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FOREWORD

The 6400 Central Processor Training Manual was written to assist the
student in his study of the 6400 Computer System. This manual assumes
that the reader is familiar with the contents of the 6400/6600

Introduction and Peripheral Processors Training Manual, Publications
Number 020267.

In any technical writing effort, possibilities of errors are always
present. Although Control Data Institute makes a conscious effort
to minimize errors in its publications, errors are nevertheless
inevitable. TIf you would like to make the existence of errors known,
or would like to make comments or suggestions concerning the manual,
you might find the Comments Sheet at the end of the manual to be of
help. Forward your comments to the Educational Development Sectiom,
Control Data Institute, 3255 Hennepin Avenue South, Minneapolis,
Minnesota, 55408.
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CHAPTER I

AN INTRODUCTION TO THE 6400 COMPUTER SYSTEM

INTRODUCTION

This chapter provides an introduction to the CONTROL DATA® 6400
Computer System.

MARKET POSITION

The 6400 is a large-scale, solid-state, automatic, parallel,
digital computer aimed towards the general-purpose scientific
market. Its input/output section is made up of 10 small general-
purpose computers, with 12 data channels accessable to any of
these computers, making the 6400 competetive in many areas.

6400 SYSTEM GENERAL BLOCK DTIAGRAM

The general block diagram (Figure 1-1) will help review the
overall functional sections and their interconnections. In the
basic 6400 system, the only way to place data and instructions
into the Central Memory is through the Peripheral Processors
(PPU's). The Central Processor (CPU) is controlled by the PPU's.
When the CPU stops, only a PPU can restart it. The PPU's do

not have a Stop instruction.
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SYSTEM CHARAGTERISTICS

The 6400 system characteristics may be divided into four parts;
Data Channels, PPU's, Central Memory, and Central Processor.

DATA CHANNELS

The ten 6400 Peripheral Processors are connected to thirteen independent
data channels. Twelve of these data channels are bidirectional and

can be connected to I/0 equipment. The thirteenth is permanently con-
nected to the Real Time Clock and is used specifically for monitoring
the cloek. The Real Time Clock is a 12-bit, 2's complement counter,
advanced every 1 microsecond.

The method used to connect the data channels to the Peripheral Processors
allows any processor to use any channel. This scheme allows flexibil-
ity in handling I/0 equipment.

PERIPHERAL AND CONTROL PROCESSORS (PPU)

There are ten identical Peripheral and Control Processors (PPU)
associated with the basic 6400 computer system. Each is independent
of the other and each has its own 4K,12-bit memory. The basic cycle
time is 1 microsecond. Each is capable of communicating with the
central memory, the twelve input-output channels and the real time
clock. Each processor is capable of executing a 64-instruction
repertoire. The instructions include logical, branch, 1/0, central
memory access, direct, indirect, and indexing addressing modes.
Average instruction execution time is 2 microseconds.

CENTRAL MEMORY

The central memory has 60-bit words, grouped into 4,096 word banks,

and employs bank phasing. The 3 standard sizes available are 32,768

(8 banks), 65,576 words (16 banks), or 131,072 words (32 banks). The
60-bit word is obtained by arranging five PPU memory modules in parallel.

The basic memory cycle time is, therefore, the same as the PPU's; however,
because of bank phasing, 60-bit words can be moved at a 100 ns rate.
The Central circuits of Central Memory have a "Retry" feature which
allows retrying a bank that was previously busy every 300 ns until it

is free. The control circuit also has a !"Scanner'" to enable sorting

of simultaneous requests from different sources. Central Memory can
process a request every 100 nanoseconds. Data can flow into or out

of memory at a rate of 60 bits every 100 nanoseconds.
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CENTRAL PROCESSOR UNIT

The 6400 Central Processor Unit is a high-speed, binary arithmetic and
control section. Types of instructions are: logical, branch, shift,
increment, floating point, pack, unpack, normalize, floating point add,
subtract, multiply, divide (in single and double precision). All
instructions and data come from Central Memory, and all new data
(results of programs) are stored in Central Memory (the Central
Processor has no I/0 instruction). The instructions are executed

in a serial fashion. Instructions are either 15 bits or 30 bits in
size, 3-address type. The data word is always 60 bits. Data words
are 59 bits plus 1 sign bit in a fixed point format; floating point
has a 48-bit coefficient, 10-bit exponent, and 2 sign bits. Average
instruction execution time is approximately 1 usec per instruction.
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PHYSICAL CHARACTERISTICS

PHYSICAL LAYOUT

The 6400 is housed in an "in-line" frame, see Figure 152, or g "In

frame, see Figure 1-3.

There is enough room in this layout for the

PPU System, Central Memory (32K, 65K, or 131K),Central Processor, an

optional Special-Purpose Central Processor.

a top view
Figure 1-3

32K System

Chassis 1

Figure 1-2 illustrates

of the 6400 main frame for the 32K and 65K memory sizes,

illustrates the 131K memory size.
64K System

10 PPU's, 12 Data Channels, Chassis 1
and real Time Clock

10 PPU's, 12 Data Channels,
and real Time Clock

2 Central Processor 2 Central Processor
3 16K Central Memory, CM Control, 3 16K Central Memory, CM Con-
and Data Distributor trol, and Data Distributor
4 16K Central Memory, Disk Con- 4 16K Central Memory and
troller, and Data Distributor Disk Controller
5 Not used 5 16K Central Memory and
Data Distributor
6 Display Controller, Clock 6 Display Controller and Clock
and Data Distributor
7 Not used 7 16K Central Memory and
. Data Distributor
8 Not used 8 Optional CPU
D. S.
o 5 4 =
=4 =
=3 5
Z =
= 6 3 =
= £
5 CABLES %
= 7 2 =
=1 =
£ =1
x4 . %
2 . . 2
TOP VIEW

PHYSICAL LAYOUT: 6400 System - 32K or 64K Memory

Figure 1-2

1-5



Chassis

10 PPU's Chassis

Central Processor

16K Central Memory, Control
and Data Distributor

16K Central Memory, Sisk Con-
troller and Data Distributor

16K Central Memory and
Data Distributor

Display Controller

7

10

11

12

16K Central Memory
Optional CPU

16K Central Memory and
Data Distributor

16K Central Memory and
Data Distributor

16K Central Memory and
Data Distributor

16K Central Memory and
Data Distributor

CABLES

REFBRGERATION UNIT

TOP VIEW

PHYSICAL LAYOUT: 6400 System -

Figure 1-3
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COOLING

Between each row of modules on a chassis is a bar that contains a
copper tube that carries refrigerant. (See Figure 1-3) The refrig-
erant carries heat away from the bar to a closed cycle refrigeration
unit located in each wing of the main frame. (See Figure 1-5A) The
heat generated by the modules is transferred to the 'cold bar" by the
principles of convection and conduction. (see the Introduction to
6400/6600 Computer Systems Training Manual for details of the refri-

geration system).

A. Refrigeration Tubes B. Refrigeration Unit

Figure 1-5

1-8




LOGIC CIRCUITS -

Modified transistor-coupled logic circuits operating in saturated mode
are arranged in negative voltage and circuits. The transistors used
are Silicon Planar NPN type. The circuits switch in 3-5 nanoseconds.
A technique called 'cordwood" packaging is used when building the
individual modules that make up the 6400 logic circuits. The logic
module will have approximately 64 transistors and has a 30-pin male
connector for signal distribution and power connections (see Figure
1-6). The logical circuit contained in a module may be unique or may
be a standard circuit that will be repeated many times within the
overall computer. The individual modules are pluggable into a 30-pin
female connector mounted on the chassis. The individual connectors
are comnnected together using point-to-point wire techniques. This
forms a thick wiring mat on the back of each chassis (see Figure 1-7).
Specific modules can be located on the chassis by coordinates. The
vertical edge of the chassis is labeled A-R and the horizontal bar is
labeled 1-42. There are test points on the front plate of each module
for ease of monitoring the modules internal signals. (see Figure 1-8).

Because of the extremely high speed of the 6400 logic circuits, a

method of moving data is used that will not reduce the speed of the
operating circuits. This method is transformer coupled coaxial cables
arranged in groups called data trunks, which are located between points
where data flow, such as the data trunk between central memory and the
operating registers. The trunk consists of standard cables, transmitting
circuits,. and receiving circuits (catching registers, see Figure 1-9).

Figure 1-6. 6400 Logic Module
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Figure 1-9

The transmission capability of this trunk is 600 million bits per
second. This would be about the same as transmitting all the informa-
tion in a large city telephone directory from memory to the operating
register in one second. Transformer-coupled coaxial cable is also used
for control signal transmission between chassis.
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MAGNETIC CORE STORAGE

A unique package, the memory module (Figure 1-~10), contains 49,152
magnetic cores used for storing bits of information. The size of
each core is 0.012 inch inside diameter and 0.020 inch outside diameter.
The cores are arranged on 12 planes, each plane having a 64x64 matrix.
Each memory module has 4096 addressable words of 12 bits each. The
memory module contains all the drive and inhibit circuits necessary to
operate that module. Only an external Address Register, Restoration
Register, and Sense Amplifiers are necessary to operate that module.

The memory modules are plugged into the chassis in the same manner as
the logic modules and are easily replaced if necessary. One module
makes up each independent memory for the peripheral and control
processors (see the 6400/6600 Introduction and Peripheral Processors
Training Manual).

Figure 1-10. 6400 Memory Module
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POWER SYSTEM

The 6400 computer uses a 30 KVA motor-generator set to supply power for
the logic circuits. The input to the motor-generator is 208 vac, 3
phase, 60 cps; the output is regulated 208 vac, 3 phase, 400 cps

which is stepped down, rectified and filtered to the +6 vdc used by the
logic circuits. There are 3 other voltages used by the memory modules:
+5.8 vde for internal logic, +4.8 vdc for their inhibit circuits, and
+15 vdc which goes through a current regulator and should be somewhere
between 5.2 to 8.0 vdc for the drive circuits. (See the 6400/6600
Introduction and Peripheral Processors Training Manual fo;'EE;EE;;

details.)




SYSTEM ELEMENTS

Following is a description of the various possible elements within a
6400 system:

64154 - Central Computer: With 32,768 60-bit words of magnetic
core storage, ten peripheral and control processors each
with 4,096 12-bit words of magenetic core storage.
Included with the peripheral processors are twelve bi-
directional data channels and one data channel exclusively
used for real time clock monitor.

6414A - Same as 6415A except with 65,536 60-bit words of magnetic
core storage.

6413A - Same as 6414A except with 131,072 60-bit words of magnetic
core storage.

SYSTEM BLOCK DIAGRAMS

There are several system configurations possible with a 6400 computer,
each would have certain advantages depending on the needs of the user.

BASIC 6400 COMPUTER SYSTEM

The basic 6400 system which includes a Central Processor, ten Peripheral
Processors and twelve Data Channels. This basic system can have 3
memory variations (32K, 65K or 131K) of 60-bit Central Memory (Figure 1-11).

SPECIAL PURPOSE CENTRAL PROCESSOR

A Special Purpose Central Processor can be added that will improve the
arithmetic capabilities of the basic system. This Special Purpose Central
Processor can communicate with both the standard Peripheral Processors

and the standard CPU through the Central Memory. The Special Central
Processor shares the Central Memory on an equal basis with the standard CPU.

6681 DATA CHANNEL CONVERTER

The 6681 allows the 6400 peripheral processors to communicate with 3000
series I/0 equipment. The converter acts as a signal interface and allows
users who presently have 3000 series computers or equipment to use them
with the 6400 system. The 6681 must be the first equipment omn the channel
and can control up to eight pieces of equipment. Figure 1-13 illustrates
the relationship of a 6681 with other parts of a 6400 Computer system.

1-14
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Figure 1-13 6681 Data Channel Converter
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CHAPTER II

6400 PERIPHERAL PROCESSORS

The 6400 Peripheral Processors are almost identical with the 6600 PPU's
described in the Introduction to the 6400/6600 Training Manual. There are
slight differences in the 26XX and 27XX instructions, the X registers, and
a few module type changes.

26XX INSTRUCTION

The 260X instruction differs from its 6600 Computer counter-part in that
the lowest bit is used to determine which CPU tq Exchange Jump. The 20
bit equaling "O" means CPU-0 (Chassis 2); the 2° bit equaling a "1" means
CPU-1, (Chassis 8) the Special Central Processor.

The 261X instruction has the 20 bit CPU definition and is conditioned upon
the contents of a "FLAG" flip-flop in Central Memory Control. The instruc-
tion may or may not Exchange Jump CPU-X, the 261X would normally be used
only with an ECS System. (See 6400/6600 ECS Training Manual.)

See the section covering Exchange Jumps for further details.

27XX INSTRUCTIONS

The 270X instruction differs from its 6600 Computer counter-part in that

the 20 bit selects the CPU. The 20 bit equaling "O" means "Read P of CPU-0'.
The 20 bit equaling "1" means '"Read P of CPU-1" (CPU-0 is the standard GPU
located on Chassis 2, CPU-1 is the Special Purpose CPU located on Chassis 8).

ADDITIONAL X REGISTER

The possibility of two Central Processor Units necessitated two X registers,
one for CPU-0 (X0, the original register) and one for CPU-1 (X1, the addi-
tional register).

MODULE CHANGES

Although a few slots were available, the addition of the X register, the
selection circuit to choose either X register, the 20 and 23 bit translation,
etc., necessitated changes in module types for more compactness.

The D5 transmitter modules were changed from PL's (6 tranmsmitters) to

JQ's (10 transmitters). This enabled reducing 10 modules down to 6, a

gain of 4 slots.

The A register transmitters were changed from PL's to JQ's as well, pro-




viding a gain of one slot, plus a few extra transmitter circuits for
other uses.

The X1 register was added (3 PI's) along with the 3 TE selection circuits.

These changes and the slots that were previously open allowed the 6600
Peripheral Processors to be converted to 6400's.
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CHAPTER III

6400 CENTRAL MEMORY

INTRODUCTION

Refer back to Figure l-1, where the 6400 System General Block Diagram
illustrated the Central Memory (CM) as the main storage seé¢tion of the 6400.
The 12-bit-word, 4K memories of the PPU's usually act only as small
"batching" memories prior to writing into CM.
the connections to and from (M.

Addresses,
Data, and
Control
Sources

Figure 3-1 illustrates

1923

Data and
Control
:> Destinations

- N
> PPU!
PPU's
7
—_—— CENTRAL ——————>>
CPU-0 MEMORY CPU-0
—_——eee——3 —
CPU-1 CPU-1
> ECS
ECS
N -
Figure 3-1

There are four possible sources of Addresses, Data, and Control Signals:

the PPU's for a CM Read, (M Write, Exchange Jumps, ECS Reads, or ECS Writes;
the CPU-1 (Special Purpose Processor) used for CM Reads, CM Write, and
Exchange Jumps; and the ECS source from the ECS Coupler which would be

controlled by CPU-0 or CPU-1.

The Data would always be 60 bits in size.

The Addresses have 18 bits but, with 65K in the maximum size, only 16 bits

are needed.
operation.

The Central Memory can be divided into three parts:
Control (CMC), Central Memory Banks (CMB), and the Data Distributor (Figure 3-2).

The Control Signals are specialized for the particular

The Central Memory



GPU'S l
CPU-0 CENTRAL F» ADDRESS CENTRAL
CPU-1 MEMORY MEMORY
CONTROLS BANKS
ECS ¢ CONTROLS
\ r
Address and PP WRITE READ
Request Sources U's -
q CPU-1 60 G(D
DATA
\___ CGFU-0 ECS 4 DESTINATIONS
/
CONTROLS r N
ST v
Q(_)/ —P 60 PPU
CPU-0/~ N\ DATA @ ]
DATA 60— DISTRIBUTOR CPU-0 N
SOURCES
CPU-1__ /"\__ CPU-1
&)
ECS @ ——.—b ECS
~ ~
Figure 3-2
CENTRAL MEMORY BANKS
BANK LAYOUT

Central Memory is arranged in a number of independent banks (the number of
banks depends on the size of the memory). Each bank has 4,096 60-bit

3-2




Common
Catchi
Regist
(CCR)

words and is relatively independent. The banks are arranged to allow
certain elements to be used commonly with other banks. Four banks

are arranged on any one chassis. Common elements for those four banks
are the Chassis Catching Register (CCR), the GO and ACCEPT Control,
and the restore path. Each bank on a chassis has its own Storage
Address Register (SAR), its own Storage Sequence Control (SSC), and
its own Restore Register (Z).

Figure 3-3 is a block diagram of a typical Central Memory Chassis (6400
Chassis #3).

