
* STUDENT TEXT 20SR0123-3 " •• P... . 1" •••• -----------------------
C185-BUIC-ST

Computer Systems Department

AN/GSA-51 A PROGRAMMING MANUAL

February 1968

Keesler Technical Training Center
Keesler Air Force Base, Mississippi

--------- Designed For ATC Course Use ---------

ABOUT THE STUDENT TEXT

STUDENT TEXTS are authorized by the Air Training Command as
student training publications for use in training situations peculiar to
courses in this Command. They contain specific information required
by the student to achieve the learning objectives. It contains the
necessary information which is not suitable for student study in other
available publications.

STUDENT TEXTS are designed for ATC COURSE USE ONLY. Every
effort is made to keep in-use student texts current with technical
orders and other directives. Students are cautioned not to use them
in preference to technical orders or other authorative documents.
When students are authorized to retain student texts they must keep
in mind that these publications will not remain current.

AN/GSA- 51A PROGRAMMING MANUAL

This student text provides student study and reference material in support of the
AN/GSA-51A programming blocks of instruction in Course 20SROI23-3, BUIC m
Computer Programmer.

CONTENTS

CHAPTER TITLE

1

2

3

4

5

6

The AN/GSA-51A Equipment

General Coding Features
Word Structures
Flow of Information Within the Computer
Normal and Control Mode
Program Instruction
Instruction Execution
Thin Film Registers
Operand Stack
Relative and Absolute Addressing
Direct and Indirect Addressing
Tags
Indexing

BUIC m Assembler
BUIC m Assembler - PSA, PSB
BUIC m Utility System

BUIC m Assembler Inputs
The AN/GSA-51A Coding Sheet
Syllable Structures
Assembler Pseudo Codes
Octal Corrector Cards
Binary Cards

Internal Data Structures
Tables
Items
Compool
Scaling

BUIC ill Assembler Outputs
Errors Resulting From Symbolic Inputs
Binary Output
Delayed Output (DLO)
Octal Core Dumps
Thin Film Output
Dictionary

PAGE

1

6
6
8
9
9

11
12
12
16
18
19
22

24
26
28

32
34
47
59
62

64
64
66
67
70

73
73
76
80
80
82
82

CONTENTS (Cont'd)

CHAPTER TITLE PAGE

7 AN/GSA-51A Instructions 86
Fixed- Point Instructions 87
Thin Film and stack Instructions 91
Commonly Used Ungrouped Instructions 98
Comparison Instructions 102
Logical Instructions 105
Cycling and Shifting Instructions 107
Field Instructions 119
Floating- Point Arithmetic Instructions 132
Miscellaneous Instructions 140

8 Subroutine Coding Techniques for the AN/GSA-51A 159
The Four General Types of Subroutines 159
Subroutine Calling Sequences 160
PCR Subroutines 160
SRJ Subroutines 173

9 Interrupt System 182
Description of Special Interrupt Circuitry 183
Description of Interrupt Conditions 184
Description of Automatic Interrupt Processing 191
Description of Control Mode Operation 196
Programming Requirements for Interrupt Response 197
Index of Instructions 201

CHAPTER 1

THE AN/GSA-51A EQUIPMENT

This chapter provides an introduction to the computer equipment used in the BUIC III
system. The basic configuration of the AN/GSA-51A is listed. The computer, core memory,
and input/output are discussed in detail. Brief descriptions of the remaining pieces of equip
ment are given. Each will be covered in more detail in the AN/GSA-51A Input/Output pro
gramming block of instruction.

AN/GSA-51A EQUIPMENT CONFIGURATION

The commercial name for the computer equipment used by the BUIC system is Burroughs
D-825 Modular Processor. The D-825 is a solid-state, internally stored program computer
that is based on the principle of total modularity. Total modularity allows the equipment to
be freely organized and expanded by the use of combinations of standard computer modules,
memory modules, and input/output modules.

The D-825 is organized into a specific configuration for the BUIC nI system. The
central data processing configuration has been given the name AN/GYK-lO, and is comprised
of the following:

2 computer modules
8 core memory modules
4 input/ output modules
2 mes~e processors
3 magnetic storage drums

The full configuration of equipment used for the BUIC system is given the name AN/GSA-
51A. It includes the AN/GYK-IO equipment and the following terminal devices:

10 or 11 data display consoles
4 magnetic tape drive units
1 tape drive control unit
1 status display console
1 Flexowriter
lon-line printer
1 card reader
1 simulator group

DESCRIPTION OF EQUIPMENT

COMPUTER MODULES

The AN/GSA-5IA has two computer modules, each being a central processing element
for AN/GSA-5IA operations. The main function of the computer module is to decode program
instructions and to provide the control and logic circuitry and the arithmetic registers neces
sary for performing the decoded instructions.

Each computer module performs its functions independently of the other computer
module. However, each can be programmed to interrupt or begin operation of the other one.
Because the computer modules operate independently, two separate programs can be operat
ing simultaneously on the AN/GSA-5IA.

1

There are three functional areas within each computer module. The ARITHMETIC
UNIT contains registers and circuitry for performing operations specified by the instructions.
The CONTROL UNIT contains circuitry for controlling the operation of instructions and pro
gram timing. The SET OF THIN FILM REGISTERS contains 128 registers which are used
for data storage and program control.

Each computer module also has an external control panel which is used for performing
manual operations necessary to start a program, for performing maintenance operations,
and for debugging programs.

CORE MEMORY MODULES

The eight core memory modules are used to hold program instructions and data. Each
memory module contains 409610 (or 100008) ferrite core locations. Each location has 51
cores (bits) for storing an instruction or data word. Forty-eight of these bits are information
bits, one bit is a parity bit, and the remaining two bits are spares. Throughout this document,
reference will be made to "48-bit core memory words" because the programmer is con
cerned only with the 48 information bits in the core memory location and also because this
is common terminology among AN/GSA-51A programmers.

All core memory locations may be accessed randomly. Information is transferred
between the memory modules and the computer modules and between the memory modules
and the input/output modules. Other pieces of equipment which require transfer of infor
mation to or from core memory must access the information through the use of the input/
output module. Transfer of data in and out of core memory reqUires 4.33 microseconds.

The eight core memory modules can be thought of as one large memory area. Each
memory word is given its own absolute address which distinguishes its location from all
other memory locations. The locations are given addresses in consecutive order with octal
numbers. They begin with ~ and end with 777778, The memory modules themselves are
numbered beginning with 1. (Reference Figure 1-1).

INPUT/OUTPUT MODULES

The four input/output (I/O) modules provide the control circuitry necessary for data
transfer between the core memory modules and the I/O terminal devices. An input/output
operation is defined and initiated by computer module action but then proceeds independently
under the control of one of the I/O modules. All four I/O modules can be handling separate
I/O operations simultaneously.

Compatibility and connection between the I/O modules and the terminal devices is
provided by an I/O EXCHANGE. The I/O exchange permits data flow between an I/O module
and the terminal device being used. It consists physically of circuitry found in the I/O modules
and in the terminal devices.

MESSAGE PROCESSORS

2

The message processors have three basic functions:

1. To provide a temporary storage for messages accumulated from radar sites, other
BUIC NCCs, SAGE DCs, and other related facilities.

MEMORY MODULE ABSOLUTE ADDRESSES

0000.

I
7Tnl.

10000

2
17777,

20000,

3
27777.

30000.

4
37771.
40000,

5
47777.

50000 tl

6
577778

6000 O.

7
677778

70000.

a
77777.

Figure 1-1

2. To change the format of information sent from other facilities to 48-bit words usable
by the BUIC system.

3. To change the format of information sent to other facilities from the 48-bit word
format to the format used by them.

MAGNETIC STORAGE DRUMS

Each of the first two magnetic storage drums provides 65,5361~ words of storage.
Some of the words (39,9361~) on each of the two drums may be used for bulk storage of
program instructions and data. The remaining 25,6001~ on these two drums are used to
provide automatic readout and transfer of display data to the data display console. The third
magnetic drum is used entirely for bulk storage.

When a display is prepared by the computer !lnd memory modules, it is sent to the
magnetic storage drums through the 110 modules. The drums then automatically begin send
ing the display to the data display consoles and will continue to send it until the display
information is erased from the drums.

3

DA T A DISPLAY CONSOLES

The data display consoles are used to display radar and tracking information on cathode
ray type scopes and also to input information into the AN/GYK-I0 to be processed by the
BUIC programs. The console operators input such informafton by pressing buttons on key
board panels on the data display consoles. They may also use a light gun on the main scope
to aid in sending poSitional information to the computer.

ST ATUS DISPLAY CONSOLE

The status display console provides a means for monitoring the operational status of
all AN/GSA-51A equipment, provides a way of applying and removing power for itself and for
the rest of the AN/GSA-51A, and assists in the repair of faulty modules.

FLEXOWRITER

The Fle~ow~iter is an electric typewriter and a paper tape punch and reader combined
into one unit. It is Used for the exchange of information between the operator and the operating
program. The paper tape punch and reader are run at the option of the operator. However, at
all times, the electric typewriter provides a hard-copy record of the exchange of information
regardless of whether the exchange was made through the typewriter or through the paper
tape punch and reader.

PUNCH CARD READER

The punch card reader reads 12-row, 80-column punch cards into central processing
modules of the AN/GSA-51A. It is capable of reading punch cards at a maximum rate of 200
cards per minute. Information being read is sensed by photoelectric cells at a read station.
The information is transferred to the card reader control which translates the card codes into
AN/GSA-51A character codes. The character codes are sent, one character at a time, to the
I/O module that is controlling the input operation. The I/O module then sends the information
to one of the memory modules so that it will be available for use by the controlling program.

ON-LINE PRINTER

The on-line printer is used to print alphanumeriC data directly from core memory.
It prints a maximum of fifteen words (120 characters) per line at a maximum rate of 600
lines per minute.

MAGNETIC TAPE DRIVE UNITS

The magnetic tape drive units are used to process magnetic tapes which provide bulk
storage for large quantities of program instructions and data. Some of the operations of the
tape drive units are performed under the control of the tape drive control unit. Those opera
tions which the tape drive units can perform without the use of the control unit are rewind,
backspace, advance, load, and unload.

T APE DRIVE CONTROL UNIT

The one magnetic tape drive control unit controls all four magnetic tape drives. Under
its control, the tape drive units perform read, write, advance, backspace, rewind, and erase
operations.

4

SIMULATION GROUP

The simulator group is used to provide the central data processing equipment with
manually composed messages that simulate inputs from two interceptor pilots to effect
equipment testing and personnel training.

5

CHAPTER 2

GENERAL CODING FEATURES

This chapter provides a general introduction which details the basic operations of the
computer and provides the background necessary to understand the coding instructions and
their usage.

WORD STRUCTURES

Programs for the AN/GSA-51A reqUire two basic types of words -- INSTRUCTION
WORDS and DATA WORDS. These two types of words differ in function as well as format.
However, both types of words are stored in core memory. In some programs, the instruc
tion words and data words are grouped separately and stored into different areas of memory.
In other programs, the instruction words and data words are grouped into one continuous set
of words which are stored together in core memory. The following paragraphs describe the
function and format of the two types of words.

INSTRUCTION WORDS

Instruction words hold the machine language code which gives the computer module
most of the information necessary for performing the operations of the program. When a
memory location is used to hold an instruction word, the 48 information bits are organized
into four 12-bit groups called syllables. (See the diagram below.) Each syllable is used to
specify part of the total operation to be performed by an instruction. An instruction word
does not necessarily contain one single instruction. It can contain one entire instruction,
part of an instruction, or parts of more than one instruction.

Bits 1 12 13 24 25 36 37 48

I Syllable I I Syllable 2 I Syllable 3 Syllable 4 I

Figure 2-1

DATA WORDS

Data words contain the constant and variable data which are manipulated by the instruc
tions of the program. There are three types of data words: alphanumeriC, fixed-point, and
floating-point. Each will be discussed individually.

ALPHANUMERIC DATA WORD. The alphanumeric data word is used in performing
alphanumeric functions such as input/output operations. The 48-bit word is divided into 8
six-bit bytes. Each of these bytes contains the binary representation of one of the numbers,
letters, or symbols used in the AN/GSA-51A. The binary representations follow a 6-bit
Hollerith code which is shown in Figure 2-3. The alphanumeric data word does not
contain a sign bit.

An important point to remember is that whenever the AN/GSA-51A is commanded by
the input/output instruction to print a word from memory, the word will be printed in an
alphanumeric format. For example, the word in Figure 2-2 will be printed ABC/123
and not 21222361010203608•

6

FYiES 0 2 3 4
IH;lrU~Y iJf)i<D

()eTA!. 2 I 2 2 2 3 6 I 0 I ,/;"iJJE
'-!F W(),lD

CHAJ,AC'I1:H A B C / Rl.Prn,;[;EN'l'1D

Figure 2-2

6 HOLLERITH - - PRINTER & FLEX
6

2

3

4

5

6

7

Figure 2-3

5

02

2

DOUBLE
SDiBOL

6

03

3

7

6 0
SPACE

FIXED-POINT ARITHMETIC DATA WORD. The fixed-point arithmetic data word is
used in performing all fixed-point arithmetic operations. The first bit of the 48-bit word is
a sign bit and the remaining 47 bits contain a number in binary form. If the first bit is set
to ~, the number is positive. If the bit is set to 1, the number is negative.

BITS 1 48

1 a 0 0 0 0 0 0.0 0 0 0 0 000000000000000000000 (0 0 0 0 0 0 00101

L'SIGN Bll' MOST SIGNIFICANT
BIT OF NUMBER

LEAST SIGNIFICANT
BIT OF NUMBER

Figure 2-4. Fixed- Point Arithmetic Data Word

7

The sample fixed-point word contains a -58 (which is also a -510). In the AN/GSA-51A,
the binary point is usually considered to be on the left, between bits 1 and 2. However, the
actual location of the binary point is determined by the programmer because there is no
physical binary point within the word. For example, the number in the diagram on the pre
vious page may actually be -2.510 to the programmer. In this case, the programmer would
consider the binary point to be between bits 47 and 48.

FLOATING-POINT ARITHMETIC DATA WORD. The floating-point data word is used
in performing all floating-point arithmetic operations. Floating-point words enable the AN/
GSA- 51A to work with much larger numbers than can be contained in the normal fixed-point
data word and greatly reduce the amount of work the programmer must do for scaling.

Bits 1 2 12 13 14 48

I~I CHARACTERISTIC I ~I MANTISSA

I
Figure 2-5

A floating-point word consists of two parts, a mantissa and a characteristic. The mantissa
contains a binary quantity and the characteristic indicates the number of times the mantissa
is raised by a power of two. In other words, the characteristic indicates the actual position
of the binary point in the mantissa. The sign bit in bit 1 indicates whether the mantissa is to
be raised by a positive or negative power of two. The sign bit in bit 13 indicates whether
the mantissa is algebraically positive or negative.

FLOW OF INFORMATION WITHIN THE COMPUTER

The operation of the AN/GSA-51A is controlled by an internally stored program located
in core memory. All data flow occurs between I/O modules and memory modules and be
tween computer modules and memory modules. There is no direct data transfer between
computer and I/O modules

Information flows directly between computer modules and memory modules over data
transfer buses. Each computer has its own computer bus, Computer BUS 1 for computer module
one and Computer BUS 2 for computer module two. The information being transferred will
either be program instructions· going to the computer to be decoded and operated, or data words
being fetched from memory for operands, or the results of an operation going to memory
to be stored.

Information flows directly between I/O modules and memory modules over data transfer
buses called I/O BUS A and I/O BUS B. I/O BUS A is time-shared by I/O modules one and two.
I/O BUS B is time-shared by I/O modules three and four. If both I/O modules on one I/O BUS
simultaneously request access to core memory, the I/O module with the lower number will be
granted access first, unless the program specifies otherwise.

All core memory modules are accessible by all computer and I/O buses. Therefore,
the core memory is totally shared. Conflicts will arise if more than one computer or I/O
BUS simultaneously request access to the same memory module. A SWITCHING INTERLOCK
is provided to resolve these conflicts by handling the requests in order according to priority
levels inherent in each request. The inherent priorities are as follows (from highest to lowest):

8

1. I/O BUS A
2. I/O BUS B
3. Computer BUS 2
4. Computer BUS 1

While a computer or I/O bus is accessing a particular memory module, all other com
puter and I/O buses are denied access to that memory module until the data transfer is
complete. During this time, however, another memory module may be accessed by any other
I/O or computer bus.

The switching interlock consists physically of a portion of the circuitry in each of the
computer, memory, and I/O modules.

NORMAL AND CONTROL MODE

Operation of the BUIC program is frequently interrupted by messages from outside
sources such as -radar stations, by switch actions taken at the data display consoles, and by
internal AN/GSA-51A equipment conditions. In order to handle these interruptions efficiently,
two modes of AN/GSA-51A operation are provided. They are called normal mode and control
mode.

NORMAL MODE

While operating in the normal mode, the AN/GSA-51A will recognize all interrupt
conditions and when an interruption occurs, will in most cases automatically transfer opera
tion to the control mode and to instructions which handle the particular interrupt condition.
All necessary control data is stored so that the interrupted program can resume at the
appropriate place after the interrupt condition is processed.

There are three AN/GSA-51A instructions which will NOT operate in the normal mode.
These are the TIO, LSR, and IRR instructions. Loading the Interrupt Base Address Register
(IAR) with a LTF instruction also will NOT operate in the normal mode.

CONTROL MODE

While operating in the control mode, the AN/GSA-51A will only recognize a select few
interrupt conditions. Most of the interrupt conditions are ignored until the AN/GSA-51A
operation returns to the normal mode. This allows the computer to process an interrupt
condition with little likelihood of being interrupted further.

ALL AN/GSA-51A instructions can operate in the control mode. Also, the system will
react differently to the HLT instruction depending whether the control or normal mode is
functioning.

PROGRAM INSTRUCTIONS

The program instructions for the AN/GSA-51A have two distinctive characteristics.
They can have up to three memory addresses and are variable length.

9

MULTI-ADDRESS FEATURE

Instructions for the AN/GSA-51A can specify from zero to three core memory addresses.
The capability of having three addresses is convenient because many fundamental arithmetic
operations involve three factors and therefore may need three storage locations; one each
for the two operands and one for storage of the result. The number of addresses in an in
struction depends on the particular operation to be performed.

VARIABLE LENGTH FEATURE

Instructions that have been assembled and stored in memory are comprised of strings
of from one to seven 12-bit syllables which specify the individual parts of the total operation
to be performed. There are five types of instruction syllables. These will be discussed briefly
before launching into a discussion of the organization of syllables within instructions.

1. INSTRUCTION SYLLABLES

OPERATION SYLLABLE

MEMORY ADDRESS SYLLABLE

BRANCH ADDRESS SYLLABLE

INDEX SYLLABLE

SPECIAL SYLLABLES

10

The operator syllable is always the first
syllable of an instruction. It specifies the
fundamental operation to be performed by
use of a 6-bit code and indicates the number
of syllables to follow in the syllable string
by use of three 2-bit codes.

The memory address syllable is used to
specify the relative address of data to be
fetched from or stored in core memory.

A branch address syllable is used to specify
the relative address of the instruction word
which should be operated next. Normally,
the instruction words are operated in con
secutive order, but a branch syllable may
change the order of operation.

The index syllable, which is inserted in the
syllable string immediately preceding the
syllable to be indexed, contains the addresses
of from one to three index registers whose
contents are to be added to a memory address
syllable, branch address syllable, or special
syllable.

There are fourteen special syllables which
are used to specify control data and instruc
tion variations essential to the execution of
certain instructions. The individual special
syllables are discussed in Chapter 5.

2. ORGANIZATION OF SYLLABLES WITHIN INSTRUCTIONS

An instruction consists of an operator syllable followed by' as many as six other
syllables or by as few as none. The number of syllables present in a particular instruction
depends on:

a. The type of instruction being used.
b. Use of indexes in the instruction.
c. Use of the operand stack. (Referencing the stack does not require a syllable.)

Since each instruction may vary in length from one to seven syllables, some instruc
tions are longer or shorter than the core memory word length.

To avoid wasting core space, the assembler PACKS instructions into memory. Packing
means that whenever possible, the assembler uses all four syllable locations in each memory
instruction word of the program •. An instruction may begin in any of the four syllables of an
instruction word, can end with the same or any succeeding syllable of an instruction word,
or can continue on into as many as two succeeding instruction words. The first instruction
in a program always begins in the left-most syllable of the first program instruction word.

Assume that a program contains four instructions and the instructions have these
tyPes of syllables:

Instruction 1 OPERATOR, MEMORY, MEMORY
Instruction 2 OPERATOR, SPECIAL, SPECIAL, BRANCH
Instruction 3 OPERATOR, INDEX, MEMORY, MEMORY, BRANCH
Instruction 4 OPERATOR

This program would be packed into memory in the following manner:

WORD~

WORDl

WORD 2

WORD 3

OPERATOR

SPECIAL

INDEX

OPERATOR

MEMORY MEMORY

SPECIAL BRANCH

MEMORY MEMORY

Figure 2-6

The unused portion of WORD 3 would contain zeros.

INSTRUCTION EXECUTION

OPERATOR

OPERATOR

BRANCH

The instructions of a program are stored in core memory in blocks of contiguous
instruction words. The instruction words are automatically fetched by the computer module
one at a time as needed during the execution of the program. When an instruction word is
fetched from memory, the actual word remains in its memory location and an image of the
word is placed in a 48-bit thin film register called the PROGRAM STORAGE REGISTER (PSR).
While the duplicate instruction word is in the PSR, it is decoded by the computer module
which then sends the necessary commands to the logic circuitry so that the operation can
be accomplished.

11

During the execution of the program, another thin film register keeps track of the
absolute address of the instruction word currently being executed (which means that the
instruction word's duplicate is in the PSR). This 16-bit register is called the PROGRAM
COUNT REGISTER (PCR). After an instruction word has been completely decoded and the
computer module is ready for a new instruction word, a one is added to the contents of the
PCR. This changes the contents of the PCR to the absolute address of the next instruction
word in sequence. Using this new address, the computer module then fetches the next instruc
tion word and places it in the PSR.

The action of fetching an instruction word and placing it in the PSR is called a NORMAL
FILL. When execution of an instruction requires a (relatively) large amount of time, the
computer module automatically fetches the next instruction word into a second PSR and
begins to decode this even before it has finished using the instruction word in the first PSR.
This is called an OVERLAP FILL.

Instruction words are not always fetched in consecutive order. There are many instruc
tions in the AN/GSA-51A which request that a specific instruction word be fetched next. The
instruction word which is specified to be fetched next may be the next word in sequence, but
most often it is a word somewhere else in the group of instruction words. This method of
changing the order in which the instruction words are to be fetched and operated is known
as BRANCHING. Once a branch has been taken, subsequent instructions will be taken from
consecutive instruction words following the instruction to which the branch was taken until
another instruction which specifies branching is encountered.

THIN FILM REGISTERS

Each computer module contains a set of 128 thin film registers. Some of the thin film
registers are used by the computer module logic circuitry during the execution of program
instructions. Other registers are used to provide an indexing capability. Still others are
used as a small data storage area called the operand stack.

Each thin film register contains 24 bits, but only 12 or 16 bits of each register are
used. A map of the thin film registers is given on the following page to show which registers
use 16 bits and which use 12.

The thin film registers are used individually as 12- or 16-bit registers or in multiple.
When a programmer specifies that thin film registers are to be used in multiple, three
adjacent 16-bit registers or four adjacent 12-bit registers will be used to create a 48-bit
register. The computer module control circuitry uses adjacent 12-bit registers in multiple
as 24-, 36-, and 48-bit registers. It also uses 16-bit registers in multiple as 32-, 48-, and
64-bit registers.

OPERAND STACK

The operand stack is a data storage area located in the thin film registers of each
computer module. It contains the equivalent of four 48-bit words and is used for temporary
storage of program data. The following paragraphs are devoted to the purpose, structure,
and operation of the stack.

12

i

MAP'OF 16-_~IT T F REGISTERS

OCTAL
REGISTER NAME

ADDRESS

I-;-~ 0 0 1"\ NOT USED

• • ,
6

• T
• I 0

I
2
]

• • ,
6
T

• • I
2
]

• 4
5
6
T • 0
I
2
]

• 4 ,
6

•] T

• e
4 e

1
2
]

• 4 ,
6
T • e

• 4
5
6

5 T

4 ,
6
T
8 ~INDEX REGISTERS 1 -15
9 I.

11
12
I]
14
15
e
1
2
3
4
5
6

9
Ie
11
12
13
14

1'/

~L1MIT REGISTERS e -I'

} ISR -INTERRUPT STORAGE REGISTER
(BAR, BPR, PCRI
SPARE

}
RPR - REPEAT PROGRAM REGISTER

{3PHY, 2 PHY, IPHY. OPERI

} 55R - SUSRounNE STORAGE REGISTER
(BAR, BPR, PCRI
SPARE

BPR- BASE PROGRAM REGISTER
BAR- BASE ADDRESS REGISTER

SPARE
PCR- PROGRAM COUNT REGISTER

MAP OF 12-BIT T F REGISTFRS,,,

OCTAL
ADDRESS .. I 0 0

• 4
5
6

e T

• 1 •
I
2
3 • 4 ,
6

•
3

• 4
5

•
T • •
I
2
3 • 4
5

•
1 3 T

• I 4 • 1
2
3 • 4
5
6

• 7 • 5 0

•
, 7

REGISTER NAME

}PSRI-PROGRAM STORAGE "t_, ,-,c.: H

}PSR2-PROGRAM STORAGE REGISTER"2

}

IPR - INTERRUPT PROGRAM REGISTER
(PSRI

RTC- REAL TI M E CLOCI!{

SPARE

RCR- REPEAT COUNT REGISTER {All
SPARE
SPARE

CCR- CHARACTER COUNT REGISTER

JTFC- TH(N FILM C REGISTER

} RI R- REPEAT INCREMENT REGISTERS

} ::.:" '"
ISTKI

~STK 2

J ~ OPERAND STACK REGISTERS

[ST'"

[STK4

• 6 0
1

SAR- SUBROUTlN(BASE ADDRESS R[GISTER •
SPARE : n .. ," 2

]

•
6 T .. 1 "

XJR .• INDEX INCREMENT REGISTER
fAR - INTERRUPT BASE ADDRESS REGISTER J POR- POWER (AILUfi[DUMP REGISTER

} SPARE

•

•

: ..
'I i

~ l_T , JOSTAATING ADURESS fO" I

BLOCKS

j'J j
11:'(-'1:,111~ , 7 ".J7 HING A('Ir'i(SS tOl 4 t(t.GISTER

PI1.JC'<S
l-. _______ _ --- ~- ---_._---_._- -

Figure 2-7

PURPOSE OF THE STACK

The stack provides faster instruction operation and memory economy.

FASTER INSTRUCTION OPERATION. Access time for the stack is more than twice
as fast as access time for core memory. Therefore, use of the stack as a memory location
in an instruction will increase the speed at which the instruction operates.

CORE MEMORY ECONOMY. When a program is assembled, all core memory references
require a 12-bit memory syllable. References to the stack do not require a syllable because
all stack references are completely specified within the tag bits of the operator syllable.
Therefore, each time the stack is referenced in an instruction, the number of syllables re
quired for that instruction is decreased by one, thereby conserving core memory space when
the program is packed into memory at assembly time.

13

STRUCTURE OF THE STACK

The stack consists of sixteen contiguous 12-bit thin film registers which are organized
into four 48-bit words as shown in the diagram below.

--
STK , ~~

~ I I I 1 I STI< I

-STI< 2
:..-t , -

--- I I I I I STI< 2

STI< 3 l ---1
;......-- l I I I I STI< 3

STK 4 ~
V--I I I I I STI< 4

Figure 2-8

If, for example, STK 1 contained the values in Figure 2-9, the extended 48-bit STK 1
word would be 77775555333311118°

1 1 1 18

3 3 3 38

5 5 5 58

7 7 7 78

} ~Kl
Figure 2-9

OPERATION OF THE STACK

Operation of the stack is most clearly understood if the stack is thought of as a four
word Itcircular memory" like those pictured in Figures 2-10 and 2-11. One of the 48-bit
words is always being "pointed at" by a Ilread-write head". This word is known as the
IItop of the stack". As the "read-write head" changes to an adjacent stack word, the lltop
of the stack" changes with it. In Figure 2-10 and 2-11, the Ilread-write head" moved from
STK 2 to STK 1 thereby making STK 1 the new "top of the stack".

14

With this conceptual picture of the stack, the stack APPEARS to rotate and the "read
write head" APPEARS to remain stationary. Within the computer, no physical movement
takes place but the "read-write head" electronically changes from one word to the next.

TOS (Top of stack)

J
TOS

1

Figure 2-10 Figure 2-11

These two conceptual figures show the operand stack stepping in the clockwise direction.
(Stepping is synonymous with rotating.) The stack can also be stepped in the counter-clockwise
direction. In fact, there are two instructions which do nothing but step the stack in one direc
tion or the other. The operand stack can also be stepped within program instructions which
use the stack as a data memory reference. Each time data is to be fetched from or stored
into the "top of the stack" for the operation of an instruction, the programmer has the choice
of stepping the stack or not stepping the stack. NORMAL operation is defined as stepping the
stack at the time of stack access. Not stepping the stack at the time of stack access is called
HOLDING the stack.

In a normal stack reference, the direction that the stack will be stepped and the sequence
of stepping are determined by whether the stack reference is one in which information is being
fetched or stored. In fact, it is common terminology to call the two direction of movement
the FETCH DIRECTION and the STORE DIRECTION. Usually, the fetch direction is considered
to be counter-clockwise and the store direction is considered to be clockwise. However,
there is an instruction (RVS) which will reverse the movement pattern of the "read-write head"
(and consequently the conceptual picture of stack rotation). After this instruction is operated,
the fetch direction is considered to be clockwise and the store direction is considered to be
counter-clockwise. This condition will remain until the instruction RVS is executed again.

If the stack reference is a NORMAL FETCH reference, the information will be fetched
from the "top of the stack", the stack will be stepped once in the fetch direction, and the
rest of the instruction will continue. If the stack reference is a NORMAL STORE reference,
the stack will be stepped once in the store direction and then the information will be stored
into the "top of the stack". In a HOLD FETCH or HOLD STORE stack reference, the stack
is not stepped.

The rules given in the paragraph above are summarized below:

HOLD FETCH

HOLD STORE

NORMAL FETCH

NORMAL STORE

data fetched from top of stack; stack not stepped

data stored into top of stack; stack not stepped

data fetched from top of stack; stack stepped once in fetch
direction

stack stepped once in store direction; data stored into top
of stack.

15

When information is fetched from a stack word, the information in the stack word is not
destroyed. However, when information is stored into a stack word, the previous contents
of that stack word are destroyed.

The programmer is not concerned with which physical stack word (1, 2, 3, or 4) is .
being accessed. All rules of operation of the stack apply no matter which word the "read
write head" is located at. Generally, the programmer does not know which physical stack
words are being accessed throughout his program. As a program is written which uses
the operand stack, the programmer need only keep track of the relative location of the in
formation that is stored in the four sections of the "circular memory" and which section
is currently the "top of the stack".

RELATIVE AND ABSOLUTE ADDRESSING

When a program is created for the AN/GSA-51A, the instructions are coded according
to a standard format and are punched onto aD column cards to be read into the computer.
When the cards are read in, they are converted by the assembler to the binary machine
language which the computer module decodes at the time of operation.

After the program is assembled, it may be stored anywhere in memory for operation.
It makes no difference whether the program is stored toward the beginning, toward the end,
or in the middle of core memory. Operation of the program will be performed in exactly
the same manner. Therefore, programs for the AN/GSA-51A are floatable and may be moved
from one area of core memory to another as the need arises. To understand why this is
possible, it is necessary first to understand the concepts of relative and absolute addresses,
the base address register-BAR, and the base program register-BPR.

ABSOLUTE ADDRESSES

Each of the l~~~~~a words in core memory is given an octal address which distinguishes
its location from all other core memory locations. This address never changes and is known
as an ABSOLUTE address.

RELATIVE ADDRESSES

Relative addresses are given to the instruction words and data words of a program.
That is, each instruction word is given an address which is relative to an absolute address
which is to be stored in the Base Program Register (BPR). Generally, the first instruction
word has an address of ~ and the instruction words following are given consecutive octal
addresses beginning with 1a. These addresses are assigned at assembly time. In the same
manner, the data words are given addresses which are relative to an absolute address which
is to be stored in the Base Address Register (BAR). See EXAMPLE A in Figure 2-12.

It is possible to combine the instruction words and data words into one continuous set
of words in which case the entire set of words will be given addresses which are relative
to the same absolute address.

In EXAMPLE B, the instruction words and data words are separated. They may be
intermixed as 10ng as the programmer makes certain that data words will not be accidentally
operated as instruction words. This is accomplished by branching around the data words.

16

~

1

2

3

4

5

~

1

2

3

EXAMPLE A

First prog. inst. word

2nd " " "
3rd " " "
4th " " "
5th " " "
6th " " "

First prog. data word

2nd " " "
3rd " " "
4th " " "

BASE ADDRESS REGISTER

F'igure 2-12

~

1

2

3

4

5

6

7

1~

11

EXAMPLE B

First prog. inst. word

2nd " " "
3rd " " "
4th " " "
5th " " "
6th " " "
First prog. data word

2nd " " "
3rd " " "
4th " " "

The Base Address Register (BAR) is a 16-bit register located in thin film which holds
the ABSOLUTE core memory address that is added to relative DATA addresses located in
memory syllables when the program is executed.

BASE PROGRAM REGISTER

The Base Program Register (BPR) is a 16-bit register located in thin film which holds
the ABSOLUTE core memory address that is added to relative instruction word addresses
located in BRANCH syllables when the program is executed.

If a program is organized so that the instruction words and data words are one con
tinuous set of words, the BPR and BAR may contain the same absolute address. This can
be true only if the relative data addresses are not greater than 37778 and the relative in
struction word addresses are not greater than 37778•

CONVERSION OF RELATIVE ADDRESSES TO ABSOLUTE ADDRESSES

When a symbolic program is assembled into machine language, there are many references
to instruction words and data words which require that memory addresses be specified. Relative
addresses, not absolute addresses, are specified at this time. For example, an instruction
which designates the contents of memory location "A" to be added to contents of memory
location "B" and the answer to be stored in memory location "C" will require three memory
address syllables as part of the instruction. The three addresses in the syllables will be
relative to the BAR.

When the assembled program is stored into core memory for operation, the program
still has the RELATIVE memory address references but the instruction words and data words
are stored into core memory locations which have ABSOLUTE addresses. Therefore all
relative memory address references must be converted to absolute addresses. This conversion

17

process is an inherent function of the AN/GSA-51A and is performed automatically just
before each instruction is executed by adding the contents of the BAR to data word relative
address references found in memory syllables and the contents of the BPR to instruction
word relative address references found in branch syllables. The following formulas summarize
this process.

Relative address of data word + BAR = absolute address of data word.

Relative address of instruction word + BPR = absolute address of
instruction word.

This, then, is why programs are floatable in the AN/GSA-51A. An assembled program
may be stored anywhere in core memory for operation simply by placing it in the desired
locations and storing the appropriate addresses in the BAR and BPR.

DffiECT AND INDffiECT ADDRESSING

Core memory locations for fetching and storing data are specified in program in
structions through the use of memory syllables. Each memory syllable may contain either
a direct address or an indirect address.

Direct address: a relative address to which the contents of the BAR are added
to obtain the absolute core memory address for fetching or
storing data.

Indirect address: an address of a core memory 10 cation, the contents of which
contains the address of another core memory location. An
indirect address is always a relative address if it is found
in a memory syllable and the contents of the BAR must be added
to obtain the absolute address. If the indirect address is found
in a program data word, it is an absolute address.

The format of the 12-bit memory syllables is as fol1ows:

Bits 1.

IN 0.1
ADD.

BIT I

2

RELATIVE

I I I

ADDRESS OF

l I

MEMORY

I 1

1.2

LOCATION

I I I

Bits 2 through 12 always specify a relative data address. Bit one is used for indirect
addressing. If there is a ~ in bit one, bits 2 through 12 of the memory syllable contain a
DffiECT address. If there is a 1 in the first bit, bits 2 through 12 contain an INDffiECT
address.

Direct addres~ing is used most frequently in AN/GSA-51A programs. Direct addressing
limits the number of words which may be addressed to the first 2,04810 words immediately
following the location specified by the BAR. (Eleven bits allows a maximum of 2,04810 words
with addresses beginning at ~ and ending at 37778,) However, this limitation is not important
because the programmer can use indexes to extend beyond this area.

18

Indirect addressing can also be used to specify addresses beyond the 2,04810 words
following the BAR. If the first bit of a memory syllable is a one, the address is indirect
and the least significant 16-bits of the address specified is then the absolute address of the
instruction operand or another indirect (but absolute) address. If the seventeenth least signifi
cant bit of the location specified is the original indirect address is a one, it indicates that
the indirect address chain is to be continued and that the absolute address specified by the
sixteen least significant bits is another indirect address. Indirect addressing may be con
tinued in this manner as many times as the programmer wishes.

If the seventeenth least Significant bit of the location specified by an indirect address
is a ~, the address specified in the sixteen least significant bits of this location is the direct
address of the operand to be used by the original instruction.

The following is an example of an indirect address chain. The BAR is set to 10008:

LOCATION BIT SETTING OCTAL EQUIVALENT
OF ABSOLUTE ADDRESS

0100 - Third Syllable
(Memory Syllable of
Instruction)

1
1 2
10000 0 0 1 1 100

0034 + 1000 (BAR)
= 1034

1034
(Core Data
Area)

1200
(Core Data
Area)
1450
(Core Data
Area)

3 4
128

000000000000000000000000000000010000001010000000 1200
3 4

128
000000000000000000000000000000000000001100101000 1450

Contains value of operand to be used in the instruction

It is important to remember that indirect addressing is a function of the programmer
and it is up to the programmer to see that the indirect address bit is set by the assembler
and that the locations specified by indirect addresses contain the appropriate information.

TAGS

A tag is a combination of alphanumeric character which is used in place of an octal
address to specify a memory location for data reference or branching. Tags are used by the
programmer when he writes the symbolic language code for his program. The assembler
aSSigns a relative location in memory for each tag and then uses the address of this location
to convert the tag to a branch or memory syllable.

If the programmer knows the memory address for a branch location or a data reference,
he can use the octal address in his symbolic language code. However, his task is much easier
if he uses tags and lets the assembler supply the addresses.

A tag can be any combination of letters and numerals as long as it does not exceed five
characters, contains no leading or embedded blanks, and has at least one letter.

19

Each tag is used to specify one memory location only. IT it is used for more than one
location, the program will not assemble correctly because the assembler is given no way
of distinguishing the different locations.

USE OF TAGS IN BRANCHING

When one instruction is to branch to another, IDENTICAL tags are used in coding
each of the instructions.

One of the tags is placed to the left of the operation code of the instruction to which
the branch is to be taken. This tag will cause the assembler to store the relative address
of the instruction word which contains the beginning syllables of the instruction, but will
not generate a program syllable itself. The relative address is stored in a "dictionary"
which contains all program tags and their addresses and other program information. This
tag will also cause the assembler to left- justify the instruction in an instruction word.

The other tag is located within the instruction that will cause the branching. This tag
will generate a branch syllable which will contain the relative address of the instruction to
which the branch is to betaken. The assembler finds the address by looking in its "dictionary".

More than one instruction may branch to a particular instruction. However, no two
instructions may be referenced by the same tag.

USE OF TAGS FOR DATA REFERENCES

Throughout a program, references may be made to data, memory locations by using
tags. Before the assembler can convert these tags to memory syllables, it computes the
relative addresses of the locations speCified by the tags and stores them in the same
"dictionary" that is used for branch tags. As memory syllables are generated, the assembler
finds the correct relative address for the tags by looking in this "dictionary".

The assembler cannot compute the relative address for a data reference tag unless
the tag is defined by the programmer. Data reference tags are defined by using a declarative
code to create a 48-bit data word with some value in it and by placing the tag to the left of
the declarative code.

IT the tag is used to specify a table, the first word in the table will be generated by a
declarative code with the tag on its left. All succeeding words will be generated by declarative
codes which do not have tags on their left. The assembler will store the first address of the
table in its "dictionary" and this address will be placed in the memory syllable. All other
words in the table may be accessed through the use of index registers.

There are a few special cases in the use of tags for data references and these will be
discussed in the paragraphs that follow:

INDIRECT ADDRESSING. Each data tag within an instruction generates one memory
syllable. The tag may be used to generate a direct address or an indirect address. IT indirect
addressing is to be used, the tag must be preceded by a prime mark which will cause the
assembler to place a one in the first bit of the memory syllable.

20

EXAMPLE:
ABC2 will generate a direct address

'ABC2 will generate an indirect address

OPERAND STACK. The operand stack may be used for data reference in an instruc
tion. NORMAL stack usage is access of the stack with rotation (stepping) and is designated
by the tag N. HOLD stack usage is access without rotation and is designated by the tag H.
An N or an H in an instruction is all that is needed to reference the operand stack.

THIN FILM IDENTIFIERS. Many thin film registers have tags which are known as thin
film identifiers. A chart of the thin film identifiers and the octal addresses associated with
them is given below.

OCTAL ADDRESSES OF THIN FILM IDENTIFIERS

Xl 001 L3 023 PCR 057
X2 002 L4 024 SAR 060
X3 003 L5 025 XIR 062
X4 004 L6 026 IAR 063
X5 005 L7 027 PDR 064
X6 006 LS 030 IDR 070
X7 007 L9 031 PSR1 100
XS 010 L10 032 PSR2 104
X9 011 L11 033 IPR 110
X10 012 L12 034 RTC 114
X11 013 L13 035 RCR 120
X12 014 L14 036 CCR 123
X13 015 L15 037 TFC 125
X14 016 ISR 040 RIR 130
X15 017 RPR 044 Sl 140
LO 020 S8R 050 82 144
L1 021 BPR 054 83 150
L2 022 BAR 055 S4 154

A thin film identifier can be used in an instruction which accesses thin film and the
assembler will automatically supply the thin film address. To access registers which do
not have identifiers, the octal thin film address must be used in the symbolic coded program
because the programmer cannot create new tags for thin film registers. The address is
placed in one of the special syllables, the T syllable, which has the following format:

Bits 136 12

.~~_. 'l!IIlf FIIM ADDRE5S

If bit 3 is set to ~, only the thin film register specified by the address in bits 7 through
12 is to be used. If bit 3 is a 1, adjacent registers are to be used in multiple to create a
4S-bit word.

To specify the use of multiple thin film registers, an M and space must precede the
thin film identifier in the sumbolic coding. (An example is M X4.) The M will generate a one
in the third bit of the T syllable. If an octal address is used rather than a thin film identifier,
a one precedes the three digit address and it generates the one in the third bit.

21

When the third bit is set to one, the computer module ignores the last two bits of the
T syllable, causing them to be effective zeros. This gives the film address an effective
~ or 4 for the last octal digit.

This modified address is used to specify the register which contains the least signifi
cant 12 or 16 bits of the total 48-bit word, and the rest of the 48-bit word consists of three
12-bit registers or the two 16-bit registers which immediately follow this register.

INDEXING

Indexing provides for the automatic modification of an instruction syllable by the addi
tion of the contents of one, two, or three index registers. Most instruction syllables can be
indexed. Those which cannot be modified by indexes are operator syllables, index syllables,
and all syllables of an instruction to be repeated through the use of another instruction which
specifies that repeating should be done.

When a syllable is to be modified by indexing, the contents of each index to be used
are added to the contents of that syllable. If the syllable that is to be modified contains an
indirect address, the contents of the index register or registers will be applied to the last
level address only. The addition takes place in the computer module in special registers
used for instruction execution at the time the instruction is operated. The actual core memory
contents of the syllable being indexed remains unchanged.

Index registers are always added to instruction syllables. If subtraction is desired,
the index must contain the two's complement of the amount to be subtracted. In this way, the
addition will be an effective subtraction.

There are fifteen index registers. They are located in thin film and are numbered one
through fifteen. Each index register contains sixteen unsigned bits. If a memory syllable is
indexed, any core location may be addressed because only fifteen bits are required to specify
the maximum core memory address (777778).

When symbolic language coding is converted to ma~hine language code, all of the three
or fewer index registers whose contents are to be added to a program syllable are specified
in one index syllable. The index syllable always precedes the syllable it modifies. The format
of the index syllable is as follows:

Bits J I

FIRST INDEX SECOND INDEX THIRD INDEX
REGISTER NUMBER REGISTER NUMBER REGISTER NUMBER

I I I I I

The twelve bits are divided into three 4-bit portions. Each portion specifies the number
of an index register. If fewer than three indexes are used, the unused 4-bit portions will
contain zeros. If an instruction syllable is not indexed, an index syllable will not be gener-
ated for it. .

In addition to the fifteen index registers, sixteen limit registers are provided to im
plement the indexing capability. The limit registers contain sixteen unsigned bits and are
numbered ~ through 15.

22

The limit registers are only used ir. conjunction with index registers. As a program
progresses, the value of an index register may be increased or decreased by program in
struction. If the programmer wishes to continue the modification of the index registers until
a certain value has been reached, he may place that value in one of the limit registers. The
XLC instruction is provided so that the index register can be compared with the limit register
to see if the limit has been reached. If it has been reached, the program will continue at a
specified instruction. If it has not been reached, the program will continue at another speci
fied instruction. Any index register can be compared with any limit register.

Limit register zero is somewhat special because it may be loaded with any value but
will always be an effective zero when used in this comparison-type instruction. Therefore,
it is normally used as the limit register when the lower limit is zero and the index register
is being decremented.

Z3

CHAPTER 3

BUIC III ASSEMBLER

ASSEMBLY LANGUAGE PROGRAMMING

An assembler is a programming tool designed to alleviate part of the effort required
in coding programs. Assemblers accept symbolic languages1 as input and convert this input
automatically into the internal machine language2• The term "symbolic" refers to the use
of mnemonic3 codes in place of machine-language codes and the use of symbolic tags in
place of absolute addresses. For example, the augend for a binary add might be located in
memory at the symbolic address VALUE, which has the actual machine address of 30008.
By USing an assembler language for coding, the programmer is not burdened with keeping
track of the memory location used, their addresses, or the actual machine language for the
instruction he is using. Since an assembler will do this, and more, the programmer is free
to code programs at a greater speed. In most instances, the speed of program-coding will
be limited only by the programmer's ability to solve the problem at hand.

The assembler reads the symbolic code4 from punched cards or magnetic tape and
converts it to machine instruction codes in a one to one ratio with the symbolic instructions.
That is, one machine instruction code is generated for every symbolic instruction. As an
example, for every BAD symbolic input, a 658 machine instruction is generated. In addition,
the assembler provides hard-copy documentation (program listings) of the program for the
programmer's use in debugging his program. This documentation consists of a symbolic
listing and machine-code listing of the instructions and constants in the program along with
comments inserted by the programmer. On the following page is an example of a program
listing.

The assembler also interprets special control and declarative codes which assist the
programmer in preparing his program. Control codes are used to inform the assembler of
the assembly origin (the address of the first instruction of his program), base register
settings (BPR, BAR) and so forth. Other control codes reserve blocks of memory locations
for data storage. No machine-code instructions are produced for these operations.

Declarative codes do not generate machine instructions either. However, they do gener
ate data. Two examples of generated data are - absolute addresses and data constants in
octal, hollerith, or decimal forms.

1 An example of a SYMBOLIC language or instruction is any of the 62 instructions
listed on your programmer's card-BAD, BSU, TRS, etc.

2MACHINE language is the numerical (binary or octal) format of the symbolic language.
The binary numbers 1101012 (binary add), 1101002 (binary subtract), 0111012 (transfer) are
examples of MACHINE language.

3 The symbols - BAD, BSU, etc., in a symbolic language are called MNEMONIC codes.

4SYMBOLIC CODE is symbolic language.

