60499500

(G5 CONTROL DATA

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1

HOST APPLICATION PROGRAMMING
REFERENCE MANUAL

cDC® OPERATING SYSTEM:
NOS 2



REVISION RECORD

N

Revision

A (12/01/76)
B (04/01/77)
C (07/01/77)
D (04/28/78)

(08/15/78)
(12/18/78)
(01/15/79)
(08/10/79)

T oOmm

—

(12/11/79)
K (04/18/80)

L (10/31/80)
M (05/29/81)
N (02/26/82)

P (01/14/83)

R (09/30/83)

S (09/19/84)
T (09/30/85)

U (12/16/85)
v (07/31/86)

W (04/23/87)

REVISION LETTERS I, O, Q, AND X ARE NOT USED

Description

Original Release. PSR level 439,

Revised to PSR level 446 for technical corrections.

Revised to PSR level 452 for technical corrections.

Completely revised for NAM Version l.1 release at PSR level 472 to include support of
remote and foreign NPUs, asynchronous and HASP TIPs, virtual terminals, IAF, and TVF.

Revised at PSR level 477 for technical corrections.

Revised at PSR level 485 for technical corrections.

Revised at PSR level 485 for additional techaical corrections.

Revised to reflect release of NAM Version 1.2. Included are descriptions of the binary
debug log file and postprocessor, special editing support, and QTRM.

Revised to reflect addition of connection duplexing, upline block truncation, block
header break markers, QTRM connection switching, and various technical corrections.

Revised at PSR level 517 to reflect the addition of 714 printer support, and various
technical corrections.

Revised at PSR level 528 to reflect the addition of QIrRM support of application-to-
application connections, the user-interrupt capability, and various technical
corrections.

Revised for NAM Version 1.3 release at PSR level 541 to include 2780/3780 terminal
support, changes to supervisory messages, PRU interface, and various technical
corrections.

Revised at PSR level 559 to reflect release of NAM Version 1.4, which supports NOS
Version 2.0 and includes the disable flag parameter on the LST/HDX/R supervisory
message and miscellaneous technical corrections.

Revised at PSR level 580 to reflect release of NAM Version 1.5 and CCP Version 3.5, which
run only under the NOS Version 2 operating system. This manual, which was previously
known as the NAM Reference Manual, is no longer applicable to products operating under
NOS 1. It has been reorganized to document information needed by a general networks
user, who must consider NAM as well as CCP when writing a network application. This is
a complete reprint.

Revised at PSR level 596 to reflect release of NAM Version l.6 and CCP Version 3.6,
supporting multiple-host networks. This is a complete reprint,

Revised at PSR level 617 to reflect release of NAM Version 1,7 and CCP Version 3.7 to
document support of a 3270 bisynchronous terminal class and miscellaneous technical
corrections,

Revised at PSR level 642 to reflect release of NAM Version 1.8 and CCP Version 3.8. This
manual was previously known as the NAM Version 1/CCP Version 3 Host Application
Programming Reference Manual. Miscellaneous technical changes are included.

Revised at PSR level 647 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version l.0. Miscellaneous technical corrections are included.

Revised at PSR level 664 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version l.1. Miscellaneous technical corrections are included.

Revised at PSR level 678 to reflect release of NAM Version 1.8, CCP Version 3.8, and
CDCNET Version 1.2, Miscellaenous technical corrections are included.

Address comments concerning this manual to:

CONTROL DATA CORPORATION

©COPYRIGHT CONTROL DATA CORPORATION Technology and Publications Division
1976, 1977, 1978, 1979, 1980, 1981, P, O. BOX 3492
1982, 1983, 1984, 1985, 1986, 1987 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved
Printed in the United States of America

i1

or use¢ Comment Sheet in the back of this manual

60499500 W

J D

™
,‘akﬁ



Cﬁﬁak
r@ﬁ@\

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Pagg

Front Cover
Title Page

ii

iii/iv

v

vi

vii/viii

ix thru xii
xiii/xiv

XV

I-1

1-2 thru 1-6
1-7

1-8

1-8.1

1-8.2

1-9 thru 1-14
2-1

2=-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12 thru 2-14
2=15 thru 2-18
2-19

2-20

2-21

2-22 thru 2-25
2-26

2-27

2-28

2-29

2-30 thru 2-33
2-34

2-35

2-36 thru 2-39
3-1

3-2 thru 3-6
3~7 thru 3-10
3-11

3-12
3-12.1/3-12.2
3-13 thru 3-16
3-17

3-18 thru 3-21
3-22

3-23

3-24

3-25

3-26

3-27

3-28

60499500 W

Revision

SS<H€€<H<H=<<=<GHC<ZHzHSHmC<CchWHWHWHNNCHCC<<GWH<<<G<£2II

Page

3-29

3-30

3-30.1

3-30.2

3-31

3-32 thru 3-44
3-45

3-46

3-47 thru 3-50
3-51 thru 3-53
3-54 thru 3-57
3-58

3-59

3-60

3-61

3-62 thru 3-68

3-68.1 thru 3-68.6

3-69 thru 3-79
3-380

3-81

4-1

4=2

4-3

4=4
4-4.1/6~4,2
4-5 thru 4-10
4-10.1

4-10.2

4-11 thru 4-15
4-16

4~17 thru 4-19
5-1

5-2

5-3

5-4

5-5

5-6

5-7 thru 5-11
5-12

5-13

5~14

6-13 thru 6-15

Revision

<W<W€HWN%MHH<HHWHHWHWHWFS<WH<H<<<22EWNC<C<<€G<<H<H<<H<<<<<

Page
6-17
7-1 thru 7-15
7-16

7-17 thru 7-24
7-25

7-26 thru 7-38
8-1

8-2 thru 8-12
8-13

8-14 thru 8-34
8-34,1

8~34.2
8-34.3/8-34.4
8-35 thru 8-66
A-1 thru A-3
A4

A-5 thru A-19
A=20 thru A-23
A-24 thru A-32
A-33 thru A-36
A-37

A-38

A-39

A-40 thru A-46
A=47

A-48

B-1

B-2
B-2.1/B-2,2
B-3

B=4

B-5

B-6

B-7 thru B-9
C-1 thru C-13
D-1

D-2

Index—-1 thru -6

Comment Sheet/Mailer

Back Cover

A bar by the page number

Revision

I£<<<:H<<HH2£SWWWMHHWHMNMWH<<<<Z<WNHWHWW

iii/iv






PREFACE

v e S

This manual supplies reference information to both
Network Access Method (NAM) Version 1.7 and Commu-
nications Control Program (CCP) Version 3.7 users,
typically either programmers or analysts who are
vwriting a network application or who would like to
learn more about how the various portions of the
network fit together.

This manual describes how application programs
interface to the computer network. The NAM 1/CCP 3
Terminal Interface reference manual describes how
the terminal user gains access to these applica-
tions. Also, this manual familiarizes the reader
with the network processing unit (NPU) and the
Communications Control Program (CCP). Knowledge of
the NPU and CCP, however, is not necessary to write
an application program.

NAM and CCP operate under control of the NOS 2
operating system for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems; CDC ®
CYBER 70 Computer System models 71, 72, 73, and 74;
and 6000 Computer Systems.

NAM is the subset of the host computer software
that provides communication between an application
program in the host computer and other applica-
tion programs or devices accessing the network”s
resources.

The Communications Control Program is software that
resides in a 255x series network processing unit
that allows a device to access the host computer
over communications lines.

WHO SHOULD READ THIS
MANUAL

This manual is directed at a programmer or analyst
who is familiar with subsystem applications
programming, compiler and assembler programming
conventions, terminal communication protocols, other
network software products, and the programing
requirements of supported devices.

HOW THIS MANUAL IS
ORGANIZED

Section 1 introduces the NAM and CCP software.
Section 2 describes the protocols governing infor-
mation exchanged for communication between NAM and
each application program, and between application
programs and their connections. Section 3 describes
the synchronous and asynchronous supervisory mes-
sages used by application programs. Section 4
describes the 1language and internal interfaces
required by an application program. Section 5 dis-
cusses the application interface program statements
used by NAM to access the network and to send and
receive messages. Section 6 discusses the structure
and execution of an application program job as a

batch or system origin type file. Section 7
contains a FORTRAN program using AIP; section 8
describes QTRM. Section 9 describes network

failure and techniques of recovery.

Additional reference information for the Communica-
tions Control Program can be found in other network
product and operating system publications. Use
table 0-1 to locate this information.

TABLE 0-1. LOCATION OF CCP REFERENCE INFORMATION
Manual That Contains Information
NOS NAM 1/CCP 3 | NOS Communications | NOS Communications
Version 2 | Terminal Version 2 | Control Pro- Version 2 | Control Program
Information Adminis- Interfaces System gram Version 3 | Opera- Internal
tration Reference Analysis Diagnostic tions Maintenance
Handbook Manual Handbook Handbook Handbook SpecificationT
CCP overview, concepts, X
and functions
Character sets X
CCP glossary X
Mnemonics X
Statistics X
Halt Codes X
60499500 S v



TABLE 0-1.

LOCATION OF CCP REFERENCE INFORMATION (Contd)

Manual That Contains Information

and initializing
details

NOS NAM 1/CCP 3 | NOS Communications | NOS Communications
Version 2 | Terminal Version 2 | Control Pro- Version 2 | Control Program
Information Adminis— Interfaces System gram Version 3 | Opera- Internal
tration Reference Analysis Diagnostic tions Maintenance
Handbook Manual Handbook Handbook Handbook SpecificationT
hﬁ= ——
Diagnostics X
Customer Engineering X
error messages
Dump information X
NPU operating X X
instructions ’
Memory map X
Naming conventions X
NPU dumping, loading, X

Minnesota 55112

fAvailable from Software Manufacturing Distribution (SMD), 4201 Lexington Ave. North, Arden Hills,

RELATED PUBLICATIONS

Related material is contained in the publications
listed below. Other manuals may be needed, such as
the hardware, firmware, or emulator software refer-
ence manual for the devices serviced by a given
program. Also, communication standards and device
operating literature can be useful.

The Software Publications Release History gives the

titles and revision levels

of

software manuals

available for the Programming System Report (PSR)
level of NOS 2 and its product set installed at your

site.

The following manuals are of primary interest:

Publication

Network Products

Network Access Method Version 1
Network Definition Language
Reference Manual

Network Products
Network Access Method Version 1
Communications Control Program

/

Version 3

Terminal Interfaces Reference Manual

NOS Version 2 Reference Set, Vo

lume 1

Introduction to Interactive Usage

NOS Version 2 Reference Set, Vo
System Commands

NOS Version 2 Reference Set, Vo
Program Interface

vi

lume 3

lume 4

Publication
Number

60480000

60480600

60459660

60459680

60459690

60499500 S

J )

=
@\



The following manuals are of secondary interest:

Publication
Publication Number
Communications Control Program Version 3
Diagnostic Handbook 60471500
COMPASS Version 3
Reference Manual 60492600
COBOL Version 5
Reference Manual 60497100
CYBER Cross System Version 1
Build Utilities Reference Manual 60471200
CYBER Cross System Version 1
Macro Assembler Reference Manual 96836500
CYBER Cross System Version 1
Micro Assembler Reference Manual 96836400
CYBER Cross System Version 1
f@ﬁh\ PASCAL Reference Manual 96836100
FORTRAN Version 5
Reference Manual 60481300
Hardware Performance Analyzer (HPA)
User Reference Manual 60459460
Message Control System Version 1
Reference Manual 60480300
NOS Version 2
Diagnostic Index 60459390
( NOS Version 2
Installation Handbook 60459320
NOS Version 2
Manual Abstracts 60485500
NOS Version 2
Administration Handbook 60459840
NOS Version 2
Operations Handbook 60459310
ﬁ o NOS Version 2
. Analysis Handbook 60459300
Network Products
Remote Batch Facility Version 1
Reference Manual 60499600
Software Publications Release History 60481000
TAF Version 1
Reference Manual 60459500
2551-1, 2551-2, 2552-2 Network Processor
Unit Hardware Reference Manual 60472800
2560 Series Synchronous Communications
Line Adapter Hardware Maintenance Manual 74700700

( 60499500 § vii



viii

Publication
Publication Number
2561 Series Asynchronous Communications
Line Adapter Hardware Maintenance Manual 74700900
2563 Series SDLC Line Adapter
Hardware Maintenance Manual 74873290

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This product 1is intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

60499500 R

JJ

J )



CONTENTS

NOTATIONS xiii Application-to-Application Input and
Output Concepts 2-7
Information Identification Protocols 2-7
1. NETWORK PRODUCTS: AN OVERVIEW 1-1 Application Program Message Types 2-7
Application Block Types 2-7
Computer Network 1-1 Block Buffer Areas 2-8
Communications Network 1-2 Block Header Area 2-8
Services Network 1-2 Block Text Area 2-8
Software Components of the Network 1-2 Connection Identifiers 2-9
Network Access Method 1-2 Application Connection Number 2-9
Peripheral Interface Program 1-4 Application List Number 2-9
Network Interface Program 1-4 Data Message Content and Sequence Protocols 2-10
Application Interface Program 1-4 Interactive Virtual Terminal Data 2-10
Queued Terminal Record Manager 1-4 Line Turnaround Convention 2-11
Network Definition Language Processor 1-4 Interactive Virtual Terminal Exchange
Network Supervisor 1-5 Modes 2-11
Communication Supervisor 1-5 Normalized Mode Operation 2-11
Network Validation Facility 1-5 Upline Character Sets and Editing
Network Utilities 1-5 Modes 2-12
Network Dump Analyzer 1-5 Downline Character Sets 2-14
Load File Generator 1-5 Page Width and Page Length 2-14
Debug Log File Processor 1-6 Format Effectors 2-14
Hardware Performance Analyzer 1-6 Transparent Mode Operation 2-19
NAM Application Programs 1-6 Application—to-Application
CDC CYBER Cross System Software 1-6 Connection Data 2-22,1 |
Network Processing Unit and Communications Application Character Types 2-23
Control Program 1-6 Character Byte Content 2-24
Network Processing Unit 1-6 Block Header Content 2-24
Communications Control Program 1-7 Supervisory Message Content and Sequence
Base System Software 1-7 Protocols 2-31
| System Autostart Module 1-7 Asynchronous Messages 2-35
Service Module 1-8 Synchronous Messages 2-36
Host Interface Program 1-8 Block Header Content 2-36
Terminal Interface Program 1-8
Link Interface Program 1-8
Block Interface Program 1-8 3. SUPERVISORY MESSAGES 3-1
In-Line and On-Line Diagnostics 1-8
NPU Console Debugging Aids 1-8 Message Mnemonics 3-1
Performance and Statistics Programs 1-8 Message Sequences 3-1
| The Packet Switching Network (PSN) 1-8 Connecting Devices to Applications 3-1
NAM Concepts 1-8 Connecting Applications to Applications 3-14
Virtual Terminals 1-9 Monitoring Connections 3-24.1
Logical Connections 1-9 Terminating Connections 3-24.2
Owning Consoles 1-10 Managing Connection Lists 3-25
Network Access Method Operation 1-10 Controlling List Polling 3-25
Application Program Concepts 1-12 Controlling List Duplexing 3-26
Connection Processing Flow 1-12 Controlling Data Flow 3-29
Supported Terminals 1-12 Monitoring Downline Data 3-29
Controlling or Bypassing Upline and
Downline Data 3-35
2. INFORMATION PROTOCOLS 2-1 Discarding Upline and Downline Data
on Application—to-Application
Information Flow 2-1 Connections 3-35
Structure Protocols 2-1 Discarding Downline Data on
Physical Protocols and Network Blocks 2-1 Device-to-Application Connections  3-35
Logical Protocol and Physical Blocks 2-1 Bypassing Downline Data on an
Network Data Blocks 2-2 Application-to-Application
Transmission Blocks 2-4 Connection 3-35
Interactive Terminal Input Concepts 2-4 Terminal Use of User Interrupts for
Line Mode Operation 2-4 Priority Data 3-38
Block Mode Operation 2~4 Controlling Upline Block Content 3-39
Physical and Logical Lines 2-5 Converting and Repacking Data 3-39
End-of-Line Indicators 2-5 Repacking Synchronous Supervisory
Multiple Logical Lines in One Message 2-5 Message Blocks 3-41
End-of-Block Indicators 2-6 Exchanging Transparent Data With Devices 3-42
Interactive Terminal Output Concepts 2-7 Truncating Upline Blocks 3-42
Batch Device Data 2-7 Managing Device Characteristics 3-43

60499500 S ix



Changing Device Characteristics
Requesting Device Characteristics

Host Operator Commands

Host Shutdown

Error Reporting

4. USER PROGRAM INTERFACE DESCRIPTIONS

Language Interfaces
Parameter List and Calling Sequence
Requirements
Predefined Symbolic Names
Predefied Symbolic Values
COMPASS Assembler Language
Application Interface Program
Macro Call Formats
Field Access Utilities
Compiler-Level Languages
Application Interface Program
Subroutine Call Formats
Field Access Utilities
Queued Terminal Record Manager
Utilities
Internal Interfaces
Application Interface Program and
Network Interface Program Communication
Worklist Processing
Parallel Mode Operation
Other Software Communication

5. APPLICATION INTERFACE PROGRAM
CALL STATEMENTS

Syntax
Network Access Statements
Connecting to Network (NETON)
Disconnecting From Network (NETOFF)
Network Block Input/Output Statements
Specific Connections
Inputing to Single Buffer (NETGET)
Inputing to Fragmented Buffer
Array (NETGETF)
Outputing From Single Buffer (NETPUT)
Outputing From Fragmented Buffer
Array (NETPUTF)
Connections on Lists
Inputing to Single Buffer (NETGETL)
Inputing to Fragmented Buffer
Array (NETGTFL)
Processing Control Statements
Suspending Processing (NETIWAIT)
Controlling Parallel Mode (NETSETP)
Checking Completion of Worklist
Processing (NETCHEK)

6. CHARACTERISTICS OF AN APPLICATION PROGRAM

NOS System Control Point Facility
Batch Job Structure

Commands

Job Identification
Program Content
Program Execution Through IAF
| Types of Application Programs
Disabled
Unique Identifier
Privileged
Request Startable
Have More Than One Copy (on any One Host)
Restricted or General Access
Mandatory or Primary

