

0 ° °Oo
) o ° & o OO OOOO 9]
© : °g. . o207 o,
o Q o 0o c v’ ° O o C
C
09 oo oy OOO 9 OO%o e oOOOO° . O %OO o
Jo4-® o° © . O 00 e I
o O O O O o 00 Oo o OCO - \\j
) ° ° o O
(o] O °0 O © Oo ©o
o OOO ° O o (
O o O 0°()
© O OO° ok
O OO o OO o O o
° c° Oo O
Q O O° o
)
AR et
SwWAKk €ERY

SCOPE/HUSTLER

Reference Manval

5 orry~ the Pn‘nt iﬂ‘ﬂ/f}' ot EAss ’77¢i7£(¢/

Is poor, even though £ /s a1 orrgihel

Mark Rrorden
a/ Oct QOOB

Computer Laboratory

Michigan State University

REYISION RECORD

A

Revision I Description

This revision reflects the removal of the 3600 and the user

changes introduced by LSD 32 and 33. It also corrects

numerous errors found in the original printing. Major

additions: ERRS, FILES, LISTPF, LISTTY, PNPURGE, PAPERT,

Priority Scheme, Parity Error Procedures, and Special Problems

(for magnetic tapes). (5-74)

In this revision, the AUTHORF utility is documented.

Appendix B is removed and its contents are incorporated into

Chapter 2 Chapter 9 is removed; the remote batch system is

documented in User's Guide Supplement: Remote Batch Terminal

Operation. (8-77)

This revision updates Chapter 5 on permanent files, to include

the utilities PFLIST, PFDUMP and PFLOAD, deleting obsolete

material. (1-78)

This revision updates Chapter“6, Magnetic Tapes, to include

9-track tape usage. Appendices A, C, E, and I are updated.

Chapter 10 (software products) is deleted; software products

are discussed in the Facilities and Policies Handbook.

Appendices C, G, and H are deleted. (7-78)

This revision reflects the ASCII character set conversion(12-78)
This revision corrects some errors in Chapter 2 and adds

documentation of auto-exec. Chapter 7 and Appendix J have

Additional copies of this publication Address comments concerning
may be obtained from the User this publication to:
Information Center of the MSU

Computer Laboratory. User Information Center

Computer Laboratory
Michigan State University
East Lansing, Michigan 48824

©® 1973, 1974, 1977, 1978, 1979, 1980, 1981
Michigan State University _ or use the comment sheet at

Board of Trustees

the back of this publication.

ii

REVISION RECORD (Cont’d)

Revision I Description

been rewritten to include documentation of all control

statements. Portions of Chapter 8 are removed. (5-79)

G Chapter 4 on file structure rewritten. Appendix J updated

and reissued. Chapter 7 on control statements uvdated to

include FTN 5 and the Fd45 conversion aid a-80)

H Chapter 1 on System Description and Chapter 3 on Job

Structure are rewritten. (3-81)

65202h

Preface

The SCOPE/HUSTLER Reference Manual is the primary source of reference for MSU’s
SCOPE/HUSTLER operating system. References to Control Data publications or other Computer
Laboratory publications are made where appropriate throughout the manual.

This manual will be updated as needed to ensure that it remains both current and accurate. Copies
of this and all other Computer Laboratory publications may be obtained in the User Information
Center, Room 313 Computer Center.

The following people, all past or present staff members of the User Information Center, were in-
strumental in producing the SCOPE/HUSTLER Reference Manual: Deborah Alpert, Elaine
Currie, Susan Gossman, Steve Groll, Bobb Howard, Steve Huyser, Jim Lukey, Karen Overton,
Tory Sawyer, and Dianne Smock. Special acknowledgements go to the Systems Development
staff of the Computer Laboratory, who helped immensely by reviewing the text, testing examples,
and answering technical questions.

65202h

Table of Contents

Page

INTRODUCTION
ey L Tar s 1oy « WA R xi
INOEREIOM &+ o v e v ot e ee st e aetseanssaessaessasasoenseensassesenasosnsssens xii
1. SYSTEMDESCRIPTION. ..ttt ttie et iineianenneanassiaenaaaeaeeessns 1-1
Hardware: The CDC Cyber 750 COmMPUter . . . oo vvieeeninvraenannaceceens 11
The Central Computer v e ieeiaietaaiea e 1-2
Disk SLOTAZE . . v v vt veeeniianesennaeeccsaneennanaseccnssssnns 1-4
Magnetic Tape StOrage ovvveeecenn e rnnnne e 1-5
Central Site Input/Qutput Equipment.oooiiiiiiiiii e 1-6
RemoteBatch Terminals. o v eenn ittt 1-7
Interactive Terminals . ..o vvvevevieenenronennenenanoreenaanneans 1-7
Merit NetWOTK . o ot ittt ittt aenesensarasanasanssanesonnnns 1-8
Software: The SCOPE/HUSTLER Operating Systemc.oviiieven... 1-8
Access: Interactiveand BatchProcessingcoeveiiiieenann. 1-9
Job Scheduling . .. vvvvvvenit et iii i 1-9
Organization of Information Within the Computer: Files 1-10
Protection and Storageof Fileso ovieviiiiiiiiiinenn, 1-12
Accounting and Authorization . ..ottt 1-13
Features of SCOPE/HUSTLER ittt iiii e 1-13
Control StatementS. . o oo vt v vt a s rn e e 1-14
Program Compilation. 1-14
Applications Software.o i e 1-14
Debugging Aidsocvvrreenrinnniiiiiiii e 1-15
Systemand User Libraries.cooue e oiiniiniiienieens 1-15
Program Communication With SCOPE/HUSTLER.cvvveinnnn 1-16
Hardware/Software Interrelationsc.oiiviiieneneens 1-16
Multiprogramming vvvveeenenuneeenereeeeeaoansonainnns 1-18
A Closer Look at the Scheduling Process.coovveeiiiiinnn 1-19
Exchange JUMPSuvviniiin i can s 1-21
e L o J A R R ERE R 70§
Program Requestscvuvuvrrrie et 1-22
SCOPE/HUSTLER Maintenance . . . v cvvvvervenransnsonsnesnanasaessss 1-22
File BaCKUD . oot e ettt iiimiaaa e s e 1-22
Deadstarts. e e e et e 1-23
2. AUTHORIZATIONANDACCOUNTINGoiiiiiiii i 2-1
TOEFOAUCHION + v e v et e et ee e eeteea et 2-1
EBGIDIIEY © - -« v v veeeeee e e et e e 2-1
APPHCAHONS . « . vt ittt 2-1
Problem Number, User Name, andPassword, 2-2
Dollar Balances. . oo v vt ie i e e e 2-3
Resource LImits. .. oo vv vttt iiie ettt eraeeenoeeseansanecesessens 2-3
Job Authorization.coveveeeennn PP 2-3
MasterIDvs. UserID . .ot iii i ettt itna e ianaaens 2-4
PNRenewal R 2-4
Fo121510 ST R R R 2-4
Changing the Passwordo vuirnineeneniien e 2-5
Displaying a User's Authorization Status.ocveniveiineinanenns 2-6
Managing a Problem Number 2-6
Adding New UserIDso iitinneiien e 2-7

65202h

Changing Limits and DollarBalancest 2-8
DeletingUserIDsottt 2-9
GeneratingaReportttt e 2-10
Creating an Auto-ExecFile............ ... oo 2-10.1
AUTHORF e e e e s 2-11
DEfIMItIONS & & v vttt ittt e et e 2-12
AUTHORF Control Statementvovvevrerrorenneinennrnnnnns 2-13
Deck SEIUCEUIE . . o ottt it ite e it ae s naeanneaneraeanaaeonsans 2-14
DISPLAY ..ottt ettt e e e e e, 2-16
ADD . it e e e e 2-17
CHANGE . . ottt e e e et ettt ittt iaaa e 2-20
CHANGE—The Auto-ExecFeature oot 2-23.1

19} 215 o9 o >RSSO PP 2-24

USE. ottt ettt e e et e et e e e i e 2-25

END oottt e e e e e e e, 2-26
TFAndELSE. .ottt ettt ittt 2-26
InputFiles.ot e 2-27

Y 21 X T I 2-28
Abbreviationsand Synonyms it i 2-28
Authorization Levels and the AuthorizationFile o0t 2-30
Levels of AUthOriZation. . . .o v v v i e eeeiii it neeanananens 2-30
PNandUserFieldscoviiimtintiie it 2-30
ABDrevViations. . ..o oottt i e e e e 2-34
Maximumand Default Values.o, 2-37
ACCOUNEIME . 2 vt ee e s it insaaaanaonsosntaonenstosaasoansss 2-38
Calculation of Job Costs vvitn ittt 2-38
100% Pay vs. Subsidized Accounts.oovniiiiiiiiii i 2-39
Dayfile Accounting Messagesc..ivennnniiiiiieiinaans 2-40
Other Dayfile Messages.oovrnierencnneennneeiiniannns 2-41

3. JOBSTRUCTURE ...\ ttiittttiiiit it aaaee s 3-1
JOB SEIUCHULE . . oot e ettt e e et e e e e 3-1
Identification and Authorization it e 34
Sequence Number.t 3-5
Problem NUmMberttt i ettt e 3-6

User Identificationt ittt inni it ianineraanaasenanas 3-7
PassWOTId . o oo ittt ettt et e et e 3-10
Control Statements . .. v vt i it s it erer s ae ey 311
Control Statement SYntax.vvvin e cierareneeisineenes 311
Notation for Control Statement Syntax.covireiinneiennas 313
ContinuationCardsv vt iiiit ittt L...314
Sample Jobs . . . v .t e 3-15
JOb SUDIMUSSION . . oottt ie et it it e 317
‘DISPOSE' a Batch Job from an InteractiveJob 3-18

JOD PrOCESSING « o« v v e v vt ie e et 3-19
INPUt QUEUE . ..ot oe ettt e et 3-19

POOl e e e e 3-19
LOAdiNg. . o ettt 3-20
EXOCULION &+ o vttt e ettt ettt 321
JobTerminationcvttiiiii it 3-23
Dayfileot 3-24

o0 1eY o1 A R w..3-26

4, FILES

File SYstem vvititii it it e e e 4-1
Temporary Filesot 4-2
Permanent Files.oitiiiii ettt 4-3
LoCal FIlES . + v v ittt ettt ettt i et et e i e 4-3
FIleNAMES .« oo vttt ettt iene i esesnasaasansoassnss 4-3
Special FileNames S PO 4-4
Physical File SEIUCHUIe« vir e iiei et eeens 4-5
Logical File Structure v ittt 4-8

652028

File POSItIONS. o vt vt ii i iets e e tnaenneanaanasososonoanans 4-9
RECOTAS. . vt ottt titi e enstteaaaass e eneansnennseesesns 4-10
ECHIOMS & v vt e e ettt i e 4-10
Section Levelsand Partitions. cviveen ittt 4-11
File Manipulationcovueeenenennnnnnenaeennneeeeeeeneeeannns 4-12
Types of FileManipulation oot 4-12
Rules for FileManipulation.coviiin i 4-13
CodedandBinaryModeooiiin it 4-13
Typesof CodedFiles.t 4-13
Binary Files . ..o vviiii i i i e 4-14
Input/Output Controlo v vvt et 4-15
ACHVEFIlES . . oottt it ittt e 4-15
File Environment TablesandBufferso, 4-15
File Name Tableand FileStatus Tableo, 4-18
Record Block Reservation Table and Record Block Table 4-18
Rewrite-in-Place iiiii it iiin et iiicanineanaaeaeeans 4-19
Non-Standard File Structurescoveetetinrnureerneaneneanss 4-19
5. PERMANENT FILES
Terms and CONCEPES . ..o ov e eeie v iie i eineenasaacsoncnnnonesanss 5-2
PermanentFileNames.coviiiitiiinienrnieneraeeneineans 5-2
1 - Y R R R T 5-2
WRITE/ REWRITE . .ottt it itie e cecatntarasonenesoneseeannsns 5-2
Privacy Controls. . .. vueiie it et iiiiiiaieer e iiiaaaaaaeaas 5-3
Multiple-Read ACCesso vovii et 5-3
Purging/Retentionovuiinnininne i 54
P UES. v v v v e ee e s e e et e et et e e 5-4
(o7 7N @ R 5-4
ATTACH . . ottt e e ettt ettt i e 5-7
PURGE . . ottt ittt ettt ettt te e 5-9
EXTEND . .ottt ttnneestaasnseeannesasanasssesnons 5-10
PNPURGE .. it ititt it ittt tneieate et n e aaeans 5-12
23 2108 (53 5-14
PEBaCKUD « + v ve v v tne et iiie e iinn e aanaa e enae st 5-22
Computer Laboratory Dumping/Loading Policies. 5-22
Purging Policiescvvviniiiin it 5-23
229 811 62 O 5-23
223 0@ Y- 5 1 PP 5-30
6. MAGNETIC TAPES .
Reader’'s Guide and Glossaryot veiien i e iieinaiaeian e 6-1
Tapevs. Disk Storageoovveiiiee i 6-2
Fconomic AdVantages. vvvvenenenenenoneaansonarnenensarneas 6-2
Random Access vs. Sequential Access.ooviieen i 6-3
COMIVEIUICE . « o o vt vttt eeeasenenenesausssnneonsseanssaeenas 6-3
Writingand RewritingDatao 6-3
SOCUITEY v v v vt ve e e eeas et et aa e 6-4
Backup of ImportantDataoviieteiniae it 6-5
Using Tapesat MSU . ..ottt it 6-5
Obtaining aTape .. ovvveveemae it iiiaeaeranaaetean s 6-5
Storage Of TapPES . .« iie ittt 6-5
Visual Reel Name (VRN . ..t i ittt ittt et iiti e eaanaanees 6-6
Tape Drive Reservation.o vvvutetiniunne ettt 6-6
JOB Card . . ottt e e et e 6-7
TAPRES Control Statementcocvetiniitinireranreneneeneenns 6-7
RETURN Control Statement.o vveve it iieraieaeraeaeenens 6-8
Tape ReQUESES . . o o vttt ittt e 6-9
REQUEST Control Statement e e e 6-10
MSUREQ Subroutinecvvivn ittt aaein e 6-12

vi

652028

Tape ErrOrMessagesuvvviiiiineerrnieeneannunnaneneeeneoneens 6-12
TapeEquipmentcoiiuniiintiieniin i iiiiiiiaianans 6-13
MagneticTapecooiiiiiiiiin ittt 6-13
Tape Drivesand ControlUnitst 6-13
Write-EnableRing.coiiiiii i i 6-15
Physical DataStructureooii ittt 6-15
Tracksand Framesccvieniiiuninienerennnenenaenneens 6-15
Recording Techniques.coovn i iinineraneenannnn 6-16
LTV 2 I 6-17
BlocksandInterblock Gaps.o i v iin ittt e 6-17
FIle GaPS . o et iretiiee e i e e 6-17
Beginning of Tape and End-of-TapeMarkers. 6-18
o7 X {20 T 6-18
Coded TaPeS. « vt vvvvnee e e iiae ittt 6-20
Binary Tapes. ... veeiee ittt 6-20
Logical DataFormats. coviiii ittt 6-21
SCOPE TAPES .« vt oo vt esinacn s ieenaeneanaenasensenneennnnes 6-21
Multifile SCOPE Tapeso vvveieieeiiin i naeaeneenansonns 6-22
Stranger Tapes . ..o v vvvi e iii i a e 6-22
Specifying Block Sizes for Stranger Tapes ooivunn 6-23
CyberRecordManagerottt erneenrinnenonnans 6-24
FileOrganizations.o vt ii ittt 6-24
Block TYPes . oo v vietin ittt ittt it i e 6-24
Record Types ... ovviet ittt it e it ittt sans 6-25
TapeLabelsooiiniiiiiiiii it 6-25
Advantagesof Labeled Tapes, 6-25
SCOPE/ANSILabel Formatsc.otiuiiniininneneneennnans 6-25
Label Processingoovveneneeneeeneneienniiiiniiiineeenns 6-28
Label Creationovvveiiere et iitiaeneneaanaasnens 6-31
Label Checking . ..o vvi ittt it ittt it et iaaeranianraaens 6-31
Printing the Label: PRINTLB Control Statement. 6-31
End-of-Volume Proceduresccouiuiniuiiniieniennrnanannannns 6-32
User Processing Options viiiniiiiin it 6-33
End-of-Volume Errors on Unlabeled Stranger Tapes 6-33
Tape Security Systemttt i e 6-33
Security Proceduresccoiiiiiiiii i 6-34
Changing theLabel PN e e 6-35
Parity Error Proceduresooviiiiiiii e 6-36
Wrrite Parity ErrorRecoverycooiii i 6-36
Read Parity ErrorRecovery.ot 6-38
UnrecoverableParity Errorsottt i, 6-39
Special Problemso it 6-40
Changing the Numberof Tape Tracks. 6-40
Exchanging Tapes withOtherSiteso, 6-40
Reading and Writing Blocked Stranger Tapes 6-43
Copying Random Files to Magnetic Tapes.covuniee 6-45
Recovering Data From Blank-Labeled Tapes 6-46
COMPASSProcedures vvvuereeeenenenn i ensieaeaensnennnns 6-47
MSUREQ MaCIO. o« vttt tteieeeeeni et iieaatarannnsnns 6-47
COMPASS Label Processing.cvvvveeennninnrnnenenenennens 6-50
Processing Stranger Tapesin COMPASS ooty 6-52
COMPASS Parity ErrorProcedures 6-53
COMPASS End-of-Volume Procedures.cooiiiiiinven.n. 6-54
7. SCOPE/HUSTLER CONTROL STATEMENTS
IRtrOdUCHON .« . oot e e e 7-1
Control Statement Processingoovt ittt ittt 7-5
COEXEC . . ottt it et et e e e e e e e e 7-5
EXEC oottt e e e 7-6
EXIT . oottt e e e e e 7-8

vii

652028

Authorization FileManipulation i i 7-11
AUTHORE . o ettt ittt ettt sttt e ettt 7-11
JOb IMPUL . .ttt i i et e s 7-12
JOB Card .« vttt e it i e 7-12
Password Card.o v vi ittt e i 7-12
Equipment and File Assignmentcoiiiii i 7-13
19) o) @ 1) 25 7-13
230 0 23O 7-16
FILES oottt ettt it it ittt e s eeeaanaosaanaasaenennenannns 7-17
NEWNAME ...ttt ittt ittt eeaean s inanses 7-18
REQUEST . i ittt ittt ittt it ineieaeenrasenetnoararaonsananeses 7-18
RETURN . . ottt ittt ittt teeeearanaeneaenanononsnonansnsnnnns 7-20
TAPRES .ottt ittt ittt ittt 7-21
UNLOAD . .ottt it et ittt aneaernaeassesenneannonnseeenanans 7-21
File Copyingand Reformattingccviiuinieneeeiiinninenneneennn 7-23
COMBINE ...ttt tieretentereasansasanesasansasnanaennns 7-23
({0 2 P 7-24
(@00 24 - {01 5 25 PP 7-24
COPYBR, COPYCR, COPYBF, COPYCFt itiieiiieiiiennnnnns 7-25
COPYL, COPYLM . .ottt it e tntesntereanianasnanannnns 7-27
(@00 3¢ O U PP 7-29
COP Y XX« ot vt ettt ee et te e eneneacsaacaanenenennanasnnnes 7-31
[@(®) 52'¢.) <O 7-32
(@) 2" PPN 7-33
2] 2. (AP 7-34
PAPER T .. ittt ittt it et e ettt e 7-35
SORTMRG. .o iiiiietiet i i e 7-35
Fille EXamMiNation . oo v vvve it isne e ennerooseoneensnnneanaeenneannnas 7-36
COMPARE. . ottt ittt ittt it e ittt 7-36
22001230, § P PP 7-37
LIS T Y . ottt ettt e it e it ittt e e 7-41
PRINT L .ttt ittt e it te e taenonnenanaanaaassannsss 7-43
SCAN . . vttt ettt e et e 7-44
FileManipulationiciiiiitiiiiiintrernanneenenrrotananenns 7-46
2]) S P I 7-46
REWIND . oiittttt ittt ittt it et iaisaseaeasacnoncnsnsnsnanns 7-46
SKIPB, SKIPE . . ottt ittt e ettt it 7-47
51T 20 1T - 7-49
210 15) 2 OGP 7-49
Loader Control .. oo vttt ittt ettt i s ", 7-53
EXECUTE . ottt ettt ittt ettt teneanreeaneneennaennenneanns 7-53
0000153 3 N 7-54
) 010 @ - N 0 7-58.1
@ - 2P 7-59
AIMIB. o vt v v v v nee v v et nnasesosaanncsnnnnesannenasonssssennness 7-59
NOGO . ottt ettt et it ettt i 7-61
QA TS Y . o ottt ittt ettt e 7-61
SEGLOAD & .ttt e e e i 7-62
SLOAD . ..ttt i et e e 7-62
Loader-Related Control Statementsot vree it nnnnaneannns 7-63
D002 N 2 P 7-63
1Y, - O YO 7-64
Field Length Control Statementscotiuiiinteniie i 7-65
AUTORFL ottt ittt et it et ettt et a it 7-67
% 52 5 7-67
REDUGCE. it ettt ittt ettt e e ca s iia i easaeanaenenens 7-68
S 2 O PP 7-68
Job Memory Management Examples P 7-68
Processing Optionsvtvten e ittt 7-70
BANNER oottt ittt ittt e e e 7-70

