|
-

@ CONTROL DATA
CORPORATION

60497800

-~
-

FORTRAN EXTENDED
VERSION 4
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1
NOS 2
NOS/BE 1
SCOPE 2

REVISION RECORD

e,

Revision
A (11/01/75)
B (03/05/76)

C (04/15/77)

D (03/31/78)

E (07/20/79)

F (08/22/80)

G (01/15/81)

H (08/13/82)
J (06/10/83)

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

Description

Original release.

This revision documents Version 4.6 of FORTRAN Extended. Features documented include
CP155, Compiler Enhancements, and CP079, Math Library Upgrade.

Revised to include feature F7540, CYBER 170 Model 176 Support, as well as miscellaneous
technical corrections, at PSR level 446.

This revision documents Version 4.7 of FORTRAN Extended. Features documented include
CP091 and CP162, CRM products BAM and AAM, 191, Math Library Upgrade, CP184, Fast Overlay
Loading, and 66, CYBER Interactive Debug interface. Also documented is the implementa-
tion of STATIC mode memory management, as well as miscellaneous technical changes and
corrections.

This revision documents Version 4.8 of FORTRAN Extended. The Post Mortem Dump facility
is documented with this release, as well as numerous technical changes.

This revision documents changes to Post Mortem Dump, adds the FORTRAN Interface to Common
Memory Manager, and adds the STATIC option to FOGRTRAN Extended. Numerous technical
changes are included. PSR Tevel 524,

This revision documents release of Post Mortem Dump and STATIC option under SCOPE 2.
Numerous technical changes are included. PSR level 533.

This revision documents numerous technical changes and corrections. PSR level 552.

This revision documents numerous technical and editorial corrections. PSR level 577.

Address comments concerning this manual to:

CONTROL DATA CORPCRATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. BOX 3492
1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983 SUNNYVALE, CALIFORNIA 94088-3492

A1l Rights Reserved

Printed in the United States of America

ii

or use Comment Sheet in the back of this manual

60497800 J

J I D D I I

)

ST T T R T TS T T SRS I T

iii @

w
58
aE S
3 o
& “
2 < CWOWM N CTOCOOWODO I TN T IO WOO L WL LWLW EP UL TUOO I T T LLUOLCTOCCOCTOOW
=]
R &
- a
o
O o
-2
h=]
I
T >
oL © ~N W ~ = — o
= — o o~ ™ < W0 ~N O Y
. d . 1 "
© 1 o [| < 1
3 @ © W0 0 ™ o €0 0 ww o
— — 1Y [ra) =)
© o =30 ' © = =] -]]
S < - [y] ® N fagy oL = o
=3 LN ~ = L o ~ = 5- =
m 3 .Iu .I..t - 4D — ..m 3
- g L
O ORI ANMNTINOWNDAOD—IANMWONOD O~ AM OO NM DO N O Mm<
"D 789111111222222222223333333334444%445555555125578911. !
-3 L L L S e L I N T I e e N I I N e | 10000
=0 b oh b o O b ch b cb 6 60 e 6D ab D e 0D b 6D cb 0D KO DD D 0 B CH D ch)) D D D b e D D h A d N hh ch O hGh h I 2 = 2
B o
&
=
(72] -
cwn
(77 gw
O b
< s g S
E o w—
a 55 2
[t W ORPLUWOWLIO LW I OITL WU COOLCIL OLL LT LLONOPLULCOLOLICULWOTOLCOD L O
e
— 5= o4
VE - -3
+
Q
=
- o
| @ g
|9 o5
W pri
o [=5] [-2] ~ —t ~ ™~ 73]
L e n g b 5 7 g
. . ' o ' '
. Mr.% | v w0 A © @© © © o ~ ~ o~
1T "
em. [S =] > 1S = =1 =1 > ©o
TeE: ~ & £ : E SE Ok £ gk £ &
73 8 55 =] i S BoAB] s =]] <
I B —
o - O = N OB NM LD OO M D HANMON OO AN
me“ 1..9..9_:7..2221234569111112229_.2233333312345m111uﬁ1BINZQZMIZQ.V.#SG&
1 [N
[S o< 55555555666656666666566656666667777777777777777778888888
Q4o
(2] =
-— -_ v
wld e..hL..m
©v* s
..NC
v
2w 5
£°5 .m
© o
m..n..vr. W I 1O I I IR IITCOCAUW L WILNOOLILIOLODN T TICC WU CLCC LI T Tl OO OO Ll Lyl
Co Q
= -3
(%3
© B
© ©
=3
275 5
i St W
w5 8
O h S o = o]
- < o 1
£ w5t A S 3 T 0%
i
£5> & 3ER 5 3 B P M s S
zEg 8a s 2 ¢ E P u s 5
25 a @ - e £ B £ < = <
So® Lo uw 2] =g = + s i
e—-— O - ~—i
fum.w mmﬁ..lﬁv -n1..5..w1_.117._JJ.ﬂﬁwJ.dmlHBMrb%Umww_ﬂ.|_.2345mnw..BM1234789mm10..
. 1 | 00 0)
-] FIT..|1...VVV.1Xxx1111122222223333333333333444444444&.5&5&&&5&&5
Z -

60497800 J

C L C L L e

Page

10-5 thru 10-7
10-8

10-9

10-10

11-1

11-2

11-3

11-4

11-5

11-6

11-7

12-1

12-2

12-3

12-4

12-5

13-1

13-2

13-3

13-4

13-5 thru 13-8
13-9

13-10

13-11

13-12

13-13

13-14

13-15

13-16 thru 13-20
13-21

14-1

14-2

14-3

15-1 thru 15-3
16-1

16-2

16-3

16-4

16-5

16-6

16-7

16-8

16-9

16-10

16-11

16-12

16-13 °

17-1

17-2

17-3

17-4

17-5

17-6

18-1

18-2 thru 18-6
18-7

18-8

18-9 thru 18-11
19-1

19-2

19-3

19-4 thru 19-7

19-8
19-9 thru 19-11
19-12
19-13 thru 19-18
19-19
19-20 thru 19-27

.19-28

iv

19-29 thru 19-32
19-33
19-34

Revision

POIOPMPOPTIPPOPOPIPOOIPO0O PP POGOO I P PrPOOOGOEOUDOOPPORPEPMMIMPOTMT AP PIPOERPEETOOTIOPOMOMNO O

Page

20-1

A-1

A-2

A-3

B-1 thru B-4
B-5

B-6

B-7

B-8

B-9

B-10

B-11 thru B-14
B-15

B-16

B-17

B-18

B-19

8-20

B-21

B-22

B-23 thru B-26
B-27

B-28

B-29

B-30

B-31 thru B-33
B-34

B-35

B-36

B-37

B-38 thru B-41
B-42

B-43

B-44 thru B-49
B-50

B-51 thru B-64
B-65

B-66

B-67

B-68

B-69 thru B-76
B-77

B-78

B-79

B-80

B-81

B-82

B-83

B-84

B-85

B-86

B-87

B-88

B-89

B-90

B-91

B-92

B-93

B-94

B-95

B-96

B-97

C-1 thru C-8
C-9 thru C-11

-1
-2
-3 thru D-5
-6

-7

-8

-1 thru E-6
ndex-1

Moo OoOOoOOoOOoO

Revision

rTOoOPOrOPMOPMMMUOMICUOUTNMIEMNMIOMNMMNMUOMINIOIMUOUOOOTMOTNMOOMOTOOMOMO T MO TMOMUO MO TOTMOOOMO>TI>T

Index-2
Index-3
Index-4
Index-5
Index-6
Comment Sheet
Mailer

Back Cover

Revision

J

LI B < P < e o

60497800 J

J D

J D) 32D D DI) I I

J D I D

J o 2 I

PREFACE

This manual deseribes the FORTRAN Extended 4.8 language. FORTRAN Extended is designed to comply with
American National Standards Institute FORTRAN language, as deseribed in X3.9-1966. It is assumed the reader
has knowledge of an existing FORTRAN language and is familiar with the computer system on which the
language is used.

The FORTRAN Extended compiler operates in conjunction with the COMPASS 3 assembly language processor
under control of the following operating systems:

RN 2 Te e Hin N

NOS 1 for the CONTROL DATA® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series |
Computer Systems

NOS 2 for the CDC® CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer l
Systems

NOS/BE 1 for the CDC CYBER 170 Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer |
Systems

SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer

(5’“ Systems

All references in this manual to NOS 1 refer to both NOS 1 and NOS 2.

Due to capsule loading, relocatable binaries compiled by versions of FORTRAN Extended prior to version 4.7
cannot be run with CRM BAM 1.5 or AAM 2; they must be recompiled.

Control Data extensions to the FORTRAN language are indicated by shading. Example programs or parts of
programs are shaded in their entirety if they contain lines using extensions to the ANSI standard (unless the only
such extension is the PROGRAM statement). Shading is used only in sections 1 through 8, which contain the
specification of the FORTRAN Extended language; later sections describe the implementation of these
specifications and shading is not used.

Extended memory for the CYBER 170 Model 176 is large central memory (LCM) or large central memory

extended (LCME). Extended memory for the CYBER 170 800 Series Computer Systems is unified extended l
memory (UEM). Extended memory for all other NOS or NOS/BE computer systems is extended core storage

(ECS) or extended semiconductor memory (ESM). In this manual, the acronym ECS refers to all forms of

extended memory unless otherwise noted. Programming information for the various forms of extended memory
can be found in the COMPASS reference manual and in the appropriate computer system hardware reference
manual.

Related material is contained in the listed publications. These publications are listed alphabetically and
grouped according to their importance to the FORTRAN user. The NOS 1, NOS 2, and NOS/BE 1 manual
abstracts are pocket-sized manuals containing brief deseriptions of the contents and intended audience of all
operating system and product set manuals. The abstracts manuals can be useful in determining which manuals
are of greatest interest to a particular user.

The Software Publications Release History is a guide for determining which revision level of software
documentation corresponds to the Programming System Report (PSR) level of installed site software.