3-45
3-54
3-56
3-60
3-60

5-10
5-10

5-12
5-14
5-14
5-15

6-2

6-3
6-3
6-4
6-5
6-5
6-5
6-6
6-6
6-6
6-6

Debugging Application Programs
Fatal Errors
Debugging Methods
Debug Log File and Associated
Utilities
Statistical File and Associated
Utilities
Dependencies for Program Use
Memory Requirements

7. SAMPLE FORTRAN PROGRAM

Configuration Requirements
Job Command Portion
Program Portion

Program Qutput

8., QUEUED TERMINAL RECORD MANAGER

Network Information Table
Subroutines
Initiating Network Access (QTOPEN)
Sending Data (QTPUT)
Obtaining Data or Connection
Status (QTGET)
Sending a Synchronous Supervisory
Message (QTTIP)
Linking an Application to Another
Application (QILINK)
Ending a Single Connection (QTENDT)
Ending Communication With the
Network (QTCLOSE)
OQutput Formatting and Editing
Format Effectors
Display—Code Output Editing
Output Queuing Using QTRM
Sample Program

9. NETWORK FAILURE AND RECOVERY

Application Programs
Host

Network Processing Unit
Logical Link

Trunk

Line

Terminal

APPENDIXES

A Character Data Input, Output, and

6-6
6-6
66

6-16
6-15

6-16
6~17

Central Memory Representation A-1
B  Diagnostic Messages B-1
C Glossary Cc-1
D Application Program Call Statement Summary D-1
INDEX
FIGURES
1-1 Overview of a CDC Network 1-1
1-2  The Interfaces Between the Network
Product Elements 1-3
1-3  The Relationship Between the Parts of
the Communications Control Program 1-7
1-4 Typical Connections in the Network 1-10
60499500 S

) )



6@”~

1-5 Network Access Method Components

1-6  Typical Application Program
Processing Flow

2-1  Physical and Logical Information
Structures

2-2  Block Reassembly Points

2-3  Application-to-Application Connection
Data Exchanges

2-4  Application Block Header Content for
Upline Network Data Blocks

2-5 Application Block Header Content for
Downline Network Data Blocks

2-6  Supervisory Message General Content,
Asynchronous Messages and Synchronous
Messages of Application Character
Type 2

2-7  Supervisory Message General Content,
Synchronous Messages of Application
Character Type 3

2-8  Application Block Header Content for
Upline Supervisory Messages

2-9  Application Block Header Content for
Downline Supervisory Messages

3-1 Supervisory Message Mnemonic Structure

3-2  Device-to-Application Connection
Supervisory Message Sequences

3-3  Connection-Request (CON/REQ/R)
Supervisory Message Format,
Device-to-Application Connections

3-4 Connection-Accepted (CON/REQ/N)
Supervisory Message Format,
All Connection Types

3-5 Connection-Rejected (CON/REQ/A)
Supervisory Message Format,
All Connection Types

3-6 Initialized-Conmection (FC/INIT/R)
Supervisory Message Format

3-7 Connection-Initialized (FC/INIT/N)
Supervisory Message Format

3-8 Connection-Broken (CON/CB/R)
Supervisory Message Format

3-9 End-Connection (CON/END/R)
Supervisory Message Format

3-10 Connection~Ended (CON/END/N)
Supervisory Message Format

3-11 Application-to-Application Connection
Supervisory Message Sequences

3-12 Request-Application-Connection
(CON/ACRQ/R) Supervisory Message
Format

3-13 Application-Connection-Reject
(CON/ACRQ/A) Supervisory Message
Format

3-14 Connection-Request (CON/REQ/R) Super-
visory Message Format, Application-—
to-Application Connections

3-15 Connection Monitoring Message Sequences

3-16 Inactive-Connection (FC/INACT/R)
Supervisory Message Fommat

3-17 Connection Termination Message
Sequences

3-18 Connection List Polling Control
Message Sequences

3-19 Connection List Duplexing Message
Sequences

3-20 Turn-List~Processing-Off (LST/OFF/R)
Supervisory Message Format

3-21 Turn-List-Processing-On (LST/ON/R)
Supervisory Message Format

3-22 Change-Connection-List (LST/SWH/R)
Supervisory Message Format

3-23 Turn-On-Half-Duplex-List-Processing
(LST/HDX/R) Supervisory Message
Format

60499500 S

2-32

2-34
2-36

2-38
3-1

3-5

3-24

3-25
3-26
3-27
3-28
3-29

3-30
3-31

3-32

3-33

3-34
3-35
3-36

3-37
3-38

3-39

3-40
3-41
3-42
3-43
3-44
3-45

3-46

3-47

3-48

3-49

3-50

3-51

3-52

3-53

3-54

Turn-On-Full-Duplex-List-Processing
(LST/FDX/R) Supervisory Message
Format

Block-Delivered (FC/ACK/R) Supervisory
Message Format

Block-Not-Delivered (FC/NAK/R)
Supervisory Message Format

Application—to-Application Connection
Break and Reset Message Sequence

Break (FC/BRK/R) Supervisory Message
Format

Reset (FC/RST/R) Supervisory Message
Format

Terminal User-Caused Break Sequence

User-Interrupt (INTR/USR/R) Supervisory
Message Format

Break-Indication-Marker (BI/MARK/R)
Supervisory Message Format

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format

Resume-Qutput-Marker (RO/MARK/R)
Supervisory Message Format

Application-Interrupt (INTR/APP/R)
Supervisory Message Format

Application-Interrupt-Response
(INTR/RSP/R) Supervisory Message
Format

Terminate—Output-Marker (TO/MARK/R)
Supervisory Message Format

Downline Data Flow Control Supervisory
Message Sequences

User-Interrupt-Request (INTR/USR/R)
Supervisory Message Format for
Priority Data

User Interrupt for Priority Data
Supervisory Message Sequence

Change-Input-Character-Type
Supervisory Message Sequence

Change-Input-Character-Type (DC/CICT/R)
Supervisory Message Format

Block Truncation Supervisory Message
Sequence

Block Truncation (DC/TRU/R) Supervisory
Message Format

Terminal Characteristics Redefinition
Supervisory Message Sequences

Terminal-Characteristics-Redefined
(TCH/TCHAR/R) Supervisory Message
Format

Define-Terminal-Characteristics
(CTRL/DEF/R) Supervisory Message
Format

Define-Multiple-Terminal-Characteristics
(CTRL/CHAR/R) Supervisory Message
Format

Define-Multiple-Terminal-Characteristics
Abnormal Response (CTRL/CHAR/A)
Supervisory Message Format

Multiple-Terminal-Characteristics-—
Defined (CTRL/CHAR/N) Supervisory
Message Format

Request-Terminal-Characteristics
(CTRL/RTC/R) Supervisory Message
Format

Request-Terminal-Characteristics
Abnormal Response (CTRL/RTC/A)
Supervisory Message Format

Device-Characteristics-Definition
(CTRL/TCD/R) Supervisory Message
Format

Host Operator Command Supervisory
Message Sequences

3-29
3-30
3-30
3-31
3-32

3-32
3-33

3-33
3-34

3-34
3-34

3-36

3-36
3-37

3-37

3-38
3-38
3-39
3-40
3-42
3-43

3-45

3-46

3-48

3-49

3-50

3-50

xi



3-55

3-56

3-57

3-58

3-59

3-60

3-61

3-62
3-63
3-64

3-65

Tyr
WA

1 LI}
N LN =B

UlUlU\U‘IUILIﬂUU‘bb

Ty
= 0
(=]

[ St

Host Operator Request-to-Activate-~
Debug-Code (HOP/DB/R) Supervisory
Message Format

Host Operator Request-to-Turn-Off-
Debug-Code (HOP/DE/R) Supervisory
Message Format

Host Operator Request—to-Dump-Field-
Length (HOP/DU/R) Supervisory
Message Format

Host Operator Request—to-Turn-AIP-
Traffic-Logging-On (HOP/TRACE/R)
Supervisory Message Format

Host Operator Request-to-Turn-AlP-
Traffic-Logging-0ff (HOP/NOTR/R)
Supervisory Message Format

Host Operator Request-to-Release-
Debug-Log-File (HOP/REL/R)
Supervisory Message Format

Host Operator Request-to-Restart—
Statistics-Gathering (HOP/RS/R)
Supervisory Message Format

Host Shutdown Supervisory Message
Sequences

Host-Shutdown (SHUT/INSD/R) Supervisory
Message Format

Logical-Error Supervisory Message
Sequence

Logical-Error (ERR/LGL/R) Supervisory
Message Format

NFETCH Macro Call Format

NSTORE Macro Call Format

NFETCH Integer Function FORTRAN
Call Format

NSTORE Subroutine FORTRAN Call Format

QIRM Interface Level Analogy

NETON Statement FORTRAN Call Format

Supervisory Status Word Format

NETON Statement FORTRAN Example

NETOFF Statement FORTRAN Call Format

NETGET Statement FORTRAN Call Format

NETGET Statement FORTRAN 5 Examples

NETGETF Statement FORTRAN Call Format

NETGETF Statement Text Area Address
Array

NETGETF Statement FORTRAN 5 Examples

NETPUT Statement FORTRAN Call Format

NETPUT Statement FORTRAN 5 Example

NETPUTF Statement FORTRAN Call Format

NETPUTF Statement Text Area Address
Array

NETPUTF Statement FORTRAN 5 Example

NETGETL Statement FORTRAN Call Format

NETGETL Statement FORTRAN 5 Example

NETGTFL Statement FORTRAN Call Format

NETGTFL Statement Text Area Address
Array

NETGTFL Statement FORTRAN 5 Example

NETWAIT Statement FORTRAN Call Format

NETWAIT Statement FORTRAN 5 Examples

NETWAIT Statement FORTRAN Call Format

NETSETP and NETCHEK Statement
FORTRAN 5 Examples

NETCHEK Statement FORTRAN Call Format

Typical Job Structure for System Input

Interactive Program Execution Procedure
Example

3-57

3-58

3-58

3-58

3-59

3-39

3-59
3-60
3-61
3-61
3-62
4-10
4-11
4-12

4-13
4=14

6-3 NETDBG Utility FORTRAN Call Statement

Format 6-7
6-4 NETREL Utility FORTRAN Call Statement

Format 6-8
6-5 NETSETF Utility FORTRAN Call Statement

Format 6-8
6-6 NETLOG Utility FORTRAN Call Statement

Format 6-9
6-7 NETDMB Utility FORTRAN Call Statement

Format 6-9
6-8 DLFP Command General Format 6-10
6-9 DLFP Command Examples 6-10
6-10 DLFP Directive Keyword Format 6-11
6-11 DLFP Directive Examples 6-12
6-12 General Format of DLFP Output 6-13
6~13 NETSTC Utility FORTRAN Call Statement

Format 6-15
6~14 NETLGS Utility FORTRAN Call Statement

Format 6-15
6-15 General Format of One Period Listing

in Statistical File 6-16
7-1 Command Portion of RMV3-Job 7-1
7-2  Program Portion of RMV3 7-2
7-3 Possible Dialogs Supported by Sample

FORTRAN Program 7-25
7-4 Debug Log File Listing for Sample

FORTRAN Program 7-26
7-5 Statistical File Listing for Sample

FORTRAN Program 7-38
8-1 Network Information Table Format 8-2
8-2 QTOPEN Statement COBOL Call Format 8-11
8-3 QTPUT Statement COBOL Call Format 8-12
8-4 QTGET Statement COBOL Call Format 8-13
8-5 QTLINK Statement COBOL Call Format 8-14
8-6 QTENDT Statement COBOL Call Format 8-14
8-7 QTCLOSE Statement COBOL Call Format 8-15
8-8 Algorithm for Output Buffering

Using QTRM 8-17
8-9 Sample Program ECHO-RMV2 Source

Listing 8-19
8-10 ECHO-RMV2 Job Commands 8-25
8-11 Debug Log File Listing for ECHO-RMV2 8~-26
8~12 Statistics File Listing for ECHO-RMV-2 8-36
8-13 ECHO-RMV2 Sample Dialog 8-37
TABLES
1-1  Device Types 1-9
1-2 Supported Terminal Classes 1-14
2-1 Default Message Delimiter and

Transmission Keys 2-6
2-2  Format Effector Operations for

Asynchronous and X.25 Consoles 2-15
2-3 Format Effector Operations for

Synchronous Consoles 2-20
2-4 Embedded Format Control Operations

for Consoles 2-21
2-5 Character Exchanges With Connections 2-25
3-1 Legal Supervisory Messages 3-2
3-2 Valid Field Numbers and Field Values 3-51
4-1  Reserved Symbols 4-3
4~-2  AIP Internal Procedures 4-17
4-3  AIP Internal Tables and Blocks 4-18

60499500 S

J D

J )



(@ﬁaa
€§ﬁ@\

NOTATIONS

I‘-.II-..--II-I.--IIIEE-lI-I-IH-IIl--.-..IIIIII---I---II---IIII-I-HlI-.--II--III-III-I'--.-I

Throughout this manual, the following conventions
are used in the presentation of statement formats,
operator type-ins, and diagnostic messages:

UPPERCASE

lowercase

{1}

input parameter

return parameter

60499500 R

Uppercase letters indicate
acronyms, words, or mne-—
monics either required by
the network software as
input, or produced as out-
put.

Lowercase letters identify
variables for which values
are supplied by the NAM or
terminal user, or by the
network software as output.

Ellipsis indicates that
omitted entities repeat the
form and function of the
entity last given.

Square brackets enclose
entities that are optional;
if omission of any entity
causes the use of a default
entity, the default 1is
underlined.

Braces enclose entities from
which one must be chosen.

This term identifies an AIP
call statement parameter for
which values are supplied
to AIP by the programmer.

This term identifies an AIP
call statement parameter
for which variables are
supplied to AIP by the pro-
grammer and in which values
are placed by AIP.

Let> The <ct> symbol represents
the network control char-
acter defined for the ter-
minal. This character must
be the first character of
the command entered.

LF The LF symbol represents a
one-line vertical reposi-
tioning of the cursor or
output wmechanism. LF also
designates a character or
character code associated
with such a 1line feed
operation.

(:) A circle around a character
represents a character key
that is pressed in con-
Jjunction with a control
key (CTL, CNTRL, CONTRL,
CONTROL, or equivalent).

[ex] The boxed cr symbol repre-
sents the terminal key that
causes message transmission;
usually, this key causes a
carriage return operation.

Transmission keys are
described in more detail in
section 2.

Unless otherwise specified, all references to num-
bers are to decimal values, all references to bytes
are to 8-bit bytes, and all references to characters
are to 7-bit ASCII-coded characters. Fields
defined as unused should not be assumed to contain
Zeros.

xiii



t =




NETWORK PRODUCTS: AN OVERVIEW

This section Introduces the Control Data Corporation
CYBER 170 network products, their relationships to
each other, and their significance to the data com-
munications user. Network products is a group of
programs and hardware that provides communications
services to geographically dispersed users.

As shown in figure 1-1, a CDC network consists of a
computer network, a communications network,

COMPUTER NETWORK

The computer network includes host computer systems
packet-switching networks (PSNs), terminals, and

the host software associated with network communi-
cations.

Each component of the computer network provides

input, output, control, or storage resources to the
and a services and communications network. The primary
services network. host communication software is called the Network
Access Method (NAM).
(' Services Applications Applications
Network
f' Computer Ai\,
Network NAM NAM
Hosts
™\
Communications
Network

Fre
ree
rer
cr’
e
[
Cre
rer
ree
ree
ree
e

Terminals

e
ree
rrr
ree
e
el
Fep
ree
ree
rre
er?
rel

Users

[

Figure 1-1.

60499500 R

Overview of a CDC Network



COMMUNICATIONS NETWORK

The communications network includes network proc-
essing units (NPUs) and the connecting communication
lines needed to transport blocks of data between
host computers and terminals. The primary CDC
software in an NPU is called the Communications
Control Program (CCP).

The size and complexity of a communications network
varies from a simple network with one local (front-
end) NPU, or a network with one local NPU and one
or more remote NPUs, to a more complex network with
multiple local NPUs and multiple remote NPUs.
Attached to these NPUs are terminal devices, such
as entry/display statioms.

Because the communications network minimizes termi-
nal type dependency and removes many of the terminal
switching operations from the host, the host can
process data more efficiently.

SERVICES NETWORK

The services network consists of the network appli-
cation programs in each host computer and the users
of those programs. Each application program gives
the terminal user or another application a specific
data processing capability,

SOFTWARE COMPONENTS OF
THE NETWORK

Figure 1-2 shows the interfaces between the elements
of the network. The left part of the figure shows
the network host software elements, which are the
software elements located in the CDC CYBER 170 host
computer. The middle section shows the Communi-
cations Control Program (CCP), which is the software
element located in the network processing unit. As
shown in the right portion of figure 1-2, CCP
communicates with the terminals while the Network
Access Method (NAM) communicates with application
programs. Refer to figure 1-2 while reading the
remainder of this overview section on network
products.

The network host software 1s collectively called
the Network Access Method or NAM. NAM is used in
several contexts throughout this manual and in the
other network products documentation. NAM can refer
to the interface between application programs and
the communications network; to the programs that
implement that interface, including the Applications
Interface Program (AIP), the Network Interface
Program (NIP), and the Peripheral Interface Program
(PIP); or to the product NAM, which also includes
the Network Supervisor (NS), the Communications
Supervisor (CS), and the Network Validation Facility
(NVF).

In figure 1-2, NAM refers to the set of programs
that implement the interface between the application
programs and communications network.

Network host software, shown in the left part of
figure 1-2, includes:

Network Access Method

Network Definition Language Processor

Network Supervisor

Communications Supervisor

Network Validation Facility

Network utilities

Network Access Method application programs

CYBER Cross System

NETWORK ACCESS METHOD

The Network Access Method is the primary network
host software. NAM interfaces between applications
in the same host or between applications and the
Communications Control Program in an NPU.

Because the connections among NPUs can become
extremely complex, the Network Access Method acts
as an interface between host computer software at
one end of the network and the terminals at the
other end. '

A simple front-end NPU configuration appears the
same through the Network Access Method as a more
complex linkage system; message routing by the host
computer is performed in the same manner for both
configurations. The physical and logical counfigu-
ration of the elements involved in Network Access
Method operation is described in the Network Defi-
nition Language reference manual (listed in the
preface).

