
.......... ao ______ .::..ST.:..;U::.:D::.:E=N:.:...:..T....:T:...:E:.::X.:..T:.....::.20:.S::.:R:..:.:O:..:1~2::.3-....::3:...C.::.....:1..:.7~9-...:B::.::U:.:I~C:;;:.-S:.T!-

Computer Systems Department

BUIC III COMPUTER PRINCIPLES

27 December 1967

Keesler Technical Training Center
Keesler Air Force Base, Mississippi

--------- Designed For ATC Course Use ---------

Computer Systems Department
Keesler AFB, Mississippi

STUDENT TEXT 2OSR0123-3 C 179-BUIC-ST
27 December 1967

BUIC ill COMPUTER PRINCIPLES

This student text provides study and reference material in support of Block I, Course
20SR0123-3.

INTRODUCTION:

'" CHAPTER 1.

y.. CHAPTER 2.

)\CHAPTER 3.

f.... CHAPTER 4.

~ CHAPTER 5.

CONTENTS

Title

COMPUTERS, THE HEART OF AUTOMATION

INTRODUCTION TO COMPUTERS

History of Computers

Basic Classes of Computing Machines

Digital Computer Elements

COMPUTER MATHEMATICS

Number Systems

Numbering System Conversions

Arithmetic Operations

DATA REP RESENT ATION

General

Coded Method

Hollerith Coding

Numeric Representation

BASIC COMPUTER LOGIC

Information Signals

Switching Logic

Computer Logic Circuits

Small-Scale Storage Circuits

Arithmetic and Control

COMPUTER SYSTEMS

Large-Scale storage and Memory

Description of BUIC m Equipment

Flow of Information Within the Computer

BUIC ill Equipment Configuration

Page

1

4

-4

7

8

12

12

15

17

25

25

25

26

28

30

30

32

35

37

39

44

44

54

57

58

INTRODUCTION

COMPUTERS, THE HEART OF AUTOMATION

by

Dr. John R. Pierce

Executive Director, Research-Communications Sciences Division

Bell Telephone Laboratories, Inc.

The general purpose digital computer or
a specialized relative, is the heart, or rather
the brain, of automation. Whether it is in a
computing center or hitched to an airplane,
a train, a telephone switching system, a
machine or a factory; whether its output is
numbers, or pictures, or words that may
write orders, pay employees, or help the
boss; or whether the output is physical action,
the computer provides the "auto" in "auto
mation."

When I started work in electronics in
1936, all we had to help us make calculations
were slide rules and desk calculating
machines. By punching the buttons of a
calculating machine one could add, subtract,
multiply and divide numbers. With a little
ingenuity one could take ~quare roots and do
other mathematical operations. But one had to
write down the outcome of each operation and
do many operations in succession before a
complicated computing job was finally com
pleted. This was slow as well as boring, and
one did not do much of it.

Today, electronics, communication, and
computation are inextricably mingled; and
they are mixed up with transportation and
production as well. There are 22,500 general
purpose electronic digital computers in
schools, laboratories, offices, and factories.

Today computers calculate, keep books,
keep track of inventories and order stock,
handle airline and railway reservations, con
trol railroad traffiC, control machine tools
and chemical processing plants, justify and
hyphenate newspaper test, make indexes of
of scientific papers and journals, guide
rockets and control the launching of satellites,

and do a host of other complicated but clearly
defined jobs that are important to industry,
SCience, and government. It is widespread
industrial and government usage, rather than
scientific calculation, that accounts for a
five billion dollar production and sales of
computers in 1964, and for the 650,000 jobs
connected with computing.

Yet. we are just beginning to take
advantage of the potentialities of computers.
Where will we go from here? Only recently
have we seen what computers are really
good for and what they are not good for.
Only recently have we had computers which
are big enough;' fast enough, complicated
enough, and reliable enough to start doing
many of the things that computers are well
suited to do. We are at the beginning. We
cannot hope to see the end. But, we can see
something about tomorrow.

A computer can manipulate numbers. It
can have a wide variety of applications
because so many things can be represented
by numbers. The direction to, distance from,
and height of an airplane, missile, or sat
elite can be expressed in numbers. The
location of an electrical component or cir
cuit board can be specified by giving its
height above and distance to the right of
the lower left-hand corner of a relay rack
or chassis on which components are mounted.
A whole mechanical drawing or blueprint
can be described by the locations of the end
points of the lines and the center points and
radii of circles. Flight numbers, times, code
numbers for Cities, and airplane capacities
and numbers of reservations made are num
bers which make it possible to translate
airline reservation information into informa
tion a computer can handle.

1

A computer can compute much faster
than a human being. It is versatile enough
to carry out any clearly specified operation.
For years, men who wanted to look into the
future insisted on regarding the computer as
a "giant brain" which would be made to
out perform mere men. They wanted to make
computers play checkers and chess, prove
mathematical theorems, translate from one
language into another, learn to recognize
numbers, letters, words, voices and faces.
Astute programmers talked freely about
"artificial intelligence," and many believed
seriously that the computer was about to
dash beyond the human mind on all fronts.

Some small progress was made in this
general direction. Dr. A. L. Samuel program
med the most powerful and expensive
computer of that day, the IBM 704, to play
a good but not championship game of checkers,
and to improve its game by experience.
Computers were taught to play poor chess.
They were made to prove simple theorems
of mathematics surprisingly quickly - but
they could not prove complicated and useful
theorems at all. While computers easily and
accurately recognize the specially designed
and printed numbers on checks, or can read
one or several varieties of typescript, they
perform badly in trying to read the very wide
variety of existing type printing faces which
do not bother human beings at all. Computers
can read handwriting only under impractically
idealized conditions. Computers can translate
selected and carefully analyzed textfrom one
language to another, but when set to translate
long bodies of fresh text, they produce an
ungrammatical and confusing output.

We are coming to realize that comparing
a computer with human thought is like com
paring an automobile with a horse or an
airplane with a bird. Both man and the com
puter are wonderful, but they are wonderful
in very different ways.

The once general enthusiasm for making
computers manifest "artificial intelligence"
is waning. Failure is one reason. Another is
that there is really no demand for a robot
chess player.

2

Today, a host of clever programmers
and computer designers have succeeded in
making computers do an increasing number of
things which are useful as well as exciting.
And I think it is by going further in this
direction that we will accomplish many new
and wonderful things in the near future.

In order to make increased usage of
computers possible, there has had to be a
continual process of adaptation between man
and machine. At first, it was the man who
had to adapt himself to the machine. For
instance, each user took his program indivi
dually to the machine and used the computer
either until his problem was solved, or until
he ran out of assigned time.

One of the first advances in adapting
computers to easy use was the "open shop"
together with batch processing. Anyone who
follows specified rules can get a program _
run. Data for a lot of short jobs which various
people want done are put on a magnetic tape
and run through the computer in sequence.
This speeds computing immensely.

Tomorrow we will use multiprogram
ming. The computer will take up tasks in
order of their ease or brevity. By interrupt
ing the large job periodically, more
customers will be satisf~ed, and no one must
wait for a very long time. With multiprogram
ming it is possible to use in one computer
many controls and many arithmetic units.
This is called multiprocessing and permits
several jobs to be done simultaneously.
Multiprogramming and multiprocessing per
mit multiple access. Many users can have
access to the machine simultaneously. Now,
in Project MAC at the Massachusetts Insti
tute of Technology, a number of computer
users have keyboards in their offices or
homes, by means of which they can call on
one central computer.

Batch processing and multiple access
are both steps of one particular sort toward
quick and efficient use by a large number of
people. Another means for adapting com
puters to the needs of users is simple and
powerful programming languages.

Any computer is built so as to respond
to a repertory of numerical instructions which
cause the machine to perform arithmetical
and input and output operations. These
instructions, which are built into a computer,
are called the MACHINE LANGUAGE of the
computer. The machine language of a modern
computer may consist of two or three hun
dred instructions or WORDS. Today, only
specialists writing very special programs
write in machine language. The average
computer user writes in a language such as
FORTRAN. FORTRAN is closely related to
mathematical notation. The computer COM
PILES or converts a FORTRAN program into
a program in machine language.

As computers and computer program
ming have advanced, many new languages have
become available. Among these are ALGOL
(Algorithmetic Language), MAD (Michigan
Algorithmetic Decoder), JOVIAL (Jules Own
Version of the International Algebraic Lan
guage), COBOL (Common Business Oriented
Language), COMIT (whose meaning has been
forgotten, and SNOBOL (string Oriented Sym~
bolic Language).

Some languages have special narrow
purposes. ALPAK (Algebra Package) is a
language for instructing the computer to add,
subtract, multiply, divide, and perform other
operations on algebraic polynomials. BLOD!
(Block Diagram) is a language useful in
simulating the behavior of electrical circuits.
BEFLIX (Bell Flickers) is a language useful
in using the computer to make animated
motion pictures.

Novice users need simple languages.
Highly specialized tasks call for highly
specialized languages. The languages of the
future will be tailored to the various tasks
which the computers of the future will be
used to do.

One increasing new use of computers
is handling and sorting of words and sen
tences. For instance, if the material
ordinarily printed on library catalog cards is'
punched into punched cards or any other form
readable by a computer, the computer can
sort the entries according to classification
number, and alphabetically according to
author or title. The computer can then print
out a listing of books in the desired order.
Libraries have used a computer in this way
to produce a number of copies of the entire
card catalog, printed conveniently in book
form.

Libraries have also used computers to
prepare PE~MUTATION INDEXES of various
scientific publications. In a permutation
index, a title'is listed alphabetically under
each important word in the title (excluding
such words as ~ and THE).

Computers have also been programmed
to justify (make lines of equal length) and
hyphenate English test. Several American

. newspapers now use computers for this pur
pose. Further, a computer can be used to
correct or alter text which has been recorded
on magnetic tape, so that one can correct a
manuscript without retyping it.

I believe that in the future most papers,
reports, books, and business correspondence
will be put into machine readable form at
the first typing or keyboard operation. Such
machine readable text can be sent to distant
points economically over phone lines. It can
serve as computer input. It can be edited
without retyping. The edited copy can be
printed as a book or report without a further
keyboard operation. The computer will rev
olutionize the writing and production of
reports, journals, and books.

Dr. Pierce gave the above address at the 1965 MIL-E-CON Conference in Washing
ton, D. C. It is reprinted here, with permission of the author.

3

CHAPTER 1. INTRODUCTION TO COMPUTERS

High-speed digital computers are com
plex machines, each of which may have more
than a million electrical and electronic parts.
A computer programmer cannot efficiently
program such a machine without first under
standing how it works. This understanding
should not be confined to one specific digital
computer model because computer designs
are continually being refined. A computer
programmer, therefore, needs a general
knowledge of digital computer design and
operation. He must know what digital com
puters are, what they do, and how they do it.

The subject of digital computers covers
a large number of different machines, and to
discuss all of them in detail would be imprac
tical. The information in this manual, then,
is developed along general lines with the only
specific information pertaining to the
Burroughs 0-825, Modular Processor used
in the BUIC system.

HISTORY OF COMPUTERS

The word 1/ computers" comes from the
Latin verb II computare" which means to
reckon or think. Thus, a digital computer is
a machine that recons (or calculates) with
digits.

A computing machine is actually a data
processing device--that is, a device that
performs mathematical and logical opera
tions on data in a prearranged and controlled
manner. To perform these operations, com
puting machines must be able to: (1) accept
the items of data that are presented to them,
(2) manipulate these items in a desired pre
arranged manner, and (3) make the manip
ulated data available in useful form.

The first devices used by man as an
aid .. _~n computation were _fingers, stieks,
stones, and similar objects. _ One of the
earliest "machines", the abacus, evolved
from the use of pebbles as counters and has
been highly touted as' a computer; however,
it is really nothing more than an indicating
device. The abacus originated sometime
before 1200 A.D. This device is one of the

4

simplest forms of an adding or counting
machine. It consists of a series of rods on
which the positioning of beads records the
numbers 0 through 9. Addition or subtraction
can be accomplished on each bar individually.
However, the carrying of the I when a sum
is greater than 9 cannot be done automati
cally.

The first machine that made provisions
for automatic carrying of digits, when the
sum of a column is greater than 9, was the
Pascal machine invented in 1642 by a French
mathematician. Thls- was' perhaps the first
actual accounting' machlne,!.-It was used'to
figurecurreric'y"In a customs house. Basically
it was a hand-operated, gear-driven counter
with addition performed by turning a wheel
a distance equal to the currency to be added.
In 1801, another Frenchman named Joseph
Jacquard came upon the idea of punched
cards. Jacquard used a chain of perfora~ed
cards to control weaving of figured fabrics
on a loom. This mechanism, called the
Jacquard Loom, functioned quite successfully
and proved to be the basis for some remark
able developments.

The basic forerunner of the modern
large-scale computers was the Babbage Ana
lytica Engine, conceived by Charles Babbage
in 1833. This machine, which operated some
what similarly to the Jacquard Loom, made
use of cards and strips of metal with various
holes punched in them to record numbers.
A number was represented by an equivalent
number of holes. After the Babbage machine,
several improved types of computing
machines were developed. Notable among
them was the HOl1eri~ machine which used
the Jacquard idea of oles punched in tape
or cards. However, in the Hollerith machines
these holes controlled electrical mecha
nisms.

As business and industry grew during
the first part of the 20th century, the demand
for accounting machines rose steadily. In
1914, a mechanical key punch, a gang-punch,
a vertical sorter, and a tabulator were avail
able to meet the accounqng needs of the

J

nation. However, all of this equipment was
electromechanical in nature, and each
machine could perform only one or two
basic operations. What was needed was a
machine that could perform a multitude of
tasks at a high rate of speed.

The first of the large-scale, highspeed
computing machines was the Mark I, which
was completed in 1944 by Harvard University
and International Business Machines (IBM).
This machine uses the IBM punched-card
method to insert the input data. Its output
is typed out by an electric typewriter. The
sequence of operations of the Mark I is
controlled automatically. The machine can
add, subtract, multiply, divide, or perform
other related arithmetic operations. It is
primarily a relay-operated device.

The Harvard Mark I was highly success
ful, but relay operation was undesirably slow.
The first all-electronic computer was the
Electronic Numerical Integrator and Cal
culator (ENIAC), which was built by the
University of Pennsylvania in 1946. The
ENIAC_utilized 18,000 vacuum tubes as
storage elements instead of the relays and
switches used in the Mark I. It could add
two 10-digit decimal numbers in 200 micro
seconds, or multiply them together in 2 to
3 milliseconds.

In 1951 a machine called the Universal
Automatic Computer (UNIVAC) was I>roduced
by the Remington-Rand Corporation. This
machine could handle alphabetic as well as
numerical data. The UNIVAC proved to be
the nucleus for a new computer field; namely,
the large-scale, general-purpose digital
machine.

One of the first uses made of a large
scale, general purpose digitial computerwas
to perform design calculations for the air
craft industry. ~ 1955, a large computer
was installed at the Monsanto Chemical Com
pany to handle mostly commercial data
processing such as billing, stock inventory,
payrolls, etc. However, improvements were
still being made in the computer field,
mainly in the type of memory to be utilized
with the computer. In 1955, computers were

introduced which contained magnetic cores
in their high speed memory devices. One
of the latest developments in the computer
field has been the added capability of one
computer to handle data from up to six input/
output devices at one time.

The Air Force, in late 1950, enlisted
the cooperation of various civilian organiza
tions in its efforts to improve the capabilities
of the United states air defense network.
The overall program was known as the Con
tinental Air Defense System (CADS) Project,
which under civilian organizations helped to
bring the national air defeIiSe system up to
the best possible operating condition and
made recommendations to ensure the sys
tem's continued effective operation. The air
defense system was greatly improved by the
CADS Project, but fell short of the Air Defense
Command requirements for a vastly improved
air defense system.

Simultaneously, studies were made on
the combined use of digital computers and
radar-data transmiSSion equipment for appli
cation to air defense. The testing of a
high-speed digital computer was recom
mended to the Air Force to provide
information on the capabilities of such equip
ment to solve the ever-growing problem of
air defense. The findings of this program led
to many new concepts for solving the problem
and resulted in the establishment of an experi
mental project which gave rise to the SAGE
System. This project was developed in three·
major phases: the 1953 Cape Cod System, the
1954 Cape Cod System, and the experimental
SAGE subsector.

The ~ Cape Cod System was COni

posed of a computer known as Whirlwind I
(WWI) and a Direction Center, along with
associated radar equipment. The purpose of
this arrangement was to gather preliminary
test data which would substantiate the con":'
cepts of the SAGE System then being planned.
Emphasis was directed toward singling out
obvious problem areas and attempting to
correct whatever difficulties were encoun
tered, rather than toward gathering complete
statistical data on system operation. Conse
quently, there was very little modification of
equipment.

5

The 1954 Cape Cod System was the same
as the 1953 system except that radar net
work and mapping facilities were increased.
Several minor improvements were incorpo
rated in the operating positions within the
Direction Center. The primary objective was
to supply statistical results on system capa
city and accuracy.

The experimental SAGE Subsector,
located in Lexington, Massachussetts was
completed in 1955. It was equipped with a
prototype AN/FSQ-7 Combat Direction Cen
tral known as XD-l. A radar system provides
a variety of inputs similar in number and
type to those used in the SAGE System. An
Air Force ground-to-air data link was con
nected to the outputs for experiments with
data-Unk-equipped aircraft.

The experimental SAGE Subsector pro
vides experimental data on electronic
reliability, computer programs, and operat
ing procedures. It was organized to support
the regular functions of a Direction Cent~r and
to obtain operational approval and to d~ter
mine required equipment modifications •.

When it .became apparent that there was
a definite missile threat to the SAGE sites,
plans were made to build hardened control
centers that could survive nuclear attacks.
This plan for hardened Super Combat Centers
was only partly developed when in 1961
it was abandoned in favor of a less expensive
back-up system, BUIC (Back-Up Interceptor
Control).

The BUIC System was established to
provide a capability for the conduct of air
defense in the event that SAGE control
capability is lost. BUIC NORAD Control
Centers (or NCCs) have a higher probability
of surviving a missile attack than SAGE
DCs because they are co-located with selected
long-range radar (LRR) sites that are not
near expected ICBM targets. The BUIC Sys
tem consists of three phases: BUIC I, BUIC II;
and BUIC III. BUIC I was made up of 27
MANUAL control centers which provided
immediate back-up capability similar to that
provided by the old Manual Air Defense
system. Some BUIC I NCCs will remain in
less critical areas.

6

BUIC II consists of 13 computerized
NCCs, each capable of taking over the
air defense responsibilities of a SAGE DC.
BUIC NCCs do not have the same capability
as SAGE DCs, but they are capable of per
forming similar functions in a similar,
computer assisted manner.

The BUIC II system is being replaced
by the BUIC III system which provides
improved and expanded capabilities.

The computer equipment used in the
BUIC III system is a military version of
the Burroughs D-825 Modular Processor.
The basic computer equipment is designated
AN/GYK-I0 and the full BUIC configuration,
including the AN/GYK-I0, is called AN/GSA-
51A.

