
ABSTRACT

SOFTWARE DEVELOP!.1ENT IANGUAGE

FOR TIlE

BURROUGHS D1700

by Donald R. McCrea

Durroughs Corporation
Santa Barbara Plant
Goleta, California

The Burroughs Bl700 is a small, general-purpose computer which 1s ea)
dyna:nically microprograll:.l;lable, and (b) designed to support hundreds ot
independent, special-purpose machine architectures. Each language that
runs on the B1700 has its own interpreter. In keeping with this flexi­
bility, a lan:;uage and underlying machine structure WC1'C (!(~signed to be
used for implementation of the operating system and for implementation
of the different compilers. This 1s an ALGOL-like, GO To-fl'ee language
which is e!ceant, and yet modest in its design. The underlying machine
structure 1s highly stack-oriented. allowing re-entrancy, recursion. and
up-level addressing.

Keywords: . software implementation language, procedure-oriented language,
stack machine, microprogramm.in:.;, computer architecture, 01700,
S-language, interpretation, GO TO-free

PROPRIETARY DATA

tile Information contained in this document is proprlet~ry to
BUrrougbs Corporation. The infoTm~tion or this docum"nt l~ pot
to be shown. reproduced, or disclosed out$lde. BUffO!lr;nS

Corporation without written perrr.:3s:c!I cf the Pyent DdiSIM.

~. THIS DOCUMENT IS THE PRO:>ERTY OF AilD SHALL BE
RETURNED TO BURROUGHS CQRPIlRATION. BURROUGHS PLACE.

'iI'RQIT. MICHIGAIt ~8Z3Z..,

SOFTWARE DEVELOPMENT LANGUAGE

FOR THE

BURROUGHS B1700

by

Donald R. McCrea

Burroughs Corporation

PROPRIE1ARY DATt\

The InfOrmation contained in this document is proprietalY to
Burroughs Corporation. The inforrr.ation or this document is not
to be shown, reproduced, or di~clo;;cd outside Burroughs
Corporation without written perrr.is-:.;on of the Patent Division.

THIS DOCUMENT IS THE PROPE~TY OF AND SHALL BE
RETURNED TO BURROUGHS CORPORATION. BURROUGHS PLACE.

. DETROIT, MICHI9AN 48232.

SOFTWARE DEVELOPMENT LANGUAGE

FOR THE

I. Introduction

II. The SDL Language

A. "History

B. Language Form

C. Data Structures

D. Procedures

E. Statements

F. Program Segmentation

BURROUGHS B1700

G. Definitional (Macro) Facility

H. Conditional Compilation

I. Measurement and Debug Facilities

J. Special Constructs

K. Evaluation

III. Overview of the Burroughs B1700

IV. The SDL Machine

A. Stack Mechanism

B. Opcode Structure

C. ~escriptor Formats

DO. Code Addressing

E. Data Addressing

F. Descriptor Construction Operators

G. Handling of Control Statements

H. Procedure Entrance and Exit

I. Parameter Passing--Returning of Values

J. Special Operators

V. Conclusion

VI. Acknowledgements

VII. Appendix I: SDL S-Operators

I. Introduction

The Burroughs B1700 is a small, general-purpose computer. It belongs

to the class of computers containing, among others, the IBM 360/20,

IBM System 3, NCR Century 100 and 200, and the Univac 9300. However,

the· B1700 differs from the others in that (a) it is dynamically micro-

programmable, and (b) it is designed to support hundreds of independent,

special-purpose machine architectures, rather than one general-purpose

architecture.

Each particular machine architecture is realized on a vertically micro-

programmable B1700 processor by means of multiprogrammed interpreters.

The general philosophy of the system is that each language that runs on

the machine will have its own interpreter; i.e., the B1700 can be a

"COBOL machine", a "FORTRAN machine", a "SNOBOL machine", an "APL

machine", etc.

In keeping with this flexibility, a language (along with its interpreter)

was designed to be used for implementation of the Master Control Program

{MCP) and for implementation of the different compilers. This language

"1s called the Software Development Language (or SDL) •

..
. SDL has so far been used ·~o implement the MCP; compile~s for SDL, COBOL,

FORTRAN, BASIC, and the B1700 micro-language; and a sort package. Planned

in the future are a Network Definition Language processor, an ALGOL

compiler, and a Data Base Management System.

The purpose of this paper is to describe SDL and its underlying machine.

II. The SDL Language

A. History

The advantages of using a higher level language for system implementation

are well documented in the literature (see Sammet, 1971; Corbato, 1969;

or MIT, 1970). I~ fact, this use of a higher level language is merely in

kee~ing with a Burroughs precedent (see Lyle, 1971).

Using input from the different software groups that would be using SDL,

the SOL language and underlying machine structure were designed in the
.

fall of 1969. In February, 1970, programming of a bootstrap version of

the SOL compiler was begun by a four-man group working in Burroughs

Extended ALGOL (Burroughs, 1969a) on the B5500. By June, 1970, a working

version of the compiler, as well as a functional simulator of the SDL

machine, were available on the B5500 for initial program checkout. Sinc~

then, The SOL language and machine have undergone several modifications,

and the SDL compiler has been re-written in SOL by a two-man group to run

on the B1700.

B. Language Form

The design philosophy of SDL was that it was to be "clean" and con-

sistent (see Weinberg, 1971). Consequently, we attempted to avoid

language features that:

1) require run-time routines to accomplish
. .

·2) are "nic::-eties" that can actually be built from simpler features

in the language (e.g., the DO-UNTIL statement)

3) we didn't feel we could implement well on a small machine

4} didn't "fit" (i.e., weren.'t needed to implement software)

The XPL language (McKeeman, 1970) appears to have excised from PLjI

(Lucas, 1969) many of the PL/I features which fall into one of the

above categories, and yet, retains those features which are best for

compile-r writing (see Slimich, 1971). Hence, SDL was designed using

XPL as a base.

SDL is an ALGOL-like language. Allowable data types in SDL are bit

~trings, character strings, and fixed (integer) numbers, as well as

single-dimensional arrays of these and structures of mixed data types.

There are a number of exc~llent reasons for implementing a GO TO-free

language (these are best summed in Weinberg, 1971; see also Dijkstra,

1968); and so SDL contains no GO TO's (neither does the SDL machine).

Control is handled with IF-THEN and IF-THEN-ELSE statements, CASE

statements, procedure invocations and returns, 00 and 00 FOREVER state.-_

ments, and block-exit statements. Procedures in SDL are automatically

recursive with up-level addressing. Run-time- routines are needed only

-to handle virtual memory (when used). An SDL program consists of data

declarations, procedure declarations, and executable statements--in

that order. An SDL procedure is a microcosm of an SDL program: it

consists of a procedure head followed by data declarations, procedure

declarations, and executable statements. A BNF description of the

syntax of the language is included in the SDL Programmer's Reference

Manual (Burroughs, 1972).

C. Data Structures

SDL data types are minimal but, nevertheless, are designed to provide

for a wide range of needs with as little overhead as possible. Included

are only those data types which are necessary for operating system

and compiler development, and which we could implement well in a

small-machine environment without run-time routine overhead penalties.

Specifically excluded because of their inutility to software programming

are floating point and decimal data types.

There are three types of data in SDL: b~t strings (BIT), character

strings (CHARACTER), and fixed (integer) numbers (FIXED). For example,

DECLARE

A FIXED,

B BIT(7),

(C,D) CHARACTER(l023);

declares A to be an integer number, B to be a bit string of length

7 bits, and C and D to be character strings of length 1023 bytes each.

These basic data types may be grouped in structures, or single-dimensional

arrays, or combinations of these. For example,

DECLARE

01 At

02 Al(9) -SIT(3),

02 Al(3) FIXED,

02 A3(7) CHARACTER(l);

. declares A to be a structure whose sub-items are arrays. The example:

DECLARE

01 B(7) ,

02 Bl FIXED,

02 B2 BIT (37) ,

03 B2l BIT(34),

03 B22 BIT(3) ,

02 B3 Character(5);

declares B to be an array, the elements

example:

DECLARE

01 C BIT(8l),

02 Cl BIT(17),

02 C2(5) CHARACTER(l),

02 C3 FIXED;

of which are structures.

declares C to be a structure, one sub-item of which is an array.

The

A data structure may be declared as a template in order that it may

be applied to more than one data area. This is done with indexing

combined with the "REMAPS BASE" declaration:

DECLARE

01 AREA REMAPS BASE CHARACTER(40),

02 AREAl BIT(8),

02 FILLER CHARACTER(30),

02 AREA2 CHARACTER(9);

Data items ~ay also re-describe other data items:

DECLARE

A CHARACTER(80),

B(80) REMAPS A CHARACTER(l);

describes an BO-byte data area as a single unit (A) and as an aggregate

of single-byte pieces (B).

Simple dynamic data items, whose size is computed at run time:

DECLARE DYNMHC C BIT(MrB- 3);

can be used to avoid wasting unused bits. Although dynamic data items

may not be structured, they may be re-described ("remapped") and thus

provided with structure in this way.

