) if
present.

(String) may be a scratchpad name (24 or 48-bit); a register name; a (literal); a part of one instruction;
an entire instruction, part of which may have been previously DEFINED; or empty. It may neither
begin with a pound sign (#) nor contain any embedded pound signs.

The entire DEFINE declaration must be contained on one card, and all DEFINEs must be declared prior
to any executable instruction. ·

Nested DEFINEs are allowed up to 13 levels.

Example

DEFINE SOURCE.POINTER = S3# % LOAD F FROM SOURCE.POINTER
DEFINE OP.REG= L % CLEAR OP.REG
DEFINE TEST.OP= @80 0000@# % MOVE TEST-OP TO OP.REG
DEFINE HINT = CC(3) % RESET HINT
DEFINE IGNORE.HALT= RESET HINT % IGNORE.HALT
DEFINE LAZY= WRITE 21 BITS FROM X INC FA AND DEC FL#% FINGER SAVER

8-23

DEFINE.VALUE

Syntax

DEFINE.VALUE --... -(identifier)= (literal) E ~ y (litera/)=:1

.. ,

Semantics

This instruction assigns the value of the (arithmetic. expression) to the (identifier). Any occurrence of the
(identifier) in the program is replaced by its assigned value.

DEFINE.VALUE creates a 24-bit (literal). Values less than zero are in 2's complement notation and are
24 bits long.

If defined (identifier) are used as (literals) in the (arithmetic.expression), they must be previously defined.

Example

DEFINE. VALUE AA= @SO@
DEFINE B = AA + 1
DEFINE C = AA - 3
DEFINE.VALUE F03 = @(1)00 IO@ + 4

8-24

% VALUE is hex 000050
% VALUE is hex 000051
% VALUE is hex 00004D
% VALUE is hex 000006

DISPATCH

(available only on B 1720 systems with port interchange)

Syntax

DISPATCH l;' LOCK . -c SKIP WHEN UNLOCKED

WRITE-----------'--------~

READ -....,.-----~-----r-----~

LAND CLEAR

Semantics

This instruction sends a message (e.g. an 1/0 descriptor address) from the processor to a device on an 1/0
port.

Before sending a message to a port, the processor should first attempt to gain control of the interrupt
system with a DISPATCH LOCK. This is necessary because the interrupt system is shared by all ports.

DISPATCH LOCK locks (marks as "in use") the interrupt system. If the interrupt system was already
locked, the next micro-instruction is skipped.

DISPATCH LOCK SKIP WHEN UNLOCKED locks the interrupt system and skips the next micro
instruction if the interrupt system is already unlocked.

DISPATCH WRITE sends a 24-bit message to a port. Before a DISPATCH WRITE is executed, the L
register must contain the 24-bit message; the seven least-significant bits of the T register must contain
the destination port (bits 17-19) and channel numbers (bits 20-23). The contents of the L register are
then stored in the Dispatch buffer (main memory locations 0-23), and the port and channel numbers
are transferred to a hardware register (Dispatch register) in the port interchange. The contents of the
Land T register remain unchanged.

DISPATCH READ transfers both a 24-bit message from the Dispatch buffer to the L register, and the
source port and channel numbers to the seven least-significant bits of the T register.

NOTE

If T (23) is found set after a DISPATCH READ and
the source port is an I/O multiplexor, a main memory
parity error was encountered during the fetch of an
I/O descriptor address or an 1/0 descriptor, or during
a RESULT SWAP operation. Consequently, the
message transferred to the L register will be the address
+24 of the parity error.

8-25

DISPATCH READ AND CLEAR does everything a DISPATCH READ will do and in addition clears the
Interrupt Condition (INCN) register. That is, it resets all INCN bits to zero.

Only the least-significant seven bits of the T register are involved in any DISPATCH operation.

If the SKIP WHEN UNLOCKED option is used with any variant other than a DISPATCH LOCK, the
next micro-instruction is skipped.

8-26

ELSE

Syntax

ELSE L .. I
--. (statement} _j

Semantics

The ELSE statement is used in conjunction with the IF statement to indicate that a (statement} is to be
executed on a condition False. For example:

IF condition THEN
statement

ELSE
statement

The statement following the THEN clause will only be executed if the condition is true. Likewise, the
statement following the ELSE clause is executed only if the condition is false.

The IF statement may also contain a BEGIN/END block following the THEN clause, in which case the
ELSE clause becomes part of the END statement (see: END).

Examples

a. If condition THEN
statement

ELSE
statement

b. IF condition THEN
BEGIN

END ELSE
statement

c. IF condition THEN
statement

ELSE
BEGIN

END

8-27

8-28

d. IF condition THEN
BEGIN

END ELSE
BEGIN

END

EMIT.RETURN.TO.EXTERNAL

Syntax

EMIT.RETURN.TO.EXTERNAL

Semantics

This instruction causes the compiler to emit the common code necessary to get back to the main segment
from the external segment. The compiler automatically emits this code when the first CODE. SEGMENT
statement is encountered. If the program requires the code to be emitted before the first CODE.SEGMENT
is encountered, this statement can be used to emit the code. This code also includes the return code used
when the segment is exited for the last time. (See: Segmentation.)

RESTRICTION

This statement cannot be used more than once in a
program, and cannot be used after the occurrence
of the first CODE.SEGMENT statement.

8-29

END

Syntax

END ----.r---11 ... ~(/abe~ .. ELSET

Semantics

This statement is paired with the BEGIN statement to combine MIL statements into logical blocks. The
END statement must have the same (label) as its matching BEGIN statement.

The ELSE clause is used only when needed as part of an IF statement. For example:

BLOCK
NESTING

LEVEL

0
0
1
1
I
I
0
1
I
I
1

MIL STATEMENT

IF condition THEN
BEGIN TEST.TRUE.BLOCK

END TEST.TRUE.BLOCK ELSE
BEGIN TEST.FALSE.BLOCK

END TEST.FALSE.BLOCK

Good programming practice recommends that BEGIN's and matching END's start in the same column
while the statements within the block should be indented to reflect the nesting level. (See also: BEGIN
and LOCAL.DEFINES).

Example

8-30

IF LD(2) FALSE THEN
BEGIN EMIT.INFO

WRITE 16 BITS FROM T INC FA AND DEC FL
MOVE XTO S7A
SET CB(l)

END EMIT.INFO ELSE
MOVE YTO S7B

EOR

Syntax

EOR --.. -(source. sink· register)---11 ... -. WITH ~(source. register)

l-.(literal) J
.. ,

Semantics

This instruction logically EXCLUSIVE ORs the bits in a 4-bit (source.register> with the value of the literal
or the contents of a 4-bit (source.register). The result is placed in (source.sink.register); the contents of
(source.register) remain unchanged. (See also: AND and OR.)

The register may be any of the following:

(source.sink.register>

CA CB *CC *CD
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B 1720 only)

(source. register>

(source.sink.register>
BICN
FLCN
INCN (available on B 1720 only)
PERR (available on Bl 720 only)
XYCN
XYST

*CC and CD represent processor interrupts and flags.

The (literal> has a decimal range from 0 to 15.

Table 8-2 EOR Truth Table

Source.Sink· .Register
(literal)

Source.Sink .Register Source.Register

0 EOR 0 Yields 0

0 EOR 1 Yields 1

1 EOR 0 Yields 1

1 EOR 1 Yields 0

8-31

Example

EOR TB WITH 3

TA TB 'TC TD TE TF

T 0000 0101 1111 0011 0001 0010 before (05F312)

-- 0011 -- -- -- -- EOR (030000)

T 0000 0110 1111 0011 0001 0010 after (06F213)

8-32

EXIT

Syntax

EXIT -------1111•..il

Semantics

This instruction returns program control to the calling routine by causing the compiler to generate a MOVE
TASTO A operation.

The top of the A stack (T AS) is moved to the ADDRESS (A) register, which is used by the hardware logic
as the address of the next micro-instruction to be fetched. The stack is decremented automatically by the
hardware after the move.

NOTE

MOVE TASTO A may be used instead of EXIT
with the same result.

8-33

EXTRACT

Syntax

EXTRACT c(arithmetic·expression) BITS FROM T ((literal))

(dee/a.red· identifier) FROM T -r-
L. ((literal))

Semantics

This instruction isolates the specified bits from the T register and moves them to a distination register (L,
T, X, Y). If a destination register is not specified, Tis assumed.

The value of the following combinations may not exceed 24 bits:

(arithmetic~ expression)+(literal).
DATA.LENGTH of (declared.identifier)
DAT A.LENGTH of (declared. identifier)+(literal)
DAT A.LENGTH of (declared. identifier) + DATA.ADDRESS of (declared. identifier>

NOTE

If the starting bit for (declared. identifier) is not
specified, its DAT A.ADDRESS is used.

Examples

8-34

EXTRACT
DECLARE

1

4 BITS FROM T(20) TO L

STUFF REMAPS BASE.ZERO
2 ITEM.I
2 ITEM.2

BIT
BIT
BIT

2 ITEM.3 CHARACTER
MOVE STUFF TO FA
ADD BASE TO FA
READ DATA.LENGTH (STUFF) BITS TOT
EXTRACT ITEM.2 FROM T TO X
EXTRACT ITEM. I FROM T(O) TO T

(24),
(4),

(127),
(1);

EXTRACT 4 BITS FROM T(20) TO L

TA TB TC TD TE TF

T 0000 0001 0011 1000 1110 0100 before (0138E4

T(20)

LA LB LC LO LE LF L80
L 00

01 1110 0011 1001 1111 1100 before (1 E39FC)

00 0000 0000 0000 0000 0100 after (000004)

Register T remains unchanged while its four extracted bits are placed in the L register. The bits are right
justified; leading zeroes are added.

NOTE

EXTRACT 0 BITS FROM T(23) TO a d'estination
register may be specified, but the programmer must
OR into the M register the number of bits to be
extracted. Caution must be exercised, however, when
ORing into the M register: the machine hardware
instruction requires the right-bit pointer for the
extraction field, not the left. The hardware also
indexes the T register from 1 to 24, left to right,
not 0 to 23; the compiler performs this conversion.

8-35

FA.POINTS

Syntax

FA.POINTS TO---... -(arithmetic0 expression) __ _.,

Semantics

This pseudo-operation does not generate any code. It merely informs the compiler of the current contents
of FA. This information is then used when compiling the POINT constructs in the READ, WRITE and
POINT instructions.

The FA.POINTS and POINT constructs are provid·ed so that the user may symbolically reference the
memory structures declared in a declaration statement. Such references will show up in a cross-reference
listing and can often result in automatic code changes when the declaration needs to be changed.

Example

DECLARE
1 STRUCTURE,

2 DATA.A BIT(10),
2 DATA.B CHARACTER(20),
2 DATA.C FIXED;

FA.POINTS TO DATA.A
READ DATA.LENGTH (DATA.A) BITS TO X POINT FA TO DATA.B
POINT FA TO STRUCTURE
MOVE DATA.C TO FA
WRITE DATA.LENGTH (DATA.C) BITS FROM Y POINT FA TO DATA.B

8-36

FINI

Syntax

FINI

Semantics

This instruction signals the compiler that the end of the file of source images has been reached. It should
be the last statement in the source program.

8-37

GOTO

Syntax

GOTO E:3 ... (label)
.. ,

Semantics

This instruction transfers control to the location specified by < labeD. <Label) must be associated with a
run time address that ·has a displacement from the GO TO instruction of less than 4096 micro-instructions.

Example

GO TO SORT.ROUTINE
GO TO -LOOP.I
GO TO +LOOP.2

8-38

HALT

Syntax

HALT

Semantics

This instruction brings the processor to an orderly halt. The settings of the register select dials determine
the register displayed.

Pressing the ST ART pushbutton on the system Console will cause the processor to again begin executing
micro-instructions. If the STEP/RUN switch is in the STEP position, only one micro-instruction is
executed each time the START pushbutton is depressed.

8-39

IF

Syntax

FORMAT 1: CONDITIONAL PROGRAM CONTROL

IF 1 (register) ((literal))

... < condition) --~

f
THEN , ... BEGIN~(statement)L ENDr

TRUE -

FALSE - (statement) ..

CsE ·reEG1NL<statement>__._-....... ~ END-...----·

_______ .,..(statement) .1
FORMAT 2: CONDITIONAL COMPILATION CONTROL

r
If ... (module· option)--.E--;-:-~-:-E_

3
_..----11.., ... THEN INCLUDE BEGIN-------~- (statement)-.__-11.., ... END

[ELSE BEGIN C. (statement)--........ END _________,

Semantics

FORMAT 1: CONDITIONAL PROGRAM CONTROL

This instruction tests a bit(s) for TRUE (one) or FALSE (zero), If the test condition is met, either the
specified single statement or the specified BEGIN/END statement(s) is executed. If the test condition
is not met, a branch around the first BEGIN/END pair is taken, and the ELSE BEGIN/END statement(s)
is executed. Logical operators are valid on the registers immediately following the IF, enabling more than
one bit to be tested at the same time, but only if alll of the bits are in the same 4-bit register. (See also:
COMPLEMENT, SET and RESET.)

8-40

Logical operators are valid on the registers immediately following the IF, with the following restrictions:

1) All registers logically related must be within the same 4-bit group: IF T(O) and T(3) is
valid, IF T(2) and T(4) is not.

2) Only two register elements may be logically related: IF T(2) or T(O) is valid, IF T(2) and
T(1) and T(O) is not.

3) NOT logic may be applied anywhere: IF NOT (L(3) or NOT L(O)) is valid.

The <register) may be any 4-bit source and sink (destination) register below:

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B 1720 only)

The (register) may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The (literal) points to the bit position which is to be tested. It has a decimal range from 0 to 3 for a
4-bit (register); from 0 to 15 for the FL register; and from 0 to 23 for the FB, Land T registers.

The condition may be any of the following conditions available from the condition registers:

8-41

8-42

__. x - = --
• EQL

·- NEQ

-- < --
-- GTR --
- > -
-- LSS --
• GEQ

- LEQ -
_.,.. y -- = --

..- EQL

-- NEQ --
.- < --- GTR --- > -
-- LSS --
_. GEQ -
..... LEQ --

.INTERRUPT __.,..ANY

FL-

_.,.. CYD

i----1~ CYF

i----1~ CY L

--~·LSBX

--. LSBY

--- LSUX

--- LSUY
_..MSBX

OUT _ __.LOCK

_ __.HI. p RIORITY

--+- INTE RRUPT

....___,.~ NO. D EVtCE

-- = --
- EQL ·-
- NEQ . ._

- <

• GTR

-- > --
- LSS -
-- GEQ --
• LEQ

r= 0

1 -=:f y

__.... y • -
-

-
-·- [= 0

1 x

_., x
~ -

-

-

3
---+- 0

L~ SFL==1

---+- SFL
~ -

-......
-

--

·~

._

_. -

__.. -
-

--._

--
-·-
--.. ---·~

-~
--
--
~

_.J
-1

Borrow Out Level

p-Flop Carry Fli

Carry Ou t Level

Least Sig nificant Bit of X

Lease Sig nificant Bit of Y

nificant Unit of)(Least Sig

Least Sig nificant Unit of Y

nificant Bit of X Most Sig

Any combination of conditions that is contained in one condition register can be tested using AND/OR
logic if all bits can be tested for TRUE (on) or FALSE (off). For example, the following are valid
conditions:

CYLAND LSUY
CYLORCYD

EXAMPLE: IF CYL AND LSUY TRUE THEN GO TO END.OF.ROUTINE
IF CYL OR CYD FALSE THEN GO TO LOOP

If TRUE or FALSE is not specified, TRUE is assumed.

EXAMPLE: IF TD{2) THEN GO TO LABL7

R€~gister TD Branch to LABL7

0101
1101
0111
0011

NO (bit position two is OFF)
NO (bit position two is OFF)
YES (bit position two is ON)
YES (bit position two is ON)

Note: TD(2) could have been referred to as T(14)

Example

The following examples illustrate Format 1: Conditional Program Control:

IF X =: Y
IF TB(l)
IF LF(2)

IF FU(l)

ELSE

THENGOTO+A
OR TB(3) THEN EXIT
THEN
MOVEXTOY
FALSE THEN
COMPLEMENT T(IO)

RESET FL(5)

FORMAT 2: CONDITIONAL COMPILATION CONTROL

This instruction should be used for conditional inclusion of code, depending upon the setting of a user
defined, (module.option) toggle. This (module.option> toggle is declared and SET or RESET via a module
option $card. (See Appendix A: MIL Compiler Operation.)

More than one (module.option) toggle can be tested with the same IF statement by using AND/OR logic.
If NOT is used in front of any (module.option) toggle, that (module.option) toggle is checked for the
RESET state. If both TRUE and FALSE are omitted, TRUE is assumed.

NOTES

1. A conditional inclusion-block may not be used to
include or exclude a BEGIN statement when the
associated END statement is not part of the block.

8-43

2. Logical operators are valid on the registers
immediately following the IF, with the following
restrictions and capabilities:

a. All registers logically related must be within
the same 4-bit group: IF T(O) AND T(3) is
valid, IF T(2) AND T(4) is not.

b. Only two register elements may be logically
related: IF T(2) or T(O) is valid, IF T(2) AND
T(l) AND T(O) is not.

c. NOT logic may be applied anywhere: IF NOT
(L(3) OR NOT L(O)) is valid.

