$B / 1965 \mathrm{~B} / 1995$

PROCESSOR 9-9S

VOLUME 1:OF 2

CONTAINS

HISTORY SHEET

A 2233	8123	AA	BACKPL	dNE Y	M-PROC	95
d 2233	$81: 5$	λB	BACXPL	AVE	M-PROC	9
d 2233	7596	$\lambda \lambda$	CD	19		
A 2233	7604	dA	$C D$	89		
d 2233	7612	$A B$	$C D$	69		
A 2233	7620	$A B$	$C D$	D9		
A 2233	7638	Ad	$C D$	E9		
A 2233	7646	λB	$C D$	$F 9$		
A 2233	7653	Ad	$C D$	Go		
A 2233	7661	AG	CD	H9		
INSTRUCTIONS JUMPER A 1990 :974 λ						
CLOCX	ALIGN	E.VT	λ	2233	33686	\bigcirc
MaINTENANCE GUIDE						
SYSTEM	A	223	35715	AE		

Bursoughs Corporation Liege plant
LOGIC CARD HISTORY SHEET.

11	ECN	ASSY	1	CKI	1	i	।	Remarks or	celated		rev."
11	number	number	1	LISI	1	!	!	$B / P \& C a r d$	changes	1	"
17		2229	i	2228	1	1	i			,	19
11		1595	1	7783	1	!	1			1	11

LOGIC CARD HISTORY SHEET.

LOGIC CARD HISTORY SHEET.

"	ECN	1	ASSY		SCHEMA:	BOARD	1	!	Remarks or	celated		Eev.	"
"	number	1	number		number!	number		1	$8 / P$ \& Card	changes	!		11
1		1		1	cev. !	5ev.	1	1			i		11
19		1		1	- 1	-	,	I			!		'1
		1		1	1		1	1			1		

LOGIC
$C A R D$
HISTORY
SHEET.

| ECN | ASSY | \|SCHEMA:BOARD | | Remarks or related | |
| :---: | :---: | :---: | :---: | :---: |
| number | number | 'number\|number; | B / P \& Card changes | |
| | | (5ev. 5ev. | | , |
| | | \| i | | , |
| | | I | | |

Burroughs Corporation Liege plant
LOGIC CARD HISTORY SHEET.

Burroughs Corporation Liege plant
LOG I
$C A R D$
H I S T O R Y
S $\mathrm{H} E \mathrm{E}$ T.

11	ECN	1	ASSY		SCHEMA!	BOARD	1	1	Remarks or	celated		gev."
11	number	1	numbe5		numberi	number	,	1	B/P \& Cazd	changes		11
11		1		1	cev. ।	rev.	i	1			i	11
11		1		1	1		,	1			,	1 '
		1		1	1		1	1				

> LOGIC CARD HISTORY SHEET.

LOGIC
$C A R D$
H I S T ORY
SHEET.

Bursoughs Corporation Liege plant
LOGIC CARD HISTORY SHEET.

Burroughs Corporation Liege plant
LOGIC CARD HISTORY SHEET.
" 198711101

"	ECN	ASSY	\| SCHE	OARD	\|Remarks or related	Doc."
"	NO	number	NO	NO	\| B / P \& Card changes	issue"
"						
"			,		1	1

Burroughs Corporation Liege plant

LOGIC
CARD
H I S T O R Y
S HEET.

Burroughs Corporation Liege plant

LOGIC
CARD
H I S T O R Y
S HEET.

Burroughs Corporation ED				
computer ststems group PASADENA CALIF. 9 I:O9	INSTR-JMPR,M/PROC 9			class COOE
GENERAL OUALITY SPECIFICATION 11833543 APPLIES	PREPORT ZEL	CHKOG. PAqUE゙T	Engr.	$\wedge^{\text {PPPD }}$
NOT TO BE REPRODUCED OR USED FOR MANUFACTURING PURPOSES EXCEPT ON BURROUGHS ORDER OR PRIOR WRITTEN CONSENT		date $3 / 07 / 83$	oate	oate

JUMPER CONFIGURATIONS FOR CARD A9
A.S-MEMORY INTERFACE TERMINATION:

NOTE: TERMINATING RESISTORS SHOULD BE INSTALIED ON CARD ASSEMBLIES AT EACH END OF THE S-MEMORY RIBBON CABLES AND REMOVED FROM ALL OTHER ASSEMBLIES CONNECTED TO THE S-BUSES.

THE TERMINATING RESISTORS ARE DIP TYPE RRII,P/N 22286777 HAVING A VALUE OF 330/470 OHMS.

FOR THE A9 CARD INSTALL OR REMOVE THE TERMINATIONS AT BO, EO,AND HO DEPENDING ON THE S-MEMORY DATA CABLE CONNECTOR POSITION:
-INSTALI RESISTOR PACKAGES IF THE A9 CARD IS AT THE END OF THE CABLE. -REMOVE RESISTOR PACKAGES IF THE A9 CARD IS NOT AT THE END OF THE CABLE.
MO
B. INSTALL THE CONNECTIONS ON THE JUMPER CHIP AT LOCATION KB ACCORDING TO THE S-MEMORY SIZE.THE MEMORY SIZES AND THE REQUIRED JUMPER CONNECTIONS ARE DEFINED ON PAGE 2.
C.ADJUST THE SYSTEM CLOCK ACCORDING TO THE APPLICABLE SYSTEM TIMING SPECIFICATION.
D.FIXED JUMPER LOCATIONS J8,IO,D9,AND E3 FORMERLY FOR FIELD CARD TEST ARE DEFINED ON PAGE 4.

Burroughs Corporation ${ }^{\text {a }}$			
	Soc mime		
		TR－JMPR，M／PROC 9	40205
			1 paO
 	2／24／83	［0ate $3 / 07 / 83$	OXTS

JUMPER CONFIGURATIONS FOR CARD A9

THE TOP SIX JUMPERS AT LOCATION KZ MUST BE CONFIGURED ACCORDING TO S－MEMORY SIEE（MLKS）． THE TABLE BEIOW ENDICATES THE JPRN CONNECTIONS REQUIRED EOR EACH AVAILHBLE S－NEM．SここE。
 THE＂O＇S＂INDICAIE WHICH PINS NOT TO．

THE 3OTTOM 2 JUMPER POSITIONS ARE NOT REIATED TO MAX－S．THE JMMPER EROM G TO H IS NETER CONNECTED．THE JUMPER EROM．R TO S MUST ALWAYS BE CONNECTED．

NEM．SI2E	1	2	3	4	5	6
IN KRYTES	A－？	$\mathrm{B}-\mathrm{N}$	C－M	D－L	$\varepsilon-K$	E－J
64	1	1	1	1	0	1
128	1	1	1	0	1	1
192	1	1	1	0	0	1
256	1	1	0	1	1	1
320	1	1	0	1	0	1
364	1	1	0	0	1	1
448	1	1	0	0	0	1
512	－	0	1	1	1	1
576	1	0	1	1	0	1
540	1	0	1	0	1	1
704	1	0	1	0	0	1
768	1	0	0	1	1	1
332	：	0	0	1	0	1
396	1	0	0	0	1	：
980	：	0	0	0	0	1
：024	0	1	1	1	1	1
1088	0	1	1	1	0	1
1：52	0	1	1	0	1	1
1215	0	1	1	0	0	1
1280	0	1	0	1	1	1
1344	0	1	0	1	0	1
1403	0	1	0	\bigcirc	1	1
1472	0	1	0	0	． 0	1
1536	0	0	1	1	1	1
1500	0	0	：	1	0	1
1554	0	0	1	0	1	1
1723	0	0	1	0	0	1
1792	0	0	0	1	1	$!$
2．355	0	0	0	1	0	1
1920	0	0	0	0	1	1
1984	0	0	0	0	0	1
2048	1	$!$	1	1	1	1

K8

TYPED DPAWING

JUMPER CONFIGURATIONS FOR CARD A9

JPRN
E3

JPRN
IO

Burroughs Corporation				
	INS INST-JMPR,M/PROC 9			$\begin{gathered} \text { CLASs COOE } \\ 40205 \end{gathered}$
SENERAL ZUALIT SPECIFICATION 11335343 APPLIES	B.PEORTZEL	CHKDG PAQUET.	EnGR.	- APPO
PROPRIETARY TO JURROUGHS EORPDRATICM -OT -D 2 g peprojuced or useofor manufacturing purposes, ExCEPT ON EURROUGHS ORDER OR PRIOR WRITTEM CONSEET	3/24/83	OATE $3 / 07 / 83$	oate	OPTE

JUMPER CONFIGURATIONS FOR CARD B9

JPRN
D9

GBNM
K1

(3) $562 \mathrm{OHM} 1 / 4 \mathrm{~W}$ RES

P/N 11118676
(3) $237 \mathrm{OHM} 1 / 4 \mathrm{~W}$ RES

P/N 11118585

JUMPER CONFIGURATIONS FOR CARD C9

$E 9$
$J 8$

JPRN

JPRN

Burroughs Corporation is	PAGE 7	SWG. ${ }_{\text {OLIE }}$	OWG. NO 19901974		$\begin{array}{l\|l\|l} \text { REV } & \begin{array}{l} \text { SSGN CON } \\ \text { NO } \end{array} \\ \hline \end{array}$
COMPUTER SYSTEMS GROUP PASADENA PLANT PASADENA CALIF GIIOG USAMERICA	DOC. TYPE	title	INSTR-JMPR, M/PROC 9		$\begin{gathered} \text { CLASS COOE } \\ 40205 \end{gathered}$
GENERAL QUALITY SPECIFICATION 1835343 APPLIES	$\begin{aligned} & \text { REPP PORTZEL } \\ & \text { B. } \end{aligned}$		CHKD.G PAgMET	Engr.	APPD
NOT TO BE REPRODUCED OR USED FOR MANUFACTURING PURPOSES, EXCEPT ON BURROUGHS ORDER OR PRIOR WRITTEN CONSENT	$\begin{aligned} & \text { DATE } \\ & 2-24-83 \end{aligned}$		DATE $3 / 07 / 83$	Date	date

JUMPER CONRIGURATIONS FOR CARD D9
A. S-MEMORY INTERFACE TERMINATION:

NOTE: TERMINATING RESISTORS SHOULD BE INSTALLED ON CARD ASSEMBLIES AT EACH END OF THE S-MEMORY RIBBON CABLES AND REMOVED FROM ALL OTHER ASSEMBLIES CONNECTED TO THE S-BUSES.

THE TERMINATING RESISTORS ARE DIP TYPE RR11, P/N 22286777 HAVING A VALUE OF 330/470 OHMS.

FOR THE D9 CARD INSTALL OR REMOVE THE TERMINATIONS AT B1 AND Cl DEPENDING ON THE S-MEMORY CONTROL CABLE CONNECTOR POSITION:
-INSTALL RESISTOR PACKAGES IF THE D9 CARD IS AT END OF CABLE. -REMOVE RESISTOR PACKAGES IF THE D9 CARD IS NOT AT END OF CABLE.

B1

Cl

B. THE PORT NUMBER OF THE PROCESSOR IS AUTOMATICALLY FIGURED OUT BY THE D9 CARD. THERE IS NO NEED TO CHANGE ANY JUMPER ON THE D9 CARD FOR THE PROCESSOR PORT NUMBER.
C. ADJUST THE SYSTEM CLOCK ACCORDING TO THE APPLICABLE SYSTEM TIMING SPECIFICATION.
D. FIXED JUMER LOCATIONS A3, D9, AND H4 FORMERLY FOR FIELD CARD TEST, ARE DEFINED ON PAGE 8.

Burroughs Corporation CPMPUERR SYSEENS SROUP					
		INSTR-JMPR,M/PROC 9			
	BPEPORT ZEL	${ }^{\text {chko }}$ G Paquét			
	(ᄌx+e\%/83	${ }^{5} / 07 / 83$			

JUMPER CONFIGURATIONS FOR CARD D9

A 3 (AGEI)

JPRN

JPRN

JPRN

JUMPER CONFIGURATIONS FOR CARD E9

Burroughs Corporation pasadena plant PASAOENA. CALIF 91!09 U.S. AMERICA						
	OOC. TITLE INPE 	$R-J M P R, M / E$	C. 9	Class 402	$\begin{aligned} & C O 2= \\ & 5 \end{aligned}$	
GENERAL OUALITY SPECIFICATION 11835343 APPLIES	P95P	CHKD. PA	ENGR.	APPD		
PROPRIETAลY TO 3URROUGHS ECRPORATION. NCT TO EE REPRODUCED OR USEDFOR MANUFACTURING PURPOSES, EXCEPT ON BUPRDLGHS OROER OR PRIOR WRITTEN CONSENT	$\begin{aligned} & 04 T E \\ & 2 / 24 / 83 \end{aligned}$	OATE $3 / 07 / 83$	OATE	DATE		

JUMPER CONFIGURATIONS FOR CARD F9

44

JPRN

I 3

fyeso spanimg

Burroughs Corporation COMPUTER SYSTEMS GROUP OASAOENA SAIF gIIOG PASAOENA PLANT US AMERICA			
		O. Pagued	
	2/24/83	3/07/83	

JUMPER CONFIGURATIONS FOR CARD G9

JPRN

Burroughs Corporation COMPUTER SYSEEMS GROUR	$\left.\right\|^{\text {pace }} 12$				
		INSTR-JMPR, M/PROC 9			
GENERAL QUALITY SPECIFICATION 11835543 APPLIES	${ }_{\text {B. }}^{\text {Per }}$ PORTZEL		chko g. Paquet		
	$\begin{aligned} & \mathrm{ORFE} / 23 \\ & 2 / 24 / 83 \end{aligned}$		3/07/83		

JUMPER CONFIGURATIONS FOR CARD H9
A. I/O BUS TERMINATION:

NOTE: TERMINATING RESISTORS SHOULD BE INSTALLED ON CARD ASSEMBLIES AT EACH END OF THE I/O BUS RIBBON CABLE AND REMOVED FROM ALL OTHER ASSEMBLIES CONNECTED TO THE I/O BUS.

THE TERMINATING RESISTORS ARE DIP TYPE RR12, P/N 22286785 HAVING A VALUE OF 240/1.2k OHMS.

FOR THE H9 CARD INSTALL OR REMOVE THE TERMINATIONS AT B9 AND D9 DEPENDING ON THE I/O BUS CABLE CONNECTOR POSITION:

- IF THE H9 CARD IS AT THE END OF THE CABLE, TAKE THE RESISTOR PACKAGES FROM LOCATIONS AS \& A6 AND INSTALL THEM AT B9 \& D9.
- IF THE H9 CARD IS NOT AT THE END OF THE CABLE, TAKE THE RESISTOR PACKAGES FROM LOCATIONS B9 \& D9 AND INSTALL THEM AT AS \& A6.

