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I. Introduction 

The Burroughs B1700 is a small, general-purpose computer. It belongs 

to the class of computers containing, among others, the IBM 360/20, 

IBM System 3, NCR Century 100 and 200, and the Univac 9300. However, 

the· B1700 differs from the others in that (a) it is dynamically micro-

programmable, and (b) it is designed to support hundreds of independent, 

special-purpose machine architectures, rather than one general-purpose 

architecture. 

Each particular machine architecture is realized on a vertically micro-

programmable B1700 processor by means of multiprogrammed interpreters. 

The general philosophy of the system is that each language that runs on 

the machine will have its own interpreter; i.e., the B1700 can be a 

"COBOL machine", a "FORTRAN machine", a "SNOBOL machine", an "APL 

machine", etc. 

In keeping with this flexibility, a language (along with its interpreter) 

was designed to be used for implementation of the Master Control Program 

{MCP) and for implementation of the different compilers. This language 

"1s called the Software Development Language (or SDL) • 

.. 
. SDL has so far been used ·~o implement the MCP; compile~s for SDL, COBOL, 

FORTRAN, BASIC, and the B1700 micro-language; and a sort package. Planned 

in the future are a Network Definition Language processor, an ALGOL 

compiler, and a Data Base Management System. 

The purpose of this paper is to describe SDL and its underlying machine. 



II. The SDL Language 

A. History 

The advantages of using a higher level language for system implementation 

are well documented in the literature (see Sammet, 1971; Corbato, 1969; 

or MIT, 1970). I~ fact, this use of a higher level language is merely in 

kee~ing with a Burroughs precedent (see Lyle, 1971). 

Using input from the different software groups that would be using SDL, 

the SOL language and underlying machine structure were designed in the 
. 

fall of 1969. In February, 1970, programming of a bootstrap version of 

the SOL compiler was begun by a four-man group working in Burroughs 

Extended ALGOL (Burroughs, 1969a) on the B5500. By June, 1970, a working 

version of the compiler, as well as a functional simulator of the SDL 

machine, were available on the B5500 for initial program checkout. Sinc~ 

then, The SOL language and machine have undergone several modifications, 

and the SDL compiler has been re-written in SOL by a two-man group to run 

on the B1700. 



B. Language Form 

The design philosophy of SDL was that it was to be "clean" and con-

sistent (see Weinberg, 1971). Consequently, we attempted to avoid 

language features that: 

1) require run-time routines to accomplish 
. . 

·2) are "nic::-eties" that can actually be built from simpler features 

in the language (e.g., the DO-UNTIL statement) 

3) we didn't feel we could implement well on a small machine 

4} didn't "fit" (i.e., weren.'t needed to implement software) 

The XPL language (McKeeman, 1970) appears to have excised from PLjI 

(Lucas, 1969) many of the PL/I features which fall into one of the 

above categories, and yet, retains those features which are best for 

compile-r writing (see Slimich, 1971). Hence, SDL was designed using 

XPL as a base. 

SDL is an ALGOL-like language. Allowable data types in SDL are bit 

~trings, character strings, and fixed (integer) numbers, as well as 

single-dimensional arrays of these and structures of mixed data types. 

There are a number of exc~llent reasons for implementing a GO TO-free 

language (these are best summed in Weinberg, 1971; see also Dijkstra, 

1968); and so SDL contains no GO TO's (neither does the SDL machine). 

Control is handled with IF-THEN and IF-THEN-ELSE statements, CASE 

statements, procedure invocations and returns, 00 and 00 FOREVER state.-_ 

ments, and block-exit statements. Procedures in SDL are automatically 

recursive with up-level addressing. Run-time- routines are needed only 

-to handle virtual memory (when used). An SDL program consists of data 



declarations, procedure declarations, and executable statements--in 

that order. An SDL procedure is a microcosm of an SDL program: it 

consists of a procedure head followed by data declarations, procedure 

declarations, and executable statements. A BNF description of the 

syntax of the language is included in the SDL Programmer's Reference 

Manual (Burroughs, 1972). 



C. Data Structures 

SDL data types are minimal but, nevertheless, are designed to provide 

for a wide range of needs with as little overhead as possible. Included 

are only those data types which are necessary for operating system 

and compiler development, and which we could implement well in a 

small-machine environment without run-time routine overhead penalties. 

Specifically excluded because of their inutility to software programming 

are floating point and decimal data types. 

There are three types of data in SDL: b~t strings (BIT), character 

strings (CHARACTER), and fixed (integer) numbers (FIXED). For example, 

DECLARE 

A FIXED, 

B BIT(7), 

(C,D) CHARACTER(l023); 

declares A to be an integer number, B to be a bit string of length 

7 bits, and C and D to be character strings of length 1023 bytes each. 

These basic data types may be grouped in structures, or single-dimensional 

arrays, or combinations of these. For example, 

DECLARE 

01 At 

02 Al(9) -SIT(3), 

02 Al(3) FIXED, 

02 A3(7) CHARACTER(l); 

. declares A to be a structure whose sub-items are arrays. The example: 



DECLARE 

01 B(7) , 

02 Bl FIXED, 

02 B2 BIT (37) , 

03 B2l BIT(34), 

03 B22 BIT(3) , 

02 B3 Character(5); 

declares B to be an array, the elements 

example: 

DECLARE 

01 C BIT(8l), 

02 Cl BIT(17), 

02 C2(5) CHARACTER(l), 

02 C3 FIXED; 

of which are structures. 

declares C to be a structure, one sub-item of which is an array. 

The 

A data structure may be declared as a template in order that it may 

be applied to more than one data area. This is done with indexing 

combined with the "REMAPS BASE" declaration: 

DECLARE 

01 AREA REMAPS BASE CHARACTER(40), 

02 AREAl BIT(8), 

02 FILLER CHARACTER(30), 

02 AREA2 CHARACTER(9); 

Data items ~ay also re-describe other data items: 

DECLARE 

A CHARACTER(80), 

B(80) REMAPS A CHARACTER(l); 



describes an BO-byte data area as a single unit (A) and as an aggregate 

of single-byte pieces (B). 

Simple dynamic data items, whose size is computed at run time: 

DECLARE DYNMHC C BIT(MrB- 3); 

can be used to avoid wasting unused bits. Although dynamic data items 

may not be structured, they may be re-described ("remapped") and thus 

provided with structure in this way. 

Paged arrays allow the programmer to explicitly parameterize virtual 

storage: 

DECLARE PAGED(64) D(1024) CHARACTER(sOO); 

Here, D is a paged array of 1024 elements, each 500 bytes in length, 

with 64 elements per ~age. The SDL machine automatically keeps only 

as many pages in memory as will conveniently fit. Paging is on a 

demand basis. 

In retrospect, it would be nice to have virtual strings; i.e., an 

invisible implementation of virtual memory. The execution-time penalty 

of providing this, however, was not outweighed by its advantages. 



E. Statements 

There are basically three types of statements in SDL: the assignment 

statement (considered to be an expression), the control statement 

(including conditional, group, and case statements, and procedure calls), 

and the function statement (including input-output statements and 

ot.hers) • 

Expressions 

SDL expressions are fairly rich in nature, allowing IF-THEN-ELSE, CASE, 

and intermediate assignment, as well as arithmetic, logical, relational, 

and string operators. All data type combinations are permissible: 

There is no type conversion. In most cases, the data type is ignored; 

in assign~ents and comparisons, the data type is significant. For 

example, CHARACTER to CHARACTER comparison results in the shorter of 

the· two operands being filled (functionally) on the right with blanks, 

whereas BIT to BIT comparison will cause zero fill to the left. 

Group Statements 

There are two means of grouping statements into a block: DO groups and 

DO FOREVER groups. Both DO groups and DO FOREVER groups may be named. 

DO groups may be exited by "falling out the bottom". DO FOREVER groups 

must be (and DO groups may be) explicitly exited through use of the 

UNDO statement. 