The following examples illustrate Format 1 (Conditional Program Control):

8-44

IF X=YTHENGOTO+A
IF TB(l) OR TB(3) THEN EXIT

IF LF(2) THEN
MOVEXTOY

SET TA(l)
IF FU(l) FALSE THEN

COMPLEMENT T(IO)
ELSE

RESET FL(S)
SET L(6) AND L(7)

IF FLF(3) FALSE THEN
BEGIN

END

RESET FB(l) AND FB(3)
CLEAR Sl4A

XCH Sl4 F S14

IF LA(O) THEN
BEGIN

MOVE TASTOT
END ELSE

MOVE FA TOT
MOVE TE TO LF

IF TD(3) THEN
MOVE LTOX

ELSE
BEGIN

MOVE TTOX
MOVE SUMTOX

END
MOVE SUM TO FA

IF LA= 14 THEN
BEGIN

MOVE 512 TO X
END
COMPLEMENT FU(O) AND FU(2)

The following are examples of conditional inclusion of code:

$ SET DEBUG, RESET TRACE
$ SET TRACE, RESET B 1700

After processing these $ cards, the module options will be set TRUE or FALSE as follows:

DEBUG= TRUE
TRACE= TRUE
Bl 700 ==FALSE

IF DEBUG THEN INCLUDE
CALL DEBUG.ROUTINE

IF TRACE THEN INCLUDE
BEGIN

END

CALL SAVE.REGISTERS
CALL TRACE.ROUTINE

IF DEBUG AND NOT Bl 700 INCLUDE
BEGIN

MOVE TTOX
END ELSE
BEGIN

END

MOVE LTOX
MOVE TTO SOA

IF NOT TRACE OR B 1700 INCLUDE
BEGIN

MOVE LTOX
MOVE T TO SIA

END ELSE
BEGIN

CALL TRACE.ROUTINE
MOVE TTOX

END ELSE
BEGIN

END

CALL TRACE.ROUTINE
MOVE TTO X

Any of the preceding examples may be nested within any of the above BEGIN/END pairs up to a maximum
of 15 levels. That is, at any given time during a compilation there may be at most 15 BEGINs that have
not been paired with their respective ENDs.

8-45

INC

Syntax

INC ----t ... ~(source-slnk·register)--... - BY--r----(source·register)

L_..., (literal) j LTEST _j

Semantics

This instruction increments the contents of a 4-bit <source.sink.register> by the value of the (literal) or the
contents of a 4-bit (source.register). The result is placed in the (source.sink.register); the contents of the
(source.register); remain unchanged. (See also: DEC.) ·

The registers may be any of the following:

(source.sink.register)

CA CB *CC *CD
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B 1720 only) •.

(source.register)

(source.sink.register)
BICN
FLCN
INCN (available on B 1720 only)
XYCN
XYST

*CC and CD represent processor interrupts and flags

The literal has a decimal range from 0 to 15.

If the TEST option is used and source.sink.register overflows (is incremented beyond 15, the largest value
it can contain), the next micro-instruction is skipped. If overflow does not occur or if the TEST option :is
not used, the next micro-instruction is executed.

Example

INC LB BY 7

NOTE

All 4-bit registers count modulo 16; e.g., if a register
contains a value of 15 and is incremented by 2, it over
flows to a value of 1.

INC FLD BY BICN TEST

8-46

JUMP

Syntax

JUMP

l
__.. FORWARD l
__.. BACKWARD.,_J L...----••(literal)----1.,...,J l
-- TO I : : =:r .. (label)------1~~

Semantics

This instruction transfers control to the designated location.

The address of <label) is limited to a maximum relative displacement of plus or minus 4095 micro
instructions.

The< literal) has a decimal range from 0 to 4095.

If< literal) is not specified, FORWARD/BACKWARD causes the compiler to generate a JUMP instruction
with a displacement of zero and a direction sign of plus or minus. This is to facilitate ORing the actual
displacement into the M register prior to the execution of a JUMP instruction.

Examples

JUMP TO + LOOP. I
JUMP TO END.OF.CODE.LABEL
JUMP FORWARD
JUMP BACKWARD

NOTE

It is strongly recommended that only JUMP FORWARD
and JUMP BACKWARD be used, that they be used only
without a <literal>, and only where necessary to generate
a displacement of zero. Use the GO TO statement for
all other uses.

8-47

LIT

Syntax

c MOV~ -- (literal} TO -r- (sink.register) J ~1
LIT l-..(scratchpad· word)

Semantics

This instruction moves a (literal) to any sink (destination) register (except the M register) or to any 24-bit
scratchpad word. (See also: MOVE.)

The (literal) may be any decimal integer from 0 to 16777215, a hexadecimal number from @0@ to
@FFFFF@, a binary number from @(1)0@ to @(1)111111111111111111111111@, or a (character.string)
up to three characters in length. Leading zeros are not required unless the actual value of the (literal) is
zero. The value of the Uiteral) should not exceed the maximum value that the (sink.register) can contain;
if less, left zero fill occurs.

(Literal) moves to a 24-bit scratchpad word generate MOVE (literal) TO T AS followed by MOVE TASTO
(scratchpad. word).

Example

LA

L 0011

--

L 0000

8-48

PROGRAMMING NOTE

It is recommended that the MOVE instruction be used
instead of LIT.

MOVE 12 TO L

LB LC LO LE LF

0000 1001 1010 0001 0011

-- -- -- -- 1100

0000 0000 0000 0000 1100

before (309A 13)

LIT (C)

after (OOOOOC)

LOAD

Syntax

LOAD F FROM -----•~(double0scratchpad0word)---....... 1

Semantics

This instruction moves any 48-bit double scratchpad word (SO ... S 15) to the Field (F) register.

Example

LOAD F FROM SI I

NOTE

The compiler will generate two MOVE instructions
for B 1710 systems.

8-49

LOAD.MSMA

(Available on B 1 720 systems only)

Syntax

LOAD.MSMA ----..L---i•• START_J

__.,STOP

Semantics

This pseudo-operation causes the compiler to either start or stop prefacing all emitted microcode with the
first 16 bits of a MOVE 24 BIT LITERAL TO MSMA instruction. .

The above action is required when a microprogram is to be loaded into control memory from a cassette
tape while the system is in the TAPE mode. The action of the hardware while in this mode is as follows:

.READ LOOP
READ 16 BITS FROM THE CASSETTE TO THE U-REGISTER
MOVE UTOM
IF M =FIRST HALF OF 24-BIT LITERAL MOVE, THEN READ 16 BITS

FROM THE CASSETTE TO U
EXECUTE THE MICRO-OPERATION IN M

(IF M= @9DOO@=MOVE 24-BIT LITERAL TO THE CONTROL MEMORY
WORD ADDRESSED BY THE A-REGISTER; THEN U, WHICH NOW
CONTAINS THE ACTUAL MICRO-INSTRUCTION, IS MOVED TO
CONTROL MEMORY ADDRESSED BY THE A-REGISTER AND A IS
INCREMENTED BY 1)

IF M = CASSETTE STOP THEN
STOP CASSETTE AND HALT PROCESSOR

ELSE
JUMP TO -READLOOP

No statement between LOAD.MSMA ST ART and its corresponding LOAD.MSMA STOP may reference
any (label) which has not been declared prior to the LOAD.MSMA STOP.

8-50

Example

The following source code could be used to enable a microprogram to be loaded from a cassette into
control memory, beginning at control memory address zero:

MOVE 0 TO A
SEGMENT ANYNAME AT 0
LOAD.MSMA START

(Microprogram)

LOAD.MSMA STOP
MOVEOTOA
CASSETTE STOP

8-51

LOAD.SMEM

Syntax

LOAD.SMEM --r-- START

3
•I

l__.STOP

Semantics

This pseudo-instruction causes the compiler to either start or stop appending each micro-instruction with
the following instructions:

MOVE 24 BIT LITERAL TO X
WRITE (25) BITS FROM X
WRITE 16 BITS FROM X INC FA

These instructions are required when a microprog,ram is to be loaded into main memory from a cassette
tape while the system is in the TAPE mode.

Example

MOVE 4096 TO FA
LOAD.SMEM START

(microprogram)

LOAD.SMEM STOP
CASSETTE STOP

% START ADDRESS

NOTE: The FA must start at a mod 32 value.

8-52

LOCAL.DEFINES

Syntax

LOCAL.DEFINES -------•..cf

Semantics

This statement is provided to allow the use of local definitions (see DEFINE, DEFINE.VALUE, DECLARE,
MACRO). Local definitions are useful in limiting unauthorized or unnecessary access of special-purpose
definitions outside of their only areas of use. LOCAL.DEFINES, however, does allow duplicate definitions
with a special local meaning probably different from a more global meaning. Thus microprogrammers should
be careful to avoid such potentially confusing duplications.

A definition which follows LOCAL.DEFINES has that definition only within the scope of the block in
which it is defined. For example:

BLOCK
NESTING

LEVEL

0
I
I
I
I
2
2
2
I
0
0
I

MIL ST A TEMENTS

BEGIN LOCAL.BLOCK. I
DECLARE L. l FIXED;
LOCAL.DEFINES
DECLARE L.2 FIXED;
BEGIN INNER.BLOCK. I

DECLARE 1.1 FIXED;
LOCAL.DEFINES
DECLARE 1.2 FIXED;

END INNER.BLOCK.I
END LOCAL.BLOCK. I
BEGIN LOCAL.BLOCK.2

DECLARE AA. I FIXED;

The definition of L. l preceeds LOCAL.DEFINES and may be referenced outside of LOCAL.BLOCK. I.

The definition of L.2 follows a LOCAL.DEFINES and may be referenced only within LOCAL.BLOCK. I.

The definition of I. I follows LOCAL.DEFINES of LOCAL.BLOCK. I and is within that block. Thus I. I
may be referenced only within LOCAL.BLOCK. I.

The definition of 1.2 follows LOCAL.DEFINES of INNER.BLOCK. I and is within that block. Thus 1.2
is limited to use within INNER.BLOCK. I.

The definition of AA. I is not within any block containing LOCAL.DEFINES. Thus AA. I may be used
anywhere in the statements that follow, even outside of LOCAL.BLOCK.2.

8-53

The previous example was not intended to be a model for microprogrammers. It merely demonstrates the
effect of LOCAL.DEFINES. Good programming practice is to combine all global definitions at the begin
ning of the program and to combine all local definitions after the LOCAL.DEFINES following the BEGIN
statement of the block to which they are localized.

Example

8-54

BEGIN LOCAL.BLOCK
LOCAL.DEFINES
DEFINE
DEFINE.VALUE ...
DECLARE .. .
MACRO .. .
% MIL STATEMENTS FOLLOW

END LOCAL.BLOCK

MACRO DECLARATION

Syntax

MACRO {macro-identifier)-....,.....------------------= L(statemenf./ist) -----#---I
L (c(formal:parameter) I ..) J

Semantics

This declaration assigns a name, the (macro. identifier), to a (statement.list) and declares any (formal.para
meter)s that is used in the{statement.list). Any subsequent reference (see MACRO reference) to {macro.
identifier) will be replaced in-line by the (statement.list> and any (formal.parameters> used in these state
ments will be replaced by the (actual.parameters) used in the MACRO reference.

The (macro.identifier) and the (formal.parameter) list must be contained on one line, and this line must be
terminated by an equal sign (=). The macro statement list must then follow, beginning on the next line,
with one statement per line.

A MACRO declaration must be terminated by a pound sign (#), either at the end of the last statement or
in columns 6 through 72 of the following line. For this reason, a statement within a MACRO declaration
must not contain a pound sign that is not a part of a (character.string).

The (formal.parameter) list must be enclosed in parentheses. A (formal.parameter) must be a (simple.
identifier). If there is more than one (formal.parameter), they must be separated by commas.

RESTRICTIONS

1. A MACRO must not reference itself although it
may reference another MACRO. The maximum
level to which MACROs may be nested is 10.

2. A MACRO may have a maximum of 7 (formal.
parameter)s.

3. A MACRO may have a maximum of 100 statement
lines (records) in its (statement. list). .

4. A MIL program may have a maximum of 100
MACRO declarations.

8-55

PROGRAMMING NOTE

A MACRO is often used as a single statement following
an IF statement. If the MACRO declaration statement
list consists of more than one statement and the state
ment list is not bounded by a BEGIN/END pair, then a
branch will be made around ONLY the first statement
when the IF condition tests false. Whenever an entire
MACRO (statement. list> could conceivably be used as
either the THEN or ELSE part of an IF statement, the
first statement in the (statement.list> should be BEGIN
and the last statement should be END.

Examples

MACRO EXCHANGE (DESC. l, DESC.2) =
BEGIN

.LOOP
LOAD F FROM DESC.l

SWAP.THE.F.FIELD.WITH (DESC.2)
IF FL NEQ 0 THEN GO TO -LOOP

END#

MACRO SWAP.THE.F.FIELD.WITH (FIELD)=
BEGIN

BIAS BY F
READTOX
XCH FIELD F FIELD
SWAPWITHX
COUNT FA UP AND FL DOWN BY CPL
XCH FIELD F FIELD
WRITE FROM X INC FA AND DEC FL

END#

% The above MACROs could be referenced as follows:

IF X Y THEN
EXCHANGE (FIELD.A, FIELD.B)

8-56

MACRO REFERENCE

Syntax

(macro·identifier)---r------------------,....------1 1

L (r .. (actual: parameter) I ..) J
Semantics

A MACRO reference is replaced in-line by the statements in the <statement. list> associated with the
MACRO declaration of< macro.identifier) and the< actual.parameter)s replace the occurrences of (formal.
parameter)s used in these statements (see MACRO declaration).

There must be a one-to-one correspondence between formal and actual parameters, i.e., no< actual.para
meter) may be omitted or left empty (blank), and the first (actual.parameter) replaces the first formal.
parameter declared, etc.

(Actual.parameter)s may be <identifier), (literal)s, < string)s, reserved words, single line MIL statements or
portions of statements. In short, they may be almost anything, with the following exceptions:

Example

RESTRICTIONS

< Actual.parameter)s may not be or contain:

l. A comma, %, or unpaired parenthesis, unless con
tained in a< character. string).

2. An unpaired quotation mark (").

3. A< label), unless preceeded, as a part of the
(actual.parameter), by a non-label token.

MACRO GET.TABLE.DATA (TABLE.ADDRESS,ELEMENT.LENGTH, ELEMENT.IX, REG)=
BEGIN

END#

MOVE ELEMENT.LENGTH TO X
MOVE ELEMENT.IX TO Y
CALL SET.SCRATCH.TO.X.TIMES.Y
MOVE TABLE.ADDRESS TO FA
ADD INTERP.MAIN.MEMORY.BASE TO FA
ADD SCRATCH TO FA
READ ELEMENT.LENGTH BITS TO REG

8-57

% Which could be referenced as:

GET.TABLE.DATA (ADDRESS (TABLE.A), 24, L, X)

Note that TABLE.A is a (label> and therefore could not be used alone as an (actual parameter).

8-58

MAKE.SEGMENT.TABLE.ENTRY

Syntax

MAKE .SEGMENT.TABLE .ENTRY -,.-------------r-------•~l
L VALUE (/itera/)3

Semantics

This instruction causes an entry to be written into the segment name-to-number correspondence table
which is made a part of the final code file. This table, together with the segment dictionaries, can be used
for load time binding.

The format of each entry in the correspondence table is as follows:

2
2
2
2
2
2

CORRESPONDENCE.TABLE.ENTRY
CORR.SEGMENT.NAME
CORR.EXTERNAL.SEGMENT.NUMBER
CORR.INTERNAL.SEGMENT.NUMBER
CORR.VALUE
CORR.INTERNAL.SEGMENT.FLAG
FILLER

BIT (44)
CHARACTER (10),
BIT (8),
BIT (8),
BIT (8),
BIT (1),
BIT (39);

CORR.VALUE is set to zero if the "VALUE (literal)" clause is not present. If present, it must not exceed
255.

CORR.ESTERNAL.SEGMENT.NUMBER is always set to the number of the current external (CODE.
SEGMENT) segment. If no CODE.SEGMENT statement has been compiled at a given point, the value is
zero.

If this statement is used immediately following a SEGMENT statement then the remaining fields are set
as follows:

CORR.SEGMENT.NAME is set to the name of the internal segment with right truncation or
blank fill.
CORR.INTERNAL.SEGMENT.NUMBER is set to the number of the internal segment.
CORR.INTERNAL.SEGMENT.FLAG is set to 1.

If this statement is used immediately following a CODE.SEGMENT statement, or prior to the occurrence
of either any CODE.SEGMENT or SEGMENT statement then the remaining fields are set as follows:

CORR.SEGMENT.NAME is set to the name of the external (CODE.SEGMENT) segment, with right
truncation or blank fill. This field will be blank if neither a CODE.SEGMENT nor a SEGMENT
statement has yet occurred.
CORR.INTERNAL.SEGMENT.NUMBER is set to zero, as is CORR.INTERNAL.SEGMENT.FLAG.

This statement can be used more than once within a segment if more than an 8-bit value is required.

8-59

MICRO

Syntax

MICRO ----1 .. .-(literal)----11•~1

Semantics

This instruction places a 16-bit constant in line. The programmer is responsible for providing any protec
tion that may be needed to prevent a MICRO from executing; therefore, this instruction should be used
with caution.

The (literal> has a decimal range from 0 to 65535.

Examples

MICRO @83AA@
MICRO "22"
MICRO "HI"
MICRO 784

8-60

% THIS IS EQUIVALENT TO "MOVE @AA@ TO L"
% THIS IS EQUIVALENT TO @F2F2@
% "HI"= @C8C9@
% = @031 O@ = "CLEAR X"

M.MEMORY.BOUNDARY

(Available on B 1720 systems only)

Syntax

M.MEMORY.BOUNDARY -r- MINIMUM -.----..i
L._.... MAXIMUM ..J · 1

Semantics

This instruction sets the M.MEMORY boundary fields within the IPB (Interpreter Parameter Block) of a
MIL program to the current code address.

MINIMUM specifies to the operating system the number of micro-instructions that must be loaded into
M-Memory before the micro-program may be given control. If, however, this value exceeds the amount
of M-Memory physically present on a given system, the value will be ignored (considered= 0). The state-

. ment is generally used to ensure that the most used microcode will execute from control memory, where
it executes faster than if it is executed from main memory.