The host computer executes CDC-written or site-
written service programs called application programs
that are connected to the network via the Network
Access Method (NAM), An application program can
communicate with other application programs or
service terminals connected to the network. All
connections to the network are established by a
portion of the network software called the Network
Validation Facility, and the flow of data and proc~
essing along them is controlled through NAM.

NAM incorporates the following features:

e It is equally suitable for application programs
written in COMPASS or high-level languages, such
as FORTRAN.

o It imposes no data structures on an application
program.

e It provides a way to handle unpredictable
events, such as terminal operator interrupts.

e It provides complete isolation of network com-
munications from the operating system.

e It supports distinct classes of terminals by
normalizing data formats and optionally per-
forming code conversion. Seventeen classes are
defined by CDC; additional classes can be de-
fined by sites that provide their own supporting
software.

e It permits an application program to support
clusters of real terminal devices as 1if the
devices were separately addressable logical
entities called virtual terminals. Virtual
terminals are described at the end of this
section.

60499500 R

JJ

J )



SIUSWA1T 3IINPOJd HJOMIIN BY3 UIIMIAG S3JRLIIIUT dY)

*2-1 8nBL4

1-3 @

sjeuimsag

SdIl

dd3

wedBoud j0J43u0)
suoLledLuUNuwo)

Jajdno)

-/
.
|
_ enasth
Feoveel
13018
d1g xgoAuwz
co_.uu-m:coU dIN
WAS |'dIH | 8 x:wq.daUWQOJ dId

9JEeM1L08 ISOH NJOM3aN

( 814

sa13
-stieas
a1y
601
Bngaq

d47a
w214
woz l-.-u--.-' <n-=
-llu-l-illlnulu-‘
ma._._,m
la{oarecnntiinaccnnas
‘o d7aN
Shedd
--x-.;@)u-c-!-on-
VaN
‘.liulu
947 |efevecad

ade)
358919y

waISAg SS0J) ¥3E@AD

60499500 s

6@“\
€@®h



Basic services provided by NAM include:

o NAM establishes message paths (logical con~
nections) between an application program and
terminals or between two applications (provided
both parties have the correct network access
security permissions).

e NAM breaks logical connections when asked to by
the application program or the terminal, or when
network conditions make it necessary (for ex-
ample, when a network shutdown occurs),

e After logical connections have been established,
NAM passes incoming messages to the application,
and accepts and forwards outgoing messages from
the application.

e NAM queues incoming messages until the appli-
cation program requests them. This allows the
application to service 1its connections with
terminals and other applications in any desired
order.

e NAM provides the application program with its
own set of protocols, making knowledge of de-
tailed network protocols unnecessary.

e For incoming traffic, NAM allows the application
program to group terminals with similar or re-
lated processing needs.

o NAM queues outgoing messages to regulate data
flow through the network.

e NAM detects inactivity on any interactive data
path and reports the condition to the appli-
cation program.

e NAM resolves resource contention among appli-
cation programs.

An installation option is avallable to log message
traffic for application program debugging. A second
installation option permits the logging of appli-
cation program and message traffic statistics.

NAM consists of four major modules:
Peripheral Interface Program
Network Interface Program

Application Interface Program

Queued Terminal Record Manager

Peripheral Interface Program

The Peripheral Interface Program (PIP) is a periph-
eral processor unit program that interfaces the
central processor executed routines of NAM to the
channel-connected local NPUs.

PIP moves blocks of data between the central memory
buffers of NAM and the NPU and reads and writes disk
files used by batch devices or for file transfer.
PIP also can detect when a local NPU needs initial-
izing. If the NPU cannot start its own loading,
PIP requests the network supervisor to load the
bootstrap program into the NPU.

1-4

Network Interface Program

The Network Interface Program (NIP) executes as a
system control point. NIP coordinates the use of
the communications network by all application pro-
grams, buffers data between the application programs
and the network, and manages the logical connec-
tions.

Each application program can have several connec-
tions; each connection is associated with a terminal
device or with another application program. NIP
translates between network addresses and the more
convenient logical addresses that represent the
connection to the application. NIP also establishes
new connections as they are requested and terminates
connections that are no longer needed or that have
failed.

An application can request NAM to convert the data
on a logical connection from the network format.
Such conversions determine the format and encoding
of characters seen by the application.

Application Interface Program

The Application Interface Program (AIP) is a set of
subprograms and buffers that resides in the appli-
cation program’s field length and provides an
interface to NIP and the network. This manual is
primarily concerned with the use of AIP.

AIP statements are provided so that the application
program can connect to and disconnect from the net-
work. ATP statements also control information
exchange between the application program and NAM
buffers. This information can be data, or it can
be supervisory messages that coordinate the appli-
cation’s execution with events that have occurred
in the network. NAM might pass a supervisory mes-—
sage to inform the application of a new connection
that is requesting service, or that a failure has
occurred. In the same way, the application program
uses supervisory messages to communicate with NAM
and the network elements.

Queued Terminal Record Manager

The Queued Terminal Record Manager (QTRM) is a set
of subprograms that resides in the application pro-
gram’s field length and provides a high level pro-
cedural interface to the network. This package
permits indirect use of a subset of AIP’s features
by programs with unsophisticated communications
requirements. This wutility permits programs to
have a communications interface functionally similar
to their mass storage interface. QTRM is discussed
in section 8 of this book.

NETWORK DEFINITION LANGUAGE
PROCESSOR

Before the network software can route data through
the network and interface to operators for super—
vision, the definition of the network configuation
must first be communicated to the software. The
Network Definition Language (NDL) 1is used to de-
scribe this configuration. The Network Definition
Language processor (NDLP), a batch utility, trans-
lates this configuration and prepares a network
configuration file (NCF) and a local configuration
file (LCF).

60499500 S

J )

J )



SRR

The NCF contains configuration information required
by the network.

The LCF contains host information required by the
Network Validation Facility, such as automatic login
parameters and application information. The LCF
allows the network validation facility to validate
and connect terminals to applications or appli-
cations to applicationms.

The NDL is described in the Network Definition
Language reference manual listed in the preface.

NETWORK SUPERVISOR

The Network Supervisor (NS) executes as a NAM
application. It interfaces between the NPUs and
CCP program files in the host. NS loads an NPU on
request with the appropriate copy of the Communi-
cations Control Program from the host”s network
load file (NLF). NS also saves NPU dumps in the
host”s network dump file (NDF). The load and dump
files are shown in figure 1-2.

The host operator can obtain status information for
NPU loading or dumping operations involving the
copy of NS in the operator”s host. More than one
host can run a copy of NS; so that NS can load NPUs
which are not accessible from a specific host.

COMMUNICATION SUPERVISOR

The Communication Supervisor (CS) program executes
as a NAM application., It can communicate with the
network operators (NOP)., CS allows a network
operator at a terminal (an NPU operator or a diag-
nostic operator [DOP]) or at a host console (a host
operator [HOP]) to obtain and change the status of
network elements under its supervision, to communi-
cate with users at terminals, and to run diagnos-—
tics. CS also responds to requests for mnetwork
configuration data from an NPU.

CS can run in one or more hosts. It also assists
the NPUs by providing them with terminal counfigura-
tion information from the network configuration
file.

NETWORK VALIDATION FACILITY

The Network Validation Facility (NVF) also executes
as a NAM application. It validates the terminal
user’s access to the host and an application pro-
gram”s access to the computer network. NVF also
maintains and reports application status to the
host operator (HOP). As figure 1-2 shows, the NOS
validation file and the 1local configuration file
(LCF) supply validation information to NVF.

NVF verifies such terminal user information as
family name, user name, and password. Before a
terminal user can access an application program,
successful login must occur. When 1login 1is
successfully completed, the Network Validation
Facility causes NAM to notify the application
program identified in the 1login sequence that a
terminal requests connection.

60499500 s

The Network Validation Facility also performs
switching between application programs. NVF causes
terminal disconnection processing when disconnection
is appropriate.

The Network Validation Facility controls application
program and terminal access to the network, as
follows:

e An application program wishing to communicate
with terminals requests access to the network.
This request is passed by NAM to the NVF for
validation. (NVF also performs similar vali-
dation of terminal requests for host access.)
Once NVF has determined that an application
program or terminal is allowed to use the host’s
resources, it makes calls to NAM that create
the logical connection for the transfer of data
between the application program and the network.
NVF also requests NAM to modify or delete these
connections when terminal users request to com-—
municate with other application programs or
leave the network.

e When an application program no longer desires
to use the network, it calls another NAM pro-
cedure. This request also is passed to NVF,
which causes NAM to delete all connections used
for the application program - just as it does
for a terminal or terminal device leaving the
network.

NETWORK UTILITIES

Four utility programs either are included with or
used by network host products:

The Network Dump Analyzer (NDA)

The Load File Generator (LFG)
The Debug Log File Processor (DLFP)

The Hardware Performance Analyzer (HPA)

Network Dump Analyzer

The network dump amalyzer (NDA) produces a formatted
printout from NPU dump files created by the Network
Supervisor. The site analyst can use these dumps
to help analyze CCP software or NPU hardware fail-
ures. The network dump analyzer uses the network
dump file (NDF), which is shown in figure 1-2, as
input.

You can find more information about the NPU dump
analyzer in the NOS Version 2 Analysis Handbook
listed in the preface.

Load File Generator

The load file generator (LFG) reformats CCP program
files produced by the CDC CYBER Cross System”s link
and edit programs into a single random access file
used by the Network Supervisor to load NPUs. This
file is the network load file (NLF), which is one
of the NPU files shown in figure 1-2,

You can find more information about the load file
generator in the NOS Installation Handbook 1listed
in the preface.



Debug Log File Processor

The debug log file processor (DLFP) converts the
debug log file generated by the Application Inter-
face Program into a printable report. The program-
mer can selectively list logged information through
DLFP directives.

You can find more information about the debug log
file processor in section 6 of this manual.

Hardware Performance Analyzer

A fourth utility program, the hardware performance
analyzer (HPA), is part of the NOS operating system.
This utility program produces reports from infor-
mation on the account and error log dayfiles.
Network products software makes statistical, error,
and alarm message entries into these dayfiles.

You can find more information about the hardware
performance analyzer in the HPA reference manual
listed in the preface.

NAM APPLICATION PROGRAMS

The host computer executes CDC—written or site-
written service programs called application programs
that are connected to the network through NAM. An
application program can communicate with other
application programs or terminals connected to the
network.

The CDC-provided NAM application programs are:

Interactive Facility (IAF), which allows you to
create files and to create or execute programs
from a device without using card readers or line
printers. IAF is described in Volumes 1 and 3
of the NOS 2 Reference Set.

Remote Batch Facility (RBF), which permits you
to enter a job file from a remote card reader
and to receive job output at a remote batch
device. RBF is described in the Remote Batch
Facility reference manual.

Transaction Facility (TAF), which permits you
to implement on-line transaction processing
under NOS by writing programs to be used by
terminals. TAF 1is described in the TAF
reference manual.

Terminal Verification Facility (TVF), which
provides tests you can use to verify that an
interactive console is sending and receiving
data correctly. TVF is discussed in the Ter-
minal Interfaces reference manual.

Message Control System (MCS), which allows you
to queue, route, and journal messages between
COBOL programs and terminals. MCS is described
in the Message Control System reference manual.

The queue file transfer facility (QTF), which
allows you to transfer queue files between
hosts. The use of this feature is described in
the NOS Version 1 Reference Set, Volume 3.

Permanent File Transfer Facility (PTF), which
allows you to transfer permanent files between
waits. The use of this feature is documented
in the NOS Version 2 Reference Set, Volume 3.

CDC CYBER CROSS SYSTEM SOFTWARE

The CDC CYBER Cross System software allows you to
install, modify, and maintain the CCP software. It
is composed of these programs:

PASCAL, which 1s a compiler patterned after
ALGOL-60. By using PASCAL, you can define tasks
in statements that are processed by the compiler
to yleld a variable number of actual program
instructions.

Formatter, which reformats PASCAL output into
an object code format compatible with the com—
munications processor macro assembler output

Macro Assembler, which assembles communications
processor macro memory source programs and
produces relocatable binary output. The source
programs are written with symbolic machine,
pseudo, and macro instructioms.

Micro Assembler, which provides the language
needed to write a micro memory program. This

assembler translates symbolic source program
instructions into object machine instructions.

Link Editor, which accepts object program mod-
ules and generates a memory image, suitable for
executing in the 255x NPU.

Autolink utility, which simplifies program
assignment and maximizes the amount of space
assigned to handling buffers.

Expand utility, which includes several hardware
and software variables used to define a CCP load
file for a given NPU configuration.

See the preface for manuals that contain more
information on the CDC CYBER Cross System.

NETWORK PROCESSING UNIT
AND COMMUNICATIONS
CONTROL PROGRAM

This subsection discusses the following network
products, which are part of the communications
network and allow a terminal to access the host
computer over communication lines:

The 255x series network processing unit (NPU),
which connects a host to a terminal

The Communications Control Program (CCP), which
is the software in the NPU

The middle portion of figure 1-2 shows the communi-
cations network.

NETWORK PROCESSING UNIT

An NPU handles front-end or remote data communica-
tions for the CDC CYBER 170 host. The Communica-
tions Control Program resides within the NPU.

To understand CCP, you must have a basic under-
standing of the hardware on which CCP runs. Refer
to the hardware manuals listed in the preface for a
description of the hardware components of the NPU.

60499500 s

J )

J )



COMMUNICATIONS CONTROL PROGRAM
The Communications Control Program, which is the
ggftwate that executes in the 255x NPUs, consists
Base system software
System autostart module program (SAM-P)
Service module (SVM)
Host Interface Program (HIP)
Terminal Interface Programs (TIPs)
Link Interface Program (LIP)
Block Interface Program (BIP)
In-1line and on-line diagnostics
NPU console debugging aids

Performance and statistics programs

Figure 1-3 gshows how the major parts of CCP relate
to each other.

Base System Software

The base system software executes programs, allo-
cates buffers, handles interrupts, and supports
timing and data structures. It includes:

A system monitor, which controls the allocation
of resources for the communications processor

Timing services, which run those programs or
functions that are executed either periodically
or following a specific time lapse for the
processor

A multiplex subsystem, which interfaces with
the 255x multiplexing hardware and performs
character-by—character processing of tasks

Interrupt handler, which controls the transi-
tion of the communications processor between
different program interrupt levels

Initialization, which prepares the network for
on-line operation

Structure services, which build and maintain
internal tables used for routing data

Buffer maintenance, which dynamically allocates
memory in multiple buffer sizes for efficient
memory use

Worklist services, which provide logic for 255x
interprogram communication through the use of
worklists

Standard subroutines, which provide support
routines to handle arithmetic conversion, main-
tain page registers, and do miscellaneous tasks

System Autostart Module

The system autostart module is an optional set of
hardware and software that begins the loading of
other CCP software from a host.

Base System
Software

NPU

B

try
ree
ree
ere
et
et

B

Fey
el
e
e’
ref
el

Host

ofRo}

Cassette
Unit

Terminals

Figure 1-3. The Relationship Between the Parts of the
Communications Control Program

60499500 S



Service Module

The service module (SVM) includes network control
functions and interface programs that provide a
common link to other elements of the communications
network. These programs:

Process commands from the host, called service
messages

Control line and terminal configuration

Report and respond to regulation and supervision
changes

Host Interface Program

The Host Interface Program (HIP) provides the soft-
ware that links the host and a local NPU over a
channel. The HIP drives the CDC CYBER channel
coupler, transfers data, checks for errors, and
monitors for host failure and recovery.

Terminal Interface Program

The Terminal Interface Program (TIP) is a modular
program that provides protocol support and the con-
trol needed to interchange data between a terminal
and other elements of CCP.

The TIP transforms application program data between
its virtual terminal format and the format required
by the transmission protocol and physical charae-
teristics of the real terminals. CDC provides TIPs
for these transmission protocols:

e Asynchronous communication lines

e Synchronous communication lines for mode 4
terminals

e Bisynchronous communication lines for terminals
emulating the IBM HASP protocol

e X.25 packet and 1link level interfaces to a
packet—switching network (PSN) via high-level
data link control (HDLC) synchronous lines

e Bisynchronous communications lines for terminals
emulating the IBM 2780/3780 protocol

e 3270 Bisynchronous communications (BSC) oper-—
ating as multipoint data links

Eighteen classes of real terminals using these
protocols are supported. Each terminal class has
certain physical characteristics associated with
it. These associated characteristics are determined
by a terminal chosen as the archetype for the class,
but can be changed by either the application pro-
gram or the terminal operator. The terminal class
initially used for a given real terminal is deter-
mined by the way the terminal is configured in the
network configuration file; the network configura-
tion file can also be used to change the character-—
istics initially associated with the terminal from
those of the archetype terminal. The association
of characteristics with a terminal is referred to
in networks documentation as terminal definition or
TERMDEF.

The terminal classes and archetype terminals for
each class are listed at the end of this section.

1-8

This 1ist includes only elements supported by re-—
leased versions of standard CDC network software.

Sites can add site—written Terminal Interface Pro-
grams to extend CDC support to additional transmis-—
sion protocols and terminal classes. This manual
is concerned only with the transmission protocols
and terminal classes supported by CDC. Information
in this manual is valid for sites using extensions
to CCP only to the extent that those modifications
emulate the CDC-supported release version of CCP.

Link Interface Program

The Link Interface Program (LIP) transfers infor-
mation over a trunk between NPUs.

Block Interface Program

The Block Interface Program (BIP) routes blocks of
data, processes service messages, and processes the
network block protocol.

In-Line and On-Line Diagnostics

In-line and on-line diagnostics, which are produced
for the NPU, enable a NOP to isolate communications
line problems. Alarm, CE error, and statistics
service messages are the types of in-line diag-
nostics. In-line diagnostics are generated auto-
matically. On-line diagnostics must be requested
from the NOP console.

NPU Condole Debugging Aids

Debug aids provide test utilities for debugging
programs, taking memory snapshots, and dumping the
NPU during CCP program development or system
failures.

Performance and Statistics Programs

These programs gather statistics on NPU and indi-
vidual line performance, and periodically dispatch
theses statistics to the Communications Supervisor.

THE PACKET SWITCHING
NETWORK (PSN)

The packet switching network (PSN) is a value added
network you may subscribe to either from a CDC or a
foreign vendor who supports the X.25 CCITT recom-—
mendation (1980). Such networks are alternately
referred to as public data networks (PDNs).