65202g

(@) 52§ 17 PP 7-71
DAYMS G . it ittt ittt ettt e e i 7-71
11, 0 O 7-72
PAUSE ..ttt ittt ittt ittt ittt ettt i e 7-73
RERUN . .ottt ittt it it et e ettt et i 7-73

151 /aY 8 (i RGP 7-74
DeDUGZING . . oot ie et i i e 7-75
DAYFILE ..ottt it ettt et i i e 7-75
)., 1 2 PP 7-78
19, £ 5 G PP 7-80

214 S8 A Ot 7-81

1% ()) T T S 7-83
TRAP . . i it i i ittt e i i i e s 7-84
Permanent File Utilitiesttt i, 7-86
ATTACH . .ot et e ittt e e et s 7-86
CATALOG . . ittt ittt ittt ittt iiainnaen s 7-87
29,46 3 211) .2 O 7-89
PEDUMP . .ottt i et e i s 7-89

52 3 01532 A PPN 7-91
PRLOAD. . .ottt e e i i e s 7-94
PNPURGE ...ttt ittt ettt tncn i rnanaaaannnnes 7-95
PURGE . . oottt ittt ittt i e ettt aa e iaea et eaananas 7-96
050 Y o 1= S P 7-97
- 22 1 - 2 O 7-97
ARCHIVE. . oottt it e ittt ettt e e 7-101
COPYC L. . ottt ittt et et ettt e e 7-102
7. N G 7-102

)982 1) g AU 7-105
RANLI . ..ottt it ettt et ettt e eaaans 7-106
UPDATE. .. it i i ittt itanienaessaeannnanns 7-110
Compilationand Assemblyo 7-115
-) 5 7-115
BASIC . . it i e e e e e e s 7-115
(@) - @) O 7-117
COMPASS . .ottt ettt e e e e 7-120

28 0\ ST 7-123

2 1 5= Z 7-129

32 1 7-130.2
MNEF i i it i it e e e e e 7-130.2
PASCAL. ..ttt it e e e e i 7-133
On-LineDocumentationccuiuiiiininrrnrnreneneneenennnas 7-134
HELP oot e et e e e e e e e e e e e e e e 7-134
Cyber Record Manager Utilities. i, 7-137
ESTMATE .ottt ittt it n e e en e 7-137
IXGEN .ottt e et ettt e e e 7-137

53 (S 7 A G P 7-138
Data Base Management Utilities.ot 7-139
0 5) R 7-139
DERCV, DERST .\ttt it i te ettt ittt et ettt 7-141

L 15 7-143
10321570) 2 LU UG 7-144
Program Packagesooiii it i i e 7-145
APEX L ittt et e e e e e 7-145
@] T 7-148

o) g 1 PP 7-149

130 - N0 7-151

8. EXTENSIONS OF CDC COMPASS

INEFOQUCHION &« o ottt ittt e e ettt e 8-1
COMPASS .ottt ettt ettt e e e e 8-25
Permanent File Macroscviveie ittt ittt 8-25
CONNECT . . ittt ettt et e ettt it ieaaanens 8-32

652028

DISCONT & oottt e ettt et ettt i s 8-32
INT RCOM .ot io ettt ittt eneateasaeseaaiensaaaaaaanaaneens 8-33
(0 22533 17 A 8-33
2028 901, 1 -1 OGO PP 8-35
PAUSE . .ottt ettt ettt s 8-35
)., 1> 8-36
07N 2224 21 PP 8-37
242324 6 [P 8-38
204 =L, (G PSP 8-38
FNTSTAT and FNTBLOK ... ittt ittt ie it iaiieiacanenns 8-39
REPRIEVEand RBLOCK iiiii it et ii it iiiecaannaes 8-42
SystemErrorCodes.ot 8-44
APPENDICES
A CHARACTER SETS
Display Code ..o vveeet i et e A-1
‘Display Code/ASCII/EBCDIC ConversionChartooonnenne. A-3
Punch Card Characters. . ..o vttt veeearensenernsoennanneaesoncancnns A-6

D SOFTWARE SUPPORT
E DISPOSE OUTPUT SOURCE CODES
F CARRIAGE CONTROLS

Printers and Character Sets . oot vv e e iveien ettt ini i n i aneaaeaeeas F-1
Carriage Controls vvvvvitiiiiiiiiiaanaiiiaa e F-1
Central Site Carriage Controls. oo ivieii it F-1
Remote Batch Carriage Controlsv vt iiiiii e, F-2
Interactive Carriage Controlsoiiiiiiiinniiniiiinanaenn F-2

I MAGNETIC TAPE LABELS

SCOPE LabElS . .o oot ittt it ettt e e 12
SCOPE Volume Header Label e e e I-3
SCOPEFileHeaderLabelcvvvvireeniiiiiiiiinniieaanaaesns 14
SCOPEFile TrailerLabel.oiiitiiiiii it it iii e I-5

3600 LabElS .. ittt ittt e 1-6
3600 Header Label.o vviiiiii ittt ettt e 1.7
3600 TrailerLabelsvvvit ittt iiiie ittt eaanaenannens 1-8

] CONTROL STATEMENT SUMMARY

Supplements to the SCOPE/HUSTLER Reference Manual
User's Guide Supplement: FORTRAN Extended Library Routines
User’s Guide Supplement: MNF

User's Guide Supplement: LIBEDIT—Cyber Loader Libraries

65202h

Introduction

SCOPE/HUSTLER is a locally developed extension of the CDC SCOPE and NOS/BE Operating
System. The principal difference is HUSTLER's ability to process both batch and interactive jobs,
using a unified scheduling algorithm. SCOPE/HUSTLER has been modified to accommodate most
CDC SCOPE compilers and other major products.

The SCOPE/HUSTLER Reference Manual was written with one major objective: to provide
reference documentation of all SCOPE/HUSTLER features accessible through batch control cards.

The SCOPE/HUSTLER Reference Manual, as the title implies, is not a suitable starting point for
someone who has never used the system. Even experienced users may find sections difficult to read
if they have no experience with that particular feature.

For the benefit of less experienced users, this document devotes several sections to explaining the
terms and concepts that underlie SCOPE/HUSTLER procedures. .

Interactive system users should note that all commands described in this volume may be executed
interactively except those that request magnetic tapes. The emphasis of this manual, however, is
on batch usage. Commands and procedures that relate specifically to interactive use are described
in the Interactive System User’s Guide.

Reading Guide to the SCOPE/HUSTLER Reference Manual

By focusing on different types of users in different sections, we have tried to address this manual to
as many users as possible—from the occasional user of a statistical package to the experienced
programmer. In view of this approach, we have prepared the following Reading Guide. '

Inexperienced Users

This category comprises beginning programmers and also non-programmers who want to use a
specific facility such as SPSS (Statistical Package for the Social Sciences). Usually this type of user
wants just enough information to be able to start running jobs.

1. You should read Section 2.1 to become familiar with the authorization system, and PN
managers (users in charge of a computer account) should eventually read all of Chapter 2.
You should also read Section 2.2 to learn how to change the password for your subaccount.
Although not essential, most users are eager to learn how computer costs are calculated,
which is explained in Section 2.7.

2. Chapter 3 explains the basic differences between batch and interactive processing, including
deck structure and job submission.

3. Basic file terminology is explained in Section 4.1. Programmers should also read the in-
troduction to file structure presented in Section 4.2.

x1

65202h

4. To store programs or data on the computer between runs, you will normally use permanent
files, which are fully described in Chapter 5. If you want to store large amounts of in-
formation but are faced with a tight budget, you will be interested in Chapter 6, a com-
prehensive guide to magnetic tape usage. For beginners, the most important parts are Section
6.3 (obtaining a tape), 6.5 (tape drive reservation), and 6.5.1 (the REQUEST control
statement).

New Users From Other Installations

Each year, the MSU computer system gets new users who have already gained experience using a
different computer—typically, an IBM system at another university. If you are this type of user,
you need most of the information outlined above for the inexperienced user, but you also have
enough background to appreciate an overview of how SCOPE/HUSTLER operates and the
facilities it offers.

1. Chapter 1 outlines the features of the CDC mainframe computer and the SCOPE/HUSTLER
operating system. It also explains basic concepts employed in the design of

SCOPE/HUSTLER.

2. Section 4.3 explains logical file structure and Section 4.4 explains file manipulation using
read/write requests.

3. To familiarize yourself with the range of commands provided by SCOPE/HUSTLER,
browse through the control statement summary in Appendix J. References to full descrip-
tions are included so that you may investigate further any control statements that interest
you.

Experienced SCOPE/HUSTLER Users

Users who are already familiar with SCOPE/HUSTLER will be interested in this manual primarily
as a reference source for commands and procedures that are not described anywhere else. The
principal reference sections are Chapters 7 and 8 and the Appendices.

1. Chapter 7 devotes a separate section to each control statement available to the batch user on
the MSU system. In some cases, a section consists only of an abstract and a reference to
another part of this manual, or to another publication containing the full description.

2. Because magnetic tape processing has been extensively revised in SCOPE/HUSTLER, you
should rely on Chapter 6 for all tape-related commands.

Notation

The following conventions are followed when describing the format of SCOPE/HUSTLER com-
mands.

UPPER CASE required item which must appear as shown (but may be typed in lower case)
lower case item must be supplied by user

separates alternate forms

encloses alternate forms

encloses optional forms

underscores default form

underscores abbreviation

——
e

65202h

1.1

System Description

This chapter presents an overview of the computing system operated by the MSU Computer
Laboratory. The first section deals with the hardware configuration, while the second and third
sections outline the facilities of the SCOPE/HUSTLER operating system. The final sections discuss
the interrelations between hardware and software on the MSU system.

Hardware: The CDC Cyber 750 Computer

The Computer Laboratory operates a Control Data Corporation Cyber 170 series, model 750*
computer. The Cyber 750, housed on the second floor of the Computer Center (the central site),
consists of one Central Processing Unit (CPU) and 17 Peripheral Processing Units (PPU), 196608
(decimal) words of central memory (CM), and 500000 words of Extended Core Storage (ECS). The
Cyber 750, the heart of the academic computing system, is often referred to as the “mainframe.”

Several other, smaller, computers are connected by data channels to the Cyber 750, and perform
special functions.

L The “Front-end” (FREND) computer handles the communication chores between the main-
frame and a wide variety of interactive terminals, minicomputers and input/output devices
at both remote and central site locations. More than 100 terminals or minicomputers can be
connected to the mainframe at one time. The Front-end computer is a Perkin-Elmer 7/32
minicomputer. :

° A PDP-11 minicomputer acts as a communicator between the MSU computing facilities
and those at the University of Michigan, Wayne State University, and Western Michigan
University, through the Merit Computer Network. The network allows users having access
to the facilities at each university to use the resources at the other sites. (See Section 1.1.7
for further discussion of the Merit Network.)

° A Hewlett-Packard (H-P) 2000 ACCESS system is available as an ongoing experiment
regarding the role of minicomputers in instructional computing. The H-P 2000 is a 32-port
interactive system, which has an extensive library of software written in the BASIC
programming language. (Note: jobs may be submitted from the H-P 2000 to the mainframe
for execution.)

The mainframe is connected by data channels to a variety of input/output and secondary storage
devices, including card readers and printers (see Section 1.1.4), magnetic tape drives (see Section
1.1.3), disk storage units (see Section 1.1.2), and the controllers associated with these devices.

1Throughout Computer Laboratory documentation, this name is shortened to “Cyber 750.”
-

1-2 65202h

Figure 1-1, a connection diagram, shows the complete hardware configuration of MSU’s computer
system. The general flow of information through the system may be summarized as follows:

Programs and data enter the system through card readers or terminals, linked by direct cable or
telephone lines from central site or remote locations. Information from these primary input
devices is transferred by the peripheral processors (PPs) through the data channels to one of the
disk storage units. When a job is selected for execution, the peripheral processors transfer
requested programs and data from disk or tape into central memory, where they are accessible to
the central processor (CPU). Note that the CPU communicates only with central memory (CM),
extended core storage (ECS) and the PPs. Output generated by the job follows a similar path in the
opposite direction.

1.1.1
The Central Computer

The mainframe consists of one central processor, 17 peripheral processors, 24 data channels,
196,632 words of central memory, and 500,000 words of extended core storage.

The Central Processor (CPU)

The primary function of the central processor is to perform the computational part of user
programs. The CPU has a built-in set of instructions which are oriented toward floating-point
arithmetic, address in memory calculation, and arithmetic decision-making.

Although the central processor is the main component of the system from your point of view, it
requires “peripheral processors” to communicate with external devices. The CPU does not have
any input/output instructions and communicates only with central memory, extended core
storage and the peripheral processors. To get information into and out of central memory, from
and to external devices, a CPU program must submit a request to a PP program, using central
memory communication areas defined by the operating system.

For a more detailed look at the workings of the CPU, see Section1.4.1.

Peripheral Processors (PPU or PP)

The peripheral processors control the flow of information between input/output devices and the
central processing unit. They are identical computers that execute stored programs independently
of each other and of the CPU; each has its own memory.

The PPUs are less complex and slower than the CPU, and perform various utility functions and

input/output activities so that the CPU is free to work strictly on calculations. User-written
programs cannot access PPUs directly.

Central Memory (CM)

The central memory in the Cyber 750 is a metal oxide semiconductor (MOS) memory.

1-3

65202h

i
!
000 words -of Extended Core Storage \

500,

CcPU

—-—

196,608 words of Central Memory

PP

PP

PP

PP

DATA CHANNELS

7155 disk
contrufter
=5 10 110, 300, 1200
Vadic
Modems [T
- _—=
132 BFC 6o _can 6its] [DPC 5646
- ...ww o [0—= "”:o“saz s Bt _— 7 track tope
. atch tenminals ack tape
controfer ! trom 760
L channet POP' 1120 Agme] _ [Talgamn
cunwetler .,::.Em... _:
channel
cotverter
ok :3:: for :.c...:s
controfles cinck :: .\ (FT AT, 3_.“.—
live.
607 iap#
. _duive,
7% _ - i
3624 M7 tape]
console controfler _dtive
7155 disk X e
controtier drive
i — 1
47/405 ~2c_.- 3447/405 I505/512 3555/512 I6A4/415
bavd repde a:. reade ard 18adol rinter printer ard puncl
n_.a:.i
convetter
%* shared disk systemn @ »
7054
LA
lisk drive
B2
disk drivel 844.44
disk drive
3oyl
lisk drive
@ Dusl 7054 BT @ E Dual 7156 @
B B 44
B dlisk drive
lisk drive]
E 885 02 805 02
.mﬂwmﬁ disk drive disk diive | |disk drive
B4
isk o
2A
» dis o E owarss ()
66x tape
2 — controlter “
ol G oy
L

1-4 65202h

The functions of central memory are:

e to hold the programs being executed by the CPU,

® to store the values that a program is working with, and

e to hold a number of tables and buffers used by the operating system.

Information is represented by binary digits (bits), grouped into “words” of 60 bits each. Each word
typically contains data encoded in:

e numeric form-including floating point and integer data, or
e character form-including “display code” or “ASCIL.”

Display code characters require 6 bits of a 60 bit word whereas ASCII characters require 12 bits.

The CPU must be able to locate each of the words in memory. To accomplish this, each word is
assigned an address. The addresses assigned to words in memory are used by the CPU to refer to
values that are stored in those words. In order to allow the CPU to operate at top speed, the time
needed to store or retrieve the contents of any word of memory must be very short. This time is
called “access time”; the access time for the Cyber 750's memory is 400 billionths of a second
(nanosecond).

Extended Core Storage (ECS)

Extended core storage (ECS) is designed for high speed transfer of data to and from central
memory. Although slower than central memory, ECS transfers data about 100 times faster than
disk storage. Only the SCOPE/HUSTLER operating system has access to ECS through central
memory; this storage medium is not directly available for users’ programs.

Operator’s Console

A human operator monitors the activities of the Cyber 750 computer system via the operator’s
console, which consists of a keyboard and a cathode ray tube (CRT) screen. While the console’s
normal function is operator-system communication, it is also used for system debugging and
hardware testing.

1.1.2
Disk Storage

Central memory and ECS are used by jobs being executed by the CPU at any given time. Because
this high speed storage is so expensive, auxiliary storage media are necessary. Magnetic disks are
the principal storage medium of the SCOPE/HUSTLER operating system. Disk storage is used for
both temporary and long-term storage. The disk system for the Cyber 750 currently provides over
two billion characters of storage space; about 100 million characters are reserved for use by the
operating system and the rest are available for user jobs.

65202h
Disk storage is organized in the following manner. Each disk is divided into tracks; each track
being divided into sectors of 640 characters (64 central memory words). A sector is referred to as a
physical record unit (PRU) because it is the smallest unit of data that can be transferred to or from
the disk.
Physical file structure is discussed in more detail in Section 4.2.

1.1.3

Magnetic Tape Storage

Magnetic tape is used as a backup storage medium, for data transferred from one computer to
another, and for storage of large files and data bases.

Magnetic tapes may be purchased at the Service Window in Room 208 Computer Center. Tapes
may be obtained with a Tape Service Request Form. There are two types of storage: temporary
and permanent. All tapes used with the SCOPE/HUSTLER system must be stored in the Computer
Laboratory’s tape library. This policy reduces user handling and tape malfunctions. More in-
formation on the Computer Laboratory’s policy regarding tapes can be found in Chapter 7 of the
Facilities and Policies Handbook.

The Cyber 750 has four 7-track tape drives and four 9-track tape drives. Both use standard, one-

half inch magnetic tape. The tape drives read and write data at various densities (in cpi, or charac-
ters per inch) and speeds, as follows: -

Type of Data Speed of Equivalent
Tape Drive Densities Tape drive to

(6-bit characters) -

7-track 200 cpi* 150 in/sec 30,000 char/sec
556 cpi 150 in/sec 83,400 char/sec
800 cpi 150 in/sec 120,000 char/sec

(8-bit characters)
9-track 800 cpi 200 in/sec 160,000 char/sec
1600 cpi 200 in/sec 320,000 char/sec

Magnetic tapes are considered to be a slow storage medium because human intervention is
required in order to mount a tape on a tape drive, and because access to the data is on a sequential
basis only. The use of magnetic tapes is described in detail in Chapter 6.

*Data should not be written at 200 cpi.

1-6 65202h

1.1.4
Central Site INPUT/OUTPUT Equipment

The following input/output devices are located at the central site Computer Center.
Card Readers

The central site is equipped with three card readers, each of which has a maximum reading rate of
1200 cards per minute. Each card reader is connected by direct cable, and operates under the con-
trol of the SCOPE/HUSTLER operating system. The readers are available on a self-serve basis
during production hours.

Line Printers

Several line printers are located at the central site. They are of two types: those that print Display
Code, and those that print either ASCII Fancy (upper/lower case ASCII) or Display Code. (For
more information about character codes see Section 4.5.) Each printer has a maximum line width
of 136 characters; you can select either six or eight lines per inch.

The line printers are connected by direct cable, and operate under the control of the
SCOPE/HUSTLER operating system. All but one of these printers are monitored by the
Input/Output (I/0) Room staff. Output is separated and filed in bins by staff members in Room
208. The exception is a self-service printer in Room 208, which is accessible as source “A" (see Sec-
tion 7.4.1 and Appendix E.).

Card Punch

Output can be punched in binary or display code format on the card punch located in the
Input/Qutput Room. The card punch, run by 17O Room staff, operates at a rate of 250 cards per
minute. When punched output is finished, it is filed in card files in Room 208.

