FIELD
 ENGINEERING TECHNICAL MANUAL

PRINCIPLES OF
OPERATION

FUNCTIONAL
DESCRIPTION-
ELECTRONIC

FUNCTIONAL DESCRIPTION MECHANICAL

Burroughs B 471

DISK FILE ELECTRONICS UNIT

INSTALLATION
PROCEDURES

OPTIONAL
FEATURES

Burroughs

B FIELD ENGINEERING TECHNICAL MANUAL \quad| B471.51 | $1.0-1$ |
| :--- | :--- |
| | February 1,1965 |

INDEX - SECTION I

1 INTRODUCTION

$$
\begin{aligned}
& \text { 1.1 General Description July 1, } 1964 \\
& \text { 1.2 Equipment Specifications July 1, } 1964 \\
& \text { 1.3 Physical Description Dec. } 1,1964 \\
& \text { 1.4 Glossary ... Feb. } 1,1965
\end{aligned}
$$

Figure 1.l-l shows the Disk File Electronics Unit (E.U.) with one Disk File Storage Unit (S.U.). One E.U. can control from one to five S.U.'s, while up to ten E.U.'s may be connected to one Disk File Control Unit (D.F.C.U.). A maximum Disk File Subsystem will consist of one D.F.C.U., 10 E.U.'s, and 50 S.U.'s. Only one Disk File Subsystem can be controlled by the B200; the B5500 can control two Subsystems.

FIGURE 1.1-1
E.U. IN DISK FILE SUBSYSTEM

FIGURE 1.1-2
E.U. IN DISK FILE SUBSYSTEM

An E.U. provides the power, air pressure, motor starting controls, basic head switching and gating logic for one to five S.U.'s. See Figure l.l-2 for the E.U. placement within the Disk File Subsystem.

The E.U. is the B471. However, the E.U. and the first S.U. are called a B472. The Subsystem can be expanded easily by adding additional S.U.'s. The first E.U. is connected directly to the D.F.C.U.; however, when there is more than one E.U. in the Subsystem, they are connected through an Exchange to the D.F.C.U.

In the Disk File Subsystem, the E.U. supplies the logic for reading and writing. Before an operation may take place, a segment (record) must be located on the disk. Each segment has an address which is read and compared with the desired address. When the correct segnent address is found, the operation proceeds.

A write operation transfers characters from the Processor to the D.F.C.U., to the E.U., and finally to a disk in the S.U. The E.U. accepts a six-bit character from the D.F.C.U. parallel by bit, then

FIELD ENGINEERING TECHNICAL MANUAL
B471.51 1.1 -3
July 1, 1964
passes the character to the Module serially by bit since data is written serially on the disk.

In a read operation, the serial by bit information read from the disk is accumulated into a character in the E.U. and then sent to the D.F.C.U. and on to the Processor.

1.2 EQUIPMENT SPECIFICATIONS

Height	53	es
Width	23	inches
Length	45	
Weight		pounds

POWER REQUIREMENTS
208VAC or 230VAC from two phases and neutral. Maximum current, 63 amps for five S.U.'s.

Maximum cable length to D.F.C.U. - 50 feet.

The Electronics Unit supplies the power and power controls for the Storage Units as well as providing the read/write logic. All operator controls are located on the front of the E.U. Figure 1.3-1 shows the left side of the E.U. The logic gate contains control logic for the E.U. and S.U.'S. The Maintenance Panel to the right allows the engineer quick access to information on the status of the E.U. and associated S.U.'s.

FIGURE 1.3-1 COMPONENT LAYOUT - E.U.

The Control Panel on the E.U. (Figure l.3-2) provides the operator controls for the E.U. and its Modules.

FIGURE 1.3-2
E.U. CONTROL PANEL

The switches and indicators on the Control Panel are listed below:

1. POWER ON - switch and indicator - green
2. POWER OFF - switch - black
3. DC ON - switch and indicator - green
a. The DC ON switch will cause DC to be supplied to the logic gate in the E.U. and the S.U.'s and also fly the heads in the S.U.'s.
4. DC OFF - switch - black
a. The DC OFF switch retracts the heads and removes DC from the E.U. and the S.U.'s.
5. NOT READY - indicator - white
a. The NOT READY indicator is lit when:
6. The heads are not flying.
7. The air pressure is not normal.
8. The E.U. LOCAL/REMOTE switch is in LOCAL.
9. MASTER LOCKOUT - indicator - red
a. The MASTER LOCKOUT indicator is lit when the MASTER LOCKOUT switch is thrown.
10. DISK LOCKOUT - indicator - red
a. The DISK LOCKOUT indicator is lit when any of the individual Lockout switches are thrown.

The Key Lock releases the cover over the Lockout switches at the top of the E.U. There are 20 separate Lockout switches for the individual disks and one MASTER LOCKOUT switch.

8 FIELD ENGINEERING TECHNICAL MANUAL \quad| B471.51 | $1.3-3$ |
| :--- | :--- |

The Maintenance Panel (Figure 1.3-3) has the following:

1. A POWER ON meter.
2. Five NOT READY indicators for the S.U.'s.
3. The $A C$ ON and $D C$ ON indicators which parallel POWER ON and DC ON on the Control Panel.
4. RELAY SUPPLY ON indicator.
5. The LOCAL/REMOTE switch.
6. DC LOCKOUT switch.
7. A CLOCK switch which must be on for normal operation. It is off for single pulsing with the BITP and WeMP buttons.
8. Indicators for flip-flops in the E.U.
9. Test points.
10. A voltmeter for monitoring the power supplies.
11. An AIR PRESSURE meter.

FIGURE 1.3-3
MAINTENANCE PANEL

Figure 1.3-4 shows a B471 and one B475 viewed from the front with the skins removed to show the physical location of many of the components.

Note the Winchester type connector mounted just above and behind the compressor. This is the connector for the logic cable from the associated D.F.C.U.

ACFF	Action FF is on during a disk file access except during a second revolution cross-over.
ASRL ASRL/	Address Read Levels from the Storage Module.
ASRS	Cross-coupled switches set by the Address Read Levels at
ASRS /	BITP time. The outputs of the switches are set into SUBF when ICFF is off.
BA1F	Address Count FFs. Normally only count to three. BA4F
BA2F	indicates a Maintenance Segment address.
BA4F	
BCLP	Output of the Bit Clock Multi. Pulse width 150 nanoseconds. Input is BITP or DBIT.
BITL-01	
BITL-02	
BITL-03	Bit pulse levels from the five possible modules.
BITL-04	
BITL-05	
BITP	Delayed output of the Bit Pulse Multi. Pulse width 150 nanoseconds. Input is BITL-nn. Produces a BCLP delayed 250 nanoseconds after input.
BSPL	Bit Single Pulse Level. Effectively, this is the output of the Bit Single Pulse switch to BITM.
BUDP	Undelayed output of Bit Pulse Multi. Pulse width is 250 nanoseconds. Input is BITL-nn.
CBAS	Count Address Count Switch. Negative output causes a count-up of BAnFs.
CCEL-C	Continuous Clock Enable Level. Makes CCIL-A negative when Clock Switch is ON.
CCIL-A	Continuous Clock Inhibit Level. Ground when Clock Switch is OFF.
CSIL-A	Clock Single Inhibit Level. Ground when Clock Switch is ON. (This should be SCIL. See SCEL.)
CSUS	Clears SUlFR, SU2F, SU4F and SU8F.

CSIL/	Characters per Segment Levels.
CS2L/	Both ground for 96 characters per segment. 1 negative and 2 ground for 240 characters per segment. 1 ground and 2 negative for 480 characters per segment.
DBIT	Delayed Bit Pulse from an adjustable multi. Output is a negative pulse 675 nanoseconds after BUDP. Used to fire BCLP while reading an active word.
DFSL/	Disk Face Select Level. Negative to select a clock head on the lower face of a disk--tracks $00=>49$. Must be opposite of DFSS.
DFSS	Disk Face Select Switch. Negative to select a clock head on the upper face of a disk--tracks $50=>99$. Must be opposite of DFSL/.
DISC-01/	Disk Select Levels. Ground to select disk 'n' in each
DISC-02/	Storage Module. Only one line ground at one time.
$\begin{aligned} & \text { DISC-03/ } \\ & \text { DISC-04/ } \end{aligned}$	Derived from the decoded outputs of the Disk Switches.
DIXP	Delayed Index Pulse from DIXM, DIXM is 600 microseconds and is set during second revolution cross-over. In case the cross-over results in a Not Ready condition (nonexistent disk), DIXP resets INFF and produces one more SCLP.
D01L/	
D02L/	Disk Switch Levels inverted from Disk File Control
D08L/	address levels.
D16L/	
ECCS	Enable Character Clock Switch, If a BITP was missed, ECCS ensures that SCLP cannot occur out of sync due to the set of SUCF by the BITP that occurs at WØMP.
FWLS-OR1	
FWLS-OR2	File Write Lockout decoding.
FWLS-OR3	
GLAF	Gain Latch FF latches the Gain Select circuit.
GSLF	Gain Select FF is set to the state of TSRF at each Word Mark (SPFF).
GSSL	Gain Select Switch Level is negative to select low gain in the Module read amplifiers.

FIELD ENGINEERING TECHNICAL MANUAL

HFML-01/
HFML-02/
HFML-03/
HFML-04/
HFML-05/
HSDL-00
thru
HSDL-99
HSTL-00 /
HSTL-10/
HSTL-20/ thru
HSTL-90/
HSUL-00/
thru
HSUL-09 /

ICFF	Interlace Control FF is set during the active word and is reset during the inactive word or "idle" condition.
INFF	Index FF is set during first and second revolution crossovers. Its purpose is to "blank out" the maintenance segments and to index the continuation of the operation on the correct word.
I NHS	Index Holdover Switch. The output level is a gate to the holdover of IXHM and is used to produce the pseudo INXP in a second rveolution cross-over.
INXP	Index Pulse. The output of the Index Holdover Multi when it times out. IXHM = BCLP.INHS.
I RAL IRAL/	Information Read Levels from the Storage Module,
IRAS IRAS/	Cross-coupled switches set by the Information Read Levels by BCLPs (DBIT). The switch outputs are set into SUBF when ICFF is on.
$\begin{gathered} \text { LøSW-01/ } \\ \text { thru } \\ \text { LøSW-20 } \end{gathered}$	Write Lockout Switches 1 through 20 for each of the possible 20 disks. Ground level when disk is locked out,
MLøS /	Master Lockout Switch. Ground level when the whole file is locked out.

M01L
M02L
M03L
M04L
M05L
Storage Module Ready Levels are positive when:
a. Unit is Ready (disks up to speed, no touch circuits triggered, air pressure up, heat exchange blowers on).
b. Unit is in LOCAL and not designated.

Head Select Drive Level is positive to select track "nn". Only one line can be positive at a time.

Head Select Tens Levels.

Head Select Units Levels.

Interlace Control FF is set during the active word and is reset during the inactive word or "idle" condition.

Index FF is set during first and second revolution crossovers. Its purpose is to "blank out" the maintenance segnents and to index the continuation of the operation on the correct word.

Index Holdover Switch. The output level is a gate to the holdover of $I X H M$ and is used to produce the pseudo INXP in a second rveolution cross-over.

Index Pulse. The output of the Index Holdover Multi when it times out. IXHM = BCLP.INHS.

Information Read Levels from the Storage Module.

Cross-coupled switches set by the Information Read Levels by BCLPS (DBIT). The switch outputs are set into SUBF when ICFF is on.

Write Lockout Switches 1 through 20 for each of the possible 20 disks. Ground level when disk is locked out,

Master Lockout Switch. Ground level when the whole file is locked out.

Module Designate Levels derived from the five Disk Switch Levels.

RDHM	Read Delay Holdover Multi. 32 microsecond multi is set to inhibit BITPS during a second revolution cross-over when clock tracks are being changed.
REMS/	Remote Level. Ground when the LOCAL-REMOTE switch is in REMOTE.
RIHS	
RARL/ Inhibit Holdover Switch. Controlled by RDHM.	

SSUD
SU1FR
SU1FW
SU2F
SU4F
SU8F
SUAF SUBF

SUCF

SUID

SURL/

Shift SUnFs Driver.
Storage Unit 1 Read FF.
Storage Unit 1 Write FF.

Storage Unit "n" FFs.

Storage Unit Character FF. This FF is set to indicate character time; that is, a complete character. It generates an SCLP.

Storage Unit Input Strobe. The character to be written is set into the SUnFs.

Storage Unit Ready Level. Ground level through a relay contact from SURS/. SURS/ is derived from HFML-nn, Clock On and REMOTE.

SW1L SW2L SW4L SW8L SWAL SWBL

SWLL

TD1L
TD2L
TD3L
TD4L
TD5L
TSRF

T01L/
T02L/
T04L/ T08L/ T10L/ T20L/ T40L/

Threshold Store FF. Set by TDnL from a designated Module.
Storage Write Levels. Negative level will cause the appropriate $S U n F$ to be set by SUID.

Storage Write Lockout Level. Negative level to D.F.C.U. when an attempt is made to write to a locked out disk.

Threshold Detect Levels. Negative pulses from a Module set the gain control circuit for low gain.

Track Select Levels. Ground levels from D.F.C.U. to select Track 00 through 99 when combined with DFSL/ and DFSS.

WICD

WøHF

WøHM

WøHS /
WØMD

WøMP

WRSD/

WSPL-01

Zø1L/
ZØ2L/

Write Information Control Level. Negative during the active word to enable information to be written on the selected track.

Word Mark FF. Set by the Word Mark Multi. Reset by WØHS/ (WøHM after time out). Used to inhibit the generation of WøMPs by flux changes when an address is being read.

Word Mark Multi. The multi has 7.8 microseconds duration and is fired and held over by any flux changes read from the address track.

Word Mark Switch. The switched output of WøHM.
Word Mark Driver. The negative output is the Word Mark pulse to the D.F.C.U.

Word Mark Pulse. Generated by a flux change in the address track corresponding to the beginning of each word.

Write Storage Level. When positive, indicates a write operation is to be performed,

Word Single Pulse Level. The output of the Word Single Pulse switch.