B9

D9

A5

A6

B. ADJUST THE SYSTEM CLOCK ACCORDING TO THE APPLICABLE SYSTEM TIMING SPECIFICATION.
C. IF THE H9 CARD IS INSTALLED IN AN A PROCESSOR, THE FIXED CONFIGURATION JUMPERS AT LOCATIONS A2, BO, F7, L2A, J1 AND K3 ARE DEFINED ON PAGE 13. IF THE H9 CARD IS INSTALLED IN THE B PROCESSOR,THE FIXED CONFIGURATION JUMPERS AT THE SAME LOCATIONS ARE UEFINED ON PAGE 14.

TYOED =RAWIVG

JUMPER CONFIGURATIONS FOR CARD H9
FIXED CONFIGURATION JUMPER CHIPS SHOUTD BE INSTALLED AT THE FOLLOWING LOCATIONS ON CARD H9 OF THE A PROCESSOR:

A2

80*

$F 7$

U1

8.3

2.4

* DASHED LINE CONNECTIONS ARE INSTALIED WHEN THISCARD IS AT THE END OF THE I/O CABLE DAISY CHAIN

JUMPER CONFIGURATIONS FOR CARD H9

FIXED CONFIGURATION JUMPER CHIPS SHOULD BE INSTALLED AT THE FOLLOWING LOCATIONS ON CARD H9 OF THE B PROCESSOR:

* DASHED LINE CONNECTIONS ARE INSTALLED WHEN THIS CARD IS AT THE END OF THE I/O CABLE DAISY CHAIN.

COVER SHEET TO BE ADDED TO CLOCK ALIGNMENT 2233 3686 REV. D. ***

Pages 11, 15, 25 of this document have changed by RIN 7651-009. All other pages are unchanged: they are the same as rev. E.

Clock alignment document is now rev. E.

TABLE OF CONTENTS
1 Introduction PAGE 3
2 Clock System Schematics PAGE 4
3 Processor Adjustment Theory PAGE 6
4 Preliminary Set-Up. PAGE 7
5 System Clock Width Adjustment 8
5.1 I/O Clock Delay Adjustment Processor (Backplane) PAGE 9
5.2 I/O Clock Width Adjustment Processor (Backplane). . . . PAGE 10
5.3 Pad/Cache/Stack Clock Delay Adjustmert. 11
5.4 Memory Clock Alignment. 12
5.5 Multiline Clock Alignment 13
5.6 Sub-Distribution Delay Adjustment 14
5.7 Sub-Distribution Clock Width Adjustment 17
5.8 Disk Subsystem Clock Adjustment 18
6 Dual Frocessor Clock Generation 20
6.1 'B' Processor System Clock Width Adjustment 22
6. 2 ' B' Processor System Clock Delay Adjustment 23
6.3 ' B ' Processor Pad, Stack And Cache Clock Adjustment . . PAGE 25
7 Nominal Settings. 26

M-PROCESSOR-9 CLOCK ALIGNMENT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 3

1 INTRODUCTION

The GEM processor's clock distribution system has been designed to minimize the requirements for clock width and delay adjustment. The B1905/B1955 clock generation system employed single clock lines for each destination card, and separate delay adjustments for each of these lines. GEM employs a shared clock signal among several cards. This technique allows for a major reduction in adjustment requirements, while maintaining the same timing margins.

Nominal configuration for the GEM is one Multiline-4, one MBU-9, and one MP-9, and one DSC-2. The Multiline and MBU clocks are available via coaxial connectors located on the frontplane, and adjustment is accomplished on the respective control. The processor requires width adjustment of its system clock, delay adjustment of the scratchpad/cache clock, and delay and width adjustment of the backplane clock. Thus in nominal configuration, there are a total of six adjustments required.

Dual processor configurations require additional adjustments. In addition to the adjustments required for the nominal configuration, there are several adjustments required to synchronize the ' A ' and ' B ' processors. The 'A' processor supplies two early clocks to the 'B' processor. These are an early processor, and an early scratchpad/cache clock. A delay adjustment for the early processor clock is available in the 'A' processor. In the 'B' processor, the processor clock width and delay must be adjusted, as well as the delay of the scratchpad/cache clock delay to coincide with the active edge of the ' A ' processor.

The I/O sub-distribution base, Multiline, and Memory Base units all receive their clocks via coaxial connections. Memory and the Multiline employ a 50% duty cycle clock at 6 MHz , the I / O sub-distribution system uses a 41 ns pulse width clock at 6 MHz . The relationship between the active edge of the processor clock and the respective base is adjustable on the base card.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 4

2 CLOCK_SYSTEM SCHEMATICS

Figure 1 illustrates a schematic representation of the GEM clock generation logic.

FIGURE_I

- Burrougns Prior Written Consent Requiret Eor Disclosure Uf This Data -

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT

H9 CARD COAX-CABLE CONNECTION

FIGURE 2

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT

CONFIDENTIAL

The 24 MHz is divided down by 4 to yield a 6 MHz clock with a 41 ns pulse width. This signal is available in four phases, three of which are used. The second count phase of the divide-by-four counter is used to generate the early pad/stack/cache clock (ERP+S.H.). Counter phase 3 is used for two sets of signals, the early processor clock and the normal pad/stack/cache clock. The fourth phase of the clock is used for generation of the I / O clock and processor clock. The processor clock has a width control adjustment which allows it to be narrowed to a nominal 20 ns pulse width. All of the backplane clocks are delay-adjustable.

The pad/stack/cache clock is set so that it occurs before the system clock. These clocks are used as gated write pulses to the cache, A-stack and scratchpad memory devices. Adjustment of the delay on one clock will adjust both signals.

The I / O clocks may be divided into the clocks available on the Erontplane via coaxial connectors, and the I / O clock which is sent to the I / O controls resident in the 18 card processor backplane. The I / O clock present on the backplane is the only one of these clocks which is adjustable on the H9 card. The other two clocks must be adjusted on the respective sub-distribution cards. All of the I / O clocks must be adjusted to be coincident with the processor clock. The backplane I / O clock, CLKI/OH+, is generated by the same phase of the clock as the processor clock. Frontplane I/O clocks are generated in the same phase as the pad/stack/cache clock signal, and are essentially early clocks. This is done to account for variable length coaxial cables, and varying delays on the respective sub-distribution cards.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT

1. Verify that all system voltages are set to nominal.
2. Use a calibrated scope which is able to display five nanoseconds per centimeter.
3. Use two identical probes (type and length) with short ground leads connected to $D C$ ground on a backplane pin near the clock pin.
4. Verify the probes and scope preamp by attaching the probes to the same backplane pin (e.g., use Backplane Pin XC4X on card H9). Channel A \& B signals should be within 1 ns and show no significant difference in waveform shape or amplitude.

Notes: a. Make all measurements at the +1.5 volt level.
b. Unless otherwise specified, the system should be in halt state.
c. As a point of reference, the nominal delays are shown.
d. Diagrams are not drawn to scale.
e. Trigger on channel 1.
f. Set scope for 'AUTO' mode.
g. Logic cards should not be extended.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 9
5.1 I/O CLOCK DELAY ADJUSTMENT PROCESSOR (BACKPLANE)

With H9 card inserted, place channel 1 probe on the processor clock CLK.H.H+ at XC3W and place channel 2 probe on the backplane I/O clock CLKI/OH+ at XC3Y. Adjust the delay to within 2.5 ns of the falling edge of the processor clock. (See figure below.)

Example: Assume that the delay line tap is on ' L ' and the I/O clock edge occurs 6 ns after the processor clock. For a nominal adjustment 6 ns should be removed from the delay path. This is accomplished by moving the tap from 'L' to 'J'. The possible delay positions are shown below.

Adjustment on H9 card.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT


```
M-PROCESSOR-9 CLOCK ALIGNMENT
```


5.2 I/O CLOCK WIDTH ADJUSTMENT PROCESSOR (BACKPLANE)

With the 49 card inserted, place channel 2 probe on the backplane clock CLKI/OH+ at XC3Y. Adjust the width of this signal to $41.5 \mathrm{~ns}+/-2.5 \mathrm{~ns}$. (See figure below.)

Example: Assume that the width is 47 ns , and the tap is on pin 'H'. A 6 ns change is required, and this may be accomplished by changing the tap from 'H' to 'E'. To decrease the width, the delay is increased.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. P Page 11

5.3 PAD/CACHE/STACK CLOCK DELAY ADJUSTMENT

With the H9 card inserted, place channel 1 probe on XC3W for signal CLK.H.H+, and channel 2 probe on XC4Z for signal CLKP + SH + . Adjust the falling edge of CLKP+SH+ to be 12 ns $+/-3$ ns before falling edge of CLK.H.Hi. This relation is shown below.

Example: Assume that the tap is on ' K ' and CLKP+SH+ is 20 ns ahead of CLK.H.Ht. 8 ns of delay should be removed for a nominal setting, but only 5 ns increments are available. If 10 ns of delay is removed, CLKP+SH+ would be 10 ns ahead of CLK.H.Ht. This is within tolerance, thus the tap should be moved from ' K ' to 'C'.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 12

5.4 MEMORY CLOCK ALIGNMENT

With all cards inserted, and S9 card coax cable plugged in, place channel 1 probe on the processor clock CLK.H.H+ at XC3W of card H9. Place the channel 2 probe on the $M B U$ backplane clock CLK1R.S- at YB3M of card S9. Adjust the delay of the MBU elock to within 5 ns of the falling edge of the processor clock. EARLYC must always have 20 ns less delay than ICLK1. (See figure below.)

Example: Assume that the JPRN at $K 7$ on the $S 9$ card is configured nominally. (See figure below.) If the MBU clock occurs 13 ns after the processor clock, decrease the amount of delay to both clocks by 10 ns. ICLK1 should be connected to DLY50 and EARLYC should be connected to DLY30.

Location $K 7$

DLY60	A--+	P	
DLY70	B	N	
DLY80	C	$+-M$	ICLK1
DLY90	D	L	
DLY100	E	K	DLY10
DLY50	F	J	DLY20
DLY40	G--+	H	DLY30
DLYOO	R	+-	S
EARLYC			

Nominal Setting for Memory Base
(Adjustment on card S 9)

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

5.5 MULTILINE CLOCK ALIGNMENT

With all cards inserted, place channel 1 probe on the processor clock CLK.H.H+ at XC3W of card H9. Place the channel 2 probe on MLC backplane clock SYNCLKM- at XC7R of the MLC-4 control. Set the MLC clock to within 5 ns of the falling edge of the processor clock. 'Use the rising edge of the MLC clock.' (See figure below.)

Note: This alignment is applicable for both MLC in main cabinet and in expansion cabinets.

Example: Assume that the MLC is at a nominal setting as shown in figure below with a tap at the 80 ns delay position. The rising edge of SYNCLKM- is observed to be 13 ns ahead of the falling edge of CLK.H. H^{+}. 10 ns of delay must be added. Move the tap from 'N' (80 ns delay) tap 'C' (90 ns delay). (See following figures.)

Location LO

00	ns A	+--P	SYNCLKM
100	ns B	$+--N$	80 ns
90	ns C	M	70 ns
60	ns D	L	
50	ns E	K	40 ns
30	ns F	J	20 ns
10	ns 6	H	
	R	S	

MLC-4 Nominal Setting
(Adjustment on MLC card)

5.5 MULTILINE CLOCK ALIGNMENT (Continued)

5.6 SUB-DISTRIBUTION DELAY ADJUSTMENT

```
With the card inserted, place channel l probe on the
processor clock CLK.H.H+ on XC3W of the A Processor H9 card.
Place channel 2 probe on the backplane of the I/O
sub-distribution card at clock CLKIO..+ on pin XAOX for DSC
extension or at clock SCPM.C+ on pin XAOW for CTL controls.
Adjust the delay to within 0 ns +/- 2.5 ns. Move wire on F5R
for delay adjustment. (See figure below.)
```


BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. E Page 15

5.6 SUB-DISTRIBUTION DELAY ADJUSTMENT (Continued)

Note: (1) If the delay adjustment cannot be made, the delay adjustment for CLKIOnHH on the H9 should be changed. To make adjustment for CLKIOnHH, use column $H 9$, and connect to the appropriate delay line tap (see diagram next page).
(2) The F5P tap must always be connected to F5N.

LOCATION F5

	A	$+---P$	CLKIOE./
DLAY20	B	+-- N	GND (P-N DISABLE WIDTH ADJUSTMENT
DLAY16	C	M	DLAY18
DLAY12	D	L	DLAY14
DLAY10	E	K	
DLAY06	F	$+--J$	DLAY08
DLAYO2	G	H	DLAY04
CLKIOD	R--+	S	DLAY00

(Adjustment on Sub-Distribution Card)

```
BURROUGHS CORPORATION
SYSTEM DEVELOPMENT GROUP
LIEGE PLANT
COMPANY
    M-PROCESSOR-9 CLOCK ALIGNMENT
22333686
```

5.6 SUB-DISTRIBUTION DELAY ADJUSTMENT (Continued)
Note: (1) If the delay adjustment cannot be made, the delay
adjustment for CLKIOnHH on the H9 should be
changed. To make adjustment for CLKIOnHH, use
column H9, and connect to the appropriate delay
line tap (see diagram next page).
(2) The F5p tap must always be connected to F5R. LOCATION F5

	A	$+---P$	CLKIOE./
DLAY20	B	$+--N$	GND (P-N DISABLE WIDTH ADJUSTMENT
DLAY16	C	M	DLAY18
DLAY12	D	L	DLAY14
DLAY10	E	K	
DLAYO6	F	$+--J$	DLAYO8
DLAYO2	G	H	DLAY04
CLKIOD	R--+	S	DLAY00

(Adjustment on Sub-Distribution Card)

```
BURROUGHS CORPORATION
SYSTEM DEVELOPMENT GROUP
LIEGE PLANT
COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 16
```


5.7 SUB-DISTRIBUTION CLOCK WIDTH CONTROL
 With the card inserted, place channel 1 probe on the processor clock CLK.H.H+ on XC3W of the H9 card. Place channel 2 probe on the backplane of the $1 / O$ sub-distribution card at clock CLKIO..+ on pin XAOX for DSC EXT or at clock SCPM.C. ${ }^{+}$on pin XAOW for CTL controls. Control the pulse width of the clock to be $41.5+/-2.5 \mathrm{~ns}$.

BURROUGHS CORPORAIION
SYSTEM DEVELOPMENT GROUP
LIEGE PLANT
COMPANY
CONFIDENTIAL \quad STANDARD PERFORMANCE SPECIFICATION

5．8 DISK SUBSYSTEM CLOCK ADJUSTMENT

The delay line at location $E 8$（DLCN）and the eight surrounding sets of push－on jumpers are used to adjust the delay of the write enable pulse for the RAMS on Card 1.

