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ABSTRACT

The Burroughs B1700 is a small, general-purpose computer which is (a)

" dynamically microprogrammable, and (b) designed to support hundreds of
indepenaent, special-purpose machine architectures. Each language that
runs on the B1700 has its own interpreter. 1In kceping with this flexi-
bility, a lanzjuaze and underlying machine structure were designed to be
used for implcmentation of the operating system and for implementation
of the different compilers. This is an ALGOL-1like, GO TO-free language
which is elegant, and yet modest in its design. The underlying machine
structure is highly stack-oriented, allowing rc-entrancy, recursion, and
up-level addressing.
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Introduction

The Burroughs B1700 is a small, general-purpose computer. It belongs
to the class of computers ﬁontaining, among others, the IBM 360/20,

IBM System 3, NCR Century 100 and 200, and the Univac 9300. However,
the B1700 differs from the others in that (a) it is dynamically micro-
programmable, and (b) it is designed to support hundreds of independent,
special-purpose machine architectures, rather than one general-pﬁrpose

architecture.

Each particular machine architecture is realizéd on a vertically micro-
programmable B1700 processor by means of multiprogrammed interpreters.
The general philosophy of the system is that each language that runs omn
the machine will have its own interpreter; 1i.e., the B1700 cam be a
"COBOL machine", a "FORTRAN machine", a "SNOBOL machine", an "APL

machine", etc,

In keeping with this flexibility, a language (along with its interpreter)
was designed to be used for implementation of the Master Control Program
(MCP) and for implementation of the different compilers. This language

"is called the Software Development Language (or SDL).

:éDL has so far been used to implement the MCP; compilers for SDL, COBOL,
FORTRAN, BASIC, and the B1700 micro-language; and a sort package. Planned
in the future are a Network Definition Language processor, an ALGOL

compiler, and a Data Base Management System.

The purpose of this paper is to describe SDL and its underlying machine.



1I.

The SDL Language

A. History

The advantages of using a higher level language for system implementation

are well documented in the literature (see Sammet, 1971; Corbato, 1969;
or MIT, 1970). 1In fact, this use of a higher level language is merely in

keeping with a Burroughs precedent (see Lyle, 1971).

Using input from the different software groups that would be using SDL,
the SDﬁ language and underlying machine structure were designed in the
fall of 1969, 1In February, 1970, programwing of a bootstrap version o%
the SDL compiler was begun by a four-man group working in Burroughs
Extended ALGOL (Burroughs, 1969a) on the B5500. By June, 1970, a working

version of the compiler, as well as a functional simulator of the SDL

machine, were available on the B5500 for initial program checkout. Since,

then, The SDL language and machine have undergone several modificationms,
and the SDL compiler has been re-written in SDL by a two-man group to run

on the B1700.



B. Language Form
The design philosophy of SDL was that it was to be "clean" and con-
sistent (see Weinberg, 1971). Consequently, we attempted to avoid
language features that:

1) require run-time routines to accomplish

-2) are "niqeties" that can actually be built from simpler features

. in the language (e.g., the DO-UNTIL statement)

3) we didn't feel we could implement well on a smail machine

4) didn't "fit" (i.e., weren't needed to implement software)

The XPL language (McKeeman, 1970) appears to have excised from PL/I
(Lucas, 1969) many of the PL/I features which fall into one of the

above‘categories, and yet, retains those features which are best for
compiler writing (see Slimich, 1971). Hence, SDL was designed using

Xﬁt as a base.

SDL is an ALGOL-like language. Allowable data types in SDL are bit
strings, character strings, and fixed (integer) numbers, as well as
single-dimensional arrays of these and structures of mixed data types.
There are a number of excellent reasons for implementing a GO TO-free
Iangdagé (;hese are best suﬁmed in Weinberg, 1971; see aléo Dijkstfa,
19683; and so SDL contains no GO TO's (neither does the SDL machine).
Contfol is handledjwith IF-THEN énd IF-THEN-ELSE statements, CASE
statements, procedure invocations and returns, DO and DO FOREVER state-
ments, and block-exit statements. Procedures in SDL are automatically
recursive with up-levél addregsing. Run-time routines are needed ounly .

‘to handle virtual memory (when used). An SDL program comsists of data



declarations, procedure declarations, and executable statements—in
that order. An SDL procedure is a microcosm of an SDL program: it
consists of a procedure head followed by data declarations, procedure
declarations, and exgcutable statements, A BNF description of the
syngax of the language is included in the SDL Programmer's Reference

Manual (Burroughs, 1972).




C. Data Structures

SDL data types are minimal but, nevertheless, are designed to provide
for a wide range of needs with as little overhead as possible. Included
are only those data types which are necessary for operating system
and-compiler development, and which we could implement weil in a
small-machine eﬂvirénment without run-time routine overhead penalties.
Specifically excluded because of their inutility to software programming

are floating point and decimal data types.

There are three types of data in SDL: bit strings (BIT), character
strings (CHARACTER), and fixed (integer) numbers (FIXED). .For example,
DECLARE
A FIXED,
B BIT(7),
(C,D) CHARACTER(1023);
declares A to be an integer number, B to be a bit string of length

7 bits, and C and D to be character strings of length 1023 bytes each.

These basic data types may be grouped in structures, or single-dimensional
arrays, or combinations of these. For example,
.~ DECLARE
01 A,.
02 A1(9) ‘BIT(3),
02 A2(3) FIXED,
02 A3(7) CHARACTER(1);

- declares A to be a structure whose sub-items are arrays, The'example:



DECLARE
01 B(7),

02 Bl FIXED,

02 B2 BIT(37),

03 B21 BIT(34),
03 B22 BIT(3),

02 BB'Character(S);
declarés B to be an array, the elements of which are structures. The
example:

DECLARE
01 C BIT(81),

02 C1 ﬁIT(17),

02 C2(5) CHARACTER(1),

02 C3 FIXED;

declares C to be a structure, one sub-item of which is an array.

A data structure may be declared as a template ig order that it may
be applied to more than one data area. This is done with indexing
combined with the "REMAPS BASE" declaration:
DECLARE
01 AREA REMAPS BASE CHARACTER(40),
OZ.AREAI BIT(8),
02 FILLER CHARACTER(30),
02 AREA2 CHARACTER(9);
Data items may also re-describe other data items:
DECLARE
A CHARACTER(80),

B(80) REMAPS A CHARACTER(1);



describes an éO-byte data area as a single unit (A) and as an aggregate

of single-byte pieces (B).

Simple dynamic data items, whose size is computed at run time:
'DECLARE DYNAMIC C BIT(A%*B-3);

can be used to avoid wasting unused bits. Although dynamic data items

may not be‘structured, they may be re-described ("remapped") and thus

provided with structure in this way.

Paged arrays allow the programmer to explicitly parameterize virtual
storage:

DECLARE PAGED(64) D(1024) CHARACTER(500);
Here, D is a paged array of 1024 elements, each 500 bytes in length,
with 64 elements per page. The SDL machine automatically keeps only
as many pages in memory as will conveniently fit. Paging is on a

demand basis,

In retrospect, it would be nice to have virtual strings; i.e., an
invisible implementation of virtual memory. The execution-time penalty

of providing this, however, was not outweighed by its advantages.



E. Statements

There are basically three types of statements in SDL: the assignment
statement (considered to be an expression), the control statement
(including conditional, group, and case statements, and procedure calls),
and the function statement (including input-output statements and

others).

Exgressions

SDL expressions are fairly ricﬁ in nature, allowing IF-THEN-ELSE, CASE,
and intermediate assignment, as well as arithmetic, logical, relational,
and string operators. All data type combinations are permissible:
There is no type conversion. In most cases, the data type is ignored;
in assignments and comparisons, the data type is significant. For
example, CHARACTER to CHARACTER comparison results in the shorter of

"~ the two operands being filled (functiomally) on the right with blanks,

whereas BIT to BIT comparison will cause zero fill to the left.

Group Statements

There are two méans of grouping statemenﬁs into a block: DO groups and

DO FOREVER groups. Both DO groups and DO FOREVER groups méy be named,

DO groups may be exited by "falling out the bottom". DO FOREVER groups
must be (and DO groups may be) explicitly exited through use of the

UNDO statement.