Zone 1 and 2 Levels from the D.F.C.U. These are decoded to form three levels--ZølL-01/, Zø2L-01/ and zø3L-01/ which are used to select the correct zone.
8 FIELD ENGINEERING TECHNICAL MANUAL B471.51 2.0-1
INDEX - SECTION II
2 PRINCIPLES OF OPERATION
2.1 Electronics Unit Feb. 1, 1965
2.2 Disk Format Dec. 1, 1964

| B471.51 | $2.1-1$ |
| :---: | :---: | :---: |
| | July 15,1965 |

2.1 ELECTRONICS UNIT

GENERAL OPERATION

The Disk File Subsystem provides the B200 and B5500 systems with a very large capacity storage device with rapid access to any record. In the Subsystem the Electronics Unit provides the local logical control of up to five Storage Modules.

To write on a disk, first a specified area is identified by its unique address and then the six-bit BCL characters are written serially by bit in that area. The B5500 can write in the binary mode if required, All characters may be written.

To read from the disk, the area to be read must first be located by head selection and address comparison. Then the serial bit information is assembled into characters which are transferred to the Processor one at a time.

Head selection entails the selection of the Module, disk, face, zone and track. Each information track is found in three zones so three heads are designated. Each zone has unique clock tracks and an address will be read for each segment in the selected zone. Once the required segment is located, the read or writo cperation begins. The E.U. provides logic for head selection, clocking, information read and information write.

HEAD SELECTION

An address is shifted into the A Register in the D.F.C.U. by the Processor. This is the unique address of one segment; 96,240 or 480 characters on one side of one disk, in one Module, in one E.U. The decoded output levels of A Register are sent to the E.U. which further decodes them into head select lines to the Module and disk face. The levels from the D.F.C.U. are: (Refer to Figure 2.1-1.)

1. The DnnL's which select one Module of five and one of four disks in that Module.
2. Disk Face Select Level (DFSL/) to select the lower or upper face.
3. The ZnnL's which select the 100 heads in one zone (both sides of the disk).
4. The TnnL's which select one of 50 tracks in each zone.

The E.U. decodes the fifty TnnL's and DFSL/ into 100 center tap levels called HSDL's to enable the center taps of the information heads.

FIGURE 2.1-1
E.U. IN THE DISK FILE SUBSYSTEM

Each HSDL enables 12 heads; one head in each zone of one face of each disk. With the 480 option, the information head enabled in zone 1 can read and write segments 0 - 11. The corresponding head in zone 2 can read and write segments 12-27 and the enabled head in zone 3 can read and write segments 28 - 49. The opposite face on the disk will have segments 50 - 99. Refer to Figure 2.1-2.

The ZnnL's and Disk-nn will select the 100 heads in one zone of one disk (both faces). These levels will also enable the center taps of the four clock heads for that zone of the disk (both faces). The desired face is selected by DFSL/ and DFSS.

FIELD ENGINEERING TECHNICAL MANUAL

B471. 51	$2.1-3$
	December 1,1964

ZONE	480 OPTION		240 OPTIO	96 OPTION			
	cw/ccw	FACE	ONE FACE	DISK 1		DISK 2	
				CW FACE	CCW FACE	CW FACE	CCW FACE
1	$0 \rightarrow 11$	$50 \rightarrow 01$	$0 \rightarrow 23$	$0 \rightarrow 59$	$250 \rightarrow 309$	$750 \rightarrow 809$	$500 \rightarrow 559$
2	$12 \rightarrow 27$	$62 \rightarrow 77$	$24 \rightarrow 55$	$60 \rightarrow 139$	$310 \rightarrow 389$	$810 \rightarrow 889$	$560 \rightarrow 639$
3	$28 \rightarrow 49$	$78 \rightarrow 99$	$56 \rightarrow 99$	$140 \rightarrow 249$	$390 \rightarrow 499$	$890 \rightarrow 399$	$6+0 \rightarrow 749$

FIGURE 2.1-2
SEGMENT ADDRESSES BY OPTION

ADDRESS SEARCH

The selected Word Mark clock head reads three digit addresses from the Word Mark track and sends them serially by bit, serially by digit, to the E.U. From the point of view of timing, these addresses are read during the word time preceding the first word of the segment. When an address is read by the Word Mark clock head, a new segment will pass under the selected information head after the next word Mark. The segment address is sent back to the D.F.C.U. to be compared with the address in the A Register. If the segment address compares, Segment Coincidence Level (SCøL/) is sent to the E.U. to indicate that the segment has been found. The E.U. will now go into an active read or write operation. Figure 2.1-3 shows the block diagram of the Address Search operation.

The selected Bit clock track in the S.U. will generate clock pulses which are sent to the E.U. The E.U. uses these Bit pulses for all clocking purposes. Information and addresses are handled in similar ways by the E.U.; that is, either information levels or address levels are strobed into the Stack-Up Register (SUnF's) by Bit pulses. When a complete character has been assembled, it is sent to the D.F.C.U. parallel by bit.

The Word Mark track generates Word Mark pulses (WøMP) as well as segment addresses. The Bit track generates timing for writing or reading one bit at a time. Each zone has its own Word Mark and bit tracks since, to maintain a reasonably constant packing density in all three zones, the frequency must vary. There are a total of six clock tracks on each disk face located between zone 2 and zone 3.

Refer to Figure 2.1-8 for the E.U. logical flow diagram,
The Interlace Control Flip-Flop (ICFF) is the control to determine active and inactive words. ICFF is off until segment coincidence is found. After SCøL to the E.U., ICFF is complemented by each WめMP until the write or read operation is completed. When ICFF is off, the Word Mark track (ASRL) is scanned for an address (inactive word). When ICFF is on, reading or writing is being done during the active word.

The S.U. Register is comprised of seven flip-flops - $1,2,4,8, \mathrm{~A}, \mathrm{~B}$, C. The function during write is to receive a character at a time from

FIGURE 2.1-3
INFORMATION FLOW - ADDRESS SEARCH
the D.F.C.U. and send it serially by bit to the S.U. During read, the bits are stacked up in the $S . U$. Register until the character is complete and then it is sent to the D.F.C.U.

Address Read Level, ASRL, will produce a wdip (Word Mark Pulse) with the following logic:

```
WØMP = ASRS • WØHF/ • BITP
```

ASRS is also the segment address input to the E.U. after WdMP has been recognized and WøHF inhibits WめMP being generated by address information.

WøMP triggers the Space Flip-Flop (SPFF). SPFF signifies the beginning of a word, either active or inactive.

FIELD ENGINEERING TECHNICAL MANUAL

B471, 51	$2.1-5$
	December 1,1964

The address bits read from the Word Mark track are shifted into SUBF. Refer to Figure 2.1-4. Notice that SPFF starts the operation by clearing the S.U. Register and placing a flag bit in SUBF. The flag bit is circulated through the SUnF's and each time it shifts into SUCF, an SCLP is sent to the D.F.C.U. to indicate a complete character has been stacked up.

SCLP $=$ SUCF

FIGURE 2.1-4
ADDRESS DIGIT ACCUMULATION
Reading continues after this transfer so that the next bit will again set or reset SUBF. Since the flag bit must precede the character, SUAF is set.

```
SUBF = ASRS • SPFF/ - ICFF/
SUAF = ICFF/ - SPFF/ | SUCF
```

Three address characters will be read for a normal address. The A and B bits will always be ones to indicate an address digit. (Since the numeric part of the digit is in binary code, the A and B bits must be used to indicate a zero.) Each address character causes a count up of the BA Flip-flops.

BAnF's serve as a counter for the number of address characters read. Address coincidence cannot be made until three characters have been compared. The addresses of the maintenance segments have more than three digits; therefore, BA4F will be set to indicate a maintenance function.

When three characters have been read, Segment Address Read Level (SARL) is sent to the D.F.C.U. to indicate a complete address.

SARL = BA1F - BA2F

If segment coincidence is found, then two SCLP's later, SCøL is sent to the E.U. to initiate action on the next WめMP.

With SCøL true, the next WめMP sets ICFF and ACFF (Action). ACFF will remain set during the Read or Write operation unless there is a change of track. ICFF is complemented with each WeMP for the inactive words interlaced with the active words.

FIGURE 2.1-5
READ/WRITE INFORMATION FLOW

FIELD ENGINEERING TECHNICAL MANUAL

B471.51		$2.1-7$
July 15,1965		

INFORMATION WRITE

Refer to Figure 2.1-5 for the READ/WRITE Information Flow.
The level SWRL from the D.F.C.U. will denote a Write operation. SWRL/ indicates a Read operation. With SWRL, ACFF - ICFF true, WRSD/ will be false to the S.U. for a Write operation.

During a Write operation, the S.U. Register will receive a character at a time from the D.F.C.U. Each bit pulse shifts the character through the Register. SUlFw replaces SUlFr during a Write operation. The output of SUlFw will condition the Bit flip-flop in the S.U. to write a one or a zero on the disk. Refer to the timing diagram, Figure 2.1-6.

FIGURE 2.1-6
WRITE TIMING
With SPFF, ACFF, ICFF and a Write operation, the first character from the D.F.C.U. is strobed into the S.U. Register and a flag bit is set into SUCF by Storage Unit Input Strobe Driver (SUID).

SUID $=$ SPFF • ACFF • ICFF • SWRS
SUnF \leftarrow SWnL's = SUID - BCLP
SUCF = SUID - BCLP
With the S.U. Register loaded, the next BITP will write the state of SUlFw on the disk. The next BCLP will shift the S.U. Register; SUCF to SUBF, SUBF to SUAF, etc.

```
SSUD = SUID/
```

The flag bit is also shifted through the S.U. Register. When it reaches $S U 2 F$, the last bit of the character is in SUlFw being written on the disk. The next BCLP will strobe in the next character from D.F.C.U. and set a new flag bit in SUCF.

```
SUID = SU2F • SU4F/ • SU8F/ • SUAF/ • SUBF/ • SUCF/
```

The Write operation will continue until from 1 to 10 segments have been written when the B200 Processor is connected. The B5500 is capable of writing from 1 to 63 segments with one instruction.

INFORMATION READ

The Read operation is similar to the Address Search operation previously discussed. Instead of ASRL, the Information Read Level, IRAL, which is conditioned by the information track, is strobed into SUBF.

FIGURE 2.1-7
READ TIMING
The Information Read Timing Chart, Figure 2.l-7, starts with the flag bit set into SUBF and the remaining flip-flops being cleared. SUlFr replaces SUIFw for Read. The first BCLP after SPFF has been reset will place the first information bit into SUBF and will shift the S.U. Register.

```
SUBF = IRAS • SPFF/ • WRSD/ • ICFF
```

FIELD ENGINEERING TECHNICAL MANUAL \quad	B471.51	$2.1-9$
December 1,1964		

Since the information was written on the disk with word interlace, it must be read in a similar manner. ICFF is set to read the information word and then reset to allow reading of the address track.

As each bit is read off the disk, the $S . U$. Register is shifted. When the flag bit reaches SUCF, a complete character has been assembled in the S.U. Register and SUCF gates the character to the D.F.C.U.

SRnL = SUnF • SUCF
The Read operation will continue until the number of segments specified have been read.

2.2 DISK FORMAT

Information on the disk is organized in words and segments. One word consists of 8 characters plus a longitudinal parity character. There is a two bit space between words so that a word time is a total of 56 bit pulses. During a write or read operation an active word is followed by an inactive word. Interlace is controlled by ICFF. The words from two segments are interlaced to allow the address track to be scanned during the inactive word. The bit frequency on the disk varies from 1 mc in zone 1 to approximately 1.8 mc in zone 3 .

The segment layout for a track in zone 1 using the 480 option is as follows:

$0+$	+	$2+8$	$3+$	$4+10$	11		3

Each word of segment 0 is followed by a word of segment 6, completely interlacing the two segments. The following diagram depicts this word interlace:

| WORD 59 | WORD 60 | WORD 60 | WORD 1 | WORD 1 | WORD 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEG 6 | SEG O | SEG 6 | SEG 1 | SEG 7 | SEG | 1 |

The address for each segment is written in the word mark track during the word time preceding the first word of that segment. The following diagram illustrates this:

NOTE
The address digits are in REVERSE order.

WøMP				$\begin{array}{ll} 171 \\ 100 \end{array}$		$\begin{aligned} & 717 \\ & 700 \end{aligned}$					
$\begin{gathered} \text { WORD } \\ \text { SEG } \end{gathered}$	59	WORD SEG	60	WORD	60	WORD SEG	1^{1}	WORD	7	WORD	2

It takes two revolutions of the disk to completely read or write one track. On each revolution a dead space is encountered which is a physical reference on the disk. One maintenance segment can be operated on in each revolution. The first revolution may read segments 0 through 5 or MSI, and the second revolution will read segments 6 through 11 or MS2.

Preceding the dead space on each track are the two maintenance segments which are available to the engineer for checking purposes. The maintenance segments are 96 characters long regardless of the S.U. option.

When a read or write operation is in progress, the dead space and maintenance segments must be taken into account. Refer to Figure 2.2-1 for first revolution crossover. The figure reflects the 480 option, though the action is similar for the 240 and 96 options.

FIGURE 2.2-1

FIRST REVOLUTION CROSSOVER

Assume the operation has proceeded through the last word of segment 5 (the 6th segment). The next WØMP signals the start of an inactive word during which the address for Maintenance Segment l will be read. The address consists of four binary 10 's. The 4 character address results in BA4F being set. INFF will be set by the next WØMP to inhibit further action during the maintenance segments and dead space. BA4F is cleared by INXP, which is generated by the absence of BITPs.

$$
I N F F=W \emptyset M P \cdot A C F F \cdot B A 4 F
$$

Notice that ACFF remains set to indicate further action is required on this track. INFF is reset by the first WめMP after dead space so that ICFF will not be set until the second word after the dead space. This second word is the first word of segment 6.

$$
\mathrm{ICFF}=\mathrm{W} \not \mathrm{MP} \cdot \mathrm{INFF} /
$$

SCLP pulses occur each time SUCF is set with the flag bit. The flag bit circulates until cleared by WめMP; therefore SCLP pulses are produced up to the dead space. Sixty four extra bit pulses occur after the last word of MS2 and before the dead space occurs. They are called "pusher" pulses and create SCLPs for the pseudo word time during which is read the address of the first segment after the dead space.

The crossover on the second revolution involves the selection of another information head and different clock tracks. The "A" Register in the DFCU is counted up as each segment is completed. After two revolutions on one track, the address in the "A" Register will activate new head select lines. The new address may be on another disk face or disk, so dead space is used to ensure the logic stays in sync.

