Internal Maintenance Specification
1700 Mass Storage Operating
System

Version 3

1700 MSOS 3.0

@ COPYRIGHT CONTROL DATA CORP. 1971

Contained herein are Software Products
copyrighted by Control Data Corporation.
A reproduction of the copyright notice
must appear on all complete or partial
copies.

/37

ms3 7

CONTROL DATA CORPORATION MAR 51971
Arden Hills Development DIVISION

MS .
DOCUMENT CLASS___ PAGE NO. i
g PRODUCT NAME 1700 MSOS

‘(WJPRODUCTMODELNO.5995”3'9 MACHINE SERIES 1200

TABLE OF CONTENTS

NAME SECTION

System Tables

LOCORE 1.0
SySbuf Ce 0
System Monitor Routines
Scheduler 3.0
Dispatcher 4.0
Re-entrant Dispatcher 5.0
Complete Request for Drivers - NCMPRQ L.0D
Find Next Request for Driver - FNR 7.0
Alternate Device Handler 8.0
Make @ for Drivers 9.0
Common 10.0
Internal Interrupt Processor = NIPROC 11.0
External Interrupt Processor - NEPROC 2.0
- Volatile Storage Handler 13.0
‘uy Monitor Entry and Exit for Requests 14.0
] Processor for READ2 WRITE~ Format READ- Format WRITE 15.0
Core Allocation - ALCORE- DRCORE+ SPACE 1k.0
Conversion Routines - PARAME 17.0
Transfer Vectortable - TRVEC 18.0
Timer Package
Timer Interrupt Processor - TMINT 19.0
Diagnostic Timer - DTMER 20.0
Manual Interrupt
Manual Interrupt Handler = MINT ' 21.0
Manual Interrupt Processor - MIPRO : ec.0
Job Processing
Job Processor Control Module - JOBENT 23.0
Core Request Processor - T1ll 24.0
Loader Request Processor - T7 25.0
Exit Request Processor - T§ ’ ck.0
Status Request Processor - T3 27.0
Job Processor - JOBPRO cé.0
Protect Processor - PROTEC 29.0
‘rﬁ Job Kill Module - JBKILL 30.0
%" Job Load Processor - JPLOAD 31.0
Job Change Processor = JPCHGE. ASCHEX 32.0

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

Arden Hills Development DIVISION MAR 51971
IMS .

DOCUMENT CLASS PAGE NO. 33

PRODUCT NAME ____ 2700 TISOS

PRODUCT MODEL No. E00E»3, [MACHINE SERIES 1200
Restore LU - RESTOR 33.0
Get-File Request Processor = T13 34.0
Library Editing 35.0
System Recovery 3k.0
Break Point 37.0
On=-Line Debug 38.0
Relocatable Loader 39.0

System Initialization
System Initializer 40.0
I/0 Driver Handling Routines
Mass Memory Drivers - MASDRV. DBLDRV 41} .0
170k Buffered Data Allocation - BUFALC 4.8
Engineering File 43.0
Input/Qutput Drivers
1711/1712 Teletype Driver 44y.0o
1713 Teletype Driver 45.0
1738/853s - 854 Disk Driver Uk.0
1?53 Drum Driver 4?7.0
1777 Paper Tape Station 48.0
172b/405 Card Reader 45.0
1729-2 Card Reader 50.0
17287430 Card Reader Punch 51.0
1?740/501 Line Printer 52.0
1731/1732 Magnetic Tape Driver 583.0
1732-k08/L09 Magnetic Tape Driver S4.0
1?745-2 Display Driver 55.0
System & Program Maintenance Routines
Cosy Format - CYFT Sk.D
List Cosy - LCOSY 57.0
Disk to Tape Loading Program - DTLP 58.0
Disk to Tape = DSKTAP 89.0
System Initializer Loading Program - SILP LO.0
Update bl.0
List Relocatable - LISTR k2.0
Operand Sort = OPSORT L3.0
Re-entrant Fortran Package

Fortran/Monitor Run Time Package b4.0
Reentra nt Fortran Read/Urite Statement Processor L5.0
Fortran Encode/Decode Package bk.O

AAITTT -

PRINTED IN USA

R

CONTROL DATA CORPORATIO MAR 519N

Arden Hills Developmen DIVISION
DOCUMENT CLASs____1MS PAGE NO. h
PRODUCT NAME 1700 MSOS
PRODUCT MODEL No._EO0E~3.0 MACHINE SERIES 1700
Message Buffering
Output Message Buffering Package k7.0

AA 3777 7 R

(m,DOCUMENT CLASS PAGE NO.

CONTROL DATA CORPORATION
Arden Hills Development DIVISION MAR 5197

Ins)

~_PRODUCT NAME 1700 MSOS
PRODUCT MODEL NO.EOOBX 3.0 MACHINE SERIES 1200

1.0

AA 3777

LOCORE)

. - . . .a"ij‘
Communications region, interrupt traps and preset entry point ..
table.

1.1 Program Function

This program contains three functional parts. These

are: {1} communications region-this area contains system
constants that are common for all 2.1 MSOS systemsi

{2} interrupt trap region-this area is set up to provide
the interrupt handling desired: {3} preset entry point
table-this table allows entry to a protected routine

from an unprotected routine-.

1.2 Communications Region

Locations %0 thru $FF are directly addressable in the

1700 computer. The communications region is set up to
take advantage of this feature.. The first part of the
table contains constants which provide commonly used
masks. The second part of the table contains system
parameters such as flags:, counters and addresses of system
entry points.

1.3 Interrupt Trap Region

The interrupt trap region encompasses the area from %100
to $13F. Each interrupt |line has associated with it a
four word area within this region: |ine zero-%100 to
$103, line one-%104Y to %107, etc.- A typical setup for
line zero is shown below:

LINEO NUM D WORD 1
RTJ {sF8} WORD 2
NUM 15 WORD 3
ADC IPROC WORD Y4

Word one is reserved for the hardware storage of the
program address on interrupt.

Word two is the first instruction executed following an
interrupt. A return jump to a system interrupt processor
is then made. For line zero the transfer is to the
internal interrupt handler {IPR0C}. The other lines
transfer to the common interrupt handler {ALUN}. These
routines provide for saving of registers and program
conditions via an interrupt stack-

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 5 1971
_Arden Hills Development .

DIVISION
DOCUMENT CLASS 1NS PAGE NO._ L-2 ‘. { 5
PRODUCT NAME 1700 MSOS A W
PRODUCT MODEL NO.__EO0ObX*3-0 MACHINE SERIES 1700

AA 3777

Word three is used to hold the priority level associated
with the interrupt line. The MASKT table is indexed by
this ordinal.

Word four contains the address of the processor for this
line. Most lines use the routine EPROC. Use of EPROC
dictates that the interrupting device must return bit
two as an Yinterrupt statusY during a status operation
and all hardware devices must be ordered by logical unit
number on the interrupt lines. A special interrupt
routine may be designated here instead of EPROC.

Table of Presets

The table of presets provides entry to a protected
routine from an unprotected routine. Entries are made
following the interrupt trap region in the following
manner:

ALF 3/, NAME
ADC NAME
EXT NAME .

Name is an entry point to a core resident system program.
See section for further information.

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 51971

Arden Hills Development DIVISION"
v
DOCUMENT CLASS Ins PAGE NO. 2-1
PRODUCT NAME 1700 MSOS
PRODUCT MODEL No. __EOOb*3.q MACHINE SERIES 1700
2.0 SYSBUF - System tables and parameters.
2el Program Function
The following system buffers system tables and miscellaneous
subroutines are contained in this programe.
1. Logical Unit Tables ‘
A. LOGLA
B. LOG1
C. LOG2
2. Interrupt Mask Table
A. MASKT
3. Storage Stacks
A. INTSTK - Interrupt stack
Be. VOLBLK - Volatile storage
C. SCHSTK - Scheduler stack
Y. Core Allocation Data
A. CALTHD
B. LVLSTR
5. Diagnostic Tables
A. ALTERR
B. DGNTAB
be Mass Memory Diagnostics
A. MMDIAG
7« Miscellaneous Programs
A. IDLE
B. OVRLAY
8. TIMER. RTMS. TRACE and ODEBUG information.
AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION
Arden Hills Development DIVISION MAR 51971

DOCUMENT CLASS ____ IMS ~ PAGE NO. 2.2
PRODUCT NAME ___ 3700 MSOS
PRODUCT MODEL No. __EO0b*3.Q MACHINE SERIES 1700

A. TIMCPS. TIMEC. TIMACK. TODLVL, NSCHED

B. RL?7LOC
C. STOPIT
D. CHRSFG

9. Dummy Device Driver
A. DUMDRV

10. Physical Device Tables

2.2 Logical Unit Tables
2.2el LOGLA - Table

This program segment contains AD(C's for each system logical
unit. Each ADC will specify the address of the physical
device table for a specific logical unit. This table pro-
vides the definition of logical unit ver physical device.

Certain restraints are imposed on the ordering of this S
table: {1} the core allocator is logical unit one-. s
{2} wuse of EPROC requires that each logical unit is ordered

by interrupt line number. Standard logical units {i.e.

input+ list. etc.} are assigned by equates referencing this
table.

CeCel LOGL Table

An entry is placed in this table for each logical unit. The
format is as shown below:

15 14 13 rLE 11 - 0
[L.u.

BIT 14

"
=

implies the logical unit shares a device {ex.
FORTRAN and NON-FORTRAN Printer Driver would
have two logical units assigned to one physical
printer’

BIT 13 1 implies the logical unit is marked down

BIT O thru 11
{L.U.} is the alternate logical unit {zero implies
no alternatel

L

AA 3777 ‘ PRINTED IN USA.

CONTROL DATA CORPORATION
Arden Hills Development DIVISION MAR 5 1971

__ DOCUMENT CLASS IMS PAGE NO.__ 2.3
(~ PRODUCT NAME __1700 MSOS
~ PRODUCT MODEL No.___E=00B* 3.1 MACHINE SERIES 1700
2.2.3 LOG2Z Table

ce«3
C
2.l
celel
C
AA 3777

This table is preset to $FFFF for each logical unit.
This table is used to hold the top of the thread address
for requests for each logical unit.

Interrupt Mask Table

This table is indexed by priority level to set the M-register.
The M-register setting will determine which interrupt lines
will be enabled for a given priority level. Two basic rules
to be followed are:

1. Unused interrupt lines should have their corresponding
bit set to zero throughout the table. {Bits 0 through
15 of the M-register correspond to interrupt lines O
through 157}

2. A software priority is associated with each interruph
line. More than one line can be associated with the
same priority and can have the same mask. A "1L" bit
is placed in the table for the bit position associated
with an interrupt line for all levels below the priority
level associated with that line. "0" bits must be placed
in the interrupt line position for all the priority
levels equal to and above the priority level associated
with the line.

Interrupt Stack

The interrupt stack {INTSTK} is the block of storage set aside
for saving the status of interrupted programs. The Common
Interrupt Handler stores the d--, A-I- and P- registers and

the overflow indicator and the priority level of the interrupt-
ed program in this area. Five words are required for each
entry and the stack is of the push-down. pop-up types i:.ee«a
last-in+ first out. The number of entries to be allowed for

in the table is derived from the number of different priority
levels used by interruptse.

Interrupt Stack Entry

0 @ - Register

1 A - Register

2 I - Register

3 Overflow {bit 15}, P-Register
Yy Priority Level

PRINTED IN USA.

CONTROLDATACORPORANON
Arden Hills Development DIVISION MAR 51971

DOCUMENT CLASS IMs PAGE NO. c-l ({:

PRODUCT NAME 1700 TISOS

PRODUCT MODEL NO.__EOOL*3.0 MACHINE SERIES 1200

2«5

CeS5el

ceb

AA 3777

Volatile Storage

VOLBLK is the volatile storage area set aside for alloca-
tion of data storage for routines that must be re-entrant
{i.e.2 may be operated at more than one level at the same
time}. Sufficient volatile storage must be reserved for
each priority level to accommodate the worst case or
maximum amount of volatile storage that can be requested
at each level. The system cannot recover from overflow
{more requested than is available} of volatile storage.

Core Requirements
Core may be reserved for volatile following these quidelines:

1. For each priority level in which monitor requests are
madea eight locations of volatile are required. If the
Request Processor itself makes a requesta. such as a
Secondary Scheduler call, an additional eight locations
are required. Thus sixteen locations must be reserved
per priority level plus additional locations if used by o
other re-entrant routinese. (N,

2. If the re-entrant FORTRAN Object Library and re-entrant
Encode/Decode Package are used 49 locations must be
reserved for each priority level using the re-entrant
FORTRAN library plus 5b locations for each priority
level using re=-entrant Encode/Decode.

Scheduler Stack

This stack.: SCHSTKa2 is a series of four-word entries.

Word
a priority level
1 completion address
c thread to next entry
3 value of @-register being passed

A program may request the operation of another program by
making a scheduler request. Scheduler requests may also
be generated by the Timer Routine after a given interval
of time has elapsed. These requests are threaded together
on the scheduler stacke.

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 51971

Arden Hills Development DIVISION
DOCUMENT CLASS IMS PAGE NO. 2.5
.. PRODUCT NAME 1700 MSOS
(PRODUCT MODEL No._EO00b*3.0 MACHINE SERIES 1700

2e7

"

The total number of entries required is equal to the sum
of the number of scheduler requests and timer requests
that can be on the stack at one time. The size of this
stack may be changed by the user.

SECPRO

Normally all entries are left emptys i.e«a NUM %7?FFF. The
address of a special interrupt response routine can be in-
cluded in the entry for its linea but it is more efficient
to put this address in the fourth word of the interrupt trap
location instead of using EPROC and SECPRO.

Core Allocation Data

LVLSTR is the table of starting addresses for the allocatable
core area available to each priority level. The upper

bound for protected allocatable area is the same for all
levels: the start of unprotected core. To prevent low-
priority programs from tying up all of the allocatable areaa
it is common to restrict the amount available to them while
making the entire allocatable area available to the high
priority programse.

LVLSTR is set up to reflect the above. AREAL. AREA2. AREA3
and AREAY are entry point names in the SPACE program used to
divide the allocatable area as shouwn below.

] - -- ~- - —— ?FFF
Resident Available

44— to —) ‘ Unprotected

high priority ‘ Job Area
only ;

f P

| I t__y AREAL

| » AREAZ

: —» AREA3

L : - - - - - v AREAC-AREAY

AA 3777

Request priorities 1. 2 and 3 must include sufficient area
for the Job Processor. The entire area-AREAC must be
available at request priority zero so the system can get
started as initialized.

PRINTED IN USA.

Arden Hills Development DIVISION MAR 5 1971
DOCUMENT CLASS IMS PAGENO._____2-b -
PRODUCT NAME 1700 nSOS {)
PRODUCT MODEL No._ EO00b*3.0 MACHINE SERIES 1700
2«9 Diagnostic Tables
2.9.1 Alternate Device Error Table
This table reserves one word for each device which could
have a simultaneous failure.
2.9.2 Diagnostic Timer Table
An ADC entry is made pointing to the physical device table
for each logical unit to be supervised by the diagnostic
timer.
2«10 Mass Memury Diagnostic Routine
MMDIAG is a routine that prints a message of the following
form:
MASS MEM ERR n
n is the error code .
If the request that resulted in failure was a System s
Directory requesta. this routine releases allocated core.
Control then returns back to the driver. This routine may
be modified to perform additional functions such as making
a Timer Request for the scheduled program to be attempted
again at a later time.
2.1l Idle Loop
This routine runs at level -1 when no other programs are -
running. This routine may be modified to provide a counter
to monitor the amount of idle time. If IDLE is running
a snap dump may be taken by steppinga clearing the A-register
and hitting run.
2.l Overlay Subroutine
The overlay subroutine allows users to call for mass memory
to be read over the actual call parameters. This is accom=-
plished in the disk or drum driver by moving the parameter
list to the equipment table and using the overlay subroutine
to ensure that the return address frcm the call cannot be
written over. Indirect overlay calls are not permitted.
The following example shows a typical overlay disk read. ‘::
RTJ OVRLAY
ADC “200.COMP.0.%8C2.N+BUF 20,ADR
AA 3777

CONTROL DATA CORPORATION

PRINTED IN USA

DOCUMENT CLASS Ins __- PAGE NO.

CONTROL DATA CORPORATION
Arden Hills Development DIVISION MAR 5 1971

2.7

PRODUCT NAMe 1700 MSOS
PRODUCT MODEL No. _EOOkY3 g MACHINE SERIES 1700

2«13

2«1l

AA 3777

Dummy Device Driver

This routine is used with the dummy device table and is
assigned a logical unit like a normal device. Read or write
requests that address this logical unit cause the dummy
driver to be initiated.s and the completion address in the
request is scheduled with error indication. This allows

the Dummy Device to be setup as the alternate for devices
where it would not be acceptable to hang up the request
waiting for operator action in response to the Alternate
Device Handler request for input.

Physical Device Tables

The physical device table {PDT's} contain all the device
data necessary for a device to be operated by its driver.
Word 0O through 12 have the same general use for all device
drivers. Words from 13 on are used for special purposes
appropriate to the drivers if necessary.

Each drivers physical device table setup is outlined in the
1?00 MSOS Installation Handbook Pub. No. &0234300B.

PRINTED IN USA.

1 2 s
MMDHVAG
FoRR M SRR,
CobE IN @
(psarTd
WRATE RER RELEASE
‘=RROR. CoRE.
MESSAGE
____“_l o C\eRr
QET COMPLETION
REQUEST ADDRESS
Qove »
(%) 3
RETURN Tg
prweER
TP (MBI AG) 1
CONTROL DATACORPORATION NT MACH. A
SOFTWARE DOCUMENT ::{EE{:NT T_AS Tvee | JOQQO |ProsecT no. REV PPROVED DATE
SAMPLE CODE 0 __TITLE LAY D \ & g PROJECT MGR e 1
FLOWCHART - \D = pace |\ oF 22 | ProJEcT NaME
DECISION TABLE] NUMBER CATE TASK NO.
OTHER D DRAWN BY DATE TASK NAME
= £
aa138s cormeEEFT 4 k 4 PRINTED IN -

16l & YUN

=

1

hDUR&fPf)

FoRM\

\NBL\RECTT

Mo \TaL.
C AL

'

INDWREQT

REQUEST

FoR
diIsK READ

2
(DuMdi)
‘-‘

FNR

RESTORE
'QV}
THAT
_FaLED

!

ST
RRROR

\NDICATOR,

(e

SETY

DENCE |
BUSY

SCHEDULE-
DRIWVER

aaé’%aas '

DEN \Q’.E_}

CONTROL DATACORPORATION

DOCUMENT MACH. pow APPROVED OATE
o.
SOFTWARE DOCUMENT DOCC::::NT 3:.MS_ TYPE _\OO PROJECT N \TE
SAMPLE CODE O TITLE O\) RLPY\(PROJECT MGR
rLowcnanr O] [DU rros Zor 2| erosect wane
DECISION TABLE [] NUMBER SoyE TASK No
OTHER O
DRAWN BY DATE TASK NAME
AA1385 (FORMERLY CA127-1) PRINTED IN USA.

16l ¢ UYW

c

CONTROL DATA CORPORATION MAR 51971

3000/1700 System 2 Development DIVISION
DOCUMENT CLASS IMS PAGE NO.__ 3.1 C
PRODUCT NAME __ 1700 NS¢S L .
PRODUCT MODEL No._EO00E*3.0 MACHINE SERIES 1700

3.0 SCHEDULER

3.1

AA 3777

EXTERNAL SYMBOLS

T10 Entry point of SPACF request
SCHTOP Location in System Tables containing location of
top entry in schedule stack

FUNCTION

In a given system, numerous requests for the execution of
programs at specific priority levels may be generated.
Specifically, these requests are generated when

a} an I/0 request has been completed.

b} a specified time interval has elapsed,
c} core has been allocated,

d} a mass memory request has been executed.

Requests may also be made by any program directly. They
are called Scheduler Requests.

It is the function of the Scheduler Request Processor to W\

a} cause the immediate execution of a requested program
if it is of a higher priority level than the requesting
{fcurrent?} program, or

b} thread the request by priority and within a priority
by first in first out, if its priority is the current
priority.

If the requested program is mass memory resident., the
Scheduler Processor will cause allocation of core for this
program and transfer of the program from mass memory. After
the program has been transferred, a Scheduler Request is
made, which results in al} or b} above.

