=\ CONTROL DATA
«? CORPORATION

8-BIT SUBROUTINES

REFERENCE MANUAL
VERSION 1.0

—— -
- ——

-—ua

CDC® OPERATING SYSTEMS:
SCOPE 3.4 -

KRONOS 2.1

01 Preliminary edition.
(12-10-72)
A Original printing.

(4-6-73)

B Tg iﬂcgrpg;ra‘[e CGIIECtiH resulting s e i

page; 3-3, 3-7, 310, 3-19; 4-1, 44,

DESCRIPTION -

from documentation use and evaluation. Pages atfected: litle

4-10 414 416' Comment Sheet

C ' 'E’e meerperate references te NOS and KRONOS and information relative to the use of the

(11-15-74) : subreutmes in programs e};eeuted under those operating systems. '

D Refereﬂees te the NOS eperatmg system have been deleted. This is the last
It will be a regularly steeked item at LDS for a minimum of 12 months after this

()103—78) - ”’[hIS manuej

scheduled revision to_

release. All technical corrections and comment sheet responses have been incorporated.

Publication No.
60359400

REVISION LETTERS I, O, Q AND X ARE NOT USED

© 1972, 1973, 1974, 1978

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Dvision

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

- .

e em—
T R S

Cover

Title Page

i1

1ii/iv

v thru viii
1-1

1-2, 1-3

1-4

2-1

2-2 thru 2-9
2-10

2-11, 2~12
2-13

2-14 thru 2-23
3-1, 3-2

3-3

3-4

3-5, 3-6

3-7

3-8, 3-9
3-10

3-11, 3-12
3-13 thru 3-16
3-17, 3~18
3-19

4-1

4-2, 4-3

4-4

4-5 thru 4-9
4-10

4-11 thru 4-13
4-14

4-15

4-16
4-17

60359400 D

>EH> PP WP I PUFTOPTUI>TOTIIIS>TPIFIP>TOTITU |

Page

5-1, 5-2

5-3, 5-4

5-5

6-1

6-2

63

6~4

65 _
/=1 thru 7-20
8-1 thru 8-3
84

8-5, 8-6

- A-1, A-2

A-3 thru A-6
A-T7
A-8

A-9 thru A-11

B-1 thru B-5
C-1 _
C-2, C-3
D-1 thru D-3
E-1 thru E-4

F-1

F-2, F-3
G-1 thru G-8
H-1

~ Index-1

Index~2
Index-3
Index—4
Index-5
Index-6

Indexe7
Index-8

LIST OF EFFECTIVE PAGES

Revision

> OO0 0P T0 0000200000058 0

Page

Comment Sheet
Mailer

Back Cover

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the

margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

' Page Revision

‘Revision

D

iiifiv @

o - —

g e

HHHHHHHH

- D

PREFACE

The 8-Bit Subroutine package is a group of user-callable subroutines for processing 8-bit data on the CONTROL
DATA® CYBER 70 Models 72, 73, and 74 and 6000 Series computers. The subroutines are accessed by

FORTRAN CALL and COBOL ENTER statements and by COMPASS return jump instructions. No modification
to FORTRAN Extended, COBOL, or COMPASS is required.

Input/output operations are under the control of Record Manager for all the subroutines except COPY8P. A
knowledge of Record Manager and FORM (File Organizer and Record Manager) is desirable. A general know-

ledge of character sets, IBM files (record types and blocking formats), and CDC files is essential. We assume
knowledge of COBOL or FORTRAN and hexadecimal notation.

This reference manual makes numerous references to the SCOPE 3.4 operating system and illustrates some of

its features. Users of KRONOS 2.1 will notice significant differences between SCOPE and KRONOS in the
following areas:

Use of nT parameter on SCOPE 3.4 job card
Use of ACCOUNT card following KRONOS 2.1 job card

Use of RESOURCE card in KRONOS 2.1 jobs when more than one tape is required
Differences in REQUEST card syntax and parameters

Differences in DISPOSE card syntax and parameters

Differences in the definition and use of flag cards for reading SCOPE 3.4 free-form binary cards versus
KRONOS 2.1 literal input

KRONOS 2.1 requirement to punch columns 79-80 of job card to select IBM 026 or 029 punch code
interpretation |

Use of an extended print file in conjunction with SCOPE 3.4 usage of 595-6 print train, such capacity
does not exist in KRONOS 2.1

Each of these differences should be resolved by referring to either the SCOPE 3.4 or KRONOS 2.1 operating
system reference manuals.

60359400 D

This reference manual deals only with the manipulation of files; the opening and closing of the tiles is done
by the interface language.

