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ABSTRACT

Burroughs B1700 embodies a unique design tenet: the work done to accemmodate
definable machine structure from instruction to instruction is less than the
work wasted from instruction to instruction when one machine structure is
used for all applications. 1In other words, execution.of machine language
using procrustean hardware causes more inefficiencies than soft interpreta-
tion of arbitrary machine language on protean haraware. o

The programs on the B1700 are not represented in B1700 machine language but
in "S-language", that is, some other computer's machine language or a
machine language invented (by Burroughs or by the user) expressly for the
program's applicatiocn area, Interpretation of S-language is aided by:

(a) bn-"addrgs@:z‘i,marg?ﬁ (b) APITEEIECrEREE RN RN raridysiaed
lﬁ55§¥§ﬁfféiﬁ%, (c) equal memory speed on all bit locations and bit string
lengths, (d) clock-by-clock control over the effective width of processor
data paths, registers, and structured logic elements, (e) soft microprograms,
(£) English language microprogramring, (g). execution of microcode in-
differently from main memory or control memory, {h) enough control memory
to hold four interpreters and no limit on the number of interpreters that
may be active at any given’ instant, (i) - memory protection, (j) hard and
soft interrupts, (k) stack organization, (1) Master Control Program
taking full responsibility for efficient system utilization by means of
interprtter multiprogramming and multiprocessing, user mul tiprogramming and’
multiprocessing, virtual control memory of 224 (over 16 million) bits,
virtual main memory of 2%% (over 17 trillion) bits, soft interpretation of
1/0 commands, and (m) automatic program profile statistics. Programs on
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the B1700 are independent of: location, storage organizatiom, I/0 organi-
zation, processor organization, peripheral idiosyncrasies, mix size, and
system configuration (except for unique devices). Priced in the lowest
system range, the B1700 offers time- and momey-saving features not found
on systems 100 times more expensive.

The net result of th1s advanced system design is ease of use, simplé pro-

gramming, lack of conversion costs, improved utilization of system com-

ponents, and better pr1ce/performance. :

Keywords: computer archltecture, mlcroprogrammlng, deflnable structure,
B1700, S- 1anguage, interpretation g

‘1. ~ INTRODUCTION

Procrustes was the ancient Attican malefactor who forced wayfarers to-lie
on an iron bed. He ejther stretched or cut short each person's legs to
fit the bed's length, Finally, Procrustes was forced onto his own bed by -
. Theseus. : : : . ‘

'Today the story is belng reenacted. Von Neumann-derived machines are
automatous malefactors who force programmers to lie on many procrustean
beds. Memory cells and processor registers are rigid containers which
contort data and instructions into unnatural fields. As we have painfully
learned, contemporary representations of numbers introduce serious diffi-
culties for numerical processing. Manipulation of variable-length in-
formation is excruciating. Another procrustean bed is machine instruc-
tions, which provide a small number of elementary operations, compared to
the gamut of algorithmic procedures., Although each set is universal, in
that it can compute any function, the scope of applications for which
‘each is efficient is far smaller than the scope of applications for which
each is used. Configuration limits, too, restrict information processing
tasks to sizes which are often inadequate, Worst of all, even when a
program and its data agreeably fit a particular machine, they are con-

" fined to that machine; few, if any, other computers can process them,

In von Neumann's design for primordial EDVACI, rigidity of structure was
more beneficial than detrimental. It simplified expensive hardware and
bought precious speed. Since then, declining hardware costs and advanced
software techniques have shifted the optimum blend of rigid versus
variable structurei toward variability. < As long ago as 1961, hardware
of Burroughs B5000" implemented limitless main memory using varlable-

length segments., Operands have proceeded from single words, to bytes,
. » .

1. See EDVAC, Burks, Goldstine, and von Neumann.

2, See B5000, Lonergan and King.
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to strings of four-bit digits, as on the B3500. The demand for instruc-
tion variability has increased as well. The semantics of the growing
number of programming languages are not converging to a small set of
primitive operations., Each new language adds to our supply of funda-
mental data structures and basic operations, : o C

This shifting milieu has altered the premises from which new system de-
signs are derived. To increase throughput on an expanding range of
applications, general-purpose computers need to be adaptable more
specifically to the tasks they try to perform. For example, if COBOL
programs make up the daily wotkload, one's computer had better acquire
a "Move" instruction whose function is similar to the semantics of the
COBOL verb MOVE. To accommodate future applications, the variability
of computer structures must increase, in yet unknown directions, Such
flexibility reminds one of PISEEUE, the nyRATEEIREIERSMERN-ECUId ChanTy
¥ to that of any creature.

2. DESIGN OBJECTIVE

Burroughs B1700 is a protean attempt to completely vanquish procrustean
structures, to give 100% variability, or the appearance of no inherent
structure. Without inherent structure, there are no word sizes or data
formats - operands may be any shape or size, withcut loss of efficiency;
there are no a priori instructions--machine operations may be any function,
in any form, without loss of efficiency; configuration limits, while not
totally removable, can be beyond state-of-the-art extremes; modularity
may be increased, to allow miniconfigurations and supercomputers using

- the same components.

2.1 Désign Rationale

The B1700's permise is that the effort needed to accommodate definability
from instruction to instruction is less than the effort wasted from in-
struction to instruction when one system desizn is used for all applica-
tions. With definable structure, information is able to be represented
according to its own inherent structure. Manipulations are able to be
defined according to algorithms' own inherent processes. As long as one
can define a machine enviromment which is more efficient for solving
one's problems than a contemporary machine design, one can attain more
throughput per dollar. As we shall see, there are novel machine designs
which are 10 to 50 times more powerful than contemporary designs, and
which can be interpreted by the B1700's variable-image processor using
less than 10 to 50 times the effort, resulting in faster running times,
smaller resource demands, and lower computation costs. , ‘
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3, GENERAL DESIGN