The Burroughs military orientedD-825
was conceived, designed and developed for
one specific objective: to fulfill the compu
tational requirements of present and future
military and space applications. ~t comes
under the category of second generation
computers which means that it relies on
solid state circuitry (first' generation com
puters use vacuum tubes). A typical example
of the growing complexity of tasks computers
must perform in military applications is the
intricate and diverse problems encountered
in a command and control operation. The
D-825--with its tailor-made module con
figuration, programming ease and versatility,
parallel processing, automatic diagnostic
routines, high-speed thin film "scratchpad"
memory, and totally shared main memory
modules--fulfills all requirements.

In 1964 IBM announced that it had
taken a "billion dollar gamble", and intro
duced the IBM System/360. It had been
thought t~M was planning to produce
some new eqUipment, but few dreamed they
would introduce machines that would replace
all of their previous computer lines. Large
configurations of the System/360 have a
primary storage capacity of 8 million char
acters, and this can be expanded by external
storage devices. The System/360 is truly a
third generation computer, with its design
based on microelectronic hybrid integrated

----~-~------. -circuits.
~

Where will we go from here? Well, in
the past decade the speed of computation
has increased a million times, however, we
are rapidly reaching the limits (according
to Einstein's theories) as far as speed is
concerned. In the future then, computers
may not be doing things so much faster, but
will be operating in many new applications
and fields. Computers have already designed
the circuitry for new computers. As a pro
grammer you can expect the computer to do
more of the labor by producing more power
ful languages. There should be an increase
in the capacity of memories with a reduction
in the physical size of computing equipment.

BASIC CLASSES
OF COMPUTING MACIUNES

DIGITAL COMPUTERS

A digital computer is a computing
machine that processes data expressed as
digits or numbers, manipulates the data by
means of arithmetic or logical control opera
tions in a predetermined manner, and
generally delivers the resulting information
in the form of digits. As an example, the
number 34 might be represented in a digital
computer as shown in Figure 1.

TENS

FIGURE 1
Digital Form

UNITS

A digital computer operates on data
in much ,the same way that a man would
manipulate the data in carrying out arithmetic
computations with pencil and paper. Similar
to a man making an arithmetic computation,
a digital computer sequentially manipulates
digits.

The digits used to represent either
items of data or specific instructions for
processing the data must belong to a partic
ular number system (such as the familiar
decimal system) chosen for the computer
model being used. Similarly, the results of
operations by a digital computer are usually
delivered in the form of numbers.

Basically, digital computers have the
following characte,ristics':

(1) All data handled by the computer
must be in the form of digits of a particular
number system.

(2) The computer processes data by
performing predetermined arithmetic and
logical control operations on the digits.
These operations are performed in discrete
steps, much as arithmetic operations are
performed with pencil and paper.

ANALOG COMPUTERS

An analog computer, unlike a digital
computer, is a computing machine in which
data is converted, for purposes of computa
tion, not into digits, but into physically
measurable quantities such as lengths, angles,
or voltages (as shown in Figure 2). Computed
results are obtained by the action of moving
parts or electrical signals. These actions
or signals do not represent digits. Rather,
they are related to one another in sucha way
as to represent the relationships among the
terms of a mathematical equation. They also
interact with one another in such a way as to
represent the mathematical operations indi
cated in the equation.

18::=::::::=/::-
20-----------
10----------
0- - -'--_-oJ \,----'

FIGURE 2
Analog Form

In other words, an analog computer
solves problems by causing physical quan
tities to vary in a manner analogous to the
way in which the variables in a problem
change. For example, if distance equals
velocity multiplied by time, a motor running
at a speed proportional to velocity during a
given time interval will turn a gear train
through an angle proportional to distance.
Thus, a continuous solution of distance in
the equation, Distance = Velocity X Time, may
be obtained. Action of this kind is typical
of the manner in which analog computers
solve problems. A fundamental characteristic
of analog computers is that they provide
continuous solutions to a given problem.

7

DIGITAL COMPUTER ELEMENTS

As explained previously, a digital com
puter works with digits or numbers. Inorder
for a digital computer to operate, certain
elements are required for the proper hand
ling and manipulation of data, just as a man
needs certain tools to perform arithmetic
tasks. This comparison is easily supported
by describing the elements of the computer
that correspond to a man working at a desk.
Let's assume that the man is a clerk work
ing in a payroll office and is computing the
net pay of various individuals. The "IN"
box on his desk contains the pay rates of
the personnel involved plus miscellaneous
data such as the initiation of bond deductions,
etc. A digital computer has an input element
which is capable of accepting various types
of data and presenting it to the computing
portion of the equipment. The clerk has sev
eral tables to which he refers, such as tax
deduction tables, standard weekly deductions
applicable to each employee. In a digital
computer, the memory element would serve
as the temporary storage device for all these
facts. The actual computation of an individ
ual's salary is done in the payroll clerk's
head, or perhaps with a desk calculator; in
either case, this function is the same as
that performed by the arithmetic element of
a digital computer. Once the net pay of each
person has been calculated, the clerk fills
out a standard form which contains the
employee's name and the amount due. He
then places all their forms in the "out"
box on his desk, thus completing his job.
The output element of a digital computer
accepts the results of computation by the
arithmetic element and presents the results
in a form recognizable by the user. Of
course, .all the actions of the payroll clerk
are controlled and coordinated by his nervous
system. The control element coordinates the
actions of a digital computer and is con
nected to all the other elements. From this
discussion, we can see that a digital computer
is essentially composed of the following
elements:

(1) Input

(2) Output

8

(3) Memory

(4) Arithmetic

(5) Control

The operational elements listed above
are the elements required by typical digital
computers. The following paragraphs
describe these elements in more detail and
explain the tasks performed by each. Examine
Figure 7.

INPUT ELEMENT

The input element is capable of accept
ing data in a variety of forms and converting
it to a standard format which the rest of
the computer elements can use. For example,
in Figure 3, a typewriter input might be
used; accordingly, the operator would type
out the data and instructions in a decimal
code. The typewriter would have switches
connected to each key which would convert
the hitting of a key into an electricalimpulse.
The electrical impulse might then be con
verted to a binary code so that the computer
could work with it. The type cif inputs which
constitute the input element for different
machines varies a great deal; therefore, it is·
not possible to say that anyone combination
of units make an input element. Other com
mon types of input devices are punched card
readers, magnetic tape readers, paper tape
readers, and such automatic input units as
telephone lines which transmit data from
remote locations. The inputelementpr~vides
one-way communication between the external
sources and the computing elements. Data
and instructions are fed to a computer through
an input element, but an input element returns
nothing to the external sources.

INPUT
DATA

I"""TYPEWRITER INPUt

~-----~~--~~
~~
!} ~ INFORMA nON =, iii CONVERTED TO
~ __ ~ SUITABLE FORM

FIGURE 3
Input Element - Receives Information and

Converts It Into Usable Form

OUTPUT ELEMENT

The results of a digital computer's
operations must be delivered to the user of
the machine in an appropriate form. The
element that accomplishes this transfer is
the output element. The results of a com
puter's operations, however, are not
necessarily in the form best suited for use
outside the machine. Hence, an output ele
ment may include facilities for converting
the results of the computer's operations into
the form of output data best suited to the
user of the machine. For example, in Figure
4, the answer to the problem might enter
the output element in the form of binary
electrical pulses. The output element may
then convert these pulses to voltages that
operate either an electrically operated type
writer or a printing machine to print the
final answer.

VOLTAGES
FROM

OTHER
ELEMENTS

OF
COMPUTER

PRINTING
MACHINE

~
TOOTHEB

H-'--t+\-++.~. OUTPUT
,--_oJ DEVICES

FIGURE 4
Output Element - Converts Computer's
Answers Into Form Usable By External

Output Devices

Like the input element, the output ele
ment makeup is flexible and varies widely
from one computer to another. Some common
types' of output devices are line printers,
card punches, magnetic tapes, and visual
indicators.

The output element, like the input ele
ment, is a one-way unit. It receives
information from the other elements of the
computer and transfers the information to the
final user, but it does not return any informa
tion to the computer.

ARITHMETIC ELEMENT

Since the purpose of a digital computer
requires that the machine perform arithmetic
operations on the input data, a digital com
puter must obviously contain an element that
can accomplish these operations. This is
the arithmetic element. All data to be oper
ated on arithmetically must enter this part

of the computer. Likewise, mostinstructions
determining what computations are to be
performed must control the arithmetic ele
ment. (See Figure 5.)

Theoretically, it would be possible to
build an arithmetic element which could per
form most mathematical operations directly,
just as a man performs them. This, however,
would require a very large and complicated
arithmetic device; consequently, it is never
done. Instead, the arithmetic element is
usually designed to perform only a few basic
operations such as addition, subtraction,
multiplication, and division. (Subtraction,
multiplication, and division are simple varia
tions of the addition function.) If an arithmetic
device can perform either addition or sub
traction and a few other simple operations,
it can be made to perform almost any other
mathematical operation by simply breaking
the operation down into its fundamental opera
tions. This is the way in which the arithmetic
element is made to do the more complex
mathematical operations that are often
required.

DATA TO BE
OPERATED ON __ -f~===(1

AR1THMETICALL Y

CONTROL TELLING
WHAT TYPE OF

ARITHMETIC TO
PERFORM

RITHMETI
ELEMENT

FIGURE 5

SOLUTIONS
TO
ARITHMETIC
PROBLEMS

Arithmetic Element - Data Enters and Is
Processed by This Element

MEMORY ELEMENT

As explained previously, operations in
a digital computer are carried out in step
by-step fashion. For this reason, some of the
information fed into a computer must be
stored for indefinite periods prior to actual
usage. The facilities required for storing
information in a computer are included in the
memory (sometimes called main storage)
element.

Information fed into a computer
includes:

(1) Particular items of data to be pro
cessed.

9

(2) Instructions (known as the pro
gram) for performing the particular data
processing operations required.

(3) Reference data.

The memory element comprises a large
number of storage locations in which infor
mation can be stored until it is needed by
one of the other elements. Each of these
locations has an absolute address assigned so
that it may be selected by the computer for
insertion or extraction of data. For instance,
a typical computer instruction might be to
"add the quantity which is stored in location
1000". The instruction which stated that
address 1000 contained the desired OPERAND
is also stored in the memory element; this
makes the memory element a It shared"
device.

Many types of storage devices such as
magnetic cores, magnetic tapes, magnetic
drums, acoustic delay lines and cathode-ray
tubes are used in memory elements. At
present, magnetic cores are the most popular
device, primarily, because of their high
speed and stability.

CONTROL ELEMENT

There must be a definite sequence for
the flow of data during processing by a
digital computer. For example:

(1) Data must be inserted into par
ticular storage locations and then used in
correct sequence at the appropriate times.

(2) The arithmetic element must also
be "told" what operations to perlorm on
the data and in what order to perform·them.

(3) The results ofthearithmeticoper
ations must be routed to the appropriate
storage or output locations.

(4) The transfer of all output data to
the output element and to the ultimate user
must be properly controlled to ensure the
required sequence of information.

10

The entire sequence of operations by
the computer is predetermined by the pro
gram (and the construction of the computer)
for the data-processing task. The program,
coded in the digital language, is inserted
through the input element and stored at
specific addresses in the memory element.
The element for interpreting and carrying
out instructions contained in the program is
the control element. (See Figure 6.)

CONTROL W o CAUSE

ADDIT~1 TYPICAL

I 5 ~ I CONTROL
PROGRAM J ~ ~ I \ PROVIDED

STEPS- Z ~ MULTI!'JBY
8 @ PLY CONTROL

STORE IN ELEMENT
L--__ -' ADDRESS

#356

FIGURE 6
Typical Instructions From the

Control Element

The instructions are transferred from
memory to the control element, where they
are decoded, and certain commands are
set up by the control element. One of these
commands is to go into memory again and
transfer out the designated operand to the
arithmetic element. Following the calculation
in the arithmetic element, the results of a
desired operation are usually programmed
to be returned to memory and then trans
ferred to the output element during an alloted
time interval.

By its interpretation of the program,
the control element governs the flow of data
and the sequence of operations performed by
the computer, special electrical circuits
provide the required control. These circuits
respond to electrical signals representing the
digits that make up the control instructions
to program and produce appropriate control
signals. The control signals cause arithmetic
operations to take place and effect the trans
fer of data from one element of the machine
to another. For example, in Figure 7 the
action of the control element on the other
elements is shown. In this figure, information
transfer is shown in heavy lines while control
lines are light.

SUMMARY

INSTRUCTIONS
AND RAW DATA

r------ ---------...,
I I
I '
I I
I I

I INPUT I t L __ _

I ELEMENT
I
I
I
I
I
I
I
I
:_____________ MEMORY

ELEMENT

RESULTS

OUTPUT
ELEMENT

L __ CONTROL
ELEMENT

_________ ARITHMETIC

ELEMENT

_--INFORMA TION

• -- - - - -CONTROL

FIGURE 7
Digital Computer, Block Diagram

Figure 7 shows the five elements we
have been discussing arranged as a typical
computer system. Information, which
includes computer instructions as well as
data, enters the computer through the input
element where it may be converted to a
common form and placed in a buffer storage

device. Next, the memory element accepts
this information at specific intervals and
places it in the proper storage location.
Notice that there are two paths leading out
of the memory element--one to the control
element and the other to the arithmetic
element. Earlier, we spoke of the memory
element as a shared device, this is true
because it serves as the memory for two
other elements.

11

CHAPTER 2. COMPUTER MATHEMATICS

NUMBER SYSTEMS

Prior to studying the programming of a
digital computer it is necessary to learn
something about the language of the computer.
This is similar to an electronics man first
understanding the volt, ohm, and ampere
before attempting to master the trouble
shooting of a receiver or transmitter. The
computer language is basically very Simple;
and once the language is mastered, the
fundamentals of programming will be more
meaningful. Most computers understand and
speak in the language of binary mathematics;
however, the preparation of information for
a digital computer involves the use of the
decimal, octal, and binary number systems.
Since a computer processes information that
is expressed or coded in numerical form, a
brief investigation of some available number
systems is in order.

In general, a number system has three
basic uses:

(1) It is a method of counting in order
to be able to express a quantity. For example,
the tally for a count of 13 is '"'ml."'ml Ill.

(2) It is a method of arranging symbols
in a specific sequence in order that one's
relative position among others may be known.
For example, the address on a home indicates
the position of the house with respect to a
given street and other houses.

(3) It is used to provide symbols for
unique identification. For example, military
serial numbers and social security numbers
are used as a means of positive identification.

There is no stipulation that the symbols
(characters) used in a numbering scheme
be the familiar Arabic numerals. Roman
numerals, for example, are used extensively
to indicate chapters in textbooks. Moreover,
there is no rule that compels the use of
decimal notation. We are all familiar with
one numbering system that is not truly
decimal--our own military time system. In
this unique system, the unit of measurement

12

changes at quantities other than 10; it is
easy, nevertheless, to see how a carryover
into the next higher Significant pOSition is
accomplished. For example, 1750 (5:50 PM)
plus 20 minutes equals 1810 (6:10 PM).

The familiar decimal system is the most
universally known numbering system. It
derives its name from the total number of
symbols used--decim is the Latin word for
ten. The decimal system uses as symbols
the ten Arabic numerals--O, 1, 2, 3, 4, 5, 6,
7, 8, and 9. These symbols are used alone
or in combinations to express quantities or
identities. The ten symbols have a commonly
known order or sequence which enables us
to count and to indicate quantity with them.
The radix, or base, of the decimal system
is ten. The base of a counting system is
determined by the number of different sym
bols used; furthermore, the radix determines
the number of counts possible in one count
ing cycle. Using the decimal system, how
many counts can you make before a carry
out to the next significant position occurs?
Obviously, a single decimal number can
indicate any count or value from zero through
nine, inclusive; therefore, we cancountupto,
but not including, 10.

There are many nunbering systems in
common use today. A number of these systems
are not numerical in nature. An example
of one of these is the Roman Numeral
System. The disadvantage of systems such
as this is the difficulty encountered in
performing the basic operations of multipli
cation, division, etc. Our decimal system
is very handy for us to use and it seems
like the "natural" system. It is no more
"natural" than any other system. In fact,
the reason we used it was probably because
we first counted on our ten fingers. Unfor
tunately, the digital computer is not adapted
to the decimal system. As a result, we will
need to become familiar with other numbering
systems.

There are two terms common to all
numbering systems. An understanding of
these terms will lead to an understanding of
the other systems.

The first ter.m--is.RADIX." The radix
is the BASE of a numbering system. In
the dECliiUn system the radIx IS 10, Octal
system - 8, qUinary system - 5, and binary
system - 2. Each of the numbers shown in
Figure 8 represents an equal quantity. The
only difference is in the radix of the system
in which the quantity is expressed.

RADIX

; 165(1 0):: 245(8)=1130 (51'" 2001 0 (3):: 1 01 00101 (2)
ll~ __ ~ ______________________ ~

FIGURE 8
A Ql\antity Expressed in Several

Numbering Systems

The radix .limits the stock of numbers
available in any numbering system. In the
decimal system with a radix of 10, there
are only 10 different distinct digits--O, 1, 2,
3, 4, 5, 6, 7, 8, and 9. ~¥hen we exceed 9, a
combination of these same basic digits must
be \:lSed.

In the octal system with a radix of 8,
only 8 different distinct digits exist--O, 1, 2,
3, 4, 5, 6, and 7. There is no 8 or 9 in this
system. When we exceed 7, we must use
again a combination of the basic digits 0
through 7.

In the binary system, radix 2, there are
only two distinct digits--O and 1. There is no
2, 3, 4, etc., in this system. To express
numbers greater than 1, combination of 0
and 1 must be used.

The idea contained in the last three
paragraphs is illustrated in figure 9. Another
useful point to note from this figure is
that the largest digit in any system is always
one less than the radix.

The second term common to a 11 number
ing systems is PLACE VALUE. Place value

"is the weight of a digit. The Place value
is determined by the position of the digit
relative to the point of the system. The point
is called decimal point, octal point, or
binary point, depending upon which system
the number is expressed. Place value is

the only difference between the numbers
shown in Figure 10. Zero has no value. It
is used only to determine the place value
of the other digits.

DECIMAL OCTAL BINARY

0 0

2 2

3 3

4 4

5 5

6 6

7 7·

8 10

9· 11

10 12

11 13

12 14

·LARGEST DISTINCT DIGIT

FIGURE 9
Distinct Digits of DeCimal, Octal
and Binary Numbering Systems

0

1·

10

11

100

101

110

111

1000

1001

1010

1011

1100

495

4905

4095

409005

400095

490005

409050

495000

FIGURE 10
Illustration of PLACE VALUE

To determine the place values of a
numbering system, the radix is raised to
ascending powers beginning with zero and
moving to the left from the point. The place
values of the decimal system would thus be
determined as shown in Figure 11. The actual
place values are found by performing the
indicated operations. Note that any number
raised to the zero power is mathematically
defined as 1. From this figure it is seen

13

that each place value is 10 times the pre
ceding place value.

103 102 101 0 DECIMAL
10. POINT

100000 1 0000 1000 1 00 10 PLACE
1 • VALUES

FIGURE 11
Place Values of Decimal System

The decimal number 365 is shown in
Figure 12. This example shows that when
each digit of the number is multiplied by
its respective place value and the products
are added together, the result is the value
of the number expressed in the decimal
system, in this case, 365.