As the name implies, DO FOREVER groups cycle back to the beginning of 

the group "forever", unless an UNDO or RETURN is executed. Several 

layers of nested groups may be exited by specifying in the UNDO statement 



the name of the outermost group to be exited. An example follows: 

DECLARE 

(IN(S),OUT(S),CARD(80» CHARACTER(l) 

,(I,C) BIT(24) 

; 

C~O; 

DO SCAN. CARD FOREVER; 

1(-0; 

DO CONPARE.TO.IN FOREVER; 

IF CARD(C)=IN(r) THEN 

DO; 

END; 

CARD(C)~OUT(I); 

UNDO COMPARE. TO. IN; 

IF 5=BDMP I THEN UNDO; 

END CONPARE. TO. IN; 

IF 80=BUMP C THEN UNDO; 

END SCAN.CARD; 

CASE Statement 

The CASE statement has the form: 

CASE (expressioo/; 

(s ta temen t 0); 

(statement 1); 

• 
• 

(statement n); 

END CASE; 



The <expression) must generate a value between 0 and n. This value 

is used to select one of the n+1 statements for execution. If the 

value is less than 0 or greater than n then a run-time error will occur. 

Conditional Statements 

The conditional statement can take either of the forms: 

IF (condition) THE~ (statement); 

or: 

IF ·(condition) THEN (statement); 

ELSE (statement); 

The (condition) may be any expression--however, only the low order bit 
9 

is used: 0 as "false", 1 as "true". 

Other control st~tements (e.g., FOR or DO ••• UNTIL) can often be fabri-

cated using the definitional facility, described in Section II-G, below. 

Function Statements 

Input-output statements are included for the use of the compilers. 

There is neither a format nor a list, as such. The input-output state-

ment has the syntax: 

(I/O mode) (file name) (record key) «work area»; 

where 

<J./O mode) ::= READ IWRITE 

<file name> ::= <file ide~tifier> 

(record key)::=· ~expression)J I (empty) 

(work area) ::= ("address-generating" expression) 

No execution-time routines are invoked to effect input/output. 



For a description of some of the other function statements, see 11-J: 

Special Constructs. 



F. Program Segmentation 

Segmentation of SDL programs is entirely under the control of the 

programmer. It was felt that systems programmers would take the time 

and effort to segment their programs in as efficient manner as possible. 

In addition, the ability should exist to place into the same segment 

(or .segment page) code which, although separated in space,· is not 

separated in time. 

Segmentation of SDL programs takes place at two levels: (1) placing 

code groups into segments, and (2) placing segments (actually segment 

pointers) into pages. The former is done principally with the SEGMENT 

statement: 

SEGME~l(ERROR.ROUTINE); 

which establishes (in this case) ERROR. ROUTINE as the name of the 

current segment. The latter is done with the SEGMENT.PAGE statement: 

SEGHEt-.'T.PAGE(TAPE.ERROR OF IO.ERROR); 

which establishes TAPE.ERROR as the current segment and IO.ERROR as 

the current page. The SEGMENT statement may change the current page. 

There are two types of code segmentation effected by the SEGMENT state-

ment: temporary and permanent. Temporary segment change vCCU~6 when 

the SEGMENT statement precedes a "subordinate" statement (Le., the 
I 

statement following THEN or ELSE, or a statement in a CASE statement). 

All other segmentaLion change is permanent. For example: 

SEqMENT (X) ; 

A";-B; 

IF C THEN 



SEGMENT(Y) ; 

DO; 

END; 

/* AT THIS POINT THE CURRENT SEGNENT AGAIN BECONES "X" */ 

As an SDL program executes, the SDL machine can collect usage statistics 

for each segment, thereby providing a dynamic ~eedback to the programmer 

on how well (or poorly) he has segmented his program (see II-I: 

Measurement and Debug Facilities). 



G. Definitional (Macro) Facility 

The advantages and importance of macro facilities have been described 

in Cheatham, 1966. SDL provides for both textual replacement (described 

here) and,textual inclusion or exclusion (described in II-H). (Cheatham 

classifies both of these as "text macros"). The mechanism described 

here has previously appeared in Burroughs Extended ALGOL for the B5500 

(see Burroughs, 1969a) and in Burroughs Extended ALGOL for the B6700 

(see Burroughs, 1971). The SDL Definitional Facility has been quite 

heavily' exploited in both the Master Control Progr~m (MCP) and in the 

compilers. 

The Definitional Facility allows symbols (actually tokens) in an SDL 

program to be replaced with other tokens or strings of tokens. For 

ex'ample: 

DEFINE X AS #A+B#; 

would cause every occurrence of X to be compiled as A+B. 

Definitions can also be parametric; for example: 

DEFINE X(N) AS #IF N THEN UNDO#; 

The invocation X(A-B)C) would be compiled as: 

IF A-B)C THEN UNDO; 

Both define strings (the tokens between 41' s) and define actual para­

meters may consist of many tokens, including other define invocations. 

'For example: 

DEFINE 

ESCAPE AS #SUCCESS~TRUE; RETURN#, 

COMPARE(CS,S) AS 

tIF SYMBOL=CS,THEN DO; S; END#; 



Then 

COMPARE(ltPAGE",\-.'RITE PRINTER PAGE; ESCAPE); 

would compile as 

END; 

IF SYMBOL="PAGE" THEN 

DO; 

WRITE PRINTER PAGE; 

SUCCESSt-TRUE; 

RETURN; 



H. Conditional Compilation 

The Conditional Compilation Facility of SOL provides a means for 

systematically including or excluding pieces of source code (in a 

program) depending on the setting of conditions. This facility is 

used most frequently to provide system extension. One may ma~ntain 

a single source file for the MCP and include or exclude options 

(e.g., the Sort module, or the Data Communications module) at compile 

time. It is also heavily used to include or exclude debugging code. 

Optimized production systems and slow, self-checking systems can be 

generated and developed as a single program. The Qebugging code need 

never be physically removed from the source file, only conditionally 

excluded. 

The conditional compilation facility provides a means of including 

(or excluding) source images depending upon the value of Boolean 

variables which may be set or reset at compile time. 

The conditional compilation records contain an "~,, in column 1, followed 

by a key word, followed by other symbols; the allowable statements are: 

SET (identifier list) 

RESET <identifier list) 

IF (Boolean expression) 

ELSE 

END 

The ~oolean expression) is made up of identifiers which have appeared 

on a SET or RESET record and of the connectives AND, OR, and NOT. No 



parenthesization is allowed. 

Images which may be conditionally included or excluded are those which 

are delimited by IF-END, IF-ELSE, or ELSE-END. If the <Boolean expression) 

following an IF is true, then the images between the IF and its matching 

END or matching ELSE will be included in the compilation. Otherwise, 

the images between the matching ELSE and its END will be included. 

As implied, conditional inclusion groups may be nested. As an example: 

& SET A,B,C 

& RESET D 

& IF A 

X~O; 

& IF B AND NOT D 

X~l; 

6o.: ELSE 

Xf-2; 

6..; END 

X~3; 
! 

6.. END 

6.. IF B AND D 

Xfo-4; 

6.. ELSE 

"'X~5; 

6.. END 

would compile as: 

X~O; 

X4-1; 



X~3; 

X~5; 



I. Measurement and Debug Facilities 

A'number of measurement and debug facilities have been included in 

SDL to assist in MCP and compiler checkout, and to assist in system 

and program evaluation. In addition to those features described 

below, the definitional and conditional inclusion facilities have 

be~n very heavily exploited in providing "removable" debug and analysis 

code. 

At any point within his program, the SDL programmer may specify that 

his program's data areas are to be dumped to a disk file for later 

analysis. There is a dump analysis program which can then be run, and 

which prints the descriptors and the data described by each descriptor. 

Trace, Notrace 

Since system checkout involved the MCP, interpreters, and compilers, 

as well as SDL programs, themselves, it proved expedient to include 
, . 

a facility whereby the program running, the MCP, or both could'be 

traced. The TRACE command allows this, and also allows the specifi-

cation of the type of trace for each: trace those commands which modify 

data items, trace those commands which change the Program Pol~te~ Stack, 

trace all other commands, or any combination of the three. Needless 

to say, tracing is an interpreter function: since each program has its 

own interpreter (i.e., provides its own interpreter environment), tracing 

of a program does not affect any other program in the mix, including 

the MCP. NOTRACE turns off the tracing phenomenon. 



The trace output may also be directed to magnetic tape or disk, for 

later programmatic analysis. One use that has been made o~ this cap­

ability is to locate the most frequently referenced pieces of code. 

Another is to analyze inter-segment branches: if two segments only 

reference each other, then the two segments may be merged, if the size 

of the conglomeration of the two is not too large. This branchpoint 

analysis has also indicated segments which are traversed frequently but 

contain little code, and therefore indicate that recoding (or re­

segmentation) is needed. 