Storage Address Bank Storage Module Restoration Register (Z)
I 03 ]Register (SAR) 03 r—ng
JI 02 | 02 |« { 02|
S [
Moz == o1 [® o1 |
A
00 00 — 00
| 4096 ]
60 bit

Storage Sequence Control

BanK
00 ] 01 02} 03

. Read
? Sense

words

[

2 Amplifiers
Go Accept 2_{_ P
>Accept f— 01

Control '{?O I

Go l
Write v Y Restore Path

Address EBank Y1 Y2 Y3
ng Write Path
er (12 60 60

/
L J
~ C J

CMC Data Dist.

Figure 3-3. " Central Memory Chassis
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Chassis #4 contains Banks 04-07; Chassis #5 has banks 10-13; and Chassis

#7 has banks 14-17, for a total of 16 banks which provide 65K 60-bit words.
The memory modules are arranged physically such that the lower order bits
are to the left when viewed from the test-point side of the chassis.

PHASING AND ADDRESS BREAKDOWN

The 6400 CM Bands are "phased" to further aid in speeding up the overall
memory operation. The address sent to CMB from CMC is interpreted as follows:

65k |17]16 15 [1afusfie[ua]ics [o] 7]6 [ 5] 4 AARNE
b Ve —v -

N/U 12-bit Bank Address Bank
Selection

Vert ) Horiz

Divert—-7‘*—Divert Chassis
r:,—/‘/ // \‘a, Selection
Lufwlo]s] 7[6[5[a]3]2]1]0] 32« [7[16 [isfia]she[ufo[o Te[7 Te]s] 4] o] 2 1fo

\‘“\f‘“J \,_____J L___\,__J\f — J \“WF‘

Vertical Horizontal N/U 12-bit Bank Address Bank
Drive Drive Selection
Figure 3-4 Chassis
Selection

The lower two bits determine the bank--one of four on a chassis. The next
one or two bits will determine which chassis the needed bank is on. The
next twelve bits will be the bank address. The upper two or three bits
will not be used (Figure 3-4). As addresses are referenced in sequential
order, the banks are referenced in sequential manner. (Address 000000 is
in bank 00, 000001 in 01, 000002 in 02, 000003 in 03, 000004 in 04, 000005
in 05, etc. When the highest numbered bank is reached, the next address
would be in the lowest numbered bank.)

OPERATION

When CMB is to be referenced, CMC sends the address and a Go signal to all
chasses. The Go and Accept Control circuits on each chassis check to see
if that chassis has the address. The proper chassis will send an Accept
signal back to CMC, (if that bank is not busy), and also start the Storage
Sequence Gontrol of the bank. Data flow from only the selected bank
memory modules, to the Sense Amplifiers, to a fan-in of the 4 banks, to
Yl. The Data then flow to the Data Distributor, on a Read operation and
sampled; on a write operation,it would be egnored. During a write operation,
a Write signal from CMC clears Y1 (erasing the Data from memory) and new
Data flow in from the Data Distributor. The Data flow through Y1, Y2, and
Y3, and to the selected bank's Z (Restoration) register, and into the
memory modules.

3-4




GO AND ACCEPT CONTROL

The GO and Accept Control circuits decide if the address sent from CMC is
for one of the Banks on this chassis. If it is and that bank is free,
(not busy), an Accept signal is sent back to CMC. The circuits for this
operation on Chassis #3 are shown in Figure 3-5. The GO and the Address
are received by the Catching FFs on the SB, SC and SD modules. The SB
modules receive the Bank address (12 bits). The SD modules receive the
Cgassis gelection bits which, on a 65K memory, would be CMB address, bits
24 and 2°.

A clock signal is uniquely connected so that the C and D FFs are set (or
cleared) to the complement of the bit selection for that chassis. To

help clarify this, notice that C and D in Figure 3-5 are set every 100
nanoseconds. Assume address 000300 is requested. The lowest two bits

would go to the Bank Selection FFs. The next two bits would go to the
Chassis Selection bits, FFs C and D. Notice that the signals are connected
to the cleared side inputs. The signal to be sent would be a "O", meaning
that the transmitter is not fired and, thus, C and D remain set. The set
sides are used to enable the GO bit AND circuit to pin e. FFs A and B remain
unchanged so that when the GO bit and Address arrive, the Bank-0 AND cir-
cuit at pin 3 is satisfied. This would cause pin 3 to go to a "0V and E

(on the SC module) to become a "1". The Bank Select FFs would have a
selection of B-D equaling "l's" for address 000300. With E enabling the
gates, only the Bank Free signal remains to fulfill the gates. When a "1",
this signal indicates that the Storage Sequence circuits of that bank are
not functioning. If this is the case, the AND circuit is fulfilled, setting
the GO FF for Bank D, and, at the same time, transmitting an ACCEPT back

to CMC from the ACCEPT transmitter at pin 28. The GO-0 FF will start Bank
D's Storage Sequence Controls (SSC) which would drop the Bank Free signal.
The SSC will control and time the cycling of Bank 0.

If address 000302 were requested, the action would be the same as just
explained except that the Bank Selection would have A-D as a combination
and Bank 02 would be selected.

Chassis #4 would have its SD module wired differently than Chassis #3.
The 22 input would be wired to input pin 5, the clock to pin 7, and pin
6 to ground. This means that only a Chassis Selection of 01 (binary)
would leave C and D both "l's!, The point to remember is that if the
address is on the chassis, the AND circuit at pin 3 must be fulfilled.
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DATA DISTRIBUTOR

The Data Distributor can be divided into 3 parts: the Read Distributors,
the Write Distributor, and the Control circuits for both enabled by MC
(Figure 3-6).

JHep TO GHASSIS
» WRITE 4,5,& 7

DISTR
XMTRS |—— $TO CHASSIS 3

I VR
CPU_ READ | FROM CHASSIS
pISTR | READ 4,5 & 7
CPU- 60 . gIETR FROM CHASSIS 3
ECS <@={ 60 T I
DATA
| ¢ CONTROLS
DISTR FROM C.M.C.
CONTROL

Figure 3-6. Data Distributor

The need for the Data Distributor may be seen in Figure 3-6. The Data
Distributor is the final part of the fan-in/fan-out network of Data to or

from the Central Memory Banks. On a Read operation (with 65K) the fan-in/
fan-out arrangement would be from one of sixteen banks to one of four Read
Transmitters to the Read Distributor Catching Register. The data are then
retransmitted from the Read Distributor to one of the four possible requesting
sources.

NOTE

The data may actually be sent to more than
one of the sources but only one of the four
will use it at that particular time.

On a write operation, the data are sent from one of four possible sources to
one of two possible Write Distributor Catching Registers; then they are retrans-
mitted to one of four Y1 registers, and finally to one of sixteen possible

Z registers.
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CENTRAL MEMORY CONTROLS

CMC is the overall control center of CM. It receives the address, requests,
and other signals that may be necessary, then initiates and controls the
operation within itself, the CMB, and the Data Distributor until the operation
is complete. (Refer back to Figure 3-2, if necessary; also, refer to Figure
3-7.)

ELEMENTS OF CENTRAL MEMORY GONTROL

Figure 3-7 is a block diagram showing paths for addresses as they flow through
CMC. Description of the various elements of CMC follows.

Catching Registers (CRO, CR1, CR2)

Catching registers are ungated flip flops that receive data from a coaxial
cable. Since the input is not gated, there is an ability to de-skew data
transmitted from chassis to chassis. The CMC has three such catching
registers. They are:

1. Catching Register 0 (CRO)--for Central Processor
0 addresses

2. Catching Register 1 (CR1l)--for Central Processor
1 addresses

3. Catching Register 2 (CR2)--Peripheral Processor
. addresses

CRO/1 will receive all addresses sent by the CPU's. The address may be for
an operand ( or an instruction ) or may be the starting address for ECS trans-
fer. CR2 will receive all addresses sent by any of the Peripheral Processors.
The address may be for Data Read (or Data Write) or may be the starting
address for an Exchange Jump. CRO and CRl will also be used as holding regi-
sters. For example, CRO and CRl will not be cleared on normal CPU requests
until after the address has been accepted. This is necessary since there may
be an attempt to re~try the address if no Accept is received. CRO and CRl will
also act as holding registers during ECS transfer. During this operation,

the updated new address formed by the Address Incrementor will go to CRO/CRIL
as part of the recirculation path for the counter.

PERIPHERAL ADDRESS REGISTER (PAR)

The PAR is a secondary register associated with CR2. This register is necessary
since the PPU's are unconditionally sending their A register contents to (MC
every 100 nanoseconds. Each word received by CR2 is automatically gated to PAR.
When PPU's intend the word to be an address, they will send a request along with
the address. This request will block the input gating term to PAR after the
desired address is in PAR. The blocking input will protect the address until

it can be accepted by the CMB (see Figure 3-8).
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PAR B

ﬁ

FROM CR2

CLOCK
PP LOCK CR2
REQUEST O PAR

ACCEPT

TIME
. Figure 3-8

GATE Circuits

The GATE circuits allow the movement of the addresses from a register to the

proper point depending on the operation. A typical GATE circuit is illustrated
in Figure 3-9. '

VARIOUS
INPUTS

» OUTPUT

Figure 3-9
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The Memory Address Register Gate (MAR GATE) gates one of the four possible
inputs to the Memory Address Register; such gating is used on all QMC operations.

The Address Incrementor Register Gate (AIR GATE) gate one of the four possible
inputs to the address Incrementer Regsiter, during Exchange Jumps and ECS
operations.

The Catching Register Gates (CR GATES) gate the updated contents of the
Exchange Counter Register (EKR) from the Exchange Counter to the EKR, during
Exchange Jumps.

The Tag Bit Gate (IB Gate) is used to gate a Go, No-Go condition to the tag
Bit Sequences. This is used on all CMC operations.

Memory Address and Address Incrementer Registers (MAR & AIR)

Various other registers within CMC, such as the MAR register and the AL
register, are used as common registers during CMC operations. MAR receives
all addresses that are to be transmitted to CMB. AIR serves as a holding
register for AL. Such would be the case during Exchange Jump and ECS
operations.

Address Incrementer (AI)

AT is an 18-bit 2's complement counter. It is used to update the original
address during an Exchange Jump and to update the ECS operations Exchange
Counter (EK). .

The Exchange Counter is used during Exchange Jumps only. It counts the
addresses during an Exchange Jump to determine when the Exchange Jump is
completed.

Tag Sequences

The tag sequences are used to identify memory references. Since several
addresses may be operating in (MC Accept and which address are associated.
The tag sequences are started when the address is transmitted to CMB. The
sequence determines the time period before an Accept is expected. If no
Accept is present, the Re-try circuit is initiated.

There are several tag sequences. They include:

Peripheral Tag Bit (PTB) - present on PPU Read or Write Operations

Write Tag Bit (WIB) - present any time there is a Write Operation
intended from PPU's or CPU's (including Exchange
Jump and ECS Operation)

X Tag Bit (XTB - present during an exchange jump or an ECS transfer

CPU O Tag Bit (COT) - present during CPU-O request memory read and write
and during peripheral exchange to CPU-0




CPU 1 Tab Bit (CIT) - present during CPU-1 request memory read and write
and during peripheral exchange to CPU-1

A Tag Sequence cycle time is 325 nanoseconds and is initiated by the Tag Bit
Gate circuit.

The GO to CMB will be sent when the tag sequences are started. If the Accept
has not returned before near the end of the tag sequence, a Re-try will be
initiated.

RE-TRY

The Re-try Sequence determines the time between GO signals for an address
requesting (MB. 1If an address cannot be accepted because of a bank conflict,
this address will again be sent to the CMB each 300 nanoseconds until accepted.
The Re-try Sequence is initiated at the time the GO is sent to CMB. The
Re-try Sequence is made up of three FFs: Re-try 1, Re-try 2 and Re-try 3.
Re-try 3 will set only if there is no Accept received for the address that
started the sequence. If Re-try 3 does set, the address and GO signal will

be sent to CMB. This will also restart the Re-try Sequence.

Bank conflicts arise when an address is sent to a bank that is busy with a
previous request. A bank is considered busy for the complete 1 usec cycle
time of that memory. The situation that will cause the longest delay of a
bank conflict occurs when four addresses try to access the same bank. The
first address will make the bank busy and CMC will receive an Accept within
the first 100 nanoseconds after issue. The second address issued to the bank
will have to re~try three times before it will be accepted. The third address,
issued 100 manoseconds later, will retry six times before it is accepted.

The fourth address will encounter the longest possible delay for an address
because of bank confliction (see Figure 3-10 for an illustration of this
confliction).

ACCEPT SEQUENCE

The Accept Sequence is initiated by an Accept signal returning from CMB. The
Accept signals from all banks come into two ungated flip-flops (Accept 1 and
Accept 2). The output of Accept 1 and Accept 2 are strobed into Accept 3

every minor cycle. If the Accept is for a Central Processor address, the Accept
signal will be retransmitted back to the proper CPU determined by the Tag
Sequence. This will allow the CPU to communicate with the Data Distributor

at the proper time. The output of Accept 3 is sent to the Re-try circuit and
will inhibit the setting of Re-try 3. This will stop the sending of successive
GO signals for that address. The output of Accept 3 is also sent to a circuit
that will examine it with respect to the Peripheral Tag Bit Sequence for the
purpose of sending back the Resumes to the PPU's. The output of this circuit
will also start the PPU Read or Write Sequences that communicate with the CMB
Data Distributor, which times the placing or removing of the data in the
Distributor for PPU operations. The remaining flip-flops in the Accept Sequence
(Accept 4 through Accept 12) are used for the MAll Quiet" network. The All
Quiet is used to determine the starting of an Exchange Jump.
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SCANNER

Within CMC, some consideration must be given to the possibility of the PPU's,
CPU-0, CPU-1, and ECS making simultaneous Requests. These simultaneous Requests
must be recognized and sorted out to utilize the Central Memory in the most
efficient manner possible. This sorting operation is done by the Scanner.

The Scanner contains two flip-flops interconnected to form a closed loop.

At first glance, with no Requests, the circuit appears to be free-running.
(The 1st slip-flop sets the 2nd, the 2nd clears the 1st, which then clears
the 2nd, which then re-sets the lst flip-flop, etc.) However, in actual
operation, the Scanner locks up in a position with the set and cleared sides
of both flip-flops equal to a "In output. This method is faster than a
free-running Scanner. Assuming no Requests are present, and then a Request
occurs, the time for it to be recognized and the enable to leave the module
is less than 20 ns (see Figure 3-11).

Central Memory Control recognizes Requests from either the PPU's, CPU-0,
CPU~-1, or ECS and generates a Stop Scanner signal corresponding to the
device which made the request. Examining Figure 3-11, and assuming a PPU
Request is present, it can be seen that the Scanner will stop with both
bits of the counter cleared (002). This would give a2 counter translation
of "Scanner = PPU", which allows the PPU Request to actually start a CMB
reference. At this time, any other Requests would have to wait until the
Scanner was released. The next device to have its Request honored would
be CPU-0, then ECS, and finally CPU-1. Normally, the Scanner will only
remain locked up for approximately 75 nanoseconds. However, when an Exchange
Jump is being executed, the Scanner is stopped until the exchange is com-
pleted (approximately 1.6 usec). This ensures the rapid completion of
the Exchange Jump by eliminating memory conflicts.



CPU-0 STOP
SCANNE RELEASE

* PPU STOP
SCANNER

RELEASE

ECS STOP
SCANNER

CPU-1 STOP ‘ RELEASE
SCANNER

EEEB::)"—'{::P"" SCANNER=ECS
EEEE(::>_"'[::F_——’ SCANNER=CPU-0
EEEB::>—'“+::}""—' S CANNER=CPU-1
EEEEBC::}"-'[::}'-" SCANNER=PPU

Figure 3-11. Scanner

ODEM oH O = o b>o

CONTROL SIGNALS

Various signals flow between CMC, CMB, Data Distributors, the PPU's, the
CPU's, and ECS. Table 3-1 lists and explains the source, destination, and
function of each signal.
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Generalization of memory request and the ensuing reactions are shown
in Figure 3-12.

ACCEPT

WRITE.RESUME READ RESUME
TO PPU TO PPU

PPU

GO
READ + WRITE RE-TRY '
EXCH. ,WAIT /
<l___g 0K L ! 1 ) ¢ { 1
) ) 1
0

i ‘ 1
) | # 1 ] ¥ 1 i ]
100 200 300 400 500 600 700 800 900 1000 1100

CPU READ
READ + WRITE

WRITE

Figure 3-12 General Timing

Particular points to keep in mind are: Re-try is always 300 nanoseconds
after the GO to CMB, if there is no Accept for that address. The Accept
will be expected to return within 100 nanoseconds after sending the GO.