Plotter

If you're interested in graphics output you can make use of the CalComp incremental pen plotter
at the central site. You have a choice of four ink colors, two paper widths, and several paper types
and pen sizes. Up to three pens may be used for one plot. Arrangements for plotting output can be
made at the Service Window in Room 208. Refer to the Plotting and Graphics Reference Manual
for more information.

Keypunch Machines

Keypunch machines are available for use in Room 210 Computer Center on a first come, first
served basis. These machines all punch IBM 026 code, which is the standard code accepted by the
central site card readers. Cards can be purchased in small quantities in vending machines in Room
208 Computer Center; boxed cards can be purchased in the Main Office (220 Computer Center).

Lister
The lister, located in Room 208, may be used to list your card deck for proofreading purposes

before reading the deck into the computer system. This service, offered free of charge, saves time
and card handling.

65202h 1-7

Status Display Monitor

The status display monitor is a video monitor that displays the status of central site batch jobs in
the system. Located in the User Work Room (Room 212 Computer Center) the monitor identifies
jobs by their sequence numbers. After displaying all stored information once, the status is updated
and the display is run again; this occurs continually during production time. The monitor is con-
nected by direct cable, and operates under the control of the SCOPE/HUSTLER operating system.

Graphics Laboratory

The Graphics Laboratory, located in Room 508 Computer Center, is available on a first come, first
served basis. A digitizer and Tektronix 4012 graphics terminal may be used by students, faculty
and staff. The key may be obtained at the Service Window in Room 208. The digitizer and
Tektronix terminal are both connected by direct cable and operate under the control of the
SCOPE/HUSTLER operating system.

1.1.5
Remote Batch Terminals

Several low-speed remote batch stations are available for use with the Cyber 750. The remote
batch stations are located on campus and around the state. Each station consists of the following
equipment: a cathode ray tube (CRT) terminal, a card reader, a line printer and a
controller/emulator. These terminals are connected to the central site via hardwired lines or

. dial-up modems. Each remote station is assigned a site identifier (the second character of the job
sequence number).

1.1.6
Interactive Terminals

Interactive (conversational) access to the Cyber 750 is accomplished by low-speed interactive ter-
minals. Terminals are machines used for communication with the mainframe; sending instructions
by means of a keyboard and receiving the computer’s response on paper or on a cathode ray tube
(CRT) screen.

Public terminal areas are located in Room 208 Computer Center, the Undergraduate Library,
Conrad Library, Brody Hall, and various other sites on campus. In addition, many departments
and individuals own or lease terminals for use with the mainframe. Many of the public terminals
are “hardwired”, which means that the terminal is physically linked and automatically connected
to the computer when the terminal is turned on, or when a special “log-in” switch on the terminal
is pressed. If a terminal is not hardwired, it requires the use of a telephone and an acoustic coupler
(modem) to link with the mainframe. The appropriate telephone number is dialed and the handset
.- is placed into the acoustic coupler; data is transmitted over the phone lines.

The transmission rates of data to and from the terminals vary. The current supported transmission
(baud) rates are 110 (10 characters per second), 300 (30 characters per second), and 1200 (120
characters per second). ‘

Communication chores for the SCOPE/HUSTLER interactive system are handled by the Front-
end system (FREND). The Front-end computer is connécted to the mainframe via a high-speed
channel interface. Phone lines in the Front-end system enable interaction between the Cyber 750

1-8 65202h

and a wide variety of terminals and minicomputers. The Front-end offers keyboard editing
functions as well as a set of device commands that modify certain terminal characteristics and
input/output functions. See Chapter 8 of the Interactive User’s Guide for more information about
the Front-end.

1.1.7
Merit Network

The Merit Computer Network connects the MSU computing system to those at Wayne State
University, the University of Michigan and Western Michigan University. The network allows all
users with current access to the facilities at each university to use the resources at any of the other
sites, if appropriate authorization is acquired.

The computer at each center (host) is interfaced to a PDP-11 minicomputer, called a Com-

munications Computer (CC), which preprocesses the incoming and outgoing information to make

it compatible with the host. The CCs transmit and receive information over standard telephone
- lines.

The Merit Network provides direct interactive access through Hermes, Merit's network-to-
terminal interface. Dialing directly into Hermes provides access to any Merit host computer
without going through the local system. If you are not near one of the four network nodes, Hermes
can be accessed by a long-distance telephone call or through Telenet. Besides providing network
access, Hermes offers keyboard editing functions as well as a set of device commands that modify
certain terminal characteristics and input/output functions.

Telenet is an international telecommunication network linked with Merit. It allows interactive use
of the Merit host computers from anywhere in the United States and a score of foreign countries.
Currently the link is inbound only, from Telenet into Merit.

1.2
Software: The SCOPE/HUSTLER Operating System

SCOPE/HUSTLER consists of a group of programs, subprograms, and data tables that form the
operating system for the MSU mainframe computer. It was derived from the standard CDC
SCOPE and NOS/BE operating systems, with extensive modifications made by the Computer
Laboratory Systems Development group. One of those modifications was the creation of
HUSTLER, a scheduling mechanism that features the integration of batch and interactive
processing.

SCOPE/HUSTLER has several important functions:

Allowing access to the computer

Scheduling execution of batch and interactive jobs
Organizing information within the computer
Long-term storage and protection of information
Accounting and authorization '
Providing utilities to aid users in processing jobs

SOk wbh e

In short, its functions are to ensure efficient use of the computer’s capabilities and to provide sup-
port services for users. The following sections take a closer look at the specific functions.

65202h 1-9

1.2.1
Access: Interactive and Batch Processing

Access to the SCOPE/HUSTLER system is gained through interactive and batch processing.

In batch processing, you prepare a complete job and submit all of your instructions to the com-
puter at one time. Batch processing normally relies on the use of card decks which are read into the
computer via a card reader; in addition, batch jobs can be submitted from an interactive terminal
(see Section 3.6.2 of this manual and Section 7.2 of the Interactive User’s Guide).

In interactive processing, you perform a task step-by-step, issuing instructions individually and
receiving a response from the computer after every piece of information is processed. Interactive
processing involves the use of computer terminals.

The interactive system receives and prepares commands for processing by SCOPE/HUSTLER and
relays output back to your terminal. Except for magnetic tape requests, all commands recognized
in batch mode can be entered under the interactive system. Since in interactive mode you may
create and submit files for processing as batch jobs, this limitation can be overcome by creating a
batch job that will request a magnetic tape and copy its contents to a disk file, which can then be
accessed from a terminal.

Because of the special nature of interactive processing, there are a number of commands which
have no equivalent in batch use; these are referred to as “interactive commands” as opposed to
“SCOPE/HUSTLER commands.” See Chapter 7 of this manual and Chapter 2 of the Interactive
User's Guide for further information.

1.2.2
Job Scheduling

The job scheduling structure of SCOPE/ HUSTLER was developed to integrate batch and in-
teractive processing. It is based on the following components: .

1. a scheduling structure, known as the job pool, designed to hold both batch and interactive
jobs;
2. a swapping routine called by the scheduler to transfer jobs back and forth between central

memory and disk storage or ECS; and

3. a unified scheduler which repeatedly examines all jobs in the pool and selects the “best”
combination for execution at the control points (areas in central memory).

Four times or more each second, the scheduler scans the job pool and evaluates a scheduling for-
mula for each job executing or waiting to execute. This formula is designed to satisfy the following

needs:
1. to minimize response time for interactive users,
2. to ensure equal machine utilization for all users, and

3. to maximize utilization of central memory.

1-10 65202h

Timesharing is an important element of interactive processing. Interactive jobs are initially given a
higher priority than batch jobs, to minimize response time. The scheduler tracks the length of time
a batch job remains in the system to ensure that it is not unnecessarily delayed.

The concepts of “job pool,” “control points,” and other terms related to job processing are ex-
plained in Section 1.4.

1.2.3
Organization of Information Within The Computer: Files

A file is a set of logically related information which is stored on an external device, such as a
magnetic tape or disk. One of the distinctive features of SCOPE/ HUSTLER is that all information
is handled in terms of files. In other words, each job, each program, each collection of data, and
each set of output is either a file or part of a file.

The comprehensive use of files in SCOPE/HUSTLER is designed to minimize device-dependent
procedures. In general, you can read or write a file, or copy data from one file to another, without
regard to where the files are stored. For detailed information on files, see Chapter 4.

The Role of Files in Batch Processing

The role of files in batch processing within the SCOPE/HUSTLER system can best be seen by
tracing the progress of a batch job through the system. The first step in preparing a job for batch
processing is to organize a card deck into a file composed of one or more sections, where each sec-
tion is a sub-deck terminated by a special end-of-section card. The first section, called the control
section, consists entirely of control statements, i.e., statements containing commands to
SCOPE/HUSTLER (see Chapter 3). Subsequent sections, if any, contain data for the programs
called in the control section.

By reading in the card deck, the system transfers the information to disk storage, assigns it a file
name (the job sequence number), and designates it as an input file. The system also assigns the file
a priority computed from the job cost and rate group parameters of the job card (one of the initial
control statements). Ordered by priority, the input files form an input queue. When a slot becomes
available, the system “removes” a file from the front of the input queue and assigns it an entry in a
scheduling table known as the pool. The pool is comprised of all jobs eligible for execution at a
control point (see Section 1.4.3).

When the job begins execution, the job file is changed from type input to type local, indicating that
it “belongs” to a job. At the same time, the file name is changed from the job sequence number to
INPUT. Then the first section of INPUT is read into an area of memory used by
SCOPE/HUSTLER as its source of control statements, and the file is left positioned at the start of
the first data section. Reading from file INPUT, therefore, is equivalent to reading data cards from
the job deck. The system also creates a local file named OUTPUT to collect system-generated
program listings, diagnostics, maps and dumps, and any output you choose to write on it. Unless
you request some other processing, file OUTPUT will be routed to a printer and all local files will
be eliminated from the system at the end of the job.

A job consists of one or more programs, sequenced in order of desired execution. When these
programs are executed, they generally establish local files, used for the duration of the job’s
execution, either to hold output or to access programs and data saved by previous jobs. Magnetic
tape files and disk-resident permanent files must be explicitly created and requested with a
REQUEST or an ATTACH command before they are used. Local disk files are implicitly

65202h 1-11

(automatically) created when specified by assigning a name (often referred to as an "Ifn,” which is
short for local file name) in a control statement option or when referenced in your program. In ad-
dition, many system utilities create local files without any specification from you.

For the sake of illustration, suppose your job consists of the following card deck.

FNC
Job card
rassword
FTNS,
LGO.
CATALOGy TAFE1 s MYPERMANENTFILE.,
7/8/9
FROGRAM SAMFLE

.

7/8/9
data
6/7/8/%

Aside from the initial identification cards, each control statement may be considered a request to
load and execute a program from the file, part of a file library, indicated by the control statement
flagword (see Section 1.3.1 for discussion of control statements). In this example, the “FTN5.”
card refers to the FORTRAN Extended version 5 compiler stored on the system library. The com-
piler uses several files: by default, it reads the second section of INPUT (the source cards for
program SAMPLE); it writes a source language (the code you submit) listing of the program on
OUTPUTS; it writes the generated object code (code produced by the compiler) on LGO (a default
file name); and it creates a number of scratch files for its own use.

The next control statement, “LGO.”, requests the system to load and execute the contents of LGO,
the local file just created by FINS. SAMPLE, the program contained on LGO, uses implicitly
created local files INPUT and TAPE1. The CATALOG statement changes the status of TAPEL
from a local file to a permanent file named MYPERMANENTFILE.

At the end of the job, all local files associated with the job are disposed of in the following way. If
the file resides on a magnetic tape, the tape is rewound and unloaded and the local file is dropped
from the system. If the file resides on a disk unit, the system first determines whether you have
requested that it be printed or punched. If so, the file is changed from type local to type output, its
name is changed to the job sequence number, and it is retained by the system until is has been
printed or punched. To print or punch the contents of a file, you assign a disposition code, which
specified how the file is to be processed after it has been released from the job. For convenience
certain file names, such as OUTPUT and PUNCH, have default dispositions.

Options are available to specify how a local file is processed after it is released from your job. See
the DISPOSE command in Section 7.4.1 for further discussion. ’

Local disk files that are not given a disposition are immediately discarded at the end of the job. To
retain this type of file for use by subsequent jobs, you may CATALOG it as a permanent file (see
Chapter 5).

1-12 65202h

The Role of Files in Interactive Processing

Because of the nature of interactive processing, the role of files is somewhat different than in batch
processing. The concepts of local files, permanent files, and file disposition apply to interactive
jobs. Although the file names INPUT and OUTPUT no longer have any special meaning, others
such as PUNCH, PUNCHB and P80C, retain their status. The role of input and output files is
largely replaced by connected files.

Interactive users communicate with executing programs using connected files, which transmit in-
formation to and from the terminal rather than store it on the disk as in batch. Once a file is con-
nected it can be used for input, output or both; that is, there is no distinction between files con-
nected for read or write operations. (Note that a READ request on a connected file causes the
program to pause until input has been received from the terminal keyboard. A WRITE request on
a connected file causes the data to be immediately displayed or printed at the terminal.) You may
connect any temporary file at any time. All file positioning commands are ignored when made on
connected files. See Chapter 5 of the Interactive System User’s Guide for further information.

An interactive job may be assigned a special EDITOR work file named EWFILE, which can be used
to construct and edit files.

File structure, permanent files, and magnetic tape files are discussed at length in Chapters 4, 5, and
6 of the this manual. EDITOR work files and connected files are covered in Chapters 3 and 5 of the
Interactive System User's Guide.

1.2.4
Protection and Storage of Files

As already mentioned, the SCOPE/HUSTLER system is based on files and file storage. A file kept
on disk storage in the computer system is a permanent file. Permanent files make it easy to share
information among several jobs.

There are five types of permanent file access: access (turnkey), read, extend, modify, and control.
Each can be protected with a separate password. The location and identification of permanent files
are maintained by the system in special, disk-resident tables. These tables ensure that a permanent
file is not destroyed when a job using it ends. See Chapter 5 for more information on permanent
files.

MSU has invested considerable effort in devising a back-up tape storage system for permanent file
protection. To improve security of tape files the tape visual reel number and your problem number
are automatically checked when the operator attempts to assign a labeled tape. Rewriting a labeled
tape is restricted to the PN owner of the tape unless the owner has specified no protections. See
Chapter 6 for more information on magnetic tapes. .

65202h 1-13

1.2.5 :
Accounting and Authorization

An important factor in authorization on the SCOPE/HUSTLER system is the Authorization File.
Several identifiers are required to execute a job:

1. a problem number (main account),
2. a User ID (sub-account), and
3. a password (a protection for the ID).

The problem number (PN), its IDs, passwords, PN and ID dollar balances, and problem number
limits are recorded in the Authorization File. Before allowing a batch job to execute,
SCOPE/HUSTLER checks the Authorization File to verify that:

the PN is authorized,

the specified ID is authorized for the PN,

the specified password is correct (if required),

the PN and ID dollar balances are positive,

the requested job limits are within the authorized PN limits, and the requested job cost limit
is within the current ID and PN dollar balances.

el b ol o

If a job fails any of these tests, it is aborted immediately. In interactive mode you are given three
chances to correctly enter your PN, ID and password. During execution, authorization data is
used to determine whether certain types of control statements are authorized and whether certain
resource requests are within the PN limits.

Use of various system resources, such as central memory space, is controlled by a set of values
known as problem number limits. Overall usage is controlled by a dollar balance, which is kept
for the problem number and for each of its IDs. The cost of each job you run is decremented from
both your problem number and ID dollar balances.

SCOPE/HUSTLER ‘monitors the computer services (CPU time, PP time, central memaory usage,
etc.) and supplies used by each job and records these statistics in the system dayfile (see Section
2.7.3). A partial summary of the job cost is printed at the end of each job in the job dayfile (see
Section 3.7.6). To provide greater flexibility and responsibility for your accounts, you are
classified as either problem number managers or as subaccounts of a manager's problem number.
Users who receive their authorization directly from the Computer Laboratory are designated as
problem number managers. A problem number manager can, in turn, authorize other individuals
by assigning each a user ID, a password, and a portion of the problem number dollar balance. A
problem number manager can control the dollar balances allotted to each of the user IDs as well as
many of the problem number limits. For more detailed information, see Chapter 2.

1.3
Features of SCOPE/HUSTLER

The basic function of the SCOPE/HUSTLER system is to ensure efficient use of the computer’s
capabilities and to provide support services for users. The following sections outline some of the

facilities of SCOPE/HUSTLER.

1-14 65202h

1.3.1
Control Statements

Control statements are commands to execute a program in the operating system, user library, ora
local file.

In batch mode, control statements appear only in the first section of the job. This section consists
of identification and authorization cards: sequence card, problem number card, job card and
password card (if required; see Chapter 2). In interactive mode, the identification and
authorization statements are combined on one line. Other control statements follow and specify
how the job is to be processed.

The syntax of each control statement consists of a flagword, followed (optionally) by a parameter
list, followed by a control statement terminator. When parameters are specified, the flagword is
separated from the first parameter by a delimiter; remaining parameters are also separated from
one another by delimiters. Control statements are discussed in detail in Chapters 3 and 7.

1.3.2
Program Compilation

A variety of compilers and assemblers are available. A compiler is a language processor which
translates programs, written in a particular programming language, to machine language. An
assembler is a language processor for an assembly language, a computing language in which each
machine language instruction is represented in symbolic notation.

The major compilers and assemblers available on the SCOPE/HUSTLER system are:

BASIC BASIC language compiler (see CDC BASIC v3
Reference Manual).

COBOL 4 COBOL language compiler (see CDC COBOL
Reference Manual).

COMPASS Control Data Machine language assembler (see CDC
COMPASS v3 Reference Manual). |

FTN 4 FORTRAN IV Extended language compiler (see CDC

- FORTRAN Extended v4 Reference Manual).

FINS FORTRAN 5 Extended language compiler (see CDC
FORTRAN Version 5 Reference Manual).

PASCAL PASCAL language compiler (see PASCAL User
Manual).

1.3.3
Applications Software

A variety of language processors, utility programs, and application packages are available to users
of the computer system. Most of the major software products are supplied and supported by
Control Data Corporation. See Appendix D for a list of supported software.

In addition to the CDC products, the Computer Laboratory has obtained many programs and
packages through exchange agreements with other computer installations. These programs reside
in either the HUSTLER Auxiliary Library or the Unsupported Library, UNSUP.

65202h

1.3.4

1-1!

The HUSTLER Auxiliary Library is a working library. Programs are stored on disk files or tapes,
and are retrieved by means of the system utility, HAL. Thus, programs on the library are accessed
with this general control statement:

HAL,programname, parameters.

To find out if a particular program is on the HUSTLER Auxiliary library, or to obtain a descrip-
tion of that program, use the command

HELP, programname.
or refer to Chapter 7 of this manual.
A variety of programs reside in the UNSUP Library. In general, these are programs written for a

specific purpose which may be useful, in whole or part, to other users. You may access a list of the
programs on the UNSUP Library by using HELP in the form,

HELP,L*UNSUP,UNSUP.
Descriptions of individual UNSUP entries are available via ‘HELP,L*UNSUP, entryname.’

Debugging Aids

1.3.5

Debugging aids are useful if you are interested in saving time and money. Debugging aids can be
divided into the following categories:

Interactive Debugging Facilities
Compilation Aids

System Error Messages

Dumps

Loader Error Detection

For more information on available debugging aids, see Chapter 6 of the Interactive System User’s
Guide and Chapter 7 of this manual.

System and User Libraries

SCOPE/HUSTLER provides several system libraries, containing operating system routines,
utilities and compilers. MSU also maintains several libraries of frequently used programs.

A user library is a collection of program and data files together with an index to enable quick
access to any of them. A variety of utilities are incorporated in the SCOPE/HUSTLER system to
enable you to create, update, and use your own library of programs or data, stored in either
source or binary form. Some of the utilities are:

UPDATE designed especially for large libraries of source
programs. Modifications can be made on a card-by-
card or a deck-by-deck basis. See the CDC UPDATE
Reference Manual. (CDC publication number
60449900).

1-16

EDITOR

LIBEDIT

CYBER
LOADER

More information on library creation facilities is available in Chapter 7.