Monitor 

The HARDWARE.MONITOR instruction makes available on the backplane of 

the B1700 an 8-bit code which may then be sensed by a monitoring device. 

We are currently using the Computer Performance Monitor II, marketed 

by Allied Computer Technology Inc. In this case, the 8-bit code is 

used to turn timers on and off, bump counters, control countin~ periods, 

cause counters and timers to be dumped to magnetic tape for later 

analysis, etc. 

Profile 

The SDL programmer may specify at compile time that he wants statistics 

collected about selected parts of his program: he may count the number 

of entrances to selected procedures or he may count the number of times 

selected branch points are taken. At the end of e~ecution of his program, 

the profile statistics are sorted and printed, thus giving the programmer 

a means of determining the "hot spots" in his program (candidates for 



re-coding), the "cool spots" (code which may be moved to a less 

frequently referenced segment), and the "cold spots" (unused code which 

may indicate flaws in the programmers logic). 

The program profile has also been useful in evaluating the SDL 

machine design: i.e., the selection of machine primitives. ~~en a 

compiler function, such as scanning, shows up as a hot spot in all 

compilers, it is a clear indication that a new primitive should be 

added to the SDL machine. See 11-J: Special Constructs (in p~rticular, 

see Compiler Constructs). 



J. Special Constructs 

In writing an operating system or a compiler, one finds that there 

are special requirements that are unique to those applications of a 

language. In SDL, it has been necessary to provide these unique 

functions in a number of areas. Since these are relatively infrequently 

used functions, the interpreter code to effect the operators which 

provide these functions is normally not resident in control memory, 

but rather it exists in (and is executed from) main memory or has 

been overlayed to disk. Hence, a very low price is paid for making 

these extensions to the SDL language and machine. The advantages of 

having them far out-weigh the disadvantages. 

MCP Constructs 

There are functions which are unique to an operating system. In order 

to avoid the use of "in-line assembly language", special operators 

or function calls were included in SDL. These include: 

1) Dispatch: causes the initiation of input/output operations 

2) Memory Size: returns the sizes of M-memory and S-memory 

3) In~errogate Interrupt Status: returns any interrupt bits 

which have been set since the MCP was entered 

4) Search Linked List: used in the space allocation routine 

5) Parity Address: used to search memory for (as yet) undetected 

parity errors 

6) Fetch: fetches the results of an input/output operation 

7) Reinstate:· reinstates a user program 

8) Overlay: causes overlaying of an interpreter 

9) Enable/Disable Interrupts: allows or disallows interrupts 

10) Return and Enable Interrupts: special return from the high 



priority interrupt routine 

Sort Constructs 

A system sort procedure is typically one of those programs on which 

system 'performance is based. Consequently, it was felt that the most 

frequently performed sort ,functions should be done in special operators. 

The special constructs added to SDL for sort are: 

1) Sort Step Down: provides the result of comparing two records 

using a table to provide the location and type of the comparison 

key 

2), Sort Unblock: essentially does record unblocking, but will 

create tags rather than records if told to do so 

3) Sort Search: provides the information to evaluate a record 

for sorting. The parameters provide the address of the first 

record to be examined and the condition(s) under which records 

will be selected 

4) Initialize Vector: initializes the sort vector 

5) Thread Vector: threads a new entry through the initial vector 

Compiler Constructs 

By analytical means it was discovered that all the compilers were 

spending some fairly large amount of time doing some similar functions. 

Hence, operators were designed which would be applicable to all (most) 

of the compilers on the B1700: 

1) Hashcode: returns a hashcode based on the characters of the 

passed parameter 

2): Deblank: remOves blanks preceding a token 



3) Next Token: returns the descriptor of the next token to be 

scanned 

4) Delimited Token: returns the descriptor of the string of 

characters delimited by the specified character 

Network Definition Language Constructs 

The Network Definition Language processor (data communications) has 

unique requirements not usually found in other programs; part of these 

requirements are reflected by the operators: 

1) Disperse/Retrieve: message access operators 

2) Enter/Exit Coroutine: coroutine entrance and exit operators 



K •. Evaluation 

A discussion of any language of this type would not be complete with-

out some indication of the effectiveness of the language itself, and, 

in this case, some measure of the effectiveness of the implementation 

in a soft environment. 

The reaction of the people using SDL has been a definite preference 

for SDL over other languages they have used, including ALGOL, ESPOL 

(see Burroughs, 1968), PL/I, and COBOL. In additiOn, there have been 

relatively few additions to the basic structure of'the language: the 

notable exceptions have been dynamic data declarations, paged arrays, 

and a means of selecting from a structure only those descriptors needed 

on a given lexic level (to avoid Name Stack build-up). 

The effectiveness of the implementation is probably best indicated ·by 

the ~mount of code generated per source statement. 'Since this ~tatistic 

was ~ot readily ava~lable, the amount of code generated per source 

imag~ (card) will be used instead. This ranges from a low of 4.53 by~es 
I 

per card for the SDL compiler itself to 5.11 for the MCP to 7.95 for 
, 

the RPG compiler (which uses the definitional facility very heavily). 

The average for the MCP and all the compilers, as an aggregate, is 5.98 

bytes of instruction per source image. If in-memori data space is 

included in this calculation, then the average is 6.51 bytes of space 

per sourc~ image. This compares very favorably with assembly language 

code requirements on the more popular byte-oriented machines, yet SDL 

Is a higher-level language. 



III. Overview of the B1700 

The B1700 is a small, general-purpose computer (Burroughs, 1972b) that 

is particularly wellsuited for interpretation and emulation. The 

features of the B1700 that make it unique and unprecedented are: 

I} Dynamically alterable, vertical microprogramming 

i) Bit addressable main memory 

3} Dynamic control of functional width of processor registers 

and busses 

4} Dynamic control of memory access width 

5} Microprogram subroutine capability 

6) Stack structure 

(For a more detailed discussion of the B1700, see Wilner, 1972a). 

Principles first espoused in the Burroughs B5500 (Burroughs, 1969b) 

and in the Burroughs B3500 (Burroughs, 1969d) have culminated in the 

B1700. The B5500 is designed to process ALGOL, while the B3500 is a 

COBOL machine. Both of these machines have their designs hard-wired 

into them. The B1700, however, is "soft" at the level that the others 

are "h*rd". This, combined with a micro-order designed for interpreter 

writing, combined with the attributes listed above, have produced a 

machine that is singular in its capacities. 

The virtual machines which have been produced for the B1700, including 

the SDL machine, are an order of magnitude more powerful at what they 

do than are hard-wired systems. Programs represented in these soft 

machine languages are from 25% to 75% smallei than on byte-oriented systems. 



IV. The SOL Machine 

The SOL language was designed to be used for implementation of the MCP 

and for implementation of the different compilers. In conjunction with 

the design of the language, was the design of a "machine" that would 

"execute" the statements of the language. 

The SOL machine is a c~nglomeration of the ideas of many people. 

Particularly included are the language-directed design ideas of 

McKeeman (McKeeman, 1967), the stack and display mechanism of Randell 

and Russell (Randell, 1964), and the design of the Burroughs B6700 

(see Hauck, 1968). See also Burroughs, 1969b and Burroughs, 1969c. 

The original SDL machine was designed by G. Brevier and B. Rappaport 

of Burroughs Corporation. Later additions and modifications to the 

basic machine design included ideas of C. Kaekel and the author, as 

well as other employees of Burroughs Corporation. 

This section will describe the resulting S-machine and S-language. 



A. Stack Mechanism 

A B1700 program consists of code segments scattered in memory, one 

block of data bounded by a Base Register and a Limit Register, and a 

contiguo'us, read-only block (the Run Struc tur~ containing program 

attributes. Also scattered throughout memory, in addition to code seg-

ments, are file attribute blocks and segment dictionaries. The area 

inside Base-Limit is divided into two parts: a static part and a 
. 

dynamic part. In the case of an SDL program, the static area contains 

the S-machine stacks and the dynamic area contains paged array page 

tables and paged array pages (see Figure 1). 

The SDL machine stack structure originally evolved from Randell and 

."Russell (see Randell, 1964) and from the B6700 (see Hauck, 1968). This 

scheme has proved to be clean and easy to implement, and has resulted 

in' a relatively small amount of code in the interpreter for stack 

management. 