OVERALL CENTRAL MEMORY BLOCK DIAGRAM

Figure 3-13 ties the Central Memory Controls, Central Memory Banks, and
Data Distributor together.
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— DATA

CONTROL

- Figure 3-13

PERIPHERAL PROCESSOR READ/WRITE OF CENTRAL MEMORY

INTRODUCTION

When a Peripheral Processor executes a 60-63 instruction, communication
becomes established between Central Memory and the processor. The read
and write sequences of Central Memory control are nearly identical. The
few differences will be pointed out during the following discussion of

a Control Memory Request by a Peripheral Processor.

PPU OPERATION

Whenever the PPU initiates a Central Memory Read/Write, it sends an
address from its A register to Central Memory. During a write operation,
the processor sends a Central Write signal and the Data Word to Central
Memory. After the Accept signal is received from CMB, Central Memory
issues a Resume to the PPU. During a read operation, the processor sends
a Central Read signal to Central Memory. The Resume from Central Memory
is delayed so that it arrives at the PPU about the same time as the

Data Word.

ADDRESS ADDRESS
-5 P
CENTRAL READ
B el P CENTRAL
PPU CENTRAL MEMORY MEMORY
W
CENTRAL WRITE R CONTROLS | ACCEPT BANKS
RESUME PPU WRITE >
8
PPU
CLEAR PU SELECT
READ
READ DATA I DATA
DATA
WRITE DATA R DISTRIBUTOR WRITE DATA
Figure 3-14
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The address in CR2 will be sent to the Peripheral Address Register (PAR)
on a timed pulse that comes every 100 nanoseconds. Once the address

has been sent to PAR, it must be able to remain there because it may be
re-issued every 300 nanoseconds until the Accept is received. To protect
PAR, therefore, the minor cycle pulse on PAR's input must be disabled until
the Accept is received from CMB. To disable PAR's input, the PPU Request
flip-flop, set by Central Read or Central Write, will set the Block

CR2 to PAR flip-flop, keeping the Store CR2 in PAR signal disabled.

(Review Figure 3-8.)

The PPU Request will interrogate the Scanner with a Stop Scanner signal.
When the Scanner recognizes the PPU, the translators will start the
sequence of events necessary for the address and a GO signal to be sent
to CMB.

Figure 3-16 illustrates the path of the address during a PPU Request of
Central Memory. Once the scanner has started the sequence of events, the
address in PAR will be transferred to the MAR register via the MAR Gate
circuit. From MAR the address will be transmitted to CMB. At the same
time as the address is sent to CMB, a GO signal is sent to CMB and the
Peripheral Tag Sequence is started to time the wait for the Accept signal.

I1f the Accept does not return, the Re-try circuit will send the same
address and another GO to CMB in 300 nanoseconds. This process will be
continued until the address is accepted. Once the CMB starts, the data
will flow from the Read Distributor or to the Write Distributor, whichever
the situation warrants. The reception of an Accept in CMC also sends
the necessary Resume back to the PPU's for control purposes. The PPU
Select signal, during a PPU Write, will enable the data to flow from the
Write Distributor Catching register to the COMB Yl register. The Write
signal to MB clears Yl just before the data word arrives. The PPU
Clear signal clears the Write Distributor Catching register after it

was sent to Yl in preparation for the next PPU Write operation.
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CENTRAL MEMORY CONTROL OPERATION

The address is received by the Catching Register #2 (CR2) of the Central

Memory Control (CMG) at time zero.

At the same time, the PPU Request

flip-flop sets. The following flow chart (Figure 3-15) illustrates the
path of the address and should allow a better understanding of the control

sequence.

PPU ——eoou P Load CR2

Address Enters

Send
Resume

'

PPU Continues
Program

A 4

CR2 to PAR

—

CMC Honor No

PPU Req?

l'Yes

PAR to M

—

Address to CMB
GO to CMB

:

Yes Address
Accepted?

Figure 3~15
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Every 300
nanoseconds
until accepted
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CENTRAL PROCESSOR READ/WRITE OF CENTRAL MEMORY

A Central Processor Request to Central Memory is initiated for one of
two reasons: either the CPU wants a new instruction word (RNI), or it
wants to reference memory to store or read an operand. However, CMC
knows only that the CPU is requesting memory and that it is a Read or a
Write.

When the Central Processor sends a Request and an address, the address

is received in CRO or CRl depending on which processor is requesting.

The action of the controls is much the same for CPU-0/CPU-1 Request as

it was for PPU Request. Figure 3-17 shows the path of the address during
a CPU Request. When the Accept is returned to the MC, it is retrans-
mitted to the requesting processor so that it can either send the write
word to the Data Distributor or accept the read word from the distributor.

DATA fso\
ADDRESS &
CPU 0
CPU-0 REQUEST
PPU WRITE
ADDRESS ® ‘
GO "‘— DATA
MG DIST
ACCEPT
PPU SELECT
CPU-1 REQUES]
— ADDRESS
DATA

Figure 3-17




6400 EXCHANGE JUMPS

INTRODUCTIION

The purpose of the Exchange Jump is to establish conditions for starting
a new program in the CPU. 1In order to cause this change in program, all
Operational and Control register contents in the CPU must be changed.
The new contents for these registers are stored in 16 consecutive CM
addresses, called an Exchange Jump Package. Figure 3-18 shows the

contents of this package which is loaded into (M prior to the initiation
of the Exchange Jump.
Address n —3» P AQ -
n+1 -®» RA Al Bl
. FL A2 B2
. % EM A3 B3
. * RA ECS AL B
. FL ECS A5 B5
. * IIII MA . A6 B6
- . A7 B7
. X0
. X1
. X2
. X3
. X4
.. X5
. X6
n+ 15 2 X7

Figure 3-18. Exchange Package

The 6400 has two types of Exchange Jumps. The Regular Exchange Jumps and
the Monitor Exchange Jumps. The Monitor Exchange Jumps are available only
as an option.

The Regular Exchange Jumps have only two variatioms. The PPU exchanges
CPU-0 via a 2600 instruction, or PPu exchanges CPU-1 via a 2601 instruction.
In both instructions, address "n" (Figure 3-18) is from the PPU A register,
and the Exchange Jumps are unconditional.

The Monitor Exchange Jumps have several variations, all of which are
conditioned by a "Flag bit" located in CMC. Address '"n' comes from the
CPU MA register. (See the 6400/6600 ECS Training Manual for further details.)

whe

* RAecs, FLecs, and MA values are only for ECS options.




Figure 3-19 illustrates the connections between PPU, CPU, and CM. The
numbers indicate the order of operatiom.

Operations #6 through #10 are cycled 16 times (starting #6 every 100 ns),
before #11 occurs. The operations of all Exchange Jumps are identical
after #3. Before #3, the various Requests are being conditioned, etc.,
for each particular operation.

PPU REGULAR EXCHANGE JUMP (see Figure 3-19)

The 2600 instruction sends to CMC a "O" CPU # bit (indicating CPU-0),
a "0" Monitor Bit (indicating not a Monitor Exchange Jump), the PPU
Exchange Request, and the address 'n" (from its A register).

CMC checks to see if there are any other exchanges in programs--
so, the request would wait; if not, an Exchange Request will be
sent to CPU-0.

If it is stopped, the CPU-0 will honor the request immediately; if
running, the request is honored at the end of a 60-bit instruction w
word. An OK Exchange signal is sent back to CMC, and the CPU enables
the register contents for address 'n'" to the Data Transmitters. The
contents are not sent to the Write Distributor until later. (All
exchanges become identical from here on.)

NOTE

See ECS volume for ECS transfer, Exchange
Jump Conflicts, and steps thru of
Monitor Exchange Jumps.

=]

The OK Exchange signal enables requesting of the Scanner in CMC.
If the Scanner is honoring other requests, the exchange will wait.
(The special purpose CPU-1 could be requesting a CM read or CM
Write.) Scanner hangs up for the duration of an Exchange Jump.

CMC now waits until CMB's are quiet (all Banks not busy). This
allows an Exchange Jump to run at the maximum CMB speed.

Address '"m'" and a GO sent to CMB.

Accept returns from CMB.

CRE

Accept retransmitted from CMC to CPU-0 and steps the Exchange
Jump Sequence in CPU-0.




=]

The Exchange Jump Sequence in CPU-0Q gates the old contents of

registers to the Write Distributor. At this time, (MB is sending
the new data to the Read Distributor.

Write Distributor retransmits old register data to CMB. Read

Distributor retransmits new data to CPU-0 where the data are gated
into the registers from which came the old data.

NOTE B

The operations #6 through #10 occur 16 times

for the 16 addresses in the Exchange Jump
Package.

When the last operation is near completion, the Scanner is released,
control flip~flops are cleared, and an Exchange Resume is sent to

the PPU. Other Requests which may have waited in (MC now are
honored.

CPU~-0 gates in the last new data, then starts the new program.

3-28
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DETAILED CMC OPERATION (See Figure 3-20)

In CMC, the initial Exchange Jump operations are handled by two Regular
Exchange Jump (RXJ) flip-flops. RXJ-1 receives the Exchange Jump Request
signal from the catching flip-flop (PPU Exchange) and is responsible ‘
for setting RXJ-2. Setting RXJ-2 provides a lockout for additional
exchange jumps through the Exchange in Progress flip-flop and generates
the Request Exchange signal to the designated CPU. Setting of the Block
CRZ to PAR flip~-flop provides a lockout for incoming PPU addresses by
blocking a CR2 to PAR transfer. Refer to Figure 3-21 for address paths.
The OK Exchange signal returned by the CPU sets an OK Exchange flip-flop.
The output of RXJ-2 and OK Exchange are ANDed to allow the Exchange

Jump to be completed by stopping the Scanner and setting PPU Control-1
and PPU Control-2. Although PPU Control-1 was used to give a PAR to

MAR on PPU Read and PPU Write, it is now used for a PAR to AIR. PPU
Control-2 sets the PPU Start Exchange flip-flop. Since the First Word
Address for the Exchange Jump is in AIR, the Block CR2 to PAR flip~-flop
is now cleared. This, along with the previous clearing of RXJ-1, allows
another PPU to store an address in PAR while this Exchange Jump is in
progress. The Start Exchange flip-flop disables PAR to AIR and enables
the Address Incrementer output to AIR (Figure 3-20). The transfer from
AL to the AI Register is a minor cycle timing pulse that is unconditional
and the transfer from the AI register to Al is constant. The first word
address can circulate through the counter without being incremented until
conditions are met for the transfer. The remaining condition to be met
is Central Memory All Quiet (all banks not busy).

CMC must complete all references in progress before it can begin to process
an Exchange Jump. When CMB is quiet, the Exchange Started flip-flop sets,
taking care of the actual transfer by allowing an AIR to MAR transfer

| and conditioning the advance AIR count and the advance Exchange Counter

L (EK). The EKR counts the number of outputs so that the jump can be

3 terminated when 16 words have been sent. Once the Exchange Started flip-
flop has been set, transfers will occur at a minor cycle rate, with the
exception of a delay for a bank conflict on a 32K machine. Every Accept
returned by CMB is channelled back to the proper CPU by CMC. The End
Exchange output from EK clears Exchange Started, Exchange in Progress,

and OK Exchange flip-flop as well as generating an Exchange Resume to

the PPU. An Exchange Resume flip~flop clears RXJ-2, PPU Control (which
clears PPU Control-2), and PPU Start Exchange flip-flops leaving CMC in
its original condition.
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CHAPTER IV

CENTRAL PROCESSOR

The 6400 Central Processor is a very high speed arithmetic device. It is
capable of performing many arithmetic and logical operations and can
communicate with the Central Memory and the Peripheral Processors.

UNIFIED CENTRAL PROCESSOR

Instructions are acquired from Central Memory, decoded, and executed in a
serial manner. Since instructions are executed one after the other, rather
than in a parallel fashion using functional units, the Central Processor

is considered to be a unified arithmetic device.

Operating Registers

In order to facilitate the execution of each program step and to reduce
memory access times, operands used during the execution of an instruction
will come from 24 flip-flop operating registers that will be loaded and
stored under program control.

The Central Processor's 24 gperating registers are divided as follows:

Eight 60-bit X registers that will hold operands used for computation.
The X registers have a direct access path from Central Memory.

Eight 18-bit A registers. These registers will be used for loading
and storing operands in the X registers. These registers are
known as the address registers.

Changing an A register will cause a memory reference for an
associated X register; that is to say, changing Al-A5 will cause
a memory read and X1-X5 will receive the operand. Changing A6

or A7 will cause a memory write and the operand in X6 and X7 will
be stored. AO and X0 are not considered in this memory scheme.

Eight 18-bit B registers will be used as index registers.
All of the previously-mentioned registers are unique to the Central

Processor and are not associated with the Peripheral Processors in any way.
Figure 4-1 illustrates the interconnections discussed.




OPERANDS

X-REGISTERS
OPERANDS
(60 BIT)

X0

X1

X2

RESULTS

X3
X4
X5

CENTRAL

MEMORY

OPERAND
ADDRESS

RESULTS

{i X6
X7
A-REGISTERS
ADDRESS
(18 BIT)
AO

Al

A2
A3

A4
A5

ADDRESS

A6
A7

B-REGISTERS
INDEX
(18 BIT)

BO
Bl
B2
B3
B4
B>
B6
B7

INSTRUCTIONS

&
ARITHMETIC

AND
LOGICAL
SEQUENCES

INSTRUCTION

TRANSLATION

Figure 4-1. Central Processor Block Diagram
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INSTRUCTION FORMAT

The basic format of a 6400 instruction is such as to facilitate easy
understanding of its operation. Figure 4-2 illustrates the format of
the instructions and also shows all combinations of 15~ and 30-bit
instructions possible in a 60-bit word. In examing the instruction
format, it should be noted that the upper 6 bits are the operation

code and the next 3 bits form the "i" portion (designating which opera-
ting register receives the results of a program step). The "j" and "k"
portions designate those operating registers holding source operands
used to execute the program step. If an instruction is a 30-bit type,
an 18-bit constant "K' is part of the instruction and serves as one
operand. In such a case, "j" and "K" serve as the two operands necessary
to execute the program step. If it is remembered that "i" is the
results register and "j" and "k" (or K) are source operands, code
interpretation becomes quite easy; for example, the multiply instruction
reads:

40 Floating product of Xj and Xk to Xi

b 1T 1 15 BITS
60 BITS OP. CODE l
59] 15 [ 15 | 15 |15 2nd OPERAND REGISTER
i 30 [ 15 ] 15] lst OPERAND REGISTER
3 15
L5 | 30 [ 5] v |
RESULTS REGISTER
Lis Jis] 30 |
[ 30 [ 30 _|
f m i ] K
[ T | | | 18 BITS 30 BITS
\-Y.J
OP. CODE l
2nd OPERAND

lst OPERAND REGISTER

\J
RESULTS REGISTER

Figure 4~2. Instruction Formats
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The 40 is the operation code. The instruction result goes to one of
eight X registers. Both source operands come from X registers. In
coded form, the instruction could look like:

40 5 42
OPERATION \ SOURCE OPERAND FROM X2
CODE SOURCE OPERAND FROM X4

RESULTS TO X5 -

Figure 4-3 illustrates a short program using symbolic form of coding.
This program also gives an example of operand manipulation with the
operating registers.

OPERATION RESULT
Al = Bl + K Load X1 from memory location Bl + K
A2 = B2 + BO Load X2 from memory location B2 + BQO
X6 = X1 x X2 Multiply X1 and X2, store results in X
A6 = B5 + K Store X6 in memory locafion B5 + K
Figure 4-3

Table 4-1 lists all the central processor instructions.

EXCHANGE JUMP

A peripheral and control processor starts the first Central Processor
program and any new program running in the central processor by executing
an Exchange Jump instruction. This scheme is necessary since the Central
Processor is like an "island" in that there are no logical external
connections to any part of the central processor controls that can affect
it. Only through programming can the Central Processor be reached. This
exchange- jump method of starting programs in the Central Processor is
ideal since it allows the interruption of a program currently running

in the Central Processor and the recovery of the same program at a later
time.