Whenever a program terminates, the Program Dispatcher will
select the next program to be run, either from the top of
the scheduler thread or the interrupt stack-.

Entry Interfaces

Program is entered from the Request Fntry Processor. The
calling Trequesting} program must have interrupts enabled.

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 5 1971

3000/1700 System & Development DIVISION
. DOCUMENT CLASS IMsS _ PAGENO.. 3-2
PRODUCT NAMg ___ 1700 ME@S . - ,
PRODUCT MODEL No.___EO00bB»3.0 MACHINE SERIES 1700

3.4 Fxit Interface

The program exits either to the requested program fcompletion
address}, if the level is higher than the current one or to
the request exit.

In the first case the priority level:, I and the return address
leading to the request exit are saved in the proper positions
of the interrupt stack and its base adjusted. A, @ and I are
saved in volatiles which is not released until the requested
program terminates. T contains the base of volatile storage:
when control is given to the requested program.

Interrupts are enabled and the requested priority level and
mask set.

In the second case the request has been threaded. Control
goes to REAXT to restore the registers for the requestor
and enable interrupts.

3.5 Internal Description

(All Scheduler Requests are identified by the request entry
processors which also allocates a sufficient amount of volatile
storage for re-entrancy purposes. Then control is given to

the <cheduler Request Processor {Symbol T9}. Tnterrupts are
enabled and I contains the base address of the allocated
volatile storage. Volatile is organized in this way.

{IY + 0O contains &

{I} + 1 contains A

{I} + 2 contains I

{I} + 3 contains Return Address

ifI} + Y4 contains Priority Level of Request

{I} + S contains Pointer to Request Parameter | ist
{I} + b contains First Word of Request {Temp.}

{I} + ? contains Second Word of Request {Temp.}

First the return address is adjusted by two locations unless
the call was indirect, in which case it had already been
adjusted by the Request Fntry Processor. Then word 1 and &2

of the call are stored in volatile temporarily. If the call
is a directory call control is given to DIRCAL. Tf not a
directory call, a test is made to see if the requested program
is of higher level than the current one in which case control
transfers to HILVL.

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development pivision' MAR 51971
DOCUMENT CLASS s , PAGE NO._3-3)
PRODUCT NAME 12700 M3eS . gy

PRODUCT MODEL No. ED00E*3.0 MACHINE SERIES, 2700

AA 3777

Otherwiser, a test for a primary call {SCHDLE request? is

made and only then, if it is not a directory call, not of

a higher level and not a secondary call, is a position in the
Scheduler Stack obtained and the request transferred from
volatile {I} + b and {I} + ? into the stack. The top of the
available {empty} thread is in TOMPT. A]| YemptiesY favail-
able entries} are threaded together, the last one containing
-0 in the thread. Thus if TOMPT contains -0. it indicates
that the stack has overflowed: in which case an error routine
is entered. The Scheduler Stack is shared with entries from
timer requests. It effectively buffers these requests, so
that the requesting programs may leave core. One entry on
the <cheduler/Timer Stack consists of 4 words.

15 1Y 9 &8 37 4y 3 0
(11 RC=9 T X RP__ T ¢cp |
L C]
(Thread |

l 2] e

The completion address is absolutized before going on the
stack as it cannot be absolutized later.

The Scheduler/Timer Stack and TOMPT must be preset by the
user.

For directory calls the DIRCAL routine determines after placing
the call priority into the directory, if the called program

is mass memory resident. In this caser control goes to the
Allocator Request Processor fSymbol Tl0}. Otherwise, control
goes to SCHEDZ2 or to HILVL depending on the priority of the
request.

At SCHEDZ2 the original contents of the d-register are stored
in the request from volatile I + 0 and the request is then
threaded on the Scheduler thread. This thread is not to be
confused with the Scheduler Stack since it contains secondary
scheduler requests located somewhere in a user program,
primary requests located in the stack and directory requested
located in the directory.

In the THRED1 routine a position for the new request is
determined according to the priority of the new entry. It ﬂ:ﬁ

may be at the end of the beginning of the existing thread
in particular if it is the first entry.

The routine THREAD accomplished the actual threading.

PRINTED IN USA.

CONTROL DATA CORPORATION '
3000/1700 Systems ® Development pivison MAR 51971

DOCUMENT CLASS s i PAGE NO. 3-4

PRODUCT NAME ___ 2700 MS0S
PRODUCT MODEL No. _E80bB%3.0 MACHINE SERIES

AA 3777

4700

HILVL gives control to the requested program immediately
after saving all information necessary to continue the
requesting program. A request for a higher level program
can therefore be considered a pseudo interrupt.

The current priority level and I are saved in the interrupt
stack and the interrupt stack base address count is incre-
mented by 5. The request exit is stored as the return address
since upon return from the program volatile must be restored
as well as A and 4. Then the requested priority level and

the associated mask are set and control is given to the new
YGo ToY address.

PRINTED IN USA.

16 S YYW

1 2 - 4 s
% -
Adbd. R 70 '
L ReTusn] -
 ADBRESS s
VES .
SeHl . - —
. [SAVE (Wbt gF i ‘ z
CALL Iv VTPE i RimAR INHiEIT | .
T SCHED. CALL
SAve Ry, PR. NS v | (NTERRUFTS
IN _yeL . N ; } _—
Wb, . / /
| Save WDR 3 2 j
LpF - CALL 0 &3
Iv - VTMP ‘
. —) .
CON:gg:::::gg:::::ImN OoENss T T M * _ MAeE 170 | erosecT no. frey APPROVED DATE
PO T e | S&. //(.D vEKR , | PrOJECT MaR.
SAMPLE CODE O -
FLOWCHART 0 S*J/[Eby pM;gT/og 4’ PROJECT NAME
DECISION TABLE [] NUMBER oaYE " | rask no.
OTHE,R O DRAWN BY DATE "'/é-/?o&gAsx NAME | S
5 \ouy/
TE,, PRINTED IN USA.

AA1385 (FORMERLY CA127-1)

S°E

’ : A s s (™
R A N Y THRED]
Mgue KeguEST (Q)—?VTFE
INTERRUPTS UPOATE (v PonTER
Tgme T To Nerr ENTEY

\

AA1385 (FORMERLY CA127 1.

| SCHE D2,
ABscoluTiZE VUSERs @ wb3 :
WoRD 1}2 @F BF STALL /91/
Request
WD) —» VTPE INHigir INT
wb2 > VINP
N\
/
2 l THREAD
SCHTHP THe | KegxT
—> Qq ReQuesr
CONTROL DATACORPORATION [Gorolen™ T3] S W9 /700 |omareerno me| areroves | oare
SAMPLE CODE 0 ooSiTEe | SC AEDUVLER | ProsECT MGR. o |
FLOWCHART O : SoHE 'y PAGES, OF L/ PROJECT NAME e
DECISION TABLE [] NUMBER OATE ’ TASK NO.
OTHER D DRAWN BY DATE /7/‘ "> | Task NaME
PRUTID IN USA.

161 S YUW

9-E

1 2 a a 5
Ry | N/ MASCAL
Ser Prior ry USERS —

—
Al

DIRCAL

QOMI’VTE
Sym enm DR,

AdrvRess —>
_ VPTR

IN DiRecToey
To KuQuesT

er rok.\TY

—

§ =

TE€E M\ P

7THEEAD
Besy 2

AA1385 lFOR@CA|27-! '

SAvE ConPurc
USER's FR. TR AVSFER.
Level AvDEEsS
S{’l Rfvﬁwcuof .- Se7 vP 7 .
§ NEB. 7o ,___.__>(KE())XT \ €N7E/ tOK f’
ReJecr Regq. [LU |
CONTROL DATACORPORATION [cocumenT 7 - MACH. p— APPROVED oAt
SOFTWARE DOCUMENT ooi::":w LM Tvee / /00 |erosecr no. ; :
SAMPLE CODE O TI{TLE SCHOULE K = PROJECT MGR. '“.:
FLOWCHART O < (7 E DU PAGE.) OF % PROJECT NAME
DECISION TABLE [] NUMBER :,’2¥E ’ TASK NoO.
OTHER O DRAWN BY DATE '?/;;:" "o | TASK NAME
C - PRINTED IN

16l ¢ YUYW

L°E

AA 1385 (FORMERL" CA 27

\ J i
| EvnrLe
G |
(] INTEREU PTS
Jume 7O
ScHEpULED
\ P oG AN
XFER ABDK. - __\Z___.\
: < Jme
dme +i T
|fr Bequestor
| PN LVTERK 07 &
3STACLK
Y
SET NEw
Fr.ioc ,
7 z
LEVEL g
\¢
v
CONTROL DA:Aggg:::::lON PO Nss 1/ S MASE /oo PROJECT NO. REV APPROVED D.Atg
SOFTWARE OOCUMENT o pfr p U L € 1] | prosecT mer.
SAMPLE CODE [] oace L or 4 |rrosecT name
FLOWCHART O
DECISION TABLE D NUMBER 'osi#é TASK NO.
7,
OTHER] DRAWN BY DATE 0//»/70 TASK NAME
PRINTED IN USA.

16l ¢ YUYW

P E

CONTROL DATA CORPORATION

3000/1700 Systems & Development pivision MAR 5 1971
DOCUMENT CLASS ins PAGENO._ 4-0 ___
PRODUCT NAME 1700 "MSOS. . O
PRODUCT MODEL No. __EOOB®3 . g- . MACHINE SERIES 1700
4.0 Dispatcher
4.1 TInternal Symbols

AA 3777

SCHSTC Routine to initiate a program when taken from the
scheduler thread.

DISP Start of Program Dispatcher

COMEXT Defined by an EQU and determines the interrupt trap
slot location to be used as a common exit.

Dispatcher Function

Whenever a protected program terminates:. it will give control
to the Program Dispatcherx. The Program Dispatcher decides
which program shall be initiated next. 7Tt could be a program
previously interrupted and waiting on the interrupt stack:s

or a program that has been scheduled and is waiting in the
scheduler thread- The highest priority program is then
initiated by the Program Dispatcher and control given to it.

Entry Interfaces

=
4

Fntered via a jump to entry point DISP.
Exit Interfaces

If control is given to the program that was previously
interrupted, the A-, d-, I-, and M-registers and the overflow
are restored to their previous condition, as well as priority
level. Interrupts are enabled, and control returns to the
location at which the interrupt originally occurred.

If control is given to a program on the scheduler thread.
YAV will contain the address of the scheduler thread entry.,
@ will contain the fourth word of the entry {the original @

in scheduler calls: or an error indication in I/0 calls: or
the time of day in timer callsY, priority level and M will
contain the configuration specified in the first word of the
entry, and I and overflow will be an arbitrary configuration.
Interrupts are enabled.

Internal Description

After the program is entered:, a test is made to determine
whether the priority of the highest interrupted program is

= to the priority of highest program waiting in the scheduler
thread. If the interrupted program is to be resumed, the

return address is stored in the common exit and I and A are (};
restored. Then, the interrupt stack base is adjusted down

by 5 and stor@d in COIINT, and the priority level restored

“Protected programs may also terminate with a RELEAS request
which jumps to the Program Dispatcher.

PRINTED IN USA.

DOCUMENT CLASS IMS PAGENO.___ 4.1

3000/3700 System & DNevelopment DIVISION

CONTROL DATA CORPORATION

MAR 51971

,PRODUCT NAME __1700 MSOS. S
PRODUCT MODEL No._E003.0Q MACHINE SERIES___ 2700

AA 3777

into the cell containing priority level. The mask associated
with this level is transferred into M {fwhich restores M%,

and then @ is also restored. (ontrol is returned to the
interrupted program by an EXI instruction which restores
overflow and enables interrupts.

If the program of highest level is on the scheduler thread,
the priority specified in the highest thread entry {fthe
address of this entry is in SCHTOP} is placed into the cell
containing priority level, and the associated mask placed
into M. Then SCHTOP is updated pointing now to the next
entry in the thread. If there is no other entry, it contains
_D.

Next: a test is made whether the scheduler thread entry was
a primary entry {i-e.s, not resulting from a completed I/0
call or an expired timer calll} and is in the scheduler

stack {see specification on scheduler for difference between
scheduler stack and thread?}.

If yes: the scheduler stack position is added to the thread
of YemptiesY and the address to which control is to be given
is stored in the common exit. Then the address of the entry
is put into A and the fourth word of the call into d. C(ontrol

is transferred with an EXI instruction which enables interrupts.

If the scheduler thread entry resulted from an I/0 or Timer
calls the specified completion location may be relative. If
it is+ the absolute address is determined and the address
stored in the common exit. Then the third word of the entry
fcontaining the thread? is set to 0 as an indication that
the call is completed and could be made again. A and @ are
loaded and ‘ontrol is transferred as above.

PRINTED IN USA.

1 4]
DISP XX
i WAST Fuuw
) INTERRUPT
WOCATION
OR\&\N Yo
' RESTORE ’
‘ INTERRUET ’
/] sTRac
WyuenT yd EnTe
INTERRUITY / —
RESWT . . i
SET ReTURy _ - SET Tw\S "REVTORE —c e = o
WICAT\on RESToRE INTERRUPT PRAOR T RES TORE
W x E;Aci‘& ai\f-w | WEVEL AND R
\ ™M
CommoN RNT AVAVINBLE MASK e
PRIOAITY oF SRT_PRWRITY T
WeHasT _ hEVL & MALK WTERRUPT
'sﬁchﬁr%‘u\-\v: ;?tftc. :;c‘EnNe-‘.g{.‘f ——-—-@ STATE Yo ‘ :g>
—ASM Feocesm | i
] en
13
=
N e wane socument [o8%™ |M S EE 1N0O | enosecr v I RS P
SAMPLE CODE [:] °°°v‘;’¥’f€” ':D\S PA’T QH‘EVC PROJECT MGR. : lg
FLOWCHART Ol NDI\SE pace | or 2. |PRoJECT NAME | =
DECISION TABLE [| NUMBER DATE TASK No. B
OTHER] — ry
PN DRAWN BY DATE JéﬁSK NAME
j %
AA1385 (FoRM%’!CA127-h PRINTED IN USA.

’ s
PRimAR
AV T —
A PATV
- — T ' - "~ - SCHx‘T) i
- |uroATE o Aoy Senems CET &=vmC. C=T PARAM,] [SRT
I 1 > SCHREDUVE AREA TO WIST x P‘“w:‘_‘?n « To PASRS | ;ﬁ‘;grﬁé?u_gf
- THREAD oF EMPT\ES (bmpm& e W Q STARCT
REAECUTION
STORE ®YEC. ZERO “THREAY
e - - | ARDRES — wWTNE
- SECONDARY | CoMmmon ReEauesT
- PaT |
| ADD RELATYE
ACORESR
\NCREMENT TO
PARAM. WST
_ START AthR.
c ;
=
IS
x
© e
—b
e w
=
CONTROL DATACORPORATION I MS MASE) N00 | erosect no = I T b
SAMPLE CODE O riree_D\SPHAT CHER PROJECT MoR 2
FLOWCHART 0 [ND\SP pace 2 oF 2. |ProsEcT NaME <
DECISION TABLE || NUMBER ssve TASK No. LW
OTHER
DRAWN By DATE TASK NAME
PRINTED IN USA

\ AA1385 (FORMER. CAf{g" -

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 5 1971
DOCUMENT CLASS ins PAGE NO. 5-1
PRODUCT NAME 1700 MSOS O
PRODUCT MODEL No.__EO00b>3.0 MACHINE SERIES 1700

5.0 <Scheduler-Dispatcher for Re-entrant FORTRAN Library
8.1 Program funtions of RDISP

This version of the scheduler/dispatcher is the same as the
scheduler {SEGHEDUY and dispatcher {INDISP* with the additional
capability to save or restore the FORTRAN scratch area and
the library temporary locations on changes of priority level
which would give control to another FORTRAN user.

5.2 Entry Interfaces {see sections 3.3, 4.3}
5.3 Exit Interfaces {see sections 3.4, 4.4}
5.4 1Internal Description

The sections 3.5 and 4.5 of this IMS should be referenced for
the internal description of the normal dispatcher and scheduler.
The text in this section only describes the differences in

this module from the standard.

If entry into the scheduler is by a program requésting a

higher level program to be run: other than a mass memory ‘:D
directory call, then the requestor is put on the interrupt

stack and control is passed to SAVE at the requested priority-

At SAVE a test is made to see if the new priority level is

a FORTRAN level and a new FORTRAN level. Tf so we must save
our data to provide re-entrancy. If not we exit SAVE back

to the scheduler. 1If we must save our data we calculate the
data area required to save %C5 thru $E5, our normal A, &

and I plus the data list specified by FLIST. The Q register
is set equal to the old FORTRAN level FLEVEL and the A register
is set equal to the volatile region associated with the old
level {FTOP}. Volatile is then requested. The return address
for SAVE is stored in the third word of volatile and the new
FLEVEL and FTOP are set up. Interrupts are enabled and the
FORTRAN scratch area is now saved in volatile. The conditions
on entry are reset and exit is made.

Upon entering the dispatcher control is passed to RESRTN.
This routine will restore the communications region or
scratch area for FORTRAN if a FORTRAN program has just
terminated. If no other FORTRAN programs have their data
stored no action is taken and the scratch area remains the
same. If the program which just terminated was not a
FORTRAN program no action is taken.

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

300071700 Systems & DPevelopment. DIVISION‘ MAR 51971

. DOCUMENT CLASS s PAGE NO. 5.2
_, PRODUCT NAME 17200 MSOS
PRODUCT MODEL No.__EO0E>3.p MACHINE SERIES 1700

If the dispatcher determines the highest priority program
is on the scheduler thread control is passed to SAVE. If
the program to be executed is a FORTRAN level we must save
the FORTRAN scratch as described above. otherwiser control
is returned to the scheduler operations-

AA 3777 PRINTED IN USA.

1 2 2 4]
RES RTN m
| MovE PART |
INTHh®\T | 4 oF wisT |
TSTRE
WTERRUNTS | Vo CoMMUNY,
SO o
FORTRAN PR I
L <ML i — ——, .
MovE DAY
STt - 42 OF W\ST +
\ N To OATA: .,
INTE RRMPT '
L vocATION LANST
ORIGIN Yo l
R Y
INBARAT
SEE NQIsSY . L INTEQRUPT
— o e FLawaw AT ! o
PAGE 1oF 2 ~ - — —
FOR CaNTINUATION L l L
T s
LST To. AMP % AND ReTuRy
% AND ;& (ResSRTNY
ETURMN 7 L . _J
RNPRAE Y, R e

SEE _SECTioN

.

AND 4 Fog BE.IA\‘\..ED FLOWCHARTS OF TuE DSP AND SeweS .,

FONTROLSETACOR ORATIO 25T TS, 3 (Too Jeromer e S I AT
DOCUMENT o “ PROJECT MGR.
SAMPLE CODE [] AL
FLOWCHART O pace | or prosecT Nave WN\COS Z. | -
DECISION TABLE [] NUMBER 'D’i‘#é TASK NO. v
OTHER O
DRAWN BY DATE L

AA1385 (Fonmc STA127-1)

TASK NAME
é;’

PRINTED IN uy

161 & YUN

E-5 abeq

O‘ 2 H 4 s ﬁ
(SANK @
| - MOVE DATA
REsTORE INHARIT ﬁcsu\m: oF FLATiTo
T AND INTERRUPTS | VoLATILE VOLATILE
ReTuRN NoWps= FIsFH4 ‘ l
SAVE ReTuRN WHIBIT |
ADRRESS INTERRY TS

Q-2 FLEvEL
A=>E Tof
Ewn

ANE (REEM)
Retury

PRIoTY

1

| SET uP

NEW PRioRITY

FLevVEL = &
FToP —> A

To VoL ATILE]

©

l

RETURN te
X

RESTORE

IMP (savE)
ReTueN

CONTROL DATACORPORATION
SOFTWARE DOCUMENT

SAMPLE CODE O

FLOWCHART O
DECISION TABLE []
OTHER O

DOCUMENT
CLASS LW\S

TYee \ OO |rrosecT no

APPROVED

Do%?_rfé“EE_E.wa RY_‘“&A\{ PROJECT MGR

NUMBER

NESpacE Z-OFZ

prosecT name [WSAS 2. \

TASK NO.