100000 10000 1000 10010
x3 x6 x5

300 + . 60 + '"""5 = 365

FIGURE 12
An Example of a Number

Expressed in the Decimal System

Here is a general equation that applies to
any number expressed in any number system:

Where VR = Decimal value of the number.

D = Digits of the number.

R = Radix of the system in which the
number is expressed.

N = Number of digits in the expres-
sion.

By substitution into the equation, the decimal
equivalent of any number in any system may
be determined. This is the normal procedure
used for converting to decimal.

14

The octal numbering system, base 8,
is used extensively in the field of computers.
The place values of this system are shown
in Figure 13. Notice the lowest place value
is 1 since any number to the zero power is
1. Also, note each place value is 8 times the
preceding place value.

OCTAL
aO • POINT

32768 4096 512 64 8

FIGURE 13

PLACE
VALUES

Place Values of Octal System.

Consider an octal number such as
3720(8)' When each digit of this number is
multiplied by its proper place value and
added, as shown in Figure 14, the result is
2000 10 . This means that 3720(8 = 2000 10 •

84 a3 a2 a1 SO
'4096 512 64 a 1

L' --!1.M. x2 ..!.Q.
. ______ ~1~5~36~+~~~8~+~16~+~0~=~2=0=0~0 __

FIGURE 14
An Example of a Number Expressed in

the Octal System

Perhaps it seems strange to think of a
number expressed in some system other than
the decimal. However, this is not a new con
cept. Other numbering systems are commonly
used everyday. The English system of inches
and feet has a base of12. The time measuring
system of seconds, minutes and hours has a
base of 60. The addition of two numbers in
the latter system is shown in Figure 15.
Notice when the base, 60, is exceeded, a
carry is generated and added into the next
column to the left. The amount by which the
base is exceeded is the sum for that column.
This same procedure holds for addition in
any numbering system.

1 -- CARRY
10:40
10: 45
11: 25

FIGURE 15
Addition of Two Numbers in a System, Base 60

The majority of the circuits in com
puters are two-state devices which can be
placed in either one of the two states. In
computer logic, we call these two states
"YES" and "NO", "ON" and "OFF" or
"HIGH" and "LOW". This means that the
numbers that these two-state devices can
represent must have no more than two dif
ferent distinct digits, 0 and 1. We can,
therefore, just as well call these two states
o and 1. This is the binary numbering system,
base 2.

The place values of the binary number
ing system are shown in Figure 16. The
lowest place value must be 1. Each place
value is two times the preceding place value.

26 25 24 23 22 21
o BINARY

2 • POINT

32 16 8 4 2
PLACE

64 VALUES

FIGURE 16
Place Values of Binary System

Any decimal number may be expressed
by some combination of ones and zeros in
the binary system. Figure 17 shows the
decimal numbers 0 - 9 and the corresponding
binary number. Notice that decimal value of
any binary number may be determined by
adding the place values of the columns con
taining l's.

8 4 2 I - Place Values

Q 0
I I

.. ,
I Q 2
I I 3

1 0 0 4
1 Q I 5
1 1. 0 6
1 1 1 7

1 0 0 0 8
0 0 1 9

INARY DECIMAL
FIGURE 17

Decimal - Binary Conversions

As a comparison between the decimal
and binary systems, consider the number
43(10)' Figures 18 and 19 show this number
in both systems. Notice in each system that
the digits multiplied by their respective
place values add together to produce 43(10)'

1000 100 10
x4 x3

PLACE VALUES
DECIMAL NUMBER

4l) +3=43

FIGURE 18
Decimal System

64 32 16 8 4 2 1. PLACE VALUES

1 0 1 0 1 1
32 + 8 + T + T = 43 BINARY NUMBER

FIGURE 19
Binary System

The binary number 101011 in Figure
18, which is equal to 43(10) may be found in
the following manner. A "1" is placed in
the sixth column because 32 is the largest
place value not exceeding 43. This expresses
32 of the original 43. Eleven remains to be
expressed. Sixteen is too large, so a "0" is
placed in the fifth column. A "1" in the fourth
column expresses 8 of the 11. The remainder
to be expressed is now 3. Four is larger
than 3, so a "0" is placed in the third column.
A "1" in the second column expresses 2
units of the quantity 3. The remainder is
now "1" which may be expressed by placing
a "1" in the first column. This is one method
of arriving at the number 101011. A shorter,
more direct method of converting from
decimal to binary exists and will be shown
later •

NUMBERING SYSTEM CONVERSIONS

There is a problem associated with
binary numbers. They become extremely
difficult to handle because of the number of
bits (contraction of Binary digIT) required
to represent large numbers. To avoid this
disadvantage, the octal numbering system is
used to express binary numbers. The octal
system is used because it is extremely easy

15

to convert from binary to octal and vice
versa.

To convert from binary to octal, the
binary number is set off in groups of three
bits beginning at the binary point as shown
in Figure 20. Each group of three bits is
then converted directly into octal. The pro
cedure for converting from octal back to
binary follows the same rules in reverse.

1 0 1

5

10001 1 111.

4 3 7

FIGURE 20

BINARY
NUMBER

OCTAL
NUMBER

Conversion Between Binary and Octal Systems

Almost all numbers encountered outside
computers and in our environment are dec
imal. This means that to place them in a
computer they must be converted to binary.
There are two methods of doing this. One
method is to go directly from decimal to
binary. The other method is to convert
from decimal to octal and then by inspection,
convert from octal to binary. These two
methods are shown in Figure 21 (a), (b),
and (c).

The procedure shown in Figure 21
JI;L..caUed slIcCessine i£wIiI18R 1'he aecimal
number is divided by the base of the new
numbering system, 2 and 8 in this case,
successively. The remainders from each
di vi~~9..!l_,_,.ll:!:,E!,. saved and form -me- ·'tt1:gtts

~ of the new nuniber:·'·-·'·-·"n-' ... --~.-'-

This discussion of numbering systems
is basic to the understanding of the math
ematics of digital computers.

~ ing!:g~LJo convert octal_l!J!e-
._' gers to tl~e!!.,~!ci~~l eg~valentsth~p'!:Q£~L
_ of succe,ssive multiplication is used. In

-this ,process'the left most digit (also called
the Most Significant Digit or MSD) of the
octal value is multiplied by its radix. To
this' product is added the next digit to the
right. The sum is multiplied by the radix,
and again the next digit is added. Addition
of the last digit is the final step; do not

16

multiply again at this point. (See Figure
22.)

(a) Converting 647(10) to binary

2 1647 REMAINDERS
2 1323 - - - - - - I~LOWEST PLACE

2 /161 - - - - - - 1 VALUE COLUMN
2/80-- -1
2140- ----0
2120-----0
21IO-- 0
215----0

2 /2- - - - 1
2 /1- - -- 0

o - - - I~HIGHEST PLACE
VALUE COLUMN

647 = 1010000111

(b) Converting from decimal to octal

8 /647
8/80-,--

REMAINDERS
- - 7~LOWEST PLACE

8 IW- - - -
8 rr - -

0- - -

- 0 VALUE COLUMN
- - 2
- - I~HIGHEST PLACE

V ALUE COLUMN

647 (10) = 1207(8)

(c) Converting from octal to binary

1
001

2
010

o
000

7
111

FIGURE 21

OCTAL
BINARY

Conversion From Decimal to Binary

;Example: 135(8) is equivalent to ••••• (10)

135

X:j
+3
IT
x8
88
+S -E---

93

FIGURE 22
Conversion From Octal to Decimal

The fractional portion of a decimal
number may be converted to its octal equiv
alent by employing the multiplication method.
To convert the fractional portion of a decimal
number to an octal fraction, multiply the
decimal fraction by eight. The integral portion
of the product thus obtained is the MSD of
the octal fraction. The fractional portion of
the product should be multiplied by eight.
This time, the integral part of the product
is the second digit of the octal fraction.
Repeat the process until the fraction of the
product is zero, or until sufficient octal digits
have been generated. Study the following
conversion of .384(10) to its octal equivalent:

The results of the conversion show that
.384(10) is equivalent to .30446 (8).

Of all the methods of conversion of
fractions from octal to decimal the direct
or expansion method is about as simple as
any. This consists of multiplying the octal
digits by their place values, and then adding
these values together. The place value for
octal fractions is derived from the negative
powers of eight. In the following example
we have the octal fraction .21 and we want
to find its decimal value.

NEGATIVE POWERS OF EIGHT

8- 1 8-2

0.125 0.015625

.2

8-3

0.001953125

.015625
x 1

8-4

0.000244140625

.125
x 2

.25 • 015625 ~ .015625
~------------------------~> +.25

-:::. 2:76::-:56~2":"5

ARITHMETIC OPERATIONS

Thus far you have become acquainted
with some of the characteristics of numbers
and number systems, and you have learned
how to convert numbers from one system to
another. Now, it is time for you to apply
your knowledge of the number systems--you
are now ready to perform arithmetic opera
tions in both the octal and the binary systems.

BINARY ADDITION

The addition of two numbers in the
binary system is extremely simple. You are
familiar with the decimal arithmetic per
formed by a counter, which gives the proper
sum and produces a carry when it counts
from "9" to "0". Such a counter must be
capable of handling 100 possible combinations
of inputs--each of the two numbers to be
added may be anyone of the digits from zero
through nine. A binary adder, however, has
only four different combinations to cope
with--O + 0, 0 + 1, 1 + 0, and 1 + 1. If both
inputs are "O's", the counter produces a
sum of "0" and no carry. If either input
contains a "1", the adder produces a sum
of "1" and no carry. If both inputs are
"l's", the adder produces a sum of "0" and
a carry into the next column. Therefore,
the simple rules for binary addition are as
follows:

1+0=1

1+1=0 and 1 to carry

These rules apply in all cases of addition;
furthermore, they apply to the addition of
both integers and fractions. Binarynumbers,
like decimal numbers, are added from right
to left, and the carry is added to the adjacent
column on the left •

The technical terms in addition are
defined as the augend, addend, and the sum.
The augend is the term thatis to be increased;
the addend· is the term to· be added to the

17

augend; and the sum is the result of the
operation. For example:

1101
1011

11000

AUGEND
~ND
SUM -

The addition of more than two numbers
is handled thus: The addition of the first
set of numbers is performed, then the
third number is added to the original sum.
To the sum of each succeeding addition,
add the next number until all numbers have
been totaled. For example, add:

I
10"

011
111
110

+101
/0101

ADDITION OF THE FIRST SET OF
NUMBERS 011

+111
FIRST SUM 1 01 0
ADDITION OF THE THIRD NUMBER 110
SECOND SUM 10000
ADDITION OF THE FOURTH NUMBER-..!Q!
FINAL SUM 10101

Binary fractions are added in accord
ance with the rule·s that govern whole
numbers. The binary point is fixed, just as
it is in the decimal system. study the fol
lowing two additions:

a. DECIMAL BINARY

. 125 .001
+.375 +.011

.500 .100

b. DECIMAL BINARY

.5 .1
+.5 +.1
1.0 1.0

A perfectly legitimate operation within
a computer's arithmetic element may result
ina number beyond the computer's capacity.
The result of an addition, for example, may
be outside the computer's range.· This is
analogous to increasing by "1" an automobile

18

odomter that already indicates a maximum
of 99,999 miles. Increasing the count by one
cannot possibly cause the odometer to indicate
100,000 miles. Accordingly, the result of an
addition may be too great for a computer to
handle. Adding two positive numbers should
give a positive result, and adding two negative
numbers should give a negative result. If the
sum is too large for the computer word, then
the answer is incorrect. This is called~r-

,!lo'!z...,!lnd in BUIC an indicator bit called the
program overflow bit (POV) is set. - -
BINARY SUBTRACTION

. Subtraction is addition in reverse. Like
addition, it is basically a process of count
ing, but ·in· the opposite direction. For
example, 6 - 5 = 1. (Count six, change direc
tion and count five more, thereby you arrive
at a count of one.) It is difficult to construct
an electronic counter that can count back
wards--counters are not electronically
ambidextrious; they count in only one direc
tion. It is possible, however, to construct a
machine that will subtract by adding comple
ments. In other wordS, subtraction in a
computer is the same as addition, except
that the complement rather than the number
itself is added.

The technical terms in subtraction are
defined as the minuend, subtrahend, and the
difference. The minuend is the number to be
decreased; the subtrahend is the quantity of
the decrease; and the difference is the result
of the operation. For example: .

111 MINUEND
-000 SUBTRAHEND

111 DIFFERENCE

Computer design requirements do not allow
for borrowing; consequently, the complement
method of subtraction fits in with computer
design capabilities. The "l's" complementin
binary arithmetic is nothing more than the
original number with the bits reversed-
that is, the original zeros are ones in the
complement, and the ones are zeros. For
example, the complement of 100 101 110 is
011 010001.

ORIGINAL NUMBER 100 101 110

COMPLEMENT 011 010 001

In order to designate the sign of a value,
one bit position is set aside from the rest
of the bit positions in a computer word. This

II sign' , bit is usually the first bit position
and is written with a point after it. The bit
positions following the sign bit and point
are referred to as magnitude bits. The point
is called the machine point since it should
not be confused with a decimal point or
binary point.

Exampl~: ;"~i.D:8~~ ~~~~ter h~.~ ~ntaining -SOO):

1 JoooooooooaoooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOl 01

I
There are many methods of using this

concept of complementing in different com
puters so we will be concerned only with the
methods used in the D-825. The method dis
cussed so far is called the" radix minus one"
complement where we reverse the bits. Since
the radix minus one in binary is a one this
is also called the one's complement. Actually,
when we reverse the bits we are subtracting
the value from its modulus minus one.

The modulus of a number is a positive
value that expresses the limit of the value
according to its place value. For example,
the modulus of the binary value 111 is 1000.
Examine the following values and their
moduli:

VALUE

1011 (2)

361 (10)

SOO)

9999(10)

MODULUS

10000(2)

1000(0)

10(0)

10000(10)

Now, to find the "radix" complement
of a value we simply subtract it from its
modulus:

VALUE

1011(2)

361 (10)

SOO)

9999(10)

1011100(2)

1111(2)

ITS RADIX COMPLEMENT

0101 (2)

639(10)

S(10)
0001 (0)

0100100(2)

0001 (2)

As you see, with the radix complement
(or 2's complement) the complement of a
value is not simply a reversal of the bits.

To find the radix minus one complement
of a value you simply subtract it from its
modulus minus one. If the binary value
contains 4 places as 1101, then the modulus
is 10000, and the modulus minus one is 1111.
Now, to find the radix minus one complement
of 11 01 you subtract it from 1111.

Example: 1111 modulus minus one
-1101 value
0010 complement of the value

But how can the computer subtract to find the
complement this way? It can't, but as you can
see the radix minus one complement is the
same as if we had reversed all the bits. This
is a simple electronic task for the computer.

The instruction for Binary ADdition in
the D-825 is BAD. When the computer
encounters this instruction it will add the two
values specified. If one of the values is a
negative number then one of the values will
be complemented according to the radix minus
one. This is a form of subtraction since the
answer will be the difference.

Since the complement of a value may
look much larger than the value itself there
is a possibility of a carry when there is
actually room for the answer in the computer
word. This is called an end carry (or end
around carry) and is added to the least
significant position of the value.

19

EXAMPLE:

a. End carry, no overflow:

5 0.101 0.101
-2 or 1.010 complement 0.101 add

l!~ +5
or -2

0.011 +3

b. End carry, no overflow:

7
-5 or 0.111 0.111

1.101 complement 0.010 add

t:01 +7
-±!. or -5
C.010 +2

c. Overflow, POV is set, answer is not correct:

-5 or 1.101
-3 1.011 complement -

Predicting overflow is easy with small
values, but how about the D-825 computer
word with its sign bit followed by 47 magni
tude bits? Sometimes the end carry indicates
overflow, but other timeS it does not. There
fore, we depend on a set of rules for adding
(BAD) and subtracting (BSU) in order to
find what our answer means. Figure 23 may
be used to solve problems as the computer
would. Remember, when complementing a
value complement all bits including all lead
ing zeros, trailing zeros, and the sign bit.
When adding, add all magnitude bits, but do
not add the sign bits.

BINARY MULTIPLICATION

Everyone is accustomed to performing
multiplication by employing a memorized
multiplication table. Given the problem 4x3,
we recall the product, 12. The multiplication
table is actually a short cut method of addi
tion. In other words, "4 x 3" is the same as

20

1.101
0.100 add

l:01 -5
+1 or -3

1.010 -:s not -2

"add 4 three times." Multiplication is nothing
more than repetative additions. A computing
machine normally performs multiplication
in this crude manner.

Nevertheless, a programmer should
become acquainted with the binary multipli
cation table:

OxO=O

1xO=0

Ox1=0

1 x 1 = 1

The technical terms in binary multipli
cation are the same as those in decimal
multiplication. The multiplicand is the nUIll
ber to be multiplied, the other number is
called the multiplier, and the product is
the result of the operation. Thus:

1000 Multiplicand
x 1 Multiplier
1000 Product

BAD, binary add:

1. L ike signs ••• add and keep the sign.

a. End carry indicates POV set.

b. No end carry indicates correct answer.

2. Unlike signs ••• complement the augend, add and keep the sign.

a. End carry indicates correct answer.

b. No end carry indicates the need to complement for the correct answer.

BSU, binary subtract:

1. L ike signs ••• complement the subtrahend, add and keep the sign of the minuend.

a. End carry indicates correct answer.

b. No end carry indicates the need to complement for the correct answer.

2. Unlike signs ••• add and keep the sign of the minuend.

a. End carry indicates POV set.

b. No end carry indicates correct answer.

FIGURE 23
Rules for 0-825 BAD and BSU Instructions

The general procedure when mutliplying
two binary numbers is the same as that used
in decimal arithmetic. The procedure is
illustrated below:

Multiplicand
Multiplier

Total Product

1001
1011
1001 First Partial Product

1001 Second Partial Product
0000 Third Partial Product

1001 Fourth Partial Product
1100011

Notice that the product of the two 4-bit
numbers is seven bits long; however, the
multiplication of the two largest4-bitnumbers
(1111 x 1111) results in a product that is
eight bits long. In other words, the. largest
product that can result from multiplication
of two binary numbers will not be longer than
the sum of the bits in the multiplier and
multiplicand.

BINARY DIVISION

Division is the antithesis of multipli
cation. Computer multiplication, you recall,
is a series of additions; conversely, computer
division is a series of subtractions. In other
wordS, binary division is the process of count
ing the number of times that the divisor can
be subtracted from the dividend before a
negative remainder results.

Division is often not used in a computer
because the circuitry for it is relatively
complex: however, the division of Ily" by "x"
can be avoided by simply multiplying "y" by
the reCiprocal of "x" •

Direct division of binary numbers is
accomplished according to the same rules for
division of decimal numbers. The process of
division is particularly simple in the binary
system because the divisor, dividend,and

21

quotient are composed entirely of "I' s" and
"O's". Study the following example of
11 111 000(2) divided by 1000(2):

divisor ~1000

0

1

2
A
U 3

I 11111 ~quotient
/'1.1111000 ~dividend

1000

0

0

1

2

3

1111
1000
1110
1000

__ 1000
tOOQ

1 2

1 2

2 3

3 4

4 5

OCTAL ADDITION

Octal addition is performed in much

the same manner as decimal addition. A'

sum and carry technique is used, and the

sum and carry are determined by reference

to an addition table. The following OCTAL

ADDITION TABLE may be used until you

are familiar with octal addition:

ADDEND ,
3 4 5 6 7
.----~.

