
Burroughs TC 500 
OPERATION AND PROGRAMING MANUAL 

Part II 

GENERAL PURPOSE LANGUAGE 300 

------~. ----PROPERTY OF BurrouQba ~ 

Printed in U. S. America February, 1969 For 1034006 



1. 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 

2. 
2.1 
2.2 
2.2.01 
2.2.02 
2.2.03 
2.2.04 
2.2.05 
2.2.06 
2.2.07 
2.3 
2.3.01 
2.3.02 
2.3.03 
2.3.04 
2.3.05 
2.3.06 
2.3.07 
2.3.08 
2.4 
2.4.01 
2.4.02 
2.4.03 
2.5 
2.5.01 
2.5.02 
2.5.03 
2.6 
2.6.01 
2.6.02 

3. 
3.1 
3.1.01 
3.2 
3.3 
3.4 
3.4.01 
3.4.02 
3.4.03 
3.4.04 
3.4.05 
3.4.06 
3.4.07 

OPERATION AND PROGRAMING MANUAL - TC 500 

TABLE OF CONTENTS 

PART II GENERAL PURPOSE LANGUAGE 300 

INTRODUCTION 
Memory Organization 
Memory Word 
Program Execution 
Instruction Format 
Accumulator 
Flags 
Categories of Instructions 

KEYBOARD INSTRUCTIONS 
Keyboard Buffer 
Numeric Keyboard 

Numeric Keyboard Instructions 
Numeric Data 
Accumulator Flags 
Reverse Entry Key 
Per Hundred (C) and Per Thousand (M) Keys 
Keyboard Error Light (Numeric Keyboard Instructions) 
Numeric Keyboard Programing Considerations 

Typewriter Keyboard 
Typewriter Keyboard Instructions 
Type Instruction 
Type Into Memory Instruction 
Enter Alpha Into Memory Instruction 
Typing, Space, Backspace, Shift Keys 
Load Keyboard Base Register 
Keyboard Error Light (Typewriter Keyboard Instructions) 
Typewriter Keyboard Programing Considerations 

Miscellaneous Console Keys 
Reset Key 
Open/Close Key 
Line Advance Key 

Operation and Program Control Keys 
Operation Control Keys 
Program Keys and Related Indicators 
Program Key Table Selection 

Keyboard Errors Summary 
Numeric Keyboard 
Typewriter Keyboard 

PRINTING INSTRUCTIONS 
Printer Positioning 

Position Register Instruction 
Ribbon Shift 
Alphanumeric Printing From Memory 
Numeric Printing 

Print Numeric Instructions 
Accumulator Pointer 
Print Format (Mask) 
Print Numeric Base Register 
Load Print Numeric Base Register 
Print Format (Mask) Word 
Mask Control Codes 

Printed in U. S. America Part II 

lI-i 

For 1034006 



II-ii 

3.4.08 
3.4.09 
3.5 
3.5.01 
3.5.02 
3.6 

4. 
4.1 
4.1.01 
4.1.02 
4.2 
4.2.01 
4.3 
4.3.01 
4.4 
4.4.01 
4.4.02 
4.4.03 
4.4.04 
4.5 

5. 
5.1 
5.1.01 
5.1.02 
5.2 
5.3 
5.4 
5.4.01 
5.4.02 
5.4.03 
5.5 
5.5.01 
5.5.02 
5'.5.03 
5.5.04 
5.5.05 
5.6 
5.6.01 
5.6.02 

6. 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.7.01 
6.7.02 
6.7.03 
6.7.04 

7. 

OPERATION AND PROGRAMING MANUAL - TC 500 

TABLE OF CONTENTS - PART II (continued) 

Mask Flag Codes 
Example of Numeric Print Masks 

Single Character Print 
Unconditional Print Character Instructions 
Conditional Print Character Instructions 

Print Programing Considerations 

FORMS CONTROL 
Forms Transport Open and Close 

Open Transport Instruction 
Close Transport Instruction 

Platen Control Registers 
Platen Count and Limit Registers Instructions 

Line Advance Instructions 
Advance Platen Instructions 

Use of Forms Control Instructions 
ALTO - ARTO 
AL -AR 
OC - CC and Rear-Fed Unit Documents 
Alignment to the First Print Line 

Forms Control Programing Considerations 

ARITHMETIC INSTRUCTIONS 
Addition and SubtraCtion 

Addition Instructions 
Subtraction Instructions 

Transfer Instructions 
Clear Instructions 
Insert Constant, Add Constant, Subtract Constant 

Insert Constant Instruction 
Add Constant Instruction 
Subtract Constant Instruction 

Multiplication and Division 
Multiply-Divide Shift Register Instruction 
Multiply Instruction 
Divide Instruction 
Quotient Overflow 
Transfer Remainder to Accumulator Instruction 

Shift Accumulator 
Shift Off Instruction 
Shift Off with Sign Instruction 

FLAGS 
Accumulator Flags 
Test Flags 
Operation Control Key Flags 
General Purpose Flags 
Reader Flags 
Punch Flags 
Flag Set and Reset Instructions 

Load Flags Instruction 
Set Flags Instruction 
Reset Flags Instruction 
Change Flags Instructions 

INDEX REGISTERS 



7.1 
7.1.01 
7.1.02 
7.1.03 
7.1.04 
7.1.05 
7.2 
7.2.01 
7.2.02 
7.2.03 
7.2.04 

7.2.05 

7.2.06 
7.2.07 
7.2.08 

8. 
8.1 
8.2 
8.2.01 
8.2.02 

9. 
9.1 
9.1.01 
9.1.02 
'9.2 
9.2.01 
9.2.02 
9.3 
9.3.01 
9.3.02 
9.4 

10. 
10.1 
10.1.01 
10.2 
10.3 

11. 
11.1 
11.2 
11.3 
11.4 
11.5 
11.5.01 
11.5.02 
11.5.03 
11.5.04 
11.5.05 
11.6 
11.6.01 
11.6.02 

OPERATION AND PROGRAMING MANUAL - TC 500 

TABLE OF CONTENTS - PART II (continued) 

Index Register Modification 
Loading Index Registers 
Incrementing Index Registers 
Decrementing Index Registers 
Adding to Index Registers 
Transferring Accumulator Contents to Index Register 

Modification of Programs with Index Registers 
Modify by Index Register, Instruction 
Instructions in which A Parameter Can Be Modified 
Instructions in which B Parameter Can Be Modified 

ll-}ii 

Instructions in which A & B Parameters Can Be Modified, Each Parameter Specifies 
One Item 

Instructions in which A & B Parameters Can Be Modified, One Parameter Can 
Specify One or More Items 

Modification of Print Character Instruction 
Modification of a Modify Instruction 
Unmodifiable Instructions 

BRANCH INSTRUCTIONS 
Branch Unconditional Instruction 
Subroutine Jump and Return 

Subroutine Jump Instruction 
Subroutine Return Instruction 

SKIP AND EXECUTE INSTRUCTIONS 
Skip and Execute Flag Instructions 

Skip Flag Instructions 
Execute Flag Instructions 

Accumulator Less Than Constant, Skip and Execute 
Accumulator Digit Less Than Constant Skip 
Accumulator Digit Less Than Constant Execute 

Accumulator Zero Skip and Execute 
Accumulator Zero Skip 
Accumulator Zero Execute 

Compare Alphanumeric 
MISCELLANEOUS INSTRUCTIONS 

Audible Alarm for Operator Errors 
Alarm 

No Operation Instruction 
Stop Program Instruction 

DATA COMMUNICATION INSTRUCTIONS 
Receive Ready State 
Transmit Ready State 
Data Communication Receive Buffer 
Data Communication Transmit Buffer 
Designating Buffer, Record Areas, and Character Positions 

Load Receive Buffer Register 
Set Receive Character Pointer 
Increment Receive Character Pointer 
Load Keyboard Base Register 
Set Send Character Pointer 

Instructions to Process Messages Received 
Transfer Receive Buffer 
Transfer to Accumulator as Numeric 

Printed in U. S. America Part II For 1034006 



ll-iv 

11.6.03 
11.6.04 
11.6.05 
11.7 
11.7.01 
11.7.02 
11.7.03 
11.7.04 
11.7.05 
11.7.06 
11.8 
11.8.01 
11.8~02 
11.8.03 
11.8.04 
11.8.05 
11.8.06 
11.8.07 
11.8.08 
11.8.09 
11.8.10 
11.8.11 
11.8.12 
11.8.13 
11.8.14 
11.9 
11.9.01 
11.9.02 
11.9.03 
11.9.04 
11.10 

12. 
12.1 
12.1.01 
12.1.02 
12.1.03 
12.1.04 
12.1.05 
12.1.06 
12.1.07 
12.1.08 
12.1.09 
12.2 
12.3 
12.3.01 
12.3.02 
12.3.03 
12.3.04 
12.4 
12.4.01 
12.4.02 
12.4.03 

OPERAl'ION AND PROGRAMING MANUAL - TC 500. 

TABLE OF CONTENTS - PART II (continued) 
Transfer Alpha 
Print Alpha from Receive Buffer 
Programing Steps to Receive a Message 

Instructions to Prepare Messages for Transmission 
Transfer Send Record Area 
Transfer Accumulator to Send Record Area 
Transfer Alpha 
Transfer Character 
Type to Memory 
Programing Steps to Transmit a Message 

Other Data Communication Instructions 
Retrieve Send Address 
Retrieve Receive Address 
Load Send Address Register 
Load Receive Address Register 
Retrieve Expected Transmission Number 
Retrieve Header Transmission Number 
Load Expected Transmission Number Register 
Retrieve Send Transmission Number 
Load Send Transmission Number Register 
Retrieve Character Pointer Register 
Load Character Pointer Register 
Power Off 
Retrieve Polled Flags 
Load Polled Flags Register 

Data Communication Flags and Flag Instructions 
Message Received and Transmit Ready Flags 
Keyboard Buffer Empty Flag 
Data Communication Processor Flag Register 
Data Communication Processor Polled Flags Register 

Field Identifier Codes 

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER 
Paper Tape Reader Instructions 

Reading Alphanumeric Data and Printing 
Reading Alphanumeric Data, Printing and Punching 
Reading Alphanumeric Data, Printing, and Entering into Memory 
Reading Alphanumeric Data, Printing, Punching, and Entering into Memory 
Reading Alphanumeric Data into Memory, no Printing 
Reading Alphanumeric Data into Memory, Punching, but no Printing 
Valid Codes for Read Alpha Instructions 
Reading Numeric Data into the Accumulator 
Opening the Media Clamp 

Loading Programs with the Paper Tape Reader 
Input Indicator Lights and Flags 

Invalid Code Indicator Light 
Reader Condition Indicator Light 
Flag Instructions 
Program Keys 

Table of Input Code Assignments 
Input Functions for 6, 7, or 8 Channel Tape Based on Table of Code Assignments 
Firmware Subsets for the Table of Code Assignments 
USASCII Paper Tape Code without Table Look-up Firmware 



13. 
13.1 
13.1.01 
13.1.02 
13.1.03 
13.1.04 
13.1.05 
13.1.06 
13.2 
13.2.01 
13.2.02 
13.2.03 
13.2.04 
13.3 
13.3.01 
13.3.02 
13.3.03 
13.3.04 
13.4 
13.4.01 
13.4.02 
13.4.03 
13.4.04 
13.4.05 
13.4.06 
13.5 
13.5.01 

OPERATION AND PROGRAMING MANUAL - TC 500 

TABLE OF CONTENTS - PART II (continued) 

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR 
Punching Alphanumeric Data 

Typing and Punching 
Typing into Memory and Punching 
Entering Alpha into Memory and Punching 
Printing Alpha from Memory and Punching 
Punching Alpha from Memory, Non-Print 
Punching Special Codes 

Punching Numeric Data from the Accumulator 
Print and Punch Numeric Data 
Print and Punch Numeric Data, Shift Ribbon if Minus 
Print and Punch Numeric Data, Shift Ribbon if Plus 
Punch Numeric Data, Non-Print 

Other Punching Instructions 
Loading the Punch Count Register 
Modifying Punch Instructions by the Punch Count Register 
Punching Feed Codes 
Use of the Punch Count Register 

Output Indicator Lights and Flags 
Punch Off Indicator Light 
Media Not Present Indicator Light 
Echo Checking 
Tape Supply Indicator Light 
Flag Instructions 
Initializing the Program 

Table of Output Code Assignments 
Firmware Subsets for the Table of Code Assignments 

Printed in U. S. America Part II 

II-v 

For 1034006 



1. 

OPERATION AND PROGRAMING MANUAL - TC 500 

PART n - GENERAL PURPOSE LANGUAGE 300 

INTRODUCTION 

General Purpose Language 300 (G.P. 300) is a programing language, consisting of machine instruc­
tions to control system operation, and is used for writing applicational programs for Series 500 
Terminal computers. 

The G.P. 300 instruction list is implemented in the system by various "Firmware Sets"; the number 
of different instructions implemented is dependent on the particular Firmware Set used in the sys­
tem. Firmware is defined as a control program, and is stored in a designated area of the system 
memory, not accessable to the programmer and/or user. It performs a great deal of the logic and 
control functions, programmatically, that are usually performed by hardware electronic circuits in 
larger computer systems. Thus, with much less hardware it provides much more sophisticated capa­
bilities than would ordinarily be possible from the electronic circuitry alone in this size of system. 

Firmware consists of "micro-programs" which implement each instruction of G.P. 300. A micro­
program consists of a series or "string" of MICRO instructions, each of which performs a "small" 
step or function, to accomplish the function of the G.P. 300 instruction (sometimes referred to as a 
MACRO instruction since it is a "large" composite of a series of tiny steps - micro steps). Thus, in 
the execution of an application program, the firmware identifies each "macro instruction" used by 
the programmer, and selects the proper microprogram to perform the functions of the instruction. 

This manual provides a detailed description of the functional results of each instruction in the G.P_ 
300 language. A series of "Firmware Sets" are available to implement the G.P. 300 language; each 
of which is micro programed to implement various instructions of the total G.P. 300 instruction 

1 

list, and thus are referred to as firmware "subsets" of G.P. 300. Since the number of instructions 
varies with each subset, so does the amount of memory required by that firmware subset. Each sub­
set is described in the appendix, and the amount of memory available to the programmer is indicated. 
Each firmware subset of G.P. 300 is independent of the others, enabling the system to function with­
in the specified capabilities; that is, rather than selecting two or more subsets to be used in the sys­
tem concurrently, a subset is selected that provides the degree of capabilities desired. 

A system may operate with any of the G.P. 300 firmware subsets and at different times, provided 
that the system contains the hardware features necessary to permit the firmware to function. For 
example, a subset that implements the use of a paper tape reader requires a system that has hardware 
capabilities for Input/Output. 

Changing from one firmware subset to another is accomplished by loading the new firmware program 
into the system memory. This requires a field engineer. 

The following G.P. 300 firmware subsets are representative: 

a. Basic Set: Provides for keyboard data entry, printing, 4 function arithmetic, logical compari­
sons, indexing and forms handling. 

b. Basic Set plus Punched Paper Tape Input/Output: Provides for reading and/or punching paper 
tape, as well as basic set functions. 

c. Basic Set plus Punched Card Input/Output: Provides for reading and/or punching tab cards, as 
well as basic set functions. 

d. Basic Set plus Data Communication: Provides for transmitting and receiving data in a tele­
communication network, as well as basic set functions. 

e. Basic Set plus Data Communication and Punched Paper Tape Input/Output: See above. 

f. Basic Set plus Data Communication and Punched Card Input/Output: See above. 

Printed in U.S. America Part II For l03hoo6 



1.1 OPERATION AND PROGRAMING MANUAL - TC 500 

1.1 MEMORY ORGANIZATION 

Of the 1280 words of memory, 256 words (8 tracks) are set aside for the data communication pro~ 
cessor (refer to section 11); the remaining 1024 words are considered MAIN MEMORY. The system 
MAIN MEMORY is considered in two sections: the CONTROL area and the NORMAL area. The 
CONTROL area is reserved to contain the Firmware subset and is not accessable to the programmer. 
The NORMAL area is used by the programmer to contain an application program, and to provide 
working memory for the accumulation of data. Refer to appendix A for the memory requirements 
of each firmware subset, and the remaining NORMAL memory. Illustrations and discussions following 
use "N" to represent the high order word available in Normal memory. 

NUMERIC WORD - (15 Digits) 

MSD LSD 

8 7 6 5 4 3 2 1 I a I --4 bits each digit 

PRINT FORMAT WORD (MASK) - (15 Digits) 

MSD LSD 

8 76543 21 101 --4 bits each digit 

ALPHA WORD - (8 Characters: Space and !lend alpha" code are considered as characters). 

MSD 

o 1 2 3 

PROGRAM WORD - (4 Instructions) 
or syllables 

MSD 

3 2 

ISD 

4 6 7 

8 bits 

ISD 

1 a 

Fig. 1 - 1 Word Organization As It Assumes Various Functions 



OPERATION AND PROGRAMING MANUAL - TC 500 1.3 

1.2 MEMORY WORD 

Each word of memory contains. 16 digits (or 64 bits) and can be used in several ways: When storing 
numeric data, it contains 15 digits and sign. It may store 8 characters of alphanumeric information, 
or a print mask of 15 control codes plus 3 flags for controlling the printing of numeric words. These 
words are addressed by a word number (0 to N) which refers to their location in memory. "N" is 
defined as the high order word available to the user in Normal Memory. The word number is some­
times referred to as "Memory Address" (MA), or "memory location". 

A word of memory may also contain program instructions. Four instructions may be stored in each 
word. Since instructions are provided to "Branch" (jump) from one area of a program to a specific 
instruction in another part of the program, each instruction is identified as a syllable (0, 1, 2, or 3) 
within a word. It is addressed as word (0 to N) syllable (0 to 3). 

1.3 PROGRAM EXECUTION 

Program instructions are executed in sequential order beginning with word 0, syllable 0 and pro- _ 
gressing to syllable 1, 2, 3; word 1 syllable 0, etc. After power is turned on to the system and it is 
in the Ready mode, the Program mode is entered by depressing the START key. At this point, a 
program counter is loaded with the initial setting of word 0, syllable 0, and the program proceeds 
to execute the instructions in sequence, incrementing the program counter after each instruction. 
The sequence of program execution can be altered by using "branching" instructions, which permit 
going from any syllable of any word to any syllable of any other word. Instructions which cause 
"branching" do so by changing the contents of the program counter to the "jump to" address; from 
the new address, the sequential progression of program execution resumes. 

Syllable 0 ~ 
Word 0 Syllable 1 I 

Syllable 2 I 

Syllable 3 , 
Syllable 0 

Word 1 Syllable 1 t "'"'~ ..--.- .-........"..\.~" 

Syllable 2 , 
Syllable 3 Syllable 0 

Syllable 0 t Word 79 Syllable 1 
Word 2 Syllable 1 ~ '---~ Syllable 2-, 

"Branch to 79-2" Syllable 3 ,t 
Syllable 0 ,. 

Word 80 Syllable 1 t 

~-- Syllable 2 , 
----.... - ..... ---Fig. 1-2 Showing Sequential Program Execution and the 

effect of using the "Branch to 79-2" instruction. 

To illustrate how the Computer functions in executing a program, the following example shows the 
individual program steps necessary to make the Computer perform as an adding machine. Although 
actual instructions are not used, each line of the "program" below represents a function that can be 
performed by one instruction and is related to one syllable of a memory word; 

Printed in U. S. America Part II For 1034006 



1. 3 Con't. 

Word 0 

-Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

OPERATION AND PROGRAMING MANUAL - TC 500 

PROGRAMING AN ADDING MACHINE ROUTINE 

INITIALIZE: 

START: 

LISTING: 

SUBTOTAL: 

TOTAL: 

Clear Memory Location for Total 
Load Print Format Mask 
Load Program Key Table 
Position Print Head to print amount 
Enable selection of Program Keys * 
Enable Numeric Listing with RE possibilities 
Print amount: red if minus 
Print "+" if Ius 
Print "-" if minus 
Add amount for Total 
Space up 
Return to START 
Bring in Total to Print Area 
Print amount: red if minus 
Print "0" if plus 
Print "c" if minus 
Space up 
Return to Start 
Bring in Total to Print Area 
Print amount: red if minus 
Print "*,, if plus 
Print "CR" if minus 
Clear Total in Memory 
S ace u 
Return to Start 

* Subtotal Program Key, bypass Listing and go to Subtotal Routine; 
Total Program Key, bypass Listing and go to Total Routine; 
otherwise, go to Listing Routine 

Fig. 1-3 Showing Programing Steps Necessary to Make 
the Computer Act as an Adding Machine. 

1.4 INSTRUCTION FORMAT 

Each instruction occupies four digits of a word, and is represented in memory by data consisting of 
Hexadecimal Codes (Hexa=6, Decimal=lO.) Since each digit contains 4 bits, there are 16 possible 
combinations or codes in one Hexadecimal digit or 65,536 possible combinations in 4 digits 164 • 

8 0 0 0 0 0 0 0 0 • • 
4 0 0 0 0 • • • • 0 0 

Bits 2 0 0 • • 0 0 • • 0 0 

1 0 • 0 • 0 • 0 • 0 • 

Decimal "0 " "I" "2" "3" "4" "5" "6/1 "7" "8" "91~ 

Number 

Binary Coded Decimals 
(Note: Anything beyond a "9" is an error.) 



OPERATION AND PROGRAMING MANUAL - TC 500 1.4 

8 0 0 0 0 0 0 0 0 • • • • • • • • 
4 0 0 0 0 • • • • 0 0 0 0 • • • • 

Bits 2 0 0 • • 0 0 • • 0 0 • • 0 0 • • 
1 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 

Decimal "Oll "111 "2" "311 "41/ 1/5" 11611 lit' "811 119 11 "10'"'11" "12 II "131l 111411 "15" 
Number 

Hexadecimal 110 " "1" /J21J 113" "411 " 5" 1/6" 117" " 811 "9 11 "AU liB" IIC" liD II "E" "FII 

Code 

Binary Coded Hexadecimal 
(All possible Bit Configurations are used) 

Fig. 1-4 Binary Bit Configurations 

This is the "machine" language or "object" program coding, and provides maximum utilization of 
memory for program storage. The coding is used infrequently during programing, but familiarity 
with it is required during program debugging. 

The letters "A" through "F" are used to provide single character representation for hexadecimal 
digits with values from I 0 through 15. 

The instruction set for the Computer is expressed in Mnemonic (symbolic) codes, which permit a 
logical association of meaning, and in word addresses or other numeric parameters expressed decimal­
ly. After writing a program in this symbolic code, the programmer "Assembles" his program with a 
special software program which performs the function of converting hIS mnemonic coding to "machine 
language" hexadecimal coding. 

The instruction, in mnemonic form, consists of an Operation Code and parameter fields. The opera­
tion code signifies the type of function, such as add or subtract. The parameter fields designate the 
word address, syllable, or other information needed to qualify the instruction. Three parameter 
fields are provided (A, B, and C); however, some instructions require no parameters, others require 
from one to three. 

The following examples illustrate the instruction format: 

Op Code A B C 

Add contents of accumulator 
into memory word 243: ADM 243 

Skip 3 instructions if accumulator 
sign flag is minus: SK A -(minus) 3 

Branch unconditionally to word 65, 
syllable 2: BRU 65 2 

The discussion of each instruction in the following sections will indicate the range or limits of each 
parameter field by showing the smallest and largest number permitted; such as from 0 to 15, as 
"0: IS". 

For example: 

ADM can select any word from 0 to N; thus is shown: 
BRU can select any syllable of any word; thus is shown: 

*N = high order word available in Normal Memory. 

Printed in U.S. America Part II 

ADM O:N 
BRU O:N 0:3 

For 1034006 



1,5 OPERATION AND PROGRAMING MANUAL - Ie 500 

1.5 ACCUMULATOR 

The system contains one word of memory which is called the Accumulator. It also contains 16 
digits (or 15 digits and sign), but it is separate from the Normal area of memory set aside for the 
programmer ("N" words). It is not addressed by a word number, but rather, access to it is a function 
of certain instructions. It is a working memory location for the movement of data from one area to 
another. It receives all numeric data entered through the keyboard including the keys that set ac­
cumulator flags; it must contain any numeric data to be printed; it can sum up several amounts 
(crossfoot) and store the result in another word; it receives the product or quotient of computations; 
it must be used to accumulate one word of data into another; and it can be used to move alphanu­
meric information from one word to another. Certain of the instructions automatically destroy any 
prior contents of the Accumulator. 

When numeric data is being stored in memory, whether in the Accumulator or in any other word of 
memory, the word contains the following characteristics: 

NUMERIC WORD - (15 digits) 

MSD LSD 

I Flags I J-4 113 112 III 110 I 9 8 7 6 5 4 3 --
4 bits 

1.6 FLAGS 

The system contains 28 Flags which serve as a signal that certain conditions exist (such as minus 
data in the Accumulator) or that certain functions have occurred (such as depression of the Per 
Hundred "c" key). When such is the case, the flag is "Set"; when the condition does not exist or 
function has not occurred, the flag is "Reset". The "Setting" or "Resetting" of some flags is per­
formed automatically by the system. However, most all flags may be "Set" or "Reset" by program in­
structions to permit "Recall" of certain conditions at a later point in the program. Instructions are 
provided so the program can interrogate or "test" each flag to enable selecting an alternate path of 
instructions when appropriate. 

Each flag consists of one "bit". When the bit is "on", the flag is "Set"; when the bit is "off", the 
flag is "Reset". 

Let's look again at the Numeric Word and see the Accumulator Flag positions specified: 
NUMERIC WORD - (15 digits) 

MSD 

IMlclsFl14I 13 112 III 110 I 9 
8421 ----BITS 

Accumulator 
Fiags 

8 7 6 5 1 4 I 3 

(M) Per Thousand 
(C) Per Hundred 

LSD 

2 1 I 0 I --
4 bits 

(S) Special 
(-) Minus or Negative 

If we were to examine the bit configuration for the flags, they would be represented as follows: 

H 
0 0 0 • 
0 0 • 0 

Bits (- ) 0 (S) • (C) 0 (M) 0 

• 0 0 0 



OPERATION AND PROGRAMING MANUAL - TC 500 1.7 

1.7 CATEGORIES OF INSTRUCTIONS 

The instructions in G.P. 300 Programing Language are divided into the following groups for explana­
tion and discussion. 

Keyboard Instructions. Instructions permitting the use of the numeric and alphanumeric keyboards. 

Printer Instructions. Those instructions for the printing of numeric and alphanumeric data, charac­
ters, symbols, print formatting, and printer positioning. 

Forms Handling Instructions. Those instructions for opening and closing the forms transport, ad­
vancing one or more forms, and counting and limiting the lines on forms. 

Arithmetic Instructions. Those instructions for adding, subtracting, multiplying, dividing, transferring 
(clearing and adding), clearing, accumulator shifting (right and left), insertion or loading of constants. 

Flag Instructions. Those instructions pertaining to the setting, changing or resetting of accumulator 
flags, test flags, OCK flags, tape/card reader flags, tape/card punch flag, general purpose (X and Y) 
flags. 

Index Register Instructions. Those instructions for loading, incrementing, decrementing, adding to 
Index Register and modifying other instructions with Index Registers. 

Branch Instructions. Those instructions used for unconditional branching and jumping to or return­
ing from subroutines. 

Skip and Execute Instructions. Those instructions for Skipping or Executing instructions based on 
flag settings or accumulator conditions, such as zero or less than a constant. 

Paper Tape (and Edge Punch Card) Reader. Those instructions that control the paper tape reader 
when it is used as Data Input into the computer. 

Paper Tape (and Edge Punch Card) Punch. Those instructions that control the punching of data into 
paper tape for later rehandling by the Computer or for relaying to a Service Center for processing. 

Tab Card Reader. Those instructions that control the Card Reader when it is used as Data Input 
into the Computer. 

Tab Card Punch. Those instructions for punching data into Hollerith cards for later rehandling by 
the Computer or for processing by another computer. 

Data Communication. Those instructions for sending, receiving, and storing messages that are being 
transmitted over telephone lines or other communications networks. 

Printed in U.S. America Part II For 1034006 



2. 

2. 

OPERATION AND PROGRAMING MANUAL - TC 500 

Fig. 2-1 Console Keyboard 

KEYBOARD INSTRUCTIONS 

The keyboard of the Computer Console is comprised of three sections: 

Numeric Keyboard with Operation Control Keys 
Typewriter Keyboard with Operation Control Keys 
Program Keys and Indicator Lights 

Separate instructions are utilized to control each section. These instructions and the functions of 
the three sections are described in the following paragraphs. 

2.1 KEYBOARD BUFFER 

To facilitate throughput of this operator-attended Computer, a Keyboard Buffer is available to allow 
the operator to continue to use the keyboard while the computer executes a program. This allows 
simultaneous use of the keyboard while program execution is underway, and permits several keyboard 
entries into the buffer at one time. 

As keyboard codes are indexed (from depression of numeric, alphanumeric, control keys or program 
keys), these codes are entered into a Buffer: 



OPERATION AND PROGRAMING MANUAL - TC 500 2.1 

This buffer (referred to as main buffer) is capable of containing up to seven characters. Just prior 
to execution of an instruction is a "fetch" phase and during this phase, the main buffer is interro­
gated. If it contains three or more characters, they are moved from the main buffer to a buffer 
extension area composed of four more seven character buffers. As each instruction is executed, the 
main buffer is interrogated and characters are moved to the extension buffers. 

When it is necessary to move data from the main buffer to the first extension buffer, it first moves 
any data in the first extension buffer to the second extension buffer etc.; then it moves the data 
from the main buffer to the first extension buffer. As succeeding data is to be moved, it continues 
to move data from one extension buffer to the next. In this manner, the first data entered from 
the keyboard is always in the highest numbered extension buffer and is kept track of by a "buffer 
pointer". When the program reaches a keyboard instruction and can act on the data entered, the 
buffer pointer indicates the location of data first entered and to be used first. Then it sequentially 
unloads the extension buffers and finally the main buffer until all information has been utilized. 

If each extension Buffer and the main buffer contained the maximum 7 characters, the combined 
buffers would contain 35 characters of data. However, since the buffers are continually interrogated, 
moving 3 or more characters, conceivably, only 19 characters could be in the buffers before they 
would be considered "filled" (3 characters in each of the 4 extension buffers and 7 in the main 
buffer = 19.) 

If the buffers are "filled", the system sound the alarm when the buffer is unloaded to the entry 
causing the filled condition. A depression of the RESET key will re-initiate the instruction where 
the error condition occurred, and the keyboard information must be re-entered. 

... 1 st 
extension 

buffer 

I keyboard I 
• - I main I I buffer 

2nd 3rd .. extension .. extension 
buffer buffer 

Fig. 2-2 Flow of Data from keyboard 
through buffer areas 

, 
4th 

extension 
buffer 

It has been stated that as part of each instruction, a "fetch" phase takes place and during this phase 
the buffer is interrogated. Note that certain instructions might delay this interrogation because 
the operation eliminates frequent fetch phases: 

Examples: 

When a very long Alpha message is being called for from a "Type from Memory" instruction: 
While the message is printing, no other instruction can be executed, thus no interr0gation of the 
buffer takes place. 

When "Position Print Head" instruction for a long distance is called for: While the head is 
positioning, no other instruction can be executed, thus no interrogation of the buffer takes place. 

In each of these examples, if the operator was indexing data on the Keyboard, only the main buffer 
is available since no interrogation or data moving takes place within the extension buffers, resulting 
in only 7 characters maximum buffering. Any characters exceeding 7 would cause the Alarm when 
that keyboard instruction was reached and the data would have to be re-indexed. 