DRAWN BY

DATE TASK NAME

AA138% FORMER Ca127

PRINTED IN USA.

161 ¢ UYW

h+5 abey

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.__EO00bw3.0

CONTROL DATA CORPORATION

3000/1700 Systems & Development

DIVISION MAR 51971

IMS

1700 OPERATING SYSTEM

-0 COMPLETE REQUEST FOR DRIVER ROUTINE

AA 3777

b.1

SYMBOLS
COMPR@

Entry Point

FUNCTION

_MACHINE SERIES 1700

The functions of this subroutine are to initiate completion
requests to the Scheduler for threaded I/0 requests and to
perform other housekeeping details upon completion of an
I/0 action by an 1I/0 device driver.

ENTRY INTERFACES

COMPRQ is entered via a return jump with the physical
device table address for the device in I.

EXIT INTERFACES

The contents of the I register are not disturbed. The

contents of the A,

Interrupts are enabled.

INTERNAL DESCRIPTION

The routine

Return Jump to COMPRQ.

The Diagnostic Clock cell

set idle.

@ and Overflow registers are destroyed. .

PAGE NO. b-1 Of

M
! N

AW

is entered from an I/0 device driver via a

Interrupts are immediately inhibited.

in the Physical Device Table is

For logical units which do not share devices, the completion

address:

if not zero:

is scheduled with the error field

from Word 9 of the Physical Device Table replacing the V
field of the I/0 request parameter test. If the call was
a system directory request the V field is not stored in the

parameter
have a V field.

list since the system directory entries do not
Bits 14 and 15 of Word 8 in the Physical

Device Table are set to “zero® and an indirect secondary
scheduler call is made. The request parameter list, which
contains a request code designating it an 1I/0 call. is
secondary schedular call by setting bit 15

flagged as a
of the first

resets
logical

it to
unit

word {field I} to Yone.¥ The scheduler later

vzero.? The device
assignment.

is not released from its

PRINTED IN USA.

CONTROL. DATA CORPORATION
3000/1700 Syst&ms ' B0 bavelosnene ovision~ MAR 5 1971

DOCUMENT CLASS IMS PAGE NO b.2
" PRODUCT NAME ___ 1700 OPERATING SYSTEM
PRODUCT MODEL No.__EOO0E=3.0 MACHINE SERIES 1700
EXAMPLE:

AA 3777

Indirect call in COMPRQ

. SYFy
cool

points to I/0 call which is now a secondary scheduler
request:

4000 SYFy
8802 Bit set by COMPRA:, cleared after SCHEDU threads
8010 This address scheduled. request -
2000
goooa
001k
1000

If the completion address is zeror the thread word of the
request is cleared and no address is scheduled.

For logical units which share devices: completed requests
are treated |ike requests to ordinary logical units. The
device is then assigned to a pseudo logical unit. %FFFF
{see section 7.4}.

The subroutine exits to the location following the return
jump which called it.

PRINTED IN USA.

1 2 4 S
S
ZAH8IT
STRTERLUPTS +
SET OAGHOSTIC.
Crotr ZOLE
JAVE LETURN
W PHsSTAG r
ENAGBLE)
INTERLUPTS -
5 YsTeEm
DIRECTORY r
ReGuesT
u EE
0
SET EFlROR ;5&34;;30 B ,c,: E’:ﬁ fi,-” —
s + E
FIELD (Q Zn MRk E TINOIRET pHSTAG T+ € £A . .
RPEQUES] S ECON DMLY i _ s
[SCHEDULER (AU
1
Cienf |
THEEAD
woeRD
CON:g::::RTEAEg:::::IION DOFUMENT R MACH.) 7&() PROJECT NO. | APPROVED ?ATE
ol e T Y TP z
FLOWCHART C] KG’L(7N PAGE , OF 0 — PROJECT NAME
D:CISION TABLE % NUMBER {,’2‘;’2 TASK NO.
OTHER

DRAWN BY

DATE

TASK NAME

\A138% (FORME€ §A127'l)

B

161 ¢ YUYW

E*9

Is ™\
L4 SHABAX Y:;

th/!f/

Mtﬂazr

1

T e P FuPIS,

T TTAssied ELU

l6LS uvR

“A 1385 (FORMERLY CA127.*

r
LT‘?-"f.ff .
.{ <G SR
ENVABLE
I ERLUPTS
Ry ’o}
Lo v L
CONTROL DATACORPORATION [oocumenT ‘ MACH. ins\ TPPROVED :A{?tt
SOFTWARE DOCUMENT oof:::::w Lo~ TYPE PROJECT NO. .
SAMPLE CoDE [] Coming it Lk G UES] | ProsecT mMer
FLOWCHART O PAGE aoroz_ PROJECT NAME
DECISION TABLE D NUMBER L’f#i TASK NO.
OTHER]
DRAWN BY DATE TASK NAME
PRINTED IN USA

h-q

CONTROL DATA CORPORATION

3000/1700 Systems and Development pivison MAR 91971

DOCUMENT CLASS INS PAGE NO. »-0

PRODUCT NAME

1700 OPERATING SYSTEM

PRODUCT MODEL No.__E00b%3-0 MACHINE SERIES___ 1700

7.0 FIND NEXT REQUEST FOR DRIVER {FNRZ

7.1

7.2

AA 3777

FUNCTION

The function of this subroutine is to find the request
which should be processed next by a driver for a device.
FNR also stores the information in the physical device
table concerning the request that is common to all drivers.

ENTRY INTERFACES

FNR is entered via a return jump to entry point FNR with
the physical device table address in I.

EXIT INTERFACES

If there are no more requests for action by a device, the
subroutine returns to the driver at call +1l. The device
has been made unassigned by storing a zero in word 5 {ELU}
of the physical device table.

If FNR has found a request it returns to the driver at

call +2. The I register is undisturbed. The A & @ registers
are not restored. The following information has been stored

in the physical device device table by FNR:

1. Operation in progress bit is set in word 8.

2. Address of the I/0 parameter list is set in word k.

3. Word 5 {ELU} remains assigned to the same logical
unit or to a logical unit which shares the device.

4. Words 10 and 1k contain the first word address and
the last word address +1.

S. UWord 9 {switch word} is cleared except for the mass
memory bit {if set} and bits 0 and 1 which indicate
whether the type of operation is ASCII or binary:
formatted or unformatted.

INTERNAL DESCRIPTION

For logical units that do not share a devicer FNR examines
the thread in the L0G2 table associated with the logical
unit {L.U. assigned by RW before it schedules the driver}
to obtain the next request. If there are none, FNR exits
to call +1.

PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 51971
_ DOCUMENT CLASS___IMS PAGENO.___ 2.1
.. PRODUCT NAME 17200 Operating System
PRODUCT MODEL No. E00E%3.0 MACHINE SERIES 1700

The top request on the L0GZ2 thread is removed and its
parameter |ist address, the first word and last word +1
addresses, the operation-in-progress bit: and the type of
operation bits are stored in the physical device table.
Exit is to call +2.

If the request was a system directory I/0 call {request
code of zerol, the first word and last word +1 are computed
from the system directory entry. The type of operation
bits are not set. Exit is to call +2.

If the device is shared by several logical unitss, the

COMPR® subroutine has set word 5 {ELU} of the physical
device table to %FFFF. Upon finding that a device is
assigned to $FFFF, FNR searches the L0OGLA table for the
highest priority {i.e. the lowest number} which requires

the available device. When a logical unit with a waiting
request is encountered, FNR places the device into operation
in the same manner as for unshared devices. This provides
sharing of devices by several user routines. However: once

a request to a device is started it will be completed before
- a request of higher priority to the same device can be
(; initiated.

AA 3777 PRINTED IN USA.

1 4 3
‘FIR
T AE AE .
TWHBIT ToMBIT AssIeN THIS :
IV TERRUPTS | IAVTERRUPIS | AU T O {
SAVE RETURN DeVICE N
AQDRES S 1 ? B
Ivwier ENAGLE -
FREE REves : L
(2eR0 = Eru)
TACREMEYT
- AU NumBer ; ‘
A { -
g ¢ e
| |
R ey N [958 /S %% /D |enosect no. el arrroves | pare
, DOCUMENT P ree
SAMPLE CODE 0O TITLE F/Wﬁr PROJECT MGR. g 4_:1
FLOWCHART O PAGE /opé PROJECT NAME Y U
DECISION TABLE [] NUMBER :,'2';’2 TASK NO. w
OTHER [:] DRAWN BY DATE TASK NAME _k

AA1385 (FORE I CA127-1)

=Y

O

7

BLS UYW

m 1 2 s s .
SET START +
Fimi18 t10VGe
ADDRESSES FRom
SYSTEM
DitgaroR Y
(39
Y ‘—@
EVABLE
I/UTE/?chTS/
Uponre ¢
THREAD [SARS
AbSohkuriZE
STARTING / |
CBA ADDEESS
SET REQUEST- -
In PROGRESS
BT, CLERR -
S TATus WORD SToRE
' STACT/ING
: ADOLRESS 1NV
} wokL 10
oeX | ;
BYTRACT ;
LeEQu EST e — O
CodE [WABs SToRE "
RBSOLUTIZE S+ NV PETURN To
NVumBe R OF worp I\ [
WoRrRQS ’

CONTROL DATA CORPORATION : Y =
SOFTWARE DOCUMENT ::‘E'Essz’:: 1[”5 »;chns /7LQ PROJECT NO. IREV APPROVED DAYR
SAMPLE CODE 0 TITLE F /A NVEXT. ﬁf@uf{T | PrRosECT MGR
FLOWCHART O PAGECZ oF 3 PROJEC T NAME
DECISION TABLE] NUMBER IsSUE TASK NO
OTHER i

DRAWN BY DATE TASK NAME
PRINTED IN USA

A -

188 (FORMER ¥ CA12)

P N

161 ¢ dYW

3000/1700 Systoft WhBHIALIRAIRATION — MAR 5 197]

DOCUMENT CLASS InMs PAGE NO. 8-1

PRODUCT NAME ____ 1700 Operating System

PRODUCT MODEL NO. EO0bL»3.0 MACHINE SERIES 1700
8.0 ALTERNATE DEVICE HANDLER

AA 3777

8.1

Function

The Alternate Device Handler is responsible for processing
irrecoverable errors for many of the drivers.

Upon entry, it determines whether the device has an operational
alternate. If an alternate exists, the request for the

failed device is assigned to the alternate and the operator

is notified of the switch-over. This re-assignment is done

at a high priority level. However, if no alternate exists,

the program reschedules itself at a low priority to request
operator intervention. In either case, all message output

is executed from a low priority section of the program.

The Alternate Device Handler continues to assign alternate

to failed devices without waiting for completion of its
message I/0. This requires that the table ALTERR be provided
to store the error words in for processing by the low priority
section.

Entry Interfaces ' Lo

Entry is made via a jump to the entry points DEVERR, ADEV.,
or ALTDEV. These names are equivalant and can be used
interchangeably. 0On entry @ should contain the following
information:

Bits 0-5 Error code
0 - timer expired
- reject
- alarm
- parity error
- checksum error
8-X - other error codes as defined for driver

LS wrnte

Bits b-15 Logical Unit Number associated with the
the requested device.

NOTE: The logical unit number in the error word is formed

by the driver of the device using the device’s ELU word from
the PHSTAB. Since the RW and FNR routines store the requested
logical unit number in ELU, the L.U. ih the error word
reflects the L.U. whose request is being processed by this
device when it fails and not necessarily the L.-U. assigned

to this device.

‘:@

PRINTED IN USA.

¢

CONT%P%DAT CORPQRATION

3000/1700 Systems evelopmen DiVISION MAR 51971
DOCUMENT CLAss___IMS i PAGE NO. 8.-c
. PRODUCT NAME 1700 Operating System
PRODUCT MODEL No.EOOE®3.0 MACHINE SERIES 1700

e.g., if the device assigned to L.U. 2 has failed previously
and L.U. 8 is the alternate of L.U. 2:

L. The error word will contain L.U. 2 if L.U. 8 was processing
a request for L.U. 2 when the device failed.

2. The error word will contain L.U. 8 if the device failed
while processing a request for L.U. 8.

8.3 Entry Symbols

ALTDEV

ADEV Alternate Device Handler Entry from Drivers
DEVERR

ALTSUB Find Alternate Logical Unit Subroutines
CONVER

CONVRT HEX to ASCII Conversion Subroutine

6.4 External Symbols

JBCNCL Core resident program which causes the JBKILL
module of the job processor to be executed-.

JOBIND A location in the TRVEC module which is non-
zero if job processing is in progress-.

ALTERR A table used to save the error word in case
several failures occur at one time. This

table is included in the System Tables and
Parameters program and is of the form:

ENT ALTERR
ALTERR ADC NUMLU ALTDEV ERROR TABLE SIZE
BZS {NUMLUY SPACE FOR {NUMLUZ}
SIMULTANEOUS FATILURES

LOGLA

LOGL Logical Unit Tables
LOGE

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development pivision MAR 5 1971

DOCUMENT cLAss __1MS . PAGE NO. 8.3

PRODUCT NAME

1700 Operating System

PRODUCT MODEL No._EBOb3.0 MACHINE SERIES 1700

AA 3777

DUMALT Logical Unit Number of the Dummy Device
Driver.

Included in the System Tables and parameters
program as an EQU entry.

e-g.r EQU DUMALT {SDA-LOGLA}
ENT DUMALT

If the Dummy Driver is not present, set to
zero

e.g-, EQU DUMALT {0O%}
ENT DUMALT

and remove the entries from the LOGLA, LOGZ,
and LOGY tables.

MAS300 Entry in the Mass Memory Driver Control program
It will check if any mass memory drivers are
waiting to use core.

Initial Operations

The Alternate Device Handler is entered at the priority
of the driver. or at the level specified if scheduled into
operation. The latter method is used if the driver must
continue after calling the Alternate Device Handler. 1In
either case the Alternate Device Handler reschedules itself
at a high priority level determined by the symbol LEVEL.

LEVEL should be equated to a value one greater than the
highest priority of any driver using the Alternate Device
Handler.

A check is then made for space in the error word table.

If the next location in the table is not empty {i.e., zerol}
the size of the ALTERR table is not large enough. This error
is irrecoverable and the Alternate Device Handler will hang

in a loop-
Operations When No Alternate Exists
The low priority section {NOALT} is scheduled at level 4 and

the error word is stored in the ALTERR table. Exit is made
to the dispatcher.

PRINTED IN USA.

A

W J

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 5 1971
_ DOCUMENT CLASS Ins : PAGE NO. 8.4
(“PRODUCTNAME 1700 Operating System
PRODUCT MODEL No.___ EO00b®3.0 MACHINE SERIES 1700

8.5 Operations when the failed device is an alternate or Has an
alternate

If the requested L.U. specified in the error word is already
down: a search is made for the alternate that actually failed
and that L.U. its stored in the error word. The failed L.U.
is then marked down and made a shared device {i.e., bits 13
and 14 of LOGL are set = 1} and a check for an operational
alternate is made.

If no alternate of the failed L.U. exists: the LOGL entry of
the failed L.U. is restored to what it was on entry to ALTDEV.
The low priority section is scheduled, the error word is
stored in ALTERR, and exit is made to the dispatche .

If an operative alternate of the failed L.U. is found:, the
request is rethreaded to the L0G2 thread of the requested
L.U. The ELU word of the L.U. that actually failed is
cleared and the operational alternate is made a shared device
{i.e., bit 14 of LOGL is set = 1}.

A search of the ALTERR is made and if the error is already

(m\ in the table the error word is cleared {i.e., set to zerol.
If the operative alternate device is not busy {i-e., ELU
word = zero}. the alternater’s driver is scheduled via its

PHSTAB and made busy by storing the requested logical unit
number in the alternate’s ELU word.

Then the low priority I/0 section {NOALT} is scheduled if
not busy and the error word, if not zero. is stored in the
ALTERR table and exit is made to the dispatcher.

EXAMPLE: On entry to ALTDEV, if L.U. 8 failed while
processing a request for L.U. 2 the error word and L0GL

entries would look like this {L.U. b is the alternate of
L.U. 8%}:
15 L5 0
ERROR WORD 2 |error code
4 14 13 9 0
LU 2 LOGL 111 8

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 51971
DOCUMENT CLAss __INMS : PAGE NO. 8.5 >
PRODUCT NAME 1700 Operating System Q;y
PRODUCT MODEL No.EOOE~3.0 MACHINE SERIES 1700
15 13 9 0
LU & LOGL |y L
14 13 9 0
LU b LOGI

AA 3777

On exit from the high priority section of ALTDEV, the

entries will now look like this:
15 LS 0
ERROR WORD 8 lerror code
14 13 9 0
LU 2 LOGY 111 8
14 13 9 g
LU 8 LOGY 1l 1 L
r /((-\"\v!
14 13 9 q s
LU & LOGL 1

The request has been rethreaded to L.U. 2 L0GZ2 thread and
the ELU word in the PHSTAB of L.U. b will contain L.U. 2
{if the L.U.- b driver was not busyl}.

Low Priority I/0 Section {NOALTZ}

All I/0 requests are executed in this section at priority
level 4. This allows several alternates to be re-assigned
even before the first message has been output. The NOALT
section picks up one entry at a time from the ALTERR table.
processes it: and then returns to process further entries
until none remain in the ALTERR table. At this time NOALT
clears its busy flag and exits to the dispatcher.

Each error word from a driver to ALTDEV is stored in successive
positions in the ALTERR table. When the top of the table is
reached the indexes are set back to the bottom of the table-

If the next location in the table is not empty {i.e., zero}

the size of the ALTERR is not large enough.

NOALT informs the operator of errors and interrogates the PRt
operator for guidance when there is no alternate available- 4:@

PRINTED IN USA.

¢

CONTROL DATA CORPORATION

PRODUCT NAME

3000/1700 Systems & Development DIVISION MAR 5 1971
DOCUMENT CLASS IMS PAGE NO. a.b
1700 Operating System '

PRODUCT MODEL NoO._EO0E»3.0 MACHINE SERIES 1200

If an operative alternate exists, the following message
results: -

L,nn FAILED ee
ALT ,mm

If no alternate is assigned:, the following message results:

Lenn FAILED ee
ACTION

followed by an input request to allow the operator to specify
the action to be taken.

nn = Logical unit that failed {decimall}
ee = Error code passed from driver {decimall}
mm = Logical unit of alternate {decimall}

All Input/Output is via the Comment Device.

If the input request following the ACTION message is completed
with error ird ication {e.g., a timeout occurred} then the RP
option is assumed. The ACTION and input request cannot be
repeated otherwise the ALTERR table may be filled with error
word entries corresponding to the input comment device
failure.

If no alternate exists the operator is requested to specify
further action. His options are as follows:

RP Repeat the request - the current request is
rethreaded and the initiator portion of the
driver scheduled.

Cu Continue - the completion address is scheduled,
the error is reported to the caller and the
driver initiator rescheduled.

cD Continue and mark the device as YdownY. This
option causes all completion addresses for
requests in the queue to be scheduled with

error indicators in @. In addition:, the device
is marked Ydown® by setting bit 13 in LOGL
table- This results in scheduling completion

addresses with error codes for any subsequent
request for this device.

PRINTED IN USA.

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 5 1971
DOCUMENT CLASS INS PAGE NO. 8.7
PRODUCT NAME i O
PRODUCT MODEL NO.__EO0E~3.0 MACHINE SERIES 1700
DU Delete the job - if job processing is not in
effect this option will cause repetition of

AA 3777

the action request printoutx. If job processing
is in effect, the job processor job cancel

entry is scheduled at level two. All the
actions of the CU option are then executed.

“Job processing is not in effect when LIBEDT or RECOVERY
modules are in control.

DD Delete the job and mark the device as Ydown®.
This action will result in a repeat of the
action request printout if job processing is
not in effect. The job processor job cancel
entry is scheduled at level 2. All the actions
of the (D option are then executed.