The following CDC publications may be of interest to the user:

Titles Publication Number
SCOPE 3.4 Reference Manual 60307200
KRONOS 2.1 Reference Manual 60407000
FORTRAN Extended Reference Manual 60305601
COBOL Reference Manual 60384100
COMPASS Reference Manual _ 60360900
Record Manager File Organization User’s Guide 60359600
Record Manager Referencei Manual 60307300
FORM Reference Manual - 60307000

CYBER LOADER 60344200

The following IBM publicationsmay be of value when it is necessary for the user to understand the nature of
the file data being processed by the 8-bit subroutines: '

IBM 360/370 FORTRAN IV Programmer’s Guide

IBM 360/370 ANSI COBOL Programmer’s Guide

IBM 360/370 PL/I Programmer’s Guide

CDC manuals can be ordered from Control Data Literature Distribution Services,
8001 East Bloomington Freeway, Minneapolis, Minnesota 55420.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

60359400 D

-
ul

—mlu.n

—

1 INTRODUCTION _
Maintaining 8-Bit Significance
Overview of Routines

Notations Used in Calling Sequences

2 DATA CONVERSION STRINGS
String Position o

Field Alignment
Conversion String Syntax
Conversion Items

Repeat Count

Simple Item Conversion

Conversion Strings Used As Conversion
Iltems :

Selector Expressions
[tem Locators
Value Field
Relationships
Conversion Specifications
Conversion Strings
Conversion String Punctuation
Nested Conversion Strings
Special Conversion Rules
Conversion Tables

3 INPUT-OUTPUT SUBROUTINES

Input/Output Parameters
XFILE File Definition
File-String Parameters
Workspace Area Size
File Usage
XWRITE Write a Record
Forcing Termination of File Output

XREAD/XREREAD Read a Record
Skipping Records =

Error Handling _

COBOL Input/Output Examples
COBOL Tape Reading Example _
Conversion-String Variations for Input
COBOL Tape Writing Example
Conversion-String Variations for Output

FORTRAN Input/Output Examples
COMPASS Input/Output Examples

60359400 D

CONTENTS

1-1
1-2
1-3
14

2-1
2-1
2-1
2-2
2-2
2-3
2-3

2-5

2-5
2-6
2-7
2-8

29
2-10
2-12
2-14

3-1
3-1

3-3
3-S5
3-5
3-5

3-8

3-11
3-12
3-12
3-13
3-13
3-15
3-15
3-17
3-18

4 UTILITY SUBROUTINES
Utility Subroutine Parameters
XCOMP String Comparison

Collating Sequence
Comparison Examples
XMOVE String Move
Move Examples 4-11
XPACK String Compression 4-12
‘Pack Examples
XPAND String Expansion
- Expand Examples 4-17
5. COPY8P PROGRAM R 5-1
Calling COPYS8P . 5-1
COPYS8P Options 5-1
Character Set Restrictions - 5.3
COPYS8P Print Conversion Tables 54
6 SYSTEM INTERFACES 6-1
Operating System Interface 6-1
Tape Files 6-1
Card Files 6-2
~ Print Files 6-3
Record Manager Interface C-3
Tape Files 6-3
Card Files . 6-4
Print Files 64
Loader Interface _ 6-4
Omitting Unneeded 8-Bit Modules 6-4
Loader Considerations - 6-5
7 COBOL USAGE ‘ 7-1
Internal CDC COBOL Data Formats 7-4
Example Conversions — IBM to CDC Files 7-6
Sample CDC COBOL Job 7-15
8 FORTRAN EXTENDED USAGE 8-1
IBM FORTRAN Data Formats 8-1
CDC FORTRAN Extended Data Formats 8-3
Sample FORTRAN Job 8-4
V11

Appendixes

A STANDARD CDC CHARACTER SETS A-l

B IBM TAPE FILE RECORD AND BLOCK
FORMATS

C IBM DATA FORMATS C-1

D CDC DATA FORMATS D-1

2-1 Valid T and m Values
2-2 Default Conversions If Tm~ Is Not

Specitied 2-15
2-3 Comparison Modes 2-16
2-4 Conversion Rules 2-17
5-1 Print Conversion Tables 54

Vil

E

7-1
71-2

8-1

8-2
8-3

8-4

FREE-FORM BINARY CARD
- FORMAT

PRINT FORMAT — 595-6 PRINT
TRAIN

DIAGNOSTIC MESSAGES G-1
8-BIT SUBROUTINES/FORM

COMPARISON H-1
IBM COBOL Tm Values 7-3
CDC COBOL Tm Values 7-5
IBM FORTRAN Constant and Variable

Sizes 8-1
IBM FORTRAN Tm Values 8-2

CDC FORTRAN Constant and Variable
Sizes
CDC FORTRAN Tm Values

60359400 D

INTRODUCTION ' .

Programmers using either COMPASS, COBOL, or FORTRAN Extended may use the 8-bit subroutines described
in this reference manual to perform any of the following three functions:

To convert IBM 360/370 sequential 8-bit tape or card files to CDC internal format, maintaining 8-bit
significance where necessary.

To perform data moves, comparisons, packing, and expanding of the converted data in which 8-bit signi-
ficance has been maintained.

To copy an IBM 360/370 print file fo a 595-6 extended print file, under SCOPE, maintaining upper and
lower case characters. Printing of such a file requires the use of the 95-character ASCII character set
available in the CDC 595-6 print train. Use of an extended print file with the 595-6 print train is not
available under KRONOS.