Adjustment is achieved by monitoring pins XE3V（XA3V for DSC extension）（SYSCLK非－）and XE3U（XA3U for DSC extension） （DLY120非）on the backplane．With an oscilloscope connected to these two points，the observed waveform should be similar to that shown below．The objective is to make the positive edge of DLYl20非 trail the positive edge of SYSCLK\＃－by 65 to 85 ns．

DLY120\＃\＃＋
OUX

If the required delay is not observed，determine in multiples of 10 ns how much it is off and consult the picture below． The eight different taps are shown as they reside on the card．The delay of each one is noted．These values should not be confused with the actual delay of the DLY120非 signal， they are only for reference．Move the jumper to the appropriate delay tap．As an example，assume that you observe a delay of 95 ns ．You need to decrease the delay by 20 ns to conform to the timing specification．If the tap currently selected is＇C＇，then you would move the pushpin to the＇K＇tap．

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 19
5.8 DISK SUBSYSTEM CLOCK ADJUSTMENT (Continued)

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 20

The ' A ' and ' B ' processors are slaved together via two early clocks called ECKP+SHH and ECKPRHH. The ECKP+SHH signal is delayed to become the pad, stack, and cache clocks on the ' B ' processor. The ECKPR.HH signal is delayed to become the 'B' processor system clocks CLKPR1H+ and CLKPR2H+. The ECKPRHH signal has delay adjustments available on the ' B ' processor. Clock ECKPR. HH may be delayed by up to 50 ns on the ' A ' processor, and 20 ns on the ' B ' processor.

To align a dual processor, the procedures for the 'A' processor is identical to those already presented with the exception of the change of jumper chips necessary to present early clocks at the frontplane coax connectors. This jumper connection is shown on the next page. Note that the nominal delay of the signal ECKPR. HH should be such that it will not be necessary to adjust delay on the ' A ' processor, but this delay is available.

Adjustment of the ' B ' processor begins with alignment of the processor pulse width. The next adjustment is the processor delay to coincide with the 'A' processor's system clock. Aligning the cache, pad, and stack clocks should be done with respect to the 'B' processor's system clock which necessitates the movement of the scope probes. This final adjustment is done in the same manner as the 'A' processor. Any external subsystem alignment should be done before this last adjustment. These external subsystems are all aligned with respect to the 'A' processor system clock.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

A. PROCESSOR

B PROCESSOR

* Connection should be made for the dash lines if the H9 card is at the end of the I / O bus.

JUMPER CONFIGURATIONS FOR DUAL PROCESSORS

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

M-PROCESSOR-9 CLOCK ALIGNMENT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 22
6.1 ' B ' PROCESSOR SYSTEM CLOCK WIDTH ADJUSTMENT

With card inserted, place channel 1 probe on pin XC3W of 'B' processor card H9. The nominal width of this signal is 20 $+/-2.5$ ns. (See figure below.)

This adjustment can be made by moving delay line taps as shown below. If the delay is increased, the pulse width gets shorter. If the delay is decreased, the pulse will get longer.

Example: Assume initial setting at tap ' K ' and the pulse is measured as being 25 ns. This implies that the delay must be increased to decrease the pulse width. Either adding 4 ns or 6 ns will place the width within the allowed margin. Therefore, the tap may be moved to the ' C ' or ' M ' taps to accomplish the required adjustment.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 23

6.2 'b' PROCESSOR SYSTEM CLOCX DELAY ADJUSTMENT

With the $H 9$ eards inserted, place channel 1 probe on XC3W of eard H9 in processor 'A'. Place the channel 2 probe on pin $X C 3 W$ of card H9 in the 'B' processor. The delay of the 'B' processor's system clock must be adjusted to cause the falling edge to be within $0+/-2.5 \mathrm{~ns}$ of the falling edge of the 'A' processor system elock. This relationship is illustrated below.

Example: Assume ' B ' processor elock is measured to be 33 ns ahead of the 'A' processor system clock. Assume further that the signal ECKPR.H/ is connected to tap 'J' of delay line at $L 1$ on the 'A' processor, and signal DCPR..H/ is connected to tap ' K ' of the delay line located at $G 9$ on the ' B ' processor. There are several solutions to this problem, one will be presented. A rough adjustment can be made on the ' A ' processor by adding 30 ns of delay. This is accomplished by moving the tap from 'J' to 'B' for signal ECKPR.H/. The card should be re-inserted, and the clocks should be again compared since there is an inherent error margin within delay lines. Assume that only 27 ns of delay was added such that the 'B' processor system clock is 'still 6 ns ahead of the ' A ' processor system clock. Add 6 ns of delay by moving the DPR...H/ tap from 'K' to 'M' on delay line L5 on the 'B' processor. Re-insert the 'B' processor H9 card and verify that the adjustment brought the system within specification.

See next page for adjustment locations.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

6.3 'B' PROCESSOR PAD, STACK AND CACHE CLOCK ADJUSTMENT

With the cards inserted, place channel 1 probe on XC3W for signal CLK.H. $\mathrm{H}+$ on card H 9 of processor 'B'. Place channel 2 probe on pin XC4Z of card H9 of processor 'B' for signal CLKP+SH+ to be $12+/-3$ ns before the falling edge of CLK.H.H+. This relation is shown below.

Example: Assume that the tap is on ' K ' and CLKP+SH+ is 20 ns ahead of CLK.H.Ht. 8 ns of delay should be removed for a nominsl setting, but only 5 ns increments are available. If 10 ns of delay is removed, CLKP+SH+ would be 10 ns ahead of CLK.H.Ht. This is within tolerance, thus the tap should be moved from ' K ' to 'J'.

BURROUGHS CORPORAIION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY
CONFIDENTIAL STANDARD PERFORMANCE SPECIFICATION Rev. D Page 25
6.3 'B' PROCESSOR PAD, STACK AND CACHE CLOCK ADJUSTMENT

With the cards inserted, place channel 1 probe on XC3W for signal CLK.H.H+ on card Hi of processor ' B '. Place channel 2 probe on pin XC4Z of card H9 of processor 'B' for signal CLKP+SH+ to be $12+/-3$ ns before the falling edge of CLR.H.H+. This relation is shown below.

Example: Assume that the tap is on ' K ' and $C L K P+S H+$ is 20 ns ahead of CLKPR $2 H^{+}$. 8 ns of delay should be removed for a nominal setting, but only 5 ns inerements are available. If 10 ns of delay is removed, CLKP + SH + would be 10 ns ahead of CLKPR $2 \mathrm{H}^{+}$. This is within tolerance, thus the tap should be moved from ' K ' to 'J'.

BURROUGHS CORPORATION SYSTEM DEVELOPMENT GROUP LIEGE PLANT

COMPANY

7 NOMINAL SETTINGS

$\begin{array}{r} \text { IO } \\ 0 \end{array}$	$\begin{gathered} \mathrm{H9} \\ 0 \end{gathered}$	$\begin{gathered} H 8 \\ 0 \end{gathered}$	A8	$\begin{array}{r} \text { II } \\ 0 \end{array}$	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$H 9$ 0	$\begin{aligned} & \mathrm{H} 8 \\ & \mathrm{O} \end{aligned}$	E9		II.			48 0	$\underline{\text { R8 }}$	83	${ }_{0}^{22}$	K0
0	0	0	A9	0	0	-	0	P0				0	0	P9	0	0	Kl
0	0	\bigcirc	во								0	0	\bigcirc	60	0	0	K2
0	0	0	B1	0	0		\bigcirc	F2			0	0	0	C1 ${ }^{-}$	0	0	13
0	0	0	B2	\bigcirc	0		0	$E 3$		0	0		\bigcirc	62	0	0	K4
0	0	0	B3							0	-		0	G3			K
0	0	0	B4			0	\bigcirc	F5		0	0		0	C4	0	0	K6
0	0	0	B5			-	0	F6		0	0		0	G5	\bigcirc	0	K7
0	0	0	B6								0	0	-	G6	0	\bigcirc	K8
			B7								0	0	0	67	0	\bigcirc	K9
			B8								0	0	0	C8			
0	0	0	B9								\bigcirc	-	\bigcirc	G9			
0	0	0	CO														
															-	0	F6
0	0	\bigcirc	Cl												0	0	F7
\bigcirc	0	-	C2						E3						\bigcirc	0	F8
0.	0	0	C3							L1					-	0	F9
0	0	0	C4							12							
0	0	0	CS												\bigcirc	\bigcirc	GO
0	0	\bigcirc	C6														GI
															\bigcirc	0	G2
															\bigcirc	0	G 3
															0	0	G4
	\because														0	0	G 5

INSTALL 2 PIN JUMPER, SHORTING PIN P/N 22287478 (9 REQ) ONTO TEST POINT PAIRS ON CARD H9 AT LOCATIONS SHOWN ABOVE

BURROUGHS CORPORATION COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS LIEGE PLANT MAINTENANCE GUIDE

A-2233 5715 REV. AE

BEBBBBBBBB	11	9999999	66666	555555555
BBBBBBBBBB	111	999999999	6666666	555555555
BBB BBB	1111	999999	666666	555
BBB BBB	11111	999 - 999	666	555
BBBBBBBB	111	999999999	66666666	55555555
BBBBBBBBB	111	99999999	666666666	555555555
BBB BBB	111	999	666666	555
BBB BBB	111	999999	666666	555555
BBBBBBBBBBB	1111111	9999999	666666666	555555555
BBBBBBBBBB	1111111	99999	6666666	5555555

//	9999999	555555555
//	999999999	555555555
//	999999	555
//	999999	555
//	999999999	55555555
//	99999999	555555555
//	999	555
//	999999	555555
//	9999999	555555555
//	99999	5555555

SSSSSSSS	YYY YYY	SSSSSSSS	TITTITITT	EEEEEEEEE	MM	M
SSSSSSSSSS	YYY YYY	SSSSSSSSSS	ITITITITT	EEEEEEEEE	MMM	MMM
SSS SSS	YYY YYY	SSS SSS	TTT	EEE	MMMM	MMEM
SSSS	YYYYY	SSSS	TTT	EEE	MMMMM MIM	MMMM
SSSSSSS	YYY	SSSSSSS	TIT	EEEEEE	MMMMPMPM	MMMM
SSSSSSS	YYY	SSSSSSS	TTI	EEEEEE	MMM MMM	MMM
SSSS	YYY	SSSS	TTT	EEE	MMM M	MMM
SSS SSS	YYY	SSS SSS	TTT	EEE	MMM	MMP
SSSSSSSSSS	YYY	SSSSSSSSSS	TIT	EEEEEEEEE	MMM	MM
SSSSSSSS	YYY	SSSSSSSS	TTT	EEEEEEEEE	MMM	Mam

 ;FFFf

B1965/B1995 SYSTEM TEST
\#\#f:\# 排

PROPRIETARY PROGRAM MATERIAL

This material is proprietary to BURROUGHS CORPORATION and is not to be reproduced, used or disclosed except in accordance with program license or upon written authorization of the PATENT DIVISION of BURROUGHS CORPORATION, DETROIT, MICHIGAN, 48232.

COPYRIGHT (C) 1982, 1983 BURROUGHS CORPORATION

CASSETTE TAPE PART NUMBER LISTING PART NUMBER

CT 22313233 REVISION AE I 22313225 REVISION AEBURROUGHS CORPORATIONLIEGE PLANT
A-2233 5715 REV. AE
TABLE OF CONTENTSCOMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
MAINTENANCE GUIDE
SYSTEM TEST PAGE 3
PROGRAM REVISION INFORMATION 4
OPERATING PROCEDURE 5
REMOTE OPERATION 6
CONSOLE DISPLAY DURING PROGRAM EXECUTION 7
RESTART PROCEDURES 8
LOOPING PROCEDURE 8
RESTART FROM ERROR HALT 8
SCRATCHPAD OPTIONS 9
PROGRAM OPTIONS [SO1A! 10
SECTION SELECTION 11
PROGRAM INFORMATION 12
PROGRAM OPERATION 12
TEST SECTION DESCRIPTIONS 14
HALT CODE FORMATS 17
ERROR DIRECTORY 18
SECTION 1 18
SECTION 2 27
SECIION 3 27
SECTION 4 33
SECTION 5 37
SECTION 6 42
SECTION 7 44
SECTION 8 47
SECTION 9 49
SECTION 10 52
SECTION 11 53
SECTION 12 55
SLAVE PROCESSOR ERRORS 58
MISCELLANEOUS HALT CODES 62

BURROUGHS CORPORATION	
COMPUTER SYSTEMS GROUP	B1965/95 SYSTEMS
LIEGE PLANT	MAINTENANCE GUIDE
A-2233 5715 REV. AE	SYSTEM TEST PAGE 4

PROGRAM REVISION INFORMATION

```
Revision AC is the initial release for the B1965/95 system.
Revision AD includes the following changes :
1. Change to section }12\mathrm{ to use the DCP on the lowest channel.
2. Change to section }9\mathrm{ to suppress DCP tests while running on
    the slave processor.
Revision AE includes modifications in order to be able to use
Memorex drives (677-33 & 659).
```

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT MAINTENANCE GUIDE

A-2233 5715 REV. AE

OPERATING PROCEDURE

1) Place the SYSTEM TEST cassette in the system cassette reader.
2)

HALT the processor. If SLAVE present, put ON-LINE.
3) Type "RD MTR GO" on the ODI and XMT.
4) The entire program should load from cassette without stopping, then begin execution and run to completion without stopping. However, if during SECTION 12 both "MCPII" and "CMS" environments are present in the system, then an OPERATOR INTERVENTION HALT will occur (see halt ©12FFFF@).
The test will halt after executing all test sections without error, with $L R=C C C C C C$ and a message displayed in the text area through the "RD" command. If LR does not equal CCCCCC when the test halts, consult the HALI CODE LISTING, starting on PAGE 15 of this document.
5) Part number and revision level information will be displayed in the X, Y, T, and L registers, as shown below, during the program load (LR will contain @AAAAAA@), and, at the ENTER OPTIONS HALT, LR=EEEEEE, which is obtained by depressing the INTERRUPT switch while the test is running, and holding it until the test halts. The cassette must have finished loading before the INTERRUPT switch is pressed.
$X=@ 003233 @:$ Cassette part number in HEX.
$Y=@ 003225 @$: Listing part number in HEX.
$T=@ 00 C 1 C 5 @$: Cassette revision (EBCDIC for "AE").
$L=@ 00 C 1 C 5 @$: Listing revision (EBCDIC for "AE").

