

Burroughs

B 1700 SYSTEMS
MASTER CONTROL PROGRAM

(MCP)

Printed in U.S. America

REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

PRICED ITEM

8-75 1088010

COPYRIGHT © 1974, 1975 BURROUGHS CORPORATION

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks 1-"orm at
the back of the 1~rnnual, or may be addressed directly to Publications Department,
Technical Information Organization, TIO-West. Burroughs Corporation. 9451 Tclstar
Avenue, El Monte. California 91731.

SECTION

2

3

TITLE PAGE

INTRODUCTION . vi
Overview of the Master Control Program . vi
List of Applicable B 1 700 Publications ·. vi

MCP - PROCESSOR INTERFACE.................................... 1-1
Memory Management.. 1-1

Control Memory... 1-1
Main Memory... 1-1
Memory Links . 1-1
Memory Areas . 1-3

Obtaining Memory Space. 1-3
First and Last Memory Links. 1-3
Overlayable/Non-Overlayable Data. 1-4

INTERRUPTS.. 1-4
Program Communicates . 1-6
Program-Dependent Interrupts. 1-7
External I11terrupts. 1-9
Interrupt and Communicate Servicing . 1-9
MCP Non-Processing Mode. 1-9

System Initialization . 1-10
Procedures for COLDSTART....................................... 1-10
Disk COLDSTART Variables....................................... 1-16
Clear/Start . 1-17
Name Table . 1-18

MCP - OBJECT PROGRAM COMMUNICATION
Introduction .. .
Compilation

Compilation Types
MCP-Compiler Recognition

Object Programs .. .
Program Parameter Block (PPB)
Scratchpad .. .
S-Code
Code Segment Dictionary
Data Dictionary .. .
File Parameter Block (FPB)
File Information Block (FIB)

Program Operation,.
Run Structure .. .
Run Structure Nucleus
Run Structure Nucleus Message Pointer
Run Structure Nucleus Reinstate Message Pointer
Run Structure Nucleus Format.
Object Program im Memory at BOJ

INPUT/OUTPUT
Introduction .. .
1/0 Descriptor ;

1/0 Status .. .
Magnetic Tape 1/0 Subsystem

iii

2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-7
2-9
2-9

2-11
2-11
2-15
2-19
2-19
2-21
2-21
2-22
2-23
2-30

3-1
3-1
3-1
3-2
3-4

SECTION

3 (Cont)

4

TABLE OF CONTENTS (Cont)

TITLE

:Lock Descriptor .. .
Channel Table .. .

Channel Table Operation
Ports
Exchanges .. .
Input/Output Assignment Table (IOAT)

MCP DISK STRUCTURES .. .
Introduction
Disk Pack/Cartridge Characteristics
Disk File Identifiers
Disk Directories .. .

Main Directories
Sub-Directories

Disk File Header .. .
Disk Label .. .
Pack Information Table .. .
Disk File Allocation
File Look-Up .. .
Disk File Construction

Sequential File
]Random File

Available Tables .. .
Master Available Table
Working Available Table .. .
Temporary Available Table

Multiple Pack Files .. .
Multiple Pack File Information Table
MCP Composite Header .. .

iv

PAGE

3-4
3-7
3-8

3-10
3-10
3-10

4-1
4-1
4-1
4-3
4-3
4-6
4-6
4-7
4-9

4-12
4-13
4-13
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-16
4-17
4-18

TABLE

1-1
1-2
1-3
1-4
1-5
1-6
1-7
2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3
3-4
4-1
4-2
4-3.
4-4
4-5
4-6

FIGURE

1
2

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
3-1
4-1
4-2
4-3
4-4
4-5

TITLE

Memory Link .. .
Interrupt-Handling on the B 1700
Program Communicates .. .
Program-Dependent Interrupts
COLDSTART Variables .. .
Disk COLDSTART Variables .. .
Systems Software/Firmware
Program Parameter Block
System Descriptor
File Parameter Block .. .
File Information Block .. .
RS.REINSTATE.MSG.PTR Exception Conditions
Run Structure Nucleus
1/0 Descriptor
Lock Descriptor .. .
Channel Table
Input/Output Assignment Table
Disk Directory
Disk File Header
Disk Pack Label .. .
Pack Information Table .. .
Master, Working, and Temporary Available Tables
Multiple Pack File Information Table

TITLE

System Disk at COLDSTART
B 1700 Memory After Clear/Start :
Main Memory .. .
Typical Memory Map .. .
MCP/Object Program Work Area Example
Skeleton Scratchpad
Stages of Program Flow on the B 1700 and S-Machine
Program Run Structure
Program Run Structure Memory Layout
Simplified Program Run Structure
Magnetic Tape 1/0 Sub-System Descriptor
Disk Read/Write Mechanism
Disk Recording Surface .. .
Disk Directory Filing Technique
Disk Directory Entries
Disk File Search .. .

v

PAGE

1-2
1-5
1-6
1-8

1-10
1-16
1-18

2-3
2-10
2-12
2-16
2-22
2-23

3-2
3-4
3-7

3-10
4-5
4-7

4-10
4-12
4-16
4-17

PAGE

1-1
1-4
2-2
2-8
2-9

2-20
2-21
2-31

3-6
4-1
4-2
4-4
4-6

4-14

INTRODUCTION

The Master Control Program for the B 1700 is responsible for managing the demands and resources of the
system. The concepts and functions of the MCP cannot be viewed as a series of step-by-step procedures,
but rather as a series of continuous processes, each capable of functioning independently, but occurring
simultaneously.

The purpose of the B 1700 Master Control Program Reference Manual is to provide an insight into the
operating environment of the B 1700, and to segregate the internal components of the Master Control
Program (MCP) in order to analyze their relationship in respect to the overall management of the system.

The information contained in this manual reflects System Software Release Mark IV.O.

OVERVIEW OF THE MASTER CONTROL PROGRAM

The primary function of the Master Control Program (MCP) is to optimize the productivity of the B 1700
computer system. External intervention is held to the absolute minimum, and maximum throughput is
achieved by incorporatin'g into the MCP the primary tasks of 1/0 control, file handling, multiprogramming,
interrupts, memory allocation, user programs, and operator interface.

The MCP is mainly disk resident. It consists of many routines and functions, which, when combined, form
a single program. Because of the size of the MCP, well over a million bits, only those segments of the MCP
that are needed at a specific time are brought into memory.

The MCP is written in SDL (Software Development Language) and, therefore, the SDL Interpreter or por­
tions of it are always active.

The MCP is an operating system. It manages the demands and resources of the B 1700 system and reduces
programming effort by providing a "family" of commonly needed functions and services. The MCP requires
strict adherence to program structures and procedures in order that there may be communication between
different programs, interpreters, and the MCP itself.

COLD ST ART, the function performed to initiate the system, structures the system disk as required by the
MCP, as shown in figure 1. Clear/Start, the function performed to begin processing, structures memory as
required by the MCP, as shown in figure 2. The first duty of the MCP after a Clear/Start is to perform some
initialization of its own, after which, it enters its "main loop" and is susceptible to control input.

LIST OF APPLICABLE B.1700 PUBLICATIONS

The following is a list of publications relative to the B 1700 and referenced in this manual:

Publication Title

B 1 700 System Software
Operational Guide

B 1 700 System Reference
Manual

Form No.

1068731

1057155

vii

STATIC
MEMORY

DYNAMIC
MEMORY

Figure 1. System Disk at COLDST ART

STACKS

MCP MASTER CODE SEGMENT DICTIONARY

CENTRAL SERVICE MODULE (CSM)

COLDSTART VARIABLES

INTERPRE!TER DICTIONARY

MCP SEGMENT DICTIONARY

MCP RESIDENT CODE

Fl RST MEMORY LINK l SECOND MEMORY LINK

MCP INITIALIZATION CODE

ff ::::: :::::
MEMORY LINK [

E 1 :::::

j~ V} l .::e.;'.·::-:·:·;·.r
? ::<:::::: :::: :::>s ::::

sill :'.\.:
.;::

lll.li
MEMORY LINK :::: j

SOL INTERPRETER

l LAST MEMORY LINK

MCP RUN STRUCTURE NUCLEUS

INTERRUPT QUEUE

Figure 2. B 1700 Memory After Clear/Start

viii

MEMORY MANAGEMENT

SECTION 1
MCP - PROCESSOR INTERFACE

There are two different memories within the B 1700 processor: Main Memory, and Control Memory
(B 1720 series only).

Control Memory

The MCP and control memory are not directly related and have independent functions relating to the sys­
tem. The purpose of control memory is to house the microinstructions. The larger the control memory,
the faster the system throughput, since control memory is up to four times faster than main memory. If a
set of microinstructions exceeds the available control memory, the MCP stores the overflow in main memory.
Control memory is available for the B 1720 series of systems only. For a further discussion concerning
control memory and microinstructions refer to the B 1700 Systems Reference ~anual, Form No. 1057155.

Main Memory

Main memory is available to all programs, including the MCP. It is addressable to the individual bit and has
variable operational lengths from 1 to 24 bits. Main memory has no physical word or byte boundaries
which are visible to the rest of the system. Main memory is shared by all programs requiring it, and is
divided into variable-size areas. Figure 1-1 illustrates main memory format.

MCP BASE REGISTER ...

MCP CONTROL INFORMATION

FIRST MEMORY LINK J

THIS AREA IS UNRESERVED.

MCP LIMIT REGISTER .. 1 LAST MEMORY LINK

THIS AREA IS RESERVED. IT CONTAINS
THE MCP RUN STRUCTURE NUCLEUS, A
TABLE OF 1/0 COMPLETES, AND THE
CENTRAL SERVICE MODULE CONSTANTS.

Figure 1-1. Main Memory

Memory Links

The memory link, vital to the functional operation of the MCP, is a string of bits containing information
delimiting the area that the MCP allocates. Memory links contain information such as the size of the area
allocated, an indication as to what program has control of the block, its usage, and a forward and backward
reference to adjacent memory links. Table 1-1 describes a memory link format.

1-1

Table 1-1. Memory Link

Field Name Type Length Description

01 MEMORY.LINK Bit 175

02 ML.BACK Bit 24 Points to the preceding memory
link. When this is the first memory
link, ML.BACK contains
@FFFFFF@.

02 ML.FRONT Bit 24 Points to the next memory link.
When this is the last memory link,
ML.FRONT contains@FFFFFF@.

02 ML.SIZE Bit 24 Contains the number of bits from
the end of the memory link to the
beginning of the next memory
link.

02 ML.GROUP Bit 55

03 ML.POINTER Bit 24 Points to the system descriptor
that refers to the information
stored in this memory area.

03 ML.MIX Bit 6 Contains the program mix number
using this area. The MCP mix
number is always zero.

03 ML.SAVE Bit 1 Indicates whether this field can
(ML.SAVE=O) or cannot
(ML.SAVE=l) be overlaid.

03 ML.TYPE Bit 24 Defines the type of data contained
within the area. When ML.TYPE
contains a 2, MEMORY.LINK is
17 5 bits; otherwise, it is 163 bits.

The following is a list of area types:

Type Code --
Code 0

Data 1

Available 2

Run structure 3

MCP (temporary) 4

User file 5

Code segment dictionary 6

Interpreter 7

Dictionary master 8

Queue directory 9

Message buff er 10

Messa e list g 11

1-2

Table 1-1. Memory Link (Cont)

Field Name Type Length Description

Type Code --
Ready to be made
available 12

Data segment 13

02 ML.AVL Bit 48

03 ML.F.AVL Bit 24 Points to the next "available"
memory link. When this is the
last link, ML.F .A VL contains
@FFFFFF@.

03 ML.B.AVL Bit 24 Points to the preceding "available"
memory link. When this is the
first link, ML.B.A VL contains
@FFFFFF@.

02 ML.DISK Remaps ML.A VL Bit 36 The ML.DISK field, comprised of
the first 36 bits of the ML.A VL
field, is the disk address associated
with the information stored in the
memory block described by this
memory link.

Memory Areas

Main memory space is classified into two types: available and in-use. Any area not currently being used is
marked "available." All other areas are considered by the MCP to be "in-use."

Obtaining Memory Space

Memory space is obtained by the MCP using the GETSPACE procedure. The various MCP routines that
reference GETSPACE pass parameters such as the memory size requirement, mix number of the requesting
program, and the address and type of data to be placed into the memory area.

GETSPACE then scans memory links, starting at the first memory link, searching for available area. Once
available space is found (ML.TYPE= 2), a memory link associated with that area is constructed and the
GETSPACE routine is exited, returning that memory address to the routine that requested the space. If no
space is available, (ML.TYPE "I= 2), GETSPACE returns@FFFFFF@. The MCP, depending on the situation,
can overlay areas to obtain a large enough contiguous area of memory.

Available areas (ML.TYPE= 2) can be used by any program, including the MCP. In most cases the avail­
able area is larger than the actual space needed. Since it is, however, inefficient to allocate more memory
than required, the MCP allocates only the required space and then delimits the area with memory links.
Figure 1-2 depicts a typical memory map.

First and Last Memory Links

The MCP maintains the address of the first and last memory links. These links, referred to as dummy links,
make it possible to scan total memory by delimiting the scanning search technique.

1-3

MCP BASE REGISTER__._..--------------------------.,

CSM AND MCP CONTROL INFORMATION

Fl RST MEMORY LINK (DUMMY LINK)

MEMORY LINK

LAST MEMORY LINK (DUMMY LINK)

MCP LIMIT REGISTER___..

MCP RUN STRUCTURE NUCLEUS

Figure 1-2. Typical Memory Map

Overlayable/Non-Overlayable Data

The MCP, when unable to find sufficient area to allocate during its first search through memory, then seeks
for those areas that can be overlaid, which in most cases are areas that already have copies on disk, such as
code segments. All program code is overlayable because it has copies on disk. When a code segment is
overlaid, the starting disk address, contained in ML.POINTER, is returned to the respective Code Segment
Dictionary entry. That dictionary entry is then marked "not present," indicating the code is not residing
in memory. The memory link field, ML.TYPE, is then marked "available" and the area is free to be used.
When data other than code has to be overlaid, a copy is written to disk before the area is made available if
a copy does not already exist. The MCP does have the ability to combine contiguous overlaid areas in order
to provide the requested space.

INTERRUPTS

AB 1700 interrupt is discovered by the interpreter and handled by the Central Service Module (CSM) or
the Master Control Program. Interrupts on the B 1700 are not serviced by hardware functions but by
system software. This function is termed a "soft" interrupt; therefore, the term "interrupt" implies a
"soft" interrupt unless otherwise specified.

1-4

B 1700 interrupts are classified into two types: external and program dependent. Interrupts, per se, are
discovered by interpreters during their fetch cycle (the process of decoding an S-op).

When discussed in conjunction with the MCP, interrupts can seem ambiguous in that the MCP never "sees"
processor interrupts as such. They are intercepted by the interpreters and, if necessary, translated into com­
municates for the MCP in the following categories.

a. Program-generated communicates

b. Interpreter-generated communicates.

c. CSM-generated communicates.

The CSM-generated communicates include:

a. Pointers to 1/0 descriptors representing 1/0 interrupts.

b. Entries representing Code Segment Dictionary addresses for needed MCP segments.

c. Run Structure Nucleus Communicate Message Pointers of normal state object programs indicating
one of the following:

1. Interpreter segment not present.

2. Code segment not present.

3. CSM segment not present.

4. Data segment not present.

5. Hi-priority 1/0 complete.

6. Trace print.

Table 1-2 describes the types of interrupts and the methods in which they are handled.

Table 1-2. Interrupt-Handling on the B 1700

...

MCP Control User Program Control

Type of Interpreter CSM Interpreter CSM
Interrupt Function Function Function Function

SERVICE Passes control Yields control to I/O Passes control to Yields control to I/O
REQUEST to CSM. driver; then returns CSM. driver; then returns

to interpreter. to interpreter.

TIMER Passes control Increments Timer Passes control to Increments Timer. If
to CSM. and returns control CSM. overflow occurs,

to MCP. return is to the MCP;
if not, return is to the
interpreter.

1/0 Passes control Stacks the I/O request Passes control to Stacks the I/O request
INTERRUPT to CSM. and returns control to CSM. and returns to the MCP.

MCP.

1-5

Table 1-2. Interrupt-Handling on the B 1 700 (Cont)

MCP Control User Program Control

Type of Interpreter CSM Interpreter CSM
Interrupt Function Function Function Function

MEMORY Causes halt and Builds the message
PARITY display. and returns to MCP.

OUT OF Causes halt and Builds the message
BOUNDS display. and returns to MCP.

CONSOLE Causes halt and Causes halt and
HALT display. display.

PROGRAM Causes halt and Builds the message
DEPENDENT display. and returns to MCP.