Paged arrays allow the programmer to explicitly parameterize virtual

storage:

DECLARE PAGED(64) D(1024) CHARACTER(sOO);

Here, D is a paged array of 1024 elements, each 500 bytes in length,

with 64 elements per ~age. The SDL machine automatically keeps only

as many pages in memory as will conveniently fit. Paging is on a

demand basis.

In retrospect, it would be nice to have virtual strings; i.e., an

invisible implementation of virtual memory. The execution-time penalty

of providing this, however, was not outweighed by its advantages.

E. Statements

There are basically three types of statements in SDL: the assignment

statement (considered to be an expression), the control statement

(including conditional, group, and case statements, and procedure calls),

and the function statement (including input-output statements and

ot.hers) •

Expressions

SDL expressions are fairly rich in nature, allowing IF-THEN-ELSE, CASE,

and intermediate assignment, as well as arithmetic, logical, relational,

and string operators. All data type combinations are permissible:

There is no type conversion. In most cases, the data type is ignored;

in assign~ents and comparisons, the data type is significant. For

example, CHARACTER to CHARACTER comparison results in the shorter of

the· two operands being filled (functionally) on the right with blanks,

whereas BIT to BIT comparison will cause zero fill to the left.

Group Statements

There are two means of grouping statements into a block: DO groups and

DO FOREVER groups. Both DO groups and DO FOREVER groups may be named.

DO groups may be exited by "falling out the bottom". DO FOREVER groups

must be (and DO groups may be) explicitly exited through use of the

UNDO statement.

As the name implies, DO FOREVER groups cycle back to the beginning of

the group "forever", unless an UNDO or RETURN is executed. Several

layers of nested groups may be exited by specifying in the UNDO statement

the name of the outermost group to be exited. An example follows:

DECLARE

(IN(S),OUT(S),CARD(80» CHARACTER(l)

,(I,C) BIT(24)

;

C~O;

DO SCAN. CARD FOREVER;

1(-0;

DO CONPARE.TO.IN FOREVER;

IF CARD(C)=IN(r) THEN

DO;

END;

CARD(C)~OUT(I);

UNDO COMPARE. TO. IN;

IF 5=BDMP I THEN UNDO;

END CONPARE. TO. IN;

IF 80=BUMP C THEN UNDO;

END SCAN.CARD;

CASE Statement

The CASE statement has the form:

CASE (expressioo/;

(s ta temen t 0);

(statement 1);

•
•

(statement n);

END CASE;

The <expression) must generate a value between 0 and n. This value

is used to select one of the n+1 statements for execution. If the

value is less than 0 or greater than n then a run-time error will occur.

Conditional Statements

The conditional statement can take either of the forms:

IF (condition) THE~ (statement);

or:

IF ·(condition) THEN (statement);

ELSE (statement);

The (condition) may be any expression--however, only the low order bit
9

is used: 0 as "false", 1 as "true".

Other control st~tements (e.g., FOR or DO ••• UNTIL) can often be fabri-

cated using the definitional facility, described in Section II-G, below.

Function Statements

Input-output statements are included for the use of the compilers.

There is neither a format nor a list, as such. The input-output state-

ment has the syntax:

(I/O mode) (file name) (record key) «work area»;

where

<J./O mode) ::= READ IWRITE

<file name> ::= <file ide~tifier>

(record key)::=· ~expression)J I (empty)

(work area) ::= ("address-generating" expression)

No execution-time routines are invoked to effect input/output.

For a description of some of the other function statements, see 11-J:

Special Constructs.

F. Program Segmentation

Segmentation of SDL programs is entirely under the control of the

programmer. It was felt that systems programmers would take the time

and effort to segment their programs in as efficient manner as possible.

In addition, the ability should exist to place into the same segment

(or .segment page) code which, although separated in space,· is not

separated in time.

Segmentation of SDL programs takes place at two levels: (1) placing

code groups into segments, and (2) placing segments (actually segment

pointers) into pages. The former is done principally with the SEGMENT

statement:

SEGME~l(ERROR.ROUTINE);

which establishes (in this case) ERROR. ROUTINE as the name of the

current segment. The latter is done with the SEGMENT.PAGE statement:

SEGHEt-.'T.PAGE(TAPE.ERROR OF IO.ERROR);

which establishes TAPE.ERROR as the current segment and IO.ERROR as

the current page. The SEGMENT statement may change the current page.

There are two types of code segmentation effected by the SEGMENT state-

ment: temporary and permanent. Temporary segment change vCCU~6 when

the SEGMENT statement precedes a "subordinate" statement (Le., the
I

statement following THEN or ELSE, or a statement in a CASE statement).

All other segmentaLion change is permanent. For example:

SEqMENT (X) ;

A";-B;

IF C THEN

SEGMENT(Y) ;

DO;

END;

/* AT THIS POINT THE CURRENT SEGNENT AGAIN BECONES "X" */

As an SDL program executes, the SDL machine can collect usage statistics

for each segment, thereby providing a dynamic ~eedback to the programmer

on how well (or poorly) he has segmented his program (see II-I:

Measurement and Debug Facilities).

G. Definitional (Macro) Facility

The advantages and importance of macro facilities have been described

in Cheatham, 1966. SDL provides for both textual replacement (described

here) and,textual inclusion or exclusion (described in II-H). (Cheatham

classifies both of these as "text macros"). The mechanism described

here has previously appeared in Burroughs Extended ALGOL for the B5500

(see Burroughs, 1969a) and in Burroughs Extended ALGOL for the B6700

(see Burroughs, 1971). The SDL Definitional Facility has been quite

heavily' exploited in both the Master Control Progr~m (MCP) and in the

compilers.

The Definitional Facility allows symbols (actually tokens) in an SDL

program to be replaced with other tokens or strings of tokens. For

ex'ample:

DEFINE X AS #A+B#;

would cause every occurrence of X to be compiled as A+B.

Definitions can also be parametric; for example:

DEFINE X(N) AS #IF N THEN UNDO#;

The invocation X(A-B)C) would be compiled as:

IF A-B)C THEN UNDO;

Both define strings (the tokens between 41' s) and define actual para­

meters may consist of many tokens, including other define invocations.

'For example:

DEFINE

ESCAPE AS #SUCCESS~TRUE; RETURN#,

COMPARE(CS,S) AS

tIF SYMBOL=CS,THEN DO; S; END#;

Then

COMPARE(ltPAGE",\-.'RITE PRINTER PAGE; ESCAPE);

would compile as

END;

IF SYMBOL="PAGE" THEN

DO;

WRITE PRINTER PAGE;

SUCCESSt-TRUE;

RETURN;

H. Conditional Compilation

The Conditional Compilation Facility of SOL provides a means for

systematically including or excluding pieces of source code (in a

program) depending on the setting of conditions. This facility is

used most frequently to provide system extension. One may ma~ntain

a single source file for the MCP and include or exclude options

(e.g., the Sort module, or the Data Communications module) at compile

time. It is also heavily used to include or exclude debugging code.

Optimized production systems and slow, self-checking systems can be

generated and developed as a single program. The Qebugging code need

never be physically removed from the source file, only conditionally

excluded.

The conditional compilation facility provides a means of including

(or excluding) source images depending upon the value of Boolean

variables which may be set or reset at compile time.

The conditional compilation records contain an "~,, in column 1, followed

by a key word, followed by other symbols; the allowable statements are:

SET (identifier list)

RESET <identifier list)

IF (Boolean expression)

ELSE

END

The ~oolean expression) is made up of identifiers which have appeared

on a SET or RESET record and of the connectives AND, OR, and NOT. No

parenthesization is allowed.

Images which may be conditionally included or excluded are those which

are delimited by IF-END, IF-ELSE, or ELSE-END. If the <Boolean expression)

following an IF is true, then the images between the IF and its matching

END or matching ELSE will be included in the compilation. Otherwise,

the images between the matching ELSE and its END will be included.

As implied, conditional inclusion groups may be nested. As an example:

& SET A,B,C

& RESET D

& IF A

X~O;

& IF B AND NOT D

X~l;

6o.: ELSE

Xf-2;

6..; END

X~3;
!

6.. END

6.. IF B AND D

Xfo-4;

6.. ELSE

"'X~5;

6.. END

would compile as:

X~O;

X4-1;

X~3;

X~5;

I. Measurement and Debug Facilities

A'number of measurement and debug facilities have been included in

SDL to assist in MCP and compiler checkout, and to assist in system

and program evaluation. In addition to those features described

below, the definitional and conditional inclusion facilities have

be~n very heavily exploited in providing "removable" debug and analysis

code.

At any point within his program, the SDL programmer may specify that

his program's data areas are to be dumped to a disk file for later

analysis. There is a dump analysis program which can then be run, and

which prints the descriptors and the data described by each descriptor.