FIGURE 2.2-2
SECOND REVOLUTION CROSSOVER
Refer to Figure 2.2-2. After the last word of the last segment on the track the six digit (all binary 12 's) MS2 address is read during the inactive word. The 6 digit address will set BA4F. BA2F to indicate a change of track. INFF is set by WめMP and, with BA4F and BA2F, enables a simulated INXP to be generated. This INXP will reset $A C F F$ and the " A " Register counts up the segment address and a new head is selected. DIXM is fired by INXP. BITPs are inhibited by RIHS/ to prevent extraneous pulses occurring during the clock track change.
RIHS / = RDHM (32 microseconds) • IXHS / • DIXM

With INFF on, no further action can take place until it is reset by INXP. This will occur when the newly selected head reads into dead space. SCØL from the DFCU will permit the first WØMP after dead space to set ACFF and ICFF, and the operation will continue in sequence on the new track.
INDEX - SECTION III
3 FUNCTIONAL DESCRIPTION - ELECTRONIC
3.1 Disk File Electronics and Storage Units Power Sequencing Feb. 1, 1965
3.2 Cabling Ju1y 1, 1964
3.3 Power Supplies Feb. 1, 1965
3.4 Addressing July 1, 1964
3.5 Clocking Feb. 1, 1965
3.6 Ready Circuits July 1, 1964
3.7 Write Lockout July 1, 1964
3.8 Read Signal Automatic Step Gain Control Feb. 1, 1965

Reference Figure 3.1-1.
Power for an Electronics Unit and its associated Storage Modules is supplied from the E.U. power supplies. Disk drive motors in the Storage Modules start in consecutive sequence from the first Module. Successive Modules can only start after the motor in the preceeding Module is up to speed. No DC voltages can be applied to the E.U. gate or the Modules until the disk drive motors in all Modules associated with that E.U. are up to normal running speed. If the Motor Run Switch of a Module is in the off position, that Module's motor will not start and the sequence continues with the next Module in line.

UNDER VOLTAGE FAIL SENSOR

Each E.U. has a voltage fail sensor which monitors the DC output voltages of the power supplies. When the supplies are correct, a ground level is supplied to the power sequencing which allows a normal DC On cycle. If any DC voltage falls below normal, DC power will cycle off as in a normal DC Off cycle. Ref. Fig. 3.1-2 for detailed schematic.

ELECTRONICS UNIT DC LOCKOUT SWITCH

Each E.U. has a lockout switch which disables the DC On sequence. with DC locked out, AC may be applied but no DC voltages will be supplied to the Modules and E.U. gate.

ELECTRONICS LOCAL-REMOTE SWITCH

Each E.U. has a Local-Remote switch. In the Remote position the - 24 V to start the DC On cycle may come from either the associated Disk File Control or the DC On switch on the E.U. control panel. If the switch is in the Local position, the $-24 V$ must come from the DC On switch on the E.U. control panel only.

MODULE MOTOR RUN SWITCH

Each Module has a motor run switch which, if on, enables the pick of its motor power relay when SMIL (Start Motor Input Level) from the preceeding Module is present. If off, it disables the pick of the motor power relay and transfers SMIL to the next Module as SMOL (Start Motor Output Level).

ELECTRONICS UNIT POWER SEQUENCING PANEL

Inputs

```
208VAC Leg A
208VAC Leg B Main line voltage inputs.
AC Neutral
Remote-DC-ON
Remote-DC-OFF
Emergency-Power-Off
Pwr-Cont-Comm
AC-ON-IND
AC-ON
AC-OFF
DC-ON-IND
DC-ON
DC-OFF
LOC-REM-DC-ON
DC-Sense-Control
SEQ-LOC-OUT
Power Supply Voltages
(Rack F)
Power Supply Voltages
(Rack G)
-12V, +12V, -4.5V, GND
Power Supply Voltages
(Rack H)
+20V, -20V, GND
SMOL
-24D
Remote power control lines from associated Disk File Control cabinet.
Pwr-Cont-Comm
AC-ON-IND
AC-ON
DC-ON-IND
DC-ON
DC-OFF
LOC-REM-DC-ON
DC-Sense-Control
SEQ-LOC-OUT
Power Supply Voltages (Rack F)
\(+100 \mathrm{~V},-100 \mathrm{~V},-120 \mathrm{~V},-24 \mathrm{~V}\), GND
Power Supply Voltages
(Rack G)
\(-12 \mathrm{~V},+12 \mathrm{~V},-4.5 \mathrm{~V}\), GND
Power Supply Voltages
(Rack H)
\(+20 \mathrm{~V},-20 \mathrm{~V}, \mathrm{GND}\)
SMOL
-24D
Ground level from last storage module in a file to E.U. power sequencing panel.
Return from Air Compressor Pressure Switch.
```


Outputs

Electronics Gate and Modules:

$$
\begin{aligned}
& -4.5 \mathrm{~V} \\
& -20 \mathrm{~V} \\
& +20 \mathrm{~V} \\
& +12 \mathrm{~V} \\
& -12 \mathrm{~V} \\
& -24 \mathrm{D}
\end{aligned}
$$

Modules:
208VAC
Legs A and B to disk drive motors and heat exchange fans (2 per module), garage fans (3 per module) and Running Time Meter.

115 VAC

SMIL

208VAC Leg A for convenience outlets.
Ground level to Motor Run Switch in first module.

Electronics Unit Maintenance Panel:

+100 V	
-100 V	
-120 V	
208 VAC Legs A and B	
115 VAC (Leg A 208VAC)	Running Time Meter. $115 \mathrm{VAC}(L e g ~ B ~ 208 V A C)$
E.U. fans (2 per unit).	

All voltages metered at E.U. panel.

POWER ON SEQUENCE
Conditions:
70 Amp. Circuit Breaker On.
E.U. Local-Remote switch in Local or Remote position.
E.U. DC Lockout switch off.

Motor Run Switches in all Modules in Run position.
AC-ON-Cycle

AC Circuit Breaker "ON" (15 Amp.)
-24V Power Supply
AC Circuit Breaker "ON"
(50 Amp.)
AC-On-Switch "ON"
EFJO contacts 8-10
contacts 7-9

208VAC Legs A and B to $-24 V$ power supply in E.U. and air compressor motor. Leg A to contact 8 ECJO, convenience outlets in E.U. and modules. Leg B to contact 10 ECJO.

Supplies relay control voltage to E.U. and modules.

208VAC Legs A and B to motor power relay contacts in all Modules.

Pich EFJO (ground pin 1 coil circuit). Hold EFJO (ground pin 1 coil circuit through NC contacts 7-8 EFKO and NC AC-Off-Switch).

SMIL to first Module (ground to Module Motor Run Switch. Picks Motor Power Relay and starts disk drive motor).

Pick ECJO (ground pin 1 coil circuit).

ECJO contacts 5-6
contacts 3-4
contacts 7-8

Enable pick and hold EFJl circuit. (Close line from DC-On and Local-Remote switch to pin 1 EFJl coil and contact 10 EFJl through NC contacts 6-8 EFKl.)

AC-On-Indicator lit (-24V to indicator).
208VAC Legs A and B to DC Power Supplies, Running Time Meter, and E.U. and module garage fans.

When all module disk drive motors are up to speed, SMOL from last module in sequence supplies ground level to contact 7 EFJl and enables pick of ECMO.

DC-ON-Cycle

DC-ON-Switch "ON" or Remote DC "ON"

EFJl contacts 14-16
contacts 7-9
contacts 8-10
contacts 13-15

EFKl contacts 7-9
contacts 6-8

ECMO contacts 17-18
contacts 15-16

Pick EFJl (-24V to pin 1 coil circuit through contacts 5-6 ECJO and 6-8 EFKl). Ground to pin 4 coil EFJl supplied from Under-Voltage Fail Sensor (ground when Power Supply voltages normal) through NC DC-Off-Switch, NC DC-Lockout-Switch, NC AC-Off-Switch, NC contacts 3-4 EFKO, and NC contacts 6-8 EFJ2.

Enable pick EDMO and EDJl. (Ground pin 1 coil circuit on both relays.)

Pick ECMO (ground pin 2 coil circuit with SMOL from last module when module motors up to speed).

Hold EFJl (-24V to pin 1 coil circuit).
Pick EFKl (-24 V to pin 1 coil circuit through contacts 3-4 ECJO). Ground to pin 4 EFKl coil circuit supplied through NC contacts 5-7 EFJ2 and NC DC-Off-Switch.

Hold EFKl (-24 V to pin 1 coil circuit through contacts 3-4 ECJO).

Open -24V line from DC-On-Switch to pin 1 coil circuit EFJl.

Pick EDMO (-24V to pin 2 coil circuit).
-4.5 V to E.U. gate and modules.

8 FIELD ENGINEERING TECHNICAL MANUAL \quad| B471.51 | $3.1-5$ |
| :---: | :---: |

contacts 13-14
11-12
contacts 7-8
9-10
contacts 5-6
contacts 3-4

EDMO contacts 9-10
contacts 7-8
contacts 5-6
contacts 3-4
EDJI contacts 13-14
contacts 11-12
contacts 7-8
contacts 5-6
contacts 3-4
-20 V to E.U. gate and Modules.
+20 V to E.U. gate and Modules.

Hold ECJO (ground pin 1 coil circuit).
-24D to E.U. gate and Modules when Air Compressor Pressure Switch is closed.

Hold ECMO (ground pin 2 coil circuit).
Pick EDJl (-24V to pin 2 coil circuit).
+12 V to E.U. gate and Modules.
-12 V to E.U. gate and Modules.
DC-On-Indicator lit (-24V to indicator). Hold ECMO (ground pin 2 coil circuit).
-120V to Maintenance Panel.
-100V to Maintenance Panel.
+100 V to Maintenance Panel.

Relays EFJO, ECJO, EFJI, EFK1, ECMO and EDJI are energized, EFKO and EFJ2 are de-energized. Module motors all running and power supply voltages normal.

DC-OFF-Cycle (Local)

Depress DC-Off-Switch

Open EFJI contacts 14-16
contacts 7-9

Drop EFJl (remove ground from pin 4 coil circuit through NC contacts 3-4 EFKO and 8-6 EFJ2) .

Drop EFKl (remove ground from pin 4 coil circuit through NC contacts 5-7 EFJ2).

Drop EDJI (remove ground from pin 1 coil circuit).

Drop EDMO (remove ground from pin 1 coil circuit).

Remove SMOL ground to pin 2 coil circuit ECMO. ECMO will hold until EDJI and EDM0 drop.
contacts 8-10 Open hold EFJl line (remove -24V from pin 1 coil circuit).

Open pick EFKl line (-24V to pin 1 EFKl coil circuit).

Open hold EFKl line (remove -24V pin 1 coil circuit).

Enable pick EFJl line.
DC-On-Indicator off (remove -24V from indicator).
contacts 11-12
contacts 7-8
contacts 5-6
contacts 3-4
Open one hold ECMO line (remove ground from pin 2 coil circuit).

Remove -120V from Maintenance Panel.
Remove $-100 V$ from Maintenance Panel.
Remove $+100 V$ from Maintenance Panel.

Drop ECMO (remove ground from pin 2 coil circuit). Last hold ECMO in DC-Off-Cycle.

Open pick EDJI line (remove -24V from pin 2 coil circuit).

Remove +12 V from E.U. gate and Modules.
Remove -12V from E.U. gate and Modules.
Open pick EDMO line (remove -24V from pin 2 coil circuit).

Remove -4.5V from E.U. gate and Modules.

Remove -20V from E.U. gate and Modules.

Remove +20 V from E.U. gate and Modules.

Open hold ECJO line (remove ground from pin 1 coil circuit).

Remove -24D from E.U. gate, Air Pressure Switch and Modules.

AC-OFF-Cycle (Local)

Depress AC-Off-Switch

Open EFJO contacts 8-10
contacts 7-9

Open ECJO contacts 5-6
contacts 3-4
contacts 7-8
9-10

DC-OFF-Cycle (Remote)
Remote DC-Off pulse from D.F.C.U.

Open EFJ2 contacts 8-10
contacts 5-7

Drop EFJO (open hold EFJO line and remove ground from pin 1 coil circuit, through NC contacts 7-8 EFKO). Start normal DC-Off-Cycle by dropping EFJI (AC-Off-Switch and DC-Off-Switch in series). See "Drop EFJl" in DC-OffCycle (Local).

Open hold EFJO line (remove ground from pin 1 coil circuit).

Open pick ECJO. Drop ECJO only when ECMO (last relay to drop in DC-OffCycle) removes ground from pin 1 coil circuit ECJO; Module motors will stop due to loss of ground level (SMIL) to motor power relays.

Open pick EFJl line from DC-On-Switch to pin 1 coil circuit EFJl.

AC-On-Indicator off (remove -24V to indicator).

Open hold EFKl line (remove -24V from contact 9 EFK1). Open pick EFK1 line (remove -24V from contact 15 EFJl).

DC power supplies off (remove 208VAC Legs A and B to power supply racks F, G and H).

Running Time Meter and E.U. fans off. (Remove 208VAC Legs A and B to RTM and Leg B to fans.)

Pick EFJ2 (-24V pulse from Processor to pin 4 coil circuit).

Drop EFJI (remove ground from pin 4 coil circuit).

Drop EFKl (remove ground from pin 4 coil circuit).

Dropping EFJl and EFKl starts normal DC-Off-Cycle. Refer to "Open EFJI" in DC-Off-Cycle (Local) for further details. Note that the AC On condition is not affected and the Module motors continue to run.

Emergency-Power-Off-Cycle

Emergency-Power-Off pulse
from Processor
Open EFKO contacts 3-4

Pick EFKO (-24V pulse from Processor to pin 1 coil circuit).

Drop EFJI (remove ground from pin 1 coil circuit through contacts 8-6
EFJ2, NC AC-OFF-Switch, NC DC-OFF-Switch and DC Lockout-Switch from the Under Voltage Fail Sensor).

Drop EFJO (open hold EFJO line from NC AC-OFF-Switch to contact 10 EFJO).

Dropping EFJl and EFJO starts AC and DC Off-Cycles. Refer to "Open EFJl" in DC-Off-Cycle (Local) and "Open EFJO" in AC-Off-Cycle (Local) for further details.