Program Communicates

All information in a program communicate is contained within the memory area allocated to the program
with the communicate message pointer of the program referencing the address and size of the communicate
message. This differs from interrupt communicates in that the interrupt message is contained within the
communicate itself. Table 1-3 describes the type of program communicates (RS.ITYPE = 01) referenced
by the message pointer in the Run Structure Nucleus.

Table 1-3. Program Communicates

Type Code Description Type Code Description

0 Undefined 12 Access File Information Block

Read 13 Data overlay

2 Write 14 Access disk file reader

3 Seek 15 Undefined

4 Sorter control 16 Undefined

5 Sorter read 17 Undefined

6 Undefined 18 Undefined

7 Undefined 19 Undefined

8 Open file 20 Terminate (End-of-Job)

9 Close file 21 Undefined

10 Position file 22 Time or date

11 Access File Parameter Block 23 Undefined

1-6

Table 1-3. Program Communicates (Cont)

Type Code Description Type Code Description
I------

24 Snooze 35 Freeze /Unfreeze

25 ZIP 36 Compile card information

26 Accept . 37 Dynamic Memory Base

27 Display 38 Memory Dump

28 USE return 39 Undefined

29 Sort handler 40 Undefined

30 Trace 41 Data Comm Queue;
Data Comm Write

31 Undefined
42 Data Comm Wait

32 COBOL abnormal end
43 Undefined

33 Sort End-of-Job
44 Program call

34 Undefined
45 Stack size change

Program-Dependent Interrupts

Program-dependent interrupts are generated in response to conditions detected by the interpreter of the
program, but need not be explicitly issued by the object program. The interpreter builds the communicate
message and places it into the communicate message pointer field of the Run Structure Nucleus and then
returns control to the MCP. Table 1-4 describes the types of program-dependent interrupts (RS.ITYPE=OO).
The format of the communicate message is as follows:

·-

RS.COMMUNICATE.MSG.PTR

Interrupt Address
Description: Identifier Type Not Used (If Required)

Field Length,
in Bits: 2 6 16 24

Identifier: RS.ITYPE RS.INMBR RS.ILENGTH RS.IADDRESS

1-7

Table 1-4. Program-De pendent Interrupts

RS.ITYPE Definition RS.ITYPE Definition

0 Undefined 19 Exponent overflow

1 Evaluation/Program Pointer 20 Exponent underflow
stack overflow

21 Expression out of range
2 Control stack overflow

22 Superfluous exit
3 Name/Value stack overflow

23 Out of memory space
4 Remap size error

24 Invalid link
5 Invalid parameter

25 Type error
6 Invalid substring

26 Integer overflow
7 Invalid subscript

27 Message transfer data not
8 Invalid return present

9 Invlaid case 28 Message transfer invalid data
template

10 Divide by zero
29-56 Not used

11 Invalid index
57 Sizechange cleanup

12 Read out-of-bounds, memory
parity 58 Interpreter segment not

present
13 Invalid operator

59 Hi-priority Reader/Sorter
14 Invalid parameter to value complete

descriptor
60 Put in ready queue (response to

15 Convert error timer overflow or 1/0 Interrupt)

16 Stack overflow 61 Trace print

17 Uninitialized data item 62 Code segment not present

18 Write out-of-bounds 63 Data segment not present

NOTE

On types 58, 62, and 63, the address of the system descriptor causing the "not
present" interrupt is in the address part of the communicate message.

All program-dependent interrupt types less than 57 cause the program involved to discontinue processing.
This action is relayed by the MCP to the console printer, with a message stating the problem, the current
value of the next instruction pointer (NIP), and termination information. If the TERM option is set, the
MCP automatically terminates the program without operator intervention.

1-8

External Interrupts

External interrupts are those not having any connection with a particular program or job being processed
at the time the interrupt occurs. Below are those interrupts that can be classified as external.

a. Timer.

b. I/O service request.

c. Memory parity error.

d. Memory out-of-bounds condition.

e. I/O interrupt. (Different from item b, above, because of apparent violation of base and limit
registers.)

Each of the above conditions generates an interrupt bit and is recognized by the examination of the appro­
priate bits in the CC or CD registers. (Refer to the B 1700 System Reference Manual, Form No. 1057155.)
In addition to the individual interrupt bits developed, the XYST register has a bit referenced as the INT
(INTERRUPT OR), which indicates that one or more of the interrupt conditions are true. The CSM first
tests the INT bit of the XYST register; if INT is true, the CSM then examines other bits to determine
specifically what caused the interrupt. If the CSM finds the INT bit false, no further checking is needed.

Interrupt and Communicate Servicing

The handling of an interrupt is accomplished by the outermost loop of the MCP, which gains control and
performs the following functions:

a. Handles unprocessed I/O interrupts via the NUTHIN.TDO and IOCOMPLETE procedures.

b. Updates the system clock.

c. Checks the ACTIVE SCHEDULE for programs waiting to be executed.

d. Empties the Communicate queue by calling the program handler (IH procedure).

e. Reinstates programs in the Ready queue.

MCP Non-Processing Mode

The MCP remains in its "outer loop" while waiting for processing. Basically the outer loop performs the
following:

a. If the system clock is greater than the next timer overflow interval, N .SECOND is cailed.

b. The MCP then enters a routine called NUTHIN.TDO and passes it a zero, causing any interrupts
in the Interrupt queue to be processed by the IOCOMPLETE routine.

c. The MCP then checks for an entry in the active schedule; if there is, the FIREPROG routine
attempts to execute the program.

d. If there is art entry in the Communicate queue, the MCP processes the communicate (IH
procedure).

e. If there is a program in the Ready queue, the MCP attempts to reinstate the program. When the
routine, M.REINST ATE, relinquishes control, the MCP processes the communicate (in the IH
procedure) caused by M.REINSTATE when it relinquished control.

f. The above functions perform in a continuous manner, forming the "outer loop."

1-9

SYSTEM INITIALIZATION

Before processing can begin, the system must be initialized. This consists of loading the Master Control
Program, Central Service Module, and the SDL Interpreter. A Clear/Start then readies the system for
operation.

~oc~urasfurCOLDSTART

CDLDSTART is the name of the routine used to initialize a B 1700 system. There are four basic steps to
COLDSTART:

a. Constructing and initializing the Disk Directory and available tables on the system disk.

b. Loading the MCP to the system disk.

c. Loading the SD L Interpreter and the CSM for the B 1710 and B 1 720 systems, as well as the
programs SYSTEM/INIT, SYSTEM/LOAD.DUMP, FILE/LOADER, and SYSTEM/MEM.DUMP.

d. Displaying a message to the operator to perform a Clear/Start. COLDSTART creates a table that
contains the variables needed by Clear /Start for processing control.

Table 1-5 describes the COLDSTART variable table used by the MCP.

Field Name

01 COLD.START.VARIABLES

02 CLEAR.START.FLAGS

03 CS.TRACT

03 CS.INTERP

03 CS.MCP

03 CS.GISMO (CSM)

03 CS.INIT

Table 1-5. COLDSTART Variables

~--·-·---r---------.---------·-----·---

Type Length

Bit 664

Bit

~l Bit

Bit

Bit

Bit 4

1-10

Description

The following flags are used at
Clear /Start to initialize the system.
The flags are pointers to the files
needed, and being used, during the
initialization.

CS.INTERP, CS.MCP, CS.GISMO,
and CS.INIT are local indices set
by Clear /Start to indicate which
file within a particular category
was selected.

On system disk resides a directory
from which Clear/Start selects the
files needed to initialize the sys­
tem. The directory format is an
array of 40 36-bit disk addresses
(one segment) followed by 36
30-character name entries (six
segments). Following this direc­
tory are the files referenced by
the above pointers.

Following are the files referenced
by CS.INIT.

Table 1-5. COLDSTART Variables (Cont)

Field Name Type Length Description
-----i

Code File

0 = Standard system
initializer

1 = Entry system (MCPI)
initializer

2 = Experimental system
initializer

3 = B 1710 series CSM

4 = B 1 720 series CSM

5 =

6 = Entry system (MCPI)

7 = B 1 71 0 series trace CSM

8 = B 1720 series trace CSM

9 =

10 = Entry system (MCPI)
trace CSM

11 = Experimental CSM

12 = B 1710 series MCP
interpreter

I 13 = B 1720 series MCP
interpreter

14 = Entry system (MCPI)
interpreter

15 = B 1710 series MCP trace
interpreter

16 = B 1 720 series MCP trace
interpreter

17 = Entry system (MCPI)
trace interpreter

18 = Experimental MCP
--

interpreter

19 = Standard MCP .

1-11

Table 1-5. COLDSTART Variables (Cont)

Field Name Type Length Description

20 = Entry MCP (MCPI)

21 = Trace MCP

22 = Entry trace MCP (MCPI)

23 = Experimental MCP

24 = Stand-alone memory
dump

25 = Stand-alone entry
(MCPI) memory dump

26 = Stand-alone disk dump

27 = Stand-alone SDL
program

28 = Stand-alone 1/0 de bug

29 = Loader for stand-alone
SDL program

30 = Experimental stand-
alone program (MIL)

02 NAME.TABLE Bit 36 Contains the beginning disk
address of the files listed under
CS.INIT.

02 INTERP.DIC.ENTRIES Bit 24 Contains the number of entries in
the Interpreter Dictionary.

02 CS.SIZE Bit 24 Contains the length of the
COLDSTART variable table.

02 DUMP.FILE Bit 24 Points to the disk address con-
taining a memory dump
(SYSTEM/D UMPFILE).

02 PAGE.SIZE Bit 24 Contains a page size in Control
Memory. This is referenced when
interpreters are being swapped in
and out of Control Memory.

02 MPF.TABLE Bit 36 Contains a disk address pointing
to the first entry in the multiple
pack file table. When more than
one multiple pack file is present,
forward/backward links connect
the additional multiple pack file
table entries.

1-12

Table 1-5. COLDSTART Variables (Cont)

Field Name Type Length Description

02 LOG .MIX.INFO Bit 36 References the time, number of
disk accesses, the log address, and
mix number of each job on the
system. For a Clear/Start the
MCP uses this data to update the
log.

02 DISK.A VAIL Bit 36 Contains the disk address of the
Working Available table.

02 DISK/DIRECTORY Bit 36 Contains the disk address of the
Disk Directory.

02 TEMP.TABLE Bit 36 Contains the disk address of the
Temporary Available table.

02 SYSTEM.DRIVES Bit 16 Contains 16 one-bit fields
identifying the system disk
drives present on the system.
There is a maximum of 16 system
disk drives.

03 SYSTEM.DRIVE Bit 1 Elementary field of the above
structure.

02 AVL.TABLE.DISP Bit 64 This field contains 16 four-bit
fields identifying the 10-segment
portion of the Temporary Avail-
able table assigned to each system
drive on the system. For example:
If drive 0 (DP A) and drive 3 (D PD)
are system drives, the SYSTEM.
DRIVES bit configuration would
be 1001000000000000. The
AVL.TABLE.DISP configuration
would be 0001000000000000. In
this example, DPD would be the
second Temporary Available table
constructed for the system drive.

02 SY.DAY Bit 5 Contains the current day.

02 SY.MONTH Bit 4 Contains the current month.

02 SY.YEAR Bit 7 Contains the current year.

02 SY.JDAY Bit 9 Cont~ins the current day (in
Julian date format).

02 SY.TIME Bit 21 Contains the time in hours,
minutes, seconds, and tenths of
seconds.

1-13

Table 1-5. COLDSTART Variables (Cont)

Field Name Type Length Description

03 SY.HOUR Bit 5 Contains the hour: 0-23.

03 SY.MIN Bit 6 Contains the minute: 0-59.

03 SY.SEC Bit 6 Contains the second: 0-59.

03 SY .1 OTHSEC Bit 4 Contains the tenth of second: 0-9.

02 SY.12HOUR Bit 5 Contains the hour: 0-12.

02 SY.DA YNAME Char. 9 Contains the day of the week.

02 SY.MERIDIAN Char. 2 Contains AM or PM.

02 SYSTEM.OPTIONS Bit 80 The following options contained
under SYSTEM.OPTIONS, Lexie
Level 03, (except those listed
below) are available and remain in
a reset condition until set. Those
which are preset at COLDSTART
are as follows:

TIME

DATE

BOJ

EOJ

TERM

DUMP

03 LOG.OPTION Bit 1 Provides the space on the system
disk for the log.

03 CHARGE.OPTION Bit 1 Requires that all programs sched-
uled for execution have a
CHARGE number.

03 LIB.OPTION Bit 1 Causes the MCP to display the
file-identifier for any resultant
action performed on the file.

03 OPEN.OPTION Bit 1 Causes the message, "file-identifier
OPENED," to be displayed at each
file open.

03 TERM.OPTION Bit 1 Instructs the MCP to automatically
discontinue (DS) processing a pro-
gram when an irrecoverable error
has occurred. (This option
eliminates the possibility of
obtaining a memory dump.)

1-14

Field Name

03 TIME.OPTION

03 DATE.OPTION

03 CLOSE.OPTION

03 PBT.OPTION

03 PBD.OPTION

03 BOJ .OPTION

03 EOJ .OPTION

03 SCHM.OPTION

03 LAB.OPTION

03 RMOV.OPTION

03 DUMP.OPTION

Table 1-5. COLDSTART Variables (Cont)

Type Length

Bit

Bit

Bit 1

Bit

Bit 1

Bit

Bit 1

Bit 1

Bit

Bit

Bit

1-15

Description

Causes the message "TR PLEASE"
to be displayed during a Clear/
Start. The operator is required to
enter the time before processing
can begin.

Causes the message "DR PLEASE"
to be displayed during a Clear/
Start. The operator is required to
enter the date before processing
can begin.

Causes the message, "file-identifier
CLOSED," to be displayed at each
file close.

Causes an output file assigned to a
printer or card punch to be diverted
to tape backup if the designated
output device is not available and
providing the program allows tape
backup.

Causes file backup to go to disk
under the same parameters as the
PBT.OPTION.

Causes a BOJ message to be dis­
played when a program begins
execution.

Causes an EOJ message to be
displayed when a program
reaches EOJ.

Causes the MCP to display a
message when a program is
placed in the waiting schedule.

Causes the tape label to be dis­
played each time a BOT (beginning­
of-ta pe mark) is read.

Automatically causes the removal
of the "old file" in a duplicate file
situation. This is similar to the
"RM" console message.

Creates a system dump file. If the
option is reset, the SYSTEM/
DUMPFILE is removed from the
Disk Directory.

Table 1-5. COLDSTART Variables (Cont)

--
Fie Id Name Type Length Description

03 ZIP.OPT! ON Bit 1 Displays on the console printer all
ZIP statements that are communi-
cated to the MCP.

03 MEM.OPT ION Bit 1 Causes the MCP to display a
message whenever there is no
available memory.

03 SWOl.OP TION Bit 1 Used for systems software
debugging.

03 SW02.0P TION Bit 1 Used for systems software
debugging.

03 SW03.0P TION Bit 1 Used for systems software
debugging.

Disk COL DST ART Variables

Because of the constant demand for memory space, the infrequently used portions of the COLD ST ART
variables are stored on the systems disk and are read into memory as needed. Table 1-6 contains a list of
these variables.

Table 1-6. Disk COLDSTART Variables

Field Name Type Length Description

01 DISK.CS.VARIABLES Bit 420

02 MASTER.IOAT Bit 36 Contains the disk address of the
I/O Assignment Table.

02 MASTER.DISK.A VAIL Bit 36 Contains the disk address of the
Master Available Table.

02 NEXT.LOG.RECORD Bit 36 Contains the disk address of the
next available log record.

02 LOG.SIZE Bit 24 Contains the remaining size of the
current area of the log.

02 NEXT.ELOG Bit 36 Contains the disk address of the
Elog (engineering log).

02 ELOG.SIZE Bit 24 Contains the size remaining in the
current area of the Elog.

02 JOB.NO Bit 24 Contains the job number that is
to be assigned to the next program
executed.

1-16

Table 1-6. Disk COLDSTART Variables (Cont)

Field Name Type Length Description

02 PBD.NO Bit 24 Contains the next number to be
assigned to a printer or punch
backup file.

02 DUMP.NO Bit 24 Contains the next number to be
assigned to a dump file.

02 CTLDCK.NO Bit 24 Contains the next number to be
assigned to a pseudo file.

02 LOG.NO Bit 24 Contains the next number to be
assigned to a log file.

02 Q.DISK Bit 36 Contains the disk address of work
areas used by the MCP; for exam-
ple, program rollouts, disk log, and
temporary FPBs.

