

THE DESCRIPTOR

BULLETIN 5000-20002-P
FEBRUARY 1961

- a definition of the B 5000 Information Processing System

Sales Technical Services

Equipment and Systems Marketing DiVision

Burroughs Corporation

Detroit 32, Michigan

Copyright © 1961 Burroughs Corporation

TABLE OF CONTENTS

Section Page

1 INTRODUCTION .. 1-1

2 PROGRAMMING LANGUAGE .. 2-1
ADVANTAGES OF PROBLEM-ORIENTED LANGUAGES 2-1
Computational Language (ALGOL) .. 2-1
Data-Processing Language (COBOL) ... 2-1
Reduced Compiling and Running Time ... 2-2
Simplified Debugging and Program Maintenance 2-2
PROGRAMMING ADVANTAGES OF THE B 5000 SYSTEM 2-3
Reduced Programming Time .. 2-3
Reduced Compiling and Running Time ... 2-3

Conventional Compiler Functions .. 2-3
Burroughs Compiler Techniques ... 2-4

Simplified Debugging and Program Maintenance 2-8

3 SYSTEM CHARACTERISTICS .. 3-1
GENERAL DESCRIPTION ... 3-1
Storage Drum ... 3-1
Core Memory. 3-1
Words ... , 3-2
Program Reference Table ... 3-3
Program Segments ... 3-3
The Stack .. 3-3
Input/Output Areas ... 3-5
Memory Addresses ... 3-5
Processing. 3-5
Modes of Operation .. 3-5
OPERATION DURING ARITHMETIC MODE 3-5
Introduction .. 3-5
Program Reference Table ... 3-7

Descriptors ... 3-8
Operands ... 3-9
Operation of Program Syllables in Arithmetic Mode 3-9

Summary .. 3-15
OPERATIONS DURING SUBROUTINE MODE 3-15
Introduction ... 3-15
Use of Operand-Call and Descriptor-Call Syllables 3-15
The F Register ... 3-15
Special Subroutine Operators ... 3-16
Entry to Subroutine Mode ' 3-17
Exit from Subroutine Mode ... , , 3-20
OPERATION DURING DATA-MANIPULATION MODE 3-21
Introduction .. , 3-21
Editing Functions ... , , , 3-22
Entry to Data-Manipulation l\1ode ... 3-22
Illustration of Sonie Specific Operators Utilized by the Cornpilers .. , 3-23
Data-Manipulation Mode Example 1 ... 3-26
Data-Manipulation Mode Example 2 ... 3-27
Data-Manipulation Mode Example 3 ... 3-28

iii

TABLE OF CONTENTS (continued)

Section Page

4 MASTER CONTROL PROGRAM .. 4-1
INTRODUCTION .. 4-1
Computer Functions ... 4-1
Automatic System Assignment and Coordination ' 4-1
M ul ti -Processing. 4-1
Elements of the Master Control Program 4-1
Entry to the Control Mode ... 4-2
The Interrupt Concept ... 4-2
EXECUTIVE ROUTINE .. 4-2
Input/Output Operations .. .4-2

Initiation of an Input/Output Operation4-3
Use of the Continuity Bit ... 4-3
Completion of an Input/Output Operation 4-3
Summary ... 4-4

Handling of Interrupt Conditions .. 4-4
Processor-Dependent Interrupts ... 4-4
Processor-Independent Interrupts .. 4-5
Program Reject Routine4-5

Control of Program Segments ... 4-5
Use of Other :rvlaster Control Program Routines 4-6
Maintenance of an Operations Log ... 4-6
Maintenance of System Description .. 4-6
Summary ... 4-6
THE SCHEDULE ROUTINE .. 4-6
Program Backlog Table .. 4-6
Input/Output Requirements .. 4-7
Memory Requirements ... 4-7
Summary , , ' 4-7
ENVIRONMENT CONTROL ROUTINE 4-7
Assignment of Input/Output Units .. 4-7
Allocation of Memory .. 4-7
Base Location Tables , ' ... ' .. 4-8
Loading Program Segments , , ' 4-8
Loading Additional Segments ... , .4-8
Program-Finish Conditions .. 4-8
Changing the Schedule .. .4-9

5 COMPONENTS .. 5-1
INTRODUCTION .. 5-1
CONSOLE ... 5-1
MEMORY MODULE , .. 5-1
MEMORY EXCHANGE .. 5-3
INPUT /OUTPUT EXCHANGE .. 5-3
INPUT /OUTPUT SYSTEM ... 5-3
Input/Output Channel ... 5-4
Input Information Flow .. 5-4
Output Information Flow ... 5-4
STORAGE DRUM ' .. 5-7
MAGNETIC TAPE UNIT ... 5-7
Read Operations ... 5-8

iv

TABLE OF CONTENTS (continued)

Section Page

5 (cont.) Write Operations .. 5-8
LINE PRINTER ... 5-9
CARD HANDLING EQUIPMENT .. 5-10
Card Readers. 5-11
Card Punch .. 5-12
PLOTTER .. 5-12
MESSAGE PRINTER/KEYBOARD ... 5-13
Message Printer .. 5-13
Keyboard .. 5-13

APPENDIXES

Appendix Page

A ALGOL CHARACTERISTICS ... A-I
INTRODUCTION. A-I
BASIC SYMBOLS AND WORDS .. A-I
Letters. A-I
Digits ... A-I
Operators and Symbols ... A-I
Identifiers .. A-I

Variable .. A-2
Procedure .. A-2
Switch ... A-2
Array .. , A-2
Label .. A-2
Formal Parameter ... A-2

Numbers ... A-2
Strings ... A-2
EXPRESSIONS .. A-2
Variables ... A-2
Functional Designator~ .. A-2
Arithmetic Expression~ ... A-3

Simple ... A-3
General. A-3

Boolean Expression~ ... A-3
Simple ... A-3
General. A-3

Designational Expressions .. A-4
STATEMENTS .. A-4
Assignment Statements .. A-4
Go To Statements ... A-4
Dummy Statements ... A-4
Conditional Statements .. A-5
For Statements ... A-5

Arithmetic Expression Element ... A-5
Step-Until Elements ... A-5
While Element .. A-5

Procedure Statements .. A-5

v

APPENDIXES (continued)

Appendix Page

A (cont.) DECLARATIONS ... A-5
Type Declarations .. A-5
Array Declarations ... A-6
Switch Declarations ... A-6
Procedure Declarations .. A-6

Procedure Declaration Heading .. A-6
Procedure Declaration Body ... A-6

ALGOL EXAMPLE .. A-6

B B 5000 DATA-PROCESSING LANGUAGE B-1
DEVELOPMENT ... B-1
FEATURES ... B-1
ADVANTAGES " B-1
GENERAL DESCRIPTION .. B-1
IDENTIFICATION DIVISION ... B-2
ENVIRONMENT DIVISION ... B-2
DATA DIVISION ... B-2
PROCEDURE DIVISION .. B-3
DETAILED DESCRIPTION ... B-3
Character Set. . . B-3

Characters Used in Forming \V ords ... B-3
Characters Used for Punctuation.. B-4
Characters Used in Relations. B-4
Characters Used in Editing .. B-5

Words. B-5
Nouns ... , B-5
Qualification ... B-5
Subscripts ... B-6
Notation .. B-6
Verbs ... B-6

Proced ures. " B-8
Condi tionals. B-8
Simple Condition. B-8
Relations. B-8
Compound Condition ... B-9

Statements .. B-9
Imperative Statements. B-9
Conditional Statements ... B-9

Sentences " .. " B-10
Imperative Sentences .. B-10
Conditional Sentences ... B-10

Rules for Converting Flow Charts into Narrative Form B-11
Rules for Omitting Names , , ., B-11

Punctuation .. B-12
Sentence Execution. B-12

Imperative Sentences .. B-12
Conditional Sentences .. B-12
Compiler Directing Sentences. B-12

vi

APPENDIXES (continued)

Append ix Page

B (cont.) Control Relationship Between Sentences B-12

Paragraph ... B-13
Section. .'. B-13
ACKNOWLEDGMENT .. B-13

C GLOSSARy C-1

Figure

2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10

LIST OF ILLUSTRATIONS

FIGURES

Page

Flow Chart of Translation Process ... 2-6
Stages of the Scanning Process .. 2-7
Compilation of Source Program ... 3-1
Layout of the Drum. .. 3-2
Allocation of Core Memory " , 3-2
Shifting of Information in the Stack ... , 3-4
Condition of Stack and Associated Registers After Information Has Been Removed. 3-4
Data Descriptor ... 3-7
Input/Output Descriptor ... '" .. 3-8
Program Descriptor .. 3-8
Operand .. 3-9
Program Word .. 3-9
Program Register ... 3-10
Control Register ... 3-10
Literal Placed on Top of Stack ... 3-10
Obtaining Operand Directly From Program Reference Table 3-10
Constant Indexing .. 3-11
Variable Indexing .. 3-12
Multilevel Variable Indexing ... 3-13
Obtaining Descriptor Through Reference to Operand. 3-13
Obtaining Descriptor by Referencing a Descriptor ' 3-14
Layout of Memory Module With Associated Registers '.' 3-14
Variations in Format of Operand-Call and Descriptor-Call Syllables in

Subroutine Mode ... 3-16
System Configuration Chart. 5-2
The Console ... : : 5-2
Memory Module and Input/Output Channel 5-4
Input Information 'Flow .. 5-5
Output Information Flow ... 5-6
Storage Drum ' .. 5-7
Magnetic Tape Unit ... 5-8
Magnetic Tape Format ... 5-9
Line Printer. 5-10
800 cpm Card Reader and Program Card Reader 5-11

5-11 Card Punch .. 5-12
5-12 Plotter.. 5-12
5-13 Message Printer/Keyboard .. 5-13

vii

TABLES

Table Page

3-1 Function of Registers in B 5000 Processor. 3-6
4-1 Input/Output Combinations With Maximum System4-7
4-2 Input/Output Assignment. 4-7
4-3 lVlemory Allocation. 4-8
4-4 Base Locations of Program Reference Tables 4-8
4-5 Base Locations of Input/Output Descriptors. 4-8
5-1 System Configuration Limits. 5-1

viii

.---
The B 5000 I nformation Processing System

x

As the title implies, this manual contains a descrip
tion in some detail of the B 5000 System and its
operatIon. It is intended to provide technical in
formation for those directly concerned with data
processing-managers of data processing systems,
programmers, and· management personnel who are
acquainted with the problems and concepts of elec
tronic data processing. It is not intended as a teach
ing manual or programming primer. Without delving
into such elements of computer design as circuitry
and machine logic, this handbook explains how the
B 5000 achieves its remarkable flexibility and effi
ciency through a comprehensive systems approach
to problem solving.

The fact that the B 5000 works as a system-rathet
than only an advanced set of hardware-has de
termined the organization of this manual.

The source languages, ALGOL and COBOL, are
presented first because they are the link between the
user and the system, the statement of his problem
and its ultimate solution. The next section, System
Characteristics, discusses the way the B 5000 func
tions as a system and processes a program. Over-all
coordination and control of processing, so important
to total production through maximum use of the
B 5000 components, is supplied by the Master Con
trol Program, which is described next. Finally, the
operational characteristics and features of the com
ponents which implement this unique system ap
proach are specified in detail. Two appendixes pro
vide comprehensive definitions of the programming
languages, ALGOL and COBOL, including examples
of their use. A glossary is included for reference to
definitions of terms used with the B 5000 System.

The Descriptor is one of a series of technical publica
tions which will give the user complete information
on the equipment and its use. The B 5000 Concept
Manual introduces the reader to the new design
approach that integrates hardware and software
automatic programming and advanced operating
techniques~into a unified package. This first edition
of the Descriptor will be augmented by the publica
tion of programming primers, reference manuals, and
advanced programming manuals for ALGOL and
COBOL.

SECTION 1
INTRODUCTION

1·1

The B 5000 was designed as a complete system, com
bining components and built-in programming aids,
to bring the user simplified programming, ease of
operation, and complete freedom of system expansion.

The programmer works in the language of his prob
lem, either algebraic notation or English narrative
statements. The B 5000 has compiler-oriented ma
chine language and logic which accept the common
languages of ALGOL and COBOL. Because the
machine language of the B 5000 is similar to these
problem languages, compilation time is reduced and
object-program redundances eliminated. The Proc
essor operates on either single characters or com
plete words, alphanumeric or binary information,
and the programs it uses are extremely compact.
Since the B 5000 handles memory and input/output
unit assignments, segmentation of programs, and
subroutine linkages automatically, the programmer
is freed of many arduous tasks and the likelihood of
error is reduced. Correction of programs is done at
the source-language level and is further simplified
by integral debugging aids.

Operator intervention is nearly eliminated because
complete management of the system is assumed by
the Mast~r Control Program, a comprehensive op
erating system that is recorded on the Storage Drum
of the B 5000 System and provides simultaneous
input/output operations and Multi-Processing. By
controlling the sequence of processing, initiating all
input/output operations, and providing automatic
handling procedures to meet virtually all processing
conditions, the Master Control Program can obtain
maximum use of the system components at all times.
Thus it achieves greater over-all production and
efficiency. It assumes many functions that were
formerly the responsibility of the programmer or
operator, such as scheduling, allocation of memory,
and assignment of input/output units. Because these
functions are performed under central control,
changes in schedule. system configuration, and pro
gram sizes can be readily accommodated.

It is this ability to control the processing pattern
that provides the B 5000 with the potential for
smooth growth. Since Processors, Input/Output

Channels, and core Memory Modules are inde
pendent of each other, the user may start with a
basic system and only enough memory space to
process his current programs. Large programs are
processed in workable segments, so that the available
memory is not filled with one job. As the volume of
work swells, or larger programs are used, Memory
Modules may be added. This increases Processor
speed because more information can be processed
concurrently. When input/output requirements ex
ceed the capacity of the original equipment, a new
Input/Output Channel can be added. Since the
Master Control Program automatically adjusts

1·2

equipment assignments to use all available units,
reprogramming is never necessary. Finally, a con
siderable growth in workload may warrant a second
Processor, so that true parallel processing, as well as
Multi-Processing, can be performed. The growth of
the system in small increments-suited to the work
load-is possible because the B 5000 is modular and
because the programs are independent of the hard
ware. This Program Independent Modularity is the
ability of the B 5000 to process programs on the
equipment available, always making the most ef
fective use of the system configuration, according to
the needs of the application.

ADVANTAGES OF
PROBLEM-ORIENTED LANGUAGES

This section explains the language used by the pro
grammer to communicate with the B 5000 System.
Three advantages of this language, as compared to
conventional machine and compiler languages, are
discussed:

1. Reduced programming time.
2. Reduced time to compile and run the object

program.
3. Simplified debugging and program maintenance.

Programming for the B 5000 System is done in a
problem-oriented language, rather than machine lan
guage. Thus the programmer is free to concentrate on
the job of finding a logical solution and recording
that solution in a language akin to his own.

Since most problems can be placed in one of two cate
gories, computation or data manipulation, two dis
tinct problem languages have been made available to
the B 5000 programmer, one for each problem type.

COMPUTATIONAL LANGUAGE (ALGOL)

The person tfesponsible for solving a mathematical
problem thinks about his subject in algebraic termi
nology. Many algebraic languages have been devised
and have been in use for several years. However, e"x
perienced and capable computer users have become
increasingly concerned in recent years about the num
ber of these languages being produced. It has seemed
that each new machine was accompanied by the
announcement of a new automatic programming lan
guage.

An international conference of computer specialists
was held to solve this problem. At this conference the
groundwork was laid for development of a single lan
guage which would have three major characteristics:

1. It was to be independent of any computer so
that programs written in this language would be
available to all users regardless of the machine
used.

2. It was to be as close to the thinking language of
the programmer as possible to shorten the time
required to formulate the solution on paper.

2·1

SECTION 2
PROGRAMMING LANGUAGE

3. It was to be a language which incorporated every
means conceivably needed for expressing solu
tions to problems of an algebraic nature.

A preliminary report on this conference was issued in
December, 1958. The language was given the name
ALGOL (ALGOrithmic "'Language). During 1959
the preliminary ALGOL specifications were studied
by interested parties throughout the world. Informal
meetings were held and correspondence was carried
on by many computer-user groups in an effort to
perfect this language.

Early in 1960, another international conference was
held in Paris. As a result, ALGOL 60 was born.
BURROUGHS has had a part in the development of
ALGOL and is proud to include it as a part of the
B 5000 Programming Language.
The following brief example may give the reader an
idea of the use of ALGOL. A more complete explana
tion of ALGOL with a more complex example is given
in Appendix A.

It is desired to add the quantities of A and B, and,
if the sum (C) is greater than zero, stop the operation.
When coding in ALGOL 60, this operation can be
expressed in one simple statement, or program step,
and that statement is like the thought process of the
programmer.

IF A + B > 0 THEN GO TO HALT;

Also, in preparing this statement for input, it would
be keypunched as it appears.

Compare this to the steps required when the same
problem is coded in the machine language of another
computer. It would be keypunched as follows:

.0 0000 10 1000
o 0000 12 1001
o 0000 18 2000
o 0000 34 2050

DATA-PROCESSING LANGUAGE (COBOL)

For defining a data-manipulation problem it would be
ideal to use a language which is native to the pro-

grammer. Therefore, it has been a goal of the de
signers of automatic programming systems to pro
vide as many English words as possible in the
programming languages designed for business.

The same problems, however, that confronted scien
tific users became apparent in data-processing opera
tions: too many languages were being developed and
put into use. In May, 1959, a meeting was held in
Washington with representatives from industry,
government, and computer manufacturers in attend
ance. They agreed that the development of one
common language tailored for business use was both
desirable and feasible. There were three major re
quirements:

1. The need to translate existing data-processing
problem solutions efficiently from one type of
computer to another with minimum conversion
costs.

2. The need for program documentation in a form
allowing changes and additions with minimum
time and expense.

3. The need for reducing the training period for
programming personnel.

A report outlining initial specifications of a COmmon
Business Oriented Language (COBOL) \vas pub
lished in April, 1960. These specifications represent
COBOL 60.

On February 4, 1961, the COBOL Maintenance
Committee-a group of 12 ADPM manufacturers,
including Burroughs, and 10 interested industrial
users-will complete the newest revision to the
COBOL Specifications. The revised specifications
will represent COBOL 61, which will be a pro
gramming language for the B 5000. The B 5000
COBOL translator is designed so that future modi
fications such as COBOL 62 can be readily in
corporated.

With COBOL, as with any language, certain rules of
construction must be followed. The features of
COBOL are outlined in Appendix B, together with
an example. However, to give an indication of the
nature of COBOL, a simple example is given here.

It is desired to update an employee's annual FICA
immediately if his monthly FICA is greater than or
equal to the average. If it is less than the average, it
is to be given special consideration before updating
the annual balance.

Using COBOL, this situation can be handled by one
procedure, and would be handled as follows:

IF MONTHLY-FICA LESS THAN 16.00 GO
TO SPECIAL-FICA; OTHERWISE ADD
MONTHLY-FICA TO ANNUAL FICA.

2·2

U sing the machine language of another computer,
the same situation would be coded as follows:

o 0000 10 1000
o 0000 18 2000
o 0001 34 2050
o 0000 19 1010

The BURROUGHS B 5000 Programming Language,
therefore, includes the two most widely accepted
computer languages yet devised, ALGOL and CO
BOL. They are usable in the form designated by
their originators and are not just another manufac
turer's modification. The use of ALGOL and COBOL
will greatly reduce the time required to program the
problem and will result in more B 5000 production
per hour. Extensive studies, comparing the time
required to code a variety of problems in machine
language with that to program them using ALGOL,
have shown a reduction in the over-all time in a ratio
of approximately 20 to 1.

REDUCED COMPILING AND
RUNNING TIME

Another important factor contributing to the
Through-Put of the B 5000 is the greatly increased
compilation speed of its translators. Programs that
once required machine compilation time from 30
minutes to nearly two hours can be handled by the
B 5000 in 30 seconds to a minute or two.

Not only does the B 5000 translate fast, but it pro
duces a very efficient object program. In the past, an
experienced programmer could see at a glance many
superfluous instructions in a compiled program. This
is not true of a B 5000 object program.

SIMPLIFIED DEBUGGING AND
PROGRAM MAINTENANCE

A serious obstacle to the completion of a program is
often the amount of time required for debugging.
The B 5000 programmer need not concern himself
with the easily made and hard-to-find errors created
in the manual process of translating a logical solution
into detailed machine instructions. He looks only at
the logic of the problem, which is defined in an under
standable language.

The difference ~n complexity of debugging require
ments can best be illustrated by an example. Suppose
that a reporter who does not understand Japanese is
required to write a story for Japanese distribution.
Upon completion of the task a Japanese proofreader
informs him only that the story is not correct. The
reporter would then be required to check each char
acter of his story with the aid of an English-Japanese
dictionary, a task which could prove as time con
suming as the writing itself.

On the other hand, suppose that an interpreter were
available to inform the reporter of factual errors in
the story due to the language difference. The reporter
then need only review his English copy to correct the
specified facts.

The B 5000 incorporates a translator analogous to
the interpreter. The programmer need never know
computer language to write an effective program
for it.

Program revisions can be as tedious as debugging.
Such revisions may be dictated by an altered problem
definition, often occurring many weeks after com
pletion of debugging. To facilitate making these
changes it is desirable to document the program with
logical flow charts, file layouts, and solutions to the
problem. With the B 5000, the documentation is
readily understandable--not only to the programmer
but to anyone concerned with the problem. Special
purpose flow charts slanted toward particular machine
characteristics or the machine language instructions
themselves are not required. Occasional changes to
the program are accomplished in problem-oriented
language. The changes are concerned with the logical
solution, not the machine language instructions.

PROGRAMMING ADVANTAGES OF
THE 85000 SYSTEM
REDUCED PROGRAMMING TIME

The BURROUGHS B 5000 is designed to make use of
the best programming language presently available,
a problem-oriented language which includes the most
recent developments in this field, ALGOL 60 and
COBOL. Because ALGOL and COBOL were devised
by top people in their respective fields, it is reasonable
to expect that these languages will not be replaced
for years to come. ALGOL and COBOL have already
received wide acceptance and their use is fast be
coming universal. It is therefore possible to create a
program library which will have a life span beyond
that of the particular computer equipment being used
at the time. The exchange of programs between
different users is also practical.

The design characteristics of the B 5000 contribute
significantly to greatly reduce total programming
time. The programmer need not be concerned with
such things as actual memory locations, specific input
and output unit and magnetic tape unit designation.
In the B 5000, these details are handled automatically
while the program is being run. The same object pro
gram can be run without recompilation even when
the system configuration changes. These housekeep
ing details are automatically handled by the Master
Control Program.

2·3

REDUCED COMPILING AND
RUNNING TIME

The BURROUGHS B 5000 is capable of very fast com
pilation speeds and efficient object programs because
the system has been designed to take advantage of
the latest automatic programming techniques.

Recent BURROUGHS compilers have made use of these
techniques, resulting in compilation speeds as much
as 50 times faster than those of other compilers.

Conventional Compiler Functions. The opera
tion of compilers must be considered in order to
understand the advantages of these BURROUGHS
compiler techniques. A compiler is a program able
to translate from one language to another, i.e.,
from a language which is intelligible to a programmer
to a language which is understood by an electronic
computer. Programming languages have changed
and have begun to approach the thinking language
of the programmer. These improvements, however,
have resulted in the programming language looking
less and less like the machine language. This means
that the compiler requires more and more time to
perform the translation functions required to produce
an object program in machine language.

The conventional compiler does three basic things:
1. Examines the programmer's language.
2. Creates an intermediate language.
3. Produces machine language.

First, it examines the programmer's language (source
program), one character at a time and establishes a
dictionary of separate entities, such as identifiers,
numbers, and variables. The compiler is able to do
this by recognizing separator and operator symbols
of the source language such as colons, equal signs,
and parentheses. For example, if the programmer had
written somewhere in his program:

START: A~ 7 X (B + C)

the compiler would begin to scan with the letter S.
It would then encounter the letters T, A, R, and T
in that order. When it recognizes the colon as the
next character, the compiler knows that START
is a separate item and would add it to the list. Next
the compiler encounters A followed by an arrow,
so it would add A to the list. Similarly for 7 and B
and C. The dictionary contains, in addition to the
item's name, its type and an indication of its location.

Secondly, the compiler produces an intermediate lan-
guage \vhich essentiall)T breaks up the program into
separate operational groupings. For instance, in the
above example, the following equation must be
evaluated:

A = 7 (B + C)

Earlier conventional compilers would break this
equation up into two operations:

A = 7 x T
T=B+C

(where T stands for some temporary storage location)

A temporary location is established each time an en
closure symbol is encountered during the scanning
process. When a left parenthesis is found in an arith
metic expression, for example, it is immediately
known that a single value is to be defined. The set of
operations for computing this value will be termi
nated by the associated right parenthesis. When the
termination will occur is still unknown. Enclosure
symbols may be nested and expressions quite com
plex. Therefore, this problem has been handled by
creating many temporary locations. Later an attempt
must be made to eliminate as many as possible and
the intermediate language condensed.

Finally, the actual machine language is produced
through the use of generators within the compiler
itself. Because these generators (subroutines) are of
a general nature they must be constructed to take
care of all possible cases. Therefore, the resulting
machine language (object program) contains un
necessary instructions. For instance, the above ex-.
ample might result in the following:

LOAD B
ADD C Add operation generator.
STORE T
LOAD 7
MULTIPLY T Multiply operation generator.
STORE T
LOAD T Store operation generator.
STORE A

An experienced programmer would use fewer instruc
tions to arrive at the same solution:

LOAD B
ADD C
MULTIPLY 7
STORE A

Therefore, the object program produced by earlier
compilers would take, in most cases, considerably
longer to run than one written by an experienced
programmer.

Burroughs Compiler Techniques. The first task
of a compiler, that of scanning the source program,
is also a part of the B 5000 translators. It is inter
esting to note, however, that in a conventional

2·4

compiler this process is just a first step. On the
B 5000, one pass through the programmer's language
is all that is required.

The effectiveness of the BURROUGHS compiler tech
nique is most readily recognized in the second phase
of compilation. The example A = 7 (B + C) as des
cribed illustrates that parentheses caused conven
tional compilers to do a great deal of extra work in
setting up temporary storage locations. Nonetheless,
parentheses are needed in the source language to
eliminate ambiguities. For instance, the example
could be interpreted another way if there were no
parentheses. Namely:

A = 7B + C

This problem of ambiguity was also quite perplexing
to philosophers who were considering logical propo
sitions until a Polish logician, J. Lukasiewicz, de
veloped a notational system which did not require
enclosure symbols. His scheme is commonly called
Polish notation. The BURROUGHS technique produces
an intermediate language using Polish notation
concepts.

POLISH NOTATION. The essential difference be
tween Polish notation and conventional notation is
that operators are written to the right of a pair of
operands instead of between them. For example, the
conventional B + C would be written BC+ in Polish
notation. Looking again at the example, A = 7 (B +
C), it could be written as follows:

Be + 7 x A =
Any expression written in Polish notation is called a.
Polish string. In order to fully understand this con
cept, the rule for evaluating a Polish string should
be known.

The rule can be summarized in a few steps:
1. Scan the string from left to right.
2. Remember the operands and the order in which

theyoccur.
3. When an operator is encountered do the follow

ing:
a. Take the two operands which are last in

order;
b. Operate upon them according to the type of

operator encountered;
c. Eliminate these two operands from further

consideration;
d. Remember the result of (b) and consider it as

the last operand in order.

Following this rule through the Polish string, Be +
7 x A =, step by step would result in:

OPERANDS BEING
THE REMEMBERED

SYMBOL BEING SYMBOL AND THEIR ORDER OPERATION RESULT OF
STEP EXAMINED TYPE OF OCCURRENCE TAKING PLACE OPERATION

a B Operand

b c Operand 1

c + Add
Operator 2

1

d 7 Operand 1

e x Multiply
Operator 2

1

f A Operand 1

g = Replace
Operator 2

1

The result is that A has assumed the value 7 (B + C).

If the reader is interested in testing his grasp of
Polish notation, a conventional algebraic expression
is given ·below. An equivalent Polish string may be
found at the bottom of the page.

y ~ (w + i + t) (p - q) I z

OPERAND ST ACK. Polish notation is used as the
formulation principle of the B 5000's intermediate
language. Very effective techniques have been de
vised for use in its production. One of these involves
the utilization of two reserved areas. One holds op
erands and is called an Operand Stack; the other con
tains operators.

As the B 5000 translator scans the source program, it
places any operands encountered in theStack, opera
tors, and enclosure symbols in their reserved area. To
show how these areas function, the example given as
an exercise above will be used. Figure 2-1 shows a
simplified flow chart of the translation process, pre
sented only for illustrative purposes. In Figure 2-2,
the reserved memory contents are shown at each
stage of the scanning process. It will be noticed that
only the essentials are retained in memory. The need
for temporary storage locations is eliminated.

In summary, the BURROUGHS B 5000 compiler is
considerably faster than conventional compilers dur-

Polish string equivalent: ywi + t + pq - x z / =

B

c B+C (B + C)
B

(B + C)

7 7 x (B + C) 7 (B + C)
(B + C)

7 (B + C)

A A= 7 (B + C)
7 (B + C)

2·5

ing the second phase of the compilation process be
cause of three things:

1. It produces an intermediate language which has
formulation characteristics very similar to that
of the source language, requiring only a simple
translation.

2. This intermediate language is free of ambiguity,
yet is composed of a minimum number of sym
bols.

3. The methods used to form this language (Polish
notation), such as the stack concept, have
proved to be extremely efficient.

The third phase of the normal compilation process is
practically eliminated, not by a compiler technique
but through the revolutionary design of the BUR
ROUGHS B 5000. The structure of the B 5000 machine
language is patterned after that of Polish notation.
Therefore, for all practical purposes, the B 5000
translator has produced the desired machine lan
guage after the second phase.

Another factor contributing to Through-Put is the
running speed of the object program. When a B 5000
program is running, it is in essence evaluating a Pol
ish string. Referring to the example of such an eval
uation process, for the string BC + 7 x A =, it can
be seen that an operand' stack would be .ideal for

IS THERE A NEXT
ITEM IN SOURCE
LANGUAGE?

YES 81 ______
8

PLACE A STORE
OPERATOR ON
TOP OF AREA

I

WHAT TYPE
IS IT?

OPERAND
......

OPERATOR

PLACE IT ON
TOP OF
OPERAND STACK

.....
PLACE IT ON
TOP OF
OPERATOR AREA

BRACKET
SYMBOL IS IT RIGHT

OR' LEFT TYPE?

SEPARATOR r----·----

ADD OPERAND
ON T.O.S.