NOTE: the $L R=$ @AAAAAAC display will not occur until the basic processor test cases have been completed, which is approximately 60 seconds after the load begins.
6) The program takes about $21 / 2$ minutes to load from cassette, and then less than 2 minutes to run to completion.

REMOTE OPERATION

This test can be executed in "remote" mode by following normal remote operation procedures. All displays that appear on the local ODT screen will also be displayed remotely, with the exception of the "TEST,TEST" and "I/O STATUS" screens outputed during SECTION 12 . These displays are part of the MLC test process, and displaying them remotely would assume that the MLC (Line 3) was operational, and is thus illogical at this time. During remote operation the System Test uses only the MAC to comunicate with the remote site, the MLC is never used for this purpose.

During the DEFAULT load and execution of the test, the program will halt/restart several times, causing the console display to be automatically updated. By observing the contents of the $L R$ register, and in some cases various other indicators, the progress of the test can be followed.

The following table lists, in chronological order, the displays that should occur:

LR REGISTER	OTHER OBSERVATIONS
C	Console display is invalid for first 60 seconds of load process.
@aAAAAAC	For final 90 seconds of load process. X, Y, I, L contain test revision data.
$@ 010903 @$	CNS HALT/RESTART function test
@Al111A¢	Indicates 'BEGINNING OF TEST' (Memory resident portion)
@BII11BC	Indicates beginning of 'CASE 1 ' test group.
¢	"TEST TEST TEST" ETC. Online test of ODT function
@	Online I/O status display
e810050¢	CNS HALT/RESTART function test
@810130@	"ERROR" will be displayed briefly
@ ${ }^{\text {e }} 2222 \mathrm{BC}$	Beginning of 'CASE 2' test group
@B3333B@	Beginning of 'CASE 3' test group
@ B4444B $^{\text {c }}$	Beginning of 'CASE 4' test group
@cccccce	Test Completed Halt

Note that after a "restart" (see next page) the "ERROR" display may not be seen during the LR $=810130$ display (this is dependent on the status of the SLAVE).

RESTART PROCEDURES

There are three RESTART PROCEDURES. Each one is applicable in specific circumstances :
A. At the $L R=C C C C C C$ halt, enter " $G O$ " to run program again.
B. If the test is running, depress and hold the INTERRUPT switch until the $L R=E E E E E$ halt occurs. (At the LR $=$ CCCCCC halt, enter " $G O$ " and hold the INTERRUPT switch until the LR = EEEEEE halt occurs). The program scratchpads may be modified at this at this time. Enter "GO" to restart program execution.
C. For a HARD RESTART; HALT the processor, enter "SW24 00 , 0 CLR A 80 GO" .

LOOPING PROCEDURE

1) Hold console INTERRUPT switch down until LR=EEEEEE halt.
2) Set SO6A equal to the number of times the entire program should be repeated. Default $=1$, FFFFFF = Loop Forever.
3) Enter "GO". The program will run until done (L = $=C C C C C C$), or, until an error is detected, or, until console INTERRUPT switch is depressed again (LR=EEEEEE).

POSSIBLE RESTARTS FROM ERROR HALT

1) To repeat the failing section: enter "SO1A O GO".
2) To continue with next section: enter "SOIA 4 GO".
```
BURROUGHS CORPORATION
LIEGE PLANT
```

COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
MAINTENANCE GUIDE
A-2233 5715 REV. AE SYSTEM TEST PAGE 9

SCRATCHPAD OPTIONS

These PADS should only be changed while at the ENTER OPTIONS HALT (LR=EEEEEE), obtained by depressing the INTERRUPT switch and holding until halted. The definitions given for scratchpad contents ONLY APPLY IF THE SYSTEM IS HALTED WITH LR = EEEEEE.

A-pads contain control information for the MASTER processor.
B-pads contain control information for the SLAVE processor.
SOIA PROGRAM OPTIONS

SO2A MASTER PROCESSOR TEST SECTIONS
Each bit position selects one section. DEFAULT $=1$ FF800 = SECTIONS 3 thru 12.

SO3A MASTER PROCESSOR SECTION CURRENTLY EXECUTING.
S06A PROGRAM PASS LIMIT.
REPEAT LIMIT, indicates the number of times the entire program will be repeated. DEFAULT $=1$.

SO7A PROGRAM PASS COUNTER
Counts number of program passes.
S12A MASTER PROCESSOR PORTS.

Contains 6 port numbers. The A, B, C \& D fields contain MLC port numbers. The E-field contains the MASTER processor port number and the F-field contains the SLAVE processor port number. If any field is not used, then will be @F@.

SLAVE PROCESSOR TEST SECTIONS

Each bit position selects one section. DEFAULT $=1 F C 000$ = SECTIONS 3 thru 9.

SO3B SLAVE PROCESSOR SECTION CURRENTLY EXECUTING
S12B SLAVE PROCESSOR PORTS.

Contains 6 port numbers. The $A, B, C \& D$ fields contain MLC port numbers. The E-field contains the SLAVE processor port number and the f-field contains the MASTER processor port number.

SECTION SELECTION

Usually, SECTION SELECTION bits should not be changed. The complete test should always be run to assure the maximum chance of the program detecting any errors.

Each test section is represented by a bit in SCRATCHPAD SO2. MASTER section numbers are listed in SO2A, SLAVE section numbers are listed in SO2B. Both processors use the same sections. MASTER processor uses sections 3 thru 12, SLAVE uses 3 thru 9. Sections 1 and 2 are run by both processors but are not selectable. SO2A should only be changed while at the ENTER OPTIONS HALT -

S02A bit	0123	4567	891011	12131415	16-23
MASTER sections	3	4567	891011	12	
SO2B bit	0123	4567	891011	12131415	16-23
SLAVE sections	3	4567	89		

PROGRAM INFORMATION

The objective of the three central system DIAGNOSTIC programs for the B1965/95 is to direct the Field Engineer systematically towards a failure. The three CENTRAL SYSTEM DIAGNOSTICS are:

SYSTEM TEST
PROCESSOR TEST
S-MEMORY TEST
The SYSTEM TEST is designed to be the first central system test to be run and should be helpful in isolating failures to the MASTER or SLAVE PROCESSOR, MEMORY, MULTILINE-CONTROL, or DSC. Then the appropriate DIAGNOSTIC test can be run for isolation. The system test will load and run in less than 5 minutes.

If a problem is suspected in the DSC or MLC then that diagnostic program should be run first. If these programs will not load, give invalid results, or detect no errors, then the SYSTEM test should be run. Likewise if a processor or memory problem is indicated, that program should be run first, then the SYSTEM test.

The minimum system for this program consists of one processor, S-memory, MLC4 or DCP with ODT, DSC with at least one unit READY. The Disk Unit that is made READY is normally the one used for Clear Start, but must contain at least the following software: MCPII : "SYSTEM/MLFIRMWARE" or, CMS : "SYSTEST-FWAD".

If not, then errors will be indicated. The maximum system tested is two processors, 2 megabytes S-memory, MLC with ODT, DSC with one unit READY. Other I/O devices present will be utilized only to test the I / O bus interface.

PROGRAM OPERATION

SECTION 1 is executed in MTR (TAPE) mode. If an error is detected then the cassette stops on the error, with a HALT CODE in LR. The ERROR DIRECTORY begins on PAGE 15.

PROGRAM LOADER is written into S-memory after SECTION 1 has completed, and started. A check is made of the 7 C micro and if an error is found then the documentation points to either the memory or the processor as the source. The rest of the program is now written from cassette into S-memory.

SECTION 2 is executed in NORMAL MODE to verify that the subset of micros used in the main program EXECUTIVE is operational. If not, then documentation refers to the PROCESSOR TEST for isolation.

EXECUTIVE controls program execution for MASTER processor, and SLAVE processor if present. The rest of the sections in the program are executed in NORMAL MODE in the following manner:

CASE 1: MASTER processor runs sections 3 thru 12. Sections 3 thru 6 test processor functions, section 7 tests memory and memory micros, sections 8 and 9 test dispatch logic and the multiline-control interface logic. Section 10 tests the soft I / O interface. Section 11 performs a read check on DSC. Section 12 reads from disk \& writes to ODT If error then documentation points to the suspected subsystem in error.

CASE 2: SLAVE processor, if present, runs sections 3 thru 9 of the set of sections described above. If error, then documentation refers to the appropriate subsystem.

CASE 3: The SLAVE processor is started running sections 3 thru 9, then the MASTER processor starts running sections 3-9 at the same time.

CASE 4: Section 9 (MLC OPs) is run by MASTER processor at the same time as section 9 (MLC OPs) is run by the SLAVE.

SECTION DESCRIPTIONS

SECTION 1 - MTR MODE TESTS

These MICROS are tested to ensure that they are operational when used later by the program loader. Errors will come to a cassette stop error halt and the specific micro failing will be described. For additional isolation, the PROCESSOR TEST should be run.

```
9C to X,Y,LR and 2E cassette control
IC to X,Y,FA,BR,LR,TAS,A,PERM, PERP,CD
CP=24,CD=4
X,Y SUM & DIFF
8C to X,Y
9C to FA,BR,TAS,A
X LSS Y
6F INC A
12C 13C 14C 15C, A-reg, TAS
6D COUNT FA by 16, FL by 1
7C
TAS, }8\mathrm{ levels of STACK
3C on MSSW
10C S/R T to A,MSSW,TAS,CP
2C with X,Y,SOA,S15B,other pads,A,B,TAS,CP,MSSW
CACHE KEY STORE
CACHE-ONLY execution
S-MEMORY-ONLY exection
NORMAL-MODE execution
```


SECTION 2

Specific MICRO VARIANTS are tested in NORMAL MODE to ensure they are operational when used later by the main program.

3C OR/AND to $T \& C C$
3C INC FLF BY 1 TEST \& DEC FLF BY 1 TEST
$4 C / 5 C$ on $X Y C N$ and $C C(0,1)$
$6 C$ on T and $L F=F$
8C to TAS, 8C to FL
10C SHIFT T LEFT BY 0-24 bits
6D COUNT FL DOWN BY CPL-24
FLF OR-with-M
1C FB to TAS, FI to CP
$2 C A \& B$ pads.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT
MAINTENANCE GUIDE

A-2233 5715 REV. AE
SYSTEM TEST PAGE 15

SECTION DESCRIPTIONS (CONT.)

SECTION 3

Verifies more processor MICROS. If failure then processor is suspect. Run PROCESSOR TEST for isolation.

4D 5D SHIFT ROTATE X Y
3F NORMALIZE X
24-bit FUNCTION BOX
6E CARRY manipulate
A CHECRSUM is accumulated on all registers as each test is performed, and compared with a precalculated checksum.

SECTION 4
Verifies more MICROS. If failure then processor is suspect. Run PROCESSOR TEST for isolation.

3C/6C 4-bit manipulate and SKIP WHEN 4C/5C BIT TEST BRANCH 10C/11C SHIFT ROTATE T

A CHECKSUM is accumulated on all registers as each test is performed, and compared with a precalculated checksum.

SECTION 5
Verifies more MICROS. If failure then processor is suspect. Run PROCESSOR TEST for isolation.

3D CLEAR
6D COUNT FA/FL
3E BIAS
4E/5E LOAD STORE
7D EXCHANGE
8D RELate
A CHECKSUM is accumulated on all registers as each test is performed, and compared with a precalculated checksum.

SECTION 6
PIPELINE FLOW, WAIT LOGIC, and CONFLICTS tests. If failure then run PROCESSOR test for isolation.

```
BURROUGHS CORPORATION
LIEGE PLANT
```

COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS

MAINTENANCE GUIDE

A-2233 5715 REV. AE
SYSTEM TEST PAGE 16

SECTION DESCRIPTIONS (CONT.)

SECTION 7

```
    Verifies all MICROS that function with S-MEMORY. If failure
then PROCESSOR or MBU is called out as suspect.
```


SECTION 8

Processor DISPATCH LOGIC is tested using own port number and invalid port numbers. If failure then either PROCESSOR, MBU, or MLC is suspect.

SECTION 9

PROCESSOR TO MULTILINE CONTROL testing. If failure, then the MULTILINE CONTROL is suspect. If NO MLC found than error indicated.

SECIION 10

SOFT IO CHANNELS are tested. If failure, then the I/O device on that channel is suspect. Run that particular test for isolation. Or if no response from any channel, then the processor is suspect.

SECTION 11
The DSC is tested with a disk pack mounted. If none found then error is indicated. If error detected then run the DSC diagnostic.

Assuming a 205, 206 or 207 pack. For the lowest channnel DSC found, UNIT 0 (SYSTEM disk), execute READS ONLY from SECTORS 0 through @O20000@. This test will effectively test the I/O bus to the DSC and that the DSC can transfer data from the disk.

SECTION 12
All disks present are searched until a "SYSTEM/MLFIRMWARE" file (on MCPII systems), or a "SYSTEST-FWAD" file (on CMS systems) is found. The FIRMWARE file is read to memory then downloaded to the MLC on PORT 1 (or DCP O). FIRMWARE is STARTED and ODT CONFIGURATION FILE loaded (for MLC). A full screen of I/O status information is written then read back and compared. RESULT STATUS and DATA COMPARE ERRORS are reported.

HALT CODE FORMATS

When a HALT CONDITION occurs, LR register will contain the HALT CODE.

FORMAT MEANING

SSONNN ERROR HALT.
$S S=$ test SECTION where error occurred. If the halt was due to a SLAVE processor error, then the most significant bit of $L R$ is also on. NNN = error number.

AAAAAA BEGIN PROGRAM HALT.
"BEGIN PROGRAM HALT" option bit is selected and program is ready to begin.

SSAAAA BEGIN SECTION HALT.
SS = test SECTION. "BEGIN SECTION HALT" option bit is selected and section is ready to begin.

BXXXXB HALT CODE displayed while CASE $X X X X$ is running. If halted then have unexpected error. $C A S E X X X X=1111$, 2222, 3333, or 4444

BBBBBB UNEXPECTED HALT IN EXECUTIVE.
SSBBBB UNEXPECTED HALT IN A TEST SECTION.
CCCCCC PROGRAM COMPLETE.
All selected loops and passes of the test have completed. (See PAGE 60 for extra information).

EEEEEE ENTER OPTIONS HALT.
Occurs when "INTERRUPT" pushbutton is depressed while program is running. Any scratchpad option can be changed here. The following information is displayed:
$X=$ cassette part number in HEX.
$Y=$ listing part number in HEX.
$T=$ cassette revision in EBCDIC.
$L=$ listing revision in EBCDIC.

ERROR DIRECTORY

SECTION 1 - MTR MODE TESTS
These MICROS are tested to ensure that they are operational when used later by the PROGRAM LOADER. Errors will come to a cassette stop error halt and either the PROCESSOR TEST or MBU TEST specified to be run for isolation.