Printed in U.S. America Part II For 1034006 



2.1 Con't OPERATION AND PROGRAMING MANUAL.;. TC 500 

If the buffer extensions and the main buffer are filled and additional data is indexed, an error con­
dition will not occur at the instant of filling the buffer. The program will continue to execute in­
structions, transferring data from the buffer until the character which caused the buffer to become 
filled is reached. At this point, an error condition will occur. A depression of the Reset key 
(see 2.4.0 I) will reinitiate the instruction during which the error condition occured, the keyboard 
information must be re-entered for that instruction and the program continues: 

Example: 

Between instructions 1 and 7 (see below), the operator entered these separate items, (54212; 
2456; 15726; 345632) which were loaded in the buffer as indicated; the last item of data filled the 
buffer before all the digits were entered: 

# 1------* 

# 2 -----------* 

# 3------* 

# 4 -----------* 

# 5 ---------* 

# 6 ---------* 

# 7 NK 5 0 
# 8 PN 4 1 
# 9 POS 6 0 
#10 NK 5 0 
#11 PN 4 1 
#12 POS 7 0 
#13 NK 5 0 
#14 PN 4 1 
#15 POS 8 0 
#16 NK 80 

( "542" moved to buffer area) 

0" ( "12 c moved to buffer area) 
K 

( "24" not moved) 

o 
( "2456c" moved to buffer area) 

K 

( "157" moved to buffer area) 

( "26~ 3456 BUFFER FILLED 32") 

( unloads 54212) 
( prints 542.12) 

( unloads 2456) 
( prints 24.56) 

( unloads 15726) 
( prints 157.26) 

(Buffer Ext. 4)"'* 

(Buffer Ext. 3)** 

(Buffer Ext. 2)** 

(Buffer Ext. 1)** 

(Main Buffer) ** 

(ERROR ALARM SOUNDS after unloading 3456) 

* ,,----- " indicate various Instructions other than Keyboard Instructions. 
** This is the way the Buffers appear after Instruction #6 was executed. 

Note that all keyboard indexed data was handled correctly except for the last data when the Buffer 
was filled. When the Alarm sounded, program execution stopped on Instruction # 16 and only that 
instruction data needed to be re-indexed (345631). 

If any of the keyboard commands were violated (too many digits or characters, or unenabled "RE" , 
"e" or "M", or program keys where the instruction does not call for them) the Alarm would sound 
when the character that caused the error is reached. Program execution would stop on that in­
struction. A depression of the RESET key will reinitiate the instruction during which the error con­
dition occurred, the keyboard information must be re-entered for that instruction and the program 
continues. 

The buffer is also checked during any line advance instruction (section 4), after each line spacing 
takes place. If the instruction calls for 6 spacings, the buffer will be examined 6 times. This opera­
tion will permit 7 characters to be loaded into each buffer extension word. 



OPERATION AND PROGRAMING MANUAL - TC 500 2.2 

2.2 NUMERIC KEYBOARD 

A Numeric Keyboard instruction lights the Numeric Keyboard Indicator Lamp when the instruction 
is active, and it permits use of the following keys (see Fig. 2-4): 

Numeric 0 through 9 (on either numeric or typewriter keyboard) 

Double Zero (00) and Triple Zero (000) 

Decimal Point 

Reverse Entry (only with specific Numeric Keyboard instructions) 

Per Hundred (C), Per Thousand (M) (only with specific Numeric Keyboard 
instruction) 

Operation Control Keys (OCK's) 1, 2, 3, and 4 

Program Keys (PK's) (when enabled by previous instruction) 

Reset 

Open/Close (in typewriter section) 

Line Advance (in typewriter section) 

Ready Push Button 

If any other key is used, the Error Indicator is turned on and the program halts prohibiting the 
completion of the keyboard instruction 

o 0 

Fig. 2-3 Indicator Lamps 

~ • [] @] 0 
R CD E 
S 
E 0 T 8(000] __ __ 

Fig. 2-4 Numeric Keyboard 

Printed in U.S. America Part II For 1034006 



2.2.01 OPERATION AND PROGRAMING MANUAL - TC 500 

2.2.01 Numeric Keyboard Instructions 

The four Numeric Keyboard instructions below provide for entry of a maximum of 15 digits of 
numeric information into the accumulator. The "A" field specifies the maximum number of digits 
permitted to the left of the decimal point; the "B" field specifies the maximum number of digits 
permitted to the right of the decimal point. Depression of any OCK or any enabled PK (refer to 
2.5) termiriates the keyboard instruction and continues to the next instruction. Use of the Reverse 
Entry (RE) key, the Per Hundred (C) key, or the Per Thousand (M) key is permitted only with 
certain of the instructions as indicated. 

NOTE: Printing the data is.!!2!. part of the Numeric Keyboard instruction. With.aU. Numeric in­
structions listed below, if printing is desired, they would be followed with a print numeric instruc­
tion (section 3). It is not necessary that the print instruction follow immediately, but may be pro­
gramed at any subsequent point so long as the data is still in the accumulator (print occurs from the 
accumulator.) If a position instruction (POS - see section 3) is programed prior to the Numeric 
keyboard instruction, the numeric instruction causes the printer to move to the position specified 
although print will not occur until a print instruction is called for. 

Following are the numeric keyboard instructions: 

Op Code A B 

Numeric Keyboard NK 0: 15 0: 15 

Numeric Keyboard, permit Reverse Entry Key NKR 0:15 0: 15 

Numeric Keyboard, permit C, and M Keys NKCM 0: 15 0: 15 

Numeric Keyboard, permit Reverse Entry, C and M Keys NKRCM 0: 15 0: 15 

2.2.02 Numeric Data 

Data is entered using the numeral keys of the Numeric Keyboard, including the Double Zero (00) 
and Triple Zero (000) keys. Data may also be entered by using the numeral keys on the Typewriter 
keyboard. During the same instruction, these keys may be used from either keyboard alternately or 
in any sequence. The digits of a number are entered from left to right (most significant digit first). 
After the digits of the whole number have been entered, a decimal fraction is entered by depressing 
the Decimal Point key followed by the digits of the fraction. 

Example: 12.875 is to be entered on the numeric keyboard 

The "1" is entered first, followed by the "2". Then the decimal point key is depressed followed by 
the indexing of the "8", the "7", and finally the "5". . 

Note: Monetary amounts (dollars and cents) are normally treated as whole numbers for the purpose of listing the 
digits. Rather than depressing the decimal point key between dollars and cents with each entry, the decimal point 
is inserted by the print instruction (see section 3.4). 

The maximum number of digits that may be stored in the accumulator is determined by the sum of 
the "A" and "B" fields of the numeric keyboard instruction. The "A" field determines the maximum 



OPERATION AND PROGRAMING MANUAL - TC 500 2.2.02 

number of digits permitted prior to the Decimal Point key recognition. The "B" field determines 
the number of least significant digit positions allotted for decimal digits, and in effect, it places a 
phantom decimal point in the accumulator. This corresponds to the maximum number of digits 
permitted following the use of tl1e Decimal Point key. 

The phantom decimal point is so named because a decimal key depression does not put a decimal 
point code in the accumulator. It simply denotes the end of a "whole number" entry and begins 
the "fraction" entry, thus the decimal point is assumed although not physically in the accumulator. 
The Print Mask inserts the decimal to be printed in the desired location (See 3.4.06). 

If either the "A" or "B" limits are exceeded, the keyboard Error Indicator is turned on and the 
Alarm bell sounds, halting the program. If no digits are indexed, the accumulator is cleared. 

Depression of the Double and Triple Zero keys produce the effect of double or triple depressions 
of the Zero key, that is, two or three zeros respectively are stored in the accumulator. 

Under control of the "A" field, the programed number of digits enter the accumulator. Although 
the "B" field specifies how many digits can be entered to the right of the phantom decimal, it so 
happens that it specifies the digit position where the whole number enters the accumulator. The 
entry of each whole number digit causes the previously indexed digits to shift left one digit position 
permitting the digit to enter the vacated digit position. A Zero key depression counts as a digit 
even if used as the most significant digit entry; the Double and Triple Zero keys act in the same 
manner, counting two or three digits respectively. 

Under control of the "B" field (following recognition of the Decimal Point key), the first digit is 
entered in the first position to the right of the phantom decimal point, the second digit in the second 
position, etc. A zero counts as a digit even if entered as the last digit after the decimal point key. 
It is not necessary to depress the Decimal Point key if there are no decimal digit entries, even though 
the "B" field permits decimals. When the "B" field is zero, the Error light will not light if the 
decimal point key is depressed without ensuing digit keys. -

For Example: 

Op Code 

NK 
A 

5 

and the operator indexes the numbers 

13256 

Here's what happens: 

B 

2 

The MSD "1" is indexed, and enters the accumulator at digit position 2. The next digit "3" is in­
dexed, and enters the accumulator at digit position 1. and shifts the "1» to digit position 3. The 
third digit "2" is indexed, shifting the "1" to digit position 4 and the "3" to digit position 3. The 
accumulator now contains: 

Accumulator 
Digit Position 

Data 

Printed in U. S. America Part II For 1034006 



OPERATION AND PROGRAMING MANUAL - TC,500 

The decimal key is now used and a "5" is indexed entering the accumulator at digit position 1 (B 
field minus 1.) The accumulator now contains: -

The second decimal digit "6" is indexed and enters the accumulator at digit position 0 (B field 
minus 2.) The instruction is terminated and the accumulator now contains: 

ACcumulator 
Digit Position 

Data 

If the same instruction is executed by indexing the same five digits and the decimal key is not used, 
all five digits will enter the accumulator at digit position 1. and will shift left, as previous explained, 
as each successive digit is indexed. When the instruction is terminated, the accumulator will contain: 

2.2.03 Accumulator Flags: 

The Accumulator digit position 15 contains 4 flags designated "minus" (-), "special" (S), "per hun­
dred" (C), and "per thousand" (M). These four flags are always reset ("off') at the start of any 
numeric keyboard or numeric entry instruction. 

The -, C, or M flags may be set ("on") if the particular keyboard instruction enables' the use of their 
related keys (RE, C, & M: respectively), and if the operator depresses these keys during the instruc­
tion. 

The Special flag ("S") cannot be set by depression of any keyboard key. Control of this flag is 
accomplished by the Flag set/reset instructions (See Section 6) which also can be used to set/reset 
the -, C & M flags. 

The settings of the four flags transfer with the data from the accumulator to memory, and from 
memory back to the accumulator (See 5.2), and thus can be retained for future use in the program. 



OPERATION AND PROGRAMING MANUAL - TC 500 2.2.05 

2.2.04 Reverse Entry Key 

Use of the Reverse Entry Key is permitted only with an NKR or NKRCM instruction. Depression of 
the RE key during one of these instructions enables the entry minus data, as it causes the Accumulator 
"minus" (-) flag to be set (Accumulator Minus). This, in effect, allows a minus keyboard entry as 
one of its uses since normal keyboard amounts are plus. The RE key may be depressed in any se­
quence with the data digits, since it only sets the flag and does not interfere with the digits being 
entered. 

8 7 6 5 4 3 2 1 0 
("on Sign fllu! is turned 

"ON" when RE key is 
used with Numeric 
Keyboard) 

If the RE key is not depressed during Numeric Keyboard instructions, the Accumulator sign flag is 
reset (Accumulator is Plus). 

Use of the Reverse Entry Key with an NK or NKCM instruction turns on the Error Indicator and 
sounds the alarm, halting the program (refer to 2.2.06). 

2.2.05 Per Hundred (C) and Per Thousand (M) Keys 

The use of C and M keys is permitted only with an NKCM or NKRCM instruction. Depression of the 
C key sets the C flag in the accumulator; and depression of the M key sets the M flag in the accumu­
lator. Depression of both keys in the same instruction will set both flags (bits are "on"). If either 
or both keys are not used, the corresponding flags are reset (bits are "off"when an OCK or PK 
terminates the instruction. 

Use of either the C or the M key with an NK or NKR instruction turns on the Error Indicator and 
sounds the Alarm, halting the program (refer to 2.2.06). 

lif~I-114 113 112 III 110 1 9 I 8 I 7 I 6 I 5 I 4 1 3 2 1 D I ("M" and/or'''C'' bits are "ON") 

Whenever a keyboard instruction enables the use of the C and M keys, and they are indexed, they 
will only set a flag in the accumulator flag position. At that point, they have no effect on the 
decimal positioning of the value. It is necessary to make provisions in the program to check whether 
these flags have been set so that either the value can be shifted after multiplication, or the shift 
register (section 5) can be set accordingly for multiplication. It is necessary to check both flags 
so that the program can determine which key (or keys) have been used. 

Printed in U. S. America Part II For 1034006 



2.2.06 OPERATION AND PROGRAMING MANUAL - TC 500 

2.2.06 Keyboard Error Light (Numeric Keyboard Instructions) 

As mentioned above, the Keyboard Error light is turned on when any of the following conditions 
occur: 

a. Depression of a numeral key which causes the amount indexed to exceed either the maximum 
number of digits permitted by the "A" field or the maximum number of decimal digits per­
mitted by the "B" field of a numeric keyboard instruction. 

b. The RE, C, or M key is depressed during a numeric keyboard instruction that does not permit 
their use. 

c. A typewriter key is depressed (other than keys 0 through 9, open/close key, line advance key, 
or the typewriter OCK's) during a numeric keyboard instruction. 

d. A Program Key is depressed which has not been enabled (refer to 2.5.02). 

e. The numeric keyboard instruction is initiated when the capacity of the keyboard buffer has 
been exceeded and when the valid codes in the buffer do not terminate the instruction. 

The Keyboard Error light, once turned on by any of the above conditions, remains on through con­
tinued keyboard entry and is turned off only upon depression of the Reset Key (see 2.4.01) or the 
Ready push button. When the Keyboard Error light is on, all keys are disabled from performing 
their function, except the Reset or the Ready push button. The entire entry must be reindexed fol­
lowing use of the Reset key. 

In the case of an overloaded buffer, the Reset key must be depressed after the error indicator occurs. 

2.2.07 Numeric Keyboard Programing Considerations 

Numeric Keyboard instructions do not cause printing. They only allow numeric information to be 
entered into the accumulator and/or memory. To print, a print command must be specified (refer 
to section 3). 

Although the decimal key is depressed to end a whole number and start the fractional entry of an 
amount, the decimal key does not enter a code into the accumulator. It simply determines where, 
in the accumulator, the digits are entered. The Print Mask will physically cause the decimal point to 
print properly. 

Typical uses of Numeric Keyboard instructions: 

Numeric Keyboard (NK): 

Allows indexing of any number - Invoice number, Reference Number, Check Number, Product 
Number, etc. Entry of plus data is enforced with this instruction. 

Numeric Keyboard, Permit Reverse Entry (NKR): 

Allows indexing of an amount - accounting entries (dollars and cents), quantities, units, etc. -
where both plus and minus accumulations or Arithmetic are received. 

Numeric Keyboard, Permit Per C, Per M (NKCM): 

Allows indexing of a Price or Cost figure that would be influenced by Per Hundred or Per 
Thousand factors. Entry of plus data is also enforced with this instruction. 



OPERATION AND PROGRAMING MANUAL - TC 500 

Numeric Keyboard, Permit Reverse Entry, Permit Per C, Per M (NKRCM) 

Allows indexing of Prices, Cost figures, Quantities, etc., where both Per Hundred and Per 
Thousand factors must be considered and Reverse Entry Arithmetic must be available. 

2.3 TYPEWRITER KEYBOARD 

o • 000 000 000 0 0 0 0 0 0 

Fig. 2 - 5 Indicator Lamps 

2.3 

A Typewriter Keyboard instruction lights the Typewriter Keyboard Indicator Lamp (ALPHA) when 
the instruction is active, and it permits use of the following keys (see Fig. 2-6): 

Typing (44 Keys: 44 lower case characters; 
20 upper case characters) 

Shift 
Space 
Backspace 
Open/Close 
Line Advance 
Operation 
Control Keys (OCK's) (on both keyboards) 
Enabled Program Key (AI through A8, BI through B8) 
Reset 
Ready Push Button 

If any other key code is processed, (because of incorrect operator key depression) the error indicator 
is turned on. 

Fig. 2-6 Typewriter Keyboard (United States) 

Printed in U. S. America Part II For 1034006 



2.3.01 OPERATION AND PROGRAMING MANUAL - TC 500 

2.3.01 Typewriter Keyboard Instructions: 

The following are the Typewriter instructions: 

TK Type 
TKM Type Into Memory 
EAM Enter Alpha into Memory (Non-Print) 

The type instruction provides for typing and printing (except EAM) a maximum of 150 alpha­
numeric characters. It is completed by the depression of an OCK or an enabled PK (refer to 2.5). If 
an OCK is used, it sets its appropriate "Flag" which can be tested further in the program (until 
reaching another Keyboard instruction.) Printing of the first character will begin at the position 
of the print head. If printing in a specified area is desired, the print head must be pre-positioned 
to the beginning left-hand positon of the area before the Typewriter instruction is reached in the 
program. Each character typed escapes the print head l/lOth inch. This position is recorded in 
the "Position Register." The length of the printed field must be less than or equal to the value 
contained in the "A" field. The maximum field is 150 characters ("A" = 150). If typing of more 
than the number of characters specified in the "A" field is attempted, the Error Indicator is lit, and 
further typing is prevented. 

After this error condition, the depression of the Reset key effectively cancels the keys depressed in 
error, permitting the use of an OCK or enabled PK. If Reset key is depressed during a Type instruc­
tion without an error condition, the instruction will be re-initiated, and the print head will return to 
the start (see 2.4.01). 

A Typewriter instruction that prints will print with the ribbon in the black color position, unless it 
was preceded by a Red Ribbon (RR Section 3) since the last printing operation, in which case the 
Typewriter instruction prints in red. 

If the Ready push button is depressed before, or during, the execution of any Typewriter instruction, 
any characters still in the keyboard buffer will be ignored, and the system will return to the ready 
mode. 

The three Typewriter instructions and their specifk functions are reviewed below: 

2.3.02 Type Instruction 

Type 

Op Code 

TK 

A B 
0:150 

The Type instruction provides for typing and printing a maximum of the number of alphanumeric 
characters specified in the A field. It is completed by the depression of an OCK or an enabled PK (2.5). 

2.3.03 Type Into Memory Instruction 

OP Code 
Type into Memory TKM 

A B 

0:150 

The Type into Memory instructions (TKM) differs from the Type instruction (TK) in that, in ad­
dition to printing alphanumeric information, the characters are also stored in memory. Note that 
the space character (escape) is considered a print character in that it too stores a code in memory. 
However, the codes for Backspace, Open/Close, Line Advance, OCK's, and Program Keys are not 
stored in memory. 



OPERATION AND PROGRAMING MANUAL - TC 500 2.3.05 

The code, for each key depressed before instruction termination, is stored in memory with the first 
character ·stored in the most significant character location of the word specified by the Keyboard 
Base Register. (See 2.3.06 for loading the Keyboard Base Register.) Up to 8 characters can be 
stored in a single memory word: 

ALPHA WORD - (8 Characters) 

MSD LSD 

o 1 2 3 4 6 7 

8 bits 

If typing continues beyond 8 characters, the information is entered in the next sequential word of 
memory. When the instruction is terminated (by depression of an OCK or an enabled program key), 
an "end alpha" code (value of 00) is entere~ in the character position following the last character 
stored and the remainder of the word is filled with zeros. Thus, if 8 characters are typed, the End 
Alpha code is entered in the first position of the next memory word in sequence. (Note that all 8 
characters of this second word are set to zero.) A maximum of 150 alphanumeric characters can be 
stored in memory in a single typing sequence. 

The depression of the Backspace key effectively removes the last typing key code from memory. 
Backspacing does not occur past the first typing position. 

On a TKM instruction, the first word is not cleared immediately. The termination of the TKM in­
struction with an OCK will clear the unused portion of the word, but until such action is taken the 
word contains whatever is in it from the last time it was used. If no typing is done and the TKM in­
struction is terminated by an OCK, the word is all clear. If the number of characters typed to Mem­
ory is such that the next word is referenced, that word will not be cleared until an OCK is used. If 
exactly 8 characters were entered and then an OCK was used, the 2nd word would contain all zeros. 

2.3.04 Enter Alpha Into Memory Instruction 

Enter Alpha into Memory 

Op Code 

EAM 

A 

0:150 

This instruction is identical to the TKM instruction except that no printing occurs, the print head 
does not escape, nor does the Position Register advance. 

2.3.05 Typing, Space, Backspace, Shift Keys 

Recognition of any of the typing key codes causes the corresponding character to be printed. 

The hyphen/underline key has a second actuation point which causes the key to repeat at the key­
board cycle rate (15.5 codes per second) until the key is released. 

The space bar causes the printer-carrier to escape 1/10" to the right. When the key is depressed to 
a second actuation point, it is repeated at 15.5 spaces per second until the key is released. 

The backspace key causes the printer-carrier to space 1/10" to the left. When depressed and held to 
a second actuation point, it repeats at 15.5 spaces per second until the carrier reaches the location at 
which it began for this Type instruction or until the key is released, whichever is first. 

On TKM and EAM (see above), each backspace code erases one character of the alphanumeric entry 
into memory, unless there is no character to erase. 

Printed in U. S. America Part II For 1034006 



2.3.06 OPERATION AND PROGRAMING MANUAL - TC 500 

Recognition of either shift key with a key having an upper case character causes the corresponding 
upper case character to print. Keys having only lower case characters when used with a shift key 
cause the lower case character to print. 

Control keys I and 2 used with a shift key cause the corresponding function for control keys 3 and 
4 to be performed. 

On consoles with split platen, depression of a shift key with the Line Advance Key causes the right 
platen to advance; without shift key, the left platen advances. 

Repeating keys repeat the code of the upper case character at 15.5 codes per second when used with 
a shift key. 

2.3.06 Load Keyboard Base Register 

Load Keyboard Base Register 

Op Code 

LKBR 

A 

O:N 

B 

The LKBR instruction specifies the starting memory location into which information will be trans­
ferred for all succeeding TKM and EAM instructions (until another LKBR instruction is executed). 
The "A" field specifies the word location. 

The keyboard base register contains the data that is loaded into it until a subsequent LKBR instruc­
tion loads new data into it. 

2.3.07 Keyboard Error Light (Typewriter Keyboard Instructions) 

The keyboard error light is turned on when any of the following conditions occur: 

a. Type instruction is initiated and valid codes in the buffer do not include a code to terminate 
(OCK, PK) the type instruction prior to the signal that the buffer capacity has been exceeded. 

b. A key on the numeric keyboard is depressed when executing the Type instruction. 

c. More than the number of keys specified by the "A" field have been depressed. 

d. A non-enabled program key is depressed. 

When the keyboard error light is on, no key except the Reset key (see 2.4.01) and the Ready push 
button will perform its function. 

If the Ready push button is depressed prior to, or during the execution of, a Typewriter instruction, 
any characters still in the buffer will be ignored and the system will return to the Ready mode. 

2.3.08 Typewriter Keyboard Programing Considerations 

Typical uses of Typewriter Keyboard instructions are reviewed: 

Type (TK) 

This instructioll is used wherever an Alpha description is desired, but no storage of the data is 
necessary. Unlike the numeric instructions, TK prints as typing is accomplished. 



OPERATION AND PROGRAMING MANUAL - TC 500 2.4.03 

The following two instructions must be preceded by an LKBR instruction to identify the word in 
memory where Alpha is to be stored: 

Type into Memory (TKM) 

This instruction is used when an Alpha message is desired several times during a program. As an 
example, when continuation forms are necessary to complete a customer's invoice during billing 
it is often desired to repeat the customer's name on each form. TKM is programed when the 
name is typed on the first page; the name then prints from memory automatically (by program) 
on each succeeding page. 

Enter Alpha into Memory (EAM) 

This instruction would be desireable when typing to memory must be suppressed from printing 
at the time typing is done, although it is to be called for later in the program and printed at 
that time. 

2.4 MISCELLANEOUS CONSOLE KEYS 

2 •. 4.01 Reset Key 

Depression of the Reset key at any time during a Numeric Keyboard instruction re-initiates that 
instruction and clears all previous entries that pertain to that instruction. If the Error light is on, 
it is turned off. 

The depression of the Reset key will re-initiate a Typewriter Keyboard instruction and position the 
print head to the start position, if the system is not in an error condition. If the system is in an 
error condition, depression of the Reset key will remove the error condition; the head will not move. 
If the system is in an error condition and it is desired to re-initiate the TK instruction, 2 depressions 
of the reset key are required. 

On the TKM and EAM instructions, the Reset key will remove an error condition (if one was present) 
without moving the print head. If Reset k~y is depressed when no error is present, such as a second 
depression following an error key, the instruction is re-initiated, causing the print head to return to 
the starting position for that instruction. 

2.4.02 Open/Close Key 

Depression of this key causes the forms transport to open if closed, or close if open. The Open/ 
Close key is operative in Ready mode and during Keyboard instructions, both alpha and numeric. If 
this key is depressed following the opening of the transport by an Open Instruction, the transport 
closes and advances the number of lines specified by the Open Instruction (see 4.1.01). 

2.4.03 Line Advance Key 

A single depression of this key causes the forms contained within the forms transport to be vertically 
spaced 1/6". Depression to the second actuation point causes spacing repeatedly at 15.5 lines per 
second until the key is released. Each 1/6" line advance resulting from depression of this key in­
crements the associated Forms Count Register. The Forms Count Register is used to determine pro­
grammatically certain positions on a form, and is discussed in section 4. 

On machines equipped with split platens, holding down the Shift Key while depressing the Line Ad­
vance Key advances the right platen; without the Shift Key, the left platen advances. 

Advance Key is operative in the Ready mode and during Keyboard instructions, both alpha and 
numeric. 

Printed in U. S. America Part II For 1011,006 



2.5. OPERATION AND PROGRAMING MANUAL- TC 500 

2.5 OPERATION AND PROGRAM CONTROL KEYS 

The system contains Operation Control Keys (OCK's) and Program Select Keys (PK's) both of which 
terminate keyboard instructions and permit operator direction of the program. 

2.5.01 Operation Control Keys (OCK's) 1,2,3,4 (See Keyboard Diagram Fig. 2·3) 

Depression of any of the Operation Control Keys (on either the Numeric or Typewriter Keyboard) 
terminates the Numeric or Typewriter Keyboard instruction, sets the corresponding OCK flag, resets 
the other OCK flags, and causes the next instruction in the program to be executed. All Program 
Key Indicators are turned off (see 2.5.02). 

Each Control Key has a flag associated with it in the system. When the flag is set, it is "turned on"; 
when reset, it is "off". By means of these flags, the system can "remember" (until the next key­
board instruction) which OCK was depressed, and therefore permit directing the program to alternate 
routines when required. Instructions are provided to check these flags, and will be discussed in a· 
following section. 

There are only two OCK's in the typewriter keyboard. OCKI operated with the shift key becomes 
an OCK3 operation. OCK2 operated with the shift key becomes an OCK4 operation. 

2.5.02 Program Keys and Related Indicators 

Program keys (PK's) can be used to terminate Numeric or Typewriter Keyboard instructions. They 
may be used only when called for (enabled) by program instruction, which must be prior to the 
keyboard instruction: 

Enable Program Keys Instructions: 

Enable Program Key Group A 

Op Code 
PKA 

A 

1,2,3,4, 
5,6,7,8 

Enable Program Key Group B PKB 1,2,3,4, 
5,6,7,8 

B 

Program Key Group A refers to programs key A 1 through A8. Program Key Group B refers to pro­
gram keys B 1 through B8. Anyone or any combination of the eight keys of one group can be 
enabled by one instruction. 
Associated with each program key is a keyboard indicator light: 

Fig. 2-7 Program Key Indicator Lights 

The "A" field of the PKA or PKB instruction turns on the designated indicators and enables the 
appropriate PK. All indicators are extinguished at the completion of the next Numeric or Typewriter 
keyboard instruction, whether an enabled PK is used or an OCK is used. The use of a PK to termin­
ate a keyboard instruction resets all OCK flags. 

The function of a Program Key is to select and execute one instruction, programed and stored in an 
area of memory called a Program Key Table. This instruction is executed before resuming the normal 
instruction sequence in the program. Often the one instruction is a "Branch" instruction allowing the 
program to be directed to one of several routines or an alternate routine according to which PK was 
used. 

The instruction may not necessarily be a "Branch", however, if the program variation can be accom­
plished with one instruction, some other single instructions that may be used include "Load Index 
Register", "Print Alphanumeric", "Print Character", and "Set or Reset Flag" commands. Each of these 
commands will be discussed in later sections. 



OPERATION AND PROGRAMING MANUAL - TC 500 2.5.03 

The PKA or PKB instructions may enable any or all of the program keys. However, the keys that 
are enabled and the indicators that are lit are determined by the last PKA and/or PKB instructions 
executed since the last keyboard instruction. All PK's that are desired must be specified by the PK 
command for the group (PKA or PKB), as a later command calling for the same group will void the 
effect of the earlier command for that group. 

Example: If the program calls for PKA 2 and then subsequently calls for PKA 5 (Note both call 
for Group A), both instructions occurring between keyboard instructions, when the next keyboard 
instruction is reached, only the PKA 5 indicator will be 'lit and only the 5 key will be enabled. 
However, if PKA 2 is executed followed by a separate instruction PKB 5 (different Groups are 
called for), then both keys will have their indicators lit and both keys will be enabled. 

Depression of a non-enabled program key lights the error indicator and sounds the alarm without 
further executing the program. To reestablish the correct condition, the Reset key must be depres­
sed, which re-initiates the instruction (see 2.4.01). 

When in the Ready Mode, PK's AI, A2, and A3 have specially assigned functions and are always 
enabled (refer to Part I, 5.3). These functions take precedence over any functions programed for 
these keys in the PK table (only in the Ready Mode). 

2.5.03 Program Key Table Selection 

An instruction "Load Program Key Register" (LPKR) is used to establish the first word of a four 
word Program Key Table (16 instructions.) 

Op Code 

Load Program Key Base Register LPKR 

A 

O:N 

B 

The LPKR instruction loads the program key register with the contents of the "A" field. This 
register determines the location of the program key table in memory for all subsequent program key 
operations until another LPKR instruction is used. The "A" field is the starting word location, or 
base address for the four words in succession. 

Each PK has one instruction in the table. PKA 1 utilizes the "0" syllable of the first word (base 
address); PKA 2 utilizes the "1" syllable; PKA 3, the "2" syllable; PKA 4, the "3" syllable; PKA 5 
utilizes the "0" syllable of the second word of the table (base address + 1); PKA 6, the" I" syllable, 
etc.; PKB 1 utilizes the "0" syllable of the 3rd word (base address + 2); PKB 2, the "1" syllable, 
etc. 

1st word l 
(Base -!-
Address) 2 

3 

PKA I # 1 
PKA 2 # 2 
PKA 3 # 3 
PKA 4 # 4 

2nd word 0 PKA 5 # 5 
(Base T 
Address "2 

PKA 6 # 6 
PKA 7 # 7 

+1) 3 PKA 8 # 8 
3rd word 0 PKB 1 # 9 
(Base T 
Address 2" 

PKB 2 # 10 
PKB 3 # 11 

+ 2) 3 PKB 4 # 12 
4th word Jl-
(Base -!-
Address 2-
+ 3) 3 

PKB 5 # 13 
PKB 6 # 14 
PKB 7 # 15 
PKB 8 # 16 

There may be more than one Table in memory at a time for the PK's. The LPKR instruction must 
be used prior to changing the functions of the PK's, to establish which table will be active. To re­
establish the first table, another LPKR would be used to designate the appropriate words of memory. 

Printed in U. S. America Part II For 1034006 



2.6 OPERATION AND PROGRAMING MANUAL - TC 500 

The LPKR instruction is normally' programed at the start of a program in the "Initialize" routine, 
although as just discussed, it may be a part of the actual program. Normally, 16 PK's functions are 
adequate for a program. 

2.6 KEYBOARD ERRORS SUMMARY 

During the execution of a keyboard instruction, an error condition can arise as a result of an invalid 
key depression. When this occurs, the error indicator is illuminated and the alarm will sound. In all 
cases, depression of the Reset key removes the error condition. The causes and recovery from error 
conditions are described below. 

2.6.01 Numeric Keyboard 

Causes: 

The integer entry (number of digits preceding the decimal point) exceeded the number of digits 
specified by the "A" field of the instruction. 

The decimal entry (number of digits following decimal point) exceeded the number of digits specified 
by the "B" field of the instruction. 