1.4

used to build, maintain, and use libraries having the
same retrieval features as the HUSTLER Auxiliary
Library. It has entry-by-entry update capabilities.
See the HAL Reference Manual.

designed for the interactive system but can also be
used in batch mode. Its chief attraction is intra-line
editing in addition to line-by-line editing. It cannot
handle binary files. See Chapter 3 of the Interactive
System User’s Guide for interactive usage and Sec-
tion 7.8.1 of this manual for batch usage.

used to build and maintain collections of relocatable
and absolute binary programs and subroutines for
use by the Cyber Loader. It has deck-by-deck update
capabilities. See the CDC Cyber Loader Reference
Manual and the User's Guide Supplement:
LIBEDIT—Cyber Loader Libraries.

places programs into memory so that they are ready
for execution. Loader input is obtained from local
files and libraries. Upon completion of the program,
execution of the program can be requested. Loading
also performs services such as generation of a load
map, presetting of unused storage to a specified value
and generation of overlays or segments. See Section
3.7.3, the User's Guide Supplement: FORTRAN
Extended Library Routine and the CDC FORTRAN
Extended Reference Manual for further discussion.

Program Communication with SCOPE/HUSTLER

65202h

Many elements are interdependent in the working of a computer system. The information included
in this section will facilitate understanding of the mainframe computer’s inner workings and com-
munication with the SCOPE/HUSTLER system.

1.4.1.

Hardware/Software Interrelations

To understand the overall design of the SCOPE/HUSTLER system, one must bear in mind the
unique configuration of the Cyber 750. In summary, the central processor has very high-speed
calculating abilities but lacks the means for getting information into (or out of) memory from (or
to) an outside source. All input and output is handled by the peripheral processors, whose small
memory word-size and simple calculating abilities are tailored to these relatively low-speed tasks.

65202h 1-17

Temporary storage devices within the CPU are called registers. The central processor has a set of
24 operating registers:

a. eight 60-bit operand registers (X0 through X7), in which most of the calculation is done;

b. eight 18-bit address registers (A0 through A7), which control the transfer of data between
central memory and the operand registers; and

c. eight 18-bit increment registers (BO through B7), which are used primarily for program
indexing.

In addition, the CPU has several special purpose registers:

e The P (program address) register contains the address of the next instruction word to be
executed.

eThe RA and FL registers hold the reference address and the field length (see Section 1.4.3).
Each job occupies a contiguous block of words in central memory. References to all
addresses within each block are made in relation to the reference address (RA), the first
address in the block. The length of the block is the field length (FL) of the job. At any given
instant, the central processor is confined to the block of central memory starting at the
address contained in RA and extending the number of locations indicated by FL. All
memory addresses referenced by.central processor programs are relative to the starting
address held in RA.

@ The EM (exit mode) register specifies certain classes of error conditions under which the
CPU is to interrupt execution and notify the operating system.

See Section 1.4.5 for further information on registers.

The peripheral processors (PPs) are logically independent processors each running its own
programs. They free the CPU of the system utility functions, e.g., input/output functions, up-
dating status information, and so on. However, two facts are worth noting at this point:

1. External communication with the CPU is totally dependent upon the PPs. The CPU is
responsible for functions dealing with ECS since the PPs have no direct access to. ECS. Any
PP, by executing one of its instructions under the coordination of software, can write into
(and read from) any area of central memory. In a hardware sense, the CPU cannot directly
affect any PP. Software programming conventions coordinate CPU and PP interaction.

2. When the computer system is deadstarted (see Section 1.5), the PPs are forced to read and
are filled with programs from a system tape while the status and control register allows any
PP to deadstart another PP or to “exit” from the current instruction. No PP can otherwise
alter the registers of another PP, put information into its memory, or even read information
out of its memory. Obviously, to avoid chaos the PPs must be programmed to work
together. This is done using a system of “requests.” See Section 1.4.6 for more information
on requests.

The Cyber 750 is coordinated by loading one PP with a program called the Monitor. The CPU
stores a program called CPUMTR in central memory resident. This CPUMTR and Monitor in-
terface to coordinate CPU and PP interaction. The other PPs contain a resident routine for
receiving and responding to requests from the PP Monitor. This PP resident routine repeatedly
examines a central memory communications area for messages from the Monitor, instructing the
PP to load and execute one of the PP system library routines. If that program must make a request

1-18 65202h

of another PP, the request is relayed through the communications area to the Monitor. Thus, all
PPs are programmed so that they will never do anything that is not approved in advance by the
Monitor.

Deadstart stores a program called CPUMTR in Central Memory Resident (CMR). The CPU
scheduling activity is coordinated by CPU software called the Corridor which decides which task
or user control point should get the CPU next, processes all requests issued via exchange jump in-
structions, updates CPU time, and so on. CPUMTR and PP Monitor software interface to coor-
dinate CPU and PP activities.

All SCOPE/HUSTLER routines are recorded on a disk-resident file. Most are called into memory
only when needed, but copies of certain frequently used routines are also kept permanently in
central memory, extended core storage, or a PP memory so they can be executed with minimal

delay.

SCOPE/HUSTLER also builds a number of tables and buffer areas in central memory and ECS to
communicate between user jobs and system routines, to communicate between the peripheral
processors, and to record the allocation of disk storage and other machine resources. The portion
of central memory in which this system information is held is referred to as CMR (Central
Memory Resident) and cannot be accessed by users’ jobs.

1.4.2
Multiprogramming

SCOPE/HUSTLER partitions central memory so that it can be allocated to several jobs at one
time. At any given instant, only one job can be using the central processor, but several can be per-
forming input/output. In fact, one job can have more than one input or output operation in
progress simultaneously. The simultaneous execution of two or more jobs is known as
multiprogramming.

To illustrate in greater detail the way in which the central and peripheral processors are shared,
suppose that the program currently being executed in the CPU needs to process an image from file
INPUT, which is stored on disk. To transfer this data into central memory, a CPU program stores
a read request in a predefined memory location (RA+1, the second location of the job field
length), which is repeatedly examined by a CPU system supervisory task (see Section 1.4.1).

When a non-zero word is encountered at this location, the CPU monitor will decide whether it can
process the request itself (as in END, ABT, and others), pass it to another CPU Monitor task (as in
CIO requests), or to assign the request to a peripheral processor. There are two kinds of
responses: first, the CPU Monitor will acknowledge receipt of the request by zeroing theRA + 1
location and, later, the program processing the request will acknowledge completion of the opera-
tion by setting a flag in an appropriate location in the program.

If the request does not specify auto-recall, the program may continue to execute and initiate other
operations. In most cases, however, the request will specify auto-recall, and the CPU Monitor will
reassign the CPU to another job while the input/output is performed. Returning to our example,
during the time it takes the PPs to process the read request and transfer a block of data from the
disk into central memory, other jobs will be able to execute on the order of 50,000 to 100,000 CPU
instructions. Upon completion of the read operation, the CPU Monitor will be notified that the job
is again ready to use the CPU. :

Although the preceding paragraphs describe what actually happens when a line of information is
ready by the computer, the RA + 1 request, the auto-recall option, and the system acknowledg-
ments are transparent to you except at the assembly language level.

65202h 1-19

1.4.3
A Closer Look At The Scheduling Process

SCOPE/HUSTLER permits several jobs to occupy central memory at one time and to share the
central and peripheral processors by multiprogramming. To keep track of these jobs, the system
assigns each to a control point.

Two blocks of central memory are associated with each control point: the control point area and
the job field length. The control point area is a 200s word block which holds information used to
control execution of the job. This information includes:

1. the exchange package, in which the contents of the CPU registers are saved when the CPU
is released and from which the registers are restored when the CPU is reassigned;

2. a control statement buffer, containing system commands to be executed, plus a pointer to
the current command;

3. job identifiers, such as the job sequence number, problem number, and ID;

4. job limits obtained from the job card and the Authorization File, and statistics on ac-
cumulated machine usage, such as CPU time, PP time and interactive connect time; and

S. flags indicating the selection of varidus processing options.

The control point area is located in a portion of central memory which is inaccessible to you, but
several utilities make it possible to retrieve some of the information contained there.

The job field length is a variable-length block of memory into which user and system programs are
loaded as they are called and executed by the job. The job field lengths associated with the control
points are contiguous and arranged in order of control point number. To prevent jobs from in-
terfering with one another, each job can only reference the memory locations within its current
field length. Any attempt to reference a location beyond its boundaries will normally cause the job
to abort.

Central memory used by a particular job may be managed by you as well as by
SCOPE/HUSTLER. To minimize the amount of central memory used by a job,
SCOPE/HUSTLER automatically selects the the field length used to execute all system programs.
User programs are loaded at a user-specified field length, but after loading, the field length is
reduced to the minimum necessary to execute the program. You can, and in some instances, must,
override the system controls for certain types of programs.

The job field length is defined by a starting address, called the reference address (RA), and the
number of words in the block, which — like the block itself — is called the field length (FL). These
values are held in the control point area and are loaded into the RA and FL registers of the CPU

.. when it is assigned to the job at that control point. Every reference to a memory address by a
central processor program is relative to the current reference address. For example, a user's
reference to location 100 is actually a reference to location RA +100. The reference address enables
SCOPE/HUSTLER to relocate a program without changing references within the program. The
field length is also variable, depending on the program being executed.

The pool, as described in Section 1.2.2, is part of the locally developed scheduling structure. The
pool is a logical extension of the control points. Just as the control points consist of all jobs that
can be scheduled to the CPU, the pool consists of all jobs that can be scheduled to a control point.

1-20 65202h

In other words, there are two levels of scheduling: the unified scheduler determines which jobs are
to be multiprogrammed, while the Monitor determines how the central and peripheral processors,
the data channels, and the magnetic disks are to be shared among those jobs.

The criteria used to select jobs for execution at a control point are maintained within an area of
central memory known as the pool table. Every quarter second, the scheduler scans this table and
evaluates a priority formula for each job either ready to execute, or executing, at a control point. If
necessary, the scheduler will “swap out” a job assigned to a control point in order to allow a higher
priority job to execute. Thus, a job is likely to be assigned to several control points before ter-
minating. When a job is swapped out, the contents of its control point area are saved in ECS and
the entire job field length is written to either disk or to ECS. The pool provides a means for keeping
track of this information in much the same way that the control point functions while the job is

swapped in.

The pool contains both batch and interactive jobs. An interactive job enters the pool as soon as
you log in and remains there for the duration of the interactive session. Batch jobs enter the pool
from the input queue according to:

1. the priority calculated from the rate group;

2. job cost limit, central memory and MT/NT control parameters of the job card; and

3. from the “age” of the job within the queue.

Within the pool, a job may be in any of three states:

1. waiting for a certain condition to be satisfied,
2. ready to execute (i.e., ready to “swap in”),
3. executing at a control point.

If a job is executing at a control point, it will be swapped out and placed in the “wait state” for any
of the following conditions:

1. The job has requested a tape, but not enough tape units are currently available to meet its
tape unit reservation. :

2. Thejob has requested a tape, but the operator has not yet mounted and assigned it.

3. Thejob has attempted to attach a permanent file which is currently assigned to another job
and multiread access is not possible.

4. The job has made a request which requires the operator to enter a command (e.g., GO)
before the job can proceed.

5. The job is an interactive job waiting to receive a command or program input from the
terminal.

6. Thejob is an interactive job waiting for the interactive system to finish transmitting output
to the terminal.

7. Thejob is being held out by the operator.

'Reduced-rate jobs (RG1) will not be admitted to the pool until 5:00 p.m. each day.

65202h _ 1-21

8. Thejobis an interactive job waiting for a Front-end command reply.
9. Thejob is waiting for a common disposition.
10. Thejob is waiting for time to pass (status, repeat/reread).

When the wait condition is satisfied, the job automatically becomes eligible to swap in; it enters
the “ready to execute” state, A job may also be swapped out and placed directly in the ready state
if it requests more central memory than is currently available, if a higher priority job must swap
in, or if the operator requests to have the job swapped out. The factors used to select which jobs
will be swapped in have been carefully chosen and weighted in order to balance three needs:
adequate response time to the interactive users, optimum use of central memory, and equal
distribution of machine utilization among all jobs within the pool.

1.4.4
Exchange Jumps

An exchange jump consists of exchanging the contents of the CPU’s registers with the contents of a
specified area of central memory. This enables the operating system to reassign the CPU from one
program to another without losing its place in any of the programs. Execution of a CPU program
is initiated by an exchange jump. An exchange package is that area in which the contents of the
CPU registers are saved when the CPU is released and from which the registers are restored when
the CPU is reassigned. The particular program is defined by the contents of the exchange package
area before the exchange jump took place. In order for the program to execute, the proper contents
of its operational registers must be loaded into the CPU. These contents are what is contained in
the exchange package area associated with the program.

1.4.5
Registers

The registers, temporary storage mechanisms, are grouped to provide three types of functions:

1. A registers (AO through A7) contain the addresses of words in central memory.

2. X registers (X0 through X7) contain operands used in calculations, and the results of
calculations.

3. B registers (BO through B7) have no connection with central memory. B registers generally

provide means for program indexing.

When an address is placed in any register Al through A5, the contents of that address in central

.. memory are read into the corresponding operand register X1 through X5. When an address is
placed in register A6 or A7, the word in the corresponding operand register X6 or X7 is stored in
that address in central memory.

Registers X1 through XS hold operands read from central memory for use in calculations, and
registers X6 and X7 hold results of calculations to be sent to central memory. The operands are
manipulated by the arithmetic section of the central processor.

1-22 65202h

The A0 and XO registers are used for scratch purposes or intermediate results, or for executing in-
structions communicating with ECS. They have no functional connection with central memory or
with any other registers.

The B registers are used for counters for such functions as program indexing. The B registers have
no functional connection with central memory. The BO register is of particular interest; it provides
a constant 0 which can be used for tests against zero.

1.4.6
Program Requests

Certain operations, such as the transfer of information between central memory and an external
device, cannot be performed directly by the user’s program, but must be requested of the operating
system. Although you may not be aware of it, each read, write, or rewind statement causes the
program to store a program request in location 1 of the job field length (RA +1). Few users issue
program requests directly in this manner because higher level procedures are provided by the
programming language or, for COMPASS programmers, by system macros. In addition, requests
made to the operating system in this manner are not supported by the Computer Laboratory as
changes to the operating system may make the particular procedure obsolete.

Input/output procedures are provided for reading and writing files in either binary or coded
mode, positioning files forwards or backwards, and accessing file sections in either a sequential or
indexed (“random-access”) manner. Other system requests may be used to generate dumps, to ob-
tain the current time and date, and to obtain various information maintained for job control (e.g.,
the accumulated CPU time).

1.5
SCOPE/HUSTLER Maintenance

The following features are implemented by the Computer Laboratory for system and file main-
tenance.

1.5.1
File Backup

Usually during the early morning hours of each scheduled production day, or at the end of
scheduled weekend production, the most current version of each permanent file, that has been
created or changed since the last permanent file back-up, is dumped (copied) to tape. The Com-
puter Laboratory backup copy of a permanent file will be up to one day old. In case of accidental
destruction you can reload permanent files from the Computer Laboratory tape within a two week
period. After two weeks, it is possible that a copy of the file exists although it may not contain
your most recent modifications. To locate such a copy, contact the consultants.

Another set of tapes is used to hold backup copies of permanent files purged by the Computer
Laboratory. Usually at the end of the production day (not weekends), each permanent file is
examined to determine if :

65202h

1.5.2
Deadstarts

1-23

1. the file’s retention period has expired,
2. the owner's problem number has expired, or
3. the owner’s problem number or ID dollar balance has been expended.

Files that fall into any of these categories are dumped to tape and then purged. While these backup
files are maintained primarily as insurance against a serious system failure, they also protect you
against personal errors. Files that have been dumped and purged are kept for a minimum of 14
days. You can locate the visual reel name (VRN) of the purged files using PFLIST and can recreate
the file by using the PFLOAD control statement (see Section 5.4). A permanent file cannot be
dumped if it is attached to a user’s job. Interactive users will be notified prior to any dump opera-
tion so that they can return files they wish to have dumped.

In the event of a system failure or user error which results in the loss of permanent files, normally
only the files created or the changes made during the current production day should be lost. All
other files can be recreated from the backup tapes.

Permanent files are discussed in more detail in Chapter 5.

An operating system is like an enormous, continuously-running program that reads in user jobs
and produces sets of program listings, messages, maps, and dumps. Like any program, the
operating system must at some time be loaded into the computer’s storage facilities and receive
control of the processing units. This procedure is called a deadstart. Several deadstarts may be
used to load SCOPE/HUSTLER: recovery deadstarts, normal deadstarts, last ditch recovery
deadstarts, and initial deadstarts.

Recovery Deadstarts

A recovery deadstart is usually sufficient to restore the operating system after a crash; it reloads
certain PP-resident programs and reconstructs certain tables from a disk-resident copy of the
system library. Jobs that are in the pool and assigned to a control point are returned to the input
queue (rerun). Jobs that are in the pool and swapped out are rerun only if they were using a
magnetic tape, and the tape was unloaded during the deadstart procedure. Therefore, the only
jobs that should be lost in a recovery deadstart are those which were executing at a control point
and for which the user had specified 'RERUN,OFF.’ (see Section 7.12.7).

After the recovery, interactive users are all disconnected and must log in again. If you log back in
within two hours after production resumes, the local files that were in use in your earlier session
will be automatically reassigned to your terminal. Your permanent files must be reattached.

Normal Deadstarts

A normal deadstart is performed prior to every production period and, when necessary, after
“fatal” crashes. The normal deadstart program copies the entire system library from magnetic tape
to a disk file. It then loads appropriate programs and data structures (tables) from the disk file into
the peripheral processor memories, central memory, and ECS. By setting up a new File Name
Table (see Section 4.6.3), the normal deadstart program destroys all previously existing jobs.
During all scheduled production shutdowns, and whenever a normal deadstart appears imminent,

1-24 65202h

the operator will attempt to return all batch jobs in the pool to the input queue and then save the
input and output queues. These jobs will be re-entered when production resumes. Interactive
users, when warned of the shutdown, should catalog (make permanent) any temporary files that
they wish to retain for another session.

Last Ditch Recovery

The last ditch recovery is used when recovery deadstart has failed. It begins much like normal
deadstart. After the deadstart is complete, a program is run which attempts to reconstruct, from a
tape that contains a dump of CM and ECS, the input and output queues as they existed before the
deadstart. This process was developed to recover the input and output queues from loss in the
event of a system failure from which recovery is not possible. A last-ditch recovery can only
recover jobs on the input and output queues and local files that interactive jobs had at the time of
the crash. Any batch jobs that were in execution at the time of the crash (there may be up to 20 of
them) will be lost during a last-ditch recovery.

Initial Deadstart

An initial deadstart resets the entire permanent file catalog to a clean slate, destroying all files on
disk at the time it is done. Initial deadstarts are never done routinely, but they may be necessary
after a major catastrophe, such as a destructive failure of a critical disk storage unit. In order to
restore permanent files after an initial deadstart, the Computer Laboratory maintains backup
copies of all permanent files on magnetic tape. Scheduled initial deadstarts and the dumping and
reloading of permanent files should go unnoticed by users. If a system failure requires an unan-
ticipated initial deadstart, permanent files will be restored to the state in which they existed at the
end of the previous production day.

65202b

2.1

2

Authorization and Accounting

Introduction

2.1.1
Eligibility

2.1.2

Access to the 6500 system is controlled by an authorization file containing the account numbers,
names, and passwords of every authorized user. To become authorized, the prospective user must
apply for a Computer Laboratory problem number (PN), through which all computer use and sup-
ply charges will be billed. Once a problem number has been assigned, several subaccounts can be
set up for the user and other persons as specified by the user. Thus, there are two levels of
authorization: (1) problem number managers, who receive authorization from the Computer
Laboratory, and (2) users who receive authorization from a problem number manager.*

The introductory sections of this chapter explain the central concepts of the authorization system.
They describe how to apply for a problem number; they describe the identifiers, dollar balances
and other limits associated with the PN; and they describe the controls available to the PN
manager.

Subsequent sections describe how the Authorization File utility, AUTHOREF, is used to manage the
PN and to protect the user’s account from unauthorized use. The final sections give a detailed
description of how job costs are computed and recorded.

Authorization for computer services is available to persons engaged in University-connected
research and to instructors who wish to use the computer in their classwork. A ruling of the Board
of Trustees allows the Computer Laboratory to accept work from outside the University only
“where there is no conflict with either on-campus teaching or research.”