Trace, Notrace

Since system checkout involved the MCP, interpreters, and compilers,

as well as SDL programs, themselves, it proved expedient to include
, .

a facility whereby the program running, the MCP, or both could'be

traced. The TRACE command allows this, and also allows the specifi-

cation of the type of trace for each: trace those commands which modify

data items, trace those commands which change the Program Pol~te~ Stack,

trace all other commands, or any combination of the three. Needless

to say, tracing is an interpreter function: since each program has its

own interpreter (i.e., provides its own interpreter environment), tracing

of a program does not affect any other program in the mix, including

the MCP. NOTRACE turns off the tracing phenomenon.

The trace output may also be directed to magnetic tape or disk, for

later programmatic analysis. One use that has been made o~ this cap­

ability is to locate the most frequently referenced pieces of code.

Another is to analyze inter-segment branches: if two segments only

reference each other, then the two segments may be merged, if the size

of the conglomeration of the two is not too large. This branchpoint

analysis has also indicated segments which are traversed frequently but

contain little code, and therefore indicate that recoding (or re­

segmentation) is needed.

Monitor

The HARDWARE.MONITOR instruction makes available on the backplane of

the B1700 an 8-bit code which may then be sensed by a monitoring device.

We are currently using the Computer Performance Monitor II, marketed

by Allied Computer Technology Inc. In this case, the 8-bit code is

used to turn timers on and off, bump counters, control countin~ periods,

cause counters and timers to be dumped to magnetic tape for later

analysis, etc.

Profile

The SDL programmer may specify at compile time that he wants statistics

collected about selected parts of his program: he may count the number

of entrances to selected procedures or he may count the number of times

selected branch points are taken. At the end of e~ecution of his program,

the profile statistics are sorted and printed, thus giving the programmer

a means of determining the "hot spots" in his program (candidates for

re-coding), the "cool spots" (code which may be moved to a less

frequently referenced segment), and the "cold spots" (unused code which

may indicate flaws in the programmers logic).

The program profile has also been useful in evaluating the SDL

machine design: i.e., the selection of machine primitives. ~~en a

compiler function, such as scanning, shows up as a hot spot in all

compilers, it is a clear indication that a new primitive should be

added to the SDL machine. See 11-J: Special Constructs (in p~rticular,

see Compiler Constructs).

J. Special Constructs

In writing an operating system or a compiler, one finds that there

are special requirements that are unique to those applications of a

language. In SDL, it has been necessary to provide these unique

functions in a number of areas. Since these are relatively infrequently

used functions, the interpreter code to effect the operators which

provide these functions is normally not resident in control memory,

but rather it exists in (and is executed from) main memory or has

been overlayed to disk. Hence, a very low price is paid for making

these extensions to the SDL language and machine. The advantages of

having them far out-weigh the disadvantages.

MCP Constructs

There are functions which are unique to an operating system. In order

to avoid the use of "in-line assembly language", special operators

or function calls were included in SDL. These include:

1) Dispatch: causes the initiation of input/output operations

2) Memory Size: returns the sizes of M-memory and S-memory

3) In~errogate Interrupt Status: returns any interrupt bits

which have been set since the MCP was entered

4) Search Linked List: used in the space allocation routine

5) Parity Address: used to search memory for (as yet) undetected

parity errors

6) Fetch: fetches the results of an input/output operation

7) Reinstate:· reinstates a user program

8) Overlay: causes overlaying of an interpreter

9) Enable/Disable Interrupts: allows or disallows interrupts

10) Return and Enable Interrupts: special return from the high

priority interrupt routine

Sort Constructs

A system sort procedure is typically one of those programs on which

system 'performance is based. Consequently, it was felt that the most

frequently performed sort ,functions should be done in special operators.

The special constructs added to SDL for sort are:

1) Sort Step Down: provides the result of comparing two records

using a table to provide the location and type of the comparison

key

2), Sort Unblock: essentially does record unblocking, but will

create tags rather than records if told to do so

3) Sort Search: provides the information to evaluate a record

for sorting. The parameters provide the address of the first

record to be examined and the condition(s) under which records

will be selected

4) Initialize Vector: initializes the sort vector

5) Thread Vector: threads a new entry through the initial vector

Compiler Constructs

By analytical means it was discovered that all the compilers were

spending some fairly large amount of time doing some similar functions.

Hence, operators were designed which would be applicable to all (most)

of the compilers on the B1700:

1) Hashcode: returns a hashcode based on the characters of the

passed parameter

2): Deblank: remOves blanks preceding a token

3) Next Token: returns the descriptor of the next token to be

scanned

4) Delimited Token: returns the descriptor of the string of

characters delimited by the specified character

Network Definition Language Constructs

The Network Definition Language processor (data communications) has

unique requirements not usually found in other programs; part of these

requirements are reflected by the operators:

1) Disperse/Retrieve: message access operators

2) Enter/Exit Coroutine: coroutine entrance and exit operators

K •. Evaluation

A discussion of any language of this type would not be complete with-

out some indication of the effectiveness of the language itself, and,

in this case, some measure of the effectiveness of the implementation

in a soft environment.

The reaction of the people using SDL has been a definite preference

for SDL over other languages they have used, including ALGOL, ESPOL

(see Burroughs, 1968), PL/I, and COBOL. In additiOn, there have been

relatively few additions to the basic structure of'the language: the

notable exceptions have been dynamic data declarations, paged arrays,

and a means of selecting from a structure only those descriptors needed

on a given lexic level (to avoid Name Stack build-up).

The effectiveness of the implementation is probably best indicated ·by

the ~mount of code generated per source statement. 'Since this ~tatistic

was ~ot readily ava~lable, the amount of code generated per source

imag~ (card) will be used instead. This ranges from a low of 4.53 by~es
I

per card for the SDL compiler itself to 5.11 for the MCP to 7.95 for
,

the RPG compiler (which uses the definitional facility very heavily).

The average for the MCP and all the compilers, as an aggregate, is 5.98

bytes of instruction per source image. If in-memori data space is

included in this calculation, then the average is 6.51 bytes of space

per sourc~ image. This compares very favorably with assembly language

code requirements on the more popular byte-oriented machines, yet SDL

Is a higher-level language.

III. Overview of the B1700

The B1700 is a small, general-purpose computer (Burroughs, 1972b) that

is particularly wellsuited for interpretation and emulation. The

features of the B1700 that make it unique and unprecedented are:

I} Dynamically alterable, vertical microprogramming

i) Bit addressable main memory

3} Dynamic control of functional width of processor registers

and busses

4} Dynamic control of memory access width

5} Microprogram subroutine capability

6) Stack structure

(For a more detailed discussion of the B1700, see Wilner, 1972a).

Principles first espoused in the Burroughs B5500 (Burroughs, 1969b)

and in the Burroughs B3500 (Burroughs, 1969d) have culminated in the

B1700. The B5500 is designed to process ALGOL, while the B3500 is a

COBOL machine. Both of these machines have their designs hard-wired

into them. The B1700, however, is "soft" at the level that the others

are "h*rd". This, combined with a micro-order designed for interpreter

writing, combined with the attributes listed above, have produced a

machine that is singular in its capacities.

The virtual machines which have been produced for the B1700, including

the SDL machine, are an order of magnitude more powerful at what they

do than are hard-wired systems. Programs represented in these soft

machine languages are from 25% to 75% smallei than on byte-oriented systems.

IV. The SOL Machine

The SOL language was designed to be used for implementation of the MCP

and for implementation of the different compilers. In conjunction with

the design of the language, was the design of a "machine" that would

"execute" the statements of the language.

The SOL machine is a c~nglomeration of the ideas of many people.

Particularly included are the language-directed design ideas of

McKeeman (McKeeman, 1967), the stack and display mechanism of Randell

and Russell (Randell, 1964), and the design of the Burroughs B6700

(see Hauck, 1968). See also Burroughs, 1969b and Burroughs, 1969c.

The original SDL machine was designed by G. Brevier and B. Rappaport

of Burroughs Corporation. Later additions and modifications to the

basic machine design included ideas of C. Kaekel and the author, as

well as other employees of Burroughs Corporation.

This section will describe the resulting S-machine and S-language.

A. Stack Mechanism

A B1700 program consists of code segments scattered in memory, one

block of data bounded by a Base Register and a Limit Register, and a

contiguo'us, read-only block (the Run Struc tur~ containing program

attributes. Also scattered throughout memory, in addition to code seg-

ments, are file attribute blocks and segment dictionaries. The area

inside Base-Limit is divided into two parts: a static part and a
.

dynamic part. In the case of an SDL program, the static area contains

the S-machine stacks and the dynamic area contains paged array page

tables and paged array pages (see Figure 1).

The SDL machine stack structure originally evolved from Randell and

."Russell (see Randell, 1964) and from the B6700 (see Hauck, 1968). This

scheme has proved to be clean and easy to implement, and has resulted

in' a relatively small amount of code in the interpreter for stack

management.

The structure of the S-machine stacks is shown in Figure 2a.