The C (per hundred) or M (per thousand) key was depressed during the execution of an NK or NKR 
instruction. 

The reverse entry key was depressed during the execution of an NK or NKCM instruction. 

A typewriter key was depressed (other than Open/Close, Line Advance or Typewriter Numerics) 
during execution of any Numeric Keyboard instruction. 

A non-enabled program key was depressed. 

Recovery: 

The Reset key, when depressed, will remove the error condition, turn the error indicator off and re­
initiate the original keyboard instruction. 

2.6.02 Typewriter Keyboard 

Causes: 

The number of printable characters exceeded the number of characters specified by the "A" field of 
the instruction. 

A key on the numeric keyboard was depressed. 

A non-enabled program key was depressed. 

Recovery: 

One depression of the Reset key will remove the error condition, turn the error indicator off, and 
allow the execution of the instruction to be completed. 

A second depression of the Reset key will re-initiate the Type instruction including positioning the 
print head to the position it occupied at the beginning of the instruction. 

Ready Push Button: 

If the Ready Push button is depressed while in an Error condition, the error condition will be re­
moved and the system will return to the Ready mode. If Reset key is depressed while in the Ready 
mode, the instruction is re-initiated. 



3 

OPERATION AND PROGRAMING MANUAL - TC 500 3.1. 01 

PRINTING INSTRUCTIONS 

All printing is accomplished by a 64-character, serial ball printer riding horizontally in front of the platen 
on a mechanism, called a servo-carrier. Printing takes place one character at a time at the rate of 20 
characters per second. The basic character set is shown below. 

Printer Character Set 
United States 

1234567890 
ABCDEFGH 1 JK LM 
NOPQRSTUVWXYZ 
_=CRQ)~$%¢&''t ( )_ 
+ ~ () U}(; , :«, • 10 ! ? 

Instructions are provided to print in three modes: 1) Alphanumeric printing of data either from key­
board entry (see Section 2) or from memory. When printing in this mode, the left most digit position 
of the field is always the beginning print position no matter how long the Alphanumeric message 
(referred to as "left justified"). 2) Printing data either from keyboard entry or from memory. In 
this mode, the printer moves directly to the most significant digit present and printing of the numeric 
value is automatically "right justified" in the field; that is, the right hand digit (least significant digit) 
position is always aligned no matter how large the numeric value. 3) Printing of a single character, 
left justified, with the actual character specified by the instruction. Following are examples of each 
type of printing mode: 

Alphanumeric: 
I 
I Any Customer Name 
I 1234 Any Street 
I Any City, U.S.A. 
148152 

Numeric: 

1,250.00 I 
9.00 I 

.25 I 
6,345,786.41 I 

Single Character: 

,* 
IA 
j 

,@ 

I 
t "Left justified" 

3.1 PRINTER POSITIONING 

"Right justified" t t "Left justified" 

The Serial Ball Printer (hereafter referred to as the "Printer" or "Print Head") can be positioned, by 
instruction, to any of the positions "1" through "ISO" (left to right) on the IS" platen prior to the 
print instructions at an average speed of 20" per second. A printing sequence or positioning instruc­
tion that attempts to position the printer beyond position" 150" will cause the System to go to the 
"Ready Mode". The direction of positioning can be to either the right or left, depending on the 
prior position of the pririt head. 

Before printing data in any of the three modes, the left most position of the print field must be desig­
nated by loading the position num ber in the "Position Register". The "Position Register" directs the 
printer to each position. 

3.1.01 Position Register Instruction 

Load Position Register 

Printed in U. S. America 

Op Code 

POS 

Part II 

A 

1: 150 

B 

For 1034006 



3.2 OPERATION AND PROGRAMING MANUAL - TC 500 

The Position Register is loaded with the value of the "A" field. This corresponds with the actualloca­
tion that the printer is to be situated. The printer does not move until the program reaches an instruc­
tion which specifies that a character is to be printed, or until a keyboard instruction is reached. 

The actual positioning occurs according to the print instruction as follows: 

a. Print Alphanumeric: 

The printer moves unconditionally to the position specified by the Position Register. 

b. Print Numeric: 

The printer is moved directly to the position of the first significant digit. This position is de­
termined by adding the number of preceding zeros and punctuation suppressed (not significant 
zeros) from printing to the contents of the Position Register. If the print mask does not provide 
for suppressing preceding zeros from printing, then preceding zeros are significant and are not 
added to the Position Register. If the numeric value of the accumulator is zero and the print 
mask suppresses zeros from printing, then no printing occurs and the printer is not moved at all 
from its preceding location; however, the Position Register is incremented by the number of 
zeros and punctuation. This is necessary to correctly align 'the print of any character (called 
for by a "Print Character instruction) following a Print Numeric instruction. 

c. Print Character: 

The printer moves unconditionally to the position specified by the Position Register. 

d. When a program reaches a Numeric Keyboard instruction, the print head will normally move di­
rectly to the position specified by the Position Register. However, if the operator gets ahead of 
the program, and has completed indexing the data for the next entry before the program reaches 
that NK instruction, the buffer would contain the entry with its terminating OCK (or PK) and 
would cause the system to bypass positioning the print head for that NK instruction; instead, the 
positioning would wait until a print instruction is reached (usually following the NK) and would 
go to the most significant digit position, provided that a significant digit(s) was actually present. 
If no significant digit is sensed, the print head would not move at all from the original location. 
It is conceivable that a series of keyboard listings could be stepped through without ever moving 
the print head if a zero entry (and a terminating OCK) were rapidly indexed for each (a zero entry 
requires no key depression other than an OCK or PK). 

e. During a Typewriter Keyboard instruction, the print head is moved before printing the first chara­
cter (since printing is a function of the typewriter keyboard instructions, except EAM). 

3.2 RIBBON SHIFT 

Printing of data normally is with the ribbon color black, except for certain print instructions that 
cause minus amounts to print in red. However, a ribbon shift instruction is provided to change the 
normal color of printing (usually to red, but see below). 

3.2.01 Ribbon Shift Instruction 

Red Ribbon Op Code 

RR 

A B 



OPERATION AND PROGRAMING MANUAL - TC500 3.4.01 

The RR instruction is used to change the ribbon color of the next printing instruction. After executing 
the next print or type instruction (even though printing may not actually occur), the effect of the RR 
instruction is removed. 

The ribbon color will be opposite (not necessarily red) to the color normally expected from the data 
and type of next print instruction. 

3.3 ALPHANUMERIC PRINTING FROM MEMORY 

Alphanumeric information can be stored in memory using the Type into Memory (TKM) or Enter into 
Memory (EAM) instruction (Section 2), to be retained for subsequent printing with a print from mem­
ory instruction. The 64 print characters and the space code are stored. The codes for BACKSPACE, 
OPEN/CLOSE, LINE ADVANCE, and the codes for OCK's and PROGRAM KEYS are not stored in 
memory. 

3.3.01 Print Alphanumeric Instruction 

Print Alphanumeric 
Op Code 

PA 

A B 

O:N 

The PA instruction prints alphanumeric information from memory starting with the first character 
(the most significant digit position) in the memory location specified by the "A" field. Printing (space 
included) continues until an "end of alpha" code is encountered, regardless of the number of words 
used. (See Section 2, Type into Memory and Enter into Memory). 

For the PA instruction, the ribbon will be in the black position. If an intervening Red Ribbon instruc- ' 
tion has been executed, the ribbon color will be red. 

3.4 NUMERIC PRINTING 

Numeric values to be printed must be contained in the accumulator and can be up to 15 digits. It is not 
possible to print numeric values directly from memory. 

The Print Numeric instructions specify in the parameter fields the starting digit position for printing 
(Pointer digit position), and a printing format (mask) to control the type of printing. 

Printing is justified right in the numeric print field. The field size is the maximum number of digits and 
punctuation characters permitted by the combination of the pointer location and the selected mask. The 
field size plus the value in the Position Register determines the right-most (or LSD) printing position. 
This permits consistent decimal alignment of all numeric values, printed in a given format. 

3.4.01 Print Numeric Instruction 

Op Code A B 

Print Numeric PN 0:14 0: 15 

Print Numeric, Shift Ribbon if Minus PNS- 0:14 0: 15 

Print Numeric, Shift Ribbon if Plus PNS+ 0:14 0: 15 

The PN instruction prints the contents of the accumulator with the ribbon in the black position, regard­
less of sign, unless a Red Ribbon instruction has been executed since the last Print or Type instruction, 
in which case the ribbon color will be red. 

Printed in U. S. America Part II For 1034006 



3.4.02 OPERATION AND PROGRAMING MANUAL - TC 500 

The PNS- instruction shifts the ribbon if the sign of the Accumulator is negative. It is normally used 
for a "red ribbon if minus" operation. 

The PNS+ instruction shifts the ribbon if the accumulator is positive, and is normally used for a "red 
ribbon if plus" operation. 

A previous Red Ribbon instruction complements the ribbon color; that is, if used just before PNS-, a 
minus amount would print black; if used just before PNS+, a plus amount would print black. 

3.4.02 Accumulator Pointer (" A" Field) 

The accumulator digit positions are numbered from zero through 14 (from LSD to MSD). The "A" 
field contains the Accumulator position number or Pointer for the most significant digit to be printed 
(independent of what is contained in the format mask). All positions higher than the position designat­
ed by the "A" field are ignored. 

Since the digit positions are numbered zero through 14, if a maximum of 5 digits would ever be printed 
at a given position, the "A" field should contain a "4" and 5 digit positions would be allowed to print 
(0, I, 2, 3, and 4). If 9 digits were to be provided for, an "8" should be entered in the "A" field. 

Examples: 
Op Code 

PN 

A 

5 

B 

o 
The "5" in the "A" field signifies that a maximum of 6 digits can be printed from this instruction. If 
the accumulator contained more than 6 digits, the high-order (most significant) digits would be lost from 
printing as digits to the left of the pointer are disregarded. 

3.4.03 Print Format (Mask) ("B" Field) 

The "B" field of the instruction specifies the mask to be used during printing. The value of the "B" 
field determines the location of the mask relative to the base address of the mask table. The first print 
mask word (the one stored in the Base Address word in the mask table) is called for by a "0". 

3 .4.04 Print Numeric Base Register 

Mask words are grouped into a table in memory. A Print Numeric Base Register contains the base ad­
dress or starting word of the table, and is loaded with a "Load Print NumeriC Base Register" instruction. 
The location of a mask word is the specified mask number relative to the base address contained in the 
register. For example, if the Print Numeric Base Register is loaded with a value of 200, then mask # 0 
would be located in word 200, mask # 1 in word 201, etc. 

WORD 
MASK "a" 

200 

WORD 
MASK "1" 

201 

WORD 
MASK "2" 

202 

Fig. 3-2 Print Mask Table 



OPERATION AND PROGRAMING MANUAL - TC 500 3.4.06 

A maximum of 16 different masks can be referenced relative to the base address value in the Print 
Numeric Base Register. If more than 16 masks are required, the register must be reloaded with a new 
value before referencing the masks in the second table (by calling for an LPNR instruction), and then 
reloaded with the original value before re-using the first 16 masks by calling for another LPNR instruc­
tion. If fewer than 16 masks are required (normally the case), those words of memory never referenced 
as mask numbers may be used for any other purpose, such as to contain program instructions and con­
stants. 

3.4.05 Load Print-Numeric Base Register Instruction 

Load Print-Numeric Base Register 

Op Code 

LPNR 

A 

O:N 

B 

The Print-Numeric Base Register is loaded with the value of the "A" field to designate the word number 
of the base address of the mask table for all subsequent Print-Numeric instructions (until another LPNR 
instruction is executed). 

3.4.06 Print Format (Mask) Word 

When numeric data is to be printed, consideration must be given to whether or not the entire contents 
of the Accumulator should be printed, particularly leading zeros, and how the printed digits are to be 
punctuated. Any uncontrolled printing of the accumulator contents would print all leading zeros as 
well as any significant digits (all digits to the right of the first non-zero digit), and would provide no 
punctuation to indicate-the decimal point, etc. 

The mask enables printing in varied formats to provide a customary and acceptable appearance of printed 
numbers. The mask word consists of control codes and control flags. The control codes are entered into 
the mask word in digit positions 0-14. They control the printing (or non-printing) and punctuation of 
each corresponding accumulator digit. Mask flags are entered into digit position 15 of the mask word, 
and are used to modify the effects of the control codes. 

~ 
Flags 

MSD 

Numeric Print Flags: 

PRINT MASK WORD 

8 7 6 5 4 3 2 

(F) Safeguard 
(P) Punch leading Zeros (into tape or card) 
(+) Suppress Punctuation 

Fig. 3-3 Showing the Numeric Print Flags 
Stored in a Mask Word 

LSD 

1 I 0 I 
~ 

4 bits 

For example, assume that the accumulator contains the following data in positions 14 through 0: 

000000515604300 

This data may represent dollars and cents, a whole number, a whole number with a decimal fraction, 
etc. Thus, it may be desired to print this data in anyone of several ways: 

I I 
L 10000005156043001 

1 I 

Printed in U. S. America Part II For 1034006 



3.4.06 Cont'd OPERATION AND PROGRAMING MANUAL -TC'500 

This format indicates a whole number showing every one of the digits up to an assumed maximum size, 
regardless of whether the digits are significant. Numbers printed in this format can be considered as 
having one field. 

b. 
I 1 , 
I 0 , 000 , 0 0 5 , 1 5 6 , 043,. 0 0, 
I I 1 

This format uses monetary punctuation, and can be considered to have two fields: whole numbers 
(dollars) and fractional numbers (cents). It shows every digit of each field, up to an assumed maximum 
size, without regard to significant digits. 

c. I 
I 
1 

I I 
5 , 1 5 6 ,0431. 00, 

I I 
This format also uses monetary punctuation with two, fields, but all leading zeros in the left field (whole 
numbers or dollars) are suppressed from printing; All digits in the right field (fractions or cents) are 
shown, as is customary for dollar monetary amounts. 

d. 
I 

5,156, 043 1 
I I 

This format uses numeric punctuation which provides for two fields: whole numbers and fractions. 
However, non-significant fraction zeros, are suppressed from printing. Also, leading zeros in the whole 
number field are suppressed, which is customary in printing numbers. All remaining digits to the right 
of the first "5" (first significant digit) in the whole number field will print, even if a zero, because they 
are now considered significant (significance was established by the "5"). 

e. 
I 

5156043001 
I 

This indicates a numeric format in which spaces have been substituted for comma punctuation, and 
can be considered to have one field - whole numbers only. Leading zeros have been suppressed. 

All of the above formats and many others are permitted, depending on how many mask words are 
utilized and what type of mask codes are in the words. 

From the above examples, it can be seen that a mask word can be organized to recognize "field" when 
printing numbers, to cause the suppression (non-printing) of leading and/or terminal zeros. The sup­
pression of leading zeros is very common in printing both numbers and monetary amounts; The sup­
pression of terminal zeros is common in printing decimal fractions or numbers that mayor may not 
have a suffix number: 

For example: 

Decimal fractions: 301.12 I 
301.0081 

: 3°1 I 
Product Number 14567811121 

,456781 t 

(with a fraction value) 
" " " " 

(with no significant fraction value) 

(with a suffix) 
(without a: suffix) 

A "leading zero suppression field" would be set up in the mask word to correspond to each digit position 
of the accumulator that is desired to be so affected, left to the pOinter. A "terminal zero suppression 
field", when desired, would also be set up in the mask word corresponding to certain digits. 



OPERATION AND PROGRAMING MANUAL - TC 500 3.4.07 

3.4.07 Mask Control Codes (Mask) 

Some MaSk Control Codes cause a digit to print only if it is significant (value greater than zero); or, if 
a zero value, to print only if another Accumulator digit other than zero has has established significance 
in this printing instruction. This permits suppressing the printing of leading (preceding) or terminal 
zeros. Leading zeros to the left of a digit position may be suppressed from printing (leading zero sup­
pression field) and lor terminal zeros to the right of a digit position may be suppressed from printing 
(terminal zero suppression field). However, some mask control codes cause the digit to print regardless 
of significance; these are referred to as "UNCONDITIONAL". Or, the code may cause the digit to be 
ignored regardless of significance; which is referred to as '~IGNORE". 

Leading zero suppression field: Significance is established if the digit to be printed is greater than zero, 
or if any preceding digit of the accumulator has printed (from any mask code) left to the pointer, during 
this print instruction. Note that the accumulator may contain significant digits left of the pointer which 
would not establish significance since anything to the left of the pointer is ignored; however, "uncon­
ditional" mask codes to the left of "leading zero suppression" mask codes, up to the pointer, will es­
tablish significance and therefore eliminate zero suppression. "Unconditional" mask codes for digit 
positions to the left of the pointer are ignored. 

Terminal zero suppression field: Significance is established the digit to be printed or any digit to the 
right of it in the field is greater than zero. Significance is dropped when all remaining digits in the 
field are zero. Field size includes any "terminal zero suppression" mask codes used in succession, but 
stops when other codes are used. 

The examples below illustrate the filtering and control that a mask word and its control codes exert over 
the printing of each accumulator digit: 

Sample: Printing decimal fractions allowing for a 7 digit whole number and 3 decimal places: 

Example #1: 
Instruction: PN 

Accumulator: 

Mask # 1: 

Printed Result: 

pointer ~ number I fractio~1 
9 1 , . fie ld-r-fie ld 

o 0 0 0 000 0 1 6 5 012 0 
~'1 : : t\ : ; ;,': : : I,' It,' I I,. I I 

Z Z Z,Z Z Z,Z Z·Z,Z Z Z.X X X 
, " , 'II , 
I I' I I I I I 

"6' t-- 'I' , 1; ;;J Oil 2 

Mask# I provides 1 field for whole numbers and 1 for decimal fractions: The "Z" and "Z," mask codes 
establish a "leading zero suppression field" from digit position 3 through the pointer in position 9, and 
the proper comma punctuation for whole numbers; Thus, djgit positions 7, 8, & 9 are suppressed be­
cause they are not significant. The "X" and" .X" mask codes establish a "terminal zero suppression 
field" from di.git position 0 through 2 and provide the decimal point, thus digit position zero is suppres­
sed because it is non-significant. 

Example #2: 

Instruction: PN 9 

Accumulator: 

Mask # 1: 

Printed Result: 

Printed in U. S. America 

pointer ~ number I fractio~.1 
1 I field~field 

o 0 0 0 0 0 001 6 5 0 0 0 0 
., •• " • I • '1 I • " , , '\ ' , ,,' , 
., I I I,' , I, I I 

Z Z Z,Z Z Z;Z Z Z,Z Z Z.X X X 
: I: : : 
1'1 , , 

1; 6 5 0 

Part II For 1034006 



3.4.07 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

Using the same mask word as in example 1, this illustrates the printing effect when there is no signifi­
cant fraction value, the printed result being only a whole number. Also, as in example 1, digit positions 
7,8, & 9 are suppressed for lack of significance. In both examples, digit positions 10 through 14 are 
ignored due to the pointer having been specified at position 9. (Review 3.1.01 b, Position Register.) 

In the following description of the mask codes, the word "escape" should be interpreted as meaning to 
soace horizontally (that is, to leave one print position without actually printing). The print head does 
not always move immediately on such an escape. In some cases, successive escapes are added to the 
position calculation (on automatic function of printing) preceding the print cycle. This enables position­
ing to the exact print position of the most significant digit in a word to be printed. 

CODE 
D 
.D 

D: 

D, 

Z 

Z: 

Z, 

C 

.C 

x 

NAME ----
Digit 
Decimal Point & Digit 

Digit & Decimal Point 

Digit & Comma 

Leading Zero Suppress 

Leading Zero Suppress 
and Decimal Point 

Leading Zero Suppress 
& Comma 

Units of Cents 

Tens of Cents 

Terminal Zero Suppress 

PRINTING RESULTS 
Accumulator Digit prints unconditionally. 
Print Decimal Point (or escape if suppress punctuation flag is set); 
Print Accumulator Digit unconditionally. 
Prints Accumulator digit unconditionally; 
Prints decimal point (or escapes if suppress punctuation flag is 
set). 
Print Accumulator Digit unconditionally; 
Print Comma (or escape if suppress punctuation flag is set). 
Print Accumulator Digit if it is significant, or if a preceding ac­
cumulator digit has established significance; 
Escape if accumulator digit is not significant, and if preceding 
accumulator digits have not established significance. 
Prints Accumulator digit followed by a decimal point (or escape 
for decimal point if suppress punctuation flag is set) if the digit 
is significant, or if a preceding Accumulator digit established 
significance. 
Escape two positions if Accumulator digit is not significant, and 
if preceding Accumulator digits have not establishes significance. 

Print accumulator digit followed by a comma (or escape for 
comma if suppress punctuation flag is set) if the digit is signifi­
cant, or if a preceding accumulator digit established significance; 
Escape two positions if accumulator digit is not significant, and 
if preceding accumulator digits have not established significance. 
Print Accumulator digit if it is significant, if a preceding accu­
mulator digit has established significance, or if there is a signifi­
cant digit in this terminal zero suppression field; 
Ignore if accumulator digit is not significant, and if significance 
is not established by either a preceding digit or a digit in this 
terminal zero suppression field, printer does not escape. 
Print Decimal Point (or escape if suppress punctuation flag is set) 
followed by the accumulator digit if it is significant, or if signi­
ficance is established by either a preceding digit or a digit in this 
terminal zero suppression field; 
Ignore if accumulator digit is not significant, and if significance 
is not established by either a preceding digit or a digit in this 
terminal zero suppression right field. 
Print accumulator digit if it is significant, or if any succeeding 
digit in this terminal zero suppression field is significant; 
Ignore if accumulator digit is not significant nor any succeeding 
digit in this terminal zero suppression field is significant. 



OPERATION AND PROGRAMING MANUAL - TC 500 3.4.08 

.X 

I 
E 

S 

Decimal Point and 
Terminal Zero Suppress 

Ignore Digit 
Ignore Digit End 

Single Digit Zero 
Suppress 

Print Decimal Point (or escape if suppress punctuation flag is 
set) followed by accumulator digit if it or any succeeding digits 
in this terminal zero suppression field are significant; 
Ignore if the accumulator digit and all succeeding digits in this 
terminal zero suppression field are not significant. 
Accumulator digit is ignored; printer does not escape. 
Accumulator digit is ignored and the print instruction is termi­
nated; printer does not escape. 
Print accumulator digit if it is significant; 
Escape if it is not significant; Preceding and succeeding signifi­
cance has no effect. 

NOTE: If non-significant digits are suppressed by a "C" ".C" "X" or ".X" mask code, the printer does not 
move and the print position register is not changed. This permits "print character" instructions to 
print justified left to the last number printed, if desired. 

Mask codes need not fill up an entire mask word as they are ignored to the left of the pointer digit 
position. For example, if the maximum number of digits that will ever be printed with a particular mask 
is 9, then only 9 mask codes are required in the least significant positions of the mask word. 

3 .4.08 Mask Flag Codes 

In addition to the "Mask Control Codes", a mask word contains three flags which are located in digit 
position IS, and which modify the mask function. These are the Safeguard Flag, the Suppress Punctua­
tion Flag, and the Punch Leading Zeros Flag. These flags are "set" by entering their appropriate code 
in the mask word preceding the first (MSD) Mask Control Code. Any combination of the three flag 
codes may be entered. 

CODE 

F 

+ 

P 

NAME 

Safeguard 

Suppress Punctuation 

Punch Leading Zeros 

Printed in U. S. America 

When the Safeguard flag is set, the safeguard symbol 
($) is printed to the left of the most significant digit 
printed. 
See paragraph 3.4.09, examples c and d. 

When the Suppress Punctuation flag is set, print 
positions, where commas or decimal points would 
normally be inserted, are replaced by spaces (the 
printer escapes). 
See paragraph 3.4.09, examples e and j. 

The Punch Leading Zeros flag has no effect on 
printing, but when set, it causes preceding zeros 
to punch even though they may not print, starting 
at the pointer. 

Part II For 1034006 



3.4.08 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

TABLE OF MASK CODES 

MASK 
PRINT FUNCTION CODE 

Digit D 

Decimal Point & Digit .D 

Digit & Comma D, 

Digit & Decimal Point D: 

Leading Zero Suppress Z 

Leading Zero Suppress & Comma Z, 

Leading Zero Suppress & Decimal 
Point Z: 

Units of Cents C 

Tens of Cents .C 

Terminal Zero Suppress X 

Dec. Pt. & Terminal Zero Sup. .X 

Ignore Digit I 

Ignore Digit & End E 

Single Digit Zero Suppression S 

MASK FLAGS 

FLAG 

CODE 

Safeguard 

Suppress Punctuation 

Punch Leading Zeros 

F 

+ 
P 

PRINTED RESULT: (examples) 

"9" = digit; "0" = zero 
FIELD ON WHICH "sp" = 1 space (escapement) 

SIGNIFICANCE iFf iF NUT 
BASED SIGNIFICANT SIGNIFICANT 

UNCONDITIONAL 9 0 
UNCONDITIONAL .9 .0 

UNCONDITIONAL 9, 0, 

UNCONDITIONAL 9. O. 
LEADING 9 sp 

LEADING 9, sp sp 

LEADING 9. sp sp 

LEADING & 
TERMINAL 9 (no sp) 

LEADING & 
TERMINAL .9 (no sp) 

TERMINAL 9 (no sp) 

TERMINAL .9 (no sp) 

IGNORE (no sp) (no sp) 

IGNORE (no sp) (no sp) 

DIGIT 9 sp 

FLAG AFFECT ON PRINTING 

$ Prints to left of most significant digit 

Spaces replace Commas & Decimal Points 

Punch leading zeros in punched field 

Fig. 3-4 Mask Codes and Flags 



OPERATION AND PROGRAMING MANUAL - TC 500 3.4.09 

3 .4.09 Examples of Numeric Print Masks and the resulting printing of data. Note that ribbon color and sign symbols 
are controlled by the Print instructions based on the Accumulator sign flag, rather than by the print mask 
selected: 

a. Monetary Punctuation, With Clear Signal: 
Mask # 0: Z,ZZZ.ZZZ,ZZZ,ZZZ.DD 

Instructions: 
ros f:IJ } 
PNS- 11 0 
PC-

Contents of { 000001250046550 = 
Accum: -000000000001500 = 

000000000000000 = 

12,500,465.50 
(red) 15.00-

.00 

b. Monetary Punctuation, Without Clear Signal: 
Mask # 1: Z,ZZZ,ZZZ,ZZZ,ZZZ .CC 

Instructions: 

POS f:IJ } 
PNS- 11 1 
PC-

Contents of { 000000000000500 
Accum: 000000000000005 

000000000000000 

c. Amount Protection, With Punctuation: 

(no print) 

5.00 
.05 

Mask # 2: FZ, ZZZ, ZZZ, ZZZ, ZZZ .DD 

Instructions: 
POS f:IJ 
PNS- 10 
PC- CR 
PC+ ?~ 

Contents of 
Accum: { 

000000000125000 
000000000052500 
000000000000005 

$1, 250.0~~ 
$.525 .O~~ 

$.05-l~ 

Note that the Safeguard (F) flag is set in the mask word. 

d. Amount Protection, Special Format: 

Contents of Accumulator: 
000000000152575 

Instructions: 
ros f:IJ 
PN 9 
RR 
PA 100 
POS 70 
PA 102 
POS 73 
PN 1 

3 - - --$1,525 
------ .AND 

4----··- 75 

Contents of Accumulator: 

CTS 

Mask # .3: FZZ, ZZZ, ZZDED 
Mask # 4: DD 

(red) 
j \ 

$1, 525.AND 75CTS 

(red) 

000001050023575 
I \ 

$10, 500, 235.AND 75CTS 

000000000000005 $0.AND05CTS 

Printed in U. S. America Part II For 1034006 



3.4.09 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

With several printing instructions and stored alpha messages, nearly any type of amount protection 
can be programed. Above, the $ and whole dollars print first, ignoring the cents digits; then the 
alpha messages "AND crs" and " __ " are printed, followed by the cents digits. Changing the 
ribbon color for alpha printing provides visual separation of the print. 

e. Monetar.y Without Punctuation: Clear Signal: 

Instructions: 
PaS &J 
PNS- 10 
PC- 5 

Mask # 5: +zzz,zzZ,ZZZ.DD 

Contents of { 000001250046550 = 12 500 465 50 
Accum: 000000000001500 = (red) 15 00-

000000000000000 = 00 

Note that the Suppress Punctuation (+) flag is set in the mask word. 

f. Numeric Punctuation, With Clear Signal: 

g. 

Instructions: 
POS &J 
PN 9 6 

Mask # 6: z,zzz,zzz,ZZZ,ZZD 

Contents of { 000000002345678 = 
Accum: 000000000000000 = 

2,345,678 
o 

Numeric Punctuation Without Clear Signal: 
Mask # 7: Z,ZZZ,ZZZ,ZZZ,zzz 

Instructions: 
POS 60 
PN 9 7 

Contents of { 000050000345678 = 345,678 
Accum: 500000000000000 = (no print) 

Note that significant digits to the left of the pointer do 
not affect the suppression of preceding zeros. 

h. Decimal Fractions: 

Instructions: 
POS &J 
PN 9 8 

i. Percentages: 

Instructions: 
POS &J 
PN 7 9 
PC % 

Contents of 
Accum: 

Mask # 8: 

{ 
000000000026125 = 
000000000030000 = 
000000000005001 = 
000000000150200 = 

Mask # 9: 

Contents of { 000000000000125 
Accum: 000000000000150 

000000000000000 

Z,ZZZ,ZZD.XXX 

26.125 
30 

5.001 
150.2 

Z,ZZZ,ZZD.X 

12.5% 
15% 

0% 

j. Special Formatting: Social Security Number: 
Mask # 10: +DDD,DD,DDDD 

Instructions: 
POS &J 
PN 8 10 

Contents of { 0000000123456789 = 123 45 6789 
Accum: 0000000045030612 = 045 03 0612 



OPERATION AND PROGRAMING MANUAL - TC 500 3.5 

Note that the use of punctuation in the mask word can occur in any pattern to 
separate the digits into required groupings; the use of the I/Suppress Punctuation 
Flag" (+) in the mask then serves to put in a space between these groups of 
digits. 

k. Split Word; 2 Monetary Amounts: 
Mask # 11: ZZ,ZZZ.DDEZZ,ZZZ.DD 

Instructions: 
POS ffJ 
PNS- 14 11 
PC-
POS 70 
PNS- 6 11 
PC-

Contents of { 000125000007500 = 
Accum: 000000000000000 = 

-000052500003000 = (red) 

12.50 
.00 

5.25-

75.00 
.00 

30.00-

Note tha~ the printing of two separate amounts from one word requires two separate 
printing instructions to enable suppression of preceding zeros for each amount. 
One mask word can be used to print both amounts: When printing t he left half, 
the pointer starts with digit position 14, and printing ends after position 8 by 
the IIEII mask code in position 7; the second print instruction prints the right 
half with the pOinter starting in position 6 and ending with position O. Position 
7 cannot be printed by this method. Minus amounts can be printed with sign so 
long as both amounts always have the same sign value, since a word has only one 
sign position. 

3.5 SINGLE CHARACTER PRINT 

Instructions are provided to print selectively any of the 64 print characters or to space the printer 
one position. 

3.5.01 Unconditional Print Character Instructions: 

Print Character 

Print Character Previous Ribbon 

Op Code 

PC 

PCP 

A 

(actual char.) 

(actual char.) 

B 

These instructions unconditionally print the character specified in the "A" field (refer to Figure 3-1). 
If the "A" field is blank, the instruction causes a single printer space (escapement) operation. 

The PC instruction prints with the ribbon in the black position unless preceded by an RR instruction. 

The PCP instruction prints with the same ribbon shift as that used on the last print operation, but 
unconditionally opposite to the last ribbon color if preceded by an RR instruction. 

3.5.02 Conditional Print Character Instructions 

Print Character if Accumulator Minus, 
Previous Ribbon 

Print Character if Accumulator Plus, 
Previous Ribbon 

Op Code 

PC-

PC+ 

A B 

(actual char.) 

(actual char.) 