SYMBOL

TO POLISH STR'ING

NO

YES

ANY MORE
OPERATORS IN
AREA?

..,

......

WHAT TYPE
IS IT?

ADD OPERAND
IF ANY ON T.O.S .
TO POLISH STRING

,ADD OPERATOR
i.--- IF ANY ON T.O.S.

TO POLISH STRING

LEFT

RIGHT

NO

ARE THERE ANY
OPERANDS IN
OPERAND STACK?

ADD OPERAND
IF ANY ON T.0.S.
TO POLISH STRING

ADD OPERAND
IF ANY ON T.O:S.
TO POLISH STRING

ADD OPERATOR
ON TOP OF AREA
TO POLISH STRING

YES

PLACE THE LEFT
BRACKET SYMBOL
ON TOP OF AREA

PLACE A MULTIPLY
OPERATOR SYMBOL
ON TOP OF AREA

c::INATE IT

NO YES

IS NEXT ITEM
ON TOP OF AREA
A LEFT BRACKET?

Note: Whenever an item is added to Polish strin:g, it is eliminated
from stack. T.O.S. stands for Top of Stack.

Source Language y+- [(w + i + t) (p - q)] ;z;

INTERMEDIATE INTERMEDIATE
SOURCE CONTENTS LANGUAGE SOURCE CONTENTS LANGUAGE

LANGUAGE CONTENTS OF AREA (POLISH LANGUAGE CONTENTS OF AREA (POLISH
ITEM BEING OF STACK FOR OPERATORS, STRING) ITEM BEING OF STACK FOR OPERATORS, STRING)

EXAMINED FOR OPERANDS ETC. BEING BUILT EXAMINED FOR OPERANDS ETC. BEING BUILT

D D
p

D rn
ytitw+

D D D UJ
yti-+w+

D [J
q D rn yti+w+

D IT] D 0 ytHw+qp-

w D 0 D D
yti+w+qp-x

+ D IT] / D [J yti+w+qp-x

D OJ D [J yti+w+qp-I

+

D rn D D yti+w+qp-lZj=

[J rn
,

D [J yti+w+
NOTE: The reader will notice that the operands p
and q are transposed in the final Polish string pro-
duced. The subtract operator in the B 5000 is defined
so that these operands will be ordered properly dur-
ing running time. The Polish string built by the
B 5000 also is one which minimizes the contents of

D ill yti+w+
the operand stack during object time.

Fjgure Z·2. Stages of the Scanning Process

2·7

retention of the "operands being remembered."Their
order in the stack is automatic when using the "top
of-stack" concept. This concept is an ordering pro
cess which is based on the last-in-first-out principle.
The information placed last in the stack is the next
to be removed and used. Therefore, the operands
needed for an arithmetic operation are automatically
located on the '-'top of the stack." These features plus
many others associated with the evaluation of Polish
strings are incorporated into the design characteris
tics of the B 5000. Further insight into the contribu
tion of the B 5000's logic to Through-Put is given in
a later section exclusively devoted to that subject.

SIMPLIFIED DEBUGGING AND
PROGRAM MAINTENANCE

The job of debugging a B 5000 program is made ea
sier for three distinct reasons: there are fewer mis
takes to find; most errors are automatically dis-

set of instructions includes a great many possible
combinations of these digits, the possibility of finding
a transcription error is remote. Therefore, a program
written for this purpose is not worth the effort. In the
B 5000 programming system, however, most syntac
tic errors are obvious and will be discovered automa
tically during the translation process. For instance,
in the problem y ~ [(w + i + t) (p - q)]/z; assume
the keypunch operator had transposed two symbols,
i and +, so that the input document read as follows:
y ~ [(w + +it) (p - q)] /z;. The B 5000 transla
tor would recognize this mistake immediately he
cause it knows that no two arithmetic operator sym
bols can be adjacent to one another. It would so
inform the programmer.

If, on the other hand, machine language was being
used and the keypunch operator made a transposi
tion error, in the address of i for instance, it would be
undetectable. For example:

MACHINE LANGUAGE

MACHINE LANGUAGE DESIRED ACTUALLY KEYPUNCHED

MNEMONIC FORM OP CODE

I T ~~...J ••• 1 r:-
.L<UdU W .li.J

Addi 13

Add t 13

covered; and debugging is carried on in programming
language.
The use of a problem-oriented language introduces
fewer errors into the document to be read by the
computer than the use of machine language. Every
problem solution must first be formulated on paper
in the language of the programmer. Translating this
solution to machine language is monotonous and a
major source of errors. Although this job is ideally
suited to computers, their use has been too costly.
The BURROUGHS B 5000 makes this feasible, assuring
fewer errors in input documents.
A conventional machine language instruction con
sists of a fixed number of digits. Since the complete

ADDRESS OP CODE ADDRESS

l'7 t:'C\C) 1 r:- l'7 t:'Cl'l I
10010 .li.J 10010

8216 13 2816 -
1699 13 1699

2-8

No reasonable program could be devised for detect
ing this error.

Finally, when debugging is found to be necessary, the
B 5000 provides tools and clues which are easily un
derstood by the programmer. He may write special~
debugging state:ments in the B 5000 programming
language and place them temporarily at the begin
ning of his input deck. As a result of these debugging
statements, the programmer is provided with infor
mation about those characteristics in which he has
indicated an interest. This information is given in his
programming language so that an immediate com
parison with his program is possible.

GENERAL DESCRIPTION

When a program has been written in one of the
languages acceptable to the BURROUGHS B 5000
System-either ALGOL 60 or COBOL 61-it is
punched on cards and loaded into the system. The
object program is then compiled and recorded on a
magnetic tape called the program tape or punched
on program cards. The compiled program consists of
program segments and an associated Program Refer
ence Table. The length of the program segments
varies and is determined by the compiler according
to the over-all length and nature of the problem.
Program parameters are also produced during com
pilation. These specify the input-output devices re
quired, the amount of storage required for the pro
gram itself and for its associated data, and other
information necessary for processing the program.

SOURCE
LANGUAGE
PROGRAM

II
• Ill I

II Ill Ill I

II Ill
Ill

II

SOURCE-PROGRAM
CARD DECK

SECTION 3
SYSTEM CHARACTERISTICS

Figure 3-1 shows the transformation of the source
program into an object program.

STORAGE DRUM

The BURROUGHS B 5000 System includes a magnetic
drum as well as core storage. Part of the drum is
reserved for storage of the compiler and the Master
Control Program. This area is not available to the
user. The remainder of the drum is used for program
segments and their associated Program Reference
Tables, as illustrated in Figure 3-2.

CORE MEMORY

The Master Control Program is loaded into memory
initially by depressing the Program Load button.

OBJECT PROGRAM

-1
I
I
I

I I
I ERROR I
1 INFORMATION j
l ETC. (OPTIONAL) J

Figure 3-1. Compilation of Source Program
, __ ,.,,,.

3-1

PROGRAM PARAMETERS, COMPILER AND CORE MEMORY
PROGRAM REFERENCE TABLE, MASTER CONTROL

PROCESSOR

11 lfl I AND SEGMENTS PROGRAM II Ml I
I II

II

SOURCE PROGRAM
Figure 3-2. Layout of the Drum

I ts function is to select the scheduled programs from
either the program tape or punched cards and load
them onto the drum. Then, on the basis of the pro
gram parameters supplied, the Master Control Pro
gram allocates memory space for each program to
be processed. Next, it loads the required program
segments and associated Program Reference Table
for each job. At this point the Program Reference
Table and program segments pertaining to each job

Shaded Areas: Areas That Contain Information

White Areas: Allocated Working Space

INPUT OUTPUT
AREA
JOB 3

are contained in memory. Other areas of memory
have been allocated to contain the Stack and input/
output information, as shown in Figure 3-3.

WORDS

Information is stored in the Program Reference
Tables and program segments in words containing
48 bits of information. There are three types of
words, each having a particular form and function:

PROCESSOR

CORE MEMORY

Figure 3-3. Allocation of Core Memory

3·2

descriptors, operands, and program words. The de
scriptors and operands make up the Program Ref
erence Table, and program words are found in the
program segments. Each type is introduced below
and discussed in further detail.

PROGRAM REFERENCE TABLE

The Program Reference Table is an area of storage
containing control words that are used to locate data.
They may also describe the type of input/output
operation to be executed. These control words,
known as descriptors, provide the base or starting
address of a program segment, file of records, input/
output area, or subroutine. When they specify input/
output operations, they designate the unit to be
used, format, and the location and amount of infor
mation to be transferred.

Operands are also located in the Program Reference
Table and provide direct access to single values.
This type of word contains the actual value instead
of the location of that value.

PROGRAM SEGMENTS

A program segment, composed of program words, is
a self-contained group of steps that does a portion
of the processing for a job. Each program word is
divided into four syllables. And there are four types
of syllables used in program words: operand-call,
descriptor-call, literal, and operator. Essentially
these are the instructions for processing the data
referenced by the Program Reference Table.

THE STACK

This is an area of memory set aside for temporary
storage of information. It is associated with the A
and B registers, the arithmetic registers of the B 5000
System. The registers form the first and second loca
tions of the Stack; and information transferred to
or from the Stack passes through them. Its operation
is much like that of the stack used to compile the
Polish notation described in Section 2.

The last piece of information placed in the Stack is
the first to be accessed again. Previous entries in
the Stack are "pushed down" when new information
is added; that is, the contents of the A and B regis
ters are shifted into storage locations allocated for
Stack use. As more space is required, a new storage
location (addresses are used in ascending order) is
added to the Stack, receiving the information shifted
out of the registers. Figure 3-4 illustrates the shifting
of information as new data is brought to the Stack
for processing.

3·3

The term "top of the Stack" refers either to -the
first Stack location in memory or to the. A or B
register, depending on the placement of the data.
If an operand is transferred from the Program Ref
erence Table it is placed in the A register, which is,
at that moment, the top of the Stack. The results of
many operations, however, are placed in the B regis
ter, leaving the A register empty; in this case, the
B register becomes the top of the Stack. Under some
conditions both the A and B registers are cleared,
and then the first memory location in use is the top
of the Stack. Whenever a sequence of operations
requires information stored in the Stack memory
locations, it is automatically shifted into the regis
ters where it can be processed.

The location currently in use as the top of the Stack
in memory is recorded in the S register. If new loca
tions are added to hold information brought to the
Stack, the S register is counted up. When an opera
tion causes items in the Stack to be removed, those
locations are removed from the Stack until needed
again, and the S register setting is counted down by
the corresponding amount. The total number of loca
tions used varies according to the processing se
quence. Referring to Figure 3-4, assume that a series
of operations uses the information stored in the A
and B registers and in Stack locations 1002 and 1001
(stage 3 in the example). The result of the operations
is held in the B register, and the S register is set to
location 1000. Figure 3-5 shows the condition of the
Stack at this point. (Note that the A register is
empty, and therefore the B register has become the
top of the Stack; if both registers were empty, loca
tion 1000 would be the top of the Stack.)

The allocation of memory in Figure 3-3 shows three
areas set aside as Stacks for Multi-Processing of
three different jobs. Since the Stack is merely a
flexible working area, its actual location is un
important. The Stack in use at any given moment
is associated with the A and B registers, and the
memory address at the top of the Stack being used
is recorded in the S register. When the Processor
switches from one job to another, any information
held in the A and B registers is automatically shifted
into memory locations prior to transfer of control.
The current S register setting is always preserved
for re-entry to the job.

The Master Control Program, described in Section
4, controls the processing sequence of various jobs.
It allocates Stack memory space according to the
number and size of programs in memory at one time.
Switching from job to job, and therefore from Stack
to Stack, is also supervised by the Master Control
Program.

1. The A register contains the num
ber 463 and the B register 17. The
top of the Stack at this stage is
location 1000, and its contents are
12531.

rS 1000

rA

rB

1000

999

998

997

rA

rB

1001

1000

999

463

17

12531

xxx

xx xx

xxxxx
}

Prior

entries

12001

463

17

12531

xxx J- Prior

2. Execution of a program syllable
causes new number to be placed
m the A register, causmg the
number 463 to shift into the B
register, and 17 to be placed in
location 1001, which becomes the
first location of the Stack m
memory.__ ______ ____. entries

rS 1001

3. Another quantity is brought into
the Stack and at this stage the
original con ten ts of the A and B
registers have been completely re
placed by new information.

rS 1002

rA

rB

1002

1001

1000

3

12001

463

17

12531

Figure 3-4. Shifting of Information in the Stack

rA

r B Result of operations

rS 1000
1000 12531

Figure 3-5. Condition of Stack and Associated Registers After Information Has Been Removed

3-4

To summarize, the Stack is the means by which the
Processor has access to the information being proc
essed. Operand-call and <!lescriptor-call syllables in
the program segment cause information to be trans
ferred from either the Program Reference Table or
referenced data arrays and placed in the Stack.
Operator syllables from the program then cause this
information to be processed in the speCified manner.
All data manipulation and execution of computer
operations affects information that is brought to
the Stack.

INPUT/OUTPUT AREAS

These are temporary storage areas. Information is
read into an input area, and thence transferred to
the Stack for processing. After the specified opera
tions have been performed, the results are stored in
an output area until an Input/Output Channel is
free and they are recorded on magnetic tape, punched
cards, or printed forms.

MEMORY ADDRESSES

It should be noted that none of the descriptors
created during compilation contains a base or start
ing address. Thus, every program is completely re
locatable. The Master Control Program assigns base
addresses each time the program is run for all data
arrays referenced by the Program Reference Tables;
input/output areas; program segments; and the
Stack. Base addresses are recorded in the Program
Reference Table, which is used throughout process
ing. Thus changes in control are accomplished auto
matically and without programming effort.

PROCESSING

The programs in memory are now ready for execu
tion by the Processor. This component houses the
arithmetic and logic control elements of the sy~tem.
The details of processing are described in this manual
only for the information of the reader. The program
mer and user are never required to know about the
internal functions of the Processor since machine
language coding is not used with the B 5000 System.

MODES OF OPERATION

The Processor operates in four modes: Arithmetic or
normal mode, Subroutine mode, Data Manipulation
or editing mode, and Control mode. The first three
are defined and described fully in this section. The
Control mode, which is in effect whenever the
Master Control Program is being used, is discussed
in Section 4, Master Control Program.

A number of registers are contained in the Processor.
Their function varies according to the mode of opera-

3·5

tion in effect. Table 3-1 gives a brief summary of
register operation in each mode.

The function of the Arithmetic and Subroutine
modes is similar in that they are used to carry out
computational processes as specified by the source
level program statements. The characteristics of the
Program Reference Table, Stack operation, and the
registers are therefore much alike in these two modes.
The rearrangement or editing of input data, in
ternally generated information, and output data is
accomplished in the Data Manipulation mode. It
differs from arithmetic and subroutine operation in
use of the registers and in the pattern of information
transfer between memory and the Processor.

In the material to follow, the characteristics of the
Program Reference Table, descriptors, operands, and
program syllables are described in detail as they
function in the Arithmetic mode. The section on the
Subroutine mode describes those features which dis
tinguish it from the Arithmetic mode and presents
typical subroutine entry and exit sequences. Ex
amples are used throughout to demonstrate the
execution of a program syllable and its e'ffects upon
pertinent functional components-the Program Ref
erence Table, Stack, and registers.

Finally', the op~ratii1g· characteristics and language
of the Data Manipulation mode are introduced. It
should be kept in mind that the programmer never
has to create or use the editing strings; these are
normally created as a result of descriptions of the
input and output supplied by the programmer.

OPERATION DURING
ARITHMETIC MODE

INTRODUCTION

The Arithmetic mode is concerned with the execution
of program words. As a program segment is proc
essed, each word is brought to the P register. The
four syllables of the words are executed sequentially,
causing operations to be performed upon information
located by means of the Program Reference Table.
The descriptors stored in this table are used to locate
the data to be processed, temporary storage loca
tions, subroutines needed by the program, or other
segments as they are needed. Operands which provide
single values for direct use may also be stored there.

Execution of a syllable (if operand-call, descriptor
call, or literal) causes a word to be placed in the
Stack or (if operator) operates on words already in
the Stack.

It is in the Stack, which is associated with the arith
metic (A and B) registers of the system, that opera
tions are actually performed. Output is produced
according to specifications provided by output des
criptors also found in the Program Reference Table.

PROGRAM REFERENCE TABLE

This is a 1024-word area of core memory which pro-

vides a dictionary of all information required by the
program being processed. One Program Reference
Table is allocated for each program being processed
concurrently. The table is constructed of descriptors
and operands during compilation. When the Master
Control Program schedules a certain program, the
program tape or card deck containing the Program
Reference Table and program segments is loaded

Table 3-1. Function of Registers in B 5000 Processor

NAME ARITHMETIC MODE

48
A:

11 10 Arithmetic register /top of
Stack.

48
B: II 10 Arithmetic register /second

word in Stack.

15 2
C: I I I Contains address of next

syllable to be processed.
15

F: Not used.

15
M:I Indicates the location m

memory (actual memory
address) to which reference
is being made.

48
P: I I I I I Holds four-syllable word

currently being processed.
15

R: Contains the base address
of PRT currently being
referenced.

15
S: Contains the last location

of the Stack used (except
rA and rB).

6
T: IO Not used.

48
X: Extension of r A, used only

for multiplication and divi-
sion, as well as some special
functions.

SUBROUTINE MODE

Same as arithmetic mode.

Same as arithmetic mode.

Same as arithmetic mode.

Contains the location m
Stack where return point
from S-R is stored.

Same as arithmetic mode.

Same as arithmetic mode.

Same as arithmetic mode.

Same as arithmetic mode.

Not used.

Same as arithmetic mode.

3·6

DATA

MANIPULATION MODE

Source register, holds one
word of data to be edited.

Destination register con-
tains edited data that is
being formed into a word.

Same as arithmetic mode.

Source-address register,
used to obtain the current
word to be edited.

Destination- address-regis-
ter contains the address
where the contents of rB
will be stored.

Same as arithmetic mode.

Same as arithmetic mode.

Same as arithmetic mode.

Count register used to
count number of charac-
ters defined by manipula-
tion syllable.

Same as arithmetic mode
for the special functions.

onto the magnetic drum. The Master Control Pro
gram allocates areas in core memory for the table,
segments, input/output storage, and the Stack and
transfers the relevant information from drum to
memory.

Descriptors. Each descriptor requires one word,
consisting of keys used to locate data or to specify
input/output operations. This indexing procedure
permits all programs for the B 5000 System to be
completely independent of actual storage addresses
and the hardware configuration, provided, of course,
that a minimum system is operative. The facility to
relocate a program easily and automatically means
that it can be segmented by the compiler into
efficient working lengths and that interruption of
processing does not result in loss of time or effort.
Processing resumes automatically from the point of
interruption, even if the program has been removed
from memory and loaded into a new area in the
meantime.

At the time of compilation, descriptors contain iden
tification labels and information about the size of
the data record identified. Every time the Program
Reference Table is loaded into core memory, the
Master Control Program supplies core base addresses
for each group of data referenced in the table. The
term "descriptor" implies the job performed: to
describe the size and location of a group of informa-

1 tion required by a program. Because the actual loca
tion of this information is determined and recorded
each time the program is loaded, all programs and
associated data, working areas, and input/output
operations can be relocated automatically according
to current processing conditions. The programmer
is never concerned with storage or input/output unit
assignments.

Three types of descriptors are used: data descriptors,
input/output descriptors, and program descriptors.
The following paragraphs discuss their respective
formats, operating characteristics, and use.

z:

DATA DESCRIPTORS. Any sort of data array
for example a table, records from a master file,
working areas for intermediate results, vectors, or
sets of coefficients-may be indexed by a data
descriptor. The format of this descriptor is shown
in Figure 3-6.

The identification and size fields are supplied during
compilation; the drum number and drum address
are inserted by the Master Control Program if and
when the information is loaded onto the drum. The
core address field is filled in by the Master Control
Program when it has reserved space for the data
according to the specification given in the size field.

The presence bit indicates whether the data is
currently available in core memory or still on the
drum. It is automatically set to 0 when information
is transferred to core memory. When an object
program refers to an element of an array, the des
criptor of that array is read from the Program
Reference Table. If the presence bit is set to 0, the
array is located in storage at the core address con
tained in the descriptor. If the presence bit is 1, an
interrupt condition automatically occurs; the Master
Control Program transfers the array from drum to
core, setting the presence bit of the descriptor to 0,
filling in the core address of the descriptor, and
returns control to the object program.

DRUM DESCRIPTOR. This word is a variation of
the data descriptor and has the same format (refer
to Figure 3-6). It is used when the Master Control
Program assumes control in order to transfer data
from drum to core, or from core to drum. It differs
from the data descriptor in the setting of the pres
ence bit and the core address fields. The drum
descriptor is defined here because it is discussed in
connection with the operation of the Master Control
Program. It is used during normal core-drum transfer
and whenever the MCP requires a core-to-drum or
drum-to-core transfer.

0 SIZE FIELD i= LI.I Di: CORE (.)
cC

~h::
:ELI.I (NUMBER OF CD (.) :::::>'° DRUM ADDRESS (BASE OR STARTING) 5 ;::.::

~m D::::::E WORDS
LI- i= Q:::::> ADDRESS Di: z: REFERENCED) z: D... LI.I

~

Figure 3-6. Data Descriptor

3.7

:z
0

TAPE CHARACTER CORE j::: SIZE FIELD cc TYPE OF FORMAT - PRINTER (STARTING C!J (.)

UNiT (NUMBER OF IC!:: ~ OPERATION CARRIAGE CONTROL OR BASE) -' t::: WORDS REFERENCED) L&.. :z INFORMATION ADDRESS LI.I e

Figure 3-7. Input/Output Descriptor

INPUT/OUTPUT DESCRIPTORS. These have
the format shown in Figure 3-7. The compiler pro
vides information for the identification and size
fields. The size field specifies the number of words
to be transferred to or from core memory. Tape
format and printer carriage control specifications
are filled in by the compiler. Once the Program
Reference Table is loaded, and before control can
be transferred to the object program, the other
fields of the word must be completed.

The Master Control Program scans the list of input/
output descriptors, assigning unit numbers according
to the hardware available and the units on which the
operator has mounted the tape reels. (This process
is discussed in detail in Section 4, Master Control
Program.) Corresponding input/output areas in core
memory are reserved for each descriptor on the basis
of the information provided by the size field, and
the core address is inserted in the descriptor.

The field titled "information for machine use" desig
nates the type of operation to be performed. For
example, any of severaT magnetic tape operations
may be specified: read, write, backspace, rewind, or
erase. Reading and punching of cards, line printing,
or plotting may be indicated. The compiler f>toduces
appropriate specifications according to the source
language instructions.

PROGRAM DESCRIPTORS. These are used _for
transfer of control to program segments or sub
routines. Program descriptors are located in the
Program Reference Table. There is a de.scrip tor for
each segment of the object program and one for
every subroutine called for. The format of the pro
gram descriptor is shown in Figure 3-8.

:z I- = LI.I 0 a; m t::: ::::e SIZE FIELD cc LI.I ::::::::»

The identification and size fields are supplied during
compilation, and the Master Control Program inserts
the drum designation and base addre.ss when it loads
the segments or subroutine.s onto the drum.

Program segments are called in only as required.
The first time a segment is referenced, the Master
Control Program reserves the specified amount of
memory, inserts the core addre.ss in the descriptor,
sets the presence bit to 0, and transfers the segment
to core. Any subsequent operation on that segment
will find the segment already in memory. If the
memory is not large enough to accommodate all the
program segments simultaneously, segments will be
overlaid automatically. Should a particular segment
be overlaid and then required again by the program,
it will be loaded again, perhaps to a different location.
The only delay which results is that re::iuired to
transfer the segment from drum to core. Over-laying
occurs, however, only when the object program is
longer than the number of locations in the core
memory: for example, when an 8000-word program
is processed in a 4000-word memory.

Subroutines are loaded from a tape library as re
quired. If space permits they are retained in c:ore
memory throughout processing; automatic overlays
are performed, however, in the same way described
for segments.

Operands. Numeric quantities may be stored in
the Program Reference Table as operands. These
words may contain input data, integer program con
stants, variables, and array entries. The format of
an operand is shown in Figure 3-9.

The first three fields of an operand are each one bit
in length and contain the identification, the sign of

C!J (.) (.) :z (NUMBER OF WORDS DRUM ADDRESS CORE BASE ADDRESS cc ~ :z
--' t::: LI.I ::::e IN SEGMENT) L&.. V) :z LI.I ::::::::»

LI.I = = e a.. c

Figure 3-8. Program Descriptor

3·8

the mantissa or number, and the sign of the exponent.
The exponent field is six bits in length and the man
tissa may use as many as 39 bits. An-integer value
less than 813 (approx. 5.5 x 1011) can be recorded. In
the case of floating point numbers, the equivalent
number of 11.7 significant decimal places can be
accommodated. Values may range from 10-45 to
10ti9

• Internal representation of integers is consistent
with representation of floating point numbers. An
integer appears in the system as an un-normalized
floating point number. For this reason, it is possible
to perform arithmetic operations, comparisons, etc.,
between integers and floating point numbers without
conversion.

c I-

z: en z:
en LU

0 t:= z:
t:= z: 0 I-
c cc CL. z:
(,.)

== >< LU

Li: LU z: MANTISSA (NUMBER)
t:= LI.. LI.. 0

CL. z: 0 0 ><
LU z: z: LU

E! (:J (:J
v.; v.;

Figure 3-9. Operand

Operation of Program Syllables in Arithmetic
Mode. In the machine language program of the
B 5000, the program word is 48 bits long and is
composed of four' 12-bit sections called syllables.
Figure 3-10 shows the format of a program word.
Of the twelve bits in each syllable, two indicate its
type and the other ten may contain a numeric value,
an address in the Program Reference Table, and an
operator such as an add or subtract operator.

~t""-'~~
There are four types of syllables: literal, operand-calt
descriptor-call, and operator. A litera1 syllable con
tains a numeric value in the ten low-order bits,
which is stored directly in the Stack for use as an
operand. Operand-call and descriptor-call syllables
contain an address in the Program Reference Table

LU
CL.
>-
1-

L

2 10

I
SYLLABLE #1

oc

I

#2

by which information in storage may be located.
An operator contains the code for a particular arith-
metic, logical, or other operation to be performed
on items which have been placed in the Stack.

These syllables, if described in terms of a conven
tional machine, may be considered as the instruction
words of the B 5000 System. They are ref erred to
as syllables, however, not as instructions.

A program word is brought to the Program register
(P register) for processing, The function of this
register (see Figure 3-11) is to hold the four syllables
of the word currently being executed. Note that each
syllable position of the register has a unique address.
The syllables are executed in sequence, starting with
the left-most syllable. The Control Counter (C regis
ter) holds the address of the next syllable to be
executed, as shown in Figure 3-12.

LITERAL SYLLABLE. This syllable causes the
positive integer contained in its ten low-order bit
positions to be placed in the Stack. Consequently,
it is not necessary to store a constant in the Program
Reference Table and reference it with an operand
call syllable. All literal syllables are constructed
during compilation and inserted in the program
string.

In Figure 3-13 the contents of the literal (the
integer 123) are placed at the top of the Stack.

OPERAND-CALL SYLLABLE. Execution of this
type of syllable causes an operand to be transferred
to the Stack. The operand may be obtained by
three methods. When an operand-call syllable ref
erences the Program Reference Table it encounters
one of the four types of information stored there: an
operand; a data descriptor; an input/output des
criptor; or a program descriptor. The method by
which the operand is obtained and placed in the
Stack depends upon which type of word is referenced.
Each of these cases is described.

DC 0

#3 I

#4

Figure 3-10. Program Word

3.9

0 I 2

SYLLABLE
~DD~ESSJ

rPI ______ __

Figure 3-11. Program Register

WORD ADDRESS SYLLABLE

rc_l _______ 2_0_16 ________ _,_ ______ 2 ____ _

Figure 3-12. Control Register

1. Reference to an operand. When an operand-call
syllable encounters an operand in the Program
Reference Table, the operand is placed directly
at the top of the Stack, that is, in the A
register. This procedure is shown in Figure 3-14.

The operand-call referenced location 200 of the
Program Reference Table. The R register con
tains the base address of the table, and so the

SYLLABLE BEING
EXECUTED

referenced location is incremented by the
amount 1300. The value located in cell 1500
(integer 77) is placed in the A register, and
prior entries are pushed down in the Stack.

2. Reference to a data or input/output descriptor.

BEFORE

A process known as indexing occurs any time
an operand-call or descriptor-call syllable en
counters a descriptor with a size field greater
than 0 in the Program Reference Table. The
address part of the referenced descriptor (trans
ferred to the A register at stage 1) is auto
matically incremented by the value held in the
B register. The new address is checked to
determine if it is within the area defined by
the descriptor. The contents of the incremented
address are placed in the B register for sub-·
sequent use (stage 2).

Two types of indexing are possible. Constant
indexing is used when a particular word of a
data array is desired. Variable indexing is used
when the program requires successive elements
in an array; for example, a program may proc
ess Dr, where I changes.

a. Constant indexing. Assume that the fifth
word of record S (S5) is to be added to the
seventh word of record T (T7). The result is

STACK CONDITION

AFTER

rP L 123 : 1----264_3 --- :1~------~-:-3-------1

SYLLABLE BEING EXECUTED

rP I OC I 200 I

rR 1300

~
CORE ADDRESS 1500
IN PRT

77

Figure 3-13. Literal Placed on Top of Stack

STACK CONDITION

BEFORE AFTER

:: ~1---2_64_3 ___ --I : 1------2-~-:-

Figure 3-14. Obtaining an Operand Directly From the Program

3-10

S5 + T1 X10 Starting addresses for data arrays are:

S - core address 200
T - core address 750
X - core address 1000

Syllable Being Executed Condition of Stack

L 5 rA 5
rB

Stage 1 Stage 2-after indexing

I oci s rA 200 rA
rB Contents of 205 = S5 rB 5

I I I Conten:s of 205
L 7 rA

rB

Stage 1 Stage 2

I oci

rA 750 rA
T rB 7 rB Contents of 757 = T7

3001 Contents of 205 3001 Contents of 205
3000 Prior entries 3000 Prior entries

lop! + After addition

rA
rB Results (757) + (205)

3000 Prior entries

L 10 rA 10
rB Results of addition

3000 Prior entries

Incl
Stage 1 Stage 2

x rA 1000 rA

rB 10 rB 1010

3001 Results
The descriptor-call syllable 3001 Results of addition 3000 Prior entries
indexed the address of array
X, leaving the incremented 3000 Prior entries
address in the B register. Stage 1 Stage 2

ioPj Store I rA 1010 rA

rB Results S5 + T7
rB

3000 Prior entries

3000 Prior entries

This operator stores the contents of the B register (second Stack location) in the address held in
the A register (first Stack location). Therefore the items in the Stack are automatically
pushed up so that the address of array X - location 1010 - is in the A register and the
results of S5 + T7 are in the B register.