NAM CONCEPTS

NAM is used by both application programs and por-
tions of the network software. The features of NAM
permit programs to be written for the following
types of communication applicatioms:

e Time-sharing communication services. A single
program provides this service when it interacts
with each terminal during a given time period.
The CDC-written Interactive Facility is an
example of this type of application program.

60499500 s

J )

D)



o Transaction communication services. A single
program provides this service when it creates a
multi-threading interface for many terminals
using many task routines. Each terminal can
interact with many tasks or programs through
queues maintained by the program providing the
transaction service. The CDC~written Trans—
action Facility is an example of this type of
application program.

o Teleprocessing communication services., A
single program provides this service when it
interacts with many terminals to perform a
single teleprocegsing task for each. No task
queues are required. The CDC-written Terminal
Verification Facility is an example of this
type of application program.

VIRTUAL TERMINALS

The virtual terminal concept simplifies the proce-
dure an application program must perform to service
a terminal.

Device types are used in a request for commection
from a terminal to an application (see section 3
for a discussion of connection processing). Device
types currently defined are listed im table 1-1.

TABLE 1-1. DEVICE TYPES

Device Type Terminal Device Defined
0 Console (interactive device)
1f Card reader (passive device)
ZT Line printer, impact printer
or nonimpact printer (passive
device)
3T ' Card punch (passive device)
kT Plotter (passive device)
5 Another application program in
the same host
6 Another application program in
a different host
7 thru 11 Reserved for CBC use
12 Site-defined device
TReserved for RBF use.

Every terminal device 1is either an interactive
device (capable of both input and output) or a
batch device (capable of either input or output).
Because this 1s true of all physical terminals,
certain functions of each terminal device type can
be abstracted and treated in a similar manner for
all terminals with devices of that type. These
common functions constitute a virtual terminal.
All references to terminals in this manual are to
virtual terminals, unless otherwise specified.

60499500 R

The interactive virtual terminal concept makes it
unnecessary for an application programmer to provide
separate procedures to support differing implemen-—
tations of ome function on a variety of real ter-
minals,

Any console or site-defined device (any device with
a device type of 0 or 12) can be serviced as an
interactive virtual terminal. An  interactive
virtual terminal has an input and output device
which sends and receives logical 1lines of ASCII
characters. These logical 1lines are transformed
into or from physical lines of characters of the
code set appropriate for the real terminal. This
transformation is performed for the application
program by the Communications Control Program of
the network processing unit servicing the real
terminal.

Real terminals can perform a wide variety of
functions, but not all terminals can perform the
same functions. The functions performed by an
interactive virtual terminal are restricted to the
subset of terminal functions that is common to all
real interactive terminals. This restriction
ensures efficient virtual terminal operation when
the corresponding real terminal has the fewest
capabilities.

When the application program must support functions
for a real terminal that are not available through
the interactive virtual terminal interface, the
application program can:

¢ Embed control characters in the output text or
scan for control characters in the input text.
The application program must allow for control
characters significant to or transformed by the
network software in this instance.

e Transfer data to and from the terminal in
transparent mode. In transparent mode, all
transformations are inhibited and the appli-
cation program has direct access to and re-
sponsibility for support of all real terminal
functions. Transparent mode can be selected
separately for input and output to the same
virtual terminal.

Control characters and transparent mode are discus-
sed in detail in sectiom 2,

Logical lines that exceed the physical line lemgth
of the real terminal are folded into two or more
physical 1lines on output to the terminal. The
spacing of output lines can also be controlled with
optional format effectors, described in section 2.
Optional paging of output is possible, to avoid
overwriting previous output until the previous out-
put is acknowledged by the terminal operator.

LOGICAL CONNECTIONS

Just as the virtual terminal concept simplifies
terminal servicing, the logical connection concept
simplifies terminal addressing. In the network,
when data passes between a virtual terminal and an
application program, a message path or logical con-~
nection exists between the two. Conceptually, this
is equivalent to the connection between two tele-
phones used in a conversation. After a real termi-
nal has gained network access, NAM logically con-
nects each virtual terminal portion of it to one,



and only one, application program at a time, al-
though the virtual terminal can be switched from
application to application as needed.

An application program, however, can be connected
simultaneously to many virtual terminals. It is
connected to each one by a separate and distinct
logical connection. The application program ident-
ifies a particular terminal by specifying the
logical commection between itself and the terminal.
This is possible because a one-to-one association
exists between the connection and the terminal.
From the application programmer’s point of view, it
is convenient to talk of connection x (literally,
message path x) when it would be more precise to
say the virtual terminal at the other end of con-
nection x.

An application program can also form a logical
connection with one or more other applications and,
in fact, can have several conmections with another
application program simultaneously, using separate
and distinct logical connections. A logical con-
nection can, therefore, refer to either a terminal
or to another application. This manual uses the
term connection to cover both possibilities.
Typical logical connections in the network are shown
in figure 1-4.

OWNING CONSOLES

Passive devices are serviced on separate logical
connections from their corresponding interactive

consoles. Because of this, a mechanism is needed
to assoclate a passive device with the console that
enters controlling information for it. The mecha-
nism used is the owning console concept.

When a passive device is defined in the network
configuration file, an interactive console 1is
identified as the owning console of the passive
device. The method used identifies the console by
its terminal name, as defined for the console in
the network configuration file. An application
program receives the name of the owning comsole as
a parameter in the passive device’s connection
request, along with the terminal name of the pas-—
sive device. The application program also receives
the terminal name of the console as part of the
console’s connection request, and can therefore
associate the two devices.

NETWORK ACCESS METHOD
OPERATION

Figure 1-5 shows the components of NAM as it is
discussed in this manual. All of the area enclosed
by the dotted lines comprises the Network Access
Method.

As NAM receives data from the network terminals or
application programs, the data is buffered in NAM's
buffers. (See section 4.) Application programs
use calls to AIP procedures to request and transmit
this data.

Host Computer 1 Host Computer 2
Application Application Application
Program Program Program
A B C
connection connection connection connection connection connection
1 3 1
connection
Network
Access
Network Access Method Method
bata Communications
Network
Device | Device
a b
Terminal Terminal

1-10

Figure 1-4.

Typical Connect

ions in the Network

60499500 R

J

J )



—— — — —— — ——— —— —— — o —— ——————— ——
] I
Network | Mpplication 1
Load and | Network | Interface 1
busp supervisor! | Progran [
I i
R | I
| |
v 1 I
Network ] Meplication 1
Configuration | Ctsmunicationsl Interface |
File Supervisor 1 Program i
1 1
| I
1 )
Permanent I Application !
File fe—s! Interactive | Interface I
System Facilityl | Program 1
' |
|
! I
! |
Operating Remote iAapLication |
System Queue Batch Interface 1
and Permenent Facilityf ! Program |
Files +
\\~§ 1 Network Peripheral I weu
Se=a le—s] Interface Interface je—yf—>s
~
b T Program Program ] Network
| ~\§§ >4 | and
} “~~ - Terminals
NOS [ Application
NCTFid Fite Transaction | Interface |
and Task Facilityl | Program I
Database ) |
! I
! |
! I
NOS VALIDUs Network 'Aopliction Network ]
and Local Validation 1 Inter face Access 1
Configuration facilityt | Program Method 1
Fites }
! |
! 1
I
1 !
Application User-written |Application |
Program Application | Interface I
Files Prograa i Program 1
T |
| |
1 |
Terminal | Aoplication ]
Verification | Interface ]
Facility 1 Program |
i |
} 1
cosoL S Message | AopLication |
Program Control ] Interface ]
Message Systeal | Prograa i
Queues 1 |
i |
' I
PLATO 'Applicltion 1
PLATO Network 1 Interface |
Lessons Interface ! Program |
]
| |
User-written | Queved 1 Application :
Application [ Terminal | Interface
Program | Record ] Program |
| Manager |
1

1'Prhn’legm:l application programs;

see Section 6

60499500 s

Figure 1-5.

Network Access Method Components

1-11




Inbound data from an interactive virtual terminal
or another application is placed, unmodified, in
NIP“s central memory buffers by PIP. These buffers
form an ioput queue associated with the logical
connection that originated the data. Data 1is
removed from this input queue when application pro-
gram AIP statements request input from the logical
connection. The data can be translated and con-
verted by NIP from ASCII to display code if the
application program has requested such conversion;
transparent data, as described in section 2, is
neither edited nor translated. NIP places the
translated or transparent data in a data buffer
within the application program”s field 1length.
This data buffer is established and maintained by
the application program.

Output for an interactive virtual terminal or
another application is handled in the reverse
manner. The application program calls an AIP pro-
cedure to send data on a logical connection. The
data is transferred from the program”s field length
to an output queue within NIP“s field length. From
there, it is placed in one of PIP“s output buffers,
according to its priority as a supervisory message,
low priority data, or high priority data, and to
its destination. Code conversion and translationm,
if necessary, is done by PIP.

The files shown in figure 1-5 are maintained by
code independent of NAM., Named files in the figure
are discussed briefly in various portions of this
manual.

.

APPLICATION PROGRAM CONCEPTS

NAM requires an application program to reside at a
separate operating system control point. This
program contains calls to the AIP routines listed
in appendix D and described in sections 5 and 7.
These calls can be direct, or indirect through the
Queued Terminal Record Manager.

An application program begins accessing the network
by calling NETON. It transmits data through the
network by calling NETPUT or NETPUTF. It receives
data through the network by calling NETGET, NETGETL,
NETGETF, or NEIGIFL.

An application program must contain buffers for
transmitted or received data. These buffers can be
either unified or fragmented central memory areas.
One buffer can be used for all logical connections,
or many unified buffers or fragments of a buffer
can be used for each logical conmnection.

An application program sends instructions to the
network software and receives operational infor-
mation from the network software through supervisory
messages, as described in section 3. It mnust
contain procedures to formulate or process these
messages.

An application program can contain procedures that
optimize its use of central memory and the control
processor. AIP routines can make the program avail-

able for rollout when the program has no data to
process (NETWAIT), or allow the program to perform
non network processing while waiting for completion
of a network processing task (NETSETP and NETCHEK).

An application program can compile statistics about
its functioning (NETSTC) that can be examined for
application tuning. It can also cause trace dumps
of its network traffic (NEIDBG). The trace file
generated can be dynamically disposed for storage,
processing (NETREL), and application debugging.

An application program must contain a call to NETOFF
to terminate its access to the network. Application
programs using the optional code controlled by
NETDBG or NEISTC must also dispose of the local
files created by this code. (See section 6.)

CONNECTION PROCESSING FLOW

The functions performed by NAM and other software
described previously in this section can best be
summarized by tracing the job processing involved
for a single terminal and a single site-written
application program. Figure 1-6 is a generalized
version of this processing flow. Time elapses in
the figure from top to bottom. Program processing
beging from the left, terminal actions begin from
the right. Dotted 1lines separate functions for
each entity. When the boxes formed by solid or
dotted 1lines are aligned, the functions of the
entities involved are related. Actions for a batch
device (a passive device) differ from those shown
for an interactive terminal; the first two and last
three terminal actions are performed internally by
the Network Validation Facility for batch devices
based upon login dInformation supplied for the
device”s owning console.

SUPPORTED TERMINALS

The network software, and therefore an applicatiom
program, can service any real terminal compatible
with one of the terminal classes listed in table
1-2. Each terminal class is identified by its
terminal class number, described in section 3 under
Managing Logical Connections. All terminal classes
are supported by the interactive virtual terminal
interface. When a mnemonic appears in table 1-2,
it indicates the archetype terminal supported for
the given terminal class and device type.

The archetype mnemonics are not used by the appli-
cation program in any form; the archetypes are
described in more detail in the Network Definition
Language reference manual, where they are identified
by the same mnemonics. (See the preface.)

Site-modified versions of the network software can
service terminals in terminal classes other than
those listed. This manual applies only to support
of the terminal classes defined by CDC. Content of
this manual can be valid for site—defined terminal
classes; CDC is not responsible for deviations from
this manual attributable to support of site—defined
terminal classes.

60499500 s

J

JJ



M0 BuLssSad0ud wedboud uorieorLiddy jesrdAp

*9-1 3JnbBLy

1Soy woudy 3)L3Aep
lt—] 1eULWID) |fef— sjuLud
430-607 Jo 333UU03sLg W33sAs
——— — —— buLledado
suesboud |, - pue
uoLiedLdde jeg— —vq IS0y woJi leg sajeuLwsay
Yaitms UOoL333Uu0d wesbodd
CO X R Y 'mm.v LO$ o S = - e e o - — e - — u—
jeuLwaay
ananb Juo weysbosd
yoiimg uotieorydde YJOM3BU wWOJy
weJbo4d ] 323uu0dsLq [ ] 393UU0IS LQ
uot jeatjdde
ELF e = Sm S oEs EEn e S SED ahis == aEn e s
328uuodstq jeuLwsay jeuLwsay
398UU0IS LQ PEETTITLELFR)
B ] [ -
t >
ndino swedsboud
aAL3ORIAIU] ] i uoyjesydde [ »
Aq paJisap
- — v ——— 4L TIJSY o o e — e eljep s$sad0ud
woJy ndut | —]
ndut » » auLidn jo -
ETYSE -NELT) uoLSJdAUO)
§ D S AN SR Smmn S N SN SEE oS SEED E—— S L X X N K ¥ ] [T NS GEin S S = e
wesboad < < 3 sabessau
uoL3iedLjdde AJosiLAdadns
eiep papos 03 westosd uoty eLA 3sanbay
-Ae1dsLp puas JjeuLwid} feg—— -edL1dde o3 uoL 393uUU0d
ue 6oud sueJsboad 3193Uu0) 1euLwJay $5323044g
uolL jeaLjdde uoLiedsLyjdde Yo3iLmg
u.mw_.-uwx F_. 1108V - —— e e e o - - e e — - m— — . e =
03 andino *
— ——J auLiumop jo
e uoLSJIaAUOY) ssadoe aJemyjos
-— < < Jasn Jomiau
uL-607 ajepLiep 1 03 jJ4oM3au
NdN (3isey) e ———— v — — ———— 0} 3}98uuo)
NdN UL puad-juods Jo4 ssd%%e weJdbBouad adejdauL
IIJ0SY wody pue JOALJP 3INdIno uotLiestjdde —> juiod >
03} UOLSJIAUO) /ancuL se s3oy ajepriep [ 1043u0d4ajur [E—
leutusal wesboud dId dIN AN div weJBoug
a3esdajul uoLjeaLyddy
jeuLwaay

1-13

60499500 s



TABLE 1-2, SUPPORTED TERMINAL CLASSES

Device and Archetype Terminal MnemonicT
Terminal
Line Protocol Class
a Console Card Reader Line Printer Card Punch Plotter
Asynchronous 1 M33
or X.25 PADTT
2 713
3 721
LN 2741
5 M40
6 H2000
7 x3.648
8 T4014
HASP 9 HASP HASP HASP HASP HASP
BisynchronousiT (post—print) (post-print) (post-print) (post—print) (post-print)
14 HASP HASP HASP HASP HASP
(pre-print) (pre-print) (pre-print) (pre-print) (pre-print)
Mode 4 10 200UT 200UT 200UT
Synchronous
11 714X 714X
12 711
13 714 714
15 734 200UT 200UT
2780/3780 16 2780 2780 2780 2780
Bisynchronous
17 3780 3780 3780 3780
3270 18 3270 3270
Bisynchronous
TA blank indicates the device type is not supported for the terminal class.
7TPoint-to-poiut configurations only. Multidrop configurations are not supported.
Hitx.25 PAD does mnot support terminal class 4.
STerminal such as VT100 that follows ANSI standard X3.64.

1-14 60499500 S

J

J )



INFORMATION PROTOCOLS 2

m—“__

This section describes the protocols governing
information exchanged for communication between the
Network Access Method (NAM) and each application
program, and between application programs and their
connections. The first portion of this section
defines the terms and concepts needed to understand
the description of information content in the
remainder of this section.

You should remember that parts of the network soft-
ware are written as application programs and also
use these protocols. Some of the features and
options discussed in this and subsequent sections,
therefore, do not necessarily apply to site-written
application programs; such information is indicated
where it is described.

INFORMATION FLOW

Information flow in the network is defined from the
viewpoint of the host computer. Information coming
to the host is said to be traveling upline; infor-
mation moving away from the host is said to be
traveling downline.

Information flow within a host computer is defined
from the viewpoint of a network application program,
Information coming to the application is said to be
traveling upline; information moving away from the
application is said to be traveling downline.

STRUCTURE PROTOCOLS

The network software uses structure protocols of
two types:

A logical protocol based on the concept of a
message

A physical protocol based on various definitions
of a block of data

The conditions that create a logical message and the
conventions governing the subdivision of messages
are influenced by the physical structure protocols
the network uses. The events involved in actually
creating a message are described later in this
section under the headings Interactive Terminal
Input Concepts and Interactive Terminal Output
Concepts.

PHYSICAL PROTOCOLS AND NETWORK
BLOCKS

Information exchanged with the network is either:
Data of no significance to the network software

Control information of significance only to the
network software

60499500 s

Exchanges of control information and data between
application programs, the network software, and a
terminal user occur in logical messages comprising
one or more physical network blocks. A network
block is a physical subdivision of a logical entity.

A network block is a grouping of information with
known and controllable boundary conditions, such as
length, completeness of the unit of communication,
and so forth. Other network documentation refers
to network blocks as network data blocks; this man-
ual uses the term data block only when referring to
network blocks that do not contain control infor-—
mation.

Information exchanges between network processing
units and host computers or between application
programs use this physical structure protocol.
Such exchanges occur in single network blocks.

Information exchanges between network processing
units use a different physical structure protocol.
Such exchanges occur in sets of character and con-
trol bytes called frames. The relationship of a
frame to a network block is not significant to am
application programmer; frames are not discussed in
this section.

Information exchanges between network processing
units and terminal devices use a third physical
structure protocol. Such exchanges occur in sets
of character and control bytes called transmission
blocks,

Information exchanged between a network processing
unit and a public data network use packets as the
physical structure protocol. When the application
communicates with a terminal or other CDC host
applications, the relationship of a packet to a
network block is not significant to an application
programmer. Therefore, this relationship is not
discussed in this section.

However, the relationship of a packet to a network
block may be significant if the application is com-
municating with a foreign host”s application. The
mapping of network blocks into the X.25 protocol is
discussed in the Communications Control Program
Internal Maintenance Specifications.