Unless specified otherwise all halts in this section are PROCESSOR errors; PROCESSOR TEST should be run for isolation.
$9 C$ to $X, Y, L R$ and $2 E$ CASSETTE CONTROL
IC to $X, Y, F A, B R, L R, T A S, A, P E R M, P E R P, C D$
$C P=24, C D=4$
X,Y SUM \& DIFF
8C to X,Y
$9 C$ to $F A, B R, T A S, A$
X LSS Y
6 F INC A
12C 13C 14C 15C, A-reg, TAS
6D COUNT FA BY 16, FL BY 1
$7 C$
TAS, 8 levels of STACK
$3 C$ on MSSW
10C S/R I to A,MSSW, TAS,CP
2C with X,Y,SOA,S15B,other pads, A, B,TAS,CP,MSSW
CACHE KEY STORE
CACHE-ONLY execution S-MEMORY-ONLY exection NORMAL-MODE execution

HALT CODE DESCRIPTION

010010 @90000000@ or C91000000@ failed. These are the first and second micros off the cassette (MOVE 24 bit LITERAL).

010100 e90000001® executed as a HALT micro, or e91000022® executed as a CASSETTE STOP micro.

010110 MOVE @FFFFFF@ TO X or MOVE @FFFFFF@ TO Y failed.
010112 MOVE @AAAAAA© TO X Eailed.
010114 MOVE ©AAAAAAC TO Y failed.
010116 MOVE ©555555@ TO X failed.

BURROUGHS CORPORATION			
COMPUTER SYSTEMS GROUP		B1965/95 SYSTEMS	
LIEGE PLANT MAINTENANCE GUIDE			
A-2233 5715	REV. AE	SYSTEM TEST	PAGE 19
010117	MOVE @555		
010120	MOVE X TO	$X=0$	
010121	MOVE FA T		
010122	MOVE X TO	$X=F F F F F F$	
010123	MOVE FA T		
010125	MOVE X TO	$x=0$	
010126	MOVE BR TO		
010127	MOVE X TO	$\mathrm{X}=\mathrm{FFFFFF}$	
010128	MOVE BR TO		
010130	MOVE X TO	d. $X=0$	
010131	MOVE TAS		
010132	MOVE X TO	d. $X=F F F F$	
010133	MOVE TAS		
010135	MOVE X TO	$x=0$	
010136	MOVE A TO		
010137	MOVE X TO	= FFFFFF	
010138	MOVE A TO		
010140	MOVE X TO	ed. $X=0$	
010141	MOVE PERM		
010142	MOVE X TO	ed. $\quad X=F$	
010143	MOVE PERM		
010145	$C D$ not eq		
010146	MOVE X TO	ed. $X=0$	
010147	MOVE PERP		
010148	MOVE X TO	ed. $\quad X=7$	

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
LIEGE PLANT
A-2233 5715 REV. AE

010310	MOVE @000000@ TO FA failed.
010320	MOVE @FFFFFF@ TO BR failed.
010330	MOVE 000000 ¢ TO BR failed.
010360	MOVE @FFFFFFe TO TAS failed.
010370	MOVE @000000@ TO TAS Eailed.
010372	XYCN is incorrect.
010374	XYCN is incorrect.
010376	XYCN is incorrect.
010378	XYCN is incorrect.
010380	MOVE COOOOOO@ TO A failed.
010390	MOVE COFFFFOC TO A failed.
010400	INCREMENT A failed. A should equal 000010.
010410	INCREMENT A failed. A should equal 555560.
010420	INCREMENT A failed. A should equal OAAABO.
010430	INCREMENT A failed. A should equal 000000.
010450	MICRO COOO failed. A should equal 0.
010451	MICRO CFFF failed. A should equal 00FFFO.
010452	MICRO COOO failed. A should equal Oefffo.
010453	MICRO CFFF failed. A should equal OFFFEO.
010455	MICRO DOOO failed. A should equal 0.
010456	MICRO DFFF failed. A should equal OEOO10.
010460	MICRO EOOO failed. A should equal 0.
010461	MOVE TAS TO X failed. X should equal 0.
010462	MOVE TAS to A failed. A should equal 0.
010463	MICRO EFFF failed. A should equal OFFFEO.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

LIEGE PLANT \quad| A-2233 5715 | REV. AE |
| :--- | :--- |
| MAINTENANCE GUIDE | |

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
LIEGE PLANT
A-2233 5715 REV. AE

B1965/95 SYSTEMS MAINTENANCE GUIDE

SYSTEM TEST PAGE 23

010626 READ 24 BITS TO X INC FA failed to return correct data. X should equal FFFFFF. $F A=001234$. Run PROC. test first, then MBU.

010628
INC FA failed on above micro. FA should equal 00124 C .
010630
PERM NEQ O after above micro.
010632
READ 16 BITS TO Y failed to return correct data. Y should equal 00D8. $F A=00124 C$. Run $P R O C$. test first, then MBU.

010634
PERM NEQ 0 after above micro.
010720 Nine pushes of A-STACK were done, with 000000, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888. Followed by a MOVE TAS TO Y which failed to return the correct value. X equals the correct value.

010730
MOVE MSSW TO X failed. X should equal 3.
010732 AND MSSW WITH 3 failed.
010734 OR MSSW WITH 2 failed.
010736 EOR MSSW WITH 0 failed.
010750 SHIFT T LEFT BY 1 BIT TO A failed; A should $=000020$.
010752 ROTATE T LEFT BY 1 BIT TO MSSW failed; MSSW should $=3$.
010754 SHIFT T LEFT BY 1 BIT TO TAS failed; TAS should $=2$.
010756 SHIFT I LEFT BY 1 BIT TO CP failed; CP should equal 2.
010758 MOVE X TO SOA,S15B,S3B,S1A,S2B or MOVE SO1, S15B, S3B, S1A, S2B TO Y failed; X equal FFOOFF.

010760 MOVE SOA TO A or MOVE A TO S15B failed; all $=056780$.
010762 MOVE SOA TO M followed by MICRO 0000 failed; $S O A=$ 0621.

010764 MOVE SOA TO TAS or MOVE TAS TO S15B failed; all= FFFFFF.

010766 MOVE SOA TO CP or MOVE CP TO S15B failed; all $=0000 \mathrm{FF}$.
$010771 \quad \mathrm{FL}=0 ; \mathrm{A}=\mathrm{FFFO} ; \mathrm{MICRO} 5791$ failed; A should $=10000$.
010772 FL NEQ O; A $=$ FFFO; MICRO 5791 failed; A should $=F F F O$.

010773	$F L=0 ; A=F F F O ;$ MICRO 5792 failed; A should $=10000$.
010774	FL NEQ O; A = FFFO; MICRO 5792 failed; A should = FFEO.
010775	$F L=0 ; A=F F F O ; M I C R O 5794$ failed; A should $=10000$.
010776	
010777	
010778	FL NEQ O; $A=$ FFFO; MICRO 5798 failed; A should FF80.
010780	$F A=0 ; \quad X=01 F F F F ;$ WRITE CACHE FROM X Y T L followed by READ CACHE REY.DATA TO Y failed to return $Y=500001$.
010781	See above. READ CACHE TO Y failed to return Y = 01FFFF.
010782	See above. PERP NEQ 0.
010785	$F A=F F 0000 . X=0$. WRITE CACHE FROM X Y I L followed by READ CACHE KEY.DATA TO Y failed to return $Y=5001 f F$.
010786	See above. READ CACHE TO Y failed to return $Y=0$.
010787	See above. PERP NEQ 0.
NOTE >>>	For 010788 - 010804 the following is tested: Transition from KTR mode to CACHE-ONLY mode. Then execution in CACHE-ONLY from every CACHE location. Then transition from CACHE-ONLY mode to MTR mode.
010788	The CACHE routine has been loaded incorrectly.
010794	WRITE (25) BITS FROM X INC FA hung up.
010796	Switching from CACHE-ONLY to MTR doesn't work.
010800	Switching from MTR to CACHE-ONLY doesn't work.
010802	PERP found UNEQUAL to 0 following CACHE execution.
010804	The routine in CACHE failed to execute properly.
010805	In CACHE-ONLY mode, S-MEMORY failed to return correct data. Try MBU test.
010806	Same 25805.
010807	Same as 805.

BURROUGHS CORPORATION	
COMPUTER SYS	TEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT	Maintenance Guide
A-2233 5715	REV. AE SYSTEM TEST PAGE 25
010808	Same as 805.
NOTE >>>	For 010810-010844 the following is tested: Transition from MTR mode to S-ONLY mode. Execution in S-ONLY from FFFO addresses. Transition from S-ONLY mode to MTR mode. Transition from MTR mode to NORMAL mode. Execution in NORMAL from FFFO addresses. Transition from NORMAL mode to MTR mode.
010810	MBU. The S-MEMORY routine has been loaded incorrectly.
010812	MBU. WRITE (25) BITS FROM X INC FA hung up.
010818	PROC. Switching from S-ONLY or NORMAL to MTR mode not ok.
010820	PROC. Switching from MTR to S-ONLY doesn't work.
010824	PROC. PERM found UNEQUAL to 0 following above execution.
010825	The routine in S-ONLY failed to execute properly. Run MBU test. Also suspect can be the MLC which can interfere with S-MEMORY operations. Try disconnecting the MLC and running this test again.
010840	Switching from MTR mode to NORMAL doesn't work correctly.
010842	PERM NEQ 0 after above NORMAL mode routine.
010844	The routine in NORMAL failed to execute properly.
NOTE:	THE REST OF THE TESTS IN SECTION 1 WILL BE IN NORMAL MODE.
010850	MAC card H is suspect. CNS.ENABLE (000081) moved to CNS. MAC failed to respond with CNS $=000081$.
010860	MAC card H is suspect. CNS.GET.STATUS.VECTOR (000002) moved to CNS. MAC failed to respond with non zero in CNS .
010870	MAC card H is suspect. CNS.HALT.SLAVE (000003) moved to CNS. MAC failed to respond with CNS $=000000$.
010880	MAC card H is suspect. CNS.HALT.RESTART (OOOO40) moved to CNS. MAC failed to respond with CNS $=000040$.
010890	MAC card H is suspect. CNS.DISABLE (000083) moved to CNS. MAC failed to respond with $C N S=000083$.

BURROUGHS CORPORATION	
COMPUTER SYS	(EMS GROUP B1965/95 SYSTEMS
LIEGE PLANT	maintenance Guide
A-2233 5715	REV. AE SYSTEM TEST PAGE 26
010900	In NORMAL mode, JUMP PROCESSOR.TYPE (micro 0009) failed to skip.
010901	MASTER processor port number found unequal to 0 .
010902	READ.PORT.NUMBER (8F) MICRO failed to return MASTER processor port number into $T F$. Run PROCESSOR test.
010903	MAC card H9 is suspect. The following CNS sequence failed. MOVE ©81C TO CNS, MOVE CO3@ TO CNS, MOVE @4O® TO CNS, HALT MICRO. Halt occurred but MAC should have prevented it.
010904	The SLAVE processor has branched erroneously into code meant only for MASTER. Suspect SLAVE processor MICRO error in a BRANCH. Run PROCESSOR TEST on SLAVE processor.
010909	Switch from MTR to NORMAL failed.
010910	PERM NEQ 0 following WRITE 16 BITS FROM X INC FA. See FA.
010911	Memory from end of program to MAXS-16 was written with zeros. Then READ 16 BITS TO T INC FA failed to return 0. Run MBU test.
010912	See above. PERM NEQ 0.
010950	The main program is being loaded to memory. PERM NEQ 0. See FA. Run MBU test.
010955	PERP NEQ O after program load.
010960	MICRO OAO1 ECHO S-MEMORY CABLE failed. Run MBU test.
010962	MICRO OBO1/OBO9 ECHO WRITE DATA failed. Run MBU test.
010964	MICRO OBOA/OB2A ECHO ADDRESS failed. Run MBU test.
010966	MICRO OBO4/OBOC/OBOO WRITE/READ DIRECT failed. Run MBU test.
010970	READ ELOG MICRO failed. Run MBU test.
010971	READ ELOG MICRO failed. Run MBU test.
010972	7C timed out. Run MBU test.
010974	7C MICRO failed. Run PROCESSOR test.

SECTION 3

Processor MICROs. If failure in any of these halts, run PROCESSOR test for isolation.

HALT CODE DESCRIPTION

030010 SHIFT X RIGHT failed.
030020 Same as 010.
030030 SHIFT X LEFT failed.
030040 Same as 030 except a single bit is being shifted.
030050 SHIFT Y RIGHT failed,
(continued next page)
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

LIEGE PLANT \quad| A-2233 5715 | REV. AE |
| :--- | :--- |
| MAINTENANCE GUIDE | | changed but did.

```
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
B1965/95 SYSTEMS
MAINTENANCE GUIDE
A-2233 5715 REV. AE
SYSTEM TEST PAGE 29
030280 Continued from 270. Y should not have changed either but did.
030290 ROTATE \(X\) AND \(Y\) LEFT BY O BITS. X should not have changed but did.
030300 Continued from 290. Y should not have changed either but did.
030310 ROTATE X AND Y LEFT BY 1 BIT failed. X half is incorrect.
030320
Same as 310 but \(Y\) half failed.
030330 ROTATE X AND Y LEFT BY 24 failed. X half is incorrect.
030340 Same as 330 but \(Y\) failed.
030350 ROTATE X AND Y LEFT BY 36 BITS failed. X half is incorrect.
030360 Same as 350 but \(Y\) failed.
030370 NORMALIZE MICRO failed. \(C P\) set to 24 , FL set less than 24 and a \(l\) bit was set in \(X\) that should NORMALIZE to @800000@ while Fl should count down to 1 . \(X\) did not NORMALIZE to e800000@.
030372 Same NORMALIZE MICRO as above but FL was not @0001@ after NORMALIZE.
030374 X set to 0 and \(F L\) set to @5555@. A NORMALIZE MICRO was executed but \(F L\) was not found equal to zero.
030376 3F failed. With \(C P\) varied from 24 to 1 , \(X\) is set to 1 and \(F L\) set to NORMALIZE to @OOO1@. FL did not count down to @0001@ correctly.
030378 Same NORMALIZE MICRO as above but \(X\) did not shift correct number of times.
030400 The CARRY MANIPULATE micro (6E) was used to set CYF, but CYF was not found to be true.
030402 The CARRY MANIPULATE micro (6E) was used to reset CYF, but CYF was not found to be false.
```