Figure 3-15. Constant Indexing

3·11

to be stored in the tenth word of record X
(X10). A literal is used to transfer the desired
index to the Stack. Then an operand-call
syllable references a data descriptor in the
Program Reference Table. The value of the
literal is automatically added to the core
address of the descriptor. The contents of the
indexed descriptor address are then placed in
the B register. Figure 3-15 shows the effect of
the operations S5 + T 7 ~ X10 on the Stack.

b. Variable indexing. A similar process occurs
when the index is a variable. Any algebraic
computation can be performed to get an in
dexed value. Multi-level indexing can also be
performed. For example, in processing the
element I of array D, an operand-call syllable
is used to transfer the value of I to the A
register.

Then, an operand-call syllable brings the
data descriptor for array D to the Stack,
increments the core address by the value of
I, and places the contents (since an operand
was called for) of the indexed address in the
B register for subsequent use. If one wishes
to store the element Dr, an operand-call syl
lable transfers the value of I to the Stack.
Then a descriptor-call syllable brings the
starting address of D to the Stack, incre
ments it by the value of I, leaving in the B
register the indexed address. The store op
erator, which would follow, will store the
contents of the second Stack location in the
address specified by the first Stack location.

Dr

Refer to Figure 3-16 for a diagram of the
Stack operation.
If multi-level indexing is to occur, the same
series of operations can be repeated indef
initely. For example, processing the element
XYz entails the following steps. An operand
call brings the value of Z to the Stack. A sec
ond operand-call transfers Y, which is a data
descriptor. The address of Y is incremented
by Z, and the contents of the incremented
address are brought to the Stack. The next
operand-call transfers X (which will be a
data descriptor), increments its core address
by the indexed value already in the B regis
ter, and then places the contents of that
address in the B register for subsequent use.
Figure 3-17 shows this sequence.

If the presence bit indicates the data is not
stored in memory an interrupt occurs and
the Master Control Program loads the de
sired information. If the incremented address
is larger than the area defined by the de
scriptor, an interrupt occurs. The handling
of interrupt conditions is discussed in Sec
tion 4.

3. Reference to a program descriptor. Encounter
ing a program descriptor causes it to be placed
at the top of the Stack. Its core address is
transferred to the C register, becoming the next
syllable to be executed. This .is the address of
the first word of a program segment, and a
transfer of control is executed. Entry to the
Subroutine mode is described later in this sec
tion.

Array D has a starting address of 2500.

Operand I has a current value of 22; this may be a computed value.

Syllable Being Executed Condition of Stack

rA 22

I oc I I rB

rA 2500 rA

[oc I D rB 22 rB Contents of 2522

The B register contains the contents of location 2522 after indexing.

Figure 3-16. Variable Indexing

3·12

XYz

Z has a value of 12.
Base address of Y is 3000.
Base address of Xis 3500.

Syllable Being Executed

ioc I rA 12 z
rB

loc I y Stage 1

rA 3000
rB 12

Condition of Siack

Stage 2-After indexing

rA
rB Contents of 3012

Assume that location 3012 contains the value 16. Now the address of array X-location 3500-
is brought to the A register and incremented by the value 16. Finally the contents of location
3516 are placed in the B register for use by the program.

x
rA
rB

Stage 1

3500
16

rA
rB

Stage 2-After indexing

Contents of 3516

Figure 3-17. Multi-level Variable Indexing

DESCRIPTOR-CALL SYLLABLE. This type of
syllable causes an address to be placed in the Stack.
When a descriptor-call references the Program Ref
erence Table it may encounter an operand; a data
or input/output descriptor; or a program descriptor.
The method by which the address is obtained and
placed in the Stack depends upon which type of
word is referenced.

1. Reference to an operand. If an operand is
encountered, and brought to the A register, it
is replaced by a data descriptor which contains
its address in the Program Reference Table.
The data descriptor remains in the Stack (A

Syllable Being Execuied

Stage 1

register), with its size field set to zero. Refer
to Figure 3-18.

In this case the core address of the descriptor
call syllable is incremented by the contents of
the R register (base address of the Program
Reference Table), and address 1201 is refer
enced. The contents of cell 1201 are examined
and when it is determined that the word con
tains an operand, not a descriptor, the address
1201, rather than its contents, is transferred to
the A register. This word is identified as a data
descriptor which references an operand value
123 in core address 1201.

Stack Condiiion

After

rP
rR

Incl 201
1000

~ ~ 1 _ __;1;;;.;;2;;..;;3 __ --t rA
rB

DDI 1201

t
Core address 1201

in PRT

c 123

Figure 3-18. Obtaining Descriptor Through Reference to Operand

3-13

Syllable Being Executed

rP I DC 300 Before

rR 400

t
Core address 700

in PRT

I DD I 1000

Stack Condit1~on

Stage 1

rA DD 1000 rA
rB rB 323

After

DD
1323

Figure 3-19. Obtaining Descriptor by Referencing Descriptor

2. Reference to a data or input/output descriptor.
When a descriptor-call encounters either a data
or input/output descriptor, the word is trans
ferred to the A register. The presence bit and
size field of the descriptor are checked. The
contents of the B register are added to the
base address of the descriptor in the A register,
and the resulting address is checked to ascertain
that the address is within the area defined by
the descriptor.

In Figure 3-19 the descriptor-call syllable ref
erenced location 300 of the Program Reference
Table. This address is incremented by the base
address of the table, and location 700 is
examined. The data descriptor encountered in
that location is transferred to the A register
and incremented by the contents of the B
register. The final descriptor references core
address 1323.

3. Reference to a program descriptor. The program
descriptor is placed in the A register, and its
core address is transferred to the C register,
becoming the next word to be executed.

1
This

is the beginning address of a subroutine; the
results of its execution are placed in the A
register and control is returned to the main
program.

OPERA TOR SYLLABLE. This syllable type differs
from the others in respect to its effect upon the
Stack. The other syllables place operands and des
criptors in the Stack. The operator syllable, in its
variations, manipulates items in the Stack. The
operators used in the Arithmetic mode may be
divided into the following categories: unary, binary,
and miscellaneous.

Unary operators are associated with only one
operand. They affect only the A register and do
not delete any items in the Stack. For example,
unary operators can alter the sign of the A register
by setting it to plus, minus, or by reversing it.

Binary operators require two operands and their

3·14

execution deletes one item from the Stack. They
operate on values in the A and B registers, producing
a result in the B register and leaving the A register
empty. If either the A or B registers is empty before
a binary operation takes place, it is rlled auto
matically from the top memory location in the Stack.

Arithmetic, logical and relational operators are all
binary. The arithmetic operators provide for addi
tion, subtraction, multiplication, and division. Com
parisons are made by using relational operators.
Logical operators perform such operations as extrac
tion and complementing.

STACK

rA

rB

DESCRIPTORS
&
OPERANDS

OUTPUT
AREA

I ..
I
I
I
I

M ,C P

0' l
P R T

10
DESCRIPTORS

PROGRAM
DESCRIPTORS

DESCRIPTORS
&
OPERANDS

INPUT
AREA

I
MEMORY I MODULE

I

PROGRAM AREA

LITERAL
SYLLABLES

DESCRIPTOR
CALL SYLLABLES

OPERAND
CALL SYLLABLES

OPERATOR
SYLLABLES

MANIPULATE
SYLLABLES

Figure 3-20. Layout of Memory Module With Associated Registers

A group of miscellaneous operators provide for stor
ing the results of arithmetic operations, for con
ditional or unconditional branching, and for a wide
range of control operations.

SUMMARY

The Arithmetic mode uses three types of words
descriptors, operands, and program words. The de
scriptors and operands make up the Program Refer
ence Table. This table is an index to all the infor
mation required for execution of a program and is
also a storage center for numeric quantities. Four
types of syllables form program words. The operand
call, descriptor-call, and literal syllables transfer
information to the Stack, where operator syllables
cause the data to be processed. The registers of the
B 5000 system are physically located within the
Processor; however, they have been described in
connection with the elements of the system which
use them. The A, B, and S registers, for example,
have been associated with the Stack, the R register
with the Program Reference Table, and the P, C,
and M registers with the memory storage for program
segments. Figure 3-20 is a schematic layout of a
Memory Module, showing the interrelation of the
major processing components.

OPERATION DURING
SUBROUTINE MODE
INTRODUCTION

A subroutine can be defined as the repetition of a
series of operations during one pass through a pro
gram. Control is transferred from the main program
to the subroutine and returned upon completion of
the subroutine. The structure of the B 5000 pro
gramming language extend3 the usefulness of this
type of program organization.

PROCEDURE and FUNCTION declarations in
ALGOL 60, and also SECTIONS and PARA
GRAPHS in COBOL 61 may be treated as sub
routines. Therefore the Subroutine mode of opera
tion in the B 5000 has been designed to assure
efficient generalized handling of subroutines to any
depth, including recursively defined subroutines.

The Subroutine mode has several characteristics
which distinguish it from the Arithmetic mode.
Operand-call and descriptor-call syllables can refer
ence parameters and temporary storage in the Stack.
These syllables can also reference constants in the
subroutine program string. An additional control
register, the F register, and two special operators
are used with the Subroutine mode. The mark stack
operator prepares for subroutine entry; the return

3·15

operator restores the registers to their original con
dition and transfers control to the main program.
These characteristics are discussed in further detail
in the following paragraphs, and examples are pro
vided to show the use of the subroutine operators.

USE OF OPERAND-CALL
AND DESCRIPTOR-CALL SYLLABLES

The Subroutine mode is designed so that generalized
subroutines, whose parameters are likely to change
with each use, may be incorporated with an object
program efficiently. The subroutines must be vir
tually independent of the Program Reference Table,
which is specially composed for each object program.
To achieve this, the power of the operand-call and
descriptor-call syllables is extended in the Subroutine
mode so that they can address the Stack directly
and use it for input parameters and temporary
storage.

i

Constants may be stored in the subroutine
string, and these syllables used to address them also.

Normally the parameters required by each sub
routine are stored in or referenced by the Program
Reference Table. They are transferred to the Stack
just prior to the shift from Arithmetic to Subroutine
mode. Once control is transferred, the subroutine
addresses the Stack for required parameters andits
own program string for constants. All the syllable
types that are used in the Arithmetic mode are
available to the Subroutine mode, however, and
under certain circumstances the subroutine may
reference items in the Program Reference Table and,
through it, data in general storage.

The format of operand-call and descriptor-call syll
ables in Subroutine mode is illustrated in Figure 3-2l.
Several indicator bits in the high-order positions of the
address field indicate whether reference is to be made
to parameters and temporary storage in the Stack,
to constants located within the subroutine segment,
or to the Program Reference Table.

THE F REGISTER

The F register records information that links the
subroutine being executed to the main program. The
information required to return all registers to their
condition prior to subroutine entry is stored in the
Stack. The address of this Stack location is trans
ferred to the F register and preserved throughout
subroutine operation. After the subroutine has been
executed, the Stack address contained in the F
register is used to locate all the return-point infor
mation. When the registers have been restored to
Arithmetic mode, control is returned to the main
program.

!. !>. II
(a) 0

2 BITS

l.D.
(b) 1 0

2 BITS

I

0
l.D. (+)

1 1
2 BITS 1

(c)

J_
(-)

ADDRESS FIELD - 9 BITS

J_

ADDRESS WITHIN THE PROGRAM
REFERENCE TABLE

ADDRESS FIELD - 8 BITS

ADDRESS OF A CONSTANT IN
THE SUBROUTINE PROGRAM
STRING, RELATIVE TO THIS
SYLLABLE

l J_ l l l

ADDRESS FIELD - 7 BITS

l

ADDRESS OF TEMPORARY STORAGE IN STACK
RELATIVE TO F REGISTER SETTING

ADDRESS OF PARAMETERS IN STACK
RELATIVE TO F REGISTER SETTING

l .l I I I I

Figure 3-21. Variations in Format of Operand-Call and Descriptor-Call Syllables in Subroutine Mode

The Stack address stored in the F register is also
used as a base address for referencing subroutine
parameters and temporary storage. Parameters,
which are transferred to the Stack before control is
shifted to Subroutine mode, have addresses that are
negative, relative to the F register setting. Temporary
storage locations have addresses that are positive,
relative to the F register setting. The operand-call
and descriptor-call syllable format shown in Figure
3-21 (c) provides for this addressing technique.

Since the C register is used in the Subroutine mode
the same way as in the Arithmetic mode (to conatin
the address of the next program word and syllable
to be executed), return to the main program is made
to the syllable address restored to it after the sub
routine has been completed. It is reasonable for one
to ask why the contents of the C register are not
merely preserved in the F register. The B 5000
System provides for indefinite nesting of subroutines.
Assume that a program calls out a subroutine, and
that this subroutine, in turn, requires a second sub
routine. If the contents of the C register are stored
in the F register upon entry to the first subroutine,
they will be lost when the first subroutine stores its

3-16

re-entry point in the F register upon transferring
control to the second subroutine. Therefore, more
complete return-point information must be provided.
The information that is stored in the Stack includes
the contents of the F register as well as the contents
of the C register. As control is returned from each
subroutine, then, the F register is restored to its
former status. Thus it is possible to have an in
definite nesting of subroutines. Information is always
preserved, automatically, for restoration of the C
and F registers to their previous condition.

SPECIAL SUBROUTINE OPERATORS

The mark stack operator is used in preparation for
transfer to Subroutine mode. When it is encountered
in a program syllable the contents of the F register
are stored in the Stack; and the Stack address placed
in the F register. The main program normally causes
one or more parameters to be transferred to the
Stack for use during subroutine operation. They are
stored in the locations immediately succeeding the
one indicated by the F register setting. These param
eters must be cleared from the Stack when their

usefulness is exhausted. The mark stack operator
indicates the beginning addre.ss of parameter storage.

The second subroutine operator is called the return
operator, and is normally the last syllable in the
subroutine. It restores the F register to its previous
setting, clears the Stack of all .parameters and tem
porary storage locations, and returns control to the
main program by restoring the contents of the C
register.

ENTRY TO SUBROUTINE MODE

After the tnark stack operator has set up the Stack
for storage of parameters, and these have been trans
ferred to Stack locations, entry to the Subroutine
mode is made when an operand-call syllable in the
Arithmetic mode reference.s a program descriptor.

The following series of operations causes transfer of
control:

1. The contents of the F and C registers (return
point information) are stored in the Stack, after
any items in the A and B registers have been
pushed down into the Stack.

SYLLABLE RE{iISTERS

2. The Stack address is stored in the F register.
3. The core starting address from the program

descriptor is placed in the C register, becoming
the next syllable to be executed.

Example A illustrates these steps for entry to a
subroutine which calculates SIN (X); Example B
show an entry to a subroutine which computes NET
PAY. Example C shows subroutine operation when
information is contained within the subroutine string.
Example D illustrates nesting of subroutines; that is,
the first subroutine uses a second subroutine. Exit
from the Subroutine mode is shown in Example E.
Example A: Calling sequence for a subroutine which
calculates SIN(X). The function and operation of
each of the three syllables required for this is shown
below. Upon return to the main program, the result
will be located in rA (the A register) and the Stack
configuration and register settings will be restored.

Assume that rC = 1000-0, rS = 101, and rF = 76.

The diagram of the registers and Stack indicates
their respective contents after the syllable has been
executed.

STACK

1. I OP MARK STACK rC 1000/1 ---------
Old setting of F register is stored
in Stack and F register is set to
location (102).

2.~~~~o_c~~~~
. X IN PRT

Subroutine input parameter (X)
is transferred from Program
Reference Table to A register.

3. oc
SIN PROG/DESC.

r S 102 ------rF 102

rC
rS

100012
102

rF 102

rC 4000/0 ----------r S 104
rF 104

Return-point and F register setting are stored
in Stack 104. (X has been stored in 103.)
F register is set to 104. Entry is made to
subroutine at location in C register. Assume
the base address of the SIN program
descriptor is 4000.

3-17

102 ~----7_6 ________ --I
101 PRIOR ENTRY .._ ____________ ~

;~ I SIN PROGRAM DESC.

104

103
102
101

102 1000/3

x
76

PRIOR ENTRY

RETURN
l POINT

Example B: Calling sequence for a subroutine that
calculates NET PAY. Assume that NET PAY =
GROSS PAY-FICA-WITHHOLDING TAX-HOS
PITAL INSURANCE. The amounts for GROSS
PAY, FICA, WITHHOLDING TAX and HOS
PITAL INSURANCE have already been computed
and can be obtained through the Program Reference
Table. Before entry, register conditions are as fol
lows:

rC = 1000 /0

SYLLABLE EXECUTED REGISTERS

1. OP MARK STACK rC 1000/1
rS 102
rF 102

Mark stack operator stores contents of F register
in Stack.

2. OC HOSP. INS. rC 1001/2

rS = 101
rF = 76

The syllables required to enter this subroutine con
sist of a mark stack operator, and operand-call
syllables for values of GROSS PAY, FICA, WITH
HOLDING TAX, and HOSPITAL INSURANCE.

These operands are the parameters for the subroutine
and are transferred successively to the Stack. Finally,
an operand-call references the NET PAY program
descriptor.

STACK CONDITION

rA
1--~~~~~~~~~----1

rB

102 76
101 PRIOR ENTRY

rA VALUE HOSP. INS.
rB VALUE-W. TAX .,....__ ___ _

rS 104
rF 102

Series of operand-call syllables has
transferred parameters for subroutine
to successive Stack locations.

3. OC NET PAY rC 2200/0,___ ___ _
rS 107
rF 107

Operand-call syllable references the NET PAY
program descriptor, causing address of the
first word of this subroutine to be placed in the
C register, and control to be transferred. Assume
the base address in the NET PAY program des
criptor is 2200. Return point information is
stored in Stack address 107, and that location
preserved in F register.

Example C: Assume the SIN(X) is approximated by
some polynomial of the form (ao+a1 x + a2 x2 + ...)
and the coefficients are contained within he pro
gram segment.

To perform the first multiplication, the value of X
is referenced in the Stack by using an operand-call
syllable indicating that the Stack is to be referenced