The inter-relationships among the stacks are shown in Figure 2b.

The Name Stack and the Program Pointer Stack run toward the Base Reg-

ister (toward low memory addresses); the others run toward the Limit

Register (high memory addresses). The stacks are used as follows: .

1) Program Pointer Stack: This is a 32-bit wide stack that holds

code addresses. Entries are pushed onto this stack upon pro-

cedure or DO group entrance, and are popped off upon procedure

or DO group exit.

2) Control Stack: This is a 48-hit wide stack which maintains

the dynamic history of the allocation of data items. Entries

are pushed onto this stack upon entrance to procedures with

parameters and/or local data, and are popped off upon exit

from these procedures.

3) Name Stack: This is a 48-bit 'wide stack that holds data des­

criptors. The data descriptors may contain values (self-relative)

or the address of the values (in the Value Stack). Each lexic

level's data descriptors occupy a contiguous block of entries

in the Name Stack.

4) Value Stack: The Value Stack is a variable width stack which

contains values of currently allocated (non self-relative)

data items, as well as the values of temporary data items

(i.e., intermediate values of expressions).

5) Evaluation Stack: The Evaluation Stack is a 48-bit wide stack

which contains data descriptors for intermediate results and

for temporary storage of procedure actual parameters.

6) Display: Display is a 32-bit wide array, the entries of which

contain the addresses of the blocks of data allocated by the

currently active lexic levels. The addresses in Display point

into the Name Stack. A lexic level number is used to sub­

script into Display. In other words, Display points to all

. the groups of descriptors that can be currently addressed.

B. Opcode Structure

Because of SDL's stack structure and segmentation, code and data addresses

are short, making the number of bits devoted to opcodes quite signifi­

cant. In fact, more bits are used for ope ode representation than for

any other purpose, amounting to over one-third of a program's code space.

Consequently, it was essential that not only should opcodes be represented

in as compact manner as possible, but also that decode time for opcodes

should be minimal.

The SDL S-operators use an encoding based on. static frequence of occur­

rence. Operators are 4,6, or 10 bits in length with the most frequently

occurring operators requiring the smaller number of bits.

The first 10 of the 4-bit codes (016 through 916) represent operators.

The next 5 are escape codes which indicate that the next 2 bits are to

be examined in order to determine which operator is to be used. The

last 4-bit code (F 16) is an escape code which indicates that the next

6 bits are to be used in order to determine which operator is to be

used (see Figure 3).

Originally, the SDL S-operators were encoded using a 3-bit, 9-bit code.

After a fairly large amount of working SDL code had been generated

\ (in the MCP and the compilers) an an~lysis was done (on a static basis)

of the operators used in that code in an attempt to verify that the proper

encoding had been chosen, ur, alternatively, to empirically arrive at

one that would be optimal.

If Huffman's algorithm for minimum redundancy codes (see Huffman, 1952)

had been used for SDL opcodes, the space requirements would have been

minimal, but the time for decoding would have been large. A fixed

field size would have minimized decoding time but would have required

a large amount of storage. Using the opcode frequence obtained from

the analysis mentioned above, an encoding was obtained that was very

near the Huffman encoding in space required, but still small in decoding

time (see Figure 4a,b).

Appendix I contains the SDL S-operators, along with their arguments and

sizes. It is, perhaps, interesting to note that:

1) The operator associated with IF-THEN (IFTH) is a 4-bit operator

while the operator associated with IF-THEN-ELSE (IFEL) is a

6-bit operator

.. 2) All types of literals are used frequently enough to warrant

4-bit operators (ZOT, ONE, LITN, LIT)

3) Load Address (LA) is a 4-bit operator while Load Value (L) is

a 6-bit operator. This result indicates (because of the way

that the SDL expression code generator generates code) that

there are more "simple" expressions than "complex" ones.

4) The operator (UNDO) fc~ DO group and simple procedure exits

is a 4-bit operator

5) Comparison for equal (EQL) and unequal (NEQ) are more frequently

used than the other comparison operators (LSS, LEQ, GTR, GEQ)

For further description of B1700 memory utilization, see Wilner, 1972b.

c. Descriptor Formats

Each SDL data item is represented by a descriptor which specifies the

attributes of that data item. The data attributes are thus contained

in the data area, rather than being imbedded in the code. The implications

of this are that there tend to be fewer instructions (for example, there

is one add instruction for all possible, types--including mixed types-­

rather than a bit add, a character add, a fixed add, etc.) and that the

instructions tend to be more compact since they reference descriptors

for attributes, rather than contain the attributes themselves.

Descriptors in SDL are of two types: simple variables and arrays (vari­

ables to be subscripted). Simple descriptors are 48 bits in length

while array descriptors are 96 bits in length. (See Figure 5.)

Simple descriptors have a type field (discussed below), a length field,

and a field which contains the data (if the data is not more than .24

bits in length and is not in a structure), or the address of the data

(if the data is more than 24 bits in length or is in a structure).

Array descriptors have a type field, a field giving the length of each

element, a field giving the address of the first element, a field giving

the number of bits to truncate from the right of a subscript to obtain

the page subscript (paged arrays only), a field giving the length

between elements (this is equal to the length of the element on the

lowest level only of a structured array), and a field giving the number

of elements in the array.

The bits in the type field (see Figure 5) are used as follows:

Bit Use

o 1 if the value has been loaded to the top of the Value

Stack (used when the descriptor is on the Evaluation

Stack only); 0 otherwise

1 1 if descriptor is non self-relative; 0 otherwise (data

item is in address field)

2 1 if array descriptor; 0 if simple descriptor

3 1 if length of element equals length between elements;

o otherwise (arrays only)

4,5 Data type; BIT (00), FIXED (01), CHARACTER (10),

VARYING (11) (formal descriptors only)

6 1 if paged array; 0 otherwise (arrays only)

7 1 if length varying (formal descriptors only)

It should be pointed out that the use of descriptors along with -the bit­

addressability of the Bl700 allows a greater variety of data represent­

ations, so that the extra bits are more than made up for by not having

to use "unnatural" representations (a byte for a one-bit flag, for

example).

D. Code Addressing

All code on the Bl700 is not only re-entrant, but also automatically

relocatable, since code addressing is done through code pointers

(segment Dictionary entries), rather than with memory addresses (this

is necessary for re-entrancy when the code is overlayable, but not

sufficient: see IV-E, Data Addressing). The MCP and compilers tend

to be large programs and, hence, have a large number of segments since

the segments themselves must be small (due to the memory restrictions

of the BI700). In addition, in procedure-oriented languages such as

SDL, and in compilers in particular, programs are written in"passes"

(this is also true for the MCP, to some extent: the collection of

procedures to process control cards, for example, or the procedures to

process I/O error conditions). In other words, code which is executed

together in time is ga~hered into segments, and segments which are

executed together in time are gathered together into pages. Thus, SDL

code addresses specify (either explicitly or implicitly) a triple that

'is used to generate an actual memory address if the segment is present,

or a disk address if the segment is missing from memory.

Code addresses in the SDL machine actually appear as pairs, triplets~

, or quadruplets (Figure 6).

the Type field indicates the presence or absence of the Segment Number

field and of the Page Number field, as well as the size of the Displace­

ment field. The Page Number is the entry in the master Segment Dictionary

us~d to find the minor Segment Dictionary to be' used (if the minor Segment

Dictionary is not present,' then an interrupt is generated). The Segment

Number is used to locate the entry in the minor Segment Dictionary which

gives the location of the desired segment (if the segment is not

present, then an interrupt is generated). The Displacement gives the

relative offset into the segment of the instruction being referenced.

This encoding allows the SDL machine to directly address 230 bits of

code. This yields a 38.4% savings in space for the SDL machine when

compared to a byte-oriented machine with equal addressing capability

(see Wilner, 1972b).

E. Data Addressing

SDL data addresses are two-part addresses, the first part specifying

the le~ic level of declaration of the data item, and the second part

spec~fying the occurrence number of the data item within that 1exic

level. The data addresses do not contain memory addresses: this is

the second condition that is necessary for re-entrancy. It also allows

SDL procedures to be automatically recursive, and is part of the up­

level addressing scheme.

SDL data addresses are three-part addresses (see Figure 7). The Type

field specifies the size (and type of c~ntents) of the two following

fields. The lexic level field indicates which entry of Display to use

to subscript into the Name Stack. The occurrence number field is the

·number of 48-bit descriptors to offset to find the indicated descriptor.

If Display and the Name Stack are considered as arrays, and V(LL,ON)

is the address represented by a Type, Lexic Level, Occurrence Number

triple, then

V(LL,ON)=NA~E.STACK(DISPLAY(LL)+ON)

represents the formula used to calculate an address in the Name Stack.

· F. Descriptor Construction Operators

As a procedure (lexic level) is entered, the local data for that lexic

levei is created by entering onto the Name Stack the descriptors for

the local data. The descriptors are constructed with operators.