One situation where temporary program interruption is desirable occurs

when the program presently residing in the Central Processor has reached
an idle period because it requires some input or output process. At this
time, an exchange jump would allow a new program to start in the Central

b4l




CENTRAL PROCESSOR INSTRUCTIONS AND EXECUTION TIMES
(TIMES LISTED IN MINOR CYCLES)

TABLE 4-1
BRANCH LONG ADD
[¢le] STOP 12 36 INTEGER SWM of Xj and Xk to Xi 6
01 RETURN JUMP to K 12 37 INTEGER DIFFERENCE of X] and Xk to Xi 6
02 G0 TO K + Bi 12
030 G0 TO K if Xj = zero 12
MULTIPLY
031 GO TO K if Xj # zero 12
032 GO TO K 1f Xj = positive 12 40 FLOATING PRODUCT of Xj and Xk to Xi 56
033 GO T0 K if Xj = negative 12 41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 56
034 GO TO K 4if Xj is in range 12 42 FLOATING DP PRODUCT of Xj and Xk to Xi 56
035 GO TO K if Xj 1is wut of range 12
036 GO TO K if Xj is definite 12
DIVIDE
037 GO TO K if Xj 15 indefinite 12
04 GO TO K 1f Bi = Bj 12 44" FLOATING DIVIDE Xj by Xk to Xi 56
05 GO TO K if Bl # Bj 12 45 ROUND FLOATING DIVIDE Xj by Xk to Xi 56
06 GO TO K if BL > Bj 12 47 S of 1's in Xk to Xi 68
07 GO TQ K 4if Bi £ Bj 12
INCREMENT
BOOLEAN
50 51 of Aj and K to Al 5
10 TRANSMIT Xj to Xi 4 51 SUM of Bj and K to Al 5
11 LOGICAL PRODUCT of Xj and Xk to Xi 4 52 SIM of Xj and K to Af 5
12 LOGICAL 5UM of Xj and Xk to Xi 4 53 SUM of Xj and Bk to Al 5
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 4 54 S of Aj and Bk to Al 5
14 TRANSMIT Xk COMP. to Xi 4 55 DIFFERENCE of Aj and Bk to Ai 5
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 4 56 S5UM of Bj and Bk to Ai 5
16 LOGICAL SUM of Xj and Xk COMP. to Xi 4 57 DIFFERENCE of Bj and Bk to Al 3
,
L6 . 17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 4
60 SUM of Aj and K to Bi 5
61 SUM of Bj and K to Bl 5
SHIFT
62 S of Xj and K to Bi 5
20 SHIFT Xi LEFT jk places 5 63 SUM of Xj and Bk to Bi 5
21 SHIFT Xi RIGHT jk places 5 64 SUM of Aj and Bk to Bi ’ 5
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi 5 65 DIFFERENCE of Aj and Bk to Bi 5
23 SHIFT Xk NGMINALLY RIGHT Bj places to Xi 5 66 S1M of Bj and Bk to Bi 5
24 | NORMALIZE Xk in X{ and B) 6 67 DIFFERENCE of Bj and Bk to Bi 5
25 ROUND AND NORMALIZE Xk in Xi and Bj 6
26 UNPACK Xk to Xi and Bj 6 70 SUM of Aj and K to Xi 3
27 PACK X1 from Xk and Bj 6 71 S of Bj and K to Xi 5
43 FORM jk MASK in Xi 5 72 SIM of Xj and K to Xi 5
73 SWM of X} and Bk to Xi 5
74 SUM of Aj and Bk to Xi 5
ADD
75 DIFFERENCE of Aj and Bk to Xi 5
30 FLOATING SUM of Xj and Xk to Xi 11 76 5IM of Bj and Bk to Xi 5
31 FLOATING DIFFERENCE of XJ and Xk to Xi 11 77 DIFFERENCE of Bj and Bk to Xi 5
32 FLOATING DP SUM of Xj and Xk to Xi 11 46 Pass
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 11
Octal Code at left of instruction
34 ROUND FLOATING SUM of Xj and Xk to Xi 11
Comp., ~ Complement
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 11
DP - Double Precision

4-5




Processor and would also record the necessary information needed to
restart the original program when the input or output process has
completed.

For a basic understanding of how the exchange jump works, remember that
any program running in the Central Processor is under control of the
operating and control registers. For example, the Program Address
register (P) keeps track of the instruction sequence. The X, B, and A
operating registers keep track of operands used during execution of
program steps; and the Reference Address register (RA) keeps track of
the relocation point of the present program. There are other important
registers, of course, but these serve as examples of what is meant.

A program running in the Central Processor can be stopped and restarted
without difficulty if a record can be kept of the control and operating
register contents at the time of interruption. The new program must
supply its own values to the control and operating registers used during
the program. A peripheral processor stores into the central memory new
values for the control and operating registers that will be used by the
interrupting program. This area of central memory is called the exchange
jump package (Figure 4-4). Of course, the instructions for the new
program will also be located in the central memory before exchange jump
execution (Figure 4-5).

Once the exchange jump package has been stored in central memory, the
PPU executes the exchange jump. This causes the operating and control
| register contents for the present program to exchange with that of the
1 ) new program. These new values come from the exchange jump package and
represent the operating conditions for the new program. Meanwhile, the
old values of the operating and control registers are safely stored in
the exchange jump package so that another exchange jump will restore
these values whenever the origianl program is to continue.

CENTRAL PROCESSOR QVERVIEW

Figure 4-6 illustrates the Central Processor in a simplified manner.
An explanation of each ma jor part will aid in the understanding of
Central Processor operations.

InEut

All inputs to the Central Processor pass through this area, including
instructions, operands, and control register contents.

This area includes all instruction translation logic and the control
sequences logic necessary to carry out the execution.

1

]

E

l Instruction Controls
{




CENTRAL

MEMORY

Il
I

Figure 4-4.

LOCATION n | P AQ -
nt+l | - RRa Al Bl
n+2 FL A2 B2

EM A3 B3
- A4 B4
A5 B5
A6 B6
A7 B7

X0

X1

X2

X3

X4

X5

X6

n+15 X7

CENTRAL MEMORY

Exchange Jump Package

INSTRUCTIONS FOR PROGRAM A

INSTRUCTIONS FOR PROGRAM B

EXCHANGE JUMP PACKAGE 1

Figure 4-35.

Program Distribution in Central Memory
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Operating and Control Registers

The control registers include the Program Address register (P), the
Reference Address register (RA), the Exit Mode register (EM), the Field
Length register (FL) and the RAecs, FLecs, and MA registers for the ECS
option. All of these registers are used in conjunction with the controls
during the execution and progression of instructions.

The operating registers hold the operands used during the execution of
instructions. There are 24 operating registers divided into three groups
of eight each: the address registers (A), 18 bits in size; the index
registers (B), 18 bits in size; and the operand registers (X), 60 bits

in size. These registers will be specified by the i, j, and k designators
of each instruction and will serve as the source and destination of
operands for each executed instruction. This eliminates the need for a
memory access to execute an instruction, which greatly increases the
speed of execution. The initialization of the operating registers is

done by either the exchange jump or by execution of an instruction.

The X registers can also be loaded directly from memory and are also the
focal points for operands that must be written into memory. This loading
and storing of the X registers with memory makes use of the A registers.
Five of the X registers, X1l - X5, are designated as being receivers of
operands; the associated A registers, Al - A5, serve as the address for
the memory reference. The X6 and X7 registers can only store operands
whereas A6 and A7 are the associated address registers. Whenever Al - A7
changes because of an instruction designating these destination registers,
a memory reference is automatically initiated. Whether a load or a store
takes place depends upon which A register is changed.

Large Arithmetic Section (LAS)

The large arithmetic section is used during the execution of instructions
using 60-bit operands, usually of floating point format, and includes

all multiplies, divides, logical, add, and shift instructions. The LAS
includes two 108-bit registers, an adder, a shift network, a normalize
network, a shift and iteration counter, and all the necessary select
circuits.

Small Arithmetic Section (SAS)

The small arithmetic section will handle instructions using 18-bit operands,
which includes increment instructions, jump instructions, and the exponent
manipulation for floating point instructions. SAS includes two 18-bit
registers, an adder, an address range tester, and all necessary select
circuits.

Output Section

The output section is where all data and control must pass on their way
to central memory and ECS. This section includes operands, operating and
control registers for exchange jumps, all addresses developed by the P

4-9
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. register or central addresses for operands, and extended core storage
s addresses.

CENTRAL PROCESSOR OPERATION

The first program is started in the CPU by the execution of an Exchange
Jump from the PPU's. At this time all operating and control registers
are initialized and the CPU is started. Starting of the CPU will cause
the first RNI (Read Next Instruction). BRNI acquires the first set of
instructions from CM and causes the decoding and execution of these
instructions. The CPU continues to run until a stop is encountered. If
the CPU stops by encountering a Stop instruction, it can be restarted
only by an Exchange Jump. The CPU also stops during execution of an ECS
instruction if an Exchange Request is received from the PPU's. When an
Exchange Request is received, the present 60-bit instruction word is
completely executed before the CPU stops.

6400 CENTRAL PROCESSOR BLOCK DIAGRAM

The following section of this manual explains the CPU. Each major area
is described along with its operations. Figure 4-7 is a detailed block
diagram of the CPU which is referred to throughout this section.

INPUT

Figure 4-7

All inputs to the CPU must go through Catching Register 9 (CR9). CR9Y

is 60 bits in size and consists of ungated flip-flops receiving data from
coaxial cable inputs. Each flip-flop has a three-way fan-out associated
with it (Figure 4-8). Two of the outputs are gated; the third is not.
Bits 48, 49, and 50 have an additional output (shown in phantom) for the
Exit Mode register. CR9 1is unconditionally cleared each minor cycle.

(GATE DATA)

o TO X0 - X7- REGISTER

FROM

ER
READ DISTRIBUTOR (D _ o TO Ul REGIST

===
“, LBOTO EM REGISTER

o=
»

- STER
£40 TO Bl B7 REGIL

C
(GATE DATA)

3 'RUCTION
CONTHOLS

-~
1

Figure 4-8., Typical Input F.F.
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Figure 4-9

OPERATING AND CONTROL REGISTERS

The operating and control registers are flip-flop registers used during
the execution and control of instructions. Each register, or group of
registers, (operating registers) has a definite purpose in the orderly
execution and progression of instructions. This topic concerns the

manner in which these registers are loaded, how their contents are ex-
tracted, and some basic information about their relationship to operations.

CONTROL REGISTERS
The Control registers are concerned with the execution of an instruction,
as contrasted with the operating registers which hold addresses, hold index

quotations, or hold operands used by the instructionms.

P Register (18 bits)

The Program Address register contains the relative memory location of the
present instruction word. The 60-bit central memory word can contain up
to four instructions. 1In such circumstances, P will represent the
location of all four of these instructions.

P s |15 | 15 | 15

P+1 15 15 I 30
P+ 2 30 30
Figure 4-10

P is not the exact central memory location since it will always be added
to the reference address before being used to access memory. P is
advanced each time a new instruction word is required from memory. The
advancing of P is handled by the 18-bit adder in the small arithmetic
section. (P) is sent to the adder and the constant, +1, is used as the
second operand. The result of the addition (P + 1) is sent back to the
P register and, at the same time, is sent to the adder for the addition
with RA before being sent to memory.
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The P register can be loaded in two separate manners (see Figure 4-12).
One method is during an exchange jump, when, the contents of P come from
memory through CR9. The second method is from the ¥ register through
the I8 inverter group.

The P register flip-flops have two outputs. One output goes to the I0
inverter group used during advancing of P and to store P during an exchange
jump. The second output goes directly to the Read P transmitters and

then to the peripheral processors every minor cycle. To be able to send
the newly-developed contents of P after advancing, to the address
transmitters and the FL check circuit, a parallel path of inverters

(fed by the same source that feeds the P register) is used.

—8> ADDRESS RANGE TEST

F
REGISTER # 11 INVERTER GROUP
ADVANCE P —8> ADDRESS TRANSMITTERS
+ JUMP
g I0 INVERTER GROUP
CR9

# READ P TRANSMITTERS

EXCHANGE
JUMP

Figure 4-12. Typical P Stage

RA and FL Registers (18 bits each)

RA and FL are loaded during an exchange jump and will remain loaded until
the next exchange jump. The RA (reference address) and the FL (field
length) registers are used to define the upper and lower limits of any
program presently running from (M. No CPU memory access of any kind is
allowed outside of these limits. RA is added to every address developed
in the CPU before the address is sent to CM. The address could originate
from the P register or from an increment instruction, to access memory
for an operand. Every address is checked against FL, before RA is added,
to determine if the upper limit of the program is exceeded. The RA
register feeds only inverter group I0 (see Figure 4-13). The FL regi-
ster feeds the 16 inverter group and the FL checker (see Figure 4-11).
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CR9-36

RA-00

toepp To 10 Inverter Group

Store CR9 in RA

Figure 4-13. Typical RA Stage

CR9-36

STORE CR9 IN F

JUMP)
TO ADDRESS

RANGE TEST

Figure 4-14. Typical FL Stage
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EM Register (3 bits)

The Exit Mode register contains a code that will decide whether the
Central Processor will stop on certain error conditions.

EM = Exit Mode = 000000 Normal Stop

010000 Address Out of Range

020000 Operand Out of Range

030000 Address or Operand Out of Range

040000 1Indefinite Result

050000 Indefinite Result or Address Out of Range

060000 Indefinite Result or Operand Out of Range

070000 1Indifinite Result or Address Out of Range or
Operand Out of Range

Table 4-1
The Exit Mode register is loaded during the exchange jump. The EM

register is three bits in size but is effectively 18 bits during operations
and is illustrated this way in the exchange package (Figure 4-15).

EXIT
CR9-48 CONDITION
SENSED
CONDITIONS
17
N\
5
AOR j
4 TO M

O (ERROR EXIT)
. 21
EXCH JUMP () s : e
PASS 1
Figure 4-15. Typical EM Stage
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The Error Exit flip-flop, shown below the EM state, sets if that type of
an error occurs. If both EM-48 and EE-48 go set, the Error Exit flip-flop
sets and an Error Exit operation occurs. If the EE-48 flip-flop sets

and EM-48 does not set, a slightly different operation occurs (to be
explained in detail later). The 17 inverter group output is used to
record EM/EE during this operation.

. RAecs, FLecs (24 bits each)

The RAecs and Flecs regsiters serve the same purpose for ECS as does RA

and FL for CM. Since ECS can be much larger than CM, 24 bits are necessary.
These two registers are used only during an ECS operation. Since the

small arithmetic section has only an 18-bit adder, the additions and

checks are made in the D adder of the large arithmetic section (Figure

4-16 shows a typical RAecs/FLecs stage).

-

Figure 4-16. Typical RAecs/FLecs Stage

MA Register (18 bits)

The Monitor Address register is loaded only during an exchange jump
operation, and is changed only by another exchange jump. It is used
mainly with the Operating System program on a 6400 installation using
ECS. Figure 4-17 illustrates a typical MA stage.

417



Figure 4-17. Typical MA Stage

OPERATING REGISTERS

The operating registers serve as the source and the destination of operands
during execution of instructions. There are 24 operating registers divided
into three groups:

8 Address Registers (A) - 18 bits each
8 Index Registers (B) - 18 bits each
8 Operand Registers (X) - 60 bits each

All of the operating registers have two inputs. One input is used to
load the register during an exchange jump from memory via CR9., The other
input is used to store the result of an instruction. Since there are
eight registers in each group, a manner of feeding these registers by

one path through a select circuit and feeder network is used (see Figure
4-17). There is a separate feeder and select circuit for each operating
register group.

Each of the feeder circuits is identical except for size. The A and B
feeder are 18 bits; the X feeders are 60 bits. For the X registers, the
input to the feeders are from CR9 and from the C register (C-00 to C-58
and C107). A word intended for an X register is sent to the feeders
where it is fanned out to the select circuits for X0 - X3. At the same
time, the word is passed on to a second select circuit for X4 - X7. To
take advantage of all the circuits on the RC modules being used in the
feeder network, each pair of bits in the word are alternated in the
select process. For instance, bits 00 and 01 are first fanned out for
the X0 - X3 selection and then fanned out for the X4 - X7 selection.
The next pair of bits, 02 and 03, are first fanned out for the X4 - X7
selection and then fanned out for the X0 - X3 selection. The gating
terms "Data to X-" are the result of a clear/set pulse developed when

a Store C in Xi command is issued by the controls during instruction
execution.
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The A and B registers use the same type of select scheme. For the A and
B registers, data come from the E register during instruction execution,
from CRY9 during an exchange jump.

Selection of data from the X and A operating registers uses a double-
select scheme. For example, when the controls issue the Select Xj

command, two X registers are initially selected. A second select then
eliminates one of the registers, resulting in only one of the two regi-
sters being selected (see Figure 4-18). Table 4-2 illustrates this scheme.