60497800 J v

~
~
~
c
~
~

The following publications are of primary interest:

Publication

FORTRAN Common Library
Mathematical Routines
Reference Manual

FORTRAN Extended Version 4
DEBUG User's Guide

FORTRAN Extended Version 4
User's Guide

NOS Version 1 Reference Manual
Volume 1 of 2

NOS Version 2 Reference Set
Volume 3, System Commands

NOS/BE Version 1
Reference Manual

SCOPE Version 2
Reference Manual

The following publications are of secondary interest:

i

Publication

Common Memory Manager
Version 1 Reference Manual

COMPASS Version 3
Reference Manual

CYBER Interactive Debug
Version 1 Reference Manual

CYBER Interactive Debug
Version 1 Guide for Users
of FORTRAN Extended Version 4

CYBER Loader Version 1
Reference Manual

CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual

CYBER Record Manager
Advanced Access Methods
Version 2 User's Guide

CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual

CYBER Record Manager
Basic Access Methods
Version 1.5 User's Guide

Publication
Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
60498200 X X X X
60498000 X X X X
60499700 X X
60435400 X
60459680 X
60493800 X
60342600 X
Publication
Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
60499200 , X X X X
60492600 X X X X
60481400 X X X
60482700 X X X
60429800 X X X
60499300 X X X
60499400 X X X
60495700 X X X
60495800 X X X

60497800 H

J

JJ D D D I I I I I I

DD D D D D D

Publication

(@m Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
: DMS-170

DDL Version 3 Reference Manual
(«m Volume 1: Schema Definition

for Use With:

COBOL
FORTRAN :

(@"‘ Query Update 60481900 X X X

FORTRAN Data Base Facility
(@@. Version 1 Reference Manual 60482200 X X X

INTERCOM Interactive Guide

for Users of FORTRAN Extended 60495000 X
(W\ INTERCOM Version 5

Reference Manual 60455010 : X
f\ Loader Version 1 User's Guide 60482300 X

Network Products
(sﬁ Interactive Facility Version 1
: Reference Manual 60455250 X
(@ NOS Version 1 Diagnostic Index 60455720 X

NOS Version 1 Manual Abstracts 84000420
NOS Version 2 Diagnostie Index 60459390
NOS Version 2 Manual Abstracts 60485500
NOS Version 2 Reference Set

Volume 1, Introduction to
Interactive Usage 60459660 X

NOS/BE Version 1
Diagnostic Index 60456490 X

NOS/BE Version 1
Manual Abstracts 84000470 X

SCOPE Version 2 Loader
Reference Manual 60454780 X

SCOPE Version 2 Record Manager
Reference Manual 60495700 X

Software Publications
Release History 60481000 X X X X

Sort/Merge Versions 4 and 1
Reference Manual 60497500 X X X X

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution Services,
308 North Dale Street, St. Paul, Minnesota 55103.

"This produet is intended for use only as deseribed in this document. Control
Data cannot be responsible for the proper functioning of undeseribed features

or parameters.

-
-
~
~
-
-
-
~

60497800 H vii/viii

~
-
-
~
-
-
-
-
-

S 70 Je e e Tie Tie e Wi

CONTENTS
1. PORTRAN LANGUAGE ELEMENTS 1-1 IMPLICIT Type Statement 3-3
DIMENSION Statement 3-4
Coding FORTRAN Statements 1-1 COMMON Statement 3-5
PORTRAN Character Set 1-1 EQUIVALENCE Statement 3-8
Column Usage 1-1 EQUIVALENCE and COMMON 3-11
Comments 1-3 LEVEL Statement 3-12
Statement Labels 1-3 EXTERNAL Statement 3-14
Continuation 1-3 DATA Statement 3-15
Columns 73-80 1-3 Implied DO in Data List 3-19
Statement Separator 1-3
Blank Lines 1-4
Data 1-4 ‘
Ordering of Statements 1-4 4. FLOW CONTROL STATEMENTS 4-1
Constants 1-5
Integer Constant 1-5 GO TO Statement 4-1
Real Constant 1-5 Unconditional GO TO Statement 4-1
Double Precision Constant 1-6 Computed GO TO Statement 4-2
Complex Constant 1-7 ASSIGN Statement 4-3
Octal Constant 1-8 Assigned GO TO Statement 4-4
Hollerith Constant 1-9 Arithmetic IF Statement 4-5
nHf and #f# 1-10 Three-Branch Arithmetic IF Statement 4-5
nRf and nLf 1-11 Two-Branch Arithmetic IF Statement 4-5
Logical Constant 1-11 Logical IF Statement 4-6
Variables 1-11 Standard-Form Logical IF Statement 4-6
Integer Variables 1-12 Two-Branch Logical IF Statement 4-7
Real Variables 1-12 DO Statement 4-7
Double Precision Variables 1-13 DO Loops 4-8
Complex Variables 1-13 Nested DO Loops 4-9
Logical Variables 1-13 CONTINUE Statement 4-12
Arrays 1-13 PAUSE Statement 4-13
Subseripts 1-15 STOP Statement 4-14
Array Structure 1-16 END Statement 4-14
RETURN Statement 4-15
2.. EXPRESSIONS AND ASSIGNMENT
STATEMENTS 2-1
Expressions 2-1 5. INPUT/OUTPUT STATEMENTS 5-1
Arithmetic Expressions 2-1
Evaluation of Expressions 2-2 Formatted Input/Output 5-2
Type of Arithmetic Expressions 2-5 Pormatted Output Statements 5-3
Exponentiation 2-6 PRINT 5-3
Relational Expressions 2-7 PUNCH 5-4
Logical Expressions 2-9 WRITE 5-5
Masking Expressions 2-12 Formatted READ 5-5
Assignment Statements 2-14 Unformatted Input/Output 5-7
Arithmetic Assignment Statements 2-15 Unformatted WRITE 5-7
Conversion to Integer 2-16 Unformatted READ 5-7
Conversion to Double Precision 2-16 List Directed Input/Qutput 5-8
Conversicn to Complex 2-17 List Directed Input 5-8
Conversion to Real 2-18 List Directed Output 5-10.2
Logical Assignment 2-18 NAMELIST 5-13
Masking Assignment 2-19 Input 5-14
Multiple Assignment 2-19 Output 5-15
Arrays in NAMELIST 5-17
Buffer Statements 5-20
3. SPECIFICATION STATEMENTS 3-1 BUFFER IN 5-20
BUFFER OUT 5-22
Type Statements 3-1 ENCODE and DECODE 5-22
Explicit Type Declarations 3-1 ENCODE 5-22
INTEGER 3-1 DECODE 5-25
REAL 3-2 File Manipulation Statements 5-27
COMPLEX 3-2 REWIND 5-27
DOUBLE PRECISION 3-2 BACKSPACE 5-27
LOGICAL 3-3 ENDFILE 5-27
60497800 H ix

6. INPUT/OUTPUT LISTS AND FORMAT

STATEMENTS

Input/Qutput Lists
Implied DO in I/O List
FORMAT Statement
Data Conversion
Conversion Specification
Iw and Iw.z Input
Iw and Iw.z Output
Ew.d, Ew.dEe and Ew.dDe Output
Ew.d, Ew.dEe and Ew.dDe Input
Fw.d Output
Fw.d Input
Gw.d Input
Gw.d Output
Dw.d Output
Dw.d Input
Ow Input
Ow Output
Zw Input and Output
Aw Input

Aw Output
Rw Input
Rw Output
Lw Input
Lw Output
Scale Factors
Fw.d Scaling
Ew.d and Dw.d Scaling
Gw.d Scaling
X Specification
nH Output
nH Input
End of Record Slash
Repeated Format Specification
Printer Control Character
Tn Specification
V Specification
Equals Sign
Execution Time Format Specification

7. PROGRAM UNITS, PROCEDURES,
AND OVERLAYS

Main Programs
PROGRAM Statement Format
PROGRAM Statement Usage
Block Data Subprogram
Procedures
Subroutine Subprogram
Function Subprogram
Basic External Function
Intrinsie Funetion
Statement Function
Procedure Communication
Passing Values to a Procedure
Using Arguments
Using Common
Using Arrays
Referencing a Function
Calling a Subroutine Subprogram
Using the ENTRY Statement
Overlays
Overlay Communication
Creating an Overlay
Calling an Overlay

8. FORTRAN EXTENDED SUPPLIED
PROCEDURES

Intrinsie Functions
Basic External Functions

6-1
6-2
6-5
6-6
6-7
6-7
6-8

6-10
6-13
6-13
6-14
6-14
6-16
6-16
6-17
6-17
6-18
6-18.1/
6-18.2
6-19
6-20
6-21
6-21
6-21
6-21
6-22
6-23
6-23
6-24
6-25
6-26
6-28
6-29
6-31
6-32
6-34
6-34
6-36

7-2
7-2
7-3
7-5
7-6
7-6
7-8
7-9
7-10
7-10
7-12
7-12
7-12
7-14
7-14
7-15
7-16
7-18
7-19
7-21
7-21
7-23

8-1

8-1
8-1

Miscellaneous Utility Subprograms
Random Number Generator
Operating System Interface Routines
Debugging Aids
Input/Output Status Checking
Other Input/Output Subprograms
ECS/LCM/UEM Subprograms

Terminal Interface Subprograms
Mass Storage Input/Output
Random File Access
Mass Storage Subroutines
Opening a File
Writing Records
Reading Records
Closing a File
Specifying a Different Index

Index Key Types
Master Index
Sub-Index
Multi-Level File Indexing
Compatibility With Previous Mass
Storage Routines
FORTRAN-CYBER Record Manager Interface
Parameters
Subroutines
Error Checking
Multiple Index Processing
FORTRAN-Sort/Merge Interface
FORTRAN-CYBER Interactive Debug Interface
Control Statement
User-CID Interaction
CID Output
Batch Debugging
Interface to Common Memory Manager
Post Mortem Dump

9. DEBUGGING FACILITY

Debugging Statements
Continuation Line
ARRAYS Statement
CALLS Statement
FUNCS Statement
STORES Statement
Variable Names
Relational Operators
Checking Operators
Hollerith Data
GOTOS Statement
TRACE Statement
NOGO Statement
Debug Deck Structure
DEBUG Statement
AREA Statement
OFPF Statement
Printing Debug Output
STRACE Entry Point

10. FTN CONTROL STATEMENT

Parameters
A Exit Parameter
B Binary Object File
BL Burstable Listing
C COMPASS Assembly
CC Control Statement Continuation
Parameter
D Debugging Mode Parameter
DB CYBER Interactive Debug Parameter
E Editing Parameter
EL Error Level

8-8
8-8
8-9
8-14
8-23
8-25
8-26.1/ |
8-26.2
8-27
8-29
8-29
8-30
8-30
8-31
8-32
8-32
8-32.1/
8-32.2
8-33
8-33
8-33'
8-33

8-39
8-39
8-39
8-42
8-44
8-45
8-46
8-51
8-51
8-52
8-52
8-52
8-52
8-53

9-1

9-3

9-3

9-3

9-5

9-7

9-10
9-11
9-12
9-13
9-13
9-14
9-15
9-17
9-17
9-22
9-23
9-26
9-27
9-28

10-1

10-1
10-2
10-2
10-2
10-2

10-2
10-3
10-3
10-3
10-4

60497800 J

J

2 D I

J D) D D D D D D

J)

2 DD D D D

-
-
-
~

ER Error Recovery

G Get System Text File

GO Automatic Execution (Load and Go)
I Source Input File

L List Qutput File

LCM Level 2 and Level 3 Storage Access

ML Modlevel

OL Objeet List

OPT Optimization Parameter
P Pagination

PD Print Density

PL Print Limit

PMD Post Mortem Dump
PS Page Size

PW Page Width

Q Program Verification

R Symbolic Reference Map

ROUND Rounded Arithmetic Computations

S System Text (Library) File
SE& Sequenced Input
SL Source List
STATIC Static Loading
SYSEDIT System Editing
T Error Traceback
TS Timesharing Mode
UO Unsafe Optimization
X External Text Name
Z Zero Parameter
FTN Control Statement Examples

11, COMPILATION MODES AND
OPTIMIZATION

Optimizing Mode
Object Code Optimization
OPT=0
OPT=1
OPT=2
uo
Source Code Optimization
Time-Sharing Mode
TS Listings
Sequenced Line Format