Rathe.r than carry the descriptors intac;t in the code or somewhere else

in memory, they are carried, in an encoded form, in-line behind the

operators which describe how the address field of the descriptor is to

be derived. The in-line descriptor format and the Construct Descriptor

Operators and their arguments are shown in Figure 8a. The formulae for

descriptor address calculations are shown in Figure.8b.

The action of each of the operators is as follows:

Construct Descriptor Base Zero (CDBZ): A descriptor is put on the

Name Stack with an address of zero.

Construct Descriptor Local Data (CDLD): The number of descriptors

specified are constructed using the current value of the

Value Stack Pointer as the address. The Value Stack Pointer

is kept current as each descriptor is put on the Name Stack

by adding to the Value Stack Pointer the length of the data

item described.

Construct Descriptor From Previous (CDPR), Construct Descriptor

From Previous and Add (CDAD), Gonstruct Descriptor From Previous

and Multiply (CDMP): The number of descriptors specified are

constructed using the following formulae to calculate the

addresses:

CDPR: A'=A+F

CDAD: A'=A+F+L

CDMP: A'=A+F+L+(E-l)xLB

where

At is the new address part

A is the address part of the previous entry in the Name 5f~1-
F is the in-line filler value if present

L is the length part of the previous entry on the Name

Stack

E is the number-of-entries part of the previous entry on

the Name Stack

LB is the length-between part of the previous entry on

the Name Stack

Note that CDMP assumes that the previous entry on the Name Stack

is an array descriptor.

Construct Descriptor Lexic Level (CDLL): A descriptor is constructed

on the Name Stack which has as its address part the address

of the value described by the descriptor specified by the

LL, ON part.

These 6 operators are sufficient to construct all the descriptors

required by all possible ~ombinations of arrays, structures, and filler

as described in II-C.

G. Handling of Control Statements

SOL's sophisticated segmentation allows segment changes to appear

virtually anywhere within SOL programs. This non-sequential program

flow combined with the lack of a GO TO in the S-machine created some

interesting,complexities. In an attempt to handle all of these com­

plexi.tiesin a uniform manner, very heavy use was made of the Program

Pointer Stack. All of the control statement operators (except Cycle)

cause insertion or removal of entries from this stack. All of these

operators can or do affect the next instruction address. The format

of the control statement operators is given in Figure 9. A description

of the operators follows.

Call (CALL): The Call operator is used to enter DO and DO FOREVER

groups when these do not follow THEN and ELSE, and are not part of

'a CASE. The argument of the Call is the code address of the DO

or DO FOREVER. Execution of the Call causes the current program

address to be pushed onto the Program Pointer Stack, and the next

instruction to be executed from the address indicated by the

argument.

If-Then (IFTH): The If-Then operator is (as might be expected) used

to handle the IF-THEN statement. The operator eX2mines the low­

order bit of the value described by the descriptor on the top of

the Evaluation Stack. If this bit is 1 then the current program

address is pushed onto the Program Pointer Stack, and the next

instruction to be executed is taken from the address indicated by

the (code address) argument.

If-Then-Else (IFEL): The If-Then-Else operator is used to handle

the IF-THEN-ELSE statement. The current program address is pushed

onto the Program Pointer Stack. If the low-order bit of the value

described by the descriptor on the top of the Evaluation Stack is

1, then the next instruction address is indicated by the first

code addr~ss following the operator; otherwise, the next instruction

address is indicated by the second code address following the

operator.

Case (CASE): The Case operator is used for CASE' statements. The value

described by the descriptor on the top of the Evaluation Stack is

compared to the number, N, of code addresses following the operator:

if the value is greater than(~eqUal to N, then an error occurfs;

otherwise, the value is used to subscript into the code addresses.

If the code address selected is null, then the operator is termi-

-.. nated and the next instruction is executed; otherwise, the current

program address is pushed onto the Program Pointer Stack and ,the

selected code address is used toiobtain the next instruction

address •

. Undo (UNDO): UNDO statements are handled by the Undo op~rator. Since

more than one level of nesting may be undone by any given UNDO

statement, the number of levels to undo is contained in the instru~-

tio~. The number of levels specified is popped from the Program

, Pointer Stack and' the last one popped is used as the address of ,
the next instruction.

Undo Conditionally (UNDC): The statement

IF <f0nditi0t9 THEN UNDO;

is one that causes needless manipulation of the Program Pointer

Stack if handled with the If-Then and Undo operators. Consequently,

a special operator was devised which is no more than the amalgamation

of these operators: if the low-order bit of the value described

by the descriptor on the top of the Evaluation Stack is 1, then

an Undo operation is performed; otherwise, the next instruction is

executed.

Cycle. (CYCL): DO FOREVER loops are handled by the Cycle operator. Since

DO "(and DO FOREVER) groups are required to terminate in the segment

in which they began, it is sufficient to subtract some amount from

the current program address. The amount to be subtracted is con-

tained in the field following the Cycle operator.

It might be noted that, because some of these operators contain code

addresses, it is possible to obtain some nice optimizations. In parti~
.

cular, if UTP is the name of an untyped procedure which has no parameters,

then the following cases may be optimized by merely using the address

of the procedure as part of the ir.struction;

IF (condi Hon> THEN UTP;

IF~o~dition> THEN ,
. CASE (expression);

•
•

UTP;

•
•

END CASE;

ELSE UTP;

H. Procedure Entrance and Exit

. Procedure entrance and exit are a form of control statement execution,

but are more complex than those statements described in IV-G, since the

Control Stack and the Display may also be affected.

Procedure entrance and exit always affects the Program Pointer Stack

and affect the Control Stack and Display when there is local data and/or

parameters.

A call to a procedure with no local data and no parameters requires

I
only the Call operator (see IV-G). A call to a procedure with local

data but no parameters requires a Call operator followed by a Mark

. Stack and Update operator executed inside the procedure. A procedure

with parameters and wit? or without local data requires a Mark Stack

operator, followed by the operators to put the actual parameters on the

Evaluation Stack, followed ~y a Call operator. Inside the procedure,

a Construct Descriptor Formal operator is executed. (See Figure 10).

The Call, Mark Stack, and Mark Stack and Update operators will be

described here; the Construct Descriptor Formal operator will be

described in section IV-I.

Call (CALL): The argument of the Call is the code address of the pro-

cedure to be entered. Execution of the Call causes the current
. .

program address to be pushed onto the Program Pointer Stack, and

the next instruction to be .executed from the address indicated by

the argument.

Mark Stack (MKS): The Mark Stack operator causes construction of an

entry on the top of the Control Stack. This entry contains the

current values of the Name and Value Stack Pointers. The Exited

Lexi~ Level field of the entry is set to the value of the current

lexic level, and the Entered Lexie Level field is set to zero.

Mark Stack and Update (MKU): The Mark Stack and Update operator has

as an argument the lexi~ level of the procedure being entered.

This operator causes construction of an entry on the top of the
~

Control Stack. The entry contains the current values of the Name

and Value Stack Pointers. The Exited Lexie Level field of the

entry is set to the value of the current lexic level, and the

Entered Lexic Level field is set to the value specified as the

operator argument. The Display Stack entry for the specified

lexic level is set to the current value of the Name Stack Pointer.

The current lexic level is changed to the specified lexic level.

All procedure exits are done with the RETURN statement; however, the

operator generated depends upon whether or not the procedure contains

local data or parameters, and upon whether or not the procedure is typed.

If the procedure cont~in5 no local data and has no parameters (and

therefore did not change the Control Stack upon entrance), then an Undo

I
operator is used to effect the return. If there is either local data

or parameters an~ the procedure is not typed, then

used. If there is either local data or parameters

!

an Exit operator is
I
I

and the procedure

is typed, then a Return operator is used. (See Figure 10.)

The Undo operator was described in IV-G. The Exit operator will be

described here, and the Return operator will be described in section IV-I.

Exit (EXIT): The Name and Value Stack Pointers are set to the values

obtained from the top entry of the Control Stack. The Display

entry pointed to by the current lexic level is restored to the

Name Stack value obtained from the first (proceeding from top to

bortom) Control Stack entry, if any, having an Entered Lexie Level

field equal to the current lexic level (unless a prior or the present

entry has a zero Exited Lexic Level field). The Exited Lexic Level

field is used to set the current lexic level, and the top entry is

popped from the Control Stack. The number of levels specif~ed is

popped from the Program Pointer Stack and the last one popped is

used as the address of the next instruction.

I. Param~ter Passing--Returning of Values

The formal parameter statement assigns a type (and length) to each of

the formal parameters. The SDL programmer has the option of having the

SDL machine (interpreter) verify that the actual parameter matches the

formal. parameter. Since this check is time-comsuming, it is typically

not performed once a program has been debugged. The consistency check

is performed by the Construct Descriptor Formal operator (see Figure 11).