EBCDIC is the Extended Binary Coded Decimal Information Code developed by IBM to represent a set of
256 characters. It is an 8-bit code used in sequential 8-bit tape files produced on IBM 360/370 computer

systems. A complete listing of the EBCDIC character set appears on page A-6

ASCII is the American Standard Code for Information Interchange. It is an 8-bit code representing a prescribed
set of 128 characters. The full ASCII character set appears in table A-5. A standard 64-character subset of
ASCII has been adopted by Control Data Corporation to comply with Federal regulations and appears on page
A-4. It is a 6-bit code that can be used on existing 6-bit equipment and software systems.

Display code is a 6-bit code established for the representation of a 64-character set on external display devices,
such as line printers and cathode ray tube display units. A list of display codes in octal form with corresponding

graphics appears on page A-/.

IBM 360/370 8-bit sequential tape files may contain:

EBCDIC character string data

ASCII character string data

Bit stream data

Arithmetic data in IBM format

Such tape files may be in any one of the record/block format types described in appendix B. A full description
of IBM arithmetic data appears in appendix C.

60359400 C -1

The internal CDC format used in conjunction with the 8-bit subroutines may contdin the following data types:
6-bit display code character string data

12-bit ASCII character string data

12-bit EBCDIC character string data

Bit stream data B

Arithmefic data in CDC format

The 12-bit ASCII and EBCDIC data format is unique to 8-bit subroutines. Both 12-bit data formats and CDC
format arithmetic data are defined in appendix D. '

An IBM 360/370 print file is written entirely in either 8-bit ASCII or 8-bit EBCDIC character string data. CDC

extended print files consist of an ASCII code comparable to IBM 360/370 print file code. It contains a maxi-
mum of 95 characters; each is represented ‘internally in a 12-bit byte. The code is printed through use of the
CDC 595-6 print train. A list of the 95-character ASCII code appears on page 5-4, in the discussion of the

COPYSP utility program. CDC extended print files are discussed further in appendix F.

An IBM 360/370 sequential 8-bit tape can be written by the 8-bit subroutines with a few restrictions. When-
ever a block is written, the block size is rounded up to the next multiple of 12 bits as it goes through the PP
channel. The block size is rounded up again to the next multiple of 8 as it gets written on the tape. This
may cause up to two extra characters to be written on the tape.

For example, suppose a block to be written contains eight 8-bit characters or 64 bits, the PP rounds this to
72 bits and the tape drive further rounds it to 80 bits for a full frame. Eighty bits equals ten 8-bit charac-
ters. '

When reading this tape using the 8-bit subroutines, the extra characters are ignored as padding.

MAINTAINING 8-BIT SIGNIFICANCE

Maintaining 8-bit significance in data converted from IBM 360/370 tape files is necessary when such files con-

tain character codes not included in the CDC 64-character graphic set. Lower case characters and several special
characters, such as @ ? ! and # are included in the IBM EBCDIC and ASCII character sets used (see

page A-2), but not in the CDC 64-character set. Control characters included in the 8-bit ASCII and EBCDIC

character sets (page A-6) are not members of the 95-character ASCII graphic set used by the CDC 595-6 print
train. These characters can be processed by the 8-bit subroutines, but such control characters cannot be printed

on CDC equipment. The user must decide the necessity of maintaining special character codes. In many cases,
the upper case equivalent (page A-7) will suffice.

In a number of cases, 8-bit significance need not be maintained. Files containing only characters that appear in
the CDC 64-character set will convert to CDC 6-bit display codes. Files containing packed decimal data, in
which each digit occupies 4 bits, will convert to CDC 6-bit numeric display fields. IBM files containing binary
arithmetic data can be converted to CDC binary arithmetic or display numeric data per user specification. For
IBM arithmetic data that does not exceed CDC double precision format,accuracy need not be maintained for
8-bit significance. When double precision significance is exceeded, accuracy can be maintained by using bit
image conversion; but the user must provide his own routines to process such data.

60359400 D

- aa

== -

OVERVIEW OF ROUTINES

The 8-bit subroutines fall into two distinct groups:

Input/output subroutines. that operate on a record-by-record basis, providing translation capabilities between
internal and external data types and character sets.

Utility subroutines that manipulate, compress, or expand character strings in display code, ASCII, or
EBCDIC forms.

A stand-alone program (COPY8P) provides the capability to copy an IBM 360/370 print file into a CDC com-
patible print file without loss of 8-bit (upper and lower case) significance.

Input/output subroutines:

~ XFILE

‘Must be used to define a file for subsequent use by the 8-bit input/output subroutines:;
it performs no input/output function by itself.

XREAD
XREREAD

‘Reads or rereads one record from an input file and places the data into the user’s
‘buffer area. Optional data conversion may be performed during reading or rereading.

XWRITE Writes one record at a time to an output file; optional data conversion may be per-
formed as specified.

Utility subroutines include the following:

S)

XPACK

Packs 8-bit data from 12~b1t form into seven characters per 60-bit word for file

storage.
XPAND Unpacks 8-bit data (packed into 60-bit words for file storage by the XPACK sub-
' ~ routine) into 12-bit form (5 characters per 60-bit word) for subsequent internal
processing.
XMOVE ‘Moves character strings internally and optionally converts ASCII/EBCDIC/Display

Code during the move.