24

*

PROGRAM LISTING

SYMBOLIC LISTING

IDT PROG

BSU AA,BB,CC

THE NAME OF THIS
PROGRAM IS PROG

CC = AA - BB = -9

BAD CC,D(+10),BB BB = CC + 1~ = +1
NOTICE THAT THE
ASSEMBLER HAS
CREATED A DATA
WORD AT LOCATION
7 FOR THE RC WORD

CLA AA

CLA CC

HLT

THIS INSTRUCTION
CONSUMES ONLY TWO
SYLLABLES IN CORE

NOTICE THAT THE
ASTERISK CAUSES
THIS INSTRUCTION
TO BE LE FT JUSTIFIED

NOTICE THAT THE HLT
INSTRUCTION IS
PACKED RIGHT AFTER
THE PREVIOUS
INSTRUCTION IN CORE

AA DEC-8 NOTICE THE SIGN BIT
IN THE DATA WORD

BB OCT 1

CC OCT ~

END

Figure 3-1

MACHINE-CODE LISTING

00000 6452 0004 0005 0006

00001 6552 0006 0007 0005

00002 2040 0004

00003 2040 0006

00003 0100

00004 4000 0000 0000 0010

00005 0000 0000 0000 0001

00006 0000 0000 0000 0000

There are two terms often used when speaking of an assembler. They are SOURCE
programs and OBJECT programs. A source program is the symbolic code used as the INPUT
to the assembler. An object program is the binary machine language program that is the final
OUTPUT.

25

Code the
program on
coding
sheet

Key punch the
program

read the assembler
into core

Object
Using the
assembler
read the
sOurClol prog
into core

I----~ program
written onto
tapes, printer
or nexowriter

Figure 3-2. A macro flow showing the sequence of events from hand
written program to computer output.

BUIC III ASSEMBLER - PSA, PSB

The BUIC m language assembler is a two-pass assembler. Its official name is PSA,
PSB (Pass A and Pass B). The first pass reads symbolic inputs from the card reader or
tape, converts the symbolic codes to binary, sets up relative program and data references,
generates the data region, creates the dictionary5, assigns system index registers, and
extracts the required compool6 information. The partially processed data and other required
information is made available to the second pass for final processing.

The second pass of the assembler generates the binary words, converts the relative
program and data references to binary addresses, and adds required data from the compool.
The side by side listing, Figure 3-1, is generated from the binary and the partially processed
symbolic codes.

5 A DICTIONARY is a listing and description of all items used by the program. It is
generated as part of the symbolic output.

6COMPOOL - (COMMUNICATION POOL) is an area of core containing items and tables
that can be referenced by more than one program.

26

Obtain control Interpret controls, Interpret each
and symbolic ~ set relative programs, .. symboli c card,
card images and data references make legali 1\Y

checks, generate

~ compool J .. dictionary.

search

Out~ut binary tapes, Make up binary data
IlLO tapes and on- .. for output, dic-
line messages. tionary for output

and side b,y side
listings.

Figure 3-3. A Macro Flow of PSA, PSB Operations

or

SYMBOUC
CARDS

CONTROL

or

ASSEMBLER
FUNCTION IN
CORE MEMORY

Figure 3-4. A System Flow of PSA, PSB

or

PRINTER OR
TYPl!.~RITER
PUNCH
READER

7DLO - (DELAYED OUTPUT) When an immediate printout of the object program is not
desired the information is written onto a tape. The tape is later used to dump the information
on the line printer.

27

The assembler function requires the following equipment of the AN/GSA- 51A data pro
cessing set:

1 controller comparator (IOCU)

1 computer module

5 memory modules for operation of this function

1 magnetic tape drive or 1 card reader for symbolic input

1 magnetic tape drive for binary output

1 drum for storage

1 additional drum for storage (for programs in excess of 5~~~ symbolic cards)

1 card reader or 1 typewriter-punch-reader for input control

1 magnetic tape drive for storage (for programs in excess of 1~,~~~ symbolic cards)

BUIC III UTILITY SYSTEM

PSA, PSB is one program from the BUIC III utility System. A utility system is used
to perform miscellaneous or utility functions such as - tape searching, memory dumps,
tape dumps, tape maintenance-making new tapes, and duplicating tapes, clearing drums,
clearing core memory, data conversions, etc. The official name for the BUIC ill Utility
System is UCP (utility Computer Program). Don't let the word program throw you. It really
is a SYSTEM. UCP contains more than 30 separate programs and is so large that it can't
all be contained in core memory at one time. So the system is read fr01ll the UCP Master
tape and placed on drums. Such a huge system needs an executive control program that knows
which of the 30 programs the programmer needs and where it is located on the drums. UCP's
master executive program is CUE (Control Utility Executive). When a program is desired,
CUE reads it in from the drums. Figure 3-5 shows one possible UCP system configuration.

28

Ml M2 M3

Figure 3-5. A UCP Configuration

TYPEr.RITER
PUNCH
READER
CONTROL

M8

EXECU
TIVE

PRINTER OR
TYPEvnUTER
PUNCH
READER

8pRESTORE - is a term used to describe a tape that has information written on it in
6-bit Hollerith. It is created by reading a symbolic program (12-bit Hollerith) into core
through card reader. The 12-bit Hollerith is converted to 6-bit Hollerith and the program
is written directly out onto a tape. NO assembly process has occurred. This tape is then used
at a later date as the input to the assembler.

29

CHAPTER 4

BUIC ill ASSEMBLER INPUTS

THE AN/GSA-51A CODING SHEET

FORMAT OF CODING SHEET

The AN/GSA-51A coding sheet is used to give the programmer's symbolic statements
the format necessary for use by the assembler. The format of the coding sheet is basically
the same as the format of the 80 column punch cards on which symbolic statements are
punched for input into the computer.

30

,-- l ::I ; 'f lOT ~
SEQ. INC~ TAG 0::'. OPERANDS I COMMENTS. M:2 ", t;

TIOo 0 0 a " 0 0 oooJ o~O~~ 0 0 0000 u 0--00000 0 0 0 0 0 0 000 0 0 0 0-00 0 0 0 0
1 2 3 4 $ I~ I 91011 12 14151111 1111 20 21 1223 2; 2!.21i 712819]0)1 UJlJI]SlI J7)1n 40 410 4344 4$41.1 410505152$35' S5~6 51 ~ 5160 6: 621'3&. 6S6IIiJ 68 D9 JO 11\12' 141516 11 11 JIIO

111111 ':11111 111

2222122 J 22222 z 22 2 2 2 2 2 2 2 2 2 2 2 2222

3333J3~33333<333
444444 '44444 4444444444444444 BUIC 0825 SYMBOLIC CARD 444444444444444444444444444

5 5 5 5 5 5, H-5 5 5 5555555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 555 515 \ 5 5 5 5 \ 5 5 5 I

666666 '66666 66ij66666666666,66666G6t66

1 1 1 1 1 1 11111' 11 11111 11111 111 1 1 1 11 1 111111 11 1 11 1 1 1 1 11 1 1 1 11 1 1 1 1 11111 1 1 1 1 ~ 1 1 1 1 1 1 1 1 1 1

I 888888 88888 8818181111188111888881811818881881188888888888888888888818888888888

%

999999 99999
I 2 3 4 5 , , I I 1011 Il

.1'" L 22042

COLS 1-4

COLS 5-6

COL 7

COLS 8-12

COL 13

99 9 9 9 9 9
~ ~ ~ ~ ~ ~! ~ ~2~24 2516 2i 212! 3D]112lJ l41UI]J lI3t4041424J444$U4141.3 ~ ~1 ',153$4 5551 ~1-5I5160 &'62 &36U5 SUIIUtlO II 11 I: 14 75 J~ 11 It J~ 81!

Figure 4-1. BUIC D825 Symbolic Card

are for reference only and may contain any notation the programmer
wishes to use. The columns are generally used to sequence the program
deck with octal or decimal numbers. Although the assembler does not
use columns 1 through 4, any information in them will be printed out
on the assembly listing.

are used for incrementing the reference numbers given in columns 1
through 4. This is especially helpful when inserting a card into the
middle of the deck after the deck has been given sequence numbers.
These columns are not used by the assembler, but they are printed
on the assembly listing.

is not used.

contain symbolic tags (addresses) assigned to the instructions to which
branching is performed in the program. These identifying tags are also
used for defining data within the program.

is not used.

COLS l4-1S may contain:

1. AN/GSA- 51A instruction operation codes which specify the type of
instruction to be performed. This type of code will generate an
operator syllable in the assembled program.

2. Declarative codes which generate 4S-bit data words.

3. Control codes which provide program control information to the
assembler.

4. Pseudo Codes which generate AN/GSA-51A instruction operation
codes.

COLS 19-64 are used to specify:

memory reference for operands
indexes
branching locations
codes which generate special syllables
comments

All memory syllables, branch syllables, index syllables, and special
syllables are generated from information given in these columns. Com
ments are used by the programmer to help keep track of what the pro
gram is doing. They do not generate machine language code, but are
printed out on the assembly listing exactly as written. COMMENTS MUST
FOLLOW THE SYMBOLIC INSTRUCTION CODES AND MUST BE SEPA
RATED FROM THEM BY AT LEAST TWO BLANK COLUMNS. Any card
that does not have codes in columns 14 through IS may be used entirely
for comments in columns 19 through 64.

COLS 65-70 are used for sequencing cards when program coding is done is JOVIAL,
a language not covered by this manual. These columns are ignored by
the BUIC assembler.

COLS 71- SO are used for reference information for filing a deck of cards that is to
become part of a larger group of cards which make up a system. These
columns are ignored by the BUIC assembler.

USE OF CODING SHEET

The coding sheet, shown on the following page, gives examples of many different types
of instructions to show the formats acceptable by the assembler. In preparing this coding
sheet, no attempt was made to give logic to the program as a whole. Emphasis is on instruc
tion format only. Each line of code would be punched onto one SO column card to be read into
the AN/GSA-51A and processed by the assembler. Details of this coding sheet are discussed
in the pages that follow.

31

conING SHEET

ASSMB SEQ I I
l1li. ..c. I TAG OP.COOI; OPERANOS/ "'''''''

3 4

."
ID II~ II 211 21 22231 Z4D D27 .11 IG 31 ~ ~. !!ID 404' 434" 45 .. "7

II tIlo, Ail! Ie
12 tal.ii \11 12~
~ :P!l Df; ~ A 1111 It ~ue Itll s Ie II!

:,.~ ..
Il.'" ~'1 [,j I"

I .. tt~ 'tl£ I.-tg III
Is tT~f 't)I{ 1~l9 II ~ ~

" 111~ nit I-\'Il ~ 1~ ~~ ~5
1 :11_ l I~ID D~ Illp. I· \ I'" ~I' I+I~ 12 !l~ I~ N

1\ • II ISO l;&:l I~ ll. ~~ ~11l1.
II I, ~ 11. 11 " I~ It lD :~IT I~I+ Ill1 It:' 12
II 12 l~~ 1<: ~I\ 11ll ~ 10 1\.1t! Itl
1\ 13 IXlLle 1+11 Illl ~ ~ ~l5 L..11 ~IA
I' l!i --IE stE tT rt I.-Is IslE 11'1+ \ I~ I'

1\ I' --II If lalp I, 11 1'1, 1\ lei' ~ Hi
I, I, Ie leG 81, I, I~ 1(1+ 1\ II Illl) ~ tr~ If
Il ~ luleh' 1"1& Islt: It
12 II I~ 101,

Ii
Ill,

12 Il ttlA I err ., lelE IGtI 1)1 IOIE l!~ I.~ III Ie. ~ ~IJ~
Il. 13 1Ih' 1\ 11
Il 1'1 tll't I" IE~ 1+11 I&, 1'3 Il ~~ l~lJ
11 Is I, ~tT 1,1, 13~ l5 llll 1113 ~l' 1313 13!~ I,
12 I, IE ltla !CltrT

'" 12- I, IE rr lOlt h' I' Is 1'1
I~ ~ lc It I' la 1~15
I~I' IllS 111:11 ~
Is ~ IIrr I I Is

I' I'I~II . lAb I" 111 ISI- \ 1+ ~ Ll L .. lH u.1~ IN ISlt 131+ Ilil

RULES FOR USING conING SHEETS

The following paragraphs are a discussion of the AN/GSA-51A coding sheet with specific
references made to the coding sheet shown above.

32

1. SEQUENCING - Col 1-6

a. Although octal numbers are used on this coding sheet, sequencing may be done
in any number system adaptable to the numerals t1 through 9.

b. Errors in sequencing will not be reflected in the program, but NiA Y cause prob
lems if the program deck is sorted on a card sorter. Although the number 14 was
Skipped in this deck, the deck does not need to be renumbered because the numbers
are in order and the cards can be sorted correctly.

c. Leading zeros in the sequence numbers need not be written on the coding sheet
nor punched into the cards.

d. Card 17~18 is to be placed between card 178 and 2~8 after the program has been
punched onto cards.

2. SYMBOLIC TAGS

a. All tags can be from one to five characters in length and must contain no leading
or embedded blanks.

b. Each tag can have any combination of letters and numerals as long as there is
AT LEAST ONE LETTER somewhere in the tag.

c. Nand H by themselves should NOT be used as symbolic tags because they are
used to reference the operand stack. See lines 7, 11, 15, and 17~1 of the sample
coding sheet.

d. Tags in cols 8-12 are always left-justified. See lines 7, 15, 21, 22, 24, 25, 26,
27 and 31 of the sample coding sheet.

e. All data area tags must be referenced somewhere in the program area. The
programmer must make certain that the data tags are located at a place in the
program listing where they won't be operated as instruction by mistake. In this
sample program, the data tags were located after the halt (HLT) instruction.
Therefore, the computer will have stopped operation just before it reaches the
data area.

f. An asterisk can be placed in column 8. The asterisk is used to left justify an
instruction in core. See line 11.

3. OPERATOR CODES - Cols 14-18

a. ALL operator codes are LEFT-JUSTIFIED in the op code field.

b. The op code field may contain instruction operator codes, declarative codes, and
control codes. lOT, ORG, and DIT are sample control codes. OCT and DEC are
sample declarative codes.

4. OPERANDS AND COMMENTS - Cols 19 and following

a. The operands always begin in column 19.

b. ALL operands in an instruction are separated from one another by commas.

c. Index register codes follow the operand they are modifying and are linked to that
operand with PLUS signs. See line 11.

33

d. Memory references may be incremented or decremented by a DECIMAL number.
See lines 15 and 16.

e. If a memory reference is incremented or decremented AND indexed, the index
register codes follow the decimal number that specifies the increment or decre
ment amount. See lines 7 and 17~1.

f. A blank is not allowed in the operand syllable unless it is a Illegal blank" peculiar
to a particular instruction. Lines 11, 12, 13, and 16 are examples of instructions
with "legal blanks' in the operand syllable.

g. Memory syllables may be symbolic tags, octal addresses, or RC words. Line
1~ contains an octal address (~4~~) for a memory syllable. Lines 5 and 6 contain
RC words.

h. When a thin film register is being referenced, the references may be the thin
film symbolic tag or an octal thin film address. In lines 4 and 5, index registers
one and two are referenced by their thin film symbolic tags (Xl and X2). In line
6, limit register five is specified by its octal address (~~25).

i. Thin film symbolic tags may be used as tags in the program or data areas. Tags
are recognized as thin film mnemonics ONLY when they are in certain syllables
of instructions, which are specifically used for accessing thin film. Although BPR
is used throughout the coding sheet as a core memory tag, the assembler will
not confuse it with the thin film identifier BPR.

j. Some instructions do not have operands. See line 21.

k. All comments follow the operands by at least two spaces. See line 22.

1. Any card that does not have codes in columns 14 through 18 may be used entirely
for comments in columns 19 through 64. See line 3.

SYLLABLE STRUCTURES

There are 18 syllables associated with the BUIC In instructions and each syllable has
a unique format. An alphabetical listing of all syllables is found on page 36. Following this
listing, an example is given for each syllable. Included in each example is: (1) a short dis
cussion and diagram of the syllable, (2) the syllable's octal configuration, and (3) representa
tive coding formats. The BUrC llr programmer's card should be a handy reference for the
syllable diagrams. The User's Manual, TM 2780/004/00, Chapter 2 will be an additional
reference for assembler coding formats.

SYLLABLE PACKING

The machine language format of the AN/GSA-51A instructions can vary in length from
ONE to SEVEN 12-bit syllables. Therefore, many instructions are shorter or longer than the
core memory word length of four syllables. To CONSERVE core memory space, the assembler
PACKS the syllables into core memory using the following rules:

34

1. The first syllable of the first instruction in a program is always placed in the left
most syllable of the first register.

2. When the assembler starts packing a new instruction, it usually continues with the
next available syllable without necessarily changing to a new register.

3. Packing begins in the left-most syllable for each register and moves toward the
right. After all four syllables of a register have been used, the assembler continues
with the next instruction word.

4. Any instruction that has a tag or an asterisk in the tag field will be packed into
memory beginning with the left-most syllable of the next available register. Any
unused syllables in the previous register will contain zeros.

5. An index syllable always precedes the syllable it modifies.

The instructions below have been placed in instruction words using the rules given on
this page. Actually, the symbolic coding is changed to its BINARY MACHINE LANGUAGE
equivalent before being placed in memory, but it has NOT been changed in this example in
order to facilitate an understanding of instruction PACKING. NOTE THAT STACK REFERENCES
DO NOT REQUIRE A SYLLABLE.

TAG OP, coo~

7 8 9 10 I I 12 13 1415 Iii 17 18 1920 21 222324252 27282930 3132333435 3Ii 37 38 3940

~ . .IB iSU 0(\ h'" ~I\ 10 I" 11 iAJ. -t)(.I~ I~ .M~ . '
'"' rr IRI~ AMS 1M

" tt~ CO IUM 11 ,EN IS 1ioP
. \ I~ ,~ 61'O ,/", 1"\ I\:~ T ('\NE Co U~ 11'

S~ 0 I~ t>IA ll~ 3 01" Il IR \
C.EG 101 ~ tTiA \ -\ X3 011\ ,.1" ~I .. Ix 1'4 \ g A

,~ 10 P i\\ l T
.I

:

:"J -

BILLABLE 1 SILLABLE 2 SYLLABLE 3 SlLLABLE 4

REGISTER f/J BSU DATAl X5 DATA2

1 ANS TRS ANS CEQ
2 COUNl' TEN STOP (zeros)

3 BAD COUNT ONE COUNT

4 BAD DATA3 DATAl CEQ

5 X3 DATAl x4 DATA2
6 l~A (zeros) (zeros} (zeros)

1 HLT (zeros) (zeros) (zeros)

35

SYLLABLE ABBREVIATIONS

In defining the syllable layout the following syllable abbreviations are used:

B Branch address syllable

C Character syllable

F Field syllable

la Index increment amount syllable

10 Input/Output syllable

Iv Index increment variant syllable

Ja Subroutine jump address syllable

Ji Subroutine jump increment syllable

L Logical syllable

M Memory address syllable or stack reference

o Operator syllable

Rc Repeat count syllable

Ri Repeat increment syllable

S Shift syllable

T Thin film address syllable

Vs Special register and computer interrupt variant syllable

Vt Transmit variant syllable

x Index syllable

B BRANCH SYLLABLE

1

RELATIVE ADDRESS (0)

Figure 4-2

All twelve bits of the branch syllable are used to specify the relative address of the lo
cation to which the branch is taken. The contents of the BPR are added to the branch syllable
to obtain the absolute branch address. Indirect addressing CANNOT be used with a branch
syllable.

36

An octal Integer or an internal tag may be used as a branch syllable. The TAG may be
incremented or decremented by a decimal integer. Either the tag or the octal integer can be
indexed.

ASSEMBLER CODING FORMATS:

1. UCT 45
2240 0045 0000 0000

2. UCT ~1A
2240 0367 0000 0000

3. UCT ~1A+X2
2240 1000 0367 0000

C CHARACTER SYLLABLE

I~ CHARACTER

Figure 4-3

The character syllable is defined by a character or by two octal digits enc10sed by
brackets. The 6-bit Hollerith code or the two octal digits are inserted in the syllable. The
, (comma) cannot be used as a character.

ASSEMBLER CODING FORMATS: CSE M, C, B

1. CSE KTSAA,D,NS77
3526 1217 0030 1030

2. CSE KTSA,(24),NS77
3526 1217 0030 1030

F FIELD SYLLABLE

Figure 4-4

SHIFT AMOUNT = number of character shifts

FIELD LENGTH = 001 thru 111 = 7 characters; 000 = 8 characters

FIELD BEGINNING = 000 thru 111 starting character 0- 7 respectively.

37

The Field syllable is coded using three decimal integers - amount of shift (0 - 7),
followed by field length (0 - 8 with 0 or 8 indicating a full word) and the beginning field (0 - 7).

The field syllable may also be defined by using compool items which exactly fit into
bytes (fields). To use a compool defined item in a field syllable, use two item names or a
decimal integer (0-7). The number indicates the least Significant field position. If two item
names are given, and the item are of unequal length, the least Significant fields are aligned.

ASSEMBLER CODING FORMATS: SAF M,F,M

1. AIF CMAND+15,6 3 3,CMAND+15
4052 0122 3063 0122

2. SAF CMESG,CMESG 7,H
4151 1642 5025

3. CEF EEPN+X9,EEPN 7,BA13
5272 0011 4323 7420
0172 0000 0000 0000

4. SAF EDCY,EDCY EDCY,EDCY
4073 6400 1504 4062
6400 1504

I INDEX INCREMENT SYLLABLE
a

1

DECII1AL

Figure 4-5

lNTwLR

The index increment syllable is a signed decimal integer. The sign is coded as the first
bit in the Iv SYLLABLE.

I INDEX INCREMENT VARIANT SYLLABLE
v

1 I I I 5 I I I 9 I L I

VARIANT
INDEX REGISTER LIMIT REGISTER

ADDRESS ADDRESS

Figure 4-6

Bit 1 0 = increase; 1 = decrease
Bit 2 = 1 X> L
Bit 3 = 1 X < L
Bit 4 = 1 X = L ----

38

Index increment variant syllable contains three sets of characters which must always
be present. FIRST, the index (bit 5-8) is indicated as Xn where n is a decimal integer from
0-15. SECOND, the branch condition (bits 1-4) is coded as:

BR - Branch unconditionally

EQ - Index = Limit
GR - Index > Limit
GQ - Index2.Limit
LQ - Index~Limit

LS - Index < Limit
NQ - Index ~ Limit
NO - No branch

THIRD, the limit (bits 9-12) is indicated as Ln where n is a decimal integer from 0-15.

ASSEMBLER CODING FORMAT: XLC I ,I ,B
a v

1. XLC +3,X7 LS Ll,AD~36
1252 0003 2161 0062

2. XLC -~+X3,Xll NO L~,~
1272 0003 0000 4260
0000

3. XLC -1,X3 NQ L~,BA3
1252 0001 7060 0420

10 I/O SYLLABLE

1

Bit 11 12

1~\11121

Figure 4-7

o 0 conditional descriptor bus A
o 1 unconditional descriptor bus A
1 0 conditional descriptor bus B
1 1 unconditional descriptor bus B

The input/output syllable is defined by indicating the bus desired by an A or a B and the
type of descriptor by a U for unconditional and a C for conditional.

39

ASSEMBLER CODING FORMAT: TIO IO,M,B

1. TIO A U,SETUP,~
1672 0001 0461 0000

2. TIO A C,COMD,BAT
1672 0000 0462 0615

3. TIO B U,RELSE,~
1672 0003 0463 0000

4. TIO B C,COMD,~2D
1672 0002 0462 0023

J SUBROUTINE JUMP ADDRESS SYLLABLE
a

1

RELATIVE ADDRESS

Figure 4-8

The subroutine jump address may be defined either as a decimal integer, a compool
program tag which designates a subroutine, or an internal tag. When a compool tag for a
subroutine is coded in the Ja syllable the index value under the SAR will be set in the syllable
at assembly time. The value C(SARfJa) is loaded into the BPR and PCR.

J i SUBROUTINE JUMP INCREMENT SYLLABLE

, I

BAR INCREMENT

Figure 4-9

The subroutine jump increment syllable is defined by a decimal integer or an internal
tag. The value in the J i syllable is added to the present value in the BAR and the sum is then
loaded into the BAR.

ASSEMBLER CODING FORMAT: SRJ J ,J. a 1

1. SRJ REC,~
1450 0320 0000 0000

40

L LOGICAL SYLLABLE

I~
Figure 4-10

Bit 10 11 12

o 0 1 test POV (program overflow)
o 1 0 test PUN (program underflow)
1 0 0 test PNN (not normalized)

Any combination of more than one of the machine conditions may be specified in the
same instruction by supplying the appropriate codes separated by a blank.

ASSEMBLER CODING FORMAT: BRC L,M

1. BRC POV,TOM
1150 00001 1432 0000

2. BRC PUN,BOB
1150 0002 0736 0000

3. BRC PNN,SKP
1150 0004 1002 0000

4. BRC POV PNN PUN,ABC
1150 0007 0010 0000

M MEMORY ADDRESS SYLLABLE

RELATIVE ADDRESS (0)

Figure 4-11

Bits 2 through 12 contain the relative address of a core memory location. The contents
of the BAR are added to this address to obtain the absolute memory address. If bit 1 is set
to ~, the relative address is a direct address. If bit 1 is set to 1, it is an indirect address.

A memory syllable may be coded as-

1. an octal integer. (The number is NOT modified by the BAR at assembly time.)

41

2. a compool item or table tag. (If a system table is referenced, the syllable is NOT
modified by the BAR at assembly time.)

3. an internal tag

4. a register containing word (RC word)

5. a temporary register. (A T followed by a decimal number references the TREGS.
Leading zeros are ignored by the assembler.)

6. a stack reference- N for normal stack or H for hold stack.

ASSEMBLER COnING FORMATS: CLAM

1. CLA KIT
2040 4322 0000 0000

2. BSU H,0(1),H
6431 0407 0000 0000

3. LOR N,H,'C~~2+X1~
5507 0012 5337 0000

4. BAD N,T3,N
6510 0512 0000 0000

5. CLA K1T+4
2040 4326 0000 0000

o OPERATOR SYLLABLE

- ._- -

I 6 I I 12 1
I I I I I

COMMAND AI A2 A3
CODE CODE CODE

Figure 4-12

The first syllable of all instructions is an operator syllable. The first six bits indicate
the fundamental operation to be performed by the instruction. Each of the instruction mnemonics
has an octal number associated Wi-th it. The assembler converts the mnemonics to the binary
equivalent of the associated number and places this equivalent in these first six bits. For
example, a BAD (binary add) instruction would have 11~1~12 (which is 658) in the first six
bits of the operator syllable.

The second six bits contain three 2-bit address identification codes which, combined
with the basic structure of the particular instruction, indicate the number and types of syllables
that are to follow the operator syllable.

42

The 2/bit codes are:

00 - normal stack reference or no syllable (no syllable will be generated)

01 - hold stack reference (no syllable will be generated)

10 - unindexed memory, branch, or special syllables (one syllable will be gener
ated

11 - indexed memory, branch or special syllable (two syllables will be generated;
one for the index and one for the memory, branch, or special syllable)

ASSEMBLER COnING FORMAT:

1. UCT SA1~
2240 1615 0000 0000

2. BSU N~~4,S~14,N~~4
6452 3501 3567 3501

3. AIF CTSA+X8,~ 1 ~,CTSA+X8
4073 0010 0741 0020
0010 0741

R REPEAT COUNT SYLLABLE
c

1

COUNT OF REPETITIONS

Figure 4-13

Repeat count syllable is defined by a decimal integer.

Ri REPEAT INCREMENT SYLLABLE

1 I I I I I I I I I 12

AI INCREMENT A2 INCREMENT A3 INCREMENT

Figure 4-14

The repeat increment syllable is defined by three decimal integers ranging between
~ and 15.

ASSEMBLER COnING FORMAT:

1. RPT 42,1 1 ~,CA4~
1052 0052 0420 0102

RPT R ,R.,B c 1

43

S SHIFT SYLLABLE

VARIANT
17 I I I I 121

Figure 4-15

Bit 3 = 1 = double; 0 = single
Bit 4 = 1 = right; 0 = left
Bit 5 1 = logical; 0 = aritiunetic
Bit 6 = 1 = end off; 0 = end around

The shift syllable may be coded as a decimal integer-no (n <49)

FLCD N,39,N
3610 1247 0000 0000

To implement compool sensitivity on the shift instruction, the code CYC is used. The
shift syllable may be two compool item tags or an item tag and a decimal integer (ranging
from 1-48). The compool item tag may be followed by a slash (/) and a number (EPUN/5).
The number must be smaller than the number of bits in the item. If two elements are used
in the shift syllable, (EPUN/5 is one element) the two elements are separated by a blank.
The first item tag or integer indicates the initial least significant bit pOSition of the value.
The second item tag or integer indicates the least Significant bit position after cycling has
occurred. If the item tag is followed by a slash and a number, the bit position indicated by
the number is considered the item's least Significant bit position.

ASSEMBLER CODING FORMAT:

1. CYC N,ITER 29,N
3610 0613

2. CYC N,29 ITER,N
3610 0645

3. CYCL N,ITER ITEM,N
3610 0645

4. CYCL N,ITER/2 29,N
3610 0625

5. CYC N,ITEM/3 ITER/7,N
3610 0607

SHF M,S,M CYC M,S,M

ITER is a 12 bit item starting in bit 7. ITEM is a 4-bit item starting in bit 4.

44

T THIN FILM ADDRESS SYLLABLE

6 I I I 1121

Figure 4-16

Bit 3 - ~.= 1 register; 1 = more than 1 register
Bit 6 - ~ = 16 bit register; 1 = 12 bit register

The T syllable may be a thin film register alphanumeric tag or the octal address of
the thin film register.

ASSEMBLER CODING FORMAT: LTF M,T STF T,M

1. LTF H,1134
3030 1134 0000 0000

2. STF PCR,H
1544 0057 0000 0000

3. LTF H,BPR
3030 0054 0000 0000

4. STF M PSR1,H
1544 11 00 0000 0000

V t TRANSMIT VARIANT SYLLABLE

~~------,I 1121 VARIANT

Figure 4-17

Bit 10 11 12
1 0 0 R round
0 1 1 C change sign
0 0 1 + make the sign positive
0 1 0 - make the sign negative

45

ASSEMBLER CODING FORMAT:

1. TRM ABCD,+,ABCD
3452 0015 0001 0015

2. TRM ABCD,-,ABCD
3452 0015 0002 0015

3. TRM ABCD,C,ABCD
3452 0015 0003 0015

4. TRM ABCD,R,ABCD
3452 0015 0004 0015

5. TRM ABCD,R +,ABCD
3452 0015 0005 0015

V SPECIAL VARIANT SYLLABLE
s

Bit 10 11 12

100
010
o 0 1

Figure 4-18

Interrupt computer N
Upper/lower limit register to be loaded
Mask register to be loaded

The special or computer interrupt syllable may contain MASK (bit 10 = 1), BOUND (bit
11 = 1), and/or INTER (bit 12 = 1) as elements.

ASSEMBLER CODING FORMATS:

1. LSR ~lA,MASK
3150 0350 0001 0000

2. LSR ~3A,BOUND
3150 0400 0002 0000

3. LSR ~4A,INTER
3150 0420 0004 0000

46

LSRM,V s

X INDEX SYLLABLE

1 I I I 1 6 I I 1 J 112
INDEX REGISTER INDEX REGISTER INDEX REGISTER

ADDRESS ADDRESS ADDRESS

Figure 4-19

The 12 bits of an index syllable are divided into three 4-bit portions. Each portion
specifies the number of an index register (110 through 1510). The index register number is
the same as the index register address. If fewer than three indexes are used, the unused 4-bit
portions will contain zeros.

The index syllable may NOT be used with the following: an operator syllable, references
to RC words, the index syllable itself, within an instruction that is being repeated by a RPT
instruction, and with any reference to the stack-N or H. Up to three index registers may
modify one syllable. However, if the syllable is a compool defined MEMORY SYLLABLE, the
assembler automatically allocates one index register which leaves the programmer only two
index registers to use. For compool defined PROGRAMS the system limits the programmer
in his choice of index registers. In BUIC III, X15 is the system index register.

ASSEMBLER CODING FORMAT:

1. UCT GA~~+X1~
2260 0012 0421 0000

2. CEF TSTA+X8+X9,~ 5 ~,HATD
5272 0211 4363 0120
0763 0000 0000 0000

ASSEMBLER PSEUDO CODES

Pseudo codes or instructions perform certain operations or functions. However, they
do NOT have and do NOT GENERATE OCTAL codes such as a BAD (858) machine instruction.
Pseudo codes are never executed by the computer.

There are two types of pseudo codes - GENERATIVE and NON-GENERATIVE.

1. Generative Pseudos - a pseudo instruction is defined as generative if ONE or MORE
words appear in the OBJECT program as the result of its use.

2. Non-Generative Pseudos - a pseudo instruction is defined as non-generative if NO
word appears in the OBJECT program as the result of its use.

DECLARATIVE CODES

Declarative codes are generative pseudo codes. FOR EACH DECLARATIVE CODE THE
ASSEMBLER GENERATES ONE 48-BIT WORD OF INFORMATION. The one exception IS
the DIT code, which may cause more than one word of binary information to be generated.
A list of the BUIC III Declarative Codes is provided in Table I.

47

Declarative Code
Columns 14-18

ADR

ADRA

ADRP

CMK

DEC

DIT

DRA

FLT

HOL

LNG

MSK

OCT

SKP

TIX

VAL

48

TABLE I. BUIC m DECLARATIVE CODES

Declarative Code Name

Address

Address relative to BAR.

Address relative to BPR.

Complement Mask

Decimal

Ditto

Drum address

Floating

Hollerith

Length

Mask

Octal

Skip

Table index

Value

Specific Layout Columns
19 and Following

Internal tag or
compool table tag or
compool item tag or
octal integer

Internal tag or
compaol table tag or
compool item tag or
octal integer

Same as ADRA

Compool item tag

Signed decimal integer or
signed decimal fraction

Decimal integer

Compool program tag or
compool table tag

Decimal integer and
expanent

Eight characters

Compool table tag

Compaol item tag·

Octal integer

Decimal integer

Block I of Compaol
table tag

Compaol item tag wi
corresponding value

ADR. The address declarative code causes the assembler to generate a binary address
for the tag in the column 19 and following. The tag may be (1) an internal tag, (2) an octal
integer, (3) compool table tag and decimal block number, (4) or compool item tag. The ad
dress generated is relative to the ORG card or if there is no ORG card, it is relative to zero.
The address generated is right justified in the register. The ADR card is usually identified
by a data tag in columns 8 and following. If an internal tag is used (in column 19 and following)
the address associated with the tag in the tag table shall be used. Script an apostrophe if
indirect addressing is desired. Bit 32 is set to a one in the 48 bit word generated. An indirect
address bit must be used when reference is made to a compool defined system table so that
an entry is made in the absolute address list. See TM-2780/004/00 Chapter 2 for more
detailed information.

EXAMPLE:

Columns 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2
890 1 234 5 6 7 8 901 2 3
RA 1 2 AD R ' A 1 2

Code: c(RA12) = 0000 0000 0020 0054

ADRA. Declaring and scripting an ADRA code is identical to the ADR code. THE AD
DRESS GENERATED IS RELATIVE TO THE BAR. At assembly time the address generated
is decremented by the last SET BAR card value in the symbolic deck, unless an octal integer
is coded in columns 19 and following.

EXAMPLE:

Columns 1 1 1 1 1 1 2 2 2 2 2
4 5 6 7 890 1 234

ADRA A12

A12 is associated with 548 in the tag table. The last "SET BAR,7" card caused a BAR
value of 7.

Code: 0000 0000 0020 0045

ADRP. Declaring and scripting an ADRP code is identical to the ADR code. THE
ADDRESS GENERATED IS RELATIVE TO THE BPR. At assembly time the address generated
is decremented by the last SET BPR card value in the symbolic deck, unless an octal integer
is coded in columns 19 and following.

EXAMPLE:

Columns 1 1 1 1 1 1 2 2 2 2
4 5 6 7 8 9 0 1 2 3

ADRP A12

A12 is associated with 548 in the tag table. The last "SET BPR, 17"
card caused a BPR value of 178•

Code: 0000 0000 0000 0035

49

CMK. The complement mask declarative code generates a 48-bit binary complement
mask containing 0' s in all the bit positions occupied by the compool item and l' s in all other
bits of the word. The item is defined in columns 19-22.

EXAMPLE:

Columns 1 1 1 1 1 1 2 2 2 2 2
45678 901 234

CMK ITEM

Item starts in bit 4 and is 4 bits long.

Code:. 7037 7777 7777 7777

DEC. The decimal declarative code causes a signed decimal integer or a signed decimal
fraction to be converted to a 48-bit binary word. Up to 8 characters are converted.

EXAMPLE:

Columns 1 1 1 1 1 1 2 2 2 2 2
4 5 6 7 8 901 234

Code:

DEC
DEC

+ 2 9
- • 5

0000 0000 0000 0035
6000 0000 0000 0000

DIT. The ditto declarative code causes the last binary word which was generated as a
result of a declarative code to be repeated the number of times specified by the decimal
integer.

EXAMPLE:

Columns 1 1 1 1 1 1 2 2 2
4 5 6 7 8 901 2

Code:

DEC +9
D I T 9

Will be 10 words containing
0000 0000 0000 0011

DRA. The drum address declarative code DRA generates a 48-bit binary word con
taining the compool defined drum address for the table or program in bits 3-18, the sum of
the A and B lengths if a program in bits 19-36, and the drum number in bits 43-48.

EXAMPLE:

50

Columns 1 1 1 1 1 1 2 2 2 2
4 5 6 7 8 901 2 3

DRA
DRA

ATR
ALP 1

Code: 1773 0700 5050 0001
1507 5000 0000 0001

FLT. The floating declarative code causes a signed decimal fraction with a signed ex
ponent to be converted to a 48-bit floating point number. Bit 1 is the sign of the exponent, bits
2-12 are exponent, bit 13 is the sign of the mantissa and bits 14-48 are the mantissa. The
decimal fraction must be signed and must have a magnitude less than one, and may contain
up to 8 digits. The exponent, representing a power of 10, must be a signed decimal number
with a maximum value of 618.

EXAMPLE:

Column 1 1 1 1 1 1 2 2 2 2 2 222
456 7 8 901 234 567

FLT +.50E-1

Code: 4001 2000 0000 0000

HOL. The Hollerith declarative code causes the characters in columns 19-26 to be
converted to 6-bit Hollerith coding.

EXAMPLE:

Column 1 1 1 1 1 1 2 2 2 2 222
456 7 890 1 2 3 4 5 6

HOL GT

Code: 2763 6060 6060 6060

LNG. The length declarative code generates a 48-bit binary word containing the number
of blocks in the table in bits 1-6, the number of words per block in bits 21-30 and the total
length of the table in bits 35-48.

EXAMPLE:

Column 111 111 2 2 2 2 2
4 5 6 7 890 1 234

LNG BA01

Code: 0200 0000 0500 0012

MSK. The mask declarative code generates a 48-bit binary mask containing l's in the
bit positions occupied by the compool item. All other bits are zero. The item is defined in
columns 19-22.

EXAMPLE:

Column 1 1 1 1 1 1 222 2 2
456 7 8 9 0 1 234

MSK ITEM

51

ITEM starts in bit 4 and is 4 bits long.

Code: 0740 0000 0000 0000

OCT. The octal declarative code causes the unsigned octal integer starting in column
19 to be converted to a right justified binary word. Leading zeros may be suppressed and the
maximum number of digits is 16.

EXAMPLE:

Column

Codes:

1 1 111 1 222 2
4 5 6 7 8 901 2 3

OCT 6 0 741

0000 0000 0006 0741

SKP. The skip declarative code shall cause the assembler to increase the relative
location counter by the amount of the decimal integer appearing in column 19 and following.
No binary information is generated.

EXAMPLE:

Column 1 1 1 1 1 122 2 2 2
45678 901 234

S K P 10

TIX. The table index declarative code generates a 48-bit binary word. This word con
tains the 3 letter table tag in bits 1-18, bit 24 contains a ~'1" if entry is in the miXed section
of the compool and contains "0" if it is in the table section, the compool index value for the
table is in bits 31-42 and the table type is in bits 43-48.

EXAMPLE:

Column

Code:

1 1 1 1 1 1 2 2 2 2 2 2
456 7 8 901 2 3 4 5

T I X R S T 1

5165 2600 0004 2201

VAL. The value declarative code generates a 48-bit binary word containing the desired
value for the item positioned to the item. The item desired is in columns 19-22. The value
appears as a signed decimal number (8 or less digits) or as an unsigned octal number (8 or
less digits) starting in column 24.

EXAMPLE:

Column

52

1 1 1 1 1 1 222 2 2 2 2 2
456 7 890 1 2 3 4 5 6 7

VAL
VAL

I T EM - 6
I T EM + 6

ITEM starts in bit 4 and is 4 bits long.

Code: 0700 0000 0000 0000
0300 0000 0000 0000

There is one group of pseudo instructions which deal with shifting and cycling, all of
which c~use the assembler to generate an SHF instruction. These will be covered in a later
chapter with the rest of the machine instructions.

RC WORD

One of the most useful and common operands is the "RC" word. RC means "Register
Containing." RC words may be used in memory syllables. The Assembler generates the
appropriate binary word at the end of the program and inserts its address into the M syllable.

EXAMPLE:
CODE:

EXAMPLE:
CODE:

EXAMPLE:
CODE:

EXAMPLE

CODE:

EXAMPLE:

CODE:

TYPE SCRIPT

1. OCTAL O(X)

LCM 0(1), H
2333 0407 0000 0000

2. HOLLERITH H(Q)

TRS 8H(CONTROL), H
35440434 0000 0000

3. DECIMAL D(+X)

TRS D(+12) ,H
3544 0502 0000 0000

4. MASK M(ITEM)

Where X is an octal integer from 1-16
digits.

c(0407) = 0000 0000 0000 0001

Where Q is up to 8 keypunch characters,
and the) may not be one of the 8 char
acters.

c(0434) = 2346 4563 5146 4360

Where X is a decimal integer or a decimal
fraction (less than one) from 1-8 digits.
A sign must be included.

c(0502)= 0000 0000 0000 0014

Where ITEM is a compool defined item
name.

LOR ECCI,M(ECCI),ECCI (ECCI) is compool defined. It starts
in bit 13 for one bit)

5573 6400 2770 0405
64002770 c(0405) = 0000 4000 0000 0000

5. COMPLEMENT MASK C(ITEM) Where ITEM is a compool de
fined item name.

LAN EPUN,C(EPUN) ,H (EPUN is com}X>ol defined. It starts in
bit 43 for 5 bits).

5671 6400 1506 0406

c(0406) = 7777 7777 7777 7701

53

EXAMPLE:
CODE:

EXAMPLE:
CODE:

6. VALUE V(ITEM Y) Where ITEM is a compool defined item
name and Y is a signed decimal number,
an unsigned octal number, or a status for
a status item.

LOR H,(EPUN +1), EPUN
5533 0410 6400 1506

c(0410) = 0000 0000 0000 0002

7. FLOATING Flt.XE+Y)

BAD 100,F(-.8E+1) ,200
6552 0100 0277 0200

c(0277) = 0004 6000 0000 0000

(EPUN is compool defined. It starts
in bit 43 for 5 bits).

(Where X is a decimal fraction from
1-8 digits. Y is a power of 10 ex
pressed as a decimal integer witt
a maximum value of 618. Both signs,
the decimal point and the E are re
quired.

RC words may NOT be indirectly addressed, indexed, incremented nor decremented.
Duplicate RC words reference the same register.

CONTROL CODES

A control code provides control information to the Assembler. Control Codes are non
generative with the EXCEPTION of the DATA and END cards. The tag field must be blank
on all control cards except a comment card. A list of the BUIC In control codes is provided
in Table n.

TABLE II. BUIC m CONTROL CODES

Control Code Specifications Layout
Columns 14-18 Control Code Name Columns 19 and Following
Blank Comment Information for Listing
DATA Data Not Used.
DRUM Drum Location Compool program tag of drum

number and drum address
END End Internal tag or octal integer
IDT Identification Three character program tag

and optional two character
modification

ORG Origin One octal integer, two octal
integers or compool program tag

PRGL Program Length One decimal integer or two deci-
mal integers

REL Relative Address One octal integer, compool pro-
gram tag or data

SET Set Relative Base Base address type, internal
Address (BPR/BAR) tag or octal integer.

TREG Temporary Register Decimal integer

54

BLANK Columns 14-18. The comment card is used for symbolic information which is
to appear on the symbolic delayed output (DLO) tape or printer listing.

DATA. A DATA control code indicates the start of the information which the programmer
wishes to address under the BAR. The programmer groups all words which are used as data
at the end of the program and heads this group with a DATA card. The assembler will save
five words for control information.

The format for the five control words is shown in Figure 4-20. An example is given to
illustrate the control words. In the example, the number of RC words is 223; the relative
address of the RC words is 5147; the total length of the data area is 1772. What was the value
of the ORG card? If no ORG card is in the deck, then the values for the BAR and BPR are
zero.

Word 1

Word 2

Word 3

Word 4

Word 5

000
167

Number of RC
words

Relative Address of

RC words

Relative Address of
Instruction Area
Spares

1 1
8 9

Number of
instruction
Area * Spares

Number of
Data Area
Spares

Total Length
of Data Area

3 3
o 1

Relative Address
of Instruction
Area Spares

Relative Address
of Data Area
Spares

Relative Address
of Absolute
Address List

Absolute value
of BPR from
ORG card

Absolute Value
of BAR
from ORG card.

*The INSTRUCTION AREA contains all binary information generated before
the DATA card.

Figure 4-20. Five Control Words

4
8

55

SYMBOLIC LISTING

UPSBB STF Lll ,N
LTF N,PCR
REL 3500
DATA

N001 OCT 0

MACHINE CODE LISTING

03435 1540 0033
03435 3010

r'DD
0002 2300 4200

03501 0051 4701 0000
03502 0034 3617 7200
03503 0000 0000 0000
03504 0000 0000 0000
03505 0000 0000 0000

0057

3436) 5372 five
1434 control
0000 words
0000
0000

If a DATA card is inserted, DATA is considered as an internal tag and is listed in the
tag table.

If NO DATA card is included in the deck, the five control words will still be generated.
However, they will be labeled CONTROL WORDS and appear after the declarative codes and
before the internally generated RC words. An example is given below:

CONTROL WORDS

02754
02755
02756

{

02757
02760
02761
02762
02763

GENERATED CONSTANTS 02766
02767
02770

0000
0000 0000 0000 0000
0000 0000

6000 6707 2300 3055)
0027 6600 0001 4000
0030 5540 0000 0005
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0050
0000 0000 0004 7777

DRUM. A DRUM control code indicates the drum number and drum address of the
following binary information. All binary information generated after the drum card is output
in drum storage tape records. If no drum card is used, binary information is output in core
storage tape records. Column 19 and following may be scripted in the following ways: (1) a
compool program tag of three letters. The drum number and drum address from the compool
are used. (2) Script a drum number where the number is 1-3. Leave one blank and add the
drum address where the address is an octal integer from 0-177777.

END. The END control code indicates the last card is a symbolic program deck. An
octal integer or an internal program tag may be coded in column 19 and following. If a tag
is used, its address is decreased by the value on the last SET BPR,X card. The octal number
or modified tag address is considered to be the relative starting address for operation of
the program. This address is inserted in the second word of the core operate tape record.
The octal number can range 00000 to 77777.

IDT. The identification card is the first card in every deck prepared for assembly.
Columns 19-21 contain three alpha characters to identify the program name. Column 22-23
contain two alphanumeric characters, the modification (mod) of the program.