MAXIMUM specifies the maximum M-Memory utilization of a micro-program. No code emitted after the
occurrence of this statement will ever be loaded into, and hence executed from, M-Memory. It is generally
used to keep non-executable data, such as T ABLEs, from being loaded into control memory, thus being
made inaccessible in main memory.

Thus at all times the portion of microcode in M·Memory will be, at the discretion of the operating system,
from the beginning of a given microprogram until some point between the appearance of the M.MEMORY.
BOUNDARY MINIMUM and the M.MEMORY.BOUNDARY MAXIMUM statements. The fields are
ignored for stand-alone microprograms.

8-61

MONITOR

Syntax

MONITOR --... .,•{literal)---•• ... ,

Semantics

This instruction emits the monitor micro-operator with the (literal> occurrence identifier. (See also
Appendix B: MONITOR.)

The (literal> has a decimal range from 0 to 255.

Example

MONITORS

8-62

MOVE

Syntax

MOVE ----~(source.regi.ster)

(scratchpad· word) " . . ~ .. -
-- TO~ (source· sink. register)~ •

L. (scratchpad· word) __,J
1

Semantics

..
ADDRESS (lab el· reference)

•.

ssion)

NT

(arithmetic expre

SEGMENT.GOU

HEX.SEOUENC

CODE.SEGMEN

E.NUMBER

T.NUMBER

-
r-+ Tarithmetic expression~

~-
. ~ '

-=

This instruction copies the specified information into a <source.sink. register) or scratch pad word.

ADDRESS ((label.reference)) is a literal value equal to the code address of the label reference.

SEGMENT.COUNT is a literal value equal to the number of times a Segment statement has occurred.

HEX.SEQUENCE.NUMBER is a literal value equal to the leftmost six digits of the current source state
ment sequence number.

CODE.SEGMENT.NUMBER is a literal value equal to the current CODE.SEGMENT number.

The following are restrictions on an S-Memory Processor.

a. If ADDRESS or< arith.expression> has a value greater than 255, and< source.sink.register) is
CP, the move wll not take place.

b. If (source.register) is U, (source. sink.register) may not be TAS, M, or A.

c. If (source. register) is A, CP, M, or DATA, (source.sink.register) may not be a 4-bit register.

d. If <source.register) is SUM or DIFF, (source.sink.register) may not be CMND or DATA.

The following are restrictions on both an S-Memory and M-Memory Processor.

a. When (source.register) is DATA, (source.sink.register) may not be DATA or CMND.

b. When (source.sink.register) is M, the operation is changed to a BIT-OR which modifies the
next micro-operation; it does not modify the instructions stored in memory. In tape mode
no BIT-OR takes place. A literal value generated from ADDRESS, (arith. expression), or
SEGMENT.COUNT may not be moved to the M register.

8-63

Examples

MOVEXTOY
MOVE 48 TO SIA
MOVE ADDRESS(+ GLOP) TOT
MOVE 10 TO TA
MOVE Sl2A TO SIOB
MOVE ADDRESS (BLAH) +16 * 8 - I TO FA
MOVE SEGMENT.COUNT TOT
MOVE (81+(3*10)-I)/2 TOY

8-64

NOP

Syntax

NOP

Semantics

This NO OPERATION instruction does nothing except use one clock cycle and take up one word of
control or main memory.

8-65

NORMALIZE

Syntax

NORMALIZE --------11• I

Semantics

This instruction shifts the contents of the X register left while counting the FL register down until
either the most-significant bit of X (determined by CPL) equals 1 or FL equals 0. If the most-significant
bit of Xis already 1, of if FL is already 0, then no shift takes place .

. 8-66

OR

Syntax

OR'----1•-. (source.sink.register)------•~ WI TH ~(source.register)

L..(literal) J

Semantics

This instruction is used to logically OR the contents of the 4-bit (source.sink.register) with the value of
the (literal) or the contents of a 4-bit (source.register). The result is placed in (source.sink.register>;
the contents of (source.register) remain unchanged. (See also: AND and EOR.)

The (register)s may be any of the following:

(source.sink.register>

CA CB *CC *CD
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on Bl 720 only)

(source. register)

(source.sink.register)
BICN
FLCN
INCN (available on Bl 720 only)
PERR (available on B 1720 only)
XYCN
XYST

*CC and CD represent processor interrupts and flags.

The (literal) has a decimal range from 0 to 15.

TABLE 8-3 OR Truth Table

Source. Sink .Register
(literal)

(Source.Sink.Register)
(Source.Register)

0 OR 0 Yields 0
·----1

1 OR 0 Yields 1

0 OR 1 Yields 1

1 OR 1 Yields 1

8-67

Example

OR TB WITH 3

TA TB TC TD TE TF
-

T 0000 0101 1111 0011 0001 0010 before (05F312)

-- 0011 -- -- -- -- literal (3)

T 0000 0111 1111 0011 0001 0010 after (07F312)

8-68

OVERLAY

(Available on B 1720 systems only)

Syntax

OVERLAY ~~~~~~-~1

Semantics

This instruction overlays control memory from main memory. Before an overlay is initiated the L register
must contain the first control memory overlay address, the FA register must contain the beginning main
memory address, and the FL register must contain the length in bits to be overlayed. Overlay will continue
until the FL register equals 0 or the A register is out of bounds. If the A register goes out of bounds, FA
contains the address of the next micro-instruction in main memory; FL contains the length in bits of
unfetched data.

The action of the hardware executing this instruction is as follows:

.LOOP

MOVE A TOTAS
MOVE LTOA

READ 16 BITS TO L INC FA AND DEC FL
MOVE L TO CONTROL MEMORY ADDRESSED BY A
INCA
IF FL NEQ 0 AND A NOT OUT OF BOUNDS THEN GO TO -LOOP

8-69

PAGE

Syntax

PAGE

Semantics

This instruction causes the source listing to skip to the top of a new page at compile time. Code is not
generated.

8-70

POINT

Syntax

POINT FA TO -----t1•~ (arithmetic· expression)----• I

Semantics

This pseudo-operation causes the compiler to generate an instruction that adjusts the value of FA to the
value of the (arithmetic. expression).

Prior to the execution of this instruction, the compiler must have been given some knowledge of the
contents of FA. This can be done via:

MOVE (arithmetic. expression) TO FA

or

FA.POINTS TO (arithmetic. expression)

FA will be adjusted by up to 144 bits as a result of this command. (A warning message will result if the
adjustment is greater than 72 bits). (See also: READ and WRITE.)

Example

DECLARE
01 STRUCTURE,

02 DAT A.A BIT(1 Q),
02 DATA.B CHARACTER(20),
02 DATA.C FIXED;

FA.POINTS TO DATA.A
READ DATA.LENGTH (DATA.A) BITS TO X POINT FA TO DATA.B
POINT FA TO STRUCTURE
MOVE DATA.C TO FA
WRITE DATA.LENGTH (DATA.C) BITS FROM Y POINT FA TO DATA.B

8-71

PROGRAM.LEVEL

Syntax

.. I

Semantics

This instruction places forty characters of information into the PROGRAM.LEVEL location of the IPB
(Interpreter Parameter Block).

If the TITLE statement is unused, the title headings of the program listing will reflect the PROGRAM.
LEVEL information.

Example

PROGRAM.LEVEL "THIS IS A SUBHEADING" CAT TODAYS.TIME

8-72

READ

Syntax

READ

Semantics

(literal)~ BIT

4s1TS

INCE FA
FL

FA AND DEC FL

FL AND DEC FA

DEC FA

FL

REVERSE

FA AND FL ----11...i

FL AND FA ----11...i

FA AND INC FL

FL AND INC FA

FA AND DEC FL

FL AND DEC FA

POINT FA TO (arithmetic.expression)-------------~

An M-Memory READ MSML TO X instruction reads to the X register the 16 bits in M-Memory pointed to
by the contents of the L register. The contents of L must be modulo 16. This facility is not available on
S-Memory Processors.

An S-Memory READ instruction reads from 0 to 24 bits of information from S-Memory into one of the
allowable sink (destination) registers: X, Y, T, or L.

If the (literal) is zero or is not specified, the field length is given by the contents of CPL. The read data
will be right justified in the selected sink register. If the field length is zero then X, Y, T, or L will be set
to zero.

Normally, on an S-Memory read, the contents of the FA register point to the first bit of the field to be
read. If the REVERSE option is used, the contents of the FA register point to the last bit+ 1 of the field
to be read. The sink register receives the contents of this field as if it has been read in a forward direction.

8-73

INC/DEC adjusts FA/FL by the field length after the operation but in the same micro-instruction.

POINT FA adjusts FA by up to 144 +field length bits after the operation. (A warning message will be
issued if the adjustment is greater than 72 +field length bits). The POINT FA option can be used only
if (literal) BIT(S) is specified and is greater than 0. (See also: FA.POINTS and POINT.)

Examples

READ MSML TO X
READ 24 BITS TO X
READ TOY INC FA
READ 2 BITS REVERSE TOT DEC FA AND FL
READ REVERSE TO L INC FL
READ 10 BITS TOT POINT FA TO 100

8-74

REDUNDANT.CODE

Syntax

REDUNDANT.CODE -r- STAR~ •I
l._. STOP

Semantics

This REDUNDANT.CODE START pseudo-instruction causes the compiler to emit each micro twice until
the occurrence of the REDUNDANT.CODE STOP pseudo-instruction. It can be used to help ensure the
correct loading of a program or data from cassette.

8-75

RESERVE.SPACE

Syntax

RESERVE.SPACE FOR ---. ... •(arithmetic· expression) --.......... • BITS -----... ..ii

Semantics

This instruction causes the compiler to emit a sufficient number of NOP's (@0000@) to allow for the
number of bits specified by (arithmetic. expression).

The actual amount of space reserved will always be MOD 16; therefore up to 15 bits more than that
specified by the< arithmetic.expression) may be reserved.

Example

DECLARE IO.DESCRIPTOR BIT(l88);

DESC.LOCN
RESERVE.SPACE FOR DATA.LENGTH(IO.DESCRIPTOR) BITS

8-76

RESET

Syntax

RESET _J .. (register) ((literal))

l. NOT lCAND L J (reglster)((lite74/)) lJ
NOT

Semantics

This instruction RESETs (sets to zero) the bit spedfied by the (literal> into the register. By using the
options, more than one bit in any one register can be reset with the same instruction IF ALL BITS ARE
IN THE SAME 4-BIT ~EGISTER. (See also: COMPLEMENT and SET.)

The register may be any 4-bit source and sink (destination) register below:

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B 1 720 only)

It may also be the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield.

The (literal) has a decimal range from 0 to 3 for a 4-bit register; from 0 to 15 for the FL register; and
from 0 to 23 for the FB, L, and T registers.

Example

T

T

0

TA

1111

0110

j~- -j~

TB

1010

3 4

T (0)4 ~TA(3)

TC

1100

1010

7 8

RESET T(O) AND T A(3)

TD TE TF

1110 1001 1001 before (FACE99)

1100 1001 1001 after (6ACE99)

11 15 16 17 18 23

--1

8-77

ROTATE

Syntax

ROTATE

Semantics

T [LEFT BY --r--Wteral) BITS

L..cPL ---~
RIGHT BY(literal) BITS ---~

TO (register)

X r LEFT ~BY ----.. (literal) BITS

Y RIGHT.....T

xv

See SHIFT/ROTATE T and SHIFT/ROTATE X/Y/XY

8-78

SEGMENT

Syntax

SEGMENT --r---- NEWSEGMENT

L.... (label} ,J L: AT --,--ADDRESS((/abel)) j
L.. (literal) .. f

NOTE: The (literal) must be MOD 16.

Semantics

See: Section 5 (SEGMENTATION).

8-79

SET

Syntax

SET l 3
NOT C

(register) TO (literal)

(registet) ((:Uteraf))

1 ~,.....--A_N_D----------------------------.
I~

l _J
.. (register)((literal)) ____ : ...

NOT

Semantics

This instruction SETs the (register) to the value of the (literal) or SETs (bit=one) the bit specified by the
(literal) into the (register). By using the options more than one bit in any one register can be set with the
same instruction IF ALL BITS ARE IN THE SAME 4-BIT REGISTER. (See also: COMPLEMENT and
RESET.)

SET (register) TO (literal): The (register) may by any 4-bit source· and sink (destination) register listed
below.

CA CB CC CD (CC and CD represent processor interrupts and flags)
FT FU
FLC FLD FLE FLF
LA LB LC LD LE LF
TA TB TC TD TE TF
TOPM (available on B 1720 systems only)

It may also be the CPU register. If CPU is used, the (literal) has a decimal range from 0 to 3; otherwise
the (literal) has a range from 0 to 15.

SET (register> ((literal)): The (register) may be any 4-bit source and sink register listed above. It may 1be
the FL, FB, L, or T register: all bits must then be in the same 4-bit subfield. The (literal) has a decimal
range from 0 to 3 for a 4-bit register; from 0 to 15 for the FL register; and from 0 to 23 for the FB, L, and
T registers.

Examples

SET TA TO 3

TA TB TC TD TE TF
r--

T 1111 0100 0101 0110 0111 1000 before (F45678)

T 0011 0100 0101 0110 0111 1000 after (345678)

8-80

T

T

TA

0001

1001

TB TC

0010 0000

0010 0011
_...

TC 2 --:JI ()

SET TC(2) AND T(l 1)

TD TE TF

0100 0101 0110 before (120456)

0100 0101 0110 after (923456)

• T 11 ()

8-81

SHIFT/ROTATE T

Syntax

SHI FT T I LEFT BY ~(CUtPeLraz> BITS j I TO
L... ~ (register)_j

RIGHT BY{literal) BITS ----------.----....-i

ROTATE T L LEFT BY -r---(literal) BITS

l.. CPL ----.i
RIGHT BY(literal) BITS ---11~

TO (register)

Semantics

This instruction SHIFTs or ROT ATEs the contents of the T register and places the result either in T or in
some other source and sink (destination) register. If the result is not placed in the T register, T remains
unchanged. SHIFT will zero fill.

The< literal> has a decimal range from 0 to 24.

SHIFT/ROTATE T LEFT: If 0 or CPL is used, a shift or rotation by the value of the CPL register will
occur. If CPL is greater than 24, 24 is used.

TO (register>: places the shifted or rotated results in the specified source and sink register; the T register
remains unchanged. If the TO register option is not used, the result is placed in the T register. The register
may be any source and sink register except DAT A or MBR (refer to: Registers and Scratchpad). If the
<register> is M, the result of the SHIFT/ROTATE operation is BIT-ORed into the M register and modifies
the next micro-instruction.

ROTATE T RIGHT: Because the hardware can only rotate the T register to the left, the compiler converts
this instruction to the proper left rotate to accomplish the same result as the rotate right.

SHIFT T RIGHT: Because the hardware can only shift the T register left, the compiler will generate an
EXTRACT to accomplish the same result. Therefore, the T register may be shifted right only to the X!,
Y, Tor L register. If the TO ... option is not used, the result is placed in the T register; otherwise, the T
register remains unchanged.

8-82

PROGRAMMING NOTE

It is recommended that the EXTRACT instruction
be used rather than SHIFT T RIGHT.

Examples

T

T

T

T

TA

0110

0011

TA

0110

0011

TB TC

0011~ 1000

1000 0101

TB TC

0011 1000

1000 0101

ROTATE T LEFT BY4 BITS

TD TE TF

0101 1111 0000 before (6385FO)

1111 0000 0110 after (385F06)

SHIFT T LEFT BY 4 BITS

TD TE TF

0101 1111 0000 before (6385FO)

1111 0000 0000 after (385FOO)

8-83

SHIFT /ROT A TE X/Y /YX

Syntax

~SHIFT ~ X :r= LEFT ~ BY ~(literal) BITS

l__. ROTATE Y RIGHT _..J

XY

.. ,

Semantics

This instruction shifts or rotates the X, Y, or XY register (X concatenated with Y) a specified number of
bits to the right or left. Zero fill will occur with the SHIFT instruction.

The (literal) has a decimal range from 0 to 23 for 1the X and Y register; and from 0 to 47 for the XY
register.

Example

NOTE

The (literal) has a maximum value of 1 on the B 1710
systems when the concatenated XY register is specified.

SHIFT X LEFT BY 5 BITS
ROTATE XY RIGHT BY 40 BITS

8-84

SKIP

Syntax

SKIP WHEN

Semantics

(ref(ister) f A.LL-r---_J ____

1
....... (literal)

L... CLEAR

ANY ---------:~
EOL -------.. _.,.._

(condition)

FALSE

This instruction causes one micro-instruction to be skipped if the designated (condition) is satisfied. (See
also: IF.)

SKIP WHEN (registers): The (literal) contains a 4-bit mask and may be comprised of decimal, binary, or
hexadecimal entries.

ALL is considered to be true only if all the bits in the (register) corresponding to one bits in the mask are
true. That is, only the designated bit positions are tested to see if they contain ones. ANY is true if at
least one bit in the (register) corresponding to a one bit in mask is true. EQL is true if all the (register)
bits equal the corresponding bits in the mask. That is, the (register) must be exactly like the mask.

ALL CLEAR causes the masked bits of the (register) to be set to zeros after testing the ALL condition.
Only the bits tested are cleared, and the clearing action always occurs whether the SKIP is taken or not.
If ALL is used with a mask of 0000, the result is always false.

FALSE causes a skip when the whole (condition) is false.

SKIP WHEN condition: The (condition) may be any condition available from the condition registers.
(See: IF.)