02 TRACE.PPB Bit 36 Contains the disk address of the
FPB trace skeleton.

02 CTLDCK.DIRECTORY Bit 36 Contains the disk address of the
pseudo reader directory.

02 PBD.BLCKS.AREA Bit 24 Contains the blocking factor for
disk backup files.

02 LOG.LAST.AREA Bit 1 Indicates the last area of the log
is being used.

Clear/Start

The Clear/Start program structures memory and prepares the system for program execution. A Clear/Start
is performed for the following conditions:

a. System power-ups.

b. Unscheduled halts.

c. Apparent MCP or Interpreter loops.

d. Operating environment changes.

The Clear /Start procedure performs the following functions:

a. Writes correct parity throughout memory.

b. Loads selected operating environments from the Name Table. (To be discussed later in this
section.)

1-17

c. Creates a "run structure" with which the MCP may operate.

d. Passes control to the MCP.

Oear/Start can be performed on any system and with either MCP I or MCP II.

Name Table

The Name Table, built during COLDSTART, resides on disk and identifies systems software/firmware used
in the operational environment of the system. The Name Table allows recovery from an experimental mode
of operation to the standard mode. The COLDSTART procedure loads and identifies the required systems
software/firmware to begin operations on whatever hardware is available. After a Clear/Start, a systems
pack may be moved from one system to another, requiring only another Clear/Start to begin processing.
COLD ST ART loads the following systems software/firmware:

a. Standard MCP.

b. SD L Interpreter for the B 1 71 0 series.

c. SDL Interpreter for the B 1 720 series.

d. CSM for the B 1710 series.

e. CSM for the B 1720 series.

f. System Initializer.

g. SYSTEM/LOAD.DUMP

h. FILE/LOADER

i. SYSTEM/MEM.DUMP

A Clear/Start is required to effect any environment change. The changed systems software/firmware
becomes the new basis for operation, and remains in effect until changed. However, limited environmental
switching can be done on a temporary basis during the Clear/Start procedure. Table 1-7 contains the Name
Table entries.

Table 1-7. Systems Software/Firmware

Name Table System
Entry Number Mnemonic Description

0 N Standard System Initializer

1 NE Entry System Initializer.

2 NX Experimental System Initializer.

3 GI B 1710 Central Service Module.

4 G2 B 1720 Central Service Module.

5 G3 Reserved.

6 GE Entry Central Service Module.

1-18

Table 1-7. Systems Software/Firmware (Cont)

Name Table System
Entry Number Mnemonic Description

7 GIT B 1710 Trace Central Service Module.

8 G2T B 1 720 Trace Central Service Module.

9 G3T Reserved.

10 GET Entry Trace Central Service Module.

11 GX Experimental Central Service Module.

12 11 B 1710 MCP Interpreter.

13 12 B 1720 MCP Interpreter.

14 IE Entry MCP Interpreter.

15 IIT B 1710 MCP Trace Interpreter.

16 12T B 1720 MCP Trace Interpreter.

17 IET Entry MCP Trace Interpreter.

18 IX Experimental MCP Interpreter.

19 M Standard MCP II.

20 ME Entry MCP (MCPI).

21 MT Trace MCP.

22 MET Entry Trace MCP.

23 MX Experimental MCP.

l 24 SD Stand-Alone Memory Dump (required for
any system dumps).

25 SDE Stand-Alone Entry Memory Dump.

26 SDD Stand-Alone Disk Dump.

27 SDL Stand-Alone SDL Program.

28 SIO Stand-Alone 1/0 Debug.

29 SL Loader for Stand-Alone SD L Program (needed
to load the SDL interpreter).

30 sx Stand-Alone Program (MIL).

1-19

SECTION 2
MCP - OBJECT PROGRAM COMMUNICATION

INTRODUCTION

The B 1700 system, whether operating serially (MCPI) or in·a multiprogramming environment (MCPII),
processes object programs generated by B 1700 compilers. This section discusses object programs, compilers,
code file (object code) structures, and object code execution.

COMPILATION

A compiler is a special-purpose computer program which accepts source statements in a language for which
the compiler was written, and translates those source statements into object code to be stored on disk either
temporarily or permanently. The compilation process requires specific functions to be performed by the
compiler and the Master Control Program. Certain control information about the program is stored on disk
with the program object code.

Compilation Types

The COMPILE control statement designates the type of compilation to be performed:

a. COMPILE

b. COMPILE

c. COMPILE

(and GO)

[TO] LIBRARY

SAVE

d. COMPILE [FOR] SYNTAX

Refer to the COMPILE statement in the B 1700 System Software Operational Guide, Form No. 1068731,
for additional information concerning the COMPILE statement. -- -- -

MCP-Compiler Recognition

The COMPILE statement is a request to the MCP to schedule a particular progr~m having special parameters
for execution. The COMPILE statement is scanned for the type of compilation to be performed.

OBJECT PROGRAMS

Compiler output is an object program. Object programs are stored on disk, either temporarily or
permanently, in executable format. Object program structure consists of various components, some of
which are optional depending upon requirements of each language. The following terms pertain to object
programs:

Term

Object program

Object code

S-code

Object program file

Description

Output of a compiler containing a Program
Parameter Block, File Parameter Blocks,
and object code.

The executable code in an object program.

The object code that is interpreted by an
S-machine (discussed later in this section).

A disk copy of the object program.

2-1

An object program file may have one or more of the following components:

a. Program Parameter Block (required).

b. Scratchpad area (required).

c. File Parameter Blocks.

d. S..code (required).

e. Data Segment Dictionary.

f. Code Segment Dictionary (required).

g. Data Segments.

The Program Parameter Block (PPB) and the scratchpad area (an MCP/object program work area) reside in
the first two disk segments of all code files, as illustrated in figure 2-1.

SEGMENT 0 SEGMENT 1 OBJECT CODE

(VARIES DEPENDING UPON COMPILER)

p p B SCRATCHPAD AREA

0 2

Figure 2-1. MCP/Object Program Work Area Example

Program Parameter Block (PPB)

The first disk segment (relative zero) of all code files generated by a compiler is the Program Parameter
Block (PPB). It contains information and reference addresses needed in the processing of an object
program, and is classified into two parts: general information, and log information.

General information is supplied by the compiler during compilation and contains the data required by the
MCP to schedule a program for execution. At execution time, the MCP expands the PPB from one segment
to three, supplying additional information needed for execution, for the system log, and for run-time
control. Table 2-1 describes the Program Parameter Block format.

2-2

Table 2-1. Program Parameter Block

Field Name Type Length Description

01 PROGRAM.PARAMETER.BLOCK Bit 2332

02 PROGRAM.NAME Char 30 Contains the program-identifier.

03 PROG.CURRENT.DIRECTORY Char 10 Contains the program pack-
identifier.

03 PROG.NAME.FIRST Char 10 Contains the program family-name.

03 PROG.NAME.SECOND Char 10 Contains the program file-
identifier.

NOTE

For a compilation, the log copy of
the PPB contains the program
name of the compiler.

02 PROG .INTRINSIC Char 20 Contains the intrinsic file-identifier.

03 PROG.INTRINSIC.DIRECTORY Char 10 Contains the intrinsic pack-
identifier.

03 PROG.INTRINSIC.NAME Char 10 Contains the intrinsic family-
identifier.

02 PROG.INTERP.NAME Char 30 Contains the interpreter identifier.

03 PROG.INTERP.DIRECTORY Char 10 Contains the interpreter pack-
identifier.

03 PROG.INTERP.NAME.FIRST Char 10 Contains the interpreter
family-name.

\

03 PROG.INTERP.NAME.SECOND Char 10 Contains the interpreter file-
identifier.

02 PROG.PRIORITY Bit 4 Contains the priority of the
program. (Compiler default = 4.)

02 PROG.BEGINNING Bit 32 Contains the first instruction
pointer.

02 PROG.STATIC.CORE Bit 24 During compilation the compiler
calculates the amount of memory
to be allocated that immediately
follows the base register of the
program. During execution if there
are data segments present, this
field is the same size that is
assigned in the first en try of the
Data Dictionary when the program
was compiled. If a disk address is

2-3

Table 2-1. Program Parameter Block (Cont)

Field Name Type Length Description

present in the dictionary en try, the
memory allocated starts from that
disk address.

02 PROG.DYNAMIC.CORE Bit 24 Contains the size of dynamic
memory.

02 PROG.TOTAL.CORE Bit 24 Contains the smallest amount of
memory required to execute the
program. PROG.TOTAL.CORE
consists of the following
components:

PROG.STATIC.CORE, plus
PROG.DYNAMIC,CORE, plus
DATA DICTIONARY SIZE,

plus the
FIB DICTIONARY SIZE.

02 PROG.BIGGEST.SEG Bit 24 Contains the size of the largest code
segment.

02 PROG.DATA.DIC Bit 64 Contains the Data Dictionary
descriptor.

02 PROG.SEG.DIC Bit 64 Contains the Segment Dictionary
descriptor.

NOTE

A normal descriptor contains the
position, length, and the type of
data that is referenced.

02 PROG.FPB.ADDRESS Bit 24 Contains the relative disk address of
the first FPB in the program file
(relative to the base of the code
file). FPBs are contiguous.

02 PROG.FILES Bit 8 Contains the total number of files
in program. The maximum is 225.

02 PROG.CHARGE.NUMBER Bit 24 Contains the user-assigned charge
number of the program.

02 PROG.ONLY.SEG Bit 10 Reserved for the SDL overlay
handler.

02 PROG.FREEZER Bit 1 Prohibits the program to be rolled-
out of memory.

02 PROG.LINKS Bit 1 Indicates that memory links are
needed in the dynamic memory
area.

2-4

Table 2-1. Program Parameter Block (Cont)

Field Name Type Length Description

02 PROG.TRACE Bit 8 Enable a trace to begin with the
first executable statement.

02 PROG.SCHED.PRIORITY Bit 4 Contains the program scheduling
priority.

02 PROG.VIRTUAL.DISK Bit 24 Contains the number of disk seg-
ments for data overlays. If the field
contains zeros and data overlays
are required, 1000 disk segments
are assigned.

02 PROG.IPB Bit 24 Contains the relative file location of
the interpreter parameter block.

02 FILLER Bit 92

NOTE

The entries above this point are compiler-generated; those entries below this point
are MCP-generated.

l

02 PROG.PROG.PTR Bit 36 Contains the absolute disk address
of the PPB.

02 PROG.EXECUTE.TYPE Bit 4 The execution type codes consist of
the following:

1 = Execute

2 = Compile and Go

3 = Com pile for Syn tax

4 = Compile to Library

5 = Compile and Save

6 = "Go" part of Compile and Go

7 = "Go" part of Compile and
Save

02 PROG.EOJ.TYPE Bit 4 Contains the condition of program
termination.

0 = Normal end-of-job

1 = DS or DP

2 = Error condition in program

3 = Aborted

2-5

Table 2-1. Program Parameter Block (Cont)

Field Name Type Length Description

02 PROG.GENERATOR.NAME Char 30 Contains the compiler-identifier.

03 PROG.GENERATOR. Char 10 Contains the compiler pack-
DIRECTORY identifier.

03 PROG.GENERATOR.NAME. Char 10 Contains the family-name.
FIRST

03 PROG.GENERATOR.NAME. Char 10 Contains the compiler file-identifier.
SECOND

02 PROG.DATE.COMPILED Bit 36 Contains the date and time program
was compiled.

02 PROG.SCHED.LINK Bit 36 Contains the disk address of the
next item in the schedule.

02 PROG.SCHED.PR.COPY Bit 4 Contain8 the scheduled priority.

02 PROG.SCHED.SIZE Bit 24 Contains the total amount of
memory required for the scheduled
job.

02 PROG.JOB.NUMBER Bit 24 Contains the job number of this
program.

02 PROG.FLAGS Bit 4 Contains MCP internal control
flags.

03 FILLER Bit 1 Reserved.

03 PROG.DONT.REENTER Bit 1 Indicates that the code segment
dictionary is non-standard.

03 PROG.SORT Bit 1 Indicates this is a sort program.

03 PROG.WAIT.OPERATOR Bit 1 Indicates this program is waiting
for response to an "FS" or "RS"
message.

02 PROG.EX.AFTER.NAME Char 30 Contains points that link condition-
ally executed programs such as
EXECUTE. THEN or
EXECUTE.AFTER to their
predecessor.

03 PROG.EX.AFTER.DIRECTORY Char 10 Contains the pack-identifier for
the EXECUTE.AFTER program.

03 PROG.EX.AFTER.NAME FIRST Char 10 Contains the family-name for the
EXECUTE.AFTER program.

03 PROG.EX.AFTER. Char 10 Contains the file-identifier for the
NAME SECOND EXECUTE.AFTER program.

2-6

Table 2-1. Program Parameter Block (Cont)

Field Name Type

02 PROG.SORT.DATA Bit

02 PROG.SORT.SPAD Bit

02 PROG.MY.MIX Bit

02 PROG.HIERARCHY Bit

02 PROG.PRIOR.MIX Bit

02 PROG.SCHED.DATE Bit

02 PROG.BOJ.DATE Bit

02 PROG.EOJ.DATE Bit

02 PROG.PROCESS.TIME Bit

02 PROG.OBJ.NAME Char

03 PROG.OBJ.DIRECTORY Char

03 PROG.OBJ.NAME.FIRST Char

03 PROG.OBJ.NAME.SECOND Char

02 PROG.PSEUDO.READER Bit

02 PROG.PORT.CHAN Bit

Scratch pad

Length

36

36

24

8

24

36

36

36

24

30 I

10

10

10

24

7

Description

Contains the disk address of the
sort parameters.

Contains disk address of the sort
area.

Contains the mix-index number of
the program.

Contains nesting Lexie Level for
the program procedure being used.

Contains the calling program
mix-number.

Contains the date and time the
program is scheduled for execution.

Contains the date and time of the
program BO J.

Contains the date and time of the
program EOJ.

Contains the total processor time
of the program ..

Indicates the compilation is
completed.

Contains the object program
pack-identifier.

Contains the object program
family-name.

Contains the object program
file-identifier.

Contains the beginning address of
the pseudo reader table.

Contains the port and channel of
the disk unit on which the object
program resides.

The scratchpad is an area generated by the compiler that is utilized by the interpreters during program
execution. The initial scratchpad resides in the second disk segment of all code files, immediately following
the Program Parameter Block (PPB). It is the responsibility of the compiler to generate the initial scratch­
pad settings. The contents of the scratchpad are dependent on the S-language represented by the
S-machine state during processing. When a program is first permitted to execute, the scratchpad in the

2-7

processor is loaded from the scratchpad image of the object program on disk. When a program relinquishes
control, the interpreter stores the scratchpad settings and restores them when the program is reinstated.
Figure 2-2 contains a skeleton scratchpad format.

w

16 °
R

D

s

...
SOOA •-r--

Jl

,,
-~

S15A

, ...

LEFT SIDE RIGHT SIDE
A B

24 BITS -- 24 BITS - -
ADDRESS ADDRESS

SOOB
----ic--

'~

,,
_.__

S15B

48 BITS .. ,
Figure 2-2. Skeleton Scratchpad

Scratchpad, as addressed by an interpreter, may be referenced as sixteen 48-bit words, or thirty-two 24-bit
words. Refer to the B 1700 System Reference Manual, Form No. I 057155, for a detailed explanation of
the scratchpad and its register-related functions.

The initial scratchpad settings and the storing and restoring of the processor state of a program are the two
major functions of the interpreter concerning scratchpad. Since the MCP is also a code file, the only differ­
ence between its scratchpad and that of an object program is the internal settings; the format and size are
the same.

The MCP at program beginning-of-job copies the initial scratchpad settings from disk into the field
RS.M.MACHINE contained in the Run Structure Nucleus of the program. When the program receives
control and begins processing, the interpreter loads portions of the RS.M.MACHINE into the processor
scratchpad. When the program relinquishes control, the interpreter stores the appropriate scratchpad
settings back into RS.M.MACHINE. The interpreter reloads the scratchpad settings the next time the
program gains control.

The S-machine is the processor structure of an object program. The instructions of the object program while
in the processor are called S-operators or S-ops. The combined set of these S-operators is called the S-code.
The interpreter fetches these S-operators, determines the operation to be performed, and executes a series
of microinstructions to achieve the desired result. The various S-machines, being interpreted by sets of
microinstructions, enable the B 1700 to execute different language structures in the processor at the same
time.

Figure 2-3 shows the operational flow of a program and its S-machine, which consists of the CSM/MCP
interface, data and associated addressing, and the S-code with its associated fetch routine.

2-8

S-Code

UNDER CONTROL OF
THE INTERPRETER

\
\
\
\
\
\

The compiler, by scanning a program's source language statements, generates object code. Compilers formu­
late the object code into logical divisions, called segments, for referencing by the MCP during execution.
This can be done either at the programmer's discretion or by criteria within the compiler itself. In
SDL, the segment dictionaries themselves are segmented (called pages).