56

ORG. The origin card contains the BPR and BAR values for the program at run time.
When a program is read into' core from tapes, the BPR value on the ORG card is used as the
first address for the program area. The BAR value is used as the first address for the data
area.

1 1 111 1 222 2
Columns 4 5 6 7 8 9 0 1 3 4

Example: 0 R G x, y

The specifications field may be scripted in the following ways:

1. The BAR and BPR may be scripted from 0 - 777778. When only one number is used,
both the program area and the data area are given the same base address value.

1 1 1 1 1 1 222 2 2
Columns 4 5 6 7 8 9 0 1 2 3 4

Example: 0 R G

C(BPR) = 10000
C(BAR) = 10000

1 000 0

2. Script the BPR where the octal address is from one to five digits 0-77777. Add a
comma. Script the BAR with an octal address between 0 - 77777.

1
Columns 4

Example: 0 R G

C(BPR) = 40000
C(BAR) = 43000

1 2 2 2 2 2 2 2 2 2 2
901 234 5 6 7 8 9

4 0 0 00, 4 3 000

3. Script a compool program name of three letters. The program core address is used
as the BPR's value. The program core address plus the length of the program area is used
as the value for the BAR.

111 1 1 1 2 2 2 2 2
Columns 4 5 6 7 8 9 0 1 2 3 4

Example: 0 R G RAP

C(BPR) = value of compool program area.
C(BAR) = BPR + program area length.

PRGL. The program length control card indicates the lengths for the program instruc
tion area and the data area. These lengths override previously defined lengths. This card must
appear before the DATA card in the symbolic deck. The specifications field is mandatory
and may be optionally scripted in one of the following ways:

1. Script program area length where the decimal length is from 0 - 20000. When onlyone
number is used, the data area length is set to zero.

57

2. Script program area length where the decimal length is from 0 - 20000. Add a comma.
Script data area length where the decimal length is from 0 - 2048 •

. REL. The relative address control card indicates the relative location of the binary
information generated after the REL card. The location is relative to the origin card values.
If no REL card is used, the relative location is assumed to start at zero. A REL card can be
used as often as desired within a program and shall reset the assembler's counter that gener
ates relative addresses.

The specifications field (column 19 and following) may be coded in the following ways:

1. Script the relative address with an octal number between 0 - 77777.

2. Script a three letter compool program tag. The program core address from the
compool is used as the address for the following code.

3. Script DATA. The core address of the program entry in the dictionary
plus the program area length is used as the relative address for the following code.

SET. The set BPR/BAR/SAR control code is used at ASSEMBLY time ONLY. The SET
card tells the ASSEMBLER what the BPR and BAR values SHOULD be set to at run time.
The assembler then computes all memory and branch syllables for these particular BAR
and BPR values. BAR,BPR or SAR goes into columns 19-21. This is followed by a comma
and an octal number, DATA or an internal program tag. Any number of SET cards may
appear in a deck. If no SET cards are included, all addresses are relative to zero.

SET BAR,X

SET BPR,X

SET SAR,X

Where X is an octal number, DATA, or any internal program tag.
All memory syllables except those generated for compool defined
system tables and for octal integers shall have the numerical value
of X subtracted from their numerical value.

Where X is defined as above. All branch syllables except those gener
ated for an octal number shall have the numerical value for X sub
tracted from their numerical value.

Where X is an octal number, DATA or any internal program tag. All
Ja syllables shall have the numerical value of X subtracted from their
numerical value.

TREGS. The temporary register control code reserves the indicated number of words
for temporary storage.

58

11111 1 222
456 7 8 901 2
TREG N where 1 < N < 1000

The TREGS are used in memory syllables.

BAD T1,T2,T3 is the same as
BAD T01,T02,T03 is the same as
BAD TOOl, T002, T003

If your program happens to have an internal tag called T1, and a temporary register
called T1, the program will reference the internal tag. There is only ONE TREG card in a
deck and it can be inserted anywhere between the IDT and END card.

The following section of a program illustrates ORG, DIT, OCT, HOL, TREG, and REL
CARDS.

ORG 0

* NOP 00000 0000
DLIST UCT START 00001 2240 2000

OCT 0 00002 9999 0000 0000 0000
DIT 1000 00003 0000 0000 0000 0000

SET OCT 200021 01753 0000 0000 0020 0021
RELSN OCT 20 01754 0000 0000 0000 0020
CMD1 OCT 17000100000301 Teleprinter One Line Output 01755 0017 0001 0000 0301
CMD2 OCT 40000100000010 Flex 40 Octal Words 01756 0040 0001 0000 0010
CUE OCT 70010 01757 0000 0000 0007 0010
CONTL HOL CONTROL 01760 2346 4563 5146 4360

HOL MODE 01761 4446 2425 6060 6060
TREG 40
REL 2000

START SRJ CUE,CONTL 02000 1450 1757 1760

* CLA H 02001 2020
LTF H,MX1 02001 3030 1001
LTF H,M X14 02001 3030

02002 1016

OCTAL CORRECTOR CARDS

Octal correctors are used to make changes or corrections to program areas and d a t a
areas in core or on drums. (Octal correctors are called octal correctors because the infor
mation on the IBM card is coded in octal digits.) The following card format is now in use
as a BUIC Octal Card.

'DT. Moa ADDR. 0 WORD 1 WORD 2 WORD :3 WORD 4

OOOEOO00000000000000000000000000
1 2 3 4 5 6 1 • 910111213 M 151617" t9 ZOI11222324In2fi l7 2112130 3132~34 3531Dl313940141424344t45484141 nll5152153 M5551157$15asolll52l3~ 581&111161 10 1I121n J4157&ln JI791j

11111111111111111111,1111'1111'11111111'1111'1111'11111111'111111 11111 1111111'1111,1111'1111
I I I I I I I I I I I I

2222222222222222222212 2 2 2'2 2 2 2'2 2 2 2 2 2 2 2'2 2 2 2'2 2 2 2,2 2222222,2222'222 z,z 2 222222'2222'2222'2222
I I I I I I I I I I I I

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 313 3 3 3'3 3 3 3 3 3 3 313 3 3 Ji3 3 3 313 3 3 3 3 3 3 3,3 3 3 3'3 3 3 Ji3 3 3 3 3 3 3 3,3 3 3 313 3 3 3,3 3 3 3
I I I I I I I I I I I I

4444444444444444444414444,4444,44444444'4444'4444,444 4 4 4 4 4'4 4 4 4'4 4 4 4'4 4 4 4 4 4 4 4'4 4 4 4'4 4 4 414 4 4 4

, I I '" '" '" 515 5 5 515 5 5 5,5 5 5 5 5 5 5 515 5 5 5'5 5 5 5'5 5555555'5555'5555'55555555'5555'5555,5555
I I I I I I I I I I I

66666666666666666666,666616666'6666666616666 16666,666 6 6666'6666'6666'66666666,666616666,6666
I I, "I I', ",

7 717 71717111711711111,117117111117111711,17111111,1 711111111111

8888R888

9 9 9 919 9 9 9
17345171

... LIIIi.

BUIC DB25 OCTAL CARD
LEGEND--E.ENDCARD D.DRUM(1-41

ADDR." OCTAL CORE OR DRUM ADDRESS

59

CODING CONVENTIONS FOR OCTAL CORRECTOR CARD

60

I~DJ NOD. ADDR. D WORD 1 WORD 2

ntiS ;'S ll'ITA I
.. 'I 1'1 I

WORD :3 WORD 4

0. 0. 0. Ell 0. 0. 0.110. 1111 0. 0. 0. 0. 0. 0. 0. ~ 0. 0. 0. 0. 0. 0. 0. 0. ~D ~ 0 ~ ~~ ~ ~ ~~ ______ ~ III 0. 0. 0. liD 0. ~ 0. 0. I 0. 0. 0. I 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1 1 J .. 5 S 1 8 9 10 11121314 151617 1~ 192DI21222J2412~26 272812930 3132 33435361313839401414243441454647 .. 95051521535455561515B59&OI61626~6' 566&16816910 n 12113 1475761n 187980

1111111111111111.111111111111111 11
1 I I I I I I I I 1 1 I

2222212222222222212212221'222212 2 2 2 2 2 2 212 2 2 2'2 2 2 212 22222221221212122122222222'22221222212 222
I I I I' I I I I I I I

333333333333333333131333311333'333333331333313333,33 3 3 3 3 31,3 3 3 313 3 3 NI3 3 3 3 3 313 3 3 313 3 3 313 333
I I I I I I I I I I t I

444444444444444444411444 4i4 4 4 414 4 4 4 4 4 4 4'4 4 4 414 4 4 .,4 4 4 4 4 4 4 414 4 4 414 4 4114 4 4 4 4 4 4 404 4 4 414 4 4 414 4 4 4
I I I I I I I I J I I

555555555555555555551555:5555111 5155551555 SIS 5 5 515 5 5 5555 SIS 5 5 515 5 5 SIS 5 5 5 5 5 5 515 5 5 SIS 5 5 515 5 5 5
I r I I I I I r I I I

666666666666666666661666616661'6666666616666 '6666166 6 6 6 6 6 616 6 6 6'6 6 6 616 6 6 6 6 6 6 6,6 6 6 6,6 6 6 616 6 6 6
I I I I I I I I 1 I r I

77177777 777777777 777777771777777777717777177777777777 717 7 7 717 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 717 777

I 88888888

19 9 919 9 9 9
9UIC 0925 OCTAL CARD

LEGENo--E 'ENo CAl o· DRUM (1-4)

I 2 3 .. S I 7 I
taMLUtMt

COLUMNS

1-3

5-6

9-14

16

17-32

33-48

49-64

65-80

AooR.· OCTAL CORE OR IRUMtooRESS

SCRIPT

Identification of the program being corrected.

Model number of the program.

Relative address of data or instructions to be corrected.
A "P' I indicates that the address in cols 9-14 is to be
considered as RELATIVE to the BPR.

An "A" indicates that the address in cols 9-14 is to be
considered as relative to the BAR.

A blank indicates that the address in co Is 9-14 is to be
considered as ABSOLUTE. The address will NOT BE
ADDED to the BPR or BAR values on the BPR/BAR card.

Script a drum number 1-3. If a drum number appears in
column 16, the address in cols 9-14 will be interpreted
as a drum address. If column 16 is left blank, the octal
corrector is to be loaded into core memory.

First 16 digit word.

Second 16 digit word.

Third 16 digit word.

Fourth 16 digit word.

CODING CONVENTIONS FOR BPR/BAR CARD

The octal corrector deck is normally PRECEDED by a BPR/BAR card. The purpose
of this card is to tell the loader program that all octal correctors following this card are
to be loaded into memory relative to the value specified on the BPR/BAR card.

The CORE octal addresses are considered RELATIVE to the BPR or relative to the
BAR. DRUM octals ar.e considered ABSOLUTE addresses.

III MOO. WORD 1 WORD 2 WORD 3 WORD 4

o 0 0 E ,~ 0 ~I~ ~ 0 0 0 0 0 0.01111 0
, 2 3 .. 5 Ii 1 I 9 10 11 12 13 14 15 16 11 18 \9 2012'1 2~ 23 24125 26 21 29129 30 31 32 J J4 35 liD7 3139 4(1141 42 434414546414 \I 50 51 5215354 55 56'5758 59 &016162 6J 64 56& 67 58'6910 11 nl73 74 75 761n 1879 a

111 111'1 111111111 1111111111111
I I I I I I I I I I 1 I

12 2 2 2 2 2 2 2 2 2 212 2 2 2 2 2 212 2 2 212 2 2 212 2 2 2 2 2 2 212 2 2 2'2 2 2 212 2 2 2 2 2 2 212 2 2 212 2 2 212 2 2 2 2 2 2 2'2 2 2 212 2 2 212 2 2 2
I I I I I I I I I I I I

J J J J J J J J J J J J J J J J J J J JIJ J J JIJ J J JIJ J J J J J J JIJ J J JiJ J J J,J J J J J J J JIJ J J JIJ J J JiJ J J J J J J J,J J J 3IJ J J JIJ J J J
I I I I I I I I I I I I

4444444444444444444414444,4444,44444444'4444'4444,44 4 4 4 4 4 414 4 4 4'4 4 4 414 4 4 4 444 N 4 4 414 4 4 414 4 4 4
I I I I I I I I I I I· I

55555515555555555555,5555,5555,55555555'5555'5555155 5 5 5 5 5 515 5 5 515 5 5 515 5 5 5 5 5 5 515 5 5 515 5 5 515 5 5 5
I I I I I I I I I I I

666666666666666666661666616666'6666666616666 16666166666 6 6 616 6 6 6'6 6 6 616 6 6 6 6 6 6 6,6 6 6 6,6 6 6 616 6 6 6
I I I I I I I I I I I I

71777777 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 717 7 7 7 7 7 7 77 7 7 717 7 7 7 7 7 7 77 7 7 717 7 7 717 777

88888888

9 9' 919 9 9 9
I 2 3 .. 5 I 7 I

.... LEES'.

9UIC 0925 OCTAL CARD
I

COLUMNS SCRIPT

1-3 BPR

LEGEND--E' END CARD D' DRUM (1'4)

AODR.- OCTAL CORE OR DRUM ADDRESS

5-10 ABSOLUTE address of the first instruction in the pro
gram area.

13-15

17-22

BAR

ABSOLUTE address of the first data register in the data
area.

61

CODING CONVENTIONS FOR END·CARD

The octal corrector deck is FOLLOWED by an END card which causes termination of
the octal load function.

lOT. Iro~ AOOR. 0 WORD 1 WORD 2 WORD 3 WORD 4

000 0000 000000 000000000000000000 0000000000000000 0000000000000000 0000000000000000
" , ., . J I 9 1011121314 151611 11 It 20111 22232412526 2'7 2tp930 3132 F 34 353&Dl31]'.014142 43""54147 4 "505152153545551'575151'''1'1263&< 56661111697Dn UI1l741576lnlsn8O

111 111 11111111 111111111111111111111 1111111111111111111 11111111111 11111 111 1111'111111111'1111
0 I I I I I 0 0 I , , I

222 222 22222222 2 2 2 2 2 212 2 2 212 2 2 212 222 222212222'2222i2 222 2 2 2 212 2 2 212 2 2 212 2 2 2 2 2 2 2'2 2 2 212 2 2 212 2 2 2
I I I I I I I I I I I I

333 333 33333333 3 3 3 3 3 JI3 3 3 313 3 3 313 3 3 3 33331333313333,3333 33331333313333 03333 333313333133 3 313 3 3 3
I I I I I I I I I , I I

444 444 44 444444 4 4 4 4 4 414 4 4 414 4 4 414 4 4 4 4444144441444414444 444 414 4 4 414 4 4 414 4 4 4 44 4 404 4 44144 4 414 4 4 4
I I I I I I I , I I I I

555 555 55555555 555555,5555,5555,5555 5555155551555515555 5555155551555515555 5555,5555 '555515555
I I I I I , I I , I 0

666 666 66 666666 666666166661666616666 6 6 6 616 6 6 606 6 6 616 6 6 6 666616666'666616666 6 6 6 6,6 6 6 6,6 6 6 616 6 6 6
I I I I I I I ,

I I I I

717 717 77177777 777771 7 7 7 7 7 71 717 7 7 7 7777171 7 717 7 7 7 7 7 7 7 771711 7 7 7171 7 717 7 7 7 7777777771 7 7,7 7 7 7

881 888 88
LEGENO- -E' END CARD O· DRUM (1-4) BUIC 0825 OCTAL CARD

999 91 99 99 ADDR.' OCTAL CORE OR DRUM ADORE SS

" I • II 7 I
.. Lit•

COLUMNS SCRIPT

4 zero

BINARY CARDS

Binary cards are rarely encountered in the BUIC III system -- mainly because the
BUIC m system doesn't have the capability to produce binary cards~ To produce binary cards,
a card punch must be included as one of the peripheral devices. BUIC ITI doesn't have a
card punch. However there are instances such as startover when binary cards might be used
by the computer operator. Below is an example of a binary card.

62

~AO WC;U wc:c wo.. .. o iW'~F"-6 -v:o:-o-rv.oo;0" Wo:o ·w~~-~:· ~tr w~:fJ ~IJ 1- "1I ~
A A 000000000··,0 00000000000000000000000000 ;0000000000000000+

D ADEOOOO~OOOO .. 010. ~ooolDo.a~oooooo.~oao. 00000000 ooooooo~ooo~ooo f

(D D ,000010 0 0 0 ono ~:~IO 0 ooloouloa Q 11000 010 00 100001000 I I 0 0 11000 1111 0 D 110 0 0 I -I
COLUMN I '-IlLATION TO "11 .•• RELATlONTO 11M OO-DllUIII WItDI- NQ wt'IMa "£11 CARD

I I 0 0 0 0 ~ 0 0 00: 0 0 0 . OJ 0 0 000 0 0 0 000 . 00 0 000 0 0 0100 0 0 000 0 000 0 0 000 0 0 0 0 0 0 0 0 H

I· 000 0~008·. 080000 0 0~00000'00080000 iOOOOOOOOOOOOOOOOOOOOOOOOOOOOE

S S HID 0 0 010 0 0 180 Q Q !.ll..UJl tU 110800100 au 100100 OlIo 0 0 100000000000 0000000 10000 I
COWIItI4 It(.l'_ettWIYCAIIID CODElW ENDCAIID(Y RY O-OCTaL ... IrI)QCQCIt.III D-DIIlU.IJCIPmON JC ADDII.TMD~

S D S 0000000 1.1 I. 00 11'1 10 1000 aDO 0 ID 0 0 000 u DO 0 eo 0 ~ 0.0 0 ~O 0 0 000 1000 1000 OK

+. + OOOO~OO 0 0 ro 000000810000000 ;000000008000000 1000000000000 I
+e+DOOOODOO 0000100 .l.ll 9...ll'0000OU8000o:10000000000000000000000DOOOOO I

+O+ROOOOOOOOO .. IOOOOOO 0000 ,00810000000.iOOOOOOOOOOOOOOO ODOOOOOOOOOOM

+R + U 0 0 0 O. 0 0 0 00 0 0 ~ 0 0 ~ 0 0 ~ 0 0: 0 0 0 0 0 0 0 -, ~ 0 0 0 0 a 0 0 0 0 0 80 0 0110 8 0 0 0 0 0 0 0 0 0 +

Hluooooooo ·onoo,o, .1100000 .. 0000000 lOODOODOOOOOOOU OUDlOOODOOofl-
12 a 4' 11. '10nIl1l-.. -iir.-•• tfiJi'M2S."2I •• ~3I)lJS.3J •• 4141aa"."" ••• IIUD " ••• .,uaM •• Il.

_Lll • .,.

Binary Card

~ 1 101.

00000
n MJlJI

111 11

2 222

33333

4 4 14

55555

6666 I

77171

88818

99999
12 M1511

~ sJ ro c
00 00 (") ,771 ,,- 0 11 11 0:>

2 I 12
]'\)
(]I

3333
(")
0
r

44 ~4 C
3:

555 I Z

6666 rol. zl
7717 J>

::0

88 i 8
-<

9999
In "lit ..

COLUMN

1-4

5-68

69-80

MEANING

contain control information such as whether the infor
mation is for drums, relative to the BAR or BPR, etc.

16 binary words.

More control information.

63

CHAPTER 5

INTERNAL DATA STRUCTURES

TABLES

The two basic structural table types are PARALLEL (or block) and SERIAL (or slot).

PARALLEL SERIAL

Block 1 Entry 0 Block 1 Entry 0 - - - ---
Entry 1 Block 2 1------
Entry 2 Block 3 ------
Entry 3 Block 1

Block 2 _ -Entry.Q. -- Block 2

_~n~y_l __ Block 3

:-~~r~=-
Entry 2 . Block 1 ------

Entry 2 - - - - --
Entry 3 Block 2

Block 3 Entry 0 Block 3
~-+ --

-- -- -
Entry 1 Block 1 Entry 3

r..--- - -
Entry 2 Block 2

~-- -
Entry 3 Block 3

:~r----

PARALLEL TABLES

A parallel table is always of RIGID or FIXED STRUCTURE, i.e., the number of blocks
is always the same and items are unique to a certain block of the table. A parallel table
could, however, be of VARIABLE LENGTH. If the number of entries in a parallel table is
not constant and the table is packed from the top (entry 0 position in above diagram) down,
this table might reasonably be considered of variable length.

SERIAL TABLES.

A serial table may be of RIGID length but it could also be a VARIABLE length table,
i.e., the length of the table at any instant would correlate with the current number of entries
or full slots in the table.

A serial table could also be of VARIABLE STRUCTURE. One entry might require eight
registers, another three registers, and still another fourteen registers. This would mean
that the number of registers in each entry is not constant. An example of this might be a
recording specification table for BUIC.

64

If a parallel or serial table has rigid structure but variable length, the NUMBER OF
BLOCKS is equal to the number of words in each entry. The maximum number of entries
would be the number of words per block, and the maximum table length would be the product
of the two. An additional word, however, is appended to the beginning of the table. This word
is maintained by those programs using the table. It contains the number of entries or number
of full registers currently in the table. This word is addressed by requesting block 0 of the
table. This control information should be in the least significant twelve bits of the word.
THE ADDRESS OF THIS TABLE IN THE COMPOOL WOULD POINT TO THE FmST WORD
OF THE FmST ENTRY (BLOCK 1), NOT TO THE CONTROL WORD (BLOCK 0).

VARIABLE LENGTH PARALLEL TABLE

Block 0
Control Word

Block 1 Entry 0
1
2
3

Block 2 0
1
2
3

Block 3 0
1
2
3

I/~

.....

Starting address of table in compool.

The total length of table in compool.
The number of blocks in this table will
appear in the compool as 3. The number
of words per block is 4. Because this
table is variable length the control word
is assumed.

For a serial table of rigid structure and rigid length the number of words per entry
is the number of blocks in the table. The total number of entries this table will hold is the
number of words per block. Assume in the example of a serial table given at the beginning
of this chapter that t.his table was 300 registers long. There are three words in each entry
(or three blocks). There would then be 100 words per block.

VARIABLE LENGTH SERIAL TABLE

Block 0

Block 1
2
3

Block 1
2
3

Block 1
2
3

Block 1
2
3

Control Word

Entry 0

Entry 1

Entry 2

Entry 3

II

1\/

Starting address of table in compool.

Length of table in compool.
The compool would say that this
table has 3 blocks, 4 words per
block, maximum length 12.

65

A SERIAL TABLE of VARIABLE STRUCTURE and RIGID LENGTH will be defined in
the compool as having one word per block; the number of blocks and the total table length are
synonymous. The number of blocks in the compool for this type of table, however, will appear
as zero. For a SERIAL table of VARIABLE structure and VARIABLE length the number of
words per block should again be equal to ONE and the total (or maximum) table length and
the number of blocks are synonymous. In the compool again, however, the number of blocks
will appear as ZERO. This table will also have a CONTROL WORD appended to it (Block 0
of the table) which should contain the current number of full registers in this table.

BUIC TABLES

Tables in BUIC are addressed in three ways:

1. DIRECT ADDRESSING for those tables that occur within the range of a program's
BAR. These are BAR TABLES.

2. ABSOLUTE ADDRESSING USing index registers. These are SYSTEM TABLES.

3. INDIRECT ADDRESSING. If the table is neither a BAR table or a system table it is
then an INDIRECTLY ADDRESSED TABLE.

If a table is ooder the range of a program's BAR, a core address is meaningless. The
Assembler will assign the address according to the type of BAR table that it is. The BAR
T ABLE types are as follows:

a. TYPE A TABLES are those that must be saved from roo to roo. These tables will
be saved on drums after each roo of the program so that the next roo will have
this information again.

b. TYPE B TABLES are those that contain PRESET information but NEED NOT
BE SAVED after each roo. These tables will be brought into core for each roo,
may be modified if desired, but the new contents will not be saved. Hence, on the
next roo the original will be restored.

c. TYPE C TABLES are used. as buffer area. These tables are used solely for the
purpose of TEMPORARY STORAGE WITHIN ONE PROGRAM. The condition of
the table prior to use is not guaranteed nor are the contents saved.

d. TYPE 0 TABLES are used in special I/O transfers. Programs that GENERATE
TABLES FOR DISPLAY or use tables to RECEIVE INPUTS FROM SOME Vo
DEVICE, will have this type of table. This will allow these tables to fall ooder
the BAR of a particular program, yet will allow the control program to access
them fairly easily.

ITEMS

The following is a brief review of the items used in BUIC.

B = BOOLEAN

A one-bit indicator or a series of one-bit indicators being treated as one item.

66

v == VALUE

The value of each configuration of bits in the item has a specific meaning, i.e.,

I == north

2 == east

3 == south

4 == west

U == UNSIGNED

Any unsigned number. If the number is an integer (counters, arithmetic integers, etc.),
it need not have scaling associated with it. If it contains fractional bits, then scaling must
be associated with it.

S == SIGNED

Any signed number. Again it mayor may not have scaling associated with it.

C = CHARACTRON

Charactron code is that code which generates symbols on the situation or tabular dis
play scopes.

D = BINARY CODED DECIMAL

The item is divided into a series of four bits, with each set of four bits representing
a decimal digit.

H = HOLLERITH

This Hollerith is assumed to be in Burroughs' format.

T = TRACK NUMBER

Track numbers should be left justified in the assigned bits.

M = MIXED

Items defined as M type are assumed to INCLUDE MORE THAN ONE DISTINCT PIECE
OF INFORMATION grouped as one item for programming convenience.

COMPOOL

In OPERATIONAL BUIC programming, tables and items used by more than one pro
gram are listed in the compool (Communication Pool). This is nothing more than a convenient
reference guide listing the tables, items, and programs in the BUIC ADP system. It gives
such information as scaling, length of tables and items, bit positions of items, and core
locations. During assembly, the assembler has access to the compool. Therefore, one may
reference symbolically one particular table, and the assembler will automatically search
the compool and insert the table's RELATIVE core location.

67

SYSTEM INDEX REGISTERS

When a compool is constructed, the area of core that the tables and programs occupy
is divided into blocks of 204810 or 40008 registers or half modules. There is a SYSTEM
INDEX REGISTER assigned to each half module of core.

In the BUIC ADP system, compool occupies two entire consecutive memory modules.
There are then four half modules. Each half module is assigned an index register. Index
11 is assigned the first half module; index 12 is assigned the second half module; index
13 the third half module; index 14 the fourth half module. For example, if compool occupies
memory modules three and four - 20,0008 to 37,7778 the index registers would be loaded
and assigned as follows:

c(X11) = 20,1 00 assigned to core locations 20,000 to 23,777

c(X12) = 24,000 assigned to core locations 24,000 to 27,777

c(X13) = 30,000 assigned to core locations 30,000 to 33,777

c(X14) - 34,000 assigned to core locations 34,000 to 37,777

When a compool defined table, item, or program is referenced, the assembler GENERATES
(in addition to the memory syllable) an INDEX SYLLABLE containing the INDEX REGISTER
associated with that section of core. It is the programmer's responsibility then, to be aware
of this index register and to maintain its contents.

In the memory syllable a RELATIVE address is generated rather than an absolute
address, because only 11 bits in a memory syllable can be used for an address. The twelfth
bit is the indirect addressing bit.

A COMPOOL defined table, NPS01, is located at 20,000 for 10010 registers. The follow
ing reference is made to it.

*BAD NPS01,N,N

The instruction would appear in core -

6564 4400 0000

(BAD) (XU) (NPS01's FIRST RELATIVE address)

Note that the ASSEMBLER AUTOMATICALLY added an index syllable and the address
of the assigned index register. Nowhere in the ·symbolic coding did it specify X11. At run
time the following would occur -

c(X11) = 20000

memory 0000
c(syllable) = 20000 = ABSOLUTE address of NPS01

68

COM POOL CODING CONVENTIONS

When referencing compool items, tables, and programs in a memory syllable, there
are certain coding restrictions.

ITEMS = all item names are FOUR alpha characters.

TABLES = all table names are three alpha characters followed by ONE or TWO
digits.

NPS01 is the SAME as NPS1. However, a table CANNOT be referenced
as NPS.

PROGRAMS = all programs are three alpha characters.

COMPOOL USAGE IN THE CYC INSTRUCTIONS

The following are special applications of compool using the CYC pseudo instruction.

To implement compool sensitive coding of the shift instruction, the code CYC in columns
14-16 is used. A 368 is generated in the operator syllable and the S (shift) syllable indicates
a full right cycle. The syllable layout (starting in column 19) is (M), Y, (M). The Y may be
two compool item tags or an item tag'and a decimal integer (ranging from 1-48). The compool
item tag may be followed by a slash and a number. The number must be smaller than the
number of bits in the item. The two elements are separated by a blank. The first item tag
or integer indicates the initial least significant bit position of the value. The second item tag
or integer indicates the least significant bit position after cycling has occurred. If the item
tag is followed by a slash and a number, the bit poSition indicated by the number is con
sidered as the least significant bit position.

CODE GENERATED
EXAMPLE SYMBOLIC EQUIVALENT BY THE ASSEMBLER

CYC N,ITER 29,N FRC N,n,N 3610 0613

CYC N,29 ITER,N FRC N,37,N 3610 0645

CYC N,ITER ITEM,N FRC N,13,N 3610 0615

CYC N,ITER/2 29,N FRC N,21,N 3610 0625

CYC N,ITEM/3 ITER/7,N FRC N,35,N 3610 0643

69

SCALING

A number, as such, is of very little use, and must be related in some way to the physical
world to be meaningful. In other words it must represent units of some kind, such as miles,
pounds, degrees, etc., and must contain a radix point to indicate which parts of the number
are integral and which are fractional. The radix point in the decimal system is known as the
decimal point, in the octal system as the octal point, and in the binary system as the binary
point.

No digital computer keeps track of the unit represented by numbers within the machine;
this is always up to the programmer. The AN/GSA-51A has the capability of keeping track
of the position of the radix point within the machine; since this point may move, according
to the operation performed, this is known as a FLOATING POINT capability. The AN/GSA-51A
also may perform operations without keeping track of the radix point, but treating all numbers
as fractions. This is known as a FIXED POINT capability. The technique of keeping track
of the radix 'point in fixed point operations is known as SCALING.

SCALING NOTATION

To facilitate communication between programmers, a type of scaling notation must
be arbitrarily adopted. The method to be used in this document will merely indicate the
number of bits between the sign bit and the imaginary radix point. If we denote 0.011000'.002
as being scaled B2, the value has a sign bit, 2 integral bits, and 45 fractional bits. The above
then, would represent a value of 1.510• If the scaling factor is B4, the number would contain
a sign bit, 4 integral bits and 43 fractional bits, and would represent a value of 610•

ADDITION AND SUBTRACTION OF SCALED ITEMS

In addition or subtraction, it is imperative that the radix points be in the same position.
That is, both numbers have the same scaling factor. Consider the following example where
the scaling factors are not identical.

A = 2 scaled B2 = 0.100000 .•• o.

B = 2 scaled B3 = 0.010000 ••• o.

A + B = 0.110000 ••• o.

In no way does this equal 4. It is necessary to shift registers to obtain identical scaling
factors. Here we could shift A one bit to the right, or shift B one bit to the left. If we shift
A we have the following:

A = 2 scaled B3 = 0.010000 ••• o.

B = 2 scaled B3 = 0.010000 ..• o.

A + B = 4 scaled B3 = 0.100000 ••• o.

Another consideration remains. One must always provide for the largest possible sum in an
addition or subtraction. Consider the preceding example. If we shift B to line up the radix
points.

70

A = 2 scaled B2 = 0.10000 ••• o.

B = 2 scaled B2 = 0.10000 ..• o.

When A is added to B an overflow condition exists.

A + B = 0.00000 .•• 1.

Here the programmer provided for 2 integral bits (B2) for the result, and the sum (4) re
quired 3 bits. Though the example was addition, the same considerations apply for subtrac
tion. A final point is in keeping the sign bit of signed items in bit position 1.

MULTIPLICATION OF SCALED ITEMS

Scaling for multiplication is somewhat different than for addition or subtraction. It is
not necessary to have identical scaling factors for the two operands. It is however, necessary
to place the sign bits of the operands in bit position 1. The scaling factor of the result is
equal to the sum of the scaling factors of the operands. Recall from BMU instruction that
the TFC register is tied to the A3 syllable to contain the 96 bit product.

EXAMPLE:

A X B, put product into C

A = 0000000000000012 or 128 scaled B47

B = 0000000000000005 or 58 scaled B47. After BMU A, B, C

C = 0000000000000000 TFC = 0000000000000062

The product is 628 scaled B94. (sign bits in A3 and TFC, and 94 integral bits). Rescaling
the product to B47 (right justified in memory) can be accomplished most easily by STF
M TFC, C.

Another approach to the preceding problem is often used. That is to left justify the
operands. It is easy to rescale the product, if necessary, from this standpoint.

DIVISION OF SCALED ITEMS

As in all other operations, the sign bit of the operands must be positioned to bit position
1. The scaling factor of the quotient is obtained by subtracting the scaling factor of the division
from the scaling factor of the dividend. Due to the operating characteristics of the division
operation, it is necessary to insure that the DIVISOR IS LARGER THAN THE DIVIDEND.
This is accomplished, when necessary, by rescaling the operands to meet this requirement.

Given the following Compool:

DOGS
CATS
RATS

MICO
MICO
MICO

01
08
16

05
04
07

S
S
S

3.01
3.00
5.01

Solve: DOGS ~ CATS, put the result into RATS.

71

Without rescaling the operands, the quotient would be scaled BO(B3-B3). The prime con
sideration is in decreasing the magnitude of DOGS to insure its value is less than CATS and
that the result will be scaled B5.

Solution:

LAN CATS, M(CATS), N
FLS N,7,N
LAN DOGS, M(DOGS), N
ARS N,5,N
BDV N,N,N
FRS H,16,H
LAN N,M(RATS),N
LOR N, RATS, RATS

72

Get sign of Cats in Bit Position 1.

Rescale DOGS to B8 while maintaining sign bit.
Result scaled B8- B3 = B5 in top of stack position.
Result to bit positions of RATS.

Deposit Quotient into RATS

CHAPTER 6

BUIC ill ASSEMBLER OUTPUTS

This chapter discusses the conversion of symbolic coded language to binary machine
language, a process accomplished by the assembler. Topics covered include assembly listings,
error printouts, octal dumps, thin film dump, DLO, and a dictionary.

The programmer codes instructions for his program in a symbolic language. It is
the function of the assembler to convert this symbolic language. The assembler also produces
an assembly listing in which symbolic language is listed side by side with the octal repre
sentation of the binary machine language. Any errors in the symbolic language that are de
tected by the assembler will be noted.

ASSEMBLY LISTINGS

The following is a sample assembly listing. The columnar headings are NOT included
on listings.

SAMPLE ASSEMBLY LISTING

RELATIVE OCTAL REPRESENTATION
CORE OF INSTRUCTION WORDS

SEQUENCE TAG OP OPERANDS AND MEMORY AND PROGRAM DATA
NUMBERS FIELD CODE COMMENTS LOCATION IN CORE MEMORY

1 LTF ZERO,X1 LOAD INDEX 00000 3050 0006 0001
2 LTF FIVE,L1 LOAD INDEX 00000 3050

00001 0007 0020
3 AGAIN BAD SUM,DAT A+X1 ,SUM 00002 6556 0005 0400 0010

00003 0005
4 XLC +1,X1 LS L1,AGAIN 00003 1252 0001 2021

00004 0003
5 HLT 00004 0100
6 SUM OCT 0 DEFINE DATA 00005 0000 0000 0000 0000
7 ZERO OCT 0 00006 0000 0000 0000 0000
8 FIVE OCT 5 00007 0000 0000 0000 0005
9 DATA OCT 3 00010 0000 0000 0000 0003

10 DEC -6 00011 4000 0000 0000 0006
11 OCT 14 00012 0000 0000 0000 0014
12 OCT 7 00013 0000 0000 0000 0007
13 OCT 25 00014 0000 0000 0000 0025

ERRORS RESULTING FROM SYMBOLIC INPUTS

The following error messages are output on the symbolic listing as a result of incorrect
symbolic input. These errors do not cause the program to halt.

"ASSEMBLER ERROR XXX": An incompatibility has been found within the assembler
or the programmer has exceeded the absolute address list. XXX indicates the operand number.

, 'ADDRESS ILLEGAL XXX": A negative address or an address exceeding the legal
maximum has been encountered. XXX indicates the operand number.

73

"BAR OVERFLOW": The data area has been exceeded.

"COMPOOL ERROR XXX": A compool tag has been used incorrectly. XXX indicates
the operand number.

"CONTROL VALUE ERROR": An error has been encountered in the specifications
field on a control code card.

"DECLARATIVE VALUE ERROR": An error has been made in the specifications field
on a declarative code card.

"DICT OVERFLOW": The dictionary has overflowed.

"DUPLICATE TAG XXX": A duplicate tag has been encountered in the tag field (XXX
= blank) or a duplicate tag has been used in the specifications field. xxx: indicates the operand
number.

"ILLEGAL INSTRUCTION": An illegal instruction has been encountered in the opera
tion code field.

"ILLEGAL OPERAND XXX": An error has been encountered while processing the
operand indicated by XXX.

"ILLEGAL TAG": An error has been encountered while processing the tag field.

"INDEXING ERROR XXX": Too many indexes and/or an illegal index have been en
countered while processing the operand indicated by XXX.

"UNDEFINED TAG XXX": A tag encountered in the specifications field is not in the
compool and does not ~ppear in the tag field. XXX indicates the operand number.

"VALUE TOO LARGE XXX"~ The value of an increment or decrement is greater than
4095. XXX indicates the operand number.

The following is a sample assembly listing which contains errors detected during the
assembly process.

74

0001 leT TEST AAl
0002 THE FUNCTIO~ CF THIS PRCGRA~ IS TC PROVIDE ~

0003 SAMPLE CF ASSEMBLER OUTPUT
000301 DRUfo' 4 leoo
0004 SET BPR,START
0005 SET BAR,DATA
0005Cl TREG 2
0006 START STF PCR,N 00000 1540 OC51 o 001000
000"' UF N,BPR OCOCO 3010 0054 o 001000
0008 lOA CLA Tl 00001 2040 CC06 o 001001

ILLEGAL LITERAL 2ND ERROR
0009 SAO ONEtO (11 ,H 00001 6551 0002 o 001001

operand • 00002 ooeo o 001002
I LLE GAL ERROR

0010 ADD 91R,H,12 oe002 CCOO eooo 0000 o 001002
00003 OO~O CCOO coon 0000 o 001003

ILLEGAL ~ARIANT 2ND ERROR
0011 lOB XLC -3,Xl NQ LC,10B 00004 1252 OC03 1020 0004 a 001004

IlLE GAL OPERAND 3RD ERROR
0012' BSl 91R,T2,T2 THIS CO,..,..ENT IS INCORRECTLY SPACED 00005 6452 eeoo 0007 0000 o 001005

ILLEGAL INSTRlCTICN ERROR
0013 LCR Tl,91R+X10+X9,T2 00006 OOCO ceoo> 0000 0000 o 001006

00001 OOCO CCOO O~OO o 001007
0014 R(L ~

IllEGAL oper 1ST ERROR
0015 10C LTF 0(+91,X5 0005C 3C50 O~OO 0005 o 001050
0020 XLC +2,)(5 NO 19,10C 0005C 1252 o 001050

00051 0002 C 131 0050 o 001051
0021 DATA

ILLEGAL INSTRlcrlCN ERROR
0022 91R DlC +999 00052 0000 ecoo coon 0000 o 001052

00053 OOCO ecoo coon o 001053
0023 CHE OCT 1 00054 OOCO 0000 CO~O 0001 o 001054
0024 HOL OC055 6060 6C60 6060 6060 o 001055
0025 END 10C OC056 o 001056

lOA 00001 • lCB OOCOIt 10C 00050 91R 00C52 tATA 00052 ONE 0(C54 START 00000

• UNREFERENCEO TAGS

lti)TE. MIlen an error is detected by the assembler I it leaves seven blank S,Yllables at the location •
...:r '!his can be seen by looking at the right side of the listing. CTI

BINARY OUTPUT

A binary output from the assembler, if requested, is provided on tape. The binary
output includes instructions and operands, data, register containing (RC) words, an absolute
address list, control words, dictionary and index usage table.

PROGRAM LAYOUT

The instruction area contains all binary information generated before the DATA card
is input.

Word a

Word b

Word c

76

First Instruction Word

Instructions and Operands

Last Instruction Word

Instruction Area Spares

Compool
Length

A

The data area is initiated when a DATA card is input. If no DATA card is used, the
data area is assumed to be immediately following the last binary information generated and
all binary storage records are relative to the BPR.

Word d

Word d+l

Word d+2

Word d+3

Word d+4
Word d+5

Word e
Word e+l
Word f

Word f+l

Word f+2
Word g
Word g+l

Word g+2
Word h
Word h+l

Word j
Word j+l

Word k
Word k+l

Word m
Word m+l

Word n

o

o

00
67

11
23

Number of
RC Words

Relative Address
of RC Words

Relative Address
of Instruction
Area Spares

11
89

22
34

Number of
Instruction

Area Spares
Number of
Data Area

Spares
Total

Length of
Data Area

33
01

Storage and Constants Generated from

33
67

44
23

Relative Address
of Instruction
Area Spares

Relative Address
of Data Area

Spares
Relative Address

of Absolute
Address List

Absolute Value
of BPR

Absolute Value
of BAR

Declarative Codes

BAR B Tables (Compool Defined)
Number of Entries Relative Address

in Absolute of Start of BAR
Addre s s Li st A Tables

Absolute Address List

Size of BAR
A Tables

BAR A Tables (Compool Defined)

00
67

BAR
BAR

11
23

RC Words

Data Area Spares

Temporary Registers

C Tables (Compool Defined)
D Tables (Compoo1 Defined)

11
89

22
34

33
01

33
67

44
23

4
8

4
8

Compoo1
Lengths
B + C

77

WORD

78

d

d

d

d+1

d+2

d+2

d+4

d+5
thru e

e+1
thru f

f+1

f+1

f+2
thru g

BITS

07-18

19-30

31-48

01-18

19-30

31-48

01-18

19-30

31-48

31-48

31-48

01-48

01-48

01-12

31-48

25-30

DESCRIPTION

Number of RC words (word h+1 through word j)

Number of instruction area spares (word b through word c). If
no data card (word j+1 through word k).

Address of instruction area spares (word b). If no data card (word
j+1).

Address of RC words (word h+1).

Number of data area spares (word j+1 through word k). (Zero if
no data card.)

Address of data area spares (word j+1). If no data card (word k+1).

Address of instruction area spares. If no data card (word j+1).

Total length of data area (Zero if no data card.)

Relative address of absolute address list (address of (f+1) minus
address of d).

Address for BPR thin film register from ORG card.

Address for BAR thin film register from ORG card.

Storage and constants generated from declarative codes.

Space for BAR B tables. These tables are defined in the compool.
They are read in from drums but not back out on drums.

Number of entries in absolute address list (word f+2 through
word g).

Address of start of BAR A tables (word g+l).

Key

01-12

13-24

25-30

31-48

WORD

g+1

g+2
thru h

h+1
thru j

j+1
thru k

k+1
thrum

m+1
thru n

BITS

01-12

01-48

01-48

01-48

01-48

01-48

o = Null
1 = Program
2 = System subroutine
3 = Internal procedure
4 = Compaol defined indirectly addressed table or indirectly ad

dressed system table
5 = Table allocated by overlay or simple item allocated by overlay

(Not used in assembler)
7 = Item or table block reference in compool defined indirectly

addressed table

KEY: 1 2 3 4 5 7
Compaol Compool Proce- Compaol Compaol
Index in index in dure index in index in
program program length table table
section section section section
{if for parent
compaol table (if
defined) in compool

defined
I table)

A Length I Relative "
address
to start \
of inter- I ,
nal pro-
cedures \

Key = 1 Key = 2 Key = 3 Key = 4 ~5 Key = 7

Absolute Absolute Absolute Absolute Abs ute Absolute
core core core core core core

address address address address address address

DESCRIPTION

Total size of all BAR A tables (word g+2 through h)

BAR A tables. These tables are defined in the compool. They are
read in and out from drums.

RC words

Spares in data area (If no data card, spares in instruction area.)

Temporary registers

BAR C tables (compool defined)
BAR D tables (compool defined)

79

DELAYED OUTPUT (DLO)

In addition to a binary output program, PSA,PSB will produce a SYMBOLIC listing on
TAPE for the programmer. This tape can then at a later date be dumped on the printer.
The format and appearance of a DLO is identical to any symbolic listing directly outputed by
the assembler.

OCTAL CORE DUMPS

An octal core dump is when the contents of core have been dumped in their octal con
figuration. Just one register or all of memory, 77,777 registers, can be dumped.

At the beginning of each octal dump, the absolute core locations dumped are listed. In
the example, locations 30,000 to 50,000 have been dumped. In an octal dump there is no way
to tell which registers contain data and which contain instructions.

Octal dumps are read from left to right. At the extreme left is the absolute core loca
tion of the first register on that line. Looking at the example, the contents of location 30,000
are 3050.0123.0020.0000. A dot is used to separate each 12 bit syllable. Location 30,001 is
next. Its contents are 3050.0124.0015.3050, and so forth.

When there are duplicate lines to be printed, the printer prints

*** DUPLICATE LINE/S ***
Notice that 030170 to 030327 are duplicate zeros, so they aren't printed.

80

CORE 030000 050000

030000 3050.0123.0020.0000 3050.0124.0015.3050 0125.0025.3050.0126 1004.0000.0000.0000
030004 2060.3015.0014.1252 0001.2145.0004.3050 0126.1004.0000.0000 5673.2015.0036.0127
030010 20 15.0046.12 52 .000 1 2105.0007.3050.0126 0004.0000.0000.0000 2060.3015.0036.1252
030014 0001.2145.0013.3050 0126.0006.0000.0000 5671.3015.0025.0130 3030.0007.7632.0126
030020 0035.0000.0000.0000 5671.3015.0025.0131 3631.0701.4170.3415 0054.0060.6101.3631
030024 0504.4131.0060.4073 2015.0036.0060.20 r 5 0036.4171.3415.0054 2463.5670.3015.0025
030030 0131. 3631.070 1.6101 3631.0504.4131.2460 4073.2015.0036.0065 2015.0036.1252.0001
030034 3500.0040.0000.0000 5671.3015.0025.0131 7246.0126.0040.2240 0021.0000.0000.0000
030040 1252.0001.2145.0016 3050.0126.1004.0000 7672.2015.0036.0126 0060.3544.0124.5670
030044 2015.0036.0132.3631 0536.6501.3631.0501 4131.1046.5633.0131 2015.0014.3544.0124
030050 4170.2015.0036.1465 3631.0536.6501.3631 0501.4131.2046.4073 2015.0014.0042.2015
030054 0014.3544.0133.4073 2015.0014.0065.2015 0014.1252.0001.2105 0042.0000.0000.0000
030060 3050.0126.1004.7172 0015.0044.0125.0114 3544.0126.5272.2415 0036.0024.0066.0000
030064 1252.0001.2125.0062 2240.0112.0000.0000 7666.2015.0046.0112 7666.2415.0036.0064
030070 5671.2415.0036.0132 5670.2015.0046.0132 6401. 5645.0134.6126 0122.3652.0122.0523
030074 0122.4171.2415.0036 1465.4170.2015.0046 1465.6401.3431.0001 6125.3631.0523.6531
030100 0122.7532.0135.0064 3544.0126.5272.2015 0046.0024.0106.3544 0121.4073.2415.0036
030104 0024.2415.0036.2240 0112.0000.0000.0000 5573.2415.0036.0136 2415.0036.1544.0004
030110 4131.2027.4073.2415 0036.0023.2415.0036 3050.0126.0005.1252 0001.2105.0062.0000
030114 3544.0120.3030.0057 0000.0000.0000.0000 0000.0000.0000.0000 0000.0000.0000.0023
030120 0000.0000.0003.0777 0000.0000.0100.0000 0000.0000.0000.0001 6060.6060.6060.2543
030124 0000.0000.0001.0000 0000.0000.0000.0005 0000.0000.0000.0000 7777.7700.7777.7777
030130 0000.0000.0000.7777 7777.0000.0000.0000 7777.7700.0000.0000 0000.0000.0057.2051
030134 3777.7700.0000.0000 0000.0000.0000.0031 0000.0000.0200.0000 7777.0000.0000.0000
030140 0000.0000.0000.0024 0000.0000.0000.0000 0000.0000.6200.0000 7777.7777.0077.7777
030144 0000.0000.0100.0000 0000.0000.0200.0000 7777.7700.7777.7777 0000.0000.0003.1000
030150 0000.0000.0000.0000 0000.0000.0000.0025 0000.0000.0000.0000 0000.0077 .0000.0000
030154 7777.7700.0000.0000 0100.0000.0000.0000 7777.0000.0000.0000 0000.0000.4057.2051
030160 0000.0000.0000.0031 0000.0000.0100.0000 0000.0000.0200.0000 0000.0000.0003.0777
030164 0000.0000.0000.0000 0000.0000.0000.0023 0000.0000.0000.0000 0000.0000.0000.0000
030170 0000.0000.0000.0000 0000.0000.0000.0000 0000.0000.0000.0000 0000.0000.0000.0000

*** DUPLICATE LINE/S ~:~ ~:~~~

030330 0000.0000.0000.0000 0000.0000.0057.2051 0071. 6200.0000.0000 5133.0000.0000.0000
030334 0000.3471.0000.0000 0000.0000.0000.0115 0000.0000.0000.0005 0000.0000.0000.0005
030340 0000.0000.0000.0005 0000.0000.0000.0000 0000.0000.0000.0000 0000.0000.0000.0000
030344 0000.0000.0000.0005 0000.0000.000-0.0002 0000.0000.0010.7600 0000.0000.0001.0000

Octal Dump

0:>

THIN FILM OUTPUT

A thin film dump may be requested as OLO on the tape drive or direct via the flexo
writer or printer. In either case the format is the same.