3.2 CABLING

All the lines in the logic and power cables associated with an Electronics Unit are shown on pin cross-reference tables. The following is a list of the cables with table references. Refer to Figure 3.2-1 for sub-system cabling diagram.

LOGIC CABLES INTER-UNIT
Table 3.2-1.

ACBON7-----GAK4	Information center tap select cables
ACBON2----GAL4	from E.U. logic gate to center tap
ACBOA7----GAJ4	distribution board in Module 1.

Table 3.2-2.

Figure 3.2-2.
AABON2-----AABOA2 (Module 1) E.U. logic gate to first Module.

LOGIC CABLES INTERNAL
Table 3.2-3.
AAAOA2-----Maintenance Panel
E.U. logic gate to Maintenance Panel. Switch and indicator levels.

Table 3.2-4.

AAAOA7-----Write Lockout Panel
E.U. logic gate to Write Lockout Panel. Switch levels.

POWER CABLES INTER-UNIT
Table 3.2-5.
Rack E ____Motor power relay AC power cables from E.U. sequence Panel A in Modules 1 through 5

Table 3.2-6.
Rack E ____AABON2 (Modules DC power cables from E.U. sequence panel Panel $B^{----1} 1$ through 5) to each Module.

July 1, 1964

POWER CABLES INTERNAL

Table 3.2-7.
AAAON2----Maintenance Panel Maintenance Panel power cable.
Table 3.2-8.

Rack E -----AAC0A2
Panel B
Table 3.2-9.
Rack E
Panel B
Table 3.2-10.
Rack E
ACA0A2
Panel B

Power control cable.

DC - Panels A and B. DC - Panels C and D.

FIELD ENGINEERING TECHNICAL MANUAL
B471. 51
3.2-7

July 1, 1964

TABLE 3.2-1

* E.U.	* MOD.		MOD.	*E.U.	${ }^{*}{ }^{\text {M }}$ (${ }^{\text {a }}$		MOD.	${ }^{*}$ E.U.	***		MOD.
ACB0A7	GAJ5		GAJ4	ACBON2	GAL5	LEVEL	GAL4	ACB0N7	GAK5	LEVEL	GAK4
A5	19	HSDL-90	1	NO	19	HSDL-08	1	19	N5	HSDL-13	1
B5	18	HSDL-88	2	PO	18	HSDL-06	2	18	P5	HSDL-11	2
C5	17	HSDL-74	3	RO	17	HSDL-12	3	17	R5	HSDL-33	3
D5	16	HSDL-98	4	S0	16	HSDL-00	4	16	S5	HSDL-05	4
E5	15	HSDL-96	5	T0	15	HSDL-26	5	15	T5	HSDL-03	5
F5	14	HSDL-89	6	U0	14	HSDL-16	6	14	U5	HSDL-29	6
H5	13	HSDL-67	7	vo	13	HSDL-32	7	13	V5	HSDL-45	7
J 5	12	HSDL-69	8	wo	12	HSDL-34	8	12	W5	HSDL-47	8
K5	11	HSDL-85	9	X0	11	HSDL-20	9	11	$\times 5$	HSDL-25	9
A6	10	HSDL-59	10	N1	10	HSDL-40	10	10	N6	HSDL-60	10
B6	9	HSDL-61	11	P1	9	HSDL-42	11	9	P6	HSDL-54	11
C6	8	HSDL-81	12	R1	8	HSDL-24	12	8	R6	HSDL-52	12
D6	7	HSDL-51	13	S1	7	HSDL-48	13	7	S6	HSDL-64	13
E6	6	HSDL-53	14	T1	6	HSDL-23	14	6	T6	HSDL-78	14
F6	5	HSDL-77	15	U1	5	HSDL-39	15	5	U6	HSDL-80	15
H6	4	HSDL-99	16	V1	4	HSDL-17	16	4	V6	HSDL-68	16
J6	3	HSDL-97	17	W1	3	HSDL-15	17	3	W6	HSDL-86	17
A7	2	GND-03	18	N2	2	GND-01	18	2	N7	GND-02	18
B7	1	GND-03	19	P2	1	GND-01	19	1	P7	GND-02	19
18	37	HSDL-72	20	N3	37	HSDL-10	20	37	N8	HSDL-35	20
B8	36	HSDL-94	21	P3	36	HSDL-04	21	36	P8	HSDL-09	21
C8	35	HSDL-92	22	R3	35	HSDL-02	22	35	R8	HSDL-07	22
D8	34	HSDL-91	23	S3	34	HSDL-14	23	34	S8	HSDL-31	23
E8	33	HSDL-71	24	T3	33	HSDL-28	24	33	T8	HSDL-01	24
F8	32	HSDL-73	25	U3	32	HSDL-30	25	32	U8	HSDL-43	25
H8	31	HSDL-87	26	V3	31	HSDL-18	26	31	V8	HSDL-27	26
J 8	30	HSDL-63	27	W3	30	HSDL-36	27	30	W8	HSDL-49	27
K8	29	HSDL-65	28	X3	29	HSDL-38	28	29	$\mathrm{X8}$	HSDL-58	28
A9	28	HSDL-83	29	N4	28	HSDL-22	29	28	N9	HSDL-56	29
B9	27	HSDL-55	30	P4	27	HSDL-44	30	27	P9	HSDL-62	30
C9	26	HSDL-57	31	R4	26	HSDL-46	31	26	R9	HSDL-50	31
D9	25	HSDL-79	32	S4	25	HSDL-41	32	25	S9	HSDL-76	32
E9	24	HSDL-95	33	T4	24	HSDL-21	33	24	T9	HSDL-66	33
F9	23	HSDL-93	34	U4	23	HSDL-19	34	23	U9	HSDL-82	34
J9	22	HSDL-75	35	W4	22	HSDL-37	35	22	W9	HSDL-84	35
L9	21	SPARE-2	36	X4	21	SPARE-1	36	21	X9	HSDL-70	36
L7	20	GND-03	37	X 2	20	GND-01	37	20	X7	GND-02	37

*3 Center Tap Cables from E.U. to lst Module.
ACBOA7 7
ACBUN2- Quad Connectors in E.U. Logic Gate ACBON7
** 3 Center Tap Cables from a Module to the next Module.
GAJ 5]
GAL5- Connectors - Rack G Storage Module.
GAK5

TABLE 3.2-2

ELECTRONICS UNIT			LEVEL	B450		EXCHARGE 1 or 2	
AABOA2 E.U. 1 thru 10	$\begin{array}{r} \text { WINCH } \\ \text { E.U. } 1 \end{array}$	STER hru 10		$\begin{gathered} \text { E.U. } 1 \\ \text { PANE } \\ \hline \text { E.U. } 6 \\ \text { PANE } \end{gathered}$	thru 5 L K thru 10 N	ACBOA2 AEBOA2 AECOA2 AEDOA2 AECON2 AEDON2	$\begin{array}{cccc} 1 & \text { axly } \\ 1 & \& & 6 \\ 2 & \& & 7 \\ 4 & \& & 9 \\ 3 & \& & 8 \\ 5 & \& & 10 \\ \hline \end{array}$
PIN NO.	S IGNAL	GND PIN		SIGNAL	GND PIN	A2	N2
E4	104	111	REM-POW-ON	104	111	E4	T4
H4.	115	121	REM-PWR-OFF	115	121	H4	V4
K3	82	87	EMERG-PWR-OFF	82	87	K3	X3
B4	93	100	PWR-CONT-COMM	93	100	B4	P4
C3	65	60	DFSL/	65	60	C3	R3
H3	75	71	D01L/	75	71	H3	V3
13	84	79	D02L/	84	79	L3	Y3
C4	95	90	D04L/	95	90	$\mathrm{C4}$	R4
F4	107	102	D08L/	107	102	F4	U4
K4	117	113	D16L/	117	113	K4	X4
D0	7	2	201L/	7	2	D0	So
J0	16	12	202L/	16	12	J0	W0
B1	25	21	SW1L	25	21	B1	P1
Fl	33	29	SW2L	33	29	F1	U1
L0	23	27	SW4L	23	27	L 0	YO
D1	31	35	SW8L	31	35	U1	S1
J2	57	53	SWAL	57	53	J2	W2
D3	66	62	SWBL	66	62	D3	S3
J3	76	72	SWRL/	76	72	J3	W3
14	85	80	SCøL/	85	80	A4	N3
C0	5	1	T01L/	5	1	CO	RO
H0	15	11	T02L/	15	11	H0	Vo
11	24	20	T04L/	24	20	Al	N1
E1	32	28	T08L	32	28	E1	T1
K1	40	36	T10L/	40	36	K1	X1
D2	48	44	T20L/	48	44	D2	S2
H2	56	52	T40L/	56	52	H2	V2
D4	97	92	INXP	97	92	D4	S4
J1	39	43	WDMP	39	43	J 1	W1
L4	120	114	SWLL	120	114	L4	Y4
A0	3	8	SR1L	3	8	AO	NO
E0	13	17	SR2L	13	17	E0	TO
K0	22	26	SR4L	22	26	K0	X0
Cl	30	34	SR8L	30	34	Cl	R1
H1	38	42	SRAL	38	42	H1	V1
L1	46	50	SRBL	46	50	L1	Y1
E2	54	58	SCLP	54	58	E2	T2
A3	63	67	SURL/	63	67	13	N3
E3	73	77	SARL/	73	77	E3	T3
B0	4	10	CS1L/	4	10	B0	P0
F0	14	18	CS2L/	14	18	F0	U0

TABLE 3．2－3

AAAOA2	LEVEL	MA INTENANCE PANEL	
PIN		LOCAT ION	P IN
EO	SR5L－IND／	DAKO（ IND）	2
DO	SR4L－IND／	DAK1（IND）	2
CO	SR3L－IND／	DAK2（IND）	2
BO	SR2L－IND／	DAK3（ IND）	2
A0	SR1L－IND／	DAK4（ IND）	2
E2	SCOS	DDJO（JT）	1
L1	INXP－01	DDJ2（JT）	1
F2	ACFF	DDK0（JT）	1
C2	WめUP－01	DDK2（JT）	1
H2	ICFF－2A／	DDLO（JT）	1
D2	BITP－D	DDL2（JT）	1
E1	SPFF－IND	DCJOA2（DRI）	7
K1	BA2F－IND	DCLOA2（DRI）	7
J1	BAIF－IND	DCM0A2（DRI）	7
D1	INFF－IND	DCJlA2（DRI）	7
F1	ACFF－MND	DCLIA2（DRI）	7
H1	ICFF－IND	DCM1A2（DRI）	7
F4	SPFF－MC	DCJOA2（DRI）	2
L4	BA2F－MC	DCLOA2（DRI）	2
K4	BAIF－MC	DCMOA2（DRI）	2
E4	INFF－MC	DCJ1A2（DRI）	2
H4	ACFF－MC	DCLIA2（DRI）	2
J4	ICFF－MC	DCM1A2（DRI）	2
C1	SUCF－IND	DCN2A2（DRI）	7
B1	SUlFW－IND	DCP2A2（DRI）	7
FO	SUBF－IND	DCJ3A2（DRI）	7
H0	SUAF－IND	DCK3A2（DRI）	7
J0	SU8F－IND	DCL3A2（DRI）	7
K0	SU4F－IND	DCM3A2（DRI）	7
L0	SU2F－IND	DCN3A2（DRI）	7
A1	SUIFR－IND	DCP3A2（DRI）	7
D4	SUCF－MC	DCN2A2（URI）	2
C4	SU1FW－MC	DCP2A2（DRI）	2
H3	SUBF－MC	DCJ3A2（DRI）	2
J3	SUAF－MC	DCK3A2（DRI）	2
K3	SU8F－MC	DCL3A2（DRI）	2
L3	SU4F－MC	DCM3A2（DRI）	2
A4	SU2F－MC	DCN3A2（DRI）	2
B4	SUlFR－MC	DCP3A2（DRI）	2

TABLE 3．2－4

AAAOA7	LEVEL	LOCKOUT PANEL RACK B			
PIN		LOC	UN IT	DISK	PIN
A5	LoSW－01／	BAJO	1	1	3
B5	LDSW－02／	BAJ 1	1	2	
C5	LDSW－C3／	BAJ 2	1	3	
D5	LøSW－04／	BAJ 3	1	4	
E5	LOSW－05／	BBJU	2	1	
F5	LDSW－06／	BBJ 1	2	2	
H5	LめSW－07／	BBJ 2	2	3	
J 5	LoSW－03／	BBJ 3	2	4	
K5	LøSW－09／	BCJO	3	1	
L5	LOSW－10／	BCJ 1	3	2	
A6	LDSW－11／	BCJ 2	3	3	
B6	LøSN－12＇	BCJ3	3	4	
C6		BUJU	4	1	
15	LDS－14／	BUJ 1	4	2	
L． 6	LobS $17-15 /$	BI）J 2	4	3	
F6	LDSW－16／	BUJ3	4	4	
16	LDSW－17／	Bi．ju	5	1	
J6	LøSW－18／	BEJ 1	5	2	
k5	LめSW－19\％	BEJ 2	5	3	
L，	LDSW－20／	BEJ3	5	4	
c7	MLDS／	BFJO	MASTER LOCKOUT		3
U7	SWRL－IND／	CAJ 3	INI）ICATOR		2

TABLE 3．2－5

E．U．	VOLTAGE	MODULE
RACK E PANEL A		CAJO
EAR0	$-24 V$	A
EAMO	$110 V A C-C O N V$	B
EAJ0	$208 V A C-A$	D
EAK0	208VAC－B	E
EANO	NEUTRAL	F
ECLO	SMIL	G
ECK0	SMøL	H

TABLE 3.2-7

TABLE 3.2-6

LLLCTRONICS UN IT SELiUENCE PANEL.	VOLTAGE.	MOUULE RACK A
RACK F: PANEL B		AABUN2
EBNO	$+12 \mathrm{~V}-\mathrm{AB}$	NO
LBRO	GND - AB	U0
	GND - CD	vo
	GND - E	W0
	GND - F	XO
	GND - G	Y0
EBJ0	-4.5VLC - AB	N3
	-4.5VUC - CD	P3
	-4.5VIC - E	R3
	-4.5VDC - F	S3
	-4.5VDC - G	T3
LBk0	-20VDC - AB	U3
	-2UVDC - CD	V3
: $: B P$	$-12 \mathrm{VDC}-\mathrm{AB}$	N4
	-12VDC - CL	P4
	-12VDC - E	R4
	-12vDC - F	S4
	- 12VDC - G	T4
E.BLC	$+20 \mathrm{VDC}-\mathrm{AB}$	U4
	+2OVDC - CD	V4
	+20VDC - E	W4
	r: ${ }^{\text {c/VLC }}$ - F	X4
	+2UVLC - G	Y4