" To accomplish definable structure, one may observe that during the next
decade, something less than infinite variability is required. As long

as control information and data are communicated to machines through pro-
gramming languages, the variability with which machines must cope is
limited to that which the languages exhibit. Therefore, it is sufficlent
to anticipate a unique machine environment for each programming language.
" In this context, absolute binary decks, console switches, assembly
languages, etc., are included as programming language forms of communica-
tion. Let us call all such languages "S=lunpusiZeER" (USSR SIS T E
or also for "EBEA" or "sgmregd or "EFECinlki : wtet? ),

or "&immi
Machines which execute S-language directly are called "S-machines". The
B1700's objective, consequently, is to emulate existing and future S-
machines, whether these are 360's, FORTRAN machines, or whatever. Rather
than pretend to be good at all applications, the B1700 strives only to
 interpret arbitrary S-language superbly. The burden of performing well
in particular applications is shifted to specific S-machines. Throughput
measurements, reported below, show that the tandem system of:

application program

/n
e

interpreted by

S-machine

interpreted by O -
B1700

_is more efficient than a single system when more than one application area
" is considered. It is even more efficient than conventional design for
many individual application areas, such as sorting. )

To visualize the architectural advantage of implementing the S-machine con-
cept, imagine a two-dimensional continuum of machine designs, as in
Figures 1 and 2. Designs which are optimally suited to specific applica-
tions are represented by bullets (s) beside the application's name. The
goodness-of-fit of a particular machine design, which is represented as

a point (*) in the continuum, to various applications is given by its”
distance from the optimum-for each application; the shorter the distance, .
the better the fit and the more efficient the machine is, Figure 1 ,
dramatizes the disadvantage of using one design for COBOL, FORTRAN, Emula-
" tion, and Operating System applications. Figure 2 pictures the advantage
of Emulating/Interpreting many S-machires, each designed for a specific
application. Note that Emulation inefficiencies must be counted once for
each S-machine, since they are all interpreted. '
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Figure 1. Typical machine design positioned by goodness-
. of-fit to application areas.
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Figure 2, Typ1ca1 B1700 S-machlnes p051t1oned by
' goodness-of-fit to application areas.
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HARDWARE REQUIREMENTS

Varying the processor's image for each application area implies very
specific hardware reguirements.

4,1

" Defined-Field Capability

All information is represented by fields, which are (recursively) defined
to be either bit strings or strlngs of fields; 1i. ey bytes and words do-
not exist, :

4,2

(a)

)

(c)

(d)

()

(c)
(d)

(e)

All memory is addressable to the bit.
All fleld lenoths are expressable to the blt. e

Memory access hardware must fetch and store one

or more bits from any location with equal faclllty.
That is,- there must be no penalty and no premium
attached to location or length.

All structured logic elements in the processor
can be used iteratively and fractionally under
microprogram control, thus effectively con-
cealing their structure from the user. Iterative
use is required for operands which contain more
bits than a functional unit can hold; fractional
use is required for smaller operands.

Generalized Language Interpretation

(a)

The system should be capablé of efficient inter-
pretation of a variety of instruction formats.

Format of interpreted instructions should not
be predetermined or limited., The structure of
the system should not cause any significant
difference in efficiency due to selection of
format., :

Interpretatlon should be by soft mlcr0program.

M1croprograms should be changeable, stored and

Hardware must assist with the concurrent execu-
tion of many interpreters, to make SW1tch1ng as
rap1d as possible,
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LSmm MicToprogram execution is a critical
part of the BL700. Some of the objectives in-
volved in the design include: fast entry and
exit of microprocedures, compactness of code and
econony of storage, and ease of writing and
maintaining microcode.

(g) Microprograms must not be limited in size. Execu-
~  tion of microprogram should be invisible to the
user and not reflect any variation in mlcroprogram
eff1c1ency due to size,

(h) Microfunctions must implement all present and
foreseeable higher-level 'language functions
efficiently but without prejudicing implementa-
‘tion of languages. Any function included solely
for a single language should be in addition to
basic microfunctions which could more generally
implement the function.

While the hardware requirements for defined-field design and generalized
. language interpretation have been stated so as to allow a varying pro-
cessor image from microinstruction to microinstruction, they do not pre-
clude taking advantage of a static processor image. For example, the
number of bits to be read, writtem, or swapped between processor and
_memory can be different in consecutive microinstructions, but if an
interpreted S-machine's memory accesses are of uniform length, this
length can be factored out of the interpreter, simplifying its code.

In other words, S-memory may be addressed by any convenient scheme; blt
addresses are available, but not obligatory for the S-machine.

With these>hardware advances, language-dependent features such as operand
length, are unbound inside the processor and memory buss, except during
portions of selected microinstructions. Some of these features have,
until now, been bound before manufacture, by machine designers. Language
designers and users have been able to influence their binding only in-
directly, and only on the next system to be built., On the B1700, the
delayed binding of these features, delayed down to the clock pulse level
of the machine, gives language de51gners and users a new degree of flexi-
b111ty to exploit.

4.3 Advanced Design

On each newly designed system, professional responsibility dictates that
previously proven advances in system organization be incorporated.
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- 4.3.3
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Virtuai Memory

(a)
(b)

©

S-programs should not be limited in size; all
address flelds should be variable.

S-programs should not reflect the storage
organization of the system.

Programmers should be given.feedback on the
size and make-up-'of their working-sets.

Stack Organization

| (a)

(b)

(e)

Programs should be recursive and reentrant.

Subprogram entries and exits should be very '
fast, to encourage decomposition of program-
ming tasks into small, comprehensible units.

Compilation and execution efficiency should
not be dependent on a manufacturer's ability

- to solve register allocation problems,

Dynamic System Configuration

(a)

(v)

Code should be independent-of system con-
figuration, to allow addition and deletion

of processors, memory modules, I/O channels,

and peripherals while programs are running.

The system itself (not the user) should be
responsible for full resource utilizationm;

 hence code should not have to change when the

system is reconfigured.

Multiprogramming

(a)

(b)

- (e)

The system should run as many jobs at once
as are necessary, subject to working-set
limits, to keep each resource fully utilized.

Code should be independent.of the number of

~ jobs in the mix, to provide equal efficiency

when running alene as when runnlng with 100
others. .

Memory must be protected from all 1nva11d re-v

. ferences (read or wrlte)
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(d) Hard interrupts are needed to manage asynchronous
events with minimum overhead.