XCOMP Compares two strings of like or differing character sets. Status information indicating
the result of the comparison is returned to the user.

The print routine COPYS8P is a stand-alone control-card callable program not related to the subre‘uti?es described
above. It copies an IBM 360/370 print file to a 595-6 extended print file without loss of 8-bit significance.

60359400 D -

UPPER CASE

Lower case words

[] Brackets

{ } Braces

. . . Ellipses

NOTATIONS USED IN CALLING SEQUENCES

words are reserved words. They must be spelled correctly and may not be used
in a source program except as specified in the calling sequences.

~are generic terms which represent the words or symbols supplied by the user.

When generic terms are repeated in a calling sequence, a number or letter is
appended to the term for identification. |

enclose optional portions of a calling sequence. All entries within brackets may
be omitted or included at the user’s option.

enclose two or more vertically stacked items in a calling sequence. When only
one of the enclosed items must be used; also enclose required entries that may
be repeated.

immediately following a pair of brackets or braces indicate that the enclosed
material may be repeated at the user’s option.

represents the phrase “is defined as.”

Punctuation symbols shown in the calling sequences are required, unless enclosed in brackets and specifically

noted as optional.

60359400 A

........

—_—
o .l:.-_l‘-"'\—__
-- - _1
"

a————

‘DATA CONVERSION STRINGS

Data conversion strings are used as input parameters to the XREAD, XREREAD, and XWRITE subroutines. The
conversion string specifies how data items in a record are to be translated. Through the data conversion string,
the user may specifiy conversion between any IBM 360/370 data format and CDC internal data format.

STRING POSITION

Each record in the file is considered to be a string of variable length bytes with the length determined by

the storage device in use. When the file is stored on tape, the string contains 8-bit bytes; on card or print files,
the string contains 12-bit bytes; and when stored internally, the string contains 6-bit bytes. In 6-bit or 8-bit

bytes, bits within each byte are numbered 1 through 6 or 8, from left to right. In 12-bit bytes (card input
files) bits are numbered 1 to 12, from left to right.

For binary card files, all 12 bits are used. These card files are described in section 6.

FIELD ALIGNMENT

When data conversion is initiated, internal pointers are established for the source and destination record areas,

each initially pointing to bit 1 of byte 1 of its record string. These bits are the initial ‘next’ field positions.
Single quotes are used, as the word ‘next’ has special meaning in this regard.

When a ‘next’ source item is converted to a ‘next’ destination item, these pointers may be modified as follows:

1. Prior to conversion, if the bit pointer for a byte does not equal 1, it is set to 1; and character position
is incremented by 1 (rounded up to the next byte). If the destination pointer is so affected, skipped bit
positions are filled with binary zeros.

Exception: No rounding takes place for a type B (bit) source or destination item.

2. When conversion is complete, the pointers are updated to point to the bit succeeding the last bit read or
written — the ‘next’ field position. When conversion terminates mid-word, the remainder of the word is

unchanged.

Alignment never is forced to a boundary more significant than a byte position. If word boundary or other |
alignment is needed, the proper fill items must be supplied explicitly. Data alignment requirements are given 1n
section 7:; IBM in table 7-1, CDC in table 7-2.

60359400 D 2-1

CONVERSION STRING SYNTAX

The notations used in the definitions are given in section 1.

conversion-string:=

(conversion-specification-1 [conversion-specification-2| . . .)

conversion-specification:=

[selector expression:] conversion-item-1[,conversion-item-2}

selector-expression:=

item-locator-1 relationship value
item-locator-1 relationship item-locator-2

conversion-item:=

+

simple-item-conversion
[repeat count] { P ‘ 10 }

conversion-string

A conversion-string may contain one or more conversion specifications. A conversion-specification consists of an
optional selector expression followed by one or more conversion-items. A conversion-item may consist of a
simple-item-conversion or a conversion-string. A simple-item-conversion 1s the only utility that can cause data
translation. Since a conversion-item may consist of a conversion-string, nested conversion strings are legal. Nesting
may occur up to seven levels.

Multiple conversion specifications are separated by semicolons. A selector expression 1s separated from its con-
version items in a conversion-specification by a colon. Multiple conversion items are separated by commas. The
scope of a selector expression is a single conversion-specification and is terminated by a semicolon; when the

selector expression is true, the semicolon causes the rest of the conversion string, up to the matching right
parenthesis, to be ignored.

A conversion-item may comprise part or all of a conversion-specification or a conversion-string. The most basic
form is a conversion-item which specifies only one conversion; this form would be a simple-item-conversion.

CONVERSION ITEMS

Conversion items provide directions for translating data items from a source record to a destination record. The
items may be dependent upon selector expressions which determine whether or not conversion is to take place.

Conversion items are written:
[repeat count]simple-item-conversion

[repeat count] conversion-string

2-2 ' ' 60359400 A

A conversion string consists of 6-bit Display Code characters constructed in accordance with the following rules.
With the exception of literal string parameters, blanks are ignored and may be used freely to improve readability.