The register may be declared as follows:

FU TA LA CA BICN
FT TB LB CB FLCN
FLC TC LC cc INCN
FLD TD LD CD XYCN
FLE TE LE XYST
FLF TF LF

8-85

8-86

PROGRAM NOTE

The use of the IF ... THEN ... ELSE instruction is recom
mended rather than the SKIP instruction. The SKIP is
limited to one, 4-bit grouping mask in one register and
may only skip one micro--instruction. The IF is capable
of testing any combination of bits in many registers or
skipping blocks of micro·-instructions and will generat.e
a SKIP WHEN hardware micro-instruction whenever
possible.

S.MEMORY.LOAD

Syntax

S.MEMORY.LOAD --....... - START----11..,.,..I

Semantics

This instruction specifies the location for beginning statements in S.MEMORY. Code is not generated, but
the code address of the last statement is placed in the IPB (Interpreter Parameter Block) at RESERVED.
M.MEMORY.

This statement is used to specify the size of all code emitted previous to its occurrence into IPB.
RESERVED.M.MEMORY in the Interpreter Parameter Block of the final code file. IPB.RESERVED.M.
MEMORY can then be used by a load time binder to load previously-generated code into control memory
and to make allowances for its absence in main memory.

8-87

STORE

Syntax

STORE FINTO --........... (double·scratchpad·word)----.t

Semantics

This instruction MOVEs the Field (F) register into any double scratch pad word (SO ... S 15); the F
register remains unchanged.

Example

STORE FINTO S6

8-88

NOTE

The compiler generates two MOVE instructions on
B 1710 systems.

SUB.TITLE

Syntax

1'4----- CAT ------

SUB. TITLE ----------~ {character-string) --,.-._---1~

Semantics

TODA VS.DATE

TODAYS.TIME

This instruction modifies program title information.

If (character.string) exceeds 72 characters, right-hand truncation will occur.

$ HEADINGS and $ PAGE.NUMBERS must be specified if subtitles are to be listed on page headings.

Example

SUB. TITLE TODA VS.DATE CAT "PROB.A" CAT TODAYS. TIME

8-89

SUBTRACTSCRATCHPAD

Syntax

SUBTRACT --1 .. -.(scratchpad.word) ___....FROM FA ----11 .. .-.1

Semantics

This instruction subtracts the left half of any scratchpad word (SOA ... Sl SA) from the Field Address
(FA) register. The result is placed in FA; the cont1ents of < scratchpad. word) remain unchanged. (See
also: ADD SCRATCHPAD.)

Example

SUBTRACT S3A FROM FA

8-90

SWAP

Syntax

SWAP (literal) BITS

L REVERSE

Semantics

This instruction swaps the specified number of bits between main memory and the specified register.

The FA (Field Address) register must have been previously set to the proper main memory address.

The (literal> has a decimal range from 0 to 24. If the value of (literal> is zero, the contents of the CPL
register are used. If the CPL register is also 0, the register is cleared to all zeros. If less than 24 bits are
swapped, the leading bits of the register are set to zero.

Normally the contents of the FA register point to the first bit of the field to be swapped. If the REVERSE
option is used, the contents of FA point to the last bit+ 1 of the main memory field involved. The
specified register (L, T, X or Y) receives the contents of this field as if it has been read in a forward
direction.

For the B 1710 ($Subset specified) the compiler emits the following code:

MOVE TTOTAS
READ (literal> BITS (REVERSE) TO T
WRITE (literal> BITS (REVERSE) FROM (register)
MOVE T TO (register)
MOVETASTOT

PROGRAMMING NOTE

Incrementing or decrementing of the FA or FL registers
is not allowed with the SW AP instruction.

8-91

TABLE

Syntax

TABLE (label) --... --~ BEGIN ~haract~ END

L:~::x.stri:~~·=:J ---

Semantics

This instruction creates in-line character strings.

Any number of strings are allowed per line, but a string cannot cross a line boundary. The(hex.string)must
be enclosed within @ signs.

The BEGIN/END pair must surround all strings in the TABLE. The characters are grouped two per
address, i.e., 16 bits.

The (label) of the table must be unique; its use references the first 16 bits of the table.

Example

TABLE REF
BEGIN

"AB"
@ABC@
"D"
"45"

END
MOVE ADDRESS (REF) TO Y

8-92

Code generated:

ClC2
ClC2
C3C4
F4F5

The address of the table (REF) will ·
be loaded into the Y register

TITLE

Syntax

CAT 4

TITLE (character.string) ·I J TODAYS.DATE

'TODAYS·TIME

Semantics

This instruction modifies program title information.

If (character.string) exceeds 72 characters, right-hand truncation will occur.

$ HEADINGS and $ PAGE.NUMBERS must be specified if titles are required on following pages.

Example

TITLE TODAYS.DATE CAT "PATCHES"

8-93

TRANSFER.CONTROL

Syntax

TRANSFER.CONTROL _______ ..,.._,

Semantics

This instruction generates the Transfer.Control micro-instruction. (See Appendix B: Transfer.Control}.
On the B 1710 series it acts as a NOP.

When it is necessary to transfer control from one firmware process to another, the A, MBR, and TOPM
registers may all need to be changed. Changing any one of these registers will cause a transfer of control
to some micro other than the next micro in line. Consequently some means of changing all three of these
registers simultaneously is required; this will be accomplished with the Transfer.Control instruction.

The action of the B 1720 hardware is as follows:

MOVE LTOMBR
MOVE TF TO TOPM
MOVE T(6) THRU T(19) TO A

Example

8-94

MOVE ADDRESS.OF.GISMO.IN.S.MEMORY TO L
MOVE GISMO.EVENT.ADDRESS TOT
MOVE 0 TO TF
TRANSFER.CONTROL % OFF WE GO ...

WRITE

Syntax

WRITE

Semantics

MSML FROM X

<litera1> ----c--s1T
((literal)} _J BITS

INC 1:~
FA AND DEC FL

FL AND DEC FA

REVERSE

DEC FA---------------------~--~-_...

FL -------a...t

FA AND FL ---ai

FLANDFA __,

FA AND INC FL

FL AND INC FA

FA AND DEC FL

FL AND DEC FA

POINT FA TO(arithmetic.expression} ---------------------1-.i

An M-Memory WRITE (MSML TO X) instruction writes from the X register the 16 bits in M-Memory
pointed to by the contents of the L register. The contents of L must be modulo 16. This facility is not
available on S-Memory Processors.

An S-Memory WRITE instruction writes from 0 to 24 bits of information into S-Memory from one of the
allowable source registers: X, Y, T, or L.

The amount of data written (field length) is determined by the <literal)/((literal)) BIT(S) option. If this
is equal to 0 or is empty, then the field length is given by the contents of CPL is right justified in the
selected source register. If the field length is zero then nothing is written.

8-95

Normally the contents of the FA register point to the first bit of the field to be written. If the REVERSE
option is used, the contents of the FA register po:lnt to the last bit + 1 of the field to be written to memory.
Memory contains the rightmost contents of the source register as if it had been written in a forward din~c
tion.

INC/DEC adjusts FA/FL by the field length after the operation but in the same micro-instruction.

POINT FA adjusts FA by up to 144 + field length bits after the operation. (A warning message will be
issued if the adjustment is greater than 72 +field length bits). This option can be used only if (literal)/
((literal)) BIT(S) is specified and is greater than 0. (See also: FA.POINTS and POINT.)

The unparenthesized (literal) has a decimal range from 0 to 24. ((Literal)) has a decimal range from 0 to
26: a value of 25 will cause 24 bits to be written with correct parity; a value of 26 will cause 24 bits to 1be
written with incorrect parity.

Examples

WRITE MSML FROM X
WRITE 24 BITS FROM X
WRITE FROM Y INC FA
WRITE 2 BITS REVERSE FROM T DEC FA AND DEC FL
WRITE REVERSE FROM L DEC FL
WRITE 10 BITS FROM T POINT FA TO 25

8-96

WRITE.STRING

Syntax

WRITE.STRING ----11 .. •(string) -.,..---------,r-11- FROM~ ~XL

L REVERSE _J t

INC

DEC

Semantics

1:~---.....
FA AND DEC FL

FL AND DEC FA

-....--11• FA---------------------....,

FL -------11....i

FA AND FL

FL AND FA

FA AND INC FL

FL AND INC FA

FA AND DEC FL

FL AND DEC FA

This instruction generates the necessary in-line (literal)s for a (string), with moves to the indicated register.
It also generates the WRITE commands to write the (string) into main memory, beginning at the address
in the FA register. If (literal) exceeds 24 bits, then an INC or DEC on FA is required.

The length of the (string) is limited to the remainder of the source card image. It may be any of the data
types shown in table 8-4.

Data
~

Character
Hex
Octal
Quart al
Unary

Start-Stop
Symbol

@

@(3)
@(2)
@(l)

Table 8-4. String Definitions

Length of
Each Unit

8 bits
4 bits
3 bits
2 bits
1 bit

Example

"APC l 28JKL"
@124ADF@
@(3)123567@
@(2)123321@
@(1) 11 00 11 0 1@

8-97

Examples

WRITE.STRING "APC" REVERSE FROM X
WRITE.STRING "THIS PUTS A LITERAL INTO MEMORY" FROM T INC FA

8-98

XCH

Syntax

, XCH -----.. ~ (double~scratchpad-word.J) ____... F __ __..,..,.. (double-scratchpad-word.2) -----11 (

Semantics

This instruction moves the Field (F) register to double scratchpad word.2 (SO ... S 15); double scratchpad
word.I (SO ... SIS) is then moved to the F register. The two words may be the same, causing data to be
swapped between F and a double scratchpad word.

Example

XCH SO F SO % equivalent to:
%

MOVE FA TO SOA
MOVE FL TO SOB

%
%
%

and simultaneously: MOVE SOA to FA
MOVE SOB TO FL

8-99

9. PROGRAMMING TECHNIQUES

VIRTUAL-LANGUAGE DEFINITIONS

A set of virtual-instructions for the virtual machine must first be defined as each being a unique string of
bits. This definition may be chosen according to any relevant criteria. For example, COBOL verbs may
be encoded according to their frequency of usage, the higher frequency verbs being encoded in three bits
with one escape code that specifies the next eight bits as an extended code string. Another approach
might be to accept directly the source language as in a time-sharing, "Line~at-a-time," interactive mode.
After the S-instructions and their operand fields have been defined, any standard location or technique
should be selected. For example, the base values of S-instructions and S-data might be ip S4A and SSA
of the scratch pad; or all routines are to be referenced with CALL and end with an EXIT instruction to
facilitate subroutine usage. The microprogrammer is now ready to begin creating the microroutines needed
to perform each of the events in the S-language.

SOURCE IMAGE FORMAT

The ~ompiler accepts card images consisting of one symbolic micro-instruction per card. The source pro
gram must reflect the following format:

Column

1-5

1-72

6-72

73-80

81-90

Usage

Reserved for (label) declarations which, if used, must begin somewhere within
this field. Both (point.label)s and (unique.label)s are allowed, with a limit of 63
characters and no embedded blanks. A blank is the separator between the label
and the beginning of the micro-instruction. (Unique.labe/)s must be unique with-
in the first 23 characters; the remainder is considered documentation. (Point.label)s
must be unique within the first 25 characters.

A percent sign (%) anywhere within this field indicates that the remainder of
the card image is to be ignored.

MIL statements may appear anywhere within this field. At least one blank must
be used between words except in those cases where a (special.character) (e.g.,
a parenthesis or relational operator) is used, in which case blanks are
optional.

Reserved for sequence numbers.

Reserved for patch information.

Source code maintenance as well as other compiler options may be specified by the use of either a $ (dollar
sign) or & (ampersand) in column 1. (See Appendix A: MIL Compiler Operation.)

PROGRAM EXAMPLE

The following pages provide an example of a MIL program.

9-1

\0
I

N

HCDEL

NL BLOCK CODE
NAME

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 c
0
0
0
0
v
0
0
0
0
0
0
0
0
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0 9ROO
0 0300
0 2ae4
0 %0C
0 Ct.CC
0 ., 700
0 1800
0

3UR~OUGHS 81700 MIL COMPILER, HARK 6.0CJ6/06/76 12:25)

~E~ORY
ADDRESS

(000000)
(000000)
(000100)
(000108]
(00010CJ
iOOOlOCJ

d [00000)
~ (00010]
~ (C0020l
~ {00030]
~ (00040]
~ (00050]
~ (000601

?%%%%%%4~%t4%%%Zt%%t%~%%%%Y.%%t:
% £XA~Pl£ QF ~ ~IL PROGRAM z:
% THIS PROGRAM D£~0NS~RAT[S SOME DESIRAdlE.CHARACTERiSTICS OF A z:
% ~IL fRCGRAM. THE PROGRAM "INTERPRETS" ONE BIT OP-CODE I~STRUCTIONS %:
% FRCM A FI£LD IN MEMORY AND PERFCRMS THE INDICATED OPERATION. SINCE %:
~ THERE ARE O~LY T~C VALUES QF A CNf AIT OP•COQE, THERE ARE ONLY T~O %:
% I~STRUCT!ONS TC CECOOE. CIN THIS CASE "ADD" ANO "E~O.OF.Joun AR£ %:
i THE ONLY INSTRUCT!CNS.> %:
!%%%%%%%X%i.%%X%%!

i :
% :

%%%i.%%4'.~%%%%7.%%%%%%%Z~4%?%%4%%%%%%%%%%%%%%%%%%%%ti.%%%%
%%%%%%%%%% GLOaAL DECLARES %%%%%%%%%%
%%4%%%~%%% %%XX%%%%%%
%%%%ti.~t%%%%%%%%%%%%%1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DECLARE •
01 SYSTEM.INFOR~ATION 8ITC1668),

02 DEVICE.STATUS.TABLE 3ITC256),
02 AVAIL~8LE.SYSTEM.~EMORY 9ITC8),
02 AVAILA8LE.CONTRCL.HEMORY B!TC4),
02 OPTIONS.TABLE BITC48),

05 S~IrCH£$ Hli(8),
03 FILLER BITC40),

02 FILLER aITC1352);

%%%%4%Xt%%%%%%%X%%%~4%%%%%%%%%%%%%%%%%%%%%t%%%%%%%%%%%%
%7.%%%~7.%%t GLOBAL DEFI~ES %%%%%%%%%%
%%%t%%Z~%% %%%%%%%%%%
%%%%%%~%X%%%%%%%%t%X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DEFINE ADDRl = SO#
CEF!~E ADDR2 Sl#
DEFINE AOCR3 = S2#
DEFINE NEXT.INSTRUCTION.POINTER = S4A#

%%%%%%%%%%%%%%%%%%~%%
BEGI~~ING.OF.PRCGRA~l
%l%4%%%%%%%4%%Z%%%%%%
%
t
'%
%
%
%

THIS PART OF TH€ INTERPRETER ARBITRARILY SETS THE STARTING ADDRESS OF
THE NEXT INSTRUCTION ALONG WITH THE PROGRAM BASE A~D LIMIT REGISTERS.
CTHfS INFORMATION WOULD NORMALLY BE FOUND BY SOME OTHER METHOD.>

MOVE ~300~ TO NEXT.INSTRUCTION.POINTER

MOVE d60v~ TO BR
MOVE ~1800d TO l~

SEQUENCE

OC000200
00000300
00000400
ocooosoo
00000600
OO~CX700
00·JC.J800
00000900
00001000
OCCCllOO
OG001200
00001300
OC001400 ococrsoo
00001600
00001700
00001800
00001900
00002000
ccoo2100
00002200
00002300
00002400
00002~00
OC002600
00002700
00002800
OCOC2900
00003000
00003100
00003200
00003300
00•)03400
CCOG3500
00003000
00003700
00003800
00003900
OC004000
00004100
OC004200
00004300
0Cu04400
00004500
OC004600
OC004700
00004800
OC004900
00005000

00005100

OCOC5200

00005300

G
G

G

G

PATCH
INFO

\0
I

'.;J

0
0
0
0
1 F TCH
1 F TCH EC18 ~ (00C70J
1 F TCH 2~A4 ~ (COG80J
1 F TCH 7101 ~ (C0090l
1 F TCH 2884 ~ [COCAOJ
1 F TCH lOAS 2 (00C20J
1 f TCH CCOO ; CGOOCOl
1 F TCH COOl ~ COOODOJ
1 F TCH COlS • COOOEOJ
1 F TCH
0
0
0
0
0
0
c
0
0
l ACD
1 ACO 3182 ~ (QOOFOJ
1 ADO e~90 ~ (00100]
1 ADO £013 ~ [C0110l
1 ACD 0050 d COC120l
1 ADD
l ADO EOlF ~ (001301
1 ACD llAO ~ CC0140l
1 ADD C701 ~ (001501
1 ADD EOlC ~ (001601
l ACO 0!12 ~ (0C170J
i ADJ 0033 ~ [00180)
1 AUD G013 ~ (00!90J
1 A8Q 10E2 ~ COOlAO]
1 ADO 0064 a [00180]
i ADD 60A8 ~ (COlCOJ
1 ADD C003 ~ [00100]
2 ADO
' ADD 300f ~ COOlEOl
2 ADD 1002 ~ COOlfOJ
2 ADD 1004 ~ [002001
2 ACD
1 ADO 7FAO d (00210)
1 A~O 0720 ~ (00220]
1 ADD DOll ; [00230]
l ACD
0
0
0
0
c
1 N~.OF.JOB
1 ~D.OF.JOB COOl ~ CC0240l
1 NO.OF.JOB
0
0
0
0
0
0
0

unu
FETCH%
%%%%U
%

.LOOP

THIS ROUTINE ADJUSTS THE 24 BIT FUNCTION BOX TO 24 BIT
BI~ARY; READS IN A 1 SIT OP CODE; AND PERFORMS A
CALC~LATED BRANCH TO THE INDIC~TED EXECUTION ROUTINE.

BEGIN FETCH
MOVE 24 TO CP
MCVE NEXT.INSTRUCTION.POINTER TO FA
REA9 1 BIT TO X INC FA %GET OP CODE.
MOVE FA TG ~EXT.INSTRUCTION.POINTER
MCVE X TO M
JlJ~P FORWARD

GO TO AGO %OP O.
GO TO END.OF~J09 ZOP 1.