Printing by these instructions is dependent upon the status of the accumulator sign flag. This flag 
is set or reset by a Numeric Keyboard Instruction (Section 2), by the Accumulator Flag Instruction 
(Section 6), or by arithmetic operations (Section 5). 

Printed in U. S. America Part II For 1034006 



3. 5.02 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

The character specified in the "A" field (refer to Figure 3-1) is printed for the following conditions: 

PC- Print if accumulator negative, sign flag set; do not print if plus. 

PC+ Print if accumulator positive, sign flag reset; do not print if negative. 

When the accumulator sign does not agree with the condition specified, the character is not printed, 
the printer does not escape nor does the position register change. 

The ribbon color is determined by the ribbon color of the previous print instruction. 

To assure the printing of one character or another in cases where either is desired (such as the print­
ing of an "*,, character for a plus total or subtotal or a "CR" character for a minus total or sub­
total), one "print character" instruction should follow the other: 

Example: 

PNS­
PC+ 
PC-

A B 

5 2 
* 

CR 

If the accumulator contained a plus 525.00 amount, it would 
print as: 

525.00* 

If the accumulator contained a minus 525.00 amount, it would 
print as: 

525.00CR (red) 

Note: "CR" is a single character and occupies 1 / 1 0" printing space. 

It is important to note that the character not desired would not print, but that one or the other 
would always print. 

If the "A" field is blank, the instruction will cause a single printer space (escapement), provided the 
accumulator sign flag agrees with the condition specified (plus or minus); otherwise, it will not space. 

It has been stated that a Red Ribbon instruction can be used to change the ribbon color of the next 
printing instruction. After executing this print (or type) instruction (even though printing may not 
actually occur), the effect of the Red Ribbon instruction is removed. If the instruction PC- (or PC+) 
does not result in actually printing a character, the effect of the Red Ribbon is still removed (a PC+, 
PC- or PCP following this, which does print, prints with the previous ribbon). 

The following example to print a symbol opposite the color of the amount is incorrect since the PC­
instruction is not affected by the RR instruction: 

A B 

PNS- 5 2 
RR 
PC+ * 
PC- CR 

If the amount in·the accumulator was a plus 525.00, it would 
print as: r-r 

525.00* (red) 

But if the amount was a minus 525.00, it would print as: 
,---, 

r,::15~25--=-.~00=C""R~i (red) 

because the instruction for the non-printed character (*) removes the effect of the Red Ribbon in­
struction. 



OPERATION AND PROGRAMING MANUAL - TC 500 3.6 

To assure either character would print and in the opposite color to the color of the amount, the 
following programing should be followed. Note that "RR" precedes each Print Character instruction: 

A B 

PNS- 5 2 
RR 
PC+ * 
RR 
PC- CR 

If the amount in the accumulator was a plus 525.00, it would print as 

If the amount was a minus 525.00, it would print as: 5~OCR 
3.6 PRINT PROGRAMING CONSIDERATIONS 

525.00i , 
(red) 

I 
(red) 

Print instructions should normally follow all Numeric Keyboard entries if printing is desired, since Nu­
meric Keyboard instructions do not print and since the accumulator data may be changed by subsequent 
instructions. 

Typing Keyboard entries, by nature, print (except EAM), thus do not require a print instruction. 

Prior to printing, the Position Register must be loaded. The exact time when positioning takes place and 
the exact location where the printer positions is determined by the print or keyboard instruction follow-, 
ing it (see 3.1.01). 

RR affects only the Print instruction following it. 

The Print Alpha (PA) instruction will not Backspace, Open or Close the Transport, nor Advance the 
platen, as these codes are not stored in memory. Print Alpha can be in red is preceded by an RR in­
struction. 

Print Numeric Instructions will normally be used as follows: 

PN allows printing the contents of the Accumulator. No conditional color change is possible. 
Reference Numbers or Numeric Codes should be programed with this instruction. 

PNS - allows printing the contents of the Accumulator with automatic ribbon color determined by 
the sign of the Accumulator. Accounting entries (Dollars and cents), Units, Quantities, etc., 
should be programed with this instruction. 

Print Character instructions are normally used as follows: 

PC allows an unconditional print of any character. It will be in black unless preceded by an RR 
instruction. It would normally be used to print Reference Codes such as 0 (degrees), % (percent­
ages) or any time a single character with no ribbon change conditions is needed. 

PCP would be used to print any character in the same color as the last printed data. 

PC+ and PC- will print (in the color corresponding to the previous printer data) or non-print ac­
cording to the sign of the Accumulator. An illustration of their use is to describe a plus total or 
subtotal as "*,, or a minus total or subtotal as "CR". It can be used any time conditional printing 
(based on sign) is desired. 

Printed in U. S. America Part II For 1034006 



4. 

4. 

OPERATION AND PROGRAMING MANUAL - TC 500 

FORMS CONTROL 

The Forms Control instructions, provide the ability to open and close the forms transport and to ad­
vance the forms a specified number of lines, or to a specified line including automatic alignment of a 
rear-fed document to the first line. Advancing a form to a specific line is controlled by a Forms 
Count Register and a Forms Limit Register within the computer, which operate according to the 
stored program. Program "Channel Tapes" are not required for the vertical spacing mechanism of 
either the platen or continuous form pin feed device. 

To accommodate rear-fed forms automatically, the Open instruction may designate the number of lines to 
advance the form when the transport is closed for the first time after execution of the Open instruction. 

Forms may be advanced while wrapped around the platen or by way of a single or dual pin feed device. 
The dual pin feed device contains an upper pin feed shaft for one set of continuous forms and is con­
trolled by any forms instruction specifying the "right" advance control. The lower pin feed shaft for 
the second set of continuous forms is controlled by any forms instruction specifying the "left" advance 
control. 

When an instruction is used to advance forms, it may advance the platen and/or a pin feed shaft of 
the pin feed device (if the device is attached to the console.) Whether the platen and/or the pin 
feed shaft are advance is dependent on the type of platen (split or solid), the style of pin feed device, 
and the particular instruction. 

Refer to Part I, Sections 8 and 9 for a complete discussion of spacing control with each of the 
various combinations of split or solit platen and single or dual pin feed device considerations. 

When using rear-fed documents around the platen, it is necessary to engage the platen lower pressure 
rollers (rearward position of the Alignment Protector Lever) to insure positive control over the forms. 

When using the Pin Feed Device with continuous forms, the platen lower pressure rollers must be 
disengaged (forward position of the Alignment Protector Lever) to allow positive forms control. 

When using the Pin Feed Device, rear-fed unit documents cannot be accommodated. If 2 independent 
forms are to be controlled, the Dual Pin Feed Device must be used. Roll journals are acceptable. 

The platen may be split, in which case the left platen is controlled by "left" forms handling instruc­
tions, and the right platen by "right" instructions. It is important to note that the splits do not need 
to correspond to the placement of continuous forms if using the pin feed device. 

4.1 FORMS TRANSPORT OPEN AND CLOSE 

4.1.01 Open Transport Instruction 

Open Forms Transport 

Op Code 

OC 

A B 

0:255 

The OC 'instruction is used to open the forms transport mechanism in order to permit the removal of 
a completed unit document and to insert (rear feed) a new document. It performs one additional 
function. The <CA" parameter field of the OC instruction specifies the number of lines the LEFT 
FORMS mechanism is to advance when the transport mechanism is next closed, (refer to Par. 4.4.03). 
This closing may be from any of the following sources: 

1. The execution of a PN or PA instruction of any type 



OPERATION AND PROGRAMING MANUAL - TC 500 4.2 

2. The entering of alpha information at a TK instruction. 

(NOTE: If a TK instruction were terminated by an OCK without the entering of alpha data, the transport 
mechanism would not close). 

3. A CC (Close) instruction. 

4. Manual depression of the Open/Close key on the keyboard. 

The parameter field of the OC instruction is stored in a special register until the transport mechanism 
is closed. Upon executing the OC instruction, the program continues. Thus, the OC instruction is nor­
mally followed closely by a keyboard entry instruction to permit removal and insertion of forms. 

4.1.02 Close Transport Instruction 

Close Forms Transport 

Op Code 

CC 

A B 

The CC instruction closes the forms transport. This instruction usually is not required since execu­
tion of any Print instruction or depression of a typing key during a Type instruction automatically 
closes the forms transport. (refer to par. 4.4.03) 

Note: If the transport is open as a result of executing an OC, when the Close Instruction is executed, the 
left forms advance mechanism will advance the number of lines specified by the Open Instruction. 

4.2 PLATEN CONTROL REGISTERS 

Four registers are provided for control of vertical spacing of the left and right platens; these are the 
left and right Forms Count Registers, and the left and right Forms Limit Registers. In addition, there 
is a Forms Limit Flag (one of the Test Flags, par. 6.2). 

A Forms Count Register is associated with each platen advance mechanism, and is automatically 
incremented by I each time that its platen is advanced one line. A Forms Limit Register is also 
associated with each platen advance mechanism, and provides a limit to which the Count Register 
can be compared. 

The Forms Limit Registers are preset (by instruction) to a specified number of 1/6" spaces. On the line 
advance following when a forms count register equals its related forms limit register, the Forms Limit 
Flag is set; on every other line advance and resultant counting of the Register, the Forms Limit Flag is 
reset. Thus, the Forms Limit Flag provides a signal as to when a Count Register has exceeded its Limit 
Register, and from it the program can select an alternate course of action. This is effective on single line 
advances only, since on multiple line advances the flag would usually be reset before it could be tested. A 
Forms Count Register is reset to "1" on the next line advance occurring after it equals its Limit Register. 

In controlling rear-fed unit documents, the Limit Register is normally loaded with the last line number on 
which printing is to occur; that is, the last usable line on the form, but not the last 1/6" increment line on 
the form. The Count Register is loaded with the first printing line number. After each single line advance, 
the program interrogates the status of the Forms Limit Flag to determine if the maximum allowable lines 
have been used. If the flag is set (Count Register reset to 1), it indicates having used the last line and per­
mits the program to go to a subroutine (see section 9: Skip and Execute instructions). The subroutine 
might print out summary information on the bottom of the form, open the forms transport to allow the 
insertion of a continuation form, perform any desired function on the continuation form such as printing 
a partial heading, and then space down to the body of the form to continue with additional entries. If 
the flag is not set, the last line has not been used and the program may continue with entries. 

Printed in U. S. America Part II For 1034006 



4.2 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

In controlling pin-fed continuous forms there are normally two separate line counts needed: the 
number of lines on the overall form, and the number of posting lines in the body of the form: 

number of posting 
lines count 

Heading i 
1 

Body Area 

~ Bottom --- -
Heading 

Body Area 

Fig. 4-1 Continuous Pin Fed forms showing 
line counts needed 

Exact number of overall 
lines count 

A knowledge of the number of lines in the overall form is needed to control the advancement from 
one form to the next form automatically. 

The number of lines within the body of the form (the posting lines) must also be counted because a 
form may not contain enough lines for the maximum number of potential entries, and because it may 
be desired to allow a bottom margin on the form. 

When only one continuous form is used in the pin feed device at one time, both Count Registers may 
be used to satisfy the need for two line counts. 

For example, assume that the continuous forms are mounted on the lower pin feed shaft, associated 
with the left spacing mechanism. 

The Left Limit Register would be loaded with the exact number of 1/6" increment lines that are on 
the over-all form. In the case of an 11" form, this would be 66 lines. The Left Count Register is 
loaded with the line number where printing starts. When one form is completed, an instruction is 
used which causes the forms to advance to a specific line number (first print line) on the next form. 
The Forms Limit Flag is not tested in this situation. Since the Left Count Register resets to "1" 
on the line after it equals the Left Limit Register, it contains "1" on the first line of the next form 
and spacing continues until the specified line is reached. 

Since the Left Count Register is being used to keep track of the overall form lines, the Right Count 
Register and Right Limit Register are used for the usable line count. In this case, the Forms Limit 
Flag is tested after each single line advance, to determine when the last allowable line has been used, 
just as in the previous discussion of rear fed forms. Each single line advance instruction must specify 
both left and right spacing mechanism to keep both count registers· together. However, when ad­
vancing from one form to the beginning print line on the next, only the left spacing mechanism is 
used; This requires that the Right Count Register be reset back to the starting line number as each 
new form is started. The roles of the Left and Right registers, spacing mechanism, and tractor pin 
feed shafts may be reversed, providing the same results. 



OPERATION AND PROGRAMING MANUAL - TC 500 4.2.01 

4.2.01 Platen Count and Limit Registers Instructions: 

Op Code A B 

Load Left Platen LLCR 0:255 
Count Register 

Load Right Platen LRCR 0:255 
Count Register 

Load Left Platen LLLR 0:255 
Limit Register 

Load Right Platen LRLR 0:255 
Limit Register 

The LLLR and LRLR instructions load the left and right Platen Limit Registers respectively with 
the contents of the "A" field. 

Once a Limit Register (Left or Right) is loaded with a number (0-255) it can be changed only by 
another Load Limit Register instruction. 

The LLCR and LRCR instructions load the left and right Platen Count Registers respectively with 
the contents of the "A" field. 

The Count Registers (left and right) are loaded with a number (0-255), and their contents change. 
Changes may be caused by the following: 

1. Forms advance instructions (AL, AR, ALR, ALTO, ARTO) or the depression of the Line 
Advance key on the keyboard. The count register is incremented by I for every line advance 
from any of these sources. It is not incremented when the platen twirlers are manually rotated. 

2. The Count Register will be set to I on the next line advance after the count register equals its 
limit register. 

3. The execution of another LLCR or LRCR instruction. 

On the line advance tollowing when the Count Register contents are equal to its corresponding Limit 
Register, the Forms Limit Flag is set. This flag can be interrogated using a Skip or Execute type of 
instruction (see section 9). 

Printed in U. S. America Part II For 1034006 



4.3 OPERATION AND PROGRAMING MANUAL - TC 500 

4.3 LINE ADVANCE INSTRUCTIONS 

NOTE: A thorough review of the description of the various forms transport devices in Part I 
will be required to use Line Advance instructions properly. 

Instructions are provided to advance a form a specified number of lines (without regard to any par­
ticular line on the form) and to advance a form to a specified line. Forms advance up to 20 lines 
per second (80 ms first line; 50 ms each additional line). 

4.3.01 Advance Platen Instructions 

Op Code A B --
Advance Left Platen AL 0:255 

Advance Right Platen AR 0:255 

Advance Left & Right Platens ALR 0:255 

Advance Left Platen To ALTO 1:255 

Advance Right Platen To ARTO 1:255 

The AL, AR and ALR instructions advance a form the number of lines specified by the "A" field. 
These provide a single line advance, and can also advance up to 255 lines. 

The ALTO and ARTO instructions advance a form until the associated count register is equal to the 
value of the "A" field. If the count register equals the line number specified in the ALTO or ARTO 
instruction prior to its execution, no advance occurs. 

Note: An attempt to specify "0" or a number larger than the contents of the limit register in the" A" field of 
AL TO/ARTO is a programing error which will result in a continuous search for a line number that does not exist. 

4.4 USE OF FORMS CONTROL INSTRUCTIONS 

4.4.01 Alto· Arto 

When an ALTO or ARTO (left or right) instruction is being executed, the form will be advanced I 
vertical space at a time. With each space, the corresponding Count Register is incremented by I and 
the Count Register is compared to the parameter field of the ALTO or ARTO instruction. Form 
spacing continues until the two are equal. When they are equal, the spacing will stop. For the 
following example, assume the Limit Register does not exist. 

Example # 1: Op Code 
LLCR 

jo 
A 

4 

12 

The form will be advanced 8 lines at which time the Count Register will be equal to the Alto para­
meter field and the forms advance will stop. The CO\lnt Register will contain 12. 



OPERATION AND PROGRAMING MANUAL - TC 500 4.4.01 Cont'd 

The previous example has not taken the Left Limit Register (LLLR) into consideration. However, 
the execution of the ALTO instruction does involve the LLLR instruction. Each time the Count 
Register is incremented by 1, it is compared to the corresponding Limit Register. On the next line 
advance after the Count Register and Limit Registers are equal, the Count Register is set to 1. 
NOTE: The Count Register is set to 1 and not to O. 

Example #2: Op Code 

LLLR 
LLCR 

5 
ALTO 

A 
255 

19 

3 

The form will be advanced 239 lines. On each line advance, the Count Register is incremented by 1 
and is compared to the ALTO parameter field. Since the Count Register is already greater than 
the ALTO field, incrementation and spacing will continue until the Count Register reaches 255. At 
this point the Count Register and Limit Register are equal so on the next line advance, the Count 
Register will be set to 1 (not 0) and will continue advancing until the Count Register contains 3. 
Forms advance would now stop because the Count Register is equal to the ALTO parameter field. 

Example #3: Op Code 

LLLR 

ALTO 

.A. 
30 

3 

This is an example of the type of programing employed when using pin fed continuous forms with 
the requirement that the program automatically advance from the last line used on one form to the 
first line (Line 3) of a new form. Assume contents of Left Count Register = 19. The form will ad­
vanced 14 lines. The Count Register will be incremented by 1 on each advance. When the Count 
Register reaches 30 (after 11 advances) it is equal to the Limit Register so the next line advance will 
set the Count Register to 1. However, advancing will continue until the Count Register equals the 
ALTO parameter field which is 3. 

the use of the commands ALTO and ARTO must always take into consideration the value in both 
the Count Register and the Limit Register for either the left or right platen spacing mechanism. The 
Limit Register, by storing a value with which to compare the Count Register, enables recognizing 
when the last print line is reached, and will normally be loaded with the number of lines contained 
on a form from the top edge to the bottom edge. For example, for an 8W' by 11" form, this 
would be 66 lines. 

Printed in U. S. America Part II For 1034006 



4.4.02 OPERATION AND PROGRAMING MANUAL - TC 500 

When the program begins, the Count Register will usually contain some value from a previous opera­
tion on the system. Therefore, it must always be loaded with the desired value or reset to zero at 
least once in the program before attempting to use ALTO/ARTO). Indeterminable spacing would 
otherwise result. 

4.4.02 AL - AR 

The AL or AR instruction will advance the form the exact number of lines specified by the parameter 
field. The most common use of AL or AR is to advance a form one line; however, the maximum is 
255. The Count Register is incremented by 1 on each line advance. The next line advance after the 
Count and Limit Registers are equal, sets the Forms Limit flag and sets the Count Register to 1. Ad­
vancing will continue until the number of lines called for has been accomplished. No comparison is 
made between the AL parameter field and the Count Register since it is not looking for a specific 
line number. 

Example #4: Op Code 

LLLR 
LLCR 

AL 

A 

42 
26 

20 

The form will be advanced 20 lines. The Count Register will be incremented from 26 to 42. The 
next line advance will set it to 1 (not 0). Spacing will continue until the full 20 lines have been 
accomplished. When spacing stops, the Count Register will contain 4. 

4.4.03 ac -CC and Rear-Fed Unit Documents 

When unit documents are used, the OC instruction is required for the rear feed forms handling 
mechanism to automatically align the form. The vertical spacing designated with an OC instruction 
is held up until the transport actually closes, even though subsequent instructions continue to be 
executed. Aside from using a CC instruction, the transport will not close until an instruction is 
reached where printing actually occurs (Keyboard or Print instruction). When printing is ready to 
begin, the transport closes and vertical spacing of the left platen spacing mechanism occurs, increment­
ing the left Count Register at that point. Thus, any reloading of the Count Register after the opening 
and before the closing of the transport may not be effective since it will be incremented when the 
transport closes. 

The instruction CC will generally be programed AFTER a Keyboard or Print instruction that follows 
a transport opening. If it is used after opening and before a keyboard instruction, the operator would 
usually not have time to remove the last form and insert the new form before the closing occurred. 
Since a TK instruction, which is terminated with an OCK (or PK) without an entry, does not print 
anything nor close the carriage, the CC instruction may be programed after the keyboard instruction 
to provide for this event. 

Example # 5: Op Code 

LLCR 
OC 

S 
TK 
CC 

A 

9 
14 

24 



OPERATION AND PROGRAMING MANUAL - TC 500 4.4.04 

When typing begins, the transport'will be closed and the rear-fed unit document will advance 14 
vertical spaces. The Count Register will be increased by 14 and contain 23. The above example 
ignores the Limit Register. 

Example #6: Op Code 

LLLR 
LLCR 
OC 

) 
PN 

A 

30 
21 
14 

6 

B 

o 
The transport mechanism will close and the rear-fed unit document will advance 14 lines. The 
Count Register is incremented 9 times until it reaches 30. On the next line advance, the Count 
Register is set to 1. Advancing will continue until the form advances 14 lines. At that time, the 
Count Register contains 5. 

The Forms Transport is equipped with a Form Guide Bail/Form Heading Holder. When the form is 
advanced the number of lines specified by the OC instruction, this bail will close to hold the form 
against the platen for printing. The OC parameter field must contain at least a value of lOin order 
for the top of the form to be under this bail when it closes. The actual parameter field of the OC 
instruction may be 0 if it is to be modified by an Index Register instruction. In this case, the Index 
Register should contain at least a 10. 

4.4.04 Alignment To The First Print Line 

When programing for automatic alignment of rear-fed unit documents, the number that must be 
placed in the OC parameter field must be 3 greater than the line number of the first actual line 
of print. 

Example #7: 

Assume a unit document that must be aligned to line number 14 as measured in 1/6" increments 
from the top of the form. This then is actually line number 14 on the form. 

The OC instruction must contain a 17 in the parameter field. 

When the unit document is placed at the back of the forms transport mechanism, with the mechanism 
open, it rests against a limit bail. This limit is roughly the equivalent of 3 vertical line spaces below 
the actual print line of the machine. (i.e., the top of the form is underneath the platen and cannot 
be seen). Therefore, to align to the 14th actual 1/6 increment line from the top of the form, the 
OC parameter field must contain a 17 and not a 14. If OC is programed with a 14 instead of 17, 
when the forms transport is closed and the form aligned, it would actually be aligned to the 11 th 
line from the top of the form. 

Note that in the above example, even though the form is aligned to the 14th print line, the Left 
Count Register was incremented 17 times. Thus, it may be desirable to reload the Count Register 
with 14 before any further vertical spacing is performed, especially if absolute control must be main­
tained for "Align To" commands. This would permit the instructions to specify line numbers con­
sistent with the actual form measurements to the desired printing areas. 

Printed in U. S. America Part II For 1034006 



4.5 OPERATION AND PROGRAMING MANUAL - TC 500 

Example #8: 

Use of the Limit Register to enable the program to know when 40 lines have been filled on the 
invoice: The total length of the invoice is 8Y2 inches (51 lines). The first print line is line 14 as 
measured from the top of the form. 

Op Code A 

LLLR 40 
LLCR 37 
OC 17 

) 
TK 10 
CC 

When the Forms Transport is closed, the form will advance 17 lines. The first three lines increment 
the Count Register to 40, the next advance will set the Count Register to 1. After an advance of the 
remaining 13 lines the Count Register will be at 14. This is the actual first line number, and the 
number wanted in the Count Register. 

4.5 FORMS CONTROL PROGRAMING CONSIDERATIONS 

The following may be considered as General Rules governing the Forms Handling instructions. Viola­
tions are considered as programing errors. 

1. The ALTO/ARTO parameter fields should never be O. 

Example: 

Op Code 

ALTO 

A 

o 
The form will be advanced indefinitely, looking for a line that does not exist. 

2. The ALTO/ARTO parameter field should never be a number greater than the LLLR/LRLR 
parameter field. 

Example: 

Op Code 

LLLR 
ALTO 

A 

40 
50 

The form will be advanced indefinitely - looking for a line that does not exist because the Count 
Register resets to "1" after reaching "40" and thus will never find "50". 

3. The Count Registers (LLCR/LRCR) parameter fields should never be a number greater than the 
Limit Register parameter. 

Example: 

Op Code 

LLLR 
LLCR 

) 
ALTO 

A 

40 
52 

8 

The form will be advanced an indeterminite number of lines. 



5. 

OPERATION AND PROGRAMING MANUAL - TC 500 

4. The Limit Registers (LLLR/LRLR) should never be set to O. 

Example: 

Op Code 

LLLR 
LLCR 

) 
ALTO 

A 

o 
40 

7 

The form will be advanced an indeterminite number of lines. 

ARITHMETIC INSTRUCTIONS 

5.1. 02 

The Arithmetic Instructions provide the ability to add, subtract, multiply and divide. A zero result 
developed by any of these functions will always be positive. Instructions are also furnished to 
modify a single digit of the Accumulator and to shift the Accumulator right or left up to 16 digits. 
Information is transferable between the Accumulator and memory. 

5.1 ADDITION AND SUBTRACTION 

The contents of the accumulator and the contents of memory location A are algebraically added or 
subtracted per the instruction used. The .sign flag of the sum or difference is reset (plus) if the 
result is positive or set (minus) if negative. 

The per thousand eM) and per hundred (C) flags of the result are unconditionally reset. 

The overflow flag is set if an overflow occurs and reset if there is no overflow. 

5.1.01 Addition Instruction 

Add to Accumulator 

Add to Memory 

Op Code 

ADA 

ADM 

A 

O:N 

O:N 

B 

The ADA instruction provides for adding the contents of a memory location, specified by the "A" 
field, to the contents of the Accumulator. The resultant sum is placed in the Accumulator leaving 
memory location "A" undisturbed. 

The ADM instruction provides for adding the contents of the Accumulator to the contents of the 
memory location specified in the "A" field. The resultant sum is placed in memory location "A" 
leaving the Accumulator undisturbed. 

These two commands cannot be used to move alpha data, even if the receiving location is clear. 

5.1.02 Subtraction Instructions 

Subtract from Accumulator 

Subtract from Memory 

Op Code 

SUA 

SUM 

A 

O:N 

O:N 

The SUA instruction provides for subtracting the contents of the memory location specified by the 
"A" field from the contents of the Accumulator. The difference is placed in the Accumulator leaving 
memory location "A" undisturbed. 

Printed in U. S. America Part II For 1034006 



5.2 OPERATION AND PROGRAMING MANUAL - TC 500 

The SUM instruction provides for subtracting the contents of the Accumulator from the contents 
of the memory location specified by the "A" field. The difference is placed in memory location 
"A" leaving the Accumulator undisturbed. 

5.2 TRANSFER (MOVE) INSTRUCTIONS 

Transfer instructions are provided to move data (alpha or numeric) from a memory location to the 
Accumulator, and from the Accumulator to a memory location. When numeric data is transferred, 
the sign (-), special (S), per hundred (C) and per thousand (M) flags are also transferred, in accordance 
with their set/reset condition. 

Transfer to Accumulator 

Transfer to Memory 

Op Code 

TRA 

TRM 

A 

O:N 

O:N 

B 

The TRA instruction provides for transferring the contents of a memory location specified by the 
"A" field to the Accumulator; the contents of the memory location remain unchanged. 

The TRM instruction provides for transferring the contents of the Accumulator to the memory loca­
tion specified by the "A" field; the contents of the Accumulator remain unchanged. 

5.3 CLEAR INSTRUCTIONS 

Op Code A B 

Clear Accumulator and CLA 0: 15 0: 15 
Insert Constant 

Clear Memory Word CLM O:N 

The CLM instruction clears all 16 digits of the memory location specified in the "A" field. The 
contents of the Accumulator remain unchanged. 

The CLA instruction sets all 16 digits of the Accumulator to zero, thus resetting the four accumula­
tor flags (M, C, special, and sign); it places the digit specified by the "B" field in the digit position 
of the Accumulator specified by the "A" field. 

Although the B parameter field of the CLA instruction permits designating a value of zero to 15 on 
a program coding sheet, any value above 9 is placed in memory as one hexadecimal digit expressed 
as a character A through F (A representing ten, B representing eleven, etc.) rather than as two 
decimal digits. It may be desirable to use values above nine for special situations such as perhaps in 
punching special output codes, but the use of these values would not be possible in any type of 
arithmetic. Addition, subtraction, multiplication, etc., could only use values of from zero to nine in 
any digit position. Any values over nine would be lost during arithmetic. 

5.4 INSERT CONSTANT, ADD CONSTANT, SUBTRACT CONSTANT 

These instructions provide the ability to manipulate the contents of the Accumulator, providing 
versatility that could otherwise be obtained only by extensive programing. 



OPERATION AND PROGRAMING MANUAL - TC 500 5.5.01 

5.4.01 Insert Constant Instruction 

Op Code A B 

Insert Constant in Accumulator INK 0: 15 0: 15 

The INK instruction places the digit specified by the "B" field in the digit position of the Accumula­
tor specified by the "A" field. 

Zero is the least significant digit position; 14 is the most significant position of the Accumulator; 15 
is the flags position. The previous value in that digit position is replaced; the remaining digit posi­
tions are unaffected. The overflow flag is not changed. 

The "B" parameter field in this instruction also permits entering a value of from zero to 15 which 
it must be understood, is a hexadecimal value of 15, rather than a decimal value of 15. The same 
comments apply as mentioned under Clear Accumulator and Insert Constant. 

5.4.02 Add Constant Instruction 

Op Code 

Add Constant to Accumulator ADK 

A 

0: 14 

B 

0:9 

The ADK instruction provides algebraic addition of the digit contained in the B field to the digit in 
the Accumulator position specified by the "A" field, with carries propagated in succeeding digits. 

The special (S), per thousand (M) and per hundred (C) flags are unconditionally reset. 

The sign flag is reset (+) if the result is positive or set (-) if negative. 

The overflow flag is set if an overflow occurs and reset if there is no overflow. 

5 .4.03 Subtract Constant Instruction 

Subtract Constant from Accumulator 

Op Code 

SUK 

A 

0:14 

B 

0:9 

The SUK instruction provides algebraic subtraction of the digit contained in the B field from the 
digit in the Accumulator position specified by the A field with carries propagated in succeeding 
digits. 

The special (S), per thousand (M), per hundred (C), sign and overflow flags are treated the same as 
specified for the ADK instruction. 

5.5 MULTIPLICATION AND DIVISION 

The multiplY,and divide operations are accomplished by a series of additions and subtractions, re­
spectively, which create a partial product and a partial quotient, respectively. The complete product 
and quotient are developed by a series of shifts, the number and type of which are designated by a 
shift register. The contents of the shift register are pre-loaded by the programmer with a value de­
termined by a knowledge of the product or quotient that is to be developed. 

5.5.01 Multiply-Divide Shift RegiSter lristruction 

Load Shift Register 

Op Code 

LSR 

A B 

0: 15 

The LSR instruction provide's for loading the multiply-divide shift register with the contents of the 
A field. The effect of this shift register is discussed with the Multiply and Divide instructions. 

Printed in U. S. America Part II For 1034006 



5.5.02 OPERATION AND PROGRAMING MANUAL - TC 500 

If shifting or scaling is to be accomplished during the multiplication or division instruction, the shift 
register must be loaded prior to the execution of the Multiply or Divide command. Once the shift 
register has been loaded, the value loaded will remain until a subsequent Load Shift Register instruc­
tion is executed. Therefore, it is important to load this at least once during the program as it may 
contain a value from some previous program that was operated on in the system. Also when used 
during multiply and divide, it should be re-Ioaded for each such calculation if preceding calculations 
used different shift requirements. 

5.5.02 Multiply Instructions 

Multiply 

Multiply and Round 

Op Code 

MUL 

MULR 

A 

O:N 

O:N 

B 

The MUL instruction multiplies the Accumulator contents by the contents of the memory location 
specified by the "A" field. The product is shifted right the number of places specified by the value 
in the Shift Register, and the digits shifted off are lost. After shifting, the next 15 low order digits 
are set into the Accumulator as the product. 
Both the multiplicand (operand in Accumulator) and the multiplier (operand in specified memory lo­
cation) may contain up to 15 digits. However, if the product exceeds 15 digits after shifting accord­
ing to the value of the shift register, the amount exceeding 15 digits is lost and the overflow flag is 
set; otherwise, the flag is reset. In the event of overflow, an indicator lamp is not turned on. If 
there is a possibility of this happening, the program must provide for interrogating the flag to deter­
mine if a corrective routine must be activated. 

If the signs of the operands are alike, the sign of the product is positive (accumulator sign flag is 
reset +); if the signs are ·unlike, the sign of the product is negative (accumulator sign flag is set -). 