As the name implies, DO FOREVER groups cycle back to the beginning of
‘the group "forever", unless an UNDO or RETURN is executed. Several

layers of nested groups may be exited by specifying in the UNDO statement



the name of the outermost gréup to be exited.
DECLARE
(IN(5),0UT(5),CARD(80)) CHARACTER(1)
,(I,C) BIT(24)
;
C&-0;
DO SCAN.CARD FOREVER;
I1&-0;
- DO COMPARE.TO.IN FOREVER;
IF CARD(C)=IN(I) THEN
DO;
CARD(C)4—-OUT(1);
UNDO COMPARE.TO.IN;
END;
IF 5=BUMP I THEN UNDO;
END COMPARE,TO.IN;
IF 80=BUMP C THEN UNDO;

END SCAN.CARD;

CASE Statement

The CASE statement has the form:
CASE (expreésioqp;
{statement 0);

(tatement 1)

.
{statement n);

END CASE;

An example follows:



The (expression) must generate a value between O and n. This value
is used to select one of the nt+l statements for execution. If the

value is less than O or greater than n then a run-time error will occur.

Conditional Statements

The conditional statement can take either of the forms:

IF (conditiond THEN (statement);

IF {condition) THEN (statement);
ELSE (statement};
The (ondition) may be any expression—however, only the low order bit

is used: O as "false'", 1 as "true".

Other control statements (e.g., FOR or DO...UNTIL) can often be fabri-

cated using the definitional facility, described in Section II-G, below.

Function Statements

Input-output statements are included for the use of the compilers.
There is neither a format nor a list, as such. The input-output state-
ment has the syntax:

{1/0 mede) {file name) (record key) ({work area));

where
(/0 wode) ::= READ|WRITE
{file name) ::= (file identifier)
{record key)::=" E@xpressioni} ‘(?mbty)
{work area) ::= {"address-generating" expression) -

No execution-time routines are invoked to effect input/output.



For a description of some of the other function statements, see II-J:

Special Constructs.



F. Program Segmentation

Segmentation of SDL programs is entirely under the control of the
programmer. It was felt that systems programmers would take the time
and effort to segment their programs in as efficient manner as possible.
In addition, the ability should exist to place into the same segment

(or .segment page) code which, although separated in space, is not

separated in time,

Segmentétion of SDL programs takes place at two levels: (1) placing
code groups into segments, and (2) placing segments (actually segment
pointers) into pages. The former is done principally with the SEGMENT
statement:
SEGMENT (ERROR.ROUTINE);
which establishes (in this case) ERROR.ROUTINE as the name of the
<€urtent segment. The latter is done with the SEGMENT.éAGE statement:
SEGMENT . PAGE(TAPE.ERROR OF I0.ERROR);
which establishes TAPE.ERROR as the current segment and IO.ERROR as

the current page. The SEGMENT statement may change the current page.

There are two types of code segmentation effected by the SEGMENT state-
ment: temporary and permanent., Temporary segment change vccurs when
the ?EGMENT statement precedes a "subordinate" statement (i.e., the
statément following THEN or ELSE, or a statement in a CASE statement),
- All other segmentalion change is permanent., For example:

EEQMENT(X);

AeB;

IF C THEN



SEGMENT(Y);
DO3
A<D;
B&C;
END;

/* AT THIS POINT THE CURRENT SEGMENT AGAIN BECOMES "X" ¥/

As an SDL program executes, the SDL machine can collect usage statistics
for each segment, thereby providing a dynamic feedback to the programmer
on how well (or poorly) he has segmented his program (see II-I:

Measurement and Debug Facilities).



G. Definitional (Macro) Facility

The advantages and importance of macro facilities héve been described

in Cheatham, 1966. SDL provides for both textual replacemént (described
here) and- textual inclusion or exclusion (described in II-H). (Cheatham
classifies both of these as "text macros"). The mechanism described
here has previously appeared in Burroughs Extended ALGOL for the B5500
(see Burroughs, 196%9a) and in Burroughs Extended ALGOL for the B6700
(see Burroughs, 1971). The SDL Definitional Facility has been quite
heavily exploited in both the Master Control Progfgm (MCP) and in the

compilers.

The Definitional Facility allows symbols (actually tokens) in an SDL
program to be feplaced with other tokens or strings of tokeés. For
example:

DEFINE X AS #A+Bit;

would cause every occurrence of X to be compiled as A+B.

Definitions can also be parametric; for example:
DEFINE X(N) AS #IF N THEN UNDO#;
The invocation X(A-B>C) would be compiled as:
IF A-B)C THEN UNDO;
Both define strings (the tokens between #'s) and defime actual para-
- meters may cénsist of many tokems, including other define invocationms.
‘For example:
| DEFINé
ESCAPE AS {!{SUCCESS&TRUE; RETURN#,
COMPARE(CS,S) AS

{#{IF SYMBOL=CS THEN DO; S; END#;



Then
COMPARE("PAGE",WRITE PRINTER PAGE; ESCAPE);
would compile as
IF SYMBOL="PAGE" THEN
DO;
WRITE PRINTER PAGE;
SUCCESS&-TRUE;
RETURN;

END;



H. Conditional Compilation

The Conditional Compilation Facility of SDL provides a means for
systematically including or excluding pieces of source code (in a
program) depending on the setting of conditions. This facility is
used most frequently to provide system extension. One may maintain

a single source file for the MCP and include or exclude options
(e.g., the-Sort module, or the Data Communications module) at compile
time. It is also heavily used to include or exclude debugging code.
Optimized production systems and slow, self-checking systems can be
generated and developed as a siungle program. The {debugging code need
never be physically removed from the source file, only conditionally

excluded.

The conditional compilation facility provides a means of including
(or excluding) source images depending upon the value of Boolean

variables which may be set or reset at compile time.

The conditional compilation records contain an "&" in column 1, followed
bj a key word, followed by other symbols; the allowable statements are:
SET (identifier 1i-st>‘
RESET (identifier list)
IF <Boolean expression)
ELSE

END

The {Boolean expression) is made up of identifiers which have appeared

on a SET or RESET record and of the counectives AND, OR, and NOT. No



parenthesization is allowed.

Images which may be conditionally included or excluded are those which
are delimited by IF-END, IF-ELSE, or ELSE-END. If the (Boolean expression)
following an IF is true, then the images between the IF and its matching
END or matching ELSE will be included in the compilation. Otherwiée,
the images $étween the matching ELSE and its END will be included.
As implied, conditional inclusion groups may be nested. As an example:

& SET A,B,C

& RESET D

& IF A

ke—o;

& IF B AND NOT D

Xé-1;

&%ELSE

xf—z;

&, END

X$~3;

& END

& IF B AND D

X&4;

& ELSE

CXE=5;

& END
would compile as:

X¢-0;

X1



X33
X&5;3



I. Measurement and Debug Facilities

A number of measurement and debug facilities have been included in

SDL to assist in MCP and compiler checkout, and to assist in system

and program evaluation. In addition to those features described

below, the definitional and conditional inclusion facilities have

been very heavily exploited in providing "removable" debug and analysis

code.

Dump

At any point within his program, the SDL programmer may specify that
his program's data areas are to be dumped to a disk file for later
analysis. There is a dump analysis pfogram which can then be run, and

which prints the descriptors and the data described by each descriptor.

Trace, Notrace

Since system checkout involved the MCP, interpreters, and compilers,
as well as SDL programs, themselves, if proved expedient to include
a facility whereby the program runniné, the MCP, or both could be

cod
traced. The TRACE command allows this; and also allows the specifi-
cation of the type of trace for each: trace those commands which modify
data items, trace those commands which change the Proéram Poiuter Stack,
trace all other commandQ,-or any combination of the three. Needless
‘to say, fracing is an interpretef function: since each progfam has its
own interpreter (i.é., provides its own interpreter environment), tracing

of a program does not affect any other program in the mix, including

the MCP. NOTRACE turns off the tracing phenodenon.