END FETCH

THIS EXECUTION ROUTI~E PERFOP~S ~N ABSOLUTE• 3 ADDRESS.
BI~ARY OR DcC!MAL ADO. OVERLAPPING FIELDS ARE PERMITTED.
LEFT TRUNCATIGN OR LEFT ZERO FILL WILL OCCUR IN THE
RESULT FIELC IF IT IS RESPECTIVELY LONGER OR SHORTER
THA~ IS REQUIRED TD CONTAIN THE RESULTANT SU~. ALL 3
FIELDS MUST 3E or THE SAME TYPECBINARY. 4-BIT DECIMAL
OR 8-BIT DECIMAL> OR THE RESULT IS NOT OE~INED.

BEGIN AOD
~CV£ 2 TO fT %INDICATES A 3 ADDRESS INSTRUCTION
~CVE 144 TO FA %LENGTH OF 3 ADDRESSES
CALL LOAD.ADDRESSES
LOAD f fRCM ADORl

CALL GET.DATA
MGVE Y TO X
XCH AOOR2 F ADORl
CALL GET.DATA
XCH AOOR3 t ADOR2
8I4S BY F TEST

GO TO FETCH
MOVE SUM TC T
CARRY SUH
IF FU E~l 8 THEN

BEGIN

om

HOVE ~F 2 TO TA
HOVE TA TO TC
t-!OVE T4 TO TE

%GET ADDEND.

%GET AUGEND.

%END OF RESULT FIELD ANO INSTRUCTION.

%SUPPLY EBCDIC NUMERIC ZONES If 8•BIT

WRITE REVERSE FROM T DEC FA ANO FL
XCH ADDRl F AOOR3

XWRITE SUM.

GD TC -LOOP
E~D ADD

BEGIN END.OF.JOB
HALT

END ENO.CF.Joa

THIS GENERAL ROUTINE LOADS l~ 2 OR 3 ADDRESSES TO
SCRATCHPAD A~D UPDATES THE ~EXT.INSTRUCT!ON.POI~TER.
ALL ADDRESSES AKE IN THE FOLLOWING FORMAT;

A> A 24 BIT• BASE RELAT!VE• S-MEMORY ADDRESS
WHICH IS CONVERTED TO AN ABSOULUTE ADDRESS
POINTING AT THE ENO OF A FIELD 1.

00005400
00005500
00005600
00005701.)
00005800
OC005900
00006000
00006100
00006200
00006300
OC0064CO
OCOO&SOO
00006600
OC006700
OOOG6800
00006900
OCOC700C
00007100
00007200
00007300
00007400
00007500
00007600
OOOC7700
00007800
OCOC7900
OOOC8GOO
CC.103100
OC~08200
00008300
OC008400
OC008500
00008600
00008700
00008800
OOOC8900
00009000
OC009100
00009200

000093CO
OC009400
OC0095JO
00009600
OC009700
00009€00
00009900
OCC10000
00010100
OC010200
0001030J
00010400
00010500
00010600
00010700
00010~00
00010900
00011000
oco11100
00011200
00011300
00011400
00011500
00011600

I

0
0
0
0
0
0
0
0
0
1 LCAC.AOCRE
1 LCAO.ADCRE
1 LOAD.ADORE
1 LC.AO.ADORE
l LCAO.ACCPE
1 LCAQ.AOCRE
1 LCAO.ACCRE
1 LCA!J.AOCRE
1 LOAQ.AOCRE
l LOAD.A!JCRE
1 LCAD.AIJCRE
1 LCA0.'10CPE
1 ~gAQ·~£~~~ 1 LUAUeAL.H,,:"\C.
1 LCAQ.AOCR£
1 LGAO.ACCR£
1 LCAD.ADCRE
0
0
0
0
0
l
1
1
1
1
0
0
0
0
0

GET.DATA
GET.DATA
GET.DATA
GET .DATA
GET.DATA

C804 ~ [002501
2884 4il [00260]

16Al 4il
7588 •
75 38 ~
lCEC ~
8C30 4l
1165 ~
20CO 4il
1165 ~
2290 ~
3lf 1 •
0008 d
18A4 4il

(00270]
[002801
[00290]
(002AOJ
(00280]
[002COJ
(00200]
C002EOJ
C002FOJ
[00300)
(00310]
[00320]

0032 d (00330)
7760 ~ [00340]
1BA4 • [003501

COOF 4il (003601
0000 d (00370]
0000 ;i (00380]
c 0 0 c • (0 0 39 0 ~

NC ERRORS OETECTEO
HICRO INSTRUCTION COUNT = Coosa

).
%
%
%
%
%
%
%
%

.LOOP

B> A 4 BIT TYPE FIELDCOOOl FOR 81~ARY, 0100
FOR 4-BIT DECIMAL ANO 1000 FOR a-BIT
OECir--ALH

C> 4 UNUSED BITS

O> A 16 9IT FIELD LENGTH INDICATING THE NUMBER
or BITS CO~TAINEO IN EACH FIELD·

BEGIN LOAD.ADDRESSES
ADD NEXT.INSTRUCTION.POINTER TO FA %---> ENO OF ADDRESSES
MOVE FA TO NEXT.INSTRUCTION.POINTER

MOVE SP. TO Y
READ 24 BITS REVERSE TO T DEC FA %GET TYPE ANO LENGTH.
READ 24 BITS REVERSE TO X DEC FA %GET ADDRESS.
MOVE SUM TO X %ADDRESS BASE.
EXTRACT 16 SITS FROM TC8) TO Y %GET LENGTH
MOVE FT TO M %SELECT A SCRATCHPAO
MOVE SUM TO 50A %ADDRESS LENGTH
MOVE FT TO M
MCVE T TO 509 %TYPE ANO LENGTH.
nr,,... f'"'T !lV 1 T.-rT
U~I.. I'" j 0 l I. I C:..J I

GO TO -LOOP
EXIT

END LCAO.ADDRESSES
%
%%%%%%%%% THIS GE~ERAL ROUTI~E WILL READ FROM ZERO TO 24 BITS INTO
GET.DATA% THE ~-~ACH!~E~ SET CPU TO THE ENCODED DATA TYPE AND SET
%%%%4%%%X CPL TO THE NUMBER OF BITS READ.
%

BEG IN GET. DA TA
8Il\S BY F
READ REVERSE TO Y DEC FA AND FL
EXIT

END GET.CATA
FINI

CAUTION: $ SUBSET ~A~ NOT SPECIFIED; THEREFCREr THIS
PROGRAM SHOULD NOT BE USED ON A 61712/81714.

00011700
00011eoo
00011900
OC012000
00012100
00012200
00012300
00012400
00012500
OC012600
00012700
00012800
OC012900
oco 13-000
00013100
OCC13200
00013300
00015400
00013500
00013600
OOJ13700
OCCl.5800
f\1\1' ~ 70An ocoi4ooo
OCC1'4100
00014200
00014300
00014400
00014500
00014600
000147'00
OC'J14800
0001490-J
00015000
C00l5100
00015200
00015300

G
G
G
G

APPENDIX A: MIL COMPILER OPERATION

CONTROL CARDS

General

The purpose of the compiler control card is to allow the programmer to specify option settings to the
compiler.

Every MIL control card has either a$ (dollar sign) in column 1 and is called a "dollar card", or has an &
(ampersand) in column 1 and is called an "ampersand card". Column 73-80 may be used as a sequence
field.

A-1

Dollar Cards

SYNTAX

$ -...-----,..-...---------(any.dol/ar.option.not·in·this·diagram)

NO

DEBUG C (literal) -.J
HARDWARE.TYPE t : 3
LINES.PER.PAGE(literal) -------------~

MERGE

NOPS

PAGE -
PASS,END

PROTECT

SET

~ RESET

--~- (conditiona/.inclus ion· identifier)---...,

NO SEQ

SEQ

(base) -----...-.i
(base)+ (increment)

VOID L: (terminating.sequence.field)-

&-~ .. LIBRARY E{multi·file·id)
(multi-file-id) I (file-id) ___,.

(pack-id multi) I (file-id) ___,.

(pack-id) I (multi file-id) I (file-id)

A-2

DEFAULT ~SET ~(condit.{on·inclusion.identifier)

L_. RESET _...J
$ (dollar· option) ---------------------1

SEMANTICS

ALLCODE ·

AMPERSAND

ANALYZE.CODEFILE

CHECK

COMPILE

CONTROL

DEBUG

DECK

DOLLAR

DOUBLE

ERROR.FILE

EXPAND

EXTERNAL

FORCE

FRAME

HARDWARE.TYPE= l~

HEADINGS

LINES.PER.PAGE

lists all code generated for each MIL statement when
listing

lists all ampersand records, except &$ records, when
listing (default on)

prints an analysis of the code file at end of source list
ing

checks for sequence errors (default on)

when reset a fast source listing will be produced with
no code generation or syntax checking (default on)

prints all dollar cards when listing; same as $DOLLAR

for compiler debugging use

punches an object deck

prints all dollars cards on listing

double spaces listing when printing

lists errors and warnings on a separate printer file as
well as on the main listing

when listing, prints all statements (including comments)
within a macro when a macro is invoked

generates external segment branching code (on by
default)

generates a code file regardless of syntax errors

lists all IF, BEGIN ... END statements which condition
ally exclude code (default on)

specifies which hardware processor type will be
used: S = S-Memory; M = M-Memory;
U =Universal

prints all title and subtitle headings at the beginning of
each page when listing

specifies the maximum number of lines per page of
listing

A-3

LIST

LIST ALL

LIST.NOW

LIST.PATCHES

LISTP

MERGE

NEW

NO

NOPS

OLD.LISTING.FORMAT

PAGE

PAGE.NUMBERS

PARAMETER.BLOCK

PASS.END

PROTECT

RELEASE

RESET

SEQ

SET

SINGLE

SUBSET

A-4

lists all source records excluding macro records that
are compiled (default on)

lists all unconditionally excluded records to be printed

lists source records when read; same as $LISTP

lists all patches from CARDS file when read

same as $ LIST.NOW

merges a secondary source file ("CARDS") with the
primary source file ("SOURCE") replacing primary
source records by secondary records with the same
sequence numbers

creates a new source file ("NEWSOURCE")

resets any specified dollar option if allowed

generates NOPs in external linking code for debugging
purposes

produces listing in pre-V.l compiler format

skips to a new page before printing the next line

puts page number on each new page when listing and puts
a maximum number of lines on a page (60 by default)
which can be changed by $LINES.PER.PAGE

punches a parameter block with the object deck if used
with $DECK; otherwise only code is punched

displays compiler pass information on the SPO

protects SKIP when specified

generates a release tape with listing, code deck, code file,
and new source

resets any specified conditional inclusion option

resequences source records

sets any specified conditional inclusion options

prints single-space listings (default on)

generates code for Bl 710 (S-Memory) Processors; same
as $HARDWARE. TYPE==S

SUPPRESS suppresses printing of warning messages

VOID deletes a specified range of source records. The termina
ting sequence range must be exactly 8 characters

XREF

XREF.ALL

XREF.LABELS

XREF. NAMES

XREF.REGISTERS

sets XREF.LABELS and XREF.NAMES

sets XREF.LABELS, XREF.NAMES and XREF.
REGISTERS

cross-references all labels

cross-references all names

cross-references all registers

NOTES AND RESTRICTIONS

1. Unless otherwise specified (through the MERGE option), the only source of input is the card
reader. Once $ MERGE has been specified and the first non-$ record has been encountered,
it is not possible to again indicate "CARDS ONLY".

2. If no dollar cards are used in the default options are: EXTERNAL, AMPERSAND, CHECK,
COMPILE, FRAME, LIST and SINGLE. All input will be from the CARDS file.

3. Options are turned off only through the appearance of NO followed py the option word. Note
that NO and the option word are separated by at least one blank.

4. Comments may appear on dollar cards by preceeding the comment with a % (percent sign).

5. Dollar cards are not included as part of a "NEWSOURCE" file when $ NEW is specified.

Ampersand Cards

Syntax

&--......... .-.LIBRARY1(mu/ti.fi/e.id)
·~ (multi.file.id) l (file.id)--------11-:..i

. . · (pack.id) l(multi.file.id)l--------=-.i

(pack.id) I (multi.file.id) I (file.id) -------

DEFAULT ----i-- SET =3 • (condition. inclusion. identifier)

l...RESET

$ (dollar.option>---------------------c:.~

_ 1
--1

A-5

SEMANTICS

LIBRARY

DEFAULT

Causes the specified file to be opened and compiled. Compilation proceeds to
the end of the Library file with no contribution from any standard primary or
secondary input file. At end of file, compilation is resumed from the standard
input files.

Specifies default settings for one or more conditional inclusion toggles. The
default setting for a particular toggle will take effect only if no previous $ or
& card specified a setting for that toggle.

EXAMPLE: & DEFAULT SET TOG.A RESET TOB.B

NOTES AND RESTRICTIONS

1. A library file is assumed to be a disk file.

2. The last record in a library file that is to be compiled must be FINI: This record cannot be
omitted.

3. All & records are included as part of a "NEWSOURCE" file when $ NEW is specified.

4. &$records are listed only when both$ DOLLAR and $AMPERSAND are specified.

5. LIBRARY, DEFAULT and$ statements may not be intermixed on a single & card.

MIL COMPILER FILES

Some of the internal file names in the compiler and the file uses are listed below. This information will
find use in label equation at compile time.

CARDS

LINE

PUNCH

SOURCE

NEWSOURCE

LIBSOURCE

LINESAVE

CODE.FILE

PARAM.FILE

A-6

Input file containing control and source records. The DEF AULT bit is set for
this CARD.READER file.

Output file for the compile listing. The device is PRINTER or BACKUP.

Output PUNCH or BACKUP file for the object deck produced when"$ DECK"
is specified.

Secondary input file for source records when "$ MERGE" is specified. The
DEF AULT bit is set on this DISK file.

Output DISK file for new source records when "$ NEW" is specified. The file
contains 90-byte records, blocked 4.

Input DISK file for source records when"$ LIBRARY (file name) is encountered.
The DEF AULT bit is set for the file.

A temporary work file containing a copy of the listing.

A temporary work file containing a copy of the object code.

A temporary work file containing parameters affecting the object code and the
listing.

MILXREF

CODE

ERROR.LINE

A temporary disk file containing information to be processed during the cross
referencing phase. The file is produced only if one of the"$ XREF" options
is specified.

The actual generated code file. This DISK file contains a maximum of 300 180-
byte records, and may· contain only one area.

An auxilliary PRINTER or BACKUP file replicating lines on file LINE that have
caused syntax errors, and the actual error messages, if"$ ERROR.FILE" has been
specified. This allows the main listing to go to backup with an immediate indica
tion of any syntax errors.

A-7

APPENDIX B: HARDWARE INSTRUCTION FORMATS AND TABLES

B 1700 HARDWARE TABLES

Table B-1. Register Addressing

Group SELECT (Column) NUMBER
(Row)
Number 0 1 2 3

0 TA FU x SUM
1 TB FT y CMPX
2 TC FLC T CMPY
3 TD FLD L XANY
4 TE FLE A XEOY
5 TF FLF M MSKX
6 CA BICN BR MSKY
7 CB FLCN LR XORY
8 LA *TOPM FA DIFF
9 LB RESERVED FB MAXS

10 LC RESERVED FL *MAXM
11 LD *PERR TAS u
12 LE XYCN CP *MBR
13 LF XYST *MSM DATA
14 cc *INCN READ CMND
15 CD RESERVED WRIT NULL

*Available on B 1 720 systems only

B-1

BICN

XYCN

XYST

FLCN
I

~INCN

cc

CD

B-2

Table B-2. Condition Registers

JBits
0 I 2

LSUY CYF CYD

MSBX X=Y XY

LSUX INT YNEQO

FL= SFL FL SFL FL SLF

PORT DEVICE PORT HIGH PORT INTERRUPT
MISSING PRIORITY

STATE TIMER I/O
LIGHT INTERRUPT INTERRUPT

MEMORY MEMORY :!: MEMORY *
READ DATA WRITE/SWAP READ ADDR
PARITY ERROR ADDROUTOF OUT OF BOUNDS
INTERRUPT BOUNDS OVER- INTERRUPT

RIDE

*Available on B I 720 systems only

NOTES

1. BICN, FLCN, XYST, and XYCN are addressable
as source registers only.

2. The TOPM, MBR, and A registers are used to
determine the memory (control or main) and
location of the next micro-instruction.