The object code is addressed by page number, segment number, and displacement value. The page and
segment numbers are indices into the Code Segment Dictionary (explained below). Displacement is a
pointer to the code relative to the base of the segment. The base address is contained in the dictionary
descriptor.

Code Segment Dictionary

The compiler builds a Code Segment Dictionary for each object program that references the addresses and
lengths of each code segment. There is an entry in the dictionary for each code segment.

The Code Segment Dictionary provides the MCP with the address and location, whether in memory or on
disk, of each code segment used by a program. The program references its code symbolically by the page,
segment, and displacement value. The MCP, through a field in the Run Structure Nucleus, locates the
Code Segment Dictionary, consisting of system descriptors (see table 2-2). If the code segment desired is
in memory, it is at the address stored in SY.CORE. If the code segment is on disk, SY.ADDRESS contains
the disk address. The length of the code segment is given in SY.LENGTH.

2-9

Table 2-2. System Descriptor

Field Name Type Length Description

01 SYSTEM.DESCRIPTOR

02 SY.MEDIA Bit 2 Indicates whether the data being
referenced is on disk or in memory.

02 SY.LOCK Bit 1 Not implemented.

02 SY.IN.PROCESS Bit 1 Indicates whether there is an I/O in
process for the information repre-
sented by this descriptor. If so, the
field, SY.CORE, contains a refer-
ence pointer to the I/O descriptor.

02 SY.INITIAL Bit 1 Indicates that the field,
SY.ADDRESS, is a disk address and
is read-only data. If the operation is
a write, then the MCP finds disk
space and replaces the address in
SY.ADDRESS.

02 SY.FILE Bit I Indicates that this descriptor refer-
ences a file whose user count is to
be decremented when this descrip-
tor is processed.

02 FILLER Bit 10 Reserved.

02 SY.TYPE Bit 4 Contains a type code indicating
the kind of data type represented
by this descriptor.

Type Description

0 Bit

I Digit

2 Character

3 Normal descriptor

4 Disk segment

5 System descriptor

6 System intrinsic

02 SY.ADDRESS Bit 36 Contains the address whether on
disk or in memory of the informa-
tion referenced by this descriptor.

2-10

Table 2-2. System Descriptor (Cont)

Field Name Type Length Description

03 FILLER Bit 12 Contains the port, channel, and unit
number if this is a disk address.

03 SY.CORE Bit 24 Contains the address of the data
(memory or disk).

02 SY.LENGTH Bit 24 Contains the number of units or
items referenced by this descriptor
as determined by the field,
SY.TYPE.

Data Dictionary

The Data Dictionary of an object program references the address and length of the data described in the
data definitions of the program. If the data is not segmented, the Data Dictionary has only one entry; other­
wise, there is an entry for each data segment declared by the programmer, as is the case with COBOL.

A program may need to process more data than is possible to have present in memory for the lifetime of
the run. The Data Dictionary gives the programmer, or in some cases the compiler, the ability to group
data into "blocks," some of which can be in memory or on disk at any point during the execution of the
program. When a program references a data item and it is not present in memory, the MCP brings into
memory the data segment of that item. This operation can require the writing out of other data segments in
order to make memory space available. The field PROG.DYNAMIC.CORE in the PPB specifies the size of
the memory area to be reserved for program data segments. All data segments of the program compete for
this space.

The first entry in the Data Dictionary describes the static memory space of the program. If the length field
of this entry is non-zero, the MCP initializes the static memory from that entry at BOJ.

The COBOL compiler, for example, initializes WORKING STORAGE data as the program is compiled,
storing the initialized data in the object code file on disk. When initialized data is stored on disk, the relative
disk address of the data segment is stored in the directory entry that describes the data. The initialize bit,
SY .INITIAL of the dictionary entry, is set to 1 at BOJ, indicating to the MCP that it must obtain a new
disk area to contain the data segment the first time it is overlaid.

File Parameter Block (FPB)

Compilers build a File Parameter Block (FPB) for.each file declared in an object program. The length of
each FPB is one disk segment. The FPB defines the file and its characteristics. At BOJ, the MCP stores both
the File Parameter Block and the Program Parameter Block in the log area on disk (regardless of the LOG
option setting) for reference during execution. Table 2-3 describes the FPB format.

NOTE

The disk space used to store the PPB and the FPBs is returned at EOJ if the LOG
option has not been set.

2-11

Table 2-3. File Parameter Block

Field Name Type Length Description

01 FPB Bit 1088

02 FPB.FILE.NAME Char 10 Contains the internal file name.

02 FPB.NAMES Char 30 Contains the external file name.

03 FPB.PACK.ID Char 10 Contains the disk pack-identifier.

03 FPB.MULTI.FILE.ID Char 10 Contains the family.;name.

03 FPB.FILE.ID Char 10 Contains the file-identifier.

02 FPB.HDWR Bit 6 Contains the hardware-type code.

02 FPB.MODE Bit 4 Contains the data recording mode.

03 FPB.EVEN.PARITY Bit Contains the parity:
1, even; 0, odd.

03 FPB.CODE.TYPE Bit 3 000 =EBCDIC
010 = BCL
001 =ASCII
011 =Binary

02 FPB.BUFFERS Bit 24 Contains the number of buffers
requested.

02 FPB.BACKUP Bit 2 Contains the type of file backup:

00 = Either tape or disk
01 = Tape only
1 0 = Disk only
11 = Either tape or disk.

02 FPB.BACKUP.OK Bit Indicates that file backup is
permitted.

02 FPB.HDWR.OK Bit 1 Indicates that sending to
hardware permitted.

02 FPB.BOOLEANS Bit 24 Contains control flags and data
concerning this file.

03 FPB.FORMS Bit Indicates the output file requires
special forms.

03 FPB.OPTIONAL Bit Indicates this is an optional file.

03 FPB.VARIABLE Bit Indicates this file contains variable-
length records.

03 FPB.LOCK Bit Indicates that this file is to be
"locked" at termination time.

2-12

Table 2-3. File Parameter Block (Cont)

Field Name Type Length Description I
03 FPB.COBOL Bit 1 Indicates an implied OPEN not

allowed.

03 FPB.EOP Bit 1 Indicates the presence of an end-
of-page routine.

03 PPB.DEFAULT Bit 1 Indicates the MCP is to assign the
block size, record size, and other
default attributes for input disk or
tape files according to the disk file
header or tape label.

03 FPB. PSEUDO Bit 1 Indicates that this is a pseudo
reader file.

03 FPB.RMT.KEY Bit 1 Indicates key field has been
assigned for the Network
Definition Language (NOL)
data communications.

03 FPB.NO.LABEL Bit 1 Overrides the file label and uses
the unit name (PPB.UNIT.NAME).

03 PPB.WORK.FILE Bit 1 Indicates the presence of a program
work file. (The job-number is
included in the family-name.)

02 PPB.RECORD.SIZE Bit 24 Contains the record size
in bits.

02 PPB.RECORD.PER.BLOCK Bit 24 Contains the number of records
per physical record (block).

02 FPB.MAX.BLOCK.SIZE Bit 24 Contains the maximum physical
record size, in bits, for variable
length records, and is not con-
sulted if PPB.VARIABLE is 0.

02 PPB.ADVERB Bit 12 When this is an implied OPEN,
this field contains the type of
open.

02 PPB.LABEL Bit 48 Contains the descriptor pointing
to the user label area in memory.

03 PPB.LABEL.LENGTH Bit 24 Contains the length of the label
area in bits.

03 FPB.LABEL.ADDRESS Bit 24 Contains the address of the label
area.

02 PPB.LABEL. USE Bit 32 Contains the segment and dis-
placement addresses of the label
routine.

2-13

Table 2-3. File Parameter Block (Cont)

---·---
Field Name Type Length Description

02 FPB.LABEL.TYPE Bit 4 Contains the type of file label:
0 =Burroughs Standard;
I = unlabeled.

02 FPB.SAVE Bit 24 Contains the file retention save
factor for magnetic tape and disk.

02 FPB.REEL Bit 24 Contains the reel number.

02 FPB.SERIAL Bit 24 Contains the serial number.

02 FPB.USE.ROUTINE Bit 32 Contains the segment and dis-
placement of the first instruction
in the USE routine.

02 FPB.USE.AREA Bit 48 Contains the 24-bit length and the
24-bit address referencing the
work area of the USE routine.

02 FPB.SR.STATION Bit 4 Contains the read station identi-
fier for the Reader/Sorter.

02 FPB.ACCESS Bit 4 Contains the file access code:
0 = serial; I = random.

02 FPB.AREAS Bit 24 Contains the maximum number of
disk areas allowed for this file.

02 FPB.EU.DRIVE Bit 4 Contains the specified electronics
unit (EU) or the drive number on
which the file resides when
FPB.INC.EU or FPB.SPECIAL.EU
is equal to 1.

02 FPB.ALL.AT.OPEN Bit Allocates all areas of file at open
time.

02 FPB.CYL.BOUNDARY Bit Allocates the file areas on cylinder
boundaries (disk-pack or cartridge
only).

02 FPS.MULTI.PACK.FILE Bit Enables the file to be multi-pack.

02 FPB.SPECIAL.EU Bit Indicates the file resides on a
specified EU or drive specified
by FPB.EU.DRIVE.

02 FPB.INC.EU Bit Increments the EU or drive for
each data area.

02 FILLER Bit 3 Reserved.

02 FPB.REPETITIONS Bit 8 Contains the number of copies for
a backup file.

2-14

Table 2-3. File Parameter Block (Cont)

---.--· -......,

Field Name Type Length Description

02 PPB.OPEN Bit 24 Contains the date of the last file
open.

02 FPB.lST.OPEN Bit 24 Contains the date the file was first
opened.

02 PPB.RECORD.COUNT Bit 24 Contains the number of records
currently accessed.

02 PPB.BLOCK.COUNT Bit 24 Contains the number of blocks
currently accessed.

02 PPB.NO.OPEN.AND.CLOSE Bit 16 Contains the number of opens and
closes on this file.

02 FPB.CUMULA TIVE Bit 24 Contains the total time that the
file was open.

02 PPB.ERRORS Bit 24 Contains the number of irrecover-
able read/write errors.

02 FPB.MCPDATA Bit 36 Contains the file header disk address
address if FPB.MCPINTERNAL
indicates the MCP has created a
special internal file.

02 FPB.MCPINTERNAL Bit 1 Indicates the MCP has created an
internal file.

02 PPB.BACKUP.ALREADY Bit 1 Indicates that this is already a
backup file; therefore prohibits
the backing up of the file again.

02 PPB.NEW.FORMAT Bit 24 Contains the literal @FFFFFF@.

02 FPB.PSEUDO.PDR Bit 24 Contains the disk address of the
pseudo reader for this file.

File Information Block {FIB)

A File Information Block (FIB) is an MCP table residing in memory containing information concerning a
file. There is a FIB for every file that is processed. It is created from information in the associated File
Parameter Block, and is used during the processing of the file. For example, the record size and blocking
factor are two of the parameters that the FIB receives from the FPB.

Other information maintained by the MCP in the FIB consists of the input/output mode and the current
status of the file, as well as counters and data reference pointers. Table 2-4 describes the File Information
Block format.

2-15

Table 2-4. File Information Block

Field Name Type Length Description

01 FILE.INFORMATION.BLOCK Bit 782

02 FIB.TYPE

02 FIB.BOOLEANS

03 FIB.OPEN

03 FIB.INPUT

03 FIB.OUTPUT

03 FIB.PSEUDO

03 FIB.REVERSE

03 FIB.VARIABLE

03 FIB.READ.LOCK

03 FIB.DISK

03 FIB.TAPE

03 FIB.DISK.PACK

03 FIB.LABELED

03 FIB.CLUSTER

03 FIB.BACKUP

03 FIB.96

03 FIB.COBOL

03 FIB.EQT

03 FIB.STOP.IO

03 FIB.CYL.ALLOC

03 FIB.MPF

03 FIB.NEWFILE

03 FIB.NEW AREA

03 FIB.SPECIAL.EU

Bit

Bit

Bit

Bit

Bit

Bit

Bit

I Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

2-16

6

28

1
1

Contains the hardware unit on which
which the file resides.

The following fields are used by
the MCP, identifying the charac­
teristics of the file and its various
internal attributes.

Table 2-4. File Information Block (Cont)

Field Name Type Length Description
~--------------·-~---

03 FIB.INC.EU Bit

03 FIB.MCPINTERNAL Bit

03 FIB.W AITNEW AREA Bit

03 FILLER Bit 2

02 FIB.RETRY.COUNT Bit 12 Contains the number of read/
write retries.

02 FIB.UNIT Bit 12 Contains the physical location of
the unit.

03 FIB.CHANNEL Bit 7 Contains the port and channel of
the unit.

03 FILLER Bit 1 Reserved.

03 FIB.UNIT.NO Bit 4 Contains the hard ware unit
number.

02 FIB.UNIT.STATUS Bit 24 Contains the memory address of
the Input/Output Available Table
(IOAT) entry.

02 FIB.PPB Bit 36 Contains the FPB disk address of
this file.

02 FIB.RS Bit 24 Contains the memory address of
the limit register of the Run
Structure Nucleus.

02 FIB.RECORD Bit 48 Contains a dummy (skeleton)
descriptor created at file open and
used for read/writes.

03 FILLER Bit 8 Reserved.

03 FIB.RECORD.SIZE Bit 16 Contains the length of the next
data record to be read.

03 FIB .ALPHA.SIZE Bit 13 Contains the record size, in bits,
multiplied by 8.

03 FIB.RECORD.ADDR Bit 24 Contains the address of the next
logical record to be processed in
the buffer.

02 FIB.CURRENT Bit 24 Contains the memory address of
the current buffer.

02 FIB.BUFFER Fixed 24 Contains the size of the buffer
referenced in FIB.CURRENT.

2-17

Table 2-4. File Information Block (Cont)

Field Name Type Length Description
t---· ---------

02 FIB.BLOCK.SIZE Bit 24 Contains the maximum block size
of the file.

02 FIB.RECORD.COUNT Bit 24 Contains the number of logical
read/writes on the file.

02 FIB.BLOCK.COUNT Bit 24 Contains the number of physical
read/writes on the file.

NOTE

The MCP physically read/writes in
blocks of data, not individual
records. This is distinguished by
the term physical read/writes, as
opposed to logical read/writes.

02 FIB.HEADER Bit 24 Contains memory address of the
file header.

02 FIB.KEY Bit 24 Contains the current key used by
the MCP for accessing random

I
files.

02 FIB.RECORDS.BLOCK Bit 24 Contains the number of records
per block of the file.

02 FIB.CLOSE. TYPE Bit 12 Contains the type of close to be
performed.

02 FIB.RECORDS.AREA Bit 24 Contains the number of records
per disk area.

02 FIB.BLOCKS.AREA Bit 24 Contains the block address.

02 FIB.BPA.COUNT Bit 24 Contains the number of blocks
per area.

02 FIB.AREAS Fixed J 24 Contains the number of areas for
the file.

02 FIB.AREA.NUMBER Fixed 24 Contains the current area number
during serial type accessing.

02 FIB.SEGS Bit 24 Contains the number of disk seg-
ments per block.

02 FIB.EOF Bit 24 Contains the reference address of
the end-of-file (logical record).

02 FIB.BEOF Bit 24 Contains pointer to the block
end-of-file (physical record).

2-18

Table 2-4. File Information Block (Cont)

Field Name Type Length Description
!------------

02 FIB.ACCESS Bit 4 Contains the file access type:

0 = Serial
1 = Random

02 FIB.CHANNEL.INFO Bit 24 Contains a memory address point-
ing to Channel table entry.

02 FIB.EU.DRIVE Bit 4 Contains the special EU (unit)
number or drive number.

02 FIB.DISK.ADDRESS Bit 36 Contains the current disk address
of the file.

03 FIB.DISK.PC Bit 7 Contains the current port and
channel of the file.

03 FILLER Bit I Reserved.

03 FIB.DISK.EU Bit 4 Contains the drive number of the
file.

03 FIB.DISK.SG Bit 24 Contains the current disk address
of the file.

02 FIB.USE.ROUTINE Bit 32 Contains the segment and dis-
placement of the first instruction
in the MICR USE.ROUTINE of
the MCP.

02 FIB.USE.AREA Bit 48 Contains the length and address of
the MICR USE.ROUTINE work
area of the MCP.

02 FIB.MAX.RECORDS Bit 24 Contains the maximum number of
records the file may contain.

02 FIB.PSEUDO.RDR Bit 24 Contains the memory address of
the pseudo reader for this file.

PROGRAM OPERATION

The object program provides the MCP with information supplied by the programmer and the compiler that
is used to manage program execution. At BOJ, the MCP utilizes this information to provide memory space
and to build a program run structure.