When the check is to be done, this operator has, as its arguments,

"descriptor templates" for each of the formal parameters. The description

of this operator follows:

Construct Descriptor Formal (CDFM): The Construct Descriptor

Formal operator assumes that a Mark Stack operator was executed

before the actual parameters were placed on the Evaluation Stack •

. The current lexic .level is changed to the lexic level specified by

the operator. The specified lexic level is also put into the

Entered Lexic Level field of the top entry in the Control Stack.

The Display Stack entry for the specified lexic level is set to

the current value of the Name Stack Pointer. The current lexic

level is set to the specified lexic level. The number of descriptors

specified is constructed on the Name Stack using the in-line des-

c~i~tor information plus the corresponding descriptor information

on the Evaluation Stack. The type and length fields are compared

for con~~~~ency between corresponding descriptors on the Evaluation ...
and Name Stacks. The Evaluation Stack is cut back after construction

.
of the -descriptors; the Value·Stack is-not.-·

The values returned by typed procedures in SDL should agree in type

and length with the formal type of the procedure itself. The SDL

programmer again,has the option of specifying whether or not this con­

sistency check is performed by the interpreter. If this check is to

be performed then the Return operator contains a descriptor template in­

line following the operator.

Return (RTRN): The Return is the same as the Exit operator prior to

popping entries off the Program Pointer Sta~k. At this point, the

data descriptor on the Evaluation Stack is compared to the in-line

descriptor for consistency. If the data is on the Value Stack,

then after cutting back the Value Stack, the data is moved to the

new top of the Value Stack. The number of levels specified is

popped f-rom the Program,Pointer Stack and the last one popped is

.used as the address of the next instruction.

J. Special Operators

In order to illustrate further the complexity and flexibility possible

with a machine such as the B1700, several of the special operators

will also be described.

Search Linked List

The Search Linked List operator is used principally by the HCP to

allocate memory space. This operator compares a value with a list of

linked structures, searching for the indicated rela~ionship or the end

of the list. The argument specifies the compare type: less, less or

equal, eq~al, not equal, greater or equal, greater. There are four

descriptors on the Evaluation Stack. The descriptors represent:

1) Link I~dex: the relative offset in the structure)and the size)

of the field which contains the address of the next structure

to be examined

2) Compare Variable: the variable to be compared to the linked

structure

3) Argument Index: the relative offset in the structure) and the

siz~of the field to which Compare Variable is to be compared

.. , 4) Record Address: the address of the first structure to examine
"

The operator returns the address of the structure who,se compare field

was in the desired relationship to the Compare Variable, or it returns

an indicator that there were no structures in the desi~ed relationship.

Reinstate

The Reinstate operator is the operator used by the MCP to reinstate a

user 'program. The descriptor on the top of the Evaluation Stack is

assumed to describe a field in the Run Structure of the program to be

reinstated. The reinstating program's M-machine state is stored in

its own Run Structure (each program currently executing has a Run

Structure which contains the program's execution attributes). The

address of the reinstating program's Run Structure is stored in the

reinstated program's Run Structure. The descriptor at the top of the

Evaluation Stack is removed. The address field of this descriptor

addresses the Run Structure of the program which'is then reinstated.

Next Token

The Next Token operator is used by compilers to scan source images.

The first argument is the data address of a descriptor which describes

the first character to be examined. It is assumed that this character

is non-blank. The second argument is a "separator" character (such as

"-" in COBOL). The third argument is the "numeric-to-alpha indicator".

If the character described by the fir~t argument is a special character,

then the operator is exited with a descriptor on the top of the Evalu-

at ion Stack which describes this character, and with the descriptor

described by the first argument advanced to point to the nex~ character

in the source image.

If numeric-to-alpha indicator is 1 then the stopper is set to "A"; other-
.

wise, if the first character is numeric then the stopper is set to "0";

'otherwise, the stopper is set to "A". Charac te'rs are sequentially

compared to the stopper until one is found which is less than the stopper

and not equal to the separator. The operator then exits with a descriptor

on the top of the Evaluation Stack which describes the token just found,

and with the descriptor described by the first argument advanced to

point to the next character in the source image. (The EBCDIC collating

sequence is assumed).

v. Conclusion

In this brief description of the B1700 Software Development Language

(SDL), and its underlying S-machine, I have attempted to give some

indication of the flavor of SDL but, more importantly, to illustrate

the extreme flexibility and suitability of the B1700 for the tasks for

which it was designed: the writing of (language) interpreters and

emulators. We who have used SDL feel that it is well-suited for the

type of programming for which it was designed. We could not agree more

-with Saltzer et al (MIT, 1970) that one of our best decisions was to

program the operating system in a higher-level language. However,

the degree of success of the software depends very heavily upon the

suitability of the hardware to the software and to the language in which

the software is written •. The Burroughs B1700, by its very natur~, has

proven to be quite suitable to the tasks to which it has been assigned.

It should be pointed out, that because all of the software for the B1700

has been written in a higher-level language, all of it (including the

MCP) is theoretically transportable to any other system which has soft

interpretation (of the flexibility of the B1700).

· VI. Acknowledgements

This paper would be incomplete without acknowledgement to the people

who are responsible for the original design of the SDL language and

the SDL machine: G. Brevier, C. Kaeke1, and B. Rappaport, all of

Burroughs Corporation. Thanks also goes to W. Wilner for review and

critique of this paper, and for analysis and evaluation of the SDL

design.

VII. APPENDIX I: SDL S-OPERATORS

RELATIO~AL OPERATORS

NANE M1-."EMONIC OP CODE SIZE ARGm!E~7S

EQUAL TO EQL 6
LESS THA~ LSS 10
LESS THA~ OR EQUAL TO LEQ 10
GREATER THA0: GTR 10
GREATER THA:l CiR EQUAL TO GEQ 10
NOT EQl:AL TO NEQ 6

AR:IT~fETIC OPERATORS

NA...v.E m.'EMONIC OP CODE SIZE ARGl:xEt'-t"TS

ADD ADD 6
SUBTRACT SUB 6
l-1ULTIPLY MUL 10
DIVIDE DIV 10
HODtLO MOD 10
REVERSE SL13TRACT RSUB 10
REilERSE DIVltE RDIV 10
REVERSE }!ODULO RMOD 10
NEGATE NEG 10
CO~~cRT TO DECI:L~L DEC 10
CONV'ERT TO BI~.~Y BIN 10

LOGICAL OPERATORS

NANE M}."EMONIC OP CODE SIZE ARGUMEt."TS

At.'D AND 10
OR OR 10
EXCLUSl\'E-OR XOR 10
NOT NOT 10

STRl~G OPERATORS

NA.'1E ID.'EMONIC OP CODE SIZE ARGUXE~'TS

CONC.o\TE ~ATE CAT 6
SUBSTRI~G TWO 5S2 10
5tJBSTRI~G THREE 553 6

SDL S-OPERATORS (CONTINUED)

LOAD OPERATORS

NA."fE m."EMONIC OP CODE SIZE ARGUNENTS -
~tAKE DESCRIPTOR MOSC 10
VALL"E DESCRIPTOR VDse 10
DESCRIPTCR DEse 6 DA
NEXT OR PREVIOUS ITEM NPIT 10 V,DA
LOAD VALL"E L 6 DA
LOAD ADDRESS LA 4 DA
ARRAY LOAD VALL"E AL 10 DA
ARRAY LOAD ADDRESS ALA 6'· DA
I!-'1)EXED LOAD VALUE IL 10 Dk
I~1)EXED LOAD ADDRESS ILA 4 DA
LOAD LITERAL LIT 4 D,LITERAL
LOAD 10-BIT LITERAL LITN 4 LITERAL
LOAD LITE~~L ZERO ZOT 4"
LOAD L ITEML O},'E ONE 4

STACK OPERATORS

NA."'!E MNEMONIC OP CODE SIZE ARGUME~lS

BUMP VALt"E STACK POI~'TER BVSP 10
DUPLICATE DUP 6
DELETE DEL 10
EXCHANGE XCH 6
FORCE VALL'E STACK FVS 6

STORE OPERATORS

NANE MNEMONIC OP CODE SIZE ARGUNE~lS

STORE DESTRUCTI\"E STOD 4
STORE NO~-D~STRUCTI\~ LEFT S~1)L 6
STORE ~O~-DESTRUCTlv"E RIGH! SNDR 10

CONSTRUCT DESCRIPTOR OPERATORS

NA."iE MNEMONIC OP CODE SIZE ARGUMENTS -
CONSTRI:CT DES. BASE ZERO CDBZ 10 D
CONSTRI:CT DES. LOCAL DATA CDLD "6 N,D1, ••• ,DN
CONSTRrCT DES. FOR:!AL CDFM 10 Lt,!
CONSTRt:CT DES. FORl.'1AL- V2 CDFM: 10 LL,!,D1, ••• ,DN

SDt S-OPERATORS (CO~INUED)