3-18

~~~ ._j __ ,_!~_A_L_·L_TE_·-_F_I_C_A ____ _ 
100 VALUE-GROSS PAY 
L----~~-~~~--~ 

102 76 
1----~~-~-~--~---1 

101 PRIOR ENTRY 

rA I NET PAY PROG. DESC. 
rB 

107 
106 
105 
104 
103 
102 
101 

1001/2 102 
VALUE-HOSP. INS. 

VALUE-W. TAX 
VALUE-FICA 

VALUE-GROSS PAY 
76 

PRIOR ENTRY 

and that the location is one less (negatively relative 
to the top of the Stack at last entry) than the value 
in rF. 

The coefficient (a) is obtained by another operand
call, this time indicating that the value is located 
within the program segment area. 



SYLLABLE REGISTERS 

oc I 111 1 I rC SIN/2 
rS 104 
rF 104 

Gets X from Stack. 

ocl 10 10 rC SIN/3 
rS 105 
rF 104 

Gets coefficient from location SIN-10 in program area. 

OP IMULTIPLYI 

Example D: COS(X) = [1-SIN2x]~ 

rC 
rS 

SIN+l/O 
105 ______ ___. 

rF 104 

out subroutines .• 

rA 
rB 

104 
103 
102 
101 

rA 
rB 

105 
104 
103 
102 

rA 
rB 

105 

104 
103 
102 

STACK 

x 

102 1000/3 
x 
76. 

PRIOR ENTRY 

x 

ao 
102 1000/3 

x 
76 

t----------1 

ao 

102 1000/3 
x 
76 

Calling sequence for a subroutine which itself calls 
This will illustrate how a descriptor-call syllable 
following a mark stack operator functions. 

SYLLABLE REGISTERS 

1. loP MARK STACK rC 700/0 
rS 301 
rF 301 

Save contents of the rF (assumed to be 276). 

3-19 

2010 
2011 
2012 
2013 

rA 
rB 

PRT 

x 
,1 PROGRAM 

SIN DES-
cos CRIPTOR 

STACK 

301 276 
300 PRIOR ENTRY 



2. oc 2010 
rC 700/1 rA x 
rS 301 rB 
rF 301 

301 276 
300 PRIOR ENTRY 

Puts X into the rA. 

3. DC 2011 
rC 700/2 rA v PROG/DESC 
rS 301 rB x 
rF 301 

301 276 
Puts program descriptor for square-root subroutine 300 PRIOR ENTRY 
into the rA. 

4. DC 2012 
rC 700/3 
rS 302 
rF 301 

rA 
rB 

302 
301 

I 

SIN PROG/DESC 
v PROG/DESC 

x 
276 

Puts program descriptor for SIN subroutine into 300 PRIOR ENTRY 
the rA. 

rC COS S-R 
rS 305 
rF 305 

rA 
rB 

301 701/0 (RETURN POINT) 
SIN PROG/DESC 

Pushes contents of rA and rB down; sets return-point 
and loads the rF with this location. 

305 
304 
303 
302 
301 

v PROG/DESC 
x 

Enters COS subroutine. 

EXIT FROM SUBROUTINE MODE 

The result of subroutine operation is placed in the 
A register to be used in subsequent operations of 
the main program. 

The return operator usually terminates subroutine 
operation by referencing the F register and, in turn, 
the Stack address indicated .. The first step restores 
the F register to its setting when the program des
criptor was encountered, and replaces the return
point address in the C register. Now the F register 

276 

contains the Stack address stored there when the 
mark stack operator was encountered. This Stack 
address is referenced: the F and S registers are 
restored to their condition prior to execution of the 
mark stack operator. Thus control is returned to 
the main program and the Stack is cleared of infor
mation no longer needed for processing. Example E 
shows the two stages of exit from the subroutine 
which calculates SIN(X). 

3-20 

Example E: Exit sequence from the subroutine which 
calculates SIN(X). Refer to Example A. 



SYLLABLE REGISTERS STACK 

1. LAST SR 
OPERATOR rC 

rS 
rF 

S-R /EXIT OP. rA 
rB 

SIN(X) RESULT 
112 
104 

112 
104 
103 
102 
101 

xxxxx 
102 1000/3 

x 
76 

PRIOR ENTRY 

Before execution of the exit operator the registers and 
Stack have the contents shown. 

2. EXIT 
OPERATOR 

After execution of the exit operator: 

rC 
rS 

100013 
104 

rF 102 

rA 
rB 

x 
76 

First stage: The F register references Stack location 104. 
The F and C registers are restored. S register restored. 

103 
102 
101 PRIOR ENTRY 

Second stage: The F register references Stack location 
102. The F and S registers are restored to settings prior 
to execution of mark stack operator, as shown. rA 

rB 

rC 
rS 
rF 

1000/3 
101 

OPERATION DURING 
DATA-MANIPULATION MODE 
INTRODUCTION 

Editing of data in earlier computers was possible 
only with costly and time-consuming methods. Plug
board wiring, for instance, or elaborate format
control specifications for an input/output device are 
difficult to prepare and have limited flexibility. 
Intricate programming results in a loss of time and 
memory space. 

Manipulation and comparison functions generally 
involve a series of add, shift, mask, and store opera
tions. Even such a simple function as comparison of 
split-field keys requires much subtracting, shifting, 
and branching. Thus, comprehensive, flexible com-

76 

3-21 

101 PRIOR ENTRY 

parison and data-manipulation abilities have beep. 
sacrificed to speed or programming considerations. 

In recognition of these deficiencies, the B 5000 has 
been provided with facilities for concise, efficient 
data manipulation. The Data-Manipulation mode 
uses individual characters as its basic unit of infor
mation instead of the normal word length used in 
the Arithmetic and Subroutine modes. 

Input and output formats, and editing, comparison, 
and conversion of data are among the most difficult 
areas of programming. COBOL provides automatic 
specification for these functions, and in ALGOL they 
are described by language extensions. Since COBOL 
and ALGOL are the programming languages of the 
B 5000, and the "hardware logic" itself includes 
single-character operation, the B 5000 is able to meet 
the most stringent editing requirements with ease. 



EDITING FUNCTIONS 

The vocabulary of the Processor operating in the 
Data-Manipulation mode includes a comprehensive 
set of special operators (single-character instruc
tions). Operators may be used individually or in 
groups. Combinations of the operators, referred to 
as editing or manipulation strings, perform the fol
lowing functions: 

1. Move individual six-bit character:;, groups of 
characters, or complete words (eight alpha
numeric characters per word) from one area 
to another. 

2. Delete characters or fields of characters from 
a source area as they are being relocated. 

3. Insert characters or fields of characters directly 
from the manipulation (program) string itself 
into the edited fields. 

4. Provide for overlays or insertions of characters 
from one area (source area) into a second (des
tination) area. 

5. Provide a complete set of comparison operators 
to permit comparison of source- and destina
tion-area characters or fields, or tests against 
characters from the manipulation string itself. 

6. Provide unconditional jump (change of execu
tion sequence) operators to direct control within 
the manipulation string, and a complete set of 
conditional jump operators to interrogate the 
results of the comparison and test operators 
and direct control accordingly. 

7. Provide a set of repeat operator:; which allow 
segments of the manipulation string to be re
peated. These repeat operators may be com
bined (nested), thus permitting complete flexi
bility in the execution of the manipulation 
string. 

8. Provide a set of operators to permit alteration 
of the normal execution sequence out of "nests" 
or loops as a result of a relational operator 
comparison. 

9. Provide operators to permit interchange of 
source and destination areas. By interchanging 
the contents of the associated character-location 
registers, interspersing or merging characters 
from the two areas is possible. 

10. Provide a set of operators to permit manipula
tion, retention, and recovery of the character 
location registers associated with the source 
and destination areas. These operators are par
ticularly useful in sorting and character-recog
nition applications. 

3·22 

11. Provide operators to permit transfer of only 
the "zone" or only the numeric portion of 
characters or fields, and automatic recognition 
of the transferred field's algebraic sign. These 
operators are used primarily in handling char
acters represented in standard punched-card 
notation. 

12. Provide operators to permit automatic decimal
to-octal and octal-to-decimal conversion. By 
utilizing these operators, it is no longer neces
sary for the programmer to provide the coding 
or the conversion algorithms to the Processor. 

13. Provide operators to communicate with the 
Normal mode. These operators are used to 
transmit specifications or parameters from the 
Normal mode to the Data-Manipulation mode 
so that general-purpose data-manipulation pro
cedures or functions can be used. This is done 
in much the same way parameters are supplied 
for subroutine operation. 

14. Provide decimal addition and subtraction 
operators. 

15. Provide a complete set of individual binary-bit 
manipulation operators. 

ENTRY TO DATA-MANIPULATION MODE 

The normal arithmetic and control registers of the 
Processor are used to provide the necessary hard ware 
functions for the Data-Manipulation mode. Entry to 
and exit from the Data-Manipulation mode is accom
plished by providing the Processor with the ability 
to shift modes in much the same manner as in 
subroutine handling. The enter-data-manipulation
mode operator (instruction syllable), encountered 
during the normal syllable execution of a program 
string or sequence, signals the Processor to store all 
necessary registers and information for return to the 
Normal mode. The Processor then recognizes three 
descriptors which supply (a) the location of the 
"source" information or information to be manipu
lated or handled; (b) the location of the "destination" 
area or fields for comparison, movement, or editing; 
and (c) the location of the manipulation instructions 
or progra~ string to be employed. 

Words from one area (source) are loaded into the 
top register of the Stack (A register), and assembled 
into, or operated against, characters from a second 
area (destination) in the second register of the Stack 
(B register). The Subroutine register (F) maintains 
control over the memory location of source char
acters. The M register controls communication with 
the destination area. 



Transfer of characters to and from tke source (A) 
and destination (B) registers is automatic. For 
example, during the comparison of 63 characters in 
the source area against 63 characters in the destina
tion area, the A and B registers are filled eight times. 
As soon as comparison of the first eight characters 
is completed, the registers are automatically reloaded 
with the second group of eight characters, etc. Since 
the source and destination registers are controlled 
independently of each other, characters may be 
manipulated regardless of their position within the 
memory words. In the comparison operation des
cribed above, for instance, each of the 63-character 
fields could begin with a different character position 
within the word. 

The source-address register and a destination-address 
register control movement of characters through the 
Stack levels as illustrated in this flow diagram below: 

Although the programmer writes his data-manipula
tion functions in problem language (ALGOL or 
COBOL), several of the individual operators, or 
Processor "instructions" used by the compilers, are 
explained below. The 12-bit syllable operators utilized 
by the Processor in performing the specified opera
tions are illustrated. These operators are made up 
of a six-bit count, specifying the number of times 
the operation is to be performed, and a six-bit 
alphanumeric character which specifies the operation 
to be performed. 

Since six bits are allocated for the count of a given 
operator syllable, decimal 63 (octal 77) is the maxi
mum count possible with one operator. Operators 
may be repeated, however, to achieve any count 
desired. As in the Normal mode, each computer word 
in the manipulation string contains four syllables. 

SOURCE REGISTER 

COUNT 

nn 

nn 

nn 

DESTINATION REGISTER 

SOURCE 
AREA 

F 
REGISTER 

ILLUSTRATION OF SOME SPECIFIC OPERATORS USED BY THE COMPILER 

OPERATOR 

CHARACTER OPERATOR FUNCTION 

A Transfer nn characters from source to destination area. For instance, 123 !A I 
transfers the next 23 characters from the source to the destination area. 

I 

L 

This syllable performs the operation specified by the. MOVE verb in COBOL. 

Rapid transfer nn complete words (eight characters per word) from source to 
destination. Words must be aligned to their first character positions. Auto
matic alignment to the first character of the next word in source or destination 
field, if they are not aligned, is provided. For instance, @III transfers 10 
complete eight-character words from source to destination area. 

Insert the following nn characters from manipulation string into destination 
area. If nn is odd. the first character uosition will be ignored (lower case b 
indicates a blank to maintain normal syllable handling. For inst~nce, lM:IIJ 

b • T 0 : T A 1 L 13 • A inserts the word "total" into destination area, 
followed by the next 13 characters from the source area. 

3.23 



COUNT 

nn 

nn 

nn 

ch. 

nn 

00 

nn 

OPERATOR 

CHARACTER OPERATOR FUNCTION 

S Skip over nn characters in destination area, leaving skipped characters un
changed. This operator permits overlays and insertions of characters in destina
tion area. 101; s los! A I 01: S 114: AI This one-word string would produce, in 
the destination area, one character unchanged; five characters inserted from 
the source area; one character unchanged; etc. 

D Skip forward nn consecutive characters from source area upon transfer to 
destination. 106 i D I 02 i A I 061 DI 02: AI These syllables would skip six charac
ters; transfer two; skip six characters; etc., upon transfer of information from 
source to destination. 

operator Compare nn consecutive characters from the source area against nn cons~utive 
characters from the destination area. The true/false indicator is set to true if 
the comparison operator's conditions are satisfied, otherwise set to false. The 
individual operator's test conditions are as follows: Inn: ci tests "greater 
than" condition; Inn! 61 tests "greater than or equal to"; 1nn: 71 tests "equal 
to" condition; Inn; 81 tests "less than or equal to"; Inn: 91 tests "less than" 
condition; and Inn: 0 I tests "not equal to" condition. 104: S 112 i 0 I would 
skip four characters in the destination area and test the next 12 characters 
from the source area against the next 12 from the destination for "not equal to" 
and set the true/false toggle as a result. 

op. Test any specified alphanumeric character (ch.) from the editing string against 
the next available character from the source area. The operator does not move 
a character from the source area. The testing operators are as follows: I ch.: T I 
tests "greater than" condition; lch.; 11 tests "greater than or equal to" con
dition; f£h12l tests "equal to" condition; (Cii"J']] tests "less than" or "equal to" 
condition; Ich.: 41 tests "less than"; Ich.; 51 tests "not equal to" condition. The 
true Ifalse indicator is turned on if the comparison is true and off if it is false. 
The characters specified in the testing syllable may be any of the valid characters 
as described in the Burroughs Common Language. The syllable [[[ill , when 
executed, would turn on the true /false toggle if the next available characters 
from the source area were not a zero. 

( ... ) This pair of operators directs the Processor to repeat a segment of the editing 
string between the · left and right parenthesis nn times. These repeat pairs may 
be nested (repeat pairs within repeat pairs) to any depth. A 00 count on the 
left parenthesis operator will cause skipping of the manipulator string to the 
matching right parenthesis operator. Note: In the following examples, the 
character b will indicate "blank." 

J 

102: (105: Lib i TI 0: T 1 A! L 1 05: ( 101; Lib 1 $1 05 i A 101! Lib, .1 02: A I 
100 i ) 100 i ) I This editing string of three and one-half computer words would 
produce, in the destination area, two groups of data. Each of the two groups 
would consist of the word "total" followed by five fields of information from 
the source area. Each field would be made up of a dollar sign, inserted from the 
editing string; five characters from the source area; a decimal point, inserted 
from the editing string; and two characters from the source area. 

This operator directs the Processor to jump out of a repeat nest if the result 
of a relational test is true. This operator takes precedence over the iteration 
control exercised b the arenthesis operators and sets iteration count to zero. 

10: 01: 05: 7 00 I ~ 02: L X I X 00 I) 00 I) This editing string would 
compare ten 5-character groups from the source field with ten groups in the 
destination field. If comparison is unequal, the characters XX are inserted as 
flags after each comparison. 

Unconditional jump forward nn syllables in the editing string. 

3·24 



COUNT 

nn 

nn 

nn 

nn 

00 

nn 

00 

nn 

nn 

n 

nn 

nn 

nn 

nn 

nn 

nn 

nn 

OPERATOR 

CHARACTER OPERATOR FUNCTION 

K Unconditional jump backward nn syllables in the editing string. 

N 

U 

X 

1\11 

y 

I 

F 

G 

# 

$ 

* 

@ 

o 

E 

H 

Jump backward nn syllables if the result of a relational operation was true. 

Reverse skip character positions in the source area I 50 : ( I 08 i 21 00 1 ~ I 08 ; 
l X 100, )\ This string will perform an equality search of a table of 50 entries, 
each entry being eight characters in length, in the destination area against an 
eight-character key in the source area. If any of the entries in the table are 
equal to the key, set the true/false toggle "on" upon exit from the nest. 

Return to Normal mode of operation. All registers will be reset from the Stack 
to their original contents prior to entering data-manipulation mode. 

Reverse skip nn character positions in the destination area. 

Interchange the contents of the F and M registers. This has the effect of re
versing the information flow to permit transfer of characters from destination 
to source area. Associated Stack registers are automatically loaded from new 
setting after control registers have been interchanged. 

Set count register to nn. Operator thus provides flexibility of iteration execution. 

Increase count operator by nn. 

Transfer only zone bits (A and B bits) of nn characters from source to destina
tion area. This operator would normally be used to allow manipulation of 
algebraic sign or control bits in standard punched-card representation. Numeric 
bits of receiving field remain unchanged. 

Replaces numeric portion (1-2-4-8 bits) of nn characters in destination area by 
numeric part of corresponding characters from source area. 

If the last character transferred contained a minus indication, the true/false 
indicator is turned on. Zone bits of receiving field remain unchanged. 

Store source-character location-count register (F) into stack as parameter num
ber nn. The operator thus permits retention of a position in a table or field. 

Store destination-area character-location register (M) in Stack as parameter 
number nn. After such a store, the contents of register M may be altered as 
desired and later recovered with the following two operators. 

Reset source-area character-location register (F) from Stack with parameter 
number nn. Operator is used to recover position count stored in stack by one 
of the two store-parameter operators noted above. 

Reset destination-area character-location register (M) from Stack with param
eter number nn. Typical use of these store and recovery operators in actual 
syllable strings is illustrated in Example No.1 following the editing operator list. 

Obtain numbered parameter from stack and place it in the repeat count register 
(T). This operator would permit the number of iterations of an editing segment 
to be specified by the Normal mode. 

Pla~e register (X) into the stack in parameter position nn. In the execution of 
a nest of syllables containing a conditional exit operator the actual number of 
loops or iterations could be determined. 

3·25 



COUNT 

nn 

nn 

nn 

nn 

OPERATOR 

CHARACTER OPERATOR FUNCTION 

V Convert nn alphanumeric decimal characters to octal representation. If the 
value of nn is less than 11, integer representation will be right-justified in the 
resulting \vord. If nn is 12 or more, overflow condition may be produced and 
the most significant octal characters are lost. 

B Convert a word in octal representation to nn (a maximum of eight) alpha
numeric decimal characters. Overflow will be produced if the octal word pro
duces more than specified number of decimal characters. 

" Decimal-add a field of nn characters from source area to nn characters in desti
nation field. Result will be stored in destination area. Overflow may be pro
duced. Algebraic signs are taken from zones of low-order character of each field. 

v Decimal-subtract a field of nn characters in source area from nn characters in 
destination area. Result will be in destination area. Overflow may be produced. 

In addition to the operators noted above, there is a complete set of operators for individual 
bit manipulation to facilitate generation of logical operators, descriptors, etc. 

DATA·MANIPULATION MODE - EXAMPLE 1 

Given: 

Object: 

1vlanipulation String: 

Syllable 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
15 

A field in the source area consisting of employee name and number, each 
separated by blanks with the following format: First name; blank; last name; 
blank; five-digit employee number. For example: JOHN b CROY b 15347. 

Transfer record to destination area, transposing to the following format: Em
ployee number; three blanks; last name; comma and one blank; first name. 
For example: 15347 bbb CROY, b JOHN. 

1 5 

9 13 

17 21 

25 

Explanation 

Save current source-character location in parameter 1. 
Test source character for blank. 
Skip to next source character. 
Jump to syllable 6 if relation was true. 
Unconditional jump back to syllable 2. 
Save source-character location in parameter 2. 
Test next source character for a blank. 
Skip to next source character. 
Jump to syllable 11 if relational test was true. 
Unconditional jump back to syllable 7. 
Transfer the next five characters from the source to the destination area. 
Insert three blank characters from the editing string. 
Set source-character location register (F) from parameter 2 in the stack. Param
eter was placed there by syllable 6. 

3·26 



16 
17 
18 
19 
20 
22 

23 
24 
25 
26 
27 

Test next source character for a blank. 
Jump to syllable 20 if 'result of relational test was true. 
Transfer one character from source to destination area. 
Unconditional jump back to syllable 16. 
Insert a blank and a comma into the destination area from the editing string. 
Set source character-location register from parameter 1. This parameter was 
placed into the stack by syllable 1. 
Test next source character for a blank. 
Jump to syllable 27 if the result of the previous relational test was true. 
Transfer one character from source to destination area. 
Unconditional jump back to syllable 23. 
Return to Normal mode of operation. 

DATA-MANIPULATION MODE - EXAMPLE 2 
Given: 

Object: 

Manipulation String: 

Syllable 
Number 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 

A block of single-word records having an 8-character key. Block will be pre
ceded by a word containing all blanks and will be followed by a word containing 
all question marks (?). Upon entry to manipulation syllable string, stack param
eter 1 will contain the starting location of the block, and parameter 3 will 
contain the location of a one-word temporary storage. 

Sort block of information into ascending sequence using the shuttle exchange 
method. 

1 5 

9 13 

I 04 i w I 03 i 0 I 01 i / I 01 ; @ I 02; 0 I 01 ! / 116 i Q I 04 i * I 
17 

21 

25 
121l K I 041 @ I 04! 0 I 08 ~ D I 

29 

Explanation 

Set source-character register from parameter 1. 
Set destination-character register from parameter 1. 
Skip destination-location register to second word location. 
Store source-address register into parameter 1. 
Store destination register into parameter 2-. 
Test first character of the following word to determine end-of-block and, thus, 
end of sort. 
Jump to return syllable on true condition. 
Test source word against destination word for "greater than or equal to." 
Jump back to syBabie 4 on faise condition. 
Set destination-address register to location of temporary storage. 
Rapid transfer lower-value word from block to temporary storage area. 

3·27 



12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 

24 
25 
26 
27 
28 
29 
30 

Set source-address register from parameter 1. 
Set destination-address register from parameter 2. 
Move one word position up in table. 
Reverse both source- and destination-address registers two words. 
Store destination-address register into parameter 4. 
Set destination-address register to location of temporary storage. 
Test source word against destination word for "greater than or equal to." 
Jump forward to syllable 26 on false condition. 
Interchange source- and destination-address registers. 
Set source-address register from parameter 3. 
Insert current low-value word from temporary storage into its relative position 
in sorted sequence. 
Set source address from parameter 2. Parameter contained location of low-value 
word in original unsorted sequence. 
Set destination-address register from parameter 2. 
Unconditional jump backward to syllable 3 to continue checking. 
Set source-address register from parameter 4. 
Set destination-address register from parameter 4. 
Skip forward one word in destination-address register. 
Unconditional jump backward to syllable 14. 
Operator to signal return to normal mode of operation when sort is completed. 

DATA·MANIPULATION MODE - EXAMPLE 3 
Given: 

Object: 

Manipulation String: 

Syllable 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

A search key is the 3-4-5 character position of a word, and a 50-entry table in 
random numeric sequence, having the corresponding key positions in character 
positions 3-5-8 of each word entry. 
Find word location in the table of the entry having a key equal to the search 
key. vVord location of equal key to be place in stack parameter 1. If search key 
is not in table, set true/false toggle to false. For example: 

Search Key Table Entries 

n n 217 n n n n n 7 n 3 n n 4 
n n 2 n 8 n n 3 
n n 7 n 1 n n 6 
n n 2 n 1 n n 7 

1 5 

12 ! D 1 50: (12: S 11 ! 7 I 2: N I 5 : S 191 J 11: S I 
9 13 17 

Explanation 

Skip over two characters in source (key) word. 
Repeat string within the following parentheses fifty times. 
Skip two characters in destination (table) area. 
Test first key character against first table character. 
Jump forward two syllables on true condition. 
Skip remaining characters in table word on false condition. 
Unconditional jump forward to end of repeat segment. 
Skip one character in destination word. 
Test source against destination character for "equal to" conditions. 
Jump forward two syllables on true condition. 

3·28 



11 
12 
13 
14 
15 
16 
17 
18 

19 

Skip remaining characters in destination word on false condition. 
Unconditional jump forward to end of repeat string. 
Skip two characters in destination area. 
Test source against destination for "equal to" conditions. 
Jump out of repeat segment on true condition. 
Go back to beginning of key word in source location register. 
End of repeat nest; go back to syllable 2 to adjust and test iteration count. 
Decrease destination-location register upon exit from repeat nest to produce 
location of word containing entries satisfying "equal to" condition. 
Store location of last or equal table word into parameter 1. 

3·29 





INTRODUCTION 
The Master Control Program consists of a special 
set of routines designed by the manufacturer to pro
vide automatic control over scheduling, allocation of 
memory, input/output operations, assignment of 
hardware functions, multi- and parallel processing, 
and all interruptions of system operation. The 
Master Control Program (MCP) is permanently 
recorded on Storage Drum 1 by the manufacturer. 
Whenever it is being used, the Processor operates 
in a special mode-the Control mode. 

The features and purpose of the B 5000 Master 
Control Program are explained in this section. Op
eration during the Control mode and the functions 
of each of the routines which constitute the Master 
Control Program are described. 

Computers have been developed to save time and to 
reduce the chance of errors. By providing facilities 
for performing extremely complex computations and 
for eliminating tedious clerical functions, they enable 
users to make creative use of masses of information. 
Still, operator intervention in computer functions is 
time consuming and introduces the chance of error. 
One reason the B 5000 is an advanced system is that 
it incorporates the means for fully automatic opera
tion. The features of the MCP encompass three 
general areas: computer functions, automatic system 
assignment and coordination, and Multi-Processing. 

COMPUTER FUNCTIONS 

The MCP controls all computer functions except 
physical tape and card handling. It provides super
visory control instructions to the operator so that he 
can make major decisions in directing the processing, 
but provides the means for automatic handling of 
all but the most unusual situations. The operator is 
always able to communicate with the system but 
seldom needs to. The MCP can analyze error condi
tions and provide an appropriate course of program 
action if the object program does not specify one. 

AUTOMATIC SYSTEM ASSIGNMENT 
AND COORDINATION 

Certain operations, which were the responsibility of 

4·1 

SECTION 4 
MASTER CONTROL PROGRAM 

the programmer with other computer systems, are 
performed automatically with the B 5000. By sensing 
the system's environment, the MCP is able to assign 
memory areas to program segments, input/output 
areas, and Program Reference Table entries. Input 
and output files are automatically identified and 
given physical unit designations. Standard tape
handling procedures provide for labeling, end-of
tape, and end-of-file conditions. 

MULTI·PROCESSING 

The MCP can determine the optimum sequence and 
combination for processing a batch of jobs. When 
new or higher priority jobs are introduced, it can 
adjust its schedule and reorganize the system en
vironment to accommodate the new work. The MCP 
allocates memory to gain maximum efficiency in 
processing, and reallocates whenever necessary to 
preserve optimum processing of a reordered job se
quence. The MCP also controls the execution of 
individual program segments and initiates all input/ 
output operations. Because of its ability to oversee 
all the programs being processed as well as the indi
vidual segments, it can keep input/output devices 
operating at maximum efficiency with little sacrifice 
of time. 

ELEMENTS OF THE 
MASTER CONTROL PROGRAM 

The MCP includes a group of special-purpose 
routines that anticipate and provide for almost all 
operating circunlstances. 

1. The Executive Routine coordinates the opera
tion of the MCP by determining what type of 
control function is required and transferring 
control to the proper routine. It also supervises 
input/output operations and the execution of 
all program segments in memory. When proc
cessing is interrupted, it determines the cause. 
If necessary, the operator is notified; otherwise 
the Executive Routine takes action either to 
rectify the situation or to continue processing 
on another. program segment. 



2. The Schedule Routine evaluates the priority 
and equipment requirements of a batch of pro
grams. It schedules these and, if necessary, 
reschedules to maintain efficient and con
tinuous processing. 

3. The Environment Control Routine allocates 
memory space and input/output devices ac
cording to the specifications provided by the 
Schedule Routine. 

4. The Exceptional Condition Routines provide 
standard error-handling procedures. 

ENTRY TO THE CONTROL MODE 

The Processor transfers to the Control mode when
ever processing is interrupted. Any circumstance 
that stops processing is called an interrupt condition. 
It may be caused by operator communication with 
the system, by developments in the program being 
executed, or by the hardware. 

When an interrupt condition is encountered, control 
is transferred from the object program to the MCP 
after execution of the program syllable is complete. 
The contents of the arithmetic and control registers 
are stored in Stack locations, and the highest address 
of these locations is placed in the top of the Stack so 
that return to the object program can be made. The 
Executive Routine determines the cause of the inter
rupt and then transfers control to the appropriate 
portion of the MCP for handling of the condition. 
When the interrupt condition has been satisfied, 
registers are restored and control is transferred to an 
object program. 

THE INTERRUPT CONCEPT 

The term "interrupt condition" is used in a special 
sense with the B 5000 System. It does not imply that 
work is interrupted or that the system is held up in 
any way. Rather, a transfer of control is taking 
place, and the MCP may initiate certain types of 
operations that can proceed simultaneously with 
computation. Input/output operations, for example, 
have usually been controlled by the individual pro
gram in process. In the B 5000 System, input/output 
operations are part of a centralized communications 
control, and cause an interrupt condition each time 
they are executed. Since the relatively slow speed 
of input/output devices normally causes a certain 
amount of idleness in the Processor, especially for 
business applications, the B 5000 has been designed 
to permit a maximum use of all peripheral devices. 
The minute amount of processing time that is lost 
through interrupt conditions is far outweighed by 
the over-all increase in production. Each time an 
interrupt condition indicates to the MCP that an 

4·2 

Input/Output Channel is free, processing pauses 
momentarily so that the MCP can initiate new op
erations to make full use of all the system com
ponents. In summary, then, interrupt conditions 
provide opportunities for the :rvlCP to transfer con
trol to the area of processing which will use. the 
equipment most effectively, or for the MCP to re
spond to any error signals, operator messages, or 
unexpected processing conditions. Because it has 
over-all control of the system, the MCP is able to 
make the most of the available system and to keep 
the jobs moving. 

In the following pages, the parts of the Master Con
trol Program are examined in detail. The function 
of each routine and its relationship to other routines, 
particularly to the Executive Routine, are outlined. 

EXECUTIVE ROUTINE 
The Executive Routine is loaded initially from the 
drum when the Program Load button is depressed 
and is retained in memory throughout processing. 
It loads other portions of the MCP from the drum 
as they are needed. As the coordinating member of 
the MCP, the Executive Routine has six basic 
functions: 

1. To initiate all input/output operations; 

2. To analyze all interrupt conditions and provide 
an appropriate course of action; 

3. To maintain control transfer points for pro-
gram segments; 

4. To control the use of other routines in the MCP; 

5. To maintain an operations log; 

6. To maintain an internal physical system de
scription. 

INPUT/OUTPUT OPERATIONS 

The Executive Routine, in order to initiate and 
coordinate all input/output operations, maintains 
several tables in memory. The base locations of the 
input/output descriptors for all programs in memory 
are recorded in one of these tables. A second table 
keeps a tally of the total number of such descriptors 
in each Program Reference Table. Constant access 
to the base location and the total number of each set 
of descriptors enables the Executive Routine to ref
erence a particular descriptor when an input/output 
operation is to be executed. A third table contains a 
record of the descriptors currently being processed 
by each Input/Output Channel. Thus the Executive 
Routine can evaluate the status of any descriptor at 
any time. In summary, the Executive Routine has 
constantly updated information on the location and 
status of all input/output descriptors. 



Initiation of an I nput/Output Operation. 
Modification of the status bit in an input/output 
descriptor causes the operation to be executed. Ini
tially, the status bit of each descriptor is set to indi
cate that the area referenced is not ready for an input 
or output operation to take place. When an object 
program has processed all the data in an input area, 
or filled an output area with information, it executes 
a program-release operator. This causes the status 
bit of the corresponding descriptor to be altered, 
indicating readiness for an input/output operation. 
When an Input/Output Channel is available, an 
interrupt condition occurs, allowing the Executive 
Routine to initiate the operation specified in the 
altered descriptor. It should be emphasized that proc
essing is interrupted only when a channel is ready 
and only long enough for the Executive Routine to 
initiate the specified operation, after which the input/ 
output device proceeds independently of the Proces
sor. Control is immediately returned to a program 
segment. 

Consider now the role of the Executive Routine. 
The object program has indicated readiness for an 
input/output operation by executing a program
release operator and causing a descriptor to be al
tered. The Executive Routine locates this descriptor 
in the appropriate Program Reference Table. This is 
accomplished by a scanning process: using the base
location table for input/output descriptors and the 
tally which indicates the total number of input/ 
output descriptors in that table, the Executive 
Routine examines the status bit of each in turn. A 
location counter keeps track of the descriptors that 
have been checked, and when input/output descrip
tors are referenced in a regular sequence, scanning is 
reduced to a minimum because it provides a starting 
point from the last descriptor processed. 

Since simultaneous input/output operations can be 
executed on the B 5000, it is possible that several 
