
• calma

STREAM FORMAT
GDSII RELEASE 5.1

Calma Company

STREAM FORMAT

GDSn RELEASE 5.1

• calma

STREAM FORMAT, GnSn RELEASE 5.1

This document consists of the contents of the
file STREA.\1.DC. Data in this manual is subject
to change during future developments. At the
time of release, the date in this publication
was as accurate and current as possible.
However, Calma is not responsible for any
damages (including consequential) caused
by reliance upon materials provided.

NOTICE
Calma has prepared this manual for use by Calma
personnel and customers. Receipt of this
document shall be deemed to be an acceptance
of the conditions specified herein.

©1084 Ca.lma. Compa.ny

Published only in limited copyright sense

Printed in U.S.A. August 1084

STREAM FORMAT is a canonical output format for GDS II data. Libraries which
are preserved in this format can be easily transferred to other systems for processing, or
can be archived since this format is independent of future internal modifications of the
GDS II system.

1

**

ADDITIONS TO STREAM FORMAT

26 JUNE 1981

PLEX records have been put into each element after the
ELFLAGS record.

Two new element types have been added: BOX and NODE.

19 JANUARY 1982

Two new records, TAPENUM and TAPECODE, may be used in
conjunction with LIBNAME for putting STREAM format onto
multiple reels of tape. See below.

24 SEPTEMBER 1982

The records ELFLAGS, BGNEXTN, EI\'DEXTN, and STRCLASS have
been defined.

12 DECEMBER 1983

For GDSII Release 5.1 and above:
New optional records have been added Cor Filtered Stream
Format enhancement: FORMAT, MA.SK, E~MASKS.

13 JULY 1984

Corrected syntax definition of path to include optional
extension records.

**

2

STREAM SYNTAX

The following is a psuedo-Bachus Naur representation of the STREAM syntax.
Square brackets (that is "[]") denote an entity which can occur zero or one time. Braces
(that is "{}") mean "pick one of the entities within the braces." Braces with a star (that
is "{}*") mean that the entities within the braces can occur an arbitrary number of times.
Braces with a plus (that is .'{}+") mean that at least one of the entities within the braces
must be present.

<library>::= HEADER BGNLIB LIBNAME [REFLIBS] [FONTS] [ATTRTABLE]
. [ST)rpTABLE] [GENERATIONS] [<FormatType>] UNITS

{ <structure> }* ENDLIB

<FormatType>::= FORtvIAT I FORMAT { MASK }+ E!\TIMASKS

<structure>::= BGNSTR STRNAME [STRCLASS] [STRTYPE] {<element> }*
ENDSTR

<element>::= {<boundary> I <path> I <sref> I <aref> I <text> I <node> I
<box> } [ELKEY] {<property>}* ENDEL

<boundary>::= BOUNDARY [ELFLAGS] [PLEX] LAYER DATATYPE XY

<path>::= PATH [ELFLAGS] [PLEX] LAYER DATATYPE [PATHTYPE]
(WIDTH] [BGNEXTN] [ENDEXTN] XY

<sref>::= SREF [ELFL.A.GS] [PLEX] SN.A.ME [<strans>] XY

<aref>::= AREF [ELFLAGS] [PLEX) SNAME [<strans» COLROW XY

<text>::= TEXT [ELFLAGS] [PLEX) LAYER <textbody>

<node>::= NODE [ELFLAGS) [PLEX] LAYER NODE TYPE XY

<box>::= BOX [ELFLAGS] [PLEX] LAYER BOXTYPE XY

<textbody>::= TEXTTYPE [PRESENTATION 1 [PATHTYPE] [WIDTH]
[<strans>] XY STRING

3

<strans>::= STRANS [MAG] [ANGLE]

<property>::= PROPATTR PROPVALUE

4

MULTI-REEL STREAM FORMAT

STREAM format can be put onto multiple reels of tape. The first tape should
end with the records TAPE NUI\1, TAPECODE, and LIB NAME, in that order. Each
subsequent tape should begin with those same records, in that order, and should end with
the record TAPENUM. STREArv1 tapes must contain only complete STREAM records,
i.e. no STREAM record should begin on one tape and continue on the next tape.