Applications

To receive a problem number, the prospective user must complete and file an “Application for
Computer Services” with the Computer Laboratory Main Office. This form is available from
many departmental offices as well as the Computer Laboratory office.

This form requires the following information:

a) Applicant’s name (this will be used for the “master ID")

1Other levels of authorization will be discussed in Section 2.6.1.

2-2 65202b

b) Billing information (University account number, department, college, etc.)
<) Type of work (faculty, graduate, undergraduate, class, administrative, etc.)

d) A brief project description

e) Number of dollars authorized for computer use
f) Project completion date
8) Signature of the sponsoring department chairperson or a representative authorized to sign

for the given University account number.
h) Specification of any special requirements

If interactive or MERIT Network services are desired, these should be so indicated. If the applicant
wishes to submit jobs or print output at any of the remote batch terminals, signatures of approval
must be obtained for these sites. Applicants should also specify any special requirements (such as
large print or time limits) anticipated for their jobs. A list of the default maximum limits may be
found in Section 2.6.4.

2.1.3
Problem Number, User Name, and Password

Once the application has been approved and processed, the new user is assigned a problem num-
ber (PN), user name (ID), and password.

PN A Computer Laboratory account number through which the user or the user’s
department will be billed for use of computer services and supplies.

ID An identifier for the user’s subaccount. The ID initially issued with the PN is called
the master ID and identifies the PN manager’s subaccount. Any other subaccounts
subsequently created by the PN manager (see Section 2.1.7) must be identified by a
unique ID. .

Password A 1-10 character secret code which protects the ID from illicit use. Usually the initial
password is identical to the ID. For security, the password should be changed im-
mediately, using the AUTHOREF procedure described in Section 2.2.

New users also receive several problem number cards (PNCs) which they will need to identify their
account numbers to the SCOPE/HUSTLER operating system. The PNC contains the applicant’s
name, the PN, and the PN expiration date punched on a special card stock. Each deck submitted
for batch processing must contain a PNC, Job Card, and Password Card' specifying the user’s
problem number, ID, and password respectively. The format and position of these cards are
described in Chapter 3.

The password is always required for interactive access. To extend password protection to batch
jobs, the PN manager (master ID) must use AUTHOREF to set the PWRQD (password-required)
field to ON. This procedure is explained in Section 2.4.2.

'The necessity of the password card is determined by the PN manager.

65202b ' 2-3

2.1.4.
Dollar Balances

As an aid to users who must stay within a fixed computing budget, computer services to all
problem numbers and subaccounts are limited by the dollar balances. Computer use charges are
deducted from the dollar balances generally on a job-to-job basis (see Section 2.7 for more details).
Once a dollar balance has been reduced to zero or less, all services related to that balance are ter-
minated. Two different dollar balances are important to the user.

PN The PN balance is a limit on all services charged to the problem number. This

Balance balance is initially set to the amount stated in the Application for Computer
Services. When the PN balance has been exhausted, service to all subaccounts of the
PN is terminated until additional dollars have been authorized by the chairperson of
the sponsoring department.

User Each subaccount of the problem number is limited by a user (ID) balance. If a user

Balance balance is depleted only service to that subaccount is terminated. Except for the
master ID, the PN manager sets user balances when the subaccounts are created:
they may be reset by the PN manager at any time.

2.1.5
Resource Limits

All users of the PN are limited in the amount of central memory, central processor time, and other
system resources they may request for their jobs. Actually, the user must be concerned with three
levels of limits. The first are job limits, which the user specifies on the job card (see Section 3.2.3)
to limit the resources available to that particular job. Next are the PN limits, which specify
maximum and default values for the job card parameters. The PN limits are recorded in the 6500
Authorization File and apply to all subaccounts of the PN. Third are the maximum limits, which
are the maximum values to which the PN limits can be set by the PN manager. See Section 2.6.4
for a list of these limits.

2.1.6

Job Authorization
The problem number, its IDs, passwords, and limits are recorded in a disk-resident permanent file
known as the Authorization File (or AF). Before allowing a job to execute, SCOPE/HUSTLER
checks the Authorization File to verify that:

1. the PN is authorized

2. the specified ID is authorized for the PN

3. the specified password is correct (if required) .
4. the PN and ID dollar balances are positive
S. the requested job limits are within the authorized PN limits, and the requested job cost limit

is within the current ID and PN dollar balances.

2-4

2.1.7

65202b

If a job fails any of these tests, it is aborted immediately. During execution, authorization data is
used to determine whether certain types of control cards are authorized, and whether certain
resource requests are within the PN limits.

Master ID vs. User ID

2.1.8

The user name initially issued with a new problem number is called the master ID for that PN, and
the user to whom it is assigned is called the problem number manager. After receiving their
problem numbers from the Computer Laboratory, PN managers can set up subaccounts for them-
selves and other persons by executing the AUTHORF program. Each subaccount is identified by a
unique user name (ID), limited by an individual dollar balance, and protected with its own
password. A user authorized by the PN manager cannot create additional subaccounts, because
only the master ID is allowed to perform those functions with AUTHOREF. Each problem number,
therefore, has one and only one master ID but may also have up to 4094 other IDs.

After a job has executed, its dollar value is subtracted from both the user’s PN balance and the ID
balance. The PN manager should note that the master ID balance will always be equal to the PN
balance. This allows the PN manager to monitor the actual PN balance.

In addition to creating IDs, AUTHORF enables the PN manager to delete IDs and to alter their
dollar balances. It also allows the resetting of many of the PN limits providing the PN manager
does not exceed the maximum values set by the Computer Laboratory. To increase the maximum
PN limits, the PN manager must contact the Computer Laboratory Main Office.

All users may obtain a listing of -the current PN limits by executing the AUTHORF routine
described in Section 2.3. But non-PN managers cannot execute AUTHOREF to change their limits
or to increase their dollar balances. The only authorization data that a non-PN manager may
change is the password as described in Section 2.2.

PN Renewal

2.1.9
SEED

PN managers may increase their maximum limits or authorize additional input/output sources by
making a request, either in person or by phone, to the Computer Laboratory Office. To be
authorized for a remote batch terminal, they must also have a signature of approval from the ter-
minal representative. Requests to increase the PN dollar balance or to extend the PN expiration
date must be written and must include the same approval signatures that accompanied the original
PN application. These requests may be in the form of a memo, noting the problem number, new
expiration date, and new computer use dollar limit.

Columns 61-80 of the problem number card contain a series of “check digits,” which are used to
verify that the card has not been altered. When SCOPE/HUSTLER attaches the Authorization File
and checks the PN, ID, and password, it also fetches the problem number SEED value and com-

65202b

2.2

2-5

bines it with the data read from the left side of the PNC (the PN, the PN holder's name, the
problem type, and the expiration date) to calculate the check digits. If these calculated check digits
do not match those read from columns 61-80 of the card, the job is aborted with the message

INVALID PROBLEM NUMBER CARD

When a PN is renewed, the Computer Laboratory normally invalidates all of its outstanding
problem number cards by changing the SEED value. Once the SEED has been changed, the
calculated check digits will no longer match the check digits punched in the old PNCs. Users
who request a renewal should therefore anticipate at least a 12-hour delay while new PNCs are
punched.

To avoid this delay, users may request that their SEEDS not be changed. But in this case, the old
PNCs will never expire. As long as the Authorization File contains the old SEED value and a valid
PN expiration date, the old PNCs will continue to authorize jobs even though they contain an in-
valid expiration date.

Changing the Password

The AUTHORF CHANGE command enables all users to change their passwords.
AUTHORF,CHANGE,PW =password.

AUTHOREF expects the new password to follow the PW = keyword. The new password consists of
1-10 alphabetic or numeric characters.

If the PWRQD field of the Authorization File is set to ON and password cards are handled with
care, it is extremely difficult for anyone to tamper with a user’s account. A user can determine
whether his or her ID has been used illegally by another person by regularly checking the last
access information printed at the beginning of each interactive session and in the daytile of each
batch job. Because AUTHOREF provides protection for the privacy of each user’s account, users
are responsible for all services charged to their IDs.

If a user forgets the passwdrd for his or her ID, the problem number manager may delete and
recreate the ID. If the problem number manager forgets thie password for the master ID, the Com-
puter Laboratory Office should be contacted.

PNC

JONES,JC100.

PW =SECRET current password
AUTHORF,CHANGE,PW=VERYSECRET. new password
6/7/8/9

For users of the interactive system the password can be altered using one of the four methods
below.

1. Type 'AUTHORF, CHANGE,PW =password.’

2. Type ‘AUTHORF,CHANGE,PW.’ The system will respond by blacking out 10 spaces over
which the user may enter the password. '

2-6 65202b

3. Type ‘AUTHORF,CHANGE,PW,VETO.’ This method allows the user to confirm or deny
the accuracy of the typed password. AUTHOREF will prompt for the password, which the
user then types over 10 blacked out spaces. AUTHOREF then echoes the entered password,
and follows it with a question mark. The user then types Y (Yes) or N (No), indicating
whether the password is correct. AUTHOREF then blacks out the echoed password and, if N
was entered, prompts for a new password. If Y was entered the password is accepted.

4, When in full duplex mode (without echo-back), type
AUTHORF,CHANGE,PW =password, VETO.

This will cause the password that was just typed to be echoed back to the terminal; the
system will then prompt for verification. The user responds by typing Y(Yes) or N(No), af-
ter which the password is blacked out. Note that under MERIT Hermes echoback defaults
to ON, so one of the other methods should be used.

NOTE: In methods 3 and 4, V may be typed instead of VETO.

2.3
Displaying a User’s Authorization Status

Information about the current status of a user ID account can be displayed by using the
AUTHOREF DISPLAY command. This command enables any user to display the current dollar
balance, number of runs, and last access information (date, time, and source of input) for the
user’s ID and/or a list of job limits common to that problem number.

To display the dollar balance, date and time of last access, and all other information specific to the
user ID (see Section 2.6.2), the following command is used:

AUTHORF DISPLAY

To display all applicable job limits, use:
AUTHOREF DISPLAY LIMITS.

Or, to display both PN limits and user specific information, use:
AUTHORF DISPLAY ALL.

The AUTHORF DISPLAY command has several other options for the advanced user. See Section
2.5.4 for a detailed description of DISPLAY.

2.4
Managing a Problem Number

When a problem number is initiated by the Computer Laboratory the ID associated with it is
designated as the master ID. The master ID has the ability to establish additional user IDs for the
problem number and to control their respective dollar balances. The master ID also has the
authority to control the job resource limits imposed upon all jobs submitted under the problem
number. These tasks are accomplished by the AUTHOREF utility. Specifically, AUTHOREF allows

65202b
the master ID to add and delete user IDs, change limits and various user ID parameters, and
generate reports detailing the current status of the problem number and any IDs associated with
it.
Commas and spaces in the following examples are interchangeable. That is, a space is equivalent
to a comma as legal punctuation between items.

2.4.1

Adding New User IDs

Several methods may be used to add new user IDs. Some of these are examined below.

Adding one or more user IDs with the same dollar balances and limits can be accomplished using a
single control card. For example, to add three user IDs named MAX, HENRY and SUE, each with
a dollar balance of 350 and each with initial passwords that are the same as the ID, the following
statement could be used:

PNC

master 1D, ...

AUTHORF,ADD IDS=MAX/HENRY/SUE DBAL =50.
6/7/8/9

If you want the passwords to be different from the user IDs, you could use the following three
statements: ’

PNC

master ID, ...

AUTHORF,ADD ID=MAX,DBAL =50,PW =SUPER.
AUTHORF,ADD ID=HENRY,DBAL=50,PW =NOVA.
AUTHORF,ADD ID=SUE,DBAL =50,PW =GALAXY.
6/7/8/9

Different dollar balances could also have been specified for each of the IDs.

The above method is obviously' cumbersome when many IDs (as with a large class) are involved.
The following method simplifies this procedure.

PNC

master ID, ...
AUTHOREF,ADD IDS FROM INPUT,DBAL =50,PW =RANDOM.
7/8/9
SN436621
SN471132
SN612300
SN570137
SN515233
SN525213
SN526101
SN...

SN...
6/7/8/9

2.4.2

65202b

The above will add the IDs read from the INPUT file and assign each a dollar balance of $50 and a
different, randomly generated password. The password for each ID will be automatically reported
on the OUTPUT file.

If different dollar balances or individually assigned passwords are desired, the following might be
used:

PNC

master ID, ...
AUTHOREF,ADD IDS PW DBAL FROM INPUT.
7/8/9

S436621, MICROWAVE,55.
S471132, MASTICATE,30.
S612300,ALUMINUM,45.
S$570137,BACHISBACK,10.
S...

S...

6/7/8/9

In some cases you may want to generate IDs having a common alphanumeric prefix and a unique
numeric suffix, incremented by one for each ID. AUTHORF accomplishes this with one statement,

e.g.,

PNC

master [D, ...

AUTHORF,ADD IDS =USER1 TO USER437,DBAL =25,PW =RANDOM.
6/7/8/9

This will add 437 different IDs (i.e., USER1, USER2, USER3, ... USER437), each with a randomly
generated password and a dollar balance of $25.

Changing Limits and Dollar Balances

The initial job resource limits are rather low. The master ID may increase or decrease these limits
by using AUTHORF,CHANGE.

For example, to change the central memory limit (CM) to 60000 octal and to change the card
punch limit (C) to 8 you could execute the following job.

PNC

master [D, ...

AUTHORF,CHANGE CM =60000,C=38.
6/7/8/9

To subsequently change these to 120000B and 5000 respectively, you would use:

PNC

master ID, ...

AUTHORF,CHANGE CM =120000,C =5000.
6/7/8/9

65202b

2.4.3

2-9

You can also set any value to its maximum by using the word MAXIMUM or MAX:
AUTHORF,CHANGE CM =MAXIMUM.

AUTHORF,CHANGE may also be used to alter items associated with specific user [Ds (assuming
they have already been created.) For example, to change a user’s dollar balance to $33, use:

PNC

master [D,...

AUTHORF,CHANGE ID=SUE,DBAL =35.
6/7/8/9

If you want to increment a dollar balance by, say $20, you would use:
PNC

master ID, ...
AUTHORF,CHANGE ID=SUE,DBAL=DBAL +20.

6/7/8/9

Such changes can also be specified for several users by saying:

AUTHORF,CHANGE IDS =MAX/HENRY/SUE,DBAL=DBAL +15.
or all users (excluding the master ID) by saying:

AUTHORF,CHANGE IDS=ALL,DBAL=DBAL+15.
A group of user ids may also be specified using the construct ‘user-id1 TO user-id2.” This construct
specifies a range of IDs starting with the user-id1 and including all subsequently created IDs up to
and including the user-id2. For example, the following command resets the dollar balances for the
IDs MAX and SUE, and all IDs created between them.

AUTHORF,CHANGE IDS=MAX TO SUE,DBAL=75.37.

Detailed description of AUTHORF,CHANGE can be found in Section 2.5.6.

Deleting User IDs

When the master ID wishes to close out a user ID’s account, it may be removed from the problem
number by using AUTHORF,DELETE.

To remove a single ID use:

PNC

master ID, ...
AUTHORF,DELETE,ID=SUE.
6/7/8/9

To delete a list of user IDs use:

2-10 65202f

PNC
master ID, ...
AUTHORF,DELETE,IDS=MAX/SUE/SEYMOUR.

6/7/8/9

To delete all user IDs other than the master ID use:

PNC
master ID, ...
AUTHOREF,DELETE,IDS=ALL.

6/7/8/9

I See Section 2.5.8 for more uses of AUTHORF,DELETE.

2.4.4
Generating a Report

It is often desirable to generate a report giving the status of all current user IDs or the current
values of all job limits. AUTHORF,DISPLAY performs these functions.

To obtain a listing of all user IDs with their current dollar balance, number of runs, and last access
information, use:

PNC

master ID, ...
AUTHORF,DISPLAY IDS=ALL.
6/7/8/9

The above lists the IDs in order of their creation. To obtain a listing in alphabetic order use:

PNC

master ID, ...

AUTHORF,DISPLAY IDS=ALL,SORTED.
6/7/8/9

The master ID generates a more complete listing of current job limits than an ID by using:

PNC

master ID, ...
AUTHOREF,DISPLAY LIMITS.
6/7/8/9

See Section 2.5.4 for a detailed description of AUTHORF,DISPLAY.

65202f 2-10.1

2.4.5
Creating an Auto-Exec File

The automatic execution process allows a PN manager to set up a program or control statement
sequence that will automatically execute whenever a user under that problem number logs in or
runs a batch job. This is useful when a program or sequence of control statements is written for a
novice or non-technical user; it may also be used to restrict the use of computer resources to the
intended purpose. Auto-exec files are also used by experienced users to initialize their job en-
vironment: attaching files, setting up a global library set, etc. Execution of the program may be
made optional or mandatory; this decision affects all users of the problem number except the PN
manager.

The information to be used at the start of a job is called the initialization file. The PN manager
alone has complete control of the initialization file. AUTHORF directives may be used to catalog
and control its use, as below:

AUTHORF,CHANGE,BINIT TO LEN=WORK, PW=TODAY, REQUIRED.

In the above example, the batch initialization file to be cataloged is found on the local file named
‘"WORK'. The permanent file has the turnkey password TODAY". Since the REQUIRED option is
given only the PN manager can suppress execution and any attempt by the user not to use the
initialization file will cause the job to abort.

A batch initialization file can be discontinued with the 'AUTHORF,CHANGE' statement,
AUTHéRF,CHANGE,BINIT,OFF.

The batch initialization file can be restored with:
AUTHORF,CHANGE,BINIT,ON.

Neither ON nor OFF affects the permanent file or any of the options or password.

Note: If BINIT or IINIT is specified in the 'AUTHORF, CHANGE' statement, no PN or user fields
may be changed in the same statement.

Below is an example of initialization file use in a batch job.

A user wishes all batch jobs executed under a particular problem number to be sent to the attended
queue. This user also has a user library containing a number of programs which will typically be
used in batch jobs for that problem number.

PNC

job card

PW =password

COPYBR,INPUT,CCSEC.
AUTHORF,CHANGE,BINIT LFN=CCSEC.
7/8/9

DISPOSE, **, H.

ATTACH,ULIB1, MYUSERLIBRARY,PW=SECRET.
LIBRARY,ULIB1.

RETURN,INITFIL.

6/7/8/9

For additional information on auto-exec, see Section 2.5.7 and Section 7.1.3. Chapter @ in the In-
teractive System User's Guide gives additional examples for interactive use of auto-exec.

65202b 2-11

2.5
AUTHORF

AUTHORF is a utility for manipulating and displaying the contents of the Authorization File. The
itemns that may be altered and/or listed are determined by the user’s level of authorization (i.e.,
Computer Laboratory manager, College level manager, department level manager, consultant,
problem number manager, or user), as described in Section 2.6.1. This section describes in detail
the AUTHOREF language, its abilities and limitations.

AUTHORF Directives

AUTHOREF processes a command language consisting of the following directives.
ADD adds new user IDs to a problem number.

DELETE removes user IDs from a problem number.

CHANGE changes job resource limits, passwords, and user dollar balances.

DISPLAY displays selected fields of the Authorization File for a particular problem number,
ID, or set of user IDs.

USE directs AUTHOREF to use an account other than the one being used to run the job.
END terminates AUTHORF.
The AUTHOREF directives were designed with an emphasis on flexibility.

Punctuation rules are considerably looser than for most other system utilities. Commas, spaces,
and all delimiter characters other than the period, slash, and equal sign are interchangeable.

Most directive verbs, keywords, and AF field names have several synonyms and abbreviations, as
listed in Section 2.6.3. Alternative keywords allow the user to produce either English-like or
SCOPE-like statements, such as. -

CHANGE DBAL TO 30.00 USING IDS FROM TAPEL.
or
CHANGE,DBAL =30,FIELDS =ID,I=TAPEL.

AUTHOREF can take directives from the AUTHOREF control card. from the INPUT file (or ter-
minal), or from an alternate file named on the AUTHORF control card. Similarly, directives can
take input from parameters in the directive statement, from the INPUT file, or from an alternate
file named in the statement. See the discussion of deck structure and input files in Sections 2.5.3
and 2.5.12.

2-12

2.5.1
Definitions

This section defines terms

directives.

Notation

upper case words
lower case words
special symbols

brackets |]
vertical bar |

braces { }
ellipsis|[...]

delimiters

continuation
lines

af-field
af-field-list

id

65202b

used to describe syntactic elements common to different AUTHORF

All items in upper case are keywords and must be typed as they ap-
pear in the definition. Contrast with lower case words.