The trace output may also be directed to magnetic tape or disk, for
later programmatic analysis. One use that has been made of this cap-
ability is to locate the most frequentlyAreferenced pieces of code.
Another is to analyze inter-segment branches: if two segments only
reference each other, then the two segments may be merged, if the size
of the conglomeration of the two is not too large. This branchpoint
analysis has also iﬁdicated segments which are traversed frequently but
contain little code, and therefore indicate that recoding (or re-

segmentation) is needed.

Monitor

The HARDWARE.MONITOR instruction makes available on the backplane of

the B1700 an 8-bit code which may then be sensed by a monitoring device.
‘We are currently using the Computer Performance Monitor II, marketed

Bi Allied Computer Techmology Inc. 1In this case, the 8-bit éode is

used to turn timers on and off, bump counters, control counting periods;
cause counters and timers to be dumped to magnetic tape for later .,

analysis, etc.

Profile

The SDL programmer may specify at compile time that he wants statistics
.collected about selected parts of his program: he may count the number
of entrénces to selected procedures or he may count the number of times
selected branch points are taken. At the end of execution of his program,
the profile statistic; are sorted and printed, thus giving the programmer

a means of determining the "hot spots" in his program (candidates for



re-coding), the "cool spots"™ (code which may be moved to a less
frequently referenced segment), and the "cold spots" (unused code which

may indicate flaws in the programmers logic).

The program profile has also been useful in evaluating the SDL

machine design: 1i.e., the selection of machine primitives. When a
compiler function, such as scanning, shows up as a hot spot in all
compilers, it is a clear indication that a new primitive should be

added to the SDL machine. See II-J: Special Constructs (in particular,

see Compiler Constructs).



J. Special Coumnstructs

In writing an operating system or a compiler, ome finds that tbere

are special requiréments that are unique to those applications of a
language. 1In SDL, it has been necessary to provide these unique
functions in a number of areas., Since these are relatively infrequently
used functions, the interpreter code to effect the operators which
provide these functions is normally not resident in control memory,

but rather it exists in (and is e%ecuted from) wmain memory or has

been overlayed to disk. Hence, a very low priéé is paid for making
these extensions to the SDL language and machine, The advantages of

having them far out-weigh the disadvantages.

MCP Constructs

There are functions which are unique to au operating system. In order
to avoid the use of "in-line assembly language", special operators
or function calls were included in SDL. These include:
1) Dispatch: causes the initiation of imput/output operatious
é) Memory Size: returns the sizes of M-memory and S-memory
' 3) Interrogate Interrupt Status: returns any interrupt bits
which have been set since the MCP was entered
4) Search Linked List: used in the space allocation routine
5) Parity Address: used to search memory for (as yet) undetected
périty errors
6) Fetch: fetches the results of an input/output operation
‘7) Reinstate: - reinstates a user program
8) Overlay: causes overlaying of an interpreter
9) Enable/Disable Interrﬁpts: allows or disallows interrupts

10) Return and Enable Interrupts: special return from the high



priority interrupt routine

Sort Constructs

A system sort procedure is typically one of those programs on which

system performance is based. Consequently, it was felt that the most

frequently performed sort functions should be dome in special operators.

The special eonstructs added to SDL for sort are:

1)

2)

3)

4)

5)

Sort Step Down: provides the result of comparing two records
using a table to provide thé location and type of the comparison
key

Sort Unblock: essentially does record unblocking, but will
cfeate tags rather thanm records if told to do so

Sort Search: provides the information to evaluaté a record

for sorting. Tﬁe parameters provide the address of the first
record to be examined and the condition(s) under which records
will be selected

Initialize Vector: initializes the sort vector

Thread Vector: threads a new entry through the imitial vector

Compiler Constructs

By analytical means it was discovered that all the compilers were

spenaing some fairly large amount of time doing some similar functioms.

Hence, operators were designed which would be applicable to all (most)

of the compilers on the B1700:

1) Hashcode: returns a hashcode based on the characters of the

passed parameter

2) - Deblank: removes blanks preceding a token



A3) Next Token: returns the descriptor of the next token to be
scanned
4) Delimited Token: returns the descriptor of the string of

characters delimited by the specified character

Network Definition Language Constructs

The Network Definition Language processor (data communications) has
unique requirements not usually found in other programs; part of these
requirements are reflected by the operators;

1) Disperse/Retrieve: message access operators

2) Enter/Exit Coroutine: coroutine entrance and exit operators



K.. Evaluation

A discussion of any language of this typé would not be complete with-
out some indication of the effectiveness of the language itself, and,
in this case, some measure of the effectiveness of the implementation

in a soft environment,

The reaction of the ﬁeople using SDL has been a definite preferénce

for SDL over other languages they have used, ingluding ALGOL, ESPOL
(see Burroughs, 1968), PL/I, and COBOL. In a&ditién, there have been
relatively few additions to the basic structure of the language: the
notable exceptions have been dynamic data declarations, paged arrays,
and % means of selecting from a structure only those descriptors needed

on a given lexic level (to avoid Name Stack build-up).

Tﬁé gffectiveness of the implementation is probably best indicated by
the amount of code generated per source statement. ‘Since this ‘statistic
was éot readily ava?lable, the amount of code generated per source

imag% (card) will be used insfead. This ranges from a low of 4.53 bytes
per card for the SDL compiler itself to 5.11 for the MCP to 7.95 for
the RPG compiler (which uses the definitional facility very heavily).

. The average for the MCP and all the compilers, as an aggregate, is 5.98
Sytes of instruction per sourceiimage. If in-memory data space is
included.in this calculation, then the average is 6.51 bytes of space
per source image. This compares very favorably with éssembly language
code requirements on the more popular byte-oriented machines, yet SDL

is a higher-level language.



III.

Overview of the B1700
The B1700 is a small, general-purpose computer (Burroughs, 1972b) that
is particularly wellsuited for interpretation and emulation. The
features of the B1700 that make it unique and unprecedented are:

1) Dynamically alterable, vertical microprogramming

2) Bit addressable main memory

3) Dynanmic cont£01 of functional width of processor registers

and busses

4) Dynamic control of memory access width

5) Microprogram subroutine capability

6) Stack structure

(For a more detailed discussion of the B1700, see Wilner, 1972a).

Principles first espoused in the Burroughs B5500 (Burroughs, 1969b)

aﬁa in the Burroughs B3500 (Burroughs, 1969d) have culminated in the
B1700. The B5500 is designed to process ALGOL, while the B3500 is a
COBOL machine., Both of these machines have their designs hard-wired
into them. The B1700, however, is "soft" at the levgi that the others
are "hard"., This, combined with a2 micro-order designed for interpreter'
writing, combined with the attributes listed above, have produced a

machine that is singular in its capacities.

The virtual machines which have been produced for the B1700, including
the SDL machine, are an order of magnitude more powerful at what they
do than are hard-wired systems. Programs represented in these soft

machine languages are from 25% to 75% smaller than on byte-oriented systems.



1V,

The SDL Machine
The SDL language was designed to be used for implementation of the MCP

and for implementation of the different compilers. In conjunctiom with

the design of the language, was the design of a "machine" that would

"execute" the statements of the language.

The SDL machine is a conglomeration of the ideas of many people.
Particularly included are the language-directed design ideas of
McKeeman (McKeeman, 1967); the stack and display mechanism of Randell
and Russell (Randell, 1964), and the design of the Burroughs B6700
(see Hauck, 1968). See also Burroughs, 1969b and Burroughs, 1969c.
The original SDL machine was designed by G. Brevier and B. Rappaport
of Burroughs Corporation., Later additions and modifications to the
basic machine design included ideas of C. Kaekel and the apthor, as

well as other employees of Burroughs Corporation.

This section will describe the resulting S-machine and S-language.



A, Stack Mechanism

A B1700 program consists of code segments scattered in memory, one
block of data bounded by a Base Register and a Limit Register, and a
‘contigudus, read-only block Ghe Run Structur% containing program
attgibutes. Also scattered throughout memory, in addition to code seg-
ments, are file attribute blocks and segment dictionmaries., The area
inside Base-Limit is divided into two parts: a static part and a
dynamié part. In the case of an SDL program, the static area contains
the S-machine stacks and the dynamic area contgins paged array page

" tables and paged array pages (see Figure 1),

The SDL machine stack structure originally evolved from Randell and
‘Russell (see Randell, 19643 and from the B6700 (see Hauck, 1968). This
scheme has proved to he cle;n and easy to implement, and has resulted

in a relativel} small amount of code in the interpreter for stack

management,

The structure of the S-machine stacks is shown in Figure 2a.