4,3,5 Multiprocessing

(a) The system should allow extra processors to be
added to memory-rich or peripheral-rich installa-
tions, to balance the system to user workloads.

(b) Program state should be maintained outside of
processors, to allow execution by any processor
" without excessive switching time.

4,3.6 'Descriptor-prganized 1/0

{(a) System I/0 is itself a unique appllcatlon, deserv1ng
its own S- language and 1nterpreter.

(b) The 1/0 S-language interpreter may be soft micro-
) program or a separate, wired processor, incapable
of interpreting other S-languages,

(c) With self- descr1b1ng I/0 requests, processor partl-
cipation in I/0 is reduced, improving the system's
ability to keep many perlpherals in operation
31mu1taneously.

4.3.7 Soft Interrupts

(a) Asynchronous and infrequent events should not require
explicit code for their individual detection.

4,3.8 Profile statistics
(a) Program behavior should be analyzed and repofted
back to the programmer, or filed for overall system
analysis.

(b) Reports should be in terms of source language.

(c) Reportlng which parts consume the most execution
time is of primary importance.

(d) Compilers writers ought to be told how their
languages are being used.

(e) By instrumenting soft microprogram interpreters for
profile statistics gathering, overhead can be kept
under 17%. ' '
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Each processor may have either
1-8 1/0 channels or 1-4 micro-
program mcmory modules of
16,384 bits each.

Each system may have
2-256 systems memory
modules of 65,536 bits
each,

Figure 3. B1700 Organization

Available peripherals include - Card Readers: 300-1400 cpm models, 80.col.; 300-1000 cpm

models, 96 col.; Card Punch, 300 cpm, 80 col,; Card Read-Punch-Print-Sort, 1000/1000/120/

120 cpm, 96 col.; Card Record Read-Punch-Print-Sort, 300/60/60 cpm, 96 col., Line Printers
_ =900 lpm models, 132 col.; Paper Tape Perlpherals' Disk Storage 5ms-40ms models, Head- -
)-Track 2200-4500 bpi models, movable arm, cartridge; Magnetic Tape 7/9 Track, NRZI/PE

models; Sorter-Reader 600-1625 dpm models; Data Communications L50Hz-48KHztmodels; Graphics;
Terminal Computers, Teller Machines, etc.
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5. ~~  SYSTEM ORGANIZATION

Extreme modularlty improves the B1700's ability 'to adapt to an install-:ion's
requirements. There may be 1-8 processors connected to one another ar - to
2-256 65,536-bit main memory modules, interfaced by one or more field~
1solat10n units, described later. Each processor also connects to 1-8 1/0
channels or to 1-4 microprogram memory modules. (See Figure 3.)

With only one processor, the port interchange may be ellmlnated, as 1n'.
_Figure 4, -

fiu .S-memory

300 cpm 96-col. MFCU ”“*‘“‘4:;;§;;E;\r~“*~“
F Channe;}\\{grocessor.

20 ms, disk |

1300 1pm 132 col. printer M control channel ‘
dual spindlei : IconETol [channel i J
Figure 4. One of the smallest B1700's.

Rental of the sysfem in Figure 4 is expected to be under.$1500/mohth.
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6. EMULATION VEHICLE

Any computer which can handle the B1700's port-to-port message discipline
may employ a B1700 for on-line emulation. (See Figure 5.)

‘M-memory Processor Port Interchange FIU 'vS-memory
32K ' ' S
bits ' \\J .
o - 192K bits

Communication line
- to host computer

Figure 5. B1700 as an Emulation Vehicle,

Programs and data are sent to the B1700 for execution; 1/0 requests are
sent back to the host which uses its own peripherals for them. Inter-
preters are loaded via the B1700's console cassette drive. Present
interface specifications expect one interpreter to be in M-memory at a

time. Rental of the system in Figure 5 is expected to be under $2200/month.

7. DEFINED-FIELD DESIGN

7.1

The mechanisms by which the processor and microinstructions automatically
handle variable operand lengths and formats have come to be called "bias"
facilities. In addition to a normal complement of registers, functional

B S s R n o L

units, and data paths, each processor has EXEFEFISINESSIA

peIaizoTE

- e A e R R S A e A T

e

as many as the processor cam handle, and

ELRTEY

CPBmwhich specifies the unit of information, viz., bit,
BCD, USASCII byte, EBCDIC byte, along with some
open codes for future use.
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4ﬁﬂrﬂﬁﬂﬁﬁﬂrto deternlne when carries occur out of the apparent1y hlrhest
bit position. Memory-accessing microinstructions may choose to access
only as many b1ts as CPL specxfles. FOTmat—ches “Anntqggsmabﬁéﬁﬁﬁgﬁﬁ%ﬁg
T%?%‘Eﬁﬁ%?%ﬁ%?ﬂ? i et e cov: oS SRR L

» A & Thus, mlcroprooron sequences

which load CPL and CPU fron data descrlptors (or even from the computer ;
operator's keyboard) during an instruction interpretation behave correctly

whether binary or decimal operands are supplied and whatever size the

operands are. The microprograms are invariant to actual operand details,
so the B1700 hardware appears not to have inherent structure.

Iteration over operands which are longer than the processor can handle
is accomplished by two unlque mlcr01n=txuctlon>, Bias and Count F.

l"iigﬁédaress, 16-bit subreglsters, FL and SFL, for the data's

length (bit strings are thus limited to 65,535 bits), and 4-bit sub-
registers, FU and SFU, for format information. The Bias instruction
computes the format and number of bits to bring to the processor for an
jteration by setting CPU from FU or SFU and by setting CPL to FL, SFL,
itself, a literal value, or the minimum of any set of these., The Count
F micro uses CPL or a literal value by which to increment and decrement
FA and FL; this indexes through an operand by defining contiguous sub-
fields on which the processor may operate. To handle indefinitely long
operands, then, one first writes a microprogram which assumes that the
‘processor registers are indefinitely long. One suffixes the progranm
with a Branch micro to repeat the code., One prefaces the program with
a Count F and Bias pair, the Count F to define suboperands that are small
enough to fit in the physical processor, and the Bias to compute the
suboperand length (so that the operand need not be a multiple of the
processor width), to load the bias registers, to test for completion,
and to bypass the program when the long operand is completely processed.
Such a microsequence can handle zero-bit to 65,535-bit operands indis-
criminately. . ’