Subroutines

ALTSUB is the subroutine used to find the operational
alternate for a given logical unit. The logical unit is in
@ on entry and if this logical unit is operational {not
marked down} then @ returns unchanged. Otherwise. @ will :
be set to the logical unit of the first operational alternate“”
assigned. If no alternate is assigned @ will be zero. If

the only alternate is the device that just failed, then @

will be set to DUMALT on return. The value of DUMALT is

either the logical unit of the Dummy Driver or zero, and is

set at Initialization. {See 8.4}

P

The ALTSUB subroutine is called from the following programs:

RW Read-Write Request Processor
FNR Find Next Request Subroutine

Note that ALTSUB allows alternates to be assigned in a
circular arrangement

e-g.r L.U. =78 -A—=>1.0—>8

CONVER {=CONVRTZ} is a hexadecimal to ASCII coded Decimal
conversion subroutine. The hexadecimal value in A is
converted and returned to A. It is restricted to a maximum
of two decimal digits {i.e., 993nt and is used to convert

the logical unit and error code for printout. The subroutine
is re-entrant and may be used by other programs.

PRINTED IN USA.

C

CONTROL DATA CORPORA
3000/1700 Systems & $evefbpmen TION MAR 5 1971

DIVISION

DOCUMENT CLASS IMsS PAGE NO. 8.8

PRODUCT NAME

1700 Operating System

PRODUCT MODEL NO.__EOO0GE~3.0 MACHINE SERIES 1700

4.10

AA 3777

Dummy Driver

If a device fails and no alternate is available, the dummy
device can be assigned as the alternate. This causes the
Dummy Driver to be scheduled via the Dummy Equipment Table.
The Dummy Driver picks up the request using the FNR subroutine
and sets the error field in the request. Then the logical
unit that failed is restored by clearing the Ydevice down?

bit in the LOGL logical unit table. Finally the COMPRQ
subroutine is entered to complete the request and then returns
to the Dummy Driver Initiator to re-enter FNR and process

any further requests on the thread-.

The Dummy Driver allows a user program to make an 1/0 request
and ensure that the completion address will be scheduled
without requiring operator intervention. Otherwise:, the user
program could be suspended indefinitely. The user program
must check for I/0 errors at the completion entry and take
appropriate action if an I/0 error occurred {i.e., if Q35=1r}.

The Dummy Driver and Dummy Equipment Table must be included in
the System Tables and Parameters Program if this feature is
required. A logical unit entry must also be assigned to the
Dummy Driver in the logical unit tables, LOGLA, LOGL and LOGZ2-
This logical unit number can then be assigned as the

alternate in the L0Gl entry for the logical units that have

no other alternates. See section 2.13.

DUMALT is the logical unit number assigned to the Dummy. If
the Dummy Driver is not included DUMALT should be equivalenced

to zero. DUMALT is assigned as the alternate when all

alternates are marked down such that the failed device is
assigned as its own alternate.

The dummy may also be used as the alternate for the comment

device. Comment device failures are not recoverable unless
an alternate is assigned for the comment input device.

PRINTED IN USA.

o t——— - — il

1 2 a4]
T SI1ZE OF. AATERE
ey Ah b
AkTDe &9 — — | TA8E musT BE
’—' SUFFICIENT FOR,
| MMAX_ MO, OF FAikurES
I
ScChedul€ , _]
'AhTEO” AT | SAVE ;
hevel (¥ J ERRLok W Di
J
CHECK FOR
 goom. NV | —
AATERR. TABLE) \ ,
=
s >
=
en
D
=
O arrwant socomenr | oEAR 3,0 Tpns %5 /)00 |emescro e rmovee [eae 4
SAMPLE CODE 7] TiTee AATERWATE DEYILE | rrosect mar _
FLOWCHART O HANUER pace | o /D | ProsecT name ‘.
DECISION TABLE [] NUMBER OATE TASK NO.
OTHER —
- DRAWN BY DATE EASK NAME y__ N
- _4
- PRINTED IN USA.

AA 1385 (FORMERLY CA127 ¢

o' 2 - :
CHAVGE EReve PEsToRE f
ATE WORD TO Stow AlTevh | Faied au |)
hu THAT ASS1eVED A /
LACTUALRY FRILED : Ol STATUS
.SA’VE Re MARK FﬂILEAIIJ ET ADRESS y ~
DeVILE Dow e esT beHm
hol. v/ - MAKE IT OF Feues % - —
HASRLUL SHARED DEVICE FRom Deviee
THAT. FAIEP L

SET & = hU
THAT FAUED

—_—

OPERATIONAL
RLTERNATE |

S-AY |

| ReQuest TO

Re-THRERD

. A0 OF

Keguesree L

SET ALTEQVATE|

s

AA1385 (FORMERLY CA127

IF THE Ly SPeCIFIER CLEAR wORD
Is ALREARDY Roww &5 OF PHSTAS il QEVICE T
T7s pire eNATE OF DEvICE THAT A SHARED
MUST_HAVE FAILED | AeTupikY Fhi kD DeVICE
CONTROL DATACORPORATION oo™ 3.0 I/ms "5t /940 |eroscrno. srrroveo | oave]
SAMPLE CODE [] POSTie | ALTERWARTE DEVICE | eprosect mon.
FLOWCHART OJ HANVOLE I race R or /) | ProsecT Name
gss:;or« TABLE % NUMBER OATE TASK NO.
B DRAWN BY DATE TASK NAME
PRINTED i USA.

16l ¢ HUW

1 2 s
[| ‘
SEARCH SCrAEDkE AT
HAS3 EREOR TQLE FoR) HwA AT heVEL Y
THIS ERFOR T70 pRINT
L_messpos |

SET SAVERE
LIwoRDd TO
| ZERO

L

Pur SAVERR IN
TAgLE AND

~$—

3

bUPOATE TIMOEX

L.Z—.e___.r_ﬁ'TL!. 1

SOFTWARE DOCUMENT
SAMPLE CODE O

“ociass 3,0 IMs

e /7&& PROJECT NO.

- ” o - ':
15 ‘
BurA~C o —
N CoRE \
. R
SCeHEQULE SCHEDUKE
DRIVER FoR QurFparl
ALTERNATE
CONTROL DATA CORPORATION (R I ————— oATE 4;«

COSWTie | ALTERNATE DEVICE

PROJECT MGR.

AA1385 (FORMEgAIZ7-I)

FLOWCHART O HAVOLE B pace 3 or /O |PRosEcT NamE
DECISION TABLE [] NUMBER TASK NoO.
OTHER O
DRAWN BY DATE ﬂsk NAME C
14 y
Y 7

PRINTED IN USA.

TUBLS YUW

'g

-
-

1 2 4 s
O ® O
GET NexT ChEAR
WOART |ERROR worD | orir
FrROM AATERR. BusY
‘ Fiae |)
C e SAVE ERRoR CoNVERT\ |
‘. @ o WorD AMD KA. GET 4u 0F [To-
o THAT FAILED OPe RATC WAL \aserr-S

| b(ponr;'
INOeXx 7o
ALTERR TBLE

f,

'

AA1385 (FORMERLY CA127-1

GET Au OF |
AKTEPNATE ,
ASSI1LVER
CONTROL DATACORPORATION [TGocument MACH. | [[—— y—
SOFTWARE DOCUMENT e 3.0 Zms NP /290 |enosectno. =
oocumes ALTERNATE QEFICE PROJECT MGR.
SAMPLE CODE O
FLOWCHART O HANDLER pAeg{;[oF /) |ProsecT Name
DECISION TABLE [] NUMBER oate TASK NO.
OTHER
D ODRAWN BY DATE TASK NAME
PRINTED IN USA.

(61 ¢ YUYW

2T+

it

—— e - At e

AOG
ERroK

i

uTPUT MS &G
I an FAILED ol

urTpPur ms
2 /
ACTion

MTs54B

SET mAmum
NumBER OF
PATERNATE S

Lo .
\ V4 ‘ -
WUERT SeT @ - | E ;
/LU TO ASCII ' DumaeT ' ..r . — —
T0RE IV M§ > hu No. j , |
1)
i
' al - 2l
: Zchvs/er \ SET ® = ;
 £ReoR Cobe , ARTERWATE I
Tb mci-r ‘ DI\SPATC”Qc £ERom J\ob,/q
TOKE IN mS | [. . P
con:gg:::::gg::::::nou Po%ass | 3.0 =[/n_ S Wee /)00 PROJECT NO. | B2 APPROVED DATE
SAMPLE CODE D Doc_:rt;lrL:gr 4/'7—5(:’/}//4‘7{ ,0[:7_:/7(! E PROJECT MGR.
FLOWCHART Ol HAVOLER paced or /0 |ProsecT name
DECISION TABLE [] NUMBER DATE TASK NO.
OTHER D DRAWN BY DATE HSK NAME
AA1385 (FORM:gA|27-1 %4 PRINTID 1 USA

ET-@

16l & HYW

-

/

Troas LY |
/ nputct 1
Rle=0

I

CHECK ASCT,
CHARS IN
INPUT

[

N

hé?ﬁ'

If the input Request
Timed Out or Failed
Assume Option RP in
Order to Allow the

Alternate Device .

Handler to continue
pracessing other v
entries in the ALTERR

" table.

Y

R

;;;;;

CONTROL DATACORPORATION
SOFTWARE DOCUMENT

SAMPLE CODE O
FLOWCHART d
DECISION TABLE []
OTHER O

DOCUMENT
CLASS

3.0 Ims

e /000

PROJECT NO.

APPROVED

DATE

DOCUMENT
TITLE

ALTERNF P& L2 £

PROJECT MGR.

AN & Ea

rase por /0

PROJECT NAME

NUMBER

ISSUE
DATE

TASK NO.

DRAWN BY

DATE

TASK NAME

AA1385 (FORMERLY CA127-1)

161 G YUYW

hT @

1 2 4 L
LePeAT
- THE _
LEQUEST
1
l
|
! | CLEAR THE [SeT THE | REPEAT |
A f’FQqur DENCE woT M THE ft‘Q“(‘V :u\r_
7| Treeso Busy .
L
SCHE DULE o
[e Comree 7€ | DRIVER L
THE ; TIniTIAToR A/
RetuesT/]
I
I
Conti NuE
wiTH THE
DEvite uP
O orrwaRe oocoment ok 3.0 T/ms % /700 lemosecrno | _eemovee | oave
SAMPLE CODE O coqirie | A/\Tgﬁ/yﬂfé ﬂfu,(‘_{ PROJECT MGR.
FLOWCHART — HAJ/DLLK— pu;g']op /0 PROJECT NAME
DECISION TABLE] NUMBER ssuE TASK NO.
OTHER J
DRAWN BY DATE ZgaRK NAME F .\
| = A4
PRINTED IN USA

AA13885 FORMERLY CA127-¢

1161 & YW

ST @

1 2 4 [
ConTIinuE Denere Jo8, Derere Jo8 i
A _ — — A uiTH D&VICE Pevice kP Qevieg Dowl/ . —
oow NV ;

i
|
7

st §

/MARK DeviCe| S i
. Down CSET 8T Q)j L -
13 1IN hOGI) z
: . o
\ a H e
SEHEDULE 5 !
SCHEQuULE MAsa00 - .
c dompPreTiON ‘
ADDRESSES § §
w TH E Lol FO— § PO |
CON:gg::::EAggz:::::ION OO s | 3.0 Jms ee /?Q_D PROJECT NO. Jrey APPROVED DATE
SAMPLE CODE [] 5T AMTERNATE DEVICE |enosect wan
FLOWCHART O HAnDLeE L paced oF /0 PROJECT NAME
DECISION TABLE [] NUMBER OATE TASK NO.
OTHER D DRAWN BY DATE TASK NAME

l/el ¢ ¥YWN

rsre

AA1385 (FORMERLY::;127-!)

PRINTED IN 118 A

1 2 4 L]
[vota \ STORE | SCHEDuLE |
CET 4 OTATUS wokD L ADGGER |
oo ROS OF TN VOATHE .
VOLATILE,
: STORE SIATS| _
| Prex up ANO ERROE. QL €AsE -
ERROR wokfO | woeh IV VORATILE ;
FRom__powoep | TREBLE -
STORE ERROR ComPuTE
| WoRD ANVD 1 Disk Aooe,Es.s —
| RETuRN IV OF TABLE . .
| VoLATIAS i
FIND Ku DISK WR(TE
humgec ANOD Wh1Te TRBLE -
| STORE 1/, @V OISk
YORATILE i
SRR OTEN [T s 1700 Toneee o S T
SAMPLE CODE 0O DOSET ALTERNVATE LEVICE PROJECT MGR.
FLOWCHART HANOLE R pace L or /) |ProsecT NaMe
DECISION TABLE [] NUMBER DATE TASK NoO.
OTHER D DRAWN BY DATE I NAME Q
7 '

T L i ——— . _ o S . cli

9T @

161 & YW

-~ 2 - .
JKSuB CopveRT_
f Comver T
jre HEX TO
AScCIt

SCHeOuULE]
J08 CANMCES
Pem AT
hEVEA S

CHARpOTELS

(ReTurn)

AA13885 (FORMERLY CA127-1)

CONTROL DATACORPORATION [oocoment — MACH. R —— oAT
E
SOFTWARE DOCUMENT ogi::as:nr j'?‘ .Lh“\r "TB />0(b e '
ARTE £VviC PROJECT MGR.
SAMPLE CODE [] AL ALEEN
FLOWCHART O HANOLE L pace/or /O | ProsecT Name
DECISION TABLE [] NUMBER DATE TASK NoO.
OTHER
D DRAWN BY DATE TASK NAME
PRINTED IN USA.

161 ¢ YUYW

LT-%

CONTROL DATA CORPORATION MAR 51971

3000/1700 Systems & Devel opment DIVISION
DOCUMENT CLASS Ins PAGE NO.____ -1
PRODUCT NAME 2?00 OPERATING SYSTEM
PRODUCT MODEL NoO. _EO00b®3.0 __ MACHINE SERIES 1700
9.0 MAKE @ FOR DRIVER ROUTINE

AA 3777

9.1

SYMBOLS
MAKQ Entry Point
FUNCTION

The functions of this routine are to determine if a short
read and/or a device error occurred during the driver’s
operations. If either of these conditions has occurred,
MAK®@ will set the proper bits in Word 9 {switch word} of
the physical device table. The COMPRA subroutine uses
these bits to form the V field of an I/0 call {see section
bL.5%.

ENTRY INTERFACES

MAK@ is entered with the address of the return to the driver
in the A register and the physical device table address of
the device in the I register.

EXIT INTERFACES

The contents of the I register are not disturbed. The
contents of the A and @ registers are destroyed.

INTERNAL DESCRIPTION

On entry the return address of the driver is stored in the
physical device table and the @ register is cleared.

A test for a short read is made by comparing the last
location read {Ycore® address} to the last word address

+k. If, before exiting to MAKQ, the driver was expecting
the next character to be a lower character, the “core®
address is incremented by one before the short read test.
This is necessary because the driver does not increment the
Ycore® address until the lower character is received. If a
short read condition exists, bit 14 is set in the Q@ register.

A check is then made for a device error condition and if
true, if the the device was not ready. Bits 15 and/or 13
are set reflecting these conditions.

The final content of the @ Pegistér is stored in word 9

{switch word} of the physical device table and exit is
made to the return address.

PRINMTEN 1Al HICA

¢

TN

:‘&y/ :

gcho
ReQUEST

SAVE RETupw
AODRESS,

CLeArR Q@
ﬁfetgrsﬂ

SET7T EFRoR
QT (R 15)
IV Q REGISTER

SHORT
T RANS FEE

]

i »S§W‘N0r
TORE NEXT Reapy 817
. Svmmsas hDC;TMM C8IT 13) TV
W AAST hOCAT! R
. JwiTed :;: Qurcer ¥ IV QR ReesTEL
Hoorn Ser FoRNI0 |
howER i“ woRb 1l oF PoT"
~ b E
Y&s
VOER
INCLEMENT SET s;kokr
CoORE Reap BT o
ADPRESS C8i7 /%) I < ToRE (Q)
Q@ RéeisTer RetsTER IV | T 10 7
B | Swiren woRD PETuew ADMRE
CONTROL DATACORPORATION [oocument Ac I m—
SOFTWARE DOCUMENT oo‘;:;’:m LS TYPE /)725 PROJECT NO. RE] APPROVED °‘j«f
SAMPLE CODE O TITLE /7%%?(? / [PROJECT MGR.
FLOWCHART] PAGE / OF PROJECT NAME
DECISION TABLE [_] NUMBER {,’i‘#i TASK NO.
OTHER D DRAWN BY DATE TASK NAME
PRINTED IN

"’x \A1385 (FO ALY CA127-1

T [

2'b

CONTROL DATA CORPORATION ' MAR 51971

3000/1700 Systems & Development DIVISION
DOCUMENT CLASS Ins PAGE NO. ___10.1 @
PRODUCT NAME ____ 1700 MSOS
PRODUCT MODEL NO.____E00b3.0 MACHINE SERIES 1700
0.0 COMMON

AA 3777

0.1 External Symbols
ALLIN - Entry point of COMMON

0.2 Function
This program saves the @, A, I registers along with the
return address and priority level prior to an interrupt-
It adds this information to the interrupt stack and sets

the mask register with a new mask and sets the new priority
lever in the current priority level cell.

10.3 Entry Interface
This program is entered by an indirect return jump thru
location $FE. This locore location contains the address

of the entry point ALLIN.

10.4 Exit Interface

This program exits to the interrupt processor chosen in s
the 4th word of the trap location for the line that has
interrupted.

10.5 Internal Description

Upon entry the top of the interrupt stack is found and

@, Ay Priority level, I are stored in the stack the address
of the interrupt processor is determined and the return
address is picked up and saved in the stack. The new
priority level is determined from the trap region and put
in location $EF. The new mask is found and put in the mask
register. An exit jump is made to the processor chosen

by the trap area.

PRINTED IN USA.

2°0T

f— . A,
(EA | 2 4 5
SAVE REGISTERS SET NEw
RETVRN ADDRESS, PRIOR\TY LEVEL EXIT 70 °
 A¥D CVRRENT anvD NEW MASK pp.ocfssnkc:-\vENN
T TRAP REG 0
PRIORMITY LEVEL REGISTER
CONTROLDATACORPORATION [CocumenT MACH. R
Y APPROVED DATE
SOFTWARE DOCUMENT ooi:‘::u-r IMs Tvre [700 PROJECT NO.
~
SAMPLE CODE D TITLE COMMON PROJECT MGR. .
FLOWCHART O pace | or / PROJECT NAME ’
DECISION TABLE [] NUMBER oave TASK NoO.
OTHER O
ORAWN BY DATE TASK NAME

VA 1385 (FORMFRLY CA127.¢)

16l S YUYW

CONTROL DATA CORPORATION MAR 51971

3000/1700 Systems & Development DIVISION
DOCUMENT CLASS NS PAGE NO.___11-1
PRODUCT NAME 1700 MSOS
PRODUCT MODEL NO.____E£00b»3.0 MACHINE SERIES 1700

11.0 NIPROC

AA 3777

1L.1

1Ll.2

1%.3

11l.y4

11.5

External Symbols

IPROC Entry point to IPROC

IP] Address constant of IPROCL

TBLE Used for HEX to ASCII conversion

JOBIND Used to see if job processor is in core

SWTCH Used to lock out job processor while LIBEDT
or Recovery in core

TIMACK Used to acknowledge timer interrupts

IPROCL Processor in protect errors

PARITY Processor for parity errors

Function

The function of the internal interrupt processor is to

handle internal interrupts on line zero caused by parity

errors in memory, memory protect errors and power failure
conditions.

Entry Interface

NIPROC is entered upon an interrupt of line zero. Its
address is contained in the fourth word of line zero‘s
trap.

Exit Interface

Exit from IPROC depends upon the error condition that
caused the interrupt. Protect errors exit to IPROCL which
is the protect processor. Parity errors cause a branch

to PARITY which is a user supplied module to process
parity errors. If this module is not present the computer
is hung in a %$18FF loop. For power failure errors the
computer is hung in a %18FF loop until power returns at
that time a EXI instruction is executed which returns
control to the P+l instruction is executed which returns
control to the P+l interrupted address.

Internal Description

After entry to IPROC a protect fault is tested for if a
protect fault is found a jump to IPROCL is made. If no
protect fault is found a parity error test is made if no
parity error is found a power failure is assumed. The
contants of the registers are saved and a jump to the
power failure routine is set up at absolute location O
and 1. When a power failure occurs the user master clears
and hits the run switch, location 0 and 1 are executed
giving control to the power failure routine which in

turn exits the interrupt state through the return address

PRINTED IN USA.