The records TAPENU~1, TAPECODE, and LIBNAME, used in this manner, are used
only for identification of the tapes and are not incorporated into the library in any way.
The records TAPET\TUM and TAPECODE must be used only as described, and must not
appear anywhere else in the STREAM file. LIBNA:ME, of course, also occurs normally as
the third record of a STREAM file. Tapes may end after any record in STREAM format.

In the spirit of the psuedo Bachus Naur representation above, here is a representation
of multi-reel STREAM tapes:

<multi-reel STREAM tape>::= <tape1> {<continuation tapes> }+

<tapel>::= HEADER {<complete records in STREAM syntax> }*

<tape-id>

<continuation tapes>::= <tape-id> {<complete records continuing in STREAM
syntax>}+ TAPENUM

<tape-id>::= TAPENUM TAPECODE LIBNAME

The entire concatenation of STREAM records, without the tape-id groups and
TAPE NUMs, should conform to the previously described STREAM syntax.

5

RECORD DESCRIPTION

The output file is composed of variable length records. The first two bytes contain a
count (in eight-bit bytes) of the total record length (count bytes are included in the count).
The third byte is the record type, and the fourth byte describes the type of data contained
within the record.

If the output file is magnetic tape, then the records of the library are written out in
2048 byte physical blocks. Records may overlap physical block boundaries - i.e., a record
is not required to be wholly contained in a single physical block.

A "null word" consists of two consecutive zero bytes. Null words should be used to
fill the space between the last record of a library and the end of its physical block, or
between the last record of a tape in a multi-reel STREAM file and the end of its physical
block.

Here are the possible data types (number for type occurs in fourth byte of the record):

DATATYPE VALUE

No Data Present 0

Bit Array 1

Double Byte Signed Integer 2

Four Byte Signed Integer 3

Four Byte Real 4

Eight Byte Real 5

ASCII String 6

Records are always an even number of bytes long. If a character string is an odd
number of bytes long it is padded with a null character.

6

The following are record types and a brief description of each:
[rrdd] The record type and data type in Hex.

o HEADER
[0002]

1 BGNLIB
[0102]

2 LIBNAME
[0206]

3 UNITS
[0305]

Double Byte Signed Integer

Contains two bytes of data, the version number.
Prior to release 3.0 of GDS II, the version number was O.

Starting with release 3.0, the version number is 3.

Double Byte Signed Integer

Contains last modification time (two bytes for year, two bytes
for month, two bytes for day, two bytes for hour, two bytes tor
minute, and two bytes for second) as well as time of last
access (same as creation time format) and marks beginning
of library.

ASCII String

Contains a string which is the library name. The library name
must adhere to CDOS file name conventions, for length and
valid characters.

Eight Byte Real

Contains two double precision (eight byte) real numbers. The
first is the size of a database unit in user units. The second
is the physical size of a data base unit in meters.
Typically, the first number will be less than one, since it
is recommended to use more than one database unit per user
unit.
To retrieve the physical size of a user unit in meters, divide
the second number by the first.

7

4 ENDLIB
[0400]

5 BGNSTR
[0502]

6STRNA:ME
[0606]

7ENDSTR
[0700]

No Data Present

Marks the end of a library.

Double Byte Signed Integer

Contains creation time of structure (two bytes for year, two
bytes for month, two bytes for day, two bytes for hour, two
bytes tor minute, and two bytes for second) and contains last
modification time of the structure (same format as creation
time) and marks the beginning of a structure.

ASCII String

Contains a string which is the structure name. A structure name
may be up to thirty-two characters long, and legal characters
are upper and lower case letters, digits, underscore (_), and
currency ($).

No Data Present

Marks the end of a structure.

8 BOUNDARY No Data Present
[0800]

9 PATH
[0900]

10 SREF
(OAOO]

Marks the beginning or a boundary element.

No Data Present

Marks the beginning of a path element.

No Data Present

Marks the beginning of an sref (structure reference) element.