TEEg

REPEAT COUNT

A decimal integer is used as the optional repeat count to indicate the number of times the conversion item 1is

to be repeated. This form is equivalent to writing the conversion item n times, separated by commas. No repe-
tition occurs if the repeat count is zero or omitted.

SIMPLE ITEM CONVERSION

A simple item conversion specifies how the ‘next’ source record field is to be translated to the ‘next’ destination

record field. The ‘next’ field is defined under Field Alignment. Only a simple-item-conversion specification causes
data to be converted. Other parts of the conversion string provide control information, as they determine the
kind of conversions to be performed.

A simple-item-conversion must be written in one of the following formats:

Format 1: Tm; Tmy Format 2: Tmjy Format 3: Q

Format 1

Tmj must be a valid item descriptor type (table 2-1) for the source medium, which may be a tape file, internal
file, or card file. Tmy must be a valid item descriptor type for the destination medium, which may be a tape
file, internal file, print file, or card file. Table 24 gives translation rules for all possible combinations of simple-

item-conversion.

Examples of format 1:

X5X5
7\

Translates five 8-bit characters on an ASCII tape to five 6-bit internal Display Code characters.

Translates one IBM 64-bit integer on tape to a 60-bit word containing a CDC unnormalized floating point number.

B601

T{m 'llm2

Translates a 60-bit stream on tape to an internal 60-bit integer field.

60359400 A ‘ 2.3

60B6B10
repeat count -—/Trﬁ; T]‘nz

Makes 60 moves in which consecutive internal 6-bit fields are moved to consecutive 10-bit fields on a tape file.
Each 10-bit destination field will contain 4 bits of binary zero fill on the right.

4C5X10
|

o
repeat count —/Trn1 Tm,

Translates 4 times consecutive S-character, internal 12-bit EBCDIC fields to consecutive 10-character, 3-bit fields.
on an ASCII tape. Each destination field will contain 5 ASCI space characters as fill on the right.

X80C30 80X1C1
i’ ‘-‘e"" o o’ ‘*T-"
Té1 1Jm2 Iepeat count —/ TI'I<| T‘mz

Translates an 80-character field on tape containing 8-bit EBCDIC characters to an internal 80-character field con-
taining 12-bit EBCDIC characters. These two examples result in the same data conversion, as they are logically

equivalent. The former will produce more rapid conversion, since it 18 faster to move 80 characters at once rather
than one character at a time repeated 80 times. '

Format 2

Tmq is defined the same as in format 1. A default value is selected for the absent Tmy descriptor, as specified
in table 2-2. Translation rules for all possible simple item conversion combinations appear in table 2-4.

Examples of format 2:

B60

Tm,

Moves a 60-bit internal CDC field to a 60-bit IBM tape file field.

U

o W

Tm,

Translates a 60-bit internal CDC unnormalized floating point number to an IBM 32-bit floating point field.

40 PS5

W . = S
i =
S

repeat count—” Tm,

Translates sequential 9-digit IBM packed decimal fields to internal CDC 10-digit signed overpunch numeric 6-bit
Display Code fields 40 times.

60359400 A

L —

Al0Q
I'm,

Translates 10 internal CDC 12-bit ASCII characters to 10 extended print format characters.

Format 3

The Q (Quit) specification is not a true conversion, but a control code. Execution of a Q specification termi-
nates all conversion for the record. Conversion up to that point is not lost, but no further conversion takes
place.

CONVERSION STRINGS USED AS CONVERSION ITEMS

Wherever a simple conversion item is allowed, a conversion string may be used, following the same syntax rules
for conversion strings.. This feature allows specification of alternative conversions at interior positions of a record,
such as a fixed initial record segment followed by a variable format segment, or where certain alternatives may

themselves have alternatives.

Conversion strings may occur as items within conversion strings, to a maximum depth of seven levels. Examples
of nested conversion strings appear later in this section. '

SELECTOR EXPRESSIONS

A selector expression is written in one of two formats:

item-locator-1 relationship value field

item-locator-1 relationship item-locator-2

A selector expression appears in a conversion specification to indicate a relational test is to be made. If the
result of the test is true, all conversion items associated with the selector expression are executed. If the result

is false, all associated conversion items are ignored.

ITEM LOCATORS

Item locators specify which data fields in the current source record are to be used in the relational test. Item
locators may be written in the selector expression in any of the following forms:

Tm iTm i/wTm
T is an item type specification; it may be any value representing a legal data type for the record media.

m is a decimal integer specifying the size in bytes (12, 8, 6, or 1-bit it a type B item) of a variable length
data item whose size is not determined uniquely by type. If the data item cannot be variable in length,
the m specification must be omitted. When m is omitted for a variable length data item, it 18 assumed to

be 1.

60359400 A

Tables 2-1 and 2-2 contain allowable and default values for T and m.

i is a byte index, absolute or relative. As an absolute index, i must be written as an unsigned decimal
integer. As a relative index, i is written as a signed integer, the sign denoting the direction of the move.
If i is omitted, the index is assumed to be plus zero, designating the current byte.