LOGICAL PROTOCOL AND PHYSICAL
BLOCKS

Upline and downline information within the host and
NPUs is always grouped into physical network blocks.
Network data blocks are grouped into logical mes-
sages. Messages exchanged between an NPU and a
device can also be grouped into physical trans-
mission blocks of one or more logical messages.
Figure 2-1 shows these concepts.



Physical Network Blocks

Network Network
Block Block

Network ' Network
Block Block

=100 characters —= -« 68 characters-»

Logical Messages

-«—100 characters —s —9 characters—

~

— Message 1 Message 2 ——» —-— Message 3—»
Network Network Network » Network
Block Block Block Block

—«—100 characters — --68 characters—»

Terminal Transmission Block (Block Mode Operation Input)

«-100 characters —m -9 characters—s-

Transmission Block -

Message 1 Message 2 —= --— Message 3—»
Network Network Network Network
Block Block Block Block

-—100 characters—= - 68 characters—

-—100 characters — -9 characters—=

Figure 2-1. Physical and Logical Information Structures

Network blocks are restructured into other types of
blocks at points of entrance and exit from the net-
work processing units. Figure 2-2 shows these
points as circles.

Network Data Blocks

A network data block is a collection of character
bytes, analogous to a clause in English. It is a
partially independent unit of information and might
need to be used with other blocks to form a message.

A network data block can contain all or part of a
message. Whether a message must be divided into
several network data blocks is determined by the
size of a network data block.

Upline and Downline Block Sizes

CDC-defined interactive devices have network data
block sizes that are multiples of 100 character
bytes for upline data and of wvarying sizes for
downline data. The last block of an upline message
need not contain a multiple of 100 characters.

Application—-to-application connections have upline
and downline blocks of varying sizes. The upline
block size seen by one application is the downline
block size used by the other application.

CDC-defined batch devices have network data block
sizes that are multiples of 64 central memory

words. Each such block is one mass storage physi-
cal record unit (PRU) of a file.

The network administrator establishes the appro-
priate size of wupline and downline network data
blocks for each terminal device or application-to-
application connection when the network configura-
tion file 1s created. Sizes are usually chosen to
fit a single message into a single network data
block, or to optimize use of available network
storage, or to satisfy some other administrative
criterion. The administrator also establishes the
correct size for a terminal transmission block in
the network configuration file.

The initial size of an upline network data block is
established by the site administrator (using the
UBZ parameter of an NDL statement) when he or she
defines the device or application connection that

60499500 R

JJ

J )



HOST
NETWORK BLOCKS
FRONT~-END
NPU
NETWORK BLOCKS
.\
\J
TRUNK —»- FRAMES
S
REMOTE \J
NPU
NETWORK BLOCKS
N
\J/
COMMUNICATION TERMINAL
LINE —— TRANSMISSION
BLOCKS
OR
X.25 PROTOCOL
PACKETS
TERMINAL
DEVICE

Figure 2-2. Block Reassembly Points

produces the block. Once a size is established for
a connection, that size determines the maximum num-
ber of characters an application program can receive
as a single network data block. When an upline
message is too long to fit into a single network
data block, the NPU divides it into as many network
data blocks as necessary before delivery to the
application program.

Application-to-application data is not split into
smaller blocks before upline delivery if the data
crosses a trunk line between two host nodes or if
it is passed between two programs in the same host.
Such data does not pass through the NPU software
that prepares all other upline blocks.

The initial size of a downline network data block
is established by the site administrator (using the
DBZ parameter of an NDL statement) when he or she
defines the device or application connection that
receives the block. The established size is a
recommended maximum for the number of characters an

60499500 R

application program should send in a single network
block. The actual maximum size of a downline net~-
work block is chosen by the application program
sending the block. NAM imposes an absolute maximum
size, however; this absolute maximum 1is described
later in this section under the heading Block Buffer
Areas.

The maximum length used for each network data block
to or from a device can be independent of the ter-
minal’s transmission block size. For example, a
mode 4 console cannot accept a transmission block
containing more than a specified number of char-
acters. An application program could divide a mul-
tiple line display transmitted to the console of
such a terminal into network blocks smaller than
the buffer space of the specific terminal. However,
the application program does not need to divide its
network blocks. The network software reconstructs
any of the program’s network data blocks longer
than the terminal’s buffer space into several ter-
minal transmission blocks of the correct size.

An application program is advised of the upline and
downline network data block sizes and terminal
transmission block size defined when logical con-
nection to a device occurs. Your application pro-
gram can change the established upline block size
using control information called a field number/
field value pair; this process is described in sec-
tion 3. Your application program cannot change the
established downline block size but can ignore it.
Ignoring a recommended value can cause resource
problems for the network software, particularly in
the NPUs.

The upline block size is enforced by the network
software, which subdivides terminal transmission
blocks input from a device into network data blocks
of that size or smaller. The upline block size
defines the largest block that NAM will deliver to
the application program from a device.

The downline block sizes defined are advisory
values. That is, an application program can accept
the size specified for a given logical comnection
when the connection is made, or ignore that speci-
fication and choose its own value for maximum block
size. If an application program transmits blocks
larger than the downline block size, the network
software does not subdivide them until it creates
transmission blocks for the terminal.

The downline terminal transmission block size is
also enforced by the network software. Your appli-
cation program can change the established trans-
mission block size using a field number/field value
pair, as described in section 3.

Application programs should use the downline block
sizes defined whenever possible. If the size of an
upline or downline network data block is not appro-
priate for the type of data being exchanged with a
connection, device, you should discuss the situation
with the network administrator who configures the
devices being serviced. The Network Definition
Language reference manual 1listed in the preface
contains guidelines for choosing upline and downline
network data block sizes and for selecting terminal
transmission block sizes.

2-3



Block Limits

Temporary network block storage (queuing) occurs
for upline and downline traffic at several points
in the network. The network adminstrator controls
the storage space required by controlling the net-
work data block size and the number of blocks queued
in each direction,

The number of blocks queued depends on several
Network Definition Language (NDL) statement param-
eters. One of those parameters, the ABL parameter,
establishes the application block limit. Another
NDL statement parameter, the UBL parameter, estab-
lishes the upline block limit. The upline block
limit determines the number of upline blocks NAM
queues for your program before rejecting further
input.

The upline block limit can be changed by the appli-
cation program, using control information called a
field number/field value pair. This process is
described in sectiom 3.

The application block limit is another device or
application connection configuration parameter
received by an application program (as the abl
field value) when logical connection occurs. Your
application program cannot send more than that
number of downline blocks for queuing within the
network. The use of the application block limit is
described in section 3 as part of the data flow
control description.

Transmission Blocks

Terminals send or receive data in physical groupings
of character bytes; these groupings are called
transmission blocks. The size of a downline trans-
mission block for a specific device is also estab-
lished by the network administrator (using the XBZ
parameter of an NDL statement). The value used
might be dictated by hardware requirements.

Transmission blocks exchanged with X.25 devices are
called packets and have different size and protocol
content requirements than transmission blocks
exchanged directly with a terminal. The network
administrator can control some of the character-
istics of packets.

During upline transmissions from a device, the NPU
reassembles the terminal”s transmission block into
network blocks. Each transmission block from a
CDC-defined batch device can contain part of a
single message, all of a single message, or several
messages. Each transmission block from a CDC-
defined console device can contain all of a single
message, or several messages.

During downline transmissions, the NPU resassembles
network blocks into terminal transmission blocks.
This conversion is done so that the application
program need not be concerned that output is
delivered in appropriately sized transmission
blocks when the terminal cannot process blocks
larger than a maximum size, Each transmission
block can contain part of a single message or all
of a single message; downline transmission blocks
do not contain more than one message.

2-4

INTERACTIVE TERMINAL INPUT
CONCEPTS

An interactive device can send or receive data in
two modes:

Normalized mode
Transparent mode

The significance of these data modes is described
later in this section under Interactive Virtual
Terminal Data. The following discussion does not
apply to transparent mode data.

In normalized mode, an interactive device transmits
logical lines of data. Each logical line is analo-
gous to an English sentence. It is a complete unit
of information.

The device can transmit these lines one at a time,
or in sets. It therefore can use one of two pos—-
sible transmission modes.

If the device can transmit only one character or
one logical line in each transmission block, it is
operating in line mode. If the device can transmit
more than one logical line in a tramsmission block,
it is operating in block mode.

X.25 devices (terminal classes 1 through 3 and 5
through 8), HASP and 2780/3780 devices (terminal
classes 9, 14, 16, 17, and 18) always operate in
line mode. Mode 4 devices (terminal classes 10
through 13 and 15) always operate in block mode.
Only devices in terminal classes 1, 2, and 5
through 8 can operate in both modes.

Line Mode Operation

From a terminal user”s viewpoint, transmitting a
single logical line at a time is a buffered linme
mode form of input, Buffered line mode allows the
user to select either character-by-character or
line-by-line transmission (some devices have
switches to select either option) without distinc-
tion. Each logical line 1is terminated by an end-
of-line indicator; this indicator might also trans—
mit the line from the terminal, if the terminal
buffers lines of input, Each logical line becomes
a separate network message when the NPU receives it.

When the NPU is told that an interactive device is
operating in line mode, the NPU performs line turn-
around for it, When a message is sent upline in
this mode, the NPU begins to send any downline data
available for the device. That 1is, output is
allowed after each logical line of input. (Refer
to the KB option for the IN command, described in
section 3.)

Block- Mode Operation

Some devices can transmit many logical lines in a
single transmission block. (The terminal wuser
sometimes can select or override this condition with
a BLOCK or BATCH mode switch on the device.) Such
devices are called block mode terminals. Mode 4
devices, for example, are always treated as block
mode devices.

60499500 S

J )

J )



Block mode terminals group logical 1lines in the
terminal wuntil the transmission key is pressed;
these groups reach the network software as a single
transmission block. The network software forwards
each message to the application program as a sepa-
rate transmission; the effect resembles typeahead
entries from line mode terminals.

Each logical 1line within the input transmission
block ends with an end-of-line indicator. Each
transmission block is terminated by an end-of=-block
indicator.

Whether each logical line in a transmission block
becomes a separate message or each transmission
block becomes a single message is initially deter-
mined by the network administrator through the
device definition in the network configuration
file. Your application program or the terminal
user can change that mode (refer to the EL and EB
options of the EB command, described in section 3).

When the NPU is told an interactive device is oper-
ating in block mode, the NPU does not perform line
turnaround for it until all of its current trans-
mission block is received. When the terminal is
serviced in this mode, the NPU holds all downline
data available for the device until it detects the
end-of-block indicator. That is, output is allowed
after each logical line of input only if each logi-
cal line of input is transmitted in a separate
block. (Refer to the BK and PT options for the IN
command, described in section 3.)

A terminal might have a block transmission key that
does not generate the end-of-block indicator. When
the block transmission key generates the end-of-line
indicator, the terminal is operating in line mode,
and logical limes are transmitted from the terminal
as separate messages.

When the transmission key does not generate either
the currently defined end-of-line indicator or the
currently defined end-of-block indicator, the ter-
minal user must be aware of the distinction. If
possible, the user should change the end-of-block
indicator to the code actually sent by the key. If
not possible, if the code sent by the key cannot be
determined, or if the key does not generate a code,
then the user must enter an indicator as the last
data character before pressing the transmission
key. These possible conditions exist:

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-line indicator, a message is generated. This
result is the same as if the device was opera-
ting in line mode and the key generating an
end-of-1ine indicator had been pressed, or as
if the key generating an end-of-block indicator
had been pressed.

If the transmission key is pressed immediately
after pressing the key that generates an end-
of-block indicator, a message 1is generated.
This result is the same as if the device was
operating in line mode and the key generating
an end-of-line indicator had been pressed, or
as if the transmission key had generated an
end-of-block indicator.

60499500 R

If the transmission key is pressed without
pressing an end-of-line key or end-of-block key
as the last prior activity, an incomplete mes-
sage exists. The Terminal Interface Program
(TIP) generates an upline network data block if
enough information was received. If a downline
block is available for the device, the data
remains queued while the TIP waits for comple-
tion of the input transmission block. This
situation exists until the terminal user enters
more data, ending with either an end-of-line or
an end-of-block indicator.

Physical and Logical Lines

A logical line of input can contain one or more
physical lines; a physical line ends when vertical
repositioning of the cursor or carriage occurs. If
the device recognizes a linefeed operation distinct
from a carriage return operation, a physical line
ends when a linefeed is entered. If no distinction
exists between vertical and horizontal reposition—-
ing, a physical line is identical to a logical line.

A physical line of input is relevant to the network
software only when a backspace character is proc-
essed. Terminal users cannot backspace across
physical line boundaries to delete characters in
physical lines other than the current one.

A logical line of input always ends when an inter=—
active device transmits an end-of-line or end-of-
block indicator. An upline message is normally
transmitted to the host as soon as a logical line
ends.

End-of-Line Indicators

The end-of-line indicator is initially established
by the network administrator when he or she defines
the device in the network configuration file. The
indicator is either a specific code, a code
sequence, or a specific condition associated with
use of a certain key or set of keys by the terminal
operator. The default keys for generating an end-
of-line indicator are shown in table 2-l.

Your application program or the terminal user can
change this indicator (refer to the EL command
options, described in section 3). The NPU normally
discards any end-of-line indicator character code
when it detects the end of a logical line.

Multiple Logical Lines in One Message

For upline data from an interactive device, the
network administrator can configure the device so
that the NPU ignores the character or event that
normally causes it to transmit a message as soon as
a logical line ends. Instead, he or she can make
the NPU use a different character or event to trig-
ger transmission to the host. Your application
program or the terminal user can also make this
change (refer to the EB option of the EL command,
described in section 3).



TABLE 2-1, DEFAULT MESSAGE DELIMITER AND TRANSMISSION KEYS
Character or
Tg;:t:al ;:zgiﬁZEE End-of-Line Key Tra;i::sg:gz Key Traﬁéggis?ggexey
_ e
#

1 Teletype Model 30 RETURN RETURN CTRL and D

series
2 c¢bc 713, 751, 752, RETURN or RETURN or SEND or

756 CARRIAGE RETURN CARRIAGE RETURN CONTROL and D
3 ¢pC 721 NEXT NEXT NEXT
4 IBM 2741 RETURN RETURN None
5 Teletype Model 40-2 RETURN RETURN SEND
6 Hazeltine 2000 CR CR SHIFT and XMIT

or CTRL and D
7 VT 100 CARRIAGE CARRIAGE CTRL and D
RETURN RETURN

8 Tektronix 4014 RETURN RETURN CTRL and D
1 thru 3 X.25 packet assembly/ Same as above Packet Packet
5 thru 8 disassembly (PAD) transmission transmission

console device key key
9 HASP (postprint) Variable Variable None
10 CDC 200 User Terminal RETURN None SEND
11 CDC 714-30 NEW LINE None ETX
12 CDC 711 NEW LINE None ETX
13 CDC 714-10/20 NEW LINE None ETX
14 HASP (preprint) Variable Variable None
15 CDC 734 NEW LINE None SEND
16 IBM 2780 End of card End of card None
17 IBM 3780 End of card End of card None
18 IBM 3270 ENTER None None
19 thru Reserved for CDC use
28
g? thru Site-defined Unknown Unknown Unknown

This option allows the terminal user to pack many
logical lines into one upline network block. Each
line includes the end-of-line indicator as a data

character that terminates it.
because the host

line wmode,

message.

message is many logical lines.

receives

This is a form of
only one
From the terminal user”s viewpoint, one

End-of-Block Indicators

The end-of-block indicator is initially established
for the device by the network administrator when he

2-6

or she defines the device in the network configura-
tion file. The indicator is either a specific code,
a code sequence, or a specific condition associated
with use of a certain key or set of keys by the
terminal operator.

The default keys for generating an end-of-block
indicator are shown in table 2-1. 1In X.25 packet-
switching networks, the packet transmission condi-
tion is always the end-of-block indicator.

When the device is not operating in block mode, the
end-of-block indicator has the same effect as an
end-of-1line indicator.

60499500 S

J D

) )



Your application program or the terminal user can
change the end-of-block indicator (refer to the EB
command, described in section 3). This indicator
normally is discarded when the last message from the
device 1is sent upline.

INTERACTIVE TERMINAL OUTPUT
CONCEPTS

A downline message can contain no logical lines (an
empty block or a transparent mode block) or many
logical lines of output. Each logical 1line can
contain many physical lines of output.

A logical line of output ends when the application
program embeds a code or set of bytes for that
purpose in the message, or when the block containing
the line ends. A downline message ends when an
application program indicates that condition.

Because downline messages can always contain more
than one logical line, an interactive device can
always receive the output equivalent of a multiple-
message block mode input transmission. The appli~
cation program can group logical lines as necessary
to achieve that effect.

If a message fits into a downline network data
block, the block becomes a single~block message.
If one downline message cannot be fit into a single
network data block, the application program can
split it into as many blocks as necessary. An
application program generally sends a single
message (consisting of as many logical 1lines as
necessary) as the response to one input message
from an interactive device.

BATCH DEVICE DATA

Batch devices can be serviced as site-defined device
types through the interactive virtual terminal
interface described later in this section. A sep-
arate set of interface protocols also exists for
batch devices serviced by CDC-written Terminal
Interface Programs and application programs.

These programs require large amounts of data to be
exchanged between a host computer’s mass storage
devices and CDC-defined batch devices. Such batch
data is therefore assembled into messages of one or
more network data blocks. Each network data block
contains one or more mass storage physical record
units (PRUs). Because only the CDC-written Remote
Batch Facility can use the special interface for
CDC-defined batch devices, the remainder of this
manual does not discuss the requirements this
interface imposes on batch data or batch device
support.

APPLICATION-TO-APPLICATION INPUT
AND OUTPUT CONCEPTS

Application programs within the same host exchange
data by transferring the contents of 60-bit central
memory words between control points. A program can
create a connection to itself and exchange data on
that connection.

60499500 R

Application programs in different hosts exchange
data by transferring the contents of 8-bit bytes
through the network, as if the data were sent to or
received from an interactive virtual terminal.

Application programs can exchange data only in
transparent mode. Upline and downline messages are
not subdivided into logical lines. Embedded codes
are not used to terminate lines or network data
blocks within the messages.