PRIMARY SELECT SECONDARY SELECT RESULTING SELECT

X0 - X4 X0 - X3 X0
X4 - X7 X4
X1l - X5 X0 - X3 X1
X4 - X7 X5
X2 + X6 X0 - X3 X2
X4 - X7 X6
X3 - X7 X0 - X3 X3
X4 -« X7 X7

Table 4-2

The A registers use the same scheme. The important thing to remember

is that one control command, such as Select Xj, produces both the primary
and secondary selection. The B registers use a Select l-of-7 scheme,
instead of the 2-0f-8, then 1-0f-2 scheme used in the X and A registers.

%0 REGISTER

SELECT X0 - X3

C REGISTER

X4 REGISTER
SELECT X4 - X7

SELECT X0 - X4

Figure 4-19. Selecting X Registers
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INSTRUCTION CONTROLS

The instruction controls section of the CPU receives, temporarily holds,
decodes, and then executes instructions. The section contains the .
receiving, holding, opcode translating, and sequencing logic. Figure 4-20
shows the instruction controls section minus sequencing.

All instructions flow from CM through the Read Distributor to CR9. From
CR9 the instructions continue to the Ul register, from where they are
disassembled. A 60-bit instruction word can be made up of four 15-bit
instructions, two 15-bit and one 30-bit instructions, or two 30-bit
instructions (Figure 4-21).

15 15 15 15

15 15 30 .

15 30 | 15
30 15 15
30 30

Figure 4-21. Instruction Position Variations

The disassembling of a 60-bit instruction word is called ''parceling".

A "parcel" in the 6400 is a group of 15 bits. A 60-bit instruction word
is grouped as shown in Figure 4-22. Parcel O is always copied from Ul
first, then Parcel 1, Parcel 2, and finally Parcel 3.

59 45 44 30 29 15 14 00

Figure 4-22. A 60-bit Instruction Word Grouped in Parcels

A Parcel Counter circuit enables each parcel from Ul through U2 to the U2
translators and slaves. Normally, the enable is up for most of an
instruction execution time; however, the gate is not made into U3 until
the next parcel is needed.
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One parcel is one 15-bit instruction; however, a 30-bit instruction
needs two parcels. Because only one parcel is moved at a time, the upper
15 bits of a 30-bit instruction moves to U3 first, then the parcel
counter is advanced. This enables the next parcel, (the lower 15 bits
of the 30-bit instruction) through U2. Notice that the U2 slaves also
feed the I3 inverter group and that the lower 3 bits (k) of U3 also
have a path to I3--"k" and the lower 15 bits make up the "K" of a 30-bit
instruction. "K! is gated into I3 early during the execution of an
instruction and the parcel counter is advanced again. Thus, the next
15-bit parcel is enabled through U2 and would be the next parcel gated
into U3.

Figure 4-23 illustrates how the Instruction Controls section of the 6400
CPU reads and disassembles 60-bit instruction words. Notice that after
parcel 0 and parcel 1 have been taken out of Ul, the remaining 30 bits
are sent to the RNI Hold register. This register holds the last two
parcels while the next 60-bit instruction word is read from CM. When
the parcel counter equals 2 or 3, the bits are enabled from the RNI Hold
register through U2, When the parcel counter is advanced from 3, it will
go to 0, enabling parcel 0 from Ul. This will be the lst parcel of the
next 60-bit instruction word.

An RNI occurs after execution of the uppermost instruction in each 60-bit
instruction word. Consequently, if the uppermost instruction is 15 bits
in size, RNI occurs between parcels 0 and 1; if the uppermost instruction
is 30 bits in size, BNI occurs between parcels 1 and 2.

Types of RNI Operation

Normally, obtaining an instruction for the 6400 CPU to execute requires
a parcel from Ul or the RNI Hold register contents to U3. This type of
reading next instruction (RNI) operation is called Parcel RNI.

After the lst parcel RNI and the execution of the lst instruction, the
| contents of the P register are advanced and added to the RA register
contents to obtain the actual (M address of the next 60-bit instruction
word. This addition needs the Small Arithmetic Section circuits for
only 200 ns, after which time the CPU waits for CM. Reading up of the
next 60-bit instruction word while the 2nd (and possible 3rd and 4th)
instructions are being executed is called a Full RNI.

After jump instructions, (Exchange Jumps, conditional, unconditional, etc.)
the next instruction is in the following 60-bit instruction word, still

in CM. Therefore, a parcel cannot be taken from Ul or RNI Hold registers.
The CPU must stop and wait until the next instruction is available in Ul.
This process of sending an address to CM and then waiting until it is in
Ul is called an Initial Start RNI, or simply an Initial Start. Usually
the address sent to M would be (P) + (RA); however, the Return Jump
instruction advances (P) during its Initial Start.

Unlike the Parcel RNI, the Initial Start operation does not place an
instruction into U3 and start executing it. Rather than duplicate a




Parcel RNI, the 6400 CPU Stops an Initial Start after the word is in Ul,
then starts a standard Parcel RNI operation.

LARGE ARITHMETIC SECTION (Las)

The LAS is used during execution of most Central Processor instructions.
Most instructions using 18-bit operands will not use this area of the
CPU. Figure 4-24 places the LAS in its proper position of the CPU block
diagram. The focal point of the LAS is the 108-bit D Adder.

The C and D registers, each 108 bits in size, serve as feeder registers

for the D Adder as well as transfer paths used during instruction execution.
The other important parts of the LAS are the I4 and I5 inverter groups,
which serve as fan-in, fan-out, and control inverters during instruction
execution. The following descriptions of the LAS will aid in understanding
the over-all operations handled by the LAS.

I4 INVERTER GROUP

The I4 inverter group is 108 bits in size. It can be considered in two
parts, the upper 60 bits and the lower 48 bits. 1In discussing control,
the entire 108 bits will usually be considered. In some circumstances,
however, the upper and lower parts of 14 do differ in control.

The lower 48 bits of I4 have inputs from two sources, the C register
(00 ~ 47) and the D register (00 - 47). The transfers possible with the
lower 48 bits of 14 are:

C —=D
C —=I5
D —=15
D (Right or Left One) —=D

Since I4 is an inverter group and, therefore, only a path for a transfer,
a second select term is usually necessary. For instance, when C to I4
is selected, (ENTER D + SELECT I4 —==15) (ENTER C) is necessary to
complete the transfer. When a control such as C —= I4 —sI5 is noted
in the command timing, it means the C to I4 and the I4 to IS5 selections
are being used.

The right and left shift capabilities are internal to I4. For instance,
if D enters 14, then the output from I4 could be shifted right or left
one position. The right shift is end off, no sign extension; the left
shift is not end around. Figure 4-25 illustrates the lower 48-bit
positions of I4.
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1st WORD (15-15-15-15) 2nd WORD (15-30-

3rd WORD.(15----//--) 4th WORD
|/ I / /

1 - 1 . " l U1 o a Ul
U
' ¢ F I Vv | ETC.—3
| RNI ! 1 ! RNT
I HOLD ' HOLD T HOLD |
| | |
| I | |
M.C [ _ _ _ ! _ _
. Po= PC=2 PC=3 PC=0— PG=1 c=2 PC=3 PC=0 Pg=1
PC=0 | f . ‘:DV | ARDV !‘bv , AN f T ; 3 ; G\ . I
3 abv U3 U U3 MADV 3 | 1 3 ADV W3 ADV \ |
U I—&M‘—I | ' L U” FULL FULL
—3»PPU EXCH INITIAL START| PARCEL RNI7 lst INSTR.|%g ~ ppgq ! || 3rd INSTR ||° 4th 1~ ist ¥l 5.4 INSTRUCTION (13rd INSTR | |Tst INSTR |¥*%) 14
_D.S. L | EXECUTE TIMEAl INSTR | | '}INSTR | I] INSTR 1a T EXECUTION (30 bits) I'TexecuTion | JEXECUTION ' ' /fI
Y
- | PARCEL IPARCEL A
EXCH SEQ | | :PRNgEL RNI | RNI . PARCEL PARCEL |
IIN CPU l | | I RNI RNI
' I | I | | I
PiRA —$CMB—3 UL | | | | |
Ly ! | i\
| | ! | K+ |
I ! | : } (K+11j)+(RA)—> CMB -3 X |
| ] | SET : |
| | ADD |
b | FF i
| I P+l o (P)+1 |
| P+l | (P+1)+(RA) —3CMB —3p U (P+1)+(RA) - CMB—L yl
| (P+1)+(RA) -3»CMB —gp U |
SET ADP FF — 3 ENABLE NEXT RNI TO BE
A VFULL RNI"

Figure 4-23 6400 CPU Instruction
Flow Chart
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\\ 2
—» 15
D REGISTER —— ———& D REGISTER

\

C REGISTER ——&

20

Figure 4-25. 14 Lower

The upper 60 bits of I4 tend to be more complex, because of the compli-
cation that evolved in making the transfer, C —=>I4. There are six
transfers possible through I4 upper. They are:

. C —=D

. C—=1I5

e« D-—=15

. D (Right or Left 1) —=D

. Exclusive OR of C + D —=1I5
. RAecs/FLecs —=15

[N 6; I LS O

Complications arise on a C to I4 transfer since many of the bits pass
through other inverter groups during the transfer. If a 108-bit transfer
of C to 14 is needed, the lower 48 bits are transferred directly from

C to I4. The upper 60 bits, however, travel a devious route before
reaching I4. Figure 4-26 illustrates the upper part of a 108-bit transfer
of C to I4. The important point to keep in mind is that many of the
various inputs to I4 are part of a single transfer of C to I4.
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RAecs/FLecs transfer into I4 is a path used during ECS operations and

during an Exchange Jump. The Exclusive OR of C and D input to I4 comes
directly from the first rank of the adder. Actually, the Exclusive OR

is present in all positions of I4; but, in the lower 48 bits, it merely
passes through and continues back to the adder. On the other hand, the
upper transfer picks up the signal to be used when the Boolean instruction
is executed.

The important outputs of 14 are to the D register and to I5. Both of
these transfers are 108 bits and require the controls for the upper and
lower parts of I4 to work simultaneously.

I5 INVERTER GROUP

The I5 inverter group is 108 bits in size. As for I4, so too the I5
inverter group can be considered in two parts: I5 upper and 15 lower.
The upper section (60 bits) is made up of VC modules; the lower half
(48 bits) is made up of VZ modules. 15 is one of the two places in the
machine where an entire operand can be complemented. All 108 positions
have this capability.

I5 is the secondary select position for the X operating registers. 1I5
can input any of the X registers completely or without the upper twelve
bits (when floating point operands are selected from the X registers
without the exponent). I4 can transfer 108 bits to I5. Likewise, the
output of the shift network sends 108 bits to I5.

NORMALIZE NETWORK

The process of normalizing a floating point coefficient is one of left
shifting the number until the upper-most bit of the coefficient area is

a "l". 1If the coefficient is negative, it is complemented before sending
to the Normalize Network. The Normalize Network always assumes a positive
coefficient.

Positive

Coefficient EXp 1

247 20

Figure 4-27. Normalized Coefficient

Later, when the coefficient has been used, it will be recomplemented
before returning to memory. The process of normalizing a coefficient in
the Central Processor is accomplished by inspecting the coefficient to
develop a shift count used to left shift the coefficient the correct
number of places. The normalize network, therefore, is the area where
the necessary shift count is generated.
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By dividing the 48-bit coefficient into six groups of eight bits each,
the first inspection for the most significant "1" is made easier. Each
of these groups is called an octum and is numbered O through 5, starting
with the upper-most group.

295 248
Oct |[Oct |Oct | Oct | Oct | Oct C Register
0 1 2 3 4 5
248
8 bits

Figure 4-28. Octums

A point to remember here is that a 6-bit shift count is being formed for
use by the shift network. The upper three bits of the shift count can be
developed by knowing in which octum there is a "1" bit. For instance,

if the upper-most octum contains a "l", the left shift will be less than
10g. Therefore, none of the upper three bits in the shift count will be
set. The following table illustrates the development of the upper three
bits of the shift count depending on the octum where the first '"1" bit
was found.

"% in Octum Upper Bits =
0 000
1 001
2 010
3 011
4 100
5 101
Table 4-2

Development of the three lower bits is accomplished by examination and
translation of the bits within the octum that had the most significant
nn bit (Figure 4-29 illustrates the procedure).

Actually, all of the octums are being translated to detemmine the lower
three bits of the shift count, but only the translation from highest
octum (0 = highest) holding a "1" bit is used. For example, assume that
the first "1" bit was in position 41 (C register positiom 89). First,
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Octum 0 would be determined as the octum with the needed "1" bit. This
translation would enable the output of the Octum O tramslators, which
would be six.

The shift count is sent to the I9 inverter group where modifications will
be made before setting the SK register. (I9 operation will be discussed
later.) Should the coefficient be equal to zero, a special translation
denoting this condition causes a signal to be sent to 19, creating the
necessary results in the SK register.

SK REGISTER AND DECREMENTER

The SK (shift count) register is seven bits in size although only the
lower six can be considered in a programming sense. The seventh bit is
determined only by the operational sequences. The SK register is used
to determine the number of places that a quantity is to be shifted in
the shift network. This may be for execution of a shift or normalize
instruction, or it may be for shifting a number in order to alter its
position in a data path.

Shifts are determined by the binary value at each position of the SK
register, or by the binary sum of the register.

SHIFT 3 1 f T
25 24 23 22 21 20

Figure 4-30. SK Register

The determination of right or left is a responsibility of another control
circuit.

The shift register must be able to reduce the count during the execution
of iterative instructions. During these instructions, the SK register is
as a counter to maintain a record of iterations that have yet to be performed.

Error Mode Register (EM), (3 bits)

The Error Mode register is loaded during the Exchange Jump operation. It
is 3 bits in size, but is effectively 18 bits during operations and is
illustrated as such in the Exchange Jump package.

The Exit Mode register contains a code that will decide whether the CPU
will stop on certain error conditions.
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]

If EM 000000 Disable Exit mode - no Exit selections made.

]

010000 Address out of range - an attempt to reference either
Central Memory or Extended Core Storage outside estab-
lished limits, or the word count [(Bi)>+K], in a Mass
Memory Communication instruction, is negative. (For
details on action when an address is out of range,
refer to the Increment instructions.)

= 020000 Operand out of range - floating point arithmetic unit
received an infinite operand (see Range Definitions).

= 030000 Address or operand out of range.

= 040000 Indefinite operand - floating point arithmetic unit

(floating Add, Multiply, or Divide) attempted to use an
indefinite operand (see Range Definitions).

= 050000 Indefinite operand or address out of range,
= 060000 Indefinite operand or operand out of range.
= 070000 Indefinite operand or operand or address out of range.

When an error exit is made, the Central Processor records at RA a Stop
instruction, the Exit condition (bits 48, 49 or 50 only) and the Program
Address at exit time in the following format, and jumps to P = 0 (RA),
thereby stopping.

59 54 53 48 47 30 29 0
o oJo x[x X o ¥ o]
N NS — S

STOP EXIT P ZEROS

P = (P) + 1; AT TIME OF ERROR EXIT

Address Qut of Range

A. Condition not selected.

1. 5%, i =6 or 7 instruction. '
The CMB address is sent to CMC, but an Abort signal is also sent
which clears the Address Catching Register (CRD). The Write bit
is in GCRO-17 at that time, so OMC assumes a Read of Address 000000.

Address 000000 is cycled, but contents not used. CPU continues
executing instructions.
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5X, i = 1-5.

Same operation as in #l above, but no X register contents sent
to the Write Distributors. The Accept from CMB (via CMC) gates
in the contents of Address 000000 from the Read Distributor.
This address normally has O 0. Thus, the X register used,
equals O 0. CPU continues executing instructions.

Jump or RNI/IS operations.

Same operation as in #l above, but the contents of address
000000 is used as an instruction. This mormally means a Stop
instruction. P would be one address larger than the address of
the instruction in error.

Condition selected.

1.

5, i =6 + 7.

The CMB address is sent to CMC, but an Abort is also sent which
clears the Catching register (CRO). The Write bit (bit 17) is
in CRO at that time, so CMC assumes a Read of address 000000.
The contents of X6 or X7 is sent to the Write Distributor, but
are not selected into the Y1 register. Thus, the CMB address
from the CPU is not affected, address 000000 is cycled but not
used.

5X, i = 1-5.

Same conditions occur as in #1 above with the exception that
data is sent to CMB (i = 1-5 implies a read operation). Also,
the contents of address 000000 is read into Xi. The contents

of the P register, the error condition, and a 00 instruction are
stored at address RA; then the P register is cleared. When the
next RNI occurs, the contents of RA is read up and executed.
This would be a Stop instruction.

Jump or RNI/IS operatioms.

Same operation as in #l above. The contents of address 000000
is sent to the Ul register.
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The following block diagram illustrates the basic paths associated with
the SK register.