descriptors from one Program Reference Table may 
be in an altered condition. Therefore, when the 
Executive Routine encounters a descriptor with an 
altered status bit, it checks the list of descriptors 
currently being processed on each of the Input/ 
Output Channels. If the input/output operation 
specified by this descriptor has already been ini
tiated, scanning continues until another descriptor 
with an altered status bit is located or until it is 
determined that all channels are busy. 

Use of the Continuity Bit. Programs with a pre
ponderance of input/output operations frequently 
use multiple read or write areas so that there is al
ways storage for data being read in or for results 
waiting to be output. Thus processing is not delayed 

4·3 

while necessary data is loaded or while results are 
cleared frOni the output area. Multiple read and 
write areas are normally used in a regular sequence, 
and the input/output descriptors that reference 
these areas may be linked by a continuity bit so that 
each descriptor references the one to be executed 
next. 

The presence of a continuity bit permits the Execu
tive Routine to process a sequence of descriptors 
without individual program releases. When a pro
gram release is executed and a group of linked de
scriptors is referenced, the status bits of the group 
are altered automatically in sequence. If Input/ 
Output Channels are available, this alteration per
mits the Executive Routine to initiate the series of 
operations without pauses, selecting the read or 
write areas in turn. 

Completion of an I nput/Output Operation. 
When the specified operation has been executed, the 
Input/Output Channel causes an interrupt condition 
by sending an external-result descriptor to the Exec
utive Routine. This descriptor indicates whether or 
not the operation was completed successfully and 
provides information regarding the type of operation 
performed; unit designation; end-of-file or end-of
tape condition; and presence of parity or other errors. 
Three courses of action are then possible: 

1. If the operation was successfully completed, 
the Input/Output Channel is made available 
immediately, and the status bit of the input/ 
output descriptor just processed is restored to 
its original condition. If another descriptor is 
ready for processing, the Executive Routine 
initiates the specified operation before trans
ferring control to a program. If no input/output 
descriptor is available, control is returned either 
to the segment being processed, or to the next 
one scheduled in the program backlog table 
(refer to Schedule Routine). 

2. If the external descriptor indicates that a 
drum-transfer operation has just been com
pleted, the Executive Routine determines 
whether part of the Master Control Program 
has been loaded into memory. If so, control is 
transferred to it. 

3. If the operation was not successfully com
pleted, the Executive Routine examines the 
external descriptor for the cause of failure and 
attempts to rectify the situation. In the event 
of incorrect reading from tape, for example, the 
tape is automatically positioned backward and 
reread. Persistent failure results in operator 
notification. The operator must decide then 



whether to bypass the faulty record or to dump 
the contents of memory on the drum or on a 
special tape. 

\Vhen an output operation is unsuccessful, the 
Master Control Program prevents destruction 
of the output information. 

If an end-of-tape condihon is indicated by the ex
ternal-result descriptor, the Executive Routine lo
cates the next input file or output tape and provides 
the required tape-handling procedures. In the case 
of an end-of-file condition, the Executive Routine 
refers to the object program for specific instructions. 

Summary. Execution of a program-release operator 
by the object program causes the status bit of an 
input/output descriptor to be altered. This indicates 
to the Executive Routine that the referenced area is 
ready for processing. Provided an Input/Output 
Channel is free, an interrupt condition occurs and 
the input/output operation is initiated. The presence 
of a continuity bit in the descriptor enables the 
Executive Routine to cycle multiple read or write 
areas automatically. Completion of an input/output 
operation also causes an interrupt condition, to 
which the Executive Routine responds according to 
information provided by the external-result descrip
tor. 

HANDLIN"G OF INTERRUPT CONDITIONS 

When any interrupt condition occurs, control is trans
ferred automatically to the Executive Routine, 
which ascertains the cause and initiates program 
action. During compilation certain operators which 
cause interrupts are inserted in the object program 
to provide for necessary operations and to facilitate 
Multi-Processing. Their use in connection with in
put/output operations has just been described. They 
may also indicate a need for additional program seg
ments or memory space, or the completion of a 
program. 

Other interrupts are associated with standard pro
gram checks that determine such arithmetic condi
tions as overflow and underflow. These checks ensure 
that data is properly handled and that arithmetic 
operations do not violate the limitations of the hard
ware. Although these conditions occur infrequently, 
the operating system must be provided with a means 
of handling them. 

Finally, there are error-condition and hardware
checking interrupts. These cause the operator to be 
notified of an equipment failure so that he may 
restart processing or take appropriate action. 

Interrupt conditions may be classified as either 
Processor-dependent or Processor-independent. The 

4-4 

response of the Executive Routine, particularly in 
regard to the order in which it handles interrupts, 
depends upon which type has occurred. The interrupt 
conditions are listed below in these two categories; 
input/output interrupts, which have just been de
scribed, are not repeated here. 

Processor-Dependent Interrupts 

PROGRAM COMMUNICATION. This interrupt 
condition may indicate one of a variety of conditions: 
end of a program segment, end of a program, or the 
need for additional memory to accommodate data. 
The information required by the MCP to handle the 
situation is found in the top of the Stack. 

FLAG BIT ON. If the program references a word 
containing a flag bit, an interrupt occurs. The MCP 
transfers control to an evaluation routine to deter
mine the subsequent path of the program. 

PRESENCE BIT ON. When a program or data 
descriptor is referenced, the status of the presence 
bit is automatically examined. If the bit is on it indi
cates that the information referenced is not in mem
ory. The Executive Routine constructs an I/O de
scriptor, and as soon as an Input/Output Channel is 
available, transfers the information to memory. The 
presence bit in the descriptor is turned off and the 
program can be continued. 
DESCRIPTOR LIMIT. If a program attempts to 
reference a word not specified by the descriptor, an 
interrupt occurs. This is a programming (specifically 
an indexing) error. The program is halted, the opera
tor notified of the error, and the MCP transfers 
control to the Program Reject Routine. 

STACK OVERFLOW. If the capacity of a program's 
Stack is exceeded, an interrupt occurs, permitting 
the MCP to adjust the size of the Stack. Control is 
returned to the program segment. 

DIVIDE CHECK. If a divisor is found to be zero 
during a divide operation, the program is halted and 
the operator is notified. The MCP then transfers 
control to the Program Reject Routine unless other
wise advised by program option. 

INTEGER OVERFLOW. \Vhen a store integer is 
executed and the pseudo-exponent is found to be a 
positive nonzero quantity, the program is halted and 
the operator is notified. The MCP converts the in
teger to a floating point number and returns control 
to the program. Program option can also be specified, 
such as ignoring overflow. 

EXPONENT OVERFLOW. If an arithmetic op
eration results in an exponent greater than +63, the 
program is interrupted and the operator is notified 
and the MCP transfers control to the Program Re-



ject Routine. Program option can also be provided 
to allow the object program to continue processing. 

EXPONENT UNDERFLOW. Any arithmetic op
eration resulting in an exponent of less than - 63 
causes an interrupt condition. The program is halted, 
the operator notified and the MCP then sets the 
result to zero and returns control to the object pro
gram unless otherwise advised by program option. 

INVALID AD DRESS. If reference is made to a 
nonexistent address, an interrupt occurs. The Exec
utive Routine examines the memory allocation tables 
(refer to Environment Control Routine) and makes 
appropriate adjustments to ensure valid memory 
references. 

MEMORY PARITY. If a parity failure is detected 
during processing, an interrupt occurs. The Master 
Control Program notifies the operator so that cor
rective action may be instituted. 

Processor-I ndependent I nterru pts 

TIME INTERVAL. An automatic interrupt is ini
tiated periodically, and the Executive Routine ad
justs the operations log to reflect the elapsed time. 

PROCESSOR BUSY. When the Processor is busy 
or inoperative, this interrupt occurs. If the Processor 
has failed, the operator is notified. If the Processor 
is busy, the Executive Routine refers to the opera
tions log to determine what program is being run and 
whether it has exceeded its maximum processing 
time. If such is the case, the program is interrupted 
and the operator is notified. 

KEYBOARD. The operator indicates that he wishes 
to transmit a message to the system by depressing the 
Inquiry key. As soon as an Input/Output Channel is 
available, the console signals that the system is ready 
to receive the message., The Executive Routine pro
vides room in memory for storage of the message, and 
immediately resumes processing while the message is 
keyed in. The operator presses the End-of-Message 
key as soon as he is finished. 

An extensive list of valid Keyboard messages is avail
able, but operator communication is restricted to 
certain specified messages. This prevents indiscrim
inate use of the Keyboard and assures that only 
nec.essary information is requested. An example of a 
valid message is a request to enter a new job or to 
revise the schedule. 

The Executive Routine determines the validity of a 
message. An unacceptable message is rejected auto
matically and the operator is advised. A valid mes
sage is analyzed and the appropriate program action 
is taken. 

The Executive Routine transmits messages to the 

4·5 

operator via the Message Printer in response to 
Keyboard inquiries, to advise the operator of initial 
set-up requirements and processing needs, or to indi
cate component fail ute. Answers to valid Keyboard 
messages, for example, might include the name and 
running time of programs currently in memory. 
When a job is finished, the Executive Routine may 
request that input and output files pertaining to that 
program be removed, and that files for the next job 
be loaded. When the operator has fulfilled such a 
request, he transmits a compliance message via the 
Keyboard. The Executive Routine may also notify 
the operator of the location and cause of component 
failure, for example, a not-ready condition in any 
input-output unit. 

Normal processing of program segments continues 
during communications. Once the Executive Rou
tine has provided an Input/Output Channel and 
initiated the message printout, it returns control to 
a program segment. 

Program Reject Routine. The Master Control 
Program provides a program reject routine to meet 
error conditions. The program in error may be by
passed, dumped on a special error tape or on the 
drum. If no dump tape has been provided, or if the 
drum contains program segments to be processed, 
the operator is requested, via the Message Printer, 
to indicate the program's final disposition. The Ex
ecutive Routine bypasses the program until the 
operator provides a dump tape or decides to ignore 
the error condition and continue processing. 

When a program is dumped, all information neces
sary to restart the program at the point of interrup
tion is provided. A printout of the program contents 
may be made also. The printout includes the name 
and current value of each variable in the source 
language. There is also a record of the last statement 
label encountered in the program, and a listing of 
each statement label with the number of times it was 
encountered. This provides the programmer with a 
detailed, source language account of the status of 
his program. The operator is advised of program 
dumping via the Message Printer. 

The programmer may write special error-detection 
routines to augment those provided automatically 
in the B 5000 System. These are referenced by the 
Executive Routine in lieu of its standard error 
handling procedures. 

CONTROL OF PROGRAM SEGMENTS 

When processing of a segment is interrupted, the 
B 5000 automatically stores the address of the next 
syllable to be executed. After the interrupt condition 
has been satisfied, the address replaces the one in the 



C register, effecting transfer of control to the proper 
point in the program. 

If completion of a program segment causes an inter
rupt condition, the Executive Routine determines 
which segment is to be processed next. Control is 
transferred to a segment in memory of the highest 
priority job. 

USE OF OTHER MASTER 
CONTROL PROGRAM ROUTINES 

The Executive Routine loads and transfers control 
to the Schedule, Environment Control, and Error 
Routines when the need arises. If, for example, the 
operator requests a revision of job priorities, the 
Executive Routine responds by loading the Schedule 
Routine. Completion of any program signals the 
Executive Routine to load the Environment Control 
Routine so that it may allocate memory space and 
create control tables for the next job to be processed. 
When error conditions arise, the Executive Routine 
determines what type of error has occurred and se
lects and loads from the drum the special routine to 
handle the situation. 

MAINTENANCE OF AN OPERATIONS LOG 

A record is maintained of processing for each pro-
gram: the maximum time required, the time the job 
was started, and elapsed running time. At any time 
during processing, the operator may query the Mas
ter Control Program to obtain the present elapsed 
running time for a job. When the total processing 
time is known, the operator may determine how 
much time is needed to complete a job. Such infor
mation is valuable if a new job is to be introduced to 
the system or if priority changes require a reordering 
of the current processing sequence. The log for each 
job is automatically recorded by the MCP and may 
be output optionally via the Message Printer or the 
Line Printer. 

MAINTENANCE OF SYSTEM DESCRIPTION 

The Executive Routine maintains a table of the 
physical system configuration at all times. The Sched
ule Routine references these parameters in determin
ing which jobs may be combined in memory at 
once, and which processing sequence is most efficient. 
The Environment Control Routine uses the informa
tion when allocating memory to a given set of jobs. 
The table also permits the Executive Routine to 
adjust processing sequence when unforeseen circum
stances arise. If, for example, a tape-unit failure 
occurs, the Executive Routine bypasses the program 
using the unit and advises the operator of the failure 
so that the file can be moved. When the file is re
located, the Executive Routine reassigns the unit 

4·6 

number in the Program Reference Table associated 
with the job, and returns to the normal sequence. 

SUI'JlMARY 

The Executive Routine coordinates the functions of 
the Master Control Program, responds to all inter
rupt conditions according to their cause, maintains 
control over program segments and the other routines 
of the MCP, maintains a constant system descrip
tion and operations log, and provides for system
operator communication. 

THE SCHEDULE ROUTINE 
This routine relieves the programmer and operator 
of all scheduling and ensures the most effective use 
of the system for multi- and parallel-processing. The 
operator loads program parameter cards, then makes 
a Keyboard request to schedule. The Executive 
Routine loads the Schedule Routine from drum to 
memory. Its functions are as follows: 

1. To determine the sequence of jobs to be run 
and, if Multi-Processing is performed, the best 
combination of programs to be processed con
currently. Priority ratings, system require
ments of each object program, and the present 
system configuration are considered. 

2. To reschedule whenever a higher priority job 
is introduced. (Adjusting job sequence during 
production run is called dynamic rescheduling.) 

3. To relay information about the jobs scheduled 
to the Environment Control Routine. 

PROGRAM BACKLOG TABLE 

The Schedule Routine develops a program backlog 
table so that it can perform these functions. The 
elements of this table are formulated from priority 
ratings provided by the operator and the program 
parameters produced by the compiler. Information 
furnished by program parameters includes job identi
fication, input/output unit requirements, amount of 
memory required, file descriptions including identi
fication and size, and object program media (cards 
or tape). 

When all parts of the program backlog table have 
been developed it contains, in order of priority, each 
job identification, input/output requirements, mem
ory requirements, current location of program 
(drum, tape or cards), file descriptors, processing 
status (running or finished), time started, time com
pleted and input/output unit time. This table is 
maintained in memory throughout processing by the 
Executive Routine and is used by the Environment 
Control Routine for memory allocation and input/ 



output unit assignments. 

INPUT/OUTPUT REQUIREMENTS 

The input/output requirements of each job being 
scheduled must be considered in relation to the 
present system configuration and to those of jobs 
scheduled for concurrent processing. Each Memory 
Module allows the following simultaneous input/ 
output operations: 

One magnetic drum operation, or 
Two magnetic-tape operations plus any two of the 
following: Card Reader, Card Punch, Line Printer, 
Plotter, Keyboard, Message Printer. 

For the purpose of analysis, the input/output de
vices are weighted according to their transfer rates. 
The Storage Drum is valued at 10, a Magnetic Tape 
Unit at 4, and all other devices at 1. Simultaneous 
access to one Memory Module is limited to opera
tions with a total score of 10. 

The number of Input/Output Channels available 
also determines the total number of simultaneous 
operations. For instance, one Magnetic Tape Unit, 
a Card Reader, Punch and the Keyboard have a 
total score of only 7, but will occupy four channels, 
assuming that a maximum system is available. 
Table 4-1 shows possible input/output combinations. 

Table 4-1. Input/Output Combinations With Maximum System 
--, 

TAPE OTHER 

DRUM UNITS DEVICES 

I 0 0 

0 2 2 

0 I 3 

0 0 4 

Memory allocation (by the Environment Control 
Routine) is also influenced by the number of input
output units that must access a Memory Module. 
Whenever a system has more than one Memory 
Module, input/output areas are distributed in mem
ory so that simultaneous operations affecting a par
ticular Memory Module are kept within the restric
tions. 

MEMORY REQUIREMENTS 

When a program is compiled it is given a memory 
score that indicates the maximum number of loca
tions it wili require at any given time. The Schedule 
Routine considers this score in relation to the mem
ory requirements of other jobs being scheduled and 
to the total capacity of the system. 

4.7 

SUMMARY 

In constructing the program backlog table the Sched
ule Routine first satisfies the priorities for the day's 
production. Then the input/output and memory 
requirements are examined. Jobs are grouped so that 
several can be processed at the same time; computing 
for one job is performed while input/output opera
tions for the others take place. 

As each job is completed, the processing status in the 
table indicates this. Finished items in the table con
tain all information for a comprehensive operations 
log. 

ENVIRONMENT CONTROL ROUTINE 
By evaluating the information provided in the pro
gram backlog table in conjunction with the system 
description maintained by the Executive Routine, 
the Environment Control Routine makes assign
ments of input/output units and memory space. 

ASSIGNMENT OF INPUT/OUTPUT UNITS 

Messages are transmitted to the operator, specifying 
the number and type of input/output files required 
for each program. Actual unit designation is not 
made yet. As soon as the proper files have been 
mounted, the operator indicates via the Keyboard 
that they are ready. 

The Environment Control Routine scans each ex
ternal device, locating the correct files, assigning unit 
numbers, and developing a record ·of these assign
ments. The input/output unit assignment table con
tains the number of every unit in the system, the 
file description (identification and size), title of the 
program using the unit, and the unit status. The 
status field indicates whether a job is in progress or 
finished or that the unit is free. A sample is shown in 
Table 4-2. 

Table 4-2. Input/Output Unit Assignment 

UNIT FILE PROGRAM 

NO. DESCRIPTION ASSIGNMENT STATUS 

I File Title Job Title In Progress 

2 File Title Job Title In Progress 

3 Blank Job Title In Progress 

4 Blank Blank Unit Free 

5 File Title Job Title Finished 

ALLOCATION OF MEMORY 

Once the input/output assignment table has been 
generated, the Environment Control Routine allo-



cates memory space for the Program Reference 
Table, Stack, segments, data arrays and input/output 
areas of each program. It refers to the memory scores 
and file descriptions so that areas of the right size 
can be reserved. Input/output requirements are ref
erenced so that assignment of input and output 
areas concurs with the restrictions on simultaneous 
operations affecting each Memory Module. 

For the purpose of allocation, memory is divided 
into many blocks. The Environment Control Rou
tine develops a memory allocation table (Table 4-3) 
that indicate.s which blocks are used by each object 
program and which are unassigned. A record is made 
of blocks that are set aside for program use but not 
yet filled, and for those that are completely filled 
with information. This record is maintained and 
referenced throughout processing. 

Now the Program Reference Tables are loaded and 
initialized. Core base addresses are supplied to all 
the descriptors on the basis of assignments that have 
just been made. 

Table 4-3. Memory Allocation 

I MEMORY BLOCK I CONTENTS I 
1 1 fob 1, Program Reference Tabie 1 

2 Job 1, Program Segments 
3 Job 1, Input/Output Area 
4 Job 1, Still Unused 
5 Job 2, Program Reference Table 
6 Job 2, Still Unused 
7 Job 2, Program Segments 
8 Job 3, Program Reference Table 
9 Job 3, Program Segments 

BASE LOCATION TABLES 

The Environment Control Routine produces a table 
that lists the base location of the Program Reference 
Table for each job (Table 4-4) and one that lists the 
base location (within the Program Reference Table) 
of the input/output descriptors for each job (Table 
4-5). These tables are used by the Executive Routine 
to control Multi-Processing. Specific uses are de
scribed in connection with input/output operations. 

LOADING PROGRAM SEGMENTS 

The Environment Control Routine loads the pro
gram segments required to start processing. The 
presence bit is set in the corresponding program 
descriptors in the Program Reference Table. The 
number of segments located in memory for each job 
at any one time depends upon the nature of the 

4-8 

program, size of data arrays and input/output areas, 
and available space. Now the Executive Routine 
determines the processing sequence from information 
in the program backlog table and transfers control 
to a segment. 

Table 4-4. Base Locations of Program Reference Tables 

BASE ADDRESS OF PROGRAM 

JOB REFERENCE TABLE 

Job 1 xxxx 
Job 2 xxxx 

Job 3 xxxx 
Job 4 xxxx 

Table 4-5. Base Locations of Input/Output Descriptors 

NUMBER OF BASE LOCATION 

INPUT/OUTPUT (WITHIN PROGRAM 

JOB DESCRIPTORS REFERENCE TABLE) 

Job 1 2 xxxx 

Job 2 3 xxxx 

Job 3 2 xxxx 
Job 4 1 xxxx 

LOADING ADDITIONAL SEGMENTS 

The sequence just described is the job set-up pro
cedure. As programs are processed or finished the 
Executive and Environment Control Routines per
form other operations. When, for example, a pro
gram descriptor is referenced and the presence bit 
indicates that the segment is not in memory, the 
Executive Routine refers to the memory allocation 
table. Certain blocks may have been set aside for a 
job, but are as yet unused. In this case, the Executive 
Routine selects an empty block, supplies the base 
address to the program descriptor, loads the segment 
into the area, and returns control to the object pro
gram. If, however, all the blocks allocated for a job 
have been used, the Environment Control Routine 
is loaded. Provided there is available space, it assigns 
a new memory block to the job and loads the seg
ment; otherwise, it provides an overlay area in a 
block previously used. 

PROGRAM-FINISH CONDITIONS 

When a job is completed, the Environment Control 
Routine scans the control tables, adjusting all entries 
pertaining to that job. The next program to be run 



is located in the program backlog table. The En
vironment Control Routine makes unit and memory 
assignments as described; advises the operator of file 
requirements; loads and initializes the Program Ref
erence Table and the base location tables; loads the 
segments and transfers control to the new program. 

CHANGING THE SCHEDULE 
If a new job is introduced to the system with a high 

4·9 

priority rating, the Schedule Routine is loaded and 
alters the program backlog table. The Environment 
Control Routine makes the proper unit and memory 
allocations. If sufficient memory space is not avail
able, a lower priority job is removed from the system 
after restart points have been stored for later proc
essing. The normal procedure for initializing and 
loading a program is then followed. 





INTRODUCTION 

The system chart in Figure 5-1 illustrates the re
markable flexibility of the B 5000 Information 
Processing System. This flexibility is called Program 
Independent Modularity because the configuration 
of the system can be altered without causing dis
ruption in processing or requiring program modifica
tion. Three types of modules make up a system: 
Processors, Input/Output Channels, and Memory 
Modules. These may be coordinated into a system 
tailor-made for a user's requirements. A system may 
incorporate one or two Processors, as many as four 
Input/Output Channels, and as many as eight Mem
ory Modules. Each Input/Output Channel can 
communicate with any Memory Module, and each 
Processor can also communicate with any Memory 
Module. This basic network of communication is 
augmented by the ability of each Input/Output 
Channel to control information flow for any of the 
26 input-output units, such as Magnetic Tape Units, 
Storage Drums, Card Readers, Line Printers, etc., 
that can be included in a maximum system. 

The maximum and minimum system configurations 
are itemized in Table 5-1. 

Table 5-1. System Configuration Limits 

COMPONENT MINIMUM 

Console 1 
Processor 1 
Memory Module 1 
Input/Output Channel 1 
Storage Drum 1 
Magnetic Tape Unit 0 
Line Printer 0 
Card Reader 1 
Card Punch 1 
Plotter 0 

T --- ....... r~ ... I ~ey bua1 ~ . . .L 

Message .Prmter 1 
Input/Output Exchange 1 
Memory Exchange 1 

MAXIMUM 

1 
2 
8 
4 
2 

16 
2 
2 
1 
1 
... 
.l 

1 
1 
1 

5-1 

SECTION 5 
COMPONENTS 

Each component is described in the following para
graphs. The Processor, which has been discussed 
extensively in Section 3, System Characteristics, is 
not described further here. 

CONSOLE 
The Console, shown in Figure 5-2, is the operations 
center of the B 5000 system. It has control switches 
and indicator lights which provide the operator with 
a convenient supervisory center. Next to and con
sidered part of the Console control center are the 
Message Printer and Keyboard, the communication 
links between the system and operator. 

The Console also contains the system switching 
facilities, the interrupt circuitry, the system syn
chronization equipment, the power controls, and the 
interval timer or clock. The interval timer provides 
a constant interval time interrupt for control pur
poses. This timer allows the logging of running time 
of all programs. 

MEMORY MODULE 
The high-speed Memory Module is the primary 
storage unit for programs and data. It also couples 
the computation facility of the Processors with the 
input/output operations. It is able to accept and 
transmit data independently of the Processor's activ
ity. In addition, the Processor can access a Memory 
Module, even though the module is currently com
municating with input/ output devices. 

Each module can store 4096 words. A single system 
may have from one to eight modules, each inde
pendent of the others. This independence facilitates 
multiple and parallel processing. When a system has 
one Memory Module, for example, multiple Proces
sor and input/output operations are time-shared in 
memory. Processor operations can resume as soon as 
the input/output operation has been 'in,itiated, so 
there is virtually no delay. If two or more Memory 
Modules are available to the system, parallel input/ 
output and Processor operations can be accom
plished with no delay. 



a 0 

I u .. 

1·16 MAGNETIC 
TAPE UNITS 

1·2 CARD 
READERS 

1 KEYBOARD 

1 MESSAGE 
PRINTER 

1·2 LINE 
PRINTERS 

PLOTIER 

1-8 MEMORY UNITS 

l 4 INPUT/OUTPUT CONTROLS 

-:tt:~ :~~~ 

J11J!ll~Ht!!!!H!!!!!!i!i!!i)i!W!;i;!:::;mm~lllif /f //;/,i!!i!i
1

:: ;ROC~~RS 

-; I. -r~f ft - , 

Yo 

Figure 5-1. System Configuration Chart 

5-2 

I 

~ 
-

-
··~ 

I , -;- + - -
~-+-it 



Figure 5·2. The Console 

The Memory Module, shown in Figure B-3, is a 
coincident current, magnetic-core type, with a ran
dom access time of 3 microseconds (J..ls) per word and 
a memory cycle time of 6 J..ls. Its memory-retention 
feature allows information to be stored indefinitely 
without regeneration. Each of the 4096 words con
tains 48 bits of information and 1 parity bit. k49-bit 
Memory register permits information to be trans
ferred in parallel between either the Processor or the 
Input / Output Channels and the Memory Modules. 
A storage location within a module is addressed by 
a 12-bit Memory Address register associated with 
each Memory Module. One word may be addressed 
during each memory cycle; any address or combina
tion of addresses may be used continually. 

MEMORY EXCHANGE 
This is a switching network which provides auto
matic hookup of either Processor to any Memory 
Module and any Memory Module to any Input/ 
Output Channel. 

INPUT j OUTPUT EXCHANGE 
This is a switching network, similar to the Memory 
Exchange, that allows anyone of the Input / Output 
Channels to communicate with anyone of the input / 
output units. 

INPUT j OUTPUT SYSTEM 
Information may be transmitted between Memory 

5·3 

Modules and the Card Punch, Card Readers, Line 
Printers, Magnetic Tape Units, Storage Drums, the 
Keyboard, the Plotter, and the Message Printer. 

A maximum of four Input / Output Channels may be 
incorporated in a system; the maximum number of 
each type of input / output device is listed in Table 
5-1. 

Normally, all input ' and output operations transfer 
information directly to or from memory, utilizing a 
time-sharing technique. This technique allows com
putation and input / output operations to proceed 
simultaneously, except when both the Processor and 
any Input / Output Channel are communicating with 
the same Memory Module at the same instant. In 
this case, the Processor accesses memory between 
input / output-memory word transfers. The fast cycle 
time of six J..ls permits virtually simultaneous access; 
for instance, it is possible for the Processor to main
tain maximum-speed computation while four input/ 
output operations are conducted (through the four 
channels) at maximum speeds. 

The program is interrupted briefly at the completion 
of each input / output operation. At this time, the 
Master Control Program initiates a new input / 
output operation and returns control to the program. 
Thus the B 5000 System controls all phases of opera
tion with maximum efficiency. Because the external 
operations can be initiated, then carried out without 
halting the Processor, inefficiencies due to com
ponent idleness are eliminated. 



Figure 5·3. Memory Modules and Input/Output Channels 

INPUT/ OUTPUT CHANNEL 

An Input / Output Channel, shown in Figure 5-3, 
handles the flow of information in one direction at a 
time between any Memory Module and any periph
eral device attached to the system. The number of 
channels included in a system determines the· num
ber of simultaneous input / output operations. If 
there are four Input / Output Channels, for example, 
there can be as many as four simultaneous inpuL ' 
output operations. 

If one cpannel is sufficient to handle the volume of 
input/output operations, all devices available may 
be associated with this channel. If increased work
load makes necessary a second Input / Output Chan
nel, the same input / output devices are available to 
it. The increase in system capacity is immediately 
available; no reprogramming is required. 

INPUT INFORMATION FLOW 
Input information flows through an Input/ Output 
Channel by way of a 48-bit Buffer register. This 
register accepts one character at a time .from the 
input device. The six bits of information that make 
up each character are transferred in parallel. When a 
complete word (48 bits) has accumulated in the 
Buffer register, it is transferred in parallel (simul-

5·4 

tane'Ously) to memory. 

The information being transferred may be either 
alphanumeric or binary. Alphanumeric information 
is in the six-bit BURROUGHS Common Language 
(BCL) code, and is obtained from even-parity mag
netic tape, from one card column that has been 
decoded by the Card Reader, or from the Keyboard, 
also decoded. Binary information is obtained from 
odd-parity magnetic tape, storage drums, or a col
umn of binary code on punched cards. The differ
.ences in magnetic-tape parity for BCL and binary 
code are explained in this section under the heading 
Magnetic Tape. Figure 5-4 is a flow diagram of the 
input information flow. 

OUTPUT INFORMATION FLOW 

Output information flow is the reverse of input. Each 
word is transferred in parallel (all 48 bits simul
taneously) from a Memory Module to the Buffer 
register. It is sent six bits in parallel, a character at 
a time, to the output device. Binary output informa
tion is transferred either to a Storage Drum or to a 
tape as odd-parity data. Alphanumeric information 
may be transferred to even-parity tapes, Line Print
ers, the Card Punch, or the Message Printer. Figure 
5-5 illustrates this flow. 



EVEN-PARITY 
MAGNETIC TAPE 

II Ill 

•• II II I 
II Ill 

HI I I 

I II 

BCL CARD 
COLUMNS 

0 0 

00000 
COCCO 

II 111 

KEYBOARD 

ODD-PARITY 
MAGNETIC TAPE 

STORAGE DRUM 

111 II 

II 

I 111 II 

Ill 

II 

II 111111 

I II 

BINARY CARD 
COLUMN 

II 

__ ...,..>

= c 
z: 
CiCi 

INPUT/OUTPUT CHANNEL 

Figure 5-4. Input Information Flow 

5.5 



MEMORY 
MODULE 

INPUT OUTPUT CHANNEL 

z 
0 

EVEN-PARITY 
MAGNETIC TAPE 

LINE PRINTER 

CARD 
PUNCH 

MESSAGE 
PRINTER 

~ PLOTTER 
~ 
c::: 
0 
L.&... 
z 

Figure 5-5. Output Information Flow 

5-6 

ODD-PARITY 
MAGNETIC TAPE 

STORAGE DRUM 

c 

,. 
~'IT 

[J 
"' 



64 SIX CHANNEL 
INFORMATION BANDS 

/4 8 CHARACTERS 

Figure 5-6. Storage Drum 

STORAGE DRUM 
The Storage Drum is a high-speed mass storage de
vice providing rapid access to program segments, 
subroutines, and large blocks of data. J t communi
cates with Memory Modules through an Input/ 
Output Channel. Transfers between the Storage 
Drum and Memory Modules are made independently 
of Processor activity, permitting simultaneous com
puting and input/output operations. The basic 
B 5000 System includes one Storage Drum; a second 
drum may be added. 

Figure 5-6 shows the 64 six-channel information 
bands, each containing 512 words. Total storage 
capacity is 32,768 words. The drum rotates at a rate 
of 3600 rpm, and has a read-write speed of 8.1 micro
seconds per character. Average access time to a word 
on the drum is 8.5 milliseconds or 18.5 milliseconds 
if switching bands. Information can be retained on 
the drum indefinitely without regeneration. 

As shown in Figure 5-6, a longitudinal parity of six 
bits is recorded at the end of each 48-bit word. The 
transfer of information between Storage Drum and 
an Input/Output Channel is made character by 
character, while transfers between the channel and 
Memory Modules are by the word. Each word on the 
drum is addressable. Reading or writing may start 
at any drum address. From one to 512 words may be 
transferred. 

Automatic lane advancing is not possible. An at
tempt to record data in the location immediately 
after the last (512th) location of a lane causes the 
word to be recorrlerl in the first location of the same 
lane. Thus, a 20-word record begun in the 500th 
location is carried over through the first eight loca
tions of the same lane. The 512 words of a lane are 

5-7 

written as two interlaced groups of 256 words. Thus 
any word is addressed in one revolution of the drum; 
a continuous reading or writing of 512 words requires 
two revolutions. 

Four manual switches lock out the lower half of the 
drum addresses. Each switch protects 4096 words to 
prevent inadvertent overwriting of the Master Con
trol Program, Language Translato:-s and Compilers, 
and Utility Routines which are permanently recorded 
in this area. 

MAGNETIC TAPE UNIT 