XO
Xl
X2
X3
X4
X5
X6
X7
X8
X9
XlO
Xll
X12
X13
X14
X15

000000 LO 000020 ISR 000040 SAR 000060 PSRI 0103 0102 0101 0100
000001 Ll 000021 ISR 000041 61 000061 PSR2 0107 0106 0105 0104
000002 L2 000022 ISR 000042 XIR 000062 IPR 0113 0112 0111 0110
000003 L3 000023 43 000043 IAR 000063 RTC 0117 0116 0115 0114
000004 L4 000024 RPR 000044 POR 000064 RCR 0123 0122 0121 0120
000005 L5 000025 RPR 000045 POR 000065 TFC 0127 0126 0125 0124
000006 L6 000026 RPR 000046 66 000066 RIR 0133 0132 0131 0130
000007 L7 000027 RPR 000047 67 000067 1134 0137 0136 0135 0134
000010 L8 000030 SSR 000050 IDR 000070 SI 0143 0142 0141 0140
000011 L9 000031 SSR 000051 71 000071 S2 0147 0146 0145 0144
000012 LlO 000032 SSR 000052 72 000072 S3 0153 0152 0151 0150
000013 Lll 000033 53 000053 73 000073 S4 0157 0156 0155 0154
000014 L12 000034 BPR 000054 74 000074 1160 0163 0162 0161 0160
000015 L13 000035 BAR 000055 75 000075 1164 0167 0166 0165 0164
000016 L14 000036 56 xxxxxx 76 000076 1170 0173 0172 0171 0170
000017 L15 000037 PCR xxxxxx 77 000077 1174 xxxx xxxx xxxx xxxx

1. With three exceptions, the names of all of· the thin film registers are used; octal
addresses are used for the spares. These three exceptions are as follows:

a. The real time clock (RTC) is actually two 12 bit thin film registers, 114 and 115.
Registers 116 and 117 are spares. '

b. The repeat count register (RCR) is actually only one 12 bit register, number
12~. Registers 121 and 122 are spares. Register 123 is the character count register
(CCR).

c. The repeat increment registers (RIR) are actually 13~, 131, and 132. Registers
133 is a spare.

2. The registers containing X's in the sample will contain invalid information in an actual
dump; these registers are used by the program that dumps the thin film.

DICTIONARY

A dictionary is a detailed listing of all items, tables, constants, and tags (compool and
non- compool) used in the source program. The dictionary is generated after the last binary
information in the program. A sample dictionary is given. An explanation of the headings is
given after the dictionary.

82

ENTRY

CD
Co)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

NAME CLAS

00000000 O-NULL
00000000 O-NULL
00000000 O-NULL
RIP13 12-PGM
AA l-STAL
RXLO 5-SITM
NXPO 5-SITM
OXPO 5-SITM
CC l-STAL
IRNC 5-SITM
BB l-STAL
IAZM 5-SITM
SINE 5-SITM
COSI O-NULL
NYPO 5-SITM

FB
DEFN TYPV IT CHLI CHL2

O-NUL O-INT 0 0 0
O-NUL O-INT 0 0 0
O-NUL O-INT 0 0 0
2-COM O-INT 0 0 0
6-ASM 24-MIX 0 0 0
7-NSC O-INT 0 29
7-NSC O-INT 0 5 30
7-NSC O-INT 0 9 31
6-ASM 24-MIX 0 0 0
7-NSC O-INT 0 3 32
6-ASM 24-MIX 0 0 0
7-NSC O-INT 36 3 32
7-NSC O-INT 0 11 33
O-NUL 24-MIX 0 0 0
7-NSC O-INT 30 5 30

SI Dr PA DU SD OL SI PD DE AS DO
ZE MN CK IOFL DRGT PT C AY ND AT CL GN NE LOCA

0 0 0 00 0 0 0 0 0 0 0 0 0 000000
0 0 0 00 0 0 0 0 0 0 0 0 0 000000
0 0 0 00 0 0 0 0 0 0 0 0 0 000000
0 0 0 00 0 0 0 0 0 0 0 0 030000

48 0 0 00 0 0 0 0 0 0 000003
12 0 00 0 0 0 0 0 0 0 000103
18 0 00 3 0 0 0 0 1 0 000104
12 0 1 00 2 0 0 0 0 0 0 000105
48 0 0 00 0 0 0 0 0 0 000010
12 0 00 2 0 0 0 0 0 0 000106
48 0 0 00 0 0 0 0 0 1 . 0 000026
12 0 1 00 12 0 0 0 0 0 1 1 0 000106
18 0 1 00 17 0 0 0 0 1 1 0 000107
48 0 0 00 0 0 0 0 0 0 0 0 000000
18 0 00 3 0 0 0 0 0 000104

Sample Dictionary

ITEM NAME

ASGN

BRGT

CHL1

CHL2

CLAS

DECL

DEFN

DIMN

DONE

DUPT

ENTRY

FBIT

IOFL

LOCA

NAME

OLAY

PACK

84

ITEM MEANING

1 = location assigned indicator

Number of fractional bits in item

1 = statement label or tag
3 = constant
4 = item
5 = simple item
7 = table

12 = program

1 = entry was declared in source program

2 = compool defined table
6 = internal tag
7 = compool defined item

/1 = rigid length table
12 = variable length table
If entry is a tabular item, value is the word of the entry.

The entry number of this item, table, or program in the dictionary
table.

1 = parallel table
2 = serial table
3 = initial bit position of a simple item or tabular item.

This item is the index into the overflow table, if the name is
greater than five bytes.

Relative core address

Name of a program, table, item, or tag.

1 = overlay declaration

o = no packing
1 = medium
2 = dense
3 = program specified packing

ITEM NAME

PDAT

SDC

SIND

SIZE

TYPV

ITEM MEANING

1 = signed item

1 = entry is a secondary dictionary channel

1 = preset data

If item - number of bits
If table - number of words per entry

0= integer ._
1 = floating pOint
2 = hollerith
5 = fixed point
6 = boolean
8 = BCD

16 = track coded number item
24 = mixed
If entry COM POOL defined TABLE
o = BAR A table
1 = BAR B table
2 = BAR C table
3 = BAR D table
4 = Indirect addressed tables
8 = System table

85

CHAPTER 7

AN!GSA-51A COMPUTER INSTRUCTIONS

This chapter contains the AN!GSA-51A instructions, rules for their usage, and examples
thereof. They are arranged in nine groups--signifying in general those instructions which
are related to one another. The groups are arranged in the approximate order of importance
and usage. Each instruction heading includes the mnemonic code, instruction name, and the
octal code. The first line under the heading indicates the syllable layout. Beginning at the
left each letter designate, e.g., (M), T, B, is numbered as the Al location; the second letter,
A2; the third letter, A3, respectively. It should be remembered that instructions may vary
as to their requirements for locations of operands from zero to three locations. Where no
letter designates are shown, only the operator syllable is required for the computer to com
plete the instruction.

The groups of instruction for the purposes of this chapter are as follows:

1. Fixed- Point Arithmetic

2. Thin Film and stack

3. Commonly Used Ungrouped Instructions

4. Comparison

5. Logical Operations

6. Cycling and Shifting

7. Field

8. Floating-Point Arithmetic

9. Miscellaneous

The following glossary identifies the letter designates in the mnemonic code used in
this chapter. Each letter refers to a distinct instruction syllable type.

LETTER SYLLABLE TYPE

1. B Branch address

2. C Character

3. F Field

4. la Index increment amount

5. 10 Input! Output

6. Iv Index increment variant

7. Ja SUbroutine jump address

86

LETTER SYLLABLE TYPE

8. Ji Subroutine jump increment

9. L Logical machine conditions

10. M Memory only

11. (M) Memory or stack (Fetch operation)

12. (M) Memory or stack (store operation)

13. Rc Repeat count

14. Ri Repeat increment

15. S Shift

16. T Thin film address

17. Vs Special or computer interrupt variant

18. Vt Transmit variant

FIXED- POINT ARITHEMTIC INSTRUCTIONS

The fixed-point arithmetic instructions considered in this group involve the algebraic
manipulation of the entire 48-bit word. Arithmetic overflow can occur in all the fixed-point
arithmetic instructions with the exception of BMU, binary multiplication.

For fixed-point addition and subtraction, overflow occurs when the results of the com
putation exceed the limit of the 48-bit word, where the first bit is reserved for the sign bit.
In the examples shown below for binary addition and subtraction, the leftmost octal number,
if 4 or greater, indicates a minus sign bit.

For fixed-point diviSion, overflow occurs when the absolute value of the divisor is less
than or equal to the absolute value of the dividend. In order to avoid an overflow situation,
therefore, the divisor must always be scaled to meet this condition. The reason for this
special condition is derived from the fact that all arithmetic data words are treated as frac
tional values by the AN/GSA-51A.

In all cases the locations specified by the A1 and A2 syllables remain unchanged unless
referenced by A3•

87

BAD - BINARY ADD - 658

BAD (M),(M),(M)

BAD performs fixed-point addition. The contents of the location specified by Al and the
contents of the location specified by A2 are algebraically added together. The
resulting sum is placed in A3•

Ex:

Top of stack

If the address results in zero, it will always be a positive zero. A negative zero
will be changed to positive zero.

INDICATORS

The POV (Program OVerflow) indicator flip-flop is set if overflow occurs and
the result of the overflow is placed in the location specified by A3. The true sum,
scaled 2-1, may be determined from the overflow result by subtracting a one and
shifting right one position. The answer is in effect equal to one- half of the correct
answer.

Note in the following examples that the first bit of the 48-bit word denotes the
sign.

(1) BAD AUGl,ADDl,SUMI

AUGl = 37777777777777778 (positive value)

ADDI = 40000000000000438 (negative value)

SUMI = 37777777777777348

POV Indicator Not Set

(2) BAD AUG2,ADD2,N

AUG2 = 37777777777777328 (positive value)

ADD2 = 00000000000000658 (positive value)

= 00000000000000208

POV Indicator Set*

* Adding the two octal numbers gives a preliminary result of 3000000000000017 with a left
over 1, which cannot be added to the sign bit. It is therefore carried over and added to 17,

thereby producing the 20 and causing the POV indicator to be set.

88

BSU - BINARY SUBTRACT - 648

BSU (M),(M),(M)

BSU performs fixed-point subtraction. The contents of the location specified by A2 are
algebraically subtracted from the contents of the location specified by AI' and the
difference is placed in the location specified by A3•

Ex:

If the difference is zero, a positive zero (00000000000000008) will be placed in
the location specified by A3• A negative zero will be changed to a positive zero.

INDICATORS

POV (Program OVerflow) indicator flip-flop is set if overflow occurs and the
result of the overflow is placed in A3• The true difference, scaled 2-1, may be
determined from the overflow result by subtracting one in bit position 48, shifting
right one position and LORing a one in bit position 2.

Note in· the following examples that the first bit of the 48-bit word denotes the
sign.

(1) BSU MINI ,SUBI ,DIFFI

MINI = 00000000000000018 (positive value)

SUBI = 40000000000000048 (negative value)

DIFFl= 00000000000000058

POV Indicator Not Set

(2) BSU MIN2,SUB2,N

MIN 37760000000000008 (positive value)

SUB = 40077700000000008 (negative value)

Top of Stack = 00057700000000018

POV Indicator Set**

**Subtracting the negative octal number from the positive octal number gives a preliminary
result of 0005770000000000 with a carry-over of 1, which cannot be added to the sign bit.
The one is therefore added to the difference to produce the entire result.

89

BMU - BINARY MULTIPLY - 618

BMU (M),(M),(M)

BMU performs fixed-point multiplication. The contents of the location specified by Al
are algebraically multiplied by the contents of the location specified by A2' The
least significant half of the double word length product is placed in TFC (Thin
Film C - 1248 - 1278); the most significant half is placed in the location speci
fied by A3•

Ex:

The sign of the TFC is the same as the sign of A3 with the following exception:
If the most significant half ofthe product is zero, a positive zero (00000000000000008)
.is placed in the location specified by A3• TFC, however, may contain a negative
zero (40000000000000008),

Note in the following examples that the first bit of the 48-bit word denotes the
sign bit.

(1) BMU MULTl,MULDl,PRODl

MULTI = 40000000000000108 (negative value)

MULDI = 00000000000000018 (positive value)

PRODl = 00000000000000008

TFC = 40000000000000108

(2) BMU MULT2,MULD2,N

MULT2 = 00000000000001008 (positive value)

MULD2 = 0100000000000001 8 (positive value)

Top of stack = 00000000000000028

TFC = 00000000000000008

BDV - BINARY DIVIDE - 608

BDV (M),(M),(M)

BDV performs fixed-point division. The contents of the location specified by Al are
algebraically divided by the contents of the location specified by A2' The resulting
quotient is placed in A3, the remainder (which takes its sign from the dividend
AI)' in TFC (Thin Film C - 1248 - 1278),

90

If the quotient has a value of zero, a positive zero (00000000000000008) is placed
in the location specified by A3; TFC may contain a negative zero (40000000000000008),

Note in the following examples that the first bit of the 48-bit word denotes the
sign bit.

INDICATORS

POV, the Program OVerflow flip-flop, will be set by the resulting quotient over
flow if the absolute value of the contents of Al is greater than t~at of A2.

Ex: (1) BVD DVND1 ,DVSR1 ,QUOT1

(2)

DVND1 00000000000000018 (positive value)

DVSR1 00000000000000038 (positive value)

QUOT1 = 12525252525252528

TFC = 00000000000000028

BDV DVND2,DVSR2,N

DVND2 = 40000000000000018 (negative value)

DVSR2 = 00000000000000028 (positive value)

Top of Stack 60000000000000008

TFC = 40000000000000008

THIN FILM AND STACK INSTRUCTIONS

The instructions described in this group are those which make special reference to
either the thin film or stack registers. As noted earlier, the operand stack is located in 16
registers of thin film, although direct access to the stack can be made by specifying H or N
in the appropriate operand location without using a thin film instruction. The special stack
instructions outlined in this group refer only to the rotation and direction of rotation of the
stack.

The following is a list of thin film registers providing a description, symbolic name,
number of bits and octal address of location. Either the symbolic name or the octal address
may be used in coding to gain access to the thin film registers.

SYMBOLIC NAME DESCRIPTION '* BITS LOCATION8

BAR Base Address Register 16 055
BPR Base Program Register 16 054
CCR Character Count Register 12 123
IAR* Interrupt Base Address Register 16 063
IDR Interrupt Dump Register 16 070
IPR Interrupt Program Register 48 110-113
ISR Interrupt Storage Register 48 040-042

L~ & L1-L15** Limit Registers ~ - 15 16 ea 020-037
PCR Program Count Register 16 057

* All thin film registers may be addressed in both modes except for IAR (Interrupt Address
Register - 0638) which can be loaded in the control mode only. The IAR can be stored, however,
in either mode.
**Values may be stored in L~, but L~ in any index/limit compare (XLC) instruction has an ef
fective value of zero.

91

SYMBOLIC NAME DESCRIPTION '* BITS LOCATION8

PDR Power Failure Dump Register 32 064-065
PSRIl Program Storage Register 1 48 10D-I03
PSR2 Program storage Register 2 48 104-107
RCR Repeat Count Register 12 120
RIR Repeat Increment Registers 48 130-132
RPR Repeat Program Register 48 044-047
RTC Real Time Clock 24 114-115
SAR Subroutine Base Address Register 16 060
SSR Subroutine storage Register 64 050-053
STKl or Sl stack Register 1 48 140-143
STK2 or S2 Stack Register 2 48 144-147
STK3 or S3 stack Register 3 48 150-153
STK4 or S4 Stack Register 4 48 154-157
TFC Thin Film C 48 124-127
XIR Index Increment Register 16 062

XI-X15 Index Registers 1 - 15 16 ea 001-017

Not used 16 000

Spares 16 043
16 053
16 056
16 061
16 ea. 066-067
16 ea. 071-077
12 ea. 116-117
12 ea. 121-122
12 ea. 133-137
12 ea. 160-166

LTF - LOAD THIN FILM - 308

LTF (M),T

LTF takes the contents of the location specified by Al and places as many of the least
significant bits as indicated by A2 into the thin film register(s) specified by A2•

92

Multiple thin film registers loading has the following two peculiarities: the final
two bits of the Thin Film address are treated as if both were zeros, whether
or not this is the case, and the 48 bits of data are loaded so that the first thin
film register receives the LEAST Significant set of 12 or 16 bits and the others
successively more significant sets.

Ex:

A2 Instruction Syllable Structure:

1 2 3 4 5 6

Thin Film
Address

1
2

Bit 3 is one to indicate multiple thin film register loading of 48 bits or zero to
indicate single Thin Film Register loading of 12 or 16 bits.

(1) LTF XFER,PCR

XFER 47052136554000178

PCR 0000178

Note that only the 16 least significant bits of XFER are loaded in the PCR register,
since PCR is a 16-bit register.

(2) LTF NUMB,M TFC TFC

NUMB = 512~ 4712 ~ 30168 ~ 124

1T - : :::

3~16

2254

4712

127 512~

Note further that the least significant set of 12 bits is loaded in the first register.
TFC can nevertheless be symbolically understood to contain the entire value
of NUMB in its original order.

STF - STORE THIN FILM - 158

STF T,(M)

STF takes the contents of the thin film register(s) specified by Al and places as many
of the least Significant bits as indicated by Al into the location specified by A2.
Either 12 or 16 bits are transferred right justified. The remaining bits of A2
are set to zero.

Multiple thin film register storing has the following two peculiarities: the final
two bits of the thin film address are treated as if both were zeros, whether or
not this is in fact the case. Secondly, the contents of the first thin film register
to be stored is placed right justified in the location specified by A2• Each succeed
ing register is stored ~o that the most significant bits, which are contained in the
last thin film register, are stored left justified in the location specified by A2•

93

Ex:

Al Instruction Syllable structure:

1 234 5 6

Thin Film
Address

1
2

Bit 2 is one to indicate multiple thin film register loading of 48 bits, or zero to
indicate single thin film register loading of 12 or 16 bits.

(1) STF X5,SAVE

X5 = 1540238
SAVE = 00000000001540238

(2) STF ll,02,TEMP (Multiple thin film storing using an octal thin
film address)

0000 0100 1034 2240 ~<'---_ 2240 - TF 100

1 11: T 1034 - TF 101
L 0100 - TF 102

0000 - TF 103

Note that the computer in the above example ignored the final two bits of the thin
film address, and commenced storing from 1~~8.

XLC - INDEX/LIMIT COMPARE - 128

XLC Ia,Iv,B

XLC alters the contents of the Index Register specified by bits 5-8 of A2 in a manner
specified by bit 1 of A2 by the amount specified in AI. The new· value is com
pared to the contents of the Limit Register specified by bits 9-12 of A2; if the
condition(s) specified in bits 2-4 of A2 is (are) met, control will continue to the
first syllable of the location specified in A3, otherwise control will continue to the
next instruction in sequence.

If Limit Register zero is specified, comparison will be made to the value zero.

Decrementing is symbolically indicated by a minus Ia value, incrementing by a
positive value.

Al Instruction Syllable structure:

1

I Amount of Increment or Decrement

1
2

*NOTE: The index register is altered first, THEN the comparison is made.

94

A2 Instruction Syllable Structure:

5
Index Limit
Register Register

Bit 1 is zero to increment, one to decrement.

Conditions specified in bits 2-4 of A2:

VALUE MEANING

0 No transfer - index will be altered only
1 Index = limit
2 Index> limit
3 Index> limit
4 Index < limit
5 Index < limit
6 Index * limit
7 Unconditional Transfer

1
2

Iv SYMBOL

NO
EQ
GR
GQ
LS
LQ
NQ
BR

In coding the A2 syllable, the condition is separated from the index and limit
registers by blanks. The increment (or decrement) amount is coded in DECIMAL
notation.

(1) XLC -1,X8 LQ L7,END

Al syllable

A2 syllable

1
1 2
I 000000000001 I

1
124 5 892

11 110111000 1 01111

0001 8

66078

Note the amount of decrement is stored in the Al syllable and the minus sign is
stored in Bit 1 of the A2 syllable.

X8 = 000005
Before - L7 = 0000048

8

After - X8 = 0000048; therefore, program will branch to location END, which
must contain an appropriate instruction.

95

Ex: (2) XLC +1,X3 BR L~,FIXIT

Before - X3 = 0000068
After - X3 = 0000078;

Ex: (3) XLC +1~,X9 NO L~,~

Before - X9 = 0000128
After - X9 = 0000248;

Ex: (4) XLC +~,X2 EQ L2,OUT

Before - X2 = 000006
After - X2 = 000006;

L2 = 00002

program will unconditionally branch to FIXIT, which
must contain an appropriate instruction. Note that
a Limit Register must be indicated although no com
parison is made. This instruction provides for in
crementing an index register and unconditional branch
ing.

program will go on to the next instruction in se
quence. Although no comparison or branching is
specified, a limit register and a branch address
must be specified.

program will not branch. The next sequential instruc
tion will be operated. This instruction provides for
comparing an index register without altering the
index register.

SSD or SSS - STEP STACK DOWN - 038

SSD (or SSS)

SSD
(or SSS)

Ex:

S
T
o
R
E

96

moves the stack in the store direction one position but transfers no data.

SSD

The arrows indicate the direction of stack movement.

BEFORE INSTRUCTION

F
E
T
C
H

S
T
o
R
E

AFTER INSTRUCTION

F
E
T
C
H

SSU or SSF - STEP STACK UP - 028

SSU (or SSF)

SSU moves the stack in the fetch direction one position but transfers no data.
(or SSF)

Ex: SSU

The arrows indicate the direction of stack movement.

S
T
o
R
E

BEFORE INSTRUCTIONS

RVS - REVERSE STACK - 068

RVS

F
E
T
C
H

S
T
o
R
E

AFTER INSTRUCTIONS

F
E
T
C
H

RVS reverses the direction of stack movement to make wlut-t was previously the fetch
direction subsequently the store direction, and vice versa, for succeeding stack
references. No data is transferred and the top of the stack remains unchanged.

Ex: RVS

The arrows indicate the direction of stack movement.

S
T
o
R
E

BEFORE INSTRUCTIONS

F
E
T
C
H

S
T
o
R
E

AFTER INSTRUCTIONS

F
E
T
C
H

97

COMMONLY USED UNGROUPED INSTRUCTIONS

The instructions considered in this group differ greatly in function and type. Their
importance and frequent usage warrants consideration at this point rather than grouping them
with Miscellaneous Instructions, which is the last group treated in this document.

BRB - BRANCH ON BIT - 268

BRB (M),(M),B

BRB takes the contents of the location specified by Al performs a right, logical, end
around shift of I bit and places the result in A2. If the low order bit of the INITIAL
contents of the location specified by Al is one, control will transfer to the first
syllable of the location specified by A3i otherwise, control continues to the next
instruction in sequence.

Ex: BRB CHECK,N,BRNCH

Before - Check = 00000000000007778

After - Check = 00000000000007778

Top of stack = 40000000000003778

Program will branch to location BRNCH which must contain an appropriate in
struction left justified in the memory word. Note that the contents of CHECK re
main unchanged after the instruction. The end-around shifted data is stored in
the location specified by the A2 syllable, which in this example is the top of the
stack.

CLA - CLEAR - 208

CLA (M)

CLA clears all 48 bits at the location specified by Al to zero.

Ex: CLA H

Before - Top of stack = 40000000000000008

After - Top of stack = 00000000000000008

HLT - HALT - 018

HLT

HL T affects computer operation in one of two ways depending on whether the computer
is operating in the normal or the control modp..

98

Ex:

In the normal mode, the computer is interrupted, that is, switched to the control
mode and control is transferred to the 11th location greater than that specified
in the IAR (Interrupt Address Register - 063a). An automatic storage of Signifi
cant thin film register contents takes place, as described under the Interrupt
System. (See IRR Instruction.)

In the control mode, the computer halts, and all sequencing ceases; bits 7-12
of the operator syllable may be used for identification of the stop.

HLT 77

When the computer halts at this instruction in the control mode, 0177a will be
indicated in the COMMAND register display on the computer control panel.

NOP - NO OPERATION - OOa

NOP

NOP continues the normal sequencing without further fuss.

The NOP instruction is used to provide an instruction syllable of all zeros. This
will be done automatically by the assembler when it is necessary that the next
instruction in sequence be left justified in the next memory location and the
present memory location contains unused syllables.

RPT - REPEAT - lOa

RPT Rc,Ri,B

RPT causes the instruction at the location specified by Ag to be executed the number
of times specified by AI. After each execution, the effective addresses of the
repeated instruction will be incremented by the corresponding three values speci
fied by A2 to prQduce new effective addresses for the next execution.

1

A2 structure:
1 4 5 a 9 2
1st Add.
Incr.

2nd Add
Incr.

grd Add.
Incr.

The increments of A2 are applied to the 1st, 2nd, and grd Physical Address
Syllable following the repeated instruction's Operator Syllables. This does NOT
necessarily correspond to A1-Ag of the instruction description, since use of the
stack by the repeated instruction could result, for instance, in the Ag syllable
being· the 1st Physical Syllable after the Operator Syllable because Al and A2
are stack references. The 1st address increment refers to the first PhYSical
Syllable in Ag and the numbering continues in that order.

The number of times an instruction is to be repeated may vary from 0 through
4095. If the value is zero, the instruction will not be operated at all.

The Operator Syllable of the instruction to be repeated must be the leftmost
syllable at the location specified by Ag.

99

RPR (Repeat Program Register - 0448-0478) contains an image of the repeated
instruction during the repetition process; 0478 contains the Operator Syllable,
0468 the 1st Physical Syllable, 0458 and 2nd Physical Syllable and 0448 the 3rd
Physical Syllable.

RCR (Repeat Count Register - 1208) contains the counter (initially the contents
of A1) for the number of repetitions.

The location of the instruction to be repeated is calculated relative to the BPR
(Base Program Register - 0548) rather than the BAR (Base Address Register
- 0558) --- that is, A3 is a BRANCH rather than a DATA reference.

RPT may use indexing but not indirect addressing for A3• The instruction being
repeated may use indirect addressing, but no indexing is allowed.

The repetition process may be terminated in two ways--when RCR reaches zero,
or when the instruction being repeated executes a branch. In case of the RCR
reaching zero, the next instruction to be operated will be the one after the RPT
instruction. In the second case, RCR will have been decremented the number of
times the instruction has been repeated, including the branch, and the three
address syllables of RPR will contain the EFFECTIVE address values for the
final repetition.

There are certain instructions which because of their nature cannot be executed by means
of the RPT instruction. These are: RPT (Repeat) itself, SJR (Subroutine Jump), SRR (Sub
routine Return), IRR (Interrupt Return), UCT (Unconditional Transfer), and XLC (Index,
Limit- Compare).

In coding the A2 syllable of the repeat instruction a blank must be inserted between the
values of each of the three physical syllables being incremented. The values in integer form
for the A1 and A2 syllables in the RPT instruction are in decimal notation. Both syllables
may, of course, be modified by indexing.

Ex: RPT 8,~ ~ ~,ODD

ODD
T1

BRB T1,T1,BRANCH
00000000000075508

After First Execution: T1 = 00000000000037648
RCR = 00078

After Second Execution: T1
RCR

After Third Execution: T1
RCR

After Fourth Execution: T1
RCR

=
=

=
=

00000000000017728
00068

00000000000007758
00058

40000000000003768
00048

The next instruction executed is taken from location BRNCH. If RCR had reached 0000
without a branch (e.g., T1 = 00000000000700008 at the start), the next instruction to be executed
would have been the next instruction in sequence following the RPT instruction.

100

TRS - TRANSMIT - 358

TRS (M),(M)

TRS takes the contents of the location specified by Al and places them in the location
specified by A2•

Ex:

Caution:

TRS DATA,N

Before - Data = 00004601370200008

After - Data = 00004601370200008

Top of Stack 00004601370200008

With the exception of the 4 stack registers, the TRS instruction cannot be used
to access Thin Film registers. Of course, as in the example above, when accessing
the stack, H or N are the symbols required in coding.

TRM - TRANSMIT MODIFIED - 348

TRM (M), Vt,(M)

TRM takes the contents of the location specified by AI, modifies them as specified in
A 2, and places the result in the location specified by A3•

1 I 1
o 1 2 A2 structure: 1 9

xxxxxxxxx

If bit 10 of A2 is one, the modification will include rounding which proceeds as
follows:

If bit 2 of TFC (Thin Film C - 1248 - 1278) is a one, a fixed point one
(00000000000000018) is algebraically added to the image of the contents
of AI. If overflow occurs, rov (Program OVerflow) will be set.

If bits 11 - 12 of A2 are 10, the modification will include setting the sign to minus.

If bits 11 - 12 of A2 are 01, the modification will include setting the sign to plus.

If bits 11 - 12 of A2 are 11, the modification will include changing the sign.

The contents of Al syllable are not changed by the TRM instruction unless the A3
syllable denotes the same location as the Al syllable.

In coding a TRM instruction where both rounding and setting of the sign are combined, a
blank must separate the rounding symbol from the sign modifying symbol. (When both are
used, the rounding symbol must come first.) Symbols for modification in coding are:

- set the sign bit in A3 to minus.

+ set the sign bit in A3 to plus.

101

Ex:

C change the sign bit of A1 and ins~rt the changed sign in A3.

R modification includes rounding.

TRM H,R -,TEMP

Before - Top of stack = 00345671234566678
TFC = 20000000000000008

After - Temp = 40345671234566708
Top of stack = unchanged

UCT - UNCONDITIONAL TRANSFER - 228

UCT B

UCT will transfer control unconditionally to the first syllable at the location specified
by A1, which must be a valid operator syllable.

Ex: UCT NTRY

NTRY = BAD ADD1 ,AUGl ,SUM1

COMPARISON INSTRUCTIONS

This group will only consider those instructions which compare 48-bit words to deter
mine if conditions for branching have been met. Comparison of characters or bytes within a
word will be considered in the Field Instructions. Comparison of index to limit registers
has been outlined previously under the XLC instruction.

There are two kinds of comparison instructions treated in this group: the first kind
deals with an alphanumeric comparison of the entire 48-bit word; the second kind is con
cerned with an algebraic comparison of the 48-bit word in which the first bit is treated as a
sign bit. In an alphanumeric comparison the first bit is treated as a value bit. Given the
following example, an alphanumeric comparison would yield different results from an algebraic
comparison.

A1 = 40007777777777778
A2 = 00007777777777778

, Compared algebraically, A2, with a positive sign bit, is greater than A1• However, in an
alphanumeric comparison, with the sign bit treated as a value, A1 is greater than A2• In a
comparison of equality, however, the same result occurs whether the comparison is algebraic
or alphanumeric: A1 is not equal to A2•

ACE - ALPHANUMERIC COMPARE EQUAL - 728

ACE . (M),(M),B

ACE compares the contents of the location specified by A1 as a 48-bit unsigned value
to the contents of the location specified by A2. If the A1 contents are equal to the
A2 contents, control branches to the first syllable of the location specified by A3•
otherwise, control continues to the next instruction in sequence. The location
specified by A3 must contain left justified a valid operator syllable.

102

Ex: ACE ITEM,MATCH,BRNCH

ITEM = 1234567012345670
MATCH = 1234567012345670:

The next location to be executed will be taken from location BRNCH.

ACG - ALPHANUMERIC COMPARE GREATER - 718

ACG (M),(M),B

ACG compares the contents of the location specified by Al as a 48-bit unsigned value
to the contents of the location specified by A2' If the Al contents are greater
than the A2 contents, control branches to the first syllable of the location speci
fied by A3' Otherwise, control continues to the next instruction in sequence. The
location specified by A3 must contain left justified a valid operator syllable.

Ex: ACG ITEM,N,BRNCH

ITEM = 37777777777777778
Top of stack = 47777777777777778

The next instruction to be executed will be the one following the ACG instruction
in sequence.

ACL - ALPHANUMERIC COMPARE LESS - 708

ACL (M),(M),B

ACL compares the contents of the location specified by Al as a 48-bit unsigned value
to the contents of the location specified by A2' If the Al contents are less than the
A2 contents, control branches to the first syllable of the location specified by A3'
Otherwise, control continues to the next instruction in sequence. The location
specified by A3 must contain a valid operator syllable left justified.

Ex: ACL ITEM,SMALL,BRNCH

ITEM = 3777777777777777
SMALL = 4777777777777777: -"

The next instruction to be executed will be taken from location BRNCH.

CEQ - COMPARE EQUAL - 768

CEQ (M),(M),B

CEQ takes the contents of the location specified by Al and the contents of the location
specified by A2 and performs an algebraic, 48-bit signed comparison between the
two. If the contents of Al are equal to the contents of A2, control will transfer to
the first syllable of the location specified by A3' Otherwise, control continues to
the next instruction in sequence. The location specified by A3 must contain a valid
operator syllable left justified.

103

Ex: CEQ ITEM,MATCH,BRNCH

ITEM = 1234567012345670
MATCH = 1234567012345670:

The next instruction to be executed will be taken from location BRNCH.

CGR - COMPARE GREATER - 758

CGR (M),(M),B

CGR takes the contents of the location specified by Al and the contents of the location
specified by A2 and performs an algebraic, 48-bit signed comparison between the
two. If the contents of Al are greater than the contents of A2, control will trans
fer to the first syllable of the location specified by A3. Otherwise, control con
tinues to the next instruction in sequence. The location specified by A3 must con
tain a valid operator syllable left justified.

Ex: CGR ITEM,N,BRNCH

ITEM = 47777777777777778
Top of stack = 37777777777777778

The next instruction to be executed will be the one following the CGR instruction
in sequence. Note that the 4 in ITEM denotes a minus sign bit and two zero bits
in the numeric value of the word.

CLS - COMPARE LESS - 748

CLS (M),(M},B

CLS takes the contents of the location specified by Al and the contents of the location
specified by A2 and performs an algebraic, 48-bit signed comparison between
the two. If the contents of Al we less than the contents of A2r control will trans
fer to the first syllable of the location specified by A3. Otherwise, control will
continue to the next instruction in sequence. The location specified by A3 must

Ex:

104

contain a valid operator syllable left justified. .

CLS ITEM,SMALL,BRNCH

ITEM = 3777777777777777
SMALL = 4777777777777777:

The next instruction to be executed will be the one following in sequence the CLS
instruction. Note that the 3 in ITEM denotes a plus sign bit and two one bits in the
numeric value of the word.

LOGICAL INSTRUCTIONS

The logical operations that can be performed on the AN/GSA-51A are AND, OR, Ex
clusive OR, and Complement. These operations can be performed on a full 48-bit word or
upon a partial word (character or byte) which is field defined. The group considered here
concerns only logical operations upon the full 48-bit word. Field logical instructions will be
treated later, in the section on Field Instructions.

One important function of logical instructions is to isolate or modify particular bits
in a 48-bit word. Many data words are so designed in the BUIC system as to accommodate
more than one piece of information. The use of arithmetic instructions for modifying parts of
a word is Umited, however, since arithmetic instructions operate on the entire word and
treat the first bit as a sign bit. In order to modify parts of words only, it becomes necessary
to isolate the part from the rest of the word, perform any necessary changes, and reinsert
the changed bits in their appropriate position. The logical instructions described here facilitate
these operations.

LAN - LOGICAL AND - 568

LAN (M),(M),(M)

LAN takes the contents of the location specified by A1 and the contents of the location
specified by A2, performs a logical AND operation on all 48-bit positions, and
places the result in the location specified by A3. The AND operation compares
bits of the same bit position and produces a zero when either or both are zeros
and a one when they are both ones. The contents of A 1 and A2 remain unchanged
unless A3 denotes one of these locations.

Ex:

Ex:

(1) LAN DAT A,MASK1,N

BEFORE - DATA = 43217650134760348
MASK1 = 00000000000000078

AFTER - Top
of stack 00000000000000048

Note that this operation has isolated the three least significant bits in DATA and
placed them in the A3 location.

(2) LAN DATA,CMSK1,DATA

BEFORE - DATA = 43217650134760348
CMSK1 = 77777777777777708

AFTER - DATA = 43217650134760308

Note that this operation has cleared (set to zero) the three least significant bits
of DATA.

105

LOR - LOGICAL OR - 558

LOR (M),(M),(M)

LOR takes the contents of the location specified by Al and the contents of the location
specified by A2, performs a logical OR operation on all 48-bit positions, and
places the result in the location specified by A3. The OR operation compares
bits of the same bit position and produces a zero where they are both zero and a
one when either or both are ones. The contents of Al and A2 remain unchanged
unless A3 denotes one of these locations.

Ex: LOR DATA,SEVEN,DATA

BEFORE - DATA = 47776666555504328

SEVEN = 00000000000070008

AFTER - DATA = 47776666555574328

Note that this operation has set three bits beginning with bit position 37 to one.
A binary add instruction with DATA and SEVEN would not accomplish the same
result since the computer would treat DATA as a negative value and SEVEN as
a positive value.

LXR - LOGICAL EXCLUSIVE OR - 548

LXR (M),(M),(M)

LXR takes the contents of the location specified by Al and the contents of the location
specified by A2, performs a logical EXCLUSIVE OR operation on all 48-bit posi
tions, and places the result in the location specified by A3. The EXCLUSIVE OR
operation compares bits of the same bit position and produces a zero when they
are identical (either both ones or both zeros) and a one when they are different.
The . contents of Al and A2 remain unchanged unless A3 denotes one of these
locabons.

Ex: LXR DATA,CHANG,N

BEFORE - DATA = 73737373737373738
CHANGE = 65656565656565658

AFTER - Top
of stack 16161616161616168

LCM - LOGICAL COMPLEMENT - 248

LCM (M),(M)

LCM takes the contents of the location specified by AI' performs a logical COMPLEMENT
operation on all 48-bit positions, and places the result in the location specified by
A2. The COMPLEMENT operation reverses the settings of bits, so that ones be
come zeros and zeros become ones. The contents of Al remains unchanged unless
A2 denotes the Al location.

106

Ex: LCM DATA,COMP

BEFORE - DATA = 0102030405060700

AFTER - COMP = 7675747372717077

CYCLING AND SHIFTING INSTRUCTIONS

This group of instructions provides for the shifting of the contents of the location speci
fied in the Al syllable and in some cases in combination with the TFC register. A total of
16 different types of shifting are possible, depending upon the following four alternatives:
(1) either right or left; (2) either single or double; (3) either logical or aritlunetic; (4) either
circular (cycling) or end-off.

Right or left indicates the desired direction in which the shifting is to take place. In a
double shift, the contents of the TFC register are shifted as well as the contents of the loca
tion specified by Al' In a single shift only the contents of the Al location are shifted. Logical
shifts are performed on bits 1 through 48 of the contents of the location specified in the Al
syllable and, if a double shift is specified, on bits 1 through 48 of the TFC register also. on
the other hand, aritlunetic shifts are performed on bits 2· through 48 of the contents of tbe
location specified by Al and, if a double shift is indicated, on bits 2 through 48 of the TFC
register also. In cycling shifts, bits are shifted end-around in the direction specified. If
cycling is not specified, the bits are shifted end-off and zeros are inserted into the opposite
end of the data word.

Although the octal code for the shifting instructions (358) remains the same irrespective
of the alternatives above, the mnemonic pseudo code. varies as to the type of alternatives
selected. This variation of mnemonic code affects the structure of the A2 syllable, which
denotes the kind and amount of shifting requested. The A2 syllable of this instruc~ion is a
special syllable and is composed as follows:

A2 Instruction Syllable structure

1
1 2 3 4 5 6 7 2

Not A B I C I D I
Amount of

I Used Shift

A= o for single C = o for aritlunetic
1 for double 1 for logical

B = 0 for left shift D = 0 for cycle
1 for right shift 1 for shift (end-off)

In coding using the pseudo instruction, only the number of bits to be shifted is inserted
on the coding sheet for the A2 syllable. The number of bits is a decimal number.

The following diagrams illustrate the shifting as specified by the appropriate mnemonic
pseudo code. The first letter "F'" denotes a logical (full) shift; The "A" signifies an arith
metic shift. "L" and "R" denote left and right shift, respectively. "S" and "c" signify an
end-off shift and end-around cycle, respectively. If the last letter is a "D", a double shift
is indicated; otherwise a single shift will be performed. A more detailed explanation with
examples follows the diagrams.

107

The amount of bits to be shifted for the single shift instruction cannot exceed 6310,
as that is the largest number that can be inserted in the A2 syllable. However, there are fixed
limits for the double shift instructions as defined in the diagrams below. The limit of number
of bits to be shifted for each type of instruction is listed below each relevant pseudo code.

SHIFT (SHF) PSEUDO CODES

o Contents of Memory Location Specified by A1 4
1 8

~ I F II
t t

F!S I f---------11 1
t lost

FRC I 1-1 ---------l 1 I
f t

FRS I 1 3 I
f lost

0 0 4
1 2 8

Arc I I E I'; 1 t

AW I 1 f---------"I
f lost

ARC 1 I 1--1 --------..13 I
, i

108 ARB I I t-I ---------1 I
, ., __ L

SillFT (SHF) PSEUDO CODES (Cont'd)

o Contents of Memory Location 4 0 4
1 . Specified by Al 8 1 TFC 8

FWD I E I H -:::E===~~=====::I~I
m12 t~ ____________________________________ ~f

~S~2 I FI----------t� H ... I .. I--------~I I
~ lost

mCD I 11----------3 HI I-------.... 3 I
m 12 t ~

mSD I 1-1 -----~3 H 1--1 -----....... 3 I
m~ 1

rlost

o 0 4 0 0 4
1 2 8 1 2 8

ALCD 1 ""'-1 1 -. ------.1 1 I IE 1--------11 I
mll l ~, f

~~l I I E ---------tl I I I F -------II I
1 1 i , lost

ARCD I I I ·1 1 I 1 1 ~I I m 12 f I J ,.

I I I 3 I I I I 3 I ARSD
m 12 t ,

host

109

ALC - ARITHMETIC LEFT CYCLE - 368

ALC (M),S,(M)

ALC is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by AI' rotates bits 2 - 48 left the number of bit positions specified in
bits 7 - 12 of A2 and places the result in the location specified by A3' Bits which
pass thru bit position 2 are reinserted at bit position 48. The sign bit (bit 1) is
unaffected by the execution of this instruction.

Ex:

A2 Structure: 123 6 7

00001 # Shifts

3-6 contain the Variation Code.

1
2

7-12 contain the number of bit positions to be shifted.

ALC VALUE,42,PACK

BEFORE - VALUE = 40000000000000368

AFTER - PACK = 76000000000000008

VALUE = 40000000000000368

This instruction packs a signed, fixed-point number into the 6 most significant
bits.

ALCD - ARITHMETIC LE.FT CYCLE DOUBLE - 368

ALCD (M),S,(M)

ALCD

110

is the variation of the Shift Op Code, 368, which takes the contents of the location
specified by Al in combination with the contents of TFC (Thin Film C - 1248 -
1278) as a low order extension. Bits 2-48 of the Al image and bits 2-48 of TFC
are rotated left the number of bit positions specified in bits 7-12 of A2 and the
48 high order bits of the resulting double image are placed in the location speCi
fied by A3• Bits which pass thru bit poSition 2 of the Al image are reinserted at
bit pOSition 48 of TFC, and those which pass thru bit position 2 of TFC continue
into bit poSition 48 of the Al image. Neither sign bit is affected.

The number of bit positions to be shifted must not exceed 11.

1
A2 structure: 1 2 3 6 7 2

~1000 # Shifts I

Ex:

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

ALCD VALUE,6,PACK

BEFORE - VALUE = 40123456701234568

AFTER

TFC 76543210012345678

TFC = 54321001234567008

PACK = 52345670123456758

VALUE = 40123456701234568

ARC - ARITHMETIC RIGHT CYCLE - 368

ARC (M),S,(M)

ARC is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by AI> rotates bits 2-48 right the number of bit positions specified in
bits 7-12 of A2 and places the result in the location specified by A3• Bits which
pass thru bit position 48 are reinserted at bit position 2. The sign bit (bit 1) is
\Ulaffected by the execution of this instruction.

Ex:

1
A2 Structure: 1 2 3 6 7 2

~ 0100 # Shifts

ARC PACK,42, VALUE

BEFORE - PACK = 76000000000000008

AFTER - VALUE = 40000000000000368

PACK = 76000000000000008

ARCD - ARITHMETIC RIGHT CYCLE DOUBLE - 368

ARCD

ARCD

(M),S,(M)

is the variation of the Shift Op Code, 368, which takes the contents of the location
specified by Al in combination with the contents of TFC (Thin Film C - 1248 -
1278) as a low order extension. Bits 2-48 of the Al image and bits 2-48 of TFC
are rotated right the number of bit poSitions specified in bits 7-12 of A2, and the
48 high order bits of the resulting double image are placed in the location specified
by A3• Bits which pass thru bit position 48 of the Al image continue into bit
position 2 of TFC, and those which pass thru bit position 48 of TFC are reinserted
at bit position 2 of the Al image. Neither sign bit is affected.

111

The number of bit positions to be shifted must not exceed 1210.

A2 structure: 123 6 7

1 1 0 0 I # Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

Ex: ARCD PACK,12, VALUE

BEFORE - PACK = 56753064200247138

TFC = 67002471356024718

AFTER - TFC = 63456700247135608

VALUE = 52345675306420028

PACK = 56753064200247138

ALS - ARITHMETIC LEFT SHIFT - 368

ALS (M),S,(M)

1
2

ALS is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by AI' shifts bits 2-48 left the number of bit positions specified in bits
7-12 of A2 and places the result in the location specified by A3. Bits which pass
thru bit position 2 are lost and zeros are inserted at bit position 48. The sign bit
(bit 1) is unaffected by the execution of this instruction.