12. COMPILER LISTINGS

Optimizing Mode Listings
Time-Sharing Mode Listings
Listing Control Directives

13. CROSS REFERENCE MAP

Optimizing Compilation Mode

Source Program

R=1 Maps

R=2/R=3 Maps
Entry Points
Variables
File Names
External References
Inline Functions
Namelists
Statement Labels
DO Loops
Common Blocks
Equivalence Classes
Program Statistics
Error Messages
Debugging (Using the Reference Map)

60497800 H

10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-8
10-8
10-8
10-8
10-8
10-9
10-9
10-9
10-9
10-9
10-10

11-1

11-2
11-2
11-2
11-2
11-2
11-3
11-4
11-6
11-7
11-7

12-1

12-1
12-2
12-2

13-1

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-10
13-11
13-12
13-13
13-14
13-14
13-14

Time-Sharing Mode
R=1 Maps
R=2, R=3 Maps
Common Bloecks
Entry Points
External References
Statement Labels
Variables

14. OBJECT CODE

Optimizing Mode
Subroutine and Funection Structure
Main Program Structure
Renaming Conventions
Register Names
External Procedure Names
Listing Format
Time-Sharing Mode
Listing Format

15. EXECUTION CONTROL STATEMENT

Alternate File Name Specification
Print Limit Specification
Post Mortem Dump Parameters

16. INPUT/OUTPUT IMPLEMENTATION

Execution-Time Input/Output
File and Record Definitions
Strueture of Input/Output Files
Sequential Files
Mass Storage Input/Output
FILE Control Statement
Sequential File Operations
BACKSPACE/REWIND
ENDFILE
Input/Output Restrictions
Record Manager Error Suppression
Compile-Time Input/Output
Source Input File Structure
Coded Output File Structure
Binary Output File Structure

17. COMPASS SUBPROGRAM LINKAGE

Call by Name and Call by Value
Call by Name Sequence
Call by Value Sequence
Intermixed COMPASS Subprograms
Entry Point
Restrictions on Using Library Funetion
Names

18. SAMPLE DECK STRUCTURES

FORTRAN Source Program with Control
Statements
Compilation Only
TS Mode Compilation Only
Compilation and Execution
FORTRAN Compilation With COMPASS
Assembly and Execution
Compile and Execute With FORTRAN Sub-
routine and COMPASS Subprogram

13-15
13-16
13-17
13-18
13-18
13-18
13-19
13-20

14-1

14-1
14-1
14-2
14-2
14-2
14-2

14-3 |

14-3
14-3

15-1

15-1
15-2
15-2

16-1

16-1
16-1
16-2
16-2
16-6
16-6
16-8
16-8
16-10
16-11
16-11
16-11
16-12
16-13
16-13

17-1
17-1
17-1
17-2
17-2
17-4

17-4

18-1

18-1
18-2
18-2
18-3

18-4
18-5

Xi

Compile and Produce Binary Cards

Load and Execute Binary Program

Compile and Execute With Relocatable
Binary Deck

Compile Once and Execute With Different
Data Decks

Preparation of Overlays

Compilation and 2 Executions With Overlays

1. SAMPLE PROGRAMS

Program OUT

Program B

Program MASK

Program EQUIV

Program COME

Program LIBS

Program PIE

Program ADD
DECODE (READ)
ENCODE (WRITE)

Program PASCAL

Program X

Program VARDIM

Program VARDIM2
SUBROUTINE IOTA
SUBROUTINE SET
Funetion AVG
Function PVAL
Funetion MULT
Main Program - VARDIM2

Program CIRCLE

Program OCON

List Directed Input/Output

20. STATIC OPTION

Xii

18-6
18-7

18-8

18-9
18-10
18-11

19-1

19-1

19-3

19-5

19-7

19-9

19-11
19-13
19-15
19-15
19-15
19-18
19-19
19-21
19-23
19-23
19-23
19-23
19-24
19-25
19-25
19-28
19-30
19-33

20-1

APPENDIXES

moQw >

Standard Character Set
FORTRAN Diagnosties
Statement Forms
Arithmetic

Glossary

INDEX

FIGURES

1-1
9-1

9-2
9-3
9-4

Program PASCAL
Example of Interspersed Debugging
Statements
External Debugging Deck
Example of Internal Debugging Deck
F.xgmple of External Deck on Separate
ile

TABLES

2-1
7-1
7-2
8-1

8-2
8-3

Mixed Type Arithmetic Expressions
With + - * / Operators

Differences Between a Funection and
Subroutine Subprogram

Procedure and Subprogram Inter-
relationships

Intrinsie Functions

Basic External Funections

LABINFO Block Content

16-1 Defaults for FIT Fields Under FORTRAN

Extended

A-1
B-1
C-1

E-1

1-2

9-18
9-19,
9-20

9-21

2-5
7-1
7-2
8-2
8-6
8-26

16-3

60497800 H

J J

J D

DD D I

J D D)

J) I D I I

Jd

~
-~
-
-
-
.
e
o
o

D200 DD DD

FORTRAN LANGUAGE ELEMENTS

A FORTRAN program contains executable and non-executable statements. Executable statements specify actions
the program is to take, and non-executable statements describe characteristics of operands, statement functions,

arrangement of data, and format of data.

CODING FORTRAN STATEMENTS

The FORTRAN source program is written on the coding form illustrated in figure 1-1. Each line on the coding
form represents an 80-column source line (terminal line or card image). The FORTKAN character set is used to

code statements.

FORTRAN CHARACTER SET

Alphabetic AtoZ
Numeric Oto9
Special = equal) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash blank

(left parenthesis r! ' quote -

In addition, any character (Appendix A) may be used in Hollerith constants and in comments.

significant except in Hollerith fields.

COLUMN USAGE

Blanks are not

Column 1 C or $ or * indicates comment line

Columns 1-2

Columns 1-2

Columns 1-5 Statement label.

Column 6 Any character other than blank or zero denotes continuation; does not
apply to comment lines or list dlrectwes A debu ’ ntmuatton lme
must contain C$:in columns 1-2. :

Columns 7-72 Statement.

Identification field, not

Columns 73-80 processed by compiler.

60497800 A

1-1

c ¢ ¢ ¢ ¢ ¢ ¢ ¢

. [ostecTacTecTorTseTvalee[zch: c[ocTesleoTes oateaTval coReelio] ooleslealcsloslss oates e lia oslovlas zvIsslavlve TeelewTinJor T eclog celoc Tsel] e JorTeTaT]s

60497800 A

zelie]

Sl B Tie

COMMENTS

In column 1 a C, *, or § indicates a comment line. Comments do not affect the program; they can be
written in column 2 to 80 and can be placed anywhere within the program. If a comment occupies more
than one line, each line must begin with C, *, or $ in column 1. In a comment line a character in column 6
is not recognized as a continuation character. Comments can appear between continuation lines; they do not
interrupt the statement contmuataon s ;

Comment lmes followmg an END hne are hsted at the begmmng of the next program unit unless the END -
line is contmued ‘ »

STATEMENT LABELS

A statement label (any 1- to 5-digit integer) uniquely identifies a statement so it can be referenced by
another statement. Statements that will not be referenced do not need labels. Blanks and leading zeros are
not significant. Labels need not occur in numerical order; however, a given label must not be used more than
once in the same program unit. A label is known only in the program unit containing it; it cannot be refer-
enced from a different program unit. Any statement can be labeled, but only FORMAT and executable state-
ment labels can be referenced by other statements. A label on a continuation line is ignored.

CONTINUATION

Statements are coded in columns 7-72. If a statement is longer than 66 columns, it can be continued on as
many as 19 continuation lines. A character other than blank or zero in column 6 indicates a continuation line.
Column 1 can contain any character other than C, *, or $; columns 2, 3, 4, and 5 can contain any character.
Any statement except a comment or a list directive can be continued, including the END statement.

COLUMNS 73-80

Any information can appear in columns 73-80 because they are not part of the statement. Entries in these
columns are cop1ed to the source program listing. They are generally used to order the lines in a deck but
can contam rmatxon for DEBUG AREA processmg -

SEPARATOR

STATEM E

Several statements can be wrxtten on one line 1f they are separated y.the specml racter $. Eéc:h_staté#-

ment followm 3 s1gn is treated. asa separate. statement. For.ex 'ple

irectives. The state
if it were in column 7 on

60497800 A 1-3

BLANK LINES

Blank lines can be used freely between statements to produce blank lines on the source listing.]
e; a blank line interrupts statement tinuation, and the line following the blank line is the be-
ginning of a new statement. This line can ¢ - have the form of a continuation line.

DATA

No restrictions are 1mposed on the format of data read by the source program Data input on cards is lmuted

ORDERING OF STATEMENTS

The following table shows the general form of a FORTRAN program unit. Statements within a group can.
appear in any order, but groups must be ordered as shown. Comment lines can appear anywhere within the
program.

STATEMENTS

2 FUNCTION*
SUBROUTINE*
BLOCK DATA

3| IMPLICIT

type
COMMON

4 | DIMENSION
EQUIVALENCE
EXTERNAL*
LEVEL

5 Statement function*
definitions

-1 > =200 N*

ENT‘RY*”
6 Executable
statements*

7 END

*Not allowed in BLOCK DATA Subprograms
¥ Narneis grous e must be defined before it

14 60497800 A

J D I I D I

DD DD I I D I I D I

J

))

CONSTANTS

_A constant is a fixed quantity. The seven types of constants are: integer, real, double precision, complex,
-octal, Hollerith, and logical.

INTEGER CONSTANT

|n1n2...nm|

n is a decimal digit (0-9)

1<m<18
Examples:

237 -74 +136772 0 -0024
An integer constant is a string of 1-18 decimal digits written without a decimal point. It may be positive,
negative or zero. If the integer is positive, the plus sign may be omitted; if it is negative, the minus sign

must be present. An integer constant must not contain a comma. The range of an integer constant is
- (2%9-1) to 2%°-1 (2%%-1 = 576 460 752 303 423 487).

-
-
-
-
-
~
-
-

Examples of invalid integer constants:

46. (decimal point not allowed)
23A (letter not allowed)
7,200 (comma not allowed)

When an integer constant is used as a subscript, or as an index in a DO statement or implied DO, the maximum
value is 2'7-1 (2'7-1 = 131 071), and the minimum is 1.

Integers used in multiplication, division,and exponentiation, whether constant or variable, should be in the range
- (248 -1) to 248 -1 (248 -1 = 281 474 976 710 655). The result of such operations also should be in this
range. [If an integer constant exceeding this range is used, a fatal diagnostic is issued. Any other cases are not
diagnosed, and the results are unpredictable. For integer addition and subtraction (where both operands are
integers), the full 60-bit word is used.

When values are converted from real to integer or from integer to real (in an expression or assignment state-

ment), the valid range is also from - (2®-1) to 2*®-1 . For values outside this range, the high order bits
are lost and no diagnostic is provided.

REAL CONSTANT

| A.n n n. n.nEts .nEzs n.Ets nEzs I
n Coefficient < 15 decimal digits
Ets Exponent (base 10)
60497800 B 1-5

A real constant consists of a string of decimal digits written with a decimal point or an exponent, or both.
Commas are not allowed. If the exponet is positive, the plus sign is optional.