The B 5000 magnetic tape system operates inde
pendently of the Processor. Reading, writing, back
spacing, rewinding, and erasing operations are under 
system control. A maximum of 16 of the Magnetic 
Tape Units shown in Figure 5-7may be used with the 
system. 

The B 5000 Magnetic Tape Unit accepts data in 
either binary or single-frame alphanumeric form. 
Tape format is compatible with IBM Model 729-11 
and 729-IV magnetic tape units. Standard tape one
half inch in width is used. Tapes are mounted on 
reels which contain up to 3600 feet of tape and have 
a maximum diameter of lOYz inches. 
Data may be stored in two densities, either 200 or' 
555.5 frames per inch. One frame contains either six 
binary bits or one six-bit alphanumeric character. 
Tape speed is 120 inches per second, a transfer rate 
of 24,000 characters per second for a density of 200 
frames per inch, and 66,600 characters per second 
for a density of 555.5 frames per inch. Packing 
density is selected by a switch on the unit. 

Tape is rewound at a speed of 340 inches per second. 
Start or stop time is 5 ms. The dual-gap read-write 



Figure 5·7. Magnetic Tape Unit 

head of the B 5000 Magnetic Tape Unit provides 
automatic checking of write operations. 

The Magnetic Tape Unit operates in two modes: 
local or remote. Local manual control of the unit is 
provided by a Local-Remote switch on the operator's 
panel. An indicator denotes which operating mode 
is in effect. 

Mounting and removal of tape reels is facilitated by 
quick-action reel locks. A Reel Brake Release switch 
permits loading or unloading of the tape. A write 
ring must be installed on a reel to permit writing or 
erasing, thus preventing accidental destruction of 
files. After the tape reel has been mounted on the 
unit, activating the Load switch causes the tape to 
be drawn into the slack loop mechanism, and to be 
automatically positioned at the beginning-of-tape 
marker, ready for operation. An Unload switch is 
used t') reverse the load procedure for removal of the 

5·8 

tape reel. The unit must be in local mode for the.se 
operations. 

A Ready indicator shows when the transport is in a 
ready state. A Write Warning light is turned on if the 
reel installed on the transport is equipped with a 
write ring. . 

Tape format consists of seven recorded channels 
across the tape, as illustrated in Figure 5-8. The 
information tracks, identified as 1, 2, 4, 8, A, and B, 
represent ei ther single-frame alphanumeric or binary 
information. The C track provides a parity check for 
each frame. The non-return-to-zero method is used 
for recording. 

Reading and writing can be done in either binary or 
alphanumeric mode, providing complete code flexi
bility to the system. The alphanumeric mode carries 
an even parity. That is, a parity bit is recorded in the 
C channel simultaneously with each character if an 
odd number of bits represents that character in the 
information channels. The binary mode carries an 
odd parity. A parity bit is recorded in the C channel 
if there is an ~ven number of bits in the information 
frame. 

I t is possible to write interspersed binary and alpha
numeric records in the binary mode. 

A longitudinal check character is written after the 
last character of each record. This consists of a 
parity bit, automatically recorded in each track with 
an odd total bit count. These parity bits maintain 
an even number of one-bits in each track for the 
entire record length, regardless of the code used. 

READ OPERATIONS 

Both forward and backward read operations can be 
performed in either binary or alphanumeric mode. 
Regardless of reading direction, information is placed 
in memory in normal sequence. Variable-length rec
ords ranging from one character to memory size can 
be read in one-character increments in the alpha
numeric mode. In the binary mode, one to 1024 words 
may be loaded in one-word increments. 
Reading operations in either mode are terminated 
when a %-inch record gap is encountered. A group 
mark is automatically inserted in memory after the 
last character of an alphanumeric record. In either 
mode, if the number of characters read (including 
the group mark in the alphanumeric mode) does not 
complete a word, the information appears in memory 
left-justified on forward read. 

WRITE OPERATIONS 

Write operations are performed in the forward direc
tion, placing information from memory in ascending 
sequence on tape. Alphanumeric records may vary 



:.:: 
z 
ci 

0123456789 ABCDEFGH I J KLMNOPQRSTUVWXYZ a: . )]<~A$*[>6-/,v:" ;~ X ( =~ +..,~ 

PARITY l P II 11 11 I 11 I 11 I I 11 I I I I 11 I I 

ZONE { : 
111111111111111 11 II 11111111 
I I II I I I II II I 11 II I I 11 I I 111 II I 

8 II II 11 11 11 I I 1111 I II 11 II I I 11 

NUMERIC 4 111 I 111 111 111 I I 111 I I 11 I I 11 
2 I I 11 I I I I II I I I I I I II I I 
1 I I I I 11 I I I I I I I I I 11 I 11 I 

Figure 5-8. Magnetic Tape Format 

in length from one character to memory size in one
character increments. A group mark terminates an 
alphanumeric write operation. When the binary 
mode is used, one to 1024 words may be recorded in 
one-word increments. Writing the number of words 
specified by an output descriptor terminates a binary 
write operation. A %-inch record gap is automatic
ally supplied at the end of any write operation. 

The address of the last word read into or written out 
of memory in both binary and alphanurr.eric modes 
is recorded in an external result descriptor. The 
descriptor is supplied to the system from the Input/ 
Output Channel at the completion of a write opera
tion, and indicates to the Master Control Program 
the status of that operation. 

In addition to reading and writing, the tape system 
performs backspacing, rewinding, and erasing op
erations. When encountered, a backspace descriptor 
causes the designated tape unit to backspace one 
record. A rewind descriptor causes the unit to rewind 
to the beginning-of-tape marker. An erase descriptor 
is used to erase desired lengths of tape, as in extend
ing a record gap over a flaw. 

\Vhen an end-of-file occurs, a special one-character 
record is written. It consists of a bit in each of the 
1, 2, 4, and 8 tracks, and is always followed by a 
longitudinal check character with the same bit struc
ture. The A, B, and C tracks contain zero bits. This 

5.9 

mark is recorded in alphanumeric mode, regardless 
of which mode was used to write the information 
records. It follows the standard ~~-inch record gap 
after the last record in the file. 

The beginning-of-tape marker is located approxi
mately 10 feet from the physical beginning-of-tape. 
The end-of-tape marker is approximately 14 feet 
from the physical end-of-tape. Each is a one-inch 
strip of reflective tape, adhering to the plastic side 
of the magnetic tape. 

Beginning- and end-of-tape markers are sensed photo
electrically. When the beginning-of-tape marker is 
sensed, the tape stops, whether it has been moving 
in a forward or backward direction. It can move only 
in a forward direction on the next operation. The 
end-of-tape marker can be sensed only when the 
tape is moving in the forward direction. Sufficient 
writing area is available, however, so that any writing 
operation in progress may be concluded. 

LINE PRINTER 
The Line Printer shown in Figure 5-9 operates at 
650 lines per minute. There are 120 print positions 
per line, and 63 characters plus a blank are available 
for each print position. Two optional character sets 
are available to provide complete flexibility for all 
printing requirements. There are 10 characters per 
inch horizontally, and either six or eight lines per 



Figure 5·9. Line Printer 

inch yertically. A maximum of two printers may be 
installed with one system. 

The printer accepts 15 woros of BI'RROI'GHS Com
mon Language alphanumeric information for each 
line of print. This information is transferred from 
ascending memory locations a character at a time 
through an Input Output Channel and accumulates 
in the 120-position buffer of the printer. When the 
buffer is completely loaded, the line is printed. Ac
cess to a print cycle is immediate. 

Continuous paper forms are used. They may be from 
5 to 20 inches wide, including margins, and a form 
may have a maximum length of 22 inches. Form 
adjustments require no special tools and drum clear
ance may be adjusted. Each tractor mechanism 
which controls horizontal placement of the form can 
be adjusted independently when the machine is 
stopped. Once installed, the form can be shifted left 
or right in minute increments while the machine is 
operating. Precise yertical form adjustments can be 
made in either direction when the printer is stopped. 
Processed forms are stacked. 

Legible printing can be produced on forms from .0025 

5·10 

to .020 inches thicl" Vp to six-part forms on white 
sulfite bond can be printed, using .00l-inch carbons. 
This number can be increased by using premium 
papers and carbons. 

A vertical format punched tape, working in con
junction with the system, controls the vertical for
mat of the printing. including such operations as 
skipping to a new page or skipping lines \\'ithin a 
page. 

The Line Printer produces an end-of-page signal, a 
print-check signal, and a not-ready signaL 

Print checking consists of a parity check when char
acters are read into or out of the print buffer. Drum 
synchronization is checked by means of the drum 
position counter to assure that the drum position and 
timing circuits agree. 

CARD-HANDLING EQUIPMENT 
A maximum of two Card Readers and one Card 
Punch may be attached to a system. They operate 
independently of the Processor and of any other 
peripheral equiprr:ent. As with all input / output de
vices, the card equipment can be selected by any 



Input Output Channel. Two Card Reader models 
are ayailable. Both can handle either alphanumeric 
or binary information. (Binary information on cards 
is represented as 12 bits per column, and is read by 
column. ) The Card Punch handles alphanumeric 
information. 

CARD READERS 

Figure 5-10 illustrates the two Card Readers avail
able. One model operates at 800 cards per minute, 
the other, known as the Program Card Reader, at 
200 cards per minute. Each has an immediate-access 
clutch to eliminate clutch access time. Reading is 
performed photoelectrically by 12 photodiodes. 

The 800 cpm reader can read cards of 51, 60, 66, or 
80 columns. The Program Card Reader handles 80-
column cards only. Both readers accept two thick
nesses of cards. A card file, however, must be con
sistent in column length and card thickness. The 
information is read serially, column by column. Card 
data may be represented in standard tabulating 
card code or straight binary code. Each card file 
must contain cards prepared in only one code. 

Standard card code is translated into BURROUGHS 
Common Language six-bit code , and supplied to the 
Input 'Output Channel a character at a time. Invalid 
characters are sensed 'and replaced by six zero bits 
and an error indication is supplied to the Processor. 
Binary codes are read column by column, six bits at 
a time. Since there are 12 bits in a binary column, 
each card column occupies the equivalent of' two 
six-bit characters. 

The read circuitry is monitored during each card 
cycle, and when an error is detected an indicator is 
turned on. The operator may signal an end-of-file 
condition by depressing the Card Reader End-of-File 
key, when the card hopper is emptied. The reader 
may then run out the two or three cards still inside 
the reading mechanism and provide an end-of-file 
signal to the Input / Output Channel. 

The hopper and stacker of the Program Card Reader 
each have a capacity of 500 cards. Those of the 800 
cpm reader have a capacity of 2400 cards each. Both 
reader models allow removing or adding cards while 
the reader is operating. 

Figure 5·10. 800 CPM Reader and Program Card Reader 

5·11 



CARD PUNCH 

The Card Punch (Figure 5-11)wilI feed,punch,check, 
and stack 80-column cards in both standard and 
postcard thicknesses at a maximum rate of 100 cards 
per minute. Functional controls are located on the 
plugboard and on the operator's control panel. 

Figure 5·11. Card Punch 

5·12 

Figure 5·12. Plotter 

Double-punch and blank-column detection units are 
available in groups of 20 as optional devices. The 
punch contains a single-panel plugboard for the 
wiring of double-punch and blank-column checking. 
The hopper and stacker can hold 800 cards each. 

PLOTTER 
The Model 201 Tally Digital Plotter (Figure 5-12) 
provides immediate visual display of computed re
sults. It plots up to 8 points per second with selected 
symbols, or up to 20 points per second with random 
symbols. The vertical axis may be a maximum of 10 
inches; the horizontal axis may be as long as desired. 

Plotting resolution is 400 points in 10 inches, with 
the points spaced .025 inch apart on the vertical (Y) 
axis. The horizontal eX) axis has paper-feed spacing 
of ± .025 inch per increment of X, with zero to 99 
increments available per input. Four symbols are 
used: period, square, triangle, and inverted triangle. 
Grid printing is optional and may be suppressed 
when preprinted paper is used. A vertical grid strip 
~ inch wide is printed whenever the grid system is 
activated; this occurs every time the paper advances 
ten increments along the horizontal axis. Any of the 
digits 0 through 9 may be printed slightly below the 
"0" abscissa axis. Manual controls over Plotter 
operation include stop, reset, paper step, and paper 
feed. 



MESSAGE PRINTER/ KEYBOARD 
The operator and the B 5000 system communicate 
via the Message Printer and associated Keyboard. 
The system thus has the means to instruct the op
erator and to provide answers to the operator's 
inquiries. The operator may acknowledge the in
structions transmitted to him by the Master Control 
Program and initiate inquiries and instructions to 
the Master Control Program. 

MESSAGE PRINTER 

The Message Printer (Figure 5-13) prints 600 char
acters per minute, a character at a time. The 63 
characters plus blank of the BURROUGHS Common 
Language Code are used. The printer records all 
information initiated at the Keyboard, as well as 
that transmitted by the Master Control Program, 
thus providing a permanent record of operations. 

KEYBOARD 

The Keyboard is also shown in Figure 5-13. The 
Keyboard is similar to a typewriter, containing 26 
alphabetic characters, 10 numeric characters, and 
3 special characters. The special characters are as 
follows: 

CHARACTER 

(Blank) 

MEANING 

Change Mode 
Minus 
Space 

There are three function keys. The Inquire key inter
rupts the system so that a message can be transmitted 
to the Master Control Program. The End-of-Mes
sage key produces a six-bit group mark code. The 
Error key produces a six-bit invalid character code. 

5-13 

Figure 5-13. Message Printer/ Keyboard 





APPENDIX A 

ALGOL CHARACTERISTICS 

INTRODUCTION 
For problems essentially computational or mathe
matical in nature, the language of the B 5000 con
tains ALGOL 60 with minor restrictions. ALGOL 60, 
like any language, is formulated from a set of basic 
symbols and words. These symbols and words are 
then used to formulate expressions, which in turn 
are compounded into the programming units of the 
language called statements. The statements, sup
ported by declarations, are computing instructions 
to the B 5000 and its compiler. 

The purpose of this appendix is to define the termi
nology of ALGOL 60, showing its efficiency as a pro
gramming tool. It is not intended as a computational 
programming primer. 

BASIC SYMBOLS AND WORDS 
The alphabet of' ALGOL 60 comprises basic symbols 
(letters, digits, operators, etc.) and some English 
words. The words of' ALGOL 60 are the identifiers, 
numbers, and strings which are formed from the 
alphabet. 

LETTERS 

The 26 capital letters of the English language are 
used to form identifiers (names or labels for variables, 
switches, etc.) and strings (special groups of basic 
symbols) : 

ABCDEFGHIJKLMNOPQRSTUV 
WXYZ 

DIGITS 

The ten Arabic digits (0-9) are used, both to form 
numbers and in arbitrary combinations with alpha
betic characters to make up identifiers and strings. 

OPERATORS AND SYMBOLS 

The following arithmetic operators are acceptable. 
+ addition 

x 
/ 

I 

~TT" 
U.I. V 

* 

subtraction 
multiplication 

division (both operands of type INTEGER) 
exponentiation 

A·I 

The relational operators are: 
< less than 
< less than or equal to 

equal 
> greater than or equal to 
> greater than 
~ not equal 

The logical (Boolean) operators are: 
EQV logical equivalence (equivalent) 
IMP logical implication (implies) 
v logical sum (or) 
1\ logical product (and) 
-, logical negation (not) 

The sequential operators are: GO TO, IF, THEN, 
ELSE, FOR, and DO. 

The separator symbols are: 
comma; separates arguments of a function, 
separates elements of a list, 
subscripts of an array, etc. 
decimal point 
colon; follows a label 
semicolon; separates statements 

f----- replace by 
plus STEP, UNTIL, WHILE, and COMMENT. 

The bracket symbols are: 
( ) 

[ ] 

" 

Parentheses are used, for example, to en
close parameters of a procedure. 
Brackets are used, for example, to enclose 
subscripts of an array. 
Quotation marks are used to enclose the 
symbols of a string. 

The reserved words BEGIN and END are also used. 

The declarator symbols are: OWN, BOOLEAN, 
INTEGER, REAL, ARRAY, SWITCH, and PRO
CEDURE. 

The specificator symbols are: STRING, LABEL, 
and VALUE. 

The logical value symbols are: TRUE and FALSE. 

A special symbol available with the B 5000 is (?). 
This symbol is printed whenever an illegitimate char-
acter code is encountered. 

IDENTIFIERS 

Identifiers serve as names of important entities of a 



program. An identifier is composed of letters and 
digits and must have a letter as its first character. 
For example: 

vV9XBY 
ABLE 
B47 
ENTRYPOINT 

There are six types of identifiers: variable, procedure, 
switch, array, label, and formal parameter. 

Variable. A variable identifier is a name given to a 
single arbitrary quantity. The name allows the quan
tity to be referenced. The quantity may be changed 
throughout the program. 

Procedure. A procedure identifier is a name given 
to a closed and self-contained process with a fixed 
set of arguments; for example, a subroutine. The 
name allows this procedure body to be referenced. 

Switch. A switch identifier is a name given to a 
program switch. A program switch allows the pro
grammer to make a transfer to one of several state
ment labels. 

Array. An array identifier is a name given to an 
ordered set of values: the variables of a multi
dimensional array. Anyone or all of these values 
may be changed throughout the program. 

Label. A label is a name given to a particular state
ment, so that it may, be referred to in other state
ments. 

Formal Parameter. A formal parameter is a name 
given to an argument of a procedure. 

NUMBERS 

A number is composed of digits, with additional ex
planatory symbols allowed in order to denote the 
sign of the number, decimal point, the existence of a 
power of ten factor, the sign of the power of ten, and 
the actual power. For example: 

-316 
+36.001 

16 x10*1 
13.62 x 10* -3 
-7.5 x10*-9 

STRINGS 

A string is a combination of any basic symbols (not 
containing "') which are bounded by the bracket 
symbol ". For example: 

"/ -1AB;(." 
"JAMES" 
"1268V896" 

A·2 

EXPRESSIONS 
The two levels of language presented thus far, the 
alphabet and words of ALGOL 60, are used in vari
ous combinations to form the next language level, 
expressions. Before considering the three major ex
pressions-arithmetic, Boolean, and designational
the minor expressions of ALGOL 60, variables and 
function designators, must be discussed. These minor 
expressions, along with operators, delimitors and re
served words, constitute the major expressions. 

VARIABLES 

A variable is a designation given to a single value. 
This value may be changed at will by means of a 
particular type of statement in the program. A vari
able may be either a variable identifier or an array 
identifier with subscripts. For example: 

A[1,2] 
B[I,J] 
EPSILON 
M2[X + Y,J +K] 
X 

Since vertical alignment of characters has no mean
ing in this language, subscripts are enclosed by 
brackets and separated bJT commas. These sub-
scripted variables designate values which are com
ponents of multidimensional arrays; the subscripts 
designate which value. The subscripts of a list may 
be variables, function designators, or arithmetic 
expressi ons. 

FUNCTION DESIGNATORS 

Function designators are also used for denoting 
single values, but with the distinction that these 
values are the result of a specific set of computations 
on given parameters. A function designator consists 
of a procedure identifier, which refers to the pro
cedure body containing the specific set of computa
tions, and an actual parameter part, which contains 
the list of parameters to be used in the computations. 
For example: 

SIN (X) 

LN(2 xA -3 xB) 
P(X, Y -z) 

The parameters of the actual parameter part are 
enclosed in parentheses and separated by commas. 

The standard functions of analysis and their pro
cedure identifiers are an integral part of the B 5000 
programming language; the procedures to which 
these identifiers refer need not be defined by the 
programmer in a procedure body. For example: 



SIN 
ARCTAN 
EXP 
SQRT 
ENTlER 

The function ENTlER is used for transferring an 
expression of real type to one of integer type. 

ARITHMETIC EXPRESSIONS 

There are two types of arithmetic expressions: simple 
and general. 

Simple. A simple arithmetic expression is a descrip
tion of an algebraic process which produces a nu
merical value. It is composed of numbers, variables, 
function designators, and arithmetic operator sym
bols. For example: 

16.2 x SIN (X + Y) 
LN(2 xA -3 xB)/( -.165*C xEPSILON) 
A[1,2] xM2[X + Y, J -K] 

When numbers are used for operands, the values of 
the operands are self-evident. When the operands 
are variables, the numerical values to be operated 
on are those currently assigned to the variables by 
a program statement. When a function designator is 
involved, the value is derived from the procedure 
body containing the computations which define the 
function. 

Genera I. A general arithmetic expression also pro
duces a numerical value. It contains several simple 
arithmetic expressions and a means for selecting the 
one which is to be evaluated. 

Three sequential operator symbols, Boolean expres
sions (below) and simple arithmetic expressions are 
combined as follows: 

IF (Boolean expression) THEN (simple arithmetic 
expression) ELSE (arithmetic expression). For ex
ample: 

IF X DIV Y>O THEN X + Y ELSE Z 
IF A<B THEN BIA ELSE IF A>B THEN 

AlB ELSE 1 

The selection is based on the values (TRUE or 
FALSE) of the Boolean expressions. The Boolean 
expressions of the IF clauses are evaluated in se
quence from left to right until one having the value 
TR UE is found. The simple arithmetic expression 
then selected for the value of the general arithmetic 
expression is the one following the next THEN. 

If none of the Boolean expressions is TRUE, the 
simple arithmetic expression evaluated is the last one 
in the general arithmetic expression; that is, the one 
following the last ELSE. 

A·3 

In the second example listed above, there is a choice 
of three simple arithmetic expressions: BI A, AlB, 
and 1. If, in an actual problem, A =10 and B =5, 
the second Boolean expression, A> B would be true 
and AlB or 2 would be the numerical value of the 
expression. 

BOOLEAN EXPRESSIONS 

There are also simple and general Boolean expres
sions. 

Simple. A simple Boolean expression is a descrip
tion of a process for computing a logical value: 
TRUE or FALSE. The expression is composed of 
logical value symbols, variables (Boolean type), 
function designators (Boolean type), logical operator 
symbols and relations (arithmetic expressions con
nected by a relational operator). For example: 

AAB 
SvQEQVR 
(X - Y) xZ:::;5 xP 

Whenever variables or function designators are used 
in Boolean expressions, they must be declared 
Boolean by a special declaration in the program. 

Whatever is located on either side of a logical opera
tor symbol must have a logical value. The elements 
separated by a relational operator symbol must have 
a numerical value. 

Relational operator symbols have familiar meanings, 
but logical operators are not so commonly known. 
Their meaning is given in the following chart: 

IF 
A 

ANDB 
THEN 
-,B 
AAB 

is FALSE FALSE TRUE TRUE 
is FALSE TRUE FALSE TRUE 

is TRUE FALSE TRUE FALSE 
is FALSE FALSE FALSE TRUE 

A v B is FALSE TRUE TRUE TRUE 
A IMP B is TRUE TRUE FALSE TRUE 
A EQV B is TRUE FALSE FALSE TRUE 

General. A general Boolean expression is also a de
scription of a process for computing a logical value. 
I t contains several simple Boolean expressions and a 
means for selecting the one bearing the value to be 
used. The.selection method is analogous to that used 
for general arithmetic expressions. A general Boolean 
expression is formulated as follows: IF (Boolean ex
pression) THEN (simple Boolean expression) ELSE 
(Boolean expression). For example: 

IF L?:M THEN K = C ELSE N<Y 
IF JOE THEN FALSE ELSE IF PETE THEN 
TRUE ELSE JOE 



DESIGNATIONAL EXPRESSIONS 

A designational expression is a rule by which a label 
of some statement is selected for the purpose of ref
erencing that statement. A simple designational ex
pression is either a label or a switch designator. 
Labels have been discussed. A switch designator is 
used to specify the program path to be followed 
through a switch, which is a conditional transfer 
device with a number of choices. The switch desig
nator is composed of a switch identifier followed by a 
subscript expression enclosed in brackets. In order 
for the switch designator to have meaning, its arith
metic expression part must assume a positive integral 
value not greater than the number of choices avail
able in the switch. The switch choices are listed in 
a declaration to which the switch designator refers. 
The transfer choice selected is the nth label in the 
declaration switch list counting from left to right, 
n being the integral value of the arithmetic expres
sion part of the switch designator. 

For example: 

A75 
MABEL 
PICK[N +1] 

There is also a general designational expression. Its 
formulation and evaluation principles are entirely 
analogous to those of arithmetic expressions. For 
example: 

IF A<C THEN A75 ELSE PICK [N +1] 

STATEMENTS 
Statements are the programming units of the lan
guage; they are comprised of the basic symbols, 
words, and expressions previously discussed. State
ments, like verbal sentences, are complete units of 
communication. Just as sentences can be combined 
to form paragraphs, so can basic statements be com
bined to form compound statements. 

For referencing purposes, any basic statement can 
be given a label. So can a compound statement or a 
block be labeled. A compound statement might ap
pear as follows: label: BEGIN statement; statement; 
statement; ... statement; statement END. A block 
might appear as follows: label: BEGIN declaration; 
declaration; ... declaration; statement; statement; ... 
statement; statement END 

Every block automatically introduces a new level of 
nomenclature; that is, an identifier occurring within 
a block may, through a declaration, be specified to 
be local to the block. 

Declarations serve to define certain properties of the 
identifiers of the program. For example, a procedure 

A-4 

declaration defines the procedure associated with a 
procedure identifier. Since it is necessary to refer to 
declarations during the descriptions of the statement 
types, the brief description of them given above was 
inlperative at this point. 

There are six types of statements possible in an 
ALGOL 60 program. 

ASSIGNMENT STATEMENTS 

An assignment statement serves to give a specific 
value to one or several variables. Each entry in the 
statement is separated by the symbol ~, with the 
variables listed to the left and the expression by 
which they are to be replaced at the right. For 
example: 

P ~ P+1 
M2[X + Y,Z]~A [1,2] ~ SIN(C -D) 
OUT ~ TRUE 
IN ~ QAR 

As used in assignment statements the symbol ~ 
means "Using the current value of the variables, 
evaluate the expression. The result is then assigned 
to all of the variables to the left of the symbol (~)". 
All variables on the left must be of the same type. 
If the variables are Boolean; the expression must 
likewise be Boolean. If the variables are of type real 
or integer, the expression must be arithmetic. 

GO TO STATEMENTS 

A go to statement comprises the sequential operator 
GO TO and a designational expression. For example: 

GO TO MABEL 
GO TO PICK [N +1] 
GO TO IF A<C THEN A75 ELSE PICK [N +1] 

A go to statement is used for transfer of control. It 
serves to interrupt the normal sequence of operations 
from one statement to the next. The label of the next 
statement to be executed after a go to statement is 
defined by the value of the go to statement designa
tional expression. 

DUMMY STATEMENTS 

A dummy statement executes no operation. For 
example: 

BACK: 
BEGIN ... ; JOHN: END 

The primary function of a dummy statement is to 
place a label at the end of a procedure so that trans
fer of control can be made midway through the 
procedure back to the place in the program which 
called for its execution. 



CONDITIONAL STATEMENTS 

A conditional statement can cause certain statements 
to be executed or skipped depending on the values 
of specified Boolean expressions. A conditional state
ment in general takes the following form: IF Boolean 
expression THEN unconditional compound state
ment. The ELSE portion is arbitrary. 
For example: 

IF A>B THEN X~X +1 
IF X=O THEN X~l ELSE IF X=9 THEN 
GO TO BACK 
IF E + F=6 THEN G~l ELSE GO TO OUT 

If the Boolean expression of the IF clause is FALSE, 
the statement following it will be skipped and opera
tion will continue to the next statement encountered, 
either the statement following the sequential op
erator ELSE or the next statement in sequence. If 
the Boolean expression of the IF clause is TRUE, 
the statement following it is executed and operation 
then continues with the next statement in sequence 
beyond the conditional statement. 

FOR STATEMENTS 

A FOR statement provides the ability to perform 
repetitive operations on a statement which is a part 
of it. The basic structure of a FOR statement is as 
follows: FOR variable ~ list DO compound state
ment. 

A FOR statement causes the statement following 
the DO to be repeatedly executed zero or more times 
with a new assignment to its controlled variable 
each time. The list provides a rule for obtaining the 
values which are assigned. The sequence of values is 
obtained from the list elements (arithmetic expres
sion, STEP-UNTIL, or WHILE) by taking these 
one by one in the order in which they are written. 

Arith metic Expression Element. The simple case 
is a single arithmetic expression, the value of which 
is calculated immediately before the single execution 
of the statement. 

Step-Until Element. This element takes the form 
A STEP B UNTIL C, where A, B, and C are arith
metic expressions. This element causes the assign
ment of the current values of A, A + B, A +2 x B, 
etc., to the variable and the corresponding execution 
of the statement following DO. The operation ter
minates (list exhausted) when V (variable) - C is 
nonzero and has the same sign as B. This test is 
made just prior to each execution of the statement 
following DO, so that the statement is never executed 
if initially A - C and D have equal signs, if both 
are nonzero. 

A·S 

While Element. This element takes the form E 
WHILE F, where E is an arithmetic and F a Boolean 
expression. Each time the variable is assigned the 
value of the arithmetic expression, a test is made on 
the Boolean expression. If it has a value of FALSE, 
the list is exhausted. If it is TRUE, the statement 
following DO is executed. 

PROCEDURE STATEMENTS 

A procedure statement calls for the execution of a 
procedure declaration body. It is composed of a pro
cedure identifier and an actual parameter list en
closed in parentheses and separated by commas. For 
example: 

TRANSPOSE (W,V +1) 
ABSMAX (A,N,M,Y,I,K) 

The number of actual parameters listed must agree 
with the number of formal parameters given in the 
procedure declaration heading. 

DECLARATIONS 
Declarations define certain properties of identifiers 
of a program. A declaration for an identifier is valid 
for one block. Outside this block the particular 
identifier may be used for other purposes. 

A declaration may be marked with the declarator 
symbol OWN. Upon re-entry into a block, values of 
OWN quantities will be unchanged from their values 
at the last exit; others are undefined. 

TYPE DECLARATIONS 

Values of simple variables may be of three types: 
INTEGER, REAL or BOOLEAN. Type declara
tions place simple variables into one of these three 
classes. A type declaration is composed of a declara
tor symbol followed by ~ll simple variables of that 
class. The simple variables are separated by commas. 
For example: 

REAL W9XBY, X, EPSILON 
INTEGER ABLE, B47, ENTRYPOINT 
BOOLEAN Y, Z, BAKER 

Simple variables declared as REAL may assume posi
tive and negative values including zero. Those de
clared as INTEGER may assume only positive and 
negative integral values including zero. 

The constituents of a simple arithmetic expression 
may be either of type REAL or type INTEGER. 
In general, if there is a mixture of types within a 
simple arithmetic expression, the resulting value will 
be REAL. If all constituents are INTEGER, the re
sulting value is INTEGER. 



ARRAY DECLARATIONS 

An ARRAY declaration specifies one or more identi
fiers to represent multidimensional arrays and gives 
the array dimensions, the upper and lower bounds of 
the subscripts, and the types of the variables. An 
ARRA Y declaration comprises declarator symbols, 
array identifiers, and bound pair lists. For example: 

INTEGER ARRAY A[l :6, 1 :3], B[ - N :0, 0 :N] 
ARRAY M2 [IF X < 0 THEN 0 ELSE 1 :6], 
rvIA[C :D] 

A bound pair is two arithmetic expressions separated 
by the symbol (:). The first expression is the lower 
bound and the second the upper bound of a sub
script. A bound pair list is a series of bound pairs 
separated by commas and giving the bounds of all 
subscripts of an array taken in order from left to 
right. The bound pair list immediately follows the 
identifier to which it pertains. 

The dimension of an array is given as the number of 
entries in the bound pair list. 

All arrays specified in one declaration are of the 
same quoted type. If no type is quoted in an ARRAY 
declaration, type REAL is understood. 

SWiTCH DECLARATiONS 

A switch declaration lists all program transfer choices 
available at anyone switch. It is composed of the 
symbol SWITCH, a switch identifier, the symbol 
((-) and a list of designational expressions separated 
by commas. For example: 

SWITCH PICK(-P1, P2, P1 + 6 
SWITCH Y(-A75, MABEL, IF A<C THEN 
A 75 ELSE PICK[2] 

A SWITCH declaration is referred to each time a 
switch designator is encountered in the program. 
The transfer choice taken is the nth expression of 
the SWITCH list, where n is the value of the arith
metic expression associated with the switch desig
nator. The expression selected is then evaluated 
using the current values of all variables involved. 

PROCEDURE DECLARATIONS 

A procedure declaration defines in detail the pro
cedure associated with a procedure identifier. A pro
cedure declaration is made up of a heading and a body. 

Procedure Declaration Heading. The heading be
gins with the symbol PROCEDURE followed by the 
procedure identifier. Next comes a formal parameter 
part which is a list of formal parameters enclosed in 
parentheses and separated by commas. The formal 
parameter part is followed by a value part. The value 

A·6 

part starts WIth the symbol VALUE and is followed 
by the formal parameters which are to be replaced 
by the values of the actual parameters when the pro
cedure body is executed. The last part of the heading 
is a specification part which describes each formal 
parameter. It may specify that it is an ARRAY, 
STRING, PROCEDURE, LABEL, SWITCH, etc. 
Specificator symbols and/or declarator symbols are 
given followed by the formal parameters which are 
of that type. A sample procedure declaration heading 
follows: 

PROCEDURE POLYROOT (A,X,Q1, TRIG); 
VALUE A, X; REAL A, X; ARRAY Q1; 
LABEL TRIG 

Procedure Declaration Body. The procedure dec
laration body comprises a statement or piece of code. 
The body may be activated from other parts of the 
block in the head of which the procedure declaration 
appears by means of procedure statements and/or 
function designators. 

Before execution of the procedure body takes place 
(this is caused by execution of a procedure statement), 
all formal parameters quoted in the value part of 
the procedure declaration are replaced by their cor
responding actual parameter values. Formal param
eters not quoted in the value list are replaced, 
throughout the procedure body, by the actual pa
rameters themselves, not the values thereof. 

Finally the modified procedure body is inserted in 
the place of the procedure statement in the program 
sequence and executed. 

ALGOL EXAMPLE 
To give the reader a feeling for this language an 
example follows. The problem is to find the Gamma 
Function. 

Y = r(z) 

The method chosen for the calculation is based on 
the fact that r (1 +X) can be approximated by an 
eight degree polynominal of the form: 

F(x + 1) = 1 + alX + a2x2 + a3x3 + a4x4 + a 5x5 

+ a 6x6 + a7x7 + a 8x8 

where: 
- .57719165 

.98820589 
- .89705694 

.91820686 

- .75670408 
.48219939 

- .19352782 
.035868343 

The job is to write a subroutine which can be used 
by any program which requires the evaluation of a 
Gamma Function. The range of the variable for 



which this approximation of the Gamma Function is 