3. MSMA is control memory and may be addressed
only from the maintenance Console during tape
mode.

4. CPU is destination register only.

5. NULL always contains a value of 0. Any
register or scratchpad word to which it is moved
will be cleared to 0.

3

CYL

XY

X NEQO

FLNEQ 0

PORT LOCKOUT

CONSOLE
INTERRUPT

MEMORY *
WRITE/SWAP
ADDROUT
OF BOUNDS
INTERRUPT

MC MD ME MF 0
MICRO NAME

01
1

2 l 3
41 51 61 7 8 l 9 10 l 11 12 l 13 1 14 l 15 00 Ol 10 11

l VARIANTS 000 001 010 011 100 101 110 111

REGISTER MOVE 0 0 0 1 REG 1 GROUP REG 1 REG 2 REG 2GROUP
SOURCE REGl.STER SELECT SEL CT SINK REGISTER

0 0 1 0 REGISTER GROUP REG MOV DPW DOUBLE PAD WORD MOV DIR: P-R R-P
SCRATCHPAD MOVE SOURCE OR SINK SELECT DIR 1/2 ADDR5SS 1/2 .DPW: LEFT RIGHT

4 BIT 0 0 1 1 REGISTER GROUP REG MANIPUL~TE 4 BIT MANIP. MANIP SET AND OR EOR INC INC DEC DEC
MANIPULATE 4 BIT SOR & SNK SEL VARIANTS LITERAL VARIANTS: TEST TEST
BIT TEST REL 0 1 0 0 REGISTER GROUP REG TESTt:llT DSP RELATIVE BRANCH DSP SIGN: + -

BRANCH FALSE 4 BIT SOURCE SEL NUMBER SGN DISPLACEMENT MAG

BIT TEST REL 0 1 0 1 REGISTER GROUP REG TESTBIT DSP RELATIVE BRANCH DSP SIGN: + -
BRANCH TRUE 4 BIT SOURCE SEL NUMBER SGN DISPLACEMENT MAG

SKIP WHEN
0 1 1 0 REGISTER GROUP REG SKIP TEST 4 BIT TEST MASK SKIP TEST ANY ALL EGL ALL ANY/ ALL/ EGL/ -~

4 BIT SOR & SNK SEL VARIANTS VARIANTS: CLR/ CLR/ CLR/ CLR CLR/ CLR/ CLR/ CLR
READ/WRITE 0 1 1 1 R/WJ COUNT FA/FL DATA REG TW DATA TRANSFER R/W VAR: READ WRT

MEMORY VAR VARIANTS CODE SGN WIDTH MAGNITUDE CNT VAR: N©P FA FAt FA+ FAi FAt
MOVE B BIT 1 0 0 0 REGISTER GROUP. ENTIRE B BITS OF 8 BIT LITERAL REG SEL: y ~Lt FU Flt FU F.Lt x L LITERAL REG SEL IS 2 TWSIGN: + -

MOVE 24 BIT 1 0 0 1 REGISTER GROUP. 8 MOST SIGNIFICANT BITS OF
LITERAL REL SELIS 2 FULL 24 BIT LITERAL

SHIFT/ROTATE 1 0 1 0 SINK REGISTER SNK REG S/R LEFT SHIFT/ROTATE S/R VAR: SHFT ROT
T REG GROUP SELECT VAR COUNT

EXTRACT FROM 1 0 1 1 RIGHT BIT POINTER SNK REG EXTRACTION FIELD SINK REG
T REG FOR EXTRACTION FLD CODE WIDTH CODE: x y T L
BRANCH 1 1 0 l DSP

RELATIVE SGN RELATIVE DISPLACEMENT MAGNITUDE DSP SIGN: + -

CALL 1 1 1 l DSP RELATIVE CALLED ADDRESS MAGNITUDE + RELATIVE SGN DSP SIGN: -

0 0 0 0 0 0 1 0 DATA REG TW DATA TRANSFER WIDTH TW SIGN: + -
SWAP MEMORY CODE SGN MAGNITUDE REG CODE: x y T L

CLEAR 0 0 0 0 0 0 1 1 L T y X. FA J FL l FU 1 CP
REGISTERS REG REG REG REG REG REG REG REG

SHIFT/ROTATE 0 0 0 0 0 1 0 0 S/R DIR X/Y LEFT OR RIGHT, X 0 RY X/Y VAR: x. y

XOR Y I VARIANT VAR SHIFT/ROTATE COUNT S/R, DIR: SFT- SFI- ROT- ROT-
SHIFT/ROTATE 0 0 0 0 0 1 0 1 S/R DIR LEFT OR RIGHT X ANDY S/R, DIR SFT- SFT- ROT- ROT-

X ANDY VARIANT SHIFT/ROTATE COUNT VARIANTS:

COUNT FA/FL
0 0 0 0 0 1 1 0 COUNT FA/FL COUNT SCALAR COUNT FA/

N¢P-· __, --TAT ____
FA+ FA t FA+ FA~

VARIANTS MAGNITUDE FL VAR: FL t FU Fl+ Flt FL+

EXCHANGE DPW
0 0 0 0 0 1 1 1 SINK DPW SOURCE DPW

ADDRESS ADDRESS
SCRATCHPAD 0 0 0 0 1 0 0 0 ~DSP LEFT HALF PAD
RELATE FA SGN WORD ADDRESS OSP SIGN: + -
MONITOR

0 0 0 0 1 0 0 1
LITERAL OCCURRENCE IDENTIFIER

DISPATCH
0 0 0 0 0 0 0 0 0 c (I 1 DISPATCH mp SKP FLAG: FAIL succ·

VARIANTS FLG DISP VAR: LOCK WRTLO READ R&C WRITHI ABSNT UN DEF UN DEF
CASSETTE 0 0 0 0 0 0 0 0 0 0 1 0 CASSETTE CASSETTE START STOP@ STOP ON UNDEF UN DEF UN DEF STOP ON UN DEF
CONTROL MANIP VARIANTS MANIP: TAPE GAP X1Y X•Y

BIAS
0 0 0 0 0 0 0 0 0 0 1 1 BIAS lTST TEST FLG: TST/ TEST

i VARIANTS FLG BIAS VAR: UNIT l F j_ s F5 N©P FCP I N¢P I N0P
STORE FINTO 0 0 0 0 1 0 0 0 0 0 1 0 0 SINK DPW T

I DPW I ADDRESS I

LOAD F FROM 0 0 0 0 0 0 0 0 0 1 0 1 SOURCE DPW
I I l DPW ADDRESS I I

CARRY FF 0 0 0 0 l
0 0 0 0 0 1 l 0 ~l~F1~F1~F I l l l r.1ANIPULATE CYD CYL I 0

HALT 0 0 0 0 0 0 0 0 l
0 0 0 0 0 0 0 1

I

OVERLAY 0 0 0 0 T 0 0 0 0 T 0 0 0 0 0 0 1 0
M-STRING

NORMALIZE X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 1

TRANSFER 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 j CONTROL

NO OPERATION
0 0 0 0 0 0 0 0

I
0 0 0 0 0 0 0 0 I

c:;
I
w

Table B-3. Microinstructions

Table B-4. Variant Field Definitions

FOUR-BIT MANIPULATE SKIP WHEN (6nnn) SKIP READ/WRITE MEMORY
(3nnn) VARIANTS TEST VARIANTS (7nnn) VARIANTS

BITS 4-6 CONDITIONS BITS 4-6 CONDITIONS BITS 6-7 CONDITIONS

000 SET 000 ANY. SKIP 00 XREG.
001 AND 001 ALL. SKIP 01 YREG.
010 OR 010 EQU. SKIP 10 TREG.
011 EOR 011 ALL CLR. SKIP 11 LREG.
100 INC 100 NOT ANY. SKIP
101 INC/TEST 101 NOT ALL. SKIP BITS 8-10 CONDITIONS
110 DEC 110 NOT EQU. SKIP
111 DEC/TEST 111 NOT ALL. CLR. SKIP 000 NOP

001 FA UP
EXTRACT FROM T REG. SWAP MEMORY 010 FL UP

(8nnn) VARIANTS (02nn) VARIANTS 011 FA UPFLDN
100 FADNFLUP

BITS 5-f! .. CONDITIONS BITS 6-7 CONDITIONS 101 FADN
110 FLDN

00 XREG. 00 XREG. 111 FADNFLDN
01 YREG. 01 YREG.
10 TREG. 10 YREG. CASSETTE CONTROL
11 LREG. 11 LREG. (002n) VARIANTS

COUNT FA AND FL DISPATCH {OOln) BITS 3-1 CONDITIONS:
(06nn) VARIANTS VARIANTS

000 START TA-PE
BITS 5-7 CONDIIIQNS BITS 1-3 CONDITIONS 001 STOP ON GAP

010 STOP ON X NEQ Y
000 NOP 000 DISPATCH LOCK 011-111 RESERVED
001 FAUP 001 DISPATCH WRITE
010 FLUP 010 DISPATCH READ BIAS
011 FA UPFLDN 011 DISPATCH RD & CLR (003n) VARIANTS
100 FA DN FL UP 100 RESERVED
101 FADN 101 RESERVED BITS 3-1 CONDITIONS_
110 FLDN 110 RESERVED
111 FADN FLDN 111 RESERVED 000 FU

001 24 OR FL
010 24 OR SEL
011 24 OR FL OR SFL
100 NOP
101 24 OR CPL OR FL
111 ORSFL

B-4

B 1700 HARDWARE INSTRUCTION FORMATS

Bias

OP BIAS TEST CPL NEQ 0 FLAG

CODE VARIANTS (V) 0 ·NO TEST

0000 0000 0011 0 ... 7 1 TEST CPL RESULT

0 11 12 14 15

This instruction sets CPU to the value l if the value of FU is 4 or 8 and to 0 otherwise, unless V = 2. If
V = 2, the value of the CPU is determined by SFU in lieu of FU. SFU is the first 4 bits of the scratchpad
word SOB. (On the B 1710, FU= 8 will set CPU= 0.)

The value of CPL is also set to the smallest of the values denoted in the following table.

V VALUES

0 FU
1 24 or FL
2 24 or SFL
3 24 or FL or SFL
4 CPL
5 24 AND CPL AND FL
6 CPL
7 CPL (not defined on the B 1710)

If the test flag equals 1 and the final value of CPL is not 0, the next micro-instruction is skipped.

Bit Test Branch False

OP REGISTER REGISTER REGISTER DISPLACEMENT DISPLACEMENT

CODE GROUP# SELECT # BIT# SIGN VALUE

0100 0 ... 15 0 ... 1 0 .. 3 0 - POSITIVE 0. . 15

1 - NEGATIVE

0 3 4 7 8 9 10 11 12

This micro-instruction tests the designated bit within the specified register and branches (relative to the
next micro-instruction) by the amount and direction of the signed displacement value if the bit is 0. If
the bit is 1, a displacement value of 0 is assumed, and control passes to the next in-line micro-instruction.
A displacement value indicates the number of 16-bit words from the ne.xt in-line micro-instruction. A
negative sign indicates lower addresses (backward displacement). The maximum displacement is 15 micro
instructions.

B-5

Bit Test Branch True

OP REGISTER

CODE GROUP#

0101 0 .. 15

-
0 3 4

NOTE

Register Bit # is read from right to left, 0 - 3 in
accordance with the hardware bit numbering
convention.

REGISTER REGISTER DISPLACEMENT

SELECT # BIT# SIGN

0 ... 1 0 ... 3 0 POSITIVE

1 NEGATIVE

7 8 9 10 11

DISPLACEMENT

VALUE

0 ... 15

12 15

This instruction tests the designated bit within the specified register and branches (relative to the next
instruction) by the a.mount and direction of the nigned displacement value if the bit is 1. If the bit is 0,
a displacement value of 0 is assumed, and control passes to the next in-line micro-instruction. A dis
placement value .indicates the number of 16-bit words from the next in-line micro-instruction. A negative
sign indicates lower addresses (backward displacement). The maximum displacement is 15 micro-instruc
tions.

Branch

0

OP

CODE

110

2

NOTE

Register Bit# is read right to left, 0 - 3 in
accordance with hardware bit numbering
convention.

DISPLACEMENT SIGN

0 POSITIVE

1 ·NEGATIVE

3

DISPLACEMENT VALUE

0 ... 4095

4 15

This instruction fetches the next micro-instruction from the location obtained by adding the signed dis
placement value given in the instruction to the address of the next in-line micro-instruction.

A displacement value indicates the number of 16-bit words.

B-6

Call

OP DISPLACEMENT SIGN DISPLACEMENT VALUE

CODE 0 - POSITIVE

111 1 NEGATIVE 0 ... 4095

0 2 3 4 15·

This instruction pushes the address of the next in-line micro-instruction (already contained in A register)
into the A stack and then fetches the next micro-instruction from the location obtained by adding the
signed displacement value given in the instruction to the address of the next in-line micro-instruction.

A displacement value indicates the number of 16-bit words.

NOTES

1. EXIT, the opposite of CALL, is accomplished
by employing the MOVE register instruction
with TAS as the source register and A as the
sink register.

2. When the A address is stored in the A stack,
it is multiplied by 16 and stored as a bit
address.

Cassette Control

OP CASSETTE MANIPULATE RESERVED

CODE VARIANTS (V) FLAG BIT

0000 0000 0010 0 ... 7 0 ... 1

0 11 12 14 15

This instruction performs the indicated operation on the tape cassette.

V= 0
1
2
3
4
5
6
7

Start Tape
Stop Tape
Stop Tape if X NEQ Y
Reserved
Reserved
Reserved
Reserved
Reserved

All Stop Tape variants cause the tape to halt in the next available gap.

B-7

Clear Registers

r---·

REGISTER FLAGS
OP

8-BITS

CODE

0000 0011 L T y x F F F c

A L u p

0 7 8 15

This micro-instruction clears the specified register(s) to 0 if the respective flag bit is 1.

Count FA/FL

0

OP

CODE

0000 0110

7 8

COUNT

VARIANTS (V)

LITERAL

0 ... 7 0 31

10 11 15

This micro-instruction increments (decrements) binarily the designated register(s) by the value of the
literal contained in the micro-instruction or by the: value of CPL if the value of the literal is 0.

Neither overflow nor underflow of FA is detected .. The value of FA may go through its maximum value
or its minimum value and wrap around.

Overflow of FL is not detected. The value of FL may go through its maximum value and wrap around.
Underflow of FL is detected and will not wrap around. The value 0 is left in FL.

Literal values (or CPL values if LIT=O) of 25 through 31 are truncated to the value 24.

Count variants are as follows:

B-8

V= 000
001
010
011
100
101
110
111

No Count
Count FA UP
Count FL UP
Count FA UP and FL DOWN
Count FA DOWN and FL UP
Count FA DOWN
Count FL DOWN
Count FA DOWN and FL DOWN

Dispatch

(Requires a hardware I/O subsystem available on the B 1720 only)

OP DISPATCH SKIP VARIANT

CODE VARIANTS (Applies only to

0000 0000 0001 000 - LOCKOUT lockout variant)

001 -WRITE 0 - SKIP IF ALREADY LOCKED

010 - READ 1 - SKIP IF NOT ALREADY LOCKED

011 - READ AND CLEAR

100-WRITE HIGH

101 - PORT ABSENT

0 11 12 14 15

This micro-instruction sends/receives interrupt and interrupt information to/from other ports.

Since the interrupt system is shared by all ports, the processor should gain control of the interrupt system
by successfully completing a LOCKOUT prior to a DISPATCH WRITE.

LOCKOUT sets the lockout bit in the DISPATCH register and allows, via the skip variant, skipping or not
skipping the next 16-bit instruction based upon the success or failure (already set) of the LOCKOUT.

WRITE (High or Low) DISPATCH sets the Lockout and Interrupt flip flops in the port interchange. It
also stores the contents of the L register into memory location 0 to 23 and the contents of the least
significant seven bits of the T register (designating the destination port# and channel#) into the appro
priate port interchange register. In addition, it sets (Write High) or resets (Write Low) the high Interrupt
flip flop in the port interchange.

READ DISPATCH stores the contents of memory locations 0 through 23 into the L register and the
contents of the Port Channel register into the least significant 7 bits of the T register. The other 17 bits
of T are unaffected.

READ AND CLEAR DISPATCH in addition to performing the READ DISPATCH operation clears the
lockout flip flop, the two interrupt flip flops and the Port Device Absent flip flop in the port interchange.
It does not clear any memory locations.

PORT ABSENT is executed by the processor when necessary to return a Port Device Absent Level signal
to another port indicating the absence of the designated channel.

Dispatch operations in the case of Processor-2 and Processor Adapter-I (direct connect to memory) are
limited to the following:

a. LOCKOUT+ SKIP-IF-NOT-ALREADY-LOCKED: always skips.

b. WRITE LOW: always sets Port Device Absent Level true (true indicates absence).

c. READ and CLEAR: always sets the Port Device Absent level false (false indicates present).

B-9

No changes occur in the T and L registers. In the. INCN register only the Port Device Absent bit can
change. The Lockout, the Interrupt, and High Priority bits will always be false. No other dispatch
operations are defined.

Extract From T

0

OP

CODE

1011

3 4

ROTATE

-BIT COUNT

0 ..• 24

8 9

DESTINATION EXTRACT

REGISTER BIT COUNT

00-X 0 ••. 24

01. y

10-T

11 - L

10 11 15

This micro-instruction rotates the T register contents left by the ROTATE count, extracts the bits specified
and moves the result to the sink register. If the extract bit count is less than 24, the data is right-justified
with the left (most-significant) zero bits supplied.

The contents of the T register are unchanged unless it is also the sink register.

A rotate value of 24 is equal to 0 and is equivalent to a NO OPERATION.

Four-Bit Manipulate

0

OP

CODE

0011

REGISTER

GROUP#

o ... 15

3 4 7

NOTE

The microprogramming language compiler uses the
left-most bit to be extracted and calculates the
rotate bit count to be used by the hardware circuits.
The assembler addresses the bits within the T regis
ter left to right as 0 through 23; hardware addresses
the bits right to left as 0 through 23.

REGISTER MANIPULATE LITERAL

SELECT# VARIANTS (V)

0 •.. 1 o ... 7 0 ... 15

8 9 11 12 15

This micro-instruction performs the operation specified by the variants on the designated register.

B-10

V= 0
I
2
3
4

The register is set to the value of the literal.
The register is set to the logical AND of the register and literal.
The register is set to the logical OR of the register and literal.
The register is set to the logical EXCLUSIVE-OR of the register and literal.
The register is set to the binary sum (modulo 16) of the register and literal.

Halt

5 The register is set to the binary sum (modulo 16) of the register and literal, and the next
micro-instruction is skipped if a carry is produced.

6 The register is set to the binary difference (modulo 16) of the register and the literal.
7 The register is set to the binary difference modulo 16 of the register and literal, and

the next micro-instruction is skipped if a borrow is produced.