8

11 AREF
[OBOO)

12 TEXT
[OCOO)

13 LAYER
[OD02)

No Data Present

Marks the beginning of an aref (array reference) element.

No Data Present

Marks the beginning of a text element.

Double Byte Signed Integer

Contains two bytes which specify layer. The value of the layer
must be in the range of 0 to 63.

14 DATATYPE Double Byte Signed Integer
[OE02)

15 WIDTH
[OF03)

16 XY
[1003]

Contains two bytes which specify datatype. The value of the
datatype must be in the range or 0 to 63.

Four Byte Signed Integer

Contains four bytes which specify the width of a path in
data base units, or the width of text lines. A negative value
for width means that the width is absolute, i.e. it is not
affected by the magnification factor of any parent reference.

Four Byte Signed Integer

Contains an array of XY coordinates in database units.
Each X or Y coordinate is four bytes long.

PATH and BOUNDARY may have up to 200 pairs of coordinates.
A PATH must have at least two, and a BOU}\jTIARY at least four
pairs of coordinates. The first and last point or a BOUNDARl'~
must coincide.

9

17 ENDEL
[1100]

18 SNA:ME
[1206]

19 COLROW
[1302]

.A .. TEXT or SREF element must have only one pair of coordinates.

An AREF has exactly three pairs of coordinates, which specify
the orthogonal array lattice. In an AREF the first point is
the array reference point. The second point locates a postion
which is displaced from the reference point by the inter-column
spacing times the number of columns. The third point locates
a position which is displaced from the reference point by the
inter-row spacing times the number of rows.

A NODE may have from one to fifty pairs of coordinates.

A BOX currently must have 5 pairs of coordinates with the
first and last points coinciding.

No Data Present

Marks the end of an element.

ASCII String

Contains the name of a referenced structure. See also STRNAME.

Double Byte Signed Integer

Contains four bytes. The first two bytes contain the number
of columns in the array. The third and fourth bytes contain
the number of rows. The number of columns and the number of
rows may not exceed 32,767 (decimal) and are non-negative.

20 TEXT NODE No Data Present
[1400]

~farks the beginning of a text node.
[This record type is not currently used.]

10

21 NODE
[1500]

22 TEXTTYPE
[1602]

No Data Present

Marks the beginning of a node.

Double Byte Signed Integer

Contains two bytes representing texttype. The value of the
texttype must be in the range 0 to 63.

23 PRESENTATION Bit Array
[1701]

24 SPACING

25 STRING
[1906]

26 STRANS
[lAOl}

Contain s one word (two bytes) of bit flags for text
presentation. Bits eleven and twelve, taken together as
a binary number, specify the font (00 means font 0, 01 means
font 1, 10 means font 2, and 11 means font 3). The thirteenth
and fourteenth bits are used to specify the vertical
presentation (00 means top, 01 means middle, and 10 means
bottom). The fifteenth and sixteenth bits specify the
horizontal presentation (00 means left, 01 means center, and
10 nleans right). Bits one through ten are reserved for future
use and must be cleared.

(Discontinued)

ASCII String

Contains a character string for text presentation, up to
five-hundred-twelve (512) characters long.

Bit Array

Contains two bytes of bit flags for graphic presentation.
The first (high order, or leftmost) bit specifies reflection.
If it is set, then reflection over the X-axis is applied before
angular rotation. For AREFs, the entire array lattice is

11

27 MAG
[IB05}

28 ANGLE
[IC051

29 UINTEGER

30 USTRING

reflected, with the individual array elements rigidly attached.
The fourteenth bit flags absolute magnification.
The fifteenth bit flags absolute angle.
The sixteenth (low order, or rightmost) bit and all remaining
bits are reserved for future use and must be cleared.

Eight Byte Real

Contains a double precision real number (eight bytes) which is
the magnification factor.

Eight Byte Real

Contains a double precision real number (eight bytes) which is
the angular rotation factor, measured in degrees and in counter
clockwise direction.
For an AREF, the }\NGLE rotates the entire array lattice (with
the individual array elements rigidly attached) about
the array reference point.