3 4 5 6 7

4 5 6 7 10

5 7 10 11

6 10 11 12
G - ----- !----.- ---_. -_._-- , ~ •• , ., o· ". ,-- -

_~J
E 4 4 5 6
N
D 5 5 6 7

6 6 7 10

7 7 10 11

Addition is merely a quick method of
counting, and you are already acquainted with
octal counting. You recall that 2 + 5 really
means "counts five numbers beyond "2". As
you know, symbols for quantities up to and
including "7" are identical in the decimal
and octal systems; consequently, additions
resulting in a sum of "7" or less are the
same in both systems. When the sum exceeds
"7" , however, the results of decimal and
octal additions are different. Thus 5(8) + 2(8) =
7 (8)' but 7(8) + 1(8) = 10(8). If you increue
the digit "7" by one count and if there are
no single symbols for the quantities "8" and
"9", you reach "10(8)". In other words, the
radix of the system has been exceeded; there
fore, the original counting column goes to "0"
and a carry of "1" is generated in the
adjacent column. As you recall from decimal

22

7 10 11 12 13

10 11 12 13 14

11 12 13 14 15

12 13 14 15 16

arithmetic, you can solve any problem if you
have learned the sums of each possible pair
of single-symbol decimal numbers. Thus you
learned such sums as 6(10) + 3(10) = 9(10);
however, in octal additions you must learn
such sums as 7(8) + 7(8) = 16(8) and 5(8) +
5(8) = 12(8). These may look both strange
and difficult to a person who is familiar with
only the decimal system, but luckily there is
an easy way to find the sum of two
single-symbol octal numbers. Here is the
"gimmick": To add any two single-symbol
octal numbers, add them as decimal numbers;
then if the decimal sum exceeds "7", add "2"
to get the sum in octal. For example:

6(8) + 5(8) = ?
6(10) + 5(10) = 11 (sum exceeds "7")
tlierefore 11 + 2 = 13

Study the following examples of octal addition:

7 7 7 7 7 7 7 7
+0 +1 +2 +3 +4 +5 +6 +7
'7 io 11 12 13 14 15 16

6 6 6 6 6 6 6 6
+0 +1 +2 +3 +4 +5 ii +7
6 7 10 11 12 13 14 15

14 65 74 3647 27564
+34 +35 25 2514 30723

50 122 121 6363 60507

OCTAL SUBTRACTION

Octal subtraction, as in decimal sub
traction, may be performed directly by a
subtract and borrow routine. When the minu-

. end is smaller than the subtrahend, a "1"
must be borrowed from the adjacent left hand
column. Rapid calculations in the octal system
are possible only when the operator is thor
oughly familiar with the associated addition
and subtraction tables. The following abbre
viated octal subtraction table is included for
your convenience.

Study the following examples of octal
subtraction:

7
2
5

10
2
6

46
37

7

260
124
134

600
275
303

1064
575
267

As you already know, programmers
often use the octonary system to express
information because octal notation is shorter

OCTAL
SUBTRACTION

TABLE
10 11

S 7 1 2
U 6 2 3 B
T 5 3 4
R 4 4 5
A 3 5 6 H
E 2 6 7
N 1 7 10
D 0 10

! I

12

3
4
5
6
7

10

and less cumbersome than binary. Therefore,
you should become familiar with the t t sevens"
(modulus minus one) complement for octal
numbers.

BINARY COMPLE- OCTAL COMPLE-
NUMBER MENT NUMBER ME NT

000 111
------.----... -~ ...• ~ o 7:

001 110 1 6
010 101 2 5 i
011 100 3 4 I
100 011 4 3

(101 010 5 2
110 ~1 6 1
111 000 7 0

Note the correlation between the three
column binary complement and the single
digit "seven's" complement. For example,
the binary number 110 111 101 001 011 is
equivalent to 67513 in octal; in complement
form, the two numbers are represented as
?01 000 010 110 100(2) and 10264(8)' respect
Ively.

To perform subtraction by the
t'seven's" complement method, proceed in
the following manner:

1. Convert the first octal digit to binary:

7 632 0000 0000 0000 =
(1.112) 632 0000 0000 0000

2. Now, the first bit is the sign bit and
the first octal digit is 3 (or 112), It is pro
bably just as easy to leave the first octal

MINUEND

13 14 15 16

4 5 6 7
5 6 7 10
6 7 10
7 10

10

23

digit in binary. Be sure you add in binary
when you add.

3. Follow the rules for BAD and BSU in
Figure 23.

You can check the results by using the
"borrow" method of subtraction.

OCTAL MULTIPLICATION

Octal multiplication may be performed
in a roundabout fashion by converting the
octal numbers to be multiplied to decimal,

performing the required operation, and then
converting back to octal. If, however, you
wish to perform octal multiplication, you
must first learn the octal multiplication
tables. This requirement is analogous to
your having learned the decimal multipli
cation tables prior to performing decimal
multiplication.

The following abbreviated octal multi
plication table is included for your reference
and convenience:

X
OCTAL MULTIPLICATION TABLE

1 2 3

1 1 2 3
2 2 4 6
3 3 6 11
4 4 10 14
5 5 12 17
6 6 14 22
7 7 16 25

10 10 20 30

The operations used in octal multiplica
tion are similar to the operations used in
decimal multiplication. The multiplicand is
multiplied by one digit of the multiplier at
a time to form a series of partial products
that must be added to obtain the final pro
duct. The digit-by-digit multiplications are
performed using products given in the octal
multiplication table, and the sums are obtained
using the octal addition table. The position
of the octal pOint is determined exactly
as it is in decimal multiplication.

study the follOwing examples of OCTAL
multiplication:

462(8)
35(8)

2772
1626
21252(8)

67.2(8)
1.04(8)
3350
000

672
72.550(8)

OCTAL DIVISION

354(8)
65(8)

2234
2610
30334(8)

Octal division is performed in the same
manner as decimal division except that the
octal division and subtraction tables are

24

4

4
10
14
20
24
30
34
40

5 6 7 10

5 6 7 ~
12 14 16 20
17 22 25 30
24 30 34 AU
31 36 43 50
36 44 52 60
43 52 61 70
50 60 70 100

used in place of decimal tables. However,
you may find it less difficult to perform
octal division in a more roundaboutfashion-
that is, first convert the octal division and
dividend to decimal numbers, perform the
required operation in decimal, and finally
convert the decimal quotient back to octal.
Study the following example of octal division:

462(8)

35(8) /21252(8)
164

265
256

72
72

The MSD of the quotient is generated by
examining the division of 212(8) by 35(8) and
by deciding, on a trial basiS, the largest
number that 35(8) can be multiplied by
(resulting in a product less than 212) .. Thus,
4(8) x 35(8) = 164(8). The subtraction of the
product (164(8» from 212(8) is performed by
direct octal subtraction. The process is
continued until the required number of octal
digits have been generated.

CHAPTER 3. DATA REPRESENTATION

GENERAL

There are three basic methods for
representing data in a computer--that is,
coded, numeric, and logical. The question
of how. this information is arranged for
presentation to the computer may be puzzling.
In this discussion, we will find that data may
be represented on various recording media
by a Boolean code or by directly readable
characters. It is known that information in
the form of arranged patterns of "O's" and
"l's" is coded for use in the computer. This
unit of information arrangement and pre
sentation is the computer word.

A computer word is of definite size; i.e.,
it consists of an exact numberofbinarysym
boIs, each of which is termed a bit (in a binary
machine). Each computer has its own word
size which is of fixed length and arrange
ment. Some computers have been designed to
handle computer words of 40 bits; others may
use words of 30 bits or less. The number of
bits in a computer word is expressed as its
length. The length or size of the computer
word makes available a definite number of
positions for coding information in binary
form. The choice of word size is not arbi
trary. There is an optimum word size for any
digital computer which is related to the
tlaverage" problem to be solved by the com
puter, the number of digits in the instruction
code, and by the degree of desired precision
in computation. In general, the design of com
puter equipment to reflect a specific length of
the computer word is related to requirements.

There are two methods of recording
alphanumeric characters which can be direc
tly read by man. One method employs a photo
sensing device to optically read characters
directly from statements or bills. The second
method uses a magnetic sensing device to
read characters printed in magnetic ink.

Specially designed characters must be
used by both the optical and the magnetic
ink systems. The designs of these characters
are similar to normal print characters but
they are unique enough to allow rejection of
normal print characters. Examples of these
characters can be seen in Figure 24.

CODED METHOD

BINARY-CODED DECIMAL (BCD)

The reader has undoubtedly spotted one
flaw in the binary system. Few human beings
think in terms of binary numbers. Even the
highly trained computer speCialist pays his
bills and counts his money in the decimal
system. The binary number 1111111111 is
equivalent to 1023, but the binary number
11111111111 is 2047 - significantly different,
but difficult to recognize in binary form. How
difficult it would be to interpret a bin_ary
number such as 1101001010, but its decimal
equivalent, 842, is immediately recognizable
to everyone.

There are many computer number codes
that use modifications of the straight binary
code. One of the most useful of these is
the binary-coded decimal (BCD) code, which
is a combination of the binary system and the
decimal system. The BCD code has many
useful advantages in data processing com
puters. All the arabic (decimal) numerals
from 0 through 9 can be defined by four
binary bits, as shown in Figure 25.

A

BINARY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

DECIMAL

o
1
2
3
4
5
6
7
8
9

FIGURE 25
Binary-Decimal Conversion

l> N 0 E S
o 1 234 5 6 7 8 9

OJ. 231 .. SE.7Bct

}
OPTICAL
REAO
CHARACTERS

MAGNETIC INK
CHARACTERS

FIGURE 24
Special Characters

25

In Figure 25, we have used the con
ventional method of symbolizing conditions
through the use of "l's" and "O's". In each
binary number, the bit position on the extreme
right tells whether the basic unitary incre
ment (1) is included in the number. The
second column from the right represents
21 (or just 2); the third column represents
22 or the value 4, and the fourth column
represents 23, or the value 8. Thus, the
decimal number 7 is made up of 1 + 2 + 4 =7;
the decimal number 9 is made up of 1 + 8 =9,
or 20 + 23 = 9.

The binary-coded decimal system does
waste some possibilities. The binary numbers
for 10, 11, 12, 13, 14, and 15 can also be
represented by four bits, but they are not
normally used in the BCD system. To indicate
numbers greater than 9, another group of
four bits is used to represent each additional
digit. For example, the number 34 is repre
sented in BCD as:

0011 0100

3 4

Each decimal digit is thus represented
by four binary bits in the BCD system.
Although this system is not as efficient as
straight binary, it has the advantage that it
can be interpreted at a glance. Conversion
to straight decimal notation for activating
input-output equipment that accepts only
decimal information is relatively Simple.
The BCD system is Significantly more
efficient than the decimal system, since each
digit is specified by four bits as opposed to
ten for the straight decimal system.

HOLLERITH CODING

The computer is not confined to directly
representing real numbers in binary form.
Binary words can also be coded to represent
one or more alphanumeric characters. There
are many types of alpha numeric codes used
in the wide variety of data processing systems
in use today. However, in this discUSSion, we
will deal with only two of the most commonly
used alphanumeric codes--12-Bit and 6-Bit
Hollerith.

26

Figure 26 may be used to illustrate
the manner in which data is recorded on
punched cards in 12-Bit Hollerith Code.

There are 80 vertical columns on each
card, and each column intersects each of the
12 horizontal rows. A hole punched at one
of these intersections represents a "1" bit,
and a "no hole" condition represents a "0"
bit. A decimal number from 0- 9 can be repre
sented in anyone column by one hole punched
in the appropriate row of that column. An
alpha character can be represented by a com
bination of two holes punched in one column.
Finally, special characters can be repre
sented by three holes in a column; one in
the zone row, and two in the digit rows.
The punched code for any alphanumeric or
special character can be determined by use
of the chart in Figure 27.

IIi Figure 26, the characters" ALE" in
columns 1-3 denote the following:

Hollerith Code: A =12, 1 punches

L = 11, 3 punches

E = 12, 5 punches

Binary Code: A = 000010000001

L = 000000100010

E = 000000001001

In Figure 27, the Hollerith Code shown
on the chart is the same for numbers and
letters in any system; however, the special
symbol codes might vary from system to
system.

An obvious disadvantage of the 12-bit
Hollerith code is its low packing efficiency.
The term packing means to include several
short pieces of information into one computer
word. For example, a computer with a 48-bit
word can hold only four 12-bit Hollerith
characters. To overcome this packing pro
blem, a 6-bit Hollerith code can be used to
represent a maximum of 64 characters.
The typical 6-bit code shown in Figure 28
is divided into alpha and BCD parts. The

I I {2 111111111
I ZONE 101 111111111

11111111
I 1 I I I

2 I I
I 3 I I

I I

~nGIT I I
I
I
I
I

I
I

I
I
I
I

I

I
I
I
I
I

I
I
I

I

I
I

I
I

I

I

... ~ '::: ~ \ ~ .~

I I p

I I I 11

I I 0

1

2

1111 3
1111 4

5
6
7

11111111 ~

9

FIGURE 26
Punched Card Data storage

12 Bit NO ZONE 12
ZONE ONLY +

1 1 A
2 2 B
3 3 C
4 4 0
5 5 E
6 6 F
7 7 G
8 8 H
9 9 I

8-3 + .
8-4 - 0

FIGURE 27
Hollerith Type Wheel Codes

11 fl
- fJ
J /
K S
L T
M U
N V
0 W
P X
Q Y
R Z
$,
• %

least significant digits comprise the BCD
part and the two most significant digits
make up the alpha part.

This code is called 6-bit Hollerith
and is used by the BUIC System Computer,
D-825, to code alphanumeric characters for
storage on symbolic tapes. Other systems
use variations of this code for magnetic
tape, magnetic disk, and magnetic ink
recordings.

Although the 6-Bit Hollerith code shown
in Figure 28 represents 43 different charac
ters, it should be noted that a maximum
number of characters which could be repre
sented is 26, or 64 characters.

~ BCD MSD o 0 o 1 1 0 1 1
LSD

000 0 Blank + - ~

o 0 0 1 1 A J

001 0 2 B K S

001 1 3 C L T

o 1 0 0 4 D M U

o 1 0 1 5 E N V

o 1 1 0 6 F 0 W

o 1 1 1 7 G P X

1 000 8 H Q y

1 0 0 1 9 I R Z

1 0 1 0

101 1 • ,

1 100 •

FIGURE 28
6 Bit Hollerith Code

There are sixteen possible combina
tions of the BCD bit ranging from 0000 to
1111, but only ten of these combinations are
used to represent the decimal numbers from
0-9. The two bits which comprise the alpha
part of the code can represent only four
different conditions by themselves; however,

27

when combined with the BCD component, the
number of characters which can be repre
sented is increased by a factor of four.

Data is coded in 6-bit Hollerith primar
ily for symbolic storage on magentic tape
and for printing messages out on computer
controlled typewriters, whereas data to be
recorded symbolically on punched cards is
coded in 12-bit Hollerith.

NUMERIC REPRESENTATION

BINARY

It is known from actual experience that
the amount of equipment required for a
digital computer depends on the base of the
number system utilized by the computer.
Most modern computers are designed to use
the binary system (base 2) because this
system is the most efficient with present-day
components which are binary in nature.

Thus, it stands to reason that unless
numerical expressions are scaled down in
physical size and expressed to some power,
all arithmetic operations must be governed
by the computer word size. Normally, the first
bit of a computer word designates whether
the binary number is positive (440") or
negative (441").

SCALING

Digital computers manipulate only pure
numbers; therefore, when numbers repre
senting physical quantities are used as
operands in a digital computer, the pro
grammer must keep a record of the units
in which the quantities have been measured.
For example, in computing a velocity, the
programmer must be aware that the quan
tities representing distance and time are
expressed in miles per hour, respectively,
in order to conclude that the result of the
computation expresses velocity in miles
per hour.

In the process of digitial computation,
three things must be known about each
quantity used as follows:

1. The digits in numerical expression of
the quantity.

28

2. The position of the radix, or digital
point, with respect to the digits.

3. The units in which the quantity is
expressed (as discussed above).

Automatic digital computers, in gen
eral, keep no record of the units associated
with the numbers they process, and the record
of this information is therefore the respon
sibility of the programmer. Some digital
computers are built to keep an automatic
record of the position of the point in every
number taking part in the computation. In
such a computer, the point will automatically
assume a position that depends on the result
of the computation. A computer that does this
is called a 44floating point' computer. For
reasons that will be evident below, a com
puter that keeps no record of the position of
the point with respect to the digits may be
called a '4fixed point" computer. When pro
gramming a fixed point computer, the
programmer must not only remember the
units in which the quantities are expressed,
but must also keep a record of the position
of the point. The technique by which he does
this is called 44scaling." The advantage of
floating point computation is offset by the
disadvantage of using digits within the com
puter words to indicate the position of the
point, thereby reducing the precision that can
be achieved with a given word size. There
fore, scaling a number is altering the units
in which mathematical variables are
expressed, in order to bring all quantities
within a given range.

If the number .00132(10) is scaled to a
whole number, the result would be 132x10-5•
The decimal point would be positioned to the
right of the LSD. In the above example, that
would require moving the radix point five
places to the right.

Examples:

-5 .00132(10) = 132 x 10

2 13200(10) = 132·x 10

The rule for moving the radix point
is as follows: LARS

When moving the rad~ point to the
left, add - LEFT ADD .

When moving the radix point to the
right, subtract - B.lGHT §UBTRACT

When scaling a number, the resulting
figure' must be specified in the directions;
however, there are special methods of scal
ing which require the same number format
for a result. Normalization is one method,
and applying the principle of scientific nota
tion is another.

NORMALIZATION. The normalization
method is merely scaling with the radix
point to the left of the MSD.

Examples:

.00132(10) = .132 x 10-2

13200(10) = .132 x 105

SCIENTIFIC NOTATION. Scientific
notation is the other scaling method to be
discussed. The radix point is usually placed
to the right of the MSDwhenscaling, using the
principles of scientific notation.

Examples:

.00132(10) = 1.32 x 10-3

13200(10) = 1.32 x 104

The process of computer normalizing or
normalizing to a floating point computer
commands the conversion of the number to
be normalized to a binary number (if in
another system other than binary) before the
normalizing process is accomplished.

Example:

.00132(8) = .000000001011010(2) =

.1011010 x 2-8 or .55(8) x 2- 8

If there had been a base (not to be
confused with the term for radix) for a
floating point machine, the suffix (in the above
example) x 2- 8 would be added to that base
number. The exponent will always be a deci
mal number since the number of places the
point is moved is counted in decimal; there
fore, when added to a base number of any
numbering system other than. decimal, the
exponent has to be converted to that number
system.

Example:

Given a base of 200(8), computer nor
malize the number .00132(8r .00132(8) =
.000000001011010(2) = .101101 x 2-8; -8(10.> =
-10(8) added to the base (200(8) + (-10(8»] =
170.55(8)·

D-825 FLOATING POINT FORMAT

The D- 825 uses a base of zero and
reserves the most significant 12 bits of the
computer word for its 12 bit SIGNED expo
nent. The least significant 36 bits represent
a 36 bit signed mantissa. The mantissa
indicates a binary quantity, and the exponent
denotes the number of times the mantissa is
raised by the power of 2. As a result, the
exponent indicates the actual position of the
binary point in the mantissa.