Ex:

112

A2 Structure: 123 6 7

0001 I # Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

ALS VALUE,42,PACK

BEFORE - VALUE = 76543210012345678

AFTER - PACK = 67000000000000008

VALUE = 76543210012345678

1
2

ALSD - ARITHMETIC LEFT SHIFT DOUBLE - 368

ALSD

ALSD

Ex:

(M),S,(M)

is the variation of the Shift Op Code, 368, which takes the contents of the location
specified by A1 in combination with the contents of TFC (Thin Film C - 1248 -
1278) as a low order extension. Bits 2-48 of the Al image and bits 2-48 of TFC are
shifted left the number of bit positions specified by A3' Bits which pass thru bit
position 2 of the Al image are lost, those which pass thru bit position 2 of TFC
continue into bit position 48 of the Al image, and zeros are inserted at bit posi
tion 48 of TFC. Neither sign bit is affected.

The number of bit positions to be shifted must not exceed 1110,

1
A2 Structure: 1 2 3 6 7 2

~ 1 0 0 1 # Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

ALSD VALUE,6,PACK

BEFORE - VALUE = 01234567765432108

TFC = 77665544332211008

AFTER TFC = 66554433221100008

PACK = 23456776543210778

VALUE = 01234567765432108

ARS - ARITHMETIC RIGHT SHIFT - 368

ARS (M),S,(M)

ARS is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by AI, shifts bits 2-48 right the number of bit positions specified in bits
7-12 of A2 and places the result in the location specified by A3' Bits which pass
thru bit position 48 are lost and zeros are inserted at bit position 2. The sign bit
(bit 1) is unaffected by the execution of this instruction.

A2 Structure: 12367

3-6 contain the Variation Code.

Shifts

1
2

7-12 contain the number of bit positions to be shifted.

113

Ex: ARS PACK,42, VALUE

BEFORE - PACK = 77000000000000008

AFTER - VALUE = 40000000000000378

PACK = 77000000000000008

ARSD - ARITHMETIC RIGHT SlUFT DOUBLE - 368

ARSD

ARSD

Ex:

(M),S,(M)

is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by A1 in combination with the contents of TFC (Thin Film C - 1248 -
1278) as a low order extension. Bits 2-48 of the A1 image and bits 2-48 of TFC
are shifted right the number of bit positions specified in bits 7-12 of A2, and the
48 high order bits of the resulting double image are placed in the location speci
fied by A3• Bits which pass thru bit position 48 of the A1 image continue into bit
pOSition 2 of TFC, those which pass thru bit position 48 of TFC are lost and zeros
are inserted at bit position 2 of the A1 image. Neither sign bit is affected.

The number of bit positions to be shifted must not exceed 1210•

A2 Structure: 123 6 7

4# Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

ARSD PACK,6,VALUE

BEFORE - PACK = 10775533106644228

AFTER

TFC = 40000000000000008

TFC = 51000000000000008

VALUE = 00107755331066448

PACK = 10775533106644228

1
2

FLC - FULL LEFT CYCLE - 368

FLC (M),S,(M)

FLC is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by A1, rotates bits 1-48 left the number of bit positions specified in
bits 7-12 of A2 and places the result in the location specified by A3• Bits which
pass thru bit position 1 are reinserted at bit position 48. The sign bit (bit 1) is
included in the execution of this instruction.

114

Ex:

1
A2 structure: 1 2 3 6 7 2

~ 001 01 ,"Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

FLC BITS,42,NEW

BEFORE - BITS = 00112233445566778

AFTER - NEW = 77001122334455668

BITS = 00112233445566778

FLCD - FULL LEFT CYCLE DOUBLE - 368

FLCD

FLCD

Ex:

(M),S,(M)

is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by A1 in combination with the contents of TFC (Thin Film C - 1248-1278)
as a low order extension. Bits 1-48 of the A1 image and bits 1-48 of TFC are
rotated left the number of bit positions specified in bits 7-12 of A2, and the 48
high order bits of the resulting double image are placed in the location specified
by A3' Bits which pass through bit position 1 of TFC continue into bit position
48 of the A1 image, and those which pass through bit poSition 1 of the A1 image
are reinserted at bit position 48 of TFC. Both sign bits are included in the execu
tion of this instruction.

The number of bit positions to be shifted must not exceed 1210,

1
A2 Structure: 1 2 3 6 7 2

~1 0 1 0 I ,"Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

FLCD BITS, 6, FUDGE

BEFORE - BITS = 01234567765432108

TFC = 00112233445566778

AFTER - TFC = 11223344556677018

FUDGE = 23456776543210008

BITS = 01234567765432108

115

FRC - FULL RIGHT CYCLE - 368

FRC (M),S,(M)

FRC is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by Al. rotates bits 1-48 right the number of bit positions specified in
bits 7-12 of A2 and places the result in the location specified by A3. Bits which
pass thru bit position 48 are reinserted at bit position 1. The sign bit (bit 1) is
included in the execution of this instruction.

1
A2 Structure: 1 2 3 6 7 2

~o 110 # Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

Ex: FRC BITS,42,NEW

BEFORE - BITS = 01237654456732108

AFTER - NEW = 2376544567321001 8

BITS = 01237654456732108

FRCD - FULL RIGHT CYCLE DOUBLE - 368

FRCD (M),S,(M)

FRCD

Ex:

116

is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by Al in combination with the contents of TFC (Thin Film C - 1248-1278)
as a low order extension. Bits 1-48 of the Al image and bits 1-48 of TFC are
rotated right the number of bit positions specified in bits 7-12 of A2, and the 48
high order bits of the resulting double image are placed in the location specified
by A3• Bits which pass thru bit position 48 of the Al image continue into bit
position 1 of TFC, and those which pass thru bit position 48 of TFC are reinserted
at bit pOSition 1 of the Al image. Both Sign bits are included in the execution of
this instruction.

The number of bit positions to be shifted must not exceed 1210•

1
A2 Structure: 1 2 3 6 7 2

~1 1 1 0 I # Shifts

FRCD BITS,9 , FUDGE

BEFORE - BITS = 10234756756431208

TFC = 10012112322343348

AFTER - TFC = 12010012112322348

FUDGE = 33410234756756438

BITS = 10234656756431208

FLS - FULL LEFT SHIFT - 368

FLS (M),S,(M)

FLS is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by Ab shifts bits 1-48 left the number of bit positions specified in bits
7-12 of A2 and places the result in the location specified by A3. Bits which pass
thru bit position 1 are lost and zeros are inserted at bit position 48. The sign bit
(bit 1) is included in the execution of this instruction.

Ex:

1
A2 Structure: 1 2 3 6 7 2

~ 0 0 1 1 41 Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

FLS BITS,27, FUDGE

BEFORE - BITS = 00112233445566778

AFTER - FUDGE = 45566770000000008

BITS = 00112233445566778

FLSD - FULL LEFT SmFT DOUBLE - 368

FLSD

FLSD

(M),S,(M)

is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by Al in combination with the contents of TFC (Thin Film C - 1248-1278)
as a low order extension. Bits 1-48 of the Al image and bits 1-48 of TFC are
shifted left the number of bit positions specified in bits 7-12 of A2, and the 48 high
order bits of the resulting double image are placed in the location specified by A3•
Bits which pass thru bit position 1 of the Al image are lost, those which pass thru
bit position 1 of TFC are reinserted at bit position 48 of the Al image, and zeros
are inserted at bit position 48 of TFC. Both sign bits are included in the execution
of this instruction.

The number of bit positions to be shifted must not exceed 1210•

1
A2 structure: 1 2 3 6 7 2

~ 1 0 1 1 41 Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

117

Ex: FLSD BITS,9,FUDGE

BEFORE - BITS = 76543210012345678

TFC = 00112233445566778

AFTER - TFC = 12233445566770008

FUDGE = 4321001234567001 8

BITS = 76543210012345678

FRS - FULL RIGHT SHIFT - 368

FRS (M),S,(M)

FRS is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by Ab shifts bits 1-48 right the number of bit positions specified in
bits 7-12 of A2, and places the result in the location specified by A3' Bits which
pass thru bit position 48 are lost and zeros are inserted at bit position 1. The
sign bit (bit 1) is included in the execution of this instruction.

Ex:

A2 Structure: 123 6 7

~o 111 # Shifts

3-6 contain the Variation Code.
7-12 contain the number of bit positions to be shifted.

FRS BITS,33,FUDGE

BEFORE - BITS = 11112222333344448

AFTER- FUDGE = 00000000000111128

BITS = 11112222333344448

1
2

FRSD - FULL RIGHT SHIFT DOUBLE - 368

FRSD

FRSD

118

(M),S,(M)

is a variation of the Shift Op Code, 368, which takes the contents of the location
specified by A1 in combination with the contents of TFC (Thin Film C - 1248-1278)
as a low order extension. Bits 1-48 of the A1 image and bits 1-48 of TFC are
shifted right the number of bit positions specified in bits 7-12 of A2, and the 48
high order bits of the resulting double image are placed in the location specified
by A3• Bits which pass thru bit position 48 of the Al image continue into bit
position 1 of TFC, those which pass thru bit poSition 48 of TFC are lost, and zeros
are inserted at position 1 of the A1 image. Both sign bits are included in the
execution of this instruction.

The number of bit positions to be shifted must not exceed 1210'

Ex:

A2 structure: 123

3-6 contain the Variation Code.

6 7

Shifts

1
2

7-12 contain the number of bit positions to be shifted.

FRSD BITS,12, FUDGE

BEFORE - BITS = 76543210012345678

TFC = 44556677001122338

AFTER - TFC = 4567445566770011 8

FUDGE = 00007654321001238

BITS = 76543210012345678

FIELD INSTRUCTIONS

Field instructions are provided to manipulate fixed portions of a data word. For the
purpose of field instructions, the 48-bit data word is divided into 8 characters or bytes. Each
character is numbered from 0 thru 7 as shown below, and contains a set of six adjacent bits.
Manipulation of anyone or more characters in a word necessarily entails all six bits in the
specified character(s). To effectively use field instructions, the position of the data to be
accessed must coincide with one or more character portions in the 48-bit word.

Character
Number

BIT # 1 6 7 12 13 18 19 24 25 30 31 36 37 42 43 48

~Il 2 3 4 I 5 6 7

Where the desired data to be used shares a character with other data, the logical in
structions rather than the field instructions must be used.

Field instructions encompass a wide variety of manipulation: extraction or insertion
of field values, simple arithmetic, comparison and branching, and logical operations.

The A2 syllable of each field instruction is a special field syllable which is used to
indicate the character or characters upon which the instruction operates.

A2 Field Syllable structure

2 456

Shifts # Characters

1
o

leftmost
character
position

1
2

Bits 2 thru 4 contain the number of bytes or characters to be shifted. Shifting in field
instructions is always right, logical and end-around. Each single shift is always understood
as a rotation of the entire character -- all six bits.

119

Bits 6 thru 8 contain the number of characters, i.e., the length of the field, upon which
the instruction operates. If these bits contain zeros, a FULL WORD is indicated.

Bits 10 thru 12 contain the leftmost character position of the field. It should be noted
that a field cannot be specified in an end-around fashion. For example, if bits 6 thru 8 contain
a 4 and if bits 10 thru 12 contain a 5, the computer will only operate on three characters,
those in character positions 5, 6, and 7.

In most of the aritlunetic and logical field instructions, the stack is an implied operand.
The fields for manipulation or computation are taken from the contents of the stack and the
location specified by AI. After the operation, the result is inserted into the cleared field in
an image of AI' This result is then shifted the amount specified and stored in the Aa location.
In the compare/branch field instructions, the field extracted from the contents specified by
Al are first shifted as specified and then compared to the contents of the top of the stack.
Two of the field instructions do not use the stack as an implied operand. The SAF (Strip
and Adjust Field) and the LCF (Logical Complement Field). However, the top of the stack can
be specified in all field instructions in the Al or Aa syllables.

In coding the field instructions, blanks are necessary between the three values of the A2
syllable.

For special field instruction coding, referencing items which are compool sensitive,
separate coding definitions are given.

SAF - STRIP AND ADJUST FIELD - 418

SAF (M),F,(M)

SAF uses the field specification of A2 to strip* an image of the contents of the loca
tion specified by AI' The result is right end-around shifted the number of times
specified in A2 and placed in the location specified by Aa.

The contents of the location specified by Al will not be changed by the instruction
unless referenced by Aa'

1 1
A2 structure: 12 456 890 2

~ '* Sh ~ '* Ch ~ L.M.C.

2-4 contain the number of shifts (0-7 characters).
6-8 contain the number of characters, i.e., length of the field (0-7 characters)

with zero indicating 8 characters or a full word.
10-12 contain the leftmost character pOSition of the field (0-7 position).

*STRIPPING - is the process applied to a word image by which all bits lying within the field
area specified by A2 retain their original value and all others are set to
zero.

120

Ex: SAF SET,6 2 3,PART

BEFORE - SET = 225632ill§.432144S

AFTER - SET = 2256321256432144S

AFTER - PART = 0012560000000000S

INTER MEDIA TE IMAGE OF Al

After stripping 0000001256000000S

COMPOOL CODING:

SAF AI' N ITEM, A3

strip an amount of bytes of length "ITEM," and whose least significant byte position
is "N". Adjust its position so that the least significant byte position corresponds to the least
significant byte position of ITEM.

SAF AI' ITEM N, A3

strip an amount of bytes of length "ITEM/' and whose least significant byte position
is the least significant byte position of ITEM. Adjust its position so that its least significant
byte position corresponds to byte position N.

SAF AI' ITEM 1 ITEM 2, A3

strip an amount of bytes of length "ITEM 1", and whose least Significant byte position
is the least significant byte position of ITEM 1. Adjust its position so that its least significant
byte position corresponds to the least significant byte position of ITEM 2.

AIF - ADJUST AND INSERT FIELD - 40S

AIF (M),F,(M)

AIF using an image of the contents of the location specified by AI, it clears that area
of the image as defined by the field specification of A2; rotates an image of the
contents of the top of the stack right end-around the number of character positions
specified by A2; ORs the two 4S-bit images together and places the result in the
location specified by A3•

Neither the position or contents of the stack, nor the contents of the location
specified by Al will be changed by AIF unless referenced by A3•

1 1
A2 structure: 1 2 4 5 6 S 9 0 2

t?a # Sh [a # Ch ~ L.M.C.

~~
~ 121

Ex:

2-4 contain the number of shifts (0-7 characters).
6-8 contains the number of characters, i.e., length of the field (0-7 characters)

with zero indicating 8 characters or a full word.
10-12 contain the leftmost character position of the field (0-7 position).

AIF BYTES,7 1 1,HOLES

BEFORE - BYTES = 77665544332211008

BEFORE - Top
of stack = 00005700000000008

AFTER - HOLES = 77575544332211008

AFTER - Top
of stack = 00005700000000008

INTERMEDIATE IMAGES OF A1

After clearing

After stack rotation

77005544332211008

00570000000000008

Note that if any other fields in the stack contained non-zero values other than those
specified above, these values would also be ORed into HOLES, although not in
character positions specified by the A2 syllable.

COMPOOL CODING:

AIF A1,ITEM N,A3

Clear an amount of bytes of length "ITEM," and whose least Significant byte position
is liN". Adjust the top of the stack so that the least Significant byte poSitions of ITEM cor
responds to byte position N.

AIF A1,N ITEM, A3

Clear an amount of bytes of length IIITEM", and whose least Significant byte position
is the least Significant byte position of ITEM. Adjust the top of the stack so that byte position
N corresponds to the least Significant byte position of ITEM.

AIF A1,ITEM I ITEM 2,A3

Clear an amount of bytes of length uITEM 2", and whose least significant byte poSition
is the least significant byte position of ITEM 2. Adjust the top of the stack so that the least
significant byte position of ITEM I corresponds to the least significant byte position of ITEM
2.

122

CEF - COMPARE EQUAL FIELD - 52S

CEF (M),F,B

CE F uses the field specification of A2 to strip an image of the contents of the location
specified by AI, .and shifts the results right end-around the number of character
positions specified in A2. A logical, 4S-bit unsigned comparison is made between
the rotated image and the contents of the top of the stack. If the image is equal to
the stack, control will transfer to the first syllable of the location specified by
A3, otherwise control continues to the next instruction in sequence.

Ex:

Neither the poSition or contents of the stack, nor the contents of the location
specified by Al will be changed by CEF unless referenced by A3•

A2 structure: 1 2 456
1

S 9 0

~ '* Sh. ~ '* Ch. ~ L.M.C.

2-4 contain the number of shifts (0-7 characters).

1
2

6-S contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating S characters or a full word.

10-12 contain the leftmost character poSition of the field (0-7 position).

CEF WORD+X9,4 1 5,MATCH

BEFORE - Top of stack = 0021000000000000S

WORD+X9 = 3266224413210600S

AFTER = Program branches to instruction contained in MATCH.

INTERMEDIATE IMAGES OF Al

After stripping

After rotation

0000000000210000S

0021000000000000S

Note that, if the top of the stack contained non-zero values in other field loca
tions, the result would not be to branch, since the comparison is made with the
entire 4S-bit word.

COMPOOL CODING:

CEF A1,N ITEM,A3

strip an amount of bytes of length "ITEM", and whose least significant byte position is
byte position N. Adjust its position so that byte poSition N corresponds to the least Significant
byte position of ITEM.

123

CEF A1,ITEM 1 ITEM 2,A3

strip an amount of bytes of length "ITEM", and whose least significant byte position
is the least Significant byte position of ITEM 1. Adjust its pOSition so that the least Significant
byte position of ITEM 1 corresponds to the least significant byte poSition of ITEM 2.

strip an amount of bytes of length "ITEM", and whose least significant byte position
is the least significant byte pOSition of ITEM. Adjust its position so that the least Significant
byte position of ITEM corresponds to byte pOSition N.

CGF - COMPARE GREATER FIELD - 518

CGF (M),F,B

CG F uses the field specification of A2 to strip an image of the contents of the location
specified by Ai> and shifts the results right end-around the number of character
poSitions specified in A2• A logical, 48-bit, unsigned comparison is made between
the rotated image and the contents of the top of the stack. If the image is greater
than the stack, control. will transfer to the first syllable of the location specified
by A2, otherwise control will continue to the next instruction in sequence.

Ex:

124

Neither the pOSition or contents of the stack, nor the contents of the location
specified by A1 will be changed by CGF unless referenced by A3•

A2 structure: 1 2

'* She

4 5 6

'* Ch.

1
890

2-4 contain the number of shifts (0-7 characters).

L.M.C.

1
2

6-8 contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating 8 characters or a full word.

10-12 contain the leftmost character position of the field (0-7 position).

CGF DATA+X5,5 2 4,MOST

BEFORE - Top of stack == 00777600000000008

DATA+X5 == 21652653777522748

AFTER - program will continue to the next instruction in sequence.

INTERMEDIATE IMAGES OF A1

After stripping 00000000777500008

After rotation == 00777500000000008

Note that, if the stack contained non-zero values in the other field locations, the
result might be changed, since the comparison is made with the entire 48-bit word.

COMPOOL CODING: Handled in same manner as CEF.

CLF - COMPARE LESS FIELD - 50S

CLF (M),F,B

CLF uses the field specification of A2 to strip an image of the contents of the location
specified by AI> and shifts the result right end-around the number of character
positions specified in A2. A logical, 4S-bit unsigned comparison is made between
the rotated image and the contents of the top of the staCk; if the image is less than
the stack, control will transfer to the first syllable of the location specified by A3;
otherwise control will continue to the next instruction in sequence.

Ex:

Neither the position or contents of the stack, nor the contents of the location
specified by Al will be changed by CLF unless referenced by A3.

A2 Structure: 1 2

'* Sh

456

'* Ch

1
S 9 0

2-4 contain the number of shifts (0-7 characters).

L.M.C.

I
2

6-S contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating S characters or a full word.

10-12 contain the leftmost character position of the field (0-7 position).

CLF WORDS+X2+X3+X4,7 1 5,LEAST

BEFORE - Top of stack = 0000000001000000S

WORDS+X2+X3+X4 = 2342612566004331 S

AFTER Program will branch to instruction contained in location LEAST.

INTERMEDIATE IMAGES OF Al

After stripping OOOOOOOOOOOOOOOOS

After rotation = OOOOOOOOOOOOOOOOS

COMPOOL CODING: Handled in the same manner as CEF.

BAF - BINARY ADD FIELD - 43S

BAF (M),F,(M)

BAF uses the field specification of A2 to strip first an image of the contents of the lo
cation specified by Al and then an image of the contents of the top of the stack,
and performs a 4S-bit unsigned addition with the results. The sum is stripped in
turn, an image of the contents of the location specified by Al has its field area
specified by A2 cleared to zero, and the two images are ORed together. The result
is right end-around shifted the number of times specified in A2 and placed in the
location specified by A3.

125

Ex:

Neither the position or contents of the stack, nor the contents of the location
specified by A1 will be changed by BAF unless referenced by A3,

A2 structure: 1 2

Sh

4 5 6

Ch

1
a 9 0

2-4 contain the number of shifts (0-7 characters).

L.M.C.

1
2

6-a contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating a characters or a full word.

10-12 contain the leftmost character position of the field (0-7 position).

BAF ITEM+X10,0 1 1,SUM

BEFORE - Top of stack = 7622532161742160a

ITEM+X10

AFTER - SUM

= 62~214463125432a

= 6205214463125432a (NOTE OVERFLOW BIT
IS LOST)

INTERMEDIATE IMAGES

stripped Image of A1

stripped Image of stack

Unsigned Addition

Stripped Image of Addition

Cleared Image of A1

- 0063000000000000a

- 0022000000000000a

- 0105000000000000a

- 0005000000000000a

- 6200214463125432a

COMPOOL CODING:

BAF A1,ITEM N ,A3

strip an amount of bytes of LENGTH "ITEM" and whose least Significant byte position
is the least significant byte position of ITEM. strip the corresponding bytes in the top of the
stack. Adjust the resulting sum so that the least Significant byte poSition of ITEM corresponds
to byte position "N" •

BAF A1,N ITEM,A3

strip an amount of bytes of length "ITEM" and whose significant byte position is "N' .
strip the corresponding bytes in the top of the stack. Adjust the resulting sum so that byte
position N corresponds to the least significant byte position of ITEM.

126

BAF A1,ITEM 1 ITEM 2,A3

strip an amount of bytes of length "ITEM 1," and whose least significant byte position
is the least Significant byte position of ITEM 1. strip the corresponding bytes in the top of the
stack. Adjust the resulting sum so that the least Significant byte poSition of ITEM 1 corresponds
to the least significant byte position of ITEM 2.

BSF - BINARY SUBTRACT FIELD - 428

BSF (M),F,(M)

BSF uses the field specification of A2 to strip first an image of the contents of the
location specified by A1 and then an image of the contents of the top of the stack,
and performs a 48-bit unsigned subtraction with the results which gives the
ABSOLUTE difference of the two. The difference is stripped in turn, an image
of the contents of the location specified by A1 has its field area as specified by
A2 set to zero, and the stripped difference is inserted into the cleared image.
The result is right end-around shifted the number of times specified in A2 and
placed in the location specified by A3•

Ex:

Neither the poSition or contents of the stack, nor the contents of the location
specified by A1 will be changed by BSF unless referenced by A3•

A2 structure: 1 2

'* Sh

456

'* Ch

1
890

2-4 contain the number of shifts (0-7 characters).

L.M.C.

1
2

6-8 contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating 8 characters or a full word.

10-12 contain the leftmost character position of the field (0-7 position).

BSF ITEM+X10,4 1 4,DIF

BEFORE - Top of stack = 76225321617421608

ITEM+X10 62632144~1254328

AFTER - DIF = 02125432626321448

INTERMEDIATE IMAGES

stripped Image of A1

Stripped Image of Stack

Absolute Difference

Cleared Image of A1

Insertion of Difference

00000000630000008

- 00000000610000008

- 00000000020000008

62632144001254328

62632144021254328

127

COM POOL CODING: Handled in the same manner as BAF.

LAF - LOGICAL AND FIELD - 478

LAF (M),F,{M)

LAF uses the field specification of A2 to strip first an image of the contents of the
location specified by Al and then an image of the contents of the top of the stack,
and then logically ANDs the results together. This logical combination is stripped
in turn, an image of the contents of the location specified by Al has its field area
as specified by A2 cleared to zero, and the stripped combination is inserted into
the cleared image. The result is right end-around shifted the number of times
specified in A2 and placed in the location specified by A3.

Ex:

128

The AND operation compares bits of the same bit pOSition and produces a zero
when either or both are zeros and a one when they are both ones.

Neither the pOSition or contents of the stack, nor the contents of the location
specified by Al will be changed by the instruction unless referenced by A3•

A2 structure: 1 2

Sh

4 5 6

Ch

1
890

2-4 contain the number of shifts (0-7 characters).

L.M.C.

1
2

6-8 contain the number of characters, i.e., length of the field (0-7 characters)
with zero indicating 8 characters or a full word.

10-12 contain the leftmost character position of the field (0-7 position).

LAF WORD+Xl,1 2 4,COMBO

BEFORE - WORD+Xl = 21325622443126148

Top of Stack = 26534161241512068

AFTER - COMBO = 14213256220411268

INTERMEDIATE IMAGES

Stripped Image of Al

Stripped Image of Stack

Result of AND operation

Cleared Images of Al

Insertion of A..'IT> result

00000000443100008

00000000241500008

- 00000000041100008

21325622000026148

21325622041126148

COMPOOL CODING: Handled in the same manner as BAF.

LOF - LOGICAL OR FIELD - 448

LOF (M),F,(M)

LOF uses the field specification of A2 to strip first an image of the contents of the
location specified by A 1 and then an image of the contents of the top of the stack,
and then logically ORs the results together. This logical combination is stripped
in turn, an image of the contents of the location specified by A1 has its field area
as specified by A2 cleared to zero, and the stripped combination is inserted into
the cleared image. The result is right end-around shifted the number of times
specified in A2 and placed in the location specified by A3•

Ex:

The OR operation compares bits of the same bit position and produces a zero
when they are both zeros and a one when either or both are ones.

Neither the position or contents of the stack, nor the contents of the location
specified by A1 will be changed by the instruction unless referenced by A3•