The structure of the S-machine stacks is shown in Figure 2a. 

The inter-relationships among the stacks are shown in Figure 2b. 

The Name Stack and the Program Pointer Stack run toward the Base Reg-

ister (toward low memory addresses); the others run toward the Limit 

Register (high memory addresses). The stacks are used as follows: . 

1) Program Pointer Stack: This is a 32-bit wide stack that holds 

code addresses. Entries are pushed onto this stack upon pro-

cedure or DO group entrance, and are popped off upon procedure 

or DO group exit. 

2) Control Stack: This is a 48-hit wide stack which maintains 



the dynamic history of the allocation of data items. Entries 

are pushed onto this stack upon entrance to procedures with 

parameters and/or local data, and are popped off upon exit 

from these procedures. 

3) Name Stack: This is a 48-bit 'wide stack that holds data des­

criptors. The data descriptors may contain values (self-relative) 

or the address of the values (in the Value Stack). Each lexic 

level's data descriptors occupy a contiguous block of entries 

in the Name Stack. 

4) Value Stack: The Value Stack is a variable width stack which 

contains values of currently allocated (non self-relative) 

data items, as well as the values of temporary data items 

(i.e., intermediate values of expressions). 

5) Evaluation Stack: The Evaluation Stack is a 48-bit wide stack 

which contains data descriptors for intermediate results and 

for temporary storage of procedure actual parameters. 

6) Display: Display is a 32-bit wide array, the entries of which 

contain the addresses of the blocks of data allocated by the 

currently active lexic levels. The addresses in Display point 

into the Name Stack. A lexic level number is used to sub­

script into Display. In other words, Display points to all 

. the groups of descriptors that can be currently addressed. 



B. Opcode Structure 

Because of SDL's stack structure and segmentation, code and data addresses 

are short, making the number of bits devoted to opcodes quite signifi­

cant. In fact, more bits are used for ope ode representation than for 

any other purpose, amounting to over one-third of a program's code space. 

Consequently, it was essential that not only should opcodes be represented 

in as compact manner as possible, but also that decode time for opcodes 

should be minimal. 

The SDL S-operators use an encoding based on. static frequence of occur­

rence. Operators are 4,6, or 10 bits in length with the most frequently 

occurring operators requiring the smaller number of bits. 

The first 10 of the 4-bit codes (016 through 916 ) represent operators. 

The next 5 are escape codes which indicate that the next 2 bits are to 

be examined in order to determine which operator is to be used. The 

last 4-bit code (F 16 ) is an escape code which indicates that the next 

6 bits are to be used in order to determine which operator is to be 

used (see Figure 3). 

Originally, the SDL S-operators were encoded using a 3-bit, 9-bit code. 

After a fairly large amount of working SDL code had been generated 

\ (in the MCP and the compilers) an an~lysis was done (on a static basis) 

of the operators used in that code in an attempt to verify that the proper 

encoding had been chosen, ur, alternatively, to empirically arrive at 

one that would be optimal. 



If Huffman's algorithm for minimum redundancy codes (see Huffman, 1952) 

had been used for SDL opcodes, the space requirements would have been 

minimal, but the time for decoding would have been large. A fixed 

field size would have minimized decoding time but would have required 

a large amount of storage. Using the opcode frequence obtained from 

the analysis mentioned above, an encoding was obtained that was very 

near the Huffman encoding in space required, but still small in decoding 

time (see Figure 4a,b). 

Appendix I contains the SDL S-operators, along with their arguments and 

sizes. It is, perhaps, interesting to note that: 

1) The operator associated with IF-THEN (IFTH) is a 4-bit operator 

while the operator associated with IF-THEN-ELSE (IFEL) is a 

6-bit operator 

.. 2) All types of literals are used frequently enough to warrant 

4-bit operators (ZOT, ONE, LITN, LIT) 

3) Load Address (LA) is a 4-bit operator while Load Value (L) is 

a 6-bit operator. This result indicates (because of the way 

that the SDL expression code generator generates code) that 

there are more "simple" expressions than "complex" ones. 

4) The operator (UNDO) fc~ DO group and simple procedure exits 

is a 4-bit operator 

5) Comparison for equal (EQL) and unequal (NEQ) are more frequently 

used than the other comparison operators (LSS, LEQ, GTR, GEQ) 

For further description of B1700 memory utilization, see Wilner, 1972b. 



c. Descriptor Formats 

Each SDL data item is represented by a descriptor which specifies the 

attributes of that data item. The data attributes are thus contained 

in the data area, rather than being imbedded in the code. The implications 

of this are that there tend to be fewer instructions (for example, there 

is one add instruction for all possible, types--including mixed types-­

rather than a bit add, a character add, a fixed add, etc.) and that the 

instructions tend to be more compact since they reference descriptors 

for attributes, rather than contain the attributes themselves. 

Descriptors in SDL are of two types: simple variables and arrays (vari­

ables to be subscripted). Simple descriptors are 48 bits in length 

while array descriptors are 96 bits in length. (See Figure 5.) 

Simple descriptors have a type field (discussed below), a length field, 

and a field which contains the data (if the data is not more than .24 

bits in length and is not in a structure), or the address of the data 

(if the data is more than 24 bits in length or is in a structure). 

Array descriptors have a type field, a field giving the length of each 

element, a field giving the address of the first element, a field giving 

the number of bits to truncate from the right of a subscript to obtain 

the page subscript (paged arrays only), a field giving the length 

between elements (this is equal to the length of the element on the 

lowest level only of a structured array), and a field giving the number 

of elements in the array. 



The bits in the type field (see Figure 5) are used as follows: 

Bit Use 

o 1 if the value has been loaded to the top of the Value 

Stack (used when the descriptor is on the Evaluation 

Stack only); 0 otherwise 

1 1 if descriptor is non self-relative; 0 otherwise (data 

item is in address field) 

2 1 if array descriptor; 0 if simple descriptor 

3 1 if length of element equals length between elements; 

o otherwise (arrays only) 

4,5 Data type; BIT (00), FIXED (01), CHARACTER (10), 

VARYING (11) (formal descriptors only) 

6 1 if paged array; 0 otherwise (arrays only) 

7 1 if length varying (formal descriptors only) 

It should be pointed out that the use of descriptors along with -the bit­

addressability of the Bl700 allows a greater variety of data represent­

ations, so that the extra bits are more than made up for by not having 

to use "unnatural" representations (a byte for a one-bit flag, for 

example). 



D. Code Addressing 

All code on the Bl700 is not only re-entrant, but also automatically 

relocatable, since code addressing is done through code pointers 

(segment Dictionary entries), rather than with memory addresses (this 

is necessary for re-entrancy when the code is overlayable, but not 

sufficient: see IV-E, Data Addressing). The MCP and compilers tend 

to be large programs and, hence, have a large number of segments since 

the segments themselves must be small (due to the memory restrictions 

of the BI700). In addition, in procedure-oriented languages such as 

SDL, and in compilers in particular, programs are written in"passes" 

(this is also true for the MCP, to some extent: the collection of 

procedures to process control cards, for example, or the procedures to 

process I/O error conditions). In other words, code which is executed 

together in time is ga~hered into segments, and segments which are 

executed together in time are gathered together into pages. Thus, SDL 

code addresses specify (either explicitly or implicitly) a triple that 

'is used to generate an actual memory address if the segment is present, 

or a disk address if the segment is missing from memory. 

Code addresses in the SDL machine actually appear as pairs, triplets~ 

, or quadruplets (Figure 6). 

the Type field indicates the presence or absence of the Segment Number 

field and of the Page Number field, as well as the size of the Displace­

ment field. The Page Number is the entry in the master Segment Dictionary 

us~d to find the minor Segment Dictionary to be' used (if the minor Segment 



Dictionary is not present,' then an interrupt is generated). The Segment 

Number is used to locate the entry in the minor Segment Dictionary which 

gives the location of the desired segment (if the segment is not 

present, then an interrupt is generated). The Displacement gives the 

relative offset into the segment of the instruction being referenced. 

This encoding allows the SDL machine to directly address 230 bits of 

code. This yields a 38.4% savings in space for the SDL machine when 

compared to a byte-oriented machine with equal addressing capability 

(see Wilner, 1972b). 