Example:

positive exponent, negative mantissa:
0005 6234 0000 0000 = -22.348

negative exponent, positive mantissa:
4005 2234 0000 0000 = +.011168

Use of the four basic floating point
instructions in the D-825 facilitates opera
tion with much l~rger numbers, and reduces
considerably the amount of scaling which must
be done by the programmer.

29

CHAPTER 4. BASIC COMPUTER LOGIC

The building blocks of a digital com
puter are its individual circuits--hundreds,
often thousands of them--interconnected to
accomplish the operations of transferring
and processing data. There are not this many
different circuits, but a few basic types used
again and again in various combinations.
Before discussing these basic computer cir
cuits and other devices, certain fundamentals
must be examined, such as the types of
electrical signals commonly used and the
nature of the simple logic operations per
formed by the circuits.

INFORMATION SIGNALS

The transfer and proceSSing of infor
mation in a digital computer is done by
switching and storing information signals-
electrical signals representing numbers.
Most of the common electronic parts (relays,
vacuum tubes, magnetic cores, etc.)perform
excellently in bistable (two-state or on-off)
operation. Because of this, it is usually
easiest to make computers work internally
in the binary number system. In this case,
the information signals must represent the
binary digits, "1" and "0".

There are several possible ways of
representing the binary "l's" and "O's"
electrically. For example, when it is neces
sary to transfer numbers over a single
signal line between circuits, as shown at (a)
of Figure 29, the easiest method is to place
a d- c voltage on the line to represent a binary
" 1 " but no voltage to represent a "0".

(A) I A I SIGNAL LINE >/ B

(B) ~ ~ - - ~ - - - - f __ u~ ~~~:~.- - -;-
lJ DOWN LEVEL

(C) f"6l_ - _----'OL.....--[L
lJ TIME :>

30

FIGURE 29
Common Number Signals.

VOLTAGE LEVEL REPRESENTATION

An alternative to this voltage-or-no
.voltage method uses a steady-state, positive
d-c voltage for a "1" and a negative (or
less positive) for a "0". This method of
representing numbers with d-c levels is
shown at (b) of Figure 29. Circuit "A"
indicates a "0" to circuit "B" by holding
the signal line at the down level. When it is
desired to signal a "1", the level is brought
up to a positive potential and held there as
long as necessary. As long as the level is
up, a "1" is present at the input to circuit
"B"; when it is down, the input is "0".

PULSE REPRESENTATION

One characteristic of the voltage level
information signal is that it can be held up
or down as long as necessary. In many cases,
however, all that is needed is a "1" signal
of very brief duration to trigger the follow
ing circuit, so a pulse can be used to
represent a "1', as in (c) of Figure 29. If
a pulse (positive or negative) represents a
"1", then the absence of a pulse logically
represents a "0" •

Using the method of pulse signals, the
output line from circuit ' , A' remains at
some reference level until a "1" must be
transmitted to circuit "B", whereupon a
signal pulse is generated by "A" and is
placed on the line. The pulse appears at the
input of circuit "B", signaling a "1", and
quickly dies out. A typical pulse used to
represent a "1" might be only 0.1 micro
second (p.sec) in duration.

TRANSMISSION METHODS

The voltage levels and pulse signals are
the two basic types (but not the only possible
ones) used to represent numbers (coded infor
mation) in digital computers. But a single
level or pulse represents only one binary bit,
yet the computer must work with long binary
numbers (many bits), or words. Let us look
at how these computer words are transmitted
from one part of the machine to another.

PARALLEL. If one signal line between
two circuits .can, at a given moment, transmit
a "1" or a "0", it is reasonable to conclude
that a complete, five bit word requires five
lines in parallel. This is called parallel
transmission. The binary number 10011 is
shown in Figure 30 as it would be sent in
parallel form, with pulse-type signals.

0 s-:L e I .
0 :

~
I -G I

I
I 0

0
I

-0 I

I

0
..J"7l. G . .

I I

0 ...rL
~LJ

FIGURE 30
Parallel Transmission of Numbers

SERIAL. In addition to the parallel (or
side-by-side) method just described, there
is one other basic way of transmitting
number signals. This second method also
uses either levels or pulses, but sends the
bits of the number, one after another, down
a single line. Thus, the bits are sent in
sequence, or serially, so this is called
serial transmission. In the serial method, it
is usual to send the least significant bit of
the number first, followed by the other bits
in order of increasing significance. This
makes sense when it is remembered that
addition, subtraction, etc., are performed
bit by bit in the same order. The binary
number previously used as an example,
10011, is shown in Figure 31 as it would be
sent in serial form, with pulse-type signals.
The number is sent from circuit "A" to
circuit "B" as a train of pulses and no
pulses. The first bit transmitted by circuit
"A" and received by circuit "B" is the
least significant bit, followed by the remain
ing bits in order of their significance.
There must be spacing between successive
pulses, otherwise they could not be dis
tinguished by the receiving circuit.

1 0 0 1 1

~ Jl~ ~
~r------~ .. ~

FIGURE 31
Serial Tra.n.smission of Numbers

COMPARISON OF METHODS. The prin
cipal differences between the parallel and
serial methods of transmission show up in a
comparison of Figures 30 and 31. In the
parallel method of Figure 30, five sending
and five receiving circuits are involved to
handle a five-bit number. In the serial method
(Figure 31), only two circuits are needed-
one sending, the other receiVing. On the
other hand, all bits are sent simultaneously
in the parallel method, so the entire number
is transmitted in the time it takes to send
only one bit. In the serial method, the entire
number is not known until all five bits have
been sent, one after the other, so it takes
five times as long to send the same complete
number.

TIMING

Another matter of importance in trans
mitting numbers is timing. We will now take
a look at the timing requirements for the two
transmission methods just explained.

PARALLEL TRANSMISSION. Consid
eration of the parallel method shown in Figure
30 indicates that simultaneous operation of
the circuits Signaling a given number is a
must if circuits "BO" through "B4" are
going to operate on the number as soon as
it is received. If the number signals were
voltage levels, for example, and the signaling
circuits II A 4" and" A 0" were operated
together, followed a moment later by signal
ing circuit" AI", the receiving circuits would
first get the number 10001, which would then
change to 10011. 'With pulse-type signals of
short duration, the same operation of the
signaling circuits would send 10001 and then
00010. Either of these occurrences, resulting
in incorrect numbers getting in, could cause
errors in an arithmetic machine. Therefore,
it is important in parallel transmission to
time all of the bits of a number to arrive
simultaneously at their destinations.

31

SERIAL TRANSMISSION. Timing is also
vital in serial transmission, as an examina
tion of Figure 31 will indicate. Since the
bit signals are sent down a single line, one
after another, some rigid timing system is
a necessity, especially with pulse-type sig
nals. If the signals were sent at varying
intervals, the receiving circuit would have
no way of telling whether a long space between
pulses was a "0" or merely spacing. Further
more, if voltage level signals were used,
the receiving circuit could not distinguish
between a "1' and two consecutive "1' s"
or between a "0" and two consecutive "O's".
Consequently, the timing of serial transmis
sion must also be controlled. This is done
by establishing the period of time necessary
to send one bit, which is the smallest piece
of information handled in the computer.

Once the time period for transmission
of a single bit (called one bit-time) has been
determined, the problem of serial timing is
handled by rigidly controlling the length and
spacing of the bit signals in every number
(computer word) transmission. Figure 32
shows an example of the timing of both the
pulse-type and level-type signals making up
the number 10011. In the pulse system, the
relative durations of the pulses and spaces
vary from one computer to the next. In
some systems the space is the same width
(in time duration) as the pulse.

In many computers, the basic source of
timing or synchronizing signals is the
CLOCK, usually a pulse generator which,

controlled by ap accurate oscillator, puts
out a continuous string of rigidly timed
pulses. The clock pulses are generated one
per bit-time and are sent to all parts of the
computer to control the transmission of
numbers and the timing of operations. Thus,
in a computer using a one microsecond bit
time the clock must generate one million
pulses per second, at exact one microsecond
intervals, from the time the computer is
turned on until it is shut down.

SWITCHING LOGIC

Up to this point, the basic types of
signals used to represent information in
digital computers and the basic methods of
moving the information from one part of a
computer to another have been covered. It
has been mentioned that all the arithmetic
and other operations performed in a digital
computer are done by switching and storing
information (in the form of numbers) in the
proper combinations and sequences.

The operations carried out by a digital
computer are operations of logic.
Arithmetic--in fact all mathematics--is
rigidly based on logic; in other words,
arithmetic is a systematic process of manip
ulating numbers involving simple operations
carried out according to precise rules. If
numbers are to be represented by voltage
levels and pulses, some system of manip
ulating these voltages according to the logical
rules of arithmetic must be found. Circuits
which accomplish this function in a computer
are called logic circuits.

A T5 T4 1 T3 T2 1 TI
Mil

32

P I I. 1

L I 1010 1: 1
I 1 I 1

g ~ PULSES n IUL
E ~ T5 : T4 T3 T2 ~ T1

1 I I
I I I I

A ,1'0 '0' 1'1,
M + VOLT AGEl 1 l ~ I 1

LEVE:'S
1 ~ ~ ---J -----I-----------I----------l

T
U
D
E. FIGURE 32

Timing of Serial Numbers

LOGIC OPERATIONS

Let's now take a look at how switch
ing is applied in operations of logic. This
can best be understood by looking at the
types of logic operations that can be per
formed easily by a swj.tching circuit.

Q!!.. LOGIC. One of the common logic
operations is the alternative or choice, called
the OR function. This comes into play when
ever anyone of two or more alternate
possibilities can bring about a specified
result. For example, "We'll go to the movies
if George, Peter, or Joe shows up/' In this
case, the arrival of George OR Pete OR Joe
leads to the result, movies. This can be
written in shorthand form:

George OR Peter OR Joe =Movies

This situation can also be symbolized in
diagram form, as shown in Figure 33a. The
label in the block indicates that OR is the
relationship between its "inputs", which are,
of course, the arrival of George, Peter, or
Joe. Another way of thinking of it--more
accurate when dealing with equipment--is
that the block applies the OR function to its
inputs. The block produces an "outputl1_
movies--only when the inputs meet the OR
requirements: in other words, when at least
one of the inputs appears. This diagram can
be altered, as in Figure 33b, to illustrate
the general case, any OR situation. Three
inputs are shown, although any number except
one is possible (one condition offers no
alternative, hence no OR). The OR function
produces a specified result, D, when anyone
of its input conditions, A OR B OR C, is
satisfied. Notice that if any two, or even all

GEORGE

PETE
JOE

A

B

C

---E>~ OR)---.... MOVIES

FIGURE 33a
OR Situation Symbolized

~D ·
A OR B OR C = D

FIGURE 33b
OR Function

D

three, of the inputs appear together, the out
put is still produced.

~ LOGIC. The AND function is
another common logic operation. It requires
that all of its two or more possible condi
tions (inputs) be present at the same time to
bring about a specified result (output). For
instance, "You need inductance and capa
citance and resistance to build a bandpass
filter." All three are required--and all at
the same time--to produce the result, a
filter. If anyone is missing, or if the three
are present only at different times, the spec
ified result is not produced. The logic can
be written:

L AND C AND R = Filter

Figure 34 illustrates the AND function
in diagram form. Again, anynumberofinputs
except one is possible. The AND function
produces a specified result, D, when all its
input conditions, A AND B AND C, are
fulfilled at the same time.

A

B

C

j'::\
=====~-=~Ol---. D

A AND BAND C = D

FIGURE 34
AND Function

NOT LOGIC. Another logic operation
of importance is the NOT function, called
inversion. Inversion means a turning upside
down or a reversing of relationships. In
working with two-valued logiC, this means
changing every quantity to its opposite.
Every "yesl1 , when inverted, becomes a
"NOT yesl1 , which is the same as a "no".
Similarly, a "no", inverted, becomes a
"yesl1 • Figure 35 shows the symbols for the
NOT function.

A~AB
NOT c'-m--1 '"
SYMBOLS ~

FIGUBE 35
NOT Function

33

For example, someone might say, "I'll
go if Tom does, but not if it rains."
Examination shows that this involves an AND
function and a NOT function.

Tom goes AND (NOT Rain) = I Go

This can be diagrammed with an AND block
and an inverter, as shown in Figure 36;
the combined functions are often called the
AND NOT. (An OR NOT arrangement can be
put together in similar fashion from an OR
and an inverter.) Notice that if the inverter
input (rain, in this case) is present, it
prevents the AND from producing an output.
The presence of an inverter input means no
inverter output; hence, a missing input to
the AND. The AND cannot operate unless all
its inputs are present Simultaneously. This
prevention of the AND operation is called
inhibiting which, used this way, means about
the same thing as prohibiting.

The OR NOT function by itself is drawn
as shown in Figure 37. Operating in OR
fashion, the ...!nhibitor produces an output, C,
when inputs A OR B are present.

TOM
GOES

RAIN
=0=81--_". I GO

FIGURE 36
AND NOT Diagrammed

FIGURE 37
OR NOT Function

_ C

CIRCUIT LOGIC

Now that the basic logic functions used
in digital computer circuitry have been
examined in terms of information only, it is
time to see how physical circuits operate
according to the rules of these functions. The
inputs are now going to be electrical signals
representing the facts or events that must be
logically connected. The logic blocks pre
viously used to diagram the functions are
henceforth actual physical circuits. And,
finally, each output is an electrical signal

34

representing the specific result of applying
the rules of a particular logic function to a
particular set of inputs. To put it another
way, each output is a logical conclusion.

To see how a Switching circuit performs
a logic function, consider the case of a home
owner who wants to be warned when someone
comes to either his front or back door.
This involves the OR function, and the
logic of this situation can be diagrammed
as shown in Figure 38, using the simple
OR block. The ordinary manner of" solving"
this, of course, is to install a doorbell cir
cuit, with a pushbutton switch at the front
door and another at the back and a bell inside
the house. A battery can be used to power
the bell, as shown in Figure 39.

The pushbuttons are not parts of the
logic circuit, but are simply devices to
translate physical facts or events into elec
trical signals. They put the information into
the circuit. The fact, "somebody at the
front door", is translated to a voltage of
six volts when that "somebody" presses the
front-door button. The voltage, which can also
be considered as a binary "1", is applied to
one input of the OR circuit. According to the
OR function rule, an output is produced when
one input OR the other is present. So a binary
"1" at the front-door input results in an OR
circuit output that rings the doorbell. Fol
lowing this reasoning, a binary "1' at either

SOMEONE AT
FRONT DOOR

SOMEONE AT
BACK DOOR

5 8>----- WARNING

FRONT
DOOR t>I

FIGURE 38
Logic of Doorbell Situation

BACK
t>I DOOR

FIGURE 39
Doorbell Circuit, Showing Logic

-=..6V

I

OR circuit input represents "somebody pre
sent", so a binary' '0' (no voltage, or zero
volts) must represent "somebody NOT pre
sent" .

"1" = Somebody present
"0" = Somebody not present

Thus, electrical signals can be made to
represent the binary numbers which in turn
are made to represent specific items of
information. The six volts can be thought of
as the up level voltage, in which case zero
volts is the down level voltage.

Now, the OR circuit itself, inside the
block in Figure 39, must be constructed to
operate in accordance with the rules (logic)
of the OR function; in other words, it must
be built to produce an output when a binary
"1" (up level voltage) appears at one input
OR the other. What must the output be?Well,
the bell must ring when somebody is pre
sent (at either door); binary "1" represents
"somebody present", so the output must be
a binary "1' or an up level of six volts.
The current that flows as a result of applying
this up level is capable of ringing the bell,
so the choice of output is logically and
electrically satisfactory. The bell can be
considered as a device to transfer the
information "somebody present" to the
homeowner.

When there is nobody present at either
the front or back door, a binary "0" (down
level) is present at each OR circuit input.
In this case, the output must also be a binary
"0", or down level, representing 'I some
body not present". The down level cannot
cause the bell to ring. The conditions of this
situation are so simple it is apparent that
the OR circuit itself need be nothing more
than a parallel connection of wires from the
pushbutton switches, as shown in Figure 40.
Notice that, however Simple it may be, this
is the only part 'of the circuit that fulfills ,
by itself, the requirements of the OR function.
It is the parallel method of connection that
offers alternate input possibilities, making
this an OR circuit. It is important to under
stand this distinction, although in practice it
is common to speak of the entire parallel
circuit, including the switches as the OR
circuit.

FRONT~ ~ BACK
DOOR~ ~OOR -=-6V

+
FIGURE 40

Complete Doorbell OR Circuit .,'

This doorbell OR circuit provides a
simple illustration of the manner in which a
logiC operation is carried out by an electrical
or electronic circuit. Regardless qf the
type of logic circuit, two-valued information
is represented by binary numbers "0" and
1'1" , which in turn are represented by
electrical signals. Means or devices are
provided to get these signals into the circuit
at the proper place and time. By building
the circuit to operate upon the electrical
Signals according to the rules of the desired
logic operation, the resulting output signals
represent logical decisions or conclusions
reached in accordance with the built-in
rules. To be useful, these outputs are trans
mitted or transferred either to some other
circuit or out of the computer.

So the computer logiC circuits cannot
'Ithink' and do not know what information
their inputs or outputs represent. There is
nothing miraculous about them. They Simply
accept electrical input signals and operate
with them in accordance with the circuit
deSign, just as ordinary radio or TV circuits
must do. All .the thinking is done by the
designers who build the rules of logic into
the circuits and the programmers who direct
the operation of the computer. The advantage
of the complete computer is that it can per
form a long sequence of these simple logic
operations, at extremely high speed, by
s ending signals through a chain of logic
circuits. By performing the proper sequence
of operations, the computer does arithmetic.

COMPUTER LOGIC CIRCUITS

There are many different types of
switching devices used in computer logic

35

circuits. Some of these devices are relays,
crystal diodes, vacuum tubes, transistors,
and magnetic cores. Each type device has
certain characteristics, capabilities, and
limitations which will be covered briefly at
this time.

RELAY LOGIC CIRCUITS

Computers composed principally of
relays are not often built today, due to the
comparatively slow operate and release times
of relays. However, some relay circuitry
is often used in electronic computers, espe
cially in the input and output elements.

CRYSTAL DIODE CIRCUITS

Crystal diodes are used mainly iillogic
switching operations. They offer the follow
ing advantages: very small, light in weight,
require no heater power, very reliable, and
have a longer life than vacuum tube diodes.

VACUUM TUBE CIRCUITS

Vacuum tubes are excellent switching
devices, offering the advantage of high speed
and the possibility of amplifying signals as
they are switched. However, they have com
paratively large space, power, and cooling
requirements; these disadvantages indicate
that the vacuum tube will see less and less
use as newer devices are perfected.

TRANSISTORS

Although transistors are frequently
thought of as replacements for vacuum tubes
and can often be used in similar logic cir
cuits, some newer types are well-suited to
straightforward use as switches. Transistors
offer several advantages for digital computer
use. They are small and well-suited to
miniaturized CirCuits, require little power,
arid dissipate little heat. As Switches, they
are as fast as vacuum tubes; hence, they can
be used in high-speed computers to provide
excellent reliability.