defined is: 

0<z<41.15 

It is assumed here that any program making use of 
this routine will, before calling for its execution, have 
determined that the variable is within the defined 
range. 

One of three different formulas applies, depending up
on the value of the variable within the defined range. 
They are: 

1. If 0<z:::;1 Y = .!. F (1 +z) is used. 
z 

2. If 1<z:::;2 Y = r [1 + (z -1)] is used. 

3. If z>2 Y = (z -n) (z -n +1) ... (z +1) 

F(z -n) is used. 

where 1:::; z-n <2 

For z> 2 the integer n allows for the introduction of 
a new variable, z - n, which is then in the second 
range above. The function r (z - n) can then be cal
culated by means of the second formula. The third 
formula gives the relationship between r (z) and 
r (z -n). 

After making the necessary substitutions, the above 
three equations become: 

1 . 
1. Y = - (1 + alZ + a2z2 + a3z3 + a4z4 + asz n 

z 
+ a6z6 + a7a 7 + a gz8) 

2. Y = 1 + al (z - 1) + a2(z - 1)2 + a3(z - 1)3 
+ a4(z - 1)4 + as(z -1)S + a6(z -1)6 
+ a 7(z - 1)1 + a 8(z - 1)8 

3. Y = (z - n) (z - n + 1) ... (z + 1) 
x [1+ al(z-n-1)+ a2(z-n- 1)2 
+ a3(z -n -1)3 + a4(z -n _1)4 + as(z -n -1)S 
+ a6(z -n _1)6 + a7(z -n -1)1 
+ a8(z -n -1)8] 

where n = ENTlER (z - 1) 

ENTlER is a function which produces an integral 
value from an expression which may be composed 
of nonintegral values. For instance, n = ENTlER 
(z -1) means that if z = 4.5, then n = 3 or the 
largest integer which is not greater than the function 
argument (z - 1.) 

It can be noted here that ENTlER is a standard 
function in the B 5000 language and is automatically 
available for use by the programmer, as are others, 
such as SIN; ABS; SQRT; ARCTAN; LN; etc. 

A solution of this problem using the ALGOL part 
of the B 5000 programming language is given below. 
The keypunch operator would punch exactly that 

A·7 

which is shown. 

PROCEDURE GAMMA (Z,Y); VALUE Z; 

REAL Z,Y; INTEGER M, N; 

BEGIN 

REAL PROCEDURE POL YGAM (X); 

VALUE X; REAL X; 

BEGIN 

REAL Y; 
Y ~1 - .57719165 x X + .98820589 

X X*2 - .89705694 X X*3 + .91820686 
X X*4 - .75670408 x X*5 
+ .48219939 X X*6 - .19352782 
x X*7 + .035868343 x X*8; 
POLYGAM~Y 

END 

COMMENT: START OF GAMMA PRO
CEDURE PROGRAM; 

IF Z<1 THEN Y ~ POLYGAM (Z)/Z 

ELSE IF Z:::;2 THEN Y~POLYGAM 
(Z -1) 

END 

ELSE BEGIN 

M~ENTIER (Z -1); Y~POLYGAM 
(Z-M-1); 

FOR N~~I STEP -1 UNTIL -1 
DO Y~Y x (Z -N) 

END 

NOTE 

Even in a problem-oriented -language the program
mer can make use of his ingenuity by formulating 
expressions in ways that decrease the running time 
of object programs. For example, the first assignment 
statement of the procedure (POL YGAM) could have 
been written as Y ~ (((((((.035868343 x X -
.19352782) x X + .48219939) x X - .75670408) x 
X + .91820686) x X - .89705694) x X + .98820589) 
x X - .57719165) x X + 1 

A solution to the same problem written in the ma
chine language of another computer has been formu
lated as follows. Again, only what is to be punched 
by the keypunch operator is shown. 



00000047002 00000000000 
00000080020 05110000000 
00000737002 00000807048 
00000127019 00000127049 
20000020038 20000020069 
00000647001 00000647047 
00000140004 00000837049 
20000020056 20000020059 
00000110000 20000300050 
20000020057 05110000000 
00000647019 05110000000 
00000817018 00000000000 
00000737012 00000727058 
20000380040 00000827069 
00000757018 10000807060 
20000300020 00000227051 
00000000000 00000827059 
OOOOOOUOOOO 00000727057 
05110000000 00000000000 
00000000000 00000000000 
00000737020 00000000008 
20000380070 00000000000 
00000647038 05110000000 
00000817036 15057719165 
00000127038 05098820589 
00000827037 15089705694 
00000127037 05091820686 
00000647038 15075670408 
00000807035 05048219939 
00000737035 15019352782 
00000287022 04935868343 
00000807039 00000000000 
20000020069 00000747075 
00000647037 20000020069 
20000300073 00000647075 
15120000000 20000020059 
05110000000 20000300050 
05110000000 05110000000 

A·8 

Even though it is a challenging and to some an inter
esting exercise to produce an actual machine lan
guage program, it seems obvious from the above ex
amples that if one were interested in getting an 
answer as fast as possible, he would choose the 
former method. 
In order to establish an association between the syn
tactic rules of ALGOL and the ways in which those 
rules are used in writing a program, the previous 
solution is presented (Pg.9) with individual parts 
identified. All English words which serve as basic 
symbols of the language are printed boldface. 
The question may arise as to how this procedurL 
declaration is fitted into another program. Examina
tion of the construction of an over-all program yields 
the answer. 
Sections of a program are called blocks or compound 
statements. Both are bounded by the bracket sym
bols BEGIN and END. It is interesting to note that 
the creators of ALGOL could have chosen single 
characters for this purpose such as (&). Instead, 
English words were chosen because of their familiar 
meaning. The only difference between a block and 
a compound statement is that a block contains dec
larations immediately after the left bracket symbol, 
BEGIN, and compound statements do not. It can 
be seen then that the declaration outlined above for 
evaluating a Gamma Function must appear in the 
head of some block of the program that uses it. 

In order to initiate its use, the program must also 
contain a procedure statement of the form: 

Procedure 
Statement 

Procedure Actual 
Identifier Parameters 

GAMMA (BETA, MU) 

Writing the above statement in the program would 
result in l\1U assuming the value of r (Beta). 



....... ....... 
0::: 0::: 
::> ::> 

8 8 
u u 
0 0 
0::: 0::: 
a... a... 
~ 

z 
0 
~ 
c( 
0::: 

:5 
~ 
0 
....... 
0::: 
::> 

8 
u 
0 
0::: 
a... 

....... 
0::: 
::> 

8 
u 
0 
0::: 
a... 

l 

>-
0 
0 
al 

....... 
0::: 
::> 

8 
u 
0 
0::: 
a... 

FORMAL 
J-DECLARATOR SYMBOL; LPROCEDUREi I PARAMET~R 

I IDENTIFIER r PART 1 

PROCEDURE GAMMA (Z, Y); 

~ECIFICAT~ 
rSYMBOL-, 

VALUE Z; 

DECLARATOR 
l-SYMBOL-1 

REAL Z, Y; 

I-BRACKET-I 
SYMBOL 

BEGIN 

1 IDENTIFIER I 
I LIST I 

INTEGER M, N; 

T 
VALUE PART 

...1. 

T 
SPECIFICATION PART 

FORMAL 
PARAMETER 

J_ 

~ 
REAL PROCEDURE POL YGAM (X); 

T 
ASSIGNMENT 
STATEMENT 

1 

SEPARATOR 
SYMBOL 

~ 
VALUE X; 

VARIABLE 
IDENTIFIER 

t-ti 
REAL X; 

BEGIN 

L-TYPE-1 
I DECLARATION I 

REAL Y; 

ARITHMETIC 
OPERATOR 

DIGIT SYMBOL 

I NUMBER ' ltJ 1iJ 
Y ~ 1 - .57719165 x X + .98820589 x X*2 - .89705694 

x X*3 + .91820686 x X*4 -.75670408 x X*5 

+ .48219939 x. X*6 -.19352782 x X*7 + .035868343 x X*8; 

VARIABLE !- IDENTIFIER -i k1 
POLYGAM~Y 

END 

A-9 

0 

;5 
:::c 
:.::: 
u 
'.3 
al 

:.::: l u 
'.3 
al 

1 
...J 

< 
I-

0 
z 
::> 
0 
a... 
~ 
0 
u 



>-
0 
0 
Cil 

I SEPARATOR I 
r-- SYMBOL r 

LETTER 

1-!-i 
COMMENT: START OF GAMMA PROCEDURE PROGRAM; 

T 
IF 

STATEMENT 

J_ 

SIMPLE SEQUENTIAL 
l BOOLEAN JLOPERATORJ 
fEXPRESSIONlr SYMBOL l 

l SIMPLE _J r ARITHMETIC EXPRESSION 'l 

IF Z < 1 THEN Y ~ POL YGAM (Z) /Z 

RELATIONAL ACTUAL 
OPERATOR PARAMETER 
SY~BJOiL I PROCEDURE I I-LIS~ 

r t"" IDENTIFIER -1 -, 

ELSE IF Z ~ 2 THEN Y ~ POLYGAM (Z -1) 

ELSE 

BEGIN 

CONDITIONAL 
STATEMENT SEPARATOR 

11 l 

SYMBOL STANDARD I 
J-!-UfUNCTION DESIGNATOR -f q J.- FUNCTION DESIGNATOR --f 

M ~ ENTIER (Z -1); Y ~ POLYGAM (Z -M -1); 

T 
FOR 

STATEMENT 

..l 

END 

t-- STEP-UNTIL ELEMENT --f 

FOR N ~ M STEP -1 UNTIL -1 DOY <c- Y x 

END 

A-10 

(Z -N) 



APPENDIX B 

B 5000 DATA-PROCESSING 
LANGUAGE 

In support of the Conference of Data Systems Lan
guages (CODASYL), the data-processing language 
for the B 5000 incorporates the latest revision to the 
Common Business Oriented Language Specifications, 
COBOL 61. 

DEVELOPMENT 
The Initial Specifications for the Common Business 
Oriented Language were published in May, 1960, by 
the Government Printing Office and are currently 
available from the Superintendent of Documents, 
Washington 25, D.C. The Executive Committee de
fined the Initial Specifications as COBOL 60. 

The COBOL Maintenance Committee then began 
the arduous process of removing the obvious editing 
errors, the ambiguities, and the inconsistencies which 
they as a committee discovered and agreed upon. 
The current revision is due to be "frozen" for re
publication as COBOL 61 on February 4, 1961. 

The BURROUGHS Data-Processing Language for the 
B 5000 will allow source programs to be written ac
cording to the COBOL 61 Specifications. In order 
that the integrity and continuity of COBOL can be 
maintained for the using public, the B 5000 Pro
gramming System provides the ability to incorporate 
future revisions such as COBOL 62. 

EXTENSIONS 
As necessary extensions to the COBOL 61 Specifica
tions, the B 5000 Programming System provides the 
following standard set of commerical functions: 

1. VUnched card input joutput conversion. 
2.t"Formating, editing, and validity checking of 

important data. 
3. Master file creation. 
4 . .,Master file maintenance. 
5f Generalized sorting. 
6. Operational data error control. 
7. Efficient program segmentation. 
8. Automatic input joutput unit assignment. 
9. Automatic tape label and file control. 
10~Management exception report creation. 

B·1 

11. ;COBOL source-language debugging techniques. 
12( Automatic entry to and return from the compu

tationallanguage (ALGOL). 

ADVANTAGES 
The B 5000 Data-Processing Language offers the 
following advantages: 

1. Powerful and flexible means of accurately de
fining business problems. 

2. A major reduction of the time between problem 
definition and full applicational production. 

3. Flexibility for management to revise its current 
methods of doing business (Management Con
trol System) by updating automatic data proc
essing (ADP) programs without the excessive 
delays and exorbitant reprogramming costs as
sociated with present-day automatic data proc
essing systems (ADPS). 

4. For those customers requiring compatibility 
between ADP systems, the B 5000 Data Proc
essing Language provides all those elements of 
COBOL 61 which the Conference of Data Sys
tems Languages (CODASYL) agreed were "re
quired" to achieve a common implementation 
across all participating manufacturers' ADPS. 

5. The opportunity for the B 5000 Users Group to 
participate in the formation of a Business Data 
Processing Source-Language Library of Pro
cedures (subroutines) and to exchange prob
lems in documented procedural source-language 
form. 

6. An "open-ended" programming system having 
the ability to incorporate future improvements, 
for example, COBOL 62. 

GENERAL DESCRIPTION 
A source program is used to specify the solution of a 
business data processing problem. The four elements 
of this specification are: 

1. The identification of the source program. 

2. The description of the problem environme!J,t, -
that is, the ADPS to be used to compile the 
source program and to operate the object 



program. 
3. ,The description of the data to be processed. 
4. Tbe set of procedures which determine how the 

data is to be _processed. 

COBOL 61 has a separate division for each of these 
elements. The names of these divisions are: .!illfiljj
fication, Environment, Data, and Procedure. 

COBOL 61 allows the user to prepare his specifica
tions for the problem solution in the language most 
natural to him-English. 

The Identification Division provides a means to 
identify or label a COBOL source program. 

The Environment Division is that part of the seurce 
_program which specifies the equipment being used. 
It contains descriptions of the computers to be used 
both for compiling the source program and running 
the object program. Memory size, number of tape 
units. hardware switches. printers. etc., are among 
many items that may be mentioned for a particular 
~mputer. 

The Data Division uses file and record descriptions 
to describe the files of data and the individual logical 
records which comprise these files that the object 
program is to create or mampulate. -

The Procedure Division specifies the steps that the 
user wishes the computer to follow. These steps are 
expressed in terms of meaningful English words, 
statements, sentences, and paragraphs. This aspect 
of the over-all system is often referred to as the 
"program." In reality it is only part of the total 
specification of the problem solution and is insuffi
cient to describe the entire problem. This is true 
because repeated references must be made-either 
explicitly or implicitly-to information appearing in 
the other divisions. 

The Procedure Division-more than any other
allows the user to express his thoughts in meaningful 
English. Concepts of yerhs to denote actions, and 
s.entences to describe procedures.,, are basic, as is the 
use of-conditional statements to provide alterna~ve 

J?aths of action. 
In order to provide a standard method of writing 
COBOL 61 source programs, the CODASYL selected 
the following Reference Format: 
LEFT RIGHT 

MARGIN 

L 

SEQUENCE 

NUMBER 

(6) 

A 

(1) (4) 

B 

MARGIN 

R 

NOTE: (n) = number of spaces,~ denotes 8th cob 
umn and B the 12th column 

B-2 

The standard method of representing sentences, 
paragraphs, and sections, is shown below for each 
division. The principle behind all the formats chosen 
is to allmv the maximum amount of flexibility for 
individual tastes while still using one form. 

The four divisions of a COBOL 61 program must 
appear in the following order: JDENTTFICATION, 
ENVIRONMENT DATA and PROCEDURE. 

I DENTI Fl CATION DIVISION 

The Identification Division employs the Reference 
Format in the following way. 

Each paragraph name starts under position A. The 
text of each paragraph may start anywhere on the 
same line as the paragraph name or on the next line 
starting under position B. (See Example 1). 

ENVIRONMENT DIVISION 

The Reference Format is employed in the Environ
ment Division in the same way as in the Identifica
tion Division. It! addition to fixed paragraph names, 
there are also fixed section names. The rules for con-
tf nu:::ition of sentences and words are the same as 
those m the Procedure Division.] The Input-output 
control and the File-control paragraphs are each 
composed of several sentences, whereas the other 
paragraphs are each composed of one sentence only. 
Example 2 shows a possible Environment Division, 
except that all necessary information for each section 
and each paragraph has not been shown. 

DATA DIVISION 

The basic 1mjt ju the Data Division is an entry. Each 
entry begins with a level number followed by the 
name of the datum and a sequence of independent 
clauses descriptive of the datum. Each clause of an 
entry (except the last) may be terminated by a semi
colon followed by a space. The last clause is termi
nated by a period. The same format rules apply to 
the File and Reeord DesePi13tion portic;rns as well as 
the Working Storage and Constant Sections of the 
Data Division. 

The sequence number appears at the left as called 
for in the Reference Format. The first-level number 
starts under position A. If a single entry requires 
more than one printed line, the left margin for each 
line is the same, namely, the position under the first 
letter of the data name. The rules for continuation 
of words are the same as those in the Procedure 
Division. (See Example 3). 



EXAMPLE 1 

SEQUENCE 
NO. 

I I 
L I I 

1 I I 
I I 
I I 

B C 
12 16 

000:1~0 
000j20j0 
0001.300 
ooo~op 
000~0:1 

N-DIVISION. 
PDATE-MASTER-ACCTS-RECEIVABLE. 

STURGESS. 
. JANUARY 12, 1961. 
046660. INPUT FROM CASH-RECEIPTS. RUN 045660. 

EXAMPLE 2 

SEQUENCE 
NO. I 

I I 
L I I 

1 I I 
I I 
I I 

0011100 
I I 
I I 

B C 
12 16 0 

!VISION. 

SECTION. 
ER. STANDARD-85000. 

001:2QO 
001•300 
00113dl 

: I 
ER. PARALLEL-COMMERCIAL-B5000. 

I I 
00113012 SECTION. 
001:30~ 

: I 

SELECT MASTER-ACCT-RECEIVABLE, FOR MULTIPLE REEL, 
IS 053. 

001130'4 
001l4op 

SH-RECEIPTS, PRIORITY IS 050. 
APPLY PARALLEL-INPUT-OUTPUT. RERUN EVERY 

PROCEDURE DIVISION 

The first line of the Procedure Division consists of 
its name starting under position A followed by a 
period: 

PROCEDURE-DIVISION. 

If a section has been designated, the section name 
starts under position A, followed by a space, the 
word SECTION, a space followed by the priority 
number (when used), a period, and a space. A section 
name may be used as a qualifier for otherwise identi
cal paragraph names. Within a section, any reference 
to a paragraph name not otherwise qualified will be 
assumed to refer to paragraphs within the section. 
A paragraph consists of one or more successive sen
tences, the first and only the first of which must be 
named. The paragraph assumes the name given to 
the first sentence. The name starts under position A 
and is followed immediately by a period and a space. 
The first sentence of the paragraph may begin any
where on the same line as the paragraph name, or 
under position B on the next line. A new paragraph 
is determined by the appearance of another para-

8-3 

graph name. Note that a paragraph may possibly 
consist of a single sentence. 

Any sentence which occupies more than one line must 
be continued by starting under position B on the 
next line. 

If a word or literal must be split over two lines, this 
will be indicated by placing a hyphen in the seventh 
character position on the next line, that is the char
acter position between the least significant digit of 
the sequence number and the first character of the 
procedure name. If the user prefers not to split a 
word or literal, he may start the word or literal on 
the next line. (See Example 4.) 

CHARACTER SET 

Characters Used in Forming Words 

~ of eharaeters selected fro111 the following ~7 
characters are called "words_" 

0, 1, ... '9 
A, B, ... , Z 
(hyphen or minus sign) 



SEQUENCE 

N?. ; 
L I I 
1 1 I 

I I 
I 

00~1do 
0032~2 
0032q3 
00l204 
0~205 
032d6 
033dl 
03'3~:2 
0~3o;6 
033CF 

I I 

o~m 
03402 
0¥00 
0314o'4 

EXAMPLE 3 

C D 
16 20 

AT DI ISI N. 
D- ST -A CTS-RECEIVABLE (MAR.) LABEL RECORDS ARE STANDARD; DATA

EC DS RE CUSTOMER-ACCTS; SEQUENCED ON ACCOUNT-NUMBER. 
01 CUS OMER-ACCTS (CA); CLASS IS ALPHANUMERIC. 

02 ACCOUNT-NUMBER (AN); SIZE IS 12; PICTURE IS 99X999X999X9. 
02 DATE; CLASS IS NUMERIC. 
03 MONTH SIZE IS 2. 
03 DAY SIZE IS 2. 
03 YEAR SIZE IS 2. 
02 AMOUNT-RECEIVABLE (AR); SIZE IS 6; PICTURE IS 9999V99. 

1 RECEIPTS-SUMMARY (CRS). CLASS IS ALPHANUMERIC. 
CCOUNT-NUMBER; COPY ACCOUNT-NUMBER OF 

CUSTOMER-ACCTS. 
MOUNT-PAID; SIZE IS 5; PICTURE IS 999V99. 

EXAMPLE 4 

C D 
16 20 

ST R. IF AN OF CRS IS EQUAL TO AN OF CA 
EA MAR GO TO PROCESS-MASTER; OTHERWISE IF 
N F CRS IS LESS THAN AN OF CA GO TO NEW-ACCOUNT. 

AS ER. SUBTRACT AMOUNT-PAID FROM AMOUNT-RECEIVABLE GIVING 
EW MOUNT-RECEIVABLE; IF SIZE ERROR GO TO OVER-PAY. MOVE 
EW MOUNT TO AMOUNT-RECEIVABLE; DATE OF CRS TO DATE OF CA. 
RI UPDATED-MASTER. 

\ 
A "blank" or "space" is not an allowable character 
for a word, but is used to separate words and state
ments. Where a "blank" or "space" is employed, 

right parenthesis 
space 
period 

more than one may be used, except in the Reference 
Format. 

Characters Used for Punctuation 

The punctuation characters consist of the following: 
II quotation marks 

left parenthesis 

8-4 

comma 
semicolon 

Characters Used in Relations 

> greater than 
< less than 

equal to 

R 
120 



(These characters are not in the standard character 
set used to write COBOL 61 programs. They are 
available for optional use as extensions to the B 5000 
Data Processing Language.) 

Characters Used in Editing 

$ dollar sign 

* 

WORDS 

check protection symbol 
comma 
decimal point 

A word is composed of not more than 30 characters 
chosen from the set of 37 characters used for words 
as listed above. A word is ended by a space, or a 
word is ended by either a period, right parenthesis, 
comma, semicolon, followed by a space. All of the 
word types defined below (except the literal) may 
not begin or end with a hyphen. 

The use of punctuation characters in connection 
with words is as follows: A period, comma, and 
semicolon, when used, must always immediately fol
Iowa word, and they must in turn be followed by a 
space. A left parenthesis or a beginning quote mark 
(see Literals) must not be followed by a space unless 
the space is desired in the da ta-name or literal. A 
right parenthesis or ending quote mark must not be 
preceded by a space unless the space is desired in the 
data-name or literal. 

For example: 

"NL5960" represents a literal which has a SIZE 
of 6 characters and the VALUE of 
NL5960. 

( 10) represents a table entry equivalent 
in SIZE but not in VALUE to 

(010) 

Nouns 

A noun is a single word used for some form of refer
encing. Three examples of nouns are: 

/ Data-name 
/' Procedure-name 
/ Literal 

A Data-name is a noun which contains at least one 
alphabetic character and which is used for describing 
data. A Data-name is eith!:r a File-name, a Recor~ 
name, a-Group-name, or an Elementary-Item-nam~. 

Procedure-names are used so that one procedure can 
reference another. A Procedure-name is either a 
Sentence-namep a Paragraph-narne l or. a Section
name. A Procedure-name is a noun which may be 

composed of purely numeric characters. Two numeric 
Procedure-names are equivalent only if they are 
composed of the same number of numeric characters, 
and have the same numeric value. 

A literal is a noun that represents a value whose 
length may not be composed of more than 120 char
acters. A literal is either numeric or non-numeric. 
N on-numeric literals must be bounded by quotation 
marks. A non-numeric literal may not contain a 
quotation mark within itself. 
For example: 

"1234A56" is a non-numeric literal whose size is 
7 characters, whereas 

"123"56" represents an illegal entry. The Pro
gramming System might select the 
literal, "123", and assign a SIZE of 
3 characters, and note an error as a 
result of compilation. 

A numeric literal is defined as one which is composed 
only of characters chosen from the numerals 0 
through 9, the plus (+) or minus (-) sign, and the 
decimal point. The rules for formation of numeric 
literals are: 

1. A numeric literal must contain only one sign 
character and/or one decimal point. 

2. The literal must contain at least one digit. 
3. The sign in the literal must appear as the leftmost 

character of the literal. If the literal is unsigned, 
the literal is considered as positive. 

4. The decimal point in the literal may appear 
anywhere within the literal except as the right
most character of the literal. If the literal con
tains no decimal point, the literal is considered 
to be of integer value. 

If a literal conforms to the rules for formation of 
numeric literals but is enclosed in quotation marks, 
it is considered as a non-numeric literal and will be 
treated as such by the compiler. 
For example: 

+646.90 is not equivalent to 
"+646.90" 

Qualification 

Qualification is used to differentiate between like 
names which appear in two or more places. Qualifi
cation is performed by appending one or more prepo
sition phrases using the preposition IN or OF. The 
choice between TN and OF is based only on r;;r.:-
~ ili .... "'fT hAnn"f"'IA +l-u· ... ~1'" t""\'ri'"l lr\no~rt6"\ 11",{T eNuivalent. Nouns 

8·5 

must appear in ascending order of hierarchy with 
either of the words IN or OF separating them. The 
qualifiers are considered part of the name. Thus 



whenever a value is referenced, the qualifiers are 
automatically considered part of the name. 

For example, consider two files named: 

MASTER and 
NEW-MASTER. 

Assume that each of them contains a Data-group 
named 

CURRENT-DATE, and another named 
LAST-TRANSACTION-DATE. 

If both of these Data-groups contain three Ele
mentary-Items with Data-names Month, Day, and 
Year, then the current month in the NEW-MASTER 
record is ref erred to as: 
MONTH IN CURRENT-DATE OF NEW-MAS
TER, and 

The Day of the last transaction in the MASTER 
is referred to as: 

DAY IN LAST-TRANSACTION-DATE 
OF MASTER 

Subscripts 

In business data processing a commonly used opera
tion is that of "table lookup." COBOL 61 provides 
the ability to reference individual elementary-data-
~Iements of a table or a hst by using subscripts. 
Additionally, the ability to reference the entire table 
or list is provided by referencing the name of the 
table or list. 

A subscript is an integer whose value determines 
which elementary-data-element within a table (or a 
list) is to be referenced. The subscript itself is-rep
resented b either an integer hteral, e.g. (25), or by 
a Data-name which has an mteger va ue, e.g. ) . 

In all cases, the subscript is enclosed in parentheses 
and appears immediately after the terminal space 
of the name of the data element being referenced, 
e.g. RATE (AGE) or RATE (25). Tables are often 
defined so that more than one level of subscriptin is 

~ 
reqmre o oca e an e emen wit m the table. A 
maximum of three dimensions is permitted by 
COBOL 61. Multi-level subscri ts are always wrlt
ten fr ri ht in the order ma or r
mediate, a:nd minor. In this case the subscripts are 
shown m one pair of parentheses and separated by 
commas. For example, RATE (REGION, STATE, 
CITY) would reference a particular rate in a 3-di
mensional table of rates. 

A subscript with integer value of "l" denotes the first 
elementary-data-element of a list, a value of "2" the 
second elementary-data-element, etc. A subscript of 
(1,2) represents the second elementary-data-element 

B-6 

within the first repeated elementary-data-element in 
the table. A table with its main element appearing 10 
times, its intermediate element appearing 5 times 
within each of the major elements, and the minor 
elementary-data-element appearing 3 times within 
each intermediate element is considered 3 dimen
sional. The last element of such a table is referenced 
by the subscript (10, 5, 3). 

No element of a table or list may be referenced with
out a subscript. However, the entire table may be 
referenced, providing the table has been given a 
unique name. Reference to a Data-name within a 
table or list must include all subscripts upon which 
the Data-name is dependent. 

EXAMPLES: 

MOVE RATE (AGE) TO LISTING 
IF HEIGHT (10) IS GREATER THAN ... 
MULTIPLY PRICE (STOCK-NO) BY 

INVENTORY (STOCK-NO) 
EXAMINE CLASS (REGION) REPLACING 
MOVE RATE-TABLE TO OUTPUT-AREA 

NOTATION 

The following notation is used in COBOL verb and 
description formats: 

1. All upper case words which are underlined are 
required when the functions of which they are 
part are used. An error will occur at compilation 
ti.me if the underlined words are absent or in
correctly spelled. 

2. All upper case words which are not underlined 
are used for readability only. They may be 
present or absent. 

3. All lower case words represent generic quan
tities whose value must be supplied by the user. 

4. Material in braces { } indicates that a choice 
from the contents must be made. 

5. Material in square brackets [ ] represents an 
option and may be included or omitted at the 
user's choice. 

Verbs 

The COBOL 61 verbs included in the B 5000 Data 
Processing Language, listed by categories, are: 

Arithmetic ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 

Input-Output READ 
WRITE 
OPEN 
CLOSE 



Procedure-Branching 

Data-Movement 

Ending 

Compiler-Directing 

ACCEPT 
DISPLAY 

GO 
ALTER 
PERFORM 

MOVE 
EXAMINE 

STOP 

DEFINE* 
ENTER* 
INCLUDE* 
USE* 

*These verbs are not in "required" COBOL 61. They are 
provided as optional but necessary extensions to ac
complish common business data processing operations. 

Sample verb formats together with examples are 
given below to give the "flavor" of the narrative 
language. 

2<\~ 
~11.tJ. 

FUNCTION: To a<;kVtwo or more quantities and 
store the sum in either the last named field or the 
specified one. 

ADD {~~~:~~~me-1} [ {~!~:~~;me-2 }···] 
field-name-1 

[ {~VING}] data-name-n 

If the GIVING option is used, the sum of the ad
dends will be stored in "Field-name-n." If the TO 
option is used, "Field-name-n" is used as both an 
addend and the result field. If neither option is used, 
the last named field will be used as both an addend 
and the result field. 

EXAMPLES: 

1. ADD 645 TO SUM-OF-PARTS. 

2. ADD DAY OF RECEIPT-MASTER TO DE
LINQUENT-NOTICE GIVING FOLLO\V~ 

UP-DATE. 

3. ADD INITIAL-AMOUNT, SURCHARGE, 
BONUS GIVING TOTAL DUE. 

ALTER 

FUNCTION: To vary the sequence of procedure 
1 

execution. 
~-

{
PROCEED-l 

ALTER procedure-name-1 TO GO f TO 

procedure-name-2 [ , procedure-name-3 

B-7 

{
PROCEED) 

TO GO f TO procedure-name-4 J 
"Procedure-name-1," "procedure-name-3," ... are 
paragraph-names. If a GO statement is to be 
ALTERed, then the GO statement must be the only 
statement in the sentence, which in turn must be the 
only sentence in the paragraph. 

EXAMPLE 

1. ALTER FINAL-SUM-TOTAL TO GO TO 
CROSSFOOT-TOT AL. 

GO 

FUNCTION: To depart from the normal seguenCE 
of procedures. -
Option 1: 
GO TO procedure-name 

Option 2: 
GO TO procedure-name·l [ , procedure-name-2 ... ], 
procedure-name-out-of-range DEPENDING ON 
data-name 

The branch will be to the 1st, ... nth procedure-name 
as the value of the range of the data-name is 1 ton. 
If the value of the data-name is out of the positive 
integral range from 1 to n (i.e. less than 1 or greater 
than n) the branch will be to "procedure-name-out
of-range." 

EXAMPLES: 

GO TO MASTER-UPDATE-PROCEDURE. --
GO TO FIRST-PREMIUM-PROCEDURE, 

DELINQUENT-PROCEDURE, TERM
INATION-PROCEDURE, NOTICE-ERROR 
PROCEDURE, DEPENDING ON STATUS
CODE. 

READ 

FUNCTION: To get the next logical record from an 
input file; to allow performance of an imperative 
statement when end of file is detected. 

READ file-name RECORD [; IF END any im
perative statement] 

An OPEN statement for the file must be executed 
prior to the execution of the first READ for that 
file. 

Every READ statement must have an END of file 
option, either implicitly or explicitly. The user need 
only write an END of file option with the first 
READ for a given file. The compiler will append this 
and its associated "imperative statement" to each 



READ for that file which has no explicit END of 
file option. If more than one, but not all READs, 
for the same file contain the word END, the com
piler will assign the first one to all other READs for 
that file which do not have an END option. An error 
will be indicated as a result of compilation. 

EXAMPLES: 

READ MASTER-CUSTOMER-ACCOUNT REC
ORD; AT END GO TO FINAL-TOTAL-PRO
CEDURE 

READ MASTER-CUSTOlVIER-ACCOUNT. 

Note in the last example that the optional word 
RECORD is missing. Optional words are included 
as are optional separators to enhance readability. 
However when optional words are used they must 
be both correctly spelled and cannot have other op
tional words substituted for them. 

PROCEDURES 
COBOL procedures are expressed in a manner 
similar to normal English prose. The basic unit of 
procedure formation is a sentence, which consists of 
one or more statements. A paragraph is a sentence 
or a group of successive sentences. A section is a 
paragraph or a group of successive paragraphs. A 
procedure therefore is a paragraph, or a group of 
successive paragraphs, or a section, or a group of suc
cessive sections within the Procedure Division. 

Conditionals 

Conditional procedures are one of the keystones 
in describing data-processing problems. COBOL 
makes available to the programmer a powerful 
means of expressing conditional situations. 

COBOL conditionals involve the key word IF 
followed by the conditions to be examined followed 
by the operations to be performed. Depending on 
the truth or falsity of the conditions different sets 
of operations are to be performed. 

A condition is an expression which has the value 
"True" (1) or "False" (0). 

SIMPLE CONDITIONS. A simple condition is 
either a condition name, a test, or a relation. 

Condition Name. A field whose specific values can 
be named is called a conditional variable. The names 
given to the values are called condition-names. These 
may be tested to determine whether or not the values 
as designated are present. 

Tests. It is possible to determine the status of a field 
by means of the following tests: 

8·8 

IF {data-name} IS [NOT] {=~~~E} 
The explicit interpretations of positive, negative, and 
zero are: Numeric data is POSITIVE only if it is 
greater than ZERO. Numeric data is NEGATIVE 
only if it is less than ZERO. A numeric data-element 
whose value is ZERO is both NOT POSITIVE and 
NOT NEGATIVE. 

If the field has been defined as NON-NUMERIC it 
may be tested: 

{
ALPHABETIC} 

IF data-name IS [NOT] INTEGER 

The explicit interpretation of ALPHABETIC and 
NON-NUMERIC are: 

1. A NON-NUMERIC field is ALPHABETIC if 
it contains any of the 26 letters of the alphabet. 

2. If the field contains any of the other characters 
of the permissible character set for data-fields 
it is NOT ALPHABETIC. For example, 
OFFICE is ALPHABETIC, whereas JOHN
DOE is NOT ALPHABETIC. 

3. A NON-NUMERIC field is INTEGER if it 
consists only of the digits 0, 1, 2, ... 9. The pres
ence of any other character renders it NOT 
INTEGER. 

For example, 05462 is INTEGER whereas 054.62 is 
NOT INTEGER. 

Relations. A relation is a comparison of two elemen
tary-data-element (fields). 

Comparison of a NUMERIC field with a NON
NUMERIC field is a meaningless operation. 

For numeric fields, a comparison results in the de
termination that one of the fields is LESS THAN, 
EQUAL TO, or GREATER THAN the other. 

The comparison of numeric fields is based on the 
respective values of the fields considered purely as 
numbers. The field length in terms of the number of 
digits is not itself significant. Thus, +0042 is 
GREATER THAN +25.110. Zero is considered to 
represent a unique value regardless of length of field, 
sign, or decimal point. Thus, +0.00 is EQUAL TO 
-0000. 

For non-numeric fields, a comparison results in the 
determination that one of the fields is LESS THAN, 
EQUAL TO, or GREATER THAN the other with 
respect to the predefined ordering of the members of 
the character set. 

The comparison of non-numeric fields is based on the 
assumption that the information contained in the 
field is left-justified with respect to the left-hand 



boundary of the field. There are two cases to con
sider: fields of equal length and fields of unequal 
length. 

If the fields are of equal length, comparison proceeds 
by comparing characters in corresponding character 
positions starting from the left and continuing until 
either a pair of unequal characters is encountered or 
the right-hand field boundary is reached, whichever 
comes first. The fields are determined to be EQUAL 
when the right-hand boundary is reached. 

The first encountered unequal pair of characters is 
compared for relative location in the ordered char
acter set. The field which contains that character 
which is positioned higher in the ordered sequence 
is determined to be the GREATER field. 

If the fields are of unequal length, the shorter of the 
two fields is assumed to be extended by right
concatenating to it a string of whichever character 
has been defined to be the lowest in the ordered 
sequence of characters. Ha~ing thus made the fields 
of conceptually equal length the previous case ap
plies. The RELATIONS provided are: 

IF {~ata-name} 
- hteral 

{ IS [NOT] {~At~~: than} } {~::;~~ame} 
EQUAL to 

The following symbols are equivalent to their Re
served Words and are available as extensions to the 
standard character set of COBOL 61. 

> GREATER than 
< LESS than 

EQUAL to 

Examples of RELATIONS are: 
1. IF TOTAL > 9999 
2. IF STOCK-SIZE = "A54B" 

COMPOUND CONDITION. A compound condition 
is a sequence of simple conditions connected by 
logical connectives AND, OR, and NOT. The form 
of a compound condition is: 

{
AND} . d" 2 Simple-condition-1 OR SImple-con Itlon-

{~~D} [NOT] ... Simple-condition-n. 

Examples of COMPOUND CONDITIONS are: 

1. A = Band C > D 
2. A < B or C = D 
3. A < B or C < D and E = F. 

8·9 

STATEMENTS 

There are three types of statements' imperatjye state
ments, conditional statements. and compiler direct
Ing statements. 

• mperative Statements. An imperative statement 
consists of a verb (excluding compiler directing 
verbs) and its operands, or a sequence of imperative 
statements. A sequence of imperative statements 
may contain either a GO imperative statement or a 
STOP RUN imperative statement, which (if present) 
must appear as the last imperative statement of its 
(GO or STOP RUN) sequence. 

Conditional Statements. A conditional statement 
is defined to be one of the two following forms: 

.. {statement-1 } 
1. IF condItlon NEXT SENTENCE 

{
OTHERWISE} {statement-2 } 

ELSE NEXT SENTENCE 

or 

2. Imperative statement followed by a conditional 
statement. 

In form 2 the imperative statement may not end 
with a GO or STOP RUN statement. When the IF 
SIZE ERROR option is used with the arithmetic 
verbs and when the IF END option is used with the 
READ verb, the verb, its operands, and the option 
is considered a conditional statement of the second 
form. 

Statement-lor statement-2 can be either imperative 
or conditional and, if conditional, can in turn con
tain conditional statements in arbitrary depth. If 
statement-lor statement-2 is conditional, then the 
conditions within the conditional statement are 
considered "nested." 

If statement-lor statement-2 is missing from the 
conditional statement, the optional words NEXT 
SENTENCE may be substituted for the missing 
statement. 

To illustrate, in COBOL the statement can be direct
ly related to a path along a flow chart which has but 
one entry. The.imperative statement has but one exit 
from the path. The conditional statement repre
sents a branch along the path, and therefore rep
resents a flow path that has more than one exit. To 
illustrate, if imperative statements are represented 
by Sl, S2, S3, ... Sn, and conditions by C1, C2, C3, ... 
en, the following portions of flow charts represent 
imperative and conditional statenlents. 

IMPERATIVE STATEMENTS 



FLOW CHART 

1.--.~--. 

NARRATIVE 

CONDITIONAL STATEMENTS 

rc;-, 
L.ei..J .. 

FLOW CHART 