(})

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 5 1971
DOCUMENT CLASS IMS PAGE NO.___ 221,
PRODUCT NAME 1700 MSOS
PRODUCT MODEL NO.__EOOb» 3.0 MACHINE SERIES 1700

12.0 External Interrupt Handler f1EPROCY
2.1 Program Function

External Interrupts are handled by this routine. There
are three conditions that can exist on an interrupted
line. They are as follows:

1. The line is connected to devices controlled by the
Operating System: i.e., they appear in the system
equipment table.

2. The line is connected to devices not controlled
by the Operating System.

3. The line is connected to devices, some of which are
controlled by the Operating System and some of
which are not.

2.2 Internal Description

Upon entrance to YEPROCY the YIY register contains the
slot location through which the interrupt came. This
location is changed to a |line number from which the
number of devices on this |line can be found. If no
devices are present, a check is made for the secondary
processor.

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 51971
IMS 2.2 ;
DOCUMENT CLASS PAGE NO. {
PRODUCT NAME 1700 TSOS S O
PRODUCT MODEL NO. ___EO00b®3. 3 MACHINE SERIES

If devices are present, the logical unit number of the
first device is found. The number of devices is stored
in the I register and volatile storage is called. Only
three words are saved: they are @, A and I where:

@ Line number interrupted
A Logical unit number of first device on line
I Negative number of devices on line

Each device is checked in turn for having the interrupt
status set. When one is found, the continuator address
is set in the @ register of volatile storaga. Volatile

storage is released and a jump made to location specified
in the @ register.

If no devices on the line interrupted, volatile storage

is released and a secondary processor is checked for being
present. If one is present, control is passed to its if
not, the ghost interrupt message is scheduled, and control
is returned to the dispatcher.

The ghost interrupt message prints GI {line no.} where 7
line no. is a hexadecimal number. Upon completion of L
the printout, control is returned to the dispatcher.

2.3 Entry Interfaces

EPROC Entrance to External Interrupt Handler
I set to slot location through which interrupt came.

2.4 Internal Entry

PRINT Prints ghost |nterrupt error message
GI {line number in hex} exits to dxspatcher

2.5 External References

SECPRO Secondary Processor Table
LOGLA Table of logical units determines
L1L-LL5 number of units on line

AA 3777 PRINTED IN USA.

2 - a s
GET cONTINVATOL
Ab‘mﬂ%sﬂ WYV

ReEQUEST 3 @ of VoUTLE

LocS. VOIATILE
INTERRUMING LvE INCG NO. OF / S
M. To Q REG. PEVICES AND RELEAST \WHILE
No. PEVIEEs ON L.U. NumMBER STORAG-E
LINE TO A REG.

FIND P DP.T. ARE N\ H

LotATI ON ~ g 19

:::‘iif oif GET STATUS NO AL DEVICES Jome
. -
M PERD CHECKED CoNMTI NVATOR
PUT MNEG-. NO. OF
pEVvIcES Iwnv T Reo
Aand L J REJECT RECEAST VelATILE
aun BER onpimey STORAGE
CONTROL DATACORPORATION —
SOFTWARE DOCUMENT Dogt'rsssNT ;_M S h:'Av%.-é 1700 PROJECT NO. APPROVED TATE
DOCTLI‘:’AEET E PROQI PROJECT G
SAMPLE CODE [] = bl
FLOWCHART O pace | oF Q PROJECT NAME =
DECISION TABLE [NUMBER DATE TASK NO. v
OTHER O w
DRAWN BY DATE TASK NAME

“A1385 (Fu <RLY CA127-1.

16l ¢ YUYW

AT SEConDAEy
PROCESSOR /v

A REG

/ SCHPLE _ \

SOH EDVLE

PRANT
SET MIP =0

2\

PUEMT GiosT
INTERRVET

MESS AGE

OPERATION
CoMmPLETE

Plck VP
JLINE NymMBER L
oF ENTERRYT

CON:Zg:::::ggg:::::ION O nss | IMs TYPE \",QO PROJECT NO. Irev APPROVED . DATE
oo Tee | EPROC PROJECT MGR.
SAMPLE copE [] TiTLE
FLOWCHART O Paced orad prosecT namve MROS 2w |
DECISION TABLE [} NUMBER TASK NO. N
OTHER O

DRAWN BY

TASK NAME

“A1385 (Fo -RL@}Z7-1;

&

0

h-2T

16l ¢ YUYW

CONTROL DATA CORPORATION MAR 5 1971

300071700 Systems & Development DIVISION
DOCUMENT CLASS ____IMS PAGE NO. _ _13.1
PRODUCT NAME 1700 MSOS
PRODUCT MODEL No.__EOOb®3.g MACHINE SERIES 1700

13.0 volatile Storage Handler
13.1 Internal Symbols

VOLBLK - Volatile storage block starting address

VOLATL - Current address of entry into VOLBLK. Located
in the communication area.

VOLEND - Address of the location following the volatile
storage block.

OVFVOL - The entry name of a module entered in case of
volatile storage overflow.

ZERO - A communication area cell containing zero.
Ve - Index for saving users Q.
VA - Index for saving users A.
VI - Index for saving users I.

1b.1.1 Entry Symbols

VOLA - Allocate volatile.
VOLR - Return volatile previously allocated.

13.2 Function
A block of core, VOLBLK: is reserved in the system tables
module for assignment to users as volatile storage. This
block is handled by the subroutines VOLA and VOLR.

13.3 Entry Interfaces
The calling sequences to allocate a block of n words is:
RTJ VOLA Execute with interrupts inhibited-
NUM n Parameter N follows the RTJ.

The calling sequence to return a block is:

RTJ VOLR With I containing the address of the block
returned, and interrupts inhibited.

13.3.1 Entry Conditions
The interrupts must be inhibited.

When entering VOLR: YIY must contain the address
of the block to be returned.

AA 3777 PRINTED IN USA.

CONTROL DATA CORPORATION MAR 5 1971

300U/17?00 Systems & Development DIVISION
IMS Q.. ™
DOCUMENT CLASS PAGE NO._13=2 ()
PRODUCT NAME __1700 MSOS
PRODUCT MODEL NO.__EO0b»3-.0 MACHINE SERIES 1700

AA 3777

13.4 Exit Interfaces

135

13.b

Upon exit from VOLA, the registers A @ and I will be
saved in the volatile block. I will contain the address
of the allocated area. VOLATL will be incremented by n.
the number of words requested. The format for a block of
volatile storage is shown below.

0 ? saved I upon return points here.
1 A saved
= I saved
n words 3 {0pen?}
Y {0pen}
n-1

The minimum size of a block of volatile is three {3} words.

Upon exit from VOLR, the registers A, @ and I will be

restored from the volatile storage. VOLATL will point to L
the entry just returned. Once volatile has been returned: N
the contents of the volatile block are no longer reliable.

Internal Description

VOLA handles the allocation of the volatile storage. UWhen
it is entered: the registers A, @ and I are saved in the
allocated area. The top of the volatile stack, VOLATL, is
incremented by n, the number of words allocated.

If the stack overflows: control is given to the common
overfiow handler, OVFVOL, to take the appropriate shutdown
or recovery actions. C(ontrol is not returned., if overflow
occurred.

VOLR handles the return of allocated volatile storage. On
entry the I-register must point to the core being returned.
The I-register is simply stored into the top of the volatile
stacke A, @ and I contain the initial contents {upon entry
to VOLA} on the return.

Limitations

All users of volatile storage must conserve the address
of the allocated volatile. Entry must be made under
lockout. At least three {3} words must be requested.
Once volatile has been returned, the contents of volatile
are no longer reliable.

&

PRINTED IN USA.

[w}\

DOCUMENT CLASS

CONTROL DATA CORPORATION
300071700 Systems & Development DIVISION MAR 5 1971

ns PAGE NO.__13.3

PRODUCT NAME 2700 TSOS

PRODUCT MODEL NoO. _EOOB» 3.9

AA 3777

137

13.48

MACHINE SERIES 1700

User Instruction

The volatile block is assembled with the system tables
module. Enough must be allocated so that the maximum
amount required for any level will be available.

OFVOL

If the volatile overflow module {0FVOL} is present, in the
event of an over subscription of volatile storage, it will
clear the mask, type Y0VY and hang in a one cell loop. If
the volatile overflow module is not present, then a jump
to 7FFF will occur with unpredictable results.

13.8.1 Entry Point

oFVoL

PRINTED IN USA.

4)
Vo A ¥
N Saie A] Resrece
Q@Lﬂ '. IN VAT € Ketisree. (VELR)
e +1 GN) o o
ConTENTS
_Y 4 .
Save @ v Save I Lesrore
FiesT Ayailage] IN VoLATIE \ A .
Cew ofF + L A , Q/ I
VOLATILE . o
Y)
/’AT\‘ ADDEESS of ruFDnrt’
\E-z -~ T Po 1 JTER
Yes
: | . s i .
\ / UPBATE éE—y -
L) nTcEe To B, - Q‘”"‘x . - —
| @\/FV@?/ , NexT AVAIL. ""..-3‘)*‘ ., | !
VOLAT (L E X . .
CONTROL DATACORPORATION [oogd&™ T M S AL [700 | emoszer wo. [aemovee | onve |
SAMPLE CODE O] ooCiTee | A L\/QL_ PROJECT MGR.
FLOWCHART O M&SOS 5.0 pace Jor | |Prosect name
DECISION TABLE [] NUMBER DATE TASK No.
OTHER D DRAWN BY DATE TASK NAME

AA1385 (FORMERLY CA127-1)

f" 11\’
N/

—

L6 & WYW

h-ET

s
HanG
19N digre
CONTROL DATACORPORATION DOCUMENT MACH. APPROVED oATE
SOFTWARE DOCUMENT SLAsS Ims Tvee /700 |emosect wo.
CoNTeE | ¢ I3 VdL PROJECT MGR.
SAMPLE CODE O —
FLOWCHART O v e S 20 pace / oF / PROJECT NAME
DECISION TABLE D NUMBER 'D’:‘-#E TASK NO.
OTHER J
DRAWN BY DATE TASK NAME

IGL S UUW

S ET

PRINTED IN USA.

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 5 1971
A Y
DOCUMENT CLASS IMS PAGE NO.__14-1 (}
PRODUCT NAME 1700 MSOS
PRODUCT MODEL No.___EO0Ob¥ 3.0 MACHINE SERIES 1700

4.0 Monitor Entry and Exit for Requests

4.1 Internal Symbol Definitions

VR Relative location in volatile containing the
user program‘’s return address. {Equals 3}
VPTR Relative location in volatile containing the
pointer to the user program‘s parameter list {5}.
ZERO A location in the communication region containing

a zero {s22}.

ONEBIT The first location of a table constructed so that
entry n contains 2". This is normally %23.

RCSCHD The code for the scheduler request {9%.

LPMSK The first location of a table constructed such
that entry n contains 2"-1. This is normally
location 1l2.

VTMP Relative location in volatile containing the
request code {/?%}.
AMONI A location in the communication region containing

the location of this program. This is normally
location %F\4. Py
Y The number of words ot volatile allocated per W
request {8%}.
ARE@XT A location in the communication region containing
REQRXT {request exit}. This is normally %B9.

MONT The subroutine entry point to the Request Entry
Processor.

RCTV Tg through T;D'

REQXT Common exit For monitor requests.

AVOLA Equated to %$BB {address of volatilel.

AVOLR Equated to %$BA {address of release volatilel}.

14.2 Program Function

User programs generate requests for various functions such

as I/0, core allocation: and scheduling. All of these

requests are processed by the Request Entry Processor {REP}.
Its function is to reserve volatile storage, save the registers
A, @, P, and I in volatile storage, and give control to ome

of the request processor routines Tg-..T3ypr depending upon

the request code, R(C, in the user’s calling sequence.

ly.3 Entry Interface

Entered from protected programs as a result of a monitor
call. Entered from unprotected programs via IPROC {Chapter

5. C

AA 3777 BowrrEn 1o s

CONTROL DATA CORPORA
300071700 Systems & lDeveI“‘opgt-antc:)R TION DIVISION MAR 51971
DOCUMENT CLASS IMS PAGE NO.___14.2
PRODUCT NAME __ 1700 MSOS '
PRODUCT MODEL NO.___E00b» 3.0 MACHINE SERIES 1700
ly.4 Exit Interfaces

AA 3777

The Request Entry Processor gives control to the request
processors:, Ty through Typs with specific information in

the registers. Each request processor upon entry can assume
the following:

REGISTER CONTENTS
A Apy-p is the location of the

parameter list. If Ayg = O
then the reference to the
parameters in the call was
direct. Otherwise, Al5 = 1,
and the reference was indirect
{an INDIR requestl.

Q Absolute address ot the request
processor being executed.

I I contains the location of an
eight {8} word block of
volatile storage.

Location Mnemonic

{I* + O Ve The user's d-register is saved
here.

{I} + 1 VA The user’s A-register is saved
here.

{I} + 2 VBL Not set by the Request Entry

Processor. Intended to hold
the request priority level.

{1} + 3 VR The return address of the user.
If this was an indirect call,
then the return address has
been incremented by one {1}
to give the correct return address
Otherwiser this was a direct call
and the return address must be
adjusted by the request processor.

{I} + 4 vl The user‘’s I-register is saved
here.
{I} + 5§ VPTR The location of the user‘s

parameter list. This is in the
accumulator A. See discussion
of A above.

{I} + b VTDS Not set by the Request Entry
Processor. It is intended to
contain the top of the stack
for the desired logical unit.

{1y + ¢ VTMP A temporary storage cell containin:
the request code, RC.

PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1700 Systems & Development pivison MAR 51971
DOCUMENT CLASS ____IMS PAGE NO.__ 143 ("’\
PRODUCT NAME 1700 MSOS e
PRODUCT MODEL NO. __EO00bL»3.0 MACHINE SERIES 1700

AA 3777

4.5

1 Wb

L4.4.1 Return to Requestor

Control will be returned to the next instruction
with the registers A, &, and I restored. Overflow
will not be saved. Interrupts will be enabled and

the priority level will be the same as upon entry.
Internal Description

The Request Entry Processor handles all monitor requests

made by the user program. The user enters the Request

Entry Processor via an indirect return jump to MONI. The

Request Entry Processor inhibits all interrupts, saves the

user's registers @, Ay I, and return address in an area

unique to this request, and then enables interrupts. The

Request Entry Processor is re-entrant beyond this point.

and works only with the data area unique to this request.

The I-register is used to hold the address of this unique

area which is called volatile storage. The location of

the parameter list is then stored in volatile. If this

request has an indirect reference to the parameter list.

the return address to the program is adjusted to return N
control to the next sequential instruction. If this N
indirect call was made as the result of the completion of an

I/0 operation, the registers are adjusted to make this look

like a scheduler call since the request code in the user‘’s

request parameter |ist may not be altered. Control is then

given to the request processor specitied by the request code.

Restrictions

The I-register must be conserved throughout the request
processor called since it contains the address of volatile
storage. Each request processor must be re-entrant since
it runs at the requestor’s level. UWhen each request
processor finishes it must return the volatile core storage
by jumping to RE@XT.

Label op Address
JMP- {AREQXTY} Address of request exit.
REQXT is contained in
AREQXT .

NOTE: The 9YMINI MONITOR REQUEST ENTRY® is identical in
every way with this module with a single exceptxon It
is equipped to handle only 13 requests.

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 51971

300071700 Systems & Development DIVISION
DOCUMENT CLASS Ins PAGE NO.___ 1" -4
PRODUCT NAME 1700 MSOS

PRODUCT MODEL No.___EO00bM.Q MACHINE SERIES 1700

14.7 Adding Requests
When adding requests with codes larger than 13 consult

the chapter dealing with the protect processor for
necessary changes.

AA 3777 PRINTED IN USA.

1 2 4 5 ~
_ [<=dl .
UneAck ; .
6&9 VesST —
Con€

?"'—“M * g @ M 4
ufoa<E N . P R
1fhnﬂm—f0 4 - . o e e
PaRam . List Co . :
& > LW - ! k2 J &
. P R { -
Pbpre ;
Revven e
i vk . —
. = . - ; - - i o=
JMC » & N H "
- Retrorn | i _— B—
Ao Bivter j o g
con:g:: s:gsgggzggcllou DoCUNENT zme "“Wer /700 |erosect no. Ired aseroveEo oave |
oogn:;.«s:r M gL PROJECT MGR.
SAMPLE CODE O i
FLOWCHART =[] PAGE/ oF PROJECT NAME
DECISION TABLE [] NUMBER DayE TASK NO.
OTHER O
X ODRAWN BY DATE TASK NAME

AA1385 (FORME< }A127-H

O

R

Bl S WiW

Genlsc /L

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 5 1971
DOCUMENT CLASS IMS PAGE NO. 1L5.1
PRODUCT NAME ___ 1700 MSOS
PRODUCT MODEL NO.___EO00b»3.0 MACHINE SERIES 1700

15.0 Processor for READ, WRITE Format READ, Format WRITE
15.1 Entry Interfaces
The Request Processors {Tl, T2, and Tk} are entered from
the Request Entry Processor with the A, @ and I Volatile

set up as shown below.

Register Contents

A Aly-g is the location of the parameter list.
If Al15=0r then the reference to the parameters
in the call was direct. Otherwisers Al5=1r and
the reference was indirect.

Q Absolute address of the request processor being
executed.

I I contains the location of an 8-word block of
volatile.

Volatile Storage Mnemonic

{I} + O Ve ? saved by Request Entry
Processor.

{I} + 1 VA A saved by Request Entry
Processor.

{I + 2 VPL Used to hold request priority
level .

{Iy + 3 VR P-register saved by Request
Entry Processor. If indirect
all, P is already incremented

by 1 for proper return address.

{I} + y VI The I-register saved by REP.

{I} + 5 VPTR Used to hold the user's para-
meter list location, also in
A above.

{I + b VTPE Used to hold the preceding
thread location.

{Iy + 7 VTMP A temporary used to hold

logical unit number.
15.2 Exit Interfaces

Exit to the Driver:

The driver will be scheduled: if the device associated
with this logical unit is not busy. The @ register upon
entry to the driver initiator will contain the location

of the physical device table entry for the device.

AA 3777 PRINTED IN USA.

co
3000/1700 Systers & DevEIGHROREORATION | MAR 5 1971
DOCUMENT CLAss____1IMS PAGE NO.___ 15 -2 -
PRODUCT NAME 1700 MSOS . v @
PRODUCT MODEL No. __E00E'G.0 MACHINE SERIES 4ean

AA 3777

15.14

15.u4

Exit to the User:

The request processor returns control to the REAXT where
the volatile storage is released and control is returned
to the caller.

Upon return to the user:. the registers A, I and Qjy-g will
be restored. If Q35=13r the thread location in the parameter
list is not zero, implying that this request is already

on some other thread. 1In this case: no action will be

taken on this call. This action is apparent only to
protected callers.

Schedul ing of the Completion Address, C

Control will be returned to the (ompletion Address (at
level (P when the I/0 requested has finished or f the
device is down and no alternate exists. A messsje will be
typed in forming that the unit is down. @ will :ontain
word 3 of the parameter list. The high order tizs of @
will contain the error code V.

Internal Description \

.ky/
Requests are threaded onto the lojical unit according to
Request Priority. If the associa-ed device is not
assigned to a logica! urit and 1s operational. the driver
for the device is cailed. or, if ~he device has failed

and has no alternate., the completion address is schedulie*
with an error code indicating failure returned to the
completion address. Subroutine A TSUB, in the Alternate
Device Handler. Section L7.7, 1s .sed to obtain the
alternate logical unit if required.

NOTE: The =MINIw RWY PRQC.ESSOR® mHdule i1s identical to
this module. If the =MINI ERROR 'ROCESSOR™ moduie is
used, ALTSUB simply returns to the caller.

Request Code Zero

The zero request code 1s used to cause mass storage reads
which result from S(HDLE requests. Ffor example. if a mass
storage resident program is scheduled, the SCHDLt request
processor passes the system direc ory entry to the SPA(t
processor for allocation of space The SPACE processor
then passes the system directory :ntry to this processor

to effect a transfer of the program from mass storage.