DELAY CIRCUITS

It is often necessary to delay a pulse
signal in time as it .is routed through a

36

computer without affecting the width of the
pulse or the time between pulses. This 'is
the basic fun~tion of a delay circuit. The
symbol fora delay line showing the effect
it has on a signal is shown in Figure 41.

INPUT--.j ~ r-0UTPUT
DELAY LINE

I I I , , I
I I I I I I

INPU;~
SIGNAL I I I I B I I

I I I I I I
, I I I I I
: : I I , I

DELAY: : -II II
SIGNAL : ~ A L.-J B L-

I I I , I I

(OU'l'PUT) I TI ! I : '5
TO T2 T3 T4 T

FIGURE 41
Delay Line Operation

MAGNETIC CORE LOGIC CIRCUITS

Magnetic cores, originally developed
and widely used as storage deVices, are now
finding more and more use in switching and
logic devices. The core, shaped like a tiny
doughnut, is a bistable one-bit storage cell
or memory. It is made of a material with
magnetic properties.

At least three small coils are ordinarily
wound on each magnetic core. Two of these
are obviously for input and output of infor
mation; the third is needed for sensing or
read out, of the information ("1" or "0")
stored in the core. The basic, three-winding
core is shown schematically in Figure 42.

INPUT C

READOUT
(OR RESET, SHIFT OR CLEAR)

FIGURE 42
Magnetic Core

Since the core is made of a magnetic
material, it is really a small magnet with
the direction of flux (magnetic lines offorce)

running either clockwise or counterclockwise
inside the magnetic core. This direction of
magnetization can be quickly reversed by
applying a pulse to a coil wound on the core.
Thus, by deciding that one direction of flux
represents a "1", the other a "0", a pulse
on the input coil can be made to insert a "1"
which the core then stores because its direc
tiOn of magnetization can be changed only
from the outside. Inserting information into
the core is called writing a "1" or "0"
into the core, or setting the core to "1"
or "0". Taking out the binary bit is called
reading out, or simply readout.

To read information out of a core, a
pulse is applied to the rea~out winding. The
readout pulse always sets the core to "0".
This is known as destructive readout. The
readout winding may be called by various
other names, such as reset, shift, or clear
winding. If the core is already at "0" when
the readout pulse is applied, no output pulse
is obtained at the output coil. However, if
the core is in the II 1" state when the read
out pulse is applied, the direction of magneti
zation of the core is changed to the opposite
direction ("0" state) and a "1" pulse is
obtained at the output coil. This output pulse
can be used to set other cores or as an input
to other logic circuits.

J\Dother important characteristic of
magnetic cores is that they will remain
magnetized in the correct state even though
the primary power to the computer is off
for long periods of time.

SMALL-SCALE STORAGE CIRCUITS

The fact that all arithmetic and data
processing operations in a digital computer
are accomplished by Switching and storing
electrical signals has been mentioned several
times. The switching circuits that perform the
logic operations have been examined briefly.
It is easy to see that if signals representing
"l's" and "O's" must be combined in certain
logic circuits and if a signal available now
is needed a little later, some means of
, , storing" this signal until it can be used is
required.

A delay line type storage device works
nicely for pulse signals and for brief storage
periods of a few bit-times. However, this type
storage device is not suitable when voltage
levels are used or when the storage period
is of either long or varying durations. It is
impractical to send signals from all parts
of the computer to the storage element each
time bits of information are to be temporarily
stored for use during later operations. What
is needed is a small-scale, on-the-spot,
bistable, storage device that can be set to
"1" or "0" by the signal it receives. It
must also be able to remain in that state,
after the input signal disappears, until it is
reset. It must, of course, be able to indicate
its "I" or "0" state to other devices by
means of one or more outputs. This indication
may be continuous or it may be supplied only
when demanded, as in the case of a magnetic
core which indicates the bit stored only when
a readout pulse is applied. With such a device
it is easy to store a single bit until it is
needed. When a parallel transmission is used,
it is easy to store a complete word simply
by providing storage places in parallel for
each bit of the word. A group of devices for
storing a complete word is called a "regis
ter" .

BISTABLE CIRCUITS

With the possible exception of crystal
diodes, all the Switching devices used in
logic circuits can be easily adapted to cir
cuits for bit storage. Magnetic cores were
originally developed for this purpose; their
use in logic circuits came later.

FLIP-FLOPS. The flip-flop (also
referred to as a "bistable multivibrator",
"Eccles-Jordan circuit", "Trigger" or
, 'toggle") circuit is a bistable device used
to store a single bit of information. A
fundamental characteristic of the flip-flop
(abbreviated FF) is. that at any given time it
can be in only one of its two possible states.

Because the flip-flop circuit is stable
in only one of its two possible states at a
given time, and because it will remain in
that state unless an input signal is applied,
the flip-flop circuit can be used to store a

37

binary bit. One of the two states is desig
nated the "ZERO" state and the other the
"ONE" state.

Flip-flops have their own circuit sym
bols, which may resemble any of the three
shown in Figure 43 0

1 0 1 o 1

FF FF FF

CLE4R S~ T
CLEAR SET OR RESET

::~" '-T S~- T

38

COtAPlEMENT CO~"Pl EMEN:r

FIGURE 43
Flip- Flop Circuit Symbol

Another important characteristic of the
flip-flop circuit is that the two outputs are
always at opposite voltage levels. When one
is high, the other is low. When one goes down,
the other goes up. The inputs are normally
pulses, although it is possible to use voltage
levels. IT a pulse is applied to the set input,
the one side output goes high and the zero
side o~tput goes low. If a pulse is applied
to the clear input, the zero side output goes
high and the one side output goes lo~. IT
a pulse is applied to an input (clear or set)
whose corresponding output is already high,
the flip-flop doesn't change states. These
rules of operation are illustrated in Figure
44.

A I J I I , ,
I I I I
I I I I
I I I I
I

I I
I

I I

B I , I I
I I , , , I
I I , I I I r--...... I I I I .' I

~ 1 0" ."'~~
FF : ;: II

I I I I I o I I I I I

r----~

FIGURE 44
Basic Flip- Flop Operation

For some purposes, flip-flops require
only the complement input. When a pulse is
app~ed to the complement input, the flip
flop always changes its state.

BINARY COUNTERS. The term "binary
counter" is nearly self-explanatory. It refers
to a device, composed of appropriately con
nected flip-flops, which performs the function
of counting in the binary number system. The
counters count the number of input pulses and
the stages of the flip-flops indicate the
count binarily.

Counters are classified according to the
function they perform; they are known as up
counters or down-counters. Up-counters
count the number of input pulses. Down
ci.lunters subtract the input count, "count
down", from some preset number.

Counters are also classified "according
to their circuit design, which may be serial
or parallel. A serial counter consists of a
group of flip-flops that binarily count a
series of pulses. They are so connected that
each flip-flop changes from the ZERO to the
ONE state, or conversely, as it receives the
output voltages pulse of the preceding flip
flop. The counter is used to serially count
all pulses present at the input. Each pulse
applied to the counter input changes the state
of one or more of the flip-flops in such a
way that the binary configurations in the
flip-flops represent the number of input
pulses counted. A four-stage serial up
counter which is capable of counting. in
binary from 0(0000) through 15(1111) is
shown in Figure 45.

A parallel counter consists of a group
of flip-flops connected so that the input pulse
is simultaneously applied in parallel to each
flip-flop. Parallel counters are used because
their response time is much faster than serial
counters, but they have the disadvantages of
requiring more circuitry and consuming more
power than serial counters.

STORAGE REGISTERS. A register, as
. mentioned earlier, i~ a group of storage
devices used for storing a complete word.
Four flip-flops connected as a 4-bit parallel
storage register are shown in Figure 46.

.----......, AB C -' ,D
INPUT W 1 ro 1 ro 11W 1~---'" FF-A FF-B . FF-C I FF-D i

o 0' 0 I 01
'---_

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16
I

INPUT
I I i I I I I I I I I I I I I I I

I
A

I I I I I I I I I I I I I I I I I

I I I I I I I I I L' BI I I I I I I I I I I , I I I I I

I I I I I I I I II I I I I I I I L' C I I I I
I

I I I I I I I I I I I I I I I I
I I I I I I I

I I I I I I I I I D I I I I

I

I

FIGURE 45
Four state Serial Up-Counter

CLEAR __ ~ __ ~ ____ ~~~ ____ ~ __ ;-____ ~

PULSE ------------~V~------------------'/
INPUT WORD

FIGURE 46
Parallel Flip- Flop storage Register

The clear inputs are all connected in
parallel so that a single pulse can be used
to clear the whole register before the new
word to be stored is applied. This clears all
the flip-flops in the register to the "zero"
state, wiping O\1t any word that may have been
'stored previously. Then the word to be stored
is applied in parallel form to the ~et inputs.
The pulse in each bit position where there is
a "1" sets the corresponding flip-flop to
the "one" state. No pulses appear in the
bit positions where t~ere are "0", so the
flip-flops in these positions remain in the
tlzero" state, and the correct word is
stored.

SHIFT REGISTER. A shift register is
built with the intention of shifting any num
bers stored in it for a purpose other than
that of ordinary storage. The purpose maybe

to convert words from serial to parallelform,
from parallel to serial, or it may be to
multiply or divide the numbers by some power
of two.

The circuitry of a shift register is
similar to that of a storage register in that a
flip-flop is used to handle each binary bit of
information. However, one additional input
(·called ·shift input) must be connected through
additional logic circuits to each flip-flop.
'There are many possible arrangements of
shift r'egisters ·and which one will be used
in a given case depends upon the exact opera
tions to be handled by that shift register.

ARITHMETIC AND CONTROL

INTRODUCTION

The computer element which performs
mathematical computations and data

39

manipulations is called the arithmetic
element. The need for this element is self
evident; a means of performing arithmetic
operations (addition, subtraction, etc.) is
essential to the solution of any mathematical
problem. In most large-scale computers,
the memory element is completely separate
from the arithmetic element; however, the
two units are both interrelated and inter
connected. By transmitting electric pulses
back and forth, these two elements are able
to communicate. The memory element sends
information to the arithmetic element for pro
cessing, and the arithmetic element sends
back processed information for storage. The
arithmetic element handles and manipulates
the numbers; however, the control element
tells the arithmetic unit HOW and WHEN to
handle them. The instructions to the computer
are not in a form that will operate the
arithmetic unit directly. To interpret the
instructions for the arithmetic element is
a major function of the computer's control
element. Comparably, the operator of a desk
calculator who first keys in the data and
then presses the instruction key is exercising
the same control function. However, in high
speed digital computers, the control task
is performed electronically. Given the cor
rect instructions and accurate data, there are
few mathematical prOblems that a computer
cannot solve; moreover, it is estimated that
the AN/FSQ-7, a computer used in the SAGE
Air Defense, averages less than one error in
every ten billion operations.

COUNTING

A digital computer is built by assem
bling networks of basic circuits to perform
arithmetic operations, to handle input and
output information, and to control the internal
working of the machine.

The ring-like nature of the counting pro
cess makes it simple to design networks
that can count input signals. Such Circuits,
called "counters" , are used for various
purposes, such as counting steps in the pro
gram as they are executed. In any case, a
signal--usually a pulse--is generated each
time the event to be counted occurs. The
counter then counts these pulses. For

40

instance, a signal is sent to the "program
counter" each time a step of the program is
completed; the counter keeps track of the
progress of the program.

ADDITION

Simple arithmetic addition is nothing
more than a short-cut method of counting
from smaller numbers to larger ones. Since
the only binary digits are "0" and "1",
binary addition is merely a matter of count
ing in columns and correctly handling the
carries between columns. Although it is
common practice in pencil-and-paper arith
metic to add a whole column of figures at
one time, this practice has not been found
practical in digital computers. Instead, a
computer adds the first two numbers; then
the third number is added separately to the
sum of the first two; accordingly, the fourth
number is then added to the sum of the first
three numbers. This repetitive process is
used to add columns of numbers of any length.

Consider the addition of two bits. We
will identify the bits as bit A and bit B.
Each of these two bits may be either 0 or 1.
Under these conditions there are only four
possible combinations of these two bits.
They are 0 + 0, 0 + 1, 1 + 0, and 1 + 1.
The table in Figure 47 shows each combination
and the r~sulting sum and carry. This table
is called a truth table from Boolean ~lgebra.

A computer circuit must now be found
that produces the results shown in the truth
table. There must be two inputs to this
circuit, bits A and B. There must be two
outputs, the sum and carry. The circuit in.
the computer that does this is shown in
Figure 48. It is called a half-adder. The
reasonior this name will be obvious later.
Each part of Figure 48 shows one of the
four possible combinations of A and B and
the resulting outputs. The various voltage
levels throughout the circuit in each case
are also shown. A "0" indicates a low
voltage. A "1" indicates a high vo-ltage.

Figure 48 shows that the half- adder
is made of the same basic logic circuits
as discussed in computer . logic. The

A B Carr;t Sum

(1) 0 0 0 0

(2) 0 1 0 1

(3) 1 0 0 1

(4) 1 1 1 0

FIGURE 47
Truth Table for the Addition of Two Bits

(a) A=O

8=0
r- - - - -- -
I

0

L_ (J---

CARRY

(c)

-

SUM

---,
I
I

(b) .

,-- - - -
I ,

,- - (f - - -

C RRY

(d)

I

I ,

1

_I L - '1--

CARRY

FIGURE 48
The Half-adder

0
+0.
00

0
+1

Oi

1
+0
or

1
+1
10

Jr
8 =1 -,

I

_.0

I
I
I
I
I
I

-.J

half-adder is capable of adding
any two bits and producing the
correct sum and carry. However,

if a computer could add only two
bits, it would be extremely limited
in its capacity.

41

The next step that we will take will
be to double the computer's capability. A
circuit which will add two binary numbers
with two bits per number and produce the
correct sum and carry is shown in Figure
49. This circuit is called a full-adder.
Figure 49 shows the addition of two binary
numbers, 01 and 11, as an example. Notice
that the circuits has four inputs and three
outputs.

The full-adder is required when it is
necessary to add the two bits of a column
and a carry from a previous column. In
Figure 49 the half- adder is used to add
the two bits in the first column. This is done
because there will never be a carry in this
column from a previous column.

To increase the number of bits per
number that the computer can add, it is
only necessary to add additional full-adders

o

o
1

FULL r- - - -
ADDER

HALF
ADDER

'HALF
lADDER
I- - ---

- ___ I
()

SUM

with an "OR" circuit between each full
adder as shown in Figure 50. One full-adder
will be required for each additional bit in
the numbers. Twenty-nine full-adders and one
half-adder would be required to add two
numbers with 30 bits per number.

We have shown the development of a
computer that can add any two binary num
bers. BaSically, this is all that any computer
can do. A computer multiplies, subtracts,
and divides through adaptations of addition.
If a computer subtracts, we have seen how
it complements and adds. If a computer is
to multiply two numbers such as 4 x 3,
it could simply add 4 + 4 + 4 and get 12.
Similarly, a computer could divide by
repeated subtractions. So the computer is
actually quite a simple device basically. It
is only its tremendous speed and vast memory
that make it seem so incredible.

CARRY
FROM
COLUMN
ONE

1- CARRY
01
1 1

I

HALF
ADDER

L _ _I

I
\--.!

CARRY FROM
COLUMN TWO COLUMN TWO

SUM
COLUMN ONE

42

FIGURE 49
The Full-Adder

1 __ -,

1

FULL FULL
ADDER ADDER

0 __ -.

o

HALF HALF
ADDER ADDER

- - - - -

HALF
ADDER

1 o
CARRY TO SUM
COLUMN 5 COLUMN 4

\
CARRY

HALF .\ ADDER

1

SUM
COLUMN 3

FULL
ADDER

CARRY

FIGURE 50

0---. 1
1 1

HALF
ADDER

HALF
ADDER

o

HALF
ADDER

1
CARRY

o
SUM SUM
COLUMN 2 COLUMN 1

The Adders (Example: 1001 + 1011)

43

CHAPTER 5. COMPUTER SYSTEMS

LARGE-SCALE STORAGE AND MEMORY

REQUIREMENTS OF MEMORY ELEMENT

The brief description of the memory
element given in Chapter 1 stated that it
consisted of a large number of storage loca
tions, each having its own separate address
and each capable of storing one computer
length word.

Without a memory such as this, the
automatically sequenced computer could not
perform a long string of arithmetic computa
tions and logical decisions without stopping.
It must have some place to keep all the input
information it has to work with, the inter
mediate results that will be used in later
computations, and the final results that have
to be fed out when the program calls for
outputs. In a stored-program computer the
memory must also provide enough storage
registers to hold all the instructions of the
program.

The first requirement of the memory
element, then, is size. It must contain enough
storage registers to hold all the data and all
the instructions of the program. In a very
large computer, this may not be feasible and
auxiliary storage space may be provided
outside the main memory element. In this
case, the memory must be sufficiently large
to hold information and instructions enough
to keep the computer running for a reasonable
length of time.

Another important requirement of the
memory element is the speed with which
numbers can be put in or taken out. This is
known as 41 access time" and is defined as
the time interval between the instant infor
mation is requested and the instant it becomes
available. In memory systems using the
"random access" method, the time interval
will be the same for the addressing of any
location of the memory medium. The "access
time" largely controls the speed of operation
since many operations can be performed
faster than the numbers can be obtained
to work with. So, a fast-access memory is

44

required and, once obtained, another reason
for storing the program instructions in mem
ory becomes apparent. For maximum
operating speed, the instructions must be
made available just as fast as the numbers
to be operated upon, so the logical place
to keep them is with the data numbers.

Part of the access time (sometimes
called the memory cycle) must be used to
translate the address (also in number form)
and set up electrical connections to the
desired storage register, in order to write
in or read out a number. Writing or storing
is the process of putting a number into a
storage location; reading is the process of
taking it out.

Translating the address in the address
selection circuits rarely takes long, but
actually reaching the proper storage register,
when some types of storage devices are
used, may require much time. The effect is
as if the registers were seats on a merry
go-round or cars on a roller coaster and it
were necessary to wait for the desired one
to come by. Thus the counter may be forced
to wait for the information it is to work with.
Certain techniques in preparing programs can
be used to cut this access time to a minimum,
but these techniques often make the problem
of writing the program very complex.

A better solution is to use fast-access
storage devices for the main memory and
use the slower devices as auxiliary storage
facilities outside the computer proper,
reached through input-output circuits.
("Memory" usually means the main storage
element inside the computer.) Then, large
groups of numbers at a time can be sent
back and forth, as required, and stored in
consecutive storage registers. Sometimes
the computer can continue its computations
during the transfer. Instead of having to
locate individual registers in the auxiliary
storage, the access is made to large blocks
of registers.

Only the main memory is used for all
operations going on inside the computer. When

the memory fills up with intermediate results,
program instructions send a large block of
them out to the auxiliary storage and may
bring back in some fresh data or even
additional program instructions, as required.