The inter-rélationships among the stacks are shown in Figure 2b.

The Name Stack and the Progrém Pointer Stack run toﬁard the Base Reg-

" ister (toward low memory addresses); the others run toward the Limit

Register (high memory adﬁ%esses). The stacks are used as follows:

1)(Program Pointer Stack: This is a 32-bit wide stack that holds
-code addresses. Entries are pushed onto this stack upon pro-

cedure or DO éroup entrancé,qand are popped off upon procedure
or DO group exit,

2) Control Stack: This is a 48-bit wide stack which maintains



3)

4)

3)

6)

the‘dynamic history of the allocation of data items. Entries
are pushed onto this stack upon entrance to procedures with
pafameters and/or local data, and are popped off upon exit
from these procedures.

Name Stack: This is a 48-bit wide stack that holds data des-

ériptors. The data descriptors may contain values (self-relative)

or the address of the values (in the Value Stack). Each lexic
level's data descriptors occupy a contiguous block of entries
in the Name Stack, \

Value Stack: The Value Stack is a variable width stack which
contains values of currently allocated (non self-relative)
data items, as well as the values of temporary data items
(i.e., intermediate values of'expressions).

Evaluation Stack: The Evaluation Stack is a 48-bit wide stack
which contains data descriptors for intermediate results and
for temporary storage of procedure actual parameters.,

Display: Display is a 32-bit wide array, the entries of which
contain the addresses of the blocks of data allocated by the
currently active lexic levelss The addresses in Display point

into the Name Stack. A lexic level number is used to sub-

script into Display. In other words, Display points to ail

" the groups of descriptors that can be currently addressed.



B. Opcode Structure

Because of SDL's stack structure and segmentation, code an& data addresses
are short, making the number of bits devoted to opcodes quite signifi-
cant, In fact, more bits are used for opcode representation tham for

any other purpose, amounting to over one-third of a program's code space.
Consequently, it was essential that not only should opcodes be represented
in as compact manner as possible, but also that decode time for opcodes

should be minimal,

The SDL S-operators use an encoding based on static frequence of occur-
rence., Operators are 4,6, or 10 bits in length with the most frequently

occurring operators requiring the smaller number of bits.

The first 10 of the 4-bit codes (O16 through 916) represent operators.
The next 5 are escape codes which indicate that the next 2 bits are to
be examined in order to determine which operator is to be used. The
last 4-bit code (F16) is an escape code which indicates that the nex£
6 bits are to be used in order to dekermine which operator is to be

used (see Figure 3).

Originally, the SDL S-operators were encoded using a 3-bit, 9-bit code.
After.a.fairly large amount of working SDL code had been generated

\(in the MCP and the compilers) an aﬁalysis was done (on a static basis)

of the operatgrs used in that code in an attempt to vefify that the proper
encoding had been chosen, or, alternatively, to empirically arrive at

one that would be optimal,



If Huffman's algorithm for minimum redundancy codes (see Huffman, 1952)
had been used for SDL opcodes, the space requirements would have been
minimal, but the time for decoding would have been large. A fixed

field size would have minimized decoding time but would have required

a large amount of storage., Using the opcode frequence obtained from

the analysis mentioned above, an encoding was obtained that was very
near the Huffman encoding in space required, but still small in decoding

time (see Figure 4a,b).

Appendix I contains the SDL S-operators, along with their arguments and
sizes., It is, perhaps, interesting to nofe that:

1) The operator associated with IF-THEN (IFTH) is a 4-bit operator
while the operator associated with IF-THEN-ELSE (IFEL) is a
6-bit operator

"2) All types of literals are used frequently enough to warrant
4-bit operators (20T, ONE, LITN, LIT)

3) Load Address (LA) is a 4-bit operator while Load Value (L) is
a 6-bit operator. This result indicates (because of the way
that the SDL expression code generator generates code) that
there are more "simple" expressions than "complex™" ones,

4) The operator (UNDC) for DO group and simple procedure exits
is a 4-bit operator

5) Comparison for equal (EQL) and unequal (NEQ) are more frequently

used than the other comparison operators (LSS, LEQ, GTR, GEQ)

For further description of B1700 memory utilization, see Wilner, 1972b.



C. Descriptor Formats

Each SDL data item is represented by a descriptor which specifies the
attributes of that daté item, The data attributes are thus contained

in the data area, rather than being imbedded in the code. The implications
of this are that there tend to be fewer instructions (for example, there

is one add imstruction for all possible types—including mixed types—
rather than a bit add, a character add, a fixed add, etc.) and that the
instructions tend to be more compact since they reference descriptors

for attributes, rather than contain the attributes themselves.

-

Descriptors in SDL are of two types: simple variables and arrays (vari-
ables to be subscripted). Simple descriptors are 48 bits in length

while array descriptors are 96 bits in length. (See Figure 5.)

Simple descriptors have a type field (discussed below), a length field,
and a field which contains the data (if the data is not more than .24
bits in length and is not in a structure), or the address of the data

(if the data is more than 24 bits in length or is in a structure).

Array descriptors have a type field, a field giving the length of each
element, a field giving the address of the first element, a field giving
- the number of bits to truncate from the right of a subscript to obtain
the page subscript (paged arrays only), a field giving theAlength
between elements (this is equal to the length of the element on the
lowest level only of a structured array), and a field giving the number

. of elements in the array.



The bits in the type field (seé Figure 5) are used as follows:
Bl Use
0 1 if the value has been loaded to the top of the Value
Stack (used when the descriptor is on the Evaluation
Stack only); O otherwise
1 1 if descriptor is non self-relative; O otherwise (déta
item is in address field)
2 1 if array descriptor; O if simple descriptor
3 1 if length of element equals length between elements;
0 otherwise (arrays only)
4,5 Data type; BIT (00), FIXED (0l), CHARACTER (10),
VARYING (11) (formal descriptors omly)

6 1 if paged array; O otherwise (arrays only)

? 1 if length varying (formal descriptors only)

It should be pointed out that the use of descriptors along with»the(bit-
‘ addréssability of the B1700 allows a greater variety of data represent-
ations, so that the extra bits’are more than made up for by not having
to use "umnatural" representations (a byte for a one-bit flag, for

example).



D. Code Addressing

All code on the B1700 is not only re-entrant, but also automatically
relocatable, since code addressing is done through code pointers
(segment Dictionary entries), rather than with memory addresses (this
is nécessary for re-entrancy when the code 15 overlayable, but not
sufficient: see IV-E, Data Addressing). The MCP and compilers tend
to be large programs and, hence, have a large number of segments since
the segﬁents themselves must be small (due to the memory restrictions
of the B1700). In additionm, in procedure-orientéd languages such as
SDL, and in compilers in particular, prograﬁs are written in"passes"
(this is also true for the MCP, to some extent: the collection of
procedures to process control cards, for example, or the procedures to'
process I/0 error conditions). In other words, code which is executed
together in time is gathered into segments, and segments which are
executed togethér in time are gathered together into pages. Thﬁs, SDL
code addresses specify (either explicitly or implicitly) a triple that
"{s used to generate an actual memory address if the segment is present,

or a disk address if the segment is missing from memory.

Code addresses in the SDL machine actually appear as pairs, triplets),

or quadruplets (Figure 8).

 The Type field indicates the presence or absence of the Segment Number
field and of the Page Number field, as well as the size of the Displace-
ment field. The Page Number is the entry in the master Segment Dictionary

used to find the minor Segment Dictionary to be used (if the minor Segment



Dictionary is not present, then an interrupt is generated). The Segment
Number is used to locate the entry in the minor Segment Dictionary which
gives the location of the desired segment (if the segment is not
present, then an interrupt is generated). The Displacement gives the

relative offset into the segment of the instruction being referenced.