\qquad

BURROUGHS CORPORATION	
LIEGE PLANT	MAINTENANCE GUIDE
A-2233 5715	REV. AE SYSTEM TEST PAGE 30
03.0404	With CYF set to $1, X=$ FFFFFF and $Y=$ FFFFFF, CYL should by set but was found to be false.
030406	Same conditions as 220 except the $S U M$ had the wrong result.
030408	@FFFFFFe was moved to X and Y, and CYL was not found on. $C P$ is counted down by l for each check of CYL.
030410	With @ffffffe in X and Y, a MOVE SUM $T O Y$ had wrong results. CP is counted down by 1 for each check of SUM.
030412	Same as 250 except X and Y are equal to ©AAAAAAC. CYL was found false and should be on.
030414	Same as 250 except CYL was true, expected false.
030416	With the same conditions as 250 and CYL true, a CARRY SUM micro (0064) was executed after which CYF was found false.
030418	With the same conditions as 250 and CYL false, a CARRY SUM micro (0064) was executed after which CYF was found true.
030420	Same as 260 except using ©AAAsAAC in X and Y.
030422	Same as 270 except using e5555550 in X and Y.
030424	Same as 280 except using e555555@ in X and Y.
030426	Same as 310 except using e5555550 in X and Y.
030428	With @AAAAAAC in X and ©555555@ in Y, CYL was found true when it should be false.
030430	With CAAAAAAC in X and C555555e in Y, a MOVE SUM TO Y yielded a bad result. $C P$ is counted down by 1 for each check of SUM.
030432	Same as 350 except $X=$ C555555@ and $Y=$ @AAAAAAC.
030434	Same as 360 except $X=$ © 5555550 and $Y=$ @AAAAAAC.
030436	LSUX was found on with $X=0$.
030438	LSUY was found on with $\mathrm{Y}=0$.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
B1965/95 SYSTEMS
LIEGE PLANT
MAINTENANCE GUIDE

A-2233 5715 REV. AE
SYSTEM TEST PAGE 32

030600	Same as 580 except $X=$ e555555@, $Y=$ @AAAAAAE.
030610	Same as 570 except $X=$ CAAAAAAC, $Y=$ e555555e.
030620	
030630	DECIMAL DIFFERENCE (BCD) failed. BINARY DIFF and 4 bit registers are used to test the $B C D$ DIFF. CYD was found to be false.
030640	Same as 630 except CYD was true but should be false.
030650	Same as 630 except a CARRY DIFFERENCE micro (0068) was executed with CYD true and CYF was found false.
030660	Same as 630 except a CARRY DIFFERENCE micro (0068) was executed with CYD false and CYF was found true.
030670	Same as 630 except $B C D$ DIFF result was incorrect
030680	X and Y are setup to create a CARRY DIFF for all CPL values in increments of 4 bits. CYD was found false when it should be true.
030900	While the above tests were executing, a sum was being accumulated on registers: X Y L FA FB BICN FLCN PERM
	PERP XYCN SUM DIFF CMPX CMPY XANY XEOY MSKX MSKY XORY
	XYST CA CB CC CD CP INCN. At the end of the section, a pre-calculated sum was compared with the actual sum accumulated and found to be unequal. One of the following MICROs failed: Run PROCESSOR test for isolation.

1C source/sink all regs to $X \& Y$
2C source/sink all pads to $X \& Y$
10C SHIFT/ROTATE T TO $X \& Y$
11C EXTRACT T TO X \& Y
2D SWAP MEMORY with $X \& Y$
3D CLEAR X $\&$
4D/5D SHIFT/ROTATE X\&Y
3F NORMALIZE X
24-BIT FUNCTION BOX

O3AAAA Start of section halt.
03BBBB Unexpected halt. Type "CLEAR A 80 GO" to restart.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
LIEGE PLANT
A-2233 5715 REV. AE

B1965/95 SYSTEMS maintenance guide

SYSTEM TEST PAGE 35

040730	SHIFT T BY CPL failed. SHIFT X is used TO check SHIFT T BY CPL and each time the shift amount is decreased from 24 TO 0.
040740	Same as 730 except ROTATE T is tested.
040750	Sink decode - ROTATE T LEFT BY 23 BITS TO TA
040751	Sink decode - ROTATE T LEFT BY 23 BITS TO TB
040752	Sink decode - ROTATE T LEFT BY 23 BITS TO TC
040753	Sink decode - ROTATE T LEFT BY 23 BITS TO TD
040754	Sink decode - ROTATE T LEFT BY 23 BITS TO TE
040755	Sink decode - ROTATE T LEFT BY 23 BITS TO TF
040756	Sink decode - ROTATE T LEFT BY 23 BITS TO LA
040757	Sink decode - ROTATE I LEFT BY 23 BITS TO LB
040758	Sink decode - ROTATE I LEFT BY 23 BITS TO LC
040759	Sink decode - ROTATE T LEFT BY 23 BITS TO LD
040760	Sink decode - ROTATE T LEFT BY 23 BITS TO LE
040761	Sink decode - ROTATE T LEFT BY 23 BITS TO LF
040762	Sink decode - ROTATE T LEFT BY 23 BITS TO CA
040763	Sink decode - ROTATE T LEFT BY 23 BITS TO CB
040764	Sink decode - ROTATE T LEFT BY 23 BITS TO CC
040765	Sink decode - ROTATE T LEFT BY 23 BITS TO CD
040770	SHIFT T BY 1 BIT TO FU failed. $T=@ \operatorname{FFFFFF}$ and $F B$ was not found equal TO @EOOOOO@.
040771	SHIFT T BY 2 BITS TO FT failed. $T=000001 @$. FT should be @4@.
040772	ROTATE T BY 4 TO FLC failed. $T=@ A 00000 @$. FLC should be @AC.
040773	ROTATE T BY 8 BITS TO FLD failed. $T=@ 050000 @$. FLD should be @5@.

```
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT
    MAINTENANCE GUIDE
A-2233 5715 REV. AE
SYSTEM TEST PAGE 36
```

040774 ROTATE T BY 4 TO FLE failed. $T=@ A 00000$. FLE should be ©AC.

040775 ROTATE T BY 8 BITS TO FLF failed. $T=0050000$. FLF should be e5c.

040780 Sink decode - ROTATE T LEFT BY 23 BITS TO FA.
040790 Sink decode - ROTATE T LEFT BY 23 BITS TO FB.
040800 Sink decode - ROTATE T LEFT BY 23 BITS TO BR.
040810 Sink decode - ROTATE T LEFT BY 23 BITS TO LR.
040820 Sink decode - ROTATE T LEFT BY 23 BITS TO TAS.
040830 Sink decode - ROTATE T LEFT BY 23 BITS TO FL.
040840 Sink decode - ROTATE T LEFT BY 23 BITS TO M.

040850 EXTRACT FROM T TO X with $T=$ zero failed. The EXTRACT micro in $F L$ was $O R-e d$ to a NOP in M for execution. The EXTRACTION FIELD POINTER (hdwr bits 11-7 of the EXTRACT micro) is counted down from 24 TO 0 . The EXTRACTION FIELD WIDTH (hdwr bits 4-0) is counted down from 24 TO 0.

040860 Same as 450 using a pattern of @FFFFFFE. MSKY is used to check EXTRACT T.

040870 Same as 450 using a pattern of @AAAAAAC. ROTATE Y and MSKY are used to check EXTRACT T.

040880 Same as 850 using a pattern of e555555@. ROTATE Y and MSKY are used to check EXTRACT T.

040890 Same as 850 except EXTRACT T TO Y failed using a pattern of ©5A5A5C.

040892 Same as 850 except EXTRACT T TO L failed using a pattern of @123456@.

040894 Same as 850 except EXTRACT T TO T failed using a pattern of @9ABCDEC.
040900 While the above tests were executing, a sum was being
accumulated on registers: CA CB CC CD TA TB TC TD TE TF
LA LB LC LD LE LF FU FT FLC FLD FLE FLF BICN FLCN PERM
PERP XYCN XYST. At the end of the section, a pre-cal-
culated sum was compared with the actual sum accumulated
and found to be unequal. One of the following micros
failed: Run PROCESSOR TEST for isolation.

3C all variants
$6 C$ all variants
$4 \mathrm{C} / 5 \mathrm{C}$ branches
04AAAA Start of section halt.
04BBBB Unexpected halt. Type "CLEAR A 80 GO" TO restart.

SECTION 5

Processor MICROs. Run PROCESSOR TEST for isolation if failure.

HALT CODE
DESCRIPTION

050001 3D CLEAR failed to clear FA
050002 3D CLEAR failed to clear FL
050003 3D CLEAR failed to clear FU
050004 3D CLEAR failed to clear CP
050010 6D micro, COUNT FL is tested using the 4 bit function box. FL is counted from 1 to 15 and compared after each count.

050011 Same as 010 except COUNT FL UP BY 16 thru 24.
050012 Same as 010 except COUNT FL DOWN is tested.
050013 Same as 012 except COUNT FL DOWN is tested.
050014 FL NEQ 0 failed. FL was set to 0 , and $F L$ NEQ 0 was found to be true.

```
BURROUGHS CORPORATION
LIEGE PLANT
A-2233 5715 REV. AE
```

COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
MAINTENANCE GUIDE
SYSTEM TEST PAGE 38

050015	FL NEQ 0 failed. With FL= FFFF, FL NEQ 0 was found false.
050016	FL NEQ O failed. A single true bit was moved to FL. FL NEQ O was not found true.
050017	With $F 1=0$ a 6D, COUNT FL DOWN (amount in L) caused FL to change. FL should remain $=0$.
050020	COUNT FA UP failed.
050025	Same as 010 except the upper 16 bits of $F A$ are tested and $F L$ is not used.
050030	With $F A=$ @FFFFFFC A COUNT FA UP BY 1 did not cause FA to reset to zero.
050040	COUNT FA DOWN failed.
050050	Same as 040 except the upper 16 bits of $F A$ are tested and $F L$ is not used.
050055	COUNT FL UP BY values 25 thru 31 (in FA) failed to count FL only by 24 (from @FFE8(to @OOOO@).
050060	COUNT FA UP BY CPL failed.
050070	Same as 060 except COUNT FL UP failed.
050080	COUNT FA DOWN BY CPL failed
050090	COUNT FL DOWN BY CPL failed.
050100	COUNT FA UP AND FL DOWN BY CPL failed. The FA portion is incorrect.
050110	Same count micro as 100 but FL part is wrong.
050120	COUNT FA DOWN AND FL UP BY CPL failed. The FA portion is incorrect.
050130	Same count micro as 120 but Fl part is wrong.
050140	COUNT FA AND FL DOWN BY CPL failed. The FA portion is incorrect.
050150	Same count micro as 140 but FL part is wrong.

BURROUGHS CORPORATION		
COMPUTER SYS	CEMS GROUP	SYSTEMS
LIEGE PLANT MAINTENANCE GUIDE		
A-2233 5715 REV. AE SYSTEM TEST PAGE 39		
050170	The next micro following the "BIAS BY UNIT TEST", with FU equal to zero, was not executed. It should have been.	
050180	$C P$ was not found equal to zero after a "BIAS BY UNIT TEST" with FU equal to zero.	
050190	CP was not found equal to zero after a "BIAS BY UNIT" with $F U$ equal to zero.	
050195	A "BIAS BY UNIT TEST" failed to skip when CPL was not equal to 0 .	
050200	CPU was not when FU	UNIT"
050210	CPU was n FU equal	" with
050220	CPL was n BY UNIT".	"BIAS
050230	The micro value, wa	on-zero
050240	With $\mathrm{FU}=$ "BIAS BY	ter a
050250	Same as 220	
050255	2 "BIAS BY	
050260	Same as 200	
050270	Same as 210	
050280	Same as 220	
050290	The micr non-zero	$S F L=a$
050300	CPU was n SFU is sa	$\text { BY } \quad S^{\prime \prime} .$
050310	CPL NEQ th	
050315	"BIAS BY S	
050320	CPU was n SFU was n	$S^{\prime \prime}$ when

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
LIEGE PLANT

B1965/95 SYSTEMS

 LIEGE PLANT
MAINTENANCE GUIDE

A-2233 5715 REV. AE

050330	CPU was not found equal to a 1 after a "BIAS BY S" with SFU equal to 4 or 8 . $S F U$ is saved in $F U$.
050340	Same as 220 but "BIAS BY S" used. SFL in FL.
050350	The next micro following a "BIAS BY F AND S TEST" with SFL= $0, ~ F L=$ a non-zero value was not skipped.
050360	CP NEQ 0 after a "BIAS BY F AND S TEST" with SFL equal to zero and $F L$ not equal to zero.
050370	The MICRO following "BIAS BY F AND S TEST", with SFL and FL NEQ 0 , was executed but should not have.
050380	Same as 240 but "BIAS BY F AND S" was executed.
050390	Same as 220 but "BIAS BY F AND S" was executed.
050395	"BIAS BY F AND 5 TEST" did not skip for CPL NEQ 0.
050400	Same as 200 but a "BIAS BY F AND S" was executed.
050410	Same as 210 but a "BIAS BY F AND S" was executed.
050420	Same as 220 but a "BIAS BY F AND S" was executed.
050425	"BIAS BY F AND S TEST" did not skip for CPL NEQ 0.
050430	Same as 200 but a "BIAS BY F AND S" was executed.
050435	Same as 210 but a "BIAS BY F AND S" was executed.
050440	Same as 220 but a "BIAS BY F AND S" was executed.
050450	The micro following "BIAS BY F AND CP TEST", with CPL = 0 , $F L$ NEQ 0 was skipped. It should not have.
050460	CP NEQ 0 after a "BIAS BY F AND CP TEST" when CPL was 0 and $F L$ not equal 0 .
050470	The micro following a "BIAS BY F AND CP TEST", with FL and CPL NEQ O was not $5 k i p p e d$.
050480	Same as 240 but "BIAS BY F AND CP' was executed.
050490	Same as 220 but "BIAS BY F AND CP" was executed.
050495	"BIAS BY F AND CP TEST" did not skip for CPL NEQ 0.

BURROUGHS CORPORATION

COMPUTER SYSTEMS GROUP

 LIEGE PLANTB1965/95 SYSTEMS MAINTENANCE GUIDE

SYSTEM TEST PAGE 41

050500	Same as 200 but "BIAS BY F AND CP" was executed.
050510	Same as 210 but "BIAS BY F AND CP" was executed.
050520	Same as 220 but "BIAS BY F AND CP" was executed.
050525	"BIAS BY F AND CP TEST" did not skip for CPL NEQ 0.
050530	Same as 200 but "BIAS BY F AND CP" was executed.
050540	Same as 210 but "BIAS BY F AND CP" was executed.
050550	Same as 220 but "BIAS BY F AND CP' was executed.
050560	A BIAS micro with variant 4 TEST (@OO39@) caused a skip when it should not have.
050570	Same BIAS micro as 560 but result in CPL was incorrect.
050580	A BIAS micro with variant 6 TEST ($(003 D @)$ caused a skip when it should not have.
050590	Same BIAS micro as 580 but the result in CPL was incorrect.
050600	A BIAS micro with variant 7 TEST ($(003 F()$ caused a skip but should not have.
050610	Same BIAS micro as 600 but the result in CPL was incorrect.
050700	5E LOAD failed.
050800	4 E STORE failed.
050820	7D EXCHANGE failed.
050840	8D RELATE ADD failed.
050860	8D RELATE SUBTRACT failed.