The apparent request code carried ir the system directory ,
entry is zero. ‘:@

PRINTED IN USA

o - -
= A 2 L 5 & 4
R 1 K - seh . STR
(7/) REQUEST JCKTHRY COMPUTE ToP
N p{Q_,oo-flm')/ gF THReAD |
JAve
VPL And {
— VF _
_.__\L_\ - Y THINXT
: . | " LVABS Ger NexT
/S 17 0) 1S 17 0 / 2
A Dicecr> A ssjz;;>:L—J- UNPACK Ently on
LALL. ~KeQ. U
\’ v
VES |
/é VES
!’\i;t ln,.f:JT [_‘d_t" Ly ‘ '
Herved 4 i gE (RRARY —) :

ADLRFE LS .
L-« e D i
| |
—

i SN
[—

——

\

SAvLy

w o #

> VTIMP

e ————— i v——— - i

N e

CONTROL DATACORPORAT'ON DOCUMENT -~ c MACH /
. : 00 REV APPROVED DATE_ .
SOFTWARE DOCUMENT CLAsS Lo e /7 PROJECT NO 5‘7
OO TLe | /(’, w) PROJECT MGR ‘
SAMPLE CODE O -
FLOWCHART O m §¢ S SO pacge / oF 5[PROJECT NAME
DECISION TABLE D NUMBER :;:¥E TASK NO
OTHER J
DRAWN 8+ DATE TASK NAME
AA138% (FORMERLY CA127-1" PRINTED IN USA.

16l ¢ YuW

E°ST

‘ST

3 4 3
RCIHD
THREAD
X THE /*/i)
ﬁE?uEST \7o @ur putr”
) Comment/
o SAVE Ly 7 LUSAVZ |
| ENABLE VolaTiLE 4.
| INTERRUPTS L PoinTER
/ -
/Pﬁ LE] (leAk. /CPNVER Restonr e
¢ oREnT i L_¢(,?\, CoNVERT ' \[g(‘ﬁ’rlﬂ?.
/,/ ‘ THR EAD Ly # 6 TER
v’ : 1 t
: {
Ng ; ‘
~ s CMsh. FLACNJES On.LEvEL, To | - [%,4/1
=6 CURRENT
' PRior. 7Y
CONTROL DATACORPORATION [eocxs™ 7S Tt /700 |emoseer no. = srrroves | oare
SAMPLE CODE O °°‘§-‘.’¥5§‘_’ £ PROJECT MGR.
FLOWCHART O /N Los 3— O PAGESR. OF /7(PROJECT NAME
DECISION TABLE [___] NUMBER S‘:"T’E TASK NO.
OTHER O
DRAWN BY DATE TASK NAME g,
AA1388 (Fonmeﬁ@m‘hn X % mmmmus&y

LBL S YW

h

®

4
’ l) | 7Hduse A B}
E; Ser &t CKTHRD SET SErRS
7T 1 /5 ;o vSecs . |} Q
ReQuesT NEeATIVE
N .
| Ser V Cere Bir
L Frgdld N 5~ oF] .
- Users RequesT USRS @ f

98T

A
CleAc SCHEDo L €
Eeg:ues T Cgmp AbOK. -
THRERD w1 TH Ceroe
] I R y
f
)(€$
| %) |
Y A mark INGK € mERT) s
- - : A RErtoen L . -} ..
RegeExT K THEER B ve @eqéx‘r y
— . | . v LSE ADORESS. e .
CKTH(-D \‘ (prp . S .
CON:?):::::EA gg:::::I|ON Ptk L mS "Wee /700 |erossct wo. [re] aeemoves oaTx
oo e | /F' (7] PROJECT MGR
SAMPLE CODE [] LALLUL . ‘
FLOWCHART O 7 PacsegoF 51 PROJECT NAME
DECISION TABLE [] NUMBER DATE ' TASK NO
OTHER O]
DRAWN BY DATE TASK NAME
AA1385 (FORMERLY CA127-1) PRINTED IN USA.

1/t ¢ MU

1 2 3 13 -~
4\ ot (w : | Cene
oS £ . | L0 ¢ okp
Al | |
FH PR -4 W Hu/w/g
| Aurs ,_._AL_
Py / A
~Th TR . ; \
. >_J \ ok Lu(E)
\ Drirer '
| ;
A ¥
N J
I b
' !
N N SCHE "0 Lk
{ Kege xT ke LT
CONTROL DATACORPORATION [Gocument T /1, MRS 756 | emosect no. | R Iye——— oATE

SOFTWARE DOCUMENT

pre:

95T

Cociree | 'S PROJECT MGR
—— a .
SAMPLE CODE — = =

FLOWCHART | i T -0 PAGE¢ OF 4 PROJECT NAME

DECISION TABLE ‘_‘ NUMBER OAYTE rASK NO

QTHER .

Py - DRAWN BY DATE Jessk NaME Q
ey “ 7 2

aa- 3885 FORMER - 74127 ¢ m'mmw

1161 ¢ YUYW

(w»n
A\
ok ’

/
CONTROL DATA CORPORATION MAR 35 1971

BEIEID,{ZL?DD Systems & Development DIVISION

DOCUMENT CLAss____IMS , PAGE NO.___1b-1

PRODUCT NAME __1200 #1SQ0Sc .

PRODUCT MODEL NoO.___E00L™ 3.0 MACHINE SERIES 1700

ib.0

AA 3777

SWAPPING AND RESTART

1b.1 GENERAL BACKGROUND

Many modules are non-resident, i-e.r. they are not kept in
core. Therefore, when they are operated:, it is necessary

to read them in from the library. There is an area reserved
for this purposer the size of which varies from system to
system. Each non-resident program. prior to operation, must
be assigned space in this area and read into it. Similarity.
when a non-resident program completes its function, it must
cause the area allocated to it: to be restored to the block
of empty space available for allocation to other non-resident
programs. The SPACE and RELEAS requests deal with these
operations.

Scheduling a mass memory resident system directory program
causes the following operations to be executed.

1. Space is assigned in the allocatable core area.

2. The program is read into core from mass memory.

3. The starting address of the program, i.e., the start
of the assigned core arear. is scheduled at the requested
prionity.

All mass memory resident system directory programs must be
written to be Yrun anywhereY {using relative addressing.,
etc.} since the program may be assigned different core
areas on successive operations.

If it is necessary to allocate space in the non-resident
area and insufficient space is available, it may be possible
to pre-empt that area of core used for job processing. The
procedure involved is called swapping.

Restart is the initial procedure followed from a dead start
condition. For purposes of allocating core space in as
simple a manner as possible: the area to be allocated is
treated as an I/0 device. This pseudo device is operated
by a pseudo controller {the core allocator} which is
operated via a driver {DRCORE}. The SPACE and RELEAS
requests take the place of READ and WRITE requests in this
situation. In order for this operation to work smoothly.,
the pseudo device is always considered to be logical unit
#]l. This is true for all systems. The modules to be dis-
cussed in this chapter are:

CORE ALLOCATOR
DRCORE
SPACE REQUEST PROCESSOR

PRINTED IN USA.

CONT ROb DATA CORPORATION

300071700 Systems & Developmen DIVISION MAR 5 1971
DOCUMENT CLASS INS ‘ PAGE NO.__lik-2
PRODUCT NAME 1?00 MSeS. e
PRODUCT MODEL NO. EOOb®3.0 MACHINE SERIES 1700 @

1b-2 CORE ALLOCATOR

1b.2.1 External Symbols

LVLSTR Level start table
LEND Level end
CALTHD Core allocator thread

lb«2.2 Internal Symbols

MINSIZ Minimum al locatable area {assembled
as c’}

MAXNO Largest single precision positive
number

lb.2.3 Function of the Program

The Core Allocator module allocates core to program
which are mass memory resident. It also allocates
core to programs which require additional temporary
working area at execution time.

The Core Allocator is required in the monitor on ’
all systems which have a mass memory used for ™
program storage. L

The Core Allocator accepts returned areas of core
and, if possible, combines the returned area with
adjacent areas.

Requests for core allocation are stacked by request
priority and core is allocated on a priority basis.
i.e., the higher priority programs have access to
more of the allocatable core.

1 k2.4 Comprehensive Program Description

The Core Allocator threads together all the pieces
of available core memory. Initially there is one
piece of core which is the entire area. As
allocations are made, the available area gets broken
up into many pieces. As pieces are returned, they
are regrouped into as few pieces as possible.

lk.2.4.1 Organization of (Core

Total core memory is diagramed in Figure 1.
It is divided into three parts: Part 1}
the core resident programs constants:

Part 2} the allocatable area: and Part 3}
unprotected core.

AA 3777 PRINTED IN USA

CONTgOb DATA CORPORATION MAR 5 1971

3000/1700 Systems eveiopment DIVISION
DOCUMENT CLASS IMS , , PAGE NO._bb .3
PRODUCT NAME 1700 MSOS -
PRODUCT MODEL NO. E00GW. 0 MACHINE SERIES 1?00

Part 2 is allocated by the core allocator

according to the request priority in the
parameter list. A fixed amount of the
available core is available to each priority
level. As shown in Figure 1, higher

priority levels have access to more of the
core than lower priorities. This has the
effect of guaranteeing that many low priority
programs cannot use an area set aside for a
high priority program. An area can always

be available to a higher level by restricting
the area available to lower levels. The

core allocator also selects the core from

the smallest available piece. This has the
effect of minimizing the number of pieces

of core that are too small to be usable.

The technique uses the small leftover

pieces first while leaving the big pieces

for future requests.

CORE l ALLOCATABLE AREA UNPROTECTED
RESIDENT | e——level 03 CORE
PROGRAMS j¢———level 1—>
AND |
DATA Jé——LEVEL 14 >
) e———LEVEL 15 >
0 TOP OF CORE AVAILABLE IFEF

TO THE ALLOCATOR

FIGURE 1

AA 3777 PRINTED IN USA.

CONTROL, DAT
R lbevelAOCORP RATION

DOCUMENT CLASS

PRODUCT NAME 1700 1S 08~

300071700 Systems pmen DIVISION MAR 5 1971
IMsS _ PAGE NO.___3k.u
EO0GEw3. 0) 1700

PRODUCT MODEL NO.

MACHINE SERIES

Core Memory is

initialized as follows:

TOP OF THREAD

CALTHD

RESIDENT
CORE

N

Length of core

N

FFFFyL

End of thread

f
i
!
4
i
—-

| UNPROTECT
" CORE

i
b
1

AVATLABLE
CORE

I V74

£ D

FIGURE @

Individual pieces of allocated core are oganized as shown in

Figure 3.

The core allocator stores two control

core area. The first word,
requested length N, plus 2.
of the allocated area. The
contains the address of the

AA 3777

words into the allocated
located at YA-2° always contains the
and represents the actual length
second word, located at A-1l, always
areas A.

PRINTED IN USA.

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 51971
DOCUMENT CLASS INS PAGE NO.__1b-5
PRODUCT NAME 1700 MEOSs .. e
PRODUCT MODEL No.__EO00b®3.0 MACHINE SERIES__ 1700
Location Contents
A-2 N+ 2 Actual length of Area
A-1 A Location of Area
-
A

N | Allocated Area
of length N

A+N-1L

FIGURE 3

After an allocation has been made, core memory appears as
shown below:

TOP OF THREAD

RESIDENT
CALTHD N CORE

ny

Ay
.
Al jjyf‘ ¢«— Allocated area of nj
////u IL words starting at Aj

A2l Noni
| FFFFap

L N=njy,

END OF .'. \é__Available area of N-nj
YAVAILABLE CORE® words starting at Ap
THREAD

UNPROTECTHD
CORE

FIGURE Y4

AA 3777 PRINTED IN USA.

‘ CONTRO,
300071700 Systems

DATA
eveT°§0Rﬂ?RATMN

& men DIVISION MAR 51971
DOCUMENT CLASS Ins _ ‘ PAGE NO._1b-b
PRODUCT NAME 1P00MSOS *° . oo, o .o .
PRODUCT MODEL No. ___EOOb »3.0 MACHINE SERIES 1700
Ib-2.4.28 (Cope Allocation Logic

AA 3777

The subroutine, RERALC, {request allocation}
actually does the analysis to select the
available area of memory. The logic is
discussed below. RERALC is called by the
Core Allocator Driver with the parameters,
requested length and level.

If the requested length is larger than the
area available to the requested level, then
RERALC, immediately returns with a zero para-
meter to the driver.

Otherwise: a search of all available core
to the requested level is made to select
that piece which has the following properties-

1. The piece must contain N+2 words
available to the requested level.

2. The remaining piece {after N+2 words
are allocated} is smaller than the
corresponding piece of all other allor™
catable areas to the requested level .v ¥

If no such piece is found, then the parameter,
-1 is returned to the Core Allocator Driver.

Otherwise, the optimal piece 1s broken into
two or three parts:, and the thread of avail-
able core is strung through the left-over

The left-over pieces are restricted
larger than MINSIZ so that they

can contain the thread information. Figure 5

shows how a piece is broken up into three

pieces. Piece #1 lies below the area avail

able to the level and Piece #2 remains after

the requested piece has been removed.

piece.
to being

PRINTED IN USA.

CONTROL DATA CORPORATION
3000/1700 Systems & Development DIVISION MAR 51971
DOCUMENT CLASS M3 o PAGE NO.__13b.?
PRODUCT NAME ______ 1700 MSOS
PRODUCT MODEL NO.___E00b%3-0 MACHINE SERIES 1700
BEFORE AFTER
TOP OF THREAD TOP OF THREAD
N ‘ CORE CORE N
RESIDENT RESIDENT
Ay ; Al
l /
A m
Ny A 1 Ny
AN A3 N3, Piece #1
i
-— - - -— — - - ’i_ - — }_ A . -
: A ! Np T
: c | 5]
@ A
| 3 “Na
Available to ‘ Allocated to
Requested i v Request for
Level : A N T No-2 Words
| R 3 N
H T KN) - 3
: 4 "‘—"‘_-—~———..~__‘
34 l} Piece #2
AN NN_-) AN _ NN T
~“_f‘jfrl"'f:l‘b o FFFF1L | NN
UNPROTECTED NPROTECTED
CORE CORE
— y
FIGURE 5§
AA 3777 PRINTED IN USA.

CONT ROID DAT, CORPgRATION
& Dev men

elop

MAR 51971

DIVISION

.'_SDUD/l?DG Systems

DOCUMENT CLASS ___INS

PAGE NO.

PRODUCT NAME 1200 MSOS

PRODUCT MODEL NO. EOObw 3.0

k-8
(:ﬁ

MACHINE SERIES 1700

1 be2-4:3

lt-2-5 Tables

LVLSTR

1 -3 DRCORE
L 3.1 External

LAND
LOGIA

CALTHD
RTNCOR
CORE

LVLSTR

SWAPAR

AA 3777

Core return logic

The subroutine RTNCOR does the analysits
to combine the return piece ot core with
the already available pieces- RTNCOR is
entered from the RELEAS request processor
{DRCOREZ.

A search is made to find the first piece of
available core which is below the returned
piece- The returned piece 1s threaded into
its proper position {the available core
thread is ordered by ascending core locationl}.
A check 1s made to see i1f the returned piece
touches 1ts lower and/or upper neitghbor. If
sor the adjacent pieces are combined into
one piece and the thread is updated.

This table contains L? cells and 1s located

in the system table module {SYSBUF}. The ™
first 1b cells are indexed by priority levei s
Each entry contains the core address ot the
first cell allocatable to programs with
request priorities of the level represented
by the index. The last cell contains the
address ot the last cell in the area which

is controlled by the core allocator.

Symbols

Address ot last location in the area
controlled by the core allocator.

Logical unit table containing PHYSTB addresses
tor each logical unit.

Core allocator thread.

Entry to core allocator tor releasing space.
PHYSTB entry for tne core allocator.

Level start table.

Mass storage address ot area where unprotected

core contents are saved during swap. Filled

by the initializer.

PRINTED IN USA.

CONTROL DATA CORPORATION

3000/1¢/00 System & Development DIVISION MAR 5 1971
DOCUMENT CLASS s PAGE NO.__1b-§
. PRODUCTNAME _____ 1?00 MSOS . . _
(PRODUCT MODEL NO. ____E0UB™3.0 MACHINE SERIES 1200

UNPIO Count ot number ot unprotected I/0 calls
pending-

SPASW A switch in TRANV used to inform the protect
processor that a swap is desired.

LOG2 Logical unit table containing bhread tops
tor all logical units.

RE®ALC Entry to the core allocator tor allocation

ot space.

AREAC Start address of block controlled by the
core allocator.

1b.3.2 Function ot the Program

DRCORE serves as the driver for the core allocator
and as the request processor tor RELEAS requests.
In this capacity it makes all decisions 1n the area
ot swapping and stacking calls for space.

. SWAPCK is the entry point to a subroutine used by the
(“’ Jjob processer and library edit programs to count down
the UNPIO unprotected I/0 counter and restart the
space driver 1t 1t 1s waiting to swap and UNPIO is
zero.

1 &3.3 Requests tor Space
Requests tor space come trom two sources.

L. Schedule calls tor non-resident system
directory programs-
2. SPACE requests.

1+ 3.3.1 System Directory Format

The scheduler gives control to DRCORE when

a system directory request for a mass memory
resident program is made. DRCORE determines
the starting address of the program. based
upon the areas of core that are currently
availlable and enters this address in word

1, S, ot the System Directory entry-

AA 3777 PRINTED IN USA.

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

AA 3777

CONTROL DATA CORPORATION

_3000/1700 Systems & Development
IMS

1700 MSOS

DIVISION

PAGE NO._1b-.10

MAR 51971

o

E006»3.0

The format tor the system directory

MACHINE SERIES

1700

is shown below:

WORD 15 1y 9 87 3 g 7 words

per entry

0 0 RC 0 RP CP in the

- T Directory

1 . for Mass

T Memory
c . THREAD _ Resident
Programs

Y e N

5 __MMA £29-153

b 0 MMA {1l4-0%} L]

RC is the request code for the System Directory and 1s
zero.

RP 1S the request priority used in the allocation of
core memory. RP is a number from 0O to 15. {set by
the LIBEDT aS statement}. RP=1 to 3 is reserved
for use by the Job Processor.

CP is the completion priority at which the mass memory
resident program will be scheduled atter the read is
complete. (P 1s set tor the Scheduler and is
obtained trom the requesting program®s scheduler
call.

S 1s the starting Core address of the program and also
the first location ot the allocated core. This 1s
set by tne core allocator.

THREAD 1s the thread location used to point to the next

entry on a threaded
be placed on the following threads.

will

THREAD NAME

Core Allocator

Mass Memory 1I/0 Driver

Scheduler

list.

This directory entry

POSITION DETERMINED BY

RP
RP

cP

WHEN

after scheduling

atter allocation

atrter Mass Memory
Read

PRINTED IN USA.

3000/17u0 Systems & Developmen

CONTROL DATA CORP%RATION DIVISION MAR 5197

DOCUMENT CLASS

PRODUCT NAME
PRODUCT MODEL NO.

AA 3777

PARAM

RC

RP

cP

IMS PAGE NO.1b-11
1700 MSOS
EO0bw3.0 MACHINE SERIES 2+ °00

The thread location is set non-zero
by the Core Allocator Request
Processor and is cleared to zero on
completion.

4 is the parameter passed from the
requesting program to the requested
program-.

N is the length in words of this program

on mass memory.

MMA is a double length word containing the
mass memory address ot this program.
The first word contains the most
significant L5 bits. The second word
contains the least significant 15 bits.

1 -3-3.2 SPACE Requests

The user program may make a Monitor request
for allocating core. The core area will be
allocated to the requesting program and must
be returned by the requesting program before
it will be reassigned to another program.
The list ot parameters is as follows.

15 14 98 7 4 3 U

THREAD

a

N

is the space request code and is equal to 1lU.

is a relative/absolute indicator, modifying C.
is.the request priorityr. the relative priority of
this request used to determine the position on the
core allocator thread and also to determine area ot
core allowable. RP 1s a number from 4 to 15.

is the completion priority, the level at which
control will be returned to C.

PRINTED IN USA.

DOCUMENT CLASs_______ IMS — PAGENO._1Lk.12

CONTRO% DATA CORPgRATION

300071700 Systems & Developmen MAR 5 1971

DIVISION

PRODUCT NAME ___ 2700 MSOS N , (}
PRODUCT MODEL NO.___EOOE™3.0 MACHINE SERIES 1700

AA 3777

THREAD is the thread location used to point to the next
entry on a threaded list. This monitor request
will be placed on the following threads:

THREAD NAME POSITION DETERMINED BY ‘ WHEN

Core Allocator RP after request

Scheduler CcP atter allocation

The thread must initially be zeror and is reset to zero on
completion.