Multiplication takes into account the value of the shift register even though an LSR instruction has 
not preceded the MUL instruction. The only time LSR must precede a MUL instruction is if the 
shift r.equirement changes from one MUL (or Divide) instruction to another in the same program. 

Since the number of significant digits in the multiplier determines the time for execution of multiply, 
the operand with the least number of digits should be used as the multiplier when this is predictable. 
The number of digits in the multiplicand has no effect on timing. 

The MULR instruction is the same as the MUL instruction except that a 5 is added to the last digit 
shifted off in the product; thus, the product that is set into the Accumulator after multiplication is 
increased by I if the last digit shifted off was greater than or equal to 5. If the shift register value 
is zero there will be no rounding, thus no difference between the product of MUL and MULR. 

5.5.03 Divide Instruction 

Divide 

Op Code 

DIV 

A 

O:N 

B 

The DIV instruction divides the contents of the Accumulator by the contents of the memory loca­
tion specified by the "A" field. The quotient is placed in the Accumulator. The contents of the 
shift register determines the number of decimal digits developed in the quotient. After division has 
been carried out for the number of decimal places specified in the shift register, any remainder is 
placed in working memory (in the Control area) (see 5.5.05). 



OPERATION AND PROGRAMING MANUAL - TC 500 5.5.03 Cont'd 

Both the Dividend and the Divisor may contain up to 15 digits. If the signs of the operands are 
alike, the sign of the quotient is positive (accumulator sign flag is reset +); if the signs are unlike, the 
sign of the quotient is negative (accumulator sign flag is set -). The remainder is always positive. 

Op Code A 

Example: LSR 5 
DIV 200 

Accumulator (dividend) 
Memory location 200 (divisor) 
Multiply-Divide Shift Register 
Accumulator (quotient) 
Remainder 

= 
= 
= 

= 
= 

100 
3 
5 

3333333 = 
I {

printed with decimal = 33.33333 
printing of decimal provided by 
print mask. 

The division process treats the contents of the Accumulator and the specified memory location as 
whole numbers, even though they may have "assumed" decimal points; for example: 6" 25..;. 5/\ 00 
produces a quotient of 1 and a remainder of 125 if the shift register has a zero value: 

Accumulator (dividend) = 
Memory location 200 (divisor) = 
Shift register = 
Accumulator (quotient) = 
Remainder = 

625 
500 

a 
1 = 

125 I could be printed as " 1" or "1.". Since 
it is in first digit position, any other 
decimal places shown in printing would 

. 
require shifting it left such as to permit 
"1.0000" 

Thus, since division halts once the dividend can no longer be divided, the shift register must contain 
a value equal to the number of decimal places desired beyond what the "whole numbers" themselves 
would provide. In the above example, by giving the shift register a value of 4, the quotient reflects 
the "assumed" decimal values: 

Accumulator (dividend) 
Memory location 200 (divisor) 
Shift register 
Accumulator (quotient) 
Remainder 

= 
= 
= 
= 
= 

625 
500 

4 
12500 (printed with decimal = 1.2500) 

a 
The value to be loaded into the shift register can be determined in the following manner with a 
knowledge of the "assumed" decimal places needec;l in the quotient as well as the dividend and divisor: 

{ 
assume~ deCimal} 
places m 
DIVISOR 

Ex: 5 00 
" 

2 

Printed in U. S. America 

PLUS 

+ 

{ 
assume~ deCimal} 
places m 
QUOTIENT 

1 2500 
" 

4 

Part II 

LESS { 
assume~ deCimal} 
places m = 
DIVIDEND 

6" 25 

2 = 

Value of 
SHIFT 
REGISTER 

4 

For 1034006 



5.5.04 OPERATION AND PROGRAMING MANUAL - TC 500 

5.5.04 Quotient Overflow 

If the quotient after final shift exceeds 15 digits, the overflow flag is set; otherwise the flag is reset. 
The size of the quotient can be estimated and a prediction of possible overflow made if the following 
rule is used: 

"Add the MAXIMUM size DIVIDEND to the Value of the SHIFT REGISTER plus l,subtract 
the MINIMUM size DIVISOR and that equals the MAXIMUM size Quotient possible." 

The rule is in terms of the number of significant digits expected in each operand including intervening 
and terminal zeros, and without regard to "assumed" decimal places. 

Example: 

Maximum size Value of Minimum size Maximum size 
DIVIDEND + + SHIFT REG. DIVISOR = QUOTIENT 

Ex: (9999) (2) (1) 
4 + + 2 I 

(999900) 

= 6 

Ex: (9999) (3) (100) (99990) 
4 + + 3 3 = 5 

When an overflow occurs, the division is halted and the result in the Accumulator is meaningless 
(reflects some stage of partial quotient development). 

An attempt to divide a number by zero sets the overflow flag and produces an undeterminable answer. 
Dividing zero by any number produces a quotient of zero. 

5.5.05 Transfer Remainder to Accumulator Instruction 

Op Code A B 

Transfer Remainder to 
Accumulator REM 

The REM instruction transfers the remainder of a division operation to the accumulator. The remain­
der is stored in the control area of memory by the division process. It is always positive. Its transfer 
into the accumulator resets all accumulator flags. 

5.6 SHIFT ACCUMULATOR 

The Shift Accumulator instructions are designed to give digit and character accessibility to a system 
that is basically word oriented. They make it possible to extract a digit(s) or character(s) from the 
Accumulator, and consequently from memory. This allows single digit, or alphanumeric character, 
data manipulation. 

These instructions can also be used for additional scaling if a product or quotient must be used in 
several decimal forms. 



OPERATION AND PROGRAMING MANUAL - TC 500 6.1 

5.6.01 Shift Off Instruction 

Shift Off 

Op Code 

SLRO 

A 

0:14 

B 

0:14 

The SLRO instruction first causes the 15 digits of the accumulator to be shifted left-off the number 
of positions specified by the "A" field. Any non-zero digit shifted off causes the overflow flag to 
be set. If all digits shifted off are zero, the flag is reset. 

The 15 Accumulator digit positions are then shifted right-off the number of positions specified by 
the "B" field. Any non-zero digit shifted off does not set the overflow flag. 

Digits shifted off are lost. Rounding is not performed. 

If the "B" field is zero, the instruction is effectively a shift left-off; or if the "A" field is zero, the 
instruction is effectively a shift right-off. 

5.6.02 Shift Off with Sign Instruction 

6. 

Shift Off with Sign 
Op Code 
SLROS 

A 
0: 15 

B 
0: 15 

The SLROS instruction is the same as the SLRO instruction except that the sign position is also 
shifted. 

This instruction may be used to shift alphabetic information. 

FLAGS 

Twenty-eight flags are provided in the system: four accumulator flags: four test flag~; four operation 
control key (OCK) flags; four reader flags; four punch flags and eight general purpose flags. These 
flags may be set or reset by instruction and/or computer operations. Test flags are only set/reset by 
computer operations; General Purpose flags are set/reset only by instruction. (The print mask flags 
are not included in the above 28 since they are not affected by instructions or operations, and are 
generally considered as part of the identity of a particular mask.) The execution of program instruc­
tions can be dependent on these flag settings, by using "Skip" or "Execute" instructions.(See Section 
9.) 

6.1 ACCUMULATOR FLAGS 

When the accumulator contains numeric information, it contains four flags (designated "A" flag group) 
in addition to the fifteen numeric digits: 

1. Sign (-) 

2. Special (S) 

3. Per Hundred (C) 

4. Per Thousand (M) 

The M, C, and Sign flags can be set by the Numeric Keyboard instructions (see Section 1) or changed 
by the Arithmetic instructions (see Section 5). They can also be set, reset or changed by the Flag 
Set/Reset instructions (see 6.7). Data moved from the Accumulator to memory with "TRM" or vice 
versa with "TRA" retains the flag settings of that word. 

Printed in U. S. America Part II For 1034006 



6.2 OPERATION AND PROGRAMING MANUAL - TC 500 

Print Conditional 

Certain Print Character instructions are effected by the Accumulator Sign flag (Section 3). 

6.2 TEST FLAGS 

The four Test Flags are designated the "T" flag group: 

1. Accumulator Overflow Flag (0) 

2. Forms Limit Flag (L) 

3. Index Register Flag (I) 

4. Unassigned Flag (U) 

The Accumulator Overflow Flag (0) can be set or reset by Arithmetic and Shift instructions (section 
5). 

The Forms Limit Flag (L) is set by an Advance Platen (AL, AR, ALR, ALTO, and ARTO) or during 
a Keyboard instruction (Section 2). The Forms Limit Flag is reset initially by AL, AR, ALR, ALTO 
and ARTO. 

The Index Register Flag (I) is set or reset by an Index Register instruction (Section 7). 

6.3 OPERATION CONTROL KEY FLAGS 

Operation Control Key Flags (the "K" flags) can be set or reset by the Flag Set/Reset instructions 
(6.7). In addition, when an Operation Control Key is used to terminate a Keyboard (Numeric or 
Typewriter) instruction, its corresponding flag is set. 

OPERATION CONTROL KEY (OCK) 

2 

3 

4 

FLAG 

1 

2 

3 

4 

All Operation Control Flags are reset by the next Keyboard instruction. 

6.4 GENERAL PURPOSE FLAGS 

Eight General Purpose Flags, divided into two groups ("X" and "Y") of four flags each, are included 
in the flag group. 

These flags are set or reset only by the Flag Set and Reset instructions. They are numbered: 1, 2, 
3, 4 for each group (X and V). 

6.5 READER FLAGS 

Four flags (the "R" flags) are reserved for the tab card and punched tape reader input option and the 
Data Communication Processor. These flags may be set and reset as a function of the tape or card 
read instructions or the Data Communication Processor as well as by the flag instructions (section 6.7). 

The Reader flags are numbered: 1, 2, 3, 4. 



OPERATION AND PROGRAMING MANUAL - TC 500 6.7.02 

The state of these flags is displayed by four of the Input/Output Option Indicators. Refer to Figure 
2-1 for the location of these indicators. 

These flags can be used as general purpose flags only when a reader is not used as an input device. 

6.6 PUNCH FLAGS 

Four flags ("P" flags) are reserved for the Punched Tab Card or Paper Tape output option. These flags 
may be set and reset as a function of the tape or card punch instructions as well as the Flag Set and Reset 
instructions (Section 6.7). The Punch Flags are numbered: I, 2, 3,4. 

The state of these flags is displayed by four of the Input/Output Option Indicators. Refer to Figure 
2-1 for the location of these indicators. These flags may be used as general purpose flags when a 
punch is not used as an output device. 

6.7 FLAG SET AND RESET INSTRUCTIONS 

The Flag Set and Reset instructions allow complete manipulation of the flags in the following flag 
groups, under program control: 

Designation 

A 

K 

X 

Y 

R 

P 

Flag Group 

Accumulator Flags 

Operation Control Key Flags 

General Purpose Flags 

General Purpose Flags 

Reader (Paper Tape or Card) Flags 

Punch (Paper Tape or Card) Flags 

6.7.01 Load Flags Instruction 

Load Flags 

Op Code 

LOD 

A 

A,K,X, 
Y,R,P 

B 

1,2,3,4 
-,S,C,M, 

The LOD instruction permits "setting" selected flags of anyone flag group. The flag group is desig­
nated in the "A" field; the flags to be set are designated by numbers of symbols in the "B" field. 
Any or all of the four flags of a group may be set; All other flags in the group not set, are reset. 
Other groups are not affected. 

6.7.02 Set Flags Instruction 

Set Flags 

Op Code 

SET 

A 

A,K,X, 
Y,R,P 

B 

1,2,3,4, 
-,S,C,M, 

The SET instruction "sets" selected flags of anyone flag group. The flag group is designated in the 
"A" field; the flags to be set are designated by numbers or symbols in the "B" field. Any or all of 
the four flags of a flag group may be set. All other flags in the group not set, are left unaltered. 

Printed in U. S. America Part II For 1034006 



6.7.03 OPERATION AND PROGRAMING MANUAL - TC 500 

6.7.03 Reset Flags Instructions 

Reset Flags 

Op Code 

RST 

A 

A,K,X, 
Y,R,P 

B 

1,2,3,4, 
-,S,C,M 

The RST instruction "resets" selected flags of anyone flag group. The flag group is designated in the 
"A" field; the flags to be reset are designated by numbers or symbols in the "B" field. Any or all 
of the four flags of a flag group may be reset; All other flags in the group not reset, are left 
unaltered. 

6.7.04 Change Flags Instruction 

7. 

Change Flags 
Op Code 

CRG 
A 

A,K,X, 
Y,R,P 

B 
1,2,3,4, 
-,S,C,M 

The CRG instruction complements the state (set/reset) of selected flags of anyone flag group. That 
is, if a flag was set, it is reset; or if it was reset, it is set. The flag grOup is designated in the "A" 
field; the flags to be changed are designated by numbers or symbols in the "B" field. Any or all 
of the four flags of a flag group may be changed; All other flags in the group not changed, are left 
unaltered. 

INDEX REGISTERS 

Four index registers (1, 2, 3 and 4) are inCluded in G.P. 300. They may be used to modify an in­
struction parameter field. Each index register is capable of storing the numbers zero through 255. 

Index Registers serve several useful functions: 

a. They can be loaded with numeric data (by instruction) that may signify a relative position with­
in a range of numbers. The Index Register can then be used to modify the base address in an 
instruction to accumulate data. For example, in distributing a sales amount to one of 50 depart­
ments, assume that $5.00 goes to Department 3; Words 201 to 250 are set aside to receive the 
distribution: "3" is loaded in an index register; that index register is then used to modify an 
instruction that says "accumulate into word 200". When the modified instruction is executed, 
the $5.00 will actually accumulate in word 203. The instruction is not permanently modified, 
thus each entry will always be distributed relative to the base address of 200. 

b. Index Registers can be used to count up to a limit, and when reaching the limit, set a flag to 
permit altering the path of instructions. For example, it may be necessary to know when an 
intermediate point on a form (other than the bottom) is reached. Assuming a fixed starting 
line on the form, an index register is incremented by one each time the form is advanced. 
When a specified limit is reached, a flag is set to signal the designated intermediate line. 

7.1 INDEX REGISTER MODIFICATION 

The following instructions are provided to load or change the value of any of the four index registers. 

7.1.01 Loading Index Registers: 

Load Index Register 

Op Code 

LlR 

A 

1 :4 

B 

0:255 

The index register designated in the "A" field (1, 2, 3, or 4) is loaded with the number contained in 
the "B" field, which can be any plus value from 0 to 255. The prior contents are destroyed. 



OPERATION AND PROGRAMING MANUAL - TC 500 

7.1.02 Incrementing Index Registers 

Increment Index Register 

Op Code 

IIR 

A 

1:4 

B 

0:255 

7.1. 05 

The IIR instruction increments, by I, the contents of the index register designated by the "A" field. 
The register is capable of storing the numbers 0 through 255. If the index register contains 255, in­
crementing causes the register to become O. The "B" field designates a value which is compared to the 
contents of that index register. 

If the contents of the index register, designated by the "A" field, is equal to the value of the B field 
before incrementing is effected, the Index Register Flag (one of the Test flags) is set. If an equal 
condition does not exist, the Index Register Flag is reset. Thus, if the flag is set during one increment­
ing, it will be reset during the very next incrementing. Therefore, it is necessary to test this flag after 
each incrementing, if a particular program routine is required after incrementing to a limit during a 
series of repetitive operations. The value in the "B" field does not halt incrementing or turn the 
register back to zero, once incrementing has reached that limit. It merely provides a signal that a 
procedure or function in the program has occurred a given number of times. 

7 .1.03 Decrementing I ndex Registers 

Decrement Index Register 

Op Code 

DIR 

A 

1:4 

B 

0:255 

The DIR instruction decreases, by I, the contents of the index register designated by the "A" field. 
If the index register contains 0, decrementing causes the value 255 to be entered into the register. 
The "B" field designates a value which is compared to the contents of that index register. 

Except as noted above, the DIR instruction is the same as the IIR instruction. If the contents of the 
register are equal to the value specified in the B field before decrementing, the Index Register Flag is 
set; otherwise, the flag is reset. 

7.1.04 Adding to I ndex Registers 

Add to Index Register 

Op Code 

ADIR 

A 

1 :4 

B 

0:255 

The number contained in the "B" field is added to the contents of the index register designated by 
the "A" field. Both the "B" field number and the register contents are always plus. If the sum of 
the prior register contents and the "B" field value equals 256 the register is reset to zero; If the sum 
is greater than 256, only the amount that exceeds 256 is retained in the register; and in both cases, 
the overflow causes the Index Register Flag to be set; if the sum is under 256, the flag is reset. For 
example, if the value 40 is added to index register contents of 230 (40 + 230 = 270), then 14 is 
the resulting contents of that register (270 - 256 = 14), and the Index Register test flag is set. 

7.1.05 Transferring Accumulator Contents to Index Register 

Transfer Accumulator to Index Register 

Op Code 

TAIR 

A B 

1 :4 

The T AIR instruction transfers the contents of the Accumulator to the index register designated in 
the "A" field. The prior contents of that index register are destroyed. The value of the Accumulator 
is treated as an absolute number, regardless of any "assumed" decimal places during entry into the 
Accumulator, and regardless of the setting of the Sign flag. 

Printed in U. S. America Part II For 1034006 



7.2 OPERATION AND PROGRAMING MANUAL - TC 500 

Since an index register has a capacity of 255, an Accumulator value greater than 255 that is trans­
ferred to an index register is accepted as that amount that exceeds a multiple of 256 (up to 1024) 
For example: 

If the accumulator contains 316, then 60 is transferred (316 - 256 = 60); 

If the accumulator contains 525, then 13 is transferred (525 - 512 = 13); 

If the accumulator contains 256, then 0 is transferred (256 - 256 = 0). 

If the value in the accumulator exceeds 1023, an undeterminable value will result in the index register; 
this would be a programing error. 

7.2 MODIFICATION OF PROGRAMS WITH rNDEX REGISTERS 

Programs can be altered or modified in two ways with index registers. The Index Register Flag (one 
of the test flags) can be interrogated by means of a "Skip" or "Execute" instruction, directing the 
ptogram to alternate routines based on the flag setting (see section 9); the flag having been set/ 
reset by IIR, DIR, or ADIR as discussed in 7.1 above. 

In addition, the contents of an index register can be used to modify the parameter field(s) of an 
instruction, temporarily for one execution of that instruction, by means of a "Modify" instruction. 

7.2.01 Modify By Index Register Instruction 

Modify By Index Register 

Op Code 

MOD 

A 

1 :4 

B 

The MOD instruction provides for adding the contents of the index register designated by the "A" 
field to the parameter(s) of the next instruction in program sequence following the MOD instruction. 
The modified instruction is then executed in accordance with the combined parameter values. 

This modification does not change the instruction stored in memory. It occurs during the execution 
of the instruction, as the parameter field is extracted from the instruction and placed in a special 
register. The MOD instruction affects the execution of only the one instruction immediately following 
it. 

Example: 

Assume Index Register #1 contains 35. 

MOD 1 
ADM 200 

The index register value of 35 combined with the instruction parameter of 200 causes the contents of 
the Accumulator to be added. into word location 235. 

Although the MOD instruction is most generally used to modify those instructions which address 
word locations in memory, it may also be used to modify the parameters of most other instructions. 
The contents of the index register are added to the parameter field in modulo 256. Modulo 256 
means that if the index register (maximum capacity of 256), when added to the parameter field 
(also a maximum capacity of 256 in machine language), exceeds 256, a "carry" of 1 is generated and 
the excess value starts back at zero. For example, an index register with a value of 150, when added 
to an ADM 200 instruction, generates a "carry" of 1 and a remaining parameter of 94 (350 - 256 = 
94). The carry is propagated to the machine language operation code. Therefore, caution must be 
exercised in modifying most instructions since any "carry" is added to the OP Code and changes it to 

the next OP Code in sequence. Some instructions actually have 2 machine languageOP Codes to permit 
a potential parameter range of 0 up to' 511; in this case, a "carry" beyond 511 would create a third ' 
Op Code which may be an entirely different instruction. Also, the maximum amount of user (Normal) 



OPERATION AND PROGRAMING MANUAL - TC 500 7.2.03 

memory available in a given system determines the real potential parameter range. The results of the 
addition of the index register to the parameter of the instruction that is being modified vary with the 
type of parameter. Different types of instructions will have the "A" parameter, or the "B" parameter, 
or both the "A" and "B" parameters modified. Some instructions cannot be modified. 

The following paragraphs list the instructions in categories according to which parameters can be 
modified, and indicate the maximum combined value (instruction parameter + index register value) 
beyond which a "carry" will cause an improper result and may be considered a programing error. 
Protection against this type o( error can be accomplished by "sizing" a number by program before it 
is used in an index register for modification. "Sizing" can determine if the number falls within a 
permissible value range. 

7.2.02 Instructions in Which Only the "A" Parameter Can Be Modified 

The contents of the index register specified by the MOD instruction are added to the "A" parameter. 
If the combined value exceeds the range shown for each instruction parameter, either a "carry" will 
create a new instruction, or the instruction will otherwise be improperly modified: 

Op Code A B Op Code A B . Op Code A B 
--- ---- --- --- ---

ADA O:N LRLR 0:255 SUA O:N 
ADM O:N LSR 0: 15 SUM O:N 
AL 0:255 LXC 0:255 TAIR 1 :4 
ALR 0:255 MUL O:N TK 0: 150 
ALTO 0:255 MULR O:N TKM 0: 150 
AR 0:255 OC 0:255 TRA O:N 
ARTO 0:255 PA O:N TRAB 0:15 
BRU O:N 0:3 PAB 0: 150 TRB 1: 15 
CLM O:N POS 1: 150 TRBA 0: 16 
CPA O:N REAM 0: 150 TRF 0:255 
DIV O:N RCP 1:255 TRM O:N 
EAM 0: 150 RTK 0: 150 TSB 1:15 
IRCP 0:255 RTKM 0: 150 XA O:N 
LKBR O:N RXEAM 0: 150 XB 0:255 
LLCR 0:255 RXTK 0: 150 XEAM 0: 150 
LLLR 0:255 RXTKM 0: 150 XMOD 0:255 
LPKR O:N SCP 1 :255 XPA O:N 
LPNR O:N SRJ O:N 0:3 XTK 0: 150 
LRBR O:N SRR 1:4 XTKM 0: 150 
LRCR 0:255 

7.2.03 Instructions in Which Only the "B" Parameter Can Be Modified 

In the following instructions, only the "B" parameter field is modified; other parameter fields are 
unmodified. The contents of the index register is added to the "B" parameter of the instruction. 
If the combined value exceeds 255, either a "carry" will create a different instruction, or the in­
struction will otherwise be improperly modified: 

Op Code A B 

ADIR 1 :4 0:255 
DIR 1 :4 0:255 
IIR 1 :4 0:255 
LIR 1 :4 0:255 

Prmted in U. s. America Part II For 1034006 



7.2.04 OPERATION AND PROGRAMING MANUAL - TC 500 

7.2.04 Instructions'in Which Both "A" and "B" Parameters Can Be Modified; Each Parameter Can Specify Only 
One Item: 

In these instructions, either, or both, the "A" or the "B" parameters can be modified. The "C" 
parameter, if one exists, is not modified. Since the parameter field of an instruction can have a 
maximum hexadecimal value of 256, the "A" and "B" parameters combined cannot exceed 256; 
The sixteen possibilities in the "B" parameter requires a value from 0 to 15 in the index register 
for modification; the sixteen possibilities in the A parameter field require a value expressed in 
multiples of 16 (reflecting the digit position value of the A parameter in the instruction format). 

The following table illustrates the proper values to be loaded in the index register to achieve the 
desired values for the "A" and "B" parameters. 

"'m" "n" 
Number desired Value to be Number desired Value to be 

in A field contained in in B field contained in 
Index Reg. Index Reg. 

0 0 0 0 
1 16 I I 
2 32 2 2 
3 48 3 3 
4 64 4 4 
5 80 5 5 
6 96 6 6 
7 112 7 7 
8 128 8 8 
9 144 9 9 

10 160 10 10 
II 176 II II 
12 192 12 12 
13 208 13 13 
14 224 14 14 
15 240 15 15 

"m" + "n" = total value to be contained in register. 

Example: Modify"NK" 0 0" to provide 8 whole numbers and 3 decimal fractions: 

Parameters required: 

A = 8 

B = 3 

Thus: LaD 
MOD 
NK 

I 
I 
o 

Index Register value required: 

= 128 

= 3 

131 (total value) 

131 

o 

The index register value of 131 modifies the NK instruction to permit 8 
whole numbers and 3 fractions. 

Any time that the modification of the B parameter results in a carry (exceeds 15), the carry will 
add to the A parameter changing its specification. A carry resulting from modification of the A 
parameter (exceeds 255) will add to the Op Code causing an improper modification. 

1 



OPERATION AND PROGRAMING MANUAL - TC 500 7.2.05 

Op Code A B C Op Code A B 

ADK 0:14 0:9 
CLA 0:15 0:9 
EXL 0:15 0: 15 
INK 0:14 0:9 
NK 0: 15 0: 15 
NKCM 0: 15 0:15 
NKRCM 0: 15 0: 15 
NKR 0: 15 0: 15 
SKL 0: 15 0: 15 
SLRO 0:14 0:14 

PN 0:14 0:15 
PNS+ 0:14 0:15 
PNS- 0:14 0:15 
TRCB 0:15 0:15 
XN 0:14 0:15 
XPN 0:14 0:15 
XPNS+ 0:14 0:15 
XPNS- 0:14 0:15 
XC 0: 15 0:15 

1:4 

1 :4 

SLROS 0: 15 0: 15 
SUK 0:14 0:9 
RNK 0: 15 0: 15 

7.2.05 Instructions in Which the "A" and "B" Parameters Can Be Modified; One Parameter Can Specify One or More 
Items 

The A and B parameters of some instructions represent a binary pattern to the machine. The PKA, 
PKB instructions as well as the LCD, SET, RST and CHG flag instructions are programed by listing 
the digits 1-8 (in the case of the PK instructions) and 1-4 (in the case of the flag instructions) in the 
"A", "B" or "A" and B" parameters for the desired pattern. 

The EX, EXE, SK and SKE instructions are programed by listing the digits 1-4 in the "B" parameter 
to designate the particular flag pattern desired. 

To modify this binary pattern, it is necessary to find the decimal equivalent of the pattern desired and 
add it to the Index Register used in the MOD instruction. The value table below may be used to 
determine the number necessary to obtain the desired pattern. 

Value Table 

Decimal Equivalent 

No. in A, B or PKA Flag Instructions 
A & B Fields PKB 

A & B field B field only A field 
1 1 2 Punch = 0 
2 2 4 Read = 16 
3 4 8 X = 64 
4 8 1 Y = 80 
5 16 T = 128 
6 32 K = 144 
7 64 A = 192 
8 128 

Printed in U. S. America Part II For 1034006 



7.2.06 OPERATION AND PROGRAMING MANUAL - TC 500 

For PK's, add together all of the equivalent values for the PK's specified in the "A" field, to determine 
the total value which must be loaded in the index register. 

For Flag instructions (Set/Reset and Skip/Execute), add together the equivalent values for the flags 
specified in the B parameter; If the flag group is also to be modified, add its value to the total value 
for the individual flags, and the resulting sum is the value to be loaded in the index register. 

To modify these instructions it is essential to originate them with 0 in the parameter fields and the 
desired pattern in the index register. 

If these instructions are originated with some significant value in the parameter fields, an attempt to 
modify the parameters can propagate a carry which will be added to the Op Code, changing it to the 
next Op Code in sequence. 

Op Code A B C 

PKA 12345678 
PKB 12345678 

LOD A,K,X, 1234 
Y,R,P 

SET A,K,X, 1234 
Y,R,P 

RST A,K,X1 1234 
Y,R,P 

CHG A,K,X, 1234 
Y,R,P 

EX A,T,K,X, 1234 1 :4 
Y,R,P 

EXE A,T,K,X, 1234 1:4 
Y,R,P 

SK A,T,K,X, 1234 1 :4 
Y,R,P 

SKE A,T,K,X, 1234 1 :4 
Y,R,P 

7.2.06 Modification Of Print Character Instruction 

The character in the "A" field of a PC instruction may be modified to obtain a different character. 
Appendix B contains a chart listing the 64 print characters with the corresponding internal codes. 
The MOD instruction adds the contents of the index register to the internal code of the character in 
the "A" parameter of the Print Character Instruction. The value to be loaded in the index register 
is the difference between the value of the resulting printed charact6r and the value of the character 
specified in the "A" parameter. 

For example: MOD 1 
PC A 

If "PC A" (A = value of 65) is to be modified to print "M" (M = value of 77), a value of 
12 is loaded into index register 1 (77 - 65 = 12). 

The character specified in the "A" parameter must have a lesser indexing value than the desired 
character to be printed. 

This applies to PC, PC+, PC-, and PCP. 



OPERATION AND PROGRAMING MANUAL - TC 500 8.1 

7.2.07 Modification of a Modify Instruction 

A Modify instruction may be used to modify another Modify instruction with the same or a different 
index register. Each MOD instruction in sequence adds the contents of the specified register to the 
contents of the ensuing specified register. The last MOD instruction then adds the cumulative total 
to the parameter of the next instruction, according to the rules for that particular type of instruction. 

7.2.08 Unmodifiable Instructions 

8. 

The following instructions cannot be modified: 

Op Code 

REL 
NOP 
CC 
ALARM 
RR 
STOP 
REM 
SKZ 
EXZ 

A 

1:4 
1:4 

Op Code 

RSA 
RRA 
RTN 
RTH 
RSN 
RPR 
RPF 
LSA 
LRA 

A 

BRANCH INSTRUCTIONS 

Op Code 

LTN 
LSN 
LPR 
LPF 

A 

A word of memory contains four instructions. The location of an instruction within a word is re­
ferred to as a syllable. 

The normal sequence of instructions is determined by the program counter. The program counter 
contains the memory location of the instruction being executed. The program counter consists of 
three parts: 

Syllable address 
Word address 
Block address 

0:3 
0:255} word= 
0: 1 (O:N) 

{
In programing, the block number is normally not 
used since the system software (assembler) com­
pensates for the block number and recognizes 
sequential word locations O:N. 

Upon completion of an instruction (other than a branch instruction), the next instruction is deter­
mined by adding one to the program counter. If the syllable address is zero, one, or two, it is in­
creased by one. If the syllable address is three, it is reset to zero, and the word address is increased 
by one. If the syllable address is three and the word address is 255, both sections are reset to zero 
and one is added to the block section. The branch instructions manipulate the contents of the 
program counter to alter the sequential execution of programed instructions. 

8.1 BRANCH UNCONDITIONAL INSTRUCTION: 

Branch Unconditional 

Op Code 

BRU 

A 

O:N 

B 

0:3 

Load the program counter with the contents of the "A" and "B" fields. The "A" field will be the 
new word address; the "B" field, the new syllable address within the word. The next instruction 
executed is determined by the new contents of the program counter. 

Printed in U. S. America Part II For 1034006 



8.2 OPERATION AND PROGRAMING MANUAL - TC 500 

8.2 SUBROUTINE JUMP AND RETURN 

Many times in the execution of a program, a routine is called upon several times and from various 
locations in the program. The Unconditional Branch would be a way of getting to the routine from 
many different locations but once in the routine, there is no simple way to return to the same relative 
address as before using Branch, since each "Branch Back to where you came from" is not possible with 
the instruction "Unconditional Branch". (BRU). Modify might be used to modify the Branch in­
struction. Flags could be "set" and tests made to determine where to return to. However, Subroutine 
Jump and Subroutine Return do it automatically through the use of a Subroutine-return "Stack", 
which has the capacity to store four instruction addresses. 

When a Subroutine Jump instruction is executed, the contents of the program counter (before the 
jump takes place) is increased by "one" and stored in the top of the stack. The other addresses in 
the stack are pushed down one. If the stack contains four return addresses when the subroutine 
jump is executed, the return address at the bottom of the stack is lost. 