SHIFT
NETWORK
o s
jk on B
SHIFT INSTRUCTIONS >
SK -1
REG.
F |E + Fl
ADDER
REDUCE SK
Figure 4-30
Inputs

The SK register has five inputs, each one has a definite purpose. First,
there is the input that comes from the jk portion of an instruction via
U2 during the execution of a Shift instruction. Another input is from
the SK Feeder circuit. This input is the difference between two floating
point exponents--in absolute (positive) form--as derived by the F adder.
The absolute difference is necessary to equalize the exponents of two
floating point numbers that are to be added or subtracted. The process
is to subtract the smaller exponent from the larger, which results in a
difference that can be used as a shift count. The coefficient of the
smaller exponent is right-shifted the necessary number of places, resulting
in both floating point numbers having the same exponent. The computer
does not care which exponent is larger or smaller. The Xk exponent is
always subtracted from the Xj exponent. After the subtract, the sign is
checked to determine the absolute value. If the sign is positive, the
shift count is correct. If the sign is negative, the shift count is
complemented. The entire process is handled in the Feeder network.

Bits 212 . 217 contain the sign of the result. These bits, along with the
lower six bits, are sent to the SK feeder as complement enables. A typical
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path is shown in Figure 4-31.

SIGN BIT

ADDER BIT SK REGISTER

Figure 4-31

If the sign bit is negative, the complementing path is taken. If the
sign is positive, the uncomplementing path is taken. The decision as
to which coefficient should be shifted is also decided by the sign of
the result. Since Xj is always the minuend, if difference sign is

negative, the minuend must have been larger than the subtrahend (Xk).

A third input to the SK register is Reduce SK. This input is coming
from the decrementer that is fed by the SK register.

SK
IR
L REG. DECREMENTER

REDUCE SK

Figure 4-32

The decrementer is, effectively, a two's complement binary subtracter.
The count in SK will be reduced one count for each iteration of a
multiply or divide operation. A translator off the SK register deter-
mines when the SK register equals zero, to end the operation.
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A fourth input to the SK register comes from the I9 inverter group.
This input is the shift count generated by the Normalize network.
Before I9 sends the shift count, however, a modification is made: the
shift count is subtracted from 60g. The reason for this is that during
a normalize operation, the coefficient is in the C register in bit
positions 95 - 47. After normalization has completed by the Shift
network, the coefficient must be stored in an X register. This means
we must right-shift the number in the C register 60 places to position
it in bit positions 00 - 47.

Since noramalizatin involves a left shift and relocation of the numbere
involves a right shift, the complete operation can be handled in one

pass through the shift network. This is done by subtracting the normali-
zation count from 60 and sending the result to the SK register. For
instance, if the normalization count was 7, a right shift of 51 places
would accomplish the same result as a left shift of 7, followed by a
right shift of 608.

The last input to the SK register consists of the constants needed
during final normalization or during iteration operations. These
constants will come from the Constant Generator and will be gated in at
the proper time by the control sequences.

CONSTANT SK
GENERATOR REG.
ENTER
CONSTANTS
LOGICAL
SEQUENCES

SHIFT NETWORK

The Shift Network is 108 bits in size and is made up of 5 inverter ranks
interlaced with data paths and the necessary controls. Each rank of the
network shifts the number right, left, or straight ahead, depending on
the controls. The ranks that shift are determined by the count in SK.

The Shift Network must be considered in parts--the upper 60 and the lower
48 bits. The upper 60 bits can shift right, left, or no shift, while the

4-36




lower 48 bits can only shift right or no shift. Frequently, the upper
60 bits must be comsidered as a Shift register in itself, since a left
shift will end-around to position 48 of the network. All right shifts
will have the sign bit extended. Usually a right shift of 77g is
considered maximum, but during the equalization of exponents when
executing a floating add or subtract, a right shift of 177g is possible.
Since the Shift network can only handle shifts of 77g, this extra right
shift of 64 is wired in between the C register and the first rank of the
Shift Network.

The controls for shifting are from the SK register. The binary value of
each position represents the number of places to shift. If we consider

a number entering Rank I of the network (usually in the upper 60 positions),
the output of Rank I could be right-shifted 32, unchanged in position, or
left-shifted 32. (Left shifting is in the upper 60 bit positions only.)
Rank I feeds Rank II where a shift of 16 positions to the right or left
could occur. This process continues until the number has filtered through
the network. Sign extension is controlled by the C Sign Record control,
which previously monitored the 108th bit of the G register. This control
extends omes or zeros into the Shift Network. (See Figure 4-34 for an
illustration of the Shift Network.) The final shift position of omne

place makes use of the 15 inverter rank. If a shift of one is needed,
either right or left, the last rank is fed to IS5.

RIGHT SHIFT 64 SHIFT 1
2108 —
G RK RK RK RK RK 15
REG. I IT 111 v \'
& 5 B 5 —&
| I I B L ] I N ]
20
END OFF
SHIFT SHIFT SHIFT SHIFT SHIFT
32 16 8 4 2

Figure 4-34. Shift Network
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19 INVERTER GROUP

Part of the 19 operation was explained in the SK register discussionm.
I9's only input is from the Normalize Network (6 bits). The outputs

are to the SK register (608 minus normalize count) and to the F register.
The transfer to the F register is a path used to store the shift count

in Bj upon completion of the normalize operation. The shift count will
follow the path F I8 Il 12 E Bj.

Tf the Normalize Network attempts to normalize a zero coefficient, I9
receives a signal that causes its output to generate a shift count of 60.
The end result is a zero coefficient with an exponent of 60 less than the
original.

C REGISTER

The C register consists of 108 flip-flops and serves as the feeder

network to the D Adder and also as a data path used during many operations.
There is only one input to C and that is from I5. € has outputs to the
following circuits:

D adder

Shift network

17 (Output inverter rank)
X operating registers

14 inverter group

ECS transmitters

C slaves

Each of the outputs must be more specifically positioned since the
complete C register is not usually used for each of the transfers.

Adder OQutput

All 108 bits of the C register are unconditionally fed to the D adder,
where translation for the carry networks will be made. The D adder is
always active; the output available upon control request.

Shift Network - Output

All 108 bits of C feed the Shift Network, but all positions do not serve
the same purpose. The Shift Netwrok shifts a number right or left 77g
except during a floating add or subtract when the shift network can shift
right 177g places, since the equalization of exponents can be this great.
This seventh bit in the shift count indicates a right shift of 64 (binary
position value) and is wired between the C register and the Shift Network.
Therefore, the C register feeds the Shift Network in all 108 positions,
if the right shift 64 is not being used. If the right shift is needed,
then the lower 64 positions of C will not go to the Shift Network, since
right shifts are end off. Instead, bit 64 will go to position 00 of the
Shift Network, bit 65 to position 01, bit 66 to position 02, etc. (see
Figure 4-35).
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C SIGN

______ ~s-_
2107 ——— __ ___ ~ \\25:\:::.
\\ \\\\\\\~
AR AN, SIGN EXTENSION
N N
\\ \w 243
\
N\
3 A
\\ \\
~
\\
\\
\\\
_____ —_ -
264 A ~ SHIFT NETWORK
e - - -\\\\\
e s e e \
) \:\:\
65 AR
2 \\\\\
AN
Y
N O 202
hY AL
\\ SN 20]_
20 J \\ N 200

-~ END OFF

Figure 4-35. RS64

I6 and 17 Outputs

These outputs are used during an Exchange Jump to send the contents of
certain control registers to memory.

X Operating Registers - Output

The output to the X operating register is used to store results at the
completion of an operation. Only the lower 60 bits are used durint this
operation. The C register data are sent to the X feeders and then to the
proper X register. When this transfer is made, the lower 59 bits and the
108th bit (to indicate the sign of the number) are sent.

14 Qutput

Whenever a C—=>14 transfer is called for by the sequences, the lower

48 bits go directly to I4. However, the remaining 60 bits travel through
various other circuits before reaching I4. See the text concerning I4
inputs to better understand this transfer.
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ECS Transmitters

During ECS operations the Central Processor must send the ECS address to
the ECS coupler. The ECS address was stored in X0 and will travel through
C via 15 to the transmitter networks.

C Slaves Output

The upper twelve bits of C are always sent to a fan-out circuit called
the C slaves. The output of the slaves will feed the C Exponent Test
circuit ant the sign extension controls for right shift.

D REGISTER

The D register consists of 108 flip-flops. D serves as one of the Feeder
registers for the D adder, as well as the Result register for all opera-
tions using the adder.

The D register has two outputs, one is to I4 (108 bits). This output
will be used on the D to I4 to C transfers. It will also be used during
iterative operations for the D to I4 to D transfers. Bits from C and D
are compared at the output of D in order to determine the carries, etc.,
needed during add operations.

Inputs to the D register come from I4 and from the last rank of the D
adder. Data entering D from I4 can be the C register, or the D register
(D —=>14 —>D), shifted right or left one (shifted in I4). The input
to D from the adder can be the adder results or the results shifted right
or left one. These shifted inputs are used during iterative operations.

D ADDER

The D adder is the focal point of the LAS. All boolean, floating
multiplies, divides, floating adds and subtracts, and integer add and
subtract instructions use the adder. Various other operations, such as
FL checking for ECS instructions, also use the adder.

Definition of the adder is arbitrary since all adders operate under the
same basic theory. In general, adders are defined as being additive or
subtractive. These definitions consider the development of positive or
negative zero as a result when adding certain pairs of operands.

An adder that usually develops positive zero is more useful and, therefore,
is the type desired in the CPU. Usually, this type of adder is defined

as a subtractive adder since the only pair of operands that will produce

a negative zero result is negative zero and negative zero. The equation
for a subtractive adder would be C - D, or D - C, where C and D are the
two original operands. The explanation of this type of adder would
include the presence of borrows, and the consideration of inverting one

of the operands.

4-40




Consider the following operands as they are added, using each set of
rules.

OPERAND #1 (D) 7777
OPERAND #2 (C) 0000
(SUBTRACTIVE) (ADDITIVE)
D-C D+¢C
D = 7777 D= 7777
C =-7777 C =+0000
RESULT = 0000 RESULT = 7777
Figure 4-36

This adder is considered subtractive; therefore, the following set of
rules are used:

ACTUAL ARITHMETICAL
REGISTERS CONTENTS

r e 2 Va e N
D C D c
SATISFY 1 1 1 0
PASS 1 0 1 1
PASS 0 1 0 0
BORROW 0 0 0 1

Table 4-4

A borrow is when any stage generates a borrow from the next higher stage.
A pass indicates that a stage will not generate a borrow, nor will it

4-41



satisfy one, but will pass the borrow on to the next higher stage. A
satisfy indicates that an incoming borrow will be satisfied. These terms
can be applied to groups and sections of the adder as well as to stages.
Before proceeding, a general review of an adder will be given. Any stage
can be considered as the result of the logical addition of the two members.
This is called the half add. This same stage must also be considered with
the presence of an incoming borrow. This would be the full add. For the
half add, there are four combinations to consider:

ARITHMETIC
0] 1 1 0 } CONTENTS OF
0 1 0 1 REGISTERS
0 0 1

1t can be seen that there are two possible results for the four combinations.
If both members are equal, the half add is a zero; if they are opposite,

_the result is a 1. Considering these same combinations with borrow inputs,
it can be seen that the borrow will complement the results.

CONTENTS OF

} ARITHMETIC
REGISTERS

oo ©
Ol =
—|O
= O

RESULTS WITH NO BORROW INPUT

ot
—
o
o

RESULTS WITH BORROW INPUT

Therefore, if the members are equivalent and have a borrow input, the
result is a 1. The following table defines all the combinations.

(E = Equivalence, B = Borrow)

E-B=1
E«B=0
E-B=0
E-B=1

To make use of this equivalence check, the equivalence of a circuilt must
be represented with a 1. Therefore, a stage can be equivalent (1) or
not (0).

The rules necessary to operate the adder can be applied to source operands
and the results calculated using paper and pencil. For the sake of space,
12-bit operands are used.

D=1234 D=1234%

C=+5670 L —" s C=2107

RESULT 7 1 2 4 7124

4-42




Considering the above operands, first write them in binary notation.
Then, above each stage, note the condition of that stage using the rules
for borrows, passes, and satisfies.

END ARQUND END AROUND
bk oo JyJ BORROW vy 4 N/BORROW
PBS PSB PS5 PBB PBS PS5B PSS PBB
D = 001 010 011 100 ACTUAL D = 001 010 011 100 ARITHMETIC
C = 101 110 111 Q00 CONTENTS C =010 001 000 111 } CONTENTS
EQUIV = 011 011 011 011 EQUIV = 100 100 100 100
BORROW BORROW
INPUT = 100 010 Ol1 111 INPUT = 100 010 0Ol 111
RESULT = 000 100 101 011 RESULT = 111 001 010 100
ANSWER = 111 011 010 100 ANSWER = 111 001 010 100
In the above examples, the equivalence of each stage (the equivalence is
represented by a 1) is first formed. Next, the borrow input to each stage

is determined. These inputs are represented by ones. Application of the
rules produce the final answer. Note that when using the "actual contents’
of C + D, the result must be complemented to obtain the correct answer.
With this basic theory of operation a Subtractive adder, we can describe
the physical and theoretical operation of the D adder.

The D adder is 108 bits in size, divided into 6 sections of 18 bits each.
Each section is divided into 6 groups of 3 bits each (see Figure 4-37).

GROUP 0
~
3
BITS
SEC SEC SEC SEC SEC
5 4 3 2 1 5 4 3 2 1 0
N J
Y~
SECTION O
Figure 4-37

We can consider the adder to be made up of three main areas (see Figure
4-38). They are:

1. Half-adder
: 2. Borrow network
| 3. Summation network
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\\
HALF
FEEDER & ADDER
& ourpuT
BORROW
FEEDER

NETWORK|

Figure 4-38

The C and D registers serve as the feeder networks for the two operands.
Each stage of C and D are compared to determine their equivalence. The
determination of borrows, satisfies, and passes are then made for each
stage. The borrow network propagates this information through several
rédnks to determine the final state of each group and section. Finally,
the borrow network and the half add are brought together to form the
final answer (Figure 4-39).

To analyze the adder, consider the 20 and 2! bits of the adder and the
borrow network. Loking at the adder from this viewpoint allows a partial
examination of all the circuits. Use Figure 4-40 as the operation is
explained.

First, develop the equivalence from the lower bits of the C and D
registers. Determination of an end around borrow must involve searching
all stages of the adder for borrows and the possible satisfaction of such
borrows before reaching the last stage of the adder.

Considering only the last stages of the adder (2107 _ 2105y | determine if
there will be an end around borrow. Using Figure 4-40 notice that if the
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# EQUIVALENCE (ACTUAL GONTENTS)

(EQUIVALENCE OF ARITHMETIC)
(CONTENTS OF REGISTERS)

ETC.
EQUIVALENCE CIRCUITS T
Figure 4-39a
r - N\
G2-55 S2-53
B25 G1B S1B~ TC, G2BI
B1S
. S0B
BOB GOB SOBI , G1BI
G1-58
B2S .
BlB{
GOS
B2S
B1S GOS
BOS GOS S0S
! G1S G2S
(ETG.) Figure 4-39b
BORROW INPUT
P |
RESULT
REGISTER

SATISFY INPUT

2n -1
2% POSITION
EQUIVALENCE
21’1

Figure 4-39c¢
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D Adder Analysis

Figure 4-40.

conditions indicate an end around borrow, there is a "1" out of the OR.
The input to the OR is: (Look for "O" inputs to the OR).

(2) + (€ +D)07(c - p)tos

3) +.(E . 5)107

Term (1) indicates that there was a borrow in stage 105 and no satisfies
after. Term (2) indicates there was a borrow in stage 106 and stage 107
was not a satisfy. Term (3) indicates that the last stage is a borrow
(C - D). The output of the OR, therefore, says that the last stage of
the last adder section is a borrow. If this is true, this output is all
that is necessary to cause an end around borrow. However, assuming that
the last stage is not a borrow, then the next circuit in line considers
all groups in the last section of the adder. Specifically, this circuit
examines all the groups in the section looking for a borrow and no following
satisfies. The case could be that the last section is not a borrow;
therefore, further examination of the adder is made in the next circuit.
Here all the sections feed their results into an OR that decides if any
section is a borrow and that no satisfies follow. With some study and a
certain amount of spatial perspective, it can be seen that all of these
circuits mentioned are duplicates of the circuits that are illustrated.

The final analysis of the adder involves looking at how an end around
borrow affects the lower stage of the adder. It can be seen, using

Figure 4-40 and applying the rules set forth before, that the end around
borrow will inhibit the lowest stage of the result if the two original
operands were equivalent in this position. By assuming the other possible
conditions, all of the combinations can be tried and will be found to
hold true.