LOAD OPERATORS

~ m."EMONIC OP CODE SIZE ARGUMENTS

W.J<E DESCRIPTOR MDSC 10
VALL"E DESCRIPTOR VDSC 10
DESCRIPTCR DESC 6 DA
heXT OR PREVIOUS ITEM NPIT 10 V,DA
LOAD VALCE L 6 DA
LOAD ADDRESS LA 4 DA
ARRAY LOAD VAlCE At 10 DA
ARRAY LOAD ADDRESS ALA 6- DA
1~1)EXED LOAD VALUE It 10 DA
It.'DEXED LOAD ADDRESS lLA 4 DA
LOAD L ITER .. \L LIT 4 D,LITERAL
LOAD lO-BIT LITE~~L tITN 4 LITERAL
L~~ LITE~~L ZERO ZOT 4-

LOAD L ITERAL O~"E ONE 4

STACK OPERATORS

NA .. '1E MNEMONIC OP CODE SIZE ARGUMENTS

B ill1P VAt L "E STACK POI!'<'TER BVSP 10
DUPLICATE DUP 6
DELETE DEL 10
EXCHANGE XCH 6
FORCE VALliE STACK FVS 6

STORE OPERATORS

NANE MNEHONIC OP CODE SIZE ARGtJMENTS

STORE DESTRUCTI\"E STOD 4
STORE NO~-D~STRUCTI\"E LEFT S!'<'DL 6
STORE NO~-DESTRUCTlv"E RIGHT St-."'DR 10

CONSTRUCT DESCRIPTOR OPERATORS

NA.."fE MNEMONIC OP CODE SIZE ARGUMENTS -
CONSTRt:CT DES. BASE ZERO CDBZ 10 D
CONSTRt:CT DES. LOCAL DATA CDLD -6 N,Dl, ••• ,DN
CONSTR[CT DES. FOR~lAL COFM 10 LL,E
CONSTRTJCT DES. FOR."IAL- V2 CDFM: 10 LL,E,Dl, ••• ,DN

SDL S-OPERATORS (CO~lI~~D)

CONSTRUCT DESCRIPTOR OPERATORS (CO:-''TINUED)

NA!-IE Mf'..'ENONIC OP CODE SIZE ARGmlE'!'-.'TS

CONSTRUCT DES. FROX PREVo CDPR 6 N,Dl, ••• ,DN
CONSTRCCT DES. FRO~'l PREV. & ADD CD AD 6 . N,Dl, ••• ,DN
CONSTRUCT DES. FRO)-l PREV. &

NULTIPLY CDMP 10 N,Dl, ••• ,DN
CONSTRUCT DES. LEXIC LEVEL CDLL 10 DA,D

PROCEDGRE OPERATORS

NA}!E l-fu'EMONIC OP CODE SIZE ARGmlE~'TS

CALL CALL 4 CA
IF THEN IFTH 4 CA
IF THEN ELSE ITEL 6 TYPE, CA, CA
CASE CASE 10 N,TYPE,CA1, ••• ,CA~
Uf'.'DO Ut-."DO 4 L
Ut-.'DO CONDITIO:;ALLY UNDC 10 L
RETOR~-Vl RTRN 10 L
RETURN-V2 ItTRN. 10 L,D
EXIT EXIT 6 L
CYCLE CYCL 6 DISPLACEME};'T
MARK STACK MKS 6
MARK A~'D UPDATE MKU 10. LL

MISCELLA~cOUS OPERATORS

NA!oIE Mt>.'EHONIC OP CODE SIZE ARGUMEr-..'TS

SWAP SWAP 10
INTERRUPT STATUS lIS 10
FETCH FECH 10
DISPATCH D1SP 10
HALT HALT 10
READ CASSETTE RDCS 10
LENGTH LENG 10
LOAD SPECIAL LSP 10 V
CLEAR CLR 10
CO!-1}1ONI CA TE COM}{ 10
REINSTATE REIN 10
FETCH CXP FCMP 10
ADDRESS ,ADDR 10
SAVE STATE SVST 10
HARDWARE NONITOR HHON 10
OVERLAY OVLY 10
PROFILE PRFL 10 N
SEARCH LI~KED LIST SLL 10 V

Burroughs, 1968

Burroughs, 1969a

Burroughs, 1969b

Burroughs, 1969c

Burroughs, 1969d

Burroughs, 1971

Burroughs, 1972a

Burroughs, 1972b

Cheatham, 1966

Corbato, 1969

Dijkstra, 1968

Hauck, 1968

Huffman, 1952

Lucas, 19G9

REFERENCES

Burroughs B5500 ESPOL Reference ~!anua1, 1032638

Burroughs 85500 Extended ALGOL Reference ~!anua1, 1028024

Burroughs 85500 Systems Reference Manual, 1021326

Burroughs B5700 System Reference !.~anual, 1043676

Burroughs B2500 and m500 Systems Reference 1:anual,

1025475

Burroughs B6700 Extended ALGOL Language Information

Manual, 5000128

Burroughs S~~11 Syster.~ Software Development Language

h~ual, (to be released)

Burroughs Bl7CO Systems Reference Hanual, 1057155

Cheatham, T. E., Jr., "The Introduction of Definitional

Facili ties into Higher Level Programming languages",

Froc. FJCC, Vol. 29 (1966)

Corbato, F. J., "PL/I as a Tool for System Programining",

Datamation, Vol. 15, No. 5, ~y, 1969)

Dijkstra, Edsger W., "00 To Statement Considered

Harmful", ~, Vol. 11, No.3, (:r.!arch, 1968: Letters

to the Edi tor)

Hauck, E. A., and Dent, B •. A., "Burroughs" B6500/B7500

Stack 1rechanism", Proc. SJCC, Vol. 32 (1968)

Huffrnan, D. A., "A ~tethod :'C'T the Construction of

Minimum Redundancy Codes", Proc. IRE, Vol. 40 (1952)

Lucas, P. ,ahd Walk; K. I ttOn the Formal Description

of PL/I ft
, Annual Review in A~2Elat.!..c £!.?E3l~n.g, Vol. ",

Part 3 (1969)

Lyle, 1971

McKeeman, 1967

~cKeeman, 1970

MIT, 1970

Randall, 1964

Sammett, 1971

Sl1mick, 1971

Weinberg, 1971

Wilner, 1972a

Wilner, 1972b

Lyle, Don M., "A Hierarchy of High Order Languages

for Sys tems Programmingtt , Proc. AC~! SI GPIAN Symposi urn on

Languages for Systems Inp1ernentation, SIGPLAN Notices,

Vol. 6, No .. 9 (October, 1971)

McKeeman, W. M., "Language Directed Computer Design",

Proc e FJCC, Vol. 31 (1967)

McKeeman, W. M., Horning, J. J., and Wortman, D. B.,

A Compiler Generator, Prentice Hall, Inc., Englewood

Cliffs, N. J. (1970)

Progress Report VII, Project 1,:~C, Massachusetts Institute

of Technology, Canbridge, Mass., p. 6 (July 1969 to

July 1970)

Randall, B., and Russell, L. J., ALGOL 60 Implementation,

Academic Press, London (1964)

Sanunetl' Jean E., "A Brief Survey of Languages Used in

Systems Implementation", Proc. ACM SIGPLAN Symposium

on Languages for Systems Implementation, SIGPLAN Notices,

Vol. 6, No. 9 (1971)

Slimick, John, "Current Systems Implementation Languages:

One User's View", Froc. A~;1 SIGPLAN Symposium on Langu­

ages for Systems Implementation, SIGPLAN Notices, Vol.

6, No. 9 (1971)

Weinberg, Gerald M., The Psychology of Computer Pro­

gramming, Von Nostrand Reinhold Company, New York (1971)

Wilner, W. T., "Design of the B1700", Pree. FJCC, Vol.

41 (1972)

--------, "B1700 Memory Utilization", oPe cit.

SDL MEMORY STRUCTURE

Value Stack
... -----1,------

- - - - - -

Name Stack

Display

Control Stack
r--

Evaluation Stack
~---- ---

~

~------ ---
Program Pointer Stack

Paged Array

pages and

page tables

Run Structure

FIGURE 1.

~ Base Register

Program Static Memory

Program Dynamic Memory

Limit Register

NA!-rE

.

.

20

0

•

NSP

•
0

·

DISPLAY

32

•
•

·
STACK POI~TER

•
•

·

CONTROL STACK
·4 4

0 ·
0 0 ,

· EXITED E~Tt.RE[
LL LL

•
• .
·

1'_
L..-f CSP

·
•

·

8

· · ·
TYPE

· ·
0

20

.
•
0

\~SP

·
•
0

NAME STACK EVALUATION STACK

16 24 8 16 24

· · • • 0

· · · 0 · · · · · ·
\.DDR-~ ~ LGTH ~ ,,".f..x~

c~ ., .~_L ~ c~ TYPE LGTH illTiR r:::: c:
L--?~' r·l._\ T :--~

· · • · ·
• · 0, 0 · · · · · 0

t NSP

PROGRAM POINTER STACK
10 22

- ,

· •

· •
0 ·

SEG # DISPLACENE~'T

• ·
• •
• ·

YPPSP

VALUE STACK

FIGURE 2a.