7.2 Bit-oriented Memory

To implement bit-oriented memory at low cost, one uses conventional
memories and a memory-requestor interface which is called a field isola-
tion unit, or F.I.U. (see Figure 6)., The FIUs tasks are to convert

bit addresses, field lengths, and field directions (i.e., address refers
to most- or least-significant-bit) into conventional addresses, to align
requestor bit strings with actual memory containers, and to mask off
nonparticipating bits. During memory operations, bytes are read out

of mcmory into the Memory Information Register, MIR, a bit string is
‘extracted or inserted as the information passes through the rotator

into either buffer, and then the buffer is gated to its destination.
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i
!
Déta
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Figure 6. Field Isolation Unit (Memory/Requestor Interface)



May 1972

Any port on the interchange (see Figure 3) .may read bit strings from
memory. The port must supply a bit location, a string length (in bits),
and a field direction (one bit meaning forward or reverse) to the FIU,
which places the information into its Memory Address Register. Because
fields may be manipulated in either direction, locations actually refer
to between-bit positions, as illustrated in Figure 7. The thirteen bits
from location 13 forward are the same ‘thirteen as accessed from loca-
tion 26 backward, This simplifies microprogramming by naming bit
strings in a manner simjlar to the way in which we think about them.

13 413 . 26

100000000

-13

I

Q

I SRR

]

bits:

Figure 7. Defined-field addresses labelling between-bit positions.A

Given a field location, the FIU calculates which byte in the conventional
memory contains the leading bit. On the B1700, there are four 9-bit
memories (one bit of which is used for parity). Consequently, the low
three bits of an address specify a bit position within a word, the next
two bits specify one of the four memories, and the high 19 bits con-
stitute a conventional address. The leading bit is in the word specified
by the high 21 address bits, This word, and the corresponding words in
the other memories, are brought to the FIU's Read MIR. For example, the
accessed words which satisfy a request for the 13-bit field beginning

at location 13, forward, are shaded in Figure 8. The field itself is
doubly shaded. From the low three bits and direction of a request,

the FIU. is told how many positions and in what direction to rotate the
received field in order to right-justify it. The request length is used
to create a mask which zeros the unneeded high bits., The isolated field
is then sent to the port interchange, as shown in Figure 9.



Request:
Location--
0000000000000000000
‘ 01

Length-- ) ,
0000000000001101;
Direction--

0;

' Figure 8., Words (shaded

101§

word,
memory,.
bit
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On the B1700, the field is available at a processor's port 668 nsec after:
the read request is initiated, assuming the port interchange and memory are
both free, The port and FIU are ‘involved during the last 500 nsec. '

To write bit strings into memory, the FIU accepts a request (i.e., location,
length, direction) and performs a read cycle to bring the receiving memory
field to the Read MIR and right-justified through the rotator. It then
accepts a bit string from the port interchange which goes through the Write
MIR and is masked into the memory field at the rotator. Then the rotator
returns the information to word-alignment, and passes it through to the
write buffer, where it returns to memory. Write cycles involve ports for
500 nsec and the FIU for 1169 nsec. ~ . '

Since writes are performed as Read-Modify-Write, the addressed field, as
it was before modification, is available in the read buffer for the re-
questing port., Thus, fields may be swapped between memory and a processor
by one microinstruction, It is also possible to force two back-to-back
requests, which. gives any processor the ability to test and set, and re-
store a bit string in one uninterruptable operation. This is vital for
administering multiprocessor, multiprogramming environments because it

can be used to prevent system deadlocks.

Because the amount of information which resides with the processor is so
- large (registers plus M-memory), one processor uses only 20% of the
available S-memory cycles, which enables one FIU to support several
processors. In addition, almost 807 of processor requests are reads.

Of the 41 bits required to specify a memory request, typically 5-10 come
from the S-instruction. The rest come from other S-machine state. They
represent the context within which the S-machine is working. The length
field, for example, constantly is 16 when the S-machine is the IBM 1130.
- Consequently, little work is needed to maintain such large address fields.

8. SOFT INTERPRETATION

All Burroughs-supplied interpreters rely on the B1700's Master Control
Program (MCP) for all input/output, virtual S-memory, virtual M-memory,
multiprogramming and multiprocessing of user programs, multiprogramming
- and multiprocessing of interpreters, and standard functions. The MCP

is written entirely in a higher-level language (a synergism of features
from COBOL, PL/I, and XPL) which is interpreted itself, To provide for
smooth change of control, a microprogrammed interprecter interfacing
routine, named Gismo, exists in the beginning memory locations. By
loading.a pointer to another program into a processor register and clearing
the microprogram address register, each interpreter transfers to Gismo.
Gismo uses the program pointer to establish processor context within the
nevw interpreter, Subsequent microinstructions are taken from the new .
interpreter.
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8.1 Interpreter-Machine Interface

Given this interpreter interface, simple, hardware-oriented tasks such as
interrupt decoding and priority resolution, M-memory overlay, and I/0
transfer, can be included in the interface routine, simplifying the re-
quirements of an interpreter,

An interpreter has control of a processor until interrupted by another
element in the system or by programmatic interrupt. Between each S- ‘
instruction interpretation (approximately every 35 usec.), every inter-
preter must examine the processor's interrupt register to detect the need
for change of control. If an interrupt is present, the interpreter calls
(instead of transfers to) Gismo, leaving a constant in a register which
directs Gismo to decode the interrupt. For simple functions such as timer
interval or 1/0 transfer, Gismo actually performs the required actioms.
For other interrupts, Gismo returns an appropriate description to the
calling interpreter, ‘ :

If the interpreter can handle the interrupt, it does so and continues
with the next S-instruction if all interrupts are quiet. If it cannot,
it moves its S-machine's state cutside of the processor, loads a constant
which means "call MCP", and transfers to Gismo., Very little state needs
to be saved because no S-instruction is in the middle of interpretation.

Real-time interrupts are distinguished by hardware, but are handled in
exactly the same way. When Gismo is told to "call MCP", it may select

a non-MCP program to process real-time interrupts (such as a COBOL routine-
which performs a pocket select for a document-sorter).