Run Structure

The run structure of a program consists of an area in memory, bound by a base register and limit register, a
Run Structure Nucleus immediately following the limit register, and the Data and FIB Dictionaries. The
program S-code (object code) can reside anywhere in memory and is not considered part of the run
structure.

2-19

~

I

The area between the base and limit registers is used for program data consisting of both overlayable and
non-overlayable data. For example, a COBOL program run structure contains the following information
between its base and limit registers:

a. Edit table.

b. COP (current operand) table.

c. Special registers.

d. Data name monitor symbols.

e. Work area for intermediate results.

f. Overlayable data area.

g. Perform stack.

h. Alter table.

The format of information contained between the base and limit registers is dictated by the S-machine for
that program. Therefore, the run structure for COBOL is different than that of SDL. Figure 24 illustrates
the basic format of a program run structure, and figure 2-5 shows a program run structure as it appears in
memory.

Figure 24. Program Run Structure

2-20

BASE REGISTER

LIMIT REGISTER

STATIC MEMORY

DYNAMIC MEMORY

[OPTIONAL]

EXPANDABLE AND CONTRACTABLE
WITH CONTROL CARD AT BOJ

DATA DICTIONARY
[OPTIONAL]

FILE INFORMATION BLOCK
(FIB DICTIONARY)

DATA
ONLY

(DYNAMIC)
CAN BE ROLLED
OUT OF MEMORY

(STATIC)
CANNOT BE ROLLED
OUT OF MEMORY

Figure 2-5. Program Run Structure Memory Layout

Run Structure Nucleus

The Run Structure Nucleus (RS.NUCLEUS) immediately follows the limit register. Each program, including
the Master Control Program, has an RS.NUCLEUS. The RS.NUCLEUS contains information needed by the
MCP and interpreters to execute programs. All communication between the MCP and object programs
originates within a communicate message area in the RS.NUCLEUS of an object program.

Run Structure Nucleus Message Pointer

Each interpreter formulates communicate constructs that are received by the object program in its Run
Structure Nucleus message pointer. The communicate message pointer, located immediately after the
limit register, is 48 bits in length, and consists of the type of message plus its size and address. The location
addressed by the communicate message pointer is a designated address within the data space of the program
(between the base and limit registers) in which messages are sent to the MCP from the object program. The
communicate message pointer has the following format.

2-21

RS.COMMUNICATE.MSG .PTR

Field Length,
in Bits: 2 6 16 24

Description: Type of Type of Length, in Bits, Address of
Communicate Program- of the Communicate
or Interrupt Dependent Communicate Message

Interrupt Message
-

The first field (see RS.ITYPE in table 2-6) distinguishes between program communicates and interrupts.
The following codes identify the type of communciate or interrupt:

00 - Program-dependent or external interrupts.

10 - Undefined interrupt.

01 - Program communicate.

11 - Reserved for the MCP (used to call the TERMINATE.FILE.CLEANUP procedure for the program).

Run Structure Nucleus Reinstate Message Pointer

Messages from the MCP to the object program are placed in the Run Structure Nucleus reinstate message
pointer of the program. The reinstate message pointer is a 48-bit descriptor, divided into two 24-bit fields.
It signifies whether an exception condition has or has not taken place during the communicate, and indicates
the type of exception condition.

The MCP sets the first 24 bits of the Run Structure Nucleus message pointer (RS.REINST ATE.MSG.PTR)
to hexadecimal 000018 following a communicate request from an object program. The low-order 24 bits
indicate the results of the communicate. Table 2-5 describes the exception conditions of a communicate
message.

Table 2-5. RS.REINSTATE.MSG.PTR Exception Conditions

Type Code Result of Communicate
r------·-------+-------------·---------------------1

000000

000001

000002

000003

000004

000005

000006

000007

000008

No errors, valid communicate.

I/O requested on an unopened file.

Read requested on an output file.

Write requested· on an input file.

Seek requested on a serial file.

Disk record count exceeded.

Attempt made to read an unassigned disk area.

No available user disk.

Disk key exceeds the End-of-File pointer for a random
file.

2-22

Run Structure Nucleus Format

Table 2-6 describes a Run Structure Nucleus format as it appears to the MCP. The RS.NUCLEUS resides in
memory immediately following the limit register of its related program.

Table 2-6. Run Structure Nucleus

Field Name Type

01 RS.NUCLEUS Bit

02 RS.COMMUNICATE.MSG.PTR Bit

03 RS.ITYPE Bit

03 RS.INMBR Bit

03 RS.ILENGTH Bit

03 RS.IADDRESS Bit

02 RS.COMMUNICATE.LR Bit

02 RS.REINSTATE.MSG.PTR Bit

02 RS.MY.BASE Bit

02 RS.MY.LIMIT Bit

02 RS.MCP .BIT Bit

02 RS.NIP Bit

2-23

Length Description
----+-----------------~

2100

48

2

6

16

24

24

48

24

24

32

All communication from the pro­
gram to the MCP takes place
through the communicate message
pointer. Each interpreter has access
to the program communicate mes­
sage pointer.

Contains the type of message:
communicate or interrupt.

Contains type code for a program­
dependent interrupt.

Contains the length field of a
program communicate.

Points to the memory address
containing the communicate
message.

Points to the memory address of
the limit register with which this
program communicates. Normally,
this is the address of the MCP limit
register.

Contains a communicate message
from the MCP to the program.
However, if no exceptions are
encountered, the field contains
zero.

Contains the address pointing to
the base register of this program.

Contains the address pointing to
the limit register of this program.

Indicates this is the MCP Run
Structure Nucleus.

Contains a pointer to the next
instruction.

Table 2-6. Run Structure Nucleus (Cont)

Field Name Type Length

02 RS.SEG.DIC.PTR Bit 24

02 RS.DATA.DIC Bit 24

02 RS.INTERP.ID Bit 5

02 RS.INTRINSICS.LOC Bit 10

02 RS.M.MACHINE Bit 768

02 RS.PRIORITY Bit 24

03 RS.PRIORITY.INTEGER Bit 4

03 RS.INSTANT.PRIORITY Bit 4

03 RS.PRIORITY.FRACTION Bit 16

02 RS.NUMBER.FILES Bit 8

02 RS.BOOLEANS Bit 24

03 RS.IL Bit

03 RS.UL Bit

03 RS.OF Bit

03 RS.FR Bit

2-24

Description

Contains a pointer to the memory
address of the Code Segment
Dictionary.

Contains a pointer to the memory
address of the Data Dictionary.

Identifies the interpreter being
used by referencing its entry in the
Interpreter Dictionary.

Contains the page and segment
displacement addresses of the SDL
virtual memory intrinsic.

Contains the scratchpad (processor
or S-machine state of the program)
at program roll-out.

Contains the assigned priority of
the program which includes the
main priority assigned, the frac­
tional portion, and the internally
controlled priority assigned by
the MCP.

Contains the assigned priority of
the program. Default is 4.

Not used.

Not used.

Contains the total number of
files declared by the program.

Contains a series of flags used in
conjunction with the RS.MCP.USE
field indicating that the program
is waiting for operator intervention
signified by the bits set in the
following fields.

Console message

Console message.

Console message.

Console message.

Table 2-6. Run Structure Nucleus (Cont)

Field Name Type Length Description

03 RS.FM Bit 1 Console message.

03 RS.OU Bit 1 Console message.

03 RS.OK Bit 1 Console message.

03 RS.RM Bit 1 Console message.

03 FILLER Bit 15

02 RS.TYPE Bit 16 Contains the disk copy address of
this program.

02 FILLER Bit 4

02 RS.AUXl Bit 24 Used as a temporary storage area
for MCP communicates.

02 RS.Q.IDENT Bit 24 Identifies the queue to which the
program belongs.

02 RS.LAST.OVL Y Bit 24 Contains a pointer to the last
program data overlay.

02 RS.DATA.OVERLAYS Bit 24 Points to the dynamic memory
address of the program.

02 RS.LAST.LINK Bit 24 Contains a pointer to the last
memory link within the dynamic
memory space.

02 RS.WAIT.EVENT Bit 24 Contains the address of the MCP
event routine that caused the pro-
gram to be placed in a "wait"
condition. It usually references
the memory address of the result
descriptor field within the 1/0
descriptor for which the program
is waiting an 1/0 completion.

02 RS.SER.NO Bit 24 Contains the disk pack serial
number for multiple pack files.

02 FILLER Bit 4

02 RS.OVLY.DISK.PTR Bit 12 Contains an index into the data
overlay area on disk.

02 RS.OVL Y.DISK.SIZE Bit 12 Contains the total data overlay
space available on disk.

I

2-25

Table 2-6. Run Structure Nucleus (Cont)

Field Name Type Length Description

02 RS.MIX.NMBR Bit 24 Contains the mix-index number
of this program.

02 RS. FIB.DIC Bit 24 Points to the memory address of
the File Information Block (FIB).

02 RS.TRACE Bit 24 Points to the memory address of
the trace print line.

02 RS.TRACE.FIB Bit 24 Points to the memory address of
the FIB during the trace mode of
operation.

02 RS.TRACE.BITS Bit 8 Contains flags denoting the type
of trace being performed.

02 RS.MEDIA Bit 1 Indicates whether the program is
on disk or residing in memory.

02 RS.LENGTH Bit 24 Contains the length of the program
run structure.

02 RS.Q.LINK Bit 24 Points to the memory address of
the Run Structure Nucleus of the
next program.

02 RS.ST A TUS Bit 24 Checks the status of a program.
Example: When MCP recognizes
that a ''WY" console message
has been entered, RS.STATUS
is scanned, giving condition of
the program. Status codes and
their descriptions are:

Status Code Description

0 Executing.

1 No file.

2 No user disk.

3 Duplicate library.

4 Duplicate input file.

5 Possible duplicate file - multi-pack files.

6 Waiting for hardware device.

7 Program stopped.

2-26

Table 2-6. Run Structure Nucleus (Cont)

Field Name Type Length Description

Status Code Description

8 Waiting 1/0 complete.

9 Waiting a data communication message.

10 Waiting overlay.

11 Waiting keyboard input.

12 Hardware not ready.

13 Waiting operator action.

14 Waiting to close a file.

15 Waiting DS or DP.

16 Waiting for a continuation pack.

17 File not on disk.

18 Locked file open.

19 Waiting core transfer.

20 Program in a wait status.

21 No memory, waiting in communicate queue.

22 No memory, waiting in ready queue.

23 Stopped in communicate queue.

24 Stopped in ready queue.

25 Waiting in communicate queue.

26 Waiting in ready queue.

29 Terminating.

30 Data in ready queue.

31 Data in communicate queue.

2-27

Table 2-6. Run Structure Nucleus (Cont)

----~·-·---·--·---- --·------ --------··---- -

Field Name Type Length Description
--------------------·----·-·-·

02 RS.JOB.NUMBER Bit 24 Contains the job number of this
program.

02 RS.DISK.USE Bit 20 Contains the total number of disk
accesses for program overlays.

02 RS.TIME Bit 20 Contains the total processor
elapsed time for this program.

02 RS.PROG.PTR Bit 36 Contains the disk address of the
code file.

02 RS.PAUSE Bit 24 Contains the time, in tenths of a
second, that this program is not
being processed.

02 RS.DONT.REENTER Bit Indicates that the program is not
allowed to share its Code Segment
Dictionary.

02 RS.SD.PTR.FLAG Bit Indicates that the field
RS.SEG.DIC.PTR. points either to
the memory address of the Code
Segment Dictionary or to the
memory address of the dictionary
container.

02 RS.LINKS Bit Indicates that memory links are
present.

02 RS.ABORT Bit Indicates that the program is
ready to be discontinued.

02 RS.DISK Bit 36 Contains an address pointing
to the location of the code when
rolled-out of memory.

02 RS.RECAUSE Bit Ensures that when the program is
returned to memory for processing
that it enters the CAUSE routine
of the MCP.

02 RS.IN.MOTION Bit 1 Indicates that the program is in the
process of being rolled-out or
rolled-in.

02 RS.HIERARCHY Bit 8 Contains the nesting level of the
program initiated by a program
"CALL". There is a maximum
of 255.

02 RS.APPARATION Bit Indicates that this program, while
executing, referenced another pro-
gram and is now waiting for the
"called" program to terminate.

2-28

Table 2-6. Run Structure Nucleus (Cont)

Field Name Type Length Description

02 RS.SIZECHANGE Bit 1 Indicates that the scratchpad area
is being programma tically modified
in size.

02 RS.WAIT.MIX Bit 1 Indicates that the field, RS.PAUSE,
contains the mix-index of the pro-
gram for which this program is
waiting completion.

02 RS.WAIT.IS.JN Bit 1 Indicates that the field, RS.PAUSE,
contains the job-number of the pro-
gram for which this program is
waiting completion.

02 RS.OUT.MEM Bit 1 Indicates that the program has
stopped executing and is waiting
memory space to restart.

02 RS.OUT.ABS Bit 1 Indicates that the program has been
stopped by the operator.

02.RS.FREEZE Bit 1 Indicates that the program cannot
be rolled-out of memory.

02 RS.PSEUDO.READER Bit 24 Contains a pointer to the memory
address of the current pseudo
reader.

02 FILLER Bit 24

02 RX.OVLY.DESC Bit 248 Contains the I/O descriptor used
for code and data overlays.

02 RS.MCP.USE Bit 1 Indicates that the event referenced
by the field, RS.BOOLEANS, must
occur before the program can con-
tinue processing.

02 RS.PPB Bit 36 Points to the disk address of the
file being opened.

03 FILLER Bit 12

03 RS.UNIT.INDEX Bit 24 Contains an index referencing an
entry in the Input/Output Available
Table (IOAT).

02 RS.OVLY.DISK.BASE Bit 36 Points to the base address of the
program data overlays on disk.

02 RS.LOG.PTR Bit 36 Points to the disk address of the
current PPB and FPBs.

2-29

Object Program In Memory at BOJ

Figure 2-6 contains a simplified program run structure consisting of a programs various pointers and their
relationship to each other.

2-30

OPEN Fl LE !OAT

FILE 1/0 1/0

I ! I IN FOR- I -
~ MAT ION

DES-
BUFFER

DES-
BUFFER ~ GRIP- CRIP-

BLOCK
TOR TOR

(FIB)

~ ./
CHANNEL

'Tl
cJCi"
i::

f\.. -- TABLE --
[] \... DISK

' FILE

' ' AREAS

"""I
(!)

N
I
0\

rJ).
Ju ~ l DISK FILE HEADER

IN MEMORY

§"
"d
:::-:
(!)

t;-.J 0..

w '"O
"""I
0

I
CLOSED L FILES PROGRAM RUN STRUCTURE DISK FILE i ON DISK HEADER -- ~ FILE DICTIONARY ON DISK

~ /' ·DATA DICTIONARY ~ I
RUN STRUCTURE NUCLEUS I

(JQ
"""I p.;

a
~
~

INDEX
1--+- ./ I INTERPRETER DICTIONARY A
~·--------/ I- ...,

SEGMENT DICTIONARY ADDRESS 1--

NEXT PROGRAM RUN STRUCTURE 1--1-+

rJ).
.......
"""I
i::

---., OVERLAY DATA
()
.......
i::
"""I

~ RESIDENT DATA
(!)

NOTE: FLOW LINES DENOTE NEXT PROGRAM
POINTERS. ~

RUN STRUCTURE

INTERPRETER DICTIONARY

ENTRIES

•
INTERPRETER SEGMENT

DICTIONARY

ENTRIES

CODE SEGMENT DICTIONARY

I I
CONTAINER

CODE SEGMENT DICTIONARY

ENTRIES

A

f
CODE CODE

SEGMENTS SEGMENTS
ON DISK

D ~
IN MEMORY

~

~
'j

~

'-...

INTERPRETER
SEGMENTS

ON DISK

~

INTERPRETER
SEGMENTS

D
IN MAIN
MEMORY

PORTIONS

INTERPRETE

CONTROL ME

}
CODE

SEGMENTS

D
IN MEMORY

OF

R IN

MORY

INTRODUCTION

SECTION 3
INPUT /OUTPUT

Input/Output (l/0) is the transfer of data between peripherals and the central processing unit. The I/O
components of the B 1700, referred to as the I/O subsystem, consist of the Central Service Module (CSM),
MCP, interpreters, and the object programs. Each peripheral has its own I/O channel which simultaneously
inputs/outputs data with other channels.

The MCP supports the I/O subsystem by performing the following functions:

a. Manages all peripherals on the system.

b. Initiates I/O for all programs.

c. Reinstates the pro~ram after I/O.

d. Builds a log of I/O activities.

e. Handles automatic error recovery procedures.