INFORMATION IDENTIFICATION
PROTOCOLS

CDC network host software uses four general con-
ventions for identifying network blocks. These
conventions indicate the following things to the
application program sending or receiving the block:

The kind of message of which the block is a
part; this is called the message type.

The kind of information within the block; this
is called the application block type.

The areas of host central wmemory containing the
block and containing information describing the
block; these are called the block buffer areas.

The source or destination of the block; these
connection identifiers are called the applica-
tion conmnection number and the application list
number.

The following subsections describe these conven-
tioms.

APPLICATION PROGRAM MESSAGE TYPES

An application program message is a complete logical
unit of information, comprising one or more physical
network blocks. A message can be a line of data to
or from a teletypewriter, a mass storage file, a
service request to NAM, or a screen of information
for a cathode ray tube.

There are two kinds of application messages, data
and supervisory. Data messages convey information
of significance only to a device user or to another
application program. Data messages can consist of
more than one network data block.

Supervisory messages convey information of signifi-
cance only to the network software. Supervisory
messages consist of only one network block.

Supervisory messages are used by an application
program to control data messages between itself and
logical connections.

APPLICATION BLOCK TYPES

The network block is the basic unit of information
exchange for the application program. There are
several types of network blocks that an application
program can exchange. Each type has an identifying
application block type number assigned to it. The
following types exist:



Null blocks, which are dummy input blocks indi-~
cating the absence of any data or supervisory
information. These blocks have an application
block type number of 0,

Blocks containing portions of data messages, but
not terminating those messages. These blocks
have an application block type number of 1; such
blocks are called BLK blocks in other network
documentation.

Blocks that terminate data messages. These
blocks can include physically empty blocks when
such blocks convey logical information. Blocks
that terminate data messages have an application
block type number of 2; such blocks are called
MSG blocks in other network documentation.

Blocks constituting supervisory messages. These
blocks have an application block type number of
3; such blocks include the information in blscks
called CMD, BACK, BRK, ICMD, ICMDR, and other
acronyms in some network documentation.

Blocks containing portions of qualified data
messages, but not terminating those messages.
These blocks have an application block type
number of 6; such blocks are called QBLK blocks
in other network documentation.

Blocks that terminate qualified data messages.
These blocks can include physically empty
blocks when such blocks convey logical
information. Blocks that terminate qualified
data messages have an application block type
number of 7; such blocks are called QMSG blocks
in other network documentation.

Qualified data can be used only on application-to-
application connections. Such data has no special
significance to the CYBER 170 network software,
Qualified data is intended for application programs
in order for such programs to communicate control
information among themselves that i1s outside the
data stream but synchronous with it. For example,
user identification information (qualified data)
placed before data in transferring files.

Blocks with an application block type of 6 or 7
cannot be sent or received on the logical
connection between blocks with an application block
type of 1 or 2. Qualified data can only be sent or
recelved after an unqualified message ends or
before an unqualified message begins.

BLOCK BUFFER AREAS
All network blocks are exchanged between the appli-
cation program and the network software using two
kinds of buffers: .

The block header area

The block text area

Block Header Area

Block header areas each contain a 60-bit word
describing the contents of a corresponding text
area. This block header word accompanies the block
in the corresponding block text area during the
exchange between the application program and NAM.

For downline blocks, the application program creates
the block header and NAM interprets it. For upline
blocks, NAM creates the block header and the appli-
cation program interprets it.

Because the contents of the header word depend om
the contents of the text area, the header word for-
mats are described in this manual after the text
area content protocols are described. To simplify
the header area descriptions, they are presented in
four separate formats:

For upline network data blocks
For downline network data blocks
For upline supervisory message blocks

For downline supervisory message blocks

Block Text Area

A block text area is separately addressed from its
header area and need not be contiguous to it. The
text area contains . the single network block
described by the header word in the header area.

Text areas can be of varying length, as necessary
to accommodate various block lengths. The text area
has a maximum length expressed as a whole number of
central memory words. Text areas can be up to 410
central memory words long.

The length of the text area used by the application
program is described to the network by the applica-
tion program. The text area length must be calcu-
lated from the maximum length of the blocks it will
contain.

Block length is distinct from text area length.
The length of a block depends on the type and use
of the block.

Null blocks have zero length and do not require any
central memory words for their text area. Other
block types have lengths expressed in character byte
units, although the bytes need not actually contain
characters,

Blocks are always a whole number of character units
long but do not have to be a whole number of central
memory words long. Not all words in the text area
used for a givem block need to be £filled with
meaningful information.

Supervisory message blocks are 1 through 410 words
long. Data blocks have lengths of zero up to the
maximum number of characters that can fit in the
maximum text area of 410 words, or 2043 characters,
whichever occurs first.

60499500 S

J )

) )



Downline messages containing more characters than
the text area can hold must be divided into several
network data blocks. Each such block must fit into
the text area. Each of these blocks should also
meet the network block size requirement and must be
transmitted separately.

Upline data blocks can be truncated to fit into the
existing text area. Alternatively, the application
program can use a large text area for large blocks
and a small text area for small blocks.

CONNECTION IDENTIFIERS

Two parameters identify and control the routing of
messages:

The application connection number
The application list number

Both parameters are used in AIP calls that fetch
incoming network data blocks. The application con-

nection number is used in the block header words of
outgoing blocks.

Application Connection Number

The application conmection number is a 12-bit inte-
ger used to address a particular logical conmection.
The connection number can be used as an index into
a control structure (for example, the number of a
connection could be the ordinal of a corresponding
device table) or used in any other manner the
application chooses.

These connection numbers are assigned serially by
NAM for each application program. Numbers that
become available because of disconnections are
reassigned to subsequent connections.

A connection number of zero indicates the control
connection on which asynchronous supervisory mes-
sages are sent and received. (See Supervisory Mes-
sage Content and Sequence Protocols, later in this
section.)

Application List Number

NAM permits an application program to group connec—
tions with similar processing requirements into
numbered lists. This 1s an efficiency feature,
relieving the application of the need to specify
individual connections each time upline block proc-
essing is required. Instead, when a request 1is
made for a block from a comnection on a list, any
device or application program conmections with empty
input queues are automatically skipped and a block
from the first nonempty queue is returned. A single
null block is returned when none of the connections
on the list have any input queued.

This feature can be used in many kinds of 1list
structures. For example:

An application program must process input from

devices with large network block sizes (such as
interactive graphics terminals in a specific

60499500 R

terminal class) differently than input from
devices with small block sizes. This processing
occurs in different portions of the program
code; therefore, the application program assigns
the devices using large blocks to list 1 and
the devices using small blocks to list 2,

An application program treats all devices the
same and must process blocks from them on an
equal basis. Accordingly, it assigns them all
to the same list.

An application program services terminals in
four geographical areas; each must be treated
separately because of varying state laws.
Accordingly, they are assigned to lists 1
through 4.,

An application program services devices that
should be treated the same, but with the fol-
lowing complication: when the application has
received a block from a particular terminal, it
must perform some time-consuming function that
prevents it from immediately processing another
block from the same terminal. Accordingly, the
application places all connections on list 1 and
issues an input request on list 1. When a block
for connection x is returned, it temporarily
inhibits receipt of data on connection x before
it issues the next input request. When it can
accept another data block from the terminal
using logical connection x, the application
program sends a supervisory message to reverse
the effect of the temporary inhibition.

The parameter used for this kind of processing is
called the application list number. The application
list number is an integer from 0 through 63 speci-
fied by the application program when it accepts a
connection. NAM links message input (upline) queues
of all connections that have been assigned the same
list number. An application program can request
blocks from these linked queues in rotation (with-
out specifying individual comnections) by including
the assigned application list number in a NETGETL
or NETGTFL statement (described in section 5).

Each list number identifies one connection list. A
connection list can be viewed as a table of connec-
tion numbers. These connection numbers are entered
in the table in the order in which the application
program assigns the connections to the list. When
the list is scanned for input from a connection,
the connections are examined in the order in which
they are entered in the table.

The application program explicitly assigns the list
number to each logical connection when the connec-
tion is established. The logical connection cor-
responding to application connection number zero
already exists when the application is connected to
the network. For this reason, application connec-
tion number zero 1is automatically assigned to
application list number zero without program inter-
vention.

The application program does not have to maintain
any tables associating connection numbers and 1list
numbers. The application program need not use list
processing at all.

2-9



DATA MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

Data blocks consist of 1 through 410 60-bit words
or 1 through 2043 8-bit or 12-bit bytes. The
fields within these blocks convey information to or
from the terminal  wuser. Data blocks have
associated block header words. These header words
convey information to the network software
concerning the contents of the corresponding text
area buffer.

Data blocks are sent and received through the
Application Interface Program routines described in
section 5. The application program fetches data
messages one block at a time. When the connection
queue is empty, a null block with an application
block type of zero is returned.

The network software provides a mechanism for the
application program to determine when data blocks
are queued. When a call to an AIP routine is com-
pleted, a supervisory status word at a location
defined by the application program is updated to
indicate whether any data blocks are queued. As
long as the application program continues to make
calls to AIP routines, it can test the supervisory
status word periodically (instead of attempting to
fetch null blocks from all application connection
numbers). The supervisory status word and the use
of NEIWAIT are described in section 5.

The protocols for data message text and the use of
the text area buffer depend on whether the logical
connection is with another application program, an
interactive virtual terminal device, or a passive
batch device. Blocks exchanged with other applica-
tion programs in the same host have the fewest
requirements and most flexible structure. Blocks
exchanged with CDC-defined batch devices using the
special batch device protocol have the most
requirements and the least flexible structure.

Requirements for blocks exchanged with other appli-
cation programs in the same host are covered in the
figures later in this section, and in section 3.
Blocks exchanged between application programs are
groups of binary character bytes with no parity,
equivalent to transparent mode data. Such blocks
can use the eighth bit of an 8-bit byte as data and
need not have the transparent mode bit set in .their
block header; see the decriptions of transparent
mode and block header word content later in this
section.

The requirements for exchanging blocks with inter-
active virtual terminal devices are described below.
Requirements for blocks exchanged with batch devices
through the special batch device interface are not
described because that interface is available only
to RBF. .

INTERACTIVE VIRTUAL TERMINAL DATA

An interactive virtual terminal can be either a
CDC-defined console device or a site-defined device.
An interactive virtual terminal can send and receive
data in two modes: normalized mode and transparent
mode. The format and content of data in these modes
is described later in this subsection. The charac-
teristics of an interactive virtual terminal depend
on which data exchange mode is currently used.

2-10

In normalized mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width; logical lines are divided automatically
as needed to fit the physical line restrictions
of the device.

A page of output has infinite (no physical)
length; sets of logical lines are divided auto-
matically as mneeded to fit the physical
restrictions of the device page.

A logical line of output cannot be longer than
a single network block; a single message can
contain an infinite number of logical lines.

Characters are either 7-bit ASCII codes using
zero parity (bit 7, the eighth bit, is always
zero in wupline data and ignored in downline
data), or 6-bit display codes with no parity.

Logical 1lines of input are terminated by a
changeable character or condition; this ter—-
minator is the end-of-line or end-of-block
indicator described earlier in this section.
The input terminator is not part of the data
seen by an application program unless the
full-ASCII feature 1s used (this 1is explained
later in this subsection and in section 3 where
the FA command is described).

Logical 1lines of output are terminated by an
ASCII unit separator character code (US, repre-
sented by the hexadecimal value lF) or the end
of a zero-byte terminated record. The applica-
tion program places this terminator in the data.

No cursor positioning actions are required to
acknowledge receipt of input, and no timing
ad justments need to be made at the end of phys-
ical output lines.

Logical lines can be divided into physical lines
by embedding optional format control characters
in downline blocks.

In transparent mode, the characteristics of an
interactive virtual terminal are as follows:

Input and output can occur simultaneously.

A page of output has infinite (no physical)
width.

A page of output has infinite (no physical)
length.

Characters are either 7-bit codes using zero
parity (bit 7, the eighth bit, is always zero
in upline data and ignored in downline data),
or codes of a terminal-dependent code set with
terminal-dependent parity.

Messages of input are terminated by a change-
able character or condition; this terminator is
one of the message or mode delimiters described
later in this section. The mode delimiter is
not part of the data seen by an application
program.

60499500 R

D)

J )



Messages of output are terminated by a condition
or event chogsen by an application program (each
network block 1s separately designated as
transparent or normalized when sent).

Cursor positioning actions might be ‘required,
and timing adjustments might need to be made at
the end of physical output lines,

Line Turnaround Convention

The interactive virtual terminal concept imposes
some conventions on the content and sequencing of
blocks exchanged with an interactive device. The
primary convention of block sequencing involves the
direction and time of block transmission.

The application program can service an interactive
device on a connection as if the device always
operates in a full-duplex mode. That is, input and
output can occur independently; the terminal user
can enter several logical lines at once (an opera-
tion called typeahead), without waiting for a
response to each line.

Application program input and output need not
alternate. However, some devices cannot actually
operate that way. To prevent a loss of synchroni-
zation between input and output at such devices, a
line turnaround convention exists. This convention
consists of the following events.,

After a block of type 2 (the end of a message) is
sent to a device, no more blocks should be sent
downline until at least one block is input from the
same device. An application program therefore
should never send the last block of a megsage down-
line until it is ready to wait for input.

A network data block of type 2 has special signifi-
cance to the network software during output to amn
interactive device. When such a block is the last
block of the output stream, the network software:

Unlocks the keyboard of an interactive device
being serviced as terminal class 4 (an IBM
2741).

Sends an X-ON code to start an automatic paper
tape input mechanism, if one has been defined
as the input mechanism for the device. Paper
tape operation is explained in more detail in
section 3 where the IN and OP commands are
described.

Starts polling devices in terminal classes 10
through 13 and 15 (mode 4 consoles), and
terminal class 18 (3270 consoles).

Identifies an automatic input prompt to be
returned, if the application program uses this
feature. When this feature is used, the network
software delivers the block to the device and
retains the first 20 characters in the NPU’s
input buffer. Subsequent input from the device
is attached to the end of the retained data.
(If more than one logical line is received from
the device, the first is appended to the
retained data.) All logical 1lines are
transmitted to the host as received from the
device.

60499500 s

If the terminal is a half-duplex device, such as a
2741 or a paper tape reader/punch, it must enter
input before the network software will deliver
additional output messages. Other devices are not
subject to this restriction.

The requirement for an input block after a block of
type 2 is output can be satisfied in several ways
by terminal operators. An empty input line can be
entered and will reach the application program as a
block of type 2 but containing nothing. A 1line
containing data can be entered and will reach the
application program as one or more network data
blocks,

Devices can interrupt output by entering input.
When this occurs, the network software stops the
output until the terminal user completes the input
(using an end-of-line or end-of-block indicator).
Output then resumes at the next character of the
current physical and logical line.

INTERACTIVE VIRTUAL TERMINAL
EXCHANGE MODES

The conventions of block content depend on the mode
in which the block is exchanged. There are two
possible exchange modes, normalized mode and trans-
parent mode. The latter is referred to in other
documentation as binary mode. This manual uses
transparent mode to indicate exchange of a block
that is not in normalized mode.

Normalized Mode Operation

The interactive virtual terminal interface assembles
message character streams into upline network data
blocks from terminal transmission blocks. It dis-
assembles character streams from downline network
data blocks, reassembling them into terminal trans-—
mission blocks.

The assembly operation 1is controlled by the termi-
nation of logical lines. The disassembly operation
can be controlled by the termination of messages.
The disassembly operation can also be wmodified by
format control characters embedded in each block,
and by the page width defined for the device (refer
to the PW command in section 3).

End of Logical Linmes in Input

Logical lines reach an application program as one
or more network data blocks. Logical lines usually
end when a message ends and do not contain the
character or code sequence defined as the end-of-
line or end-of-block key.

However, two special cases exist. Logical lines do
contain the end-of-line or end-of-block codes when
the device is operating in full-ASCII editing mode
(described later in this section). Logical lines
also contain the end-of-line code when the end-of-
line key is changed to be the default end-of-block
key for the device (see the EB option of the EL
command described in section 3). In the latter
case, the transmission block becomes a message, and
the logical lines within it have no effect on con-
struction or type of network data blocks.

2-11



Logical and Physical Lines in Output

The application program does not need to equate a
logical line of output to a complete message nor
does it need to create a separate network block for
each physical 1line of output. A single logical line
can contain many complete physical lines. A single
block can contain many complete logical lines, and
a message can be one or many such blocks. A phys-
ical or logical line cannot, however, be continued
from one block to another.

Logical lines within downline blocks are ended by
an end-of-line indicator. Unlike the end~of-line
indicators used in upline blocks, downline blocks
always contain codes for the end-of-line function;
the codes used downline are always the same and
usually differ from the codes used upline. The
downline end-of-line indicator varies according to
the application character type of the block; appli-
cation character types are described later in this
section. Bytes used to store indicators must be
included when detérmining the number of characters
comprising a downline block.

The end-of-line indicator in 60-bit character bytes
(application character type 1) is determined by the
programs exchanging the block., No predefined end-
of-line indicator exists for that application char-
acter type.

The end~of-line indicator in blocks using 8-bit
characters in 8-bit or 12-bit bytes (application
character types 2 or 3) is determined by whether the
block is sent in normalized mode or transparent
mode (described later in this section). In trans-—
parent mode, no end-of-line indicator exists. In
normalized mode, the end-of-line indicator is the
ASCII unit separator character US.

The end-of-line indicator in blocks using 6-bit
character bytes (application character type 4) is
12 to 66 bits of zero; these bits are right-
justified to £111 the last central memory word
involved. This convention makes each logical line
the equivalent of a zero-byte terminated logical
record.

The 6-bit option requires a right-justified 12-bit
byte in at least one central memory word. On com-
puters using the 64-character set, the colon is
represented in 6-bit display code by six zero bits.
On such systems, if the application needs to send
colons to the terminal console in 6-bit display
code, care must be taken to make sure that a string
of colons is not interpreted as an end-of-line
indicator. A colon preceding the end-of-line indi-
cator is considered as part of the indicator and not
as a colon when it occupies one of the two right-
most character positions in the next-to-last central
memory word of the block or any of the eight left-
most positions in the last word of the block.

All predefined end-of-line indicators embedded
within a block are discarded by the network soft-

ware and produce no characters on the comsole output -

device. The network software can perform carriage
or cursor repositioning when an end-of-line indica-
tor 1is encountered; this operation is described
later in this section under Format Effectors.