The current byte, from which relative positions are computed, is the current ‘next’ byte position. The
current bit position within a byte is set to 1 if it is not already equal to 1. (See Field Alignment.)

When the item type specification is for bit fields (B), the item locator may have the form i/wTm, where
i is a byte index as described above, and w is an absolute bit position within the byte (the leftmost bit
in the byte is numbered 1). The value given for w must not exceed the bit size of the byte in its source
medium: 6 bits in memory, 8 bits on tape, 12 bits on cards.

VALUE FIELD

Selector expressions permit the user to test the relationship between the contents of an item-locator field and

the contents of a value field or another item-locator field. The value field describes a literal character string or
a numeric value to be used in the comparison.

A character string is written in the value field as a literal enclosed in identical delimiter characters which are

not considered part of the string. Either * or $ may be used as the delimiter. When the literal contains either
* or $, the other character should be used as the delimiter pair. If the delimiter character must be part of the
string, each enclosed occurrence must be doubled. Within the string, doubled delimiters are counted as a single

character. Blanks within delimiters are retained.

Example:
String ABC*DEF
may be specified as: $ABC*DEF$
or: *ABC**DEF*

A literal string must not exceed 80 characters, excluding delimiters, and may be composed of any characters in
the display code character set.

A numeric value is written in the value field in a form that closely follows the nurmeric notation used in
FORTRAN. The general format of such a numeric field is:

[{f_}] digit-1[digit-2] . . . [[[digit3] ... [E [{ i}] digit-4[digit-S] . . .]]]

~If E is present, the decimal point must also appear.

2-6 ' 60359400 A

— e .Tl":"._

Numeric value may be expressed in any of the followng forms:

+n +n.n +n +n.Exs +n.nE+s + nEtxs

where n is the numeric value and s is the value of the exponent. The omission of a plus sign implies a positive
value or exponent.

Examples:
N ; 0 452.E6 (represents 452,000,000)
' 2.5 ~-818.62E3 (represents -818,620.0)
-10. S7E-10 (represents .000,000,000,057)
RELATIONSHIPS

Relationships for which elements in a selector expression may be evaluated are expressed by the following

mnemonics:
LE Less than or Equal to NE Not Equal to
. LT Less Than GT Greater Than
- l EQ EQual to ' GE Greater than or Equal to

Only the EQ and NE relationships are legal for value fields containing character strings (literals).

Before a comparison between the elements in the selector expression can be performed, both elements must be
reduced to a common mode: either a character string literal or a numeric value (table 2-3). Numeric quantities
are kept to an accuracy of at least 96 bits. A and C character strings are folded to 6-bit form for comparison
against X strings (6-bit). Folding is the process of mapping more than one source character to a single destination
character. Upper and lowercase alphabetic characters are mapped to a single uppercase character set. The table

_ on page A-7 provides the translations for display code, EBCDIC, and ASCII characters that would occur during.
mapping. Shorter strings are treated as if they were extended on the right with blanks so that both strings will
be the same length. (Exception: a string deriving from a bit string will be extended with zeros.)

Examples of Selector Expressions:

X6. EQ SABCDEFS

Tm condition value string
Nt

item-locator-1

A string of six 8-bit characters in a tape file record are compared with the literal ABCDEF; it they are equi-
valent, the associated conversion item list is processed.

60359400 A 5.7

L LT ~4.67E+02

item-locator-1 condition value

The current byte in the record begins a long floating point field which is compared with the constant numeric
value -467.0: if the item tested is less than the constant value, the associated conversion item list is processed.

6X1 EQ 10X1
/ [\ - /7]
i, T, m, condition i, T, m,
St NN
item-locator-1 item-locator-2

One 8-bit character in byte 6 of the record is compared with one character in byte 10 of the record. If equal,
the associated conversion item list is processed.

1, I condition 1, T5
) TN
item-locator-1 item-locator-2

A full-word integer starting 4 bytes beyond the current byte position is compared with the double-word integer
starting 8 bytes preceding the current byte. If equal, the associated conversion item list is processed.

ﬂé}B% EQ 5108
i/wT, m, condition value

V"N
item-locator-1

A 2-bit field starting with bit 4 of byte 6 is compared with the binary literal value 10. If equal, the associated
conversion item list is processed.

CONVERSION SPECIFICATIONS

A conversion specification consists of an optional selector expression followed by a list of conversion items. The
selector expression is a conditional expression which must be true for the associated conversion items to be
executed. If the selector expression is missing, the conversion specification is treated as though it were prefixed

by a selector expression which is always true.

The conversion items of a conversion specification are executed in sequence, left to right.

Format:=[selector-expression: | conversion-item-1 [,conversion-item-2] . . .