E. Data Addressing 

SDL data addresses are two-part addresses, the first part specifying 

the le~ic level of declaration of the data item, and the second part 

spec~fying the occurrence number of the data item within that 1exic 

level. The data addresses do not contain memory addresses: this is 

the second condition that is necessary for re-entrancy. It also allows 

SDL procedures to be automatically recursive, and is part of the up­

level addressing scheme. 

SDL data addresses are three-part addresses (see Figure 7). The Type 

field specifies the size (and type of c~ntents) of the two following 

fields. The lexic level field indicates which entry of Display to use 

to subscript into the Name Stack. The occurrence number field is the 

·number of 48-bit descriptors to offset to find the indicated descriptor. 

If Display and the Name Stack are considered as arrays, and V(LL,ON) 

is the address represented by a Type, Lexic Level, Occurrence Number 

triple, then 

V(LL,ON)=NA~E.STACK(DISPLAY(LL)+ON) 

represents the formula used to calculate an address in the Name Stack. 



· F. Descriptor Construction Operators 

As a procedure (lexic level) is entered, the local data for that lexic 

levei is created by entering onto the Name Stack the descriptors for 

the local data. The descriptors are constructed with operators. 

Rathe.r than carry the descriptors intac;t in the code or somewhere else 

in memory, they are carried, in an encoded form, in-line behind the 

operators which describe how the address field of the descriptor is to 

be derived. The in-line descriptor format and the Construct Descriptor 

Operators and their arguments are shown in Figure 8a. The formulae for 

descriptor address calculations are shown in Figure.8b. 

The action of each of the operators is as follows: 

Construct Descriptor Base Zero (CDBZ): A descriptor is put on the 

Name Stack with an address of zero. 

Construct Descriptor Local Data (CDLD): The number of descriptors 

specified are constructed using the current value of the 

Value Stack Pointer as the address. The Value Stack Pointer 

is kept current as each descriptor is put on the Name Stack 

by adding to the Value Stack Pointer the length of the data 

item described. 

Construct Descriptor From Previous (CDPR), Construct Descriptor 

From Previous and Add (CDAD), Gonstruct Descriptor From Previous 

and Multiply (CDMP): The number of descriptors specified are 

constructed using the following formulae to calculate the 

addresses: 



CDPR: A'=A+F 

CDAD: A'=A+F+L 

CDMP: A'=A+F+L+(E-l)xLB 

where 

At is the new address part 

A is the address part of the previous entry in the Name 5f~1-
F is the in-line filler value if present 

L is the length part of the previous entry on the Name 

Stack 

E is the number-of-entries part of the previous entry on 

the Name Stack 

LB is the length-between part of the previous entry on 

the Name Stack 

Note that CDMP assumes that the previous entry on the Name Stack 

is an array descriptor. 

Construct Descriptor Lexic Level (CDLL): A descriptor is constructed 

on the Name Stack which has as its address part the address 

of the value described by the descriptor specified by the 

LL, ON part. 

These 6 operators are sufficient to construct all the descriptors 

required by all possible ~ombinations of arrays, structures, and filler 

as described in II-C. 



G. Handling of Control Statements 

SOL's sophisticated segmentation allows segment changes to appear 

virtually anywhere within SOL programs. This non-sequential program 

flow combined with the lack of a GO TO in the S-machine created some 

interesting,complexities. In an attempt to handle all of these com­

plexi.tiesin a uniform manner, very heavy use was made of the Program 

Pointer Stack. All of the control statement operators (except Cycle) 

cause insertion or removal of entries from this stack. All of these 

operators can or do affect the next instruction address. The format 

of the control statement operators is given in Figure 9. A description 

of the operators follows. 

Call (CALL): The Call operator is used to enter DO and DO FOREVER 

groups when these do not follow THEN and ELSE, and are not part of 

'a CASE. The argument of the Call is the code address of the DO 

or DO FOREVER. Execution of the Call causes the current program 

address to be pushed onto the Program Pointer Stack, and the next 

instruction to be executed from the address indicated by the 

argument. 

If-Then (IFTH): The If-Then operator is (as might be expected) used 

to handle the IF-THEN statement. The operator eX2mines the low­

order bit of the value described by the descriptor on the top of 

the Evaluation Stack. If this bit is 1 then the current program 

address is pushed onto the Program Pointer Stack, and the next 

instruction to be executed is taken from the address indicated by 

the (code address) argument. 



If-Then-Else (IFEL): The If-Then-Else operator is used to handle 

the IF-THEN-ELSE statement. The current program address is pushed 

onto the Program Pointer Stack. If the low-order bit of the value 

described by the descriptor on the top of the Evaluation Stack is 

1, then the next instruction address is indicated by the first 

code addr~ss following the operator; otherwise, the next instruction 

address is indicated by the second code address following the 

operator. 

Case (CASE): The Case operator is used for CASE' statements. The value 

described by the descriptor on the top of the Evaluation Stack is 

compared to the number, N, of code addresses following the operator: 

if the value is greater than(~eqUal to N, then an error occurfs; 

otherwise, the value is used to subscript into the code addresses. 

If the code address selected is null, then the operator is termi-

-.. nated and the next instruction is executed; otherwise, the current 

program address is pushed onto the Program Pointer Stack and ,the 

selected code address is used toiobtain the next instruction 

address • 

. Undo (UNDO): UNDO statements are handled by the Undo op~rator. Since 

more than one level of nesting may be undone by any given UNDO 

statement, the number of levels to undo is contained in the instru~-

tio~. The number of levels specified is popped from the Program 

, Pointer Stack and' the last one popped is used as the address of , 
the next instruction. 

Undo Conditionally (UNDC): The statement 

IF <f0nditi0t9 THEN UNDO; 

is one that causes needless manipulation of the Program Pointer 



Stack if handled with the If-Then and Undo operators. Consequently, 

a special operator was devised which is no more than the amalgamation 

of these operators: if the low-order bit of the value described 

by the descriptor on the top of the Evaluation Stack is 1, then 

an Undo operation is performed; otherwise, the next instruction is 

executed. 

Cycle. (CYCL): DO FOREVER loops are handled by the Cycle operator. Since 

DO "(and DO FOREVER) groups are required to terminate in the segment 

in which they began, it is sufficient to subtract some amount from 

the current program address. The amount to be subtracted is con-

tained in the field following the Cycle operator. 

It might be noted that, because some of these operators contain code 

addresses, it is possible to obtain some nice optimizations. In parti~ 
. 

cular, if UTP is the name of an untyped procedure which has no parameters, 

then the following cases may be optimized by merely using the address 

of the procedure as part of the ir.struction; 

IF (condi Hon> THEN UTP; 

IF~o~dition> THEN . . . . , 
. CASE (expression); 

• 
• 

UTP; 

• 
• 

END CASE; 

ELSE UTP; 



H. Procedure Entrance and Exit 

. Procedure entrance and exit are a form of control statement execution, 

but are more complex than those statements described in IV-G, since the 

Control Stack and the Display may also be affected. 

Procedure entrance and exit always affects the Program Pointer Stack 

and affect the Control Stack and Display when there is local data and/or 

parameters. 

A call to a procedure with no local data and no parameters requires 

I 
only the Call operator (see IV-G). A call to a procedure with local 

data but no parameters requires a Call operator followed by a Mark 

. Stack and Update operator executed inside the procedure. A procedure 

with parameters and wit? or without local data requires a Mark Stack 

operator, followed by the operators to put the actual parameters on the 

Evaluation Stack, followed ~y a Call operator. Inside the procedure, 

a Construct Descriptor Formal operator is executed. (See Figure 10). 

The Call, Mark Stack, and Mark Stack and Update operators will be 

described here; the Construct Descriptor Formal operator will be 

described in section IV-I. 

Call (CALL): The argument of the Call is the code address of the pro-

cedure to be entered. Execution of the Call causes the current 
. . 

program address to be pushed onto the Program Pointer Stack, and 

the next instruction to be .executed from the address indicated by 

the argument. 



Mark Stack (MKS): The Mark Stack operator causes construction of an 

entry on the top of the Control Stack. This entry contains the 

current values of the Name and Value Stack Pointers. The Exited 

Lexi~ Level field of the entry is set to the value of the current 

lexic level, and the Entered Lexie Level field is set to zero. 

Mark Stack and Update (MKU): The Mark Stack and Update operator has 

as an argument the lexi~ level of the procedure being entered. 