The programmer, by generating I/O source statements such as read and write causes the compiler to
formulate object code instructions containing the specific information needed to perform the 1/0. Once
the object program is in memory and is being executed, the interpreter communicates 1/0 results received
from the CSM to the MCP through the communicate message pointer contained in the program Run
Structure Nucleus.

The MCP prepares the data needed by the CSM to initiate the I/O. By constructing a description of the
I/O and providing a buffer for the 1/0 data, the MCP passes the I/O information to the CSM. The CSM
attempts to service the I/O while the MCP continues processing. Once data transfer is completed, control
is eventually returned to the object program for the next instruction.

During the interpreter fetch loop, an interrogation is made for any I/O needing service. If I/O servicing
is required, the CSM determines what I/O device or devices need servicing and performs the required
data transfers.

1/0 DESCRIPTOR

I/O descriptors are constructed by the MCP upon receiving an I/O request issued by an object program.
An I/O descriptor contains the control information needed to achieve the I/O operation. I/O descrip­
tors with multiple buffers are chained together, with each buffer having an associated descriptor.

After initiating the first I/O descriptor in the I/O buffer chain, the CSM examines the I/O result which is
located in the first 24 bits of the I/O descriptor. When the result of that 1/0 is received, the CSM checks the
I/O status of the next I/O descriptor and attempts to initiate that I/O request. While the CSM is linking
between I/O descriptors, processing continues.

NOTE

If an error condition exists on any I/O operation, that particular I/O chain is
broken and the MCP is notified.

The differences concerning the information contained within I/O descriptors are due to both the hardware
device selected and the nature of the I/O.

3-1

1/0 Status

After an I/O operation is complete and the ending buffer address of the data is stored, the status of the
I/O is placed in the I/O result field in the I/O descriptor. The result status is marked either complete or
complete with exceptions.

Table 3-1 describes the format of an I/O descriptor. For additional information concerning I/O
descriptors refer to the B 1700 System Reference Manual, Form No. 1057155.

Table 3-1. I/O Descriptor

Field Name Type Length Description

01 IO.DESCRIPTOR Bit 248

02 IO.RESULT Bit 24 Contains the I/O result status of
an attempted I/O operation.

03 IO.COMPLETE Bit 1 Used by the I/O control, indicating
a successful I/O has been com-
pleted.

03 IO.EXCEPTION Bit 1 Indicates whether an exception
condition has been issued by the
I/O control. The IO.EXCEPTION
and the IO .COMPLETE fields
enable the MCP to monitor the
status of the I/O at any time. The
settings of both fields that indicate
I/O status are:

IO.COMPLETE IO.EXCEPTION
Field Field Description -- --

0 0 Indicates that the I/O
descriptor is not in use.
The MCP writes zeroes
to this area.

0 1 Indicates that the I/O
request is in process.

1 0 Indicates that the I/O
is complete with no
exceptions.

1 1 Indicates that the I/O
is complete with
exceptions.

03 FILLER Bit 10

03 IO.DEST Bit 3 Contains the port identification
for this I/O descriptor.

3-2

Table 3-1. I/O Descriptor (Cont)

Field Name Type Length Description

03 IO.INTERRUPT Bit 1 Causes the CSM to store an
interrupt message in the INTER-
RUPT queue when the I/O
is complete.

03 IO.HI.INT Bit 1 Indicates that the MCP is not
requesting a high-priority inter-
rupt at operation complete
(MICR Reader/Sorter).

02 IO.LINK Bit 24
I

C,ontains an address pointing
t© the next I/O descriptor in the
c~iain. After storing the 1/0
status information, and after re-
turning any requested interrupt
message, the CSM (in the absence
of an error condition) fetches the
address contained in IO.LINK
referencing the next I/O
descriptor.

02 IO.OP Bit 24 Contains the type of the I/O
operation. It consists of the
operation code, any variants,
and the unit number of the I/O.

02 IO.BEGIN Bit 24 Contains an address pointing
to the beginning data location
in the I/O buffer.

02 IO.END Bit 24 Contains an address pointing to
the end of the I/O buffer.

02 10.DISK.ADDRESS Bit 24 Contains the beginning disk seg-
ment address of the I/O operation.
When the I/O is magnetic tape,
IO.DISK.ADDRESS contains
the address of the tape unit Lock
descriptor.

The entries above this point are common for all 1/0 descriptors.

02 IO.MCP.10 Bit 24 Indicates how the MCP is to
handle an I/O request when
control is regained from an
int~rrupt situation.

02 IO.FIB Bit 24 Addresses the File Information
Block (FIB) of the file request-
ing the I/O.

3-3

Table 3-1. I/O Descriptor (Cont)

Field Name Type Length Description

02 IO.FIB.LINK Bit 24 Addresses the next I/O descriptor
in this I/O chain.

02 IO.BACK.LINK Bit 24 Addresses the previous I/O
descriptor in the I/O chain

02 IO.PORT.CHAN Bit 7 Contains the physical hardware
location {port and channel) for
the I/O request.

03 IO.PORT Bit 3

03 IO.CHANNEL Bit 4
_ __,__ _____ '----- ----------

MAGNETIC TAPE 1/0 SUBSYSTEM

Because of the serial nature in processing magnetic tape, there is only one chain of I/O descriptors for
the entire magnetic tape 1/0 subsystem. Similar to disk I/O operation, the I/O descriptors are executed in
logical sequence. To help ensure the serial processing of magnetic tape, a "lock" type descriptor is used
for control.

Lock Descriptor

Table 3-2 describes the Lock Descriptor format.

Table 3-2. Lock Descriptor

Field Name Type Length

01 LOCK.DESCRIPTOR Bit 144

02 LOCK.RESULT Bit 24

02 LOCK.LINK Bit 24

02 LOCK.OP Bit 24

02 LOCK.LINK.FIRST Bit 24

02 LOCK.LINK.NEXT Bit 24

02 LOCK.LINK.PREVIOUS Bit 24

3-4

There is one lock descriptor in the magnetic tape I/O subsystem chain for each tape unit. All I/O descrip­
tors for a particular unit are linked, directly or indirectly, to the lock descriptor for that unit. The LOCK.
LINK field of the lock descriptor always contains either the memory address of the lock descriptor for
the next unit in the magnetic tape I/O subsystem, or the address of a "pause" type descriptor. There is one
"pause" descriptor for the entire magnetic tape I/O subsystem. The LOCK.LINK.FIRST field of the lock
descriptor always contains the memory address of the first physical record for the unit. This field is ini­
tialized by the MCP when the file is opened. LOCK.LINK.NEXT contains the memory address of the next
logical record to be executed on the unit.

NOTE

The physical record is the first record in a data buffer. The logical record is
the record within a buffer that is currently being processed.

LOCK.LINK.NEXT is initialized by the MCP, but is maintained by the CSM.

The function of a lock descriptor can be explained using the following example where two programs, A
and B, are using one magnetic tape control with three available units. The complexity of the magnetic
tape I/O subsystem, however, does not increase, regardless of the number of controls or units.

Example:

Figure 3-1 demonstrates program A and program B utilizing two units under one control, and the
I/O descriptor chain that is manufactured by the MCP for the 1/0 operations.

In this example, Program A opens unit 1 as input and has three buffers. The MCP obtains
memory space and links the three 1/0 descriptors to the lock descriptor for unit 1. The three
1/0 descriptors are denoted in figure 3-1 as READ-1, READ-2, and READ-3.

Program B opens unit 2 as output and has two assigned buffers. The MCP obtains memory
space and links the two 1/0 descriptors to the lock descriptor for unit 2. The two I/O descriptors
are denoted in figure 3-1 as WRITE-1 and WRITE-2.

Unit 3, not currently being used, has the mandatory lock descriptor present.

At the time of the open by program A, the magnetic tape control is idling (pause type descrip­
tor). When the pause is recognized as complete (result of the open), the CSM exits the pause
descriptor and reads the lock descriptor for unit 1. The 1/0 complete bit in the result descriptor
field of a lock descriptor is always 0, causing the CSM to always read the lock descriptor operation
code.

The CSM recognizing a lock descriptor, swaps 01 into the first two bits of the result descriptor
field, LOCK.RESULT, and examines the two bits that were received. If they are 01, indicating 1/0
in progress, the CSM exits immediately to the next lock descriptor in the chain. This prevents
two controls from attempting to execute descriptors for the same unit at the same time. In this
example, however, there is only one control but this technique of checking lock descriptors
provides a fast and simple method for the MCP to lock out an entire unit.

3-5

"Tl
~·
s::
""'t
(!)

w
I -
~
~

C§
(!)
.-+-
()"

~
~
"O

w
(!)

I -0\ ----0
(.f.l
s::
er
~
en
.-+-
(!)

s
0
(!)
en
(")

::l.
"O
.-+-
0
""'t

r--

PAUSE DESCRIPTOR

RESULT

DESCRIPTOR
FIELD

POINTS TO
LOCK DES­
CRIPTOR FOR
UNIT t

LOCK DESCRIPTOR UNIT 1

POINTS TO
RESULT I NEXT LOCK

L--1 DESCRIPTOR DESCRIPTOR
FIELD

~
LOCK DESCRIPTOR UNIT 2

L.,._.
RESULT

DESCRIPTOR
FIELD

(I;

POINTS TO
NEXT LOCK

DESCRIPTOR

LOCK DESCRIPTOR ~IT 3

OP-CODE

PAUSE

OP-CODE

LOCK

OP-CODE

LOCK

POINTS TO
THIS PAUSE
DESCRIPTOR

~

I/O DESCRIPTOR (PROGRAM Al

POINTS TO 1ST 'POINTS TO f;1 POINTS TO
LOGICAL l/O

'1' I I I I
I

POINTS TO
RESULT I NEXT I/O DES

DESCRIPTOR CRIPTOR FOR
FIELD THIS UNIT

PHYSICAL I/O DESCRIPTOR TO PREVIOUS LOCK
DESCRIPTOR BE EXECUTED DESCRIPTOR ~--t---1

I d) I i
I --~
L______ L-+--1

RESULT ,~~~5tc,TgES-
DESCRIPTOR CRIPTOR FOR

FIELD THIS UNIT

1
J

POINTS TO THE
RESULT I LOCK DESCRIP­

DESCRIPTOR TOR OF THIS
FIELD UNIT

POINTS TO 1ST IPOINTS TO NEXT I POINTS TO
PHYSICAL I/O ~~s::~~~OTO PREVIOUS LOCK
DESCRIPTOR BE EXECUTED DESCRIPTOR A'. I I

cl) l 1
I

1/0 DESCRIPTOR (PROGRAM Bl

L-------,-+--
1

RESULT POINTS TO I
NEXT I/O DES-

DESCRIPTOR CRIPTOR FOR

FIELD THIS UNIT

I

PREVIOUS LOCK
RESULT I POINTS TO I OP-CODE

~ TIE PAUSE
DESCRIPTOR DESCRIPTOR LOCK

AELD

I
I
L_+__,

POINTS TO

DESCRIPTOR POINTS TO THE I RESULT LOCK DESCRIP-

CJ) , cb
DESCRIPTOR TOR OF THIS

FIELD UNIT

J B,...1--_, _________ __.

NOTES:

1. SOLID LINES DENOTE 2. BROKEN LINES DENOTE
POINTERS SET UP BY POINTERS MODIFIED BY

MCP ROUTINES (OPEN, I/0 CONTROL OPERA-
CLOSE). TIONS.

3. BLANK BOXES DENOTE

"NOT USED".

OP-CODE

READ-1

OP-CODE

READ-2

OP-CODE

READ-3

OP-CODE

WRITE-1

OP-CODE

WRITE-2

POINTS TO BE-1 ?OINTS TO
GINNING ADDR ENDING ADOR
OF THE DATA OF THE DATA
IN BUFFER IN BUFFER

POINTS TO BE-1 POINTS TO
GINNING ADOR ENDING AD0R
OF THE DATA OF THE DATA
IN BUFFER IN BUFFER

POINTS TO BE-I POINTS TO
GINNING ADDR ENDING ADDR
OF THE DATA OF THE DATA
IN BUFFER IN BUFFER

-L-...-

1

POINTSTO ··-rOINTS TO
GINNING ADDR ENDING ADDR
OF THE DATA OF THE DATA
IN BUFFER IN BUFFER

1

POINTS TO ··-rOINTS TO
GINNING ADDR ENDING ADDR
OF THE DATA OF THE DATA
IN BUFFER IN BUFFER

I

CHANNEL TABLE

The MCP Value stack (refer to B 1700 System Reference Manual, Form No. 1057155) contains a set of
eight contiguous 24-bit fields (0-7). Each field contains either a zero or the Channel table memory address
corresponding to that port.

If the Value stack field contains any dispatches directed to that port (e.g., a message from the MCP notify­
ing the CSM that there is an I/O for that port and channel), the dispatch routine in the CSM reports a
missing device condition to the MCP. If the field contains a memory address, the I/O is attempted. Each
Channel table is an area in memory containing 16 entries, each 48 bits in length. Table 3-3 describes
the Channel table.

Table 3-3. Channel Table

Field Name Type Length

OlCHANNEL.TABLE

02 CHANNEL.BUSY Bit 1

02 CHANNEL.PENDING Bit l

02 CHANNEL.EXCEPTION Bit 1

02 CHANNEL.PAUSE Bit 1

02 CHANNEL.OVERRIDE Bit 1

02CHANNEL.EXCHANGE Bit 1

02 CHANNEL.OLD.MODE Bit 1

3-7

Description

Indicates the
processing ac

I/O device has
tivity.

Indicates the I/O is waiting
execution.

Indicates the
cause of an e

device is idle be­
xception condition.
s to this device are
ng as this bit is 1.

All dispatche
ignored as lo

Indicates whe ther there is to be
dispatch at Timer
g the reference

an automatic
interrupt usin
address store d in the field,

EF.ADDR. CHANNEL.R

Overrides bits 0, 1, and 2 of the
ds a dispatch to the
dless of the status or
the I/O. Bits 0, 1,

table and sen
control regar
condition of
and 2 of the t able are set to 0 at

dispatch. the time of a

Indicates whe ther this entry is
of an exchange, or
e last entry in the

or is not part
is or is not th
exchange.

Indicates whe ther the device is
ed by "enhanced"
evious subsystem.

to be. process
I/O or the pr

Table 3-3. Channel Table (Cont)

Field Name I Type I Length -1
-

NOTE

____ D_es_c_ri_p_ti_o_n ___ =i
"Enhanced" I/O is a temporary term used to distinguish between the newer version

stem to which there has of the I/O subsystem and the previous or older I/O subsy
been significant programmatic changes.

02 CHANNEL.INTEGRITY Bit

02 CHANNEL.LOCK.CNTR Bit

02 CHANNEL.TYPE Bit

I
I

I
02 CHANNEL.LAST I Bit

02 CHANNEL.EXCHANGE.PC Bit

03 CHANNEL.EXCHANGE.P I Bit

03 CHANNEL.EXCHANGE.C Bit

02 CHANNEL.REF.ADDR Bit

1
Channel Table Operation

1

4

4

I

1

7

3

4

24

I ndicates the MCP has determined
what kind of a device is on the
channel.

Contains counters for the lock
descriptor chains.

Contains a type code used for
the MCP Dump Analyzer program.

Type 0 =serial device
Type 1 =disk
Type 2 =tape
Type 3 = cassette .
Type 4 = MFCU

I
1
ndicates that this device is the
ast entry in the Channel table

for this port. This aids the CSM
at Timer interrupt for sparsely
populated channel tables.

Stores the "linked" port and
channels.

Contains the port.

Contains the channel.

Contains the beginning reference
address when the control is acti­
vated after a Timer interrupt.
(Refer to CHANNEL.PAUSE)

The first two bits of a Channel table entry (CHANNEL.BUSY and CHANNEL.PENDING) are used
together as described below.

a. When the CSM is at a point where it is idle, it swaps 01 into the first two bits of the Channel
table. If a 00, 01, or 10 is received, the device goes idle (waits for 1/0 to complete) and
writes a 00. If it receives a 11, it writes a 10 and continues executing.

b. When the CSM initiates a device from a dispatch, it swaps in a 11. If a 00 is received, it
dispatches the I/O; if it receives a 10 or 11, it exits, doing nothing; if it receives a 01, it
continues to read the first two bits until it receives a 00.

3-8

The CHANNEL.EXCEPTION field in the Channel table is used by those devices that go idle on an I/O
exception condition. The MCP resets this bit before redispatching the I/O descriptor that caused the
exception. (Tape and disk devices do not go idle on an exception condition.)

If the MCP forces a dispatch on a "busy" control (e.g., console printer in a test and wait condition), it
sets the CHANNEL.OVERRIDE bit in the Channel table prior to the dispatch.

The result status field in the I/O descriptor is initialized by the MCP prior to a dispatch, and is updated by
the I/O subsystem while the I/O operation is in progress. The result status field is then replaced by the
result descriptor field when the I/O is complete.