~~~ 
lfalse

~
+

NARRATIVE

2. IF C1 S1 IF C2 S2

ELSE S3 ELSE S4

IF C3 S5 ELSE S6

Compiler Directing Statement

A compiler directing statement consists of a com
piler directing verb and its operands.

SENTENCES

A sentence consists of a sequence of one or more
statements, the last of which is terminated by a
period. The statements comprising the sentence must
be either (a) one compiler directing statement or (b)
an imperative or conditional statement syntactically
correct according to the rules for statement forma
tion.

A sentence which is composed of a compiler directing
statement is called a compiler directing sentence.
A sentence which is composed of an imperative or
a conditional statement is called a procedural sen
tence.

I mperative Sentences

An imperative statement terminated by a period is
an imperative sentence.

EXAMPLES:

MOVE A TO B.

MOVE A TO B; ADD C TO D.

An imperative sentence can contain either a GO
statement or a STOP RUN statement, which (if
present) must be the last statement in the sentence.

EXAMPLE:

MOVE A TO B: ADD C TO D THEN GO TO
START.

Conditional Sentences

A conditional statement terminated by a period is a
conditional sentence.

EXAMPLES:

IF X EQUALS Y THEN-MOVE A TO B:
OTHERWISE MOVE q TO D.

IF X EQUALS Y MOVE A TO B IF W EQUALS
T ADD A TO B·: OTHERWISE NEXT SEN
TENCE: OTHERWISE MOVE C TO D.

If the phrase OTHERWISE NEXT SENTENCE
immediately precedes the period, then the phrase
OTHERWISE NEXT SENTENCE may be elim
inated. This rule may then be applied again to the
resulting sentence.

For example, in COBOL the sentence can be directly
related to a portion of flow chart which has one and
only one defined entry and one or more defined exits.
No exit within a part of a flow chart that represents
a sentence can enter within that portion of the flow
chart. A sentence, therefore, becom~s a statement
with the entry point and all exit points defined. If
connectors are represented by Al, A2, A3, ... , the
following flow charts represent imperative and con
ditional sentences.

IMPERATIVE SENTENCES

B·10

FLOW CHART

1. @--.[§]-+@
2. -.~--.~--.@

NARRATIVE

1. Ai. Si GO TO A2.

2. Si. S2 GO TO A2.

CONDITIONAL SENTENCES

FLOW CHART

1. @--.<f>tru.e[§J--+@
false

2. @ --.~rur[fu}[fu]_--.@

false I
~
* •

NARRATIVE

1. Ai. IF Ci Si

OTHERWISE S2.

2. Ai. IF Ci Si

ELSE S2. S3 GO TO A2.

In this example two sentences are required to express
the flow chart because the definition of a sentence
does not permit internal connectors. In this example
the entry connector to the sentence S3, GO TO A2,
is unlabeled. The portion of a flow chart representing
an unlabeled sentence can only be entered from that
portion of the flow chart representing the preceding
sentence.

FLOW CHART

NARRATIVE

B ·11

IF 02 S2 ELSE S3

ELSE S4 IF C3 So

ELSE Sfi.

The above definitions provide a method for convert
ing flow charts to procedures. The rules can be more
easily stated if, before translation occurs, all multiple
connectors are named.
RULES FOR CONVERTING FLOW CHARTS
INTO NARRATIVE FORM

1. List all named entry connectors in arbitrary
order. Choose first entry.

2. Copy entry connector name, follow by period
and erase first entry from entry connector list.

3. Follow flow line to next symbol.
4. If imperative box then copy statement; go to

(3).

5. If condition box then copy IF condition number
box and put number in condition box list; from
true side of condition box go to (3).

6. If exit connector then copy GO TO exit con
nector name; go to (7).

7. If condition box list not empty then copy
OTHERWISE; erase last entry from condi
tion box list; from false side of condition box
erased go to (3). If condition box. list empty,
copy period; go to (8).

8. If entry connector list not empty choose next
entry, then go to (2). If entry connector list
empty, stop.

There are rules for omitting some of the sentence
names during translation to the narrative form.

RULES FOR OMITTING NAMES

1. If any reference (GO TO exit connector name)
within a conditional sentence refers to the fol
lowing sentence, then NEXT SENTENCE
may replace "GO TO name" in that sentence.

2. In any conditional sentence a final OTHER
WISE NEXT SENTENCE may be omitted.

3. A sentence name may be omitted if all refer
ences to that sentence are from the preceding
sentence.

4. The application of Rules 1, 2, and 3 require
that the adjacency of the affected sentence be
preserved.

Punctuation
A separator is a word or character used as a definition
or for the purpose of enhancing readability. With the
exception of the period, the use of separators is
optional.

The allowable separators are

period
comma
semicolon

THEN

Separators must be followed by a space and cannot
be immediately followed by another separator.

Separators must be used in the following places:

a. To terminate a sentence.
b. To delimit a noun from the beginning of the

entry it names for referencing purposes.

Separators may be used in the following places:

a. Between procedural statements.
b. In a conditional statement between:

(1) The "condition" and the statement.
(2) The statement and OTHER WISE

c. As defined in the Verb Formats.

SENTENCE EXECUTION

"Execution of a sentence or a statement within a
sentence" means "execution of an object program
compiled by the B 5000 Programming System from
a sentence, or from a statement within a sentence
which has been written in COBOL." "Transfer
of control" means "transfer of control in the object
program by transferring GOing) from one place
(control point) to another place (control point) out
of the written sequence." "Passing of control" means
"passing of control in the object program by passing
from one place (control point) to the next place
(control point) in the written sequence."

I mperative Sentence

An imperative sentence is executed in its entirety
and control is passed to the next sentence.

Whenever a GO statement is encountered during
execution of a sentence or statement, there will be
an unconditional transfer of control to the sentence
referenced by the GO statement.

Conditional Sentence

IF condition {statement-1 }
[NEXT SENTENCE]

{
ELSE } {statement-2. }
OTHERWISE [NEXT SENTENCE]

In the conditional sentence above, the "condition"
is an expression which has the value true or false.
If the condition is true then statement-1 is executed
and control is transferred to the next sentence. If the
condition is false, statement-2 is executed and then
control is transferred to the next sentence. If state-

B·12

ment-1 is imperative and contains a GO statement,
then, if the condition is true, statement-1 is executed
and control is transferred to the sentence referenced
by the GO statement. Similarly if statement-2 is
imperative and contains a GO statement, then, if the
condition is false, statement-2 is executed and con
trol is transferred to the sentence referenced by the
GO statement.

Compiler Directing Sentences
A compiler directing statement terminated with a
period is a compiler directing sentence.

EXAMPLE:
USE procedure-1 THROUGH procedure-2
AFTER STANDARD ERROR PROCEDURE
ON INPUT.

Compiler directing sentences direct the B 5000 Pro
gramming System to take action at compilation time
(for example, INCLUDE A PROCEDURE from the
LIBRARY or USE named PROCEDURES AFTER
STANDARD ERROR PROCEDURES). On the
other hand, procedural sentences denote action to
be taken in accomplishment (executors) pf the pro
cedures by the object program at object time.

Compiler directing sentences may direct inclusion of
generated programs in the object program. How
ever, compiler directing sentences do not directly
result in either transfer or passing of control. How
ever, the generated program itself, which compiler
directing sentences may have included in the object
program, is subject to the same rules for transfer or
passing of control as if that generated program had
been created from procedural sentences only.

CONTROL RELATIONSHIP
BETWEEN SENTENCES

In COBOL, imperative and conditional sentences
describe the procedure that is to be accomplished.
The sentences are written successively, according to
the rules of the Reference Format, to establish the
sequence in which the object program is to ac
complish (execute) the procedure. In order to vary
the sequence in which the object program is to exe
cute the sentences which comprise a procedure, a
sentence may be named. The name consists of a
noun followed by a period. The name precedes the
sentence it names. Hence, in the Procedure Division,
names are used so that one procedure can refer to
(reference) another procedure by naming (referenc
ing) it.

In executing sentences, control is transferred only to
the beginning of a sentence. Control is transferred
to an unnamed sentence only from the sentence
written immediately preceding the unnamed sen-

tence. If a sentence is named, control is transferred
to it from either (a) the sentence immediately pre
ceding the unnamed sentence, or (b) from any sen
tence which contains a GO TO followed by the name
of the sentence to which control is to be transferred.

PARAGRAPH
So that the source programmer may group several
sentences to convey one idea (procedure), paragraphs
have been included in COBOL. In writing proce
dures in accordance with the rules of the Procedure
Division and the requirements of the Reference For
mat, the source programmer begins a paragraph with
a named sentence. Hence, the sentence name can be
considered and becomes the paragraph name.

A paragraph consists of one or more successive sen
tences, the first and only the first of which is named.
A named sentence, therefore, cannot appear within a
paragraph as other than the first sentence of that
paragraph.

The source programmer will place compiler direct
ing sentences in their own paragraphs. Paragraphs
comprised of compiler directing sentences are called
"compiler directing paragraphs."

Paragraphs which contain at least one procedural
sentence are called "procedural paragraphs."

SECTION

A section consists of one or more paragraphs and
when designated must be named. The section name
is followed by the word SECTION, a priority num
ber which is optional, and a period. The section name
applies to all paragraphs following it until another
section name is found.

ACKNOWLEDGMENT
This publication is based on the COBOL Specifica
tions developed by a voluntary committee composed
of government users and computer manufacturers.
The following organizations have participated in the
development of the COBOL Specifications:

Bendix Corporation, Computer Division

*Trademark of Sperry Rand Corporation

**Trademark of IBM Corporation

***Trademark of Minneapolis-Honeywell Corporation

B ·13

Burroughs Corporation
Computer Science Corporation
Control Data Corporation
Department of Commerce, Bureau of Standards
General Electric Company, Computer Division
International Business Machines Corporation
Minneapolis-Honeywell Corporation,

Data Processing Division
National Cash Register Company,

Computer Division
Philco Corporation
Radio Corporation of America
Remington Rand Univac, a Division of

Sperry Rand Corporation
Sylvania Electric Products, Incorporated
U. S. Air Force, Air Materiel Command
U. S. Navy, David Taylor Model Basin,

Bureau of Ships

Ideas and information were drawn from many
sources: in particular, from the FLOW-MATIC*
System developed by Sperry Rand, the Commercial
Translator System designed by IBM, the AIMACO
System developed jointly by the Air Materiel Com
mand and Sperry Rand, and the FACT** System
developed by Computer Science Corporation for the
Minneapolis-Honeywell Corporation. With the per
mission of the authors and publishers, certain material
has been taken from the following copyrighted pub
lications: FLOW-MATIC* Programming System,
© 1958 Sperry Rand Corporation, and General In
formation Manual: IBM (Commercial Translator),**
© 1959 by International Business Machines Corpora
tion: FACT*** System, © 1959 by Minneapolis
Honeywell Corporation.

The initial specifications for the COBOL language
were the result of contributions made by all of the
above mentioned organizations and no warranty ex
pressed or implied as to the accuracy and functioning
of the programming system and language is made by
any contributor or by the committee in connection
therewith.

APPENDIX C

GLOSSARY

(Some terms defined are characteristic to the industry,
but others are significant only with respect to the
B 5000 System. For a more complete glossary of in
dustry terminology it is recommended that reference
be made to glossaries published in such trade jour
nals as ACM Communications and Computers and
Automation.)

Address-A label, such as an integer or other set of
characters, which identifies a memory location or
storage device.

ALGOL- (for ALGOrithmic Language) an inter
national problem language designed for the con
cise, efficient expression of arithmetic and logical
processes, and the control (iterative, etc.) of these
processes.

Algorithm-A statement of the steps to be followed
in the solution of a problem.

Argument- Known reference factor necessary to find
the desired item in a table or array. Sometimes
referred to as a "key" as in "search key."

Array-An ordered arrangement of items of informa
tion.

Automatic Programming-Technique which employs
the computer itself to translate programming from
a form that is easy for a human being to produce
and understand into a form suitable for use by a
computer.

Binary-A radix-2 number system using only the
digits 0 and 1.

Boolean Algebra-A system of algebra dealing with
truth values as variables and having basic op
erators such as "and," "or," "not," etc.

Boolean Variables-An operand in a Boolean algebra
expression. A Boolean variable may have the value
of "true" or "false," commonly represented in
computers by one and zero respectively.

BURROUGHS Common Language (BCL)-A binary
code representation of alphanumeric characters
common to all future BURROUGHS equipment and
common with existing standard punched-card and
tape representations.

Call-A set of characters or bits which demand an
action to take place or some item of information;
for example, subroutine call, operand call, descrip
tor call.

C·I

Channel-A path along which information may flow.
(See Input/Output Channel.)

Characteristic-The exponent portion of a floating
point number. (See Floating-Point Representation.)

Clock-A time-increment counting register used for
program-interrupt and job-time accounting.

COBOL-A COmmon Business Oriented Language
designed for expressing problems of data manipula
tion and processing in English narrative form.

Compiler-A translator program which reduces a
problem-oriented language into the machine lan
guage of a particular com pu ter.

Concatenating-Linking together by forming a chain
or series, a series or order of things depending on
each other.

Control Counter-A 17-bit register which indicates
the location of the next syllable to be executed by
the Processor.

Data Array-Any ordered set of data, such as the
information on a card, a tape record, a print line,
the contents of a working area, etc.

Data-Manipulation Mode-One of the logical opera
tional modes of the B 5000, in which the basic
information unit is a single alphanumeric charac
ter. Utilized for efficient editing, formating, and
comparison functions.

Data Manipulators-A set of operators which edit,
compare, and move data within memory when the
Processor is in the Data-Manipulation mode.

Debug-To isolate and correct the mistakes in a
program.

Descriptor-A computer word used specifically to
define characteristics of a program element. For
example, descriptors are used for describing a data
record, a segment of a program, or an input-output
operation.

Descriptor Call Syllable-A syllable of the B 5000
program string which directs the Processor to
place in the Stack the location of a data array or
a program segment.

Diagnostic Routine-Routine designed Lo detect and
locate either a malfunction of the system or a
mistake in programming.

Drum, Magnetic-A rapidly rotating cylinder, the

surface of which is coated with a magnetic ma
terial on which information may be stored as small
magnetized areas.

Edit-The act of arranging information from input
output devices. This may involve the selection of
pertinent data, the insertion of symbols such as
page numbers and check-protection characters,
and standard processes such as zero suppression.

Executive Routine-A routine designed to control
and cause the execution of other routines. (See
Master Control Program.)

Field-A set of one or more characters which is
treated as a unit of information.

Fixed-Point Representation-An arithmetic nota
tion in which all numeric quantities are expressed
by the same number of digits with the decimal
point (for base 10) or octal point (for base 8) as
sumed in a fixed location in each number. Align
ment of numbers with different assumed locations
of the points must be performed by the program
before an arithmetic operation such as addition
can be performed.

Floating-Point Representation-An arithmetic no
tation in which all numeric quantities have an
associated indication of the decimal point location
(base 10) or octal point location (base 8). Auto
matic alignment of numbers and calculation of the
location of the point can be provided in arithmetic
on floating-point numbers. In the B 5000, a float
ing-point number consists of two parts: a 13-digit
octal integer with sign called the mantissa; and a
signed number called the characteristic (or ex
ponent) which indicates the number of places to
the right or left that the actual octal point is from
the assumed octal point in the mantissa.

Hardware-The mechanical, magnetic, electrical,
and electronic devices from which a computer
system is constructed.

Housekeeping-Operations not directly concerned
with the objective of a program; e.g., packing or
rearranging data, subroutine linkages, etc.

Indirect Address-An address which identifies a
memory cell containing an address. The contents
of the memory cell is the address of the desired
information or may also be an indirect address.

Input/Output Channel-A device which allows inde
pendent, simultaneous communication between
any Memory Module and any of the several input
output units. It controls any peripheral device
and performs all validity checking on information
transfers.

Input/Output Exchange-An electronic switch which

C·2

connects an Input IOutput Channel to the desig
nated peripheral device.

Interrupt-A signal generated by an input-output
device, by an operational error, or by a request by
the Processor for more data or program segments.
Provides the Master Control Program with the
facility to maintain control of all system functions.

Jump-An operation which may alter the normal
sequence of a program. Normally syllables are
executed in sequence; a jump operation causes a
termination of the sequence and directs the Proc
essor to a specified syllable. A conditional jump
operation is a jump operation which takes place
only if a specific condition exists in. the Processor.
Usually the condition is a result of a test or com
parison operation. If the specific condition does
not exist, a conditional jump operator is ignored
and sequential execution of syllables continues.

Library-Collection of fully tested standard pro
grams and subroutines for repeated use by, or in
corporation into, other programs.

Literal-An element in a program which is itself a
quantity or alphanumeric constant to be used by
the program rather than being an address of the
f111<:lntltu At" nA "t"' t
'-1\A"-4.I.i..i.\.I.I.\.I.) '-..1.1. "-'V.1..1...:) l;U.I..1. l.I.

Machine Language-The coded operations that con
trol information and addresses employed within
the Processor to express a program. (See Problem
Language.)

Mantissa-Integer part of a floating-point number
(13 octal digits in a single-precision number of the
B 5000). (See Floating-Point Representation.)

Master Control Program-A computer program to
control the operation of the system. It is designed
to reduce the amount of intervention required of
the human operator. The Master Control Program
performs the following functions: schedules pro
grams to be processed; initiates segments of pro
grams; controls all input-output operations to in
sure efficient utilization of each system component;
allocates memory dynamically; issues instructions
to the human operator and verifies that his actions
were correct; performs corrective action on errors
in a program or system malfunction.

IVlegacycleSec.-A million cycles per second. The
basic pulse rate of the B 5000 is 1 megacycle I
second.

Memory-Internal computer storage. Distinguished
from other types of storage in the B 5000 which
are part of the peripheral equipment.

Memory Exchange-An electronic switching device
which controls information flow among Memory

Modules and the Processor or Input/Output Chan
nels.

Microsecond-One millionth of a second (0.000001
sec. or 1 f.1.s),

Modularity-The property of a system resulting
from the construction or assembly of the system
from logical subunits (modules). In the B 5000,
this property provides the capability of construct
ing a system with the proper number of each type
of module to match varying processing require
ments efficiently and to maximize the utilization
of each module.

Module-A logical subunit that may be easily de
tached from, or included with, the whole system.
Processor, Magnetic Tape Units, and Storage
Drums are typical modules of the B 5000 System.

M ul ti -Processing-Processing several programs or
program segments concurrently on a "time-share"
basis. The Processor is only active on one program
at anyone time while operations such as input
output may be performed in parallel on several
programs. The Processor is directed to switch back
and forth among programs under the control of
the Master Control Program.

N esting-Enclosing one program element of a par
ticular type, such as a subroutine, within another
of the same type.

Noisy Mode-A mode of floating-type arithmetic
operation'in which the error resulting from use of
only a finite number of significant digits may be
identified.

N ormal Mode-The standard B 5000 operational
logic used during computational processes. The
basic information unit is the word.

Object Program-A set of machine-language instruc
tions for the solution of a specified problem, ob
tained as the end result of the compilation process
(see Compiler, Problem Language).

Octal-A number system based on powers of 8 rather
than 10 as in the decimal system. Includes only
the digits 0, 1, 2, 3, 4, 5, 6, and 7.

Operand-Any of the quantities entering into an
operation. An operand is typically a number for
arithmetic operations. For comparison operations,
an operand may be an alphanumeric field.

Operand-Call Syllable-A syllable which- specifies
that an operand be brought to the Stack, either
directly from the Program Reference Table or
indirectly by means of a descriptor.

Operators-Symbols that denote a fixed, predefined
set of operations to be performed in a specified

c-]

sequence. There are a number of classes of opera
tors in the B 5000: for example, the arithmetic
operators are +, -, x, /, DIV; the relational
operators are <, :S;, =, >, :2::, ~.

Output Channel- (See Input /Output Channel.)

Parallel Operation-Flow of data through the system
or any part of it, using two or more communication
lines or channels simultaneously.

Parallel Plate Packages-A packaging technique for
logical (and other) computer circuitry developed
by BURROUGHS to achieve high packing density,
ease of automatic production and assembly, and
simple maintenance.

Parallel Processing- Processing more than one pro
gram at a time on a parallel basis, where more
than one Processor is active at a time (distin
guished from Multi-Processing where only one
Processor is active on one program at a time),

Parameter- In a subroutine, a quantity which may
be given different values when the subroutine is
used in different parts of one main routine but
which usually remains unchanged throughout any
one such use. To use a subroutine sJIccessfully in
many different programs requires that the sub
routine be adaptable by changing its parameters.

Parity Check-A summation check in which the
binary digits, in a character or word, are added
(modulo 2) and the sum checked against a single,
previously com·puted parity digit.

Peripheral Equipment-Any of the several devices,
primarily used to communicate with a system, not
considered a part of the main processing and con
trol system. On the B 5000, the peripheral equip
ment includes Magnetic Tape Units, Line Print
ers, Card Readers, Card Punches, Keyboard, Mes
sage Printer, and Plotter.

Polish Notation-A method of writing logical and
arithmetic expressions without the need for paren
theses, originated by the Polish logician J. Lukasie
wicz. For example: Normal algebraic notation
(X + Y) X (A - B), in Polish notation: XY +
AB-x.

Precision-The degree of exactness with which a
quantity is stated. For example, the number 2.783
is precise to four digits, but does not necessarily
have four digits of accuracy.

Presence Bit-A single flag bit appearing in descrip
tors to indicate whether or not the information to
which reference is made by the descriptor is in
high-speed (core) memory at this time.

Priority-A value assigned to a program or program
segment to specify the relative processing se-

quence. The priorities of all programs to be run
are taken into consideration by the Master Con
trol Program in arriving at a schedule.

Program Independent Modularity-Property of the
B 5000 to accept changes in system configuration
and adjust programs accordingly to yield max
imum utilization of all modules without repro
gramming or recompilation of programs.

Problem Language-The language used by the pro
grammer to state the definition of a problem.
ALGOL and COBOL are examples of problem
languages. Problem languages are closely related
to the type of problem being stated-i.e., alge
braic statements for mathematical problems (AL
GOL) and narrative English statements for com
mercial problems (COBOL). Problem language
should not be confused with machine language.
A program is written in problem language by the
programmer. This source program is then trans
lated to the object program (in machine language)
by a compiler program. (See Object Program,
Compiler.)

Program (noun)-A plan for the solution of a prob
lem. A B 5000 program may be a statement of the
problem in ALGOL or COBOL or the translated,
segmented object (compilation result) program.

Program (verb)-To plan a computation or process
from the original statement of the problem to the
delivery of the results, including the integration
of the operation of the resulting program into an
existing system (for conventional computers). For
the B 5000: A system analysis and statement of
the problem in common language.

Programming System-The B 5000 Programming
System consists of the ALGOL and COBOL com
piler and the Master Control Program. The AL
GOL and COBOL compiler is loaded by the
Master Control Program.

Program Reference Table (PRT)-An area in mem
ory for the storage of operands, references to
operands, references to segments of a program,
and other program variables. Permits programs
to be independent of the actual memory locations
occupied by data and parts of the program. Thus
programs and data can be placed into any avail
able memory areas without modification to the
program.

Real Variable-A variable over the rational and ir
rational classes of numbers. In ALGOL a real
variable is a floating-point number as distinct
from an integer variable which is an integer.

Register-The hardware for storing one or more
computer words or for maintaining internal sys-

C-4

tem control.

Relocatability-A facility whereby programs or data
may be located any place in memory at different
times without requiring modification to the pro
gram. In the B 5000, segments of the program and
all data are independently relocatable with no loss
in efficiency.

Return - An operator in a subroutine which recovers
all pertinent information from the Stack and trans
fers control to the next syllable in the original syl
lable string of the program which causes entry to
the subroutine.

Return Point-The syllable in the program segment
to which control is transferred after the comple
tion of a subroutine or an intercession by the
Master Control Program.

Scheduling-Designation of times and sequence of
projected operations. One of the functions of the
B 5000 Master Contr?l Program.

Segment (verb)-To divide a program into an inte
gral number of parts, each of which performs some
part of the total program and is capable of being
completely stored in internal memory.

Simultaneity-Concurrent communication between
various units of a system at the same instant.

Software-Programs, routines, and procedures which
augment and support a computer system (the
Master Control Program, compilers, etc.).

Stack-A portion of memory and lor registers used
for temporarily holding information. A Stack, as
used in the B 5000, operates on the "last-in first
out" principle, that is, the last item of information
placed in the Stack will be the first item of infor
mation used when information is required from
the Stack. Operators perform their operations on
information at the top of the Stack. (See Opera
tors.)

Storage-Any device into which information can be
copied, which holds this information, and from
which the information can be obtained at a later
time.

Storage Allocation-Assignment of specific memory
addresses to individual program elements (done
automatically in the B 5000 at object running
time by the Master Control Program).

Subroutine-The set of instructions necessary to
carry out a defined operation; a subunit of a
program.

Subroutine Call-A set of characters or lists which
initiate a subroutine and contain the parameters
or identification of the parameters required by

Burroughs Corporation
DETROIT 32 , MICHIGAN

IN CANADA , BURROUGHS ADDING MACHINE OF CANADA , LTD ., TORONTO , ONTARIO

BULLETIN 500o-20002-P PRHlTED IN USA

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B14
	C-01
	C-02
	C-03
	C-04