2-12

Upline Character Sets and Editing Modes

The network protocol permits entry from a device of
codes less than or equal to 8 bits per character;
however, a normalized mode character always reaches
an application program as ome of the 128 ASCII
characters defined in appendix A. Receipt of an
entered character by the application program depends
on the editing functions performed by the TIP.
Three editing modes exist for the TIP when it proc-
esses normalized data:

Complete interactive virtual terminal editing
mode

Special editing mode

Full-ASCII mode

Devices always begin a connection with the network
in normalized mode. The initial upline editing mode
is established for each device when the device is
connected to the host. This mode 1is complete
editing. The application program or the terminal
user can change that mode using the SE or FA
commands, described in section 3.

Complete Editing

During cowmplete editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)
OA (the ASCII character LF)
7F (the ASCII character DEL)

The backspace character code currently defined
for the device (see the BS command in sectiom 3)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end—-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
received, if entered at certain points in a message:

02 (the ASCII character STX), if entered as the
first character of a message

11 (the ASCII character DCl) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-lire or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

60499500 S

J )

J )



G@m\

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

The user-break-l and user-break-2 character
codes currently defined for the terminal, if
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, 1if entered as the
only character in a message (see the AB command
in section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it is used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character 1is
always received at the end of the logical line it
cancels. This character is not data.

Special Editing

Special editing takes precedence over complete
editing. Special editing canmot occur if the ter-
minal operates in block mode.

When special editing occurs, linefeed codes and the
currently defined backspace code are forwarded to
the application program as data. The network soft-—
ware sends appropriate responses to the device when
it receives these codes.

During special editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL)

7F (the ASCII character DEL)

The end-of-line character currently defined for
the device (see the EL command in section 3)

The end-of-block character currently defined
for the device (see the EB command in section 3)

The following hexadecimal character codes cannot be
recelved, if entered at certain points in a message:

11 (the ASCII character DCl) if it follows am
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3).

13 (the ASCII character DC3) if it follows an
end-of-line or end-of-block character and the
input mechanism is known to be a paper tape
reader (see the PT option of the IN command in
section 3)

60499500 S

02 (the ASCII character STX), if entered as the
first character of a message

The wuser-break-1 and user-break-2 character
codes currently defined for the terminal, if
entered as the only character in a message (see
the Bl and B2 commands in section 3)

The abort-output-block character code currently
defined for the terminal, if entered as the only
character in a message (see the AB command in
section 3)

The network control character currently defined
for the terminal when it follows an end-of-line
or end-of-block character or when it is used
for such purposes as page turning (see the CT
command and the Y option of the PG command in
section 3)

The currently defined cancel input character is
always received at the end of the logical line it
cancels. This character is not data.

Full-ASCII Editing

Full-ASCII editing takes precedence over special
editing or complete editing. When full-ASCII edit-
ing occurs, almost all codes are forwarded to the
application program as data. The network software
does not perform actions at the terminal when it
receives the codes for backspace, abort-output-
block, cancel input message, user-break-1, or user-
break-2. These codes and the end-of-line and end-
of-block indicator codes are sent upline as data.

During full-ASCII editing operations, the following
hexadecimal character codes cannot be received by
the network application program:

00 (the ASCII character NUL) if it occurs after
the end-of-line or end-of-block indicator

OA (the ASCII character LF) if it occurs after
the end-of-line or end-of-block indicator

7F (the ASCII character DEL) if it occurs after
the end-of-line or end-of-block indicator

The network control character curreantly defined
for the terminal if it occurs after the end-of-
line or end-of-block indicator or when it is
used for such purposes as page turning (see the
CT command and the Y option of the PG command
in section 3)

The following hexadecimal character codes cannot be
received if entered at certain points in a message:

11 (the ASCII character DCl) if it follows an
end-of-1line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the OC command in section
3)

13 (the ASCII character DC3) if it follows an ||
end-of-line or end-of-block indicator and the
TIP is supporting output control for the device
(see the Y option of the OC command in section I
3)

2-13



13 (the ASCII character DC3) if it follows an
end-of-1ine or end-of-block indicator and is
explicitly supporting paper tape input from the
device (see the PT option of the IN command in
section 3).

The currently defined cancel input character is
always received as the last character of the logical
line it ended. This character is data.

Downline Character Sets

The network protocol permits transmission from a
network application program of any character code
less than or equal to 8 bits. If the application
program uses one of the application character types
that permits transmitting an 8-bit code (applicatiomn
character types 2 and 3), it cannot use the upper
(eighth) bit for data unless it is transmitting in
transparent mode.

In normalized mode, the application program can only
use the 128 ASCII characters defined in appendix
A. If the application program transmits a 7-bit
ASCII code, it cannot use the upper (eighth) bit
for parity; the network ignores the eighth bit in
downline normalized mode data.

Receipt of a transmitted character by the device
depends on the editing functions and character
transformations performed by the TIP. In addition
to character codes altered during the translation
and substitution operations described elsewhere in
this section and in appendix A, the hexadecimal
character code 1F (the ASCII character US used as a
downline block end-of-line indicator) cannot be
received by a device when the application program
transmits a block in normalized mode.

Page Width and Page Length

The application program receives an indication of
the page width and page length in effect for a
device when connection with the device first occurs.
The application program or the terminal user can
change the page width and page length in effect for
a device.

The Terminal Interface Program uses the page length
defined for the device to format physical lines
into physical pages or screens of output. The Ter-
minal Interface Program uses the page width value
to transform logical 1lines of downline data into
physical lines of output.

For console devices defined as having hardcopy out-
put mechanisms (see the PR option of the OP command
in section 3), a logical line of downline data con—-
taining more characters than the page width value
permits is divided into singly spaced physical
lines. These physical lines are equal to or shorter
than the page width in effect and are displayed
successively.

For all console devices, the page width is used as
part of the line-counting algorithm to determine
the page length. Each logical line is examined to
determine how many multiples of the page width (how
many physical lines) it contains, Each complete or
partial multiple counts as one line when the TIP
determines the page length.

Line counting begins at the beginning of each down-
line message. The line counter 1is reset to zero
each time the page length of the terminal is
reached, each time any input occurs, or when page
turning occurs during page waiting operation. Refer
to the PG, PW, and PL commands in sectiom 3.

The physical 1line width of the device wmight be
smaller than the page width defined for the device.
When this happens, the effect of sending a logical
line of downline data containing more characters
than the physical line width permits depends on the
terminal hardware.

Format Effectors

An application program can control the presentation
of the characters within a data block by indicating
that the block contains format effectors. If the
application program chooses to do this, the first
character of each logical 1line within the block
becomes a format effector. Format effector charac-
ters cause predefined formatting operations when
the block is delivered to the device. The network
software discards these characters after interpre-
tation; therefore, these characters do not appear
on the interactive terminal output device.

You must include format effector characters when
determining the number of characters comprising the
block. Format effector characters are excluded from
page width calculations.

Tables 2-2 and 2-3 describe the predefined opera-
tions produced by each format effector character of
each terminal class. The Terminal Interface Program
performs the predefined format effector operation
by inserting the codes for the characters indicated
in the tables in place of the discarded format
effector character code. The inserted terminal
codes are those of characters in the ASCII set
described in appendix A, with the exception that NL
indicates the terminal-defined new-line code
sequence.

Numbers preceding codes indicate the number of times
the codes are repeated in the inserted sequence.
Each line output to a console in terminal classes 9
through 18 1leaves the cursor positioned at the
beginning of the next physical line. Processing of
the next line takes this into account.

The format effector characters for clear screen and
home cursor operations (* and 1) receive special
treatment by the Terminal Interface Program when it
is performing a page wait function for the terminal,
(See the PG command in section 3.) If these char-
acters are encountered when the TIP has output only
part of a page, the TIP pauses for terminal operator
acknowledgment of the partial page. When acknowl-
edgment occurs, the format effector functions are
performed and output continues automatically. This
pause occurs without application program action or
knowledge.

If the application program does not indicate the
existence of format effectors, the first character
of each logical 1line does not act as a format
effector. These characters are output normally but
are preceded by the character codes necessary to
space one line before output. These default line-
spacing codes are the ones substituted when a blank
1s used as a format effector.

60499500 S

JJ

) )



TABLE 2-2.

FORMAT. EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES

Does Output

Code Substituted on
Output Mechanisn’

Terminal| Format Is Infinite Page
Class Effector General Physical Operation Length Declared? Follow Previous
Input Display or Pa T
Printer per Zape
1 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. | Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. | Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3ILF
+ Position to start of current | Does not matter | Yes or No CR CR
line before output.
* Position to top of form or Yes Yes CR, 5LF CR, SLF
home cursor before output. No CR, 6LF CR, 6LF
No Yes or No Calculated by TIP
1 Pogition to top of form or Yes Yes CR, LF CR, S5LF
home cursor and clear screen No CR, 6LF CR, 6LF
before output.,
No Yes or No Calculated by TIP
. Do not change position before | Does not matter Yes or No None None
output.,
. Space 1 line after output. Does not matter | Yes or No CR,LF CR,LF,
DC3,
3NUL
/ Position to start of current | Does not matter | Yes or No CR CR,
line after output. DC3,
3NUL
Any other| Space 1 line before output. Does not matter | Yes CR CR
ASCII No CR, LF CR, LF
character
2 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. | Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. | Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of current | Does not matter | Yes or No CR CR
line before output.
* Pogition to top of form or Does not matter | Yes or No EM EM
home cursor before output.
1 Position to top of form or Does not matter | Yes or No EM, CAN EM, CAN
home cursor and clear screen
before output; delay 100
milliseconds before further
output.,
s Do not change position before | Does not matter | Yes or No None None
output.
60499500 R 2-15



2-16

TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code SubstitutedTon
Does Output Output Mechanism
Terninal| Format General Physical Operation Is Infinite Page Follow Previous
Class Effector Length Declared?
Input Display or Paper Tape
Printer P P

. Space 1 line after output. Does not matter | Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current | Does not matter | Yes or No CR CR,

line after output. DC3,
3NUL
Any other | Space 1 line before output. Does not matter | Yes CR CR
ASCII No CR, LF CR, LF
character
3 blank Space 1 line before output. Does not matter | Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. | Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF

+ Position to start of current | Does not matter | Yes or No CR CR

line before output.

* Position to top of form or Does not matter | Yes or No EM EM

home cursor before output.

1 Position to top of form or Does not matter | Yes or No EM, FF EM, FF

home cursor and clear screen
before output.

» Do not change position before | Does not matter | Yes or No None None

output.

. Space 1 line after output. Does not matter | Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current Does not matter |Yes or No CR CR,

line after output. DC3,
3NUL
Any other | Space 1 line before output. Does not matter | Yes CR i CR
ASCII No CR, LF CR, LF
character
47T blank Space 1 line before output. Does not matter | Yes None N/A
No NL
0 Space 2 lines before output. |Does not matter |Yes NL N/A
: No 2NL
- Space 3 lines before output. Does not matter |Yes 2NL N/A
No 3NL
+ Position to start of current |Does not matter |Yes or No nBS N/A
line before output. n is calculated by
TIP from current
position

60499500 R

J )

2 J



TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code SubstitutedTon
Does Output Output Mechanism
Terminal{ Format Is Infinite Page P
Class Effector General Physical Operation Length Declared? Follow Previous
Input Display or Paper T
Printer aper lape
* Position to top of form or Yes Yes SNL N/A
home cursor before output. No 6NL
No Yes or No oNL N/A
n is calculated by
TIP from current
position
1 Position to top of form or Yes Yes SNL N/A
home cursor and clear screen No 6NL
before output.
No Yes or No nNL N/A
n is calculated by
TIP from current
position

, Do not change position before | Does not matter Yes or No None None

output.

. Space 1 line after output. Does not matter |Yes or No NL NL

/ Position to start of current |Does not matter |Yes or No nBS nBS

line after output. n is calculated by
TIP from current
position
Any other | Space 1 line before output. Does not matter | Yes None None
ASCII No NL NL
character
5 blank Space 1 line before output. Does not matter |Yes None None
No LF LF
0 Space 2 lines before output. |Does not matter |Yes LF LF
No 2LF 2LF
- Space 3 lines before output. |Does not matter | Yes 2LF 2LF
No 3LF 3LF

+ Position to start of current |Does not matter |Yes or No ESC, G ESC, G

line before output.

* Position to top of form or Does not matter |Yes or No ESC, H ESC, H

home cursor before output.

1 Position to top of form or Does not matter |Yes or No ESC, R ESC, R

home cursor and clear screen
before output.

’ Do not change position before | Does not matter |Yes or No None None

output.

. Space 1 line after cutput. Does not matter |Yes or No LF LF,
DCc3,
3NUL

/ Position to start of curremt |Does not matter |Yes or No ESC, G ESC, G,

line after output. DC3,
3NUL
Any other | Space 1 line before output. Does not matter |Yes None None
ASCII No LF LF
character
60499500 R 2-17



TABLE 2-2., FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)

Code Substituted on

Does Output Output Mechanism

nite Page
Terninal | Format General Physical Operation Is Infini g? Follow Previous
Class Effector Length Declared? Displ r
Input SP-8Y OT| paper Tape
Printer
6 blank Space 1 line before output. Does not matter | Yes or No CR CR

0 Space 2 lines before output. | Does not matter | Yes CR CR -

No 2CR 2CR

- Space 3 lines before output. | Does not matter | Yes 2CR 2CR

No 3CR 3CR

+ Position to start of current | Does not matter | Yes or No None None
line before output.

* Position to top of form or Does not matter | Yes or No DC2 DC2
home cursor before output.

1 Position to top of form or Does not matter | Yes or No FS FS
home cursor and clear screen
before output.

s Do not change positiom before| Does not matter | Yes or No None None
output.

. Space 1 line after output. Does not matter | Yes or No CR CR,
DC3,
3NUL

/ Pogition to start of current | Does not matter | Yes or No None DC3,
line after output. 3NUL

Any other | Space 1 line before output. Does not matter | Yes or No CR CR
ASCII
character
7 blank Space 1 line before output. Does not matter | Yes CR CR
No CR,LF CR, LF
0 Space 2 lines before output. | Does not matter | Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. | Does not matter | Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF

+ Position to start of current | Does not matter | Yes or No CR CR
line before output.

* Position to top of form or Does not matter | Yes or No ESC,[,H ESC,[,H
home cursor before output.

1 Position to top of form or Does not matter | Yes or No ESC, [ ,H, ESC,[,H,
home cursor and clear screen ESC,[,J ESC,(,J
before output.

) Do not change position before | Does not matter | Yes or No None None
output.

. Space 1 line after output. Does not matter | Yes or No CR, LF CR, LF
DC3,
3NUL

/ Position to start of current | Does not matter | Yes or No CR CR,
line after output, DC3,

3NUL
Any other | Space 1 line before output. Does not matter | Yes CR CR
ASCII No CR, LF CR, LF
character
2-18 60499500 R

J )

J)



TABLE 2-2. FORMAT EFFECTOR OPERATIONS FOR ASYNCHRONOUS AND X.25 CONSOLES (Contd)
Code Substituted19n
Terminal| PFormat Is Infinite Page Does Output Output Mechanism
Class Effector General Physical Operation Length Declared? Follow Previous
Input Display or P T
Printer aper fape
8 blank Space 1 line before output., Does not matter |Yes CR CR
No CR, LF CR, LF
0 Space 2 lines before output. | Does not matter Yes CR, LF CR, LF
No CR, 2LF CR, 2LF
- Space 3 lines before output. Does not matter |Yes CR, 2LF CR, 2LF
No CR, 3LF CR, 3LF
+ Position to start of curremnt | Does not matter |Yes or No CR CR
line before output.
* Position to top of form or Does not matter |Yes or No ESC, FF ESC, FF
home cursor before output.
1 Position to top of form or Does not matter |Yes or No ESC, FF ESC, FF
home cursor and clear screen
before output; delay 1 second
before further output.
, Do not change position before | Does not matter |Yes or No None None
output.
. Space 1 line after output. Does not matter |Yes or No CR, LF CR, LF,
DC3,
3NUL
/ Position to start of current |Does not matter |Yes or No CR CR,
line after output. DC3,
3NUL
Any other |Space 1 line before output. Does not matter |Yes CR CR
ASCII No CR, LF CR, LF
character
TPaper tape column does not apply to X.25 devices.
Ttx.25 devices cannot belong to terminal class &.

The application program sets a field in the downline
block’s header word to indicate whether the block
contains format effectors. This indication, how~
ever, has no effect on the use of format control
characters within logical lines of the block. Table
2-4 1lists the code substitutions performed for
embedded control characters during output to a
device in each terminal class. This table uses the
same character representation convention as tables
2-2 and 2-3, with the following exceptions: the
hexadecimal terminal codes are shown for multiple
ASCII character sequences or for non-ASCII character
sequences.

Transparent Mode Operation

Blocks exchanged between an application program and
a console device in transparent mode do not use most
of the features of the interactive virtual terminal
interface:

60499500 R

No input editing occurs.

No code conversion occurs.

No format effector transformations are performed
for downline blocks.

No page width operations are performed to pre-
serve physical line boundaries.

Page waiting occurs only at the end of a down-
line message.

Transparent mode operation is separately selected
for input and output. Either the terminal operator
or the application program can start transparent
mode input, using the IN command described in sec-—
tion 3. Only the applicatiom program caun start
transparent mode output.

2-19



TABLE 2-3., FORMAT EFFECTOR OPERATIONS FOR SYNCHRONOUS CONSOLES

Terminal Class Format Effector

General Physical OperationT

Before Qutput After Output

9 and 14 0 Space 1 line. Space 1 line.
- Space 2 lines. Space 1 line.
Any other ASCII character None. Space 1 line.
10 thru 13, 15, blank None. Space 1 line.
and 18
0 Space 1 line, Space 1 line.
- Space 2 lines. Space 1 line.
* Posgition to top of form Space 1 line.
or home cursor,
1 Position to top of form Space 1 line,
or home cursor and clear
screen.
Any other ASCII character None. Space 1 line.
16 and 17 Any ASCII character Before the first line of Space 1 line.

the message, generate
the prefix text

***CONSOLE MESSAGE
Before the subsequent Space 1 line.

lines of the message,
do nothing.

o direct correspondence to code substituted on output device can be made. Code used for
implementation depends on placement of message blocks within a transmission.

Data blocks input in transparent mode have a field
gset in their associated header word to indicate this
condition. OQutput blocks require the same field to
be set.