The second stage of the adder is also illustrated in Figure 4-40 in order
to show the effects of an end around borrow. It must be remembered that
each higher stage may be influenced by an end around borrow, depending on
what the lower stage did.

SMALIL, ARITHMETIC SECTION (SAS)

The SAS section of the Central Processor handles operations using 18-bit
operands. This would be increment instructions, jumps, and exponent
manipulation during floating point operations. The SAS includes several
inverter groups, registers and an l8-bit adder. Figure 4-41 places the
SAS in the Central Processor block diagram. A basic description of the
integral parts of the SAS follows; this will allow a better understanding,
later, of operations performed here.
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Il Inverter Group

The Il inverter group is 18 bits in size and consists of a three-way
fan-in. (TE Module) Il has only one output, to I2. One input is from the
F register via 18. This would be used during the addition of RA to P
before referencing memory.

The second input is bits 48 - 65 of I5. This transfer is necessary when
executing an instruction which needs to reference an X register, or on
an Exchange Jump (X > 15 12 D.T.).

The third input is from the C register via the C slaves. This transfer
is the exponent of a floating point number. The transfer is 11 bits with
the sign of the exponent extended to fill I1. The bias is also removed.

The process of bias removed and sign extension is accomplished by examining
the sign of the exponent (0106) which would also be the bias, and extending
this sign to the upper eight bits of Il. For instance, if the expomnent

was 2177, the sign of the exponent is positive. (If the coefficient was
negative, a zero in cl06 would represent a positive exponent.) Therefore,
zeros are extended in the upper eight bits of I1. This produces an
exponent of 000177, feeding the adder (bias removed and sign extended).

For a negative coefficient having an exponent of 5600, Cl06 is equal to a
zero (still a positive exponent) and ones are extended in the upper eight
bits of Il1. The result is 777600. However, the exponent is complemented
in I2, resulting in 000177. Notice that the same final exponent is

feeding the adder as was in the first example. This proves that 2177 and
5600 are the same exponent, but the coefficient is negative in one and
positive in the other.

12 Inverter Group

The I2 inverter group is 18 bits in size and has the capability to
complement any operand passing through it. Complementing would be used
is a negative coefficient during floating point operations, where the
exponent must be complemented, and during other operations where constants
must be subtracted in the F adder. 1I2 also has the B registers as two
inputs. Any selection at the B register will come to I2. The output of
I2 feeds the E and F registers that feed the F adder. There is also an
output that feeds the data transmitters. This would be used during an
exchange jump. One input to 12 comes from I3. This would be P, RA, the
A operating registers or the K part of an instruction word when 30-bit
instructions are being executed. The last input comes from Il.

I3 Inverter Group

The I3 inverter group feeds I2 and I7. 17 is used during exchange jumps.
I3 is a four-way fan-in with inputs from the A operating registers, I0
(P and RA) and 110 (K on 30-bit instructions).
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Figure 4-42

4-50

NN

|

SLAVES 11

I2



E Register,

The E register is 18 bits in size and serves as one of the feeder registers
for the F adder. E register's only input is from I2. Outputs from E feed
the first rank of the adder and the A and B operating registers, feeder
networks.

F Register

The F register is the other feeder register for the F adder. F also
serves as the output register for the results of the adder. Inputs to F
are from Rank V of the adder, from I2 inverter group and from I9. The
I9 input would be the shift count developed during normalization of a
floating point coefficient and must be added or subtracted from the
exponent. There is also the input of +1 as a constant necessary during
advancing of P. The F register output also feeds 18. 18 is used for
general distribution of data from the SAS.

F Adder

The T adder is the same as the D adder except for its size; the F adder,
is one section of the D adder. Use the same explanation for the F adder
as was used for the D adder, just remembering that there will be less
complications.

I8 Inverter Group

I8 is a general distribution point for data in the SAS. Inputs are from
the F adder and the Normalize Network. The input from the Normalize
Network is used during a C-—=>1I4 transfer. The output of 18 distributes
data to many points such as the FL checker, the exponent checker, and the
P register.

Replacing the Bias in I8

I8 is the point where the bias will be replaced in the exponent before
storing it. Remember that all manipulation on the exponents dome in SAS
is with the bias removed. Sometimes the bias is replaced inadvertently
during maniEulation of the exponents. The circuit merely toggles the
bias bit (2 O), which may seem strange for some exponents, but it should
be remembered that 15 can complement the entire bias and exponent.

CONTROL SIGNAL FOR EXP—> 14
RESTORING BIAS

| 4

| 1 = TRANSFER

i

ig 0 = TOGGLE

EXP —» 14
F- 100

Figure 4-43
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Qutput Area

All addresses and data pass through this area of the CPU. There are
four basic sets of transmitters in this area. They are:

Data Transmitters (60)

ECS Address Transmitters (24)
Read P Transmitters (17)

Central Address Transmitters (17)

CENT.
)
PDD&ES MEM.
oth
CPU
ADDRESS WORD COUNT ECS
T LoupLER
PPU'S

Figure 4-44

16 and 17 inverter groups are the fan-in circuits that collect all the
necessary data that will be sent by the data transmitters to Central Memory
(usually on exchange jump). The Read P transmitters send the contents of
the CPU P register to the Peripheral Processors unconditionally every 100
nanoseconds.
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CENTRAL PROCESSOR OPERATIONS

Execution of instructions in the Central Processor entails the operation
on data through different areas of the circuitry under control of logical

sequences. The logical sequences are initiated by decoding of the instruc-
tions as they come from memory.

CENTRAL INST. DECODE LOGICAL

MEMORY SEQUENCE EXIT

Figure 4-46. Sequence Initiation

The logical sequences are made up of flip-flops that will pass a signal
along, according to timing signals and logical gates. Each flip-flop

in the chain will cause a particular part of the needed controls to
develop.

ENTER — SEQUENCE P ExIT

an
CONTROL SIGNALS

Figure 4-47

The command timing charts define the action of the controls for all the
particular sequences.
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In this section of the manual, discussions will look at the CPU theory

of the operation but will not examine the logic to any detail. References
will be made to the logic in order to aid the reader in following the
operation through it. Following are some general comments concerning the
Central Processor instruction set and a list of the instructions and
their individual times.

GENERAL TIMING COMMENTS

The 6400 system Central Processor has a unified arithmetic unit.
Instructions in the 6400 Central Processor, therefore, are executed in
sequential fashion, with little concurrency. Factors influencing instruc-
tion execution time are summarized below.

1. The next instruction word is called up from Central Memory
between the execution of the first and second instructions.
This process takes two minor cycles to initiate (the remainder
of the Read Next Instruction is parallel in time with the execu-
tion of the second instruction).

Rule: Add two minor cycles for each instruction word in a program
which does not have a jump, taken as the upper instruction.

2. All execution times listed are complete. The times include
getting the next instruction ready to execute. The jump and
return jump times include reading up and preparing to execute
the new instruction word.

3. The return jump, jumps and load/store memory instructions pay a
time penalty for being the second instruction of an instruction
word. This penalty is caused by hardware limitations and is not
due to memory bank conflicts.

SECOND INSTRUCTION IN

INSTRUCTION WORD TIME PENALTY
Jumps taken 1 minor cycle
Return jump 2 minor cycles
Load/store 2 minor cycles
Minimum execution of

second instruction 8 minor cycles

4. T1f the second instruction references the same memory bank as
(P + 1), there is an additional penalty of three minor cycles
due to bank conflict.

5. A store (not load) as the first instruction of a word can cause
a bank conflict with (P + 1). 1If this occurs, the penalty is
three minor cycles.

4-55




The rules, then, for efficient coding in the 6400 include:

1.

Put jumps in the upper parcel. This eliminates both the two
minor cycle RNI penalty and the possibility of having a memory
bank conflict with (P + 1).

Where possible, keep load/store instructions in the bottom two
parcels.

Loads and stores in consecutive parcels will not cause memory
conflicts with each other.




CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES
Central Processor instruction execution times for the 6400 system are
given in Table 4-5,

Instruction execution times are listed in minor cycles, which is 100
nanoseconds in the 6400.

TABLE 4-5. INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR

OCTAL
CODE BRANCH INSTRUCTIONS 6400
00 STOP -
01 RETURN JUMP TO K 21
011 READ EXTENDED CORE STORAGE }

012 WRITE EXTENDED CORE STORAGE

02 GO TO K + Bi' f 13
030 GO TO K if Xj = zero 13
031 GO TO K if Xj # zero 13
032 GO TO K if Xj = positive 13
033 GO TO K if Xj = negative \ 13
034 GO TO K if Xj is in range J 13
035 GO TO K if Xj is out of range 3 13
036 GO TO K if Xj is definite 13
037 GO TO K if Xj is indefinite 13
04 GO TO K if Bi = Bj 13
05 GO TO K if Bi # Bj 13
06 GO TO K if Bi > Bj {' 13
07 GO TO K if Bi < Bj [ 13

"GO TO K + Bi and GO TO K if Bi - - - tests made by Increment Instruction

?Execution times for Extended Core Storage operations are dependent
upon several factors; refer to Extended Core Storage literature for
timing information

?Jumps in which the jump condition is not met require 5 minor cycles

‘G0 TO I if Xj - - - tests made by Long Add Instruction
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OCTAL

CODE BOOLEAN INSTRUCTIONS 6400
10 TRANSMIT Xj to Xi 5
11 LOGICAL PRODUCT of Xj and Xk to Xi 5
12 LOGICAL SUM of Xj and Xk to Xi 5
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 5
14 TRANSMIT Xk COMP. to XiS 5
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 5
16 LOGICAL SUM of Xj and Xk COMP. to Xi 5
17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 5

OCTAL

CODE SHIFT INSTRUCTIONS 6400
20 SHIFT Xi LEFT jk places 6
21 SHIFT Xi RIGHT jk places 6
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi 6
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi 6
24 NORMALIZE Xk in Xi and Bj 7
25 ROUND AND NORMALIZE Xk in Xi and Bj 7
26 UNPACK Xk to Xi and Bj 7
27 PACK Xi from Xk and Bj 7
43 FORM jk MASK in Xi 6

OCTAL

CODE ADD INSTRUCTIONS 6400
30 FLOATING SUM of Xj and Xk to Xi 11
31 FLOATING DIFFERENCE of Xj and Xk to Xi 11
32 FLOATING DP SUM of Xj and Xk to Xi? 11
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 11
34 ROUND FLOATING SUM of Xj and Xk to Xi 11
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 11

OCTAL

CODE LONG ADD INSTRUCTIONS 6400
36 INTEGER SUM of Xj and Xk to Xi 6
37 INTEGER DIFFERENCE of Xj and Xk to Xi 6

OCTAL

CODE MULTIPLY INSTRUCTIONS 6400
40 FLOATING PRODUCT of Xj and Xk to Xi 57
41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 57
42 FLOATING DP PRODUCT of Xj and Xk to Xi 57

*Comp. = Complement; DP = Double Precision
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OCTAL
CODE DIVIDE INSTRUCTIONS 6400
44 FLOATING DIVIDE Xj by Xk to Xi 56
45 ROUND FLOATING DIVIDE Xj by Xk to Xi 56
47 SUM of 1's in Xk to Xi 68
46 PASS 3
OCTAL

CODE INCREMENT INSTRUCTIONS 6400
50 SUM of Aj and K to Ai b 6
51 SUM of Bj and K to Al 6
52 SUM of Xj and K to Al 6
53 SUM of Xj and Bk to Ai . 6
54 SM of Aj and Bk to Ai 6
55 DIFFERENCE of Aj and Bk to Ai 6
56 SM of Bj and Bk to Ai 6
57 DIFFERENCE of Bj and Bk to Ai J 6
60 SUM of Aj and K to Bi 5
61 SM of Bj and K to Bi 5
62 S of Xj and K to Bi 5
63 StM of Xj and Bk to Bi 5
64 SUM of Aj and Bk to Bi 5
65 DIFFERENCE of Aj and Bk to Bi 5
66 SUM of Bj and Bk to Bi 5
67 DIFFERENCE of Bj and Bk to Bi 5
70 SUM of Aj and K to Xi 6
71 SUM of Bj and K to Xi 6
72 SUM of Xj and K to Xi 6
73 SUM of Xj and Bk to Xi 6
74 SUM of Aj and Bk to Xi 6
75 DIFFERENCE of Aj and Bk to Xi 6
76 SUM of Bj and Bk to Xi 6
77 DIFFERENCE of Bj and Bk to Xi 6

“Times listed are when i = 0. When i = 1-5, the execution time is

12 minor cycles; with 1 = 6 or 7, 10 minor cycles is the execution
time.
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MULTIPLY OPERATION

There are three multiply instructions in the central processor instruction
set. They are:

40 Floating Product of Xi and Xk to Xi (15 bits)

This instruction multiplies two floating point quantities located in
operand registers j (multiplier) and K (multiplicand) and packs the upper
product result in operand register i. :

The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus
47 (or 48).

The result is unnormalized when either or both operands are unnormalized;
the exponent in this case is the sum of the exponents plus 48.

41 Round Floating Product of Xj and Xk to Xi (15 bits)

This instruction attaches a round bit to the floating point number in
operand register k (multiplicand), multiplies this number by the floating
point number in operand register j, and packs the upper product result

in operand register i. (No lower product available.)

The result is a normalized quantity only when both operands are normalized;
the exponent in this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized;
the exponent in this case is the sum of the exponents plus 48.

42 Floating DP Product of Xj and Xk to Xi (15 bits)

This instruction multiplies two floating point quantities located in
operand registers j and k and packs the lower product in operand
register i. The result is not necessarily a normalized quantity.

The multiplication of two floating point operands involves the multi-
plication of the coefficients and the addition of the exponents. The
multiply process will be handled in the LAS and the exponent manipulation
will be done in the SAS. 1In the 6400 CPU we can have a floating point
coefficient of 48 bits. The remaining twelve bits of the 60-bit memory
word are the signed exponent and the sign of the coefficient.

299,08 - 247 0

v

SIGN EXPONENT

2

EXP. COEFFICIENT

S5IGN COEFFICIENT

Figure 4-50
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With a coefficient of this size, the development of a 96-bit product
results. Since only 60 bits can be stored as an answer, a decision to
use either the upper 48 or the lower 48 bits must be made. With the
instructions available, a selection of either the upper or the lower
half may be made except for rounded multiply.

<;§23225§’ D REGISTER
/// /]
A\ v AN v J
SINGLE DOUBLE
PRECISION PRECISION
Figure 4-49

The location of the binary point is to the right of bit 20 in the

result register. (The binary Boint for each of our original coefficient
was also to the right of bit 2%.) This means that all numbers are
considered integers rather than fractions. The exponent developed in
the SAS is relative to the complete 96-bit answer; therefore, double
precision uses this exponent unchanged whereas single precision exponents
must be plus 60 to reconﬁéle the right shift necessary to move the
binary point below the 277 bit. (Effectively shift the number right 48.
This puts the 248 pit position in the 20 position, which now places the
binary point just to the right of the answer.)

Y,

595 247 20

BINARY POINT
Figure 4-50

With the execution of a multiply instruction, the first floating operand
will be selected from the specified X operating register. In the C
register the 2107 pit will be checked. (Remember the transfer, Select Xj,
places the contents of X into positions 48 - 107 of the C register.) If
bit 107 is a "1", sign record (XjSR) will be set to indicate that the
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coefficient is negative. The setting of XjSR causes the entire coefficient
and the exponent to become complemented before any operation is performed.
XjSR also causes recomplementing of the final answer before it is stored
(IF XkSR).

The second operand (Xk) is now transferred to C where its sign will be
checked in the same manner. (XkSR)

The Xj coefficient is selected from the X register for the second time,
if the first transfer into C found the coefficient to be negative. This
second transfer allows the coefficient to be complemented while it
passes through I5. When the coefficient, Xj, is in the C register for
the second time, it is checked for normalization by comparing position

272 (upper bit of coefficient) with the XjSR. If the bits are unequal,
the Both Operands Normalized (BON) flip-flop sets. If the two bits are
unequal (C 5 # XjSR), it means that the sign bit is "0" and 95 =1
(indicating a normalized positive coefficient) or that the sign bit
(XjSR) is "l" and €95 = 0 (indicating a negative normalized exponent).

The same process is involved in the selecting Xk coefficient from the
X registers for the second time. When Xk is in C for the second time,
Sj will already have moved to the D register via the Shift Network,
which will shift it right 60g. The check for the Xk normalized
situation is made during the second transfer and, according to the
results, the BON flip-flop is cleared if Xk is not normalized and set
if it is normalized.