This encoding allows the SDL machine to directly address 230 bits of
code. This yields a 38.47% savings in space for the SDL machine when
compared to a byte-oriented machine with equal addressing capability

(see Wilner, 1972b).



E. Data Addressing

SDL data addresses are two-part addresses, the first part specifying
the lexic level of declaration of the data item, and the second part
specifying the occurrence number of the data item within that lexic
level. The data addresses do not contain memory addresses: this is
the second condition that is necessary for re-entrancy. It also allows
SDL procedures to be automatically recursive, and is part of the up-

level addressing scheme.

SDL data addresses are three-part addresses (see Figure 7). The Type
field specifies the size (and type of cqptents) of the two following
fiel@s. The lexic level field indicates which entry of Display to use
to subscript into the Name Stack. The occurrence number field is the
-number of 48-bit descriptors to offset to find the indicated descriptor.
If:Display and the Name Stack are comnsidered as arrays, and V(LL,ON)
is the address represented by a Type, Lexic Level, Occurrence Number
triple, then

V(LL,ON)=NAME.STACK(DISPLAY (LL)+4ON)

represents the formula used to calculate an address in the Name Stack.



‘-F. Descriptor Construction Operators
As a procedure (lexic level) is entered, the local data for that lexic
level is created by entering onto the Name Stack the descriptors for

the local data, The descriptors are constructed with operators.

Rather than carry the descriptors intact in the code or somewhere else
" in memory, they are carried, in an encoded form, in-line behind the
opérators thch describe how the address field of the descriptor is to
be derived. The in~line descriptor format and the Comstruct Descriptor
Operators and their arguments are shown in Figure 8a. The fofmulae for

descriptor address calculations are shown in Figure.8b.

The action of each of the operators is as follows:
Construct Descriptor Base Zero (CDBZ): A descriptor is put on the
Name Stack with an address of zero.
Counstruct Desc;iptor Local Data (CDLD): The number of descriptors
specified are constructed using the current value of the
Value Stack Pointer as the addre;s. The Value Stack Pointer
is kept current as each descriptor is put on the Name Stack
' By adding to the Value Stack Pointer the length of the data
item described,
Construct Descriptor From Previous (CDPR), Construct Descriptor
, from Previous and Add (CDAD), Counstruct Descriptor From Previous
and Multiply (CDMP): The number of descriptors specified are
constructed using the following formulae ﬁo caléulate the

addresses:



CDPR: A'=A+F
CDAD: A'=A+F+L
CDMP: A'=A+F+L+(E-1)xLB
where
A' is the new address part
A is the address part of the previous entry in the Name StLALV
F is the in-line filler value if present
L is the length part of the previous entry on the Name
Stack
E is the number-of-entries part of the previous entry on
the Name Stack
LB is the length-between part of the previous entry on
the Name Stack |
Note that CDMP assumes that the previous entry on the Name Stack
is an array descriptor,
Construct Descriptor Lexic Level (CDLLS: A descriptor is conmstructed
on the Name Stack which has as its address part thg address
of the.value described by the descriptor specified by the
LL, ON part.
These 6 operators are sufficient to construct all the descriptors

required by all possible combinations of arrays, structures, and filler

as described in II-C.



G. Handling‘of Control Statements

SDL's sophisticated segmentation allows segment changes to appear
virtually anywhere within SDL programs. This non-sequential program
flow combined with the lack of a GO TO in the S-machine created some
interesting complexities, In an attempt to handle all of these com-
plexities in a uniform manner, very heavy use was made of the Program
Pointef Stack, All of the control statement operators (except Cycle)
cause insertion or removal of entries from this stack. All of these
operators can or do affect the next instruction address. The format

of the control statement operators is given in Figure 9. A description

of the operators follows,

éall (CALL): The Call operator is used to enter DO and‘DO-FOREVER
groups when these do not follow THEN and ELSE, and are not part of
"a CASE. The argument of the Call is'the code address of the DO
or DO FOREVER. Execution of the Call causes the current program
address to be pushed onto the Program Pointer Stack, and the next
instruction to be executed from the address indicated by the
argument.
If-Then (IFTH): The If-Then operator is (as might be expected) used
to handle the IF-THEN statement. The cperator examinecs the low-
order bit of the value described by the descriptor on the top of
- the Evaluation Stack, If this bit is 1 then the current program
address is pushed onto the Program Pointer Stack, and the next
instfuction tﬁ‘be exééuted is:taken from the address indicated by

the (code address) argument.



If-Then-Else (IFEL): The If-Then-Else operator is used to handle

Case

" Undo

the IF-THEN-ELSE statement. 'The current program address is pushed
onto the Program Pointer Stack. If the low-order bit of the value
described by the descriptor on the top of the Evaluation Stack is

1, then the next instruction address is indicated by the first

code address following the operator; otherwise, the next inmstruction

address is indicated by the second code address following the
operator. |

(CASE): The Case operator is used for CASE statements. The value
described by the descriptor on the top of the Evaluation Stack is
compared to the number, N, of code addresses following the operator:
if the value is greater thanggjgzq;qual to N, then an error occurts;
otherwise, the valug is used to subscript into the coée addresses.

If the code address selected is null, then the operator is termi-

.nated and the next instruction is executed; otherwise, the current

program address is pushed onto tﬁe Program Pointer Stack and .the
selected code address is used to;obtain'tﬁe next instructiomn
address.

(UNDO): UNDO statéments are ﬁandled by the Undo operator. Since

more than one level of nesting may be undone by any given UNDO

statement, the number of levels to undo is contained in the imstruc-

tion. The number of levels specified is popped from the Program

" Pointer Stack and- the last one popped is used as the address of

Undo

¢
the next instruction.

Conditionally (UNDC): The statement
IF @onditio@) THEN UNDO;

is one that causes needless manipulation of the Program Pointer



Stack if handled with the If-Then and Undo operators. Consequently,
a special operator was devised which is no more than the amalgamatioﬁ
of these qperatoré: if the low-order bit of the value described

by the descrip@or on the top of the Evaluatiom Stack is 1, then

an Bado operation is performed; otherwise, the next instruction is
executed, _

Cycle (CYCL): DO FOREVER loops are handled by the Cycle operator. Since
DO (and DO FOREVER) groups are required to terminate in the segment
in which they began, it is sufficient to subtract some amount from
the current program address., The amount to’be subtracted is con-

tained in the field following the Cycle operator.

It might be noted tﬁat, because some of these operators contain code
addresses, it is possi§1e to obtain some nice optimizatious. Iﬁ parti-
cular, if UTP is the name of an untyped pfocedure which has no parameters,
théﬁ the following cases may be optimized by merely using the address
of the proceduré as part of the imstruction; |

IF <po£dition} THEN UTP;

IF (coéndition} THEN ...; ELSE ‘UTP;

'CASE {expression);

. -

UTP;

- e

END CASE;



H. Procedure Entrance and Exit
" Procedure entrance and exit are a form of control statement execution,
but are more complex than those statements described in IV-G, since the

Control Stack and the Display may also be affected.

Procedure entrance and exit always affects the Program Pointer Stack
and affect the Control Stack and Display when there is local data and/or

parameters.

A call to a procedure with no local data and no parameters requires
on}y the Call operato& (see IV-G). A call to a procedure with local
da£a<but no parameters requires a Call operator followed by a Mark

. Stack and Update operator executed imside the procedure. A procedure
with parameters and with or without local data requires a Mark Stack
operator,lfolloﬁed by the operators to puﬁ the actual parameters on the
Evaluation Stack, followed by a Call operator. Inside the procedure,

a Coustruct Descriptor Formal operator is executed. (See Figure 10).

.The Call, Mark Stack, and Mark Stack and Update oberators will be
described here; the Construct Descriptor Formal operator will be

described in sectiom IV-I,

Call (CALL): The argﬁment of the Call is the code address of the pro-
cedure to be entered. Execution of the Call causes the current
ﬁrogram addréss to be pushed onto the Program Pointer.Stack, and
the next instruction to be .executed from the address indicated by

the argument.



Mark Stack (MKS): The Mark Stack operator causes construction of an
entry on the top of the Control Stack., This entry contains the
current values of the Name and Value Stack Pointers. The Exited
Léxié Level field of the entry is set to the value of the current

- lexic level, and the Entered Lexic Level field is set to zero.