User Integer (No longer used)

In Release 2.0.0 only, User Integer data could be made part
of any element. This consists of a sequence of up to 32
two-byte signed integers. In the stream format it was an
optional block of data immediately after the USTRING block.
Discontinued in Release 2.0.1, in anticipation of the more
general user-property capability of Release 3. See also
PROPATTR and PROPVALUE below.

Character String (No longer used)

Contains character string data. If t.his record is not present
then it is the null string. Formerly called CSD (character
string data).
User string data was used in release 1 and 2. Starting in

12

31 REFLIBS
[IF06]

32 FONTS
[2006]

33 PATHTYPE
[2102}

release 3.0, user string data was replaced by the more
general user properties, see PROPATTR and PROPVALuE.

ASCII String

Contains names of the reference libraries. The name for the
first reference library start~ the data and the name of the
second library starts at byte number forty-five (45 decimal).
If either library is not named its place is filled with nulls.

ASCII String

Contains names of textfont definition files. The name of Font
Zero starts the record, followed by the remaining three fonts.
Each name is forty-rour bytes long and is null if there is
no corresponding textfont definition. Each name is padded
with nulls if it is shorter than forty-four bytes.

Double Byte Signed Integer

This record contains a value of 0 for square-ended paths that
end flush vdth their endpoints, 1 for round-ended paths, and
2 for square-ended paths that extend a half-width beyond their
endpoints. Pathtype 4 (for the STICKS product only) signifies
a path with variable square-end extensions (see records 48 and
49). If not specified, a Pathtype of 0 is assumed.

34 GENERATIONS Double Byte Signed Integer
[2202}

This record contains a positive count of the number of copies
of deleted or backed-up structures to retain. This number
must must be at least 2 and not more than 255. If the
GENERATIONS record is not present, a value of 3 is assumed.

13

35 ATTRTABLE
[2306]

36 STYPTABLE
[2406]

37 STRTYPE
(2502]

38 ELFLAGS
[2601]

39 ELKEY
(2703]

40 LINKTYPE
(28]

41 LINKKEYS
[29]

42 NODETYPE
[2A021

ASCII String

Contains the name of the attribute definition file.
Maximum size is 44 bytes.

ASCII String (Unreleased feature)

Double Byte Signed Integer (Unreleased feature)

Bit Array

Contains two bytes of bit flags. Bit 16 (the rightmost bit)
specifies TEMPLATE data. Bit 15 specifies EXTERNAL data.
All other bits are currently unused and must be cleared to o.

Four Byte Signed Integer (Unreleased feature)

Two Byte Signed Integer (Unreleased feature)

Four Byte Signed Integer (Unreleased feature)

Double Byte Signed Integer

Contains two bytes which specify nodetype. The value of the
nodetype must be in the range of 0 to 63.

14

43 PROPATTR
[2B02]

44 PROPVALUE
[2C06]

45 BOX
(2DOO]

46 BOXTYPE
[2E02]

Double Byte Signed Integer

Contains two bytes which specify the attribute number.
The attribute number is an integer from 1 to 127.
Attribute number 127 is reserved for the "user string"
or ~~CSD'~ property, which existed previous to release 3.0.

Attribute number 126 is reserved for the "user integer"
property, which existed previous to release 3.0.

(U ser string and user integer data in previous releases
becomes converted to property data having attribute number
127 and 126 by the stream format input program INFORM.)

ASCII String

Contains the string value associated with the attribute
named in the preceding PROPATTR record. Maximum length is
126 characters. The attribute-value pairs associated with
anyone element must all have distinct attribute numbers.
Also, there is a limit on the total amount of property data
that may be associated with anyone element: the total
length of all the strings, plus twice the number of
attribute-value pairs, must not exceed 128 (or 512 if the
element is an SREF or AREF or NODE).

No Data Present

Marks the beginning of a box element.

Double Byte Signed Integer

Contains two bytes which specify boxtype. The value of the
boxtype must be in the range of 0 to 63.