This operator causes construction of an entry on the top of the 
~ 

Control Stack. The entry contains the current values of the Name 

and Value Stack Pointers. The Exited Lexie Level field of the 

entry is set to the value of the current lexic level, and the 

Entered Lexic Level field is set to the value specified as the 

operator argument. The Display Stack entry for the specified 

lexic level is set to the current value of the Name Stack Pointer. 

The current lexic level is changed to the specified lexic level. 

All procedure exits are done with the RETURN statement; however, the 

operator generated depends upon whether or not the procedure contains 

local data or parameters, and upon whether or not the procedure is typed. 

If the procedure cont~in5 no local data and has no parameters (and 

therefore did not change the Control Stack upon entrance), then an Undo 

I 
operator is used to effect the return. If there is either local data 

or parameters an~ the procedure is not typed, then 

used. If there is either local data or parameters 

! 

an Exit operator is 
I 
I 

and the procedure 

is typed, then a Return operator is used. (See Figure 10.) 



The Undo operator was described in IV-G. The Exit operator will be 

described here, and the Return operator will be described in section IV-I. 

Exit (EXIT): The Name and Value Stack Pointers are set to the values 

obtained from the top entry of the Control Stack. The Display 

entry pointed to by the current lexic level is restored to the 

Name Stack value obtained from the first (proceeding from top to 

bortom) Control Stack entry, if any, having an Entered Lexie Level 

field equal to the current lexic level (unless a prior or the present 

entry has a zero Exited Lexic Level field). The Exited Lexic Level 

field is used to set the current lexic level, and the top entry is 

popped from the Control Stack. The number of levels specif~ed is 

popped from the Program Pointer Stack and the last one popped is 

used as the address of the next instruction. 



I. Param~ter Passing--Returning of Values 

The formal parameter statement assigns a type (and length) to each of 

the formal parameters. The SDL programmer has the option of having the 

SDL machine (interpreter) verify that the actual parameter matches the 

formal. parameter. Since this check is time-comsuming, it is typically 

not performed once a program has been debugged. The consistency check 

is performed by the Construct Descriptor Formal operator (see Figure 11). 

When the check is to be done, this operator has, as its arguments, 

"descriptor templates" for each of the formal parameters. The description 

of this operator follows: 

Construct Descriptor Formal (CDFM): The Construct Descriptor 

Formal operator assumes that a Mark Stack operator was executed 

before the actual parameters were placed on the Evaluation Stack • 

. The current lexic .level is changed to the lexic level specified by 

the operator. The specified lexic level is also put into the 

Entered Lexic Level field of the top entry in the Control Stack. 

The Display Stack entry for the specified lexic level is set to 

the current value of the Name Stack Pointer. The current lexic 

level is set to the specified lexic level. The number of descriptors 

specified is constructed on the Name Stack using the in-line des-

c~i~tor information plus the corresponding descriptor information 

on the Evaluation Stack. The type and length fields are compared 

for con~~~~ency between corresponding descriptors on the Evaluation ... 
and Name Stacks. The Evaluation Stack is cut back after construction 

. 
of the -descriptors; the Value·Stack is-not.-· 



The values returned by typed procedures in SDL should agree in type 

and length with the formal type of the procedure itself. The SDL 

programmer again,has the option of specifying whether or not this con­

sistency check is performed by the interpreter. If this check is to 

be performed then the Return operator contains a descriptor template in­

line following the operator. 

Return (RTRN): The Return is the same as the Exit operator prior to 

popping entries off the Program Pointer Sta~k. At this point, the 

data descriptor on the Evaluation Stack is compared to the in-line 

descriptor for consistency. If the data is on the Value Stack, 

then after cutting back the Value Stack, the data is moved to the 

new top of the Value Stack. The number of levels specified is 

popped f-rom the Program,Pointer Stack and the last one popped is 

.used as the address of the next instruction. 



J. Special Operators 

In order to illustrate further the complexity and flexibility possible 

with a machine such as the B1700, several of the special operators 

will also be described. 

Search Linked List 

The Search Linked List operator is used principally by the HCP to 

allocate memory space. This operator compares a value with a list of 

linked structures, searching for the indicated rela~ionship or the end 

of the list. The argument specifies the compare type: less, less or 

equal, eq~al, not equal, greater or equal, greater. There are four 

descriptors on the Evaluation Stack. The descriptors represent: 

1) Link I~dex: the relative offset in the structure)and the size) 

of the field which contains the address of the next structure 

to be examined 

2) Compare Variable: the variable to be compared to the linked 

structure 

3) Argument Index: the relative offset in the structure) and the 

siz~of the field to which Compare Variable is to be compared 

.. , 4) Record Address: the address of the first structure to examine 
" 

The operator returns the address of the structure who,se compare field 

was in the desired relationship to the Compare Variable, or it returns 

an indicator that there were no structures in the desi~ed relationship. 

Reinstate 

The Reinstate operator is the operator used by the MCP to reinstate a 



user 'program. The descriptor on the top of the Evaluation Stack is 

assumed to describe a field in the Run Structure of the program to be 

reinstated. The reinstating program's M-machine state is stored in 

its own Run Structure (each program currently executing has a Run 

Structure which contains the program's execution attributes). The 

address of the reinstating program's Run Structure is stored in the 

reinstated program's Run Structure. The descriptor at the top of the 

Evaluation Stack is removed. The address field of this descriptor 

addresses the Run Structure of the program which'is then reinstated. 

Next Token 

The Next Token operator is used by compilers to scan source images. 

The first argument is the data address of a descriptor which describes 

the first character to be examined. It is assumed that this character 

is non-blank. The second argument is a "separator" character (such as 

"-" in COBOL). The third argument is the "numeric-to-alpha indicator". 

If the character described by the fir~t argument is a special character, 

then the operator is exited with a descriptor on the top of the Evalu-

at ion Stack which describes this character, and with the descriptor 

described by the first argument advanced to point to the nex~ character 

in the source image. 

If numeric-to-alpha indicator is 1 then the stopper is set to "A"; other-
. 

wise, if the first character is numeric then the stopper is set to "0"; 

'otherwise, the stopper is set to "A". Charac te'rs are sequentially 

compared to the stopper until one is found which is less than the stopper 



and not equal to the separator. The operator then exits with a descriptor 

on the top of the Evaluation Stack which describes the token just found, 

and with the descriptor described by the first argument advanced to 

point to the next character in the source image. (The EBCDIC collating 

sequence is assumed). 



v. Conclusion 

In this brief description of the B1700 Software Development Language 

(SDL), and its underlying S-machine, I have attempted to give some 

indication of the flavor of SDL but, more importantly, to illustrate 

the extreme flexibility and suitability of the B1700 for the tasks for 

which it was designed: the writing of (language) interpreters and 

emulators. We who have used SDL feel that it is well-suited for the 

type of programming for which it was designed. We could not agree more 

-with Saltzer et al (MIT, 1970) that one of our best decisions was to 

program the operating system in a higher-level language. However, 

the degree of success of the software depends very heavily upon the 

suitability of the hardware to the software and to the language in which 

the software is written •. The Burroughs B1700, by its very natur~, has 

proven to be quite suitable to the tasks to which it has been assigned. 