AAAON2	LEVEL	MA INTENANCE PANEL	
PIN		LOCATION	PIN
S3	CLOCK -SWITCH	DBK2	1
X1	CLOCK-SW ITCH	DBK2	6
T3	WORD-SP	DBLO	A5,A2
V1	BIT-SP	DBL2	A5,A2
J2	LOCAL-REMOTE	DBK0	5
Y1	CLOCK-SW ITCH	DBK2	2
R2	CLOCK-SWITCH	DBK2	5
U3	WORD-SP	DBLO	5
V3	, WORD-SP	DBLO	2
U1	BIT-SP	DBL2	B5
T1	BIT-8P	DBL2	B2
R0	-4.5VDC-A-P	DBKO (LOC-REM)	6
T0	-24VDC-A-P	CAJl (IND)	2
		CAJ2 (IND)	2
		CAJ3 (IND)	2
So	+20VDC-A-P	DCN2A2 (DRI)	3
		DCP2A2 (DRI)	3
		DCJ3A2 (DRI)	3
		DCK3A2 (DRI)	3
		DCL3A2 (DRI)	3
		DCM3A2 (DRI)	3
		DCa3A2 (DRI)	3
		DCP3A2 (DRI)	3
		DCJOA2 (DRI)	3
		DCLOA2 (DRI)	3
		DCMOA2 (DRI)	3
		DCJ1A2 (DRI)	3
		DCLIA2 (DRI)	3
		DCMLA2 (DRI)	3
N1	-1.2VDC-A-p	*SEE NOTE	1
J0	+100VDC-A-P	*SEE NOTE	8
		DBMO (BIT-RES)	12
		DCJ2 (CAP)	K
V0	-100VDC-A-P	*SEE NOTE	5
		DBM0 (BIT-RES)	A5
		DBM2 (CLEAR)	A5
wo	-120VDC-A-P	DAKO (IND)	1
		DAK1 (IND)	1
		DAK2 (ND)	1
		DAK3 (IND)	1
		DAK4 (IND)	1
		DDJO (IND)	1
		DDJ 2 (IND)	1
		DDK0 (IND)	1
		DDK2 (IND)	1
		DDLO (IND)	1
		DDL2 (IND)	1
		*SLE NOTE	4

[^0]FIELD ENGINEERING TECHNICAL MANUAL

TABLE 3.2-8

AACUAL	Voltage level	RACK E	
PIN		LOC	PIN
AU	+12VDC-A-J	EBNO	4
A1	-24VDC-A-J		
B1	-24VDC-B-J	EbMO	4
12	+100VAC-A-J	EEJO	2
F2	TRSL		5
J2	-24VDC SENSE		13
B3	REM-POW-ON		14
C3	REM-DC-OFF		16
L3	EMERG-PWR-OFF		17
E3	PWR-CONT-COMM		18
F3	-100VDC-A-J		3
A4	-120VDC-A-J		4
E4	DC-SENSE-CONT		15
F4	+20VAC SENSE		10
H4	-2UVDC SENSE		11
J4	+12vic is.aisa		8
K4	-12VDC SENSE		9
L4	-4.5VDC SENSE		12

TABLE 3.2-10

ACAOA2	VOLTAGE LEVEL	RACK E	
PIN		LOC	PIN
A3	-4.5V ACDA-L	EBJU	4
B2	+12 V ACDA-Y	EBNU	4
C2	+12 V ACDB-L		
D2	+12 V ACDB-Y		
A1	-12V ACDA-L	EBPO	4
B1	-12V ACDA-Y		
Cl	-12V ACDB-L		
U1	-12V ACDB-Y		
A 4	+20 V ACDA-L	EBLO	4
B4	$+2 \cup V$ ACDA-Y		
C4	$+2 \cup V$ ACDB-L		
D4	$+2 \cup \mathrm{~V}$ ACDB-Y		

TABLE 3.2-9

AACUN 2	VOLTAGE LFVEL	RACK E	
P IN		LOC	PIN
NU	-20VDC-A-J	r:BKU	4
N1	-12V AABA-L	EbPO	4
P1	-12V AABA-Y		
R1	-12V AABB-L		
Sl	-12V AABB-Y		
V1	-12V AABC-L		
W1	-12V AABC-Y		
N3	-4.5V AABA-L	EBJU	4
P3	-4.5V AABA-Y		
R3	-4.5V AABB-L		
S3	-4.5V AABB-Y		
V3	-4.5V AABC-L		
W3	-4.5V AABD-L		
N4	$+2 \cup \mathrm{~V}$ AABA-L	EBLO	4
P4	+20V AABA-Y		
R4	+20V AABB-L		
S4	+20 V AABB-Y		
V4	+20V AABC-L		
W4	+20V AABC-Y		

Printed in U. S.A.

3.3 POWER SUPPLIES

CONSTANT VOLTAGE TRANSFORMERS (C.V. TR.)
The C.V. Tr. is a ferroresonant type operating on a nominal line voltage of 208 VAC at $60 \mathrm{C} . \mathrm{P} . \mathrm{S} . \pm 1 \%$. Line voltage regulation, measured at the secondary winding at full load, is $\pm 1.25 \%$ for 90% to 110% line voltage range and $\pm 3 \%$ over the range $\overline{o f} 70 \%$ to 90%.

Line Voltage	228.8VAC	$\begin{array}{r} 110 \% \\ 100 \% \\ 90 \% \end{array}$	$\pm 1.25 \%$	
	208VAC			
	187.2VAC			
	145.6VAC	70\%		3\%

Load regulation measured at the $D C$ output of the rectifier filter circuit used should not exceed 5%.
C.V. TR. TUNING CAPACITORS

Tuning capacitors for the C.V. Trs. are rated at 660V. Each C.V. Tr. is designed in such a manner that the peak voltage measured across the capacitor does not exceed 590 V .
+20V, -20V P.S. - RACK H
Reference Figure 3.3-1.
$+20 \mathrm{~V}$
C.V. Tr. Tl and tuning capacitor C4.

Full wave rectifier: CR1 and CR3.
Filter network: C1, C2, L2 and a 100 ohm resistor. Output: $+20+1 V$. Ripple: . O1V at full load.
-20v
C.V. Tr. Tl and tuning capacitor C4.

Full wave rectifier: CR2 and CR4.
Filter network: C3, C5, Ll and a 200 ohm resistor. Output: $-20 \mathrm{~V}+\mathrm{lV}$.
Ripple: .01V at full load.

B471.51	$3.3-3$
February 1,1965	

$+100 \mathrm{~V},-100 \mathrm{~V},-120 \mathrm{~V}$ AND -24 V P.S.
Reference Figure 3.3-2.
-120V
C.V. Tr. T2 and tuning capacitor C5. Full wave rectifier: CR2 and CR4.
Filter network: 12 K ohm resistor and a 10 micro-farad capacitor. Output: $-120 \mathrm{~V} \pm 6 \mathrm{~V}$.
$+100 \mathrm{~V}$
C.V. Tr. T2 and tuning capacitor C5. Full wave rectifier: CR5 and CR6.
Filter network: C 2 and a 2.5 K ohm resistor. Output: $+100 \mathrm{~V} \pm 5 \mathrm{~V}$.
-100V
C.V. Tr. T2 and tuning capacitor C5.

Full wave rectifier: CR7 and CR8.
Filter network: C 3 and a 2.5 K ohm resistor.
Output: $-100 \mathrm{~V} \pm 5 \mathrm{~V}$.
-24V
C.V. Tr. TI and tuning capacitor C4. Full wave rectifier: $C R 1$ and CR3. Filter network: Cl and Rl (25 ohm). Output: $-24 \mathrm{~V} \pm 1.2 \mathrm{~V}$.
$+12 \mathrm{~V},-12 \mathrm{~V}$ AND -4.5 V P.S.
Reference Figure 3.3-3.
$+12 \mathrm{~V}$
C.V. Tr. Tl and tuning capacitor C8.

Full wave rectifier: CR2 and CR4.
Filter network: $C 7$ and a 240 ohm resistor.
Output: $+12 \mathrm{~V} \pm .5 \mathrm{~V}$.
-12V
C.V. Tr. Tl and tuning capacitor C8. Full wave rectifier: CR1 and CR3. Filter network: R10, C3, C4, C5 and C6. Output: $-12 \mathrm{~V} \pm .5 \mathrm{~V}$.

The -4.5V regulator is a shunt type consisting of a 5.3 V Zener (IN705A) ; power diode IN3208; transistors 2N1557, 2N1172, 2N444A and 2N1193; and resistors and capacitors associated with the circuit.

The $2 N 444 \mathrm{~A}$ acts as a sensing transistor to fluctuations in the -12 V felt at its base through the action of the $2 \mathrm{Nll93}$, and the -4.5 tied directly to its emitter. A fluctuation in either voltage is amplified through the 2 N1172 which in turn affects the conduction of the 2N1557 and compensates the -4.5 V output. The 1 N 705 A is used to keep the base of 2 N1193 at a constant voltage.

Output: $-4.5 \mathrm{~V} \pm .2 \mathrm{~V}$.

3.4 ADDRESSING

Address decoding accomplishes the following:

1. Selects one of five Modules.
2. Selects one of four disks in a Module.
3. Selects the disk face.
4. Selects one of three zones on a disk face.
5. Selects one of fifty information heads in a zone.

Reference Figure 3.4-1.

MODULE SELECTION

The Module is selected by Disk Select Levels D04L/, D08L/ and D16L/. A binary configuration of zero selects Module 1 , one selects Module 2four selects Module 5 .

DISK SELECTION

The Disk is selected by Disk Levels D01L/ and D02L/. A binary configuration of zero selects Disk l.....three selects Disk 4.

DISK FACE SELECTION

The disk face is selected by DFSL/ and DFSS (DFSL switched). The state of DFSL/ is determined by address decoding in the D.F.C.U.

ZONE SELECTION

The Zone is selected by the levels ZOlL/ and Z02L. A binary configuration of zero selects Zone 1 , one selects Zone 2 and two selects Zone 3.

INFORMATION HEAD SELECTION

The information head is selected by the combination of DFSL/ and the track levels. These levels make up the Head Select Units and Tens Levels which are gated into the Head Select Drivers to produce HSDD 00 $\ddagger 99$.

FIGURE 3.4-1 ADDRESS DECODING

3.5 CLOCKING

There are two basic clock pulses used in the E,U. which are received from the module being addressed. Each face of each disk has two clock tracks for each of the three zones on that face. One track output is used to generate BITL (Bit Level). The other track will generate a pulse at Word Mark time and also address information. Word Mark Pulses (WøMPs) and address information are transferred to the E.U. on the ASRL lines (Address Read Level). From BITL and ASRL the E.U. will generate the following clock pulses: INXP, WøMP, BITP, BCLP, BUDP and DBIT.

INXP

Index Pulse is generated once per revolution of the disk. It is the basic reference point of each disk face. INXP is generated in the E.U. when the beginning of the dead space is determined by the absence of BCLPs. The absence of bit pulses will permit IXHM (Index Holdover Multi) to time out after 3 microseconds, generating two pulses by use of a multi and a pulse compressor. Refer to Figure 3.5-1. INXP-01, 400 nanoseconds and INXP-02, 150 nanoseconds. INXP-01 is used to enable a driver to send INXP to the D.F.C.U.

FIGURE 3.5-1
INXP CIRCUIT

WøMP
A Word Mark Pulse is generated to indicate the beginning of a word. Refer to Figure 3.5-2. A WøMP is generated in Local with the Clock Switch off by depressing the WøMP single pulse button. The normal enabling logic will come from the ASRL lines. WøHF/ is the controlling logic which inhibits the generation of WめMPs from address information. The pulse width of WøMP is 150 nanoseconds.

BITP

Refer to Figure 3.5-2. Bit Pulse is a 150 nanosecond pulse and is generated in the E.U. by BITL from a selected S.U. The delay between BITL and BITP is necessary to prevent a marginal strobing condition during active read time in zone three.

The pulse rate of BITP will be determined by the selected zone of the addressed S.U. The bit frequency for zone one is 1.043 MC ; zone two, 1.380 MC ; and zone three, 1.884 MC .

BCLP
Bit Clock Pulse is a 150 nanoseconds clock pulse occurring at the bit time or delayed bit time depending on gating. Refer to Figure 3.5-3. The gating for BCLP will enable an output for Read, Write, Inactive Word and Word Mark Times.

FIGURE 3.5-3
BCLP CIRCUIT

BUDP
Refer to Figure 3.5-2. The Bit Undelayed Pulse is a 250 nanosecond pulse which is generated in the E.U. by BITL from a selected S.U. A BUDP will produce a DBIT during the active word of a read operation.

DBIT
Delayed Bit Time is a BUDP delayed 675 nanoseconds and generates BCLP which is used to clock the SUnFs during the active word of a read operation. DBIT is a 150 nanosecond pulse. Refer to Figure 3.5-4. The delay is necessary for correct strobing of information into the S.U. register.

FIGURE 3.5-4
DBIT CIRCUIT

8B FIELD ENGINEERING TECHNICAL MANUAL | B471.51 | $3.5-5$ |
| :--- | :--- |
| | February 1.1965 |

MULTI AJ

The Multi AJ is used to provide both an undelayed bit pulse and a 250 nanosecond delayed bit pulse. BUDP (BIT UNDELAYED) is 250 nanoseconds in width and becomes true at BITL time. BITP (BIT PULSE) is 150 nanoseconds wide, delayed 250 nanoseconds from BITL. Refer to Figure 3.5-5.

With a false input, Q1 and Q3 are on; Q2 is cutoff. Both Out 1 and Out 2 are false. Base drive is supplied to Q2 with a true input at CR7. The positive change across Cl removes base drive from Ql, Ql remains off for the RC time constant of $\mathrm{Cl}, \mathrm{R} 26$ and R27. Out 1 , BUDP, is true for 250 nanoseconds as adjusted by R27. With the turn on of Q1, a positive charge across C19 removes base drive from Q3. Out 2, BITP, is true, clamped to $-4.5 V$ by CR13. Q3 remains off for 150 nanoseconds, the RC time constant of C19 and R18.