When a Subroutine-Return instruction is executed, the program counter is loaded with a memory in­
struction address from the stack followed by a push-up of the stack. 

8.2.01 Subroutine Jump Instruction 

Subroutine Jump 

Op Code 

SRJ 

A 

O:N 

B 
0:3 

The Subroutine Jump instruction causes the contents of the program counter to be increased by one 
and then stored in the top of the Subroutine-Return stack (for return purposes). 

The program counter is then loaded with the contents of the "A" and "B" fields, where "A" is the 
word address and "B" the syllable address within the word. The next program instruction executed, 
following the SRJ instruction, is determined by the new contents of the program counter. 

8.2.02 Subroutine Return Instruction 

Subroutine Return 

Op Code 

SRR 

A 

1:4 

B 

SRR 1: The most common operation will call for a one in the "A" field. For this condition the 
return address stored at the top of the Subroutine-Return stack is transferred to the program counter. 
This is the same address (plus one) that was in the program counter before execution of the last 
Subroutine Jump instruction. The execution of the SRR 1 instruction will also cause all the ad­
dresses in the Subroutine-Return stack to be pushed up one. 

The next instruction executed is determined by the new contents of the program counter. 

SSR 2: When the "A" field of the SRR instruction contains a "2", the addresses in the subroutine­
return stack are pushed up 1 position, (this address is lost), the address at the top of the stack is 
transferred to the program counter, and then the Subroutine-Return stack is again pushed up 1 posi­
tion. 



9. 

OPERATION AND PROGRAMING MANUAL - TC 500 

Example: 

1st address 

2nd address 

3rd address 

4th address 

Prior to SRR 2 
Instruction 

Program Counter contains: I I 
2nd address 

3rd address 

4th address 

Unspecified 
... 

First phase of SRR 2 
Instruction 

(1 st address is lost) 

Fig. 8-1 Subroutine Return Address Stack 

2nd address 

3rd address 

4th address 

Unspecified 

Unspecified 

Final phase of SRR 2 
Instruction 

(2nd address is also lost) 

9. 

SRR 3: When the "A" field of the SRR instruction contains a "3", the addresses in the subroutine­
return stack are pushed up 2 positions, (both addresses are lost), the address then at the top of the 
stack is transferred to the program counter, and then the subroutine-return stack is again pushed up 
1 position. See Example above and recognize that the Final phase would leave only the 4th address 
in the stack and the 3rd address would be in the Program Counter. 

SRR 4: When the "A" field of the SRR instruction contains a "4", the addresses in the subroutine­
return stack are pushed up 3 positions, (all three addresses are lost), the address at the top of the 
stack is transferred to the program counter, and then the Subroutine-Return stack is again pushed up 
1 position (leaving the stack containing only unspecified information generated as a result of the 
stack function), and the 4th address would be in the Program Counter. (See example above.) 

Any attempt to use Subroutine Return unless preceding it by the use of a Subroutine Jump will 
result in unspecified results as the Return is governed by the contents of the Stack .. (This may even 
be loaded as a result of an earlier program or operation unrelated to the present program.) A pos­
sibility of this happening is if the Subroutine program is entered into by a BRU instruction. When it 
comes to the SRR instruction, no valid Return has been specified and erratic results will ensue. 

SKIP AND EXECUTE INSTRUCTIONS 

Skip and Execute instructions are provided to direct the path of program execution to alternate rou­
tines or procedures based on the following conditions: 

] - An Accumulator digit value compared to a constant (less than) 

2- Zero or non-zero state of the Accumulator 

3- Comparison of 2 Alpha words (equal to, less than, greater than) 

4- Flag settings (set or reset) of specified flags 

Printed in U. S. America Part II For 1034006 



9.1 OPERATION AND PROGRAlVIING MANUAL - TC 500 

The Skip and Execute instructions interrogate the following flags: 

Flags 

Group A - Accumulator Flags* 

Sign 
Special 
Per Hundred (C) 
Per Thousand (M) 

Group T - Test Flags** 

Accumulator Overflow 
Forms Limit 
Index Register 
Unassigned 

Group K - Operation Control Keys Flags 

Group X - General Purpose X Flags 

Group Y - General Purpose Y Flags 

Group R - Reader Flags 

Grou p P - Punch Flags 

Flag Symbol 

S 
C 
M 

o 
L 
I 
U 

1234 

1234 

1234 

1234 

1234 

All Skip instructions cause instruction(s) following the Skip instruction to be skipped if the condition 
specified is true. The "A" field specifies which one of the seven groups of flags is to be tested. The 
"B" field of the instruction is used to specify the individual flags (up to four) to be tested if in the 
"set" state, while the "C" field specifies the number of instructions to be skipped. 

All Execute instructions cause the instruction(s) following the Execute instruction to be executed if 
the condition specified is true. The "A" field specifies which one of the seven groups of flags is to 
be tested. The "B" field of the instruction is used to specify the individual flags (up to four) to be 
tested if in the "set" state, while the "C" field specifies the number of instructions to be executed. 

9.1 SKIP AND EXECUTE FLAG INSTRUCTIONS 

9.1.01 Skip Flag Instructions 

Skip If Any Flag 

Skip If Every Flag 

Op Code 

SK 

SKE 

A 

A,T,K, 
X,Y,R,P 

A,T,K, 
X,Y,R,P 

B C --
OLIU 1 :4 
1234 
-SCM 

OLIU 1 :4 
1234 
-SCM 

* The Accumulator Flags may be set or reset by numeric keyboard operations (Section 2), by arith­
metic operations (Section 5), or by Flag instructions (Section 6). 

**The Test flags may be set or reset by forms handling operations (Section 4), by arithmetic opera­
tions (Section 5), and by Index Register instructions (Section 7). 



OPERATION AND PROGRAMING MANUAL - TC 500 9.1. 02 

The SK instruction causes the next "C" instruction(s) in sequence to be skipped if ANY of the flags 
specified in the "B" field (of the flag group specified by the "A" field) are set. Otherwise, the next 
instruction(s) is executed. 

The SKE instruction causes the next "C" instruction(s) in sequence to be skipped if EVERY ONE of 
the flags specified in the "B" field (of the flag group specified by the "A" field) are set. Otherwise, 
the next instruction(s) is executed. 

Example: Skip 4 instructions if OCK 4 was used to bypass certain instructions: 

Op Code 
S 

SKJ ----
--

A 

K 

-1L 
4 

~ 

4 

If OCK 4 was used, skip 4 in­
structions. If any other OCK's 
were used, execute the next 
instruction. 

The SKE would be used in the same manner as above if, for example, every 'X' Flag 1,2,3,4 were 
"set": 

Op Code 

SET 

~ 
SET 

~~] 
9.1.02 Execute Flag Instructions 

Execute If Any Flag 

Execute If Every Flag 

A 

X 

X 

X 

B 

1,4 

2,3 

1,2,3,4 

C 

3 

Three instructions would be skipped 
since all four flags were set as illustrated. 

Op Code A B 

EX A,T,K, OLIU 
X,Y,R,P 1234 

-SCM 

EXE A,T,K, OLIU 
X,Y,R,P 1234 

-SCM 

C 

1 :4 

1 :4 

The EX instruction causes the next "C" instruction(s) in sequence to be executed if ANY of the flags 
specified in the "B" field (of the flag group specified by the "A" field) are set. Otherwise, the next 
"C" instruction(s) ·are skipped. 

The EXE instruction causes the next "C" instruction(s) in sequence to be executed if EVERY ONE 
of the flags specified in the "B" field (of the flag group specified by the "A" field) are set. Other­
wise, the next "C" instruction(s) are skipped. 

Printed in U. S. America Part II For 1034006 



9.1. 02 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

Example: 

The Shift Register would be loaded with "2" if the "C" key was used and with "3" if the "M" 
key was used: Assume "M" key was used: 

Op Code A B C '--
S [EX A C 1 

(not executed) LSR 2 
EX A M 1 

(executed) LSR 3 
Since only the "M" key was used, 

S 
only the instruction pertaining to 
the "M" key was executed, the 
other being skipped. 

Example: 

Assume the EXE instruction is reached from one of two program routines (a or b): 

Op Code 

Routine a Routine b 

\ s 
Set X 1 

Set X 1 

~ 
Set X 2 

EXE 

a [TRM 
BRU-4 

Flowcharted, the program appears as follows: 

A 

X 
100 

B C 

1,2 2 

Coming in from Routine "a", the two 
instructions following EXE are not 
executed since EVERY flag was not 
"set". Routine "b" did "set" the flags 
and thus all instructions were executed. 



OPERATION AND PROGRAMING MANUAL - TC 500 

9.2 ACCUMULATOR LESS THAN CONSTANT, SKIP AND EXECUTE 

9.2.01 Accumulator Digit Less Than Constant Skip 

Skip If Digit Less than Constant 

Op Code 

SKL 

A 

0: 15 

B 

0: 15 

9.2.02 . 

C 

1:4 

The SKL instruction causes the next "c" instructions in sequence to be skipped if the absolute value 
of the Accumulator digit specified by the "A" field is less than the constant contained in the "B" 
field. Otherwise, the next instruction(s) is executed. All other Accumulator digits are ignored. If 
the specified Accumulator digit is equal to the Constant, the next instruction(s) is executed. 

Example: 

A 5-digit customer number signifies that Tax is to be calculated on the invoice total. A 4-digit 
number signifies no tax is to be calculated. Assume 1524 was the number tested: 

Op Code 

\ 
SK~I 

Go to calc. tax ."':----- SRJ~ 

9.2.02 Accumulator Digit Less Than Constant Execute 

Execute If Digit Less Than Constant 

A B C 

4 

Digit position 4 is a "0" which is less 
than "1" so Tax calculation (SRJ) is 
bypassed. 

Op Code 

EXL 

A 

0: 15 

B 

0: 15 

C 

1 :4 

The EXL instruction causes the next "c" instructions in sequence to be executed if the absolute 
value of the Accumulator digit specified by the "A" field is less than the constant contained in the 
"B" field. Otherwise, the next "c" instructions are skipped. All other Accumulator digits are ig­
nored. If the Accumulator digit is equal to the Constant, the next instruction(s) is skipped. 

NOTE: The contents of the Accumulator are not disturbed. 

Example: 

Based on a product number, an amount is to be distributed 50 ways if digit 2 is less than a value 
of "5". If greater than "5" distribute the amount to one total. Assume the number listed is 243: 

Op Code A B C 

\ 
LIR 1 0 

~ 
NK 3 0 

iEXL 

2 5 
The "2" in digit position 2 
is less than "5", thus the 
4 instructions are executed. 

"-+-

4 

If 643 had been indexed, skipping of the four commands following EXL would have taken place. 

Printed in U. S. America Part II For 1034006 



9.3 OPERATION AND PROGRAMING MANUAL - TC 500 

NOTE: The value expressed in the "B" parameter field represents a single digit and is normally a 
value "0" through "9". If the value exceeds "9", it would only be for expressing a hexadecimal 
value in that single digit position. 

9.3 ACCUMULATOR ZERO SKIP AND EXECUTE 

9.3.01 Accumulator Zero Skip 

Skip If Accumulator Zero 

Op Code 

SKZ 

A 

1 :4 

B 

The SKZ instruction causes the next "A" instructions in sequence to be skipped if the contents of 
the Accumulator is zero. Otherwise, the next instructions is executed. 

Example: 

Bypass a calculation routine if there is no amount upon which the calculation is based: 

To calculation routine 

9.3.02 Accumulator Zero Execute 

Execute If Accumulator Zero 

Op Code 

TRA 

SKZ] 
BRU 
-~ 

A 

200 
1 

B C 

If the Accumulator is zero, skip the next 
instruction which would go to a calculation 
routine based on the amount in the Accumulator. 

Op Code 

EXZ 

A 

1:4 

B 

The EXZ instruction causes the next "A" instructions in sequence to be executed if the value of the 
accumulator is zero. Otherwise, the next "c" instructions is skipped. 

NOTE: The accumulator sign digit (A 15) is not tested or altered by this instruction. 

Example: 

Enforce a Keyboard Listing: 

Op Code 

CNK 
EXZ 
BRU 
PNS-

A 

5 
I 

B 

I 

If no keyboard listing was made and an 
OCK depressed, the BRU would be executed 
and the listing would again be called for. If 
a listing was made, the BRU would be ignored. 



OPERATION AND PROGRAMING MANUAL - TC 500 10.3 

9.4 COMPARE ALPHANUMERIC 

Compare Alphanumeric is similar to the skip and execute instructions because when two words are 
compared, the result of the comparison is the skipping or executing of instructions based on an equal 
to (=), greater than (> ) or less than « ) condition. 

9.4.01 Compare Alphanumeric 

Compare Alphanumeric 

Op Code 

CPA 

A 

O:N 
B 

The CPA instruction compares the contents of the memory word, specified by the "A" field, to the 
contents of the Accumulator. Execute the next instruction in sequence if the content of the speci­
fied word is equal (=) to the content of the accumulator. Skip the first instruction in sequence and 
execute the second instruction, jf the content of the specified word is less than «) the content of 
the Accumulator. Skip the first two instructions in sequence and execute the third instruction if 
the c0ntent of the specified word is greater than (> ) the content of the accumulator. 

Refer to Appendix B for the collating sequence of the character set. The low order character is the 
"end alpha" code (0,0) followed by the space code (2,0); the high order character is the special 
character for -- (<» (7,E). 

10. MISCELLANEOUS INSTRUCTIONS 

10.1 AUDIBLE ALARM FOR OPERATOR ERRORS' 

When an operator error can be determined programmatically, the operator can be alerted to this error 
through the instruction "Alarm". As an example, it may be desired to enforce the entry of a product 
number through the numeric keyboard. If the operator fails to enter the number and terminates the 
instruction with an OCK, this is a legitimate system operation; however, it is an operator error which 
can be brought to the operator's attention with the ALARM instruction. Normally, after testing for the 
entry and finding none, the program would execute ALARM and branch back to that entry instruction. 

10.1.01 Alarm Instruction 

Alarm 

Op Code 

ALARM 

A B 

Execution of the ALARM instruction will sound the Error Alarm once. The system does not go 
into the error state. 

10.2 No Operation Instruction 

No Operation 

Op Code 

NOP 

A 

No operation is performed. However, 10 milliseconds are expended when this instruction is used. 
Program execution continues sequentially uninterrupted. 

1 0.3 Stop Program Instruction 

Stop 

Op Code 

STOP 

A B 

The STOP instruction halts the execution of a program in progress and returns the computer to the 
READY MODE. From the Ready Mode, the operator can then initiate the loading of a new program 
(Load.- PK 2), the selection of a utility routine (Utility - PK 3), or re-initiate the same program just 
halted (Start - PK 1). As an example, this instruction might be used after printing out grand totals 
at the completion of a particular job. 

Printed in U. S. America Part II For 1034006 



OPERATION AND PROGRAMING MANUAL - TC 500 11.1 

11. DATA COMMUNICATIONS INSTRUCTIONS 

Recognizing and responding to Polls and Selections from the data center, and the control of trans­
mission of messages from the TC 500 and the receipt of messages directed to the TC 500 are auto­
matic functions of the Data Communication firmware. The user program in the TC 500 is responsible 
for the preparation of messages to be sent to the data center and for the use of any message data that 
has been received from the data center. 

The Data Communication memory has two buffers of 256 characters capacity each; one is the Receive 
Buffer, the other is the Transmit (Send) Buffer. Associated with each buffer is a flag and indicator 
light: 

Message Received Flag (R2) and Indicator 
(Input Indicator light 3) 

Transmit Ready Flag (R3) and Indicator 
(Input Indicator light 4) 

All messages are received from the data center into the Receive buffer, and all messages are transmitted 
to the data center from the Transmit buffer. When a message has been received, the user program must 
provide for transferring the message data from the Receive buffer into the Accumulator and/or Normal 
memory for printing, accumulation, processing, etc. When a message is to be transmitted, the user 
program must provide for transferring the message data from Normal memory and/or from the key­
board into the Transmit buffer. The Receive and Transmit instructions covered in this section permit 
the transfer of an entire Receive or Transmit buffer to or from the Data Communication memory, or 
permit the message to be broken apart or assembled in small sections directly in the Data Communica­
tion memory. The frequency of transmissions and the availablility of Normal memory will determine 
which method should be used. 

The TC 500 Data Communication processor may be in both a Receive Ready state and a Transmit 
Ready state simultaneously, and responds to whichever (Select or Poll) occurs first; upon responding 
to the first occurence, it is then immediately ready to respond to the second, and in the meantime, 
the user program in Normal memory may proceed with other work. 

11.1 RECEIVE READY STATE 

The TC 500 is placed in a Receive Ready State by programing a RESET instruction to reset the 
Message Received Flag (Reader flag 2). This indicates to the Data Communication processor that the 
user program has finished with the last message received, and thus, 'the Receive buffer may accept 
another message. This permits the Data Communication processor to respond with an ACK (acknow­
ledge) to the next Selection from the data center (after checking the parity of each character of the 
Selection message); it responds with a NAK when it is not receive ready. After receiving the ACK 
response, the data center transmits the message to the TC 500: 

The Data Communication processor parity checks each character, places it in the Receive buffer, checks 
the Block Check character for longitudinal parity accuracy, checks the Transmission number, sets the 
Message Received flag (R2) and turns on the Message Received indicator (Input indicator 3). The user 
program can determine that a message has been received by interrogating the flag using SKIP and 
EXECUTE instructions, and can then perform any necessary operations with the message data. 

Printed in U. S. America Part II For 1034006 



11. 2 OPERATION AND PROGRAMING MANUAL - TC 500 

Once a message has been received and the Message Received Flag is turned on, the Data Communica­
tion processor does not permit the receipt of other messages until the flag is turned off by the user 
program. Thus, the message may remain in the Receive buffer indefinitely, and the user program may 
continue to operate on other work (such as preparing a message for transmission) until it is conven­
ient to use the received message data. 

The receipt of a valid message while in the Receive Ready state causes the automatic transmission of 
an ACK to the data center. The receipt of a message that has character or longitudinal parity errors 
causes the automatic transmission of a NAK to the data center. If the TC 500 does not receive a 
message from the data center following acknowledgement to the data center of a Selection, no re­
sponse is made by the TC 500. This is treated in the same manner as failure of the data center to 
receive a transmitted ACK or NAK. It causes a "time out" at the data center and the Selection mes­
sage must be re-transmitted. 

If the message transmitted to the TC 500 from the data center contains more than 255 characters of 
text the TC 500 will respond with a negative acknowledgement (NAK). . 

11.2 TRANSMIT READY STATE 

Messages to be transmitted are prepared and stored in the Data Communication Transmit buffer by the 
user program. When the message is complete, or when it is known that all positions available in the 
buffer have been filled, the user program sets the Transmit Ready Flag (R3) by means of a SET in­
struction. The Data Communication processor then sets the remote in the transmit state so that when 
the next poll is addressed to this remote, automatic transmission will occur. In the meantime, the 
user program may commence with preparation of the next message to be transmitted or it may begin 
processing a message that has been received. 

When the Poll is received from the data center and each character of the poll message has been parity 
checked, the Data Communication processor initiates the transmission of the message. It automatically 
inserts the Communication Control Codes and Transmission number (SOH, AD I, AD2, TR #, STX, 
ETX), generates a parity bit for each character, generates a longitudinal parity character (BCC), placing 
it after the ETX, and transmits the message. 

Following transmission of the message, the Data Communication processor is in a Polling Message Re­
sponse state and awaits receipt of an acknowledgement (ACK) from the data center; after receiving 
the ACK, it transmits an EaT character. If the data center responds with a NAK, the Data Communi­
cation processor automatically retransmits the message. Failure of the data center to transmit a re­
cognizable character while the Data Communication processor is in the Poiling Message Response state 
will not affect the remote. It is still output ready and the message can be re-transmitted when this 
address is re-polled. Failure of the data center to receive EaT may cause a "time out" at the data 
center indicating that the TC 500 must be repolled. 

When transmission of the message is successful, the Data Communication processor automatically 
increments the Transmission number, turns off the Transmit Ready light, and resets the Transmit 
Ready Flag (R3). This permits the user program to determine that the Transmit buffer is available 
to receive data from the keyboard or Normal memory for the next message. 



OPERATION .AND PROGRAMING MANUAL - TC 500 11. 4 

11.3 DATA COMMUNICATION RECEIVE BUFFER 

The Receive Buffer has a capacity of 256 characters (32 words of 8 characters ear-h, each character oc­
cupies 8 bits). When a message is received, only the text of the message and ETX are placed in the 
Receive Buffer; that is, all of the Heading, including the Start of Text character (STX), and the Block 
Check character (BCC) are stripped off of the message. The End of Text character (ETX) will be placed 
in the Receive Buffer immediately following the last character of the actual text. If the text is greater 
than 255 characters, the Data Communication Processor will return a Negative Acknowledge (NAK) to 
the data center. 

When a message has been correctly received, the Message Received Flag (R2) is set and the Message 
Received Indicator light is turned on. The user program determines that a message has been received 
by interrogating flag R2 using Skip or Execute instructions and branching to an appropriate routine 
to break apart or "unpack" the message data for printing, processing, etc. This "unpacking" may be 
done directly from the Receive buffer, or the entire contents of the Receive buffer may first be 
transferred into a Normal memory working area of 32 words which is then referred to as a "Receive 
Record Area" and which may be in any available section of Normal memory (except words 0 to 31). 
Several such Receive Record areas may be used if desired. When a message has been transferred from 
the Receive buffer to a Receive Record area (prior to unpacking), it permits receipt of another mes­
sage while the first message is being processed. 

The message data is contained in the Receive Quffer or Receive Record area without regard to word 
boundaries, but rather as one continuous string of characters. The instructions used to unpack the 
message automatically keep track of word boundaries and the character position location in the buffer 
or record area so that the program may access one character or any size group of characters, thus 
providing complete character addressability. 

11.4 DATA COMMUNICATION TRANSMIT BUFFER 

The Transmit Buffer also has a capacity of 256 characters (32 words of 8 characters each, each charac­
ter occupies 8 bits). In preparing a message for transmittal to the data center, only the text of the 
message needs to be assembled and may be up to 255 characters in length. The heading, STX, ETX 
and BCC characters are automatically inserted in the message during transmission. The ETX is auto­
matically placed after the last actual character of text and the remainder of the buffer capacity is 
ignored during transmission. If the text is more than 255 characters, only 255 characters are accepted 
and ETX is inserted as the 256th character. The Transfer instruction is terminated and the Overflow 
Test flag is set when an attempt is made to place more than 255 characters in the buffer or record 
area. The user program may take corrective action after having interrogated this test flag. 

The Transmit Buffer is available to receive data for the next transmission once the Transmit Ready 
Flag (R3) has been Reset (by the Data Communication processor). The user program makes this 
determination by interrogating flag R3 with Skip or Execute instructions and branching to an appro­
priate routine to load data into the Transmit buffer. 

The message may be constructed directly in the Transmit Buffer, or it may first be assembled in a 
Normal memory working area of 32 words which is then referred to as a "Send Record Area" and 
which may be in any available section of Normal memory (except words 0 to 31). Several such Send 
Record areas may be used if desired. When the message has been completed, one instruction permits 
the entire contents of the Send Record area to be transferred to the Transmit buffer. 

The instructions used to construct a message include the capability to place the message data in the 
buffer or record area sequentially without regard to word boundaries, as one continuous string of 
characters. As the message is assembled, the instructions automatically keep track of word boundaries 
and the character position location of the last character entered, thus providing complete character 
addressability. 

Printed in U. S. America Part II For 1034006 



11. 5 OPERATION AND PROGRAMING MANUAL - TC 500 

11.5 DESIGNATING BUFFERS, RECORD AREAS, AND CHARACTER POSITIONS 

The unpacking of messages received and the constructing of messages to transmit involves moving or 
transferring data FROM certain areas of memory TO certain other areas of memory. Designating the 
actual "FROM" location and "TO" location is accomplished by loading special registers which specify 
the word and character location during the execution of certain instructions (refer to 11.6 and 11.7) 
which are designed to pack and unpack messages. 

11.5.01 Load Receive Buffer Register 

A B 

o or l:N 

The LRBR instruction specifies the starting word location FROM which data is to be transferred 
during the execution of certain character transfer instructions described in 11.6 and 11.7. 

MESSAGES RECEIVED: The LRBR instruction designates the area of memory from which the mes­
sage is to be unpacked. A parameter of "0" selects the first word of the Receive Buffer; a parameter 
of 32 to "N" would be used to select the beginning word of a Receive Record area in Normal memory 
(words 0 to 31 may not be used). 

CONSTRUCTING MESSAGES: The LRBR instruction designates the location in memory from which 
data is to be transferred to the Transmit buffer or Send Record area. A parameter of 1 to "N" selects 
the beginning word. 

The execution of LRBR sets the Receive Character Pointer (RCP) to one (1), which is the first charac­
ter position in the starting word specified by LRBR. The LRBR value is retained until another LRBR 
instruction is executed, which would be the case when more than one Receive Record area were to be 
used. 

11.5.02 Set Receive Cha ... cter Pointer 

A B 

RCP 1:255 

The Receive Character Pointer specifies the starting character position relative to the starting word 
location (LRBR) FROM which data is to be transferred during execution of certain character transfer 
instructions. This pointer keeps track of the current character position as data is unpacked from the 
Receive Buffer or a Receive Record area, or as data is transferred from a location in memory to the 
Transmit buffer or Send Record area. The RCP instruction sets the pointer at the character position 
specified in the "A" parameter relative to the last LRBR word location. However, as character transfer 
instructions are executed that affect the LRBR location, the pointer is automatically incremented for 
each character so transferred. If the RCP is incremented past 255, the Overflow Test Flag is set. 

Since the RCP is automatically set to one (1) by an LRBR instruction, and since it is incremented by 
each character transferred, the RCP instruction would normally be used only when the transfer of 
data is to begin from a known character position in the middle of a message. 

11.5.03 I ncrement Receive Character Pointer 

A B 

IRCP 0:255 



OPERATION AND PROGRAMING MANUAL - TC 500 11. 6 

The IRCP instruction increments the Receive Character Pointer by the number of character positions 
designated in the "A" field, or until the next field identifier code (refer to 11.10) is reached. The 
Pointer is incremented for the field identifier code also. This permits bypassing a data "field" in a 
message containing variable field lengths when that information is not needed in the processing of the 
message by the TC 500 user program. 

11.5.04 Load Keyboard Base Register 

A B 

LKBR o or I:N 

The LKBR instruction specifies the starting word location TO which data is to be transferred during 
the execution of certain character transfer instructions described in 11.6 and 11.7. 

CONSTRUCTING MESSAGES: The LKBR instruction designates the starting word of the Transmit 
Buffer or Send Record area TO which data is to be transferred in the preparation of a message. A 
parameter of "0" designates the first word of the Transmit Buffer in Data Communication memory; 
a parameter of 32 to "N" would be used to select the beginning word of a Send Record area in Nor­
mal memory (words 0 to 31 may not be used). 

MESSAGES RECEIVED: The LKBR instruction designates the starting word in Normal memory TO 
which alphanumeric data is to be transferred for temporary or permanent storage. A parameter of 1 
to "N" selects the beginning word. 

The execution of LKBR automatically sets the Send Character Pointer (SCP) to one (1), which is the 
f'rrst character position in the starting word specified by LKBR. The LKBR value is retained until 
another LKBR instruction is executed, which would be the case when more than one Send Record 
Area were to be used. 

11.5.05 Set Send Character Pointer 

Op Code A B 

SCP 1 :255 

The Send Character Pointer specifies the starting character position relative to the starting word lo­
cation (LKBR) TO which data is to be transferred during execution of certain character transfer in­
structions. This pointer keeps track of the current character position as data is assembled in the Trans­
mit Buffer or Send Record area, or as data is transferred TO a location in memory for storage from 
the Receive Buffer or Receive Record area. The SCP instruction sets the pointer at. the character 
position specified by the "A" parameter relative to the last LKBR word location; however, as charac­
ter transfer instructions are executed that affect the LKBR location, the pointer is automatically in­
cremented for each character so transferred. 

Since the SCP is automatically set to one (1) by an LKBR instruction, and since it is incremented by 
each character transferred, the SCP instruction would normally be used only when constructing mes­
sages with fixed field lengths (this would require that the buffer or record area be cleared at the start 
of each message to insure that any intervening unused positions did not contain unwanted data from 
a prior message). 

11.6 INSTRUCTIONS TO PROCESS MESSAGES RECEIVED 

The following instructions are designed to permit the unpacking and processing of messages received 
in groups of characters that may have no relation to word boundaries or word capacity (8 characters). 
Thus, they are character transfer instructions that refer to the LRBR, RCP, LKBR, and SCP register 

Printed in U. S. America Part II For 1034006 



11. 6.01 OPERATION AND PROGRAMING MANUAL - TC 500 

values as necessary during their execution. Also, an instruction is provided to transfer the Receive 
Buffer contents to Normal Memory. 

11.6.01 Transfer Receive Buffer 

Op Code 

TRB 

A 

I:N 

B 

The TRB instruction transfers the contents of the Data Communication Receive Buffer to the Normal 
memory Receive Record area (32 words or one track) specified by the "A" parameter. A parameter 
of "0" is not permissible. All 256 characters of the Receive Buffer are transferred to the Normal 
memory Receive Record area, destroying and replacing any prior contents of that working area. For 
example, a parameter value of 1 would mean that the transfer was into Normal memory words 32 
through 63. This instruction permits the use of one or several Receive Record areas in Normal mem­
ory. 

11.6.02 Transfer to Accumulator as Numeric: 

Op Code_ 

TRBA 

A 

0:16 

B 

The TRBA instruction transfers the number of characters specified in the "A" field from the Receive 
Buffer, or working record area, to the Accumulator as Numeric digits. The buffer or Receive Record 
area is the one specified by the last LRBR instruction, and the beginning character is determined by 
the current position of the RCP. The TRBA instruction is terminated by the transfer of the number 
of characters specified or by a field identifier code, whichever comes first. The field identifier code 
sets a specified flag pattern (see 11.10). The RCP is incremented for each character transferred and 
for the field identifier code (which is not transferred into the Accumulator). The Overflow flag will 
be set if the RCP is incremented past 255 and the instruction will be terminated; otherwise, the 
Overflow flag is reset. 

Although alpha numerals occupy 2 digit positions (8 bits) for the character in either the Receive Buf­
fer or Receive Record area, the TRBA instruction places then in the Accumulator as numeric digits 
(4 bits). Thus, up to 16 buffer characters can be transferred to the Accumulator as 16 digits (any 
data required for computational purposes must be limited to 15 digits). 

Valid codes accepted by TRBA are any codes from column 3 of the USASCII table. These include 
the numerals 0 to 9 and: ; > = <? In addition, the minus (-) and plus (+) codes and any field 
identifier codes from columns 0 and 1 are valid. When used in a numeric field, the minus or plus 
code may be any character in the field. After first use in a given numeric field, subsequent plus or 
minus codes are invalid. The minus code will set the sign flag in the accumulator; the plus code 
will reset the sign flag. The minus or plus code will not be counted as one of the characters trans­
ferred as specified by the parameter field, however, the RCP will be incremented for this character: 
The field identifier codes are not transferred to the Accumulator but do terminate the TRBA in­
struction. The characters : ; > = < and ? are transferred to the accumulator as hexadecimal digits 
(un digits) with binary values of 10, 11, 12, 13, 14 and 15 respectively (values are designated by A, 
B, C, D, E, and F). 

Other characters will be considered as invalid, will cause the "S" flag of the Accumulator to be set, 
will count as a code transferred, but the instruction will not be terminated. 



OPERATION AND PROGRAMING MANUAL - TC 500 11. 6.05 

11.6.03 Transfer Alpha 

A B 

0:255 

The TRF instruction transfers alphanumeric characters from the memory location specified by the 
LRBR instruction beginning at the current RCP position, into another memory location as specified 
by the LKBR instruction beginning at the current SCP position. The number of characters to be 
transferred is specified by the parameter field of the TRF instruction; the instruction is terminated 
by the transfer of the exact number of characters specified or by a field identifier code. Upon ter­
mination of the instruction, an End of Alpha code is automatically inserted into the next character 
position of memory; however, the SCP is not incremented for that code. 