050900 While the above tests were executing, a sum was being
accumulated on registers: FA FB CP SOA SOB FLCN BICN.
At the end of the section, a pre-calculated sum was
compared with the actual sum accumulated and found to be
unequal. One of the following micros failed: Run
PROCESSOR TEST for isolation.
3D CLEAR
6D COUNT FA/FL
2C, 7D, $8 \mathrm{D}, 5 \mathrm{E}, 4 \mathrm{E}$ scratehpad micros

SECTION 6

PIPELINE FLOW, WAIT LOGIC, and CONFLICTS TESTS. If failure then run the PROCESSOR TEST for isolation.

HALT CODE DESCRIPTION

NOTE >>> 200-250 are SCRATCHPAD back to back conflict cases.
060200 MOVE BR TO S1OA \& MOVE S1OA TO LR failed.
060210 MOVE FA TO SIIB \& MOVE SIIB TO BR failed.
060220 MOVE FB TO SIOA \& MOVE SIOA to FL failed.
060230 MOVE TAS TO SIIB \& MOVE SIIB TO Y failed.
060250 MOVE NULL-A TO S11B \& MOVE S11B TO Y failed.
060300 A slow source MOVE TO SCRATCHPAD failed.
060350 MOVE 4-BIT REGS OF $T \& L$ TO/FROM SCRATCHPAD Eailed.
060360 MOVE 4-BIT REGS OF FB TO/FROM SCRATCHPAD Eailed.
060370 MOVE SUM TO SCRATCHPAD failed.
060380 MOVE DIFF TO SCRATCHPAD failed.


```
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT MAINTENANCE GUIDE
A-2233 5715 REV. AE SYSTEM TEST PAGE 44
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{060720} & 4C SKIP into a slow source failed: \\
\hline & ERROR HALT \\
\hline & MICRO 3071 \\
\hline & MICRO 1641 \\
\hline & MICRO 4CF5 \\
\hline & MICRO CO12 \\
\hline \multirow[t]{6}{*}{060730} & 5C SKIP into a slow source failed: \\
\hline & ERROR HALT \\
\hline & MICRO 6028 \\
\hline & MICRO 1641 \\
\hline & MICRO 56F5 \\
\hline & MICRO COO5 \\
\hline O6hAAA & Start of section halt. \\
\hline 06BBBB & Unexpected halt. Type "CLEAR A 80 GO " to restart. \\
\hline
\end{tabular}
```


SECTION 7 - S-MEMORY TESTS

```
Verify all micros that function with S-memory. If failure then either PROCESSOR or MBU is suspect. Unless specified otherwise run the MBU TEST first for isolation, then the PROCESSOR TEST.
HALT CODE DESCRIPTION
070005 MBU. The port number READ via MICRO C0008@ doesn't match the port number returned in ELOG following a forced MEMORY ERROR. Either MBU or PROCESSOR is faulty.
NOTE >>> For halts 010 thru 090, MBU is suspect. Run MBU test.
070010 TC MICRO failed. @FFFFFF@ written from \(X\), but data read to \(Y\) at the same address was wrong.
070020 Same as 010 but a parity error occurred. Data OR.
070030 7C MICRO failed. @000000@ written from Y but data read .TO X from the same address was incorrect.
070040 Same as 030 but a parity error occurred. Data OK.
```


070230	```MBU. A 24 BIT READ REVERSE TO X Erom address 000040 failed.```
070240	MBU. At $F A=000000$, ©123456e was written. At 000018, @789AB was written. Thus each byte can be identified. With the above data in memory a read at $F A=000000$ returned incorrect data.
070250	Same data in memory 25 in 240.
070260	Same as 250.
070270	Same 25250.
070280	MBU. 24 bits were written from X. A read at the same address yielded incorrect data.
070290	Same as 280.
070300	Same as 280.
070310	Same as 280.
070320	MBU. 24 BIT SWAP WITH Y failed. Memory data read to Y is incorrect.
070330	MBU. Same SWAP as 320 but the write of Y to memory is incorrect.
070340	MBU. Same SWAP as 320 but a parity error occurred.
070350	PROC. 24 BIT SWAP WITH X failed. Read to X portion is incorrect.
070360	Same SWAP as 350 except in this case the write frow X to memory portion is incorrect.
070370	Same SWAP as 350 but a parity error occurred.
070380	Proc. 24 BIT SWAP WITH T failed. The read to T part is wrong.
070390	Same SWAP 25380 but write from 1 part failed.
070400	Same SWAP as 380 but a parity error occurred.
070410	Proc. 24 BIT SWAP WITH L failed. The read to L part is wrong.

SECTION 8

Processor DISPATCH LOGIC is tested using own port number and invalid port numbers. If failure then either PROCESSOR is suspect, MBU DISPATCH LOGIC is suspect, or the MLC is becoming active when the processor port is being used.

Run PROCESSOR TEST first，then MBU TEST，then MLC TEST．If processor test fails to find indicated problem，then disconnect the MLC and run SYSTEM TEST again．If it runs then MLC is suspect．

HALT CODE DESCRIPTION

NOTE \ggg For all halts in this section，see description above．
080110 DISPATCH READ AND CLEAR failed to clear INCN．
080120 PERM found unequal to zero following above test．
080130 DISPATCH LOCK SRIP WHEN LOCRED skipped on INCN＝0
080140 INCN unequal 1 following above test．
080150 PROC．or MLC failure．Try disconnecting MLC and run again．A STOP－OP descriptor with INTERRUPI REQUEST set was DISPATCHED to the processor＇s port number．After a delay of 100 ms. ，INCN was found to be reset，indicating that some other device（MLC）erroneously accepted descriptor．

080152 See 150．INCN NEQ 3 following a DISPATCH WRITE to own port

080154 See 150．PERM unequal 0 following above DISPATCH WRITE．
080160 See 150．A DISPATCH READ failed to return $L=$ REFERENCE ADDRESS sent．Suspect MLC．

080162 See 160．Source port $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ r e t u r n e d ~ i n ~ I ~ n o t ~ e q u a l ~ t o ~ p o r t ~$ \＃DISPATCHED．Suspect MLC．

080164 See 160．INCN found not $=3$ following DISPATCH READ．
080166 See 160．PERM found unequal 0 following DISPATCH READ．
080170 INCN found unequal 0 following DISPATCH READ AND CLEAR
080172 PERM unequal 0 following DISPATCH READ AND CLEAR．
080174 DISPATCH WRITE failed to write correct addre＇ss at loca－ tion 000000 in S－memory．

080176 PERM unequal 0 following $7 C$ READ of address 0.

080230	DISPATCH WRITE HIGH failed to set INCN equal 7.
080240	PERM unequal 0 following DISPATCH WRITE HIGH.
080250	DISPATCH READ AND CLEAR failed to return correct data into L. L should = FFFFFF.
080260	INCN found unequal to 0 following above.
080270	DISPATCH READ AND CLEAR failed to return correct data into L .
080280	DISPATCH READ AND CLEAR failed to return correct data into L.
080290	DISPATCH LOCR SKIP WHEN LOCKED skipped erroneously.
080300	DISPATCH LOCK SKIP WHEN LOCKED failed to skip.
080310	DISPATCH LOCK SKIP WHEN UNLOCRED skipped erroneously.
080320	DISPATCH LOCK SRIP WHEN UNLOCKED failed to skip.
080410	DISPATCH WRITE to own port number followed by a $7 C$ READ from address 000018 failed to return correct data.
080420	7C READ from address 000000 failed to return correct data.
080510	DISPATCH WRITE to port $=6$ failed to set INCN equal 9.
080900	While the above tests were executing, a sum was being accumulated on registers: $X \quad Y \quad T \quad F A F B$ BR LR PERM PERP $C D$ INCN CP. At the end of the section, a pre-calculated sum was compared with the actual sum accumulated and found to be unequal. See description of tests being performed above.
08AAAA	Start of section halt.
08BBBB	Unexpected halt. Type "CLEAR a 80 GO" to restart.

SECTION 9
PROCESSOR TO MULTILINE CONTROL TESTING. By this section, processor DISPATCH functions have been verified so if failure then MLC or MBU is likely suspect. Run MLC TEST first, then MBU TEST.

HALT CODE

NOTE \ggg For halt codes 090100, $090105 \& 090106$ ports 1 and 3 are examined for multilines. If failure in these three tests then examine memory area for the saved responses from each port. Also, for tests 090106 and beyond, SO9A contains the port number being tested and S12A contains all active ports found on system. At these halts the FA register contains the address of the memory area used for saves. Display this area with console READ memory. Type "SR24 <CONTENTS OF FA>", then "NEXT" to get to HARD IO area. For each port numbered 0 thru 4,12 24-bit words are displayed on this page, reading left to right, each column is one port. Information not stored for processor ports or unused ports. Format of information displayed:

Word 1: Contents of I before DISPATCH WRITE of TEST-OP Word 2: Contents of L before DISPATCH WRITE of TEST-OP Word 3: Contents of 1 after INTERRUPT \& DISPATCH READ Word 4: Contents of L after INTERRUPT \& DISPATCH READ Word 5: RS field of the TEST-OP descriptor DISPATCHED Word 6: INCN after INTERRUPT \& DISPATCH READ Word 7-12: Not used will be 000000

090100 NO MLC FOUND on any port, nor was DCP found on any channel. See memory save area for stored responses on $2 l l$ ports.

090105 DISPATCH WRITE to an inactive port number failed to set INCN equal 9. All valid port numbers are contained in

090106

090107
See above test. After LOCK was reset by the MLC, an INTERRUPT failed to come back within 150 milliseconds from the MLC to indicate that the TEST-OP was completed. Current port \# in SOGA.

NOTE >>> For the following tests pad S12A contains the ports found present. The first (left) four 4-bit fields contain port numbers where a MLC was found or equal @F@ if none found. The rightmost two 4-bit fields contain MASTER and SLAVE processor port numbers, respectively.

COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS	
LIEGE PLANT	MaINTENANCE GUIDE
A-2233 5715	REV. AE SYSTEM TEST PAGE 51
090110	PROC. DISPATCH READ AND CLEAR failed to clear INCN.
090120	MLC. After DISPATCH WRITE to MLC, the MLC failed to reset LOCK bit within 150 milliseconds.
090130	See 120. The MLC failed to turn the LOCR bit on again within 150 milliseconds. The OP sent is a TEST-OP.
090140	PROC. INCN failed to clear after a DISPATCH READ AND CLEAR
090150	See 120. Port number returned by DISPATCH READ \& CLEAR is not the port number being used.
090160	See 150. Interrupt address returned is not correct.
090170	See 120. The RS field does not have OP COMPLETE bit on.
090180	MLC. INCN found unequal 0 after 250 milliseconds.
090190	MLC. INCN failed to clear by DISPATCH READ AND CLEAR.
NOTE >>>	MLC. For halt codes 200, $210 \& 220$ the following test is performed: 512 TEST-OPs are DISPATCHED to the MLC, with the REFERENCE ADDRESS being incremented by 8 each time. Then INTERRUPT ADDRESS is checked.
090200	MLC failed to INTERRUPT after the DISPATCH WRITE.
090210	MLC. IINTERUPT ADDRESS returned is incorrect.
090220	MLC. Source port number returned is incorrect.
090410	MLC. DISPATCH LOCK SRIP WHEN LOCKED failed.
090440	The MLC failed to correctly access memory. Run the MLC DIAGNOSTIC TESI for fault isolation.
09050x	The DCP on channel X does not pass the SELF TEST. Run the DCP DIAGNOSTIC TEST for fault isolation.
O9AAAA	Start of section halt.
09BBBB	Unexpected halt. Type "CLEAR A $80 \mathrm{GO}{ }^{\text {c }}$ to restart.

SECTION 10

MASTER PROCESSOR TO SOFT I/O TESTING
PROCEDURE: Send a TEST STATUS then a TESI-OP to every ID present,
then save CA, RC and RS result word in memory area.
After all channels tested, then examine responses for
errors. The user must make decision based on whether
one device or more than one device shows failure. If
only one device failure then run that device diagnostic
for isolation. If more than one device shows failure
then suspect processor cards D or H.

100080 An RC cycle failed to reset the bus. Following "MOVE @1COOO1@ TO CMND" then "MOVE DATA TO T", another "MOVE DATA TO X" found X unequal 0 . Suspect cards H, D. See "DISPLAY" above.

100100 No devices found on any channel. Suspect H card CLOCRS, cards H, D CA/RC CONTROL, or else no devices are attached See "DISPLAY" above.

100200 STATUS COUNT found unequal to 1 on one or more channels. If one device failed, suspect that device. If more than one device failed suspect D or H cards. See "DISPLAY" above.

NOTE >>> HALT CODE 100300 will only occur when program is first loaded. After having occurred once, it will not occur again unless program is restarted with "CLEAR A 80 GO".

100300 A TEST-OP was dispatched to every channel with a device shown present by a TEST STATUS. Then OP COMPLETE bits and ID FIELD compared to the ID returned on TEST STATUS. Display the saved IO responses. See above "DISPLAY".