60359400 A

=.ﬂll.::-:_

— =

Examples:

X80X80
N

conversion-item-1
M

conversion-specification

X5X10,X10X5

conversion-item-1 conversion-item-2

conversion-specification |

PS5 EQ 456 : P5S9
A e R

selector expression conversion-item-1

~ conversion-specification

P3 GT 0 : 6P3Z10 , 60B8B6

selector expression conversion-item-2

conversion-item-1

~ conversion-specification

CONVERSION STRINGS

Format: =(conversion-specification-1 [;conversion-specification-2] . . .)

A conversion string is parenthesized and consists of one or more alternative conversion specifications. During
execution, when a conversion string is encountered, each conversion specification is tested in turn, from left
to right, until one is found with a selector expression that is true. That conversion specification is executed
and all alternatives to its right in the conversion string are ignored. If none is true, no conversion is performed.

Selection of the alternative to be executed occurs anew on each entry to the conversion string.

CONVERSION STRING PUNCTUATION

A colon separates a selector expression from its associated conversion items in a conversion specification;
multiple conversion items are separated by commas. The scope of a selector expression is a single conversion
specification, and it is terminated by a semicolon. When the selector expression is true, the semicolon causes
the rest of the parenthesized conversion string, up to the matching right parentheses, to be ignored. This
feature is of special significance when items are nested in parentheses in a conversion string. When a conversion
item is executed, all remaining parts of the conversion string are ignored.

60359400 A 2-9

NESTED CONVERSION STRINGS

A conversion string may be used wherever a simple item conversion is allowed in a conversion item. Conversion
strings may occur within conversion items to a maximum depth of seven levels.

This feature permits specification of alternate conversions at various positions within a record, such as a fixed

initial record followed by a variable format segment, or where certain alternatives may themselves have alternates.

Conversion String Examples:

All valid T and m values are given in table 2-1 for conversion items, normally written Tmy Tm,. When the
default value given in table 2-3 is acceptable, Tm, may be omitted. In many cases, m must not be specified.

Table 24 gives further details concerning conversion for T values.

The following examples illustrate elements of a conversion string:

(X80)

— ..
conversion-string

(4B6B8 , X0X10)

———EIT T
conversion-string

(X1 EQ $AS : X1X0 ., S0HI ; X1X0 : 10H1)
NNt Ve N’ e ¥ anat N’
selector conversion- conversion- conversion- cOonversion-
expression item-1 item-2 item-3 item-4
conversion-specification-1 conversion-specification-2

- CGHVBISiOH-StIng

(X1 EQ 1 : 10Wl ; X1 EQ 2 : 20wl : SOW 1)
R N Nt g, ‘e, -
conversion- . conversion- conversion-
specification-1 specification-2 specifcation-3
conversion-string
(X20] (X4 EQ *MASH* : X10XO0 ; X10))
conversion-item-1 conversion-string used as conversion-item-2
conversion-specification-1 conversion-specification-2

conversion-specification-1
conversion-string

60359400 D

2-10

o -

(L e
= .
r

e —

All conversion items are based on the concept that data is moved from the source medium to the destination
medium. The type of input (ASCII or EBCDIC, tape or card) or output must be specified by the code param-

eter in an XFILE call. In the conversion item, a T value of X specifies source media characters for a read
operation or destination coded characters for a write operation.

The following examples assume a 9-track tape containing only 8-bit EBCDIC characters as the external source
of data to be read to an internal record. The tape contains multiple repetitions of the alphabet in uppercase

only:

Example

(X5C5)

(XSA5S5)
(X1 EQ *A* : X5C5)
(X1 EQ *1* : X5C5)

(X1 EQ *1* : X5CS ; X1 EQ *A* : X3C3)

(X3C3,(X1 EQ D : Q ; X3C3),X5C5)

(3X1 EQ *C* : X5C5)
(+3X1 EQ *D* : X5C5)

(X3C3,(-3X1 EQ *A* : X23(23))

60359400 A

Explanation

Moves the 5 characters ABCDE from tape to internal

record. X5 specifies the first S characters on the tape,

CS specifies the first 5 characters of the internal record
as 12-bit EBCDIC.

Converts five 8-bit EBCDIC characters to five 12-bit
ASCII characters.

Because the first character on the tape is A, the first

5 characters ABCDE are moved from the 8-bit EBCDIC
tape record to the 12-bit EBCDIC internal format record.

Since the first character on the tape is not 1, the con-
version item is ignored.

Since the first selector expression is false, the X35C5
conversion item.is ignored. The second selector ex-
pression is true; therefore, the characters ABC are
moved.

The first 3 characters ABC are moved. Since the fourth
character is D, the Q conversion item terminates con-
version string execution at that point. The selector
expression refers to the current byte of the source
record which contains the character D.

Since the third character in the source record is C,
the first 5 characters ABCDE are moved from tape to
internal 12-bit EBCDIC format field.

The selector expression is true, as D is the fourth
character in the record; therefore, the first five char-

acters ABCDE are moved.

The first 3 characters on tape record ABC are moved

before the first character on the record is tested. Since

the first character is A, the selector expression is true;

and the remaining 23 characters in the alphabetic
sequence are moved.

2-11

Example - ' ' Explanation

(X26C26,(-26X26 EQ X26 : 2X26C26)) Moves one entire alphabet group from the tape to
the internal record then compares the next 26 char-
acters with the first 26. Since they match, two more
entire alphabet groups are moved to the internal
record.