The TRF instruction provides the ability to move data from one character and word location to 
another character and word location in memory; thus, it is used not only for unpacking data from 
messages received, but also to prepare messages for transmission. The LRBR and RCP identify the 
location from which the data is being moved; the LKBR and SCP identify the location to which the 
data is being moved. 

The RCP and SCP are incremented for each character transferred; the RCP will also be incremented by 
a field identifier code if one is present. The Overflow flag will be set if either pointer is incremented 
past 255, and the instruction will be terminated; otherwise, the Overflow flag will be reset. The field 
identifier code sets a specific flag pattern (see 11.10). All USASCII codes are valid. 

11.6.04 Print Alpha From Receive Buffer 

9pCo~ 

PAB 

A B 

0:150 

The PAB instruction prints the number of characters specified in the "A" field from the Receive 
Buffer or Receive Record area specified by the last LRBR instruction, beginning at the character de­
signated by the current position of the RCP. The instruction is terminated after printing the specified 
number of characters or by a field identifier code, whichever comes first. The field identifier code sets 
a specified flag pattern (see 11.10). The RCP is incremented for each character printed and also for 
the field identifier code. 

The Overflow flag will be set if the RCP is incremented beyond 255, and the instruction will be ter­
minated. The system will return to the Ready Mode if printing attempts to extend beyond position 
150 in the forms transport. 

11.6.05 Programing Steps to Receive a Message 

A. Unpacking a message direct from Data Communication Receive buffer: 

1. Test to determine if the Message Received flag is Set (Reader Flag 2): SK, SKE, EX, 
EXE R 2. 

2. Select Data Communication Receive buffer: 

LRBR 0 

Printed in U. S. America Part II For 1034006 



11. 7 OPERATION AND PROGRAMING MANUAL - TC 500 

3. Unpack message: IRCP, TRBA, TRF (LKBR, SCP), PAB 

4. Reset Message Received flag (R2) to allow next message: RST R 2 

B. Unpack message from a Normal memory Receive Record area: 

1. Test to determine if the Message Received flag is Set (Reader Flag 2): SK, SKE, EX, 
EXE R 2. 

2. Transfer message from Data Communication Receive buffer to Normal memory Record area: 
TRB 10 

3. Reset Message Received flag (R2) to allow next message: RST R 2 

4. Select Normal memory Receive Record area: 

LRBR 320 

5. Unpack message: IRCP, TRBA, TRF (LKBR, SCP), PAB 

11.7 INSTRUCTIONS TO PREPARE MESSAGES FOR TRANSMISSION 

The following instructions are designed to enable constructing a message that contains only essential 
data as required at the data center. Thus, they. are character transfer instructions that are not restrict­
ed to word boundaries or word capacity; they refer to the LRBR, RCP, LKBR and SCP register values 
as necessary during their execution. Also, an instruction is provided to transfer the contents of a Send 
Record area to the Transmit buffer. Once the message is assembled and transferred to the Transmit 
buffer, the user program must set the Transmit Ready flag (R3) to permit transmission when the next 
POLL is received from the data center. 

If any of these instructions are used to transfer data into the Transmit Buffer and the Transmit Ready 
Flag has not yet been reset by the Data Communication Processor, the instruction is held up from 
being executed. It is expected that the user program will interrogate the Transmit Ready flag before 
moving any data directly into the Transmit Buffer. 

11.7.01 Transfer Send Record Area 

Op_Code 

TSB 

A B 

l:N 

A message may be prepared for transmission in a Normal memory Send Record area and then be 
moved in completed form to the Data Communication Transmit Buffer for actual transmission. The 
TSB instruction transfers the entire contents of the Normal memory Send Record area (32 words or 
one track) specified by the "A" field to the Data Communication Transmit buffer. A parameter of 
"0" is not permissable since track zero cannot be used for a Send Record area. All 255 characters of 
the selected Send Record area are moved to the Transmit Buffer. The ETX character is automatically 
placed after the last actual character of text during transmission, and all subsequent positions are ignored. 



OPERATION AND PROGRAMING MANUAL - TC 500 

11.7.02 Transfer Accumulator to Send Record Area 

Op Code 

TRAB 

A 

0: 15 

11. 7.05 

The TRAB instruction transfers up to 15 numeric digits (of 4 bits each) from the Accumulator into 
the Transmit Buffer or Send Record area specified by the LKBR instruction as alpha numerals (7 
bits each) any Accumulator flags that are set are ignored. The "A" field designates the number of 
digits to be transferred, which are always the low order digit positions of the Accumulator; the digits 
enter the Transmit Buffer or Send Record area beginning at the current SCP position. A parameter 
0("0" causes the transfer of only significant digits (no leading zeros); a parameter of "1" to "IS" 
causes the transfer of the exact number of low order digits specified (including any leading zeros). 
Any other data in the Accumulator is ignored. The SCP is incremented by each digit transferred into 
a character position of the Send Record area, or Transmit buffer. 

When it is necessary to include any Accumulator flag settings in a message, the presence of a set Ac­
cumulator flag would be tested using a Skip or Execute instruction, and then an appropraite code in­
serted into the message using a TRCB instruction (see 11.7.04). 

11.7.03 Transfer Alpha 

A 

0:255 

B 

Refer to 11.6.03 for a complete discussion of this instruction and how it applies to the preparation of 
messages. 

1,1.7.04 Transfer Character 

Op Code 

TRCB 

A 

0: 15 

B 

0:15 

The TRCB instruction transfers the USACII code designated by the decimal value in the "A" and "B" 
fields into the Send Record area or Transmit Buffer specified by the last LKBR instruction at the 
character position designated by the SCP. The SCP is incremented one character position. The "W' 
field represents the decimal value of the code's lower 4 bits; the "A" field represents the decimal 
value of the upper 4 bits, however it is not necessary to include the parity bit (bg) in this value as it 
is generated automatically (if it is included, it is ignored). The proper parameter value for each 
US ASCII code can be obtained by using the code's column and row number in the USASCII table. 
The column number is placed in the "A" field; the row number is placed in the B field. For example, 
the code "asterisk" (*) is in column 2, row 10; this would be programed with "TRCB 2 10". 

11.7.05 Type to Memory 

A B 

0: 150 

The TKM instruction permits entering data directly into the Transmit Buffer or a Send Record area 
from the typewriter keyboard. The "A" field specifies the maximum number of characters that may 
be typed. Entry of data: begins at the word in memory specified by the last LKBR instruction, start­
ing at the current SCP position. The SCP is incremented for each character entered. The termination 

Printed in U. S. America Part II For 1034006 



11. 7.06 OPERATION AND PROGRAMING MANUAL - TC 500 

of the TKM by an OCK or PK causes an End of Alpha code to be placed in memory. However, the 
SCP is not incremented by this End of Alpha character. The TRCB instruction may then be used to 
transfer an appropriate field identifier, if required, into the character position, overlaying the End of 
Alpha character. 

The use of the backspace key with the TKM instruction will cause the SCP to be decremented for each 
backspace. However, the SCP wili not decrement beyond the point at which the TKM began. 

11.7.06 Programing Steps to Transmit a Message 

A. Message is constructed directly in the Data Communication Transmit buffer: 

1. Test to determine if Transmit Ready Flag (R3) is reset: SK, SKE, EX, EXE R 3 

2. Select Data Communication Transmit buffer: LKBR 0 

3. Construct message: TRAB, TKM, TRCB, TRF (LRBR, RCP) 

4. Set Transmit Ready Flag: SET R 3 

B. Message is constructed in a Normal memory Send Record Area: 

1. Select Normal memory Record area: LKBR 320 

2. Construct message: TRAB, TKM, TRCB, TRF (LKBR, RCP) 

3. Test to determine if Reader Flag 3 is reset: SK, SKE, EX, EXE R 3 

4. Transfer message to Data Communication Transmit buffer: TSB 10 

5. Set Transmit Ready Flag: SET R 3 

11.S OTHER DATA COMMUNICATION INSTRUCTIONS 

The ability to change the TC 500 address and to alter, if necessary, the Send and Receive transmission 
numbers, is provided. In addition, the TC 500 may shut itself off after completion of transmission or 
upon direction from the data center. 

Each character in an address or transmission number is a USASCII code of 7 bits. When transferred 
into the Accumulator, as described in the following instructions, the character occupies 2 digit posi~ 
tions of the Accumulator. 

11.S.01 Retrieve Send Address 

Op Code 

RSA 

A B 

This instruction transfers the two-character send machine address from the Send Address Register in 
the Data Communications Processor into the four (4) most significant digit positions of the Accumula­
tor (each character will occupy 2 digit positions). The balance of the Accumulator will contain zeros. 
These two characters may be any characters from columns 2 through 6 of the USASCII set (except 
"circumflex" and "underline"). With a range of 78 different characters in each of two positions, the 
total machine address range potential would be 6,084 different "numbers". 



OPERATION AND PROGRAMING MANUAL - TC 500 

11.8.02 Retrieve Receive Address 

Qp Code 

RRA 

A 

11. 8.06 

B 

This instruction functions in exactly the same fashion as RSA except that it will transfer the machine 
address from the Receive Address Register in the Data Communications Processor into the four (4) 
most significant digit positions of the Accumulator. The balance of the accumulator will contain 
zeros. 

Generally, the Receive and Send Machine Addresses are alike. However, a condition can exist where 
they would have to be different, though only for a short time. 

By cha.nging its address, a TC 500 can cause Selection of it to be ignored. This can permit interrupting 
a series of Selects from the data center; the data center would then interpret the ignore as a request 
for a Poll to the TC 500. 

11.8.03 Load Send Address Register 

A B 

This instruction transfers the contents of the Accumulator into the Send Machine Address Register in 
the Data Communications Processor. Only the four (4) most significant digit positions of the accumu­
lator may contain significant characters (2 digits per character). The balance of the Accumulator must 
contain zeros. 

11.8.04 Load Receive Address Register 

A B 

This instruction transfers the contents of the Accumulator into the Receive Machine Address Register 
in the Data Communications Processor. Only the four (4) most significant digit positions of the Ac­
cumulator may contain significant characters. The balance of the Accumulator must contain zeros. 

11.8.05 Retrieve Expected Transmission Number 

A B 

This instruction transfers the I, 2 or 3 USASCII Numeric Character "Expected Transmission Number" 
from its appropriate Register into the 2, 4 or 6 most significant digit positions of the Accumulator. 
The balance of the Accumulator will contain zeros. 

11.8.06 Retrieve Header Transmission Number 

Printed in U. S. America 

Op~ode 

RTH 

Part II 

A B 

For 1034006 



11. 8.07 OPERATION AND PROGRAMING MANUAL - TC 500 

This instruction transfers the entire word containing the header portion of the transmission from Data 
Communication memory into the 14 low order digit positions of the Accumulator. The balance of 
the Accumulator will contain zeros. This word will contain from 5 to 7 USASCII characters as the 
header portion, and will have the following format in the accumulator: 

digit 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 I a positions: 

'-v-' '-v-' '-v-' ~ '-v-' 

a a S A A Trans. No. S 
0 D D T 
H I 2 X 

The transmission number can be 1, 2 or 3 characters. The above example shows a 3-character trans­
mission number. A fewer number of characters would result in the other characters being closer to­
gether and hence occupying less digit positions of the Accumulator. 

11.8.07 Load Expected Transmission Number Register 

A B 

This instruction transfers the contents of the Accumulator into the Expected Transmission Number 
Register for messages received. Only the 2, 4 or 6 most significant digit positions of the Accumulator 
may have significant characters. The balance of the accumulator must contain zeros. 

11.8.08 Retrieve Send Transmission Number 

A B 

This instruction transfers the I, 2 or 3 digit USASCII Numeric Character Send Transmission Number 
from its appropriate Register into the 2, 4 or 6 most significant digit positions of the Accumulator. 
The balance of the Accumulator will contain zeros. 

11.8.09 Load Send Transmission Number Register 

91'_Code 

LSN 

A B 

This instruction transfers the contents of the Accumulator into the Send Transmission Number Register 
in Data Communication memory. Only the 2, 4 or 6 most significant digit positions of the Accumula­
tor may contain significant characters. The balance of the Accumulator must contain zeros. 

11.8.10 Retrieve Character Pointer Register 

Op Code 

RPR 

A B 

This instruction transfers the contents of the Character Pointer Register into the Accumulator. The 
values are represented by hexedecimal digits. The format of the Accumulator will be as follows: 

Digit 
Positions: 

(word) 
15 14 13 12 

• RCP 

(BLK) 

f 
WORKING' LRBR 

(BLK)(word) (word) (BLK) (BLK)(word) 

10 ,9 8 I ~ T3 2 I. a 
BASE SCP BASE 
LRBR LKBR 

WORKIN'G LKBR 



OPERATION AND PROGRAMING MANUAL - TC 500 11. 9. 01 

11.8.11 Load Character Pointer Register 

A B 

LPR 

This instruction transfers the contents of the Accumulator into the Character Pointer Register. 

11.8.12 Power Off 

A B 

The OFF instruction provides the ability for the TC 500 to turn itself off by causing the power to the 
entire system to be turned off. This instruction permits the data center to notify a TC 500 to shut 
down, by sending a reserved character or other unique data (selected by user) to it. Upon testing and 
recognizing this character, the TC 500 would branch to the instruction OFF as a part of the user 
program. 

11.8.13 Retrieve Polled Flags 

A B 

The RPF instruction transfers the four (4) bits of this Data Communication Processor Polled Flag 
register into the flags position of the Accumulator (refer to 11.9.04). The balance of the Accumulator 
will contain zeros. This permits testing the status of the flags using the Skip and Execute instructions. 

11.8.14 Load Polled Flags Register 

Op Code_ 

LPF 

A B 

The LPF instruction transfers the contents of the Accumulator flags position into the Polled Flags 
register of the Data Communication Processor. Only the flag positions of the Accumulator may con­
tain significant bits. The balance of the Accumulator must contain zeros. This permits setting these 
flags initially in a program to a known value, in order to properly evaluate any subsequent testing of 
the flags (refer to 11.9.04). 

11.9 DATA COMMUNICATION FLAGS AND FLAG INSTRUCTIONS 

Two flags are provided which have indicator lights associated with them for communication with the 
operator. In addition, several other flags are available to interrogate the status of the Data Communi­
cation Processor through program control. 

11.9.01 Message Received and Transmit Ready Flags 

The Message Received flag and the Transmit Ready flag are part of the Reader Flags group (R2 and R3 
respectively). They may be set or reset by using the SET/RESET/LOAD/CHANGE instructions dis­
cussed in section 6; or they may be interrogated by using the SKIP/EXECUTE instructions discussed 
in section 9. Each of these flags has an indicator light associated with it. When either flag is set, its 
indicator light is turned on; when either flag is reset, its indicator light is turned off. 

Printed in U. S. America Part II For 1034006 



11. 9. 02 OPERATION AND PROGRAMING MANUAL - TC 500 

The Message Received flag (R2) is automatically set and its indicator light turned on by the successful 
receipt of a message in the Data Communication Receive buffer. No other messages will be received 
while this flag is set. The user program must RESET the flag after final use has been made of the 
message data. 

The Transmit Ready flag (R3) is SET and its indicator light turned on by the user program, after 
having placed a message in the Data Communication Transmit buffer. The successful transmission of 
the message automatically causes the flag to be reset and the light to be turned off. The user program 
is held up if it attempts to place another message in the Transmit buffer while the Transmit Ready 
flag is still set. 

11.9.02 Keyboard Buffer Empty Flag 

A Keyboard Buffer Empty flag is provided as a means for the operator to interrupt an automatic opera­
tion of rather long duration, such as the receipt of report data from the data center. The Keyboard 
Buffer Empty flag remains Set as long as there are less than 3 codes in the buffer; by indexing 3 key­
board keys, the operator causes the Keyboard Buffer Empty flag to be Reset. The user program may 
periodically test this flag to see if the operator is trying to interrupt the operation, and if so, branch 
to an appropriate routine for preparing a message, etc. 

The Keyboard Buffer Empty Flag is in the Buffer Flags group "B", and is number 3 of that group. It 
may be interrogated by the SKIP/EXECUTE instructions, in the following form: 

Op Code ABC 

SK B 3 1:4 

EX B 3 1:4 

Keyboard Buffer flags 1, 2, and 4 are not used by the programmer. 

11.9.03 Data Communications Processor Flag Register 

The "D" Flag Group consists of 4 flags provided in the Data Communications Processor for purposes 
of Maintenance Test Routines. However, these flags may be tested by using SKIP/EXECUTE instruc­
tions: 

1. Transmission Failure Flag: This flag is reset as long as the transmission number of the received 
message agrees with the expected transmission number. It is set if the actual transmission num­
ber does not agree with the expected transmission number; however, the TC 500 will Acknowl­
edge (ACK) the data center if the message is correct in other respects. 

2. Message Received Flag: This flag is the counterpart of and causes the setting of the Main Mem­
ory Message Received Flag. 

3. Transmit Ready Flag: This flag is the counterpart of and causes the resetting of the Transmit 
Ready Flag in Main Memory. 

4. A Micro Flag (of no use to the programmer). 

Using the Skip and Execute instructions, it is possible to interrogate the Message Received flag and the 
Transmit Ready flag directly in the Data Communications Processor. 

11.9.04 Data Communications Processor Polled Flags Register 

Another register is provided in the Data Communications Processor that may be considered as a flag 
register; however, it is not possible to interrogate it directly with the regular Skip or Execute Flag 
instructions. Instead, the contents of this register would be transferred into the flag position of the 
Accumulator with the RPF instru~tion described in 11.5.13. When in the Accumulator flag position, the 
flags may be interrogated using the Skip and Execute on Accumulator Flag instructions. 



OPERATION AND PROGRAMING MANUAL - TC 500 11.10 

Flags C (No.2) and M (No.3) may be of use in programing, and provide the following information: 

C (2). This TC 500 has been Polled or Selected: This flag is set if polling or'selecting has been 
directed to this remote. 

M (3). Some TC 500 on the line has been polled or selected: This flag is set if there has been any 
Polling or Selecting activity on this line. 

Flags 1 and 4 are not of use in programing. 

In order to utilize these flags properly, the user program must initially reset these flags (load the 
Accumulator flags as reset using the LPF instruction described in 11.8.14). Then, at some later 
point in the program, provide for transferring this register into the Accumulator for testing this 
activity with the regular Skip and Execute instructions. 

11.10 FIELD IDENTIFIER CODES 

The following USASCII codes, if they appear as part of a text message will cause certain of the Data 
Communications Macro instructions to be terminated and will set the flag pattern indicated in the 
following table. 

No Flags Set y Flags Set~~ K Flags Set~~ Test Flags Set 
3 2 1 4 3 2 1 4 U I LCl 

NUL SOH 0 0 0 1 DCl 0 0 0 1 ETX o 0 0 1 
STX 0 0 1 0 DC2 0 0 1 0 

DC3 0 0 1 1 
DC4 0 1 0 0 

ENQ 0 1 0 1 NAK 0 1 0 1 
ACK 0 1 1 0 SYNOll0 
BEL 0 1 1 1 ETB 0 1 1 1 
BS 1 0 0 0 CAN 1 0 0 0 
HT 1 001 EM 1 0 0 1 
LF 1 010 SUB 1 0 1 0 
VT 1 0 1 1 ESC 1 0 1 1 
FF 110 0 FS 1 1 0 0 
CR 110 1 GS 1 1 0 1 
SO 111 0 RS 1 1 1 0 
SI 111 1 US 111 1 

* Y and K flags designated are set if "1" and reset if "0" 

It is generally agreed that many of the above USASCII codes should never appear in a text. EaT is 
specifically filtered out by the Data Communications Processor. NUL does serve as a field identifier 
but, as indicated in the chart above, it terminates the instruction but does not set any flags; neither 
does it reset any previous flags. It merely terminates the instruction. ETX has special significance in 
that when ETX is detected during a transfer instruction, the Overflow flag will be set and the instruction 
terminated. 

Many of the above codes should not appear in a text but if they do, the TC 500 will accept them and 
set the flag pattern indicated above. The chart below shows the codes that normally can be a part of 
a text message. Some codes from the above chart may be excluded by Central Processors or by Line 

Printed in U. S. America Part II For 1034006 



1l. 10 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

Adapters. Applicational programing should consider these as termination and flag setting codes rather 
than the entire range listed in the above table. 

No flags Y flags K flags Test Flags I 
3 2 1 4 3 2 1 4 U I L (j 

NUL ETX 0 0 0 1 
DCl 0 0 0 1 
DC2 0 0 1 0 
DC3 0 0 1 1 
DC4 0 1 0 0 

BS 1 0 0 0 
HI'lOOl 
LF 1 0 1 0 
V'I'lOll 
FF 1 1 0 0 FS 1 1 0 0 

GS 1 1 0 1 



12. 

OPERATION AND PROGRAMING MANUAL - TC 500 12.1. 02 

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER 

Instructions are provided to read punched paper tape or edge punched cards into a TC 500, using a 
Burroughs style A 581 Paper Tape/Edge Card Reader as the input adjunct. All subsequent refer­
ence to "paper tape" applies both to punched paper tape and to edge punched cards, unless indi­
cated otherwise. 

Tape reading is serial, one character at a time, at a speed up to 40 characters per second when no 
printing accompanies it. When reading paper tape and printing on the TC 500 printer, the reading 
speed is up to 20 characters per second; when reading and punching only (no printing), reading 
speed is up to 40 cps. 

The internal character code of the TC 500 is USASCII, however, any 5, 6, 7, or 8 channel paper 
tape code can be read and interpreted by the TC 500 by utilizing a Table of Input Code Assign­
ments for conversion of the paper tape code into the internal USASCII code. The functional codes 
in a code set may be used as field identifier codes to terminate tape reading and set flag patterns, 
or may be ignored (refer to the Table of Input Code Assignments section 12.4). The scheme of 
character parity checking for a particular code set is also a function of the table of code assign­
ments. Firmware for 5 channel code is different than that for 6, 7, or 8 channel "table look-up" 
firmware or for USASCII No Table firmware. 

12.1 PAPER TAPE READER INSTRUCTIONS 

The Paper Tape Reader instructions are designed to function in two ways: When proper tape read­
ing conditions exist, reading of tape will occur according to the specifications of the instruction. If 
all of the necessary tape reading conditions do not exist, the reader is "not operable" and the func­
tion of the instruction can revert to its counterpart keyboard input instruction, permitting manual 
input by the operator. Thus, a program may depend primarily on reader input but be able to sub­
stitute keyboard input when needed. When a reader condition occurs, the keyboard buffer is 
cleared in anticipation of reverting the instruction to its keyboard counterpart. This prevents mis­
operation from a subsequent normal keyboard input indexed before execution of the reader instruc­
tion was attempted. 

Therefore, it is important that the reader instruction be reached before a manual entry is made in 
place of it as any keyboard input prior to the reader instruction is lost. 

The mnemonic representations of the read instructions are the same as selected keyboard instruc­
tions with the addition of a prefix letter "R". 

Instructions that involve punching paper tape along with reading of paper tape will inhibit the punch 
part of the instruction if the tape perforator is turned off. In addition, the Punch Off Indicator 
light is turned on and Punch Off Flag is set (refer to section 13). 

12.1.01 Reading Alphanumeric Data and Printing 

Read Alpha and Print 
Op Code 

RTK 
B 

The RTK instruction reads from tape and prints the number of alphanumeric character specified by 
the A field. The instruction is terminated after reading the specified number of characters, or upon 
reading a field identifier code. The flag patterns to be set by the field identifier codes are deter­
mined by the table of input code assignments. 

The RTK instruction can revert to a TK instruction if the tape reader is not operable. 

12.1.02 Reading Alphanumeric Data, Printing and Punching 

Read Alpha, Print and Punch 
Op Code 
RXTK 

A 
0:150 

B 

The RXTK instruction reads from tape and prints the number of alphanumeric characters specified 
by the A field. Tape punching occurs simultaneously with printing at 20 codes per second. The 
instruction is terminated after reading the specified number of characters, or upon reading a field 
identifier code (refer to table of input code assignments). 

Printed j.n U. S. America Part II For 1034006 



12.1. 03 OPERATION AND PROGRAMING MANUAL - TC 500 

The RXTK in1!truction can revert to an XTK instruction if the tape reader is not operable, to an 
RTK instruction if the tape perforator is turned off, or to a TK instruction if neither the reader nor 
perforator is operable. 

12 •. 1.03 Reading Alphanumeric Data, Printing, and Entering into Memory 

Read Alpha into Memory and Print 

Op Code 

RTKM 

A 

0:150 
B 

The RTKM instruction reads from tape into memory and prints the number of alphanumeric char­
acters specified by the A field. This instruction requires the prior execution of an LKBR instruc­
tion to specify the starting word location in memory. The word of entry is incremented to the 
next higher word after each eight characters have been read. The insj:ruction is terminated after 
reading the specified number of characters, or upon reading a field identifier code (refer to table of 
input code assignments). 

The RTKM instruction can revert to a TKM instruction if the tape reader is not operable. 

12.1.04 Reading Alphanumeric Data, Printing, Punching, and Entering into Memory 

Read Alpha into Memory, Print and Punch 
Q£ Code 
RXTKM 

A 

0:150 

B 

The RXTKM instruction is the same as the RTKM instruction, except that tape punching occurs 
simultaneously with printing at 20 codes per second. 

The RXTKM instruction can revert to an XTKM instruction if the tape reader is not operable, to an 
RTKM instruction if the tape perforator is turned off, or to a TKM instruction if neither the reader 
nor perforator is operable. 

12.1.05 Reading Alphanumeric Data into Memory, No Printing 

Read Alpha into Memory, Non-print 

Op Code 

REAM 

A 

0: 150 

B 

The REAM instruction reads from tape into memory, without printing, the number of alphanumeric 
characters specified by the A field. This instruction requires the prior execution of an LKBR in­
struction to specify the starting word location in memory. The word of entry is incremented to 
the next higher word after each eight characters have been read. The instruction is terminated after 
reading the specified number of characters, or upon reading a field identifier code (refer to table of 
input code assignments). Reading is up to 40 characters per second. 

The REAM instruction can revert to an EAM instruction if the tape reader is not operable. 

12.1.06 Reading Alphanumeric Data into Memory, Punching, but no Printing 

Read Alpha into Memory and Punch, Non-print 
Op Code 

RXEAM 
A 

0:150 
B 

The RXEAM instruction is the same as the REAM instruction, except that punching occurs simul­
taneously with reading. 

The. RXEAM instruction can revert to an XEAM instruction if the tape reader is not operable, to an 
REAM instruction if the tape perforator is turned off, or to an EAM instruction if neither the 
reader nor perforator is operable. 



OPERATION AND PROGRAMING MANUAL - TC 500 12.1.08 

12.1.07 Valid Codes for Read Alpha Instructions 

The Read Alpha instructions described in the above paragraphs recognize all codes as valid. Any 
input code, whose parity is not in agreement with the table of input code assignments, will be con­
sidered as a parity error and will turn on the Invalid Code Indicator and Set Reader Flag Rl (see 
12.3.01) on Invalid Code Indication. 

All codes, except those which are coded in the table of input code assignments to be ignored, will 
be counted as a code read. Thus, in programing, where a Read Alpha (RTK, etc.) is to be termi­
nated by a field identifier code, the number of graphic character codes read and printed or stored 
in memory would be one less than the parameter field. Where a field identifier code is not used, 
the number of graphic character codes read will be equal to the parameter field. 

12.1.08 Reading Numeric Data into the Accumulator 

Read Numeric into Accumulator 

Op Code 

RNK 

A 

0: 15 

B 

0: 15 

The RNK instruction reads from tape the total number of characters specified by the A and B 
fields into the Accumulator. The characters are treated as numeric digits and enter the Accumula­
tor in the low order digit positions. The instruction is terminated after the total number of char­
acters specified have been read (the A field plus the B field), or upon reading a field identifier code 
(refer to table of input code assignments). Reading is up to 40 codes per second; printing does not 
occur with this instruction. 

The RNK instruction does not consider the A field as whole numbers and the B field as decimal 
digits, but rather acts on the sum of the two fields; the separation of the fields into whole and 
fractional digits is provided only to permit keyboard entry when the reader is not operable. Thus, 
to read a number into the Accumulator, the tape must contain as many codes as the total number 
of digits specified by the instruction. This requires that preceding zeros up to the maximum field 
size be included in the tape; or if preceding zeros are not included in the tape, a field identifier 
code must follow the number in the tape to halt reading. Also, to read a decimal fraction into the 
Accumulator, the tape must contain as many digits or zeros to the right of the decimal as the 
maximum number of decimal places allowed. This is because the codes enter the low order positions. 

For Example: Read 12.25 into the Accumulator, allow for three decimal places, with 
instruction "RNK 6 3" 

Tape must contain: 000012250 
(with no field identifier code) 

or: 12250FS 
("FS" denotes a field identifier code) 

Note that field identifier codes permit the tape to contain only significant digits in the 
whole number even though the instruction accommodates larger numbers. 

The RNK instruction reverts to an NKRCM instruction if the tape reader is not operable. This re­
quires the parameters to specify whole and fractional digits. 

VALID CODES FOR READING INTO THE ACCUMULATOR: The RNK instruction accepts all 
codes as valid, except in the case of parity errors (refer to 12.3.01). The codes for the numerals 0 
to 9 are read into the Accumulator as digits. The other 54 graphic characters may appear in a 
numeric field. They will not count as a digit read in satisfying the parameter. However, they will 
set a flag pattern in the Accumulator Flag position. The pattern for each such character is shown 
in the table below. Field identifier codes do count as a code read in the parameter. Any input 
code that is coded in the table of input code assignments to be ignored will not be counted as a 
code read. 

Printed in U. S. America Part II For 1034006 



12.1. 09 OPERATION AND PROGRAMING MANUAL - TC 500 

In programing, a Read Numeric (RNK) instruction that is to be terminated by a field identifier code 
may read up to a maximum of 14 digits as the field identifier code would count as the 15th code 
read. If no field identifier code is used, an RNK instruction may read up to 15 numeric digits. 

Codes that set Accumulator Flags during Read Numeric 
(when code is contained in table of code assignments) 
"1" indicates flags that are set; "0" indicates flags that 
are reset 

Accumulator 
Character Flags 

M C S 
Space @ P 0 0 0 

! A 

" B 
# C 

$ D 

% E 

& F 
, 

G 

( H 

) I 

* J 

+ , K 

, < (Yz) L 

- = M 
> (~) N 

/ ? 0 

12.1.09 Opening the Media Clamp 

Release Media Clamp 

Q 
R 

S 

T 

U 
V 

W 

X 

Y 

Z 

[(3/4) 

\(¢ ) 
] (CR) 

" (0 ) 

-

Op Code 

REL 

-- «» 

A 

0 0 0 

0 0 1 
0 0 I 

0 I 0 

0 I 0 
0 I I 

0 I I 

1 0 0 

I 0 0 

I 0 I 

I 0 I 

I I 0 

I I 0 

I 1 I 

I I I 

B 

-

0 
1 

0 
I 

0 

I 

0 

I 

0 

I 

0 
I 

0 

I 

0 

1 

This instruction will cause the media clamp for paper tape or edge punched cards to open, thus 
halting any further reading until the operator places new media in the reader. This instruction is 
most useful when using edge punched cards, to release the card after necessary information has been 
read from it, and to prevent any additional information on the card from enabling the read instruc­
tion for the next entry. 

12.2 LOADING PROGRAMS WITH THE PAPER TAPE READER 

The paper tape reader may be used to load programs into the TC 500 in place of the Memory 
Loader device in the front of the console. This is accomplished with a "Reader Load" Utility 
routine. This Utility routine would be stored in the Utility area of Control Memory and would be 
activated by PK A3 (Utility) while in the Ready Mode. The use of this program in the Utility area 
of memory does not preclude the use of any other Utility routine, but only one such routine would 
reside in the Utility area of memory at one time. The "Reader Load" routine would be reloaded 
in the Utility area after use of the other routme(s). 