Mark Stack and Update (MKU): The Mark Stack and Update operator has
és an argument the lexic lével of the procedure being entered.
Thi; operator causes construction of an entry on the top of the
Control Stack. The entry contains the current values of the Name

, .
and Value Stack Pointers. The Exited Lexic Level field of the
entry is set to the value of the current lexic level, and the
Entered Lexic Level field is set to the value specified as the
Aoperator argument. fﬁe Display Stack entry for the specified
lexi; level is set to the current value of the Name Stack Pointer.

The current lexic level is changed to the specified lexic level.

All procedure exits are done with the RETURN statement; however, the
operétor generated depends upon whether or not the procedure contains

local data or parameters, and upon whether or not the procedure is typed.

'ff the prccedure_contains no local data and has no parémeters (and
therefore did not change fhe Control Stack upomn entra?ce), then an Undo
- operator is used to effect the return. ff there is e%ther local‘data
or parameters and the p;ocedure is not typed, then an%Exit operator is
ﬁsed. If therekis éither local data ;r pa?ameters and the procedure

is typed, then a Return operator is used. (See Figure 10.)



The Undo operator was described in IV-G. The Exit operator will be

described here, and the Return operator will be described in section IV-I,

Exit\(EXIT): The Name and Value Stack Pointers are set to the values
obtained from the top entry of the Control Stack. The Display
entry pointed to by the current lexic level is restored to the
Name Stack value obtained from the first (proceeding from top to
bottom) Control Stack entry, if any, having an Entered Lexic Level
field equal to the current lexic level (unléss a prior or the present
entry has a zero Exited Lexic Level field).‘ The Exited Lexic Level
field is used to set the current lexic level, and the top entry is
popped from the Control Stack. The number of levels specified is
popped from the Program Pointer Stack and the last onme popped is

used as the address of the next instruction.



I. Parameter Passing-—Beturning of Values
The formal parameter statement assigns a type (and length) to each of
the formal parameters; The SDL programmer has the option of having the
 SDL machine (interpreter) verify that the actual parameter matches the
formglAparameter. Since this check is time-comsuming, it is typically
not performed once a program has been debugged. The coqsistency check
is performed by the Construct Descriptor Formal operator (see Figure 1l1).
When the check is to be done, this operator has, as its arguments,
"descriptor templates" for each of the formal parameters. The description
of this operator follows:
Construct Descriptor Formal (CDFM): The Construct Descriptor
Formal operator assumes that a Mark Stack opérator was executed
before the actual parameters were placed on the Evaluation Stack.
The current lexic level is changed to the lexic level specified by
the.operatgr. The specified lexic level is also put into the
Entered Lexic Level field of the top entry in the Control Stack.
The Display Stack entry for the specified lexic level is set to
thé current value of the Name Stack Pointer. The current lexic
level is set to the specified lexic level. The number of descriptors
specified is constfucted on the Name Stack using the in-line des-
criptor information plus the corresponding descriptor information
on the Evaluation Stack. The type and length fields are compared
for cqn;ié}ency between corresponding descriptors on the Evaluation
and Nawe Stacks. The Evaluation Stack is cut back after construction

of the -descriptors; the Value Stack is dot,”



The values returned by typed procedures in SDL should agree in type

and length with the formal type of the procedure itself. The SDL
programmer again-has the option of specifying whether or not this con-
sistency check is performed by the interpreter, 1If this check is to

be performed then the Return operator confains a descriptor template in-

line following the operator,

Return (RTR&): The Returﬁ is the same as the Exit operator prior to
popping entries off the Program Pointer Stack., At this point, the
data descriptor on the Evaluation Stack is compared to the in-line
descriptor f;r consistency. If the data is on the Value Stack,
then after cutting back the Value Stack, the data is moved to the
new top of the Value Stack. The number of levels specified is
popped from the Program Pointer Stack and the last oﬁe popped 1is

_used as the address of the next instruction.



J. Special Operators
In order to illustrate further the comblexity and fléxibility possible
with a machine such as the B1700, several of the special operators

will also be described.

Search Linked List

The Search Linked List operator is used brincipally by the MCP to
allocate memory space. This operator compares a value with a list of
linked-structures, searching.for the indicated relationship or the end
of the list, Thelaréument specifies the compare type: less, less or
equal, equal, not equal, greater or equal, greater. There are four
descriptors on the Evaluation Stack. The descripto;s represent:

1) Link Index: the relative offset in the structure,and the size,
of the field which contains the address of the mext structure
to be examined |

2) Compare Variable: the variable to be compéred to the linked

~

structure
3) Argument Index: the relative offset in the structure, and the
size, of the field to which Compare Variable is to be compared
' “4) Record Address: the address of the first structure to examine
The.operator returns the address of the structure whose compare field

was in the desired relationship to the Compare Variable, or it returus

an indicator that there were no structures in the desired relatiounship.

Reinstate

- The Reinstate operator is the operator used by the MCP to reinstate a



u;er‘progfam. The descriptor on the top of the Evaluation Stack is
asgumed to describe a field in the Rum Structure of the program to be
reinstated. The reinstating program's M-machine state is stored in
its own Run Structure (each program currently executing has a Run
“Struéture which contains the program's execution attributes). The
address of the reinstating programfs Run Structure is stored in the
reinstated program's Run Structure. The descriptor at the top of the
Evaluation Stack is removed. The address field of this descriptor

addresses the Run Structure of the program which'is then reinstated.

Next Token

The Next Token operator is used by compilers to scan source images.
The first argument is the data address of a descriptor which describes
the first chéracter to be examined. It is assumed that this charactér
isfndn-biank, fhe second arguﬁent is a "separator" character (such as

“." in COBOL). The third argument is the "numeric-to-alpha indicator™.

If the character described by the first argument is a special character,
then the operator is exited with a descriptor on the top of the Evalu-
ation Stack which describes this character, and with the descriptor

described by the first argument advanced to point to the next character

in the source image.

‘If numeric-to-alpha indicator is 1 then the stopper is set to "A"; other-
wise, if the first character is numeric then the stopper is set to "O";
‘otherwise, the stopper is set to "A", Characters are sequentially

compared to the stopper until one is found which is less than the stopper



and not equal to the separator. The operator then exits with a descriptor
on the top of the Evaluation Stack which describes the token just found,
and with the descriptor described by the first argument advanced to

poinF to the next character in the source image. (The EBCDIC collating

sequence is assumed).



V. Conclusion
In this brief description of the B1700 Software Development Language
(SDL), and its underlying S-machine, I have attempted to give some
indigatioh of the flavor of SDL but, more importantly, to illustrate
the ;xtreme fle#ibility and suitability of the B1700 for the tasks for
which it was designed: ‘the writing of (language) interpreters and
emulators. We who have used SDL feel that it is well-suited for ‘the
type of programming for which it was designed., We could not agree more
with Saltzer et al (MIT, 1970) that ome of our bést decisions was to
program the operating system in a higher-level language. However,
the degree of success of the software depends very heavily upon the
suitability of the hardware to the software and to the language in which
the software is written, :The Burroughs B1700, by its very nature, has
proven to be quite suitable to the tasks to which it has been assigned.
It-should be pointed out, that because all of the softwére for ﬁhe B1700
has been written in a higher-level language, all of it kincluding the
MCP) is theoretically transportable to any other systemlwhich has soft

interpretation (of the flexibility of the B1700).
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VII. APPENDIX I:

RELATIONAL OPERATORS

NAME

EQUAL TO

LESS THAN

LESS THAN CR EQUAL TO
GREATER THAN

GREATER THAN CR EQUAL TO
NOT EQUAL TO

ARITHMETIC OPERATORS
NAME

ADD

SUBTRACT
MULTIPLY

DIVIDE

MODTLO

REVERSE SUBTRACT
REVERSE DIVILCE
REVERSE MODULO
NEGATE

CONVERT TO DEICIMAL
CONVERT TO BINARY

LOGICAL OPERATORS

NAME

AND ¢

OR
EXCLUSIVE-OR
NOT

STRING OPERATORS
NAME
CONCATENATE

SUBSTRING TWO
SUBSTRING THREE

SDL S-OPERATORS

MNEMONIC

EQL
LSS
LEQ
GTR
GEQ
NEQ

MNEMONIC

ADD
SUB
MUL
DIV
MOD
RSUB
RDIV
RMOD
NEG
DEC
BIN

MNEMONIC

AND
OR

XOR
NOT

MNEMONIC

CAT
§S82
SS3

OP CODE SIZE

ARGUMENTS

6
10
10
10
10

6

OP CODE

SIZE

ARGUMENTS

6

6
10
10
10
10
10
10
10
10
10

OP CODE

SIZE

ARGUMENTS

10
10
10
10

OP CODE

SIZE

ARGUMENTS




SDL S-OPERATORS (CONTINUED)

LOAD OPERATORS
NAME

MAKE DESCRIPTOR
VALUE DESCRIPTOR
DESCRIPTCR

NEXT OR PREVIOUS ITEM
LOAD VALUE

LOAD ADDRESS

ARRAY LOAD VALUE
ARRAY LOAD ADDRESS
INDEXED LOAD VALUE
INDEXED LOAD ADDRESS
LOAD LITERAL

LOAD 10-BIT LITERAL
LOAD LITERAL ZERO
LOAD LITERAL ONE

STACK OPERATORS

NAME

BUMP VALUE STACK POINTER
DUPLICATE

DELETE

EXCHANGE

FORCE VALUE STACK

STORE OPERATORS

NAME

STORE DESTRUCTIVE
STORE NON-DESTRUCTIVE LEFT

STORE NON-DESTRUCTIVE RIGHT

CONSTRUCT DESCRIPTCR OPERATORS

NAME

CONSTRUCT DES.
CONSTRUCT DES.
CONSTRUCT DES.
CONSTRUCT DES.

BASE ZERO
LOCAL DATA
FORMAL
FORMAL-V2

MNEMONIC OP CODE SIZE  ARGUMENTS
MDSC 10
vDSC 10 -
DESC 6 DA
NPIT 10 V,DA
L 6 DA
LA 4 DA
AL 10 DA
ALA 6 DA
IL 10 DA
ILA 4 DA
LIT 4 D, LITERAL
LITN 4 LITERAL
ZOT 4
ONE 4
MNEMONIC OP CODE SIZE  ARGUMENTS
BVSP 10
DUP 6
DEL 10
XCH | 6
FVS 6
MNEMONIC OP CODE SIZE  ARGUMENTS
STOD 4
SNDL 6
SNDR 10
MNEMONIC OP CODE SIZE  ARGUMENTS
CDBZ 10 D
CDLD -6 N,D1,...,DN
CDFM 10 LL,E
CDFM: 10 LL,E,Dl,...,DN



LOAD OPERATORS

SDL S-OPERATORS (CONTINUED)

NAME MNEMONIC
MAKE DESCRIPTOR MDSC
VALUE DESCRIPTOR VDSC
DESCRIPTCR ‘ DESC
NEXT OR PREVIOUS ITEM NPIT
LOAD VALUE L

LOAD ADDRESS LA
ARRAY LOAD VALUE AL
ARRAY LOAD ADDRESS ALA
INDEXED LOAD VALUE IL
INDEXED LOAD ADDRESS ILA
LOAD LITERAL LIT
LOAD 10-BIT LITERAL LITN
LOAD LITERAL ZERO Z0T
LOAD LITERAL OMNE ONE
STACK OPERATORS

NAME MNEMONIC
BUMP VALUE STACK POINTER BVSP
DUPLICATE pUP
DELETE DEL
EXCHANGE XCH
FORCE VALUE STACK FVS
STORE OPERATORS

NAME MNEMONIC
STORE DESTRUCTIVE STOD
STORE NON-DESTRUCTIVE LEFT SNDL
STORE NON-DESTRUCTIVE RIGHT SNDR
CONSTRUCT DESCRIPTOR OPERATORS

 NAME MNEMONIC
CONSTRUCT DES. BASE ZERO CDBZ
CONSTRUCT DES. LOCAL DATA CDLD
CONSTRUCT DES. FORMAL CDFM
CONSTRUCT DES., FORMAL-V2 CDFM:

OP CODE

SIZE ARGUMENTS
10
10 -
6 DA
10 V,DA
6 DA
4 DA
10 DA
6 DA
10 DA
4 DA
4 D,LITERAL
4 LITERAL
4.
4
OP CODE SIZE ARGUMENTS
10
6
10
6
6
OP CODE SIZE ARGUMENTS
4
6
10
OP CODE SIZE ARGUMENTS
10 D
: 6 N'Dl'ooo’DN
10 LL,E
10 LL,E,Dl,...,DN



SDL_S-OPERATORS (CONTINUED)

CONSTRUCT DESCRIPTOR OPERATORS (CONTINUED)

NAME

CONSTRUCT DES. FROM PREV,

CONSTRUCT DES. FROM PREV, & ADD

CONSTRUCT DES. FRCM PREV,. &
MULTIPLY
CONSTRUCT DES. LEXIC LEVEL

PROCEDURE OPERATORS
NAME

CALL

IF THEN

IF THEN ELSE
CASE

UNDO

UNDO CONDITIONALLY
RETURN-V1
RETURN-V2

EXIT

CYCLE

MARK STACK
MARK AND UPDATE

MISCELLANEOUS OPERATORS
NAME

SWAP

INTERRUPT STATUS
FETCH

DISPATCH

HALT

READ CASSETTE
LENGTH

LOAD SPECIAL
CLEAR
COMMUNICATE

" REINSTATE

FETCH CMP
ADDRESS

SAVE STATE
HARDWARE MONITOR
OVERLAY

PROFILE

SEARCH LINKED LIST

MNEMONIC

CDPR
CDAD

CDMP
CDLL

MNEMONIC

CALL
IFTH
ITEL
CASE
UNDO
UNDC
RTRN

RTRN:

EXIT
CYCL
MKS
MKU

MNEMONIC

SWAP
11S
FECH
DiISp
HALT
RDCS
LENG
LSP
CLR
coMM
REIN
FCMP
.ADDR
SVST
HMON
OVLY
PRFL
SLL

OP CODE SIZE ARGUMENTS
6 N,Dl,...,DN
6" N,Dl,...,DN
10 N,D1,...,DN
10 DA,D
OP CODE SIZE ARGUMENTS
4 CA
4 CA
6 TYPE, CA, CA
10 N, TYPE,CAl, ..., CAN
4 L
10 L
10 L
10 L,D
6 L
6 DISPLACEMENT
6
10. LL
OP CODE SIZE ARGUMENTS
10
10
10
10
10
10
10
10 v
10
10
10 -
10
10
10
10
10
10 N
10 v



Burroughs, 1968
Burroughs, 1969a
Burroughs, 1969b
Burroughs, 1969c¢
Burroughs, 1969d
Burroughs, 1971
Burroughs, 1972a
Burroughs, 1972b
Cheatham, 1966

Corbato, 1969

Dijkstra, 1968

Hauck, 1968
Huffman, 1952

Lucas,' 19G9
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SDL MEMORY STRUCTURE

Value Stack

e - e e = e e e e e - -

Name Stack

Display

Con;rol Stack

Evaluation Stack

o - o me = e e e e e

\

4\.

Program Pointer Stack

Paged Array
pages and

page tables

Run Structure

FIGURE 1.
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Base Register

Program Static Memory

Program Dynamic Memory

Limit Register



DISPLAY ' NAME STACK EVALUATION STACK
32 ' 8 16 24 8 16 24
NAME STACK POLNTER TYPE |LGTH | APPRESS TYPE | LGTH |4PPRESS
NSP ESP
CONTROL STACK PROGRAM POINTER STACK
20 4 4 20 10 22
N XITED|ENIEREY non : ) °
nsp | FNHERIENEREY vsp SEG # DISPLACEMENT
CSP PPSP
VALUE STACK
FIGURE 2a,

VSP




SDL STACK INTER-RELATIONSHIP

Display I \ -

Name 4 B 0 o I 1 / [ A J
Stack 2 ) )
L — N —_ JL
Evaluation
Value " » Stack
Stack

\\_J

Control Stack Entry 1 describes a currently inactive lexic level.