100400 See 100300. The TABDRIVER returned with an ERROR CODE for channel 0. Run DIAGNOSTIC TEST for this device.

BURROUGHS CORPORATION		
COMPUTER SYSTEMS GROUP		B1965/95
LIEGE PLANT		MAINTENAN
A-2233 5715 REV. AE SYSTEM TEST		
100401 See 100400,		
100402 See 100400, channel 2 device indicated an error.		
100403 See 100400, channel 3 device indicated an error.		
100404 See 100400, channel 4 device indicated an error.		
100405 See 100400, channel 5 device indicated an error.		
100406 See 100400, channel 6 device indicated an error.		
100407 See 100400, channel 7 device indicated an error.		
100408 See 100400, channel 8 device indicated an error.		
100409 See 100400, channel 9 device indicated an error.		
10040A See 100400, channel A device indicated an error.		
10040B See 100400, channel B device indicated an error.		
10040 C See 100400, channel C device indicated an error.		
10040D See 100400, channel D device indicated an error.		
10040E See 100400, channel E device indicated an error.		
10AAAA	Start of s	
10bBBB	Unexpected	" to restar

SECTION 11

THE DSC IS TESTED WITH A DISK PACK MOUNTED. If none found then halts with $L R=110100$. If other errors detected then the DSC test should be run. This section assumes a 205, 206 or 207 pack. For the lowest channel DSC found, unit 0 (SYSTEM disk), ID $=01$ is tested as follows:

1) TEST STATUS to find the DSC. If NO DSC PRESENT then halt.
2) EXECUTE the following routine:

INITIALIZE SECTOR B ADR $=1$
. I READ SECTOR 0, 1 SECTOR, 180 BYTES TO BFR1. READ SECTOR B, 1 SECTOR, 180 BYTES TO BFR2 READ SECTOR 0, 1 SECTOR, 180 BYTES TO BFR3 COMPARE BFR1 TO BFR3 SHIFT SECTOR B ADR LEFT BY 1 GO TO -L 18 TIMES (UNTIL SECTOR ADR $=$ @020000@)

This test will effectively test the I / O bus to the DSC and that the DSC can transfer data from the disk.

DISPLAY: The FA register contains the address of the memory area used for saves. Display this area with console type "SR24 <contents of FA>". For each channel, 4 24-bit Words are displayed, reading down on the screen. Format of information displayed:

Word 1: TEST STATUS CA: 0001 CCCC 0000000000000001
Word 2: TEST STATUS RC: XxxS SSSS $x x x x$ xxxx xIII IIII Word 3: TEST OP result: 1000000000000000 1Iii iiii Word 4: READ OP result if DSC channel, used by SECT 11. CCCC = channel
S SSSS = status count III IIII = device ID

HALT CODE
DESCRIPTION

NOTE >>> All halts in SECTION 11 will only occur once. If a disk problem is found and any halt is reported, then when program is started again, no SECTION 11 halt will be reported. Program must be reloaded or "CLEAR A 80 GO" restart performed to cause section halts to occur again

110100 NO DSC ID=01 found using TEST STATUS commands. If a DSC is known to be present, then DSC is not responding correctly. Run DSC DIAGNOSTIC. Type "GO" to skip section if no DSC present.

110200 NO UNIT found READY on any DSC channel. If units are known to be READY then have error. READY unit and type "SO1A O GO" to retry this section. Note that ONLY READS ARE DISPATCHED TO THE DISK PACK.

11030X DSC on channel X. TEST-OP failed to respond with OP COMPLETE bits.

11040X DSC on channel X. A READ OP descriptor for sector 0 was sent. Driver returned with an error. Run DSC DIAGNOSTIC.

11050X DSC on channel X. AREAD OP descriptor for a sector other than O was sent. Driver returned with an error. Sectors read starting at 1 and ending at 20000 HEX. Run DSC DIAGNOSTIC.

```
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT MAINTENANCE GUIDE
A-2233 5715 REV. AE
SYSTEM TEST PAGE 55
\begin{tabular}{|c|c|}
\hline 11060x & DSC on channel X. A READ OP descriptor for sector \(O\) was sent. Driver returned with an error. Run DSC DIAGNOSTIC. \\
\hline 11070x & DSC on channel \(X\). DSC sector 0 was read, then another sector (starting at 000001 and progressing each pass up to 020000 ) was read, then sector 0 was read again. The data read in the first sector 0 read does not match the data read in the second sector 0 read. Run DSC DIAGNOSTIC test. \\
\hline 110900 & After all the tests are completed, a checksum was accumulated on the memory data areas used in the these tests. This checksum does not compare with a previously generated sum, indicating that the DSC wrote into memory areas incorrectly. Run the DSC DIAGNOSTIC test. \\
\hline 11AAAA & Start of section halt. \\
\hline 11 BBBB & Unexpected halt. Type "CLEAR A 80 G0" to restart. \\
\hline
\end{tabular}
```


SECTION 12

This section is divided into two subsections, one for "MCPII" environment, and a second for "CMS" enviroment. Basically these two subsections are similar and executed as follow:

- All I/O controls are scanned until a "DSC" with READY unit is found. This unit will be considered as the unit generally used for CLEAR/START operation.
- VERIFICATION OF THE PACK LABEL.
- Sean DISK DIRECTORY for DATACOM FIRMWARE:

MCPII : "SYSTEM"/"MLFIRMWARE".
CMS : "SYSTEST-FWAD".

- The FIRMWARE file is loaded to memory then DOWNLOADED to the DATACOM CONTROLLER (MLC PORT 1, DCPO). FIRMWARE is STARTED and, for MLC, the ODT CONFIGURATION is LOADED. A full screen of I / O status information is written then read back and compared. RESULT STATUS and DATA COMPARE ERRORS are reported.

BURROUGHS CORPORATION	
COMPUTER SYS	TEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT	Maintenance Guide
A-2233 5715	REV. AE SYSTEM TEST PAGE 57
120160	MCPII error : INVALID SELF ADDRESS in directory or DISK FILE HEADER sector.
120200	Missing SERVICE REQUEST while reading disk. Run DISK DIAGNOSTIC.
120210	Invalid STC count reached while reading disk. Run DISK DIAGNOSTIC.
120220	Invalid STC count reached while reading disk. Run DISK DIAGNOSTIC.
120300	DISPATCH to MLC on port 1 failed to respond within 150 milliseconds.
120310	DISPATCH to MLC on port 1 with a LOAD-OP 600000 failed twice to return a result without an EXCEPTION BIT on. A LOAD of FIRMWARE was attempted.
120320	DISPATCH to MLC on port 1 failed to respond within 150 milliseconds. START FIRMWARE OP 610000 attempted.
120330	DISPATCH to MLC on port 1 with a START-OP 610000 failed to return without EXCEPTION BIT on.
120340	DISPATCH to MLC on port 1 failed to respond within 150 milliseconds. LOAD CONFIGURATION OP 620000 failed
120350	DISPATCH to MLC on port 1 with an OP of 620000 failed to return without EXCEPTION BIT on.
120400	TIMEOUT on FAST SELECT message to terminal \$\$ ODT.
120410	TIMEOUT on SEND ACK message to terminal \$S ODT.
120420	TIMEOUT on FAST SELECT message to terminal \$\$ ODT.
120430	TIMEOUT on SEND ACK message to terminal \$S ODT.
120440	TIMEOUT on POLL message to terminal \$\$ ODT.
120450	TIMEOUT on SEND ACK message to terminal \$S ODT.
120460	No EOT back after sending XMIT PAGE character to terminal, and expecting to read full page.
120470	Data sent to ODT failed to be returned correctly.
120500	DCP halt : Protocol error. Run DCP 3/4 test.
12BBBB	Unexpected halt. Type "CLEAR A 80 GO" to restart.

12BBBB Unexpected halt. Type "CLEAR A 80 GO" to restart.

12FFFF Operating system configuration halt.
This halt does not report a failure but only occurs when both "MCPII" and "CMS" operating system hardware environment are present in the system. Type "RD" to display the configuration instructions on the screen.

SLAVE PROCESSOR ERRORS.
If failure occurs then switch processors and either run this test again or the PROCESSOR TEST.

810010 With SLAVE running and on-line, the MAC command, GET.STATUS.VECTOR (MOVE 000002 TO CNS), was executed and CNS loaded into T-register. $T(16)$ was found equal to 0 , indicating SLAVE is off-line. Either the SLAVE is actually off-line, in which case put the SLAVE on-line and "GO", or the MAC card H9 is suspect, or the MAC command GET.STATUS.VEXTOR is not working correctly. If SLAVE is offline or not present, INCN will set $=9$. If SLAVE is online, then INCN will set $=3$ on DISPATCH.

810020 Continued from above. $T(20)$ found equal to 1 , indicating that SLAVE processor is not running. The MAC card H9 is suspect, GET.STATUS.VECTOR is not working correctly.

810030 MAC card H9 is suspect. The following sequence resulted in a halt, but should not have: ENABLE (MOVE e81e TO CNS), HALT.RESTART (MOVE @4OC TO CNS), HALT.SLAVE (MOVE @O3@ TO CNS), HALT micro.

810040 SLAVE was halted with CNS.HALT.SLAVE, then STATUS.VECTOR was read to T. $T(20)$, SLAVE running bit, was found to be on. Suspect MAC card H9.

810050 See 810030. Same sequence was executed and halt occurred erroneously. Suspect MAC H9 card.

810060 SLAVE port number found to be same as MASTER port number. Either SLAVE READ.PORT.NUMBER 8F MICRO failed or else SLAVE port number is incorrectly jumpered on D-card.

810070 SLAVE DISPATCH WRITE to the MASTER failed, or SLAVE processor hung up with error. Switch processors and run either this test again or PROCESSOR TEST.

BURROUGHS CORPORATION	
LIEGE PLANT	Maintenance Guide
A-2233 5715	REV. AE SYSTEM TEST PAGE 59
810080	CNS.GET.STATUS.VECTOR failed to report that SLAVE is not present. If SLAVE is actually present, then SLAVE processor is hanging up somewhere in lower memory. Suggest that PROCESSOR TEST be run on SLAVE processor. Otherwise suspect MAC card (H9).
810090	SLAVE processor READ. PORT.NUMBER 8F MICRO failed.
810100	Responding to the MASTER's first DISPATCH to SLAVE, the SLAVE failed to correctly ECHO L-address. Suspect SLAVE DISPATCH micro failed. Run SYSTEM TEST with SLAVE equal MASTER.
810110	SLAVE processor micros failure. Run PROCESSOR TEST on SLAVE processor.
810120	The SLAVE is halted with CNS.HALT.SLAVE (MOVE ©O3@ TO CNS) then DISPATCH WRITE to the SLAVE. PORT ABSENT bit should have been turned on in MASTER INCN but wasn't.
810130	See above test. Following that test, CNS.HALT.RESTART (MOVE @4O@ TO CNS) and a HALT micro failed to restart the SLAVE. Suspect MAC H9 card.
810140	LOCK bit found on following DISPATCH READ AND CLEAR. Suspect SLAVE processor. Run this test with SLAVE = MASTER
810142	SLAVE failed to respond to MASTER DISPATCH WRITE. Run SYSTEM TEST again with SLAVE as MASTER.
810144	SLAVE failed to correctly ECHO L-address sent by MASTER with DISPATCH WRITE. L SENT $=000000$ L $=$ DATA RECEIVED.
810150	LOCK bit found on following DISPATCH READ AND CLEAR. Suspect SLAVE processor. Run this test with SLAVE = MASTER
810152	SLAVE failed to respond to MASTER DISPATCH WRITE. Run SYSTEM TEST again with SLAVE as MASTER.
810154	SLAVE failed to correctly ECHO L-address sent by MASTER with DISPATCH WRITE. L sent $=$ FFFFFF, $L=$ DATA RECEIVED.
810160	LOCK bit found on following DISPATCH READ AND CLEAR. Suspect SLAVE processor. Run this test with SLAVE $=$ MASTER

BURROUGHS CORPORATION	
COMPUTER SYS	TEMS GROUP B1965/95 SYSTEMS
LIEGE PLANT	MAINTENANCE GUIDE
A-2233 5715	REV. AE SYSTEM TEST PAGE 60
810162	SLAVE failed to respond to MASTER DISPATCH WRITE. Run SYSTEM TEST again with SLAVE as MASTER.
810164	SLAVE failed to correctly ECHO L-address sent by MASTER with DISPATCH WRITE. L sent $=A A A A A A, L=D A T A$ RECEIVED.
810170	LOCK bit found on following DISPATCH READ AND CLEAR. Suspect SLAVE processor. Run this test with SLAVE = MASTER
810172	SLAVE failed to respond to MASTER DISPATCH WRITE. Run SYSTEM TEST again with SLAVE as MASTER.
810174	SLAVE failed to correctly ECHO L-address sent by MASTER with DISPATCH WRITE. L sent $=555555$, $L=$ data received.
810180	SLAVE processor READ. PORT.NUMBER 8F MICRO failed.
810190	SLAVE processor $8 F$ MICRO returned a port number in $T F$ that doesn't match the port number obtained by forcing a memory error and then extracting the port number from the ELOG into Y-register. Run PROCESSOR TEST on SLAVE.
810200	SLAVE was found with INCN (3) on. Run PROCESSOR TEST.
810210	SLAVE didn't interrupt within 10 seconds. If SLAVE is OFFLINE, put it ONLINE and enter GO. If SLAVE is ONLINE, run test again with SLAVE 25 MASTER.
810300	Processor problem, run PROC. TEST with SLAVE processor as MASTER. 8C MICRO failed.
810310	Processor problem, run PROC. TEST with SLAVE processor as MASTER. 9C MICRO failed.
810320	Processor problem, run PROC. TEST with SLAVE processor as MASTER. IC MICRO failed.
810330	Processor problem, run PROC. TEST with SLAVE processor as MASTER. X, Y, or TAS registers failed.
810335	Processor problem, run PROC. TEST with SLAVE processor as MASTER. 2C MICRO or pads failure.
810340	Processor problem, run PROC. TEST with SLAVE processor 25 MASTER. Memory MICROs failed.

88 BBBB

(continued next page)

```
BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
LIEGE PLANT
B1965/95 SYSTEMS
MAINTENANCE GUIDE
A-2233 5715 REV. AE SYSTEM TEST PAGE 63
Next in memory is the HARD I/O saved responses area. To display this area type "NEXT". For each port numbered 0 thru 4, 12 24-bit Words are displayed. Processor port (s) information is not stored. Format of information displayed:
Word 1: Contents of I before DISPATCH WRITE
Word 2: Contents of \(L\) before DISPATCH WRITE
Word 3: Contents of T after DISPATCH WRITE \& READ Word 4: Contents of \(L\) after DISPATCH WRITE \& READ Word 5: RS field results of the IEST-OP deseriptor Word 6: INCN after DISPATCH READ Word 7-12: Not used will be 000000
If no I/O device responses are listed and I/O devices are known to be attached, then suspect cards \(D \& H\).
EEEEEE CONSOLE INTERRUPT is on. ENTER OPTIONS HALT. Program scratchpads and program options in SO1A may be changed. Type "GO" to continue.
```

BURROUGHS CORPORATION	
COMPUTER SYSTEMS GROUP	B1965/95 SYSTEMS
LIEGE PLANT	MAINTENANCE GUIDE
A-2233 5715 REV. AE	SYSTEM TEST PAGE 64

NOTES

BURROUGHS CORPORATION	
COMPUTER SYSTEMS GROUP	B1965/95 SYSTEMS
LIEGE PLANT	MAINTENANCE GUIDE
A-2233 5715 REV. AE	SYSTEM TEST PAGE 65

NOTES