Of the magnetic storage devices (cores,
tapes, and drums), the cores offer the easiest
and by far the fastest access to any storage
location. Magnetic cores are the most satis
factory storage devices for use in the internal
computer memory, since all registers are
equally accessible. The other types of storage
devices generally require the computer to
wait for the transfer of information, but they
offer such other advantages as low cost,
fast serial operation, or easy changmg of
the stored information by an operator.

Magnetic storage takes two principal
forms: One stores the individual bits in
separate cores; the other stores each bit
by magnetizing a separatf:l, tiny spot of a
magnetic material coated on the surface of a
plastic tape or a metal drum. In both forms
of storage, the magnetic field that is left
(remanent flux) after writing the information
indicates by its direction (polarity) whether
a Ill" or a H 0" is stored.

The magnetic material coated on the
surfaces of tapes or drums acts like a per
manent magnet, the direction of whose field
can be reversed by applying a second mag
netizing force of sufficient strength. This
external force is usually a temporary mag
netic field about a coil through which a
pulse of current is passed.

A coating of such a material on a
surface that is relatively flat does not
form a closed magnetic circuit for small
fields (as the closed ring of a core does),
so separate areas of the surface can be
magnetized in opposite polarities without
interfering with each other, as long as there
is sufficient distance between them. If the
applied magnetizing force is kept in a very
small field, only a correspondingly small
spot of the tape or drum coating is magnetized
and more bits can be stored on a surface of
given size. The surface is moved past the
stationary coil at a constant speed, and
writing and reading are done with the surface
in motion. This is illustrated in Figure 51.
Long lengths of magnetic tape are wound on
compact reels and pulled past the coils used
for reading and writing (called magnetic
heads). A magnetic drum revolves on its
axis, passing its coated cylindrical surface
under fixed heads.

When the small magnetized spots repre
senting stored bits of information are passed
again under the head, each tiny magnetic
field enters and travels quickly around the
magnetic circuit of the core, inducing a volt
age pulse cycle into the head coil. The bit is
identified (by reading circuits) as a 111" or a
110". The magnetized spots are unchanted by
reading, so this is nondestructive readout;
that is, the stored information remains
on the tape or drum.

Any stored bit can be changed from "1"
to 110" or from 110" to 111" simply by
writing over it. It is also possible to remove
all stored information from a tape or drum

FRINGING
MAGNETIZED FLUX MOVING MAGNETIC

SPOT~ I ~
==~~~;=====~~j~:~========,~~====SURFACE

~-. - ~" ...
, \ \

l\~.:.'~.:~~~/

FIGURE 51
Magnetic Head

CORE

45

surface by "erasing", leaving a blank,
unmagnetized surface.

Erasing of drums is not usually neces
sary to change the stored information, which
can be simply written over (if it can be
located easily), but is used to rid the surface
of noise caused by stray magnetic flux picked
up over a period of time. On tapes, where a
single word or bit is difficult to locate,
erasing is used to wipe out old information,
a complete block at a time, to make way for
new data.

I/O devices are described primarily
in terms of the volume they can hold (Capacity)
and the time required by the device to locate
a particular address (Access time). In addi
tion to these two characteristics, an I/O
device is often discussed in terms of the
maximum number of characters that the
device transfers in a second (Transfer Rate);
data (Mode); and the way in which the device
transfers self-checking ability of the device
(Validity).

The medium upon which the data are
actually stored has several discernable char
acteristics. Among these are the· ability for
a medium to be re-used (Eraseability); the
capacity of the medium to resist wear (Dura
bility); the time required for a drum or disc
to complete one revolution (Cycle Tine); the
capacity of the medium to retain the stored
data when the power source is lost or turned
off (Non-volatility); the number of bits that
can be stored per inch (DenSity); and the
manner in which data are stored on the
medium (Magnetic or Non-magnetic).

The CAPACITY of an I/O device is a
measure of the maximum number of bits, or
collection of bits, that a particular device
can contain at a given time. As such, it is a
measure of the amount of information avail
able to the system from a given device.

PARALLEL AND SERIAL DATA TRANSFER

As it was mentioned in Chapter 4, data
is transferred from or to an I/O device in
one of two modes. A serial transfer, or trans
fer in a serial mode, occurs when data

46

(generally in the form of binary digits or
bits) are read, or written, one after another
in a time sequence. That is, a serial trans
fer occurs when each bit of information is
handled Singly and successively. For exam
ple, if a computer word contains eight
characters and each character is made up of
six bits, a serial transfer of the data in that
computer word would require forty- eight
separate distinct read or write operations.
That is, each bit of the computer word would
be transferred individually and independently.

A parallel transfer, or transfer in a
parallel mode, occurs when data are trans
ferred simultaneously. ThUS, a computer
word containing forty-eight bits would be
transferred in one read or write operation.

Data transfer is often a combination of
the two modes. For example, if the data to be
transferred are in a computer word which
contains eight six-bit characters, the bits
which make up the six-bit characters could
be transferred simultaneously (parallel
mode) and the characters transferred one
after another (serial mode). Transferring
data in a parallel mode is much faster than
transferring data in the serial mode; how
ever, the cost for circuitry to provide a
parallel transfer is considerably higher than
the cost for the circuitry necessary in a
serial transfer of data. The decision to
provide either parallel or serial transfer in
an I/O device is made by the equipment
manufacturer and is determined, in great
part, by the existing requirements for speed
and cost.

INTERNAL/EXTERNAL STORAGE

It is common practice in large scale
computer-based ·systems to use several types
of storage. These provide an area of working
storage featuring immediate or relatively
fast access time to a moderate number of
words; a back-up or secondary I/O storage
having a greater capacity but slightly slower
access time than the working storage area;
and a bulk storage area providing a virtually
unlimited storage capacity with reasonably
slow access times. Storage is often spoken of
as being Internal Storage or External Storage.

Ideally, this means that the stored data are
either contained entirely within the computer
and controlled by the computer (internal), or
that the data are completely without the
computer and not directly controlled by the
computer (external). However, computer
storage requirements cannot be adequately
described by the division of storage into
internal and external. In an attempt to pro
vide an adequate description of storage
requirement, storage is frequently classified
according to usage as Primary or Secondary
storage levels.

PRIMARY STORAGE

Primary storage for a computer is
that storage which features immediate or
fast access to a moderate-to-Iarge volume
of data. If the computer system has magnetic
core or thin film storage as well as magnetic
disc, magnetic drum, or magnetic tape stor
age, the magnetic core and/or thin film
storage is considered to be the primary
storage for the system. If the system has only
magnetic diSCS, magnetic drums, and mag
netic tapes, then the magnetic disc and
magnetic drums are considered to be the
primary storage. Once the primary storage
is determined, the remaining devices form
the secondary storage level. Basically, and in
a somewhat simplified form, primary storage
holds the operating program and its asso
ciated data and is generally the fastest
storage available which can transfer data
directly to and from the Central Processing
Unit. Secondary storage supports primary
storage by providing a reservoir of data,
programs, sub-routines, etc., which can be
made available to the CPU by transferring
them from secondary storage to primary
storage.

SECONDARY STORAGE

Secondary storage forms the auxiliary
or support area of storage for a computer
system. Secondary storage will have, relative
to primary storage, a larger capacity, slower
access time, and cheaper cost per character
storage. That is, secondary storage provides
moderate to low cost per character storage
for large amounts of data which do not have

to be accessed quickly. For this reason,
secondary storage is often used to store
large data files, programs, libraries, direc
tories, etc. Data stored in secondary storage
are in machine-acceptable format and can be
incorporated into the operating program or
system with a minimum-uf delay. Magnetic
tapes, magnetic cards, drums, and discs
are often used as components of secondary
storage.

Data stored on punched cards and
punched on paper tape are treated somewhat
differently than data stored on magnetic tape,
core, drum, or disc. For this reason, they
are sometimes considered as a third, or
bulk, level of storage. Data stored on these
devices are not directly available to the
control element of the computer. This class,
or level, of storage media provides for the
storage of vast quantities of data at a very
low cost per character. However, due to the
nature of the media, access time is very
slow.

Most data to be processed through a
computer are, at one time or another, placed
on punched cards. After flow-charting and
coding a problem, you reproduce the coding
onto punched cards, which then becomes
your program. The cards can be loaded
directly into memory and executed, or they
can be first transferred onto magnetic tape
and then transferred into memory. In any
event, the cards represent another means of
communication between you and the computer.

MAGNETIC TAPE

Magnetic storage devices can have·
extremely fast random access times or much
slower sequential access times. Magnetic
storage media are used at both the primary
and secondary levels of storage and are avail
able in the form of cards, tapes, drums,
discs, cores and thin film. Magnetic tape is
one of the most popular mediums on which
to save information and is the I/O device
we will discuss in some detail.

Multiple reel storage affords an almost
unlimited storage capacity and provides a
safe, permanent storage medium which c~ be

47

erased and re-used thousands of times. A
ten-inch reel of magnetic tape can hold
between six million and thirty million bits
of information depending upon the number
of tracks and the density at which the
characters or bits are packed. Magnetic
tapes are generally 1200 to 2500 feet long
and may have densities of 200 to 1500 bits
per inch (bpi) along each track. Under pro
gram control, the tape can be positioned
forward or backward. It can be rewound to
the start of the tape and the tape drive can
be prepared for tape loading or unloading.

Data are stored on magnetic tape by
magnetizing spots on the tape surface. The
tape surface is generally divided into several
tracks (Figure 52). Each track is considered
to be one bit wide and occupies the length
of the tape. A collection of the "n" bits
contained in the "n" tracks across the width
oIthe tape (Figure 53) constitutes a character.
The number of tracks on a tape may vary
between six and thirteen, although the major
ity of tapes now produced contain seven or
ten tracks.

. A seven track tape contains a six-bit
character along with an associated control
bit across its width. The seventh bit is often
used as a validity or error checking bit.
When used in this manner, the seventh bit
is known as a longitudinal parity bit. The
parity bit indicates that the sum ofthe assoc
iated six information bits is either an odd or
even number (Figure 53). The parity bit is
recorded during the write operation and is
used to check the accuracy of a data transfer
during a read operation.

Ten track tape can contain a six-bit
character and four associated control and
error checking bits (Figure 55) or two four
bit BCD characters and two control and/or
error-checking bits (Figure 54), or other
appropriate combinations of x-bit characters
and control bits. The use and function of the
control bits is determined by the manu
facturer of the tape transport.

A magnetic tape which is used for
data storage will contain two physical marks
on the tape (Figure 56). These two marks
are known as the Beginning-of-Tape mark
(BOT) or load point, and the End-of-Tape
mark (EOT). The area bounded by these
two marks is reserved for data storage.

Within the area defined by the BOT and
EOT data are r~corded in logical units , .
which are known as RECORDS. Records
mayor may not have a fixed length. An
arbitrary record legnth of size may be
specified by the device manufacturer or it
may be fixed by the program/system design
ers. If a record has no specified maximum
length, the determination of record length
depends upon the data being handled. In
addition to containing a set of related program
data, a record can also contain a label which
is used to discriminate between groups of
records, e.g., a word, a mark, ora character.
Each record may also have a lateral parity
character associated with it (Figure 57).

Lateral parity exists when the bits on
each track of the record are summed and an
additional bit is added to the track to indi
cate that the sum was either an odd or an
even number. Each track is treated

Seven-Track Magnetic Tape

7 II+-- Control Track r-----.----------------6/
5 \\--__________ _

4 '1-________ ._.____ -+- Data Tracks

3 J---------- ---1
2J--J ______________ _
1\

....... =======~="" ==.-."="''''''