15

47 PLEX
(2F03]

48 BGNEXTN
[3003]

49 ENDEXTN
[3103]

50 TAPENUM
[3202]

51 TAPECODE
[3302]

Four Byte Signed Integer.

A unique positive number which is common to all the elements of
the PLEX of which this element is a member.
The head of the plex is flagged by setting the 8th bit (the
leftmost bit is the first and the rightmost bit is the 32nd).
Thus, plex numbers should be small enough to occupy only the
rightmost 24 bits.

Four Byte Signed Integer

Applies to Pathtype 4 (currently in the STICKS product only).
Contains four bytes which specify in data base units the
extension of a path outline beyond the first point of the
path.

Four Byte Signed Integer

Applies to Pathtype 4 (currently in the STICKS product only).
Contains four bytes which specify in data base units the
extension of a path outline beyond the last point of the
path.

Double Byte Signed Integer

Contains two bytes which specify the number of the current
reel of tape for a multi-reel STREAM file. For the first
tape, the TAPENUM is 1; for the second tape, the TAPENUM
is 2; etc.

Double Byte Signed Integer

Contains twelve bytes. This is a unique six-integer code
which is common to all the reels of a multi-reel STREAM
file. It is used to verify that the correct. reels are
being read in.

16

52 STRCLASS
[3401]

53 RESERVED
[3503]

54 FORMAT
[3602]

55 MASK
[3706]

Two Byte Bit Array

This is currently only ror Calma internal use with STICKS
structures. If Stream tapes are produced by non-Calma
programs, then this record should either be omitted or
cleared to o.

Four Byte Signed Integer.

Reserved ror ruture use. This record type previously used
ror NUrvlTYPES which was never used and not required.

Double Byte Signed Integer.
Optional.
Defines the format type or a stream tape in two bytes.
The two possible values are:
o ARCHIVE rormat,
1 FILTERED rormat.
An ARCHI\TE stream file contains elements ror aU the layers
and data types. It is created with the OUTFORM command.
In anARCHI\'E stream file, the FORMAT record is rollowed
immediately by the UNITS record. A file which does not have
the FORMAT record is assumed to be an ARCHIVE file.
A FILTERED stream file contains only the elements on the layers
and with the data types specified by the user during execution
or the STREAl\10UT command. The list or layers and data types
specified ror the STREAMOUT command rollows the FORMAT record,
in MASK records. The mask records are terminated. with the
ENDMASKS record. At least one MASK record must immediately
rollow the FORMAT record. The FILTERED stream file is created
with the STREAMOUT command.
See MASK and ENDMASKS, below.

ASCII String.
Required for FILTERED rormat.
Present only in FILTERED stream file.

17

56ENDMASKS
[3800]

Contains the list of layers and data types specified by the
user for the STREAMOUT command. At least one MASK record must
follow the FORMAT record. More than one MASK records may
follow the FOR~1AT record. The last MASK record is followed by
the ENDMASKS record. See FORMAT above and ENDt\i:\SKS below.
In the list, data types are separated from the layers with a
semi-colon. Individual layers or data types are separated
with a space. A range of layers or data types is specified
with a dash. Example list:

1 5-7 10 ; 0-63

No Data Present.
Required for FILTERED format.
Present only in FILTERED stream file.

Terminates the MASK records. The ENDMASKS record must follow
the last MASK record. It is immediately followed by the
UNITS record.
See FORMAT and MASK above.

/*

18

APPENDIX

/* STREAM RECORDS HAVE T\VO BYTES WITH TOTAL BYTE LENGTH OF
RECORD, THEN ONE BYTE FOR RECORD T)rpE AND ONE BYTE OF
DATA TYPE. THE REST OF THE RECORD IS DATA. RECORD
LENGTHS ARE AL·\VAYS AN EVEN NUMBER OF BYTES.
AND REMEMBER ... STREAM RECORDS SPAN PHYSICAL BLOCKS.*/

/* Stream Format Types. These are used to implement the two versions or
Stream Format: Archive (OlTTFORM) and Filtered (STREi\MOUT).
The Archive Stream Format is generated by OUTFORM.
The Filtered Stream Format is generated by STREAMOUT. * /