Gismo is also called by the MCP to move interpreter segments into M-memory,
by all programs to initiate 1/0, and by the computer operator to perform
some start-up or post-mortem utlllty functions,

' 8.1.1 S-machine Switching

Note that change of control is between S-machines, which does not necessarily
mean a different interpreter is needed. (When all user programs are written
in the MCP's language, only one interpreter is active.) Each job is re-
presented in S-memory according to Figure 10. All but one segment is read-
only code. The one is called the "run structure” and consists of: I/0
buffers; data; descriptions of devices and operands; and the run structure
nucleus which contains the‘job's S-machine state and MCP-needed contrel in-
formation. All segments (except the run structure nucleus) move into memory
under control of the MCP. The data section may or may not be administered
internally by a virtual memory discipline. Note that code segments never
are written out of memory because they never change. The space they

occupy is always available for other uses.
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The MCP's run structure includes an interpreter dictionary, each entry of
which describes an interpreter (either active in S-memory or on disk).

Overlayable program segments
Overlayable data

segments

S-machine_state (run structure)|
Data definitions

'File definitions

Ln!a&ianqmw* -

- File buffers

Figure 10, Program components..

To reinstate a user's interpreter, the MCP extracts from the user's
S-machine state the name of the interpreter being used. The interpreter
name is looked up in the interpreter dictionary to yield a pointer to
the interpreter code in S-memory. The MCP's interpreter then saves its
S-machine state, loads the pointer into a hard register, and resets the
Microprogram Base Register and Microprogram Address Register (to leave
the MCP's interpreter's code space), The next micro is brought from
Gismo, which uses the hard register to load the Microprogram Base
Register, transferring microinstruction fetches to the new interpreter's
code space, Associating S-machines and interpreters symbolically allows
such things zs several COBOL interpreters active in one mix--omne de-
signed for speed, another for code compaction, etc.,--all employing the
same S-language expressly designed for COBOL (that is, a COBOL-machine"
~definition).

To switch back to the MCP interpreter, a user interpreter obtains a
pointer to the MCP's run structure from the user program's run
structure and performs the 1dent1cal procedure,

Interpreter switching is ihdependent of "any execution considerations.

It may be performed between any two S-instructions, even without switch-
ing S-instruction streams. That is, an S-program may direct its inter-
: preter‘to summon another interpreter for itself. This facility is use-
ful for changing between tracing and non-tracing interpreters durlng
debugging.



Interpreter switching is also independent of M-memory.
Address Register always actually addresses S-memory.
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The Microprogram
In case M is

present, special hardware diverts fetches to it, whenever the Microprogram
Limit Register indicates that M's contents mirror the portion of S-memory

being addressed.

low S-memory.

8.2

Without M, no fetches are diverted, and Gismo sits in

Interpreter Management

Entries in the interpreter dictionary are added whenever a job is in-

itiated which requests a new interpreter.

Interpreters usually reside on-

disk, but may be read in from tape, cards, cassettes, data comm, or other

media,

They have the same status in the system that object code files,

source language files, data files, compiler files, and MCP files all share:

symﬁolically-named, media-independent bit strings.

While active, a copy

is brought from disk, to be available in main memory for direct execution.
The location may change during interpretation due to virtual S-memory
management, so microinstructions are location-independent.

At each job initiation and termination, the MCP rearranges M-memory for
the processor being readied according to five strategies:

(a)

(b)

(c)

(d)

Abundant M

.Condition:

Action:

Ample M

Condition: -

“Action:

Adequate M
Condition:

Action:

Precious M

Condition:

Action:

“ 1000 words =

All active interpreters can fit in M.

Place all interpreters into M.

All active interpreters can be granted at
least their minimum M request (usually
10600 16-bit micros).

Divide M evenly and place part of each
interpreter in M. ‘ -

Several interpreters can be given their
minimums, but not all.

Give the MCP's interpreter about 1000
words; divide the rest into 1000-word

: Blocks and swap all user interpreters
" in and out during reinstate operations,

Only two interpreters can be given their
minimums. ’ ' '
Give the MCP its minimum; swap all users
in and out of the rest.
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{(e)  Bare M
Condition: Only one interpreter can be given a minimum
' demand.
Action: At each interpreter switch,: place one 1nter-

preter into all of M.

Interpreter profile statistics show that 1000 micros (1000 words)
account for over 99% of all instructions executed, even though
most interpreters are 2000 words long. If a microprogrammer is
prudent enough to rearrange his code according to usage, then an
interpreter requesting 1000 .words of M as a minimum may be as
efficient as one requesting- 2000 words. '

Ease of Microprogramming

‘Writing microprograms for the Bl700 is as 51mp1e, and in some ways simpler,
than writing FORTRAN subroutlnes-

(a) Microprograms consist of short, imperative English sentences
and narrative comments: For exarple, one subrout1ne in
the FORTRAN interpreter reads as follows:

* Dec1ma1 to binary conversion : o
* : Source: addressed by F; 1-13 digits
* : Destination: L Y, initially zero ‘

Decimal-to-binary , :
: Read 8 bits to T counting FA up and FL down obtain a char
and ‘address the next one

Move T, to X strip off zone bits
Call Afd-X-to-LY LY « LY + X add to partial sum
If FL=0 then exit ‘quit after last char
Move L to X ~ allow another digit:
Call Multiply-XY-by-10 - . TL « 10 x XY
~Move L to Y LY «
‘Move T to L LY «
Go to Decimal-to-binary . Tepeat

(b) Knowledge of microinstruction forms is not beneficial.
Although microprogrammers on other machines need to know
which bits do what, on the B1700, there is no way to use
that information. Once the function is given in English,
its representation is immaterial., The B1700 microprogrammer
has only one set of formats to worry about: those belonging
to the S-language which he is interpreting.