All items appearing in lower case denote items t6 be supplied by the
user as defined in the explanation of the command format.

The special symbols = . * *+ and ** are to be treated as upper case
characters described above. ’

Items enclosed in brackets are optional. If more than one item appears
within a pair of brackets with each item delimited by vertical bars (|)
then optionally one but only one of the bracketed terms may appear.

This indicates a choice between items. Only one of the items given
may be chosen. Used only to separate items enclosed in brackets or
braces.

This indicates that one and only one of the enclosed items must be
selected. The items are separated by vertical bars.

This indicates that the immediately preceding construct may be op-
tionally repeated any number of times.

All items must be separated by one of the following delimiters: , () ; :
= / and with the exception of = and / all of these delimiters are
treated as equivalent to a space and may be used optionally to im-
prove readability. The equal sign and slash are used as special
delimiters and must appear only as specified in the syntactic
definitions.

If a line ends with a comma, slash, open parenthesis, colon,
semicolon, or equal sign, AUTHOREF treats the next line as a con-
tinuation of the statement.

Any field name or abbreviation as given in 2.6.3.

One or more af-field names separated by delimiters.

A set of 1 to 10 characters beginning with a letter and containing only
letters and digits thereafter which is to be used as a new or existing

user ID name. An id may not be any of the reserved names given in
Section 2.6.3.

65202b
id-list
Ifn
password
problem-number
value
2.5.2 ‘
AUTHOREF Control Card

2-13

1) One or more IDs separated by equal signs or slashes, e.g.,
SUE/HENRY/JOE

2) id-1TOid-2 which refers to the IDs ‘id-1" and ‘id-2’ and all IDs
created chronologically between them. Thus the first ID listed must
have been created before the second ID listed.

When used with the ADD directive, the IDs must have a common
alphabetic prefix and a numeric suffix, where the numeric suffix of the
first ID is smaller than that of the second ID.For example: USER1 TO
USERS00.

3) Any combinations of (1) and (2) separated by equal signs or slashes,
e.g.,

SUE/HENRY TO BILL/JOE
4) The keyword ALL
A SCOPE local file name. The name must not exceed 7 characters; the
first character must be a letter, and the remaining characters may be

either letters or numbers.

A set of 1 to 10 alphabetic or numeric characters representing a user’s
password.

A 6 or 7 character problem number beginning with the two character
department code followed by a 4 or 5 digit number.

Any legal value that a given af-field may take on. This includes the
special values of *, **, DEFAULT and MAXIMUM.

The AUTHOREF control card has two forms. The following form would be suitable when only one
AUTHOREF directive is to be executed:

AUTHOREF statement.

statement

Any of the legal AUTHOREF statements: ADD, CHANGE, DELETE,
or DISPLAY. The USE and END statements would be meaningless.
The control card may be continued on as many cards as needed. A
continuation card is expected if the current card ends with a comma,
slash, equal sign, or other non-blank delimiter. In batch runs, the last
card of the set must end with a period or closing parenthesis.

When more than one AUTHOREF directive is to be executed, the following form is usually more

convenient:

AUTHOREF [FROM lfn] [UPON lfn] [ABORT].

2-14

FROM lfn

UPON lfn

ABORT

Default Options
input file

output file

2.5.3
Deck Structure

65202b

The name of the file from which AUTHOREF is to read the directives.

The name of the file upon which AUTHORF is to write error
messages, DISPLAY output, echoed input lines, etc. (Input lines are
not echoed if this file is connected.) In other words, any output
generated by an AUTHORF directive is placed on this file, unless the
directive explicitly declares a different output file.

Requests AUTHOREF to abort the job in the event of fatal AUTHORF
errors. Unless this parameter is specified, AUTHORF will always ter-
minate normally, even though it may encounter errors that cause it to
quit processing directives. ABORT is seldom needed since the results
of an AUTHOREF run are usually irrelevant to subsequent job steps.

INPUT (batch), terminal (interactive)

OUTPUT (batch), terminal (interactive)

AUTHOREF may be used in one of three ways:

1) One AUTHOREF statement may appear on the control card following the AUTHORF
keyword. No other input is processed in this case.

2) The INPUT file may contain any number of AUTHOREF statements (the user will be promp-
ted for input from an interactive terminal).

3) An alternate file may contain any number of AUTHOREF statements.

METHOD 1:

PNC
id, ...

AUTHOREF statement.

6/7/8/9

The statement may be any of the legal AUTHORF statements DISPLAY, ADD, CHANGE, or
DELETE. The statements IF, ELSE, USE and END may not appear in this form. The AUTHORF
control card may be continued on as many continuation cards as necessary. However, the last
card must be terminated with a period or closing parenthesis from a batch job. Words must not be

broken across cards.

EXAMPLE:

PNC
id,...

AUTHOREF DISPLAY ALL.

6/7/8/9

65202b

2-15

METHOD 2:

PNC

id, ...
AUTHOREF.
7/8/9
statements
6/7/8/9

In this form the AUTHOREF statements appear on cards in the INPUT file. Each statement begins
on a new card and may be continued on any number of continuation cards. Words must not be
broken across a continuation. Using the ‘AUTHORF.’ command interactively will cause the ter-
minal to be prompted for the AUTHOREF statements. Cptionally an UPON lfn parameter may be
specified so that output will be written on a file other than OUTPUT or so that the output will not
print at an interactive terminal.

EXAMPLE:

PNC

master id, ...

AUTHOREF.

7/8/9

ADD IDS=]JOE/JOHN/JIM,DBAL =25.
CHANGE CM =120000 T =500.

DISPLAY ALLFORIDS=ALL

USE PN=016833 ID=CHUBBY PW =FARKEL.
DISPLAY LIMITS. :
END

6/7/8/9

METHOD 3:

PNC

id, ...

ATTACH,lfn1,pfn.
AUTHORF,FROM lfn1,UPON lfn2.
6/7/8/9

This form reads card images from the alternate input file specified by FROM lfn1. The card images
contain AUTHOREF statements as might appear for Method 2. The output from AUTHORF may
optionally be written to a file other than OUTPUT by using the UPON 1fn2 parameter to specify
the output file to be used.

EXAMPLE:

PNC

master id, ...

ATTACH,A AUTHORFDIRECTIVES.
AUTHORF FROM A.

6/7/8/9

2-16

2.5.4
DISPLAY

65202b

The DISPLAY statement prints, or copies to a local file, the contents of selected fields from the
Authorization File. The fields that may be displayed are determined by the user's level of
authorization.

DISPLAY |af-field-listt ALL|LIMITSIMAXLIMITS|IDFIELDS|DEFLIMITS]

{UPON Ifn]
[[FOR] IDS =id-list]
[FULL|SHORT]
[SORTED]
af-field-list A list of the fields to be displayed.
ALL All fields to which the user has read access (i.e., authorization to
display) are displayed. See Section 2.6.2.
LIMITS Current and default job resource limits are displayed. These limits ap-
_ply to all users of the problem number.
MAXLIMITS Maximum job resource limits are displayed, only to the PN manager.-
IDFIELDS ID fields are displayed.
DEFLIMITS Default job resource limits are displayed.

IDS =id-list

order of output

The IDs for which information is to be displayed.

UPON Ifn The name of the output file.
FULL Selects columnar format.
SHORT Selects compressed format (does not affect format of ID information if
an ID list is specified).
SORTED Causes the ID information to be sorted alphabetically by ID name.
Default Options
fields listed ID-FIELDS
ids The user ID associated with the job (or last USE directive).
" output file OUTPUT (batch), terminal (interactive)
format

FULL (batch), SHORT (interactive)

ID information is displayed in the order the IDs are listed. If
IDS=ALL is specified, the information will be displayed in the order
that the IDs were created.

65202f

2.5.5
ADD

2-17

The DISPLAY statement is also used to display the status of the initialization file.
DISPLAY [BINIT|IINIT]INIT].

BINIT displays options in effect for the batch initialization file.

IINIT displays options in effect for the interactive initialization file.

INIT displays options in effect for both batch and interactive initialization files.

The value displayed is one of the following:

ON (NORMAL)
ON (REQUIRED)
ON (OPTIONAL)
OFF

OFF (PURGED)

Display Formats

The fields that apply to all users of a problem number are called the PN fields. These, if any are
requested, are displayed first. In the format selected by FULL, each PN field is printed on a
separate line. The field name, its current value, a units label, and a descriptive label are aligned in
columns. The format selected by SHORT is identical except that extra spaces are removed and the
descriptive labels are omitted.

If the IDS = parameter is omitted, the fields associated with the user’s ID are displayed in the same
format as the PN fields. Otherwise, the information for each ID begins on a new line, and the
values for each ID field are aligned in columns.

All output is formatted to fit in a maximum of 72 columns.

The ADD statement adds new user IDs to a problem number.

ADD [IDS =id-list|[USING af-field-list]][FROM lfn]]
(UPON lfn]
[af-field ={value] MAXIMUMI|DEFAULT}}
[PWS ={password|IDS|RANDOM}|
[VETO|LIST]

IDS =id-list The list of IDs to be added. If the form ‘id1 TO id2’ is used, where id1
and id2 have a common alphabetic prefix and numeric suffixes, IDs
are generated by incrementing the numeric suffix, starting with id1 up
to and including id2.

2-18

USING af-field-list

l FROM lfn

UPON lfn

af-field =value

PWS =password
PWS=IDS

PWS=RANDOM
LIST

I . VETO
Default Options
ids

input file

output file

65202f

EXAMPLE:

IDS=A/B/C Creates 31IDs: A, B, and C
IDS=A1TO A12 Creates 12 IDs: Al, A2, ..., Al2

If an ID list is specified, the FROM and USING parameters are illegal.

List of fields to be read from the input file. These must be names of ID
fields that the master ID is authorized to set, such as ID, DBAL, and
PW. Field values read from the input file override those specified in
the ADD statement.

The keyword USING may be omitted.

The name of the input file. The format of this file and its use are
discussed below and in Section 2.5.12.

The name of the file on which ADD writes error messages, reports
randomly generated passwords, and echoes lines from the input file.
Input lines are not echoed if this file is connected.

Assigns a value to an ID field—typically DBAL—and applies to each
ID added, unless overridden by a field value assignment in the input
file. The ADD statement does not allow PN field values to be
changed; use the CHANGE statement instead.

The keyword MAXIMUM assigns the maximum authorized value to
the specified field. The maximum for the user dollar balance is the
current PN dollar balance. Section 2.6.4 lists the maximum values for
other fields.

The keyword DEFAULT assigns a default value, as determined by
AUTHORE, to the specified field. For most fields the default value is
considerably less than the maximum value. See Section 2.6.4.
Specifies a password to be assigned to each ID added.

Sets the password identical to the user ID for each ID added.

Assigns a unique, randomly generated password to each ID added.
The passwords are reported in the output file.

Causes the ID, dollar balance, and password of each new user to be
displayed.

Allows the user to cancel each addition before it is actually made (see
Section 2.5.13). Equivalent to LIST in batch mode.

If omitted, ADD will read IDs from the input file.
INPUT (batch), terminal (interactive)

OUTPUT (batch), terminal (interactive)

65202f

2-19

af-field-list If an input file is read and the field list is omitted, the input items must

be prefixed by keywords. See Section 2.5.12.

af-field = value Default values are listed in Section 2.6.4.

password PWs=IDS

Using an Input File With ADD

The ADD directive expects input from a file if

1.
2.
3.

The IDS =parameter is omitted, or
FROM lfn is specified, or
USING af-field-list is specified.

1f the ID list is omitted, each line of the input file should specify an ID to be added and, optionally.
a dollar balance, password, or specification of any other field associated with that ID. If the ADD
statement does not list the fields to be read from the input file, each item on the input file must be
prefixed by a keyword just as if it were part of the ADD statement. Otherwise, the keyword
prefixes may be omitted.

Examples:

ADD.

ID =JOE DBAL =100 PW =ABC
[D=JOHN DBAL =25 PW=DEF
ID=JIM DBAL =200 PW=GHI
END

ADD IDS DBAL PW.
JOE 100 ABC

JOHN 25 DEF

JIM 200 GHI

END

An ID list must not be specified along with either an AF field list or the name of an input file. -

Cautions

1.

Each ID must be unique within the problem number. If the user attempts to add a duplicate
ID, a diagnostic is given and the ID is ignored.

The total number of IDs associated with the problem number is not permitted to exceed the
number specified by the MAXID field.

The user dollar balance assigned to the new IDs is not permitted to exceed the current PN
dollar balance. If it does, the PN dollar balance is substituted.

2-20

2.5.6
CHANGE

65202f

4. Field value assignments in the input file override those specified in the ADD statement. An
instructor who has students prepare cards with ‘ID=name, PW =password’, should restrict
the fields read from the input file to ID and PW, since otherwise a student could add a
‘DBAL=1000.00' parameter that would override the dollar balance assigned by the in-

structor.

Unsafe: ADD FROM INPUT, DBAL=20.
Safe: ADD USING ID PW FROM INPUT, DBAL=20.

S. A decimal point in a dollar balance value will be interpreted as a period, which will ter-
minate the control statement. In a batch job, this can be avoided by enclosing the dollar
balance in ‘%, e.g. ‘DBAL=%75.50%." However, this only applies to control statements not
to input or alternate input files. The delimiters may be used singly (e.g. $75.50) or in pairs.
The use of ‘¢’ delimiters is accepted in interactive mode. Note: The decimal point must be
followed by numerical characters only.

The CHANGE statement is used to alter the contents of one or more AF fields. The fields that may
be altered depend on the user’s level of authorization.

Because password changes are processed specially, the syntax for this type of change is shown
separately. Note that no other changes may be specified with a password change.

CHANGE {PW =password|[USING] PW [FROM lfn]}

{UPON lfn]
[VETOI|LIST]

PW =password specifies the new password, consisting of 1-10 alphabetic or
numeric characters. If this parameter is specified, the FROM and
USING options are illegal.

USING PW indicates that the password is to be input fron; a file, or in-
teractively, from the terminal. The keyword USING may be omit-
ted.

FROM lfn the name of the input file containing the new password.

UPON lfn the name of the output file, upon which error messages or, if selec-
ted, the echoed password will be written.

LIST echoes the new password.

VETO echoes the new password and then permits the user to accept or

reject it. VETO is equivalent to LIST for batch jobs.

Other changes to the Authorization File may be specified with the following syntax.

CHANGE |af-field =expression]|...]
[[FOR]IDS =id-list NEWIDS =id-list]
|[USING af-field-list] [FROM lfn]]

[UPON lfn]

[VETOILIST]

af-field =expression

IDS =id-list

NEWIDS =id-list

USING af-field-list

FROM lfn

UPON Ifn

LIST

VETO

Default Options

af-field =expression

ids

input file

output file

af-field-list

Field Change Parameters

1
N
for

Sets the specified AF field to a new value. This parameter is fully
described below, under Field Change Parameters.

Note: The user should not attempt to change both PN and ID fields
within a single CHANGE statement.

The list of IDs to be affected by changes to any ID fields. If an ID-
list is specified, the FROM and USING parameters are illegal.

A list of IDs to be substituted for those given by the IDS=
parameter. This list must match in number the list following
IDS =", since the i-th ID in the NEWIDS list renames the i-th ID in
the IDS list.

Lists items to be read from the input file. The keyword USING may
be omitted.

The name of the input file if field change expressions and/or [Ds are
to be read from a file. Field change parameters read from the input
file override corresponding parameters in the CHANGE statement.
See below and Section 2.5.12 for further discussion of the input file.

The name of the output file on which CHANGE writes error
messages and echoed input lines. Input lines are*not echoed if this
file is connected.

Causes the changes to be displayed as they are made.

Permits the user to cancel each change before it is actually made.
Equivalent to LIST in batch mode.

If both field change parameters and the NEWIDS = parameter are
omitted, the input file will be read.

If ID field changes are specified, the job ID (or the ID given in the
last USE statement) is assumed. If NEWIDS = is specified, IDS=
must also be specified.

INPUT (batch), terminal (interactive)

OUTPUT (batch), terminal (interactive)

If an input file is read and the field list is omitted, the input items
must be prefixed by keywords.

Field change parameters assign a new value to a partlcular field in the user’s Authorization File en-
try. In its simplest form the parameter is

af-field =value

2-22

65202f

where ‘af-field’ is the AF field name and ‘value’ is a value appropriate to the type of field. The
following keywords are also accepted for 'value’:

MAXIMUM or MAX

This keyword is defined only for job resource limits, where the maximum value that may
be assigned to the field is determined by the MLC (maximum limits class) field. Section
2.6.4 lists the maximum values associated with each level of the MLC field.

DEFAULT or DEFor **

This keyword, like the keyword MAXIMUM, is defined only for job resource limits. The
default values are those assigned by the Computer Laboratory when the problem number is
initiated. For most fields, the default value is considerably less than the maximum value.
Section 2.6.4 lists both default and maximum values as determined by the MLC field.

Field values may also be incremented or decremented with the forms,

af-field =* + value
af-field = *-value

or,

af-field =af-field + value
af-field =af-field-value

If the latter forms are used, the field named on the right side of the equal sign must match that on
the left side. To avoid ambiguity with the minus sign, the field name on the right side of the equal
sign must not be hyphenated.

Increment and decrement operators are restricted to numeric fields and the SOURCE field.

One further embellishment of the field change parameter permits the use of ‘TO’ in place of the
equal sign. For example,

CHANGE CM TO 100000.

is an acceptable alternative to CHANGE, CM =100000.

Octal vs. Decimal

The values of certain fields, such as CM, are traditionally displayed and specified in base 8 rather
than base 10. In AUTHORF such fields are indicated by displaying the value with a B suffix.
Values specified for these fields must be octal unless a D suffix is used to indicate decimal. Con-
versely, an octal value can be specified for a decimal field by adding a B suffix. Legal suffixes for
numeric values are:

B indicates an octal number
D indicates a decimal number
K equivalent to 000B

Example: 100K = 100000B = 32768D

65202f

2-23

Truncation and Rounding of Field Values

The values of some fields are scaled to fit more compactly in the Authorization File. As a result,
the values specified by the user may be truncated to the next lowest, or rounded up to the next
highest, multiple of the scale factor. For example, the page limit is truncated to the next lowest
multiple of 8. The fields affected by such conversions are described below.

C,DC raised to multiple of 8 cards.

CM,DCM
EC,DEC truncated to multiple of 100B words.

L.DL raised to multiple of 8 pages.

CT converted from minutes to seconds and then truncated to a multiple of 8 seconds.

PNPFL,UPFL
MS,DMS raised to a multiple of 64 PRUs.

Using an Input File with CHANGE

CHANGE will read from the input file if:

1. Neither a field change parameter nor a NEWIDS = parameter is specified, or
2. FROM Ifn is specified, or
3. USING af-field-list is specified.

1t is illegal to combine the ID parameter with either the FROM or USING parameters.

The input file is used to supply the list of IDs to which the field change parameters in the CHANGE
statement apply, or to supply a list of IDs along with field change parameters for each of the IDs.
Changes to PN fields can also be specified, providing the input line does not contain an ID field.

Some examples will illustrate these applications.

CHANGE.

ID=]JOE DBAL="+10. Makes different changes to the dollar balances of JOE, JIM, and
ID=JOHN DBAL=25. JOHN.

ID=]JIM DBAL=0.

END

CHANGE ID DBAL. :

JOE*+10 Makes the same changes as the preceding examples, but here the
JOHN 25 addition of a field list to the CHANGE statement eliminates the
JIMoO need for keyword prefixes with the input items.

END

CHANGE IDS, DBAL=DBAL + 20.

JOE

} ICI)VII-{N Increments the dollar balances of JOE, JOHN, and JIM by $20.

END

2-23.1

2.5.7

65202f

CHANGE DBAL =20.

ID=]JOE Changes dollar balances for JOE and JOHN to $20. Changes the
ID=JOHN central memory limit, which applies to all users of the PN, to
ID=JIM DBAL=50 120000B words.

CM =120000

Cautions

Only those fields for which the user has write access can be changed. See Section 2.6.2.

Values assigned to job resource limits cannot exceed the maximums imposed by the MLC
(maximum limits class) field. Section 2.6.4 lists the maximum associated with each level of
the MLC field. An attempt to assign a value higher than the user’s authorized maximum
will result in an informative message and the substitution of the maximum value.