Display

Name
Stack

Value
Stack

SDL STACK INTER-RELATIONSHIP

1

--·-"-· __ ~ __ I

~-...... __,Jl ______ _ ----J '-_ __ ---oJ

Control Stack Entry 1 describes a currently inactive lexic level.

FIGURE lb.

...

I

SDL OPCODE STRUCTURE

I 4 bits
o thru 9

I 4 bits 12 bi~s
10 thru 14

o thru 3

[4 bits I 6 bits
15 o thru 64

FIGURE 3.

------'~---

ENCODING ~·rETHOD

HUFFMAN

SDL 4,6,10

8-BIT FIELD

MCP OPERATOR ENCODING

TOTAL BITS FOR
MCP'S OPCODES

172,346

184,966

301,248

UTILIZATION
IMPROVE~rE~"T

437.

397.

0'7.

FIGURE 4a.

DECODING
PE~ALTY

17.27.

2.67.

0.07.

100%

~Eight.bit field

90%--

(j) -c E 80CYo- -

70%

~./' SDL 4-6-10

E < < Huffman enCOding""
Q) 61«Y0L- .
~ 60%_I-_---N

57%,---L----~<--~~~----------------------~--~

50%4---~-+-----+------------~----------~--~----~-+

1.00 1.026 1.05 1.10

Decoding time

FIGURE 4b.

1.15 1.17 1.20

SDL DESCRIPTOR FOR~~TS

SIMPLE DESCRIPTOR:

TYPE LENGTH ADDRESS OR DATA

8 16 24

ARRAY DESCRIPTOR:

TYPE LENGTH OF ELE!-lHrr ADDRESS OF FIRST ELE:[DIT

PAGE SUB- LE~iGTH BETI-.'EEN
SCRIPT SIZE ELD!El\'TS ~lJNBER OF ELEHEt.;TS

8

TYPE FIELD:

o

16 24

NOT USED

1 FOR PAGED ARRAY

DATA TYPE: BIT(OO), FIXED(Ol),
CHARACTER(lO), VARYING(ll)

1 IF LENGTH OF ELE~!ENT = LENGTH BETWEEN
ELE~!E~7S (CONTIGUOUS ARRAY)

1 IF ARRAY DESCRIPTOR

1: NON SELF-RELATIVE
0: SELF-RELATIve (DATA ITEM IS IN ADDRESS FIELD)

NAME-VALUE BIT

FIGURE 5.

SDL CODE ADDRESS

TYPE SEG:'1E~T ~O. PAGE NO. DISPLACDlENT

3 0 OR 6 0 OR 4 12,16,OR20

TYPE SEG~lE\l NO. PAGE NO. DISPLACE~1ENT TOTAL BITS

000 CURREt-.7 CURREt-.7 12 BITS 15

001 CURRENT C1JRRENT 16 BITS 19

010 6 BITS CURREf:..7 12 BITS 21

all 6 BITS CURREl:-.7 16 BITS 25

100 6 BITS 4 BITS 12 BITS 25

101 6 BITS 4 BITS 16 BITS 29

110 6 BITS 4 BITS 20 BITS 33

Hi 3

FIGURE 6.

SDL DATA ADDRESSES

[TYPE LEXIe LEVEL oeeUKRE~eE NO.

2 1 OR 4 5 OR 10

TYPE LEXIe LEVEL OeeCRRE~CE NO. TOTAL BITS

00 4 BITS 10 BITS 16

01 4 BITS 5 BITS 11

10 1 BIT * 10 BITS 13

11 1 BIT * 5 BITS 8

* 0: LEXIC LEVEL 0

1: CURRE~l LEXIe LHEL

FIGURE 7.

SDL CO~STRUCT DESCRIPTOR OPERATORS

IN-LI~~ DESCRIPTOR FOR}~T:

IFILLER
LE~GTH BETi-.r:E~ PAGE SUBSCRIPT ~Lr:GER OF TYPE LE:\GTH

ELDfENTS SIZE ELDfE~'TS

8 6 OR 17 O,6,OR 0,6, OR 17 o OR 8 0, 6, 17
17

6- OR 17-BIT FIELDS:

(0 I 5 BITS PI 16 BITS

CONSTRUCT DESCRIPTOR OPERATORS:

OPERATOR MNEMONIC OPCODE ARGU:fE~;TS

BASE ZERO CDBZ 1111 10 0100 D

LOCAL DiH A CDLD 1110 00 N,Dl, ••• ,DN

FRO:-! PREVIOL'S CDPR 1110 10 N,Dl, ••• ,DN

FROM PREVIOUS At."D ADD CDAD 1110 01 N,D1, ••• ,DN

FRmi PREVIOUS A~"D ML'LTIPLY CDMP 1111 10 0101 N,Dl, ••• ,DN

LEXIC LEVEL CDLL 1111 10 0011 DA,D

WHERE D M1) DI ARE IN-LI};"E DESCRIPTORS, AIm DA IS A DATA ADDRESS

(TYPE, LE..XIC LEVEL, OCCI.JRRENCE Nill1BER)

FIGURE 8a.

SDL CO~STRUCT DESCRIPTOR ADDRESS CALCULATIO~S

OPERATOR ADDRESS

CDBZ A' .- 0

CDLD AI = V

CDPR A' = A+F

CDAD A' =A+F+L

CDNP A' =A+F+L+ (E-1) x LB

CDLL A' = ADDRESS(DA) + F

WHERE

A t IS THE NE~~ ADDRESS PART

V IS Th'E VALlJE STACK POINTER

A IS THE ADDRESS PART OF THE PREVIOUS ENTRY IN THE

NA}1E STACK

F IS THE IN-LI~'E FILLER VALUE, IF PRESENT

L IS THE LE~GTH OF THE PREVIOUS ENTRY ON THE

NANE STACK

E IS THE NillffiER-OF-El'-.'TRIES PART OF TP.E PREVIOUS

El\1'fRY ON THE N~!E STACK

LB IS THE LE~GTH-BEThcEN-E~LRIES PART OF THE PREVIOUS

ENTRY ON THE N~1E STACK

DA IS THE IN-LIm: DATA ADDRESS

FIGURE 8b.

SDL CO~7ROL STATE~~7 OPERATORS

OPERATOR M~'EHO~IC OPCODE ARGtl}tEmS

CALL CALL' 0111 CA

IF-THEN IFTH 1001 CA

IF-THEN-ELSE IFEL 1101 10 AT,O .. ,CA

CASE CASE 1111 01 0100 N,AT,CA1, ••• ,CAN

UNDO UNDO 1000 L

Ut-i"DO COt;"DITIO!~ALL Y Ul'..'DC 1111 01 0011 L

CYCLE CYCL 1110 11 D

WHERE

CA IS A CODE ADDRESS (TYPE, SEGXE~~ NU}ffiER, PAGE

NUMBER, DISPLACE!-tE!l"T)

AT IS THE CODE ADDRESS TYPE

N IS THE NLl}1BER OF CODE ADDRESSES

L IS THE t-.'Ul'ffiER OF LEVELS TO Ut..'DO

D IS THE t-.1}}IBER OF BITS OF DISPLACEME~'T

FIGURE 9.

SDL PROCEDl~E E~l~~~CE A~~ EXIT OPERATORS

OPERATOR M}.T£NO~IC

MARK STACK MKS

MARK STACK AtTI UPDATE MKU

CALL CALL

EXIT EXIT

UNDO UNDO

RETURN RTRN

LL IS THE ENTERED LEXIC LEVEL

CA IS A CODE ADDRESS

OPCODE

1011 11

1111 01 1111

0111

1101 11

1000

1111 01 0101

L IS THE NU~IBER OF LEVELS TO REXOVE FROM THE

PROGR&~ POINTER STACK

D IS A TYPE, LENGTH PAIR

FIGURE 110 •

ARGU}[E~S

LL

CA

L

L

L,D

SDL CONSTRUCT DESCRIPTOR FOR}L~L

OPERATOR MNE~10~IC OPCODE ARGL~1H;rS

CONSTRVCT DESCRIPTOR FOR~~L CDFM 1111 01 0001 L,E,Dl, ••• ,DN

WHERE

TYPE:

L IS THE E~lERED LEXIC LEVEL

E IS THE l';u}1BER OF 48-BIT El'1iRIES ON THE EVALUATION

STACK

DI ARE IN-LINE DESCRIPTOR. TD-IPLATES OF THE FORM:

TYPE LENGTH

8 0,16

Nl;,}1BEP. OF
Et\TRIES

0,16

l 0 11f 213/4151 6 17 J

o
1 IF ARRAY

1

o
FIGURE 11.

I
1 IF LENGTH VARYING

1 IF ARRAY BOUND VARYING

DATA TYPE: BIT(OO), FIXED(Ol)

CHARACTER(lO), VARYING(ll)