A2 Specified: 1 2 456
1

890
1
2

~~~r--#-S-h---r.~~n---#-C-h--~~~Ir--L-.-M-.-C-.---' 

2-4 contain the number of shifts (0-7 characters). 
6-8 contain the number of characters, i.e., length of the field (0-7 characters) 

with zero indicating 8 characters or a full word. 
contain the leftmost character position of the field (0-7 position). 

LOF BITS,1 5 O,FILL 

BEFORE - BITS = 35567542552641058 

Top of stack = 56214235223752418 

AFTER - FILL = 05777777777726418 

INTERMEDIATE IMAGES 

str~pped Image of A1 

stripped Image of stack 

Result of OR Operation 

Cleared Image of A1 

Insertion of OR Result 

- 35567542550000008 

56214235220000008 

77777777770000008 

- 00000000002641058 

77777777772641058 

129 



COMPOOL CODING: Handled in the same malUler as BAF. 

LXF - LOGICAL EXCLUSIVE OR FIELD - 458 

LXF (M),F,(M) 

LXF uses the field specification of A2 to strip first an image of the contents of the 
location specified by Al and then an image of the contents of the top of the stack, 
and then logically EXCLUSIVE ORs the results together. This logical combination 
is stripped in turn, an image of the contents of the location specified by Al has 
its field area as specified by A2 cleared to zero, and the stripped combination is 
inserted into the cleared image. The result is right end-around shifted the number 
of times specified in A2 and placed in the location specified by A3. 

Ex: 

130 

The EXCLUSIVE OR operation compares bits of the same bit position and produces 
a zero when they are identical (either both ones or both zeros), and a one when 
they are different. 

Neither the position or contents of the stack, nor the contents of the location 
specified by Al will be changed by the instruction unless referenced by A3• 

A2 structure: 1 2 

if Sh 

456 

if Ch 

1 
8 9 0 

2-4 contain the number of shifts (0-7 characters). 

L.M.C. 

1 
2 

6-8 contain the number of characters, i.e., length of the field (0-7 characters) 
with zero indicating 8 characters or a full word. 

10-12 contain the leftmost character position of the field (0-7 position). 

LXF BITS,O 6 I,COMBO 

BEFORE - BITS = 21536671524431228 

Top of stack = 41553450264231448 

AFTER - COMBO = 21 065221740600228 

INTERMEDIATE IMAGES 

stripped Image of Al 

stripped Image of stack 

Result of Exclusive OR 
Operation 

Cleared Image of Al 

Insertion of EXCLUSIVE 
OR Result 

- 00536671524431008 

- 00553450264231008 

- 00065221740600008 

- 21000000000000228 

- 21065221740600228 



COM POOL CODING: Handled in the same manner as BAF. 

LCF - LOGICAL COMPLEMENT FIELD - 468 

LCF (M),F ,(M) 

LCF uses the field specification of A2 to strip an image of the contents of the location 
specified by Al and logically COMPLEMENTS the result. This complemented 
field is stripped in turn, an image of the contents of the location specified by 
Al has its field area as specified by A2 cleared to zero, and the two images are 
ORed together. The result is right end-around shifted the number of times speci
fied in A2 and placed in the location specified by A3• 

Ex: 

The COMPLEMENT operation reverses the settings of bits so that ones become 
zeros and zeros become ones. 

The contents of the location specified by Al will not be changed by the instruction 
unless referenced by A3• 

1 1 

A2 structure: ~~'-L.l L...J...2_,*_Sh __ 4.s...~-L5....L..L-6_,*_C_h_8...1<~ ...... 9'-"-.L.°_L_'_M_'_C_' _2---, 

2-4 contain the number of shifts (0-7 characters). 
6-8 contain the number of characters, i.e., length of the field (0-7 characters) 

with zero indicating 8 characters or a full word. 
10-12 contain the leftmost character poSition of the field (0-7 position). 

LCF BITS, 3 1 6,HOLD 

BEFORE - BITS = 21325541612532438 

AFTER - HOLD = 25454321325541618 

INTERMEDIATE IMAGES 

stripped Image of Al - 00000000000032008 

Result of COMPLEMENT 
Operation - 77777777777745778 

Result stripped - 00000000000045008 

Cleared Image of Al - 21325541612500438 

Insertion of COMPLEMENT 
Result - 21325541612545438 

131 



COMPOOL CODING: 

Strip an amount of bytes of length "ITEM," and whose least significant byte position 
is the least significant byte position of ITEM. Adjust the complemented result so that the 
least significant byte position of ITEM corresponds to byte position N. 

LCF A1,ITEM 1 ITEM 2,A3 

Strip an amount of bytes of length "ITEM 1 " and whose significant byte position is the 
least significant byte position of ITEM 1. Adjust the complemented result so that the least 
significant byte position of ITEM 1 corresponds to the least Significant byte position of ITEM 
2. 

FLOATING-POINT ARITHMETIC INSTRUCTIONS 

This group of instructions treats the four basic floating-point arithmetic instructions 
and includes the instruction for converting a fixed-point arithmetic data word to its equivalent 
floating-point format (CBF). In all floating-point arithmetic instructions, it is assumed that 
the contents specified in the Al and A2 syllables are in floating-point format. 

Floating-point format is defined as follows: the most Significant 12 bits represents a 
12-bit signed exponent. The least significant 36 bits represents a 36-bit signed mantissa. 
The mantissa indicates a binary quantity, and the exponent denotes the number of times the 
mantissa is raised by the power of 2. As a result, the exponent indicates the actual position 
of the binary point in the mantissa. 

Ex: positive exponent 
and negative mantissa 
negative exponent 
and positive mantissa 

00056234000000008 = -22.348 

40052234000000008 = +.011168 

Note that the first bit of the mantissa is the sign bit and the imaginary binary point in 
a floating-point word is understood to be just right of the mantissa sign bit. 

The use of floating-point computation facilitates operation with much larger numbers 
than would be possible with only a fixed-point arithmetic capability. It also reduces con
siderably the amount of scaling which must be done by the programmer. 

Normalization is an important condition of a floating-point word. In this condition all 
leading zeros have been shifted out of the mantissa and the most significant data bit (bit 14) 
is equal to 1. Depending upon the particular arithmetic instruction, various results ensue if 
either or both operands are not normalized. In general, the result of a floating-point instruc
tion will not be normalized if its operands are not normalized. 

FAD - FLOATING ADD - 678 

FAD (M),(M),~ 

F AD performs floating-point addition. The contents of the location specified by A2 (the 
addend) are algebraically added to the contents of the location specified by A1 (the 
augend). The result is then stored in the location specified by A3' It is assumed 

132 



Ex: 

Ex: 

Ex: 

that the Al and A2 operands of this instruction are in floating-point format. The 
resultant data word that is stored in A3 is normalized floating-point number, 
except as noted below. The contents of Al and A2 remain unchanged unless A3 
denotes one of these locations. 

The orders of magnitude of the mantissas of the Al and A2 contents are aligned 
by automatically computing the algebraic difference between the exponents of the 
two operands and shifting the smaller mantissa (the mantissa with the algebrai
cally smaller exponent) right the required number of places. 

FAD AUGI ,ADD! ,SUMI 

BEFORE - AUGI 
ADD! 

= 00073462343210008 . 
00031021201200008 --Ahgned to = 00070041050050008 

AFTER - SUMI 00073523413260008 

H the difference between the exponents of the two operands is 35 or greater, but 
less than 2047, the operand that has the algebraically greater exponent is first 
added to a value of positive zero. Normalization, if required, is then performed. 
This requires the removing of leading zeros in the mantissa by an appropriate 
number of left shifts and algebraically adding to the exponent a negative value 
equal to the number of bits shifted. The result is stored in A3. 

FAD AUG2,ADD2,SUM2 

BEFORE - AUG2 
ADD2 

AFTER - SUM2 

52525252525252528 
42104210421042108 

42136104210421008 

Note that a three-bit normalization of ADD2 was required and the exponent 42108 
changed accordingly. 

H the signs of the exponents of the two operands are unlike, and the sum of the 
absolute values of the two exponents is greater than 2047, the add operation is 
not performed, and the operand that has the positive exponent is stored in A3• 

FAD AUG3,ADD3,SUM3 

BEFORE - AUG3 
ADD3 

AFTER - SUM3 

25251234567076548 
= 65257654321000008 

25251234567076548 

(positive exponent) 
(negative exponent) 

Note that in this case normalization of the result is not performed. 

133 



Ex: 

Ex: 

Ex: 

134 

If the execution of this instruction results in mantissa overflow, the computer 
corrects the result by shifting the mantissa right, arithmetically, one place, 
inserting the most Significant bit lost by overflow, and then adjusting the ex
ponent by algebraically adding +1. However, if exponent overflow occurs as a 
result of this adjustment, the correct mantissa, along with an overflow exponent 
of 00018 is stored in A3, and the program (POV) Flip-flop is set. Because the 
adjustment is always a +1, no overflow of this type will occur with a negative 
exponent. 

FAD AUG4,ADD4,SUM4 

BEFORE - AUG4 = 37777777777777778 
ADD4 = 37777777777777778 

AFTER - SUM4 = 00017777777777778 
POV indicator on 

Note that the preliminary addition of the two mantissas yielded 777777777778 
with an overflow which is corrected by the shift right and insertion. 

If the execution of this instruction produces a mantissa that is equal to zero, 
"floating-point zero" is stored in A3, and the program underflow (PUN) flip-flop 
is set. Floating-point zero is the smallest possible positive number, Ox2-2047, 
and appears as a negative exponent of all l's with a positive mantissa of all 
zeros. 

FAD AUG5,ADD5,SUM5 

BEFORE - AUG5 = 77731245446314008 aligned to = 77650012454463148 (negative 
ADD5 = 77654012454463148 (positive mantissa) mantissa) 

AFTER - SUM5 = 77770000000000008 
PUN indicator on 

If, as a result of normalization, there is exponent underflow (negative value added 
to exponent exceeds -2047), the program underflow (PUN) flip-flop is set, and 
floating-point zero is stored in the location specified by A3. 

FAD AUG6,ADD6,N 

BEFORE - AUG6 = 77741245446314778 (positive mantissa) 
ADD6 = 77745200000000008 (negative mantissa) 

AFTER - Top of stack = 77770000000000008 
PUN indicator on 

The preliminary result before normalization is 77740045446314778, As a result 
of normalization, a -5 is added to the exponent 77748, which results in underflow. 



FSU - FLOATING SUBTRACT - 668 

FSU (M),(M),(M) 

FSU performs floating-point subtraction. The contents of the location specified by A2 
(the subtrahend) are algebraically subtracted from the contents of the location 
specified by A1 (the minuend). The result is then stored in the location specified 
by A3. It is assumed that A1 and A2 operands of this instruction are in floating
point format. The resultant data word is a normalized floating-point number, 
except as noted below. The contents of A1 and A2 remain unchanged unless A3 
references one of these locations. 

Ex: 

Ex: 

The characteristics of the FSU instruction are the same as those described on 
the previous page for the FAD (Floating Add) instruction with the following ex
ception. During the alignment of mantissas, if the difference between the two 
exponents is 35 or greater and the algebraically greater exponent is the sub
trahend, then the sign of its mantissa will be complemented. 

FSU MIN1 ,SUB1 ,DIFF1 

BEFORE - MIN1 = 65257654321045678 
SUB1 = 25254525252525258 

AFTER - DIFF1 = 25250525252525258 

The above example involves operands with unlike signs and results in an exponent 
difference of greater than 2047. The subtract operation is not performed and the 
operand with the positive exponent is stored in A3. Normalization of the result 
is not performed either. Note that the sign of the mantissa in SUB1 has been 
changed prior to transfer because SUB1 has the algebraically greater exponent. 

FSU MIN2,SUB2,DIFF2 

BEFORE - MIN2 = 52525252525252528 
SUB2 = 42104210421042108 

AFTER - DIFF2 = 42132104210421008 

The above example involves operands with an exponent difference of less than 
20.:47 and greater than 34. The operand with the algebraically greater exponent is 
added to a value of +0, normalized, and stored in A3. 

In this example a 3-bit normalization of the result has been performed, and the 
exponent is adjusted accordingly. Note that the sign of the mantissa is SUB2 has 
been changed during the alignment because SUB2 has the algebraically greater 
exponent. 

135 



Ex: 

Ex: 

FSU MIN3,SUB3,DIFF3 

BEFORE - MIN3 = 00023110000000008 
SUB3 = 00027104000000008 

AFTER - DIFF3 = 00033106000000008 

(positive mantissa) 
(negative mantissa) 

In the above example, subtraction resulted in mantissa overflow. A 1-bit right 
shift of the mantissa was performed, the overflow bit inserted in the most signifi
cant bit position of the mantissa, and the exponent increased by a +1. 

FSU MIN4,SUB4,DIFF4 

BEFORE - MIN4 = 77735245446314008 li d t = 7765401245446314 
SUB4 = 7765401245446314 _a gne 0 8 

8 
AFTER - DIFF4 = 77770000000000008 

PUN indicator on 

In the above example, the FSU operation resulted in a mantissa equal to zero. 
As a consequence, floating-point zero is stored in A3. 

FMU - FLOATING MULTIPLY - 638 

FMU (M),(M),(M) 

FMU performs floating-point multiplication. The contents of the location specified by 
A1 are multiplied by the contents of the location specified by A2. The most signifi
cant portion of the double precision product is normalized, if other than zero, and 
placed in the location specified by A3' The least significant portion, whose mantissa 
has the same sign as that of the most Significant portion, is placed in TFC (Thin 
Film C - 1248-1278). The resulting exponent is the algebraic sum of the original 
exponents of the two operands. 

136 

When the product has been normalized one bit position, the TFC exponent will 
be one greater than the A3 exponent and the high order bit of the TFC mantissa 
will be identical to the low order bit of A3• When the product has not been nor
malized one bit position, the A3 and TFC exponents will be identical and the 
high order bit of the TFC mantissa will not necessarily be the same as the low 
order bit of A3' The contents of the TFC register are not changed during the 
normalization operation. A normalized product will result for an FMU operation 
only when the original operands are normalized. 

It is assumed that both the A1 and A2 operands are in the floating-point format. 
The contents of A1 and A2 remain unchanged unless A3 references these locations. 

IT either the A1 or A2 operand contains floating-point zero or a mantissa that is 
not normalized, the program not normalized (PNN) flip-flop is set prior to per
forming the multiply operation. 



If the sum of two positive exponents of the two operands is greater than 2047, 
the program overflow (POV) flip-flop is set and the absolute value of the mantissa 
portion of A1, along with the overflow exponent, is stored in A3• 

Ex: FMU MULT1,MULD1,PROD1 

BEFORE - MULT1 = 30112525252525258 
MULD1 = 27777777777777778 

AFTER - PROD1 = 20112525252525258 
POV indicator on 

Note that the left-most 1 bit resulting from the overflow of the exponent addition 
is carried foward and added to the exponent before being stored in PROD1. 

If the sum of two negative exponents of the two operands is less than -2047, the 
program underflow (PUN) flip-flop is set and floating-point zero is stored in A3. 
Note in the example below that the PNN indicator also will be set because MULT2 
is not normalized. 

Ex: FMU MULT2,MULD2,PROD2 

BEFORE - MULT2 
MULD2 

52525252525252528 
= 67676767676767678 

AFTER - PROD2 = 77770000000000008 
PNN and PUN indicators on 

If the mantissa portion of the most significant half of the product is equal to zero, 
floating-point zero is stored in A3, and the program overflow (PUN) flip-flop is 
set. The least significant half ofthe product in the TFC register remains unchanged. 
Note in the example below that the PNN indicator also will be set because MULD3 
is not normalized. 

Ex: FMU MULT3,MULD3,PROD3 

BE FORE - MULT3 
MULD3 

= 24617654321023458 
00000000000000018 

AFTER - PROD3 77770000000000008 
TFC = 24617654321023458 
PUN and PNN indicators on 

FDV - FLOATING DIVIDE - 628 

FDV (M),(M),(M) 

FDV performs floating-point division. The contents of the location specified by A1 
(the dividend) is divided by the contents ofthe location specified by A2 (the divisor). 
The 35-bit quotient with sign and the resulting exponent are stored in the location 
specified by A3. The resulting exponent is the algebraic difference between the 
original exponents of the two operands. A 35-bit register right justified. The 

137 



The exponent of the remainder is always equal to zero. The contents of Al and 
A2 remain unchanged unless A3 references one of these locations. It is assumed 
that both the Al and A2 operands are in the floating-point format. 

U either the Al or A2 operand contains floating-point zero or a mantissa that is 
not normalized, the program not normalized (PNN) flip-flop is set prior to per
forming the divide operation. U both of the original operands of an FDV operation 
are normalized, the result will also be normalized. 

U the difference in the values of the exponents is greater than 2047 (exponent 
signs unlike and sign of divide exponent positive), the program overflow (POV) 
flip-flop is set. Under these conditions, the absolute value of the mantissa portion 
of Al with the overflow exponent, is stored in A3. Note in the example below that 
the PNN indicator is set because DVSRI is not normalized. 

Ex: FDV DVDNl,DVSRl,QUOTl 

BEFORE - DVNDI = 3777777777777777 
DVSRI = 5252525252525252~ 

AFTER - QUOTI = 12523777777777778 
PNN and POV indicators on 

Note above that as a result of exponent overflow, a +1 is algebraically added to the 
exponent stored in QUOTI. 

U the difference in the values of the exponents is less than -2047 (exponent signs 
unlike and sign or dividend exponent negative), the program underflow (PUN) 
flip-flop is set, and floating-point zero is stored in A3• 

Ex: FDV DVND2,DVSR2,QUOT2 

138 

BEFORE - DVND2 = 7654321012345670 
DVSR2 = 2525252525252525~ 

AFTER - QUOT2 = 77770000000000008 
PUN indicator on 

U a quotient mantissa equal to zero is produced as the result of the divide opera
tion, a floating-point zero is stored in A3' The remainder in TFC remains un
changed. It should be noted that this condition will never occur if both of the 
original operands are normalized. 

U normalized operands are used and the execution of this instruction results in 
mantissa overflow, the overflow condition is automatical!y corrected by saving 
the most-significant mantissa bit that would be lost by overflow and then adjusting 
the exponent by algebraically adding +1. U exponent overflow occurs as a result of 
this one bit adjustment, the correct mantissa with an overflow exponent of 00018 
is stored in A3, and the program overflow (POV) flip-flop is set. 



Ex: 

Ex: 

FDV DVND3,DVSR3,QUOT3 

BEFORE - DVND3 = 3777777777777777 
DVSR3 = 0000377777777777: 

AFTER - QUOT3 = 0001600000000000S 
POV indicator on 

Note above that mantissa overflow occurred because the absolute value of the 
divisor does not appear greater than the dividend. 

Mantissa overflow resulting from not-normalized operands will cause the POV 
flip-flop to be set. In this case, all overflow bits are lost, and adjustment of the 
exponent does not take place. 

FDV DVND4,DVSR4,QUOT4 

BE FORE - DVND4 = 0000200000000000 
DVSR4 = 0000100000000000: 

AFTER - QUOT4 = OOOOOOOOOOOOOOOOS 
TFC = OOOOOOOOOOOOOOOOS 

As noted earlier, the exponent of the remainder is always equal to zero (in TFC). 
However, the following equation may be used to determine the correct exponent 
for the remainder: 

Remainder exponent = (2 x dividend exponent) -
(42 + divisor exponent + quotient exponent) 

CBF - CONVERT BINARY TO FLOATING-POINT - 25S 

CBF (M),(M) 

CBF treats the contents of the location specified by A1 as a signed 4S-bit, fixed-point 
number with an implied exponent of zero. Normalization (or the removal of leading 
zeros) is performed on this number, and, as each bit of normalization occurs, the 
exponent for the resulting floating-point is increased by a -1. When the normaliza
tion has been completed, the most Significant 35-bits of the result with the original 
sign form the mantissa. The exponent is equal to 2-n, where n represents the 
number of bits of normalization that have occurred. The resulting exponent and 
mantissa of the floating-point equivalent are stored in the location specified by A2• 

If fewer than 12 bits of normalization are required during this operation, a cor
responding number of least significant bits of the original contents of A1 will be 
lost. If the contents of A1 are equal to zero, floating-point zero (7777000000000000S) 
is inserted into the location specified by A2• 

139 



Ex: CBF CONVT ,STORE 

BEFORE - CONVT = 00045761376152138 

AFTER - STORE = 40102277057706508 

Note that there are 8-bits of normalization required. As a result, the four least 
significant bits of CONVT are lost in the conversion operation, since the twelve 
most significant bits of STORE are reserved for the exponent. 

MISCELLANEOUS INSTRUCTIONS 

This group of instructions directs a variety of computer operations. Most of these 
instructions are concerned with special features of the AN/GSA- 51A computer including the 
Interrupt System, Input/Output operations, and subroutine control. Two additional instructions, 
Branch on Condition (BRC) and Character Search (CSE), are also included. 

BRC - BRANCH ON CONDITION - 118 

BRC L,B 

BRC tests the setting of PNN (Program Non Normalized), PUN (Program UNderflow), 
and POV (Program OVerflow) flip-flop. Indicators as bits 10, 11, and 12 respect
ively of A1 are ones. All combinations of the three bits may be used to test all 
combinations of the indicators. If any bit is one and the corresponding indicator 
is on, the indicator will be turned off and control will transfer to the first syllable 
of the location specified in A2. If no bits are one or all their respective indicators 
are off, control continues to the next instruction in sequence. 

140 

The A1 syllable is structured as follows: 

1 9 10 11 12 

Wl/III!J/lIJ PNN I PUN POV 

A one is set in bits 10, 11, or 12 or any combination if testing of any of the three 
conditions is desired. The coding of A1 is as follows: 

o = no test 
1 = test POV 
2 = test PUN 

3 = test POV or PUN 
4 = test PNN 
5 = test PNN or POV 

6 = test PNN or PUN 
7 = test PNN or PUN or POV 

The following conditions may produce program overflow (POV): 

(1) Overflow may result from fixed-point addition, subtraction, or division. 

(2) Overflow may result from the execution of the TRM (Rounding) instruction. 

(3) Exponent overflow in floating-point arithmetic may result from the addition 
of two positive exponents. 



Ex: 

(4) Quotient overflow may result from a floating-point division using non-nor
malized operands. 

The following conditions may produce program underflow (PUN): 

(1) Underflow may result from the addition of two exponents of floating-point 
numbers. 

(2) Underflow will result from a floating-point addition or subtraction that pro
duces a result of floating-point zero. 

(3) Underflow will result from a floating-point multiplication using non-nor
malized operands that result in an answer of floating-point zero. 

Program not normalized (PNN) indicator is set during floating-point multiplication 
or division as a result of using operands which have leading zeros in the mantissa 
portion. 

(1) BRC 3,BRNCH 

BE FORE - Program underflow indicator on. Program overflow indicator not on. 

AFTER - The next instruction will be taken from the first syllable in the in
struction contained in BRNCH. 

(2) BRC 4,CHECK 

BEFORE - Program not normalized (PNN) indicator not on. 

AFTER - The next instruction will be taken from the one following in sequence. 

It should be noted that the branch in the program overflow (POY) condition will 
never be executed when the computer is operating in the normal mode with the 
overflow mask register bit appropriately set. The computer in this mode will 
respond to the overflow interrupt condition prior to the execution of the instruction. 
The POY flip-flop will have been reset when the computer is returned to the nor
mal mode after servicing the interrupt. 

CSE - CHARACTER SEARCH - 328 

CSE (M),C,B 

CSE takes the contents of the location specified by Al and scans from RIGHT to LEFT, 
beginning with the character (or byte) indicatedbyCCR (Character Count Register-
1238), for the first character with an unsigned, six-bit magnitude equal to the 
setting of bits 7-12 of A2. The A2 syllable is always coded as a single Hollerith 
character, except the comma (,) or a 2 digit octal number (representing the six 
bits being checked). If such a character is found, the scan terminated with CCR 
indicating the character position, and control will transfer to the first syllable 
of the location specified by A3. otherwise, control will continue to the next in
struction in sequence with CCR set to zero. 

141 



The following diagram represents character numbering in the contents of the Al syllable: 

Character # ,.....--.::.0--,_.:.1_-.-_.:.2:....--,-_..:3_-.-_-=4,---,-_-=5_-.-_-=6_-._...:.7_--, 

(Byte) L..,;I _-;;1-1 ~~I ~---r;;"..I..r1 ,;--............... I.-;::--~L;;-:I ;---~I ;;:;----.-..J1...-;:;------.-;;:-, 
BIT # 1 6 7 12 13 18 19 24 25 3031 36 37 4243 48 

Scanning is controlled by the CCR value and cycles as follows: 

(1) CCR value is decreased by one. If this is the first cycle of the scan and CCR 
is initially zero, it will flip to seven. It should be noted that character #7 
actually refers to the eighth character, #6 to the 7th, etc. If scanning is 
desired for the entire word, it may be necessary to precede this instruction 
with an LTF instruction, loading CCR with a zero. 

(2) The contents of the indicated character are compared as an unsigned, 6-bit 
magnitude with the setting of bits 7-12 of A2• If the indicated character value 
is equal to the A2 setting, control will transfer to the first syllable of the 
location indicated by A3 with the CCR value set for the matching character 
poSition. 

(3) If the above comparison is unsuccessful, CCR is examined. If the value is 
zero, indicating that the last character has been tested, normal sequencing 
of instructions continues. Otherwise, the complete cycle is repeated. 

Ex: (1) CSE DATA,14,MATCH 

BEFORE - CCR = 00008 

DATA = 36701426267476758 

AFTER - CCR = 00028 

The next instruction executed will be from location MATCH. Scanning began with 
character #7 (or the 8th character). 

(2) CSE H,D,BRNCH 

BEFORE - Top of Stack = 43546576071021328 
CCR = 00038 

AFTER CCR = 00008 

The next instruction in sequence is executed. Scanning began with the 2nd char
acter (658). 

SRJ - SUBROUTINE JUMP - 148 

SRJ Ja,Ji 

SRJ provides a means of communication between programs and subroutines which are 
to be used many times during the execution of these programs. Through the use 
of unique storage registers in thin film, any caller program may transfer to a 

142 



subroutine by using this instruction. Upon completion of the subroutine a com
panion instruction, Subroutine Return (SSR), will assure a return to the next 
instruction in sequence of the caller program. The SRJ instruction transfers 
program control to the first instruction of a subroutine whose starting location 
is indirectly addressed by the Al syllable. 

The following sequence of computer operations is performed AUTOMATICALLY 
in the execution of this instruction. 

(1) The current values of the BAR (Base Address Register-0558), BPR (Base 
Program Register-0548), and PCR (Program Count Register-0578) of the 
caller program are stored in the SSR (Subroutine Storage Register- 0508 -
0528), As a result, the 16 low-order bits of the SSR contain the BAR, the 16 
middle bits contain the BPR, and the 16 high-order bits contain the PCR. 
It should be noted that the low-order bits begin at thin film address 0508 of 
the SSR (Subroutine Storage Register) while the high order bits are found in 
thin film address 0528. It is this storage of caller program control values that 
facilitiates return to the main program after ·completion of the subroutine. 

(2) The contents of the SAR (Subroutine Base Address Register - 0608) are added 
to the contents of the Al syllable to provide the memory location which con
tains the starting address of the subroutine in the 16 least significant bits of 
the memory word. The SAR must have been loaded prior to the execution of 
this instruction. It generally contains the starting address of a subroutine 
address table and the Al syllable indexes a particular entry in that table. The 
Al or Ja (Subroutine Jump Address) syllable therefore can be understood 
to . contain the relative address of this memory location and when added to the 
SAR indicates the location whose contents specify the starting address of the 
subroutine. If the Al syllable is indexed, the contents of that index would also 
be added to the SAR plus the contents of the Al syllable to determine the loca
tion containing the starting address of the subroutine. 

Ex: SRJ 2,0 

SAR - 0002008 

Memory Location 0002008 = 00000000000103008 

Memory Location 0002018 = 00000000000111008 

Memory Location 0002028 = 00000000000120008 

(starting address of ABC 
subroutine) 

(starting address of DE F 
subroutine) 

(starting address of square root 
subroutine) 

(3) The low order 16-bits of the memory location specified by the addition of the 
SAR to the Al syllable is stored into the BPR and the PCR. This action im
plements the transfer of control to the starting address of the subroutine. The 
above example transfers control to the square root subroutine. 

143 



Ex: 

(4) The contents of the BAR are increased by the contents of the A2 syllable 
(the special Ji syllable). In coding, the number specified in the Ji syllable 
is decimal. The BAR setting is normally changed to specify the beginning ad
dress of data in the caller program which will be used by the subroutine. 

(5) Index register X15 is loaded with a quantity equal to the value that has just 
been loaded into the BPR minus the value that has just been loaded into the 
BAR. If the result of this subtraction is negative, it will appear in 2's comple
ment form. To gain access to data locations unique to the subroutine, these 
memory addresses must be indexed with index register X15. 

(6) Control will now shift to the first syllable in the memory location specified 
by the contents of the PCR. 

SRJ 1,64 

BEFORE - SAR = 0002008 

Memory location 0002018 = 00000000000020008 (Memory Location = SAR+A1) 
BAR = 0010008 
BPR 0010008 
PCR" = 0010308 -----=:.....-----

AFTER SSR = 00414002000010008 

(Note changes in octal configuration occur because the old BAR, BPR, and PCR 
are in 16-bit registers.) 

New Bar 
New BPR 
New PCR 

X14 

= 0011008 (6410 converts to 1008) 
= 00200°8 
= 00200°8 
= 0007008 (New BPR less new BAR) 

The next instruction executed is taken from location 0020008, 

It is possible to go from one subroutine to another -- a process called nesting. 
When subroutines are nested, it is necessary to preserve the contents of the SSR 
(Subroutine Storage Register) which contains the BAR, BPR, and PCR of the 
caller program. A temporary memory or unused thin film location will serve the 
purpose. A shift from one subroutine to another USing the SRJ instruction will 
cause the contents of the SSR to be overwritten. When control is shifted back to 
the parent subroutine, the SSR must be reloaded with appropriate caller program 
values. 

SRR - SUBROUTINE RETURN - 048 

SRR 

SRR provides a means of return from a subroutine which was entered with SRJ; the 
BAR (Base Address Register - 0558), BPR (Base Program Register - 0548), 
PCR (Program Count Register - 0578) are loaded from SSR (Subroutine storage 
Register - 0508 - 0528), 

144 



The contents of the PCR will be increased by 1 and the next program word of the 
caller program will be executed. The first syllable of this word, therefore, must 
be a valid operator syllable. 

Index register X15 will be loaded with a quantity equal to the value that has just 
been loaded into the BPR minus the value that has just been loaded into the BAR. 
This action by the computer becomes significant when returning from a nested 
subroutine. 

Ex: SRR 

BEFORE -

AFTER 

SSR = 00014000000001008 
BPR = 0405038 
PCR = 0405558 
BAR = 0002008 
X15 = 0403038 

New BPR= 0000008 
New PCR = 0000308 
New BAR = 0001008 
New X15 = 1777008 (BPR minus BAR) 

Note above that the least significant 16-bits of the SSR contain the BAR; the middle 
16-bits, the BPR; and the most significant 16-bits, the PCR. The next instruction 
to be executed will be taken from core location 000031 8• 

LSR - LOAD SPECIAL REGISTER - 318 

LSR (M),V 
s 

LSR has three variations: 

(1) It may be used for loading the mask register. 

(2) It may be used for loading the memory bounds register. 

(3) It may be used to interrupt a computer or start a computer that is halted. 

The A2 (or special V s) syllable indicates which variation is requested. It should 
be noted that the LSR instruction can only be executed in the control mode and is 
considered an illegal instruction if execution is attempted in the normal mode. 

A2 (V s) Syllable structure: 

1 9 
1 
o 

VAR. 
(3) 

1 
1 

VAH·I (2) 

1 
2 

V~·I 

145 



Ex: 

146 

(1) MASK REGISTER 

If Bit 12 of A2 is set to one, the Interrupt Mask Register will be loaded with 
the contents of the location specified by A1. The purpose of this instruction 
is to enable the computer to recognize certain interrupt conditions. If the mask 
bits are not set, the computer will not acknowledge the referenced interrupt 
conditions. The following structure of the memory location specified by A1 
will indicate which bits must be set for the interrupt to occur. 

BIT NUMBER INTERRUPT CONDITION 

21-36 External Request Lines 1-16, Respectively 

39 I/O Termination, Bus A 

41 Real Time Clock Overflow 

45 Arithmetic Overflow 

47 Spare 

48 I/O Termination, Bus B 

The programmer must insert the appropriate values in the location specified by 
A1 to insure that the desired bit setting will occur. 

LSR MASK,0001 
MASK = 00000017777712108 

The A2 syllable indicates a setting of the mask registers. The mask bits will 
be set for interrupt in the following conditions: 

(a) An external request from any of the 16 external request lines generated 
by an external request when information is to be entered into the system. 

(b) The termination of an I/O operation as indicated by the result descriptor 
list in memory. 

(c) The real time clock overflow -- by presetting the RTC register the RTC 
overflow interrupt can occur at fixed time intervals. 

(d) An arithmetic operation has resulted in the program overflow (POV) 
flip-flop being set. 



Ex: 

(2) MEMORY BOUNDS REGISTERS 

If Bit 11 of A2 is set to one, the 8 least significant bits of the contents of the 
location specified by Al will be placed in the Lower Memory Bounds Register, 
and the 8 next least significant bits in the Upper Memory Bounds Register. 
This instruction is used in a multi-program system to prevent data stored 
in memory by one program from being destroyed by another program. A 
complete memory address within the computer occupies 16 bits. Only the 
8 most Significant bits of the Bounds Registers are set. The 8 least Significant 
bits, then, are treated as zeros. 

LSR 
LIMIT = 

LIMIT,0002 
00000000000040048 

The Lower Memory Bounds R~gister will be set with bits 41 thru 48 of LIMIT, 
and with eight implied low-order zero bits, the lower memory limit complete 
address is 20008, 

The Upper Memory Bounds Register will be set with bits 33 thru 40 of LIMIT 
and with eight implied low-order zero bits, the upper memory limit equals 
40008, No program instruction will be executed which would insert data into 
any core location between addresses 20008 and 43778' Note that the Computer 
in testing for limits checks only the 8 most Significant bits of a complete 
memory address and that this instruction can set only these bits. The addi
tional 3778 represents 255 (decimal) additional memory locations which are 
not out of bounds. 

(3) INTERRUPT COMPUTER N 

If Bit 10 of A2 is set to one, the computer module'designated by the three least 
significant bits of the contents of the location specified by Al will be affected 
by this instruction. It will cause interrupt bit 14 of the interrupt register in the 
specified computer to be set. The specified computer will recognize that an 
interrupt condition exists and, if halted, will begin operation in the control 
mode. An operating computer will recognize an interrupt condition only in the 
normal mode and this instruction will interrupt such an operating computer 
and transfer control to the interrupt table to service the interrupt. The inter
rupt table consists of transfer instructions to routines which will service the 
various interrupt conditions and is indexed in relation to the I register bit 
number. 

SER - STORE EXTERNAL REQUESTS - 218 

SER (M) 

SER is used to store the input status of the 16 external request lines in bits 33 thru 48 
of the location specified by AI' External request line #1 status is stored in Bit 33; 
line #2 in Bit 34; and so forth in successive order. In addition, the computer module 
number is inserted in Bits 29 and 30 of the location specified by A1 • 

147 



EXTERNAL REQUEST LSR MEMORY SER MEMORY 
LINE 

148 

FUNCTION WORD BIT WORD BIT 

1 Flexowriter 21 33 
2 Simulator Group 22 34 
3 Status Display Console 23 35 
4 Spare 24 36 
5 Spare 25 37 
6 Spare 26 38 
7 Message Processor 2 Fill Output 27 39 

Group I (GRIF) 
8 Message Processor 2 Fill Output 28 40 

Group III (GRIIIF) 
9 Message Processor 2 Buffer Empty (CTF) 29 41 
10 Message Processor 2 Dump Buffer 30 42 

1 (Ell) 
11 Message Processor 2 Dump Buffer 31 43 

2 (E12) 
12 Message Processor 1 Fill Output 32 44 

Group I (GRIF) 
13 Message Processor 1 Fill Output 33 45 

Group III (GRIIIF) 
14 Message Processor 1 Buffer Emtry (CTF) 34 46 
15 Message Processor 1 Dump Buffer 35 47 

1 (Ell) 
16 Message Processor 1 Dump Buffer 36 48 

2 (E12) 

TABLE I. External Requests 

This instruction may be used in an interrupt service routine which has been initiat
ed as a result of an external request generated by a terminal device, when infor
mation is to be entered into the system. Sixteen terminal device request lines are 
available to each computer. A terminal device can generate an external request 
interrupt only if the mask register bit corresponding to the line to which the device 
is connected is set. The LSR (Load Specified Register) instruction sets the Mask 
register bit. To determine which terminal device generated the request, this 
instruction is used. 

The setting of A1, bits 33 thru 48 is determined as follows: 

The bit will be set to 1 if a signal is being transmitted over the corresponding 
request line. 

The setting will be 0 if a signal is not being transmitted over the correspond
ing external request line. 

A series of BRB (Branch on Bit) instructions can then be used to detect the external 
request line which caused the interrupt, so that the service routine can begin to 
process the new information coming into the system. An external request line 
Signal will usually be terminated only when the device transmitting the signal is 
accessed. 



Ex: SER REQST 

Suppose after execution REQST = 0000000001100000S' The one set in bit 30 indi
cates that computer module #1 has been interrupted. The one set in bit 33 indicates 
that external request line #1 has information to be processed by the computer. 

IRR - INTERRUPT RETURN - 05a 

IRR 

IRR is used to initiate normal mode operation or to restore the conditions necessary 
for resuming normal execution of a program after the processing of an interrupt 
has been completed. The IRR is a control mode instruction which provides for the 
return of program control to the normal mode at a point in the program defined 
by the interrupt storage registers. Pertinent control data was stored in the follow
ing three interrupt storage registers when the interrupt occurred. 

(1) ISR - Interrupt storage Register (TF-040a-042s) - the contents of the BAR 
are stored in the least significant section (TF-040S)i the contents of the BPR 
are stored in the next higher order section (TF-041a), and the contents of 
the peR are stored in the most significant section (TF-042S). 

(2) IPR - Interrupt Program Register (TF-llOa-113s) - the contents of the PSR 
(Program storage Register) are stored in the IPR. The PSR contains the 
program instruction word which the computer was operating at the time of the 
interrupt. 

(3) IDR - Interrupt Dump Register (TF-070a) - the contents of significant control 
flip-flops are stored in this register. Bit settings in this register indicate which 
syllable of the instruction word is to be operated upon return to the normal 
mode program. 

During the execution of this instruction the original contents of the BAR, BPR, 
and peR are restored to their respective values from the contents of the ISR. 
The contents of the IPR are loaded into the PSR and the original contents of some 
of the control flip-flops are restored from the IDR. The next instruction in se
quence as determined by the PSR and the syllable indicator of the appropriate 
flip-flop is then executed. It should be noted that at the time of interrupt the 
transfer to the control mode is made only at the end of an instruction, which may 
or may not be the last syllable of an instruction word. Upon execution of IRR the 
next syllable to be executed will be an operator syllable. The IRR instruction can 
only be executed in the control mode and is considered an illegal instruction if 
executed in the normal mode. 

Ex: IRR 

BE FORE - BAR = 000010a 
BPR = 000010a 
peR = 000156a 
ISR = 0040000000000647S" 
IDR = 042100a 
IPR = 0101224006470000a 

AFTER - peR = 001000S 
BPR = OOOOOOa 
BAR = 000657a 
PSRl= 0101224006470000a 

149 



The control flip-flops (PSI, PS2, PS3, RPF, FRP, PFl, POV, PUN, PNN) will 
be reset in accordance with the contents of the IDR (Interrupt Dump Register). 
This enables the computer to operate the next instruction in sequence. The follow
ing table describes the significance of each bit position in the IDR. 

BIT '* 
1,2,3 

4 

5 

6,7 

8 

9 

10* 

TABLE II. Contents of Interrupt Dump Register 

DESCRIPTION 

Bits represent states of PSI, PS2 and PS3 
flip-flops which indicate the address of the 
next PSR syllable to be operated. This syllable 
is an operator syllable, since the transfer 
to control mode can occur only at the end of 
an instruction. The PSR1 (Program storage 
Register 1) syllables are numbered from left 
to right, 3, 2, 1 and O. The PSR2 (Program 
Storage Register 2) syllables are numbered 
from left to right, 7, 6, 5 and 4. 

Bit indicates state of RPF flip-flop. This bit 
is a 1 if a repeated instruction was interrupted. 

Bit represents state of FRP flip-flop. This bit 
is a 1 if a repeated instruction was interrupted 
before execution of the first iteration. 

Bits represent state of PF1 and PF2 flip-flops. 
These bits contain 1 for each PSR (Program 
storage Register) that will contained informa
tion after execution of the last instruction be
fore the interrupt was processed. Bit 6 refers 
to PSR1 and Bit 7 refers to PSR2. If the last 
syllable of a PSR was used as the last syllable 
of the instruction before interrupt, this PSR is 
empty. If the last syllable was not used, this PSR 
is filled. If overlap has occurred, the other PSR 
is filled; otherwise it is empty. When bits 6 and 
7 are restored to flip-flops PF1 and PF2 and 
both of the bits are l's, one of the flip-flops 
will be reset, since overlap has been lost. 

Bit indicates state of POV (Program OVerflow) 
flip-flop. 

Bit represents state of PUN (Program UNder
flow) flip-flop. 

Bit represents state of PNN (Program Not Nor
malized) flip-flop. 

*Bits 11-16 of the IDR are not used to restore control flip-flops. 

150 



TIO - TRANSMIT INPUT/OUTPUT - 168 

TIO IO,M,B 

TIO operates only in the control mode. This instruction has three basic variations and 
is used to direct and monitor input and output operations of the AN/GSA-51A 
computer. A series of stages are required to complete an input/output operation. 
Each of these stages is associated with a particular form of the A1 syllable and a 
particular control word (descriptor). When a descriptor is sent by the TIO in
struction, its location is specified in the A2 syllable. When a descriptor is sent 
by the I/O module to be monitored by the program, it will be located in core 
memory in a Descriptor List table which is indexed by the I/O module responsible 
for transmission. The following table outlines seven stages for one of the many 
possible methods of I/O programming. 

Ex: 

The TIO instruction addresses a single I/O BUS and its associated I/O modules 
only. BUS A is associated with I/O Modules 1 and 2; BUS B, with I/O Modules 
3 and 4. For greater program efficiency, more than one I/O module may be 
accessed by separate Setup descriptors and each In Process descriptor can be 
checked to find an available I/O module. 

The special A1 syllable indicates which BUS is being accessed and whether the 
TIO instruction is conditional or unconditional. As noted in Table n on Page 150, 
TIO instructions with Release and Setup descriptors are unconditional; instructions 
with a Command Descriptor are conditional. 

The following diagram represents the structure of the A1 syllable: 

1 
1 
o 

1 
1 

1 
2 

The BUS is symbolically addressed with II A' or liB" which is interpreted by 
setting bit 11 of the A1 Syllable to zero for BUS A or one for BUS B. 

The form of the TIO instruction is symbolically specified by "C" or "U" which 
is interpreted by setting bit 12 of the A1 syllable to zero for conditional and one 
for unconditional. 

TIO A U,SETUP,~ 

A1 syllable = 0001 8 

151 



stage 

1. Setup 

2. 1st 
In 
Process 

3. 1st 
Release 

~. Command 

~. 2nd 
In 
Process 

~. Result 

~. 2nd 
Release 

152 

Purpose Program Responsibility 

To transmit address of Execute a TIO instruc-
Descriptor List table tion, unconditional, 
to I/O module. using a Setup Descriptor. 

To check if a satisfac- Check appropriate bit 
tory setup descriptor settings in Descriptor 
has been transmitted List table, USing relevant 
to a non-busy I/O computer instructions. 
module. 

To permit trans mis- Clear appropriate entries 
sion of command de- of Descript!)r List table. 
scriptor. Every com- Execute A TIO instruc-
mand Descriptor to the tion, unconditional, using 
I/O module must be pre- a Release Descriptor. 
ceded by a release I/O 
module .. 

To specify type of I/O Execute A TIO operation, 
operation, specific . conditional, USing a 
device, core memory Command Descriptor. 
referenced, and amount 
of words and/or records 
involved. 

To check whether the Check appropriate bit 
operation has begun. settings in Descriptor 

List table, using relevant 
computer instructions. 

To check for comple- Check appropriate bit 
tion and success of I/O settings in Descriptor 
operation. List table, using rele-

vant computer instruc-
tions. 

To release I/O module Execute A TIO instruc-
for further operations. tion, using a Release 

Descriptor. 

TABLE III. 
Input-Output Operation Stages 

For A Sample Method of I/O Programming 

I/O Module Responsibility 

Initializes its own DBAR 
Setting with Descriptor 
List address. 

A non-busy I/O module 
Transmits In Process 
descriptor to appropriate 
entry of Descriptor List 
table. 

Prepares itself for 
command.. 

Prepares for and com-
mences I/O operation. 

Transmits In Process 
Descriptor to appropriate 
entry of Descriptor List 
Table. 

Transmits Result Descrip-
tor to appropriate entry 
of Descriptor List table. 

I/O module on non-busy 
status. 



RELEASE DESCRIPTORS 

Release Descriptors are transmitted by an unconditional TIO to free a specified I/O 
module. If the specified I/O module is not busy, the Release Descriptor is ignored. If busy 
and actively engaged in I/O, the I/O module terminates the transmission and returns a Result 
Descriptor and goes non-busy. Therefore, if more than I/O operation is possible simultaneously, 
the program must check the In Process Descriptor of a SETUP instruction to ascertain an 
available I/O module before transmitting a Release Descriptor. If busy, but not actively 
engaged in I/O, the I/O module goes non-busy. The Release Descriptor is also received by 
the first non-busy (lowest number) I/O module associated with the BUS specified. If a parity 
error occurs in the Release Descriptor, the Descriptor will be ignored. However, if the first 
non-busy I/O module detects the error, it will return an In Process Descriptor indicating the 
error. With a Release Descriptor an In Process Descriptor is sent only if a parity error is 
detected. The Descriptor List table should be cleared prior to a Release Descriptor TIO 
instruction so that appropriate entries can be checked for a parity error. 

The Release Descriptor is contained in the location specified by the A2 syllable and 
has the following structure: 

3 3 4 4 4 4 
1 8 9 2 3 4 8 

~ 10000 

Bits 39-42 contain the I/O Module number. 

Ex: TIO A U,RELSE,~ 

RE LSE = 00000000000001208 
This instruction would release I/O module 1. 

SETUP DESCRIPTORS 

Setup Descriptors are transmitted by an Unconditional TIO to initialize DBAR 
(Descriptor Base Address Register) settings in the I/O module. The Setup Descriptor sets 
all I/O modules on the addressed BUS busy and provides them with a location (the DBAR sett
ing of the I/O module) in memory of a table called the Descriptor List. It is to this table that 
each I/O module will return In Process and Result Descriptors (see below), where they may 
be examined by the program monitoring the I/O transmission. Only a non-busy I/O module 
will return an In Process Descriptor following a setup descriptor. Each I/O module will 
use a unique portion of the Descriptor List: In Process Descriptors will go to the DBAR 
setting plus twice the I/O module number, Result Descriptors will go to the DBAR setting 
plus twice the I/O module number plus one (that is, Result Descriptors of a given I/O module 
will lie at a location one greater than that of the In Process Descriptors of the same I/O 
module). NOTE: I/O modules are numbered from 1 to a maximum of 5, so the first I/O 
module returns its In Process Descriptor to the location two greater than the basic DBAR 
setting. 

If the parity of the Setup Descriptor is incorrect, the previous DBAR settings will be 
used in returning the In Process Descriptor. After power initially comes on, the DBAR 
setting will be zero. 

153 



The setup Descriptor is contained in the location specified by A2 and has the following 
structure: 

1 

11MSB 

1 1 
1 2 

3 3 3 
123 

0000000000000000000 1 0000000000 

4 4 
3 4 

1 0 0 0 1 

4 
8 

Bits 1-11 contain the 11 most Significant bits of the Descriptor List table location. Since 
a memory location is specified by 16 bits, the five least Significant bits of the address must 
equal zero. This means that the Descriptor List table must be placed in core memory at a 
location whose address is a multiple of 32, so that the least significant five bits will equal 
zero. 

Ex: TIO A U,SETUP,O 

SETUP = 04000000002000218 
The DBAR will be set to 100008 

COMMAND DESCRIPTORS 

Command Descriptors are transmitted by a conditional TIO to specify and initiate 
the I/O operation. If all I/O modules are busy, or if parity is incorrect, control will transfer 
to the first syllable of the location specified by A3. 

The Command Descriptor is accepted by the first, non-busy module. It is important, 
therefore, that Release and Setup Descriptors have been sent to the first non-busy (the lowest 
number module) I/O module prior to transmitting the Command Descriptor. In Process and 
Result Descriptors are transmitted to entries in the Descriptor List table in accordance 
with the I/O module number sending the transmission. The program must know which I/O 
module is performing the operation so that it can check the appropriate entry. 

If branching occurs in this instruction, it is generally programmed to loop back to the 
Release Descriptor TIO instruction and to commence the operation again. 

The Command Descriptor is contained in the location specified by A2 and has the follow
ing structure: 

1 

154 

1 1 
2 3 

1 1 2 2 
6 7 0 1 

3 3 3 3 
6 7 8 9 

444 4 
3 4 5 6 

4 
8 

Word Count R.C. Memory Address P Dev.1 Tp Mod. 

1-12 contain the Word Count for each operation. 
13-16 contain the Record Count (0 means 16 records). 
21-36 contain the Memory Address of the first piece of data-incremented during 

transmission. 
38 contains a Priority Bit - 0 Normal Priority 

1 Special Priority 



39-43 contain the Device Number. 
44-45 contain the Type of I/O: 

00 one way output device write 
10 one way input device read 
01 two way device write 
11 two way device read 

46-48 Modifications (ex: backspace) for device. 

To facilitate setting bits in the Command Descriptor, Table IV provides a simple key 
for determining bits 1-12 (Word Count), 13-16 (Record Count), and 37-48. 

T ABLE IV. Command Descriptor Bit Setting 

WORD RECORD 
COMMAND BITS 37-48 COUNT COUNT 

F1exowriter-Write 0010 -N- 00 
F1exowriter-Read 0030 -N- -N-
Flexowriter-Read and 0031 -N- -N-

Unlock Keyboard 
F1exowriter-Read and 0032 -N- -N-

Lock Keyboard 
Drum 1 Read 2111* -N- 00 
Drum 1 Write 2113* -N- 00 
Drum 1 Erase 0112 0001 00 
Drum 2 Read 2051* -N- 00 
Drum 2 Write 2053* -N- 00 

rum 2 Erase 0052 0001 00 
Drum 3 Read 2351 -N- 00 

rum 3 Write 2351* -N- 00 
rum 3 Erase 0352 0001 00 

Card Reader 0162 -N- 00 

TAPE CONTROL 
TAPE WORD 

0251 7N 0002 00 
0252 7N -N- -N-

rite 0253 7N -N- 00 
rite EOF 0254 7N 0002 00 
ewind and Lockout 0255 7N 0002 00 
rase 0256 7N -N- 00 
rite N Records 0257 7N -N- -N-
acksapce 1 Record and 
read N Records 0251 ON -N- -N-

Backspace N Records 0252 ON 0001 -N-
ackspace to EOF 0253 ON 0001 00 
ead N Records 0254 ON -N- -N-
dvance N-1 Records 
and Read 1 Record 0255 ON -N- -N-

dvance N Records 0256 ON 0001 -N-
dvance to EOF 2057 ON 0001 00 

* Priority bit is set for drum read and write operations. 

155 



TABLE IV. Command Descriptor Bit Setting (Cont'd) 

Status Display Console 
Write 

Status Display Console 
Read 

Display Console 1 
Display Cons!Jle 2 
Display Console 3 
Display Console 4 
Display Console 5 
Display Console 6 
Display Console 7 
Display Console 8 
Display Console 9 
Display Console 10 
Display Console 11 

PRINTER 

Print and Space 
Print and Double Space 
Print and Advance to new page 
Simulator Group 

BITS 37-48 

0410 

0430 
0524 
0564 
0624 
0664 
0724 
0764 
1024 
1064 
1124 
1164 
1224 

0300 
0301 
0302 
0327 

Ex: TIO A C,COMND,RELI 

COMND = 00120001000001628 

WORD 
COUNT 

0001 

0001 
0002 
0002 
0002 
0002 
0002 
0002 
0002 
0002 
0002 
0002 
0002 

-N-
-N-
-N-
0001 

RECORD 
COUNT 

00 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

00 
00 
00 
00 

This command directs the reading of 128 (1010) words from the card reader into 
memory location beginning at location 100008, 

IN PROCESS DESCRIPTORS 

In Process Descriptors are generated by I/O modules engaged in I/O transmission. 
These descriptors are transmitted to the Descriptor List table in core memory where they 
may be examined by the program monitoring the I/O operation. In Process Descriptors will 
be transmitted to the location specified by the DBAR setting plus twice the I/O module number. 
There are three types of In Process Descriptors: (1) One which follows the Release Descrip
tor, (2) One which follows the Setup Descriptor, (3) One which follows the Command Descrip
tor. 

The Release In Process Descriptor is transmitted only if there is a parity error and an 
I/O module associated with the deSignated BUS which was not busy. If there is a parity error, 
Bits 17 thru 19 of the In Process Descriptor are set to one. 

156 



The setup In Process Descriptor is an image of the Setup Descriptor with the exception 
that Bits 17 thru 19 are set to indicate I/O Module status. The following bit settings indicate 
the referenced status: 

BITS 

17 18 19 
o 0 1 
111 

Setup Descriptor satisfactorily received. 
Parity error from memory in Setup Descriptor. 

If all the I/O modules of a particular BUS are busy, no In Process Descriptor will be 
transmitted. 

The Command In Process Descriptor'is an image of the Command Descriptor, except 
that the I/O module status bits 17 thru 19 have been set. The following bit settings indicate 
the referenced status. 

BITS 

17 18 19 
000 
o 0 1 
111 

Command Descriptor received satisfactorily, I/O operation has started. 
I/O Module busy or not ready. 
Parity error in Command Descriptor from memory. 

RESULT DESCRIPTORS 

Result Descriptors are generated by I/O modules and show the extent of completion of 
the I/O operation. A Result Descriptor is transmitted to the Descriptor List table in core 
memory where it may be examined by the program monitoring the I/O operation. Result 
Descriptors will be transmitted to the location specified by the DBAR setting plus twice the 