May 1972

(¢) Multiprogramming of microprograms is purely an MCP function,
carried out without the microprogrammer's knowledge or
assistance. Actually, there is nothing one would do differently,
depending on whether or not other 1nterpreters are. runnlno
51multaneously

(d) Use of M-memory is purely an MCP function; the resident
interpreter interface alone can move information in
and out of M. Other than rearranging one's interpreter
according to usage, there is nothing one should microprogram
differently depending on whether microinstructions are
executing out of M-memory or S-memory. -Maximizing use of
system resources is beyond the scope of any individual pro-
gram; responsibility lies solely with the MCP and the machine
designers, :

(e) Since all references are made symbolically, protection is
_easy to assure., Microprograms can reference only what they
_can name, and they can only name quantities belonging to
‘themselves and their S-machines., Moreover, names cannot
be artifically generated, as they can in FORTRAN (e.g., by
negative subscripts, or by call-by-value parameters used
in call-by-reference constructs).

(f) Calling out interpreters is simplified by the continuation
of Burroughs' "one-card-of-free-form-English" philosophy
of job control language. Figure 1l shows the control informa-
tion which creates a new interpreter (l) from cards, and
- {2) from a disk file named XCOBOL/SOURCE. ‘

(1) ? COMPILE XCOBOL/INTERP WITH MIL; DATA CARD

(2) ? COMPILE XCOBOL/I\TERP WITH MIL; MIL FILE CARD =
XCOBOL/ SOURCE '

~Figure 11, Typical MCP control information
for creating interpreters.

(g) Association of interpreters and S-language files occurs at
run-time, Figure 12 shows the control information which
executes a COBOL program named FILE/UPDATE with (1) the
usual COBOL- interpreter, and (2) another interpreter named
' XCOBOL/INTERPRETER.
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(1) ? EXECUTE FILE/UPDATE

(2) ? EXECUTE FILE/UPDATE; INTERP = XCOBOL/INTERPRETER

1

Figure 12, Typical MCP control information
for executing programs.

(h) There is no 1limit to the number of interpreters that may be
in the system (except that no more than 2% bits are capable
of being managed by the B1700's present virtual memory
property, so a 28,000-bit average interpreter length means
there is a practical limit of 628,292,362 interpreters...
many more than the number of S-languages in the world).

9. VIRTUAL MEMORY

On the B1700, S-language addresses may be 44 bits long (disregarding the
possibility of using magnetic tape as a backup for main memory), even
though each system will have 16 million bits of S-memory or less. M-
addresses are 24 bits long, even though each system will have 65,536 bits
of M-memory or less. Virtual memory is the mechanism by which the B1700
accommodates memory references to more bits than are physically attachable,

9.1 Virtual M-memory

As ccntrol is switched to an 1nterpreter, tVO reglsterc are set by the

~ﬁé%¥?ﬂ which contalns thc relaliveing:

Mlcros are always address d relatlvo to the

This is not a true virtual memory scheme since early interpreter locations
are always in M-memory, and later locations never are. It does have the
necessary property, however, that the actual amount of M-memory never
impacts the program. Interpreters execute identical sequences of instruc-
tions for a given task as the amount of M-memory varies. The micro-
programmer never takes cognizance of the actual amount of M-memory that

is present. (He should, of course, arrange his 1nterpreter with the most
often used parts first,)
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9,2  Virtual S-memory

The B1700 MCP maintains a large disk area for program pieces that are not

in use and can be kept outside of main memory. These pieces may be any
number of bits long (up to 22“) Whether they are segments, pages, arrays,
or otherwise, depends on the S-machine from whose environment they came.

All Burroughs S-machines designed for specific programming languages (e.g.,
COBOL, FORTRAN, RPG, BASIC, ALGOL) make references through descriptors, or
interpretable pointers. These descriptors define areas within an S-machine's
data or code space; references are relative to the start of the described
area, The descriptions themselves are relative to the start of the
S-machine's space, or to an MCP back-up area. When a reference selects an
area which is not in memory, the MCP initiates a disk request and temporarily
runs another job. When the absent area is brought in, its descriptor is
changed to indicate the new location, ' The reference is retried when the

job' is selected again.

S-machines are free to manage their own data and code spaces, with and
without the MCP's assistance. .

Within an S-machine, only its own data and code spaces are accessable.
Each machine environment is represented as if it began in location zero
and extended throughout all memory, possibly up to 2 4 (over 17 trllllon)
bits! worth. The B1700 monitors all references to main memory to verify
that they lie between locations contained in the hardware's Base and Limit
registers which are set by the MCP during reinstating. Illegal references
_cause a hard interrupt which transfers control from a user interpreter
~back to the MCP's interpreter, preventlng meddllng in other S- machlne s
areas.

10.- . STACK ORGANIZATION

information remains pushed 1nto the stack.

Other hardware makes S-machine stacks easy to implement. The ability to
read and write in both directions in S-memory, and to count field defini-
tion registers' subfields up and down independently give microprograms
read-and-pop and write-and-push operations which can be carried out by one
microinstruction. '
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11, DYNAMIC SYSTEM CONFIGURATION

Since no information (other than a few MCP tables) contains absolute
memory locations, the presence or absence of particular memory modules
is irrelevant. Should one fail, it may be taken off-line and repaired
without disturbing the rest of the system. Conversely, when memory
modules are added to the system, the Bl700's location-independent
segments can be placed in them as soon as they are brought on-line, No
code in the MCP nor in any user program need ever be rev1sed due to
memory reconfiguration. :

Likewise, the identity of any processor, I/O channely or peripheral is

not represented inm any user program or MCP routine. When particular
devices are needed, their identity is looked up using a symbolic reference
each time a device is accessed. Consequently, devices may leave the )
system‘without inhibiting any prdgram from running (unless the MCP is.

not able to create a pseudodevice to hold the I/0 requests until the

real device is available again). Further, devices may enter the system
and be fully utilized without changing any user or MCP code,

12.A MULTIPROGRAMMING

A misunderstood concept, multiprogramming refers to the interlaced pro-
cessing of independent programs using as much of an entire system's
resources as are required. It is usually confused with partitioning,
which is the interlaced execution of independent programs using part
.of a system's resources. Under multiprogramming, two three-tape sorts
which use 24K of core can be run together on a three-tape, 24K system
(the MCP must utilize three pseudo- tapes) a partitioned system needs
six tapes or 48K or both. :

A simple way to implement multiprogramming is to represent each program
in main memory exclusively; that is, no state information or temporary
results are kept in a processor...everything is available in memory.