At this time, the two coefficients are in place and ready for the
multiply process to start.

295 2% 20 295 247 20

ZZE /] X;
MU \—‘Y——/ \__—“V'_—_J

MULTIPLICAND MULTIPLIER

C REGISTER D REGISTER

Figure 4-51

The process of multiplying is one of shifting and adding or just shifting
according to the one bits in the multiplier. During the process, the C
and D registers, the D adder, and the I4 inverter group are used. The

SK register becomes set to 48;; to keep track of the number of iteratioms.
Each pass reduced SK by one. A l-bit register, called the D Flag,

catches each bit of the multiplier as it is shifted, to determine whether
an add is needed.




ENTER

MULTIPLY STEP

REDUCE SK

v

RIGHT SHIFT 1
D—3 p

RIGHT SHIFT 1
D—%p

YES

(C+D)(RS1)
ADDER ~~2 D

REDUCE SK —

Figure 4-52

During the multiply operation the multiplier is shifted right into the

D Flag. 1If the flag sets, the output of the adder is sent to D, shifted
right one position. If the D Flag did not set, the output of the D
register is sent through I4 (I4 will shift right one) and back to D.
After the first iteration, the D register holds the partial product and
the multiplier. The multiplicand remains in the C register unchanged
throughout the operation. To visualize the operation of the multiply,
the following illustration is used. For conservation of time and space,
3-bit coefficients will be used. Assume the C and D registers are 10
bits in size for this example.

29 25 53 29 22 50

7 7 .

2 = 7R
C REGISTER D REGISTER

Figure 4-53

During the first iteration, the D register must shift right one position
to load the D Flag, which determines the following operation. Assume
that the computer is multiplying 5g x 48 = 24g.
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MULTIPLY EXAMPLE

C (MULTIPLICAND)

0000100000
Right Shift 1D —=D
Add C + D and RS1—=D
Right Shift 1D ——=D (D Flag = d)
Add C + D and RS1—=D
Figure 4-55

In this example, development of the final answer in the D register can
be seen. After the first interation, the D register holds the partial
After the last
iteration, only the final product remainsc since the multiplier has been

product and the remaining bits of the multiplier.

shifted completely out of the register.

Some consideration must now be given to the form of the final answer.

D (MULTIPLIER)

000co00101

0000000010
0000010001
0000001000

0000010100

If either of the two original operands were not normalized, then the
final answer will not necessarily be normalized. However, if they

were both normalized, then a normalized answer is guaranteed (single
precision only). This process of normalizing the result may include

shifting of the final answer just. one position different than the normal
shift necessary before storing the results. Usually, most normalized
However, where the
smallest possible normalized operands are used, the answer may not be

operands automatically produce a normalized answer.

normalized. For example:

Xj Coefficient = 40 0.
Xk Coefficient = 40 0.
Answer = 20 0.
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In this example, the final answer is not normalized. When the right
shift is performed which places the final answer (single precision) in
the proger position for storing (remember that a single precision answer
is in D99 - D%B but can only be stored in X from c48 - ¢00), shifting
will be one position less than usual. Normally, a right shift of 48

is performed; however, the shift now will be 47. This difference is
made up in the exponent.

During double precision operations, normalized answers can pnever be
guaranteed, even if the two original coefficients were normalized.
However, when the computer executes a DP multiply and the coefficients
are normalized, the whole 96-bit register is still considered and is
normalized before the DP results are taken. This means a left shift
of 1 is necessary to normalize the register. This difference, again,
would be taken up in the exponent.

The manipulation of the exponent starts as soon as the first exponent

(Xj) is sent to SAS. The bias is removed and the sign of the exponent

is extended the full 18 bits of I1. In I2 the exponent may be complemented
if XjSR is set. Later, the second exponent will arrive from LAS and

the same process will occur. Once the two exponents have been placed

in the E and F feeder registers, they are added to form the exponent of

the 96-bit product. Let's assume the following exponents:

2001 Xj
2002 Xk
11 000001
11 000002
After Add 000003

Before being stored as part of the final answer, the exponent must have
its bias replaced. This is done in 18:

18 output 002003

There are certain possible adjustments which could be made to the exponent.
For instance, if Single Precision Multiply was executed, 47,4 or 48,
must be added to the exponent to adjust for the binary point.

Remember, whether 47;g or 48)g depends on the need or not the need for
normalized answers. If double precision is executed, one can be subtracted
from the exponent for original operands which were normalized but produced
a 96-bit product which was not normalized. This subtraction of one
compensates for the left shift of one. (Left shift increases the
coefficient and, therefore, decreases the exponent.) Normally, the
unadjusted exponent in SAS represents the 96-bit product and, therefore,
the DP results.
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Once the exponent has been adjusted, it is sent back to LAS. The path
would be I8 14 I5 C. 1In the C register the exponent is
re-united with the coefficient and the complete answer is stored in the
X registers.

The Round Floating Multiply works in the same manner as was already
described, except that a round bit is appended to the multiplicand before
the first iteration.

2107 295 Q&7
V,
iﬁé?ij’i/ MULT IPLICAND 1
C REGISTER
ROUND BIT
Figure 4-56

Effectively, this round bit is added in on each iteration where a "1V
bit was present in the multiplier. The end result is to round the final
product.

DIVIDE OPERATION

There are two divide instructions in the CPU set. They are discussed in
the following topics.

44 Floating Divide Xj by Xk to Xi (15 bits)

This instruction divides two floating point quantities located in operand
registers j (dividend) and K (divisor) and packs the quotient in operand
register i.

The exponent of the result, if no overflow occurs, is the difference of
the dividend and divisor exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and
right shifting the quotient one place. The resultant exponent is the
difference between the dividend and divisor exponents minus 47.

The result is a normalized quantity when both the dividend and the divisor
are normalized.




45 Round Floating Divide Xj by Xk to Xi (15 bits)

This instruction divides the floating quantity in operand register j
(dividend) by the floating point quantity in operand register K
(divisor) and packs the rounded quotient in operand register i. A 1/3°
round bit is added to the least significant bit of the dividend before
division starts.

The resultant exponent, if no overflow occurs, is the difference
between the dividend and divisor exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and
right shifting the quotient one place. The resultant exponent is the
difference between the dividend and divisor exponents minus 47. The
result is a normalized quantity when both dividend and divisor are
normalized.

The following general comments should aid in the understanding of the
divide operation.

1. A normalized answer always results if both original operands
are normalized.

2. A divide fault occurs if two operands are divided where the
divisor 1/2 dividend (operands un-normalized).

3. 1If both operands are un-normalized, the result is not mnecessarily
normalized.

The divide operation can be considered in two parts, just as for the
multiply. The first phase considered is the preparation of the two
operands; the second phase is the actual divide process.

The preparation of the operands includes the extraction of the exponents
from each operand and sending them to the SAS where the final exponent
will be computed. Also in preparation, the two coefficients will be
checked for normalization and sign. This is done in the same manner as
was done in the multiply. There is, however, one difference during
preparation of the two divide coefficients that must be considered: a
subtract is required during the divide process, rather than an add.

This means that the divisor (Xk) must be in complement form (D + C) and
will, therefore, be complemented in I5, unless it was found to be
negative (0107 = 1). If it is negative, complementing is omitted. After
the preparation process, the dividend and divisor are located in the C
and D registers, as illustrated in Figure 4-57.

295 248 295 248
7 7
%, %
C REGISTER ' D REGISTER
(DIVISOR) Figure 457 (DIVIDEND)
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The elements of the LAs used during the divide are the C and D
registers, the D adder, and the I4 inverter group. The SK register
becomes set to 481g, to establish the count of iterations.

The process of dividing is to subtract the divisor from the dividend

to determine if it is smaller; if it is, a "1" bit is set into the
partial quotient and the new dividend is shifted left one. (This has
the effect of positioning the divisor so that the second subtract will
be from a larger dividend.) If the subtraction of the divisor from the
dividend does not find the divisor smaller, a zero is forced into the
partial quotient and shift the dividend left shifted one. (Compare this
method to paper and pencil division to better understand the theory.)
This process of subtracting and shifting or just shifting continues
until 48 iterations have been made.

The following illustration is offered to aid in the understanding of the
theory. Assume 3-bit operands, to conserve space and time.

DIVIDE 5/4

The C and D registers hold the dividend and divisor. C and D feed the
adder and determine the results of the first subtract.

C (Xk) D (Xj)
v ol | Vo 01|
23 20 23 20

ADDER OUTPUT (001)(CARRY)

Since there is an End Around Carry, the divisor must have been smaller;
therefore, a "1" bit is forced into the partial quotient (lower part of
D). This bit is developed by setting the lowest bit in D at the same
time the shifted output of the adder feeds D.
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SET 49th IT.

ENTER

l DIVIDE STEP

REDUCE SK

l

ser D00 anp
LEFT SHIFT 1
ADDER ~—3 D
LEFT SHIFT 1
*% D—==D
NO
YES
*% possible on lst
iteration only. NO
EXIT
YES
LEFT SHIFT 1
D—>D —®  ExIT

Figure 4-59
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LS1
D ADDER

CARRY sgT pY0

Figure 4-60
At the completion of this first iteration, the C and D registers look like:
c D
23 20 23 20

C and D are again fed into the adder.

Adder Results (101)(Carry)

This time there is no End Around Carry (divisor > dividend) and,
therefore, a zero is forced into the partial quotient. This is done by
shifting the old dividend (the present contents of the D register) left
one place (via 15). After the second iteration, the registers look like:

c D
23 20 23 90

C and D feed the adder for the last iteration.

OQutput of Adder (111)(Carry)

This time an End Around Carry is generated (remember that '"all pass' in
the D adder is equivalent to a carry); therefore, another "l1" bit is
placed into the quotient. The final quotient becomes:

1012
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This answer does not mean much until the binary point is considered.

Upon completion of the divide process, the binary point can be considered
to be between bits 240 and 247. This means the answer could be 1.X X
or 0.1X X (consider normalized operands). With the preceding example,
the answer would be: 1.2,. However, this is not a floating point answer
but an integer one insteag. The binary point must be shifted to represent
the number as an integer. This means that the final coefficient would

be 5. Likewise, considering the full 48 bits of a possible answer, if

the result was 1.X X, the difference in the exponent must be made up
by subtracting 47 from the exponent, rather than 48.

Another situation which must be considered is obtaining an un-normalized
result after dividing two normalized coefficients. For instance, divide
4/5. The result would be 0.1X X because the first subtract did not
find the divisor smaller than the dividend and, therefore, formed a zero
bit first in the partial quotient. To get a normalized answer in this
instance, the 49th Iteration f£lip-flop is set. This 49th iteration is
one extra left shift of the quotient, which effectively transfers the "l"
bit from 240 and 247. The binary point is now between position 247 and
248, To represent the final answer as an integer, 48 must be subtracted
from the exponent.

Considering this same example using the full 48-bit quantities; remember
that each coefficient is placed in a 108-bit register G and D. Consider

the following equation for the adder D + C. 5/4
C divisor (Xk) 7 37
D dividend (Xj) 0 050 0
Adder output 0 010 0
Left shift into D 0 020 0
EAC = set DOO 0 020 1
C + D = adder output 7 060 0
EAC —> left shift old dividend —=D 0 040 2
C + D = adder ocutput 0 2
Left shift adder ——=D 0 4
EAC —>set DOO 0 5

Since the remaining bits of the dividend are all zeros, we can discontinue
representing the remaining iterations. Of course, these iterations will
take place and the final result will be:

D final 50 ———0

4-73




Considering the binary point between positions 246 and 247, the answer
is 1.20———0g. To represent this number as an integer, the binary
point is placed to the right of the 20 bit. This difference is made
up in the exponent by subtracting 47.

To summarize computation of the exponent, consider the following points.

When two coefficients are divided, the exponents (without bias and sign
extended) are added and, depending on the 49th Iteration flip-flop,

47 or 48 are subtracted from the result. The 49th Iteration FF is set
any time the divisor does not fit into the dividend on the first try;
causing a leading zero. For two normalized coefficients, this leading
zero would mean that the result is not normalized, unless shift left
one more place. This extra left shift is made‘up in the exponent by
subtracting 487 from the exponent. If the 49th iteration is not made,
47 will always be subtracted from the exponent.

Rounded Divide

A rounded divide means that a round factor is inserted into the process
which produces a more exact answer. The round bit is effectively 1/3

and is in the form of 25252525 added to the shifted dividend. Actually,
the round bits are added one at a time. The original dividend was in the
D register and will be shifted, either through the adder or through T&4.
As soon as the dividend has left shifted once, bit position 2 8 is free.
However, to add 2525..., an even count of the SK register (never the first
count) is required. This means that when the SK register equals 46, the
first round bit is added by setting bit 248, From time on, for every

SK count, bit 248 becomes set. The end result is that positions 248 .
295 of the D register (dividend) will have the round bits.

Vo1 ... 1 j D REGISTER

248

Figure 4-61

This round bit affects the final result by causing an End Around Carry
into DO0 (the partial quotient) if the digits after the binary point
(after adjustment) were such as to allow it (7 2/3).
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FLOATING ADD

30 Floating Sum of Xj and Xk to Xi (15 Bits)

This instruction forms the sum of the floating point quantities in
operand registers j and k and packs the result in operand register 1.
The packed result is the upper half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the
argument with the smaller exponent is entered into the upper half of a
96-bit accumulator. The coefficient is shifted right by the difference
of the exponents. The other coefficient is then added into the upper
half of the accumulator. If overflow occurs, the sum is right shifted
one place and the exponent of the result increased by one. The upper
half of the accumulator holds the coefficient of the sum, which is not
necessarily in normalized form. The exponent and upper coefficient are
then repacked in operand register i.

If both exponents are zero and no overflow occurs, the instruction
effects an ordinary integer addition.

32 Floating DP Sum of Xj and Xk to Xi (15 Bits)

This instruction forms the sum of two floating point numbers as in the
floating sum (30) instruction, but packs the lower half of the double
precision sum with an exponent 48 less than the upper sum.

34 Round Floating Sum of Xj and Xk to Xi (15 Bits)

This instruction forms the round sum of the floating point quantities in
operand registers j and k and packs the upper sum of the double precision
result in operand register i. The sum is formed in the same manner as
the floating sum instruction but the operands are rounded before the
addition, as shown below, to produce a round sum.

1. A round bit is attached at the right end of both operands if
a. both operands are normalized, or

b. the operands have unlike signs.

!
%
|
@

2. A round bit is attached at the right end of the operand with the
larger exponent for all other situations.

e i

A floating add operation involves the addition of two floating point

g coefficients which have equal exponents. Since equal exponents is

| unusual, the CPU equalizes the exponents before the add. This is done
by right shifting the coefficient with the smaller exponent. A right
shift decreases the size of the coefficient (moves the binary point left)
and, therefore, the exponent is made larger. Once the exponents are
equalized, the add is accomplished in the 108-bit D adder.
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The binary point is considered to be between bit positions 247 and 248
of the 96-bit result register. Therefore, single precision add uses the

results from position 248 - 295 and takes the computed exponent. Double
precision takes the lower 48 bits of the D register and subtracts 4810
from the computed exponent to make up the difference in shifting of

the binary point (result must be represented as an integer).

The first phase of a floating add operation involves selecting of the
floating point operands from the X register and checking the sign of the
coefficients. If the coefficients are negative, they will be complemented.
This would be done in I5 when the coefficient is re-selected from the X
registers. The exponent of each argument is sent to the SAS where the
resultant exponent is computed.

The two exponents are equalized by subtracting one from the other. In
Il, the bias of each exponent is removed and the sign extended. One of
the exponents is complemented in order to perform a subtract. The two
exponents are then sent to the F adder where their absolute difference
is determined. The sign of the difference determines which exponent was
the larger. Accordingly, an absolute value is sent to SK to be used to
shift the coefficient of the smaller exponent. This coefficient is then
sent to the Shift Network where it is right shifted the indicated number
of places. Upon conclusion of this process, the two coefficients are

in position in the C and D registers, ready for the add. The coefficient
of the larger exponent will be in the D register, positions 295 . 248,
The shifted coefficient will be located, depending on the shift, some-
where in the C register.

The add is performed and, depending on whether single or double precision

was selected, the results will be stored in the X register along with
the proper exponent.
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FLOATING ADD

,107 ,95 248 2°
,107 295 20
C REGISTER#* <
5107 295 248 2°
RESULT (D)
N N <

SINGLE PRECISION

* Coefficient of the larger exponent.

O

*% Coefficient of the smaller exponent, can be found anyplace in the
register depending on the number of right shifts necessary to
equalize the exponents.

DOUBLE PRECISION
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