MACHINE REPRESENTATION OF DATA TYPES

A word consists or 16 bits, numbered 1 to 16, left to right (high to low order)

2-byte integer (DGL Integer) = 1 word twos-complement representation
4-byte integer (DGL Integer (2)) = 2 word twos-complement representation
4-byte real (DGL Real) = 2 word floating point representation
8-byte real (DGL Real (4)).-:.. 4 word floating point representation

Two-byte integer, Four-byte integer, Four-byte real, and Eight-byte real
all represent the value zero by setting all bits to zero.

For all non-zero values:
A floating point number is made up or three parts: the sign, the exponent, and
the mantissa. The value or a floating point number is defined to be:
(MANTISSA) X (16 RAISED TO THE TRUE VALUE OF THE EXPONENT FIELD).
The exponent field is held in Excess-64 representation, i.e the seven-bit
field shows a number that is 64 greater than the actual exponent.
The mantissa is always a positive rraction >=1/16 and < 1. The "binary point"
can be thought of as being just to the left or bit 9. Bit 9, then, represents
the value 1/2, bit 10 represents 1/4, etc.
In order to keep the mantissa in the range or 1/16 to 1, the results or

19

floating point arithmetic are "normalized". Normalization is a process whereby
the mantissa is shifted left one HEX digit at a time until the high-order FOUR
bits represent a non-zero quantity. For every hex digit shifted, the exponent
is decreased by one. Since the mantissa is shift·ed four bits at a time, it is
possible for the high-order three bits of a normalized mantissa to be zero.

Representation:

2-byte integer:
SMM:MM:MMM MMM~fMMM
4-byte integer:
SMMMMMMM MMMMMMMM MJ\1MMMMMM MM:MMMMl\L\1

4-by te real:
SEEEEEEE MMMMMMMM MMMMMMM1\1 Ml'vfMMMMMM
8-byte real:
SEEEEEEE MMMMMM:MM MMMMMMM:J\1 Ml'vfM~1MMM.\1
MM:MMMMMM MMMMMMMM MMMMMM~fM MMMMMMMM

Examples:

2-byte integer:
00000000 00000001 = 1
00000000 00000010 = 2
00000000 10001001 = 137
11111111 11111111 = -1
11111111 11111110 = -2

11111111 01110111 = -137

4-byte integer:
00000000 00000000 0000000000000001 = 1

00000000 00000000 00000000 00000010 = 2
00000000 00000000 00000000 10001001 = 137
11111111 11111111 11111111 11111111 = -1

1111111111111111 1111111111111110 = -2
11111111 11111111 11111111 01110111 = -137

4-byte real:
01000001 00010000 00000000 00000000 = 1
01000001 00100000 0000000000000000 = 2
01000001 00110000 00000000 00000000 = 3

11000001 00010000 00000000 00000000 = -1

20

Note that the 7 -bit exponent
field = 65, meaning that the
actual exponent is 65-64= 1

11000001 00100000 00000000 00000000 = .. 2
11000001 00110000 00000000 00000000 = .. 3

01000000 10000000 00000000 00000000 = .5

01000000 10011001 10011001 10011001 = .6

01000000 10110011 00110011 00110011 = .7
01000001 00011000 00000000 00000000 = 1.5
01000001 00011001 10011001 10011001 = 1.6
01000001 00011011 00110011 00110011 = 1.7

01000001 00010000 00000000 00000000 = 1
01000001 10100000 00000000 00000000 = 10

01000010 01100100 00000000 00000000 = 100
01000011 00111110 10000000 00000000 = 1000
01000100 00100] 11 00010000 00000000 = 10000
01000101 00011000 01101010 00000000 = 100000

The representation of the negative values of real numbers is EXACTLY the
same as the positive, EXCEPT that the highest order bit is 1, not O.

In the eight-byte real representation, the first rour bytes are EXACTLY the
same as in the four-byte real representation. The last four bytes contain
additional "binary places" for more resolution.

21

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