FIGURE 52
Seven Track Tape--Even Parity

48

FIGURE 53

Ten-Track Magnetic Tape

11 I I I /><./)(1
L---,11~t----1f-:-><~)("""-iI 4- Not Used

~~~~-+~. r I X X 
I-+--==-~=+--+--I/ 1'-r-+--+'C!).-::";:'~_~-4l+-- Odd Parity 

~+--I--+-~-+--I .... Bit 
I I - ~ 

Bit 
I I ~ Q 6-Bit 

BCD 
Character 

I I - ~ ~ +- Character 
-~ 

FIGURE 54 FIGURE 55 

< I I 
Tape Motion ( ~ Recording Area ---JI 

, I 

'.--B-O-T-l---,-':'-----) ,: 

~ 15' ± l'-tf 

FIGURE 56 

EVEN Horizontal Parity & ODD Vertical Parity 

~ .,. 
Record 

Gap 

Data-........ 
Record . Lateral 

Parity 

FIGURE 57 

Longitudinal 
Parity 

49 



individually and one additional bit is added 
to the record following the data bit of the 
record (Figure 57). Lateral parity is deter
mined during the writing operation and 
provides for an additional, check on the 
accuracy of data transfer. 

Each record is separated from the 
records preceding or following it by an 
area of blank or data free tape referred to 
as a record gap or an End-of-record gap 
(EOR). The record gap is a blank spot on 
the magnetic tape over which the read
write head will be positioned following a 
"read record" or before a "write record" 
operation. Effectively, the length of a record 
gap is determined by the amount oftape which 
passes under the read-write head as the tape 
motion goes from full speed forward to a 
full stop and back to full speed forward. 

Records are separated by record gaps 
and grouped together to form FILES (Figure 
58). A file is a collection of logically related 
records. Several files may be on one tape 
or one file may require several reels oftape. 
The length of a file is generally not fixed. 
Files are separated by end-of-file marks 
(EO F). An EOF mark is usually special 
manufacturer-determined characters or 
symbols. As files do not have a fixed length, 
the EOF mark provides a means of determin
ing when or where a particular file ends on 
the tape (Figure 58). 

Data are generally read from or written 
onto tape in terms of records. That is, the 
program-directed control element· of the 
computer will cause the tape to move forward 
until the next EOR gap is under the read
write head in a read operation. The read 
head transfers the data that passes imder 
it to a designat~d area in core memory. 
If the data are to be transferred from core 
to tape, the program-directed control ele
ment of the computer will cause an EOR 

gap to be generated after the data has been 
transferred to tape. 

MAGNETIC DRUMS 

Though tapes are valuable for storing 
large amounts of information, when it is 
essential to write and read information at 
frequent intervals and in random order, mag
netic drums offer much faster access times, 
commonly ranging from 10 to 40 milli
seconds. Because the information is stored 
on the surface of a cylinder revolving under 
fixed magnetic heads, the drum provides a 
form of cyclic storage (once written a w()rd 
comes back under the heads on every revolu
tion). 

As the drum rotates, the area in which 
a single fixed head can write or read is 
only a very narrow strip (called a track or 
channel) running around the circumference 
of the drum. Information can be stored in 
serial form simply by sending serial words 
to the single head while the drum revolves 
(translating "O's" and "l's" to current 
pulses of the proper polarities). The bits of 
each word are then stored as a sequence of 
magnetized spots along the single channel 
running around the drum. 

Another ,common storage method is 
parallel storage, shown in Figure 59. To 
store a 5-bit word by this process, five 
heads are lined up side by side, each writing 
in a separate channel. The translated current 
pulses representing the bits of the word are 
sent in parallel form to the heads and the bits 
are written' simultaneously. Now, the bits 
are stored as a row of magnetized spots in 
adjacent channels. So, in this niethod, the 
registers are strips of drum surface running 
toward the ends of the drum and including 
as many channels as there are bits in the 
computer word. In the example of Figure 59, 
a register stretches across five channels. 

FIGURE 58 

50 



HEADS-------"" 

;:=~>----)) 
~ ~:illU<G SINGLE __ ./ 

REGISTER FIELD 
SINGLE 

CHANNEL 

CHANNEL 
DDITIONAL 

FIELDS 

FIGURE 59 
Storage of Magnetic Drum 

The band of registers extending completely 
around the drum is called a field. 

Drum speeds, sizes, and capacities 
vary greatly. The maximum access time is 
a function of drum speed and drum diameter 
which causes the information to pass the 
heads at a given rate. A typical drum used 
with a Weapon Support System computer 
may hold six fields of 2,048 registers each, 
for a total storage capacity of 12,288 words. 

Locating a given register or group of 
registers on the rotating drum or read or 
write information requires some means of 
keeping track of the drum position. One 
common method uses a special timing channel 
in which is written either a series of "l's" 
or a regularly repeated combination of "l's" 
and "D's". These bits are read by the 
timing channel head and used to synchronize 
the access circuitry with the drum rotation 
and to locate registers by a cycling count. 
A special combination ofl/1's" and "D's" 
at one point on the track can be used as an 
index mark to tell the circuits that a new 
revolution of the drum is beginning. 

MAGNETIC DISC 

The magnetic disc memory device con
sists of many discs fastened to a shaft. 
They are spaced to allow arms, each with a 
read-write head, to pass between the discs. 
The discs are coated with a material that 
can be magnetized rather than changing the 
physical shape of the disc as is done when 
recording music on a phonograph record. The 
shaft which is through the cente.r of the disc 

is usually vertical and is rotated at a constant 
high speed. This type of memory device 
usually has a greater capacity, but a much 
longer access time, than the magnetic drum 
and is considered an external memory device. 

MAGNE;TIC CORE 

Coincident current magnetization is the 
term used when two current- carrying wires 
intersect at an element of the static storage 
and magnetize that element. This is the 
method used to magnetize the ferro-magnetic 
toroids that form a magnetic core storage 
device. 

Each core in a magnetic core storage 
device is capable of accepting and retaining 
magnetic polarity in one direction or another. 
This means that a core can be magnetized 
in a positive or negative direction. A core, 
then, is a bi-stable device and can be used 
to record binary information in the ratio of 
one bit of information to one core. 

Every core occupies the intersection of 
three wires. A current of some magnitude 
"i" is required to magnetize a core. If two 
wires intersect a core and each carries a 
current "1/2" to the core, the sum of the 
two currents equals" i" and the core becomes 
magnetized. If only one of the two wires is 
carrying a current, the core will not be 
m.agnetized. The third wire is called a sense 
wir~. The sense wire interrogates a core to 
see whether or not that core is magnetized. 

If a computer word consists of 12-
bits, a core storage device (core memory) 

51 



would have to have 12 planes of cores 
arranged in the 64x64 matrix. The com
puter word would consist of 1 core from each 
plane along the vertical axis. Each set of 
12 cores would occupy the same relative 
position throughout the 12 planes and would 
have a unique address. Figure 60 illustrates 
a 12 bit word with appropriate current
carrying wires and a sense wire. This 
arrangement allows each core to be set to a 
magnetic state independently of the others. 
The sense wire can sense every bit (core) 
of the word and determine the number of 
bits (cores) that are magnetized (binary 1) 
and the relative location of each core that 
was set. 

Bit 

o 
1 
2 
3 
4 
5 
6 

7 
8 

9 
10 
11 

FIGURE 60 

Cores which have been set to a mag
netic state can be re-set (returned to zero) 
by changing the direction of the current in 
the two current-carrying wires which inter
sect the core (Figure 61). Cores can be set, 
re-set, or sensed at the rate of one operation 
per cycle or one operation per command
generator pulse. 

THIN FILM STORAGE 

Thin film storage is another form of 
static storage. At the present time, thin 
film storage is being used in conjunction 
with ferro-magnetic core memories. The 
thin film memory provides a small to 

52 

moderate storage capacity which features 
very low random access time. 

Thin film storage is produced by depos
iting tiny particles of a magnetic medium 
onto an insulating base such as glass, gold, 
silver, or aluminum. Each particle is only 
a few millionths of an inch in diameter and 
the entire substrate is frequently less than 
5000 angstroms thick. (1 angstrom = one 
one-hundred-millionth of a centimeter.) The 
medium' which is deposited onto the base is 
generally a nickle-iron alloy which can be 
magnetized. Each particle of the substrate 
can be compared to a magnetic dipole, or 
flip-flop. That is, each particle can assume 
an "on" or "off" state. The particles can 
be deposited with densities varying between 
200 and 1000 bits per square inch. After the 
substrate has been deposited onto the base, 
the base is sandwiched between two read
write sense circuits to form an element of 
the thin film storage device. 

The thin film storage element records 
data in much the same way that a ferro
magnetic core memory does. The read-write 
sense circuits which encase the thin film 
substrate cause the previously magnetized 
particles to be magnetized in one of two 
directions. One direction represents a binary 
1, the other direction records a binary O. 
Thin film memory is read by a sensing con
ductor which records the binary configuration 

Core = "0" 

--+ = direction of ¥,. current 

+--

Core = "I" 

FIGURE 61 



of the particles. Read-out can be either 
destructive or non-destructive. 

PUNCHED CARDS 

Punched cards are probably the most 
~ommon and well-known form of all data 
storage media. Punched card storage offers 
unlimited storage capacity at an extremely 
low cost. ·per character. The data stored 
on a punched card as a series of punches 
can occur in several different forms, e.g., 
12-bit Hollerith, 6-bit per character format , 
and binary. In many of these representations, 
the character corresponding to·the punched 
code can be printed across the top of the 
card. This feature permits data stored on 
cards to be easily identified, maintained, 
and modified. 

As has been discussed previously, cards 
generally form the original machine-oriented 
representation of program. That is, a pro
gram or system will first occur on cards 
and will, at some later date, be stored on 

some faster medium for operational use. In 
most cases, the original program decks will 
be saved arid maintained to provide redun
dancy or back-up protection. 

The most common type of punched card 
is the IBM (International Business Machines) 
80-column card (Figure 62). The card is 
divided into 80-vertical columns, each one 
capable of storing one or two characters. 
Each vertical column is divided into 12 
horizontal rows. Information is represented 
by the presence of a rectangular hole punched 
according to one of several schemes. (See 
the chapter on Information Representation.) 
A total of 960 distinct positions are avail
able on each 80- column card. 

Another type of punched card is the 
Remington Rand 90-column card (Figure 63). 
The Remington Rand card is divided hori
zontally into two halfs. Each half is divided 
into 45 vertical columns. Each vertical 
column (half a card) can contain one 

• 
.. u .. 
.I..L 
o 
1 
z 
:5 
~ 
~~ 
6 

~.! 'l·.!.~ta_~ !1'-
~ j C l 
\ :, 1 

- .. _ .. ~ -1- . -

! JJ..! 

~r ~¥. .. 
1- \ ~~ ~H~ 741~1. u!?t I~u \Uiz, ~ ~ 

.. - - - - . 

_ 1 1..1 , 1 

.{--p .1.- 1 - - .. .. II 
J. _ • L .. - . - 1 

J 
-

.. 
! 

0-
lz
.3" -
si,-
7a -
'1-

t1 I t· .1 - .. . t1--.: -1- - -_. 
1 .- .. 

1 , I .... 
- ! I i -11- - ,T~ - - .. - J "I~ 

L 
~. .. 

FIGURE 62 

.~ C .. 3 ..+ ~ -_ ! .! 37 
- - - -- - .... _. I 

- . - - - - -I- - .---- --.----.-
----- -------\ 

-. - f-
-I- - -I- - .. -
--.-f-'-
- - ~ f- - - - _. - -.-

--- - -- ._-
-- - -_."j 

FIGURE 63 

- - - -
-

- - -
- -

-... - - . - - - .. -
... .. . . - -

- . -
.. - -

r -
i 

53 



character. Information is represented by 
combinations of one, two, or three round 
punched holes. A total of 540 bits of infor
mation can be represented in a binary fashion 
on a Remington Rand card. 

Punched cards are read by one of three 
common techniques. These techniques are 
the brush or electric contact method, mechan
ical probe method, or the photo-electric 
method. 

The electric contact method passes a 
card between a contact roller and a set of 
brushes. The brushes are kept from touching 
the contact roller by the card until a punched 
hole passes under the brushes. When this 
happens, the brush drops into the hole and 
touches the contact roller. This completes 
an electric circuit and generates an electric 
impulse. 

In the mechanical probe method, the 
card is moved under a set of probes which 
rest against the card. As a punched hole 
occurs, the probe drops through the hole 
and completes an electric circuit. Both the 
electric contact method and the mechanical 
probe method are mechanical in nature and 
are subject to mechanical malfunctions as 
well as slow reading speeds. 

The photo-electric card reader oper
ates . in m u c h the sam e way as the 
photo-electric paper tape reader. The card 
is moved past a beam of light and acts as 
an opaque substance urttil a hole passes 
under the light source. The light beam passes 
through the hole and activates' a photo cell. 
This in turn generates an electric pulse or 
signal which is transmitted to a storage 
device. 

Mechanical punched card readers gen
erally read a card a row at a time. Reading 
speeds for this type of device range between 
100 and 900 cards per minute. Photo-electric 
card readers usually read cards a column at 
a time at speeds up to 2000 cards per minute. 

Cards are produced by manually oper
ated equipment or. by computer controlled 
card punches. These card" punches can 

54 

produce punched cards at a rate of 250 to 
300 cards per minute. 

BUIC III EQUIPMENT CONFIGURATION 

The commercial name for the computer 
equipment used by the BUIC system is 
Burroughs D- 825 Modular Processor. The 
D-825 is a solid-state, internally stored· 
program computer that is based on the 
principle of total modularity. Tdtal modu
larity allows the eqUipment to be freely 
organized and expanded by the use of com
binations of standard computer modules, 
memory modules, and input/output nodules. 

The D-825 is organized into a specific 
configuration for the BUIC III system. The 
central data processing configuration has 
been given the name AN/GYK-10 and is 

of the following: 

computer modules 
core memory modules' 
input/output modules 
message processors 
magnetic storage drums 

The full configuration of equipment 
used for the BUIC system is given the name 
AN/GSA-51A. It includes the AN/GYK-10 
equipment and the following terminal devices: 

10 or 11 data display consoles 
4 magnetic tape drive units 
1 tape drive control unit 
1 status display console 
1 Flexowriter 
lon-line printer 
1 card reader 
1 simulator group 

DESCRIPT10N OF BUIC III EQUIPMENT 

COMPUTER MODULES 

The AN/GSA-51A has two computer 
modules, each being a central processing 
element for AN/GSA-51A operations. The 
main function of the computer module is 
to decode program instructions and to pro
vide the control and logic circuitry and the 
arithmetic registers necessary for perform
ing the decoded instructions. 



Each computer module performs its 
functions independently of the other com
puter module. However, each can be 
programmed to interrupt or begin operation 
of the other one. Because the computer 
modules operate independently, two separ.ate 
programs can be operating simultaneously 
on the AN/GSA-51A. 

There are three functional areas within 
each computer module. The ARITHMETIC 
UNIT contains registers and circuitry for 
performing operations specified by the 
instructions. The CONTROL UNIT contains 
circuitry for controlling the operation of 
instructions and program timing. The SET 
OF THIN FILM REGISTERS contains 128 
registers which are used for data storage 
and program control. 

Each computer module also has an 
external control panel which is used for 
performing manual operations necessary to 
start a program, for performing maintenance 
operations, and for debugging programs. 

CORE MEMORY MODULES 

The eight core memory modules are 
used to hold program instructions and data. 
Each memory module contains 409610 (or 
100008) ferrite core locations. Each loca
tion has 51 cores (bits) for storing an 
instruction or data word. Forty-eight of 
these bits are information bits, one bit is 
a parity bit, and the remaining two bits 
are spares. Throughout this document, ref
erence will be made to "48-bit core memory 
words" because the programmer is con
cerned only with the 48 information bits in 
the core memory location and also because 

. this is common terminology among AN/GSA-
51A programmers. 

All core memory locations may be 
accessed randomly. Information is trans
ferred between the memory modules and the 
computer modules and between the memory 
modules and the input/output modules. Other 
pieces of equipment which require transfer 
of information to or from core memory must 
access the information through the use of the 
input/output module. Transfer of data in and 

.. out of core memory requires 4.33 micro
seconds. 

The eight core memory modules can be 
thought of as one large memory area. Each 
memory word is given its own absolute 
address which distinguishes its location from 
all other memory locations. The locations 
are given addresses in consecutive order 
with octal numbers. They begin with 0 and 
end with 777778. The memory modules them
selves are numbered beginning with 1. 

MEMORY MODULE ABSOLUTE ADDRESSES 

0000. 

I 
7TT7f. 

10000 

2 
17777. 

20000. 

3 
277"77. 
30000. 

4 
37777. 
40000. 

5 
47777. 
50000, 

G 
577778 
6000 O. 

7 
• 677778 

700008 

8 
77777. 

FIGURE 64 

INPUT/OUTPUT MODULES 

The four input/output (I/O) modules 
provide the control ciz:cuitry necessary for 
data transfer between the core memory 
modules and the 1/0 terminal devices. An 
input/outpuf operation is defined and initiated 

55 



by computer module action but then pro
ceeds independently under the control of 
one of the I/O modules. All four I/O modules 
can be handling separate I/O operations 
simultaneously. 

Compatibility and connection between 
the I/O modules and the terminal devices 
is provided by an I/O EXCHANGE. The I/O 
exchange permits data flow between an I/O 
module and the terminal device being used. 
It consists physically of circuitry found in 
the I/O modules and in the terminal devices. 

MESSAGE PROCESSORS 

The message processors have three 
basic functions: 

I. To provide a temporary storage for mes
sages accumulated from radar sites, other 
BUIC NCCs, SAGE DCs, and other related 
facilities. 

2. To change the format of information sent 
from other facilities to 4S-bit words usable 
by the BUIC system. 

3. To change the format of information sent 
to other facilities from the 4S-bit word 
format to the format used by them. 

MAGNETIC STORAGE DRUMS 

Each of the first two magnetic storage 
drums provides 65,53610 words of storage. 
Some of the words (39,9361O) on each of the 
two drums may be used for bulk storage of 
program instructions and data. The remaining 
25,60010 on these two drums are used to 
provide automatic readout and transfer of dis
play data to the data display console. The 
third magnetic drum is used entirely for bulk 
storage. 

When a display is prepared by the com
puter and memory modules, it is sent to the 
magnetic storage drums through the I/O 
modules. The drums then automatically begin 
sending the display to the data display 
consoles and will continue to send it until 
the display information is erased from the 
drums. 

56 

DAT A DISPLAY CONSOLES 

The data display consoles are used to 
display radar and tracking information on 
cathode-ray type scopes and also to input 
information into the AN/GYK-IO to be pro
cessed by the BUIC programs. The console 
operators input such information by pressing 
buttons on keyboard panels on the data dis
play consoles. They may also use a light 
gun on the main scope to aid in sending 
pOSitional information to the computer. 

STATUS DISPLAY CONSOLE 

The status display console provides a 
means for monitoring the operational status 
of all AN/a.SA- 51A eqUipment, provides a way 
of applying and removing power for itself 
and for the rest of the AN/GSA-5IA, and 
assists in the repair of faulty modules. 

FLEXOWRITER 

The Flexowriter is an electric type
writer and a paper tape punch and reader 
combined into one unit. It is used for the 
exchange of information between the operator 
and the operating program. The paper tape 
punch and reader are run at the option of 
the operator. However, at all times, the 
electric typewriter provides a hard-copy 
record of the exchange of information regard
less of whether the exchange was made 
through the typewriter or through the paper 
tape punch and reader. 

PUNCH CARD READER 

The punch card reader reads 12-row, 
SO-column punch cards into central pro
cessing modules of the AN/GSA-5IA. It is 
capable of reading punch cards at a maximum 
rate of 200 cards per minute. Information 
being read is sensed by photoelectric cells 
at a read station. The infornation is trans
ferred to the card reader control which 
translates the card codes into AN/GSA-51A 
character codes. The character codes are 
sent, one character at a time, to the I/O 
module that is controlling the input operation. 
The I/O module then sends the information 
to one of the memory modules so that it will 



be available for use by the controlling 
program. 

ON-LINE PRINTER 

The on-line printer is used to print 
alphanumeric data directly from core mem
ory. It prints a maximum of fifteen words 
(120 characters) per line at a maximum rate 
of 600 lines per minute. 

MAGNETIC TAPE DRIVE UNITS 

The magnetic tape drive units are used 
to process magnetic tapes which provide 
bulk storage for large quantities of program 
instructions and data. Some of the operations 
of the tape drive units are performed under 
the control of the tape drive control unit. 
Those operations which the tape drive units 
can perform without the use of the control 
unit are rewind, backspace, advance, load, 
and unload. 

T APE DRIVE CONTROL UNIT 

The one magnetic tape drive control 
unit controls all four magnetic tape drives. 
Under its control, the tape drive units per
form read, write, advance, backspace, 
rewind, and erase operations. 

SIMULATOR GROUP 

The simulator group is used to pro
vide the central data processing eqUipment 
with manually composed messages that sim
ulate inputs from two interceptor pilots to 
effect testing and personnel training. 

FLOW OF INFORMATION 
WITHIN THE COMPUTER 

The operation of the AN/GSA-51A is 
controlled by an internally stored program 
located in core memory. All dataflow occurs 
between I/O modules and memory modules 
and between computer modules and memory 
modules. There is no direct data transfer 
between computer and I/O modules. 

Information flows directly between com
puter modules and memory modules ove'r data 

transfer buses. Each computer has its own 
bus, Computer BUS 1 for comput~r, module 
one and Computer BUS 2 for computer module 
two. The information being transferred will 
either be program instructions going to the 
computer to be decoded and operated, or 
data words being fetched from memory for 
operands, or the results of an operation 
going to memory to be stored. 

Information flows directly between I/O 
modules and memory modules over data 
transfer buses called I/O BUS A and I/O 
BUS B. I/O BUS A is time-shared by I/O 
modules one and two. I/O BUS B is time
shared by I/O modules three and four. If 
both I/O modules on one I/O BUS simulta
neously request access to core memory, 
the I/O module with the lower number will 
be granted access first, unless the program 
specified otherwise. 

All core memory modules are acces
sible by all computer and I/O buses. 
Therefore, core memory is totally shared. 
Conflicts will arise if more than one computer 
or I/O BUS simultaneously request access 
to the same memory module. A SWITCHING 
IN'rERLOCK is provided to resolve these 
conflicts by handling the requests in order 
according to priority levels inherent in each 
request. The inherent priorities are as 
follows (from highest to lowest): . 

a. I/O BUS A 

b. I/O BUS 

c. Computer BUS 2 

d. Computer BUS 1 

While a computer or I/O bus is 
accessing a particular memory module, all 
other computer and I/O buses are denied 
access to that memory module until the 
data transfer is complete. During this time, 
however, another memory module may be 
accessed by any other I/O or computer bus. 

The Switching interlock consists phys
ically of a portion of the circUitry in each 
of the computer, memory, and I/O modules. 

57 



r-

58 

DATA 
DISPLAY 

CONSOLES 

DRUMS 9 
DRUM J TAPE 

~ONTROI.: CONTROL 

I /0 

OJ 2 
""I II 

I 
I/O 

BUS A 

rv1 
,-
t 

C BUS 1 

COMPUTER 
ONE 

CARD 
!READER 

i I 
SIMULATOR 

I GROUP 

LINE 
PRINTER 

('v10DULES 

3 
4 

I 
I/o 

BUS B 

~I (j R \I 
I 

C BUS 2 

EXTERNAL 
SOURCE 

1 
MESSAGE 

PROCESSPR 

::STATUS 
DISPLAY 

l-::()N~() T . t;j 

, 

FLEX 

4 
41 

COMPUTER 
TWO 

FIGURE 65 
BUIC m Equipment Configuration 

ATe Keesler 8- 958 



NOTES 



NOTES 



NOTES 



SAVE A LIFE 

If you' observe an accident involving electrical shock, 
DON'T JUST STAND THERE - DO SOMETHING! 

RESCUE OF SHOCK VICTIM 
The victim of electrical shock is dependent upon you to give him prompt first aid. 

Observe these precautions: . 
1. Shut off the bigh voltage. 
2. U the bigh voltage cannot be turned off without delay, free the victim from the 

live conductor. REMEMBER: 
a. Protect yourself with dry insulating material. 
b. Use a dry board, your belt, dry clothing, or other non-conducting material to 

free the ·victim. When possible PUSH - DO NOT PULL the victim free of 
the high voltage source. 

c. DO NOT touch the 'Victim with your bare hands until the high voltage circuit 
is broken. 

FIRST AID 
The two most likely results of electrical shock are: bodily injury from falling, and 

cessation of breathing. While doctors and pulmotors are being sent for, DO THESE 
THINGS: 

1. Control bleeding by use of pressure or a tourniquet. 
2. Begin IMMEDIATELY to use artificial respiration if the victim is not breathing 

or is breathing poorly: 

a. Turn the victim on his back. 

b. Clean the mouth, nose, and throat. (If they appear clean, start artificial 
respiration immediately. If foreign matter is present, wipe it away quickly 
with a cloth or your fingers). 

c. Place the victim's head in the "sword-swallowing" 
position. (Place the head as far back as possible so 
that the front of the neck is stretched). 

d. Hold the lower .aw up. (Insert your thumb between the 
victim's teeth at the midline - pull the lower jaw force
fully outward so that the lower teeth are further forward 
than the upper teeth. Hold the jaw in this position as 
long as the victim is unconscious). 

e. Close the victim's nose. (Compress the nose between 
your thumb·and forefinger). 

f. Blow air into the victim's lungs. (Take a deep breath 
and cover the victim's open mouth with your open 
mouth, making the contact air-tight. Blow until the 
chest rises. U the chest does not rise when you blow, 
improve the pOSition of the victim's air passagew~y, 
and blow more forcefully. Blow forcefully into adults, 
and gently into children. 

g. Let air out of the victim's lungs. (After the chest rises, quickly separate lip 
contact with the victim allowing him to exhale). 

h. Repeat steps f. and g. at the rate of 12 to 20 times per miwte. Continue 
rhythmically without interruption until the victim starts breathing or is 
pronounced dead. (A smooth rhythm is deSirable, but split-second timing is 
not essential). 

DON'T JUST STAND THERE - DO SOMETHING! 


	Introduction: Computers, the Heart of Automation
	Chapter 1: Introduction to Computers
	History of Computers
	Basic Classes of Computing Machines
	Digital Computer Elements

	Chapter 2: Computer Mathematics
	Number Systems
	Numbering System Conversions
	Arithmetic Operations

	Chapter 3: Data Representation
	General
	Coded Method
	Hollerith Coding
	Numeric Representation

	Chapter 4: Basic Computer Logic
	Information Signals
	Switching Logic
	Computer Logic Circuits
	Small-Scale Storage Circuits
	Arithmetic and Control

	Chapter 5: Computer Systems
	Large-Scale Storage and Memory
	Description of BUIC III Equipment
	Flow of Information Within the Computer
	BUIC III Equipment Configuration