The range of a real constant is 107 to 10**?; if this range is exceeded, a diagnostic is printed. Precision is
approximately 14 decimal digits, and the constant is stored internally in one computer word.

Examples:

7.5 -3.22 +4000. 23798.14 .5 - .72 42.E1 700.E-2
Examples of invalid real constants:

3,50, (comma not allowed)

2.5A (letter not allowed)
Optionaliy, a real constant can be followed by a decimal exponent, written as the letter E and an integer con-
stant indicating the power of ten by which the number is to be multiplied. If the E is present, the integer

constant following the letter E must not be omitted. The sign may be omitted if the exponent is positive, but
it must be present if the exponent is negative.

Examples:
42.E1 (42. x 10' = 420.)
.00028E+5 (.00028 x 10° = 28.)

6.205E12 (6.205 x 10" = 6205000000000.)

8.0E+6 (8. x 10° = 8000000.)
700.E-2 (700. x 107 = 17)
7E20 (7. X 10® = 70 000 000 000 000 000 0000.)

Example of invalid real constants:

7.2E3.4 exponent not an integer

DOUBLE PRECISION CONSTANT

In.nDis .nDxs n.Dis nDz#s|

n Coefficient

Dxts ‘Exponent (base 10)

1-6 60497800 A

D2 D D D D D 2 DI DD DI I I I

J D D D

g i Tis Wi Tie Nie TS 1S NEe NS XN

-
-
~
-
-

Double precision constants are written in the same way as real constants except the exponent is specified by
the letter D instead of E. Double precision values are represented internally by two computer words, giving
extra precision. A double precision constant is accurate to approximately 29 decimal digits. If the exponent
is positive, the plus sign is optional.

Examples:
5.834D2 (5.834 x 102 = 583.4)
14.D-5 (14. x 10 = .00014)
9.2D03 (9.2 x 10° = 9200.)
-7.D2 (-7. X 10? = -700.)
3120D4 (3120. x 10" = 31200000.)

Examples of invalid double precision constants:

7.2D exponent missing
D5 exponent alone not allowed
2,1.3D2 comma illegal
3.141592653589793238462643383279 D and exponent missing

COMPLEX CONSTANT

|

rl Real part
r2 Imaginary part

Complex constants are written as a pair of real constants separated by a comma and enclosed in
parentheses.

FORTRAN Coding Complex Number
(1., 7.54) 1. + 7.54i i= T
(-2.1E1, 3.24) 21, + 3.24i
(4.0, 5.0) 40 + 5.0i
(0., -1.) 00 - 1.0i
60497800 A 1-7

The first constant represents the real part of the complex number, and the second constant represents the
imaginary part. The parentheses are part of the constant and must always appear. Either constant may be
preceded by a plus or minus sign. Complex values are represented internally by two consecutive computer
words.

Both parts of complex constants must be real; they may not be integer.

Examples of invalid complex constants:

(275, 3.24) 275 is an integer

(12.7D-4 16.1) comma missing and double precision not allowed
4,7E+2,1.942 parentheses missing

(0,0) 0 is an integer

Real constants which form the complex constant can range from 10 to 10", Division of complex
numbers might result in underflow or overflow (see Appendix D) even when this range is not exceeded.

1-8 60497800 A

DRSS N NS N N T T I S T

J D D

J

)

maskmg expressmn

' octal constant used as parameter in f _ctton

‘mas mgvexpressmn_,; i

arithmetic expression:

-
-
-
~
-

n Unsigned decimal integer representing number of characters in string including blanks;
must be greater than zero.

f String of characters; must contain at least one character

11 se: On 3) If a Hollenth constant is used as an operand of an arithmetic operatlon,
an informative 1agnostlc is glven If a Hollerith constant is used as an argument in a subprogram call, it is
followed by a zero word.

7DD

60497800 A 1-9

The Hollerith specification in a FORMAT statement (see section 6) is not the same as a Hollerith constant.

These two forms produce left-justified display code constants with 10 characters per word. If the string length
is not a multiple of 10, the final word is blank filled.

nHf Examples:

18HTHIS IS A CONSTANT

7HTHE END

19HRESULT NUMBER THREE

e : :] : »‘%,)
o
et

1-10 60497800 E

~
~
-
-
~

Gﬁh

S N Jie Bie Tie W'

;:lnyach‘a/ractgxg er ord If
stified; nRf mdibatés' nght;ustxf

LOGICAL CONSTANT

A logical constant takes the forms:

. representing the value true

representing the value false

The decimal points are part of the constant and must appear.

Examples:

LOGICAL X1, X2

.

X1 = .TRUE.
X2 = .FALSE.
VARIABLES

A variable represents a quantity whose value can be varied; this value can be changed repeatedly during
program execution. Variables are identified by a symbolic name of one to'seven letters or digits, beginning
with a letter. A variable is associated with a storage location; whenever a variable is used, it references the
value currently in that location.

A variable can have its type specified in a type statement (see section 3) as integer, real, double precision,
complex, or logical. In the absence of an explicit declaration, the type is implied by the first character of
the name: [, J, K, L, M, and N imply type integer and any other letter implies type real, unless

statement (see section 3) is used to change this normal implicit type.

60497800 A 1-11

>0 D D)

Default typing of variables:

A-H,0-Z Real

I-N ' Integer

INTEGER VARIABLES

An integer variable is a variable that is typed explicitly or implicitly as described under Variables.

The value range is - (25°-1) to 25°-1. When an integer variable is used as a subscript, the maximum value is
2'7-1. The resulting absolute value of conversion from integer to real, or real to integer must be less than
2% . The operands, as well as the result, of an integer multiplication or division must be less than 2% in
absolute value. If any of these restrictions are violated, the results are unpredictable. For integer addition
and subtraction, the full 60-bit word is used; the resulting absolute value must be less than 25°.

See section 4 for restrictions or integers used in DO statements.

An integer variable occupies one word of memory.

Examples:

ITEM1 NSUM JsSUM N72 J K2804

REAL VARIABLES

A real variable is a variable that is typed explicitly or implicitly as described under Variables.

The value range is 107293 to 10%322 with approximately 14 significant digits of precision. A real variable
occupies one word of storage.

-
-
-

Examples:

AVAR SUM3 RESULT TOTAL2 BETA XXXX

1-12 60497800 A

~
-
~

DOUBLE PRECISION VARIABLES

Double precision variables must be typed by a type declaration. The value of a double precision variable can
range from 10 to 10"% with approximately 29 significant digits of precision.

Double precision variables occupy two consecutive words of memory. The first word contains the more
significant part of the number and the second contains the less significant part.

ECISION OMEGA,X,IOTA

MEGA, X, IOTA and all vaﬁabll‘éé"xj/hose first letterls A are doub eci

COMPLEX VARIABLES

Complex variables must be typed by a type declaration. A complex variable occupies two words of memory;
each word contains a real number. The first word represents the real part of the number and the second
represents the imaginary part.

Example:

COMPLEX ZERA,MU,LAMBDA

LOGICAL VARIABLES

Logical variables must be typed by a type declaration. A logical variable has the value true or false and
occupies one word of memory.

Example:

LOGICAL L33,PRAVDA,VALUE

ARRAYS

A FORTRAN array is a set of elements identified by a single name composed of one to seven letters and
digits beginning with a letter. Each array element is referenced by the array name and a subscript. The type
of the array elements is determined by the array name in the same manner as the type of a variable is deter-
mined by the variable name (see Variables in this section). The array name and its dimensions must be de-
clared in a DIMENSION or COMMON statement or a type declaration. Arrays can have one, two, or three
dimensions.

The number of dimensions in the array is indicated by the number of subscripts in the declaration.

DIMENSION STOR(6) declares a one-dimensional array of six elements

60497800 A 1-13

REAL STOR({(3,7) declares a two-dimensional array of three rows and seven columns
LOGICAL STOR{6,6,3) declares a three-dimensional array of six rows, six columns and three planes
The entire array may be referenced by the unsubscripted array name wh

output list, as an actual parameter, or in a DATA statement.
T e ay. nam

Example 1:

The array N consists of six values in the order: 10, 55, 11, 72, 91, 7

N(1) value 10

N(2) value 55

N@3) value 11

N(4) value 72

N(S) value 91

N(6) value 7
Example 2:

The two-dimensional array TABLE (4,3) has four rows and three columns.

Column 1 Column 2 Column 3
Row 1 44 10 105
Row 2 72 20 200
Row 3 3 11 30
Row 4 91 76 714

To refer to the number in row two, column three write TABLE(2,3).

TABLE(3,3) = 30 TABLE(1,1) = 44 TABLE(4,1) = 91

TABLE(4,4) would be outside the bounds of the array and results are unpredictable.

1-14 60497800 A

HENED RS N

SR NS N T N S T S I

-
~
~

jexpressnon is

exceed the ni

SUBSCRIPTS

A subscript indicates the position of a particular element in an array. A subscript consists of a pair of

parentheses enclosing from one to three subscnpt expressxons which are separated by commas. The subscnpt

follows the array name. A subscnpt expression can be any vahd anthmeuc ex n. If the
mteger, it 1s' uncated to mteger : el

ns, the com
j a reference

Nassumes

\scnpts have a value of one. The number of subscnpt expressxo
ber of declared dlmenswns

The value of a subscript must never be zero or negative. It should be less than or equal to the product
of the declared dimensions, or the reference will be outside the array. If the reference is outside the bounds

of the array, results are unpredictable.

The amount of storage allocated to arrays is discussed under DIMENSION declarations in section 3.

Valid subscript forms:

Al1,K)
B(142,J-3,6"K+2)
LAST(6)
ARAYD(132)

Invalid subscript forms:

ATLAS(0) zero subscript causes a reference outside of the array
D(1 .GE. K) relational or logical expression illegal
A1) or A{l,K) commas can only be used to separate adjacent subscript expressions

Example:

“ Plane 2

Col '1 c°| 2 Co3 = Coll

e sing XT (32N-NEXT (22)
scri _represents represents.
XT(3): NEXT (3,2,1) NEXT (22 1)
replj'ejsg . 1

 NEXT @3
In the th EXT whenonlyone or two subséﬁij{s,aré shoy ‘ remammg
assumed to o e . N
60497800 A 1-15

ARRAY STRUCTURE

Arrays are stored in ascending locations: the value of the first subscript increases most rapidly, and the value of
the last increases least rapidly.

Example:

In an array declared as A(3,3,3), the elements of the array are stored by columns in ascending locations.