FIGURE 3.5-5
MULTI AJ

3.6 READY CI RCUITS

The Ready Circuit in the E.U. is shown in Figure 3.6-1. The logic to produce SURL/ is as follows:

- \varnothing-SURL/
-I -REMS •HFML-01 •HFML-02•HFML-03 • HFML-04•HFML-05 •CCIL-A
The three requirements are that the LOCAL/REMOTE switch be in REMOTE, the heads must be flying and the CLOCK switch must be ON. A false level SURL/ to the D.F.C.U. indicates that the E.U. and its associated S.U.'s are ready.

FIGURE 3.6-1
READY CIRCUIT LOGIC

FIELD ENGINEERING TECHNICAL MANUAL

3.7 WRITE LOCKOUT

The Write Lockout Panel on the E.U. has one MASTER and 20 individual DISK LOCKOUT switches. Any or all of the possible 20 disks associated with the S.U. may be disabled as far as writing is concerned. The Lockout switches protect master files or other permanent data. In the 96 option the disks should be locked out two at a time since segment addresses pertain to pairs of disks.

Refer to Figure 3.7-1 for the logic associated with the Lockout switches. With the MASTER LOCKOUT and DISK LOCKOUT switches as shown, SWLL will be false. If the signal SWRL/ is also false, a write operation will be initiated by WRSD. When the MASTER LOCKOUT switch is thrown, SWLL is true holding WRSD/ true thus inhibiting writing regardless of SWRL/. If a locked out disk is addressed. SWLL will be true and will stay true as long as that disk is being addressed.

The two red indicators on the Control Panel in the E.U. show the condition of the MASTER LOCKOUT switch and any DISK LOCKOUT switch.

B
 FIELD ENGINEERING TECHNICAL MANUAL B471. 51

3.8 READ SIGNAL AUTOMATIC STEP GAIN CONTROL

An automatic "normal/hi" gain control is part of the information read circuitry. Each module has its own amplitude sensing. The gain is selected by a level generated in the E.U. as a result of feed-back from the module. Refer to the block diagram in Figure 3.8-1 during the following description.

The Storage Module components used in the gain control circuitry are the Information Sense Amp, Clipper and Gain Threshold Detector. The E.U. has the Threshold Store Flip-flop (TSRF), Gain Select Flip-flop (GSLF), Gain Latch Flip-flop (GLAF), and a switch to supply the output level (GSSL).

The gain of the Information Sense Amp is controlled by the true or false state of the Gain Select Level, GSSL. Normal sense amp gain is selected until GSSL goes false to select high gain. The GC Sense Amp " 0 " and "l" outputs are sent to the GC Clipper package. One output from the Clipper is routed to the Gain Threshold Detector. The Threshold Detector produces a true output 150 nanosecond pulse at bit rate if the signal level received from the Clipper does not fall below 1.2 volts, zero to peak. The TD pulse is sent through the logic cable to the E.U. where the pulse is ANDED with SPFF/ and M \quad nL for the same module. The absence of $T D$ pulses will cause a switch to high gain.

The E.U. is constantly monitoring the TD output from the particular module being selected by the Control Unit. (During System Idle, Module 1, Track 00 , Zone 1 is selected.)

The correct gain for a track is selected before the required record is read from that track. Whichever gain is selected is held until there is a change of track or the end of the Read operation occurs. The Gain Latch Flip-flop, GLAF, controls this sequence. GLAF cannot be turned on except at segment address time. Once on, it latches GSLF to hold the gain condition selected. GSLF is ordinarily latched in the "ON" state during Read which indicates normal gain is adequate. If high gain is required, GSLF must be latched off. The Action FF, ACFF, prevents GLAF from being reset until a track change is made or the Read operation is terminated. For any track, the gain is selected by the signal amplitude in the word preceding the address of the segment desired. Each time a new track is selected, the gain must be re-checked. In a crossover to a new track, ACFF will be set by the WøMP after dead space. In that case, gain must be selected from the signal amplitude in the last word of MSI. The "worst case" time available for completing a change in gain selection occurs during a track crossover in Zone 3. A change at that time must be completed in approximately 80 microseconds in order for the Sense Amp to be in the proper condition to read the first word after dead space. There is ample time, however, since the recovery time of the Sense Amp after a gain selection change is only 20-30 microseconds.

The following step-by-step descriptions are given as examples of the gain control operation during System Idle, Read, and Read with a track crossover. In each case, arbitrary assumptions are made as to the signal levels of the tracks selected.

SYSTEM IDLING (CONTROL SEC = 00)
This example describes how the gain circuitry would try to select high gain at segment address time if Track 00, Zone 1 of Module 1 had a signal level below the threshold. Between segment addresses, the gain level would return to normal because the circuit could not latch.

Assume the disk is being read somewhere in the middle of a Zone 1 segment. TDlL is false.

TSRF has been reset by SPFF.
GSLF is set to 0 due to TSRF being off.
One leg of the input gate to GSSL SW is true from GSLF/, but GLAF is false, keeping GSSL true.

GSSL being true selects normal gain.
An address is encountered in the address track and a complete address character is stacked up in the S.U. register making CBAS true.

GLAF is set with CBAS.
GSLF is latched in the off state with GLAF/.
Both GLAF and GSLF/ are true at the input gate to GSSL SW making GSSL false to select high gain.

Sense Amp gain goes high 20 - 30 microseconds after GSSL goes false.
TDlL will then go true for 150 nanoseconds with each information bit.
BA counter reaches full address count, is reset by following SPFF since INFF is off, tallies next address since addresses are recorded back to back, and finally is reset again by the following SPFF. TSRF goes true during this time, but has no effect on GSLF due to the latch gate.

GLAF is reset by next $S P F F$ following $B A=0$ since $A C F F$ is off.
GLAF being false causes GSSL to go true and also releases the latch on GSLF.

GSSL true allows the gain to return to normal and, after the $20-30$ microsecond Sense Amp recovery, TDlL goes false again since the disk is idling on a low signal amplitude track.

FIELD ENGINEERING TECHNICAL MANUAL
February 1, 1965

This cycle will repeat each time segment addresses are encountered. The gain will not remain latched in the high state beyond segment address time while the system is idling since ACFF is off.

READ OPERATION (CONTROL SEC $=10,11,13$ AND 14)
This example describes how the gain circuitry would latch in normal gain if the track being addressed had normal signal amplitude.

Assume the disk is being read somewhere between segment addresses searching for coincidence.

TDnL is true at bit time with normal signal amplitude.
TSRF is set by TDnL.
GSLF is turned on at the next SPFF. (This same SPFF resets TSRF, but TDnL turns TSRF on immediately following SPFF/.)

When a segment address is encountered, GLAF is set with CBAS.
GSLF is latched on by false from GLAF/.
If the address did not compare, ACFF remains off and SPFF resets the BA counter.

The interlaced segment address would be read immediately after and, if it did not compare, ACFF remains off and SPFF resets the BA counter.

GLAF is reset by the next SPFF following BA $=0$ since ACFF is off.
This cycle will repeat until address coincidence is found.
Control $S E C=15,20$ and 21 - coincidence found, read (n) segments.
GLAF is set with CBAS.
GSLF is latched on and the GSSL output remains true.
ACFF will go on with SCøL and prevent the reset of GLAF until the end of the Read operation.

ACFF will go off at the end of the last segment of the Read.

READ OPERATION (CONTINUED)

This example describes how the gain circuitry would select high gain after a track change if the new track addressed had a signal level below the threshold.

Control SEC $=23,22$ and 20 - end of second revolution with $N \neq 0$.

BA counter $=6$ since the address for Maintenance Segment 2 is the last address read at the end of the second revolution.

A simulated index pulse (INXP) is generated due to BA counter $=6$ with INFF and ACFF on.

BA counter is reset by the simulated INXP.
ACFF is reset by the simulated INXP.
GLAF is reset by the next SPFF following $B A=0$ and $A C F F /$.
GLAF/ being true releases the latch on GSLF. The track selection change is made while reading the maintenance segments.

TDnL goes false since the signal amplitude of the track now selected is below the Threshold.

TSRF is false after reset by SPFF.
GSLF is turned off by the following SPFF. Nothing further happens until Maintenance Segment 3 address is encountered in the address track of the new zone/disk.

GLAF goes on with CBAS to latch GSLF.
GSSL goes false due to true inputs from GSLF/ and GLAF. Approximately 20-30 microseconds after GSSL goes false, Sense Amp gain goes high.

TSRF resets at the next SPFF, but GSLF is latched as GLAF cannot be reset.

BA counter is reset by SPFF when $B A=3$ because ACFF is off; when the address for the next active segment is read during the next word time, the BA counter tallies up to 3. TSRF goes true during this time but has no effect on GSLF due to the latch gate. The dead space is encountered at the end of the segment address word time and INXP resets the BA counter and INFF.

The first WØMP after dead space turns on ACFF and ICFF.
ACFF on prevents SPFFs from reseting GLAF.
The Read operation continues until the last segment has been read at which time SEC is set to 00 .

SCøL is lost and ACFF goes false.
GLAF will reset with the next SPFF following ACFF/.
With GLAF false, GSSL is true, selecting normal gain.
The system goes into an idle condition addressing Module l, Zone 1 , Track 00.

INDEX - SECTION IV

4 FUNCTIONAL DESCRIPTION - MECHANICAL
4.1 Air System ... July 1,1964

4.1 AIR SYSTEM

The Disk File Storage Modules require a sealed, filtered, compressed air system to actuate the heads. The Electronics Unit contains the air source and is capable of supplying up to five Modules with filtered air regulated to 50 psi. "T" connections, with snap-in air fittings, are provided for each Module along the output air trunk line from the $E . U$.

Refer to Figure 4.1-1. The air supply components are located in the front of the E.U. A $1 / 4 \mathrm{H} . \mathrm{P} ., 208 \mathrm{~V}$, single phase motor drives the compressor directly. The compressor is an "oil-less", single stage (one cylinder) type. Its piston has graphite rings to eliminate the need for oil base lubricants which would tend to contaminate the air. All motor and compressor bearings are permanently lubricated and sealed. An unloader valve is provided to release cylinder pressure during idle periods and a check valve in the output manifold prevents line pressure from backing up into the cylinder. A disposable filtermuffler cleans and silences the air intake.

The output line from the compressor is connected to a tank where the air supply for the Modules is maintained at $60-80$ psi. There is a sediment bowl assembly at the bottom of the tank to collect moisture condensation. A pressure sensitive switch connected to the bowl assembly monitors the tank pressure. This switch starts the compressor motor if tank pressure drops to 60 psi and stops the motor when the pressure rises to 80 psi .

The output air line leaves the top of the tank through a pressure switch. This is a safety device which de-energizes the Storage Module Air Solenoids by removing -24V if an air supply malfunction allows the tank pressure to drop below 50 psi.

The output line goes to another 10 micron, bowl-type filter. The filtered air then passes through a pressure gauge which registers the tank pressure. Finally, the air goes through the output regulator. This adjustable regulator maintains 50 psi in the Storage Module air trunk line. The Maintenance Panel has a pressure gauge which monitors the regulator output to display the air trunk line pressure.

INDEX - SECTION V

5 ASSEMBLY - DISASSEMBLY - ADJUSTMENTS

5.1 60-80 Air Switch .. July 1, 1964
5.3 Power Supplies ... July 1,1964
5.4 Relays .. Feb. 1 , 1965
5.5 Fans .. Ju1y 1,1964
5.6 Compressor Assembly ... July 1, 1964
5.7 General Precautions for Air Connections July 1, 1964
5.11 Power Supply Adjustments July 1, 1964
5.12 Variable Bias Adjustments Feb. 1, 1965
5.13 Multi Adjustments ... Feb. 1,1965
5.21 60-80 Air Switch Check and Adjustment July 1, 1964
5.22 Air Line Regulator Adjustments July 1, 1964

FIELD ENGINEERING TECHNICAL MANUAL

B471.51	$5.1-1$
	July 15,1965

5.1 60-80 AIR SWITCH - REMOVAL AND REPLACEMENT

The following procedure should be followed for the removal and replacement of the $60-80$ Air Switch.

CAUTION

Refer to Section 5.7 of this Manual when working on the Air System.

Removal:

1. Turn off the Electronic Unit DC and AC power.
2. Turn off the 70 amp main AC Circuit Breaker.
3. Bleed off the Tank pressure.
4. Remove the cover from the $60-80$ Switch.
5. Remove the leads, capacitors, and arc suppressor from the switch terminals. Refer to Figure 5.1-1.

FIGURE 5.1-1
60-80 SWITCH CONNECTIONS
6. Remove the $60-80$ Switch from the Air System plumbing. Use a 3/4" wrench to turn the Switch Assembly and a 9/16" wrench to prevent the pipe nipple from turning. Do NOT remove the nipple.

Replacement:

1. Ensure the 70 amp main AC Circuit Breaker is off.
2. Install the $60-80$ Switch on the pipe coming from the Tank Sediment Bowl. Use a 9/16" wrench to hold the nipple and a 3/4" wrench to tighten the Switch Assembly. Ensure the Switch is oriented with the Adjustment Spring at the top after the Assembly
has been tightened.
3. Connect the leads, capacitors, and arc suppressor to the switch terminals. Refer to Figure 5.l-1.
4. Install the cover on the Switch Assembly.
5. Turn the 70 amp AC Circuit Breaker on. The Compressor should go on, pressurize the Tank, and go off when the pressure reaches 80 PSI.
6. Ensure there is no air leak at the pipe connection made in Step 2.
7. Refer to Section 5.21 of this Manual for the $60-80$ Switch check and adjustment procedure.
8. Restore the Electronic Unit to normal operation.
5.3 POWER SUPPLIES - REMOVAL AND REPLACEMENT

Power supply assemblies, Racks F, G and H, are removed and replaced in the following manner.

REMOVAL

1. Cycle down all power and open the 15,50 and 70 amp $A C$ circuit breakers.
2. Unscrew the two knurled bolts which secure the power supply assembly to the frame.
3. Slide assembly out until the terminal board on the base of the assembly is clear of the frame. Slack is provided in the power supply harness for approximately seven inches of movement.
4. Remove screws which secure harness to terminal board.
5. Remove and carry assembly by handles provided.