It should be pointed out, that because all of the software for the B1700 

has been written in a higher-level language, all of it (including the 

MCP) is theoretically transportable to any other system which has soft 

interpretation (of the flexibility of the B1700). 
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VII. APPENDIX I: SDL S-OPERATORS 

RELATIO~AL OPERATORS 

NANE M1-."EMONIC OP CODE SIZE ARGm!E~7S 

EQUAL TO EQL 6 
LESS THA~ LSS 10 
LESS THA~ OR EQUAL TO LEQ 10 
GREATER THA0: GTR 10 
GREATER THA:l CiR EQUAL TO GEQ 10 
NOT EQl:AL TO NEQ 6 

AR:IT~fETIC OPERATORS 

NA...v.E m.'EMONIC OP CODE SIZE ARGl:xEt'-t"TS 

ADD ADD 6 
SUBTRACT SUB 6 
l-1ULTIPLY MUL 10 
DIVIDE DIV 10 
HODtLO MOD 10 
REVERSE SL13TRACT RSUB 10 
REilERSE DIVltE RDIV 10 
REVERSE }!ODULO RMOD 10 
NEGATE NEG 10 
CO~~cRT TO DECI:L~L DEC 10 
CONV'ERT TO BI~.~Y BIN 10 

LOGICAL OPERATORS 

NANE M}."EMONIC OP CODE SIZE ARGUMEt."TS 

At.'D AND 10 
OR OR 10 
EXCLUSl\'E-OR XOR 10 
NOT NOT 10 

STRl~G OPERATORS 

NA.'1E ID.'EMONIC OP CODE SIZE ARGUXE~'TS 

CONC.o\TE ~ATE CAT 6 
SUBSTRI~G TWO 5S2 10 
5tJBSTRI~G THREE 553 6 



SDL S-OPERATORS (CONTINUED) 

LOAD OPERATORS 

NA."fE m."EMONIC OP CODE SIZE ARGUNENTS -
~tAKE DESCRIPTOR MOSC 10 
VALL"E DESCRIPTOR VDse 10 
DESCRIPTCR DEse 6 DA 
NEXT OR PREVIOUS ITEM NPIT 10 V,DA 
LOAD VALL"E L 6 DA 
LOAD ADDRESS LA 4 DA 
ARRAY LOAD VALL"E AL 10 DA 
ARRAY LOAD ADDRESS ALA 6'· DA 
I!-'1)EXED LOAD VALUE IL 10 Dk 
I~1)EXED LOAD ADDRESS ILA 4 DA 
LOAD LITERAL LIT 4 D,LITERAL 
LOAD 10-BIT LITERAL LITN 4 LITERAL 
LOAD LITE~~L ZERO ZOT 4" 
LOAD L ITEML O},'E ONE 4 

STACK OPERATORS 

NA."'!E MNEMONIC OP CODE SIZE ARGUME~lS 

BUMP VALt"E STACK POI~'TER BVSP 10 
DUPLICATE DUP 6 
DELETE DEL 10 
EXCHANGE XCH 6 
FORCE VALL'E STACK FVS 6 

STORE OPERATORS 

NANE MNEMONIC OP CODE SIZE ARGUNE~lS 

STORE DESTRUCTI\"E STOD 4 
STORE NO~-D~STRUCTI\~ LEFT S~1)L 6 
STORE ~O~-DESTRUCTlv"E RIGH! SNDR 10 

CONSTRUCT DESCRIPTOR OPERATORS 

NA."iE MNEMONIC OP CODE SIZE ARGUMENTS -
CONSTRI:CT DES. BASE ZERO CDBZ 10 D 
CONSTRI:CT DES. LOCAL DATA CDLD "6 N,D1, ••• ,DN 
CONSTRrCT DES. FOR:!AL CDFM 10 Lt,! 
CONSTRt:CT DES. FORl.'1AL- V2 CDFM: 10 LL,!,D1, ••• ,DN 



SDt S-OPERATORS (CO~INUED) 

LOAD OPERATORS 

~ m."EMONIC OP CODE SIZE ARGUMENTS 

W.J<E DESCRIPTOR MDSC 10 
VALL"E DESCRIPTOR VDSC 10 
DESCRIPTCR DESC 6 DA 
heXT OR PREVIOUS ITEM NPIT 10 V,DA 
LOAD VALCE L 6 DA 
LOAD ADDRESS LA 4 DA 
ARRAY LOAD VAlCE At 10 DA 
ARRAY LOAD ADDRESS ALA 6- DA 
1~1)EXED LOAD VALUE It 10 DA 
It.'DEXED LOAD ADDRESS lLA 4 DA 
LOAD L ITER .. \L LIT 4 D,LITERAL 
LOAD lO-BIT LITE~~L tITN 4 LITERAL 
L~~ LITE~~L ZERO ZOT 4-

LOAD L ITERAL O~"E ONE 4 

STACK OPERATORS 

NA .. '1E MNEMONIC OP CODE SIZE ARGUMENTS 

B ill1P VAt L "E STACK POI!'<'TER BVSP 10 
DUPLICATE DUP 6 
DELETE DEL 10 
EXCHANGE XCH 6 
FORCE VALliE STACK FVS 6 

STORE OPERATORS 

NANE MNEHONIC OP CODE SIZE ARGtJMENTS 

STORE DESTRUCTI\"E STOD 4 
STORE NO~-D~STRUCTI\"E LEFT S!'<'DL 6 
STORE NO~-DESTRUCTlv"E RIGHT St-."'DR 10 

CONSTRUCT DESCRIPTOR OPERATORS 

NA.."fE MNEMONIC OP CODE SIZE ARGUMENTS -
CONSTRt:CT DES. BASE ZERO CDBZ 10 D 
CONSTRt:CT DES. LOCAL DATA CDLD -6 N,Dl, ••• ,DN 
CONSTR[CT DES. FOR~lAL COFM 10 LL,E 
CONSTRTJCT DES. FOR."IAL- V2 CDFM: 10 LL,E,Dl, ••• ,DN 



SDL S-OPERATORS (CO~lI~~D) 

CONSTRUCT DESCRIPTOR OPERATORS ( CO:-''TINUED) 

NA!-IE Mf'..'ENONIC OP CODE SIZE ARGmlE'!'-.'TS 

CONSTRUCT DES. FROX PREVo CDPR 6 N,Dl, ••• ,DN 
CONSTRCCT DES. FRO~'l PREV. & ADD CD AD 6 . N,Dl, ••• ,DN 
CONSTRUCT DES. FRO)-l PREV. & 

NULTIPLY CDMP 10 N,Dl, ••• ,DN 
CONSTRUCT DES. LEXIC LEVEL CDLL 10 DA,D 

PROCEDGRE OPERATORS 

NA}!E l-fu'EMONIC OP CODE SIZE ARGmlE~'TS 

CALL CALL 4 CA 
IF THEN IFTH 4 CA 
IF THEN ELSE ITEL 6 TYPE, CA, CA 
CASE CASE 10 N,TYPE,CA1, ••• ,CA~ 
Uf'.'DO Ut-."DO 4 L 
Ut-.'DO CONDITIO:;ALLY UNDC 10 L 
RETOR~-Vl RTRN 10 L 
RETURN-V2 ItTRN. 10 L,D 
EXIT EXIT 6 L 
CYCLE CYCL 6 DISPLACEME};'T 
MARK STACK MKS 6 
MARK A~'D UPDATE MKU 10. LL 

MISCELLA~cOUS OPERATORS 

NA!oIE Mt>.'EHONIC OP CODE SIZE ARGUMEr-..'TS 

SWAP SWAP 10 
INTERRUPT STATUS lIS 10 
FETCH FECH 10 
DISPATCH D1SP 10 
HALT HALT 10 
READ CASSETTE RDCS 10 
LENGTH LENG 10 
LOAD SPECIAL LSP 10 V 
CLEAR CLR 10 
CO!-1}1ONI CA TE COM}{ 10 
REINSTATE REIN 10 
FETCH CXP FCMP 10 
ADDRESS ,ADDR 10 
SAVE STATE SVST 10 
HARDWARE NONITOR HHON 10 
OVERLAY OVLY 10 
PROFILE PRFL 10 N 
SEARCH LI~KED LIST SLL 10 V 
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SDL MEMORY STRUCTURE 

Value Stack 
... -----1,------

- - - - - -

Name Stack 

Display 

Control Stack 
r--

Evaluation Stack 
~---- ---

~ 

~------ ---
Program Pointer Stack 

Paged Array 

pages and 

page tables 

Run Structure 

FIGURE 1. 

~ Base Register 

Program Static Memory 

Program Dynamic Memory 

Limit Register 
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FIGURE 2a. 



Display 

Name 
Stack 

Value 
Stack 

SDL STACK INTER-RELATIONSHIP 
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Control Stack Entry 1 describes a currently inactive lexic level. 

FIGURE lb. 
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SDL OPCODE STRUCTURE 

I 4 bits 
o thru 9 

I 4 bits 12 bi~s 
10 thru 14 

o thru 3 

[4 bits I 6 bits 
15 o thru 64 

FIGURE 3. 

------'~---



ENCODING ~·rETHOD 

HUFFMAN 

SDL 4,6,10 

8-BIT FIELD 

MCP OPERATOR ENCODING 

TOTAL BITS FOR 
MCP'S OPCODES 

172,346 

184,966 

301,248 

UTILIZATION 
IMPROVE~rE~"T 

437. 

397. 

0'7. 

FIGURE 4a. 

DECODING 
PE~ALTY 

17.27. 

2.67. 