Listed below are the result status field bit assignments prior to an I/O completion (bits are indexed from
left to right, 0 to 23):

Bit Description

0 Always contains a 0.

2

3

4

5

6

7

8

9

10

11

12-14

15

16

17-19

20-23

Set to 1 by the CSM during processing.

Reserved for expansion of the I/O subsystem.

Reserved for expansion of the I/O subsystem.

Reserved for expansion of the I/O subsystem.

Indicates a locked state.

Indicates a disk device (uses explicit pause and link
on exception or I/O complete).

Indicates a tape device (Lock descriptor mechanism).

In di ca tes reader I sorter.

Indicates data communications.

·Reserved.

Indicates this is an exchange.

Contains the destination port.

Indicates an interrupt request.

Indicates an interrupt request (high-priority).

Contains the port to which to return the interrupt
(usually 0, indicating the processor).

Contains the channel number of the device.

Except when the CHANNEL.OLD.MODE field in the Channel table indicates the "old" I/O mode, a
dispatch is directed by the MCP to the CSM for each result status field of an I/O descriptor that is
initialized. If the result status field is not set to 1 during the I/O operation, bits 0 and 1 are set to
0 immediately prior to a dispatch.

After the dispatch and prior to I/O complete, the only two bits the MCP can modify in the result status
field are bits 15 and 16. The modification is done as a replacement operation and is done only once.

3-9

For those devices that are processed by the "old" I/O mode, such as Data Comm and the Reader/Sorter,
the CHANNEL.OVERRIDE field in the channel table is set prior to initiating the dispatch.

PORTS

In the Value stack of the MCP, there is a set of eight contiguous 24-bit fields that correspond to ports 0
through 7 respectively. Each field contains either a 0 or the memory address of the Channel table that
corresponds to that port.

When a port field contains zeros, indicating that there is not a channel associated with the port, dispatches
directed to the referenced port cause the dispatch routine in the CSM to wait in anticipation of a
"missing device condition." A "missing device condition" in any other situation halts the system.

1/0 devices connected to the processor on port 0 are assumed to be on port 7.

EXCHANGES

Exchanges are logical switching matrices interfacing a control or controls to one ore more electronic units
that direct the flow of information to and from those units. For example: Suppose there are number port
and channel combinations corresponding ton working controls for an exchange. One of those combina­
tions according to the 1/0 descriptor is selected as the primary port and channel for that exchange. The
primary port and channel is the only port and channel combination allowed in the result status field
of any 1/0 descriptor for that exchange.

The Channel table entry corresponding to the primary port and channel for the exchange sets the
CHANNEL.EXCHANGE bit. The port and channel bits in the Channel table then point to the next
port and channel for the same exchange. If the new port and channel is the last port and channel combi­
nation for the exchange, then CHANNEL.EXCHANGE in the Channel table is not set, and its port
and channel field in the Channel table points back to the primary port and channel. Otherwise, CHAN­
NEL.EXCHANGE is set and the port-channel field points to the next port and channel for that exchange.

Dispatches are sent only to the primary port and channel. The CSM searches for an idle control on an
exchange when attempting to service a dispatch.

Any dispatches directed to a device whose Channel table entry has CHANNEL.PAUSE set will cause the
CSM to use' the address in the CHANNEL.REF.ADDR as the dispatch address, as opposed to the address
sent with the dispatch. This action occurs because a magnetic tape 1/0 subsystem must be initiated
through lock descriptors.

INPUT/OUTPUT ASSIGNMENT TABLE (IOAT)

The Input/Output Assignment Table (IOA T) is a memory resident table, constructed, and used exclusively
by the MCP. The purpose of the IOAT is to retain information concerning the status and availability of all
peripherals on the system.

Table 3-4 describes an IOAT entry format.

Table 3-4. Input/Output Assignment Table

Field Name

01 IOAT

02 UNIT .INITIAL

03 UNIT.HDWR

Type

Bit

Bit

Bit

3-10

Length

492

66

6

Description

Contains the physical location
of this peripheral.

Contains the hardware
identification number.

Table 3-4. Input/Output Assignment Table (Cont)

Field Name Type Length Description

03 UNIT.PCD Bit 12 Contains the port and channel
of the peripheral.

04.UNIT.PORT.CHANNEL Bit 7 Contains the port and channel.

05 UNIT.PORT Bit 3 Contains the port.

05 UNIT.CHANNEL Bit 4 Contains the channel.

04 FILLER Bit 1 Reserved.

04 UNIT.UNIT Bit 4 Contains the unit number of
this port and channel.

03 UNIT.NAME Char 6 Contains the unit mnemonic
identification.

02 UNIT.LABEL.ADDRESS Bit 36 Points to the unit label location.
When the entry represents a
disk unit, it points to the Disk
Pack Information table.

03 FILLER Bit 24

03 UNIT.PACK.INFO Bit 24 Contains @FFFFFF@ if this
entry is for a system pack.

02 UNIT.RS Bit 24 Contains the address pointing to
the limit register of the program
to which this entry is assigned.

02 UNIT.FLAGS Bit 24 A set of indicators that continu-
ally monitor the operating
condition of the peripheral
represented by this entry in the
IOA T. The following fields are
used for the monitoring
purpose.

03 UNIT.AVAILABLE Bit 1

03 UNIT.AVAILABLE.INPUT Bit 1

03 UNIT.AVAILABLE.OUTPUT Bit 1

03 UNIT.WAIT.FOR.NOT.READY Bit 1

03 UNIT.TEST.AND.WAIT Bit 1

03 UNIT.SAVED Bit 1

03 UNIT.REWINDING Bit 1

03 UNIT.BOP.SENSED Bit 1

3-11

Table 3-4. Input/Output Assignment Table (Cont)

Field Name Type Length Description

03 UNIT.LOCKED Bit 1

03 UNIT.LABEL.SENSED Bit 1

03 UNIT.PRINT.BACKUP Bit 1

03 UNIT.PURGE Bit 1

03 UNIT.LOCK.AT.TERM Bit 1

03 UNIT.TO.BE.SAVED Bit 1

03 UNIT.FLUSH Bit 1 Indicates the unit is to read to

I
End-of-File. (Example: Card
Reader.)

03 UNIT.TAPEF Bit 1

03 UNIT.DISKF Bit 1

03 UNIT.STOPPED Bit 1

03 UNIT.TRANSLATE Bit 1

03 UNIT.CTRL.CARD.USING Bit 1

03 UNIT.REMOTE.JOB Bit 1

03 UNIT.CLOSED Bit 1

03 UNIT.FILLER Bit 2

02 UNIT.STATUS Bit 15 Contains the first 15 bits of
the I/O result descriptor

I
field.

02 UNIT.JOB.NUMBER Bit 24 Contains the job number
assigned to this entry. I

02 UNIT.FIB.ADDRESS Bit 24 Points to the File Information
Block (FIB) when this entry
is associated with a file.

02 UNIT.LABEL.TYPE Bit 2 Contains the label type code:

00 =Omitted
01 =Burroughs standard
02 =ANSI
03 = Installation

02 FILLER Bit 24 Reserved.

02 UNIT.TEST.DESC Bit 248 Contains the test I/O descriptor
used to interrogate the status of
the peripheral (e.g., Is it ready?
Is it busy?).

3-12

INTRODUCTION

SECTION 4
MCP DISK STRUCTURES

A significant aspect of the B 1700 design is disk management, which is the responsibility of the MCP.
There are four areas of disk management which the MCP controls:

a. Directory maintenance.

b. Disk allocation.

c. File assignment.

d. Record addressing.

A disk pack or cartridge must be initialized by the program Disk Initializer before it can be used on the
system. At the time of initialization, the user assigns a serial number, a disk identifier, the type of pack or
cartridge (system, unrestricted, restricted, or interchange), the date of initialization, and comments if
desired.

Head-per-track disk is pre-initialized; no user initialization is necessary.

The basic function of initializing a disk is to assign an address for each segment. This address is the means
by which the MCP accesses disk segments. After the assigning of the addresses, the Disk Initializer generates
the following: a Master Available Table, skeletal Disk Directory, Working Available Table, Temporary
Available Table, and a label identifying the pack or cartridge.

DISK PACK/CARTRIDGE CHARACTERISTICS

The disk pack and disk cartridge are data storage devices that can be moved on or off line. Both the
disk pack and disk cartridge are divided into segments (sectors), tracks, and cylinders which organize
the storage of data and identify its locations. Figures 4-1 and 4-2 illustrate the basic characteristics of
\he read/write mechanism and the recording surfaces.

RETRACTABLE ARM

CYLINDER (UPPER TRACK)

READ/WRITE HEADS

CYLINDER (LOWER TRACK)

LOWER DI SK SURFACE

Figure 4-1. Disk Read/Write Mechanism

4-1

DISK PLATTER

2

....
o SEGMENT ONE EXPLODED

8t L\

Gl3H3

Figure 4-2. Disk Recording Surface

4-2

The Data storage format consists. of a circular track, divided into sectors called segments with each
segment containing 180 bytes of storage, as shown in figure 4-2. A disk platter has two surfaces, each
capable of storing data. All tracks that lie in the same vertical plane constitute a cylinder.

DISK FILE IDENTIFIERS

The B 1700 programmer addresses disk files by their symbolic names. The physical disk address of a
file is the responsibility of the MCP and not the user program. The file-identifier has three possible
components:

a. Disk pack/cartridge-identifier.

b. Main directory identifier (family-name).

c. Sub-directory identifier (file-identifier).

For a detailed description of disk file names and their usage concerning system operation, refer to the
!! 1 700 System Software Operational Guide, Form No. 1068731.

DISK DIRECTORIES

Files are either temporary or permanent. A temporary file is a disk file that is created by programmatic
action and whose existence is only in relationship to the creating program. It becomes non-existent
when the creating program terminates or when the file is closed without a lock. A permanent file is one
that can be accessed at any time by any program and remains in the Disk Directory until removed.

At COLDSTART, the MCP reser\res 16 contiguous segments of systems disk for the initial Disk Direc­
tory; each segment contains 11 entries, giving a possible total of 176 directory entries. If more space
is required, the MCP increases the Disk Directory size by one segment for each additional 11 entries.
Figure 4-3 shows a simplified Disk Directory with a main directory/sub-directory file entry. Table 4-1
describes the Disk Directory format.

4-3

NOTE!

DISK PACK/

CARTRIDGE

IDENTIFIER

WHEN THE SUB-DIRECTORY
FILE-IDENTIFIER IS USED, THE
MAIN DIRECTORY (FAMILY-NAME)
ENTRY ACTUALLY POINTS TO
THE ADDRESS OF ITS RELATED
SUB-DI RECTORY ENTRY AND

NOT THE DATA ITSELF.

G 13992

16
SEGMENTS,

176
ENTRIES

Fl LE REFERENCE

MAIN DI RECTORY

OR
FAMILY- NAME

I""'

SCRAMBLER

ALGORITHM

·~
1-Q .. 11
...

MAIN
I-
I- D
I-

I ...
... R
I-
... E

SUB-DIRECTORY ENTRY

OR

FILE-IDENTIFIER

(IF PRESENT)

.~

SUB
D ... c t----·--- I

... R T I- E SE ... 0 c
t- T
.... R 0 EN
.... y R ... ,6 y

\..

Figure 4-3. Disk Directory Filing Technique

4-4

,
GMENT,
11

TRIES

Table 4-1. Disk Directory
,______

1
·---~-·

Field Name Type Length Description
--'--

01 DIRECTORY Bit 1440

02 DISK.SUCCESSOR Bit 36 Contains a disk address that
points to the next directory
entry, and is referred to as the
forward link. If this entry con-
tains zero, it is the last entry of
the directory.

02 DISK.PREDECESSOR Bit 36 Contains a disk address that
points to the previous directory
entry, and is referred to the back-
ward link. If this entry contains
zero, it is the first entry of the
directory.

02 DISK.SELF Bit 36 Contains the disk address of this
entry in the directory.

02 FILLER Bit 12

I 02 DISK.NAME Char 10 Contains the family-name of this,
entry.

02 DISK.ADDRESS Bit 36 Points to the file header of this
\ entry; if there is a sub-directory

entry, it points to the related
sub-directory.

02 DISK.FILE.TYPE Bit 4 Describes the file access type
referenced by this directory
entry, as follows:

Type Description

1 Log, Elog

2 Sub-directory

3 Control deck

I 4 Print back-up
I 5 Punch back-up

6 Dump file

7 Interpreter

8 Code file

9 Data file

10 Undefined

I

11 Variable data

02 FILLER Bit 1200 Contains space for 10 available
entries.

4-5

Main Directories

The MCP enters a file into the main directory by a technique whereby the family-name of the file is
randomized into a single reference digit of 0 to 15. This digit is used as an index into the directory where
all files having the same index reside. This method reduces directory search time by a factor of 16. If,
while scanning the directory, the MCP finds the dictionary is full, it expands that directory by one segment,
updating the field DISK.SUCCESSOR to point to the new segment. If the MCP is simply searching for
a file, the family-names are compared until the file is located.

Sub-Directories

Files that are identified by a first or primary name and also by a second name have sub-directory entries.
When a file has an identifier such as A/B or A/C, the main directory field, DISK.ADDRESS, does not refer­
ence the location of the file but contains the address of its related sub-directory. The DISK.ADDRESS
field in the sub-directory then points to the file header. The DISK.FILE.TYPE field in the main directory
contains a 2 when there is a sub-directory associated with the file. The format of main directories and
sub-directories is the same. Figure 4-4 illustrates an example of disk directory entries.

(

FWD
LINK
ADDR

85

BKWD
LINK
ADDR

1ST
ENTRY
THIS
FIELD
A'LL

ZEROS

THIS
ADDR

10

FILE
NAME

DISK Fl LE
ADDR TYPE

FILE
NAME

DISK FILE
ADDR TYPE

li!ll;~l';li;I A

9

•

5 2

G

1008 9

li!i·!i!!!!ill;
10

1

'----.L---:;-'----"'~.:.:i:l:i:.t-:.-:.-:.-:.-:.-:.-:.-:.:':. .-=--=--=--=-~-=--=--:....~'\t========-:::===~====--..,....--" "
~----- 1 ST ENTRY 2 NO ENTRY

\ 200 10 85 ;1111111\: 0 6F3 9 H 98FB 9 I~
l~~---L-~~~~~-A---1r--~------~---

~ LAST
ENTRY
THIS
FIELD
ALL

ZEROS

813991

_;;; .__.

1 ST ENTRY

85 200

NOTE:

SINCE FILE NAME A IS FILE TYPE 2, THE DISK ADDRESS

FIELD (9A5) POINTS TO THE ADDRESS OF ITS RELATED

SUB-DIRECTORY WHICH POINTS TO THE FILE HEADER.

Figure 4-4. Disk Directory Entries

4-6

2 ND ENTRY

2ND ENTRY

DISK FILE HEADER

The disk file header contains the physical characteristics of the disk file and the absolute addresses of each
area allocated to the file. Table 4-2 describes the format of a disk file header table entry.

NOTE

Disk file headers are outside a program run structure. Therefore a pro­
gram memory dump does not reflect the disk file headers. The disk file
headers can be obtained by dumping total memory and executing
MCPII/ ANALYZER.

Table 4-2. Disk File Header

Field Name Type Length Description

01 DISK.FILE.HEADER Bit 1440

02 DFH.CORE.ADDR Bit 24 Points to the memory address of
the disk file header when the
header is in memory.

02 DFH.SELF Bit 36 Contains the disk address of this
disk file header.

02 DFH.NO.USERS Bit 8 Contains the number of programs
that are referencing the file but
not necessarily accessing the file.

02 DFH.USERS.OPEN.OUT Bit 4 Contains a counter signifying the
number of programs that are cur-
rently accessing the file.

02 DFH.OPEN.TYPE Bit 4 Contains the type of file open:

1000 = Lockout
0010 =Input

0001 = Output

0100 =Lock

02 DFH.FILE.TYPE Bit 4 Contains the type of file.

02 DFH.PERMANENT Bit 4 Contains the file status.

0000 =Temporary File

0001 = Permanent File
1111 = System File

02 DFH.HDR.SIZE Bit 24 Contains the disk file header size.

02 DFH.RECORD.SIZE Bit 24 Contains the record size.

02 DFH.RECDS.BLOCK Bit 24 Contain~ the number of records
per block (blocking factor).

4-7

Table 4-2. Disk File Header (Cont)

Field Name Type Length Description

02 DFH.BLOCKS.AREA Bit 24 Contains the number of blocks
per area.

02 DFH.SEGS.AREA Bit 24 Contains the number of segments
per area.

02 DFH.AREA.RQST Bit 12 Contains the number of areas
requested for the file.

02 DFH.AREA.CTR Bit 12 Contains the number of areas
used.

02 DFH.EOF.POINTER Bit 24 Input File: Contains the End-
of-File address.

Output File: Contains the num-
ber of records output.