REPLACEMENT

To replace an assembly, reverse the above procedure.
Care should be taken not to drop or jar the power supplies. If the assembly is laid on its base on a work bench, a soft pad should be inserted between bench and terminal board to prevent damage to the plastic terminal strip.

```
5.4 RELAYS - REMOVAL AND REPLACEMENT
```

All relays in the Electronics Unit are mounted on the Power Sequence Panel, Rack E. Reference Figure 5.4-1.

REMOVAL AND REPLACEMENT

1. Before removing any relay, cycle all power down and throw AC circuit breakers off.
2. Remove protective shield from sequence panel.
3. DC contactor relays ECJO, ECMO, EDJI and EDMO are mounted to the panel with screws and weldnuts. Telephone type relays EFKO, EFJO, EFKI, EFJl and EFJ2 are mounted to a bracket with locknuts. All relays may be removed and replaced from the front of the panel without removing cables or harnesses.
4. Check unit for loose connections, fallen washers, etc., and shorts before replacing protective shield and applying power.

5.5 FANS - REMOVAL AND REPLACEMENT

Before removing fans, cycle down all power and open AC circuit breakers.

The two muffin fans located on the inside of the rear skin are accessible by removing the side skin and opening the logic gate. The fans are held to the rear skin by mounting clips with spring tabs which may be sprung apart with a screwdriver far enough to allow the fan to be removed from the clip. If complete removal is necessary, the two AC wires must be removed from the small terminal board below the fan.

5.6 COMPRESSOR ASSEMBLY - REMOVAL AND REPLACEMENT

The following procedure should be followed for the removal and replacement of the compressor.

CAUTION

Refer to Section 5.7 for general precautions when working on the air system.

REMOVAL

1. Turn off the E.U. DC and AC power.
2. Turn off the 70 amp main AC circuit breaker.
3. Bleed off the tank pressure.
4. Disconnect the output air line.
5. Remove the nuts (under the E.U. base) from the four compressor assembly mounting studs. Move the compressor for better access to the motor leads.
6. Disconnect the frame ground lead from the top of the compressor.
7. Remove the motor lead cover plate. The motor ground lead (green) is disconnected at the same time.
8. Disconnect the black power lead from the black motor lead by removing the "wire nut" and separating the leads. Separate the white leads in the same manner.
9. Remove the compressor assembly from the cabinet.

REPLACEMENT

1. Ensure the 70 amp main circuit breaker is off.
2. Place the compressor assembly in the E.U. cabinet but do not mount to the base at this time.
3. Pass the incoming black, white and green motor leads through the motor lead hole.
4. Connect the black power lead to the black motor lead using a "wire nut". Connect the white leads in the same manner.
5. Install the motor lead cover plate. The green motor ground lead must be connected at the same time with one of the cover plate mounting screws.
6. Mount the compressor assembly in the E.U. cabinet.
7. Connect the frame ground lead to the top of the compressor assembly.
8. Connect the output air line to the compressor output manifold.
9. Turn on the 70 amp main circuit breaker. The compressor should go on, pressurize the tank and turn off when the tank pressure reaches 80 psi.
10. Ensure there is no air leak from the output air line to manifold connection before restoring the E.U. to normal operation.

FIELD ENGINEERING TECHNICAL MANUAL

5.7 GENERAL PRECAUTIONS FOR AIR CONNECTIONS

The following precautions should be observed when performing work requiring the removal and replacement of any air fitting and connection.

1. Turn off the E.U. DC and AC power.
2. Turn off the E.U. 70 amp main $A C$ circuit breaker to de-activate the compressor motor prior to the removal of any air connection, except the snap-on type used on the S.U. air trunk line.

CAUTION

> Bleed off the tank pressure completely before disconnecting or opening any air connection, except the snap-on type. A convenient method of bleeding tank pressure is to "crack" loose the tank sediment bowl drain cock.
3. Whenever any air pipe fitting is disconnected, plastic sealant (P / N 11117165) should be used on the threads before replacement.
4. Polyethylene tube fittings do not require sealant. Refer to Figure 5.7-1. These fittings should be tightened finger tight and then up to $1 / 2$ turn with a wrench, if required. Do not overtighten or the plastic ring seal may be damaged.

FIGURE 5.7-1
POLYETHYLENE TUBE FITTING
5. Check for air leaks after any air fitting is reconnected and the System pressurized. Apply a small amount of liquid leak detector around the joint and then check for bubbles. Use a cloth to catch any excess liquid and wipe off the joint after the test.
5.11 POWER SUPPLY ADJUSTMENTS

RACK F
$+100 \mathrm{~V},-100 \mathrm{~V},-120 \mathrm{~V}$ and -24 V
None.

RACK H
+20 V and -20 V
None.

RACK G
$+12 \mathrm{~V},-12 \mathrm{~V}$ and -4.5 V
The -4.5 V may be adjusted by potentiometer R 6 mounted on the face of the power supply rack.

5. 12 VARIABLE BIAS ADJUSTMENTS

Before making the Variable Bias Adjustments, check the $-4.5 V$ supply. It must be $-4.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$.

The three VB supplies are adjusted as follows:

MUVB-01	Word Mark Multi Bias	AAC6X2	$-0.2 V$
MUVB-02	BCLP Bias		AAA7X7

Before making any of the following adjustments, check the -4.5 V Supply. It must be $-4.5 \mathrm{~V} \pm 0.25 \mathrm{~V}$. Then check the Variable Bias adjustments. Refer to Section 5.12 .

1. LOCAL/REMOTE Switch to LOCAL.
2. CLOCK ON/OFF Switch to OFF.
3. Depress BIT SINGLE PULSE button for checking the following:
a. IXHM (AA4N2) should be 2 microseconds ± 0.1. Scope at AA4UO, sync internal negative.
b. RDHM (AC5A2) should be 32 microseconds ± 5. Scope at AC5FO, sync internal negative.
c. WøHM (AB6N7) should be 7.86 microseconds ± 0.25. Scope at AB6U5, sync internal negative. Ground input to ASRS at AC7F0.
d. DIXM (BB1A2) should be 600 microseconds ± 20. Set ACFF, INFF, BA2 and BA4. Hold ACFF and BA2 ON or they will reset. Scope at AA9W0 (DIXS/), sync internal positive.
4. Return LOCAL/REMOTE Switch to REMOTE.
5. Return CLOCK ON/OFF Switch to ON.
6. BITP/DBIT - Bit Pulse and Delay Bit Pulse multis are to be adjusted by observing the time delay between BITL and BCLP. The adjustment of these two multis is performed in the following manner:
a. Connect A trace to BCLP (AAB8J0).
b. Connect B trace to BITL-01 (AAA6V2).
c. Sync on BITL-01.
d. With ICFF false, the delay between BITL-01 and BCLP should be 250 nanoseconds. Adjust at AAA6N7 (MUAJ) if necessary.
e. Hold ICFF ON. The delay between BITL-01 and BCLP should be 675 nanoseconds. Adjust at ABAON2 (DCL) if necessary.
5.21 60-80 AIR SWITCH CHECK AND ADJUSTMENT

The 60-80 Air Switch has a built in 20 PSI differential between its actuated (points closed) and de-actuated (points open) positions. The switch is set by adjusting it to ACTUATE at the proper pressure.

The following procedure should be followed when performing the Check and Adjustment:

1. Depress the DC OFF Switch to retract the heads on the Module(s).
2. Depress the AC OFF Switch.
3. Loosen the Drain Cock on the Tank Sediment Bowl and slowly release the air from the Tank. As the pressure falls, watch the gauge to determine when the switch actuates to turn the Compressor ON. THE COMPRESSOR SHOULD GO ON AT 60 ± 2 PSI.
4. Tighten the Drain Cock on the Sediment Bowl and let the pressure build up until the switch de-actuates.
5. Repeat Steps 3 \& 4 to verify the actuation point of the switch.
6. If the switch actuates at $60 \pm 2 P S I$, bring up Power and restore the System to normal operation. If the switch is NOT actuating at the proper pressure, proceed to Step 7.

CAUTION
With the 70 amp main $A C$ and the 20 amp Circuit Breakers ON, 208VAC is present inside the 60-80 switch box.
7. Turn OFF the 70 amp main AC Circuit Breaker.
8. Remove the cover of the 60-80 switch.
9. Use a 1l/32" spin-tight to turn the nut on the Adjustment Spring. Tightening the spring raises the switch actuation point; loosening the spring lowers the actuation point. Turn the nut approximately one turn.
10. Replace the switch cover as a safety measure.
11. Turn ON the 70 amp main AC Circuit Breaker which applies AC through the 20 amp Circuit Breaker to the 60-80 switch.
12. Begin this procedure again at Step 3.

B471.51	$5.22-1$
July 1,1964	

5.22 AIR LINE REGULATOR ADJUSTMENT

The Air Line Regulator is set to maintain 50 PSI $+2-0$ on the Air Trunk Line as indicated by the Maintenance Panel Air Gauge.

Adjustments are made by turning the screw at the bottom of the regulator in or out to increase or decrease the pressure, respectively.

While under pressure, the regulator does not respond accurately to manual adjustment intended to lower the pressure of the output. Therefore, to make that adjustment, it is necessary to de-pressurize the input, back out the Adjustment Screw, re-pressurize and increase the pressure output to the proper operating point.

The following procedure should be followed when making adjustments on the Air Line Regulator:

1. Turn OFF DC to retract the heads in the Module(s).
2. Turn OFF AC.
3. Use a $1 / 2^{\prime \prime}$ wrench to loosen the Lock Nut on the Adjustment Screw.
4. To INCREASE the pressure, turn the Adjusting Screw IN until the Maintenance Panel Air Gauge reads 50 PSI $+2-0$. Turn the screw slowly to prevent regulator overshoot. An offset screw driver is useful as an adjustment tool.
5. To DECREASE the pressure, perform the following Steps.
a. Turn OFF the 70 amp main AC Circuit Breaker.
b. Bleed off the Tank pressure by loosening the Sediment Bowl Drain Cock. Retighten the Drain Cock.
c. Back out the regulator Adjustment Screw one or two turns.
d. Turn ON the 70 amp Circuit Breaker.
e. When the Tank pressure has been in the normal operating range for five minutes, slowly increase the pressure to 50 PSI +2 -0 by turning the Adjustment Screw in. Check the pressure at the Maintenance Panel Air Gauge as the adjustment is being made.
f. To ensure the adjustment has stabilized, re-check the pressure output approximately five minutes after performing the adjustment.
6. After the adjustment has been completed, tighten the Lock Nut on the Adjustment Screw.
FIELD ENGINEERING TECHNICAL MANUAL
INDEX - SECTION VI
6 MAINTENANCE PROCEDURES AND AIDS
6.1 Weekly Preventive Maintenance
6.2 Monthly Preventive Maintenance Feb. 1, 1965
6.3 Quarterly Preventive Maintenance Feb. 1, 1965
6.5 Annual Preventive Maintenance Feb. 1, 1965
6.6 Signals and Test Points July 1, 1964
6.7 Maintenance Panel 1965
6.8 Test Routines 1965
6.9 Component Locations 1965
6.10 Control Simulator
6.11 RIN Index Feb. 1, 1965

6.2 MONTHLY PREVENTIVE MAINTENANCE

1. FILTER

There is one fiberglass disposable filter located at the bottom front of the unit. It should be checked frequently and changed at least once a month or when necessary.

Since the filter is readily accessible by removing the front skin, power need not be dropped from the unit or normal operation interrupted during changing.
2. POWER SUPPLIES

Power Supply output voltages should be checked on a monthly basis. Test jacks are provided on the power supply assemblies for all voltages.

Rack H
$+20 \mathrm{~V} \pm 1 \mathrm{~V}$
$-20 \mathrm{~V} \pm 1 \mathrm{~V}$

Rack F
$+100 \mathrm{~V} \pm 5 \mathrm{~V}$
$-100 \mathrm{~V} \pm 5 \mathrm{~V}$
$-120 \mathrm{~V} \pm 6 \mathrm{~V}$
$-24 V \pm 1.2 V$

Rack G
$+12 \mathrm{~V} \pm .5 \mathrm{~V}$
$-12 \mathrm{~V} \pm .5 \mathrm{~V}$
$-4.5 \mathrm{~V} \pm .2 \mathrm{~V}$
3. PRESSURE TO AIR TRUNK LINE

The pressure applied to the S.U. air trunk line should be 50 psi +2 -0. This pressure should be checked at the air gauge on the

Maintenance Panel. If the pressure is not within tolerance, perform the output regulator adjustment procedure as outlined in Section 5.22.

NOTE

Abstract

Whenever the tank pressure has been released and then re-pressurized, always allow approximately five minutes for the regulator to stabilize before taking a reading.

4. TANK SEDIMENT BOWL

The Tank Sediment Bowl should be removed and cleaned. The amount of moisture which collects in the bowl will vary with the environment and how often the compressor runs. Do not allow the bowl to become more than approximately $1 / 3$ full of water. Use the drain cock to empty the bowl as needed between P.M. periods. (Have a large absorbent cloth available to catch the moisture when the drain cock is loosened.) The following steps should be performed when the Sediment Bowl is removed:
a. Turn off DC and AC power.
b. Turn off the 70 amp main $A C$ circuit breaker.
c. Loosen the drain cock to discharge the tank and relieve the pressure on the bowl retainer ring. Use an absorbent cloth to catch the moisture.
d. Unscrew the large retainer ring which holds the bowl to the metal part of the assembly.
e. Remove the bowl and clean by wiping it out with a lint free cloth.
f. Replace the bowl by reversing the above procedure. Do not over tighten the retainer ring. Turn on the 70 amp circuit breaker to pressurize the tank and check for leaks before DC and AC power are restored. Apply liquid leak detector around the bowl at the retainer ring and watch for bubbles. Wipe off any remaining liquid after the test.
5. 60-80 AIR SWITCH

The 60-80 Air Switch should maintain tank pressure between 60 and 80 ± 2 psi. Check the operation of this switch. Refer to Section 5.21 for the check and adjustment procedure.
6. VARIABLE BIAS

On a monthly basis, the three VB packages in the E.U. should be checked for proper output level.