Each ID must be unique within the given problem number. If NEWIDS=specifies a
duplicate name, the corresponding ID in the IDS = list will remain unchanged. Renaming
takes immediate effect, so the following name changes would be illegal :

CHANGE IDS=A/B/C, NEWIDS=B/C/A.

The CHANGE statement should not specify changes to both PN and ID fields. For example,
the statement

CHANGE,CM =120000,DBAL =20,FOR ID =JOE.
is improper because it suggests that the new CM limit applies only to.JOE.

A decimal point in a dollar balance value will be interpreted as a period, which will ter-
minate the control statement. In a batch job, this can be avoided by enclosing the dollar
balance in ‘$, e.g. ‘DBAL=$75.50%." However, this only applies to control statements, not
to input or alternate input files. The delimiters may be used singly (e.g. $75.50) or in pairs.
The use of ‘%’ delimiters is accepted in interactive mode. Note: The decimal point must be
followed by numerical characters only.

CHANGE —The Auto-Exec Feature

The PN manager can use a CHANGE directive to create and change an initialization file. Actual
execution of initialization files is described in Section 7.1.3.

An initialization file, information to be used at the start of a job, can be cataloged and controlled
in the following manner: :

CHANGE {BINIT|IINIT}. [TO] [LFN=lfn] [PW[=password]
[I=inlfn] [control option] [VETO|LIST].

65202f

LFN=lfn

password

control option

2-23.2

is the name of a local file that contains the control statements or program
binary (i.e. relocatable, absolute overlay or segment formats) to execute at
the beginning of the interactive or batch job.

“INITFILEFORPNnnannINTERACTIVE”
or
“INITFLEFORPNnnnnnBATCH"

are the permanent file names in which the file is copied and cataloged, and
where nnnnn is the problem number. Any previous file by this name is
purged.

is the turnkey password of 1-9 alphanumeric characters used when
cataloging the permanent file. Password specification allows the file to be
attached (with all permissions) at times other than the start of the in-
teractive or batch job. If no password is specified, a random password is
generated, which will prevent the PN manager from attaching the file except
at the beginning of the job. This situation can be altered by changing the
password; for example:

AUTHORF,CHANGE, BINIT,PW =newpw.

This will cause the current initialization file to be recataloged with the
password ‘newpw’. '

In interactive mode, if PW is given alone, the user is prompted for input. In
batch, a separate input file may be specified by I=inlfn; AUTHORF will
accept only a password from this file.

specifies whether execution of the initialization file is optional or required.
The option in effect is not changed when the file or password is modified.

NORMAL selects the use of the initialization file unless suppressed by the
user. This is the default.

REQUIRED causes the initialization file use to be required at the start of
every job. Only the PN manager may suppress execution; an
attempt by an interactive user to suppress the use of the
initialization file will prevent logging in. In batch mode, this
action will prevent the job from running.

OPTIONAL will not normally execute the initialization file. The user may
request it via the job card or log-in option INIT (see Section
7.1.8).

Other parameters are implemented when changing the status of the initialization file.

AUTHORF,CHANGE {IINIT|BINIT} [TO] {OFFION|PURGE} [VETOILIST].

OFF discontinues use of the initialization file. The password and options do not change, nor
is the permanent file purged.

ON restores use of the initialization file without changing options or the file.

PURGE terminates use of the initialization file. Also it causes the permanent file to be purged,
and the password and options in the Authorization File are cleared.

2-24

2.5.8
DELETE

65202f

If no initialization file exists and LFN is not supplied, OFF and PURGE have no effect; specifying
ON will cause a fatal error.

Options VETO and LIST may be used to verify initialization file changes; for descriptions of these
options, see Section 2.5.13. '

The DELETE statement removes existing IDs from the problem number. The master ID cannot be
deleted.

DELETE [IDS =id-listf FROM lfn]

[UPON lfn]
[VETO|LIST]

IDS =id-list The list of IDS to be deleted. The keyword ALL will delete all IDs ex-
cept the master ID. Illegal if FROM parameter is specified.

FROM lfn The name of the file from which a list of IDs is to be read. Illegal if ID
parameter is specified.

UPON Ifn The name of the output file on which DELETE is to write error
messages and echo input lines. Input lines will not be echoed if this file
is connected.

LIST Display each ID deleted.

VETO Allows the user to cancel each deletion before it is actually made.

Equivalent to LIST in batch mode.

Default Options

ids If an ID list is omitted, IDs will be read from the input file.
input file INPUT (batch), terminal (interactive).

output file OUTPUT (batch), terminal (interactive).

NOTE: When user accounts are deleted and recreated, they will have new PN ordinals. All per-
manent files previously cataloged by these IDs will no longer be associated with them. The per-
manent files will remain on the system; storage charges will decrement the PN dollar balance, but
will not be charged to the user.

Using an Input File with Delete

DELETE will read the IDs to be deleted from the input file if :

1. The IDS = parameter is omitted, or
2. FROM Ifn is specified.

65202f

2.5.9
USE

2-25

Each line of the input file should contain one ID; the prefix ‘ID="1is not necessary.

Example:

DELETE.
JOE
JOHN
JM
END

Caution

Deleting user IDs will cause any permanent files previously cataloged with these IDs to be charged
to the PN dollar balance only. If the user wishes to purge the permanent files belonging to these
IDs, the dollar balance should be set to a negative value for the IDs to be deleted. The deletion may
then occur the following weekday or later.

When a user wishes to examine or alter authorization information for a problem number or ID dif-
ferent than the one being used to run the job, the USE statement specifies that problem number, or
ID, and proves that the user is authorized to access it.

USEPN= problem-number ID =id PW =password

PN = problem-number The problem number to be used.
ID=id A user ID or master ID.
PW =password The proper password for the PN and ID specified.

All three parameters must be specified.

After the USE statement has been successfully executed, AUTHOREF functions as if the user were
logged in under the PN, ID, and password specified. For example, if the ID specified by USE is a
master ID, AUTHOREF grants the user the access privileges of the PN manager.

AUTHOREF will not permit a USE directive to an ID which has either IINIT or BINIT set to '
REQUIRED by the PN manager. Exceptions are:

1. If the ID requested is the master ID for the problem number.
2. If the ID which does the USE is the master ID for the same problem number.
3. If the ID on the previous USE directive is the master ID for the same problem number.

By using this restriction, it will not be possible for any user other than the PN manager to change
the password, except by logging in under that ID directly. If the initialization file is REQUIRED.,
and if control does not return to the user, it will not be possible for the user to change the
password.

2-26 65202f
2.5.10
END
This statement causes AUTHOREF to stop processing. It is equivalent to an end-of-record or end-
of-file.
END
END cards are also used to terminate a set of data cards for a particular directive when directives
and data cards are interspersed; see Section 2.5.12.
2.5.11
IF* and ELSE*

‘The IF statement allows conditional performance of other AUTHOREF statements. For example, an
IF statement used in conjunction with a DISPLAY statement could be used to display the user ID
fields for all IDs whose dollar balances are less than $10.

IF {af-field {EQINE|GT|LT|GE|LE} value| SAME} statement.

af-field any af-field the user has access to. All PNs and IDs under the control
of the user will be scanned.

value A legal value for the af-field specified.

SAME The condition specified in the previous IF.

statement any legal DISPLAY, ADD, CHANGE, DELETE, or END statement.
Example:

IFDBALLT 10 CHANGE DBAL TO 25.

The ELSE statement reverses the condition of the preceding IF. That is, it may be considered as an
IF that specifies the opposite condition of the preceding IF. Thus, ELSE may be used only after an
IF. The ‘statement’ portion may be any legal DISPLAY, ADD, CHANGE, DELETE or END
statement.

ELSE statement

When the ‘statement’ portion of an IF or ELSE contains an IDS=id-list field, then the search is
restricted to the IDs indicated. The default for the IDs list (for PN managers) is IDS=ALL. The
IDS =id-list is inappropriate for normal user IDs to use.

* IF and ELSE are not currently implemented.

a

2-27

2.5.12
Input Files

65202f

The ADD, CHANGE, and DELETE statements accept input from files as well as from parameters.
included in the statements. This ability is particularly useful when adding, deleting, or altering
many IDs and the form ‘id1 TO id2’ is not applicable.

The items to be read from such files must be identified either by specifying a tield name list in the
statement (e.g., USING af-field-list) or by prefixing each item in the input file with a keyword, just
as if the item were part of the directive. If a field list is supplied, keyword prefixes—although ac-
ceptable—are not necessary for the input items.

To illustrate, suppose you wish to add several IDs, specifying the ID, dollar balance, and
password from the input file. Card images could be prepared in either of two styles:

(a) ID=JOE DBAL =25 PW=ABC
{b) JOE 25 ABC

Consider now the following ADD directives:

ADD. Cards like (a) are acceptablé. Cards like (b) are not.
ADD IDS DBAL PW. Cards like (a) or (b) are acceptable.

A field l.ist parameter is also useful for restricting the fields to be processed.

ADDIDS PW. For cards like (a), only the ID and PW items will be processed. For
cards like (b), the first two fields will be processed (25’ would be read
as the password).

If the name of the input file is not explicitly stated in the command, the data cards must im-
mediately follow the command statement. When AUTHOREF directives and data cards are in-
terspersed in this manner, an END card must terminate each sequence of data cards.

Example:

PNC

master id, ...
AUTHOREF.

7/8/9

ADDID DBAL PW.
JOE 25 ABC

JOHN 50 DEF

JIM 100 GHI

END

DISPLAY IDS=ALL
6/7/8/9

If directives and data cards are not interspersed, each sequence of data lines must terminate with
an end-of-section or end-of-partition.

65202f 2-28

PNC

master id, ...
ATTACH,FILE,AUTHORFINPUT.
AUTHOREF.

7/8/9

ADD ID DBAL PW FROM FILE.
DELETE IDS FROM FILE.
DISPLAY IDS=ALL.

6/7/8/9

where FILE contains: .

JOE 25 ABC

JOHN 50 DEF

JIM 100 GHI
(END-OF-SECTION)
MAX

HENRY

SUE
(END-OF-SECTION)
(END-OF-PARTITION)

2.5.13
VETO
The VETO option allows the user to verify and then to accept or to reject the results of a ADD,
CHANGE or DELETE command. In batch mode, the VETO option is equivalent to the LIST op-
tion.
After displaying the affected fields and their new values, AUTHORF prompts the user for a reply.
The user chooses among the following replies (acceptable abbreviations are indicated by un-
derlining).
YES accepts the change
NO rejects the change
STOP rejects the change and stops processing of the command
CONTINUE accepts the change and turns off VETO for subsequent changes
LIST accepts the change, turns off VETO, and turns on LIST for subsequent changes
2.5.14

Abbreviations and Synonyms
To facilitate use AUTHOREF allows many abbreviations and synonyms.

The following are accepted as being synonymous with the given AUTHOREF statement types:

2-29 65202f

name synonyms

DISPLAY PRINT
LIST
WRITE

ADD INSERT
CREATE

CHANGE ALTER
REPLACE
SET
UPDATE

DELETE REMOVE
DROP

USE none

IF none
ELSE none

END STOP
FINISH
end-of-section
I end-of-partition
end-of-information
*EOR
*EOF

Following is an alphabetized list of statement keywords and accepted abbreviations. Wherever a
plural keyword is logical, the singular form is accepted. AF field names and their synonyms may
be found in Section 2.6.3.

keyword abbreviation
ADD AD
ALL none
ALTER ALT

| BINIT BI, BATCH-INIT
CHANGE CH
CREATE CR
DEFAULT DEF,**
DELETE DEL
DISPLAY DI, DIS, DISP
DROP DR
ELSE none
END none
FIELDS FIELD
FINISH none
FOR none
FROM 1=
FULL F

1| GT >

65202f

IINIT
INIT
INSERT
IDS

" LFN

LIST

LT

LIMITS
MAXIMUM
NE
NEW-IDS
NORMAL
OPTIONAL
PNS

PW

PWS
PRINT
REMOVE
REPLACE
REQUIRED
SAME

SET
SHORT
SORTED
STOP
UPON
USING
VETO
WRITE

2-29.1

I, INTERACTIVE-INIT

INIT-FILE, INIT-FIELDS

IN

ID, USER, USERS, USERID, USERIDS, USERSNAME, USER-
NAMES

FILE

LI

<

LIMIT

MAX

none

NEW-ID, NEW-USERS, NEW-USER
NORM

OPT

PN, PNC, PNCS, PROBNUM
PASSWORD, TK

PW, PASSWORD, USERPW, USERPWS, USERPASS
PR

REM

REP

REQ, MANDATORY, REQD

none

none

S

SORT

. none

o ==

USE, FIELDS =, FIELD =, F=

\Y%

WR

TO (only in af-field =expression)

Hyphens appearing in any keyword may be deleted. However, a space must not be substituted if
this is done. Instead, the sections should be concatenated.

2-30 65202b

2.6
Authorization Levels and the Authorization File

This section describes the different levels of authorization and their abilities and limitations in
regards to altering and displaying the various fields of the Authorization File.

2.6.1
Levels of Authorization

Currently three levels of authorization are operable. These are the Computer Laboratory
Manager, the Problem Number Manager and the individual user.

The Computer Laboratory Manager sets the maximum values of services which a problem number
can use. This person has the authority to change any field within the Authorization File. Certain
changes desired by a lower level manager can be xmplemented only by the Computer Laboratory
Manager.

The Problem Number (PN) Manager is the person to whom a newly created problem number is
assigned by the Computer Laboratory Manager. The PN manager sets up individual user accounts
under the PN, and establishes the maximum limits for services to be used by individual users. The
PN manager has the authority to alter certain fields pertaining to that problem number. See Sec-
tion 2.6.2 for a description of these fields.

The user has the lowest level of authorization. Users have authority to display only the fields
which pertain to their user IDs, and can change only one field, the user password.

In addition to the current authorization levels, three more levels are planned for implementation;
these are the College Level Manager, the Department Level Manager and the Consultant.

The Department Level Manager is a person from a certain department who is designated by the
Computer Laboratory Manager to have the authority to alter certain fields in accounts associated
with that department.

The College Level Manager is a person from within a college who is designated by the Computer
Laboratory Manager to have the authority to change certain fields in PN accounts associated with
that college.

The Consultant is a person designated by the Computer Laboratory Manager to have the author-
ity to view any field in the Authorization File except users’ passwords. This person does not have
the authority to change any field.

2.6.2
PN and User Fields

The following is a list of Authorization File fields defined for each problem number, plus fields
defined for each ID of the problem number. The list is divided into four groups; the first three
define the various PN fields and their access authority, and the fourth describes the fields assigned
to an individual user ID.

65202f

Group |

Mnemonic

ACCL

™

CcT

DC

bCMm?

DMS?

DECLI

DL?

EC!

FILEL

MS

PP

2-31

The following fields can be displayed by the individual user and the PN
manager, but can be changed only by the PN manager.

Meaning

Access level; a number from 1 to 5 which determines what control statements
can be executed.

Card limit; the maximum number of cards of punched output that can be
specified by the job card C parameter.

Central memory limit; the maximum number of central memory words
(octal) that can be specified by the job card CM parameter or (interactively)
by an RFL command.

Connect time; the maximum number of minutes the user may be logged in
during a single interactive session. After logging out, the user may im-
mediately log in for another session.

Default card limit; the maximum number of cards that a job can punch if the
C parameter is omitted on the job card.

Default central memory limit; the initial field length used if the job card CM
parameter is omitted. (If the job card CM parameter is omitted, the max-
imum job field length is either the Authorization File CM limit or 1000Q0B,
whichever is less.)

Default mass storage limit; the amount of disk storage, in PRUs, that a job
can use if the MS parameter is omitted on the job card.

Default extended core storage limit.

Default line printer page limit; the maximum number of pages that a job can
print if the L parameter is omitted from the job card.

Extended core storage limit; the maximum number (octal) of ECS words
allowed the user.

The maximum number of files that a job can have assigned to it at any one
time.

Line printer page limit; the maximum number of pages of print that can be
specified by the job card L parameter.

Mass storage limit; the maximum amount of disk space, in PRUs, that can be
specified by the job card MS parameter.

Permanent file limit; the maximum amount of disk storage, in PRUs, that
can be occupied by permanent files cataloged under this ID.

‘Field currently not in use and not displayable or alterable at present.

*When either the current job limit or default limit is requested, both items will be displaved. For
the PN manager, the upper bounds for the job limit will also be displayed.

2-32

PHONE
PNON

PNTRP

PWRQD

RG

RUNL

SOURCE

Group II

Mnemonic

ACCN

COLM!
DEPTM!
MAXID
MAXSOURCE!

MCM

MEC

MLC

MMS

65202b

The telephone number of the person to whom the PN is issued.

PN ON flag. This can be set to OFF to invalidate the PN.

PN trap flag. This can be set ON to temporarily invalidate the PN if
passwords, IDs, and PNCs are stolen.

password-required flag. If ON, user passwords must be supplied by batch as
well as interactive jobs. This flag is initially OFF. The PN manager may set it
ON, but only the Computer Laboratory Manager can restore it to OFF.

A number which indicates the highest rate group that can be specified by the
job card RG parameter.

Daily run limit; the maximum number of batch jobs that can be run from the
central site each day (8:00 a.m. to 8:00 a.m.) under each ID of the problem
number. Once this limit is reached, that ID cannot be used to submit any jobs
(either from central site or Export/Import) or log in on an interactive ter-
minal until the following day. If RUNL is 0, the number of runs is unlimited.

Current authorization for Input/OQutput sources and special print queues.
These codes are listed in Appendix E.

The maximum number of central processing seconds that can be specified by
the job card T parameter.

The next group of fields may be displayed only by the PN manager. They
cannot be changed by either the user or the PN manager.

Meaning

The University account number to which charges for computer services and
supplies are billed.

Indicates the college level manager.

Indicates the department level manager.

The maximum number of IDs a PN manager can create.

The maximum /O source authorization allowed the PN manager.

The maximum central memory field length that the PN manager is allowed to
authorize in the CM field.

The maximum extended core storage limit that the PN manager is allowed to
set on ECS.

Specifies the set of maximum limits authorized for the PN. See Section 2.6.4.

The maximum mass storage limits which the PN manager can set on MS.

'Field currently not in use and not displayable or alterable at present.

65202b

MPAGE

MTIME

NID

PNDBAL

Group Il

Mnemonic
CLAF
DEPT
EXPDAT
HAL!

OWNER

PFTOT!

PN

PT

SYS

Group IV

Mnemonic
DATELA

DBAL

ID

2-33

The maximum number of pages to which the PN mahager can set PAGES.

The maximum number of seconds the PN manager can authorize in the TIME
field.

The number of current IDs in use under a certain PN.
The problem number dollar balance. This field is initially set by the Com-

puter Laboratory, but is thereafter decremented by the system as each job is
run.

The third group of PN fields contains fields which are displayable by both the
individual user and the PN manager, but not changeable by either.

Meaning

Computer Laboratory Manager flag.
The PN manager’s department code.
The expiration date of the PN.

HAL programmer flag.

The name of the person to whom the PN is issued (not to be confused with
the master ID).

Total PF space in use by the PN.

The problem number—an account number used by SCOPE/HUSTLER to

record the use of computer services and supplies.

Problem type; a classification of the type of project, e.g., graduate research,
CPS class, etc., which is used for billing and Computer Laboratory’s records.

System programmer flag.

The last group are fields pertaining to individual user IDs under a PN. All
fields are displayable by both users and PN managers, except where noted.

Meaning

date of last access.

Current user dollar balance. This value, initially set by the PN manager. is
decremented by the system after each job that is run under this ID. The PN

manager can increment or reset it.

User ID; can be changed by the PN manager.

'Field currently not in use and not displayable or alterable at present.

2-34

PW

RTODAY
RUNS
SOLA
TIMELA

UORD

UPFL!

UPFT*

65202b

user password; this is the only field which the user can change. No one can
display it.

Daily runs; the number of runs today (8:00 a.m. to 8:00 a.m.) for this ID.
Total runs; the total number of runs since authorization for this ID.

Code character representing the source of last access.

Time of last access.

N

User ordinal; a system-generated number that uniquely identifies each user
ID in the Authorization File. Note: If a user ID is renamed, the user ordinal
remains the same. But if the user ID is deleted and re-added, a new user or-
dinal is assigned.

The maximum amount of permanent file storage which can be used by this
ID; can be changed by PN manager.

The amount of permanent file storage in use under this user ID.