0.07. 



100% 

~Eight.bit field 

90%--

(j) -c E 80CYo- -

70% 

~./' SDL 4-6-10 

E < < Huffman enCOding"" 
Q) 61«Y0L- . 
~ 60%_I-_---N 

57%,---L----~<--~~~----------------------~--~ 

50%4---~-+-----+------------~----------~--~----~-+ 

1.00 1.026 1.05 1.10 

Decoding time 

FIGURE 4b. 

1.15 1.17 1.20 



SDL DESCRIPTOR FOR~~TS 

SIMPLE DESCRIPTOR: 

TYPE LENGTH ADDRESS OR DATA 

8 16 24 

ARRAY DESCRIPTOR: 

TYPE LENGTH OF ELE!-lHrr ADDRESS OF FIRST ELE:[DIT 

PAGE SUB- LE~iGTH BETI-.'EEN 
SCRIPT SIZE ELD!El\'TS ~lJNBER OF ELEHEt.;TS 

8 

TYPE FIELD: 

o 

16 24 

NOT USED 

1 FOR PAGED ARRAY 

DATA TYPE: BIT(OO), FIXED(Ol), 
CHARACTER(lO), VARYING(ll) 

1 IF LENGTH OF ELE~!ENT = LENGTH BETWEEN 
ELE~!E~7S (CONTIGUOUS ARRAY) 

1 IF ARRAY DESCRIPTOR 

1: NON SELF-RELATIVE 
0: SELF-RELATIve (DATA ITEM IS IN ADDRESS FIELD) 

NAME-VALUE BIT 

FIGURE 5. 



SDL CODE ADDRESS 

TYPE SEG:'1E~T ~O. PAGE NO. DISPLACDlENT 

3 0 OR 6 0 OR 4 12,16,OR20 

TYPE SEG~lE\l NO. PAGE NO. DISPLACE~1ENT TOTAL BITS 

000 CURREt-.7 CURREt-.7 12 BITS 15 

001 CURRENT C1JRRENT 16 BITS 19 

010 6 BITS CURREf:..7 12 BITS 21 

all 6 BITS CURREl:-.7 16 BITS 25 

100 6 BITS 4 BITS 12 BITS 25 

101 6 BITS 4 BITS 16 BITS 29 

110 6 BITS 4 BITS 20 BITS 33 

Hi 3 

FIGURE 6. 



SDL DATA ADDRESSES 

[ TYPE LEXIe LEVEL oeeUKRE~eE NO. 

2 1 OR 4 5 OR 10 

TYPE LEXIe LEVEL OeeCRRE~CE NO. TOTAL BITS 

00 4 BITS 10 BITS 16 

01 4 BITS 5 BITS 11 

10 1 BIT * 10 BITS 13 

11 1 BIT * 5 BITS 8 

* 0: LEXIC LEVEL 0 

1: CURRE~l LEXIe LHEL 

FIGURE 7. 



SDL CO~STRUCT DESCRIPTOR OPERATORS 

IN-LI~~ DESCRIPTOR FOR}~T: 

IFILLER 
LE~GTH BETi-.r:E~ PAGE SUBSCRIPT ~Lr:GER OF TYPE LE:\GTH 

ELDfENTS SIZE ELDfE~'TS 

8 6 OR 17 O,6,OR 0,6, OR 17 o OR 8 0, 6, 17 
17 

6- OR 17-BIT FIELDS: 

(0 I 5 BITS PI 16 BITS 

CONSTRUCT DESCRIPTOR OPERATORS: 

OPERATOR MNEMONIC OPCODE ARGU:fE~;TS 

BASE ZERO CDBZ 1111 10 0100 D 

LOCAL DiH A CDLD 1110 00 N,Dl, ••• ,DN 

FRO:-! PREVIOL'S CDPR 1110 10 N,Dl, ••• ,DN 

FROM PREVIOUS At."D ADD CDAD 1110 01 N,D1, ••• ,DN 

FRmi PREVIOUS A~"D ML'LTIPLY CDMP 1111 10 0101 N,Dl, ••• ,DN 

LEXIC LEVEL CDLL 1111 10 0011 DA,D 

WHERE D M1) DI ARE IN-LI};"E DESCRIPTORS, AIm DA IS A DATA ADDRESS 

(TYPE, LE..XIC LEVEL, OCCI.JRRENCE Nill1BER) 

FIGURE 8a. 



SDL CO~STRUCT DESCRIPTOR ADDRESS CALCULATIO~S 

OPERATOR ADDRESS 

CDBZ A' .- 0 

CDLD AI = V 

CDPR A' = A+F 

CDAD A' =A+F+L 

CDNP A' =A+F+L+ (E-1) x LB 

CDLL A' = ADDRESS(DA) + F 

WHERE 

A t IS THE NE~~ ADDRESS PART 

V IS Th'E VALlJE STACK POINTER 

A IS THE ADDRESS PART OF THE PREVIOUS ENTRY IN THE 

NA}1E STACK 

F IS THE IN-LI~'E FILLER VALUE, IF PRESENT 

L IS THE LE~GTH OF THE PREVIOUS ENTRY ON THE 

NANE STACK 

E IS THE NillffiER-OF-El'-.'TRIES PART OF TP.E PREVIOUS 

El\1'fRY ON THE N~!E STACK 

LB IS THE LE~GTH-BEThcEN-E~LRIES PART OF THE PREVIOUS 

ENTRY ON THE N~1E STACK 

DA IS THE IN-LIm: DATA ADDRESS 

FIGURE 8b. 



SDL CO~7ROL STATE~~7 OPERATORS 

OPERATOR M~'EHO~IC OPCODE ARGtl}tEmS 

CALL CALL' 0111 CA 

IF-THEN IFTH 1001 CA 

IF-THEN-ELSE IFEL 1101 10 AT,O .. ,CA 

CASE CASE 1111 01 0100 N,AT,CA1, ••• ,CAN 

UNDO UNDO 1000 L 

Ut-i"DO COt;"DITIO!~ALL Y Ul'..'DC 1111 01 0011 L 

CYCLE CYCL 1110 11 D 

WHERE 

CA IS A CODE ADDRESS (TYPE, SEGXE~~ NU}ffiER, PAGE 

NUMBER, DISPLACE!-tE!l"T) 

AT IS THE CODE ADDRESS TYPE 

N IS THE NLl}1BER OF CODE ADDRESSES 

L IS THE t-.'Ul'ffiER OF LEVELS TO Ut..'DO 

D IS THE t-.1}}IBER OF BITS OF DISPLACEME~'T 

FIGURE 9. 



SDL PROCEDl~E E~l~~~CE A~~ EXIT OPERATORS 

OPERATOR M}.T£NO~IC 

MARK STACK MKS 

MARK STACK AtTI UPDATE MKU 

CALL CALL 

EXIT EXIT 

UNDO UNDO 

RETURN RTRN 

LL IS THE ENTERED LEXIC LEVEL 

CA IS A CODE ADDRESS 

OPCODE 

1011 11 

1111 01 1111 

0111 

1101 11 

1000 

1111 01 0101 

L IS THE NU~IBER OF LEVELS TO REXOVE FROM THE 

PROGR&~ POINTER STACK 

D IS A TYPE, LENGTH PAIR 

FIGURE 110 • 

ARGU}[E~S 

LL 

CA 

L 

L 

L,D 



SDL CONSTRUCT DESCRIPTOR FOR}L~L 

OPERATOR MNE~10~IC OPCODE ARGL~1H;rS 

CONSTRVCT DESCRIPTOR FOR~~L CDFM 1111 01 0001 L,E,Dl, ••• ,DN 

WHERE 

TYPE: 

L IS THE E~lERED LEXIC LEVEL 

E IS THE l';u}1BER OF 48-BIT El'1iRIES ON THE EVALUATION 

STACK 

DI ARE IN-LINE DESCRIPTOR. TD-IPLATES OF THE FORM: 

TYPE LENGTH 

8 0,16 

Nl;,}1BEP. OF 
Et\TRIES 

0,16 

l 0 11f 213/4151 6 17 J 

o 
1 IF ARRAY 

1 

o 
FIGURE 11. 

I 
1 IF LENGTH VARYING 

1 IF ARRAY BOUND VARYING 

DATA TYPE: BIT(OO), FIXED(Ol) 

CHARACTER(lO), VARYING(ll) 