OP CODE

EXCEPTION

BICN, FLCN, XYCN, XYST, INCN (Bl 720) and CPU
(B 1710) when specified as operand registers are not
changed as a result of this operation. However, the
carry or borrow outputs are produced and a skip can
result. ·

0000 0000 0000 0001

0 15

This micro-instruction stops the execution of the micro-instructions. In RUN mode the next micro to be
executed is fetched and stored in the M register, and the A register points to the next following micro.
In TAPE mode the next micro is not fetched and stored in the M register, but the HALT micro is left in
the M register.

The register indicated by the register select switch will be displayed.

Load F From Doublepad Word

(Available on B 1 720 systems only.)

0

OP

CODE

0000 0000 0101

11 12

SCRATCH PAD

WORD ADDRESS

0 .•• 15

15

This micro-instruction moves the contents of the A and B portions of the designated scratchpad word to
the FA and FB registers respectively.

B-11

Monitor

(Available on B 1720 systems only.)

OP CODE VARIANTS

J 7, 6, 5, 4, 3, 2, 0 0000 1001

0 7 8 15

This micro-instruction skips to the next sequential instruction.

During the time this micro-operator is executing the operator and the last two bits (0 and 1) are decoded,
ANDed with the system clock and are present in the backplane as follows:

MONITOR
MONITOR
MONITOR
MONITOR
MONITOR

0
OORO
OlRO
02RO
03RO

True for the OP Code
True if last two bits are 00
True if last two bits are 01
True if last two bits are 10
True if last two bits are 11

At the backplane, the monitors are one-half clock from leading edge to trailing edge.

Move 8-Bit Literal

OP DESTINATION LITERAL

CODE REGISTER

1000 GROUP3 o ... 255

0 ... 15

0 34 7 8 15

This micro-instruction moves the 8-bit literal given in the micro-instruction to the sink register. If the
move is to a register of length) 8 bits, the data is right-justified with left (most-significant) zero
bits supplied.

B-12

EXCEPTIONS

1. READ and WRITE are excluded as sinks.

2. When Mis used as a sink register, the operation is
changed to a bit-OR which modifies the next
micro-instruction. It does not modify the micro
instruction as stored in memory.

Move 24-bit Literal

-
OP DESTINATION 24- BIT LITERAL

CODE REGISTER
-.

-1001 GROUP# 0 ... @FFFFFF@

0 ..• 15-

-0 34 7 8 15 of "next" micro

This micro-instruction moves the 24-bit literal given in the double-length micro-instruction to the sink
register. If the move is between registers of length { 24 bits, the literal is truncated from the left.

No Operation

0

OP

CODE

0000 0000 0000

EXCEPTIONS

1. READ, WRITE, M and CP (B 1710) are excluded
as sinks.

2. The MSMA register (available only on the B 1720)
may be a sink only in the TAPE mode.

0000

15

This micro-instruction initiates a skip to the next sequential micro-instruction.

Normalize X

0

OP

CODE

0000 0000 0000 0011

15

This micro-instruction shifts the X register left while counting FL down until FL = 0 or until the bit in
X referenced by CPL = 1. Zeros are shifted into the right-most end of X.

CPL = 1 references the right-most bit of X while CPL = 24 references the left-most bit of X. If CPL = 0,
the operation will continue until FL= 0.

B-13

Overlay Control Memory

(Available on B 1720 systems only.)

OP

CODE

0000 0000 0000 0010

0 15

This micro-instruction overlays control memory (M-Memory) from main memory.

The starting main memory address is in the FA register; the length of the data to be overlaid, in bits, is in
the FL register. The starting control memory address is in the L register.

Execution of the micro-instruction proceeds as follows:

a. The contents of the A register are moved to the T AS register.

b. The contents of the L register are moved to the A register.

c. The first 16 bits of data are read from main memory and stored in the control memory
via register L. Register FL is decremented by 16 bits; FA is incremented by 16 bits;
and A is incremented by 1 word.

d. Step 3 is repeated until FL= 0 or A MAXM, at which point the process terminates
with a move of T AS to A.

e. The operation then continues with the next micro-instruction.

Read/Write Memory

OP DIRECTION COUNT REGISTER FIELD.

CODE 0 TO REGISTER VARIANTS 00• x DIRECTION

0111 1 TO MEMORY 0 ... 7 01. y 0 - POSITIVE

10•T 1 - NEGATIVE

11 • L

.0 3 4 5 I' 8 9 10

MEMORY

FIELD

LENGTH

0 ... 26

11

This micro-instruction moves the contents of the :register (memory) to the memory (register). If the value
of the memory field length is less than 24, the data from memory is right-justified with left (most-signifi
cant) zero bits supplied while the data from the register is truncated from the left.

The contents of the source is unchanged.

B-14

15

Register FA contains the bit address of the memory field while the memory field direction sign and memory
field length are given in the instruction.

If the value of the memory field length as given in the instruction is 0, the value in CPL is used.

Memory field length values (or CPL values if Memory Field Length= 0) of 25 and 26 are truncated to the
value of 24. When used on a WRITE operation, the value 25 and 26 cause odd and even parity respectively
to be written into memory regardless of the parity of the read data.

For a description of the count variants, see COUNT FA/FL.

Read/Write MSM

(Available on B 1720 systems only.)

OP VARIANTS R/W VARIANT

CODE G/B H/F S/N Oto X

0000 0000 0111 1 FROM X

0 11 12 13 14 15

This micro-instruction (1) moves the contents of the X register to the M-Memory word specified by the
address contained in the L register if the R/W variant bit = 1 ; data is right justified with left (most signi
ficant) bits supplied or (2) moves the contents of the M-Memory word specified by the address contained
in the L register to the X register if the R/W variant bit= 0; data is right justified with left (most signifi
cant) zero bits supplied.

The lower 4 bits and the upper 8 bits of the address in Lare ignored.

READ/WRITE MSM causes the A register to be moved to the T AS register and the L register to be moved
to the A register before the instruction is executed. The TAS is restored to A after the READ/WRITE
MSM operation is completed.

The S variant is used to enable the set/reset of the G/B and H/F flip flops. If S = l, the G/B and H/F flip
flops are set/reset by the G/B and H/F variants. If S = 0, no change is made in the G/B and H/F flip flops.

If the G/B flip flop is true, all READ/WRITE MSM operations will force bad parity in the addressed word.
If the G/B flip flop is false, all READ/WRITE MSM operations will force good parity in the addressed
word.

If the M/F flip flop is true, the processor upon reading an M-Memory word containing parity error will
flag the error condition by setting a CD bit true. It will not halt. If the H/F flip flop is false, the pro
cessor upon detection of a parity error in reading an M-Memory word will flag the error condition by
setting PERR bit 1 true and then halt. Reading an M-Memory word occurs when fetching a M-op from
M-Memory or when moving an M-Memory word to any destination.

The H/F and G/B flip flops are cleared to zero (false) with the CLEAR signal. If S = 1, the G/B and H/F
flip flops are set/reset prior to the execution of the READ/WRITE MSM portion of the operation.

B-15

Register Move

OP. SOURCE: SOURCE DESTINATION DESTINATION

CODE REGISTER REGISTER RE:GISTER REGISTER

0001 GROUP# SELECT# GR:OUP # SELECT#

0 •.. 15 0 ... 3 o ... 3 o ... 15

0 3 4 7 8 9 10 11 12 15

This micro-instruction moves the contents of the source register to the sink register. If the move is between
registers of unequal lengths, the data is right-justifa~d with left (most-significant) zero bits supplied or the:
data is truncated from the left, whichever is appropriate.

!

The contents of the source register are unchanged unless it is also the sink register.

R-16

EXCEPTIONS

1. WRIT, CMND (and CPU, READ on B 1720) are
excluded as source registers.

2. When the M register is used as a sink in RUN or
STOP mode, the operation is changed to an bit
OR which modifies the next micro-instruction.
It does not modify the instruction stored as
in memory. In TAPE mode, no bit-OR
takes place.

3. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XEOY,
XEOR, MSKX, DIFF, MAX, MAXM, and U
are excluded as sink registers.

4. U is excluded as a source register in the STEP
mode.

5. When DATA (and SUM, DIFF on B 1710) is
designated as a source, CMND, and DATA are
excluded as sinks.

6. On the B 1710 when A, M, CP, or DATA is
designated as a source, all 4-bit registers are
prohibited as sinks ..

7. On the B 1720, when U or DAT A is designated
as a source and when the next micro-instruction
is to be obtained from main memory, M is ex
cluded as a sink.

Scratchpad Move

OP REGISTER REGISTER DIRECTION SCRATCH PAD SCRATCH PAD

CODE GROUP# SELECT# 0-TO WORD WORD

0010 0 .•• 15 0 ••. 3 SCRATCHPAD 0 - LEFT WORD ADDRESS

1-FROM 1 - RIGHT 0 .•. 15
I

SCRATCHPAD WORD

0 3 4 7 8 9 10 11 12 15

This micro-instruction moves the contents of the register (scratchpad)°to the scratchpad (register). If
the move is between fields of unequal lengths, the data is right-justified with left (most-significant) zero
bits supplied or the data is truncated from the left, whichever is appropriate.

The contents of the source register are unchanged.

Scratchpad Relate FA

OP

CODE

0000 1000

0 7 s

EXCEPTIONS

1 . When the M register is used as a sink, the
operation is changed to a bit-OR which
modifies the next micro-instruction. It does
not modify the micro-instruction as stored
in memory.

2. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XORY,
XEOY, MSKX, MSKY, DIFF, MAXS, MAXM
and U are excluded as sink registers.

3. WRIT, CMND (and CPU, READ on B 1710)
are excluded as source registers.

4. U is excluded as a source in STEP mode.

5. On the B 1710 M as a source results in a trans
fer of 24 zeros.

RESERVED SIGN OF SCRATCHPAD LEFT HALF ADDRESS

O• POSITIVE OF A SCRATCHPAD WORD

000 1 •NEGATIVE 0 ... 15

10 11 12 15

B-17

This micro-instruction replaces the contents of the FA register by the binary sum of FA and the left half of
the specified scratchpad word.

Neither overflow nor underflow of FA is detected. The value of FA may go through its maximum value or
its minimum value and wrap around.

Set CYF

OP

CODE

0000 0000 0110

SET

VARIANTS (V)

1, 2, 4,· 8

0 11 12 15

This micro-instruction sets the carry flip-flop as specified by the variants.

v = l
2
4
8

Set CYF to 0
Set CYF to 1
Set CYF to CYL (carry total from sums)
Set CYF to CYD (carry borrow from difference)

NOTES

1. CYL is generated under the control of the
length in CPL.

2. CYF is an input to the arithmetic logic along
with the X and Y registers. CYF is the left-most
bit of the CP portion of the C register.

Shift/Rotate T Left

OP DESTINATION DESTINATION SHIFT/ROTATE

CODE REGISTER REGISTER 0-SHIFT

1010 GROUP# SELECT# 1 - ROTATE

0 ••• 15 0 ... 3

0 3 4 7 8 9 10

SHIFT/ROTATE

BIT COUNT

0 ..• 24

11 15

This micro-instruction shifts (rotates) register T left by the number of bits specified and then moves the
24-bit result to the sink register. If the move is between registers of unequal lengths, the data is right
justified, with data truncated from the left.

The contents of the T register are unchanged unless it is also the sink register.

Zero fill on the right and truncation on the left occurs with the shift operation. ROTATE is an end-around
shift with no truncation or fill.

B-18

If the value of the SHIFT /ROT ATE COUNT as given in the instruction is 0, the value given in CPL is
used.

EXCEPTIONS

l. When the M register is used as a sink register,
the operation is changed to a bit-OR which
modifies the next micro-instruction. It does
not modify the micro-instruction as stored
in memory.

2. BICN, FLCN, XYCN, XYST, INCN, READ,
WRIT, SUM, CMPX, CMPY, XANY, XEOY,
XORY, DIFF, MAXS, MAXM and U are
excluded as sink registers.

Shift/Rotate XY Left/Right

OP SHIFT/ROTATE SHIFT/ROTATE SHIFT/ROTATE

CODE VARIANT DIRECTION BIT

0000 0101 0- SHIFT VARIANT COUNT

1 ·ROTATE 0- LEFT o ... 48

1 - RIGHT

0 7 8 9 10 15

This micro-instruction shifts (rotates) register X and Y left (right) by the number of bits specified. The
register Xis the left-most (most-significant) half of the concatenated 48-bit XY register. Only a count
of one may be specified on the B 1710 for the concatenated XY register.

Zero fill on the right and truncation on the left occurs with the left shift. Zero fill on the left and trun
cation on the right occurs with the right shift.

If the value of the SHIFT /ROT ATE COUNT as given in the micro-instruction is 0, the operand is shifted/
rotated by the amount determined by CPU as follows:

CPU SHIFT/ROTATE COUNT

00 1 bit
01 4 bits
10 Undefined
11 8 bits (available only on B 1720 systems)

NOTE

The shift by CPU option is available only on
B 1720 systems.

B-19

Shift/Rotate X/Y Left/Right

OP SHIFT/ROTATE SHIFT/ROTATE X/Y SHIFT/ROTATE

CODE VARIANT DIRECTION VARIANT BIT

0000 0100 0- SHIFT 0-LEFT 0-X REG COUNT

1 - ROTATE 1 - RIGHT 1 -Y REG 0 ••• 24

0 7 8 9 10 11

This micro-instruction shifts (rotates) register X or Y left or right by the number of bits specified.

Zero fill on the right and truncation on the left occurs with the left shift. Zero fill on the left and trunca
tion on the right occurs with the right shift.

If the value of the SHIFT/ROTATE COUNT as given in the micro-instruction is 0, the operand is shifted
(rotated) by the amount determined by CPU as follows:

CPU SHIFT/ROTATE COUNT

00 1 bit
01 4 bits
10 Undefined
11 8 bits (not available on B 1710 systems)

NOTE

The shift by the CPU option is available on B 1 720
systems only.

Skip When

OP REGISTER REGISTER SKIP TEST MASK

CODE ROW# COLUMN# VJ\RIANTS (V) 0 ••. 15

0110 0 •.. 15 0 ... 1 0 .•• 7

0 3 4 7 8 9 11 12 15

15

This micro-instruction tests only the bits in the register that are referenced by the 1 bits in the mask and
ignores all others. It then performs the actions specified below. Exception: If V = 2 or V = 6, it compares
all bits for an equal condition.

V = 0 If any of the referenced bits are l's, the next micro-instruction is skipped.

If all the referenced bits are 1 's, the next micro-instruction is skipped.

2 If the register is equal to the mask, skip the next micro-instruction.

B-20

3 This is the same as V = 1, but the referenced bits are also cleared to 0
without affecting the non-referenced bits.

4 If any of the referenced bits are 1 's, the next micro-instruction is not
skipped.

5 If all the referenced bits are 1 's, the next micro-instruction is not
skipped.

6 If the register is equal to the mask, the next micro-instruction is not
skipped.

7 This is the same as V = 5, but the referenced bits are also cleared to 0
without affecting the non-referenced bits.

NOTES AND RESTRICTIONS

1. If the mask equals 0000 the ANY result is false.
The skip is made for V = 0 and is not made for
V = 4. If the mask equals 0000, the ALL result
is true. The skip is made for V = 5 and V = 7
and is not made for V = 1 and V = 3.

2. BICN, FLCN, XYCN, XYST, and cannot be
cleared with V = 3 or V = 7. However, they can
be tested.

Store F Into Doublepad Word

(Available on B 1 720 systems only.)

0

OP

CODE

0000 0000 0100

11 12

SCRATCH PAD

WORD ADDRESS

0 ••. 15

15

This micro-instruction moves the contents of the FA and FB registers to the designated scratchpad word.
FA is transferred to the A half of the scratchpad word, and FB (which contains FL, FT, and FU) is trans
ferred to the B scratchpad word.

The contents of FA and FB remain unchanged.

B-21

Swap F with Doublepad Word

OP DESTINATION SOURCE

CODE 48-BIT 48-BIT

0000 0111 SCRATCHPAD SCR/~TCHPAD

WORD WORD

0 .•. 15 0 ••. 15

0 7 8 11 12 15

This micro-instruction moves the contents of the FA and FB registers to a hardware holding register.
It then moves the contents of the left and right word of the source scratchpad word to the FA and FB
register respectively, and moves the contents of the: hardware holding register to the destination scratch
pad word ..

Swap Memory

(Available on B 1 720 systems only)

OP REGISTER# Ft ELD MEMORY

CODE OO•X DIRECTION FIELD

0000 0010 01. y 0- POSITIVE LENGTH

10• T 1 - NEGATIVE 0 ..• 24

11 • L

0 7 8 9 10 11 15

This micro-instruction swaps data from main memory with the data in the specified register. If the value
of the memory field is less than 24, the data from memory is right-justified with left (most-significant)
zero bits supplied. The data from the register is truncated from the left before entering memory.

Register FA contains the absolute binary address of the main memory field while the field direction sign
and field is given in the instruction.

If the value of the memory field length as given in the instruction is 0, the value given in CPL is used.

B-22

Transfer Control

OP CODE

0000 0000 0000 0100

0 15

This micro-instruction moves the 24-bit value from the L register to the MBR register; moves the least
significant 4 bits from the T register to the TOPM register; and moves the most significant 20 bits from
the T register to the A register, truncating the left most 6 bits of the source.