Q contains the address of the area allocated and is
in the @ register whén control is given to the
completion address, (. If allocation is impossible
R will be set negative.

N 1s the number of words requested.

1b.3.3.3 Internal Description of Allocation

The Space Driver DRCORE is operated by a S
SCHDLE request from the request processor
{just like any other driver}. It uses
subroutine FNR for new requests and uses

the Core Allocator Subroutine CORALC to

obtatn the space required. If sufficient
space is availlable then C(OMPR®R is used to
complete the request. @ will be set to the
address ot the allocated area when the
completion address for the space request is
scheduled via COMPRA. If it is impossible

for sufticient space to be available and
swapping 1s 1n effect then the completion
address will be scheduled with @ set negative
denoting an error. Errors of this type due

to system directory calls cause the system
directory call to be ignored but cannot be
detected by the cailer as no completion
address 1s available.

If insufficient space is not available then
an attempt is mude to swap: the request 1s
rethreaded and the driver is set Ynot busy®.
I+ core 1s released before swapping is

effected, then the space driver will be re-
entered and the request will be completed ii(}
)

PRINTED IN USA.

CONTR LDATACOREORANON

DOCUMENT CLASS

3000/1700 Systems & Developmen DIVISION MAR 5 1971
IMS —— PAGE NO._1b-13
1700 MSOS No
EOOb~3.48 MACHINE SERIES 1700

(”w PRODUCT NAME
i’ PRODUCT MODEL NO.

AA 3777

sufficient space is available. Otherwise

the request will be processed after the core

swap area is released. For swapping to be
executed the following conditions must all
be true.

1. The completion priority is greater than
2. This is necessary since programs of
level 2 and below are not operated after
a swap since they might involve job
processing.

2- A swap is not already in effect.

3. A suitable time internal, since the
swap has passed.

4. No unprotected I/0 is

last
in progress-

If any ot these conditions are not fulfilled.
the request is put back on the core request
thread just before DRCORE exits to the
dispatcher.

Additionally, in the case ot condition 4.
SPASW 1s set nor-zero so that the protect
processor will schedule DRCORE whenever
UNPIO=0 and the allocator is not busy-.

If the above conditions for swap are fulfilled,
then the fullowing operations occur:

L. A write 1s started which transfers the
contents of unprotected core to a
designated area on mass storage. This
area is set up at system initialization.

2- A loop is scheduled at level 2 to lock
out all programs at that level and below.

3. The LVLSTR table and LEND are updated
to reflect the additional space available
for allocation.

4. SWAPON is set to ones to indicate a
swap has occurred.

At the completion of tnhese operations the
space driver 1s marked Ynot busyY and the
request that caused the swap is re-threaded
to the top of the L0GZ2 request thread-

When the swap transfer to mass storage 1s
completed: the space driver resumes as

fol lows.

1. The core allocator is entered to release
the space just made available.

PRINTED IN USA.

CONTROL DATA CORPORATION

300071700 Systems & Development DIVISION MAR 5 1971
IMS .
DOCUMENT CLASS : — PAGENO.__1b.l1Y4
PRODUCT NAME 170U mMSos U
PRODUCT MODEL NO.____ENOL™ 3.0 MACHINE SERIES 2700

2. The area is protected.

3. A space request for the swapped.area is
added to the wait list for threading
on the allocator thread at completion
of DRCORE processing.

4. A new attempt is made to allocate the
space to the call which caused the swap-

When enough space is released so that the
area is again available for job processing
{the SPACE request made above is completed}
the above procedures are reversed and the
Job is resumed as if no swap occurred.

NOTE: For swapping to combine the allocatable
Yunprotectedv areas, the space request
processor must be the last resident module.

The priority level of the space driver is
determined by the completion priority set

in Word 0 of the CORE physical device table-
It 1s usually set to seven {?}. UWhen a swap
occurs the space driver must set all the
protect bits in the unprotected core area-
To do this requires b.b micro-seconds per
location. Thus, for an YunprotectedY area
of size 10K the driver level will be busy
in this loop for approximately kb milliseconds
when a swap is requested or released.

N

The space driver rethreads a request back on
to the allocator thread if it is not possible
to allocate enough space for the request at
that time. No attempt is made to process
lower priority requests even though they may
require less space. The exception to this
rule is if the request to be re-threaded

has a completion priority of less than three
{3}. These requests are put on a wait thread
temporarily and then an attempt is made to
allocate space to the next request on the
allocator thread. When any other requests
have been processed requests on the wait
thread are returned to the allocator thread-.

AA 3777 PRINTED IN USA

CONTROL DATA CORPORATION

3000/1700 Systems & Development DIVISION MAR 5 1971
™ DOCUMENT CLASS ms PAGE NO._1ib .15
(, PRODUCT NAME ___ 1700 _MSOS
PRODUCT MODEL No.__E00bm®3 g MACHINE SERIES 1700

On completion of job processing, routine
JOBEND in the Manual Interrupt Processor

is entered to cause a core swap. This is
done by making a special space request that
can only be satisfied at the given request
priority by a core swap. The special area
so allocated is released when the job
processor is requested. This area occupies
only four cells for the allocator thread

at the end of the Yunprotected areav.

Unnecessary swapping is thus aveided when
the job processor is not in use. Excessive
swapping on temporary overloads during job
processing can be avoided by setting the
minimum interval between swaps. Table LVLSTR
must be set up very carefully noting that
programs that are not independent cannot be
assigned to the same request priority, i-e..
they must have separate allocatable areas in
which to run. It is not sufficient to

== provide a total allocatable area at one

(request priority sufficient for two dependent
programs since one ot the programs could be
assigned to the middle of this area leaving
insufficient area for the other program.

1b.3.5 RELEAS Requests
1b.3.5.1 Monitor Request for Returning Core
All programs that have been allocated core
memory, must return the allocated core to
the Core Allocator:, when they are finished.
This 1ncludes all mass memory resident
programs.

The calling sequence is shown below:

rlS 4y 987 1 o
PARAM+0 | 0 | RC 1x] o]+l
RC is the request code twelve {12} for returning core-
X 1s an absolute/relative indicator.

C :

is the return control indicator.
If R=0, control is given to the dispatcher after core
is returned. This is the value of R to be used when

AR 3177 R S PRINTED IN USA.

DOCUMENT CLASS s PAGE NO.___Lb-1b
PRODUCT NAME o
PRODUCT MODEL No.__E00b%3.0 MACHINE SERIES 2700

AA 3777

c
3000/1700 sysStems & VeVEOSEREAT'ON con MAR 51971

1700 MSOS

a program returns the core in which it resides. Since
the core will be re-allocated, the program residing

in it may be destroyed. Thus control is not returned
to the program but to the Dispatcher instead. Other-
wise R-1, control is given to the user at the next
instruction.

C specities the area being returned.

If C15=0, X is ignored and Cyy-0 is the absolute core
address of the area being returned. {absolute direct}

If C35=1 and X=0, then C1y 0 is the location that
contains the absolute core address of the area being
returned. d{absolute indirect}?}

If Cy5=) and X=0 then Cyy-0 is a 15 bit relative
address which when added to the address of the
parameter |list gives the core address of the area
being returned {relative, direct}

Note that relative indirect 1s not allowed.

T

Notes on returning core: s

User programs must return each piece of core which they have
been allocated. Otherwise the piece of core will remain
allocated indefinitely. Each piece must be returned once
only.

A check is made to determine if the area of core being
returned belongs to the allocatable area. If the area of
core being returned is outside the allocatable arear then

the request is ignored and control does not come back to the
user, but instead goes to the Dispatcher. Using this fteature
all programs, whether mass memory or core resident, can be
written identically. At the end of a program. the RELEAS
request is made with R, the return indicator, set to zero.
and C specifying the start ot the program. For core resident
programs no core is returned and control goes to the dispatcher.
For mass memory resident programs., the core is returned and
control is given to the dispatcher. The coding for both
core resident and mass memory resident routines is the same.

SPACE REQUEST PROCESSOR

The SPACE Request Processor is entered in the same manner

as the R/W Processor. 1Its purpose is to set necessary]
parameters {logical unit number, etc.} so that the R/UW d:@
Processor can complete processing of the request- 1In

addition, this processor contains the block of core cont-

rolled by the Core Allocator and the restart program.

PRINTED IN USA.

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

AA 3777

ONT§0b DAT CORPORATION

300071700 Syste opmen DIVISION MAR 5 1971
IMS
— PAGE NO. 16-17
]:?DU ‘MS QS - GE NO
EO0b»3.0 MACHINE SERIES Lr00
lgH-l External Symbols

]JE'.q - a

4.3

CKTHRD Routine 1n R/W Processor which checks for
non-zero thread.

LEND Address ot LOC that contains LAND in DRCORE.

SAVLU Location in R/W Processor to which the SPACE
Request Processor exits-

CALTHD Core allocator thread location in SYSBUF.
RPMASK Mask for request priority

IDLE The level -1 idle loop-

DTIMER Entry point to diagnostic timer

Internal Symbols

AREAC Start of allocatable core area.

AVCORE Size of the allocatable core area-

LAND End of the allocatable core area

AREAl, AREAZ2, AREA3, AREA\Y Size of areas l-4.

Restart Routine

Since this program is operated once immediately
after autoload, it is located in the block to be
controlled by the core allocator.

It 1s entered via the following procedure when the
system is on mass storage.

L. Master clear the machine.

2. Depress the autoload button on the mass storage
device.)

3 Depress the run switch. This causes the machine
to execute a program which reads the resident
portion of the system from mass storage. UWhen
this is done: the program jumps to the address
specified 1n location 1, which is the address of
the restart program.

The restart program performs the following operation
before jumping to the idle loop-

L. Protects all locations which must be protected
and unprotects all others

PRINTED IN USA.

3000/1700 SystERNTBOL RATA,GABRORATION MAR 51971

DOCUMENT CLASS

PRODUCT NAME

PRODUCT MODEL NO.

AA 3777

DIVISION
NS - PAGENO._1b-18 'S
10,00 MSOS) " 1:§
EQDbL™.3.0 MACHINE SERIES 1200

2. Enables the timer interrupt and initiates the
diagnostic timer if present.
3. Requests that the protect switch be activated.

The 15?3 Line Synch. Timing Generator {timerl} is
assumed to be interfaced via a 1570 Data and Control
Terminal {DCT} that is assigned to Equipment No. 8
It is started by an output with A=AD0D3L. If this
output results in a reject, the following message

will be printed on the output comment device:
TIMER RJ
This message will occur if the Timer is not present

or if the YOOhZ power supply is switched .off or the
equipment code assigned to the DCT is not 8.

The message PP is then typed to request that the
operator set the protect switch ON and enter an ~.
On input of an » (R the Restart program exits by a
Jump to the level 1 idle loop IDLE.

PRINTED IN USA.

59\12 LEveL !
..]:N REQLVL-

SRAVE

T2

;N P\EQLT H

prm e

. dgm Fée
g 1\+1S L€. L

A ?&emc Td
LaNTIN

— “ ¥ . [—

SET Y P |
Senmcn te n| o TNE A
PI{QLB?‘{ _)‘ %HQE D
"ﬁf LACATIEN |
con:g::s:::ggz:::::non °°§32‘s‘s"' 1 n’\% 'frAvcp"é 1700 Pnngcr NO. Jrsy APPROVED I?A“Tl
SAMPLE CODE D Doqr‘#l\?:" HLQ¢ KQ_ PROJECT MGR. ;:1
FLOWCHART | PAGE .1or 4- PROJECT NAME
DECISION TABLE [:] NUMBER 'os:-L"E TASK NO.
OTHER O DRAWN BY DATE TASK NAME
AA1385 (FORMERLY CA127-1) PRINTED IN USA

LT 9T

16l & WK

CONTROL DATACORPORATION
SOFTWARE DOCUMENT

SAMPLE CODE O

FLOWCHART O
DECISION TABLE []
OTHER O

2 — s BN
“* ® L4 %
. H
. . o
AR L * * : “ *
;
SAVE ADDRECS * &
oF THIS Pisae
mb '!—K * > » ® * . * * -
: « 2. . .
NexT Fice e ,
- . »
y ? ‘....,,.,...2 4 I—'—‘ L4 ? ' »}
. . . .o s e e v s s
| SME Ererd . — — e e e
AUD LécaTyo o)
. . . . e e » PN
d¢ THIS ' ; | [
p . PO B PO PO S
Plece.
T » - * £ * Ed * - @ k3 ®
« o e & a2 s » .
e e s s 4 e B
B 4 L o @ 2 # gy
3 ; % 3 . s » » N + s .
' . TR T S
—l I b
e e s s . s s s
- % £l £ - 1 ® . »
. e s s e s« s s e
ey B § B ey
|] - R S
PR . — s w— & »
f s s e s PN ? e .
: H
N . L S b s
. e s s e e e v s e s s
Dogfrss;w _LIY\ (_L h:_AyCPHE l? DD PROJECT NO.]Rt\t APPROVED DATE o
DOCUMENT H.Mg: § l:%'
TITLE PROJECT MGR. G‘;
PAGE pr 4 PROJECT NAME
NUMBER €i¥§ TASK NO. 7
i
DRAWN BY DATE TASK NAME

AA1385 (ronmgcuu-n

~=
- 7

mmmu@

et e YUl

2 N 4 s
Sift?='ﬁl
| INDICATING | - . -
Np SPAce REQ
AVATLABLS
1 @-—»—-‘ I—‘ \—wﬁ
ge. BF Susewd D Lefr - - - -
253&9 > S¢ TMA doct, . . . ,
Lo 8¢ Preed AS Preet | i f
Plees > s1 FRLLswenG m——_—i oo o —
Lenc.w satarep| .
e > CN - B |
LbexinN X oo - T R
Preae —» S .
/ v > . . 1 .
(ﬁ.}ﬁ J REMeRSuserol | STRE Lpot | dperd BF |]
0 | Plzes $0dm ——y @ ALOCATED [,'MFED .
| ??Tm\;rm» 1S AL BF : mm]é{,\f w» Q g .
TN | Enbries |G pHe | |
o e q THeEAD La»éz h =
PART AS PLEC
<GhraT e g DEs
T PlQC«C "e, THQ
LEfFTéveRe TS !
THe TReaening Neet. i —d
co":gg:::::gg::::::“’" DOCUMENT 1“\ (; MacH 1700 |erosect no. im APPROVED DATE
°°°r‘.’%‘f£” A‘prae PROJECT MGR "1
SAMPLE CODE O - - =
FLOWCHART O PAng oF 4 PROJECT NAME o
DECISION TABLE D NUMBER L’:‘;’E TASK NO.
OTHER D DRAWN BY DATE TASK NAME
PRINTED IN USA.

AA1385 (FORMERLY CA127-1,

T2 9T

16l & YUW

-

a2e

S
|
|
A - —
| SARVE Lge . ¢F
i RETURND
| N K2
|
i HE |
B - N -
{ [’
H - i N
N N : <
. i —
THREAD ReTugned x
%W' Pree Befare A
~ T NexT Preee |
D —
) !
: - b
CONTROL DATACORPORAT'ON DOCUMENT MACH. 1"‘ - - PPROVED ¥
SOFTWARE DOCUMENT CLASS TYPE L?DD PROJECT NO. A ¢ DA‘ E
b L ALC¢ & PROJECT MGR R
SAMPLE CODE O = - o
FLOWCHART] pace & or 4 PROJECT NAME
DECISION TABLE [] NUMBER :;:5,’-% TASK NoO.
OTHER O
DRAWN BY DATE TASK NAME

AA1388 (FOR@ CA127-1)

A=A
v

erwves i)

AT

1AL ¢ MY

EXpmnE oail
THRLAD Foe-

%ﬂ’ 142

AA 1385 (FORMERLY CA127-1)

—
; |
[S— H J——
= b
CONTROL DATACORPORATION Dog UMENT *‘r - M 1500 - CPPROVED oare 1o~
LASS — > TYPE g PROJECT NO.]
SOFTWARE DOCUMENT BSOCUMERT D
SAMPLE CODE 0 TITLE p\ﬂﬁ &{_ PROJECT MGR. § =1
FLOWCHART O ?AGEj,oF 6 PROJECT NAME
DECISION TABLE [] NUMBER g:¥§ TASK NoO.
OTHER
O DRAWN BY DATE TASK NAME
PRINTED IN USA

161 ¢ YUYW

SPACE 19
- N&T RVALLABLE
: AT YRESENT
|
1

<

S1IZE€ IS VEp

JLPRGE TS FIT
[AvarLrble pReA
' LAT TH IS RP

Q= ABR. d¢

X TRYT®
sw\éP

197 .
NEGRLIVE TO.
INTICATR,

CRRAR

- ST BF ARER
! | THAT WRS
) LEUBCATED
'
: e o
STERE Q AS | [Steet Q i
THE CompcTion |\woRh g aF.
ADR. TN TAE | | THe PYSTRB .
ey || |
m & ® -
INDIRECT C AL
g STRET: THG
REad Fhgm M
CONTROLDATACORPORATION [cocumenT s MACH. |r APPROVED DA
SOFTWARE DOCUMENT o:§:;?~r A0 TveE 1700 [erosect wo. e PROVE :‘ -
SAMPLE CODE [] Hrie” DROGRE s e 1Y
FLOWCHART OJ pace Qor (@ |erosecT Name =
DECISION TABLE [] NUMBER ‘,,’2‘%5 TASK NO. -
OTHER D DRAWN BY DATE TASK NAME

AA1385 (FORME< >A127-1)

®

161 ¢ YUYW

o : -~ : e
AN (| TAITINIZE
%_mS;{F Mﬁ&m BF T&RP)..
| &)
oRDITE To CpRe L/
1,4 st THECA D
-
’ vwr..u?
H
] —
: [THROLT \ , g:gr ‘ e e
‘ - THE
‘ SR ~ gt SPRACE puvee
THEEAD NST BUSY
CONTROLDATACORPORATION ['cocumenT T MACH. i PROVED DAY
SOFTWARE DOCUMENT Do‘i:::’m LMmS Tvee 1700]erosecT no. e el :"‘ i*é:
SAMPLE CODE D TITLE b PROJECT MGR. I3
FLOWCHART O PAGE & OF 6 PROJECT NAME .
DECISION TABLE [] NUMBER DATE TASK NO
OTHER m DRAWN BY DATE TASK NAME
PRIMTED IN USA.

AA1385 (FORMERLY CA127-1

16l & YUYW

1 a s -
) Tfwrxte || rreLt.Proteet [[Gededune 2T S|
S L | wwmRsTECTED | CSWAPIS_ | Laet AT | NeNISRE | o
W logme a0 Tuot whttvG || LsueL 2 [¢ far Tue el W)
mase spemcel| | LB gumiesad] N7 |
Winfic i) YT END@F @ SET AREP
¢F Swh? nawcm':fue _y AVPL.To R0l
m.m. QwaTE = END &F PRACPAMS TO
T 0gRS | STRGEMRAT. |

£PD T - R -
o B Tk o6F e G| [P e |
N@—) UnTROT. came LaveL 2. D g |y STNCE. L,AsT .
. Fﬂ%gﬁ ﬁ. P I <¢m . \
ST Mgy M. m. ' Lgo ‘_J Ve T . ‘swﬁ? , ‘
| hunTirBLe™ &= T Ve || .
UNPRIT, b e L L Co
" OfieTies oF FRERD _ Ly
| CLWMT [ClepR 1 [Screnuig o
@G e | Swhegn SR qn) I T
W : = ': i E i
Npe Wen | =09 "Gt Busy ‘
' <o
— . } —
ONTROL PO 0 DOCUMENT MACH. I
e oo [y L 95 3700 [= .
SAMPLE CODE [] TITLE DR%RQ— PROJECT MGR. - _
FLOWCHART O PAGE }oF PROJECT NAME
DECISION TABLE [] NUMBER BAtE TASK No.
OTHER D DRAWN BY DATE TASK NAME -

AA1388 (FORMQCA‘Z7-‘)

-

®

G2 AT

161 ¢ dYW

C e — e ca— -

AdJusT
RSTuRR Lo M - -
FoR. DIRZN 5 '
% l/ - ¥ 5
- N Iw_, H -y
<= — = v W PSS I ¥ b
Qeiedus. T ﬂ g%é_ﬁsmﬁg 1T . | R | N .
Racrse at | EEEPSETEN ALBCATBR , .
Q L 2 / R . > . &
'AULZC ATGR | -/ EM&Y S q
, - r= 1
& TT VIA i {
EQXT I -
. § . 3 ®
| L. ; ——d .
. ™ H ""‘ M
H § *
) - ‘m—
CONTROLDATACORPORATION [CocumenT ~L Mm - MacH. 1900 |erosecT No. | (= APPROVED DATE
SOFTWARE DOCUMENT SLass AL Eanamn
SAMPLE CODE [} PoSiTE SRojEcT R P
FLOWCHART :] ‘DRC@RE, PAGE {op b PROJECT NAME
DECISION TABLE D NUMBER '32‘#:5_ TASK NO.
OTHER O DRAWN BY DATE TASK NAME

AA138% (FORMERLY CA127-1.