I/O module number plus one. Result Descriptors of a given I/O module will be contained in a 
location one greater than that of the In Process Descriptor of the same I/O module. 

A Result Descriptor will be transmitted under the following three conditions: (1) Normal 
completion of an I/O operation; (2) Existence of an error status condition during an I/O 
operation; (3) Release of an I/O operation in progress by a Release Descriptor. 

The following diagram represents a Result Descriptor. Bits 39-48 are identical to 
those of the Command Descriptor. 

1 

Word 
Count 

12 13 

Record 
Count 

16 17 

I/O 
Module 
Status 

19 20 21 

Current 
Memory 
Address 

36 37 38 39 

Device 
Number 

43 44 

The following settings of Bits 17 thru 19 indicate the referenced status. 

48 

Operation 
Type Code 

157 



BITS 17, 18, 19 STATUS 

010 

011 

100 

101 

110 

111 

Operation was terminated by sending a release 
descriptor to the IOCU. 

Operation is complete, the word count went to 
zero. 

No access to memory. 

Power failure occurred. 

Parity error from terminal device. 

Parity error from memory. 

Bits 20, 37 and 38 of the Result Descriptor represent the status of the terminal device. 
Table V indicates the status of the devices as referenced by appropriate bit settings. 

Bits 20, 37 and 38 refer to condition that occurs at th~ terminal device. 

TERMINAL DEVICE (BITS 20, 37-38) 

001 010 011 100 101 110 111 

end of no charac- off parity 
Flexowriter record ter typed line error 

end of 
file 
{input data 
hopper mal- too 

Card Reader empty function slow 
abnormal 
condition file data 

end of end of or not pro- end of too parity 
Magnetic Tape record file ready tected tape slow error 

not 
time avail- parity 

Message Processor elapsed able error 
radar 

illegal abnor- display channel data 
instruc- mal con- parity update too parity 

Drum tion dition error error slow error 
Data Display 
Console 
status Display 

parity 
Console 

parity 
error 
or mal-

Printer function 
mal-

Simulator Group function 

TABLE V. Terminal Device status Bit Settings 

158 



CHAPTER 8 

SUBROUTINE CODING TECHNIQUES FOR THE AN/GSA-51A 

INTRODUCTION 

A subroutine is a separate set of instructions which executes an arithmetic or logical 
operation. Each time this operation is to be performed, the main program branches to the 
subroutine. After the subroutine has completed its function, program control is returned to 
the main program. Whenever an operation which requires more than a few steps is to be per
formed repeatedly in a program, a subroutine should be used to eliminate duplication of 
coding. 

Two types of subroutines are system subroutines and PCR subroutines. 

SYSTEM SUBROUTINES makes use of two special subroutine instructions. One 
of these instructions causes a branch to the· subroutine and automatically stores 
all control information necessary for correct return to the main program. The 
other instruction causes a return to the main program. 

PRC SUBROUTINES do· not use the two subroutine instructions. Branching to the 
subroutine is accomplished simply by an unconditional transfer to the subroutine 
location. To insure that the control will return to the main program at the correct 
place, the contents of the PCR are stored into temporary storage just before the 
transfer is made. Then, after the subroutine has completed its function, control 
is returned to the main program by placing the contents of the temporary storage 
back into the PCR. 

THE FOUR GENERAL TYPES OF SUBROUTINES 

(1) Non-tabular PCR Subroutines. 

(2) Table Processing PCR Subroutines. 

(3) Simple SRJ Subroutines. 

(4) Normal SRJ Subroutines. 

These four types of subroutines are distinguished by (a) the manner in which the sub
routine is entered and returned from, and (b) the location of the data which is input to the sub
routine. In reference to (a), the programmer may enter a subroutine by storing the contents 
of the PCR into thin film just prior to executing an unconditional jump to the subroutine, or 
he may use the special Subroutine Jump (SRJ) instruction to branch to the subroutine. If he 
stores the PCR into thin film, then he is entering a PCR subroutine; if he uses the Subroutine 
Jump instruction, then he is entering an SRJ subroutine. With regard to (b) above, the input 
to the subroutine (whether SRJ or PCR) may all be stored in thin film (the stack, the index 
or limit registers, or any spares, etc.); or it may not (one reason being that it is so extensive 
that loading it all into thin film is impossible). In the first case, where all the inputs are 
in thin film, the subroutine is classed either as a Non-Tabular PCR subroutine, or as a 
Simple SRJ subroutine. In the latter case, where the inputs cannot all be stored in thin film, 
the subroutine is classed as either a Table Processing PCR subroutine, or as a Normal SRJ 
subroutine. Normally, when data is too numerous to be held simultaneously in thin film, it is 
organized into a table. It is possible that one table or several tables of data may be input to a 

159 



subroutine; in such cases, the subroutine will have to be either a table processing PCR 
subroutine, or a Normal SRJ subroutine. As a general rule, whenever a table or tables are 
input to a subroutine what is directly given to the subroutine is not the table or tables them
selves, but merely their CHARACTERISTICS: their length, their location, the size of their 
entries, the relative location of a given item within each of their entries, and so on. These 
table characteristics allow the subroutine itself to fetch the table entries, and the user is 
spared the labor of successively loading table entries into thin film. 

There is another general category into which GSA- 51 subroutines fall. GSA- 51 sub
routines are either "floating" or "non-floating" subroutines. A "floating" subroutine is one 
in which all the symbolic tags appearing in the subroutine have been replaced by addresses 
relative to the START OF THE SUBROUTINE (not the start of the program). 

Such subroutines have SET BAR, and SET BPR cards appearing before them, and these 
cards are so set that they establish all subsequent symbolic addresses as relative to the 
start of the subroutine. Floating subroutines can be stored anywhere in main memory, and 
are, in effect, independent of the user's BAR and BPR settings. ALL SRJ subroutines (whether 
Simple or Normal) are floating subroutines. PCR subroutines of whatever type may be float
ing or non-floating depending on the wishes of the writer of the subroutine. 

All four types of subroutines, including floating subroutines, will be discussed at length 
in the following sections.* 

*NOTE: PCR and SRJ subroutines are sometimes called "Internal", and "External" 
subroutines, respectively. This alternate terminology is explained in the 
sections dealing with the two types of subroutines. It will not be employed in 
this document. The reasons are given further in the body of the text. 

SUBROUTINE CALLING SEQUENCES 

The code by which the main program enters the subroutine is termed "the calling 
sequence.' This calling sequence may and often does include data as to how the subroutine 
is to operate in this instance of its use. For example, the subroutine may be a read or write 
flexo-subroutine. The user, in his calling sequence would have to specify somehow whether 
a read or a write was required. The manner in which he would so indicate his desire would 
be specified by the form of the subroutine calling sequence, which is rigidly fixed by the 
designer of the subroutine. The form, then, of the calling sequence is a fixed scheme showing 
the sequence of instructions and of data registers whereby the subroutine is entered and the 
information necessary to its operation is correctly located. What precise pieces of infor
mation are required by a subroutine in its operation depends on what type of subroutine it is, 
and the degree of complexity and sophistication it exhibits. The minimal amount of such 
information would include (1) the location to which the subroutine should return at the end 
of its operation, and (2) either the location of the data upon which it is to operate or those 
data themselves. As calling sequences vary so greatly from subroutine to subroutine, their 
form will be illustrated rather than defined (no definition seems universally applicable) in 
this document. 

PCR SUBROUTINES 

The PCR subroutine is the basic subroutine of the GSA-51. It, however, has a wide 
applicability, and can be adapted to the use of almost any conceivable subroutine. It is also 
called an "internal" subroutine because it is used mainly for short routines written by the 
programmer for use within his program. We will not be bound by this terminology and will 

160 



employ PCR subroutines more extensively. As its name implies, the PCR subroutine ex
plOits the Program Control Register (PCR), such that the subroutine is capable of returning 
to the correct location in the main program after operation of the subroutine. This is done. 
effectively, by the user storing the contents of the PCR into the stack or some other thin film 
register, and then branching to the subroutine. The subroutine, upon completion of processing. 
restores to the PCR its old value such that the effective address of the NEXT instruction, 
AFTER the store into thin film, is the old value plus 1. Much in the way of qualification 
must be made to this general picture, but this is essentially how a PCR subroutine is entered 
and returned from. Let us look at a sample of the code by which such a subroutine -- called 
SUBX -- is ENTERED. 

* STF PCR,N 
UCT SUBX 

The syllable structure of these two instructions is important. They each take two syllables, 
and together they exhaust one 48-bit word. The star before the STF instruction guarantees 
that the entire pair of instructions will be stored by the assembler in ONE WORD. This is 
important. The value of the PCR which is stored into the top of the stack (or other thin film 
register) must be one less than the absolute address of the next instruction to be executed in 
the main program. This is necessary because of the manner in which the PCR and PSR 
(Program store Register) function. The PCR always contains the absolute address of the last 
word which was used to fill the PSR, and, upon the exhaustion of the current contents of the 
PSR, the PCR is automatically incremented by 1, and the resulting address is used to fetch 
the word whose contents will re-fill the PSR. (Upon execution of a branch instruction, the PCR 
is re-set rather than incremented by 1; it should be clear that by deliberately re-setting 
the PCR other than by a branch instruction, the new setting is incremented by 1 and this sum 
is the effective address of the next instruction.) The PCR will not be incremented until each 
syllable of the PSR has been de-coded and if possible, executed. If an instruction occupies 
two words in core, then after the first word in the PSR has been de-coded, the PCR will be 
incremented by 1 and whatever address the PCR may then contain will be assumed to be the 
address of the remaining syllables of that instruction. So, if the PCR is deliberately re-set 
by program action, care must be taken to make sure that the new setting plus 1 equals the 
start of a new instruction which is left justified in the word. 

Left-justifying a store-PCR into the stack before a UCT to the subroutine guarantees 
that the next instruction in the main program starts in the word whose address is equal to 
the stored PCR value plus 1. Relying on this guarantee, the subroutine returns to the main 
program by using the following code: 

SUBX 

* LTF N,PCR 
NOP 
NOP 

The old value of the PCR is restored, two NOP's are executed, and then the PCR is 
incremented by 1. The next instruction is located at 1 plus the absolute address of the user's 
STF PCR,N instruction. This next instruction is left-justified in the word, and, hence, no 
syllables are left missing. 

161 



It may be necessary for the subroutine to use the top of the stack during operation 
of the subroutine. In that case, the old setting of the subroutine (called old-PCR from here 
on) may be stored in some limit or index register, and the stack thus freed for processing 
purposes. The return-code might then be as follows: 

SUBX LTF N,XI 

* STF XI,N 
LTF N,PCR 

It is important that the load- PCR instruction be the last operational instruction in the 
subroutine; any instruction following it may not be correctly executed unless it is completely 
contained in the word which holds the last syllable of the load- PCR instruction. 

In the user's calling sequence the UCT SUBX instruction must occupy the same word 
as the STF PCR,N instruction. If not, then the subroutine will cause a fill of the UCT SUBX 
instruction, and the subroutine will be caught in a loop. For example, the following code would 
cause a PCR-loop. 

TAG TRS 1~A,N 
STF PCR,N 
UCT SUBX 

• TRS N,1~A 

This code causes the absolute address of TAG to be stored into the top of the stack 
prior to branching to SUBX. But the UCT SUBX instruction is located at TAG+1, and this is 
the location to which the subroutine will return, causing a second and invalid execution of the 
U CT instruction. At this point, the top of the stack would contain the new value for core 
register 1~A, and it would not be the right value for the old- PCR. The subroutine would 
then re-compute its output, and the re-stored PCR would be incorrect. To avoid the difficulty 
always make sure that the store- PCR and UCT instructions occupy the same word. The 
following code correctly enters and returns from a PCR-subroutine • 

• 
ENTER 

RETURN 

162 

STF PCR,N 
UCT SUBX 

SUBX LTF N,X1 

* STF X1,N 
LTF N,PCR 

(next instruction to be executed upon return to main 
program.) 



NON-TABULAR PCT SUBROUTINES 

The most elementary form of the PCR-subroutine is one in which all the inputs are 
stored in thin film (that is, the stack or the TFC) prior to entering the subroutine. Subroutines 
are som:etimes referred to as logical or mathematical functions whose inputs are the "argu
ments" of the functions, and whose outputs are its "values". This reference assumes that 
subroutines of whatever sort simply perform a single complex but discernable operation, and 
that the results (output) of the routine are a function of the data (input) supplied to it. Whether 
this is precisely so is not as important as the fact that it appears to define the essential 
characteristic of a simple PCR or SRJ subroutine, one in which all the input (arguments) are 
stored in thin film prior to branching to the subroutine. Because of the limited capacity of thin 
film, and the inconvenience of loading it with the "arguments" the inputs to such a subroutine 
are few in number, and usually involve only one 48-bit register. Examples of such subroutines 
are numerous: square-root routines, a binary-to-decimal conversion, decimal-to-binary 
conversions, raising a number to a power, and other mathematical computations. What follows 
is a binary-to-octal conversion subroutine. It converts a 48-bit register to two full registers 
(the top of the stack and TFC) of octal (6-bit hollerith) digits. The calling sequence is illus
trated by a loading of the TFC with the 48-bit register to be converted. 

CALLING SEQUENCE 

LTF NUMB,M TFC 
* STF PCR,N 

UCT SUB8 
(RETURN) 

SUBROUTINE 

SUB8 STF X4,SUB81 
STF L4,SUB82 
CLA N 
LTF H,X4 
LTF 0(+16) ,L4 

SUB8A FRCD H,3,H 
FRS H,3,H 

Save old contents of X4 and L4 

Save the old PCR in X4 

XLC +1,X4 LS L4,SUB8A 
LTF SUB81,X4 Restore the contents of X4 and L4 
LTF SUB82,L4 

* SSF 
LTF H,PCR Restore old- PCR 
SSS 

SUB81 OCT ~ Temporary storage registers for saving 
SUB82 OCT ~ information used by main program. 

There are several things to be noted about this subroutine. First, it is always courteous 
and sometimes, a necessity, to save the user's setting of any index or limit registers which the 
subroutine employs. These, of course, must be restored before leaving the subroutine. This 
is the subroutine writer's responsibility; the user should not have to bother about saving any 
limit or index registers which are important to him; the subroutine should do it for him. 
Secondly, the subroutine input (argurr.ent) is stored by the user into the TFC. The subroutine 
assumes it is there but clears the top of the stack itself, and then, prior to returning to the 

163 



main program, leaves the converted 16-digits in the top of the stack and in the TFC. In 
re-setting the PCR to its old value, the asterisk (*) is not placed before the load instruction 
but instead, before the SSF instruction; this allows the SSS instruction to be executed before 
a fill of the PSR is required, then with the PCR restored to its old setting the next instruction 
to be executed is the one following the UCT SUB8 instruction in the calling sequence. Instead 
of keeping the old- PCR in the stack and rotating the stack back and forth, the old- PCR could 
have been temporarily loaded into an index register, say X6, and then stored back into the 
stack, and from the stack into the PCR. But this would have meant that another index register 
(or limit register, whichever one might use) would have had to be unloaded and restored 
as was X4. But this is no inconvenience, since a multiple-thin film store and load could as 
easily have been accomplished in the subroutine as the original store and load X4 alone. In 
fact, most subroutines automatically store and load multiple thin film registers. The addi
tional registers are then available, and no harm has been done and no additional time has 
been taken. Hence, the conversion subroutine could have been written as follows: 

SUB8 STF M X4,SUB81 Save contents of X4,X5,X6 
STF M L4,SUB82 Save contents of L4,L5,L6 
STF N,X6 X6 = old-PCR 
CLA H 
LTF H,X4 
LTF D(+16),L4 

SUB8A FRCD H,3,H 
FRS H,3,H 
XLC +1,X4 LS L4,SUB8A 
STF X6,N Restore old PCR 

* LTF SUB81,M X4 Restore X4,X5,X6 
LTF SUB82,M L4 Restore L4,L5,L6 
LTF N,PCR 

SUB81 OCT ~ 
SUB82 OCT ~ 

Note that L4, L5 and L6 are saved but only L4 is used, yet execution time for the sub
routine is not increased; and note that X6 is stored back in to the stack BEFORE the old 
contents of X4, X5, and X6 are restored; this is necessary, because the PCR value in X6 
would be clobbered by the restored value of X6, and therefore, it must be preserved in the 
stack. And finally, note that the asterisk is placed before the first restore index and limit 
instruction; this is because the two instructions contain a total of six syllables, filling one 
word and the first two syllables of the next, and allowing the last two syllables of the word 
to hold both syllables of the LTF N,PCR instruction. In this way no incomplete or incorrect 
instruction is executed, and the main program is safely reached. 

T ABLE PROCESSING PCR SUBROUTINES 

The subroutines so far reviewed have only a small number of inputs or "arguments" 
and these have been easy to store into thin film. But a subroutine which must process a large 
set of data cannot receive all of its arguments in thin film. There is not enough room, and 
the loading of thin film would become a bother. Some other means must be employed to input 
data to the subroutine. 

164 



Rather than input data to the subroutine, the location and organization of the data might 
be input to the subroutine. Since data is usually arranged in a table, this method normally 
involves the input to the subroutine of table characteristics, such as the core location of the 
table, whether the entries in the table are of fixed or variable length and the length of the 
table expressed either in word- count or entry number. Other characteristics of the table 
may either be assumed by the subroutine or explicitly provided by the user. In any case, 
what is directly input to the subroutine is table characteristics and not the data in the table. 
The table characteristics are much fewer in number than the actual data, and are easy to 
input to the subroutine; in this way, tables of great size can be processed by subroutines. 

Almost any table subroutine of real use becomes rather involved, and the complexities 
quickly obscure rather than clarify the actual subroutine aspects of the code. A fairly simple 
but still involved example of a table subroutine is one which deletes zeros from a table of 
values. The entries in the table are one word numeric values, and the purpose of the sub
routine is to delete zeros and repack the table. To better Wlderstand the subroutine aspects 
of the following code, let us first examine a short program which deletes and repacks one 
table called TAB. This is NOT a subroutine because it operates on one and only one particular 
table called TAB, and NOT on ANY table located ANYWHERE in core which has one-word 
entries. 

START 

ZA 

ZZ 

ZZA 

ZZZ 
ZZX 

LTF 
CLA 
LTF 
XLC 
CEQ 
XLC 
UCT 
STF 
LTF 
XLC 
CEQ 
TRS 
XLC 
STF 
HLT 

NENT,L4 
N 
H,X4 
~,X4 EQ L4,ZZX 
H, TAB+X4,ZZ 
+1,X4 LS L4, ZA 
ZZX 
X4,N 
N,X5 
+1,X5 EQ L4,ZZZ 
H,TAB+X5,ZZA 
TAB+X5,TAB+X4 
+1,X4 LS L4,ZZA 
X4,NENT 
77 

To convert this code into a subroutine, many changes would be required, but the principle 
one would be substituting a variable for the constant TAB, whenever it occurs in the code. A 
variable in machine code is represented by an index register, the CONTENTS of which varies. 
A constant is represented by a tag, such as TAB. Hence, one must substitute in the above 
routine an index register for TAB. This requires that the index register contains the address 
which is normally stored in an address syllable. TAB fWlctions simply as a symbol for a 
relative address, and that address is normally stored in the address syllables of the instruc
tions in which TAB appears. Now, if some index register, say X6, were set equal to TAB, and 
all uses of the symbol "TAB" were replaced by "~+X6", then the effect as far as instruction 
execution was concerned would be the same. The ~ in "~+X6", of course, is the value (all 
zeros) which is stored by the assembler into the appropriate address syllable so that it's effect 
is nil. Under the present substitution scheme, the address of table TAB is the contents of 
X6 plus the BAR. The BAR has not changed so we can ignore it, and concentrate on X6. X6 
is equal to TAB (the relative address). Hence, ~+X6+BAR is equal to TAB+BAR, and this 
is the address that we want. 

165 



The only difficulty, now, is to correctly load X6. How is the subroutine to obtain the 
correct value? The answer is that the user must supply the information in the calling se
quence. One possible calling sequence is as follows: 

TRS 
* STF 

UCT 
. ADR 

NENT,H 
PCR,N 
SRZ 
TAB~ 

The user stores the length of the table in the 
stack. 

The relative address of the table is stored in 
the word following the UCT to the subroutine. 

The " ADR TAB" card causes the assembler to load the relative address of TAB into 
the word following the UCT to the subroutine. It is clear that the starting location of ANY 
table could be loaded into the word following the branch instruction. Whichever table tag is 
stored in that register will be processed by the subroutine; so complete generally in this 
respect is achieved. The table to be processed can be of any length; the number of entries 
in the table is stored into the stack by the user prior to jumping to the subroutine. As the 
subroutine can be entered from any point within the user's program, the subroutine never 
knows exactly where the register containing the table address is located. But it does know 
the location of the "UCT SRZ" instruction; it is the old-PCR, which is stored in the top of 
the stack. It knows, further, that the ADR word is the ond immediately following the UCT 
instruction. Hence, it knows thit the table address for this particular calling sequence is 
located at old-PCR PLUS 1. 0l~-PCR+1 gives the ABSOLUTE address of the register con
taining the relative address of. the table to be processed. To fetch the table address, the 
absolute address must be used;. but if this is done, then the BAR setting must somehow be 
nullified. This could be done by saving the BAR somewhere, then clearing it, and then using 
the absolute address, but experience has shown that the single best means of nullifying the 
BAR when dealing with absolute addresses is to load an index register with -BAR (the 2's 
complement of the BAR) and then indexing the absolute address with that index register; 
this effectively nullifies the BAR,: yet leaves it intact for later use when dealing with relative 
addresses once again. 

Pulling these techniques together, we may modify our earlier code and produce the 
following subroutine: 

SRZ STF M X4,SRZ~1 
STF M X8,.SRZ~2 
STF M L4,SRZ~3 
LTF H,X1~ X1~ = old PCR 
STF BAR,H NOTE: Top of stack is now 
LCM H,H negative value. 
BSU H,O(l),H Load X9 with the 2' s complement 
LTF N,X9 (module - 216) of the BAR 
LTF H,L4 Set L4 = NENT of table 
LTF 1+X1~+X9,X6 Load relative address of table 
CLA N into X6. 1+old PCR+(-BAR)+BAR= 
LTF H,X4 absolute address of word following 
XLC ~,X4 EQ L4,SRZZZ UCT SRZ. 

SRZA CEQ H,~+X6+X4,SRZZ ~+X6= relative address of the table. 
XLC +1,X4 LS L4, SRZA 
UCT SRZZZ 

166 



SRZZ STF X4,N 
LTF N,X5 

SRZZA XLC +1,X5 EQ L4,SRZZZ 
CEQ H,~+X6+X5,SRZZA 
TRS ~+X6+X5,~+X6+X4 
XLC +1,X4 LS L4,SRZZA 

SRZZ STF X4,N store new NENT of table into stack. 
XLC +1,X1~ NO L~,~ Increment old- PCR by 1 so that 
STF X1~,N return is at old- PCR+2. 
LTF SRZ~l,M X4 

* LTF SRZ~2,M X8 
LTF SRZ~3,M L4 
LTF N,PCR 

SRZ~l OCT ~ 
SRZ~2 OCT ~ 
SRZ~3 OCT ~ 

X1~ which is equal to the old PCR is incremented by 1 so that the effective return ad
dress is one greater than the word containing the relative address of the table. Remember 
that a fill of the PSR occurs immediately after the PCR is loaded, and this new setting of 
the PCR is .immediately incremented by 1; hence, the PCR is loaded with the absolute address 
of the ADR word in the calling sequence but the automatic PCR inc rem entation, prior to the 
next fill of the PSR, effectively causes the word following the ADR word to be fetched from 
memory. This latter word, of course, contains the next instruction of the main program, which 
is what is wanted. Remember, too, that logically complementing a positive number gives a 
negative-value, the magnitude of which is incremented by subtracting (a positive one). While 
this subroutine works well enough, it does contain an inefficiency which could be eliminated. 
X6 is used to contain a constant - the relative address of the table - which is never modified 
by the subroutine. X4 is used to step through the table. There is no reason why X6 could not 
have been used for that purpose, thereby saving X4 for other uses or at least eliminating 
the extra repetitive fetch of the X4 index-syllables. To use X6 to step through the table, the 
limit register L4 could simply have been set to the initial value of X6 plus the length of the 
table. In place of the "LTF H,L4" instruction, we could have put the following: 

BAD H,1+X1~+X9,N 
LTF H,L4 

after which all use of X4 could have been dropped; and where X4 appears in XLC and STF 
instructions X6 could .besubstituted and X5 would function by itself. Immediately after instruc
tion SRZZ, the relative address in the table would have to be subtracted from the top of the 
stack in hold mode. This would give the new table length. This modification is included in the 
next subroutine. 

The above zero-delete subroutine operates on one-word-entries. But tables of a more 
complex kind can be processed by subroutines of this sort. Multi-word entry tables utilizing 
a one-word item can be processed by the following subroutine. The routine requires that the 
user supply the word-length of an entry (which must be of fixed length) and the location with
in the entry of the one-word item for which zero is to be checked. If that one-word item is 
zero, then the entire entry is deleted from the table, and the table, repacked. The calling 
sequence and the subroutine are as follows: 

167 



L68 

CALLING SEQUENCE 

TRS 

* STF 
UCT 
DEC 
DEC 
ADR 

SUBROUTINE 

SR~ STF 
STF 
STF 
STF 
LTF 
STF 
LCM 
BSU 
LTF 
CLA 
CEQ 
CLS 

UCT 

SR~lA LTF 
LTF 
BMU 
STF 
STF 
BAD 
LTF 
LTF 
XLC 
CLA 

SR~A CEQ 
XLC 
SSF 
UCT 

SR~Z STF 
LTF 

SR~ZA XLC 
SR~ZB CEQ 

XLC 
STF 
LTF 
XLC 

NENT,H 
PCR,N 
SR~ 
+L 
+1 
TAB~ 
RETURN 

M X4,SR~~1 
M X8,SR~~2 
M L4,SR~~3 
M TFC,SR~~4 

NENT = Number of entries 

L = Words in entry. 
1 = Which item in entry (~-N) on which 

to make zero check. 

H,X1~ X1~ = old- PCR. 
BAR,H 
H,H 
H,O(l),H 
N,X9 X9 = -BAR 
N 
N,H,SR~ZZ Does NENT equal zero? 
2+X1~+X9,1+X1~+X9,SR~lA Is item register location EQ or 

GR to the number of wds/ entry. 

SR~ZZ 

3+X1~+X9,X6 X6 = Tbl relative adr. 
2+X1~+X9,X8 X8 = item loco within ent. to check for ~. 

H,1+X1~+X9,N 
M TFC,H TOS = NENT NENT x NWDSEN = TBL LENGTH 
X6,N ReI. addr. of tbl+tbl len. = addr. of last reg. 
N,H,N in tbl = L4. 
N,L4 
l+X1~+X9,X4 X4 = entry-length. 
+~,X4 EQ L~,SR~ZZ Check for ~-length entry error. 
H 
H,~+X6+X8,SR~Z Check item in entry = ~. 
+~+X4,X6 LS L4,SR~A Increment X6 by 

entry length and see if X6 = 
SR~ZZ last ~-check word in table. 
X6,N 
N,X5 
+~+X4,X5 EQ L4,SR~ZD 
H,~+X5+X8,SR~ZA 
+~+X4,X5 NO L~,~ Set L5 = 1st word of next entry to 
X5,N stop transfers from good entry to 
N,L5 open entry. 
-~+X4,X5 N~ L~,~ 



SR91ZC 

SR91ZD 

SR91ZZ 

• 

SR91911 
SR91912 
SR91913 
SR91914 

TRS 
XLC 
XLC 
XLC 
STF 
ARC 
STF 
BSU 
BDV 
ARS 
XLC 
STF 
LTF 
LTF 
LTF 
LTF 
LTF 
OCT 
OCT 
OCT 
OCT 

91+X5,91+X6 X8 = -91-check location and hence, 
+1,X6 NO L91,91 initially restores X5 and X6 = 
+1,X5 LS L5,SR91ZC 1st word in entry. 
+91,X5 LS L4,SR91ZB To allow ENTRY MOVE. 
X4,N Compute entry-length X6-start of 
H,16,H table and scale it B16 (Binary pt. 
X6,N after Bit-17). 
H,3+X191+X9,H Computer new entry number = new 
N,H,N word length/entry length. 
H,16,H 
+3,X191 NO L91,91 
X191,N 
SR9191l,M X4 
SR91912,M X8 
SR91913,M L4 
SR91914,M TFC 
N,PCR store old- PCR+3 into PCR. 
91 
91 
91 
0 

Virtually all of the PCR subroutines one might write for the GSA- 51 would employ one 
or more of the techniques illustrated by the above routine. Certain subroutines could exit 
at different points from the routine, and others might have different error returns built into 
their calling sequences so that if some error (such as arithmetic overflow, for example) had 
occurred, during execution of the subroutine, return would not be made to the normal point 
after the calling sequence but to some specific error location. Other variations might be 
incorporated into the code of a subroutine; the extent, and complexity, and sophistication of 
subroutines, in fact, seem to have no limit. However, we are concerned with those considera
tions when writing subroutines which are unique to the GSA- 51. These include the use of thin 
film, especially the stack, for input data; the fetching of information from a subroutine's 
calling sequence; the manipulation of data both outside and inside a subroutine, and one method 
for entering and returning from a subroutine. 

"FLOATING" PCR SUBROUTINES 

One critical matter in regard to PCR-subroutines has so far been omitted. That has 
to do with the settings of the BAR and BPR. So far, the settings have been identical for both 
the subroutine and the main program. But if the main program is long and the subroutines 
are stored at the end of the program, then the relative addresses used by the subroutine may 
be too great to be served by the BAR and BPR settings of the main program. The maximum 
difference that can be allowed between an unindexed absolute address and the BAR is 211_1 
(2047). If any portion of the subroutine is located past address 2047 (decimal) relative to the 
start of the program, then the subroutine will not operate correctly with the BAR or BPR set 
equal to the start of the program; the same is true if relative to the main program's last 
SET BAR or SET BPR card the subroutine addresses exceed 2047. 

The only feasible way to overcome this limitation is to "float" the subroutine, that is, 
make all subroutine instructions contain addresses relative to the start of the subroutine 
(not the main program). This drastically reduces the magnitude of the subroutine's relative 
addresses in subroutine instructions and there is then no danger of trying to use, in instruc
tions, relative addresses which are greater than 2047. But floating the subroutine requires 

169 



that the subroutine have its own BAR and BPR settings while at the same time utilizing the 
main program's BAR setting to fetch data from areas outside the subroutine. This involves 
saving the main program's BAR/BPR settings and re-setting the BAR/BPR during the opera
tion of the subroutine. How this is done and what is involved can best be understood by a pair 
of examples. First, we will modify our earlier binary-to-octal subroutine from a non-floating 
to a floating format. The calling sequence is essentiallly the same except that the user cannot 
directly branch to the floating subroutine (unless it happens to have a relative address less 
than 4096, in which case, he can make a direct branch). The maximum branch address that 
can be stored in a branch syllable is 4095; if the subroutine is located at some point beyond 
address 4095 (relative to the start of the program) then the user cannot branch to it while 
using his current BPR setting; rather than re-set the BPR, the user might load an index 
register with the relative address of the subroutine, and use it to index a zero branch syllable. 
If so, then his calling sequence to the floating binary-to-octal subroutine could look as follows: 

* 

LTF 
LTF 
STF 
UCT 

NUMB,M TFC 
IFSR8,XI 
PCR,N 
/6+X1 
RETURN 

The following conversion subroutine looks as follows: 

SET BAR,FRS8 
SET BPR,FSR8 

FSR8 STF M BPR,N 
STF PCR,N 

LTF H,BAR 

LTF N,BPR 
STF M X4,FSR81 
STF M L4,FSR82 
TRS N,FSR83 
LTF N,X6 
CLA H 
LTF H,X4 

FSR8A FRCD H,3,H 
FRS H,3,H 
XLC +1,X4 LS L4,FSR8A 
STF X6,N 
TRS FSR83,N 
LTF FSR82,M L4 
LTF FSR81,M X4 

* LTF N,M BPR 
LTF N,PCR 

FSR81 OCT /6 
FSR82 OCT /6 
FSR83 OCT /6 

SET BAR,/6 
SET BPR,/6 

170 

IFSR8 is some register in core 
which contains the relative address 
of FSR8, the conversion subroutine. 

Store the user's BAR/BPR into the stack 
Store the absolute address of the sub-
routine. 
Set BAR/BPR equal to the start of 
the subroutine. 

SAVE user's BAR/BPR. 
Load user's PCR into X6. 

store old- PCR back into stack 
Store old-BAR/BPR into stack 

Restore old- BAR/BPR 
Restore old- PCR 



The SET BAR,FSR8 and SET BPR,FSR8 cards instruct the assembler to store into all 
the following instructions addresses relative to FSR8, the start of the subroutine. Immediately 
upon entering the floating subroutine, the user's BAR/BPR are saved, and the absolute lo
cation of the subroutine (found by storing the peR at the start of the subroutine) is loaded into 
the BAR/BPR. This loading of the BAR/BPR corrects all the following relative addresses by 
incorporating into the BAR and BPR a value equal to the relative address of FSR8 which 
when added to the subroutine's relative addresses, increases them by an amount equal to the 
relative address of FSR8. So the effect of reducing the subroutine's relative address by a 
value equal to relative- FSR8 is offset by increasing the BAR/BPR by an equal amount. For 
example, the tag "FSR81" in the subroutine instruction "STF M X4,FSR81" has been 
replaced, during assembly, by the octal equivalent of FSR81 - FSR8. When this instruction 
is executed, the BAR has been set equal to the absolute location of FSR8 (the start of the 
subroutine). If we assume that the entire program which contains this subroutine has been 
loaded at absolute address 10008, then the absolute location of FSR8 is (the relative address) 
FSR8+1~~~8. The BAR, then, is equal to FSR8+1~~~8. "FSR81" in the STF instruction is 
equal to FSR81 - FSR8. The absolute location of FSR81 is equal to FSR81+1~~~8. Hence, 
FSR81 - FSR8 plus the BAR must be equal to FSR81+1~~~8 if the instruction is to be correctly 
executed. This we can see is the case from the following expression: 

FSR81+1~~~8 

absolute 
location 

(FSR81 - FSR8) + (FSR8+1~~~R) 

= (address in 
subroutine) 

(setting of 
BAR) 

The relative address FSR81 plus 1~~~8 is equal to the relative address FSR81 minus the 
relative address FSR8 PLUS the relative address FSR8 and 1~~~8. The negative and positive 
addresses FSR8 cancel each other out, and there is left but FSR81 and 1~~~8, which is what 
we wanted. The equation is valid for the other addresses within the subroutine, and it guarantees 
that the subroutine accesses the correct core locations. 

In the conversion subroutine, no use is made of the main program's setting of the BAR 
or BPR. These are simply saved and restored prior to leaving the subroutine. This was made 
possible by the fact that all of the input to the subroutine was stored in thin film. But if the 
input consists of a large set of data located outside the subroutine and not in thin film, then 
some means of addressing it must be provided for the subroutine. This can be done by storing, 
in the user's calling sequence, the relative address of a table containing the input data. This 
was the procedure which was used in calling the zero-delete subroutine. But the relative 
address so provided was always relative to the user's BAR setting - this did not cause any 
inconvenience or difficulty to the earlier subroutine since it could use the identical BAR 
setting, but in a floating subroutine, this is not the case. With a floating subroutine any relative 
addresses supplied by the user to the subroutine must be modified and made relative to the 
SUBROUTINE'S BAR' setting. This can be done easily enough by first making the table's 
relative address an absolute address and then decrementing the absolute address by a value 
equal to the subroutine's BAR setting. The result will usually be a negative number, since the 
data (table) is often located before the subroutine in the complete program. This negative 
number, of course, is in 2's complement form, and effectively functions to reduce the BAR 
setting so as to yield the absolute address. The modifications required to make the one-word 
entry, zero-delete and repacking subroutine a floating subroutine are not difficult and the 
result is as follows: 

171 



172 

CALLING SEQUENCE· 

* 

LTF 
TRS 
STF 
UCT 
ADR 

SUBROUTINE 

SET 
SET 

FS~ STF 
STF 
LTF 
LTF 
STF 
STF 
STF 
LCM 
BSU 
LTF 
TRS 
FRS 
LAN 
LTF 
LTF 
LTF 
LTF 

XLC 

XLC 

CLA 
LTF 
XLC 

FS~A CEQ 
XLC 
UCT 

FS~Z STF 
LTF 

FS~ZA XLC 
CEQ 
TRS 
XLC 

FS~ZZ STF 
XLC 

IFS~,Xl 
NENT,H 
PCR,N 
~+Xl 
TAB~ 
RETURN 

BAR,FS~ 
BPR,FS~ 
M BPR,N 
PCR,N 
H,BAR 
H,BPR 
M X4,FS~~1 
M X8,FS~~2 
M L4,FS~~3 
H,H 
H,O(l),H 
N,X9 
H,FS~~4 
H,16,H 
H,O(177777),H 
N,X8 
N,Xl~ 
H,L4 
1+Xl~+X9,X6 

+~+X8,X6 NO L~,~ 

+~+X9,X6 NO L~,~ 

N 
H,X4 
+~,X4 EQ L4,FS~ZZ 
H,~+X6+X4, FS~Z 
+1,X4 LS L4,FS~A 
FS~ZZ 
X4,N . 
N,X5 
+1,X5 EQ L4,FS~ZZ 
H,~+X6+X5,FS~ZA 
~+X6+X5,~+X6+X4 
+1,X4 LS L4,FS~ZA 
X4,N 
+l,Xl~ NO L~,~ 

IFS~ contains the relative address 
of the subroutine. 

T AB~ is the relative address (relative 
to the user's BAR) of the table. 

Load BAR/BPR with absolute FS~ 

Load 2' s complement of subroutine's 
BAR into X9. X9 = -BAR 

Save user's BAR/BPR 

Load user's BAR into X8 

Load old- pcn into Xl~ 
Load NENT of table into L4. 
Load address of table relative to 
user's BAR into X6. 
Increment X7 by user's BAR giving 
absolute addresses. 
Decrement X6 by subroutine's BAR 
giving address relative to subroutine's 
BAR. Note: X9 = -BAR. 

X6 is start of table relative to the 
BAR. 



STF X1~,N Load old- PCR into stack 
TRS FS~~4,N Load user's BAR/BPR back into stack 
LTF FS~~1,M X4 
LTF FS~~2,M X8 
LTF FS~~3,M L4 

* LTF N,M BPR 
LTF N,PCR 

FS~~1 OCT ~ 
FS~~2 OCT ~ 
FS~~3 OCT ~ 
FS~~4 OCT ~ 

SET BAR,~ 
SET BPR,~ 

Similar, but more extensive steps might be taken to modify the multi-word entry delete 
subroutine so as to make it a floating PCR-subroutine, but these steps are somewhat tedious 
and they add nothing to an understanding of what is involved in a table-manipulation floating 
subroutine. Hence, their consideration will be eliminated. 

To recapitulate, briefly: PCR-subroutines involve (1) the use and manipulation of the 
PCR to enter and return from subroutines, (2) the use of absolute addresses with the old- PCR 
as a base when fetching information from the user's calling sequence, and the consequent use 
of the 2' s complement of the subroutine's BAR in some index register while fetching such 
information, and finally, (3) the adjustment of addresses relative to the user's BAR to that 
of addresses relative to the subroutine's BAR, always, assuming, of course, that the BAR/BPR 
had been previously re-set to the subroutine's starting location. 

SRJ SUBROUTINES 

SRJ subroutines utilize the SRJ (Subroutine Jump) and SSR (Subroutine Return) instruc
tions. They are also called "external" subroutines in contrast to PCR subroutines which are 
called "internal" subroutines. This latter terminology reflects the use made of these two 
sorts of subroutines. PCR subroutines are used mainly for short routines which are internal 
to the user's program, while SRJ subroutines are usually more elaborate and designed for 
use by many programs, or by the control program of a system. SRJ subroutines are often 
not written by the user but are called off a subroutine tape, and incorporated into the user's 
program. They are "external" to the user's program only in the sense that the user, himself, 
did not design or code the subroutine, and the subroutine may be employed at different times 
by any number of different programs. But the distinction between "internal" and "external" 
subroutines is no more precise than the corresponding one of PCR and SRJ subroutines, and, 
in fact, may be ambiguous in its implications. Hence, in this document, it will be dropped 
in favor of the PCR/SRJ designations. 

The operational distinction between PCR and SRJ subroutines is that many of the func
tions performed by program action in a PCR subroutine are performed automatically by the 
hardware in a SRJ subroutine. Hence, much labor is saved on the part of the programmer 
when he uses a SRJ subroutine. Because of the automatic hardware functions performed under 
the SRJ subroutines, much more efficient utilization and control of a BODY of subroutines 
can be achieved. The PCR subroutine involves illuch tedious storing and saving of critical 
thin film registers (such as the PCR, and the various settings of the BAR and BPR); this is 
reduced in the SRJ subroutine. 

173 



The automatic hardware action taken by a SRJ subroutine upon execution of an SRJ 
instruction includes: 

1. storing the present contents of the BAR,BPR, and PCR into the SSR (thin film ad
dresses 050,051, and 052, respectively). This is the user's setting of the BAR/BPR 
and the absolute location of the user's SRJ instruction. 

2. The SAR (Subroutine Address Register) is added to the first operand of the SRJ 
instruction. This first operand is the increment syllable, and contains the value 
which together with the contents of the SAR yields the location of the address of 
the start of the subroutine. The increment syllable plus the index plus the SAR 
equals the location of the absolute address. It is the user's responsibility to store 
the absolute address of the subroutine into the appropriate location. 

3. The present setting of the BAR is incremented by the second operand of the SRJ 
instruction. This second operand is the BAR increment syllable, which may be 
indexed. The contents of this syllable (as augmented or decreased by indexing) is 
added to the current setting of the BAR (prior to branching to the subroutine). Usually 
what is stored in this second operand is the relative address (relative to the current 
setting of the BAR) of the table containing the input data or arguments to the sub
routine, so that reference ,WITHIN the subroutine to data stored in the user's data 
area is made relative to the start of the user's data area (or the table which contains 
the subroutine's arguments). This greatly facilitates data fetches by the subroutine 
from outside the subroutine. 

4. The absolute starting address of the subroutine is loaded into the BPR and the PCR 
(not the BAR, of course) upon execution of the SRJ instruction. This absolute address 
is fetched from the location specified by the user as the first operand of his SRJ 
instruction. Along with the other automatic hardware functions performed upon execu
tion of the SRJ instruction, one other is performed: the algebraic difference between 
the new (subroutine) BPR and BAR settings is loaded into X15. This is done auto
matically, the user has no option in this regard. X15, then, is set equal to new BPR -
new BAR. All SRJ subroutines are "floating" subroutines, that is, the symbolic ad
dresses appearing in the subroutine's instructions are all relative to the start of 
the subroutine (not the start of the main program). Therefore, to fetch constants 
and to reference temporary storage areas within the subroutine, the BAR effectively 
must be set equal to the starting address of the subroutine. The new BPR is equal 
to the absolute start of the subroutine. X15 is equal to the new BPR - new BAR. Hence, 
indexing a symbolic tag within the subroutine which references a subroutine storage 
area or constant with X15 effectively increments thattag (or rather its octal equivalent) 
by the contents of the new BPR. Thus: 

TAG+XI5+BAR = TAG+(BPR -BAR)+BAR = TAG+BPR 

The BPR is equal to the absolute starting address of the subroutine, so that TAG 
is being incremented by the absolute starting address of the subroutine, which is 
what is required. * Of course, the new BAR setting is presumably correct for fetching 
data stored OUTSIDE the subroutine, and for this purpose X15 is not used. 

*As all SRJ subroutines are floating subroutines, all symbolic tags appearing within such sub
routines are decremented by the relative address of the start of the subroutine. To compensate 
for this, the BPR and, effectively, by the use of X15, the BAR are both set equal to the absolute 
address of the subroutine. A symbolic tag within a floating subroutine is effectively TAG
subroutine start. 

174 



TAG - subroutine start plus BPR (or BAR+X15) is equal to 
TAG - subroutine start plus subroutine start plus program starting location, which in turn 

is equal to the absolute location of TAG. See Page 169 for a discussion of floating 
PCR subroutines. 

The format for the SRJ instruction is as follows: 

SRJ Ja,Ji 

Ja = the address, relative to the current setting of the SAR, of the register which con
tains the absolute address of the SRJ subroutine. It may be a tag, or a DECIMAL 
number, and it may be indexed. 

Ji This is the value by which the current BAR setting is to be incremented prior to 
jumping to the subroutine. It may be a tag or a DECIMAL number, and it may be 
indexed. 

The SRJ instruction is used in conjunction with the SSR (Subroutine Return) instruction. 
The SRJ effects a branch to the subroutine, and the SSR effects a return from the subroutine 
to the location immediately after the SRJ instruction which caused the jump to the subroutine. 
Hence, the instruction following the SRJ instruction should be left-justified in the word as 
the SRR instruction causes a fill of the PSR (Program Storage Register). 

Upon execution of the SRR instruction, the BAR,BPR and PCR are re-set from the con
tents of the SSR (Subroutine storage Register). Further, X15 is set equal to the algebraic 
difference between the restored BPR and the BAR. This allows for the facilitation of successive 
returns from subroutines which branch to other subroutines during their operation. To branch 
from one SRJ subroutine to another SRJ subroutine during operation of the first SRJ subroutine, 
one need only save the current contents of the SSR - so that these settings of the BAR, BPR, 
and PCR can be restored upon exiting from the parent subroutines - and then branch by means 
of a SRJ instruction to the next SRJ subroutine. Upon return to the parent subroutine, the 
difference between the restored settings of the BPR and the BAR is loaded into X15, and the 
parent subroutine need not recompute the difference. 

The SRJ instruction is particularly useful when the programmer wishes to deal with a 
large body of subroutines. In that case, the SAR (Subroutine Address Register) could be set 
equal to the absolute starting address of a table of subroutine addresses, and then the ap
propriate subroutine could be called by its corresponding (decimal) number: subroutine-I, 
subroutine-2, etc. Further, if one wished, one could index his way through the table of sub
routine addresses - he would do this when changing relative addresses to absolute addresses 
in the table - and reference individual subroutines by means of the index register. Something 
of the same could be said of the BAR-increment feature of the SRJ instruction. This incre
ment can be the starting address of some table or of the data area of the main program. 
A table of table-starting addresses (relative to some appropriate setting of the BAR), could 
be used to successively load an index register, which could augment a BAR-increment syllable 
(otherwise set to zero), and in this way distinct tables could be processed by the subroutine 
called in this fashion. Much flexibility and power is incorporated into the SRJ instruction and 
the associated type of subroutine. These can be utilized as the programmer or subroutine 
designer wills. Only certain of the many possible applications of the SRJ subroutine will be 
illustrated. Assuming, then, that we shall be dealing with a body of illustrative SRJ sub
routines, let us suppose that the SAR has been loaded with the absolute starting address of a 
table which contains the relative addresses of these subroutines, and that they are stored in the 
table in the order in which they are numbered. Hence, SRTAB, the table of subroutine ad
dresses could look as follows: 

175 



SRTAB ADR SRTAB Relative address of the SR table itself. 
ADR SRJ~1 Binary-to-octal conversion subroutine. 
ADR SRJ~2 Edit leading zeros change to blanks. 
ADR SRJ~3 Conversion and editing subroutine. 
ADR SRJ~4 Zero-delete table subroutine. 

The four illustrative subroutines are called SRJ~1-~2-~3-~4, respectively. They per
form the following functions: SRJ~1 converts a 48-bit word stored in the TFC from 16 octal 
digits into 2 words of 16 6-bit hollerith digits stored in the top of the stack and the TFC. 
SRJ~2 replaces leading zeros with blanks in a 48-bit word of 8 6-bit hollerith digits stored 
in the TFC. SRJ~3 combines SRJ~1 and ~2 and allows the user an option as to whether to edit 
leading zeros or not. SRJ~4· deletes zero values from a one-word entry table and repacks 
the table. Assuming then, that some large program wishes to utilize these four subroutines 
(and any others which might be theoretically stored in SRTAB), the following code would 
establish the correct values in SRTAB and the SAR. 

START STF PCR,N 
LTF H,BAR 
LTF H,BPR 
LTF NSRTB,Ll NSRTB = Number of words in SRT AB 
CLA N 
LTF N,X1 
BAD H,SRT AB+X1 ,SRT AB+X1 
XLC +1,X1 LS L1,START+3 
LTF SRTAB,SAR 

MAIN PROGRAM 

We will illustrate the use of each SRJ subroutine by a sample calling sequence for each, 
and the actual subroutine code - except that of the edit subroutine, which will be assumed. 
A few comments on more extended uses of SRJ subroutines will conclude the discussion. 

SIMPLE SRJ SUBROUTINES 

The following is an example of a simple SRJ subroutine. A simple subroutine is defined 
as one in which all of the input (arguments) to the subroutine are stored in thin film prior 
to entering the subroutine. In the case of the simple subroutine, the BAR is not incremented 
to equal the user's data area, there being none outside of the subroutine or thin film. The 
BAR can instead be set to the start of the subroutine itself thereby allowing the subroutine 
to dispense with the use of X15 in fetching its own constants and storage areas. But so setting 
the BAR is the user's responsibility. If he does do this, X15 should be equal to ZERO, and the 
subroutine may incorporate a check on this point. 

176 

CALllNG SEQUENCE (Binary-to-octal conversion) 

* 

LTF 
SRJ 

NUMB,M TFC 
1,SRJ~1 
RETURN 

store number to be converted 
BAR is incremented by Relative Address of the 
conversion subroutine. SAR+1 = location of 
subroutine address. 



SUBROUTINE 

SET BAR,SRJ~1 
SET BPR,SRJ~1 

SRJ~1 XLC +~,X15 EQ L~,SRJA1 X15 = (BPR-BAR)=~ 
STF BPR,N 
LTF N,BAR 

SRJA1 STF M X4,SRJ11 
STF M L4,SRJ21 
CLA H 
LTF H,X4 
LTF D(+16),L4 

SRJB1 FRCD H,3,H 
FRS H,3,H 
XLC +1,X4 LS L4,SRJB1 
LTF SRJl1,M X4 
LTF SRJ21,M L4 

SRJZ1 SRR USER's BAR/BPR and PCR restored and re-
turn is to SRJ instruction +1. 

Assuming that a leading zero editing subroutine has been coded in simple SRJ sub
routine form, then the following is a binary-to-octal conversion AND editing subroutine. 
The user of this subroutine indicates that he does not want editing to be done on the converted 
number by storing an octal 1 in the top of the stack prior to branching to the subroutine. 
If the user does want leading zeros deleted and replaced by hollerith blanks, then he stores 
a non-1 in the top of the stack. 

CALLING SEQUENCE (Conversion and editing subroutine) 

* 

CLA 
LTF 
SRJ 

SUBROUTINE 

SET 
SET 

SRJ~3 XLC 
STF 
LTF 

SRJA3 STF 
STF 
CLA 
LTF 
LTF 

SRJB3 FRCD 
FRS 
XLC 
SSF 
CEQ 
SSS 
CLA 

N 
NUMB,M TFC 
3,SRJ~3 
RETURN 

BAR,SRJ~3 
BPR,SRJ~3 

(Or: TRS O(1),N, if no editing is desired.) 

BAR is incremented by octal equivalent of SRJ~3 
SAR+3 = location of subroutine address in SRTAB. 

-~,X15 EQ L~,SRJA3 X15 (BPR - BAR) should equal zero. 
If not set BAR = BPR BPR,N 

N,BAR 
M X4,SRJ13 
M L4,SRJ23 
N 
H,X4 
D(+16),L4 
H,3,H. 
H,3,H 
+1,X4 LS L4,SRJB3 
+1,X4 LS L4,SRJB3 
H,O(1),SRJX3 If 1, do not perform edit. 

N 

177 



* 
SRJD3 
SRJE3 

SRJC3 

* 

SRJX3 

SRJ13 
SRJ23 
SRJ33 
SRJ43 

SRJ~2 

CEQ 
STF 
LTF 
STF 
SRJ 

LTF 
LTF 
LTF 
LTF 
SRR 
STF 
SRJ 
LTF 
TRS 
UCT 
SSS 
UCT 
OCT 
OCT 
OCT 
OCT 

SET 
SET 

SRR 
SET 
SET 

N,H,SRJC3 
M TFC,SRJ33 
H,M TFC 
M SSR,SRJ43 
2,~ 

SRJ33,M TFC 
SRJ43,M SSR 
SRJ13,M X4 
SRJ23,M L4 

M SSR,SRJ43 
2,~ 
H,M TFC 
H( 
SRID3 

SRJE3 
~ 
~ 
~ 
~ 

BAR,SRJ~2 
BPR,SRJ~2 

BAR,~ 
BPR,~ 

),H 

If 1st 8-octal digits zero, then jump 
SAVE last 8 digits/edit first 8 

Save current contents of SSR. 
Branch to editing subroutine - SRJ~2 
It will correct its own BAR setting. 
Restore last 8 digits to TFC/1st 8 in stack 
Restore return values to SSR 

Return to main program 
Save contents of SSR 
SRJ~2 will correct the current BAR setting 
Place edited last 8 digits in TFC. 
Place blanks for 1st 8 digits in stack. 

Store user contents of X4-5-6. 
Store user contents of L4-5-6 
Holds last 8 octal digits, if necessary 
Holds this subroutine's SSR contents during 
execution of editing subroutine 

Location of leading zeros editing subroutine -
stored here in program AFTER SRJ~3, the 
conversion and edit subroutine. 

The point must be stressed that in the above subroutine (subroutine SRJ~3) the use of 
the tag "SRJ~2" to increment the subroutine BAR setting before branching to SRJ~2 would 
be valid only if subroutine SRJ~2 has a larger relative address than does subroutine SRJ~3, 
that is, only if SRJ~2 were located after SRJ~3. This is necessary because the use of tag 
"SRJ~2" within SRJ~2 would be such that SRJ~3 would be subtracted from "SRJ~2' I wherever 
it appeared in some instruction of SRJ~3's. IfSRJ~2 were located before SRJ~3, and, therefore, 
SRJ~2 were less than SRJ~3, then an assembler error would be generated with zeros stored 
in the BAR-increment syllable when a negative number (SRJ~2 - SRJ~3), would have to be 
stored in some address syllable in SRJ~3. One avoids this problem by using ~ in the BAR
increment and having SRJ~2 always adjust its BAR as necessary. But the assembler error so 
generated would not harm the operation of the object program since zeros would be stored 
in the appropriate syllables. If one knows that the called subroutine is stored after the calling 
subroutine, then there is no problem. 

NORMAL SRJ SUBROUTINES 

All of the previous SRJ subroutines have been simple subroutines; subroutines, all of 
whose input is stored in thin film. Normal SRJ subroutines are the opposite of simple sub
routines in respect to the location of their input: jt is not all in thin film, but rather is located 

178 



somewhere in the user's main program and is outside of the subroutine. In the case of such 
normal subroutines, the user must provide the subroutine with the location and organization 
of the input data. He does so in his calling sequence code. The location within the calling 
sequence of the input data information is within the control of the subroutine writer, but it is 
the user who is responsible for properly storing the right information in the correct locations 
of his calling sequence code. 

A normal subroutine makes use of the BAR-increment feature of the SRJ instruction. 
The user usually increments the BAR by a value equal to the address relative to the BAR of a 
table containing the subroutine's input data. This allows table processing by the subroutine, 
and it eliminates the use of an index register to hold the starting location of the table. The 
information regarding the critical characteristics of the table (table-length, entry-size, 