B-23

MICRO-INSTRUCTION TIMING

Table B-5: Micro-Instruction Timing

Bl710 Bl720
Notes Clocks Micro-Instructions Clocks Notes

2 BIAS 1
1 BIND 3
2 BIT TEST BRANCH FALSE 1
2 BIT TEST BRANCH TRUE 1
4 BRANCH 1
5 CALL 5
2 CASSETTE CONTROL 1

CLEAR REGISTERS 1
4 COUNT FA/FL 1

DISPATCH 6/5
3 EXTRACT FROM REGISTER T 1
2 FOUR-BIT MANIPULATE 1
2 HALT 1

LOAD F FROM DOUBLEPAD WORD 1
2 MONITOR 1
2 MOVE 8-BIT LITERAL 1
6 MOVE 24-BIT LITERAL 2
2 NO OPERATION 1

3 6 NORMALIZEX 1 2
OVERLAY CONTROL MEMORY 5 3

8 READ/WRITE MEMORY 5/4 4
READ/WRITE MSM 6

2 2 REGISTER MOVE 1
2 2 SCRATCHPAD MOVE 1

4 SCRATCHPAD RELATE FA 1
2 SETCYF 1
3 SHIFT/ROTATE REGISTER T LEFT 1

4 6 SHIFT/ROTATE XY LEFT/RIGHT 1 2
3 SHIFT/ROTATE X/Y LEFT/RIGHT 1 2
2 SKIP WHEN 1

STORE FINTO DOUBLEPAD WORD 1
10 SWAP F WITH DOUBLEPAD WORD 2

SWAP MEMORY 4 5

B-24

B 1710 Notes

The basic clock of the B 1710 is 4 megahertz.

1. This includes the fetch of the called micro-instruction.

2. For BCD result register moves, there are three clocks.

3. There are six clocks per bit plus one additional clock.

4. Only a value of one bit is allowed in the B 1710.

B 1720 Notes

The basic clock of the B 1720 is 6 megahertz.

1. If the relative address is not within control memory (therefore in main memory), there are
two clocks.

2. There is one clock per bit.

3. There are five clocks per 16 bits (one micro-instruction) plus five clocks.

4. READ is five clocks until the processor receives the data. WRITE is four clocks until the
processor is released. Some instructions may be performed during the processor READ or
WRITE command times if they immediately follow the READ or WRITE commands: this
is called "concurrency". Consecutive READ or WRITE commands operate at MAIN MEMORY
READ cycle speed (four clocks) or WRITE cycle speed (six clocks) respectively.

5. The data is presented to the processor and is released in one MAIN MEMORY READ cycle.
Concurrent execution of certain micro-instructions is performed if they immediately follow
the SWAP command. The WRITE portion of the SWAP command is begun and performed in
parallel to the READ portion, and.main memory is not available for the duration of a WRITE
cycle. For consecutive main memory commands, refer to note 4.

B-25

APPENDIX C: RESERVED WORDS AND SYMBOLS

Note: Several elements in the following list will not appear elsewhere in this manual, being in the compiler
for future development or debugging purposes.

BR DIFFERENCE
< BRANCH DISPATCH
(BRANCH.EXTERNAL DOLLAR

+ BY DOUBLE

* B710 DOWN
CA DUMP

) CALL ELSE
CALL.EXTERNAL EMIT.RETURN.TO.EXTERNAL

-, CARRY END
CASSETTE EOR

I CAT EQL
CB ERROR.FILE

-(underscore) cc EXIT
CD EXPAND

> CHARACTER EXTERNAL
CHECK EXTRACT
@ CLEAR F
' (apostrophe) CMND FA
= CMPX FA.POINTS
" CMPY FALSE
{ CODE.SEGMENT FB
A CODE.SEGMENT.NUMBER FINI
ABSOLUTE COMPILE FIXED
ADD COMPILER.LEVEL FL
ADDRESS COMPLEMENT FLC
ADJUST CONSOLE.SWITCHES FLCN
ALL CONSTANT FLD
ALLCODE CONTROL FLE
AMPERSAND COUNT FLF
ANAL YZE.CODEFILE CP FOR
AND CPL FORCE
ANY CPU FORWARD
ANY.INTERRUPT CYD FRAME
ARCHITECTURE.NAME CYF FROM
AS CYL FT
ASSIGN DATA FU
AST ACK DATA.LENGTH GEQ
AT DATA.TYPE GISMO.LEVEL
ATTRIBUTE DATA.USAGE GO
BACKWARD DEBUG GTR
·BASE.LIMIT DEC HALT
BASE.ZERO DECK HARDWARE.TYPE
BEGIN DECLARE HEADINGS
BIAS DEFINE HEX.SEQUENCE.NUMBER
BICN DEFINE.VALUE HI.PRIORITY
BIT DETAIL HIP RI
BITS DIFF IF

C-1

INC
INCLUDE
INCN
INTERRUPT
INTO
JUMP
L
LA
LANGUAGE.EXTENSION
LB
LC
LD
LE
LEFT
LENGTH.BETWEEN. ENTRIES
LEQ
LF
LINES.PER.PAGE
LIST
LIST.NOW
LIST.PATCHES
LIST ALL
LISTP
LIT
LOAD
LOAD.MSMA
LOAD.SMEM
LOCAL.DEFINES
LOCATION
LOCK
LOCKED
LOCKOUT
LR
LSBX
LSBY
LSS
LSUX
LSUY
M
M.MEMORY.BOUNDARY
MACRO
MAKE.SEGMENT.TABLE
MAP
MAXIMUM
MAXM
MAXS
MBR
MCP.LEVEL
MERGE
MICRO
MINIMUM
MINUS

C-2

MOD
MONITOR
MOVE
MSBX
MSKX
MSKY
MSMA
MSML
NEQ
NEW
NEWSEGMENT
NO
NO.DEVICE
NO DEVICE
NOP
NOPS
NORMALIZE
NOT
NULL
OLD.LISTING.FORMAT
OLDIPB
OR
OVERLAY
PAGE
PAGE.NUMBERS
PARAMETER.BLOCK
PASS~END
PLUS
POINT
PORT
PROGRAM.LEVEL
PROTECT
READ
REDUNDANT.CODE
RELEASE
REMAPS
RESERVE.SPACE
RESET
REVERSE
RIGHT
ROTATE
s
S.MEMORY.LOAD
SEGMENT
SEGMENT .COUNT
SEQ
SET
SFL
SFU
SHIFT
SINGLE
SKIP

SPACE
START
STOP
STORE
SUB.TITLE
SUBSET
SUBTRACT
SUM
SUPPRESS
SWAP
so
SOA
SOB
SI
SIA
SIB
SIO
SIOA
SIOB
Sll
SllA
SI IB
Sl2
SI2A
Sl2B
Sl3
Sl3A
SI3B
Sl4
SI4A
S14B
SIS
SISA
SISB
S2
S2A
S2B
S3
S3A
S3B
S4
S4A
S4B
SS
SSA
SSB
S6
S6A
S6B
S7
S7A
S7B

S8
SBA
S8B
S9
S9A
S9B
T
TA
TABLE
TAPE
TAS
TB
TC
TD
TE
TEST
TF
THEN
TITLE
TO
TODAYS.DATE
TODA VS.TIME
TOPM
TRACE
TRANSFER.CONTROL
TRUE
u
UNIT
UNLOCKED
UP
VALUE
VOID V
WHEN
WITH
WRITE
WRITE.STRING
x
XANY
XCH
XEOY
XORY
XREF
XREF.ALL
XREF.LABELS
XREF.NAMES
XREF .REGISTERS
XREF.ZIP
XY
XYCN
XYST
y

Item

A Register
A Stack
Add Scratchpad Micro-Instrucfion
Adjust Location Statement
Ampersand Cards
AND Statement
Any .Interrupt Bit
Architecture.Name
Arithmetic Expressions
Array Declarations . .
Array Group Items
Arrays: Maximum Size
Assign Statement
Attribute

Base Register
Base.Zero
Begin Statement
Begin/End Code Blocks
Bias Micro-Instruction
Bias Statement
BICN Register
Bit Data Fields
Bit Strings . .
Bit Test Branch False Micro-Instruction
Bit Test Branch True Micro-Instruction
BR Register . ;'•
Branch Micro-Instruction
Branch.External Statement

C Register
CA Register
Call Micro-Instruction
Call Statement
Call.External Statement
Card Terminator
Carry Micro-Instruction
Carry Statement
Cassette Control Micro-Instruction
Cassette Control Statement
CB Register
CC Register
CD Register
Character Data Fields
Character Strings
Clear Registers Micro-Instruction

INDEX

Page

7-7
7-7
8-2

5-1, 8-3
A-5, A-6
8-4, 8-5

7-12
8-6

3-9,3-10
6-2
6-5
6-1
8-6
8-6

7-6
6-3

8-7, 8-8
8-7
B-5

8-9, 8-10
7-11

6-1
3-5, 3-6
B-5, B-6

B-6
7-6
B-6

8-11

7-7
7-7
B-7

8-12
8-13

3-4, 3-5
7-9

8-14
B-7

8-15
7-7

7-7, 7-12
7-7, 7-12

6-1
3-7
B-8

Index-I

Item

Clear Statement
CMND Register
CMPX Register
CMPY Register
Code.Segment Statement
Combinatorial Logic
Compiler Control Cards
Compiler Files
Compiler. Level
Complement Statement
Condition Registers . .
Condition Registers Summary
Console Interrupt
Console.Switches Register . .
Constant Registers
Correspondence Table
Count FA/FL Micro-Instruction
Count Statement
CP Register
CPL Register
CPU Register
CYD Register
CYF Register
CYL Register

Data Register
Data Types .
Data.Length
DEC Statement
Declarations Maximum Number
Declare Statement .
Decrement Statement
Define Statement
Define.Value Statement
Diff Register
Digit
Dispatch Micro-Instruction
Dispatch Statement .
Dollar Cards
Dummy

Elementary Items
Else Statement
Emit.Return.To.External Statement
End Statement
EOR Statement

i INDEX (Corit)

Exchange Scratchpads with F Register Statement

Index-2

Page

8-16
7-10

. 7-8

. 7-8
5-1, 5-3 through 5-7

. . . 7-8

... A-1
A-6, A-7

8-6
8-18, 8-19

7-11
B-2

7-12, 7-13
7-10
7-10

5-2, 8-59
B-8

8-20, 8-21
7-7

7-7' 7 -8' 8-9' 8-1 0
7-7' 7-8, 8-9, 8-10

.7-9, 7-11
7-7,7-11

7-11

7-10
6-1

3-8, 6-8, 6-10
8-22

6-1
6-1 , 6-6 through 6-11

8-22
8-23
8-24

7-9
3-1

B-9, B-10
8-25, 8-26

A-2, A-5
6-6

6-4
8-27, 8-28

8-29
8-30

8-31, 8-32
8-99

Item

Exit Statement
External Dollar-Option
Extract From T Micro-Instruction
Extract Statement

F Register . . .
FA.Points Statement

INDEX (Cont)

Field Length Conditions Register
Filler . . ·
FINI Statement .
Fixed Data Fields
FLCN Register
Four-Bit Manipulate Micro-Instruction
FU Register
Function Box

GISMO.Level .
GO TO Statement
Group Items

Halt Micro-Instruction
Halt Statement

1/0 Service Request Interrupt
Identifier
IF Statement
IF Statement
INC Clause in Read/Write Memory Statements
INC Statement
INCN Register
Increment Statement
Input/Output Registers
Inter-Firmware Communications
Interrupt Conditions Register

Jump Statement

Key Concepts Alphabetic List

L Register
Label
Label Addresses . . .
Length.Between.Entries .
Letter
Level N um be rs
Limit Register
Lit Statement

Page

8-33
. 8-11, 8-13

. . B-10
8-34, 8-35

7-6
8-36

. 7-11, 7-13
6-5, 6-6, 6-7

. . 8-37
6-1

. 7-1.1,7-13
. . B-10, B-11

8-10
7-8

8-6
8-38

6-4

B-11
8-39

7-12
. . . . 3-2, 3-3

. . 8-40 through 8-45
. 8-7

. . 8-74, 8-96, 8-97
. 8-46

. 7-11, 7-13
. . . . 8-46

7-10
. 8-94

.. 7-11, 7-13

8-47

. . 7-2 through 7-5

7-6
. 3-3, 3-4

5-1
3-9, 6-10

3-1
. 6-4, 6-8

7-6
8-48

Index-3

INDEX (Cont)

Item

Literals
Load F From Double Scratchpad Word Micro-Instruction
Load Scratchpad Statement
Load Statement . . .
Load.MSMA Statement
Load.SMEM Statement
Local.Defines Statement
LR Register
LSUX
LSUY ..

M Register
M.Memory .Boundary Statement
MACRO Declaration Statement
MACRO Reference
MACROS
Make.Segment.Table.Entry Statement
MAXM Register
MAXS Register
MBR Register .
MCP.Level ..
Micro Statement
Micro-Instruction Addresses
Micro-Instruction Decoding
Micro-Instruction ·Timing Chart
Micro-Instruction Summary Table
MIL Statements Alphabetic List
Monitor Micro-Instruction
Monitor Statement
Move Statement
Move 24-Bit Literal Micro-Instruction
Move 8-Bit Literal Micro-Instruction
MSBX
MSKX Reg.ister
MSKY Register

NO Operation
NO Operation Micro-Instruction
NOP Statement
Normalize Statement
Normalize X Micro-Instruction
Null Register
Number

Operator Precedence
OR Statement
Overlay Control Memory Micro-Instruction

Index-4

. .

Page

.3-8
B--11
8·-49
8·-49

8-50, 8·-51
8·-52

8-53, 8·-54
7-6

7--12
7--11

7-6
8·-61

8-55, 8·-56
8-57, 8·-58
8-55, 8·-58

g..59
7--10
7--10

7-7
8-6

8·-60
7-7
7-6

. B-24, B--25
B-3, B-4

8-1
. B--12

8·-62
8-63, 8··64

S.-13
. S.-12

7--11
7-8
7-8

8·-65
s .. 13
8-65
8 .. 66
s .. 13
7--10

3-5

3 .. 10
8-67, 8··68
.. s .. 14

Item

Page Statement
Parity Error
Parity Error Interrupt
Physical, Label
Point
Point FA Clause
Point Statement .
Point Label
Port Device Interrupts
Program, Level Statement

Read Memory Statement
Read Out of Bounds Interrupt . .
Read/Write Memory Micro-Instruction
Read/Wdte MSM Micro-Instruction
Redundant.Code Statement
Register Addressing Table
Register Bit Numbering Convention
Register Move Micro-Instruction
Registers, Alphabetic List
Regular.Label
Remap Items
Remap/Reverse Combination
Remapping Structured Data
Remaps
Reserve.Space Statement
Reserved Word List
Reset Statement
Result Registers .
Reverse
Rotate Statements.

S.Memory.Load Statement
Scratchpad
Scratchpad Move Micro-Instruction
Scratch pad Relate FA Micro-Instruction .
Segment Dictionary
Segment Statement . . .
Set CYF Micro-Instruction
Set Statement ..

INDEX (Cont)

SFL Register . . . ·.
SFU Register
Shift/Rotate T Left Micro-Instruction
Shift/Rotate T Statement
Shift/Rotate X/Y Left/Right Micro-Instruction
Shift/Rotate X/Y /XI Statement
Shift/Rotate XY Left/Right Micro-Instruction

Page

8-70
7-12
7-13

5-1
3-1

8-74, 8-96
8-71

3-3
7-13
8-74

8-73, 8-74
7-12, 7-13
B-14, B-15

B-15
8-75
B-1
7-1

B-16
7-2 through 7-5
. . . . 5-1

6-8 through 6-11
6-6
6-5
6-3

8-76
C-1, C-2

8-77
7-8, 7-9

6-2, 6-5, 6-10
B-18, B-29, 8-84

8-87
7-9

B-17
B-17, B-18

5-2
. 5-1,5-2
. . B-18
8-80, 8-81
. .. 8-9
. . .8-10
B-18, B-19
8-82, 8-83

B-20
8-84
B-19

lndex-5

Item

Skip Statement
Skip Whe.n Micro-Instruction

INDEX (Cont)

Source Image Format
State Light
Statements: Alphabetic List
Store F Into Double Scratchpad Word Statement
Store F Into Doublepad Word Micro-Instruction
Store Statement
Structured Declarations
Sub.Title Statement
Subtract Scratchpad Statement
Sum Register
Swap F With Doublepad Word Micro-Instruction
Swap Memory Micro-Instruction
Swap Statement

T Register
Table Statement
T AS Register .
Timer Interrupt
Title Statement
TOPM Register
Transfer .Control Micro-Instruction
Transfer .Control Statement

U Register .
Underscore .
Unique.Label

Verlay Control Memory Statement

Write Memory Statement
Write.String Statement
Write/Swap Out of Bounds Interrupt
Write/Swap Out of Bounds Override Flag

X Register . . . " . .
X/Y Conditions Register .
X/Y States Register
XANY Register
XCH Statement
XEO Y Register
XORY Register
XYCN Register
XYST Register

Y Register . .

24-Bit Function Box

Index-6

Page

. . . . 8-85, 8-86
. . . B-20, B-21
. 9-1.

. . . . 7-12
8-1

8-88
8-21
8-88

. . . 6-4, 6-7
8-89
8-90

7-9
8-22
8-22
8-91

7-6
8-92

7-7
7-12
8-93

7-7
8-23
8-94

7-10
3-1
3-3

8-69

. 8-95, 8-96
. 8-97, 8-98

7-12, 7-13
7-12, 7-13

. 7-6, 7-8
7-11
7-11

7-8
8-99

7-8
7-8

7-11
7-11,7-12

. 7-6, 7-8

... 7-8

Printed in U.S.A. May 1977 107:2568

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-01
	07-01A
	07-01B
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	08-66
	08-67
	08-68
	08-69
	08-70
	08-71
	08-72
	08-73
	08-74
	08-75
	08-76
	08-77
	08-78
	08-79
	08-80
	08-81
	08-82
	08-83
	08-84
	08-85
	08-86
	08-87
	08-88
	08-89
	08-90
	08-91
	08-92
	08-93
	08-94
	08-95
	08-96
	08-97
	08-98
	08-99
	09-01
	09-02
	09-03
	09-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	C-01
	C-02
	IDX-1
	IDX-2
	IDX-3
	IDX-4
	IDX-5
	IDX-6
	xBack