On the B1700, this is true of each S-machine. To interlace processing
of each program, imagine directing the processor to execute exactly one
instruction from each program, in round-robin fashion. Since everything
‘necessary for any instruction's execution is represented in memory, no
difficulties are encountered in passing from one program to the next.
Such an approach, however, denies the efficiencies which can be obtained
by successive instruction executions in one processor. The B1700 takes
an intcrmedlate approach which is madc feas1b1e by its desc11ptor-

', elther for 1/0 or v1rtual memory management, {UHF
When a program can go no further by itself,
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jts state is recorded in memory and another task is taken up. It is a
‘happy discovery that such breakpoints occur often enough to keep the MCP
attentive to the needs of many jobs. This scheme is further refined by
allowing programs to. become dormant, which permits their state informa-
tion to be taken out of main memory. Subsequent I/O operations on which
dormant programs may be waiting carry some form of identification which
ties them to the dormant program, and causes program state information
to be brought back. T B

13, MULTIPROCESSING

Multiprocessing is the concurrent execution of more than one processor on
independent programs. The processor-independent program state, which is
used to keep multiprogramming simple, automatically allows any program .
" to be resumed by any processor, as long as each processor can address all
of memory, cormunicate with the éntire I/0 system, and has access to the
interpreter named in the program's run structure (see Figure 10). All '
of these conditions are always true of B1700 processors. '

_14; DESCRIPTOR-ORGANIZED I/0O

Because I/0 processing is often not directly dependent on subsequent pro-
gram steps, greater throughput can be achieved by overlapping I/0 pro-
cessing with other processor activity. So, to reduce Bl700 processor
involvement with I/0, requests take the form of descriptors (interpret-
able programs) whose effect, when interpreted, is the 1/0 function. To
‘activate a request, a processor sends a port-to-port message across the
port interchange. The message locates an I/0 descriptor in main memory
which an 1/0 processor will interpret., Non-I1/0 processors are thus
relieved of the intricacies of device and channel communication.

On one-processor B1700 systems, the only I/0 descriptors which are fab-
ricated are self-evident to the device controls themselves. Each contains
a literal device name and an opcode for the device, as well as the
addresses to be used for information transfer in and out of memory. On
multi-processor B1700 systems, the oppertunity to create arbitrary des-
criptors is present, enabling file-oriented activities, such as record
accessing, searching, and sorting, to be carried out in the I/0 realm.

In addition, new device disciplines can be accommodated by new microcode
for the 1/0 processors., V

15. SYSTEM PERFORMANCE MONITORING
151 Profile Statistics
Whereas hardware receives extensive and penetrating scrutiny while it is

being designed, software is normally constructed with only the programmer's
intuitions about its efficicncy to guide its design. The performance
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measurement technique of profile statistics, the association of code usage
with a provram s source language, has been reported to help improve a
program's running tinme by a factor of two to ten. (See Darden and Heller,
or Knuth [Profile? ). To help B1700 users obtain the greatest throughput
per dollar each Burtroughs interpreter can gather profile statistics about
a program which it is interpreting and present them at the ‘end of a run.

At compile time, a user may indicate which portions of his program are to
receive more or less scrutiny. These indications define a set of program
segments whose usage is to be recorded by means of an inserted S- language
monitoring command.

The complled program consists of' the code segments expanded with monitors
(by less than 1%), textual information which will be used to describe the
participating program segments in terms of source language, and an array -
of cells for the frequency countsg. Interpretation of the monitors appears
to extend execution times by less than %%. After execution, the weighted
frequency counts shcw which program segments account for most of the
running time. Reprogramming these critical segments for efficiency will
reduce running times the most, : '

Microprogramming can easily allow dynamlc measurements of other propertles
as well, with similarly small overhead.

15.2 "Monitor" Microinstruction

One microinstruction, Monitor, simply presents a user-specified bit pattern
at designated pins in the processor backplane and frontplane. This allows
unique software "events" to be identified by external hardware, which
greatly simplifies the task of know1ng what the system is d01ng.

Each hlgher-levcl lanouaoe has been extended to 1nc1ude a construct which
generates a Monitor S-instruction for each interpreter to carry into an
identical microinstruction. Event flagging is thus available to all
programmers,

16. EVALUATION

“The B1700's ability to provide profile statistics at negligible cost voids
all known system performance measures. Consider benchmarks, Wthh measure
more system parameters than any other technique.

Any benchmark program which runs on the B1700 develops not only an observed
running time, but also an indication of how to reduce that time (often by
more than 50%). What, then, is the true performance on the system? Not
the observed time, because inefficiencies are pin-pointed. Half the time?
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Not until the benchmark has been changed. The point of benchmarks is to
have a standard reference which allows the customer to characterize his
work and obtain a cost/performance measure. What customer would be
satisfied with an inefficient characterization? If the B1700 can show
that a program is not using the system well, what good is it as a bench-
mark? If we change the program to remove the inefficiencies, it is no
longer standard. This is a pernicious dilemma. ' :

Even the simplest measure, add time, still published as if it hasn't been
a misleading and unreliable indicator for the past 15 years, is void.
What is the relative performance of two machines, one of which can do an
almost infinite variety of additions and the other of which can do only
one or two? The B1700 can add two 0-24 bit binary or decimal numbers

in 187 nsec; how fast must a 16-bit binary machine be in order to have
an equivalent add time? . ' : o _ 3

Assuming reasonable benchmark figures are obtainable, they would say
nothing about the intrinsic value of a machine which can execute another
machine's operators, for both existing and imaginary computers; which
can interpret any current and presently conceivable programming language;
which can always accept one more job into the mix; which can add on one
more peripheral and one more memory module, to grow with the user; which
can interpret one more application-tailored S-machine; which can tell a
prograrmer where his program is least efficient; which can continue
operation in spite of failures in processing, memory, and 1/0 modules,
~ These characteristics of the B1700, shared by few other machines--mno
‘machine shares them all--save time and money, but are not yet part of
any performance measurement. :

Despite the nullification of measures with which we are familiar and the
gargantuan challenge of measuring the B1700's advancements of the state-
of-the-art, there are, nevertheless, some quantifiable signs that the
system gives more performance than comparably-priced and higher-priced
equipment.