OPERATION AND PROGRAMING MANUAL - TC 500 12.3.02 

The "Load Memory" Utility routine and any other Utility routines would be entered into the 
Utility area of memory by using the regular Memory Loader device in the front of the TC 500. 

12.3 INPUT INDICATOR LIGHTS AND FLAGS 

Two indicator lights and two Reader flags are provided to enable program and operator control 
over the paper tape reader: 

INPUT OUTPUT 

INVA~~~EADER MESSAGE TRANSMIT PUNCH I, ECHO I TAPE 
CODE ONDiTION RECEIVED READY OFF MEDIA CHECK SUPPLY 

o o o a o o o o 
Fig. 12-1 Input Indicator Lights 

12.3.01 Invalid Code Indicator Light (Input Indicator 1) 

This indicator light will be turned on and Reader Flag R4 set when an invalid tape code is read. 
Code validity is determined by the stored Table of Input Code Assignments. Reading is not halted 
on the invalid tape code; the code will count as a code read and will be processed. The next read 
instruction will reset the flag and turn off the indicator. 

A code is invalid if it has a parity error. Tape code parity is a function of the table of Input code 
assignments; therefore, any code can be forced into a parity error situation by means of the value 
placed in its position in the input table. Thus, aside from natural parity errors, any codes so de­
sired can be rendered invalid to this system causing the flag to be set and the indicator light to be 
turned on. Note however, that rather than be treated as invalid, a tape code may be ignored for 
use in the system once it has been parity checked; again, this is a function of the value placed in 
the table for that code. 

12.3.02 Reader Condition Indicator Light (Input Indicator 2) 

The Reader Condition Indicator advises the operator whether the paper tape reader is operable and 
is active when the program reaches a tape read instruction. The following conditions must be satis­
fied for the paper tape reader to be operable: 

a. The Paper Tape Reader must be connected to the system, and must be turned on. 
b. Media (paper tape or an edge punched card) must be positioned in the reader. 
c. The media clamp must be closed. 
d. The Reader light (photoelectric device) must be illuminated. 

When the program reaches a tape read instruction and all of these conditions are not satisfied, the 
Reader Condition Indicator Light (Input Indicator 2) is turned on, Reader flag I is set, the key­
board buffer is cleared, and the instruction is held up from execution pending operator action. 
This action is based on one of two conditions: 

a. The reader is intended to be used: In this case, the operator may correct the condition(s) 
(place media in the reader, close the media clamp, etc.) and depress the Read Key. This 
re-initiates the read instruction, causing readi,ng of the tape in accordance with the instruc­
tion; the indicator is turned off and the flag is reset. 

b. The reader is not intended to be used: In this case, the operator may make a manual 
entry through the keyboard. As this action is started, the instruction reverts to its key­
board instruction counterpart, and is executed accordingly (refer to section 2 for details 
of keyboard instructions). Once the keyboard entry has begun and prior to termination 
with an OCK or PK, the use of the Reset Key will re-initiate the Tape read instruction. 

Printed in U. S. America Part II For 1034006 



12.3.03 OPERATION AND PROGRAMING MANUAL - TC 500 

Once tlJ.e operator has taken either course of action above, the indicator light is turned 
off, and reader flag I is reset. Note that since the buffer was cleared, any following 
manual entries that may have been indexed ahead of the reader instruction would re­
quire re-indexing. 

12.3.03 Flag Instructions (Load, Set, Reset, Change) 

The execution of a Load, Set, Reset or Change Flag instruction involving the Reader "R" flags will 
also cause the indicators to either be turned on or off depending on the instruction used. 

12.3.04 Program Keys 

Program Keys (PK's) that have been enabled prior to a paper tape read instruction will be ignored 
during the tape reading even if the PK is depressed during reading. If the operator causes the tape 
read instruction to revert to its keyboard counterpart, use of such a PK will be recognized and will 
function as during any normal keyboard entry. When the instruction is terminated, either as a tape 
read or as a keyboard instruction, any PK's so enabled will be turned off. 

12.4 TABLE OF INPUT CODE ASSIGNMENTS 

A Table of Input Code Assignments provides the means by which any type of paper tape code 
(BCL, etc.) may be read and interpreted into the TC 500 internal code (USASCII). The table not 
only permits any type of code (from any 5, 6, 7, or 8 channel tape), but also enables assigning any 
desired character or certain functions to be interpreted from a particular code. Tables are available 
for such common code sets as BCL, IBM 046, Friden and 5 Channel Teletype (Baudot); however, 
any other code set (up to 8 channels or bits) may be incorporated. 

Input tape that contains USASCII code does not require a table for conversion, but may use a 
table if special functions are desired from certain codes. 

The conversion table, where required, is stored in the Normal (or user) area of memory and 
occupies up to 16 words. Each code (character) in the tape is represented by a pattern of punches 
in one position (or frame) which constitutes a unique configuration of "bits". As codes are read 
from tape, each code references its own character position in the conversion table based on its 
"bit" configuration. In other words, the bit configuration of the code serves as an "address" to a 
specific position in the table. The way in which that code is interpreted is determined by the inter­
nal code value that the programmer has placed in that position of the table. The tables available 
represent "standard" interpretations of characters and functional codes. The internal code repre­
senting an input code may be changed in the table to suit a user's particular need and give any 
desired interpretation as outlined in the following paragraphs. 

12.4.01 Input Functions for 6, 7, or 8 Channel Tape Based on the Table of Code Assignments 

The TC 500 interprets an input code in anyone of the following ways depending on the internal 
code placed in its position in the table (does not apply to 5 channel code): 

a. Interprets the incoming code as one of the TC 500 printable (graphic) characters when 
the TC 500 interna1 code for that character is contained in that position of the table. 

b. Ignores the incoming code when the TC 500 internal code for Ignore is contained in that 
position of the table. 

c. Interprets the incoming code as an invalid character when a forced parity error is con­
tained in that position of the table. This turns on the Invalid Code Indicator Light and 
sets Reader Invalid Code flag (refer to 12.3.01). 

d. Causes the incoming code to set any or all of the flags of one flag group (the Y or K flag 
groups). The flags can then be tested as part of the user program, to provide alternate 
results. Codes that set the Y or K flags also terminate the read instruction (refer to 
12.4.03). Incoming codes interpreted in this manner serve as Field Identifier codes 



OPERATION AND PROGRAMING MANUAL - TC 500 12.4.03 

and do not provide a printable character in the TC 500. 

e. Causes the incoming code to set any or all of the Accumulator (A) Flags during a Read 
Numeric instruction (see 12.1.08). This permits numeric data to be read as minus and/or 
identified uniquely (as per hundred, etc.). The flags can then be tested to cause alternate 
results as part of the user program. Codes that set the Accumulator Flags do not termi­
nate the Read instruction; therefore, they can be located in any character position in the 
data field on the tape. They do not provide a printable character during read-in, but as 
in the case of the Sign flag, subsequent Print Numeric instructions can be affected. 

The codes described in paragraphs d and e above mayor may not correspond to those codes that 
are normally considered "control" or "functional" in a given code set, depending on the interpreta­
tion value given to them in the table by the programmer. 

12.4.02 Firmware Subsets for the Table of Code Assignments 

Specific G.P. 300 Firmware subsets are provided with paper tape input/output capability. However, 
the Table of Code Assignments is usually loaded into memory as part of the user program load pro­
cedure. This permits using various code sets at different times with the same user program, or per­
mits use of a different code set with each separate user program without changing the firmware, 
with certain exceptions: 

a. Input with any code set requiring conversion to the internal code (USASCII), with a table 
of code assignments, requires a firmware subset that provides "table look-up". Input with 
USASCII does not require "table look-up" firmware since no conversion is necessary. 
However, various code sets can be used as input to the same system, along with USASCII, 
so long as "table look-up" firmware is used and a table of code assignments is provided 
for each code set including USASCII. 

b. Firmware for 5 channel code includes "table look-up" capability; however, it is different 
than firmware for 8, 7, or 6 channel code, or for USASCII (no table look-up). 

12.4.03 USASCII Paper Tape Code Without Table Look-up Firmware 

When USASCII is the paper tape input code, a table of code assignments is not required, and a 
separate Firmware subset is provided. 

The following chart shows the code that represents each of the USASCII characters on tape (even 
parity). Each character is represented by two hexadecimal digits: the left for the upper four bits, 
the right for the lower four bits. As the tape is read and after parity checking, the parity bit (b8) 
is set to zero before the character is stored in memory; therefore, if a tape code's upper four bits 
are A, B, C, or D, they would become 2, 3, 4, or 5 in memory. (See Appendix B.) 

Sp A,O 0 3,0 @ C,O P 5,0 
! 2, 1 1 B, 1 A 4, 1 Q D, 1 

" 2,2 2 B, 2 B 4, 2 R D,2 
# A,3 3 3, 3 C C, 3 S 5, 3 
$ 2, 4 4 B,4 D 4, 4 T D,4 
% A,S 5 3, 5 E C, 5 U 5, 5 
& A,6 6 3, 6 F C, 6 V 5, 6 , 

2, 7 7 B, 7 G 4,7 W D,7 
( 2,8 8 B, 8 H 4, 8 X D,8 
) A,9 9 3, 9 I C, 9 Y 5,9 
* A,A 3, A J C,A Z 5, A 
+ 2, B , B,B K 4, B 3/4 (D D,B 
, A,C ¥2 «) 3, C L C,C ¢ (\ ) 5, C 
- 2, D = B,D M 4, D CR (J) D,D 

2, E ~ (» B,E N 4, E o (") D,E 
/ A, F ? 3, F 0 C,F - 5, F 

DEL F,F <> (-) 7, E 
Printed in U. S. America Part II For 1034006 



12.4.03 Cont'd OPERATION AND PROGRAMING MANUAL - TC 500 

FIELD IDENTIFIER (TERMINATION) CODES: The following chart shows the paper tape USASCII 
control codes which cause tape read instructions to be terminated, and some of which set a specified 
flag pattern. Each code is represented by two hexadecimal digits. Codes in Column 0 of the USASCII 
table do not affect any flags; codes in column 1 of the table set "K" flags .. These codes do not enter 
into memory. 

USASCII COLUMN 0 FIELD USASCII COLUMN 1 FIELD IDENTIFIER CODES 
IDENTIFIER CODES 

(DO NOT AFFECT FLAGS) 

FLAG PATTERN 

SET BY CODE * 
PAPER TAPE PAPER TAPE K FLAG NUMBER 

CODE VALUE CODE VALUE 3 2 1 4 

NUL 0, 0 DLE 9,0 0 0 0 0 
SOH 8, 1 DCl 1, 1 0 0 0 I 
STX 8, 2 DC2 1, 2 0 0 1 0 
ETX 0, 3 DC3 9, 3 0 0 1 1 
EOT 8, 4 DC4 1, 4 0 1 0 0 
ENQ 0, 5 NAK 9, 5 0 1 0 1 
ACK 0,6 SYN 9, 6 0 1 1 0 
BEL 8,7 ETB 1, 7 0 1 1 1 
BS 8,8 CAN 1, 8 1 0 0 0 
HT 0,9 EM 9, 9 I 0 0 1 
IF 0, A SUB 9, A 1 0 1 0 
VT 8,B ESC I, B 1 0 1 1 
FF 0, D FS 9,C I I 0 0 
CR 8, D GS 1, D I 1 0 I 
SO 8,E RS I, E I I I 0 
SI O,F US 9,F I I I 1 

* 0 = flag is reset 
I = flag is set 

The NUL code is the same as a sprocket feed code in that no channels are punched in a frame, and 
thus, it functions differently than the other field identifier codes. During a read tape instruction, 
it is ignored (treated like a delete code - DEL) until the first significant character of data is read. 
If encountered after the first significant character, it will then be treated as a field identifier code 
and will terminate the read instruction. It should not be used for a field identifier code if a variable 
field of data would ever contain no significant data but only a field identifier code. This would 
cause the NUL code to be ignored, since a significant character was not read, and it would not 
serve its intended function to terminate the instruction. This would result in the paper tape getting 
out of step with the program. 

The END OF ALPHA code (0 0) is the same as the NUL code. 

The DEL (Delete) code is completely ignored by all paper tape read instructions, and does not 
count as a character read. It consists of a punch in all 8 channels in a frame of tape. 



13. 

OPERATION AND PROGRAMING MANUAL - TC 500 13.1.02 

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR 

The instructions described in this section provide the means to output data from the TC 500 into 
punched paper tape and/or edge punched cards by using a style A 562 Paper Tape/Edge Punched 
Card Perforator as the output adjunct. All subsequent reference to "paper tape" applies both to 
punched paper tape and to edge punched cards, unless indicated otherwise. 

Tape punching is serial at a speed up to 40 characters per second when no printing accompanies it. 
When printing with the TC 500 printer accompanies punching paper tape, the punching speed is up 
to 20 characters per second. 

The internal character code of the TC 500 is USASCII and output to paper tape will normally be 
in this code. However, any 5, 6, 7, or 8 channel paper tape code can be punched by the TC 500 
by utilizing a Table of Output Code Assignments for conversion of the internal code into the de­
sired paper tape code (refer to 13.5). The firmware for 5 channel code is different than that for 
6, 7, or 8 channel "table look-up" firmware or for USASCII No table firmware. 

The instructions provide the ability to print and punch data from the Accumulator, print and punch 
alphanumeric data from memory, and type or type into memory while punching. In addition, a 
register is provided which counts the number of codes punched. This enables the use of continuous 
edge punched cards by making it possible to determine when one continuous card has been filled or 
to fill any unused portion of a continuous card with feed codes before aligning the next continuous 
card to the first sprocket hole. 

The Paper Tape Punch instructions are designed to function in three ways: (1) When proper tape 
punching conditions exist, punching will occur according to the specifications of the instruction. 
(2) If the perforator is not connected or is turned off, the punch portion of the instruction is in­
hibited and the instruction is executed in accordance with its counterpart keyboard or print instruc­
tion. (3) If the perforator is turned on but does not have media loaded, execution of the punch 
instruction is held up until the condition is corrected. Thus, although the program may provide for 
punching, the perforator may be turned off or disconnected without affecting the operation of the 
rest of the system. 

The mnemonic representations of the punch instructions are the same as selected keyboard and 
print instructions with the addition of a prefix letter "X". 

13.1 PUNCHING ALPHANUMERIC DATA 

The following instructions provide for punching alphanumeric data during keyboard entry or directly 
from storage in memory. 

13.1.01 Typing and Punching 

Type, Punch and Print 
Q£. Code 

XTK 

A 

0: 150 

B 

The XTK instruction allows typing, printing and punching up to the maximum number of charac­
ters specified in the A field. This instruction functions like a TK instruction in every respect (refer 
to section 2) except that punching occurs with it. The termination of this instruction with an OCK 
or PK does not cause a code to punch. If the perforator is turned off, XTK will operate only as a 
TK instruction. 

13.1.02 Typing Into Memory and Punching 

Type Into Memory, Punch and Print 

Op Code 

XTKM 

A 

0: 150 

B 

The XTKM instruction allows typing into memory, printing and punching up to the maximum num­
ber of characters specified in the A field. The prior use of LKBR designates the starting word for 

Printed in U. S. America Part II For 1034006 



13.1. 03 OPERATION AND PROGRAMING MANUAL - TC 500 

entry into memory. This instruction functions like a TKM instruction in every respect (refer to 
section 2) except that punching occurs with it. The termination of this instruction with an OCK or 
PK places a-n End of Alpha code in memory but does not cause a code to punch. If the perforator 
is turned off, XTKM will operate only as a TKM instruction. 

13.1.03 Entering Alpha Into Memory and Punching 

Enter Alpha Into Memory and Punch, Non-Print 

Op Code 

XEAM 
A 

0:150 

B 

The XEAM instruction functions exactly like the XTKM instruction except that printing does not 
occur. If the perforator is turned off, XEAM will operate only as an EAM instruction. 

13.1.04 Printing Alpha From Memory and Punching 

Print Alpha and Punch 
Op Code 

XPA 
A 

O:N 

B 

The XP A instruction simultaneously prints and punches the alphanumeric data stored in the memory 
location designated by the A field. The instruction is terminated upon reaching an End of Alpha 
code in the data; the End of Alpha code does not punch. This instruction functions like a PA in­
struction in every respect (refer to section 3) except that punching occurs with it. If the perforator 
is turned off, XPA will operate only as a PA instruction. 

13.1.05 Punching Alpha From Memory, Non-Print 

Punch Alpha from Memory, Non-Print 

A 
O:N 

B 

The XA instruction functions exactly like the XPA instruction except that printing does not occur. 
If the perforator is turned off, XA will operate as a "No Operation" (NOP) instruction. 

13.1.06 Punching Special Codes 

Punch Code 

Op Code 

XC 

A 

0: 15 

B 

0: 15 

The XC instruction punches into tape the bit pattern specified by the parameter fields. This instruc­
tion permits creating anyone of 256 possible codes that can be derived from 8 channels (or bits). 
The A field represents the decimal value of the high order 4 bits (b8, b7, b6, b5 having decimal 
values of 8, 4, 2, and 1 respectively); the B field represents the decimal value of the low order 4 bits 
(b4, b3. b2, b l having decimal value of 8, 4, 2, and 1 respectively) in the bit configuration of the 
desired cooe. The parity bit must be included in the appropriate bit position when applicable. In 
the case of USASCII code, the column number of the desired code in the table represents the A 
field (parity bit must be added to this when applicable); the row number of the desired code repre­
sents the B field. No printing occurs with this instruction. If the perforator is turned off, XC will 
operate as a "No Operation" (NOP) instruction. 

EXAMPLE: Punch the USASCII code "RS" (Record Separator) 
b8 b7 b6 b5 

bit pattern ("1" = hole in tape) 0 0 0 1 

decimal value 8 4 2 8 4 

Parameter values A = B = 14 

This corresponds to the USASCII table location of RS 
in column I, row 14 



OPERATION AND PROGRAMING MANUAL - TC 500 13.2.01 

13.2 PUNCHING NUMERIC DATA FROM THE ACCUMULATOR 

The following instructions provide for punching numeric data from the Accumulator. The pointer 
designates the high order digit position of the Accumulator at which printing and punching begin; 
the printing format and punching are controlled by the mask word selected. The instruction is 
terminated after punching and printing through digit position zero or when an "E" (End) mask code 
is encountered in the mask word. 

The Punch Flag (P) in the mask word, when set, causes leading zeros to punch even though leading 
zero suppression mask codes (Z Z,) prevent their printing. 

When the Punch Flag is reset and leading zero suppression mask codes are used, leading zeros will 
neither print nor punch. 

The Punch Flag has no effect on the other mask codes. 

Punctuation that is inserted by the mask codes during printing does not punch, only the numeric 
data itself. If an Ignore (I) mask code is used, the corresponding digit in the Accumulator will not 
punch. If the End (E) mask code is used, the corresponding digit neither prints nor punches and 
the instruction is terminated. All other mask codes cause the corresponding digit to punch. A mask 
word is used for all punch numeric instructions, even though printing may not be a function of a 
given instruction (see 13.2.04). 

13.2.01 Print and Punch Numeric Data 

Print and Punch Numeric 

Op Code 

XPN 

A 

0:14 

B 

0:15 

The XPN instruction prints and punches the contents of the Accumulator, starting at the high order 
digit position designated by the A field, in accordance with the print mask designated by the B field. 
The print mask; value is relative to the mask table established by the last LPNR instruction. The 
Accumulator Flags position is ignored, as is any other data in the Accumulator to the left of the 
pointer. This instruction functions like a PN instruction in every respect (refer to section 3) except 
that p.unching occurs with it. If the perforator is turned off, XPN will operate only as a PN instruc­
tion. 

When it is desired to punch a code reflecting the sign value of numeric data, this is accomplished by 
interrogating the Sign Flag using a Skip or Execute instruction and then punching the appropriate 
code using the XC instruction (refer to 13.1.06 above). This procedure also applies to punching a 
code to reflect the status of any other Accumulator Flags. 

Printed in U. S. America Part II For 1034006 



13.2.02 OPERATION AND PROGRAMING MANUAL - TC 500 

Mask Code Printing Punching 
F Print $ No Effect 

+ Suppress Punctuation No Effect 
P No Effect Leading zeros punch 

if P flag set 
D Prin t Character 
D, regardless of 

___ D __ significance 
Punch Character 

X Trailing zero regardless of 
X suppression significance 

1------
C Leading zero & 

C trailing zero 
suppression 

Z Print if: Punch if: 

Z, (1) Accum. digit (1) P is Set 
not zero (2) Accum. digit 

(2) A non-zero not zero 
digit has been (3) A non-zero 

I-- - - printed digit has been 

S Print only if Accum. punched 

digit not zero 

I Ignore Ignore 

E Terminate, Non-Print Terminate, Non-Punch 

Fig. 13-1 Print & Punch Characteristics of Mask Codes 

13.2.02 Print and Punch Numeric Data, Shift Ribbon if Minus 

Print and Punch Numeric, Shift Ribbon if Minus 
QQSod~ 

XPNS-
A 

0:14 
B 

0: 15 

The XPNS- instruction is the same as the XPN instruction except that the ribbon color is changed 
(normally to red, refer to section 3) if the Accumulator Sign Flag is set (minus). If the perforator 
is turned off, XPNS- will operate only as a PNS- instruction. 

13.2.03 Print and Punch Numeric Data, Shift Ribbon if Plus 

Print and Punch Numeric, Shift Ribbon if Plus 
Op Code 
XPNS+ 

A 
0:14 

B 

0: 15 

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed 
(normally to red) if the Accumulator Sign Flag is reset (plus). If the perforator is turned off, 
XPNS+ will operate only as a PNS+ instruction. 

13.2.04 Punch Numeric Data, Non·Print 

Punch Numeric, Non-Print 

Op Code 

XN 

A 

0: 14 

B 

0: 15 

The XN instruction is the same as the XPN instruction except that no printing occurs. A mask word 
is used with this instruction since it controls the punching. The mask word selected may be the 



OPERATION AND PROGRAMING MANUAL - TC 500 13.3.04 

same as is used with other Print Numeric instructions since it would not affect the non-print func­
tion of this instruction. If the perforator is turned off, XN will operate as a "No Operation" 
(NOP) instruction. 

13.3 OTHER PUNCHING INSTRUCTIONS 

A Punch Count Register is utilized to count the number of codes that have been punched. This is 
necessary to permit the proper handling of continuous edge punched cards. After punching in one 
card, it is necessary to punch feed codes (sprocket holes) in the unused portion of the card so that 
the first sprocket hole of the next card can be aligned in the punch station. These instructions con­
trol the Punch Count Register in this use. 

13.3.01 Loading the Punch Count Register 

Load Punch Count Register 
Op Code 

LXC 
A 

0:255 
B 

The LXC instruction wi11load the number contained in the A field into the punch count register, 
and is normally used at the start of each new continuous edge punched card to reset the count. 
The punch count register is incremented by one for each code punched from any punching instruc­
tion. If the register contains 255, incrementing causes the register to become zero. 

13.3.02 Modifying Instructions by the Punch Count Register 

Modify by Punch Count Register 

Op Code 

XMOD 

A B 

The XMOD instruction will modify the parameter field of the next instruction by the contents of 
the Punch Count Register. This instruction is similar to the MOD instruction in that it will modify 
most instructions (see section 7). However, it uses the value in the Punch Count Register instead of 
one of the Index Registers. It cannot be changed by the Index Register instructions (ADIR, IIR, 
LIR, DIR, TAIR). 

13.3.03 Punching Feed Codes 

Punch Feed Codes 
Op Code 

XB 
A 

0:255 
B 

The XB instruction causes feed (sprocket) holes to be punched. The number of codes punched will 
be the difference between the number in the A field and 255. If the perforator is turned off, XB 
will operate as a "No Operation" (NOP) instruction. When Edge Punched Cards are the media 
present, punching of sprocket holes is inhibited. Therefore, the card is just advanced with no 
punching. 

13.3.04 Use of the Punch Count Register 

Advancing the unused portion of a single- edge punched card to the end of card: When the number 
of codes to be punched for one record will never exceed the length of one card, single edge 
punched cards may be used; the unused portion could be advanced in this manner: 

Assume that a card 10 inches in length (100 codes) is used, and that the following 
data is punched (LXC is loaded with 0 prior to punching data): 

Product Number 
Description 
Price 
Field Identifier codes 

Printed in U. S. America 

6 codes 
30 codes 

6 codes 
~ codes 

Part II For 1034006 



13.4 OPERATION AND PROGRAMING MANUAL - TC 500 

The Punch Count Register now contains 45. The following instructions will advance 
the card to the end: 

XMOD (adds 45 to parameter value of XB instruction) 
XB 140 (parameter is the difference between 255 and the length of 

card in terms of number of frames less 15 frames to eject 
card from punch station). 

The XB parameter of 140 plus the register value of 45 = 185; thus, the XB causes the feeding 
of 70 frames (255 - 185 = 70). Since the card length is 100, and since 45 codes of data were 
entered, 55 frames are needed plus 15 frames to eject. 

Advancing the unused portion of a continuous edge punched card to the end: When the maximum 
number of codes to be punched for one record can exceed the length of one card, continuous edge 
punched cards may be used; the unused portion can be advanced in this manner so that the next 
new card is aligned to the first frame. This procedure is valid if the total record length does not 
exceed 255 codes. 

Note the use of an Index Register in conjunction with the Punch count register. 

Assume that a card 10 inches in length (100 codes) is used, and that 180 codes of data were 
punched (LXC is loaded with zero before punching data). Punch Count Register now contains 
180. The following instructions will advance the card to the start of the next continuous card. 

1 

2 
STEP 3 

4 
5 
6 
7 
8 

XMOD 

LIR 1 0 
ADIR 1 155 

EX T I 
ADIR 1 1 
BRU STEP 3 
MOD 1 
XB 0 

(Punch Count Reg. value added to LIR 
parameter) 

(Index Reg. 1 loaded with 180) 
(Difference between 255 & card length (100) 
added) 

2 (Test I.R. Flag for overflow) 
(Add 1 to Index register) 

(Punch feed codes) 

The first time step 3 is executed, Ind. Reg. 1 contains 79 (335 - 256 = 79) and the 
I Test flag is set at step 4 causing step 5 & 6 to be executed. 1 is added to I.R. 1 
at step 5, resulting in a value of 80, and a branch back to step 3. The second time 
step 3 is executed, I.R. 1 then contains 235 (155 + 80) and the I Test flag is not 
set at step 4, causing steps 5 and 6 to be skipped. Step 7 adds 235 to the XB 
parameter in step 8 causing the XB to feed 20 frames (255 - 235 = 20). Since 
180 codes of data were punched, 20 frames were unused in the last card requiring 
advancing 20 frames. 

Regardless of how many codes had been punched (not exceeding 255), the above 
routine would cause the correct number of sprocket holes to be advanced so that 
the first hole of the next card would be aligned at the punch station. The length 
of the card (reflected in step 3 parameter) may be changed to meet individual re­
quirements, and a substitution of another index register may be made without 
affecting the routine. 

13.4 OUTPUT INDICATOR LIGHTS AND FLAGS 

Four punch indicator lights are provided on the keyboard of TC 500's with Input/Output capability 
to alert the operator as to the status of the perforator. In addition, there are four Punch Flags, 
each one associated with an indicator light, to permit the program to interrogate the status of the 
perforator. 



OPERATION AND PROGRAMING MANUAL - TC 500 13.4.05 

Fig. 13-2 Output Indicator Lights 

13.4.01 Punch Off Indicator 

The Punch Off Indicator light is turned on and Punch Flag P4 is set if the paper tape perforator 
ON/OFF switch is in the "OFF" position during the execution of a punch instruction. The instruc­
tion will be executed; however, the punching portion of it will be inhibited. The correction of the 
condition by turning on the perforator will cause the indicator to be turned off and Punch Flag P 4 
to be reset on the next punch instruction. 

13.4.02 Media Not Present Indicator 

If the program is attempting to execute a punch instruction and media is not present in the punch 
station, the instruction is held up; the Media indicator light is turned on and Punch Flag PI is set. 
The subsequent placing of an edge punched card in the punch and depression of the Card Lock 
button, or the placing of tape in the punch will cause the system to resume execution of the punch 
instruction. During the execution of the instruction, the indicator light is turned off and Punch 
Flag PI is reset. 

13.4.03 Echo Checking 

If the Echo Checking feature indicates that incorrect punching has occurred during a punch instruc­
tion, the Echo Check Indicator light is turned on and Punch Flag P2 is set. Punching is not in­
hibited; the flag stays set and the indicator remains on during subsequent punch instructions. 

To use this feature properly, the program must provide for checking flag P2 at least after each line 
(or Transaction) of punching. When the flag is set, a Skip or Execute instruction would enable per­
forming the necessary instructions to sound the Alarm, punch a tape error code, or to take other 
corrective action, and to reset flag P2. 

13.4.04 Tape Supply Indicator 

When reel tape is being used and the supply is nearly exhausted (approximately 20 feet remaining), 
the Tape Supply Indicator light is turned on and Punch Flag P3 is set. Correction of this condition 
by placing a new roll of tape in the supply reel will turn off the indicator and reset the flag on the 
next punch instruction. This condition does not halt execution of the program nor inhibit the 
punching. 

Normally, when this light turns on, there is adequate tape remaining to finish that entry, or even the 
next several. However, to insure that the operator does not ignore the condition, the flag should be 
checked at the beginning of each line entry, with provision made to sound the Alarm and halt the 
processing if the flag is set. Thus, the Alarm would ring at the start of each entry until the condi­
tion was corrected. 

13.4.05 Flag Instructions 

The execution of a LOAD, SET, RESET or CHANGE instruction involving the Punch Flags will also 
cause the associated indicator light(s) to either be turned on or off depending on the instruction used. 

Printed in U. S. America Part II For 1034006 



13.4.06 OPERATION AND PROGRAMING MANUAL -TC 500 

13.4.06 Initializing the Program 

Since the status of the perforator is apparent only as a punch instruction is being executed, it is 
recommended that a punch instruction be used during the program initialization routine with sub­
sequent testing of the Punch Flags. This can be accomplished with a "Punch Code" instruction 
using parameter values of zero (XC 0 0 ), or a "Punch Feed Codes" instruction with a param­
eter of 254 (XB 254). In either case, the result would be to punch one sprocket hole in the tape 
and to set any Punch Flags affected if improper punching conditions existed. A test of the flags 
could then cause the Alarm to ring if any flags were set. 

13.5 TABLE OF OUTPUT CODE ASSIGNMENTS 

When a code set other than USASCII is desired in the output tape, or when certain variations may 
be desired in the USASCII set, a Table of Output Code Assignments may be used. This permits 
output into any 5, 6, 7, or 8 channel code without modification to the Perforator. Output in 
USASCII code does not require a table. 

The table is loaded into a Normal memory area and occupies up to 16 words. The loading may 
accompany regular loading of user programs. This table is a separate table from the Table of Input 
Code Assignments described in section 12.4. Each TC 500 internal character selects a particular 
character position in the output table. Tht~ 8-bit code that is put in each character position of the 
table is the code that will be punched into the output tape. 

Normally, the Punch Code (XC) instruction will be used to punch field identifier (functional) codes. 
However, since any of the TC 500 internal characters, through the table, can cause any 8-bit code 
to be punched, field identifier codes may be punched in this manner also. 

The programmer may construct an output table to achieve any desired output code. However, 
tables are available that contain "standard" values for the following code sets: 

BCL/IBM 8 channel 
Friden 8 channel 
USASCII 8 channel 
Teletype 5 channel (Baudot) 

The bit configuration of most Friden tape codes is the same as BCL. However, many of the func­
tional code names given to the various codes are different, and for that reason a table is provided 
for ease in interpretation. 

13.5.01 Firmware Subsets for the Table of Code Assignments 

The firmware which includes "table look-up" for conversion of the internal code to the output code 
is different than firmware which does not use "table look-up" (output in USASCII). Thus, a 
USASCII table is available for use in systems that require "table look-up" firmware due to varying 
output code requirements. 

NOTE: Output in 5-channel tape code requires firmware that is different from either 8-channel "table look-up" 
firmware or for output in USASCII without "table look-up". 