FIGURE 2b.



SDL OPCODE STRUCTURE

0 thru 9

| 4 bits |2 bits
10 thru 14
0 thru 3

[4 bits | 6 bits ]
15 ° 0 thru 64

FIGURE 3.

7 [/ g/’l»&'”’? 727

5°
,
X
itd 7



ENCODING METHCD

HUFFMAN

SDL 4,6,10

8-BIT FIELD

MCP OPERATOR ENCODING

TOTAL BITS FOR UTILIZATION

MCP'S OPCODES IMPROVEMENT
172,346 437,
184,966 39%
301,248 0%

FIGURE 4a,

DECODING
PENALTY

17.2%

2,67

0.0%



100%

90%-|

I
|

i

\Eight-bi’r field

_SDL 4-6-10
/ Huffman encoding

[

)

S

= 80 %-t-

S |

=)

o

- 70 %

>

o

§§ 61 %

= 60 %-
S7%

50%

.\\\u

}

1
| |

. | i |
.oo 1026 1.05 110 L5 LI7 1.20

Decoding time

FIGURE &4b.



SDL DESCRIP

TOR FORMATS

SIMPLE DESCRIPTOR:

TYPE

LENGTH

ADDRESS OR DATA

8

16

ARRAY DESCRIPTOR:

24

TYPE LENGTH OF ELEMENT ADDRESS OF'?IRST ELEMENT
T T e p—
8 16 24
TYPE FIELD:
0 1 2 3 4 5 6 7
|
-NOT USED

1:
C:

1
E

1 FOR PAGED ARRAY

DATA TYPE: BIT(00), FIXED(0l),
CHARACTER(10), VARYING(LL)

IF LENGTH OF ELEMENT = LENGTH BETWEEN

LEMENTS (CONTIGUOUS ARRAY)

1 IF ARRAY DESCRIPTOR

NON SELF-RELATIVE
SELF- nELATIVE (DATA ITEM IS IN ADDRESS FIELD)

NAME-VALUE BIT

FIGURE 5.



SDL CODE ADDRESS
| TYPE | SEGMENT NO. | PAGE NO. | DISPLACEMENT
3 0 OR 6 0 OR & 12,16, 0R20
TYPE SEGMENT NO. PAGE NO. DISPLACEMENT TOTAL BITS
000 CURRENT CURRENT 12 BITS 15
001 CURRENT CURRENT 16 BITS 19
010 6 BITS CURRENT 12 BITS 21
01l 6 BITS CURRENT 16 BITS 25
100 6 BITS 4 BITS 12 BITS 25
101 6 BITS 4 BITS 16 BITS 29
110 6 BITS 4 BITS 20 BITS 33
111 - - - 3

FIGURE 6,



SDL D

ATA ADDRESSES

TYPE LEXIC LEVEL

OCCURRENCE NO.

2 1 0R 4

5 OR 10

TYPE LEXIC LEVEL QCCURRENCE NO. TOTAL BITS
00 4 BITS 10 BITS 16

0l 4 BITS 5 BITS 11

10 1 BIT = 10 BITS 13

11 1 BIT = 5 BITS 8

* 0: LEXIC LEVEL 0

1: CURRENT LEXIC LEVEL

FIGURE 7.



SDL CONSTRUCT DESCRIPTOR OPERATORS

IN-LINE DESCRIPTOR FORMAT:

. - LENGTH BETWEEN | PAGE SUBSCRIPT| NMBER OF
TYPE | LENGTH |FILLER ELEMENTS SIZE ELEMENTS
8 - 6 OR170,6,0R 0,6, OR 17 0 OR 8 0, 6, 17
17
6- OR 17-BIT FIELDS:
01 5 BITS ) 16 BITS
CONSTRUCT DESCRIPTOR OPERATORS:
OPERATOR MNEMONIC OPCODE ARGUMENTS
BASE ZERO CDBZ 1111 10 0100 D
LOCAL DATA CDLD 1110 00 N,D1,...,DN
FROM PREVIOUS CDPR 1110 10 N,D1,...,DN
FROM PREVIOUS AND ADD CDAD 1110 01 N,D1,...,DN
FROM PREVIOUS AND MULTIPLY CDMP 1111 10 0101  N,D1,...,DN
LEXIC LEVEL CDLL 1111 10 0011  DA,D

WHERE D AND DI ARE IN-LINE DESCRIPTORS, AND DA IS A DATA ADDRESS
(TYPE, LEXIC LEVEL, OCCURRENCE NUMBER)

FIGURE 8a.



SDL CONSTRUCT DESCRIPTOR ADDRESS CALCULATIONS

OPERATOR ADDRESS
CDBZ A' =0
CDLD A' = V
CDPR A' = A+ F
CDAD A' = A+ F +1L
CDMP A' = A+ F + 1L+ (E-1) x LB
CDLL ' A' = ADDRESS(DA) + F

WHERE

A' IS THE NEW ADDRESS PART

V IS THE VALUE STACK POINTER

A IS THE ADDRESS PART OF THE PREVIOUS ENTRY IN THE
NAME STACK

F IS THE IN-LINE FILLER VALUE, IF PRESENT

L IS THE LENGTH OF THE PREVIOUS ENTRY ON THE
NAME STACK

E IS THE NUMBER-OF-ENTRIES PART OF THE PREVIOUS
ENTRY ON THE NAME STACK

LB IS THE LENGTH-BETWEEN-ENTRIES PART OF THE PREVIOUS
ENTRY ON THE NAME STACK

DA IS THE IN-LINE DATA ADDRESS

FIGURE 8b.



SDL CONTROL STATEMENT OPERATORS

OPERATOR

CALL
IF-THEN
TF-THEN-ELSE

CASE

UNDO

UNDO CONDITICHALLY
CYCLE

WHERE

MNEMONIC

CALL -
IFTH
IFEL
CASE
UNDO
UNDC
CYCL

OPCODE

0111

1001

1101 10

1111 01 oloo
1000

1111 01 0011
1110 11

ARGUMENTS

cA

ca

AT,CA,CA
N,AT,CAl,...,CAN
L

L

D

CA IS A CODE ADDRESS (TYPE, SEGMENT NUMBER, PAGE
NUMBER, DISPLACEMENT)

AT IS THE CODE ADDRESS TYPE

IS THE NUMBER OF CODE ADDRESSES
L IS THE NUMBER OF LEVELS TO UNDO
D IS THE NUMBER OF BITS OF DISPLACEMENT

FIGURE 9.



SDL PROCEDURE ENTRANCE AND EXIT OPERATORS

OPERATCOR MNEMONIC OPCODE ARGUMENTS
MARK STACK MKS 1011 11

MARK STACK AND UPDATE MKU 1111 01 1111 LL

CALL CALL 0111 CA

EXIT EXIT 1101 11

UNDO UNDO 1000

RETURN RTRN 1111 o1 0101 L,D

WHERE
LL IS THE ENTERED LEXIC LEVEL
CA IS A CODE ADDRESS
L IS THE NUMBER OF LEVELS TO REMOVE FROM THE
PROGRAM POINTER STACK
D IS A TYPE, LENGTH PAIR

FIGURE '10.



SDL CONSTRUCT DESCRIPTOR FORMAL

OPERATCR MNEMONIC OPCODE ARGUMENT S
CONSTRUCT DESCRIPTOR FORMAL CDFM 1111 01 0001 L,E,Dl,...,DN
WHERE

L IS THE ENTERED LEXIC LEVEL

E IS THE NUMBER OF 48-BIT ENIRIES ON TﬁE EVALUATION
STACK

DI ARE IN-LINE DESCRIPTOR TEMPLATES OF THE FORM:

. NUMBEP. OF
TYPE | LENGTH ENTRIES
8 0,16 0,16
TYPE:
0 1 2 3 4 5 6 7
' 1 IF LENGTH VARYING
1 IF ARRAY BOUND VARYING
DATA TYPE: BIT(00), FIXED(01l)
CHARACTER(10), VARYING(1l1l)
0
1 IF ARRAY
1
0

FIGURE 11.