16.1 Utilizdtion of Memory

Defined-field design's major benefit is that information can be re-
presented in natural containers and formats. Applied to language inter-
pretation, defined-field architecture allows S-language definitions which
are more efficient in terms of memory utilization than machine architec-
tures which have word- or byte-oriented -architecture. For example, short
addresses may be encoded in short fields, and long addresses in long
fields (assuming the interpreter for the language is programmed to decode
the different sizes.). Alternatively, address field size may be a run-
time parameter determined during compilation. That is, programs with
fewer than 256 variables may be encoded into an S-language that uses
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eight -bit data address fields. Even the fésteét microcode that can be
written to interpret address fields is able to use a dynamic variable
to determine the size of the field to be interpreted.

Just how efficient this makes S-languages is difficult to say because no
standard exists, What criterion will tell us how well a given computer
represents prog rams? What "standard"™ size does any particular program
have? We would like a measure that takes a program's semantics into
account, not just a statlstlcal measure such as entropy.

If we simply ask how much memory is devoted to representing the obJect
code for a set of programs, we find the following statistics:

Language Aggre"ate Aggregate Other % Improved B1700

of Sample Size on BL700 Size on Other System Utilization
FORTRAN 280KB 560KB System/360 - 50%
FORTRAN 280KB . 450KB B3500 40%
COBOL 450KB _ 1200KB B3500 - 607
COBOL 450KB 1490KB "~ System/360 - 70%
RPG 1I 150KB 310KB System/3 507

In short, the B1700 appears to require less than half the memory needed
by byte-oriented systems to represent programs. Comparisons with word-
oriented systems are even more favorable.

As to memory utilization, the advantage of the B1700 is even more apparent.
- Consider two systems with 32KB (bytes) of main memory, one a System/3, the
other a B1700. Suppose a 4KB RPG II program is running on each. If we
ask how much main memory is in use, we find:

- System Bytes in Use % Comment
system A

System/3 32K 100 28K is idle without multi-
. programming and virtual memory.
B1700 . 1K 3 Assumes 500B run structure
and 500B of program and data
segments,

In other words, the utilization at any given moment may be 30 times better
on the B1700 than on the System/3, At least, with all program segments in
core, it is seven times better (4. 5KB vs. 32hB) Even if we assume that
the RPG interpreter is in main memory and is not shared by other RPG jobs
in "the mix, the comparison varies from 6:1 to 4:1, 5KB to 8KB (vs. 32KB),
-84% to 757 better utilization. As more and more RPG jobs become active in
the mix, the effect of the interpreter diminishes, but then comparison
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becomes meaningless, because other low-cost systems cannot handle so large
a mix. (Note that these figures change when a different main memory size
is considered, so the comparison is more an illustration of the advantage
of the B1700's variable-length segments and virtual memory than of its
memory utilization.)

16.2 Running Time

Although program running time is said to involve less annual cost at
installations than the unquantifiable parameter which we may call "ease

of use", let us mention some current observations. When the B1700 inter-
prets an RPG II program, the average S-instruction time is about 35 micro-
seconds, compared to System/3's 6 microsecond average instruction time.

On a processor-limited application (specifically, calculating prime numbers),
the identical RPG program runs in 25 seconds on a B1700 and 208 seconds on

a System/3 model 10. Both systems had enough main memory to contain the
complete program; only the memory and processor were used. :

The particular configurations leased for $3500 (B1700) vs. $2000 (System/3)
" In terms of cost, the B1700 run consumed 30¢ while the System/3 run took
$1,60. In terms of instruction executions, the B1700 was 50 times faster.
That is, each individual interpreted RPG instruction, on the average, con-
tributed as much to the final solution as 50 System/3 machine 1nstructlons.
When one considers that RPG is the only programming language on the
System/3, it is incredible that System/3 seems so poorly equipped to run
RPG programs. It is even more incredible because the B1700 really has no
S-language expressly for RPG; it uses the COBOL S-language instead. The
likelihood of an S-machine more than 50 times more efficient than System/3
is almost certain. This seems to support the B1700 philoscphy, that in-
terpretatlon of S-machines for each application is more efficient than
using a general purpose archltecture.

Using another set of benchmark programs (for banking applications), and
another B1700 which leases for $2000, throughput comparisons are again
astounding. Or the one hand, we are comparing a defined-field, soft-
interpreting, soft-I/0-processing machine using pre-release compilers,
interpreters, and MCP routines, under multiprogramming, multiprocessing,
virtual memory systems desigzn, against, on the other hand, a byte-oriented,
hard-wired system with two years' field testing, five software releases,
batch-processing, one cpu, and 32K maximum main memory. Despite all of
the B1700 features, which supposedly trade speed for flexibility, the

- B1700 executes RPG programs in 50% to 757 of the System/3 time, and
compiles them in 110% of the System/3 time, for the same monthly rental.
In applications of this type, compilation is expected annually (monthly
at worst) while execution is expected daily. (Systems used for this
comparison included a multi-function card unit to read, print, and punch
96-column cards, a 132-position 300 lpm printer, a dual spindle 4400 bpi
disk cartridge drive, and operator keyboaxd. The System/3 could read
cards at 500 cpm, while the BLl700 could read at 300 cpm.)
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17.-  CONCLUSION

Microprogramming, firmware, user-defined operators, and special-purpose
minicomputers are being touted as effective ways to increase throughput
on specific applications while decreasing hardware costs. Standard
system modules may be tailored to an installation's needs. Effective
as these approaches are, they are all held back by procrustean machine
architecture. Burroughs B1700 appears to eliminate inherent structure
by its defined-field and soft interpretation implementation. Both are
advancements of the state-of-the-art. Now one machine can execute every
machine language well, eliminating nearly all conversion costs, One
machine can interpret every programming language well, reducing problem-
solving time and expense. The Bl70C does not waste time or memory over-
coming its own physical characteristics; it works directly on the
problems. Furthermore, these innovations are available in low-cost
systems that yield better prlce/performance ratios than conventional
machinery. :
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