SPECIAL CONVERSION RULES

Rules pertaining to all possible conversions appear in table 2-4. Some capabilities deserving special emphasis
are itemized below.

SPECIAL CONVERSION, BIT TO STRING

to the bit field (measured in bits). Conversion is left to right, each zero bit is translated to the character O and
each one bit to the character 1.

SPECIAL CONVERSION, BIT TO NUMERIC

When a bit field is converted to a numeric value, the bit field is considered to be a positive binary integer. The
binary point is assumed to follow the rightmost bit of the field. '

SPECIAL CONVERSION, STRING TO NUMERIC

This situation can arise when a literal string or an X, C, or A item is to be compared with a numeric item. It
must be a character string following the rules for a numeric value as described under Value Field. An error will

result if the string is not in this format. Spaces in the string are ignored.

CHARACTER SKIPPING AND BLANK/ZERO FILL

To specify bit or character skipping, the source field size must be specified as greater than destination size in
the conversion items. For example:

B10BO causes 10 bits to be skipped.

X5X0 causes 5 characters to be skipped.

X10X5 causes 5 characters to be transferred and the next 5 to be skipped.

2-172 60359400 A

When a bit field is converted to a character string, the result is a string equal in length (measured in characters)

To insert blanks or zeros in the destination record, destination field size must be greater than the source field
size in the conversion item. For example: ' |

X0CS causes 5 EBCDIC spaces to be placed in the destination field.

BOB60 causes 60 bits of zero to be placed in the destination field.

X10X100 causes 10 characters to be transferred to the destination field with 90 blanks on the right.

An algorithm for converting 8-bit tapes with the high bit on is:
n(B1B0,BOB1,B7B7)

B1BO skips one bit of the input record, BOB1 skips one bit of the output record, and B7B7 copies seven
o bits from the input record to the output record.

CONVERSION OF FLOATING POINT AND INTEGER DATA

Conversions are possible between the valid formats listed in table 2-1 within the restrictions for each conversion
noted in table 2-4, such as conversion between the IBM floating point formats of 32, 64, and 128 bits and the
o CDC floating and double-precision floating formats of 60 and 120 bits. Conversions to single precision floating

' point are rounded to 48-bit precision; conversions to double-precision are rounded to 96-bit precision.

Conversion from the internal record to an external IBM ftloating-point format yields 2 minimum precision of 21
bits for floating point, 53 bits for long floating point, and 109 bits for extended-precision floating point.

CONVERSION OF BINARY DATA

s Any data may be considered binary and manipulated on a bit-by-bit basis. Bits may be copied in strings, or
! selectively, by skipping bits or replacing bit groups in a string with zeros.

Bit strings may be converted to any other valid format within the limitations expressed in table 2-4.

Item locators in selector expressions may address any bit in a character or bit string.
For example:
2/5B1 will reference the fifth bit of the second byte in the source record.

(2/5B1 EQ 1:X1C0,X1C1) will translate the second character to the internal record only if its fifth
T bit is 1. '

When the internal record is referenced using data type B, all references must be based on 6-bit bytes, although
o the 12-bit internal format is used to contain EBCDIC or ASCII characters. To refer to the fifth bit of the fifth

character of an EBCDIC 12-bit internal record, the item locator must be written 9/5B1 because all references
by the item locator to internal format are limited to 6-bit bytes. This inconvenience reduces the number of

problems that otherwise would be encountered in other comparisons.

60359400 D ' 2-13

" Table 2-1. Valid T and m Values
T Description m*
Tape Media: (IBM 360/370 ASCIHI and EBCDIC 8-bit sequential tapes may include all these data items)

of field in bits

Bits
8-bit characters - e of field in (8-bit) characters
Half-word (16-bit) integer -

Whole-word (32-bit) integer -
Double-word (64-bit) integer -
Floating point (32-bit) - -
Long floating point (64-bit) ‘ - -
Extended-precision floating point (128-bit) -

Packed decimal (IBM COMP-3 COBOL items)
Decimal signed numeric

of field in (8-bit) bytes
of field in (8-bit) bytes

7°Bis-Rivs Blanliie s R ep BB - REe ol L - -

Internal Media: (Internal CDC format)

B Bits . of field in Dbits
X 6-bit characters (Display Code) of field in (6-bit) characters
A 12-bit characters (ASCII) of field in (12-bit) characters
C 12-bit characters (EBCDIC) of field in (12-bit) characters
| Integer (60-bit) -
U Unnormalized floating point (60-bit - -

*E Normalized floating point (60-bit) - -
D Double precision floating point (120-bit) - - .
S Numeric, signed overpunch (Display Code) size of field in (6-bit) characters
N Numeric, unsigned (Display Code) size of field in (6-bit) characters
Z Numeric, leading zeros suppressed (Display Code) size of field in (6-bit) characters

Print Media: (Print format)

B Bits size of field in bits
X 12-bit characters (ASCII) - ~ size of field in (1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>