Row 1

Row 2

Row 3

Element

A(LLL1)
A(2,1,1)
AG,L,1)
A(1,2,1)
AQ2,2,1)
A(3,2,1)
A(1,3,1)
AQ2,3,1)
AB3,3,1)
A(1,1,2)
AQ2,1,2)
A(3,1.2)
A(1,2,2)
A(2,2,2)

Plane 1
Col 2 Col 3
A121 A131
! |
A221 A231 Plane 2
! |
A321 A331 Col 1 Col 2 Col 3
N
Row 1 Al112 A122 A132
| | |
Row 2 A212 A222 A232 Plane 3
} | {
Row 3 A312 A322 A332 Col 2 Col 3
Row 1 A123 »A133
} |
Row 2 A223 | A233
| {
Row 3 A323- A333
The array is stored in linear sequence as follows:
Location Relative Location Relative
to first Element Element to first Element
0 A(3,2,2) 14
1 A(1,3,2) 15
2 A(2,3,2) 16
3 A(3,3,2) 17
4 A(1,1,3) 18
5 A(2,1,3) 19
6 A(3,1,3) 20
7 A(1,2,3) 21
8 A(2,2,3) 22
9 A(3,2,3) 23
10 A(1,3,3) 24
11 A(2,3,3) 25
12 A(3,3,3) 26
13)
60497800 A

J D D I D

3 D 2 I D I

J 0 2D 2D D D I

>)

Y Y D) D

sHs NS

~
-~

70D

To find the location of an element in the linear sequence of storage locations the following method can be

used:
Number of Array Location of Element
Dimensions Dimension Subscript Relative to Starting Location
1 : ALPHA(K) ALPHA(k) (k-1)XE
2 ALPHA(K M) ALPHA(k,m) (k-1+KX{m-1))XE
3 ALPHA(K,M,N) ALPHA(k,m,n) (k=1+KX(m-1+MX{n-1}))XE

K, M, and N are dimensions of the array.

k,m, and n are the subscript expression values of the array.

1 is subtracted from each subscript value because the subscript starts with 1, not 0.

E is length of the element. For real, logical, and integer arrays, E = 1. For complex and double

precision arrays, E = 2.

[Examples:
Location of Element
Subscript Relative to Starting Location
INTEGER ALPHA (3) ALPHA(2) (2-1)X1=1
REAL ALPHA (3,3) ALPHA(3,1) (3-143X{1-1))X1 =2
COMPLEX ALPHA (3,3,3) ALPHA(3,2,1) (3-1+3X(2-1+3X(1-1)))X2 = 10

60497800 A

Cc cC coc ¢ occocc ¢ ccCcCccCcoccC

EXPRESSIONS AND ASSIGNMENT STATEMENTS 2

EXPRESSIONS

FORTRAN expressions are arithmetic, masking, logical and relational. Arithmetic and masking expressions
yield numeric values, and logical and relational expressions yield truth values.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of unsigned constants, variables, array elements, and function references
separated by operators and parentheses. For example,

I

(A-B)*F + C/D**E

is a valid arithmetic expression.
The FORTRAN arithmetic operators are:

+ addition

- subtraction

* multiplication
/ division
*% exponentiation

An arithmetic expression may consist of a single constant, variable, array element, or function reference. If X
is an expression, then (X) is an expression. If X and Y are expressions, then the following are expressions:

X+Y
X*Y
-X

+ X
X-Y

X/Y

~
~
-
-
-

X**Y

60497800 A 2-1

All operations must be specified explicitly. For example, to multiply two variables A and B, the expression
A*B must be used. AB, (A)(B), or A.B will not result in multiplication.

Expression ~ Value
3.78542 Real constant 3.78542
A(2*7]) Array element A (2*])
BILL Variable BILL
SQRT(5.0) Vs
A+B Sum of the values A and B
C*D/E Product of C times D divided by E
J**1 Value of J raised to the power of I
(206-50)*2 300

EVALUATION OF EXPRESSIONS

The sequence in which an expression is evaluated is governed by the following rules, listed in descending precedence:

1. References to external functions are evaluated.
2. Arithmetic statement functions and intrinsic functions are expanded.
3. Subexpressions delimited by parentheses are evaluated, beginning with the innermost subexpressions.

4. Subexpressions defined by arithmetic, relational, and logical operators are evaluated according to the
following precedence hierarchy:

* * s
(exponentiation)

/ * (division or multiplication)

+ - (addition or subtraction)

.GT. .GE. .LT. .LE. .EQ. NE. (relationals)

.NOT. (logical)
.AND. (logical)
.OR. (logical)
2-2 60497800 A

b D D D D D D D I

J

NS R R NS RS R N R B

5. Subexpressions containing operators of equal precedence are evaluated from left to right. However,
individual operations that are mathematically associative and/or commutative may be reordered by the
compiler to perform optimizations such as removal of repeated subexpressions or improvement of
functional unit usage. The evaluation of the expression A/B*C is guaranteed to algebraically equal
AC + B, not A + BC, but the specific order of evaluation here is indeterminate. Subexpressions
containing integer divisions are not reordered within the * / precedence level because the truncation
resulting from an integer division renders these operations non-associative.

YYD D D)

Unary addition and subtraction are treated as follows:

+n the same as n
-n negate n

An array element (a subscripted variable) used in an expression requires the evaluation of its subscript. The

; type of the expression in which a function reference or subscript appears does not affect, nor is it affected
{ by, the evaluation of the arguments or subscripts.

@ The evaluation of an expression having any of the following conditions is undefined:

Negative-value quantity raised to a real, double precision, or complex exponent
(,@ Zero-value quantity raised to a zero-value exponent
‘ Infinite or indefinite operand (Appendix D)
Element for which a value is not mathematically defined, such as division by zero
If the error traceback option (T) is selected on the FTN control statement (section 10), the first three

conditions produce informative diagnostics during execution. If the traceback option is not selected, a mode
error message is printed (Appendix D).

In the case of invalid exponentiation, a diagnostic might be issued by one of the library routines ALOG, EXP, or
DEXP when the exponent is real, complex, or double precision, and the base is integer, real or double precision.

Two operators must not be used together. A*-B and Z/ + X are not allowed. However, a unary + or - can
be separated from another operator in an expression by using parentheses. For example,

A*(-B) and Z/(+X) Valid expressions
B*-A and X/-Y*Z Invalid expressions

Each left parenthesis must have a corresponding right parenthesis.

e Example:

(F+ (X*Y) Incorrect, right parenthesis missing
{@"‘“’\ (F+ (X *Y)) Correct

Examples:

In the expression

A-B*C

B is multiplied by C, and the product is subtracted from A.

-
[ﬁ 60497800 E 2-3
-

The expression A/B-C*D**E is evaluated as follows:
D is raised to the power of E.
A is divided by B.

C is multiplied by the result of D**E.

The product of C*D**E is subtracted from the quotient of A divided by B.

The expression -A**C is evaluated as 0-A**C; A is first raised to the power of C and the result is

then subtracted from zero.

The expression A*B*C may be evaluated as ((A*B)*C), ((A*C)*B) or (A*(B*C)), since the operator * is

associative.

The expression A**B**C is evaluated as ((A**B)**C), since the operator ** is not associative.

Dividing an integer by another integer yields a truncated result; 11/3 produces the result 3. Therefore,
when an integer expression is evaluated from left to right, J/K*I may give a different result than I*J/K.

Example:
I=4 J=3 K=2
J/K*I I*J/K

3/2*4 =4 4*3/2=6

An integer divided by an integer of larger magnitude yields the result 0.

Example:
N=24 M=27 K=2
N/M*K
24/27*2 =0
Examples of valid expressions:
A
3.14159
B+ 16.427
(XBAR +(B(I,J+I,K) /3.0))

-(C + DELTA * AERO)

2-4

60497800 A

S I I B R R R R R R

A S R B R R R R A

(-B - SQRT(B**2-(4*A*C)))/(2.0*A)
GROSS - (TAX*0.04)

TEMP + V(M,AMAX1(A,B))*Y**C/ (H-FACT(K+3))

TYPE OF ARITHMETIC EXPRESSIONS

An arithmetic expression may be of type integer, real, double precision, or complex. The order of
dominance from highest to lowest is as follows:

Complex

Double Precision

Real
Integer
Table 2-1. Mixed Type Arithmetic Expressions with + - * / Operators
2nd
operand Double
l ;te » Integer Real Precision Complex
Integer Integer 7 Double

~Precision

Double

Real Real .. Complex
Precision
Double Double Double
Precision Precision Precision
Complex Complex Complex

When an expression contains operands of different types, type conversion takes place during evaluation. Before each
operation is performed, operands are converted to the type of the dominant operand. Thus the type of the value of
the expression is determined by the dominant operand. For example, in the expression A*B-1/J, A is multiplied by
B, I is divided by J as integer, converted to real, and subtracted from the result of A multiplied by B.

Octal and Hollerith constants, as well as references to shifting or masking functions, are typeless operands. When
these operands are used, type is not converted. When these operands are the only operands in an expression, they
are treated as if they were type integer, and the result is type integer.

Variables into which Hollerith constants are stored should be of type INTEGER to ensure proper results when used
in subsequent arithmetic or logical expressions. For example, if the variables are REAL, expressions involving these
variables are evaluated using floating point arithmetic.

60497800 E 2-5

EXPONENTIATION

In exponentiation, the following types of base and exponent are permitted:

Base
Integer

Real

Double Precision
Complex

Exponent

Integer, Real, :DbﬁblewarééiéiGﬂi Jomple
Integer, Real, Double Precision, Cor plex, Typele
Integer, Real, Double Precision, Complex,Typeless
Integer, Typeless

Integer, Real, Double Precision, Complex, Typeless

s evaluated from left to righ

he expression A**B**C is. evaluate

In an expression of the form A**B the type of the result is determined as follows:

Type of Result

Type of A Type of B of A**B
Integer Integer Integer

ypeles tege
Real Integer Real

Real Real

Double Double
Double Integer Double

Real Double
Complex

The expression -2**2 is equivalent to 0-2**2, An exponent may be an expression. The following examples are all

acceptable.
B**2.
B**N
B**(2*N-1)
(A+B)**(-J)

2-6

A negetive exponent must be enclosed in parentheses:

A**(-B)
NSUM**(-J)

60497800 D

J J I D D I I I

) D D

JoJ D D

J J 2 D D

J

When the exponent is of a type other than integer, exponentiation is performed by means of a call to FORTRAN
Common Library routines. The value of the result in these cases is determined according to the formula:

xY = ey(In(x))

where In is the natural logarithm function.

~
~
-
~
-
-
-

Examples:
Expression Type Result
CVAB**(1-3) Real**Integer Real
D**B Real**Real Real
C**I Complex**Integer Complex
BASE(M,K)**2.1 Double Precision Double Precision

**Real

K**5 Integer**Integer Integer
314D-02**3.14D-02 Double Precision Double Precision

**Double Precision

RELATIONAL EXPRESSIONS

a,,a Arithmetic or ,maskin"g‘f expression
op Relational operator

A relational expression is constructed from arithmetic or masking expressions and relational operators.
Arithmetic expressions may be type integer, real, double precision, or complex. The relational operators are:

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-7

IIODDDIDDD

Two expressions separated by a relational operator constitute a basic logical element. The value of this
element is either true or false. If the expressions satisfy the relation specified by the operator, the value is
true; if not, it is false. For example:

X+Y .GT. 5.3

If X+Y is greater than 5.3 the value of the expression is true. If X+ is less than or equal to
5.3 the value of the expression is false.

A relational expression can have only two operands combined by one operator. a, op a, op a; is not valid.

but not

Examples:

J.LT.ITEM
580.2 .GT. VAR

E.EQ..5

(I) .EQ. (J(K)) N . .
C.LT. 1.5D4 most significant part of double precision number is used in
evaluation
Relational expressions are evaluated according to the rules governing arithmetic expressions. Each
expression is evaluated and compared with zero to determine the truth value. For example, the expression
p-EQ.q is equivalent to the question, does p - ¢ = 0? q is subtracted from p and the result is tested for zero.
If the difference is zero or minus zero the relation is true. Otherwise, the relation is false.
If pis 0 and q is -0 the relation is true.