PRINTED IN USA.

229,

L/6l ¢ YUYW

¥

QAVE A §C

@—)R&Bﬂk
- {& Det T
uvPLd

S AVE ADDRESS

[BF ReQuesT
k{ff“‘*ﬁwb €T
REQuesT Pmea-‘f

CERCT

DRAWN BY

DATE

TASK NAME

SeT PReuus] "
PReSERT DISP J
1 NexT Y _UIA THRODIT / - -
980 THREAD |
' L | J
CONTROL DATACORPORATION OO ase. ‘ et 1700 |erosecT no. fre APPROVED DATE
SOFTWARE DOCUMENT T ‘
TITLE C adg PROJECT MGR. e
SAMPLE CODE O
FLOWCHART O race (o (p PROJECT NAME
DECISION TABLE E]] NUMBER Bave TASK NO.
OTHER

AA1385 (FORMQCA127-H

®

)

161 G YUYW

- o~ T -~ —T0 = N
v 2 a) '
. < [] -
' RaTecr ‘
y TINCAMEnT L RCATI :‘NS 1 TEmER
| ReTUeN ZERG T « e 0 v x a
ADDRESS CONTENTS OF £S5 - ~ -
eY 5 T SeT P lec., |
a3 o il) i
%‘éﬁ‘,\WWJ wexrte PP -
SITS - . 3 Lr 0 » 2 . — ——
| N ReaD
g A WERD |
| FRém TOPT |
SET up | .
LOGICAL UNE] *
FéR , f b
. ALLYC FTOR- WATTE -
TIMmeR
RD
/ OKTHRT AL ?Q,E.;%sne&
@ |
(s] o TACORPORATION [ToocumenT MACH. NO. i APPROVED DAT
y N:gF:V?AAREADOCUMENT ooi::’;’m L S tvee 1700 |errosect REY . :,,
::':b:'::if:'ss [% S'-PAC‘E PAGE l OF l PROJECT NAME T
DECISION TABLE [] NUMBER DATE TASK No.
OTHER D DRAWN BY DATE TASK NAME

PRINTED IN USA.

161 ¢ YUYW

DOCUMENT CLASS
PRODUCT NAME

PRODUCT MODEL NO.

7.0

AA 3777

CONTROL DATA CORPORATION MAR 51971

3000/1700 Systems 8 Development DIVISION
INS 5 17.1
3700 105 AGE NO.
EOOb™E. 1 MACHINE SERIES Ll

PARAME - Parameter List Conversion Routines

20.1

c0.2

c0.3

Program Function

Four routines are provided in this module for the
purpose of decoding parameters in monitor requests.
The parameters decoded are:

LU = Logical unit

S - Starting address of I/0 buffer

N = Maximum number of words to be transferred
C = Completion address

Entry Interfaces
The entry points are as follows:

LUABS
SABS
NABS
CABS

The routines are entered by a RTJ to one of the above
entry points or by an indirect RTJ to locations BC-BF
in LOCORE. On entry @ contains the location of the
parameter list.

Exit Interfaces
All routines exit with the decoded parameters in ®.
In addition, SABS exits with the location of the S

parameter in A. A and @ are not conserved, but I
remains unchanged during the routines.

PRINTED IN USA.

LW

<l§ 2 sf‘g a s {‘ﬁ
/K \ LYAI _ Ao
e o A- ReL. A- Lv#
- L.U/4£35>) (()9_:_ | (oC. OF Ld. | !
(oYAk> ~0 A28
. o i
Lo \ 2 -
./ | {domPuTE
INHBiT] ABs. EnABLE -
1N TE.KK.ur‘rsj (GCATIoN INTELRYPTS
- | . . o
/ =
43"
v | LAz
o i _ L/
b \)AYE 4 o~ 4 - N
| fAKAETey {3 Ags. Lge (ﬁéruzfu Tﬁ
t[JST o1 tek ‘ N FF LU Pt
FiNd
ONPACK LU
A FAeAmere,
] \

CON:gg:::::ggg:::::lON oocct.ar,:swr I™mS ‘:’AYCPHE /70O |erosecT No. If"“ APPROVED DATE
SAMPLE CODE D ooc#:_n:zf pﬁtﬂﬂlné PROJECT MGR. T‘.
FLOWCHART O msos 20 PAGE/ oF 4‘ PROJECT NAME '
D.ErCIS|ON TasLe [] NUMBER oave TASK NO.

OTHER D DRAWN BY DATE TASK NAME
PRINTED i 08",

AA13885 (FORMERLY CA127-1;

16l & YUYW

2l

1 2 3 - 4 5 .-
e Use PARAM Abo. Srpenne : '
(595 S \ LLisT Poww 76R] |ADor« O ‘ R .
A As Ketarve /;_vcec,y\ eaT) .
BASE °© Base
3
4
-
) .] ; = ;
I TR Y: I { T | AnoOR. OF | o
INTERRU.F Tii | S PREA M.
i |
:
N /
\ o i \ \ . % :
Sﬂ VE AT f' ~/|/S/ o \'S ! - 1 - ' ;
1 freamerec | — ACFUARL H Q‘ . —
lrsm . ! STAR TENG ; S fakam. :
Fo rngTER . _poQress | ' - i .
|
“ i
/ , . ,
. juneack Aoc S Enas(e Cd ;
S 7 Base ioe rece i 1@:7‘35{3‘)
Adoe. oF TERKJPTS ;
PARAMETER | STAnan(, ADNR A ‘ j
l'« —_ ——3
CON:Z::::’RTEAESCR::::IION PN T /M S MeT /76’ o PROJECT NO. REV approvec | oare
P —— O Do e Pﬁfﬂﬂ'\e PROJECT MGR.
FLOWCHART O MSes Qu O PAGE ._—,Zgr % PROJECT NAME
DECISION TABLE [] NUMBER DATE TASK NO.
OTHER D DRAWN BY DATE TASK NAME
AA1385 (ronmgcuz?-u !: :} PR!NTE)INUC;

161 ¢ YW

E*eT

(¢

n 2 3 A [A
= \ N
(wAes) | xea ‘

, Abe Abcxk. .
BISF\ BLE, L oF (¢ A _
INTERRUP TS Gst 10 %
OF ov0aD3)
VEes
Save]
fAeanetec Q /OF
LsT LoGhen | WwCkoS
' t - s
}
/ |
Clene BT L5 . -
LEVAGLE VT L Ly Kertoen 70) —
" N .
ORATION — . — T
CON:g:::::EAEgg:M:NI P aes 1 - Wee 1700 PROJECT NO. rey APPROVED DATE
SAMPLE CopE [°oGivee . PARAME :) PROJECT MGR .
FLOWCHART O MSeo< 3.0 PAGE JoF 51 PROJECT NAME
DECISION TABLE D NUMBER lo’:.:r,é TASK NO.
OTHER O
ODRAWN BY DATE TASK NAME
FRINTED iN USA

AA1388 (FORMERLY CA127-1}

16l G YUW

he LT

S -3 s -
s | T App Ance.
Leass N (4 o sysren
- S .D.mc:(rocy 3 .
) L o Aoo faecan. | ; ;
. ‘._,;DLS.A gle ., L . SLETS o R s e o s
INTERRVPTS ConTEL TO ,
ba — S S
Y * CL '
SAve
Pakpameree |
Got . INTERRUPTS
5 NTEC . ‘ e ;
N oot
CETUEN TD) .
.\'\.._, .P,*: .'_ - 3 . » ¥y @ »
) {
- R g P e L *
ool e A =TT T
DOCUMENT ’V,q'e AmE
SAMPLE CODE D TITLE PROJECT MGR. o
FLOWCHART O mSOS 3-0 PAGE #op % PROJECT NAME &
DECISION TABLE [] NUMBER DATS TASK NO.
OTHER O
DRAWN BY DATE TASK NAME

AA1388 tronmccuzrn

A%

PRINTED IN Lb

16l S NYW

LA

3000/1700 DEvEL SBNERQL PATA CORPORATION MAR 51971

DIVISION
DOCUMENT cLAss_1MS PAGE NO. 18.1
PRODUCT NAME 2 2 PRl o0 SToPRD o
PRODUCT MODEL NO. . MACHINE SERIES e

18.0 TRVEC - Transfer Vector Table

AA 3777

18.1

l8.2

FUNCTION

This module functions as a communications area between

the mass memory resident Job Processor and Library Edit-
ing modules and core resident modules. TRVEC divides
functionally into three parts: {1} the vector table -

a table of flags and addresses necessary for communication
between core resident and mass resident programs. {2}
JBCNCL - routine to schedule either JBKILL or PROTEC

and {3} JPRETN - routine to facilitate return to either

T? or JPLOAD from the Loader.

ENTRY POINT NAMES AND FUNCTIONS
TRVEC Entry Point to TRVEC module.

TRANV Contains the absolute address of the Job
Processor transfer vector table.

JBPROE Location in JOBENT to Process Job Processor
modules.

ERRMSG Absolute address of ERRM routine in J OBENT.
MIBUF Absolute address of MIPBUF buffer in JOBENT.
TRNVEC Absolute address of TRNTBL buffer in JOBENT.

LIBET Contains location in LIB in JOBENT module
{routine to schedule LIBEDTYX.

RECOV Contains absolute location of RECOVR in JOBENT
module {routine to schedule the Recovery program}

RELS1A Location in JOBENT to release a specified file.

JOBIND A flag which indicates whether the Job
Processor is in core.

UNPIO Contains the number of unprotected I/0 calls
pending. Used by the Core Allocator to
indicate when a swap may be made.

IUP Pointer to the comment device. Used by the Job
Processor {initially set to 18FD}.

SPASU Flag which is set non-zero when the Core
Allocator wishes to swap core.

NSTACK Maxe number of stacked requestse

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 51971
300071700 DEVELOPMENT DIVISION
,] . 2
DOCUMENT CLAsnggfepf_Mﬁmn____ PAGE NO.___ 28 O
PRODUCT NAME
PRODUCT MODEL No.__ £00b%3.0 MACHINE SERIES 1700
!

VRESET Flag when set indicates to JBKILL to change
IUP back to its initial value {18FDy 2.

PCOMFL Protected Common Flag {LIBEDTZ.

PRORET Contains the absolute address in JPLOAD to
return to after PROTEC is scheduled.

JPSWT Temporary location for MIINP buffer address
or an index to the tranta table or a negative
value set by JOBENT or JBKILL.

FILEL Contains the address of the area in allocatable
core where JOBENTa Tll. T?- TS5 and T3 are
brought into.

FILER Address of the area for the Job Processor and
LIBEDT modules.

FILES3 Address of the area for the Protect Processor
and JBKILL modules. .

e

FILEY Address of the area for the tape driver buffers.

LOCF Contains the location of the routine in the
Protect Processor which puts out J0l and 402
error messages.

LPTRS Location of PTRs in the Protect Processor.

SWTCH Switch to lock out Job Processor when LIBEDT
or the recovery program is in operation.

LOADIN Flag for protect processor to allow the loader
to read and write below the scratch area on
mass storage.

UNPTIM Number of unprotected timer requests outstanding
{checked by JBKILL before job is terminated}.

JKIN Contains the address of JBKILL when in core.

JBCNCL Job Processing cancel routine

JBCNFG Set when JBKILL is active.

JPRETN Routine to interface between loader and Job (]@
Processor modules.

JPRETL Contains a return address to T7?7 or JPLOAD.

AA 3777

PRINTED IN USA.

CONTROL DATA CORPORATION MAR 51971

300071700 DEVELOPMENT DIVISION
... DOCUMENT CLAss_IMS PAGE NO. 18.3
(_ ProDuCT NAME__ 1700 OPERATING SYSTEN
PRODUCT MODEL No.__EO0E®3.0 MACHINE SERIES 1700

18.3 EXTERNALS AND DESCRIPTION

PROTEC - An entry in the system dlrectory.
The mass memory resident Protect Processor.

18.4 ENTRY INTERFACES
None
18.5 EXTERNAL INTERFACES

Within the JBCNCL routine an exit is made to the
dispatcher to schedule either PROTEC or the starting
address of JBKILL. Within the JPRETN routine an exit
is made to either T?7 or JPLOAD depending on what
address is stored in JPRETLl. -

18.6 GENERAL PROGRAM INFORMATION

18.k.1 The equate of NSTACK to 5 sets the maximum number of
I/0 requests that may be stacked at one time.

(' 18.7 GENERAL DESIGN PECULIARITIES

18.7.1 If a new entry is made to the vector table. it must be
inserted following the constant RELS1A. The constants
from TRANV through RELS1A are part of a table transfer
from JOBENT.

18.8 PROGRAM LOGIC

18.8.1 The JBCNCL routine first checks the job cancel flag

{JBCNFG} which is set if JBKILL has been scheduled.

If scheduled jump to the dispatcher. If not scheduled
add one to JBCNFG+ set the @ register negative to
indicate that JBKILL 1is requested and check the JBKILL
in core flag {JKIN}. JKIN+ if non zeros will contain
the starting address of JBKILL. If JBKILL is ina
schedule that address and if it is not ina schedule

the Protect Processor and jump to the Dispatcher - both
the address and PROTEC are scheduled at level two so
that no other Job Processor routines may interrupt them.

AA 3777 ‘ PRINTED IN USA.

el ¢ YUYW

4 5
Avp QNE ra Jeg PrcK upP THE
leoncee. FLas | ADORESS &F JPRETN:
(Fb<NFE) PROTEC .
L Prck uf A ser @& ARec. & STOLE AODRESS INHTBLT , L
1¥08 cANcec | | | ra SFFFrF TN scabe L ZNYERRUPTS | . e
| FLAG (T8enFg) , . A ReQuesTr . . Coe Coe ey e
ek JumpTe THE |
FLAG (TKEN) RDDR Ess seT
Tor vovacta = | & uP By 17 o8
povtsss B F TPLOAD |
CON:g:::::EAngS:::IWN O nss | I NS Yee 1700 PROJECT NO. [rev APPROVED DATE
coeTee T PROJECT MGR ‘T
SAMPLE CODE [] TiTee RVE< : -
FLOWCHART D PAGE / OF / PROJECT NAME
DECISION TABLE D NUMBER {;:¥E TASK NO.
OTHER O
DRAWN BY DATE TASK NAME

AA1385 (FORM CA127-1) AR PRIN‘I’DINUC\

h*RTL g

19.0 TMINT

AA 3777

CONTROJ DATA CORPORATI
3000/1700 Systems & Development ' oN DIVISION MAR 6 1971
. DOCUMENT CLASS INS PAGENO._19-,
' PRODUCT NAME 1200 MSOS
PRODUCT MODEL No.__EOOb»3,0 MACHINE SERIES 1700

TMINT processes TIMER requests, timer interrupts and delay
expiration.

19.1

19.2

19.3

External Symbols used by Timer Package
SCHERR Used to exit if the schedule is full
TIMACK Acknowledge code for time interrupts
Time Request Processing

19.2.1 Entry Interface

Entered from the monitor entry for requests via
a jump. ©IY contains location of volatile, and
YA° contains location of the request.

19.2.2 Exit Interfaces

Exit is made to SCHERR if no schedule stack space
remains open. Exit is made to request exit after
the request has been added to an appropriate stack.

19.2.3 Internal Operation

On entry, the request processor translates the
completion address and attempts to fill an empty
schedule stack entry with a SCHDLE request at the
level specified in the TIMER request. If no
empty exists, exit is made to SCHERR.

The newly filled schedule stack entry is then
threaded to one of 4 |ists depending on the °UY
parameter. The callers delay time is added to
the stack entry as the YdY parameter. Exit is
then made to the request exit.

Time Interrupt and Expiration Processing

After the interrupt is acknowledged:, each of the counters
for the 4 |lists {see 8.4.3} are examined to see if one
count for that list has expired. If no, the respective
count is decremented and exit is made to the dispatcher.

If the count is expired, it is reset and the threaded

list corresponding to that counter is examined. The

delay in each member of the list is decremented. Those
delays which are decremented to zero cause SCHDEL requests
which result in operation of the concerned program. UWhen
this process is completer the next counter is decremented
etc.

PRINTED IN USA

CONTROL DATA CORPORATION

DOCUMENT CLASS

PRODUCT NAME

3000/1700 Systems & Development pivison MAR 91971
IMS PAGE NO.___19.7
1700 MSOS O
c00%»3.0 MACHINE SERIES 2?00

PRODUCT MODEL NO.

19.5

AA 3777

If the acknowledge of a time interrupt is rejected, the
program will exit to the dispatcher.

Installation

The TMINT module may be added in the same way with one
additional requirement. The entry point name °TIMINT®
must set as the primary processor for the interrupt line
where time interrupts are trapped. This is done by
suitable re-assembly of LOCORE module of the system .

Internal Symbols used by TMINT

These symbols are defined via EQU pseudo operation and
can be easily deduced from the listing.

PRINTED IN USA.

MAKE SHPLE REQ, SAVE UNIT I
ity v ST
oRrR: A by ¥
STORE LN THREAD y 19
~orD Vo F E™TY ST o E!PI"”"G
SLeT To UNIT PARMETER
A P:E VE CAVT L}l&mu pur u«i,.nks
DD QUEsT OF EMPTY SWoT Trme bELAy
LENGTR 10 IN VIPE, T IN SCHPLE SwoT
RETVRN JusT Free®n
ADDRESS)
\
v CTORE TRANS LATED SET USERS
TRANSLATE
com JLETION ig?{{gw;ﬂ GREL~. QosITIvE EXIT T0
ADDRESS - CAVE - :] R T
MP, T woRD Q. oF FoR RETVRN FOA
™ Vvl Emgly scoT .
CONzggt:::EAEgz:g:::‘;mN DOFUMENT L ¢ MACH.) 500 PROJECT NO. REV APPROVED DAT;]
SAMPLE CODE O PocTee | TMINT PROJECT g
FLOWCHART O paGge/ 0F3 PROJECT NAME
DECISION TABLE [] NUMBER TASK NO. >
.
OTHE
HER D DRAWN BY DATE TASK NAME
“A1385 (F iy CA1271 PRINTED 1

16l S YUW

E°bT

WY

6L e

W » ANV TANIE T &
IAIT&%UFTs CAu—S/fE&OO

4 W_NXTTIM
(Emece TNT. CHek Vegr
\SET Sﬂmplf . THmMmE 1
eﬁ‘l"‘fo Dcee" Y 3 CQ‘V N TR

. > . - N
’ f H

ML

ey e

N) ’ Y
' Ackupmlece . SET : meeemenr .
Cov s _ . T/iMe. , .
JINTERROPT Vacve : : - Cw»m& . C
a _ ?) L] *
yes 1 , .
Gy . - o
(WCREMGN T — o i
} Core befﬂTGH R, e -
CL»OC-« |) ‘ * < t B * ‘ P g o
{ , — R e el g
NTROL DATACORPORATION : -
<0 :gFT:ARE DOCUMENT Poass T IS Wee /700 |erossct wo. Jr=| aeeroveo DATE
DOCUMENT E”\I_N(—
SAMPLE CODE D TITLE T PROJECT MGR. £ ‘
FLOWCHART O PacEL, or P |ProsecT name
DECISION TABLE [] NUMBER DATE TASK NO.
OTHER O
DRAWN BY DATE TASK NAME

AA1385 (Foﬂu@ CA127-1) Cj mm"@

h A ,g/

é: 7 2 N A! 5 . A
SeHEOV .
SHevo L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>