location of key-item(s) ) can be stored by the user in thin film or in special registers which 
are convenient to him. If the subroutine is designed so that it has other than the normal exit 
or return to the main program, the stored value of the PCR in the Subroutine Storage Register 
(SSR) can be appropriately modified before executing the SSR instruction. This is, if one 
wished to return to old- PCR plus 2, he would execute these instruction, 

"STF "'52 N" BAD H 0(1) H" "LTF N "'52" 11 " '" ,p, 

which would increment the stored old-PCR in the 3rd 16 bit byte ~52) of the SSR; then upon 
execution of the SSR instruction,; the old setting plus 1 of the PCR would be restored to the 
PCR, and the effective address of the next instruction would be the old- PCR plus 2. 

The following is an example of a normal SRJ subroutine. The subroutine deletes zero
entries from a one-word entry table. The structure of the table is Simple. What is needed by 
the subroutine is the length of the table, and the starting location of the table. In his calling 
sequence code, the user increments the current BAR setting by a value equal to the relative 
address (relative to the current BAR), and hence the starting location of the table is given 
by the BAR. The length of the table is stored by the user in the top of the stack. 

CALLING SEQUENCE (Zero-delete subroutine) 

* 

TRS 
SRJ 

SUBROUTINE 

SET 
SET 

SRJ~4 STF 
STF 
LTF 
CLA 
LTF 
XLC 

SRJA4 CEQ 
XLC 

NTAB,H 
4,TAB 
RETURN 

BAR,SRJ~4 
BPR,SRJ~4 
M X4,SRJ14+X15 
M L4,SRJ24+X15 
H,L4 
N 
H,X4 
-~,X4 EQ L4,SRJZ4 

H,~+X4,SRJB4 
+1,X4, LS L4,SRJA4 

NTAB contains the length of the table. 
BAR is incremented by TAB, the 
relative address of the table to be 
processed. SAR+4 = location of absolute 
address of SRJ~4. 

Use of X15 corrects BAR so that it 
effectively equals absolute SRJ~4 
(to which the BPR is set). 

As BPR is correctly set branch 
syllables are not indexed 
BAR = absolute TAB 
so ~+BAR = TAB 

179 



UCT 
l"t' 
SRJZ4 

SRJB4 STF X4,N 
LTF N,X5 

SRJC4 XLC +l,X5 EQ L4,SRJZ4 
CEQ H,~+X5,SRJC4 
TRS ~+X5,~+X4 
XLC +l,X4 LS L4,SRJC4 

SRJZ4 STF X4,N store new table length in the top 
LTF SRJl4+Xl5,M X4 of the stack. 
LTF SRJ24+Xl5,M L4 
SSR 

SRJl4 OCT ~ 
SRJ24 OCT ~ 

SET BAR,~ 
SET BPR,~ 

If the normal subroutine was capable of processing tables of more complex organization 
than TAB, then the additional information regarding table characteristics could be stored in 
additional stack operands, or packed together in one operand. If there is data in addition 
to the table outside the subroutine which must be fetched, then either the additional data 
themselves may be stored in thin film if there is room, or if the addition is numerous and 
organized within a table, then that table's characteristics, especially its location relative 
to the location of the first table, must be given in thin film to the subroutine. Quite often, 
if more than one table or if a large set of data only some of which is stored in tables is to be 
processed by a subroutine, then all of these tables and/or data will be grouped together 
under a command SET BAR card, so that the subroutine user need only set the BAR equal 
to the start of that table and data area, and give, in thin film, the addresses relative to that 
BAR setting of the various tables and data to be processed by the subroutine. The following 
scheme and sample calling sequence for some complex subroutine, called SRJ~M, illustrates 
the point. 

USER'S DATA AREA GROUPED UNDER A COMMON SET BAR CARD 

SET BAR,DATA 
DATA ADRA TABl 
NTABl DEC +Nl, where Nl = length of table expressed in entries. 

OCT IL, where I = key-item location, and L = size of entry. 

ITABM ADRA TABM 
NTABM DEC +NM 

OCT ImLm 
TABl OCT ~ 

DIT L*Nl-l{L*Nl = number of words in table). 

TABM OCT ~ 
DIT Lm*NM-l 

180 



SAMPLE CALLING SEQUENCE 

* LTF 
LTF 
TRS 
LTF 
LTF 
TRS 
TRS 
SRJ 

ITABI,X1 
NTABI,L1 
NTABI+1,N 
ITABJ,X2 
NTABJ,L2 
NTABJ+1,N 
INFO,N 
M,DATA 
RETURN 

Set Xl = TABI's address reI. to DATA 
Set L1 = T ABI' s entry length. 
Load stack with TABI's key/item/entry infor
mation. 
Do likewise for TABJ. 

Transmit some constant to the stack 
Branch to subroutine SRJ~M. DATA is the 
address relative to the start of the program 
of the start of the user's table and data area. 
Since the Xl and X2 contain the addresses of 
TABI and TABJ relative to DATA, the ~+X1+ 
increased-BAR location of T ABI, and 
similarily for ~+X2, and T ABJ. 

181 



CHAPTER 9 

INTERRUPT SYSTEM 

INTRODUCTION 

How often have you sat down intent to study, only to be disturbed by interruption after 
interruption? It happens to most of us too many times. The intentions of a typical student are 
pictured in Figure 9-1; prepare to study, do serious study, then go to bed. These desires 
proved too lofty. Soon after beginning his work, the student was interrupted by the phone. After 
returning to his studies, he was interrupted by a television show which proved irresistable. 
Again he returned to his studies, and again the student was interrupted, this time by a knock 
on the door. No sooner had his visitor left when the student recalled that it was happy hour 
at the club. He never returned. 

PREPARE 
TO 

STUDY 

GC TC 
BED 

FINISH 
CALL 

WATCH 
SHOW 

NO 

ANS\\ER 
DOOR 

VISIT 

FINISH] 
VISIT 

Figure 9-1. The Intentions and Interruptions of a Typical student 

Anyone who tries to follow a schedule, will find themselves interrupted from time to 
time. Unfortunately interruptions are difficult to ignore. They must be responded to, in 
some manner, before the original schedule can be resumed. Some interruptions, like a call 
to happy hour, would make a return to the schedule worthless. 

Such is the way of life, and such is ~he way of the BUIC In computer. Whereas a man 
is subjected to many types of interruptions, the computer is subjected to, at most, twelve. 
Some of these result from a program action, others from an external request, and still 
others from equipment malfunction. Two of the computer interrupts are responded to entirely 
by the computer hardware and are often termed "pseudo interrupts". With the computer 
in the normal mode of operation, the remaining ten interrupts must be handled partially by 
program action. 

182 



An interrupt, thru the use of a common hardware routine, causes the computer opera
tions to be transferred to a location (the interrupt table) which is defined in the thin film 
Interrupt Address Register (IAR). After the hardware routine branches control, there must 
be a programmed routine ready to respond to the interrupt. Otherwise the results, after the 
computer branches control, will be unpredictable. The response to the interrupt is the pro
grammers choice. There might be a message printed out or there might be no response other 
thar. returning to the interrupted program. 

Thus there must be routines in core to respond to EVERY interrupt EACH time a 
program is operated in the normal mode. This means ten interrupt processing routines. Since 
these routines can get lengthy and difficult to write, it is nearly impossible to tailor your 
interrupt responses around each individual program. It is, therefore, convenient and time
saving to use a master CONTROL PROGRAM to process each interrupt. All the large systems 
use extensive control programs. The BUIC III Air Defense System has COP and the BUIC III 
utility system has CUE. Both control programs print out complete diagnostics including 
interrupt type and settings of the BAR, BPR and PCR. Control programs which can read 
programs into memory, perform I/O, and handle interrupts can save the programmer time 
and effort. 

The BUIC III computer was designed to facilitate the use of such supervisory control 
programs. The BUIC ill computer is designed to operate in either of two modes: CONTROL 
mode or NORMAL mode. Most programs should be operated in the normal mode. In this mode 
all twelve interrupt conditions are honored and can be a valuable tool in debugging a program. 
However, in the normal mode certain instructions are illegal and will cause an interrupt if 
tried. ALL INTERRUPTS CAUSE the computer TO SHIFT into the CONTROL MODE. In the 
control mode, all instructions are legal. Thus a program operating in this mode has the added 
capability of performing I/O, setting certain control registers, and responding to interrupts. 
The "pseudo interrupts" are handled the same in either mode. However, of the other ten 
interrupt conditions, three will cause the computer to halt and seven will not be recognized 
in the control mode. 

DESCRIPTION OF SPECIAL INTERRUPT CmCUITRY 

Each computer in the AN/GYK-lO contains special interrupt circuitry for implementing 
the interrupt capability of the system. This circuitry consists of the following registers: 

INTERRUPT AND MASK REGISTER 

To provide visual indications of the interrupt conditions, each computer contains a 12-bit 
Interrupt (I) register and a 21-bit mask register (p and Q registers). Ten of the 12 interrupt 
conditions are indicated by a bit being set in the I register. The highest priority interrupts, 
primary power failure and RTC update, are not assigned I register bits. These interrupts 
are recognized and processed automatically. The two least Significant bits of the I register 
(bits 11 and 12) are spares. 

The mask register is used to permit four of the interrupt conditions to be either recog
nized or ignored by the computer. These interrupts, which are maskable interrupts, are 
external request, I/O termination, RTC overfl()w, and arithmetic overflow. If a maskable 
interrupt is to be recognized by the computer, the bit in the mask register that corresponds 
to the I register bit for signifying the interrupt must be set. 

183 



MEMORY BOUNDS REGISTERS 

Each computer contains two memory bounds registers, one for defining the upper limit 
of the memory write area and one for defining the lower limit of the memory write area. An 
interrupt condition is generated when these bounds are violated. 

INTERRUPT STORAGE REGISTERS 

When an interrupt occurs, special interrupt storage registers contained in the thin-film 
memory provide storage for computer control information relating to the program in progress 
so that it can be restarted at a later time. These registers consist of the Interrupt Dump 
Register (IDR), the Interrupt storage Register (ISR), and the Interrupt Program Register (IPR). 
These registers are loaded during the Interrupt Jump (IRJ) routine, the automatic hardware 
routine for transferring computer control to an interrupt service routine. The program 
control data stored in these registers are returned to the operating registers of the computer 
by the execution of an Interrupt Return (IRR) instruction, which can only be given in the control 
mode. 

DESCRIPTION OF INTERRUPT CONDITIONS 

The following write-ups of the 12 interrupts, listed in the order of priority, contain in 
the description, the response to the interrupt in both modes, the bit set in the I register and 
the maskability of the interrupt. A composite of the information given can be found in Table 
9-3. 

PRIMARY POWER FAILURE 

The primary power failure interrupt occurs whenever the primary ac input voltage 
to the system is detected out of tolerance. Special storage circuits maintain the dc supply 
voltages at normal levels for 500 microseconds after detection of a primary power failure 
to ALLOW SUFFICIENT TIME FOR COMPLETION OF THE INSTRUCTION CURRENTLY BEING 
EXECUTED AND TO STORE ALL NECESSARY INFORMATION REQUIRED FOR RESTARTING 
THE PROGRAM. The primary power failure interrupt signal bypasses the interrupt register 
and initiates the automatic power failure dump routine (see Figure 9-2). This interrupt is 
RECOGNIZED IN BOTH THE NORMAL AND CONTROL MODES. When the interrupt is de
tected in the normal mode, the processing of this interrupt does not require a transfer to 
the control mode. In the power failure dump routine, the contents of certain control flip-flops 
and the I register are stored in the Power Failure Dump Registers (PDR) which consist 
of thin film registers 064 and 065. The contents of the control flip-flops are stored in bits 
1 thru 15 of thin film register 064, and bits 1 thru 12 of the I register are stored in bits 
1 thru 12, respectively, of thin-film register 065. The contents of each bit of the PDR are 
listed in Table 9-1. This information is the same as that stored in the !DR during an IRJ 
operation. After the power failure dump is completed, the computer is halted. 

184 

STORE CONTRO~ 
FLIP-FLOPS 
IN PDR-¢64 

STOP.E "I" i . ...--___ _. 
REGISTER IN 'k: HALT ) 
PDR-¢65 I. -

Figure 9-2. Power Failure Dump Routine (Hardware Routine) 



TABLE 9-1. Contents of Power Failure Dump Register (PDR-064) 
and Interrupt Dump Register (IDR) 

REGISTER BITS DESCRIPTION 

1, 2, 3 Bits represent states of PS1, PS2, and PS3 flip-flops. These bits indicate 
the address of the next PSR syllable. This syllable is an operator syllable, 
since the transfer to control mode can occur only at the end of an instruc
tion. The PSR1 syllables are numbered, from the most significant end, 
"3," "2," "1," and "0" and the PSR2 syllables are numbered "7," 
"6," "5," and "4". 

4 Bit represents state of RPF flip-flop. This bit is a 1 if a repeated instruc
tion was interrupted. 

5 Bit represents state of FRP flip-flop. This bit is a 1 if a repeated instruc
tion was interrupted before execution of the first iteration. 

6, 7 Bits represent state of PFl and PF2 flip-flops. These bits contain 1 for 
each PSR that still contained information after execution of the last instruc
tion before the interrupt was processed (bit 6 for PSR1 and bit 7 for PSR2). 
If the last syllable of a PSR was used as the last syllable of the instruction 
before interrupt, this PSR is empty; if the last syllable was not used, this 
PSR is filled. If overlap has occurred, the other PSR is filled; otherwise 
it is empty. When bits 6 and 7 are restored to flip-flops PFl and PF2 
and both of the bits are l's, one of the flip-flops will be reset, since over
lap has been lost. 

8 

9 

10 

11, 12 

13 

14 

15 

16 

Bit represents state of POV flip-flop. 

Bit represents state of PUN flip-flop. 

Bit represents state of PNN flip-flop. 

Bits contain contents of stack address counter (SAl and SA2) to indicate 
which location was at the top of the stack. SA counts of 0, 1, 2, and 3 
designate stack locations 1, 2, 3, and 4, respectively. 

Bit represents state of !NT flip-flop. A 1 indicates that computer was 
operating in control mode when primary power failure was recognized. 

Bit represents state of IPF flip-flop. A 1 indicates that interrupt condition 
is a primary power failure. 

Bit represents state of RSF flip-flop. A 1 indicates reverse operation of 
the stack. 

Spare. 

185 



A power failure return operation of the hardware will proceed when Power is ready 
(CABINET READY indicator on) and the START push button on the control panel is pressed 
if the FUNCTION switch is in position OPERATE, CONDITIONAL HALT, SINGLE INSTRUC
TION, SINGLE PHASE or SINGLE PULSE (see Figure 9-3). The power failure return routine 
is also performed when power is first turned on in the equipment and the processing of an 
object program is initially started. The power failure return operation restores the contents 
of the control flip-flops and the I register to their pre-power failure status. Jl the operation 
actually is a return from a power failure, bit 11 in the interrupt register is set to indicate 
that a restart after primary power failur.e interrupt condition exists. Therefore, as soon as 
normal computer operation is restored, a restart after primary power failure interrupt 
occurs and the interrupt jump (IRJ) routine is initiated to transfer computer operation to the 
appropriate interrupt service routine. 

186 

SET 
HALT CONDI
TIONS FLIP
FLOP = 1 

RESTORE 
>-_-+1 CONTROL 

FLIP-FLOPS 

FETCH 
I-------'-......-j PDR-¢65. 

RESET "I" 
REGISTER 

HALT 

FETCH 
PDR-¢64 

RESET 
I---~ PDR-¢64 TO 

¢'a 

Figure 9-3. Power Failure Return Routine (Hardware Operation) 



REAL-TIME CLOCK (RTC) UPDATE 

The Real-Time Clock (RTC) update interrupt, which is the second highest priority 
interrupt, occurs once every 10 milliseconds for the purpose of increasing the contents 
01 the Real-Time Clock (RTC) register in the computer t~-film memory by 1. THE RTC 
UPDATE INTERRUPT SIGNAL ALSO BYPASSES THE INTERRUPT REGISTER and the inter
rupt is handled automatically. This interrupt is also RECOGNIZED IN EITHER THE NORMAL 
OR CONTROL MODES. When detected in the normal mode, no transfer to the control mode 
occurs for processing this interrupt. However, if an overflow occurs as a result of increasing 
the count of the RTC register, and if the corresponding mask bit is set, bit 15 of the inter
rupt register is set. A real-time clock (RTC) overflow interrupt is then detected and pro
cessed. The sequence of operations performed in the RTC update routine is illustrated in 
Figure 9-4. 

NO 

FETCH THE 
12 LSBs 
FROM 
RTC-l14 

FETCH THE 
12 MSBs 
FROM 
RTC-1l5 

INCREASE 
RTC COUNT 
BY 1 

INCREASE 
THE COUNT 
BY 1 

SET "15" RTC 

STORE NEW 
COUNT BACK 
IN RTC-l14 

rYE~s--tOVERFLOW f-__ ~--_I 

STORE NEW 
14-------------------1 COUNT BACK 

IN RTC-1l5 

OUT 

Figure 9-4. Real Time Clock (RTC) Update Routine (Hardware Operation) 

187 



REST ART AFTER PRIMARY POWER FAILURE 

When the computer is turned on and bit 11 of the I register has been set, a restart after 
primary power failure interrupt is indicated. THIS INTERRUPT CANNOT BE MASKED AND 
IS RECOGNIZED ONLY IF THE COMPUTER IS IN THE NORMAL MODE (that is, if operation 
was in the normal mode when the power failure occurred). In this case, the computer will 
transfer to the control mode to process the interrupt. If the computer was operating in the 
control mode when the primary power failure occurred, the computer will continue to operate 
in the control mode after restarting. HOWEVER, WHEN THE COMPUTER RETURNS TO THE 
NORMAL MODE, THE RESTART AFTER PRIMARY FAILURE INTERRUPT WILL BE RECOG
NIZED. 

EXTERNAL REQUEST 

An external request interrupt occurs as a result of an external request generated by a 
terminal device when information (program and data) is to be entered into the system. Six
teen terminal device request lines are available to each computer. The external request 
interrupt is RECOGNIZED ONLY IN THE NORMAL MODE AND IS MASKABLE. A terminal 
device can generate an external request interrupt in a computer only if the mask register 
bit corresponding to the line to which the device is connected is set. If the mask bit is set, 
bit 12 in the interrupt register is set when an external request interrupt is generated. To 
determine which terminal device generated the request, a Store External Request (SER) 
instruction is used during the service routine. THE SER INSTRUCTION CAUSES THE INPUT 
LEVELS on the 16 external request lines TO BE PLACED IN BITS 33 THRU 48 OF THE 
MEMORY LOCATION SPECIFIED IN THE INSTRUCTION. Refer to Table 9-2. 

TABLE 9-2. Mask Register Bit Assignments and Corresponding Memory 
Word Bits in LSR and SER Instructions 

MASK (p and Q) INTERRUPT BIT LSR MEMORY SER MEMORY 
REGISTER BITS MASKED FUNCTION WORD BITS WORD BITS 

PI 12 (ER1) , , Flexowriter" ext 21 33 
req 

P2 12 (ER2) Simulator group ext 22 34 
req 

P3 12 (ER3) status display console 23 35 
ext req 

P4 12 (ER4) Spare 24 36 

P5 12 (ER5) Spare 25 37 

P6 12 (ER6) Spare 26 38 

P7 12 (ER7) Message processor 27 39 
thru thru ext req thru thru 
P16 12 (ER16) 36 48 

Q3 13 I/O termination for 39 
bus A 

Q5 15 RTC overflow 41 

Q9 19 Arithmetic overflow 45 

Q12 13 I/O termination for 48 
bus B 

188 



I/O TERMINATION 

At the termination of an I/O operation, a result descriptor is returned to the descriptor 
list in memory. A signal is then generated by the I/O module and sent to all computers to 
indicate the I/O termination and the return of the result descriptor. This signal causes 
interrupt register bit 13 to be set if the corresponding mask register bit is set. THE I/O 
TERMINATION INTERRUPT CAN ONLY BE RECOGNIZED IN THE NORMAL MODE. TWO 
MASK BITS are associated with this interrupt. Mask register bit Q3 masks the I/O termina
tion signal from all I/O modules on bus A, and mask register bit Q12 masks the I/O termina
tion signal from all I/O modules on bus B. Both mask bits control the setting of bit 13 in the 
interrupt register. 

INTERRUPT COMPUTER N 

An interrupt computer N condition is normally generated by one computer and sent to 
another computer. It can be used to start a halted computer or to direct an operating com
puter to a special processing activity that is to be initiated. This interrupt condition, which 
is indicated by the setting of bit 14 of the interrupt register, CANNOT BE MASKED AND 
INVOLVES ONLY THE INTERRUPTED COMPUTER. Bit 14 in the interrupt register is 
SET IN EITHER THE CONTROL MODE OR THE NORMAL MODE; the interrupt can be recog
nized by an operating computer only in the normal mode. However, the computer N interrupt 
can be used to start a computer. which is halted in either the normal mode or the control 
mode. The interrupt computer N signal is generated by a computer operating in the control 
mode by executing an LSR AI, INTER instruction, which sets interrupt register bit 14 of the 
computer specified in the Al syllable of the instruction. The specified computer will recognize 
that an interrupt condition exists and, if halted will begin operation in the normal mode. 
The operation of the interrupted computer is automatically transferred to the interrupt table 
to service the interrupt. It should be noted that the computer specified in the Al syllable of 
the LSR instruction can be the computer executing the LSR instruction. 

REAL-TIME CLOCK (RTC) OVERFLOW 

The Real-Time Clock (RTC) overflow interrupt IS A MASKABLE INTERRUPT which can 
be used to indicate a specific program time duration of initiate real-time operations. An RTC 
overflow interrupt will occur after an RTC update routine in which the capacity of the real
time clock has been exceeded. If mask register bit Q5 is set, an RTC overflow interrupt will 
be signaled when the overflow occurs. The RTC overflow interrupt condition is ONLY RECOG
NIZED by the computer when it is operating in the NORMAL MODE. The RTC register may 
be preset to a predetermined count to establish any required time interval between RTC 
overflow interrupts. 

WRITE OUT OF BOUNDS 

The write out of bounds interrupt condition is used to prevent the writing of data into 
memory areas not assigned to the program or into memory areas within the program in which 
constants are stored. The write out of bounds interrupt cannot be masked and is RECOGNIZED 
ONLY IN THE NORMAL MODE. The interrupt occurs when an attempt is made to write into 
memory areas outside the bounds specified by the lower and upper limit registers (Y and X) 
or if an attempt is made to use the LTF instruction to load the Interrupt Address Register 
(IAR) in the normal mode. When this interrupt occurs, the store operation that would nor
mally complete the execution of the instruction that is currently being executed is not per
formed, so that THE CONTENTS OF THE SPECIFIED MEMORY LOCATION (thin-film or core) 
ARE NOT DESTROYED. 

189 



ILLEGAL INSTRUCTION 

An illegal instruction during a normal mode operation IS THE USE OF A CONTROL 
MODE INSTRUCTION OR A NONEXISTENT OPERATION CODE. Instructions which are not 
permitted in normal mode operation are LSR, TIO, and mR. The nonexistent operation codes, 
in octal, are as follows: 07,13, 17, 23, 27, 33, 37, 53, 57, 73, and 77. When an illegal instruc
tion is decoded in the normal mode, an interrupt occurs, and a transfer to a control mode 
routine is performed. IN THE CONTROL MODE, this interrupt OCCURS ONLY WHEN A 
NONEXISTENT OPERATION CODE IS USED AND CAUSES THE COMPUTER TO HALT. An 
illegal instruction interrupt causes bit 17 of the interrupt register to be set. This interrupt 
CANNOT BE MASKED. 

PARITY ERROR 

A parity error interrupt, which is indicated by the setting of bit 18 in the interrupt 
register, CANNOT BE MASKED and occurs whenever a parity error exists in a word read 
from memory. Internal parity is checked every time a data word or program word is read 
from memory. On each instance of memory write, the parity bit is appended to the word if 
necessary to make the word contain an odd number of l's. If a parity error occurs DURING 
CONTROL MODE OPERATION, THE COMPUTER WILL HALT. If the error condition occurs 
during NORMAL MODE OPERATION, THE INSTRUCTION IS COMPLETED while USing the 
bad data; however, the interrupt is sensed and processed prior to beginning the next instruc
tion. The I/O module has a SEPARATE parity-checking circuit which is NOT CONNECTED 
to the interrupt system. Thus, a parity error in any transfer between the core memory and 
an I/O module will not cause a parity error interrupt to occur in the computer. 

NO ACCESS TO MEMORY 

The no-access to memory interrupt condition also CANNOT BE MASKED and is de
tected by bit 18 of the interrupt register, and in the parity error interrupt condition. This 
interrupt condition is signaled whenever the core memory request flip-flop (REF) in the 
computer is set (indicating that an attempt is being made to gain access to core memory) 
and the computer cannot gain access to core within two RTC updates (10 to 20 milliseconds) 
to complete the execution of the instruction. If the no- access to memory interrupt condition 
occurs DURING CONTROL MODE OPERATION, THE COMPUTER HALTS; in normal mode 
operation, this interrupt condition is processed after the instruction involved has been com
pleted WITHOUT THE DESmED MEMORY WORD. 

INDmECT ADDRESS LOOP 

The indirect address loop interrupt SHARES BIT 18 of the interrupt register with the 
parity error and no-access to memory interrupts and THUS also CANNOT BE MASKED. This 
interrupt condition is signaled whenever the Indirect Address Flip- Flop (IAF) is set and 
the computer continuously addresses core memory indirectly for two consecutive RTC update 
periods (10 to 20 milliseconds) and does not proceed with the execution of the instruction. 
Since interrupt register bit 18 is also used to detect this interrupt condition, the SAME RULES 
for normal and control mode operations apply. 

ARITHMETIC OVERFLOW 

The arithmetic overflow interrupt condition IS MASKABLE and is detected when the 
program overflow (POV) flip-flop is set during NORMAL MODE operation. This interrupt 

190 



condition is indicated by the setting of bit 19 of the interrupt register. A MASK BIT cor
responding to the arithmetic overflow MUST also BE SET TO RECOGNIZE THIS INTERRUPT 
condition. During CONTROL MODE operation, this interrupt is BYPASSED. When the POV 
flip-flop is set, it remains set until \he branch on condition (BRC) instruction is used to 
reset it or until interrupt register bit 19 is set to signal the overflow condition. The follow
ing conditions cause the POV flip-flop to be set: 

1. Fixed-point arithmetic overflow resulting from addition, subtraction, or division. 

2. Overflow resulting from a round operation in the transmit modified (TRM) instruc
tion. 

3. Exponent overflow resulting from a floating-point arithmetic operation. 

4. Quotient overflow resulting from use of the floating-divide (FDV) instruction with 
non-normalized operands. 

NORMAL MODE HALT OR SNAG BIT 

The normal mode halt or snag bit interrupt is indicated by the setting of bit 11 0 of the 
interrupt register. The halt (HLT) instruction, used in the NORMAL MODE, causes the 
normal mode halt interrupt condition and consequent transfer of computer operation to the 
control mode. When given in the CONTROL MODE, THE HLT INSTRUCTION HALTS the 
computer. The snag bit interrupt, which uses the same interrupt register bit as the normal 
mode halt interrupt, occurs only during indirect addressing. During indirect addreSSing, if 
the 18th least significant bit of any level indirect address after the first contains a one, the 
interrupt register bit 110 is set and the interrupt is recognized upon completion of the instruc
tion involved. The snag bit interrupt condition capability can be employed to implement a 
program lockout for maintaining control of the execution of certain program areas. 

DESCRIPTION OF AUTOMATIC INTERRUPT PROCESSING 

The proceSSing of interrupt conditions in the BUIC III computer begins upon their 
detection. Following detection, one of the following three automatic hardware responses 
will result: 

1. Power failure dump routine, after which the computer is halted. 

2. Real-time clock (RTC) update routine, after which the processing of the program 
in progress is continued. 

3. Interrupt jump (IRJ) routine, which transfers computer operation in the control 
mode to an entry in an interrupt transfer table. 

DETECTION OF INTERRUPT CONDITIONS 

Prior to executing each instruction, a test is made for the presence of an interrupt 
condition which may have occurred during the execution of the previous instruction. At that 
time it is determined if one of the two highest priority interrupts have occurred or if an 
interrupt which causes a bit in the I register to be set has occurred. This determination 

191 



Interrupt 
Priority Condition 

1 

2 

3 

4 

5 

6 

7 

8 

192 

Primary 
power failure 

Real-time 
clock(RTC) 
update 

Restart after 
primary power 
failure 

External 
request 

I/O termina-
tion 

Interrupt 
computer N 

Real-time 
clock (RTC) 
overflow 

Write out of 
bounds 

TABLE 9-3. BUIC III Interrupt Conditions 

I Regis
ter Bit 
No. 

NA 

NA 

11 

12 

13 

14 

15 

16 

Mask Mode in Which 
Register I Register 
Bits Bit Set 

NA NA 

NA NA 

0 Normal or 
control 

PI Normal only 
thru 
P16 

Q3 and Normal or 
Q12 control 

0 Normal or 
control 

Q53 Normal or 
control 

o Normal only 

Mode in Which 
Recognized 

Normal or con-

Normal or con-
trol 

Normal only 

Normal only 

Normal only 

Normal only 
(except when 
halted; then 
normal or con-
trol) 

Normal only 

Normal only 

Action upon 
Recognition 

Power fail-
ure dump 
and return 
routine 

Real-time 
clock (RTC) 
update rou-
tine 

Interrupt 
jump rou-
tine 

Interrupt 
jump rou-
tine 

Interrupt 
jump rou-
tine 

Interrupt 
jump rou-
tine 

Interrupt 
jump rou-
tine 

Interrupt 
jump rou
tine 



TABLE 9-3. BUIC III Interrupt Conditions (Cont'd) 

Interrupt 
Priority Condition 

9 Illegal 
instruction 

10 Internal 
parity error, 
no access to 
memory, or 
indirect ad-
dress loop 

11 Arithmetic 
overflow 

12 Normal mode 
halt or snag 
bit 

Spare 

Spart. 

I Regis
ter Bit 
No. 

17 

18 

19 

110 

III 

112 

Mask Mode in Which 
Register I Register 
Bits Bit Set 

0 Normal or 
control 

0 Normal or 
control 

Q9 Normal only 

0 Normal for 
halt. 

Normal or 
control snag 
bit 

Q11 

Mode in Which 
Recognized 

Normal or 
control 

Normal or 
control 

Normal only 

Halt: normal or 
control 

Snag bit: 
normal only 

Action upon 
Recognition 

Normal 
mode: inter-
rupt jump 
routine con-
trol mode: 
halt 

Normal 
mode: inter-
rupt jump 
routine con-
trol mode: 
halt 

Interrupt 
jump rou-
tine 

Normal 
mode: Inter-
rupt jump 
routine 
Control 
mode halt 

Snag bit: 
interrupt 
jump rou-
tine 

is made automatically. (See Figure 9-5). If the interrupt is one of the highest priority inter
rupts, the power failure dump routine or the RTC update routine is performed as required. 
If the interrupt conditions is indicated by the setting of an I register bit and the computer 
is operating in the normal mode, the interrupt jump (IRJ) routine is performed to detect 
which interrupt condition has occurred, to transfer computer operation to the control mode, 
and to effect a transfer to an appropriate service routine. All three of these routines are 
performed automatically by the computer hardware. 

193 



,------ ------, 
INITIATE 

APPROPRIATE 
PROCESSING 

ROUTINE 

EXECUTE 
IRR 

INSTRUCTION 

L-----

I 
I 

YES 

Figure 9-5. General Interrupt Processing Flow Diagram 

INTERRUPT JUMP (IRJ) ROUTINE 

All interrupt conditions except the primary power failure and RTC update interrupts 
are processed "by routines which are addressed through the interrupt jump (IRJ) operation 
of the hardware. The IRJ routine is initiated when an interrupt other than the primary power 
failure interrupt or the real-time clock (RTC) update interrupt is detected in THE NORMAL 
MODE of computer operation. A flow diagram of the functions performed in the IRJ routine 
is presented in Figure 9-6. 

The first function accomplished by the IRJ routine is the store of all control data 
relating to the program in progress. This control information consists of the contents of 
certain control flip-flops and the contents of the Program Storage Register (PSR), the Base 
Address Register (BAR), the Base Program Register (BPR), and the Program Count Register 
(PCR). The contents of the control flip-flops are stored in the Interrupt Dump Register (IDR) 

194 



as indicated in Table 9-1. The contents of the PSR are stored in the least significant section 
of the Interrupt Storage Register (ISR-040), the contents of the BPR are stored in the next 
higher order section (ISR-041), and the contents of the PCR are stored in the most significiUlt 
section of the ISR (ISR-042). 

The aforementioned control data must be stored because the processing of the interrupt 
condition requires the use of the computer control flip-flops and registers. After the inter
rupt condition has been processed, this control data is restored by the execution of an IRR 
instruction so that the program can be resumed AT THE POINT AT WHICH IT WAS INTER
RUPTED. After the control information has been stored, the contents of the Interl'11pt Address 
Register (IAR) are placed in the BAR and the BPR. The address of a specific entry in an 
interrupt table (which may contain transfer instructions for branching the computer operation 

STORE BAR IN 
ISR-¢4¢ 

DECREASE PCR 
COUNT BY 1 

STORE PCR 
COUNT IN 
ISR-¢42 

EXECUTE PSR 
FILL v.1TH 
NEW PCR 

STORE 
>-___ +,ONTROL FLIP-

FLOPS IN 
IDR 

STORE BPR IN 
ISR-¢41 

STORE IAR IN 
BAR AND BPR 

OUT 

CHA!{}E TO 
CONTROL 

MODE 

FETCH 
PCR 

STORE: IAR + 
+ INTERRUPT 
NUMBER INTO 

STORE PSR 

IN IPR 

RESET "I" 
tiliGISTER 
BIT 

Figure 9-6. Interrupt Jump (IRJ) Routine, Flow Diagram 

195 



to appropriate service routines) is then computed by adding the encoded output of the interrupt 
register (the interrupt number) to the contents of the IAR. This address is inserted into the 
program count register (PCR). The IRJ routine is now completed, and the computer will fill 
the PSR using the new contents of the PCR. Thus, the IRJ routine transfers computer operation 
in the control mode to a fixed location equal to the IAR PLUS THE INTERRUPT NUMBER 
PLUS 1. 

The entire interrupt response operation thus far has been performed automatically by 
the logic circuitry of the computer (that is, no specific program has been in control of the 
computer). The subsequent program response to the interrupt condition is initiated as a 
result of the addresss inserted into the BPR and PCR by the IRJ routine. When the fill occurs, 
the entry from the interrupt table is loaded into the PSR and is executed. It should be noted 
that computer operation will remain in the control mode until an interrupt return (IRR) instruc
tion is executed. 

DESCRIPTION OF CONTROL MODE OPERATION 

As mentioned previously, one function of the interrupt system is to transfer computer 
operation from the normal mode to the control mode so that instructions and computer re
sponses which can be implemented only in the control mode may be used. 

INSTRUCTIONS PERFORMED IN CONTROL MODE 

A computer operating in the control mode is capable of executing any of the 53 basic 
types of instructions available, including three instructions (TIO, LSR, IRR) which are not 
available in the normal mode. In addition, two instructions (HLT and LTF) have features 
which can be used in the control mode but which are not available in the normal mode. 

TRANSMIT TO INPUT-OUTPUT (TIO). The transmit to input-output instruction is 
used to set up, initiate, and control input-output operations. The TIO instruction is used 
to send the three types of I/O descriptors to the I/O modules. 

LOAD SPECIAL REGISTER (LSR). The LSR instruction has three variations that enable 
the loading of the interrupt mask register, the loading of the memory bounds register, or the 
interrupting of another computer in the system. 

INTERRUPT RETURN (IRR). The interrupt return instruction is used to change computer 
operation from the control mode to the normal mode. During the execution of this instruction, 
the contents of the registers that are used to store program control information (ISR, IPR, 
and IDR) are restored to the appropriate program control registers in the computer. Thus, 
at the completion of the IRR instruction, computer control is returned to the program which 
was being executed when the interrupt occurred. The first instruction that is executed when 
control is returned to the original program is the instruction immediately following the one 
that was being executed when the interrupt occurred; this instruction is specified by the 
restored contents of the program storage register (PSRI or PSR2), the syllable counter 
(PSI, PS2, and PS3), the program fill flip-flops (PFl and PF2), and the program count register 
(PCR). 

HLT. The halt instruction, when given in the control mode, is interpreted differently 
by the computer than when given in the normal mode. In the normal mode, the halt instruction 
causes an interrupt condition, and the computer is placed in the control mode. In the control 
mode, the computer halts upon decoding a halt instruction. The computer can then be re
started by pressing the START push button on the computer control panel. 

196 



LTF. The LTF instruction, when given in the control mode of operation, can be used to 
load any of the thin-film registers in the computer. However, in the NORMAL MODE, THE 
INTERRUPT ADDRESS REGISTER (IAR) CANNOT BE LOADED by means of this instruction. 
The contents of the IAR are protected in the normal mode so that they will not be inadvertently 
altered. An attempt to load this register in the normal mode will result in a write out of 
bounds interrupt condition. 

COMPUTER RESPONSE TO INTERRUPTS IN CONTROL MODE 

The responses to interrupt conditions differ in the normal and control modes. All 
interrupt conditions are recognized in the normal mode. However, with the exception of the 
primary power failure and RTC update interrupts, no interrupts are recognized in the control 
mode. The control mode is thus an interrupt-protected mode of operation. However, if an 
illegal instruction, parity error, no-access to memory, or indirect address loop interrupt 
occurs in the control mode, the appropriate I register bit is set, and the computer is halted. 
If an HLT instruction is given in the control mode, the computer is also halted, but the I 
register bit is not set. These interrupts are thus recognized in the control mode, but no 
transfer of computer operation to service routines is performed upon their detection l!ls in 
the normal mode. The write out of bounds interrupt condition is not recognized in the control 
mode; therefore, all areas of the core memory may be addressed. The arithmetic overflow 
interrupt condition and the external request are also completely ignored in the control mode. 

All other interrupt conditions occurring in the control mode cause the appropriate I 
register bit to be set. The interrupt will not be recognized, however, until the computer 
operation is returned to the normal mode. Computer responses to interrupt conditions are 
listed in Table 9-3 in the following columns: "Mode in Which I Register Bit Set," "Mode in 
Which Recognized", and "Action upon Recognition" . 

PROGRAMMING REQUmEMENTS FOR INTERRUPT RESPONSE 

In addition to writing appropriate service routines for handling the interrupt conditions, 
the programmer must include in the main program sufficient coding for performing the 
following tasks to prepare the interrupt system for use. 

ESTABLISHING THE INTERRUPT TRANSFER TABLE 

Establish an interrupt transfer table in the program and load the starting address of 
this table into the IAR. 

STRUCTURE OF TABLE. The interrupt transfer table consists of a list of instructions 
thru which computer control is transferred to a proceSSing routine for response interrupt 
condition. Normally, a transfer instruction is provided for all the interrupt conditions except 
the primary power failure interrupt, the RTC update interrupt, and any maskable interrupt 
for which a mask bit has not been set. The transfer instructions in the table are listed in 
the order of the priority of the interrupts as indicated in Table 9-3. The selection of the 
appropriate transfer instructiort from the table is performed by the interrupt jump (mJ) 
routine. 

A fill occurs following the mJ routine. The address of the selected entry in the interrupt 
transfer table is equal to the address in the IAR plus the interrupt number plus 1. Therefore, 
THE ADDRESS OF THE FmST ENTRY IN THE INTERRUPT TABLE IS GREATER BY 2 
THAN THE BASE ADDRESS PLACED IN THE IAR. The format of the interrupt table is 

197 



illustrated in Figure 9-7. Each entry in the table consists of one memory word, which can 
contain any instruction (transfer or otherwise) for initiating the program response for the 
interrupt condition. 

LOADING THE INTERRUPT ADDRESS REGISTER (IAR). The interrupt address register 
(IAR) can only be loaded in the control mode by the execution of an LTF instruction which 
specifies the IAR. The least significant 16 bits of the contents of the memory location from 
which the IAR is loaded must contain the absolute address of the start of the interrupt table. 

INTERRUPT REGISTER 
BIT NO. 

11 

12 

13 

14 

15 

16 

17 

18 

19 

110 

MEMORY ADDRESS 
(OCTAL) 

IAR+OOOO 

IAR+OOOI 

IAR+0002 

IAR+O003 

IAR+0004 

IAR+O005 

IAR+0006 

IAR+O007 

IAR+00I0 

IAR+OOll 

IAR+O012 

IAR+O013 

Figure 9-7. Format of Interrupt Table 

RESPONSE TO MASKABLE INTERRUPTS 

ENTRY IN 
INTERRUPT TABLE 

Unused 

Unused 

Restart after Power 
Failure 

External Request 

I/O Termination 

Interrupt Computer N 

RTC Overflow 

Write Out of Bounds 

megal Instruction 

Parity Error, No Access 
to Memory, or Indirect 
Address Loop 

Arithmetic Overflow 

Normal Mode Halt or 
Snag Bit 

Computer response to maskable interrupts is controlled by the setting of the mask (P 
and Q) registers. The mask registers can only be loaded by means of an LSR instruction, 
which must be executed in the control mode. The assembly language symbolic instruction for 
loading the mask register is LSR AI' MASK. 

The contents of the memory location specified by Al in the LSR instruction must contain 
a 1 in the appropriate bit pOSition if the corresponding mask register bit is to be set and must 
contain a 0 if the mask is not to be set. The correspondence between the bits in the Al memory 

198 



word, the mask (P and Q) register bits, and the interrupt register bits is shown in Table 9-2. 
This table also contains similar information regarding the Al memory word for the SER 
instruction, which is used for storing the contents of the external request lines. The bits 
corresponding to the 16 external request lines are placed in bit locations 21 thru 36 of the 
memory word. These bits are placed in bits PI thru P16 by the LSR Ab MASK instruction. 
The bits for the remaining three interrupts are also indicated in Table 9-2 and are also 
placed in the indicated Q register bits by the execution of the LSR instruction. Two mask 
bits, Q3 and Q12, are used with the I/O termination interrupts. Bits Q3 provides a mask for 
a bus A I/O termination interrupt, and bit Q12 provides the mask for the bus B I/O termina
tion interrupt. The corresponding mask bit must be set for the associated interrupt bit to be 
recognized. 

SETTING OF MEMORY WRITE BOUNDS 

The upper and lower boundaries of the memory data write area used by a computer 
program must be established if the program is to be run in the normal mode. The bounds 
are used to prevent an inadvertent write operation into a memory area used by another 
program or into a portion of the object program's memory area which must not be destroyed. 

The upper limit of the data write area is established by the setting of the X register, 
and the lower limit is established by the setting of the Y register. Each of these registers 
contain eight bits. During every write operation, the four most significant bits of the 16-bit 
absolute memory address (the memory module number) are contained in the L register. The 
next four bits (of 16) are the four most Significant bits of an address IN THE MEMORY 
MODULE. These bits are contained in M register bits 1 thru 4. A write out of bounds inter
rupt occurs whenever the value of the eight L and M register bits is greater than the value 
of the X register (upper limit exceeded) or less than the value of the Y register (lower limit 
exceeded). 

The lower memory boundary is established by placing into the Y register the eight 
most significant bits of the absolute address of the STARTING LOCATION of the data write 
area. The upper memory boundary is established by loading into the X register the eight 
most significant bits of the absolute address of the LAST LOCATION of the data write area. 
In many cases, the aforementioned actions will result in the same setting for both the X 
and Y registers since only the eight most significant bits of the address are used. Since 
the eight least significant bits in the M register are not compared, THE UPPER LIMIT MAY 
BE EXCEEDED BY AS MUCH AS 255 MEMORY LOCATIONS BEFORE A WRITE OUT OF 
BOUNDS CONDITION IS INDICATED. The lower memory boundary is violated whenever any 
address less than the setting of the Y register is used. However, if the start of the data write 
area (the Y register setting) cannot be located at an address which is a multiple of 256, some 
portion of the program preceding the data write area will be within the write bounds. The 
number of locations in these buffer areas can be reduced if the data write area is started 
at an address which is equal to a multiple of 256 or is ended at a multiple of 256 (with the 
upper limit set to the multiple of 256 minus 1). In general, if the data write area is 256 
words or less, the optimum memory bounds setting is with the X and Y registers both set 
to the starting address of the data write area (at a multiple of 256 if possible). The size 
of the unprotected or overprotected buffer areas is directly proportional to (1) the relation
ship of the starting address of the data write area to a multiple of 256 and (2) to the size 
of the data write area. 

The loading of the limit registers is accomplished by performing the LSR AI' BOUND 
instruction. The eight least significant bits of the memory location specified by Ab in the 
LSR instruction are loaded into the lower limit (Y) register, and the eight next higher-order 

199 



bits are loaded into the upper limit (X) register. Hence, the data word must be constructed 
by the programmer so that the eight most significant bits of the lower boundary are con
tained in the eight least significant bits of Al and the eight most significant bits of the upper 
boundary are contained in the eight next higher-order bits. 

PERFORMING INTERRUPT SERVICE ROUTINES IN NORMAL AND CONTROL MODES 

The service routine for processing interrupts may be performed in either the control 
mode or the normal mode. Access to the service routines is obtained thru the interrupt 
transfer table. As· stated previously, no interrupts signaled by the setting of the I register 
bits are recognized in the control mode; however, some conditions cause the computer to 
halt in the control mode. If the interrupt service routine is performed in the control mode, 
the contents of the ISR, IPR, and IDR cannot be destroyed, since no other interrupt jump 
(IRJ) routine can occur. 

If some portion of the service routine is to be performed in the normal mode, however, 
the contents of the ISR, IDR, and IPR must first be saved in some locations in the core memory. 
The return to the normal mode is then made simply by loading the PCR portion of the ISR 
(ISR-042) with the address minus I of the desired return point, clearing the IDR, and then 
giving an IRR instruction. If a second interrupt now occurs during the normal mode process
ing of the first interrupt, the original contents of the interrupt storage registers are not 
lost when the IRJ routine causes new information to be placed in these registers. At the end 
of the second service routine, the computer must be returned to the control mode by use of 
a HLT instruction, and the program control data stored in the core memory locations are 
then placed back in the interrupt storage registers. An Interrupt Return (IRR) instruction is 
then executed so thal the control information is loaded back into the appropriate registers 
and flip-flops, and the processing of the object program is restored at the point at which 
the first interrupt occurred. 

The programmer may require that the first interrupt routine be completed before the 
service routine for the second interrupt condition is performed. This may be accomplished 
by the use of appropriate instructions in the service routines associated with the interrupts. 
The second service routine could contain a test for determining whether the program inter
rupted was an interrupt service routine (for example, by testing the contents of a flag word set 
at the beginning of the first service routine). If the test indicates that an interrupt service 
routine was interrupted, the PCR count at which the second service routine is to begin will 
be stored in the core memory, and an IRR instruction will be performed to return to the 
normal mode at the pOint at which the first service routine was interrupted. At the com
pletion of the first service routine, the PCR count will be fetched from memory and placed 
in the PCR and thus transfer computer operation to begin the service routine for the second 
interrupt condition. After the second routine is completed, the ISR, IDR, and IPR contents 
stored in the core memory when the first service routine was transferred to the normal 
mode are returned to their respective registers. The computer is then placed in the control 
mode, in which an IRR instruction is given to return to the point of the original interrupt in 
the main program. This scheme can be carried out for asmany interrupt conditions as 
necessary. 

200 



INDEX OF INSTRUCTIONS 

Instructions are indexed alphabetically according to their mnemonic code. Each code 
designation is followed by the full name of the instruction and its octal code. 

INSTRUCTION PAGE 

ACE - Alphanumeric Compare Equal - 728 
102 

ACG - Alphanumeric Compare Greater - 718 103 

ACL - Alphanumeric Compare Less - 708 103 

AIF - Adjust and Insert Field - 408 121 

ALC - Arithmetic Left Cycle - 368 110 

ALCD - Arithmetic Left Cycle Double - 368 110 

ALS - Arithmetic Left Shift - 368 112 

ALSD - Arithmetic Left Shift Double - 368 113 

ARC - Arithmetic Right Cycle - 368 111 

ARCD - Arithmetic Right Cycle Double - 368 111 

ARS - Arithmetic Right Shift - 368 113 

ARSD - Arithmetic Right Shift Double - 368 114 

BAD - Binary Add - 658 88 

BAF - Binary Add Field - 438 125 

BDV - Binary Divide - 608 90 

BMU - Binary Multiply - 618 90 

BRB - Branch on Bit - 268 98 

BRC - Branch on Condition - 118 140 

BSF - Binary Subtract Field - 428 127 

BSU - Binary Subtract - 648 89 

CBF - Convert Binary to Floating-Point - 258 139 

CEF - Compare Equal Field - 528 123 

CEQ - Compare Equal- 768 103 

CGF - Compare Greater Field - 518 124 

CGR - Compare Greater - 758 104 

CLA - Clear - 208 98 

CLF - Compare Less Field - 508 125 

CLS - Compare Less - 748 104 

CSE - Character Search - 328 141 

201 



INSTRUCTION PAGE 

FAD - Floating Addition .. 678 132 

FDV - Floating Divide - 628 137 

FLC - Full Left Cycle - 368 114 

FLCD - Full Left Cycle Double - 368 115 

FLS - Full Left Shift - 368 117 

FLSD - Full Left Shift Double - 368 117 

FMU - Floating Multiply - 638 136 

FRC - Full Right Cycle - 368 116 

FRCD - Full Right Cycle Double - 368 116 

FRS - Full Right Shift - 368 118 

FRSD - Full Right Shift Souble - 368 118 

FSU - Floating Subtract - 668 135 

HLT - Halt - 018 98 

IRR - Interrupt Return - 058 149 

LAF - Logical AND Field - 478 128 

LAN - Logical AND - 568 105 

LCF - Logical Complement Field - 468 131 

LCM - Logical Complement - 248 106 

LOF - Logical OR Field - 448 129 

LOR - Logical OR - 558 106 

LSR - Load Special Register - 318 145 

LTF - Load Thin Film - 308 92 

LXF - Logical EXCLUSIVE OR Field - 458 130 

LXR - Logical EXCLUSIVE OR - 548 106 

NOP - No Operation - 008 99 

RPT - Repeat - 108 99 

RVS - Reverse stack - 068 97 

SAF - strip and Adjust Field - 418 120 

SER - Store External Requests - 218 147 

SRJ - Subroutine Jump - 148 142 

SRR - Subroutine Return -. 048 144 

SSD - step stack Down - 038 96 

SSU - step stack Up - 028 97 

STF - store Thin Film - 158 93 

202 



INSTRUCTION PAGE 

TIO - Transmit Input/Output - 168 151 

TRM - Transmit Modified - 348 101 

TRS - Transmit - 358 101 

UCT - Unconditional Transfer - 228 102 

XLt:: - Index/Limit Compare - 128 94 

ATe K ••• ler 8- 1294 203 



SAVE A LIFE 

If you observe an accident involving electrical shock, 
DON'T JUST STAND THERE - DO SOMETHINGI 

RESCUE OF SHOCK VICTIM 
The victim of electrical shock is dependent upon you to give him prompt first aid. 

Observe these precautions: 
1. Shut off the high voltage. 
2. If the high voltage cannot be turned off without delay, free the victim from the 

live conductor. REMEMBER: 
a, Protect yourself with dry insulating material. 
b. Use a dry board, your belt, dry clothing, or other non-conducting material to 

free the victim. When possible PUSH - DO NOT PULL the victim free of 
the high voltage source. 

c. DO NOT touch the victim with your bare hands until the high voltage circuit 
is broken. 

FIRST AID 
The two most likely results of electrical shock are: bodily injury from falling, and 

cessation of breathing. While doctors and pulmotors are being sent for, DO THESE 
THINGS: • 

1. Control bleeding by use of pressure or a tourniquet. 
2. Begin IMMEDIATELY to use artificial respiration if the victim is not breathing 

or is breathing poorly: 

a. Turn the victim on his back. 

b. Clean the mouth, nose, and throat. (If they appear clean, start artificial 
respiration immediately. If foreign matter is present, wipe it away quickly 
with a cloth or your fingers). 

.~ 
c. Place the victim's head in the Hsword-swallowing" 

posi~ion. (Place the head as' far back as possible so 
that the front of the neck is stretched) .. 

d. Hold the lower jaw up. (Insert your thumb between the 
victim's teeth at the midline - pull the lower jaw force
fully outward so that the lower teeth are further forward 
than the upper teeth. Hold the jaw in this position as 
long as .the victim is unconscious). ' 

e. Close the victim's nose. (Compress the nose between 
your thumb and forefinger). 

, f.'Blow air into the victim's lungs. (Take a deep breath 
and cover the victim's open mouth with your open 
mouth, making the contact air-tight. Blow until the 
chest rises. If the chest does nbt rise when you blow, 
improve thQ position of the victim's 'air passageway, 
and blow more forcefully. Blow forcefully into adults, 
and gently into children. 

g. Let air out of the victim's lungs. (After the chest rises, quickly separate lip 
contact with the victim allowing him to exhale). 

h. Repeat steps f. and g. at the rate of 12 to 20 times per minute. Continue 
rhythmically without interruption until the victim starts breathing or is 
pronounced dead. (A smooth rhythm is deljirable, but split-second timing is 
,not essential). ' . . 

nON'T JUST STAND THERE - DO SOMETHING! 
. ," 


	Contents
	Chapter 1: The AN/GSA-51A Equipment
	Chapter 2: General Coding Features
	Word Structures
	Flow of Information in the Computer
	Normal and Control Mode
	Program Instruction
	Instruction Execution
	Thin Film Registers
	Operand Stack
	Relative and Absolute Addressing
	Direct and Indirect Addressing
	Tags
	Indexing

	Chapter 3: BUIC III Assembler
	BUIC III Assembler - PSA, PSB
	BUIC III Utility System

	Chapter 4: BUIC III Assembler Inputs
	The AN/GSA-51A Coding Sheet
	Syllable Structures
	Assembler Pseudo Codes
	Octal Corrector Cards
	Binary Cards

	Chapter 5: Internal Data Structures
	Tables
	Items
	Compool
	Scaling

	Chapter 6: BUIC III Assembler Outputs
	Errors Resulting From Symbolic Inputs
	Binary Output
	Delayed Output (DLO)
	Octal Core Dumps
	Thin Film Output
	Dictionary

	Chapter 7: AN/GSA-51A Instructions
	Fixed Point Instructions
	Thin Film and Stack Instructions
	Commonly Used Ungrouped Instructions
	Comparison Instructions
	Logical Instructions
	Cycling and Shifting Instructions
	Field Instructions
	Floating-Point Arithmetic Instructions
	Miscellaneous Instructions

	Chapter 8: Subroutine Coding Techniques for the AN/GSA-51A
	The Four General Types of Subroutines
	Subroutine Calling Sequences
	PCR Subroutines
	SRJ Subroutines

	Chapter 9: Interrupt System
	Description of Special Interrupt Circuitry
	Description of Interrupt Conditions
	Description of Automatic Interrupt Processing
	Description of Control Mode Operation
	Programming Requirements for Interrupt Response
	Index of Instructions