Expressions are evaluated from left to right. Parentheses enclosing an operand do not affect evaluation; for
example, the following relational expressions are equivalent:

A.GT.B
A.GT.(B)
(A).GT.B

(A).GT.(B)

2-8 60497800 A

DD D D D I DI I I I

J J D

J I D D D) I

DY Y D

3 D

6@\

SIS)

Examples:
REAL A
A.GT.720
DOUBLE PRECISION BILL, PAY
INTEGER I,J BILL .LT. PAY
I1.EQ.J(K)

A+B.GE.Z**2
(I).EQ.(N*J)

300.+B.EQ.A-Z
B.LE.3.754

.5+2. .GT. .8+AMNT
Z.LT.35.3D+5

Examples of invalid expressions:
A .GT. 720 .LE. 900 2 relational operators must not appear in a relational expression

B .LE. 3.754 .EQ. C

LOGICAL EXPRESSIONS

L1 op L2 op L3 op...Ln

L,..L, logical operand or relational expression

op logical operator
A logical expression is a sequence of logical constants, logical variables, logical array elements, or relational
expressions separated by logical operators and possibly parentheses. After evaluation, a logical expression
has the value true or false.
Logical operators:

.NOT. logical negation

.AND. logical multiplication

inclusive OR

The enclosing decimal points are part of the operator and must be present.

60497800 A 2-9

The logical operators are defined as follows (p and q represent LOGICAL expressions):

NOT.p If p is true, NOT.p has the value false. If p is false, NOT.p has the
value true.
p-AND.q If p and q are both true, p.AND.q has the value true. Otherwise, false.
p-OR.q If either p or q, or both, are true then p.OR.q has the value true. If both
p and q are false, then p.OR.q has the value false.
Truth Table
p q p .AND. q p.OR. g .NOT. p
T T T T F
T F F T F
F T F T T
F F F F T

If precedence is not established explicitly by parentheses, operations are executed in the following order:

.NOT. .AND. .OR.
Example:
‘ PROGRAM LOGIC(OUTPUT»TAPE6=0UTPUT)
C
Cc THIS PROGRAM PRINTS OUT A TRUTH TABLE FOR LOGICAL
C OPERATIONS WITH P AND Q
C
LOGICAL.PonLOGNEGoLOGMLT9LOGSUM9TABLE(4’2)
DATA TABLE/eTRUE o9 e TRUE e 9 e FALSE ¢ 9 o FALSEa9eTRUE 09 e FALSE 9o TRUE e s
l1.FALSE./
WRITE(6510)
10 FORMAT(61H1 ' P Q «NOT. Q P «AND Q@ P <0

1R. @ /710Xy S51(1H=))

DO 20 I = 1.4

LOGNEG = oNOTe. TABLE(I+2)

LOGMLT = TABLE(Isl) +AND. TABLE(Is2)
LOGSUM = TABLE(Isl) «ORe TABLE(Is2)

20 WRITE(6+30) (TABLE(IsJ)eJ=192)9 LOGNEG, LOGMLTs LOGSUM
30 FORMAT(1HOs S(L11))

SToP
END

2-10 60497800 A

2NN R S T R R B

)) I

D S B R RS R R D

ST s s s Ns s B

3 YY))) D)

{

Output:
P W «NOT. @ P «AND W P «OR, Q
T T F T T
T F T F T
F T F F T
F F T F F

The operator .NOT. which indicates logical negation appears in the form:
.NOT. p
-NOT. can appear in combination with .AND. or .OR. only as follows (p and q are logical expressions):
p -AND.NOT. q
p -OR.NOT. q
p -AND.(.NOT. q)

p -OR.(NOT. q)

-NOT. can appear adjacent to itself only when the second operator is enclosed in parentheses, asin .NOT. (.(NOT.p).
Two logical operators can appear in sequence only in the forms .OR..NOT. and .AND..NOT.
Valid logical expressions, where M, L, and Z are logical variables, are:

.NOT.L

NOT.(X .GT. Y)

X .GT. Y .AND..NOT.Z

(L) .AND. M

Invalid logical expressions, where P and R are logical variables, are:

.AND. P .AND. must be preceded by a logical expression

K .EQ. 1 .0R. 2 -OR. must be followed by a logical expression

P .AND. .OR.R .AND. always must be separated from -OR. by a logical expression
60497800 A 2-11

J)

Examples:

A, X, B,C, J, L, and K are type logical.

Expression

A

A .AND. .NOT. X

.NOT.B tﬁ\

A.AND.C -

J.0R.L.OR.K ‘
Examples:

B-C < A < B+C is written asB-C .LE. A .AND. A .LE, B+C _
FICA >176. and PAYNB = 5889. is written FICA .GT. 176. .AND. PAYNB .EQ. 5889.

J

!
)

J

) I)

J

J

J

2-12 60497800 A

93 9 D

9

B

D

B

Extract thé o‘:a\\r'order 6:

I 1100110101

0011001010 Result after masking

'NOT. must not 'yiynylmediately precede .AND. or ,OR.

60497800 A

2-13

ASSIGNMENT STATEMENTS

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written as follows:

v = expression

v is a variable or an array element

2-14 60497800 A

51 1is Xie Xie e TS

~
-
~

The meaning of the equals sign differs from the conventional mathematical notation. It means replace the
value of the variable on the left with the value of the expression on the right. For example, the assignment
statement A=B+C replaces the current value of the variable A with the value of B+C.

ARITHMETIC ASSIGNMENT STATEMENTS . .
7

| , ' v = arithmetic expression

Replace the current value of v with the value of the arithmetic expression. The variable or array element
can be any type other than logical.

Examples:
A=A+1 replace the value of A with the value of A+ 1
N=J-100*20 replace N with the value of J-100*20
WAGE=PAY-TAX replace WAGE with the value of PAY less TAX
VAR=VALUE+(7/4)*32 replace the value of VAR with the value of VALUE +(7/4)*32
B(4)=B(1)+B(2) replace .lhe value of B(4) with the value of B(1)+ B(2)

If the type of the variable on the left of the equals sign differs from that of the expression on the right, type
conversion takes place. The expression is evaluated, converted to the type of the variable on the left, and
then replaces the current value of the variable. The type of an evaluated arithmetic expression is

determined by the type of the dominant operand. Below, the types are ranked in order of dominance from
highest to lowest:

Complex
Double Precision
Real

Integer

In the following tables, if high order bits are lost by truncation during conversion, no diagnostic is given.

60497800 A ' 2-15

CONVERSION TO INTEGER

precision expres-

sion, truncated to

48-bit integer,
replaces v.

CONVERSION TO DOUBLE PRECISION

Value of IFORM
Value Assigned Example After Evaluation
Integer = Integer Value of integer IFORM = 10/2 5
expression re-
places v.
Integer = Real Value of real 8
expression, trun-
cated to 48-bit
integer, replaces
V.
Iinteger = Double Precision Value of double IFORM = 3141.593D3 3141593

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision = Integer

Value of integer
expression, trun-
cated to 48 bits,
is converted to
real and replaces
most significant
part. Least sig-
nificant part set
to 0.

Double Precision = Real

Value of real
expression re-
places most
significant part;
least significant
part is set to 0.

SUM =775

35.D0

15.D0

2-16

60497800 A

J J)

D D D

) D D D I

3 I J I

J I

J D D

3 YD YD

CONVERSION TO DOUBLE PRECISION (CONTINUED)

Value Assigned

Example

Value of SUM
After Evaluation

Double Precision
= Double Precision

Value of double
precision expres-
sion replaces v.

SUM =7.322D2 - 32.D -1

7.29D2

~ Double Precision = Complex

v;'\vl‘al‘ue‘ of real :
part of complex

| sum=(327.61+ 55,1

CONVERSION TO COMPLEX

Value Assigned

Example

Value of AFORM
After Evaluation

_expression re=

Value of real

| Complex

Complex = Complex

Value of complex

expression replaces

variable.

AFORM = (3.4,1.1) + (7.3,4.6)

(10.7,5.7)

60497800 A

2-17

CONVERSION TO REAL

significant part
of expression re-
places v.

LOGICAL ASSIGNMENT

7

. c‘ .
Logical variable or array element = Logical or relational expression

Value of AFORM
Value Assigned Example After Evaluation
Real = Integer ‘ Value of integer AFORM =200 + 300 500.0
expression, trun-
cated to 48 bits,
is converted to
real and replaces
V.
Real = Real Value of real AFORM=25+7.2 9.7
expression re-
places v.
Real = Double Precision Value of most AFORM = 3421.D - 04 3421

Replace the current value of the logical variable or array element with the value of the expression.

Examples:

2-18

LOGICAL LOG2
I =1
L0G2 = I .EQ.O

LOG?2 is assigned the value .FALSE. because =0

LOGICAL NSUM, VAR

BIG = 200.

VAR = .TRUE.

NSUM = BIG .GT. 200. .AND. VAR

60497800 A

J)

J oD D I I 3 I D I I

) D DD D I

o

I J

et

NSUM is assigned the value .FALSE.

LOGICAL A,B,C,D,E,LGA,LGB,LGC
REAL F,G,H

A = B.AND.C.AND.D

A F.GT.G.OR.F.GT.H

A = ,NOT.(A.AND..NOT.B).AND.(C.OR.D)
LGA = .NOT.LGB
LGC = E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

60497800 A

2-19

J D)

J

J

D

J

J

J

J

‘5%\

2-20 60497800 A

SPECIFICATION STATEMENTS 3

Specification statements are non-executable; they define the type of a variable or array, specify the amount
of storage allocated to each variable according to its type, specify the dimensions of arrays, define methods
of sharing storage, and assign initial values to variables and arrays. The specification statements are:

Type

DIMENSION

COMMON If any of these statements appears after the first executable statement or

EQUIVALENCE statement function definition, the specification statement is ignored and a
fatal diagnostic is printed.

EXTERNAL

i1

The DATA statement, which is not a specification statement, is also described in this section. The DATA state-
ment must follow all other specification statements except statement function definitions and FORMAT statements;
it can occur after the first executable statement.

TYPE STATEMENTS

A type statement defines a variable, array, or function to be integer, real, complex, double precision, or logical.
An explicit type statement can be used to supply dimension information. :The ¥ PE-may be sa

ger and any other letter implies type real, u

1plied. type

Basic external and intrinsic functions are implicitly typed, and need not appear in a type statement in the
user’s program. The type of each library function is listed in section 8.

EXPLICIT TYPE DECLARATIONS
There are five explicit type statements: INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and LOGICAL.

INTEGER

7
INTEGER name,, name

2,...,namen

60497800 A 3-1

The symbolic names listed are declared as type integer.
Example:
INTEGER SUM, RESULT, ALIST

The variables SUM, RESULT and ALIST are all declared as type integer.

REAL
7
REAL name, , name

e e .., NAME

T
|
|
I

The symbolic names listed are declared as type real.