Transparent mode data can occupy up to 8 bits of an
8-bit byte, representing up to 256 distinct char-
acter codes of device instructions. Codes longer
than 8 bits cannot be exchanged; data packed in
12-bit bytes by an application program or a termi-
nal device is truncated to 8 bits by the network
software.

HASP terminals (terminal classes 9 and 14) and
bisynchronous terminals (terminal classes 16 and 17)
cannot tramsmit or receive such blocks. All other
terminals can, although mode 4 terminals and 3270
terminals (terminal classes 10 through 13 and 15)
require the special treatment described below.

2-20

Mode 4

During transparent mode operation, the application
program is responsible for all data formatting and
terminal control. For mode 4 terminals, this means
that the Terminal Interface Program does not blank-
£il1l the current line and unlock the keyboard before
input can be performed but does add or remove the
line transmission portion of the protocol envelope
to or from all message text exchanged with the ter-—
minal.

Two mutually exclusive forms of transparent mode
input can be selected. The network administrator
can make this selection when the device is defined
in the network configuration file, or the applica-
tion program or the terminal operator can make it
while the device is active, The two forms are:

Single message

Multiple message (analogous to block mode
operation)

60499500 S

J )

J )



6@?\
C@ﬁh\

TABLE 2-4,

EMBEDDED FORMAT CONTROL OPERATIONS FOR CONSOLES

Terminal Class

Format Control

General Physical Operation

Code Substituted on Output. Mechanism

Character
1 thru 3 LF Space 1 line before next char- LF
7 and 8 acter output.
CR Pogition to start of current CR
line before next character
output,
4 LF Space 1 line before next char- LF
acter output.
CR Position to start of next line NL
before next character output.
5 LF Space 1 line before next char- ESC, B
acter output.
CR Position to start of current ESC, G
line before next character
output.
6 LF Space 1 line before mext char—- None
acter output.
CR Position to start of current CR
line before next character
output.
9, 14, LF Space 1 line before next char- None
and 18 acter output,
CR Position to start of next line None
before next character output.
10 thru LP Space 1 line before next char- None
13 and acter output.
15
CR Position to start of next line 1B, 41 (ASCII); 31, 41 (External BCD)
line before next character
output.
16 LF Space 1 line before next char- None
acter output.
CR Position to start of next line 10, 1IF
before mext character output.
17 LF Space 1 line before next char- None
acter output.
CR Position to start of next line 10, 1E
before next character output,
60499500 S 2-21



Downline

The application constructs a screen—full of
protected/unprotected fields and supplies all the
desired attribute characters and screen-buffer-
addresses for the fields. The TIP is responsible
for preceding the block of output by SIYNC-
characters, start-of-text, and escape-char, and
attaches ETX,CRC,PAD at the end. The TIP also
translates all downline data ASCII to EBCDIC and
performs SYNC-f111.

A typical start of a field would be:

SBA set-buffer-address x“11° all in ASCII
BAl buffer-address-1

BA2 buffer-address-2

ATT attribute-char

where the attribute-character determines the char-
acteristics of the field:

- protected

- unprotected
intensified
- numeric shift

The application' is also expected to insert the
cursor at a desired location.

Once transparent output is delivered to a 3270
terminal, the TIP assumes transparent input until a
non-transparent downline block is delivered to the
terminal.

To protect the integrity of the protocol, the TIP
replaces certain downline characters by NULLs. The
characters replaced are:

SOH, STX, ETX, EOT, ENQ, ACK, NAK,, SYNC

Upline

Once transparent output is delivered, the TIP sends
to the host all modified, unprotected fields
received from the terminal including the SBA and
buffer-address-chars (2) of each field. The
terminal does not send the attribute characters
back to the TIP.

If the incoming text is larger than one trans-
mission block (256 characters), the TIP will send

BLK/BLK/.../MSG

so that the application can reproduce a full screen.

Single-Message Input

For single-message input, one or more transparent
mode input delimiters are specified, using the DL
command options described in section 3. For
single-message input, when a message ends, trans-
parent mode input ends. Transparent mode messages
need not be equivalent to normalized mode logical
lines.

Single-message transparent mode input ends when the
Terminal Interface Program encounters one of the
mode delimiter conditions. The delimiter condi-
tions are:

2-22

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

Occurrence of a 200- to 400-millisecond timeout
in the input

Multiple-Message Input

For multiple-message input, the application program
or the terminal user defines ome or two input
message-forwarding signals (equivalent to a normal-
ized mode end-of-line indicator) and one or two
transparent mode input delimiters. Each message
ends at a message—-forwarding signal; the last mes-—
sage ends when transparent input wmode ends. The
message~-forwarding signal and mode delimiters may
be modified as described under Changing Device
Characteristics in section 3.

The possible message—forwarding signals are:

Occurrence of a specific character code in the
input

Occurrence of a specific number of character
bytes in the input

The transparent mode delimiters are:

Two consecutive occurrences of a specific char-
acter code (the message—forwarding signal)

A sequence of two character codes (a message-—
forwarding code followed by a transparent mode
delimiter code)

Occurrence of a 200- to 400-millisecond timeout
in the input ’

Upline Message Blocks

A transparent mode input block is assembled each
time the network block size is reached or the Ter-
minal Interface Program encounters a message~
forwarding signal. The 1last block in the last
message is assembled when the delimiter coandition
is encountered. If the message-forwarding signal
is a specific character code, the TIP removes that
code from the character stream before assembling
the last block.

In transparent mode, the concept of a logical line
is mot meaningful to the network software. Both the
end-of-line and end-of-block indicators are data
within a transparent message. These indicators
have no significance to the network software.

Transparent Mode Output

Transparent mode output data can be divided
arbitrarily into blocks and messages, provided the
restrictions on network block size are met. A
transparent mode downline block ends when the last
character it contains is transferred to the network
(defined by the tlc field in the block header,
described later in this section).

60499500 S

DD

J )



If the TIP is performing page-wait operations for
the terminal during transparent mode operation,
output stops to wait for terminal operator acknowl-
edgment at the end of each message. The automatic
input feature can be used with the last block of a
transparent mode output message.

Parity Processing

Actual terminal codes are right-justified with zero
f111 within the 8-bit character portion of the
input or output byte. The codes contained in the
input or output bytes depend on the parity option
declared for the terminal.

The actual terminal code parity bit can be used for
meaningful code only if no parity or ignore parity
is declared. Otherwise, the parity bit is zero in
input blocks and set by the Terminal Interface
Program on output.

For example:

If the temminal uses a 7-bit code such as ASCII,
with the eighth bit as a parity bit, the set-
ting of the eighth bit is determined by the
parity option selected for the terminal. If
zero parity is declared, the eighth bit is
always zero on input and output. If odd or even
parity is declared, the eighth bit varies on
input and output to satisfy the character parity
requirement. If no parity or ignore parity is
declared, the eighth bit is treated as part of

60499500 s

the character data and is not changed during
input or output.

If the terminal uses a 6-bit code, with the
seventh bit as a parity bit, the setting of the
seventh bit is determined by the parity option
selected for the terminal. If zero parity is
declared, the seventh bit is always zero on
input and output. If odd or even parity is
declared, the seventh bit varies on input and
output to satisfy the character parity re-
quirement. If no parity or ignore parity is
declared, the seventh bit is treated as part of
the character data and is not changed during
input or output,

APPLICATION-TO-APPLICATION
CONNECTION DATA

Because application-to-application coumnection data
is always exchanged in transparent mode, programs
can exchange character data in bytes of any size.
The program at both ends of the connection must
interpret the data using the same byte size.

Programs within the same host can exchange 7-bit or
8-bit character data in one of three ways:

Exchange pairs of 60-bit bytes, each containing
fifteen 8-bit data bytes

Exchange 8-bit data bytes packed as 8-bit bytes

2-22.1/2-22.2






Cgﬂ*\

Exchange 8-bit data bytes packed within 12-bit
bytes

Each of these options corresponds to an application
character type, as described in the next subsection.
Programs in differemt hosts need not use the same
application character type.

Programs can exchange 6-bit character data in one
of two ways:

If both programs are invthe same host, they can
exchange 60-bit bytes, each containing 6-bit
(or 6/12-bit) data bytes.

They can exchange sets of fifteen 8-bit bytes,
corresponding to two central memory words per
set (twenty 6-bit characters).

Figure 2-3 illustrates these possibilities. The
parity bit (bit 7 of an 8-bit byte) is not altered
during transmission through the network and can
always be used as data.

APPLICATION CHARACTER TYPES

Blocks always contain character bytes. These char-
acter bytes can be of several lengths and can be
packed within bytes of several sizes. Each permit-—
ted combination of character byte length and packing
byte size is called an application character type.
There are several application character types sup-
ported by the released version of the software:

One 60-bit character byte per 60-bit word

One 8-bit character byte per 8-bit byte

7-Bit or 8-Bit Data

Word 1 Word 2
/—\/\__——\
60-bit bytes : : : : : : : : : : : : :
S — —— T ———
Byte 1 Byte 2

8-bit bytes

12-bit bytes % Z % % %
= =

6-Bit or 6/12-Bit Data

Network data byte boundary

Word 1 Word 2
60-bit bytes e e e s & e = e & e e 2 e e o
e —— B
Byte 1 Byte 2
8-bit bytes . . - . . . . . . . . . . . - - -
4 P N . d . . of o ] |o
. Zz
LEGEND: « Character byte boundary % Unused space
2

Figure 2-3. Application-to-Application Connection Data Exchanges

60499500 R

2-23 0



One 8-bit character byte per 12-bit byte

One 6-bit display code character byte per 6-bit
byte

Blocks transmitted through a network processing
unit always consist of 8-bit characters in 8-bit
bytes. An application program can use blocks of
this application character type, or have NAM convert
blocks to or from it so that the application pro-
gram can use one of the remaining valid application
character types. Block conversion consists of byte
mapping and character code conversion.

For a downline network data block, NAM:

Performs no mapping or character code conversion
on 60-bit character bytes.

Performs no mapping or character code conversion
on 8~bit characters in 8-bit bytes; the parity
setting of the receiving device might cause the
upper or eighth bit (bit 7) of the byte to be
set.

Performs no character code conversion on 12-bit
bytes but maps the 8-bit character to an 8-bit
byte by discarding the leftmost four bits of
the 12; the parity setting of the receiving
device might cause the upper or eighth bit (bit
7) of the byte to be set.

Maps 6-bit characters to 8-bit characters by
translating the former as 6-bit display code

and substituting the corresponding hexadecimal
code from the 128-character ASCII set.

For an upline network data block, NAM:

Performs no mapping or character code comversion
on 60-bit character bytes.

Performs no mapping or character conversion on
8-bit characters in 8-bit bytes; the parity
setting of the sending device might cause the
upper or eighth bit (bit 7) of the byte to be
set if the data is sent in transparent mode.

Performs character mapping but no code conver=-
sion by right-justifying 8-bit characters in
12-bit bytes with zero £fill; the parity setting
of the sending device might cause the upper or
eighth bit (bit 7) of the byte to be set if the
data is sent in transparent mode.

Maps and converts 8-bit characters to 6-bit
characters by translating all ASCII control
characters to display coded blanks, and trans-—
lating all hexadecimal ASCII character codes
between 60 and 7F to the display code equiva-
lents of the hexadecimal ASCII character codes
40 to S5F. All other 7-bit ASCII codes are
translated to the display codes equivalent to
the CDC 63-character or 64—character subset of
the ASCII character set (refer to appendix A).

2-24

Because conversion and mapping between 6-bit and 8-
bit characters involves a time-consuming character-
by-character replacement of the block’s data, use
of a 6-bit display coded application character type
i8 not recommended and is restricted to blocks
exchanged with interactive devices. For efficiency,
8-bit byte characters are recommended for blocks
exchanged with devices or other application programs
through the interactive virtual terminal interface.

The application character type of an input block is
determined by the character type associated with
the logical connection. This association first
occurs when the connection is established. You can
change the association as necessary while the con-
nection exists. The application character type of
a sgpecific input block is always indicated by a
field in its associated block header word.

The application character type of an output block
is determined solely by a field in its associated
block header area. Input and output blocks trans-
mitted over the same logical connection can there—
fore have different applicatiom character types.

CHARACTER BYTE CONTENT

Blocks containing 8-bit characters can be exchanged
with an interactive device in normalized mode or in
transparent mode. Blocks exchanged in normalized
mode always contain 7-bit character codes from the
ASCII character set, with the eighth bit set to
zero. Blocks exchanged in transparent mode can
contain 256 character codes from any character set
used by a terminal, with the setting of the eighth
bit determined by the parity processing selected
for the device. Normalized mode exchanges are the
initial mode. Blocks exchanged in transparent mode
are identified by a field in their associated block
header word.

Blocks exchanged with another application program
are always exchanged in transparent mode. Trans-
parent mode is the initial and only exchange mode
for such connections. Such blocks need not have
transparent mode use identified by a field in their
assoclated block header word.

The legal combinations of character types, modes,
and uses are summarized in table 2-5. The mecha-
nisms for declaring character types and exchange
modes are described im the Block Header Content
portion of this section and in section 3.

BLOCK HEADER CONTENT

The content of the block header word associated
with a data block depends on whether the application
program is sending or receiving the block. The
requirements for all header words associated with
upline data blocks are described in figure 2-4,
The requirements for all header words associated
with downline data blocks are described in fig-
ure 2-5.

60499500 R

J )

J



Performs character mapping but no code conver-
sion by right-justifying 8-bit characters in
12-bit bytes with zero fill; the parity setting
of the sending device might cause the upper or
eighth bit (bit 7) of the byte to be set if the
data is sent in transparent mode.

Maps and converts 8-bit characters to 6-bit
characters by translating all ASCII control
characters to display coded blanks, and trans-
lating all hexadecimal ASCII character codes
between 60 and 7F to the display code equiva-
lents of the hexadecimal ASCII character codes
40 to 5F. All other 7-bit ASCII codes are
translated to the display codes equivalent to
the CDC 63-character or 64-character subset of
the ASCII character set (refer to appendix A).

Because conversion and mapping between 6-bit and 8-
bit characters involves a time-consuming character-
by-character replacement of the block”s data, use
of a 6-bit display coded application character type
is not recommended and is restricted to blocks
exchanged with interactive devices. For efficiency,
8-bit byte characters are recommended Ffor blocks
exchanged with devices or other application programs
through the interactive virtual terminal interface.

The application character type of an input block is
determined by the character type associated with
the logical connection. This association first
occurs when the connection is established. You can
change the association as necessary while the con-
nection exists. The application character type of
a specific 1input block is always indicated by a
field in its associated block header word.

The application character type of an output block
is determined solely by a field in its associated
block header area. Input and output blocks trans-
mitted over the same logical connection can there-
fore have different application character types.

CHARACTER BYTE CONTENT

Blocks containing 8-bit characters can be exchanged

.with an interactive device in normalized mode or in

transparent mode. Blocks exchanged in normalized
mode always contain 7-bit character codes from the
ASCII character set, with the eighth bit set to
zero. Blocks exchanged in transparent mode can
contain 256 character codes from any character set
used by a terminal, with the setting of the eighth
bit determined by the parity processing selected
for the device. Normalized mode exchanges are the
initial mode. Blocks exchanged in transparent mode
are identified by a field in their associated block
header word.

Blocks exchanged with another application program
are always exchanged in transparent mode. Trans-
parent mode 1s the initial and only exchange mode
for such connections. Such blocks need not have
transparent mode use identified by a field in their
associated block header word.

The legal combinations of character types, modes,
and uses are summarized in table 2-5. The mecha-
nisms for declaring character types and exchange
modes are described in the Block Header Content
portion of this section and in section 3.

60499500 T

BLOCK HEADER CONTENT

The content of the block header word associated
with a data block depends on whether the application
program is sending or receiving the block. The
requirements for all header words associated with
upline data blocks are described in figure 2-4.
The requirements for all header words associated
with downline data blocks are described in
figure 2-5,

SUPERVISORY MESSAGE CONTENT
AND SEQUENCE PROTOCOLS

Supervisory message blocks consist of 1 to 410 60-
bit words or 1 to 2043 12-bit bytes. The fields
within these blocks convey information and instruc-
tions to the network software, in a manner similar
to the character bytes of a data message block.
Supervisory messages are sent and received through
the same application program routines as are used
for data blocks. (See sections 4 and 5.) Supervi-
sory messages have associated block header words,
just as data blocks do. These header words convey
information to the network software concerning the
contents of the corresponding text area buffer.

Supervisory messages have the general formats shown
in figures 2-6 and 2-7. A specific message contains
a fixed combination of four fields and can include
additional parameters. The individual messages
supported by the network software are described in
section 3, The fields are described below in the
order of their wuse, rather than in the order of
their occurrence within a supervisory message.

The first of the four fields common to all supervi-
sory messages is the primary function code. The
primary function code is used to group supervisory
messages into related functions and determine their
routing within the network software.
Functions routed between NAM and the application
program are represented in figures 2-6 and 2-7 by
mnemonics. These mnemonics are defined in paren-
theses after the corresponding function in the
following list:

Connection data flow control (FC)

Error reporting (ERR)

Device control (CTRL)

Connection list management (LST)

Connection characteristic definition (DC)

Interrupt request (INTR)

Connection control (CON)

Terminal characteristic definition (TCH)

Network shutdown (SHUT)

Host operator commands (HOP)

Terminate output (TO)

Break indication (BIL)

Resume output (RO)

2-25



TABLE 2~5. CHARACTER EXCHANGES WITH CONNECTIONS

Application ACT Field Exchange Mode Connection Code Set
Character Type Value Used Type (Character Set)
— —_—

60-bit characters 1 Transparent Application-to—application Binary (None)

in 60-bit bytes within the same host

8-bit characters 2 Normalized Application-to-device 7-bit ASCII (128 ASCII)

in 8-bit byte (consoles)

8-bit characters 2 Transparent Application-to-device Any 6-, 7-, or 8-bit

in 8-bit bytes (consoles) (Unknown)

8-bit characters 2 Transparent Application-to-application Binary (None)

in 8-bit bytes

8-bit characters 3 Normalized Application-to-device 7-bit ASCII (128 ASCII)

in 12-bit bytes (consoles)

8-bit characters 3 Transparent Application-to-device Any 6-, 7-, or 8-bit

in 12-bit bytes (consoles<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>