Random File: Contains the max-
imum key value.

02 DFH.BPS.NO Bit 24 Contains the base pack serial
numbers of a multiple pack file.

02 DFH.BLOCK.COUNT Bit 24 Contains the number of proc-
essed blocks.

02 DFH.MPF Bit 4 Indicates this is a multiple pack
file.

02 DFH.DBM.LINK Bit 24 Points to the next file header
(data management).

02 DFH.DBM.DFH.NO Bit 24 Contains a reference number used
as the internal identifier for file
headers using data management.

02 D FH. USER.INFO Bit 24 Not implemented.

02 DFH.SAVE.FACTOR Bit 12 Contains the number of days a
file is to be retained beyond its
last access date.

02 DFH.CREATION.DATE Bit 16 Contains the date of file creation.

02 DFH.ACCESS.DATE Bit 16 Contains the date that the file
was last opened.

02 DFH.MPF.ADDR Bit 36 Contains the disk address of
the Multiple Pack Information
table.

02 FILLER Bit 60 Reserved.

4-8

Table 4-2. Disk File Header (Cont)

Field Name Type Length Description

02 DFH.AREA.ADDRESS Bit 36 Contains the beginning disk add-
ress of the first data location.
There is a maximum of 105
areas available.

03 DFH.UNIT Bit 12 Contains the port, channel, flag
indicator, and the electronics
unit of this disk unit.

04 DFH.PORT Bit 3 Contains the port identification.

04DFH.CHAN Bit 4 Contains the channel identifi-
cation.

04 DFH.SER.NO.FLAG Bit 1 Denotes whether the DFH.ADDR
is the actual data address or the
pack serial number of a multiple
pack file.

04 DFH.EU Bit 4 If this file is a multiple pack,
DFH.EH contains either a @C@
for a continuation or @B@ for a
base pack. If this is not a multi-
ple pack file, DFH.EU contains
the disk drive EU number.

03 DFH.ADDR Bit 24 Contains either the disk pack
serial number or the address of
the disk file header area on the
disk.

DISK LABEL

Each pack or cartridge, whether system or removable, contains a label describing its physical characteristics.
Sectors 0 to 63 are reserved for the disk label and various MCP tables, and are not used for any other pur­
pose. A disk label is constructed at the time of initialization, gathering data from two sources:

a. The information provided by the Disk Initializer control card.

b. The information provided by the Disk Initializer program itself.

Table 4-3 describes the disk label format.

4-9

Table 4-3. Disk Pack Label

Field Name Type Length Description
-

01 PACK.LABEL Char 180

02 PL.VOLi Char 4 Contains the literal "VOLl ".

02 PL.SERIAL.NO Char 6 Contains the disk pack serial
number supplied by the control
card.

02 PL.ACCESS.CODE Char 1 Not implemented

02 PL.ID Char 17 Contains the disk pack identifiers.

03 PL.NAME Char 10 Contains the user-assigned name
of the disk pack that is on the
control card.

03 PL.FILLER Char 7 Used for label compatibility
with other electronic units.

02 PL.SYSTEM.INTERCHANGE Char 2 Enables the pack to be formatted
in such a way as to make it com-
patible and interchangeable with
other Burroughs Systems. (Not
implemented.)

02 PL.CODE Char 1 Contains a 0 when the pack is a
"scratch pack."

NOTE: A "scratch pack" is
defined as a pack that has been
purged or initialized. A pack
that simply has had its files
removed is not considered a
"scratch pack."

02 PL.FILLER Char 6 Reserved.

02 PL.OWNER.ID Char 14 Contains the disk pack name
supplied by initialization control
card.

02 PL.TYPE Char 1 Contains the usage code of the
disk pack:

R = Restricted

S =System

U = Unrestricted

02 PL.CONTINUE Char 1 Contains a "C" if this is a
continuation pack.

4-10

Table 4-3. Disk Pack Label (Cont)

Field Name Type Length Description

02 PL.FILLER Char 26 Reserved.

02 PL.INT Char 1 Always contains a blank.

02 PL.VOL2 Char 4 Contains the literal "VOL2 ".

02 PL.DATE.INITIALIZED Char 5 Contains the date the pack was
initialized, in Julian format, as
supplied by the initialization
control card.

02 PL.INIT.SYSTEM Char 6 Contains the literal 1 7MC33.

02 PL.DISK.DIRECTORY Char 8 Contains the decimal disk address
of the Disk Directory.

02 PL.MASTER.AV AIL Char 8 Contains the decimal disk address
of the Master Available table.

02 PL.DISK.AVAILABLE Char 8 Contains the decimal disk address
of the Working Available table.

02 PL.INTEGRITY Char 1 Indicates either no files are open,
or one or more files are open.

02 PL.ERROR.COUNT Char 6 Contains a counter containing
the number of read, write or
parity errors. The counter is
imcremeated by 1 each time the
MCP attempts to recover from an
error. The MCP attempts 20 read/
writes before informing the oper-
ator of the error. This count is
displayed on the Console Printer
each time the pack is mounted
and made Ready. If the count
increases at a rapid rate, the pack
and drive should be inspected.

02 PL.SECTORS.XO Char 6 Contains the number of sectors
removed by an "XD" console
input message.

02 PL.TEMP.TABLE Char 8 Contains the decimal disk address
of the Temporary Available table.

02 PL.PCD Char 3 Contains the port, channel, and
drive on which this pack is
mounted.

4-11

Table 4-3. Disk Pack Label (Cont)

Field Name Type Length Description

02 PL.ASSIGNED.TO.BPS Char 6 Contains the serial number of the
base pack to which this pack is
assigned.

02 PL.FILLER Char 30 Reserved.

PACK INFORMATION TABLE

When a disk pack is on-line, the MCP builds a Pack Information table describing its characteristics and
maintains its current status while the disk pack is on the system. Table 4-4 describes the Pack Information
table format.

Table 4-4. Pack Information Table

Field Name Type Length Description

OlPACK.INFOR Char 373

02 P.NAME Char 10 Contains the disk pack name
assigned at disk initialization.

02 P.SERIAL.NO Bit 24 Contains the disk pack serial
number assigned at disk initiali-
zation.

02 P.DISK.DIRECTORY Bit 36 Contains the disk address of the
Disk Directory.

02 P.DISK.A V AILABLE Bit 36 Contains the disk address of the
Disk Available table.

02 P.TEMP.TABLE Bit 36 Contains the disk address of the
Temporary Available table.

02 P.UNIT.NAME Bit 6 Contains the EU mnemonic
identifiers of the pack residence.
For example, DPA or DPB.

02 P.PCD Bit 12 Contains the hardware location
of the pack.

03 P.PORT.CHAN Bit 7 Contains the port and channel
location of the pack.

03 FILLER Bit I Reserved.

03 P.DRIVE.NO Bit 4 Contains the drive number of the
pack.

02 P.NO.USERS Bit 8 Contains the number of users
currently accessing this pack.

4-12

I

Table 44. Pack Information Table (Cont)

Field Name Type Length Description

02 P.NO.MPF.USERS Bit 8 Contains the total number of
multiple pack files open on this
pack.

02 P.TO.BE.POWERED.DOWN Bit 1 Informs the MCP that the pack
is to be powered down.

02 P.RESTRICTED Bit 3 Identifies the type of pack for
the MCP:

0 = System resource pack

1 = Restricted
2 = Unrestricted User

3 =Interchange

02 P.CONTINUE Bit 1 Indicates this is a continuation
pack for a multiple pack file.

02 P.SCRATCH Bit 1 Indicates this is a scratch pack.

02 P.FULL Bit 1 Indicates no disk space is
currently available.

02 FILLER Bit 1 Reserved.

02 P.ASSIGNED.TO.BPS Bit 24 Contains the base pack serial
number of a continuation pack.

02 P.BACK.LINK Bit 24 Points to the previous Pack
Information Table entry (back-
ward link).

02 P.LINK Bit 24 Points to the next Pack Informa-
tion Table entry (forward link).

DISK FILE ALLOCATION

The allocation of disk space is the responsibility of the MCP. When a request is made for space, the MCP
searches the Working Available table until an area is found that is equal to or greater than the space
required. There are times when contiguous space is not available. The MCP then notifies the system
operator of the insufficient space. This requires operator intervention either to provide the space required
or to discontinue the program. The MCP cannot assign two or more non-contiguous areas to a space
request.

Fl LE LOOK-UP

When searching for a file, the MCP uses the sequence illustrated in figure 4-5.

4-13

~
~·
~
(!)

..J::>..
I

Vi

..J::>.. g I Cf.)

..J::>.. ~

:rJ
(D

CZl
(!)
~

d
::r

RANDOMIZE

FAMILY-NAME

USE RESULT AS

I -.1 INDEX INTO DISK I a~

DIRECTORY

NO

READ IN THE

DISK FILE

HEADER

OBTAIN THE
NEXT SEGMENT

OF THE DISK
DIRECTORY

YES

YES

SEARCH SUB­

DIRECTORY FOR

MATCH OF FILE­

IOENTl FIER

NOTIFY THE

NOTIFY THE
NO ~ .1 OPERATOR FILE I ..,,

NOT FOUND

OBTAIN THE

NEXT SEGMENT

OF THE SUB­
DIRECTORY

YES

NO

,,,. I OPERATOR FILE I,,. 1

NOT FOUND

DISK FILE CONSTRUCTION

Files on disk are constructed and addressed either sequentially or randomly.

Sequential File

In a sequential file, the records of data are stored on the disk in a consecutive manner based upon a
sequentially controlled program key. These records are made available to a program sequentially from
record to record until End-of-File. For example, to locate the 992nd record in a 1000-record file,
all preceding 991 records must be read and bypassed prior to accessing the 992nd record.

Random File

The random file is a storage technique by which the program must only pass the relative record number
desired, referred to as the key, to the MCP. The MCP then takes the key and, by calculation, arrives
at the disk address. This method allows the selection of any record in the file by a single read/write
operation.

AVAILABLE TABLES

The MCP maintains three tables which reference all available disk space.

a. Master Available table.

b. Working Available table.

c. Temporary Available table.

Master Available Table

The Master Available table, constructed at disk initialization, reflects all areas of the disk that can be utilized
for the storing of data. The following criteria determine the physical acceptability of the pack transition
to be used on the system.

a. Addresses 0 through 63 must be free ofread/write errors.

b. The maximum number of read/write errors for addresses greater than 63 cannot be exceed 71.

The Master Available table consists of three contiguous disk segments. It references and maintains the
total available disk area in disk address sequence.

The Master Available table for head-per-track is created by COLDSTART.

Working Available Table

The Working Available table (referred to as the Available table) contains the addresses and sizes of all disk
areas not allocated either to a user program or to the MCP. The Working Available table is in the same for­
mat as the Master Available table, having a length of 10 segments and expanded when necessary. When
entries are made in the Disk Directory, the space reflected in the disk file header is removed from the
Working Available table. Note that the entries in the Disk Directory plus those in the Working Available
table can total an amount less than the total amount of disk space specified in the Master Available
table. This occurs when the MCP temporarily obtains disk space without creating a Disk Directory entry.

Temporary Available Table

The Temporary Available table references those areas on disk that are being used but are not entered
in the Disk Directory or the Working Available table. Areas that are "temporary" are those that are
currently being used by a program or the MCP. When a file is made permanent, the space is removed

4-15

from the Temporary Available table and entered into the Disk Directory. Some examples of the disk
space appearing in the Temporary Available table, but not in the Disk Directory or the Working
Available table, are the following:

a. Space allocated for a new disk file.

b. Program roll-out areas.

c. Program work files.

The Temporary Available table uses five segments, expanded when necessary. New entries are placed in the
first available position. Table 4-5 describes the Master, Working, and Temporary Available table format.

Table 4-5. Master, Working, and Temporary Available Tables

Field Name Type Length Description

01 DISK.AVAILABLE.TABLE Bit 1440

02 A VL.FOR.LINK Bit 36 Contains the disk address of the

I
next available segment. If this is
the last entry in the table, this

I
field contains zeros (forward
link).

02 AVL.BACK.LINK Bit 36 Contains the disk address of the
previous entry in the table. When
this is the first entry in the table,

I
this field contains zeros (back-
ward link).

02 AVL.SELF I Bit 36 Contains the disk address of this

I entry.

02 FILLER I Bit 4 Reserved. I

02 A VL.BLOCK I Bit 60 Reserved.

03 A VL.ADDRESS Bit 36 Contains the disk address of the
next available disk area.

03 A VL.LENGTH Bit 24 Contains the length of the area
which A VL.ADDRESS refer-
ences. There is a maximum of
22 entries per segment.

MULTIPLE PACK FILES

A multiple pack file is a file that may be contained on one or more removable disk packs. The file
originates on a "base" pack and can continue to a maximum of 15 packs. These packs are called
"continuation" packs. A multiple pack file can have only one base pack, and must be on-line for all
opens and closes performed on the file.

4-16

The base pack can contain either single and multiple pack type files but cannot contain continuation files
associated with another base pack. The disk pack header on the base pack retains all information con­
cerning the file, which includes the addresses that are assigned to that file and the serial number of each
continuation pack.

When a multiple pack file requires additional space to store data, the MCP searches for another continuation
pack associated with the same base pack. If a continuation pack is not available, the MCP searches for a
scratch pack of the same processing type (restricted, unrestricted) as the base pack. If one is avail~ble,
that pack is assigned as a continuation pack for that file.

Multiple Pack File Information Table

When an input multiple pack file is opened, the file header is read into memory from the base pack; with
output files, the header is constructed by the MCP in memory. The MCP then obtains space on the system
pack for a Multiple Pack File Information table, containing the information associated with that multiple
pack file. The table contains base pack information, and a copy of the disk file header. Table 4-6
describes the Multiple Pack File Information table format.

Table 4-6. Multiple Pack File Information Table

Field Name Type Length Description

01 MPF.INFO.TABLE Bit 1392

02 MPF.FORWARD Bit 36 Points to the next multiple pack
file entry.

02 MPF.BACKWARD Bit 36 Points to the previous multiple
pack file entry.

02 MPF.SELF Bit 36 Points to this multiple pack
file entry.

02 MPF.NAME Char 30 Contains the multiple pack
file-identifier.

02 MPF.HEADER.SIZE Bit 24 Contains the size of composite
file header.

02 MPF.HEADER.ADDRESS Bit 24 Points to the composite file
header in memory.

02 MPF.BPS.NO Bit 24 Contains the base pack serial
number.

02 MPF.OPEN.TYPE Bit 4 Contains the type of file opened.
(Same as the DFH.OPEN.TYPE
in the Disk File Header table.)

02 MPF.NEW.FILE Bit 1 Indicates that this is a newly
created disk file.

02 MPF .NEW .AREA Bit 1 Indicates that this is a newly
created disk area.

4-17

Table 4-6. Multiple Pack File Information Table (Cont)

Field Name Type Length Description

02 MPF.CS Bit 1 Indicates that a Clear /Start was
or was not performed since this
entry was created.

02 FILLER Bit 1

02 MPF.BASE.PACK.TYPE Bit 4 Contains the processing pack
type.

1 = Restricted

2 = Unrestricted

02 MPF.ARRAY Used to record all continuation
packs that are on-line.

03 MPF.ONLINE Contains a maximum of 16
items in this array.

04 MPF.SERIAL.NO Bit 24 Contains the serial number of
the pack.

04 MPF.HDR.DSK Bit 36 Contains the disk address of the
disk file header.

MCP Composite Header

The MCP builds a composite header in memory for each multiple pack file opened. Each address in the
header contains one of two items:

a. If the pack is on-line, it contains the absolute disk address of that area.

b. If the pack is off-line, it contains the serial number of the pack on which the area resides.

4-18

Q)
c

""O
Q) --0

""O

O'>
c
0 -
0 -:::>
u

Q)

c

""O
Q) --0

""O

C'>
c
0
0 -:::>
u

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 1700 MASTER
CONTROL PROGRAM (MCP)
Reference Manual

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: 1088010
DATE: 8-75

0ERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME
TITLE
COMPANY-----------­
ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---~--------------------------------

attn: Publications Department

I BUSINESS REPLY MAIL J
~irst Class Permit No. 1009; El Monte, CA. 91731

Burroughs Corporation
P. 0. Box 142
El Monte, CA. 91734

Technical Information Organization, TIO - West

-~--

FOLD UP FIRST FOLD UP

1088010

./:
·.~·-~·'" .

. ,; ,,f.

' ' .
' • ~ \ l \y

Wherever There's
Business There's

8-75 Printed in U.S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	replyA
	replyB
	xBack