Example:

REAL NEXT{(7), ITEM

NEXT is declared as an array with 7 real elements, and ITEM is declared as a real variable.

COMPLEX

7
COMPLEX name

1+ R@me,,, ..., name_

T

|

I

|

I

The symbolic names listed are declared as type complex.
Example:

COMPLEX ALPHA, NAM, MASTER, BETA
The variables ALPHA, NAM, MASTER, BETA are declared as type complex.

DOUBLE PRECISION

7 _
DOUBLE PRECISION name,, name,, ..., name_

The symbolic names listed are declared as type double precision. 'DOUBLE can be used instead of
DOUBLE PRECISION..

3-2 60497800 A

J J I D I

J D D) D D D D D)

B2 RS B R B

J

[UR———

)

Example:

DOUBLE PRECISION ALIST, JUNR, BOX4

The variables ALIST, JUNR, BOX4 are declared as type double precision.

LOGICAL
7
LOGICAL name

1, name,, ..., name_

The symbolic names listed are declared as type logical.
Example:
LOGICAL P,Q,NUMBR4

The variables P, Q and NUMBR4 are declared as type logical.

IMPLICIT TYPE STATEMENT

IMPLICIT type, (ac,,...,ac_),...,type, (ac, ,...,ac)

ngie‘alphabéi haracters, iot,v_tqn;ges ‘of characte
parated by a minus sign. AR

60497800 A

OGICAL, INTEGER, REAL, DOUBLE PRECISION, DOUBLE,

3-3

DIMENSION STATEMENT

7
|
I DIMENSION name, (d1) ,namen(dn)
|

d. Array declarator, 1-3 integer constants separated by commas. If name is a dummy param-
eter, d can be 1-3 integer constants or integer dummy parameters intermixed.

name; Symbolic name of an array.

The DIMENSION statement is a nonexecutable statement which defines symbolic names as array names and
specifies the bounds of the array. More than one array can be declared in a single DIMENSION statement.
Dummy parameter arrays specified within a procedure subprogram can have adjustable dimension specifications.
(A further explanation of adjustable dimension specifications appears under Procedure Communication in section
7). Within the same program unit, only one definition of an array is permitted.

The number of computer words reserved for an array is determined by the type of the array and the product
of the subscripts. For real, integer and logical arrays, the number of words in an array equals the number of
elements in the array. For complex and double precision arrays, the number of words reserved is twice the
product of the subscripts. No array can exceed 131,071 words.

Example:

COMPLEX BETA
DIMENSION BETA (2,3)

BETA is an array containing six elements; however, BETA has been defined as COMPLEX and two words
are used to contain each complex element; therefore, 12 computer words are reserved.

34 60497800 A

-
-
-
-

J)

<

J D

JJ

D)

Example:

REAL NIL
DIMENSION NIL (6,2,2)

These statements could be combined into one statement with 24 words reserved for array NIL:
REAL NIL (6,2,2)

Example:

DIMENSION ASUM(10,2)

.

DIMENSION ASUM (3), VECTOR (7,7)

The second specification of ASUM is ignored, and an informative message is printed. The specification for
VECTOR is valid and is processed.

COMMON STATEMENT
7

COMMON / /v1,...,v

7
COMMON/blkname /vy, . . . ,vn/blkname2/v1, Ce Ve ./blknamen/v1, el N

7
COMMON v, ,...,v

n

blkname Block name or number. A block name is a symbolic name of 1-7 letters
blc ver is 1-7 dif must
not contain any alphabetic ‘characters. eros are ign isa
valid block number. The same block name or number can appear more
than once in a COMMON statement or a unit; the loader links all
variables in blocks having the same name or number into a single labeled
common block.
Vi Variable or array name which can be followed by constant subscripts
that declare the dimensions. The variable or array names are assigned to
blkname. The COMMON statement can contain one or more block
specifications.
60497800 A 3-5

// Denotes a blank common block. If blank common is the first block in the
statement, slashes can be omitted.

Variables or arrays in a main program or subprogram can share the same storage locations with variables or
arrays in other subprograms by means of the COMMON statement. Variables and array names are stored in the
order in which they appear in the block specification.

COMMBON is a non-executable statement. See section 1 for proper location of COMMON statements relative

to other statements in the program unit. The COMMON specification provides up to 125 storage blocks th t“”
can be referenced by more than one subprogram. A block of common storage can be labeled by a name or a
‘number. A COMMON statement without a name or number refers to a blank common block. Variables and
array elements can appear in both COMMON and EQUIVALENCE statements. A common block of storage can
be extended by an EQUIVALENCE statement; however, no common block can exceed 131,071 words..

ank common. must not be increased by a subprogram using

Example:

COMMON/BLACK/A(3)
DATA A/1.,2.,3./

Data may not be entered into blank common blocks by the DATA declaration.
The COMMON statement may contain one or more block specifications:
COMMON/X/RAG,TAG/APPA/Y,Z,B(5)

RAG and TAG are placed in block X. The array B and Y.Z are placed in block APPA.

Any number of blank common specifications can appear in a program. Blank. named :
common blocks are cumulative throughout a program. as illustrated by the following example:

COMMON A,B,C/X/Y,Z2,D//W,R

COMMON M,N/CAT/ALPHA,BINGO//ADD

3-6 60497800 A

J D D D D DD I I DI I I

J) 2

J)

S N T Wi Yo Tin Tie Te iie e e

TIDD DD D

These statements have the same effect as the single statement:
COMMON A,B,C,W,R,M,N,ADD/X/Y,Z,D/CAT/ALPHA,BINGO
Within subprograms. dummy arguments are not allowed in the COMMON statement.

Il dimension information for an array is not given in the COMMON statement, it must be declared in a
type or DIMENSION statement in that program unit.

Examples:
COMMON/DEE/Z(10,4)

Specifies the dimensions of the array Z and enters Z into labeled common block DEE.

COMMON/BLOKE/ANARAY,B,D
DIMENSION ANARAY(10,2)

COMMON/Z/X,Y,A
REAL X(7)

COMMON/HAT/M,N,J(3,4)
DIMENSION J(2,7)

In the last example, J is defined as an array (3.4) in the COMMON statement. (2,7) in the
DIMENSION statement is ignored and an error message is printed.

The length of a common block, in computer words, is determined by the number and type of the variables
and array elements in that block. In the following statements, the length of common block A is 12 computer
words. The origin of the common block is Q(1).

REAL Q,R
COMPLEX S
COMMON/A/Q(4),R(4),S(2)

Block A

origin Q)
Q)
Q)
Q(4)
R(1)
R(2)
R(3)
R(4)
S(n) real part
S(1) imaginary part
S5(2) real part
S(2) imaginary part

If a program unit does not use all locations reserved in a common block. unused variables can be inserted
in the COMMON declaration to ensure proper correspondence of common areas.

60497800 A 3-7

Example:
COMMON/SUM/A,B,C,D main program
COMMON/SUM/E(3),D subprogram

If the subprogram does not use variables A,B, and C, array E is necessary to space over the area
reserved by A,B, and C.

Alternatively, correspondence can be ensured by placing unused variables at the end of the common list.
COMMON/SUM/D,A,B,C main program
COMMON/SUM/D subprogram

If program units share the same common block, they may assign different names and types to the members
of the block; but the block name: rs must remain the same.

Example:

COMPLEX C
COMMON/TEST/C(20)
The block named TEST consists of 40 computer words.

The subprogram may use different names for variables and arrays as in:

SUBROUTINE ONE
COMPLEX A
COMMON/TEST/A(10),G(10),K(10)

The length of TEST is 40 words. The first 10 elements (20 words) of the block represented by A are
complex elements. Array G is the next 10 words, and array K is the last 10 words. Within the
subprogram, elements of G are treated as floating point: elements of K are treated as integer.

EQUIVALENCE STATEMENT

7
EQUIVALENCE (glisty), . . . (glisty)

—_ =

Each glist; consists of two or more variables, array elements, or

;tatement

EQUIVALENCE is a non-executable statement and must appear before all executable statements in a pro-
gram unit. If it appears after the first executable statement, a fatal diagnostic is printed.

3-8 60497800 A

J

SENNED I R R R B A RS B

J o) D

J

D D D D D

-~
-
~
-
~

EQUIVALENCE assigns two or more variables in the same program unit to the same storage location (as
opposed to COMMON which assigns two variables in different program units to the same location). Variables
or array elements not mentioned in an EQUIVALENCE statement are assigned unique locations.

Example:

DIMENSION JAN(6),BILL(10)
EQUIVALENCE (IRON,MAT,ZERO), (JAN(5),BILL(2)),(A,B,C)

The variables IRON. MAT and ZERO share the same location, the fifth element in array JAN and the
second element in array BILL share the same location, and the variables A,B and C share the same location.

When an element of an array is referred to in an EQUIVALENCE statement, the relative locations of the
other array elements are, thereby, defined also.

Example:

DIMENSION Y(4), B(3,2)
EQUIVALENCE (Y(1),B(1,2)), (X,Y(4))

This EQUIVALENCE statement causes storage to be shared by the first element in Y and the fourth
element in B and, similarly, the variable X and the fourth element in Y. Storage will be as follows:

B(1,1)
B(2,1)
B(3,1)
B(1,2) Y1)
B(2.2) Y(2)
B(3.2) Y(3)

Y(4) X

The elements of a glist constitute an equivalence group. When an equivalence group contains an element that
appears in another equivalence group, these groups are merged and their elements constitute an equivalence
class.

Example:

DIMENSION A(100)
EQUIVALENCE (A,B), (C,A(50)}, (D,E), (F,C)

These statements establish the following equivalence groups:
{aB}, {ach {cF} {DE}

and the following equivalence classes:
{a,BCF}, {DE}

The statement EQUIVALENCE (A,B),(B,C) has the same effect as EQUIVALENCE (A,B,C).

60497800 A 3-9

An array with multiple dimensions may be referenced with a single subscript. The location of the element
in the array may be determined by the following method:

DIMENSION A(K,M,N)
The position of element A(k,m,n) is given by:
Ak+K*(m-1+M*(n-1)))*E)
Eis 1if A is real, integer or logical; E is 2 if A is complex or double precision.
Example:

DIMENSION AVERAG(2,3,4),TERM(7)
EQUIVALENCE (AVERAG(8),TERM(2))

Elements AVERAG (2,1,2) and TERM(2) share the same locations.

Two or more arrays can share the same storage locations.

Example:
DIMENSION ITIN(10,10),TAX(100)
EQUIVALENCE(ITIN(1),TAX(1))
500 READ (5,40)ITIN (1) !

600 READ (5,70) TAX (1)

3-10 60497800 D

J D D 2D)

SRS RSN

)

L

The EQUIVALENCE declaration assigns the first elements of arrays ITIN and TAX to the same
location. READ statement 500 stores the array ITIN in consecutive locations. Before READ
statement 600 is executed. all operations involving ITIN should be completed; as the values of array

TAX are read into the storage locations previously occupied by ITIN.

Lengths of arrays need not be equal.
Examples:

DIMENSION ZERO1(10,5),2ER02(3,3)
EQUIVALENCE (ZERO1l,ZEROZ2)

EQUIVALENCE (ITEM,TEMP)

is a legal EQUIVALENCE statement

The integer variable ITEM and the real variable TEMP share the same location; therefore, the same
location may be referred to as either integer or real. However. the integer and real internal formats

differ; therefore the values will not be the same.