Test point and desired output are as follows:

MUVB-01	Word Mark Multi Bias	AAC6X2	$-0.2 V$
MUVB-02	BCLP Bias		AAA7X7
VB	Flip-flop Bias	AAC1X2	$-0.2 V$
	-1.2V		

7. MULTIS

Verify multis for proper timing. Refer to Multi Adjustments, page 5.13-1.
6.4 SEMI-ANNUAL PREVENTI VE MAINTENANCE

1. COMPRESSOR FILTER

The intake filter on the compressor should be replaced semiannually. Unscrew the filter from the brass elbow on the intake manifold and replace with a new filter.

6.5 ANNUAL PREVENTIVE MAINTENANCE

1. 10 MICRON AIR FILTER

The 10 micron filter element should be replaced annually. The following procedure should be followed when replacing the element:
a. Turn off $D C$ and $A C$ power.
b. Turn off the 70 amp main $A C$ circuit breaker.
c. Bleed off the tank pressure by loosening the drain cock on the sediment bowl.

CAUTION

Do not use the drain cock on the 10 micron filter to discharge the tank even when the element is being replaced. Contaminants which normally are trapped in the sediment bowl are apt to be forced into the filter assembly.
d. Unscrew the retaining ring which holds the bowl to the assembly. Remove the bowl. Refer to Figure 6.5-1.
e. Remove the brass, knurled retaining nut at the bottom of the shaft.
f. Unscrew and remove the baffle.
g. Remove the shield, washer and filter element.
h. Install the new 10 micron element by reversing steps e, f and g of the above procedure.
i. Wipe out the filter bowl with a clean, lint-free cloth.
j. Replace the filter bowl. Do not overtighten the retaining ring.
k. Turn on the 70 amp breaker to repressurize the tank and check for leaks before restoring AC and DC power. Apply liquid leak detector around the top of the bowl and then watch for bubbles. Wipe off any remaining liquid after the test is completed.

2. FANS

The two cabinet exhaust fans located on the inside of the rear skin should be oiled annually using the following procedure:

```
Oil EDD Part #l1838596
Oil injector EDD Part #ll838588
```

a. Remove air from oil injector by holding the needle up and pressing on the plunger.
b. Project the injector needle through the louvres (in back skin) and place the needle at the center of circle marked on the gold label.
c. Position the needle at an angle of approximately 45° to the label surface and point it toward the center of the rubber cap. (These fans are lubed by inserting the oil injector needle through a self-sealing rubber cap located in the center of the motor hub.)
d. Pierce the label and the concealed self-sealing rubber cap located under the label.
e. Insert the needle approximately $1 / 4^{\prime \prime}$.
f. Depress the plunger of the oil injector approximately $1 / 16^{\prime \prime}$ to force the oil to flow. Rotating the fan will relieve air pressure and allow oil to flow into the oil chamber.

FIELD ENGINEERING TECHNICAL MANUAL B471.51 6.6-1

July 1, 1964
6.6 SIGNALS AND TEST POINTS

The following is a list of signals with test point locations. The listing includes input levels as monitored at the output of the input switches, output levels as monitored at the last output switch or driver and internal levels as monitored at the outputs of Flip-Flops, Multi's, Delays, etc. HSDL (Information Center Tap Driver) outputs are not covered in this list; refer to DA Schematics, pages 00.07.0 through 00.16.0.

INPUT Level	OM D.F.C.U Test Point	OUTPU Level	O D.F.C.U. Test Point
D01S	AAA 9C4	SR1L	AAC2B7
D02S	AAA9C0	SR2L	AAC2H5
D04S	AAA9D2	SR4L	AAC2H9
D08S	AAA9H4	SR8L	AAC3B7
D16S	AAA9JO	SRAL	AAC1B7
		SRBL	AAC1H5
Z01L/	AAB9C9		
Zø2L/	AAB9C5	CS1L/	AABOBO
Zø3L/	AAB9D7	CS2L/	AAB0FO
T01S	ACAlC9	SCLP	AAC1H9
T02S	ACA1C5		
T04S	ACAID7	SURL/	AAA4R5
T08S	ACAIH9		
T10S	ACA4C9	SARL/	AAC8C9
T20S	ACA4C5		
T40S	ACA4D7	SWLL	AAA4H4
SW1L/	AAB2C9	Wemb	AAB6H5
SW2L/	AAB2C5		
SW4L/	AAB2D7	INXD	AAA4B2
SW8L/	AAB2H9		
SWAL/	AAB2J5		
SWBL/	AAA2R9		
DFSS	ACA 4H9		
SWRS	AAA2R5		
SCøL	AAA2 V9		

OUTPUT LEVELS Level	TO STORAGE MODULES Test Point	INPUT LEVELS Level	FROM STORAGE MODULES Test Point
Mø1L	ABB0P7	HFML-01	AAA8C4
Mø2L	ABB0V5	HFML-02	AAA8C0
Mø3L	ABB0 V9	HFML-03	AAA8D2
Mø4L	ABBIP7	HFML-04	AAA8H4
Mø5L	ABBIV5	HFML-05	AAA8JO
DISC-01/	AAA9R4	BITL-01	AABOR3
DISC-02/	AAA9RO	BITL-02	AABOS3
DISC-03/	AAA9S2	BITL-03	AABOT3
DISC-04/	AAA9V4	BITL-04	AABOU3
		BITL-05	AAB0 V3
Zø1L-01/	AAB9C9		
Zø2L-01/	AAB9C5	TD1L	AAB0R4
Zø3L-01/	AAB9D7	TD2L	AAB0S 4
		TD3L	AAB0T4
DFSL/	AAB0YO	TD4L	AAB0U4
DFSS	ACA4H9	TD5L	AAB0V4
SU1FW	AABIU9	CSIL/	AABON4
SUlFW/	AABIU6	CS2L/	AAB0P4
ICFF-1B	AAA5W9	ASRS	AAC7D2
		ASRS /	AAC7H4
WRSD/	AAB6B7		
		IRAS	AAC7C4
SPFD	AAA 4H0	IRAS /	AAC7C0
IXHS /	AAA 4 R 9		
TRSL/	AAC8J5		
GSSL	AAB9H9		

INTERNAL LEVELS

Level	Test Point	Level	Test Point
ACFF	AAAlU9	GLAF	AAC4U9
ASRS	AAC7D2	GSLF	AAC5W0
BAIF	AAB9U9	GSSL	AAB9H9
BA2F	AAC9F9	TRSF	AAC3U9
BA4F	AAC9U9	WøHF	AAB7F6
CBAS	AAC8C5	BCLP	AAB8J0
CSUS	AAA2W 5	BITP	AAA6W 5
DBIT	ABAOW3	INXP-01	AAA3V4
DIXM	ABBIF0	RIHS $/$	AAC8U7
DIXP	AAA3S 4	RDHM	AAC5F0
ECCS	AAC8H9		

6.7 MAINTENANCE PANEL

Reference Figure 6.9-2.
The Maintenance Panel (Rack D) consists of switches, indicators, indi-cator-switches and test jacks for power control and maintenance functions. A DC meter with switch, power on time meter and air pressure gauge are also provided.

POWER CONTROL

Switches
DC LOCKOUT

Indicators
AC ON
DC ON
RELAY SUPPLY ON

Indicators

Storage Units 1 through 5 Not Ready

Test Jacks
INXP - Index Pulse
SWIL - FERL (SO4F) during Read
SCøL - Segment Coincidence
ACFF - Action FF
ICFF/- Interlace Control

Indicator-Switches

```
S.U. Register
INFF - Index FF
ACFF - Action FF
ICFF - Interlace Control FF
GSLF - Gain Select FF
SPFF - Space FF
BA1, BA2 and BA4 - BA Counter
TRSF - Threshold Store FF
GLAF - Gain Latch FF
```


LOCAL/REMOTE SWITCH

Reference Figure 6.7-1.

Remote

1. Couples REM-DC-ON-E pulse from D.F.C.U. to Rack E.
2. REMS-A true to Gate A enabling ready levels (HFML-nn) from Modules to control SURL/ (Storage Units Ready Level) when CLOCK switch is ON.
3. REMS/ false to CAG 107 disabling Bit and Word Mark Single Pulse switches.

Local

1. Opens REMOTE DC ON line to Rack E. DC can be cycled on from operator's panel only.
2. REMS-A false to Gate A making SURL/ true (Storage Units Not Ready).
3. REMS/ true to CAG 107 enabling Bit and Word Mark Single Pulse switches.

CLOCK SWITCH

On

1. CCIL-A true enabling ready levels (HFML-nn) from Modules to control SURL/ when in REMOTE.
2. CCIL-A true to clock logic enables BITP and WeMP to be generated from Module inputs (BITL-nn and ASRS).
3. CSIL-A false to CAG 107 disabling Bit and Word Mark Single Pulse switches.

Off

1. CCIL-A false making SURL/ true (Storage Units Not Ready).
2. Disables Module inputs (BITL-nn and ASRS) from generating BITP and WøMP in clock logic.
3. CSIL-A true to CAG 107 enabling Bit and Word Mark Single Pulse switches.

The following are the Test Routines available for use with the Disk File Subsystem and a brief description of their use.

B200 - TR 2122 This routine will test the subsystem under the control of the B200. The operator has control of the program section to be run by use of the Operator's Panel. The routine is made up of eight sections and will test any and all subsystem configurations and character options.

B5500 - TR 5561 This routine will test the subsystem under control of the B5500. The operator has control of the program section to be run by the use of the Supervisory Printer. The routine is made up of three sections and will test any and all subsystem configurations and character options.

6.9 COMPONENT LOCATIONS

1. ELECTRONICS UNIT DA RACK LOCATOR - Figure 6.9-1
2. ELECTRONICS UNIT RACK D DETAIL - Figure 6.9-2
3. ELECTRONICS UNIT RACK A COMPONENTS - Figure 6.9-3
4. ELECTRONICS UNIT POWER SUPPLY COMPONENTS - Figure 6.9-4

B471. 51	$6.9-3$
	December 1,1964

FIGURE 6.9-2
ELECTRONICS UNIT RACK D DETAIL

FIGURE 6.9-4

FIELD ENGINEERING TECHNICAL MANUAL B471.51 6.11-1 February 1, 1965 6.11 RIN INDEX FOR DISK FILE ELECTRONICS UNIT 11980224

$\begin{aligned} & \text { RIN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { INSTALL. } \\ & \text { TIME IN } \\ & \text { HOURS } \end{aligned}$	PREREQUISITE	UNITS AFFECTED	DESCRIPTION
4802	0.5	None	$103 \Rightarrow 127$	Undervoltage fail sensor pkg. improvement.
4804	1.0	None	$103 \Rightarrow 127$	Compressor sw. sup. network improvement.
4807	2.0	None	$103 \Rightarrow 127$	Compressor line shield \& filter improvement.
4809	0.5	None	$103 \Rightarrow 127$	-20V supply fuse change.
4812	2.5	None	$103 \Rightarrow 127$	Document update \& wiring compatibility change.
4823	0.5	None	$103 \Rightarrow 127$	E.U. Backplane noise reduction.

Printed in U.S.A.

RIN INDEX FOR DISK FILE 60 CYCLE POWER KIT 11106739

$\begin{aligned} & \text { RIN } \\ & \text { NO. } \end{aligned}$	INSTALL. TIME IN HOURS	PREREQUISITE	UNITS AFFECTED	DESCRIPTION
4818	0.5	None	$103 \Rightarrow 175$	Corrects wiring error to convenience outlet.

Printed in U. S.A.

8 FIELD ENGINEERING TECHNICAL MANUAL B471.51 7.0-1 February 1, 1965
 INDEX - SECTION VII

7 INSTALLATION

$$
\text { 7.1 Installation .. } 1965
$$

7.1 INSTALLATION

This procedure begins after the E.U. has been unpacked and is in place. For pre-installation information, refer to Installation Planning, Field Facilities, Pasadena, California.

PRIMARY POWER

Primary power may be supplied from a 208 or 230 VAC , single phase, 60 cycle, four-wire source (two AC legs, one neutral and a building ground). Power cabling from source to the E.U. must be furnished by the customer. The number of Storage Modules attached to an E.U. will determine the power cable size and circuit breaker rating. An E.U. with one S.U. will require 35 amps at a maximum load. Each additional Module will require another 8 amps.

Refer to Figure 7.1-1
The power cable should be routed under the E.U. and enter through the small access hole provided in the base. The two AC legs and neutral line enter the 70 amp circuit breaker box through the knock-oat hole in the back; the two AC legs go to terminals 1 and 2 and the neutral line goes to terminal 3. The power cable building ground routes directly to terminal 7 of the line filter L3.

An auto-transformer is provided to allow use of 208 or 230 VAC inputs. The wire from terminal 4 of L 3 must be connected to the proper terminal on the auto-transformer; to auto-transformer terminal 1 for 208VAC or to auto-transformer terminal 3 for 230 VAC .

LOGIC CABLES

There is one logic cable connecting the D.F.C.U. to the E.U. It should be routed under the E.U. and enter through the hole provided. The two-piece metal plate covering the hole must be removed in order to get the Winchester connector through the base. This plate should be replaced after the cable is connected.

MODULE CABLING

The following cables, plus an air line to the first S.U., are routed through the access hole in the side of the E.U.

Power

From sequence panel (Rack E) to each module:

1 AC cable (Cannon)
1 DC cable (quad)
1 ground wire

Logic
From E.U. logic gate to first S.U.:
3 head select cables (Amphenol C37)
1 logic cable (quad)
Complete the Module installation before PRE-POWER CHECK. Refer to Section 7 of the B475 Technical Manual.

PRE-POWER CHECKS

1. Pull power supply racks out and check for loose nuts, bolts, terminal board screws, etc.
2. Check for tightness and correct location of plug-ins on logic rack. Refer to Figure 6.9-3.
3. Make sure drain cock on bottom of sediment bowl is tight.

INITIAL POWER-ON
70 amp circuit breaker $O N-A C$ to 15 and 50 amp circuit breakers.
15 amp circuit breaker $O N$ - Air compressor, garage fans and -24 relay power.
Relay Supply indicator on.
50 amp circuit breaker $O N$ - Module motor power.

[^0]: * LOCATIONS ARE IDENTICAL TO THE + 2OVAC-1-p LEVEL.