EQUIVALENCE AND COMMON

Variables, array elements, and arrays may appear in both COMMON and EQUIVALENCE statements. A

common block of storage may be extended by an EQUIVALENCE statement.

Example:

COMMON/HAT/A(4),C
DIMENSION B(5)
EQUIVALENCE (A(2),B(1))

Common block HAT will extend from A(1) to B(5):

/HAT/

EQUIVALENCE statements which extend the origin of a common block are not allowed, however.

Example:
COMMON/DESK/E,F,G

DIMENSION H(4)
EQUIVALENCE (E,H(3))

60497800 A

Origin

A(l)
A(2)
A(3)
A4

B(I)
B(2)
B(3)
B(4)
B(5)

The above EQUIVALENCE statement is illegal because H(1) and H(2) extend the start of the common
block DESK:

/DESK/ H(1)
H(2)
HQ3)

Origin E
F H(4)
G

An element or array is brought into COMMON if it is equivalenced to an element in COMMON. Two elements
in COMMON must not be equivalenced to each other.

Examples:

COMMON A,B,C
EQUIVALENCE (A,B) illegal

COMMON /HAT/ A(4),C /X/ Y,2Z
EQUIVALENCE (C,Y) illegal

As stated in section 1, the result of indexing outside of array bounds is unpredictable. Since the compiler attempts
to minimize the size of equivalence classes in common blocks to the smallest subset of the block that includes all
members named in associated EQUIVALENCE statements, all members of a common block will not necessarily be
considered as one array. The programming practice of intentionally referencing locations outside a known array
can produce unintentional results as shown in the following example.

COMMON/ /A(4), B, D, E
DIMENSION AA(4)
EQUIVALENCE (AA, A(2))
D=2.
E=2.
DO 10 1=1,6

10 AA{1)=D*E
PRINT *,E

When these statements are compiled under OPT=0, E will have a value of 8.on exit. Under OPT=1 or 2,
the evaluation of D*E will be moved out of the loop since AA and D (or E) are not recognized as being
in the same equivalence class. If the program is to produce the same results under all OPT levels, AA
must be dimensioned to include the entire common block in the equivalence class.

3-12 60497800 C

2 Jd D D

)) D

B I

2 I 2 D o D

)

J

)

5

PR T B

ey

)

'res1dent accessed by block transfer_to or fr
ubroutine call (sectlon 8) '

: For'all levels, no ,smgle array or common block can exceed 131,071 words If the tot
i.,length accessed byf.the ‘entire progr

ntrol Data 'CYBER 70 Mode]s 7l 72 73 and 74 CYBER 17 Models 171, 17
6000 Series computers. , :

60497800 J 3-13

EXTERNAL STATEMENT

7
EXTERNAL name, ,...,name_

name,.,..,name, Subprogram names

Before a subprogram name is used as an argument to another subprogram, it must be declared in an
EXTERNAL statement in the calling program. The subprogram can be user-supplied or can reside in the
FORTRAN library. If an actual argument is the name of an intrinsic function, and the user supplies a sub-
program with the same name as the intrinsic function, the user-supplied function will be used. Otherwise,
the subprogram is supplied by the library. If the subprogram does not exist on the FORTRAN library and
is not supplied by the user, a loader error occurs.

Any name used as an actual argument in a call is assumed to be a variable or array unless it appears in an
EXTERNAL statement. An EXTERNAL statement must be used even if the subprogram concerned is a
basic external function, such as SQRT.

3-14 60497800 H

J

)

J)

)

20) D

DD

e N N e N S B S

200D D

Example:

Calling Program Subprogram
EXTERNAL SIN, SQRT SUBROUTINE SUBRT (A,B,C)
CALL SUBRT(2.0,SIN,RESULT) X=A+3.14159/2.
WRITE (6,100) RESULT C=B(X)

100 FORMAT (F7.3) RETURN
CALL SUBRT(2.0,SQRT,RESULT) END
WRITE (6,100)RESULT
STOP
END

First the sine, then the square root are computed; and in each case, the value is returned in RESULT.

The EXTERNAL statement must precede the first executable statement, and always appears in the calling
program. (It cannot be used with statement functions.)

A function call that provides values for an actual argument does not need an EXTERNAL statement.

Example:
Calling Program Subprogram
CALL SUBRT(SIN(X),RESULT) SUBROUTINE SUBRT(A,B)
B=A
END

An EXTERNAL statement is not required because the function SIN is not the argument of the
subprogram; the evaluated result of SIN(X) becomes the argument.

DATA STATEMENT

7
DATA vlist1/dlist1/,vlist2/dlist2/, cee vlistn/dlistn/

DATA (viist =dlist), . . ., (vlist = dlist)

vlist List of array names, array elements, variable names, and implied DO loops, separated by commas.
Unless they appear in an implied DO loop, array elements must have integer constant subscripts.

60497800 H

3-15

dlist One or more of the following forms separated by commas:

constant

R

rf*constant

constant list List of constants separated by commas.

rf Positive integer constant. The constant or
constant list is repeated the number of times
indicated by rf.

The data statement is non-executable and must follow all specification statements except statement function
definitions, NAMELIST statements, and FORMAT statements. It can occur after the first executable statement.
It assigns initial values to variables or array elements. Only variables assigned values by the DATA statement have
specified values when program execution begins. The DATA statement cannot be used to assign values in blank
common or to dummy arguments.

3-16 60497800 A

) D

) D I

J

J))

the entire array in the order it i

- DATA B/O ‘B, 00/ 7” 3*0000053 5#oodé003/ :

are. stored in ARRAY B

‘ Paos M DATA c (OUTPUI,TAPse OUTPUT)
- COMPLEX 2(3).21;, i
- REAL A4).
" LOGICAL L S , :
- NAMELIST/OUT/I,L x,21.A,z i ‘ , 5
"DATA I,L,x,21,A,ZIs..TRUE.,3.1u15926536 0ed1y=3e)y2
: 3*1(1.,-1.5))/ L

‘60497800 A 3-17

LI e T T T B B

Jo)

J o) D)

)

)

D

)

)

)

3-18 60497800 E

<
\

3 D

))

D) D)

111 234567 890 ‘BCDEF(’HT TRLM

nto constants 0 510 characters each

1 OI-IKI..D'INOPQRST

1OHABCDEFGHIJ

"‘EIf variables cont

1ng- Hollenth ata are to be. compared with Hollenth constants

‘type IN'I‘EGER SC

;IMPLIED DO

ZiThe implied D
fstatement Th

an be used as a" hortened notatlon for speclfymg items in the‘

e variables should be of

that the actual blt value is used -and no conversion is performed

DATA LlST -~

le list of a DATA

nplied DO in.

DATA statement has the followmg form

: (varhst,l—

my,my,my

60497800 E

'where M and N are uns1gned non-zero mteger constants i :’EN can be omitted.

a sunple mteger vanable called the mdex vanable

unsxgned mteger constmts speclfymg the 1mt1a1 value,?t rminal value,
increment, respectively, for the index varlable if m3 and the precedmg omrna
are’ om1tted the value of m3 is assumed to be 1. : '

3-20

60497800 A

Jo)

™

B

J D

)

3)

T

)

D) D)

These stateme“ts dlmensmn arrays AMASS, A and B and preset elements as follows

ARRAY AMASS: r ARRAY A
AMASS(s,l;s) = =200 A(s)f= 4.1
AMASS(6,2,3) = 5.139 A(8) = 4.1
AMASS(6,3,3) = -2. A(7) = 5.0
AMASS(86,4,3) = 5.139
AMASS(6,5,3) = -2. ARRAY B:
AMASS(6,6,3) = 5,139 :
_‘ AMASS(6,7,3) = -2. B(1) = 0.0
fﬁ“ AMASS(6,8,3) = 5.139 B(2) = 0.0
AMASS(6,9,3) = 6.9 B(3) = 0.0
N AMASS(6,10,3) = 10, B(4) = 0.0
€ﬁN B(5) = 0.0
("m ;Example 5
’ hwdm;'TbATA(Am,mnﬁsusvn,z,&;4uswej
(m\ Bxample 6

' The statements

v DIMENSION D3(4), POQ(5 5) : :
‘ DATA (D3 = 5.,6.,7.,8.), (((POQ(I 3),1-1,6),3-1,5)=25"0.)

60497800 A 3-21

T e N N e e TS

-
-
-
-
-
-

FLOW CONTROL STATEMENTS 4

FORTRAN flow control statements provide a means of altering, interrupting, terminating, or otherwise modifying
the normal sequential flow of execution:

ASSIGN PAUSE
GO TO STOP

IF END

DO RETURN
CONTINUE

Control can be transferred only to an executable statement.

A statement can be identified by an integer, 1-99999, with leading zeros and embedded blanks ignored. Each
statement label must be unique in the program unit (main program or subprogram) in which it appears.

GO TO STATEMENT

The three types of GO TO statements are unconditional, computed, and assigned. The ASSIGN statement is
used in conjunction with the assigned GO TO and is therefore described in the GO TO statement group.

UNCONDITIONAL GO TO STATEMENT

GO TO sn

sn is a label of an executable statement.

This statement transfers control to the statement labeled sn which must be an executable statement in the
current program unit.)

Example:

10 A=B+Z
100 B=X+Y
IF(A-B)20,20,30
20 Z=A
GO TO 10 «.«———— Transfers control to statement 10
30 Z=B
STOP
END

60497800 A 4-1

COMPUTED GO TO STATEMENT

7
GO TO (sn1',sn2 tees snm),iv

The computed GO TO statement transfers control to one of the statements referenced in the parentheses. If
the variable iv has a value of one, control transfers to the statement labeled sny; if the value is i, control
transfers to the statement labeled sn;.

The variable must not be specified by an ASSIGN statement. If it is specified by an ASSIGN statement, the
object code is incorrect, but no compilation error message is issued.

If the value of the variable or expression is less than one or larger than the number of statement numbers in
parentheses, the transfer of control is undefined and a fatal error results at execution time.

Example 1:

G0 T0(10,20,30,20),L

4-2 60497800 A

D

DI N N

)

))

3 3) D)

)

3

The next statement executed is:

10if L=1
20if L=2
30if L=3
20ifL=4
Example 2:
K-2
GO T0(100,150,300)K Statement 150 is executed next.

integer vélue;

Example 4:

M=4
GO TO (100,200,300),M

Execution of the last example causes a fatal error during execution because fewer than four numbers are
specified in the list of statement labels.

ASSIGN STATEMENT

7
ASSIGN sn TO iv

sn is a label of an executable statement.

iv is an integer variable.
The ASSIGN statement assigns a statement label to a variable used in an assigned GO TO. The integer
constant assigned to iv represents the label of an executable statement to which control may be transferred

by an assigned GO TO statement. Once iv is used in an ASSIGN statement, it must not be referenced in
any statement, other than an assigned GO TO or another ASSIGN, until it has been redefined.

60497800 E 4-3

The assignment must be made prior to the execution of the assigned GO TO statement and sn (the label of
an executable statement) must be in the same program uni<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>