Displaying Groups of Fields

A user or PN manager can display certain groups of related fields by using the pseudo-field names
(names which refer to a group of fields) described below. Only fields to which the user has display

access are included.

Name

ALL
DEF-LIMITS
ID-FIELDS
LAST-RUN

LIMITS

MAX-LIMITS

2.6.3
Abbreviations

Fields Displayed

All fields.

DCM, DL, DC, DMS

ID, DBAL, SOLA, DATELA, TIMELA, RUNS, UORD
SOLA, DATELA, TIMELA

CM, T, L, C, RG, ACCL, MS, FILEL, CT, SOURCE, MAXID, PWRQD,
DCM, DL, DC, DMS, MCM, MT, ML, MC, MMS, MFILEL, MCT

PN, PNDBAL, MAXID, MCM, MT, ML, MC, MMS, MRUNL, MFILEL,
MCT, MACCL, MRG (PN manager only)

To facilitate use of AUTHORF, many synonyms of the Authorization File field names are allowed.
Below is a list of the field mnemonics, arranged in alphabetical order, followed by the acceptable

synonyms.?

'Field currently not in use and not displayable or alterable at present.
2AUTHOREF examines only the first 8 characters of the field named.

65202b

Mnemonic
ACCL
ACCN

C

CLAF
™

CT
DATELA

DBAL

DC

DCM

DEC
DEPT

DL

DMS

EC
EXPDAT
FILEL

ID

L
MAXID
MLC

MS

NAME

2-35

Synonyms
ACCESS-LEVEL, AL, ACC—LEVEL, ACCESS
ACCOUNT, ACCOUNT-NUMBER, ACCT

CARD-LIMIT, PUNCH-LIMIT, CARDS, CARDL, PUNCH, CARD,
PUNCHL

CL-FLAG, CLM, CL-MGR, CL-MANAGER
CENTRAL-MEMORY, CM-LIMIT, CMFL, CML, SCM
CONNECT-TIME, CONNECT, CTL, ICONL
DATE-OF-LAST-ACCESS, LAST-DATE, DOLA

UDBAL, $, IDS$, SID, USERS, SUSER, ID-DBAL, USER-DBAL, ID-
DOLLARS, USER-DOLLARS *

DCARD, DCARDL, DCARDS, DPUNCH, DEF-CARD, DEF-CARDS,
DPUNCHL, DEF-CARDL, DEF-PUNCH

DCMFL, DSCM, DEF-CM, DEF-CMFL, DEF-CM-LIMIT, DCML, DFL,
DEF-CML

DECS, DECSFL, DLCM, DEF-ECS, DEF-ECSFL, DEF-ECS-LIMIT
DEPARTMENT

DPAGE, DPG, DPAGEL, DPAGES, DPRINT, DEF-PAGE, DEF-PAGEL,
DEF-PAGES, DEF-PRINT

DMSL, DEF-MASS-STORAGE, DEF-DISK, DEF-DISK-LIMIT, D-DISK
ECS, ECSFL, ECSL, ECS-LIMIT, LCM

EXP-DATE, EXPIRE, EXPIRATION

FILE-LIMIT, FILE, FILES

IDS, USER, USERS, USER-ID, USER-IDS, USER-NAME

PAGE-LIMIT, PRINT-LIMIT, PAGEL, PG, PAGE, PAGES PRINTL. PRINT
ID-LIMIT, MAX-USER, USER-LIMIT, IDL, USERL, MAXIDS
MAX-CLASS, TBF, LIMIT-CLAéS, LIMITS-CLASS, LMT-CLASS
MASS-STORAGE, DISK-LIMIT, DISKL, MSL. DISK

PN-OWNER, PN-HOLDER, PN-MANAGER, OWNER, PNMGR.
MANAGER :

i Since the dollar sign ($) is a delimiter, it must appear as 5555 (e.g. $5SSID) in AUTHORF control
cards: in AUTHOREF directives, either $355 or 'S’ may be used.

2-36

NID

PHONE
PN
PNDBAL
PNON
PNPFL

PNPFTOT

PNTRP
PT

PW
PWRQD
RG
RTODAY
RUNL
RUNS
SEED
SOLA
SOURCE
SYS

T
TIMELA

UORD

UPFL

UPFT

65202b

NUM-ID, NUM-IDS, NIDS, NUM-USER, NUM-USERS, NO-IDS,
NUMUSR

TELEPHONE, PHONE-NUMBER, PHONE-NO, TEL
PROBLEM-NUMBER, PROB-NUM, PNC, PNS, PNCS
PN$, $PN, PN-DOLLARS

PN-VALID, PN-ACTIVE, PN-FLAG

PNPF-LIMIT, PFL

PNPFT, PNPFTOT, PN-PFS, PN-PF, PN-TOTAL-PFS, PN-PF-
TOTAL,PFTOT

PN-TRAP, TRAP-PN, TRAP

TYPE, PROB-TYPE

PWS, PASSWORD, USER-PW, USER—PWS, USER-PASSWORD
PW-FLAG, BATCH-PW, PW-REQ, PW-REQUIRED, PW-ON
RATE-GROUP, PRI, P, PRIORITY

RUNS-TODAY, TODAYS-RUNS, RUND

RLIMIT, RUN—LIMiT

TOTRUN, RUN, TOTAL-RUNS, RUNT, RUNTOT

none

SOURCE-OF-LAST-ACCESS, LAST-SOURCE

SOURCES, QUEUE, QUEUES

SYS-FLAG, SYSTEMS

CPU-TIME, TIME-LIMIT, TIMEL, TIME, TL
TIME-OF-LAST-ACCESS, LAST-TIME, TOLA

PORD, PNORD, PWORD, USORD, USER-ORD, USER-NUM, USER-
ORDINAL, USER-NUMBER, ORDINAL

IDPFL, USERPFL, USER-PF-LIMIT, ID-PF-LIMIT

UPFTOT, IDPFT, IDPFTOT, USER-PF-TOTAL, ID-PF-TOTAL, UPFS, ID-
PFS, ID-PF-SPACE, ID-PF, UPF, USER-PFS

65202b

2.6.4.

Maximum and Defau]t Values

FIELD

MLC ENTRY
ACCL
CL

™M

cT

EC
FILEL

L

MSL
PNPFL
RG
RUNL
T

2-37

Certain fields within the Authorization File represent the maximum amount of resources that a
problem number can use. These fields, known as PN limits, can be established by the PN manager.
The PN limits, however, cannot exceed limits set by the Computer Laboratory, known as
maximum limits. The set of maximum limits controlling a particular problem number is deter-
mined by the MLC (maximum limits class) field, which is a field within Authorization File entry
for that problem number.

The following table shows the set of maximum limits specified by the MLC values 1 through 7. If
MLC is set to 0, the PN manager cannot change any of his PN limits.

Numeric values are decimal unless a “B” suffix is used to denote octal.

UNIT

1

5
cards 5000,
words 60000B
minutes 60
words . 0
files 15
pages 500
PRUs 262080
PRUs 10000

3
runs 0
seconds 512

2

5
10000
100000B
120

0

20
5000
262080
20000
3

.0
4096

LIMITS
3 4 5
5 5 5
20000 20000 20000
120000B 120000B 120000B
240 240 240
0 0 0
30 63 63
20000 20000 20000
262080 262080 262080
20000 20000 20000
3 3 3
0 0 0
8192 8192 8192

6

5
20000
120000B
240

0

63
20000
262080
20000
3

0

8192

7

7
32760
170000B
546

0

63
32760
262080
262000
3

0
32760

The following is a list of the initial limits assigned to every new problem number. These are also

the values indicated by the DEFAULT keyword in AUTHORF.

ACCL

C

M

CT

DC
DCM

DL

DMS
EXPDAT
FILEL

L
MAXID
MLC

MS
PNDBAL
PWRQD
RG
RUNL

T

cards -
words
minutes
cards
words
pages
PRUs

files

pages
users

PRUs
dollars

runs
seconds

5
400
60000B
60
400
54000B
40
0
from
15
200
3
3
0

from -

OFF

90

(unlimited)
application

or from application
(unlimited)

application

(unlimited)

2-38 65202f

2.7

Accounting
SCOPE/HUSTLER monitors the supplies and system resources used by each job and
automatically calculates their dollar value. It records most of this information in the user’s dayfile,
which is printed with the job output. Complete accounting data is recorded in a system dayfile and

periodically copied to magnetic tape. Users are later billed by a program that processes the dayfile
tape and totals the charges for each university department and each private account.

The following sections explain how the dollar value of a 6500 job is computed. They also describe
the accounting messages printed in the user’s dayfile and explain why certain accounting data is
omitted. For a description of USERDT, the program that generates monthly billing summaries,
execute 'HELP,F*USERDT .

2.7.1
Calculation of Job Costs

The total dollar value of a 6500 job, denoted by T$, is the product of the rate group factor (RATE)
and the sum of eight different computing charges, plus four types of supplies and labor costs.

T$ = RATE (CPU$+PP$+CM$%$+CR$ +LP$+CP$+PT$+TP$) +PGS5+CD$+MT$+CTS

The subtotals are for:

Central processor use CPU$ = CPUt * CPUr
Peripheral processor use PP$ = PPt * PPr

Central memory use CMS$ = CMt * CMn * CMr
Computer use in card reading CR$% = CRn * CRr
Computer use in printing LP$ = LPn* LPr
Computer use in punching CP$ = CPn * CPr
Computer use in paper tape reading PT$ = PTn* PTr

Tape reservation _ TP$ = TPn * (CPt + PPt)
Pages of paper printed PT$ = PGn * PGr

Cards of punched output CD$ = CDn * CDr
Magnetic tape mounts MT$ = MTn * MTr
Connect time (interactive) CT$=CTt*CTr

In these equations a ‘t’ suffix denotes a time unit, an ‘n’ suffix denotes a physical unit (such as
cards, pages, words, or tapes), and an T’ suffix denotes a rate in dollars per unit. For example, the
central memory charge is equal to the number of words used multiplied by the period of use,
multiplied by the dollar rate per word-hour.

Notes:

1) There are two charges involved in printing and punching output. One covers the use of the prin-
ter or punch, the other covers the cost of the paper or cards.

2) The peripheral processor time, PPt, is not the actual number of seconds the PPs were in use, but
a pseudo-time calculated from the formula,

65202f

2.7.2

2-39

PPT = (1 ms)PRU + (100 ms)RA' + CHT

where PRU is the number of disk PRUs transferred, RA is the number of RA+1 requests
processed, and CHT is magnetic tape channel time. An RA +1 request is a request made by a CPU
program to a system PP program, generally for input or output. Channel time is, roughly
speaking, the time the tape is in motion.

3) The calculation of CMS is complicated by the fact that a separate calculation must be made each

time the job field length changes. For a given field length, say CMn,, the dollar value, CMS,
calculated for that field length is given by

CMS, = [(CPUL-CPUt..,) + (PPt-PPt..,)] * CMn, * CMr

The total central memory dollar value, CMS$, is the sum of the CMS,’s calculated for each field
length used by the job.

4) The second factor of the total job cost, the rate group factor, is determined as follows:
For reduced jobs (RG1), RATE=0.5

For normal jobs (RG2), RATE=1.0
For express jobs (RG3) and interactive jobs, RATE=1.5

5) In addition to the dollar value of a job, the user is charged for permanent file storage according
to the formula,

PF$ = PFn * PFt * PFr

where PFn is the number of disk PRUs occupied by the permanent files and PFt is the length of time
they have occupied that space. The permanent file charge is normally calculated four times a day.

6) The rates for each type of service and supply are listed in the Facilities and Policies Handbook.

100% Pay vs. Subsidized Accounts

Printed on the right-hand side of the problem number card are the words SUBSIDIZED or 100
PCT PAY. Whether the problem number is billed for all or only part of the calculated job cost is
determined by the problem type, which is punched in columns 23 and 24 of the PNC.

Computer service for certain types of projects is subsidized, in part, by the Office of the Provost.
Generally, these are projects that receive no support from non-university agencies. Problem num-
bers assigned problem types 8, 11, 12, 15, 19, 21, and 23, on the other hand, are billed for 100% of
the calculated job cost. In addition, off-campus groups (problem type 12) are assessed a 10% sur-
charge. For additional information about pay policies and problem types, see the Facilities and
Policies Handbook.

'Ims =1 millisecond =0.001 second.

2-40 65202b

2.7.3
Dayfile Accounting Messages

The dayfile printed with each job gives a partial account of the total cost for that run. It contains
messages giving the central processor, peripheral processor, central memory, tape reservation,
card reading, and printing costs:

RATE(CPU$+PP$+CM$+TP$) RATE(CRS$) (LP$+PG$)
total compute value card reading printing

The dayfile does not show charges for tape mounting (MT$), card punching (CP$ and CD$), or
permanent file storage (PF$). Also, the dayfile always shows the print charge computed at the nor-
mal rate (RATE=1.0), rather than the actual rate. Nor does the print charge message reflect the
cost of other printed output created by DISPOSE; each print file contains its own print charge
message.

The card reading cost and the “total compute value” are immediately deducted from the PN and
ID dollar balances. The printing, punching, and tape mounting costs, on the other hand, are com-
puted from the system dayfile and deducted hourly. Deductions for permanent file storage are
usually made four times a day at somewhat irregular intervals. Because of this delay, the user may
see sudden drops in the dollar balance, which is printed at the beginning of each dayfile. This
dayfile message shows the ID dollar balance before any of the costs associated with the current job
are deducted.

Following the dollar balance message is a message giving the number and cost of the cards read for
the job, as in the sample below. Unlike the print charge message, this value is computed using the
actual rate group factor.

001500 CARDSREAD VALUE $0000001.62

The following summary of compute costs is displayed at the end of the user’s dayfile.

"CPUSE 10.732 SEC VALUE$.45
PP USE 21.705 SEC VALUE$S .06
CM USE 2.136W-H VALUES .55
TP RES .541 MIN VALUE$.03

The dollar values given in these lines are computed using the normal rate group factor
(RATE=1.0). The next dayfile line totals these three amounts and multiplies the sum by the actual
rate group factor. For example, if the above lines were issued for a reduced rate job (RG1), the next
dayfile line would be

TOTAL COMPUTE VALUE ATRG1$.55

A similar accounting summary is displayed at the end of an interactive session, but includes an ad-
ditional line giving the connect time charge (CT$). The total compute value for an interactive
session includes the connect time cost, but only the CM, CPU, and PP costs are subject to the RG3
premium.

The last line of any output printed at the Compufér Center, including print files created with
DISPOSE, gives the print cost.

000034 PAGESPRINT. 000248 LINES PRINT. FORS$ 000.36 AT RG2

*The CM USE value, although labeled as word-hours, is actually a unit of block-hours, where a
block is 100B (64) central memory words. To get the number of word-hours, multiply the CM USE
value by 64.

65202b

2.7.4

2-41

The page and line count include the dayfile, banner and trailer pages. The dollar value comprises
both the computer use value (LPS) and the paper value (PGS). Although the message always
shows the print cost computed at the normal rate, the user is later assessed according to the actual
rate group of the job. Note that only the lines charge is affected by rate group.

Accounting messages for printing and card reading do not appear on jobs read from or printed at
the remote batch terminals since these charges are not assessed at the remote sites.

Other Dayfile Messages

SCOPE/HUSTLER prints a number of dayfile messages that record the use of system resources at
intermediate stages of job processing. These include the NL, RP, CPU-PPU, and the FILES

. messages.

1) After executing each control card, the system issues a dayfile message showing the cumulative
central processor and peripheral processor times, as in the following sample.

CP-PP SEC. 11.833- 14.844 S .88

Here the PPU time is the actual number of PPU seconds used. The total true PPU time is displayed
just before the final accounting summary, e.g.,

PP 016.689 SEC. CHT 12.645 SEC.

The actual PP time can be disregarded since the PP charge is calculated from the final RP and CHT
values.

2) After each control card that alters the job field length, an NL (new length) message is printed.
For example,

COMPASS,1=COMPILE.

NL 045000

RP 00000143 000000001700

ASSEMBLY COMPLETE. 42300B SCM USED.
CP-PP SEC. 36.398- 44.894 S 273
LGO. -

NL 031300

This dayfile shows that the job’s memory assignment was raised to 45000B to assemble the
program on file COMPILE, and then reduced to 31300B after the program was loaded.

3) The RP message, which appears in the example above, is a cumulative record of disk in-
put/output. The first value is a cumulative count (octal) of the RA+1 requests processed by the
system, which closely approximates the number of physical read and write requests. The second
value is a cumulative count (octal) of the number of disk PRUs transferred. This message is
displayed after each field length change. The final RP values are used to compute the PPU charge.

4) The FILES message tells the user the maximum number of files that were assigned to the job at
one time, and the maximum number of disk PRUs that they occupied.

MAXFILES 0016 MAXPRUS 003700B

These values enable the user to specify appropriate file and mass storage limits.

65202h

3.1

Job Structure

Chapter 3 is a discussion of job processirtg. There are several means of communicating with the
computer (e.g. remote batch, interactive, and central site batch). The SCOPE/HUSTLER
operating system at MSU accommodates both batch and interactive processing. The differences
between these processes will be illustrated in this chapter.

Batch processing typically involves using punched cards as input to the computer. You, the user,
are responsible for incorporating information onto cards correctly and making sure that the deck
contains a complete job. The information contained in the deck is submitted to the computer in a
batch. There is no interaction between you and the computer while the job is being processed.
Consequently the information in the deck must be complete and arranged logically. This will be
discussed in detail in Section 3.1. After the card deck is read directly into the computer system via
the card reader, the data may be stored on magnetic tape or disk. Your output is produced after a
varying time period (depending on the system load, time of day, and priority rate). If any correc-
tions are then necessary, you must punch the corrections on new cards, and resubmit the entire
deck to the system.

Interactive processing is considerably faster than batch. It provides almost instant feedback with
direct interaction between you and the computer. Terminals send your individual instructions to
the computer by means of a keyboard, and receive the computer's immediate response to each in-
struction either on paper (hard-copy terminal) or on a cathode ray tube (CRT terminal).

Job Structure

Job structure varies depending on whether the job is batch or interactive.

Batch

A batch job can be submitted to the computer system as a deck of punched cards or from storage
on disk. In either form a job is considered to be one file, consisting of one or more sections (see
Chapter 4 for a discussion of files and sections). Each section is terminated by an end-of-section
card (EOS), a blank card on which you multipunch a 7, 8, and 9 in column one. The last section of
the job deck must be followed by an end-of-information card (EOI), on which you multipunch a
6,7, 8, and 9 in column one. The EOI card must be the last card in your deck, as it tells the com-
puter that this is the end of your file. For more information on the EOS and EOI cards see Section
4.3.1.

Your job deck is automatically read into a local file named INPUT, which then acquires the struc-
ture of the job deck. The first section of the deck is always the control section. The first cards in
this section are identification and authorization cards—sequence card, problem number card, job
card, and password card—while the rest of the section consists of SCOPE/HUSTLER control
statements that specify how the job is to be processed. Unlike many operating systems and job
control languages, control statements for the SCOPE/HUSTLER operating system appear only in
the first section.

65202h

A job deck often contains only one section, the control section. If a job deck contains more sec-
tions, they are called data sections. A data section may contain one of the following:

a. A source program (any program written in programming language) to be compiled into a
binary object deck (written in machine language), which the computer can process.

b. A binary object deck (i.e., a source program which has been compiled).

c. Data for a user or library program.

d. Control directives for a utility program, such as UPDATE.’, PFLOAD.’, or ' AUTHOREF.".
Each data section corresponds to a particular control statement which specifies how the data in
that section are to be processed. As a consequence of this relationship, the data sections must be
arranged in the same order as their respective control statements. The control statements, in turn,
must be arranged in the order that you wish to have each operation performed. The following are

examples of typical batch job deck structures.

Example 1: Job deck to compile and execute a FORTRAN program.

Sequence Card
identification
1st PNC and
section : authorization
(control section) Job Card cards
Password Card
FTNS. “compile” control statement
LGO. “execute” control statement
7/8/9 EOS card
2nd
section Program ABC source program
(data section)
7/8/9 EOS card
3rd
section data data to be used
(data section) in program ABC
6/7/8/9 EOI card

This job consists of three sections—a control section and two data sections—separated by end-of-
section (EOS) cards and followed by an end-of-information (EQI) card. The control section con-
tains the identification and authorization information, and two control statements. The first data
section contains the programming language statements of program ABC, and the second data sec-

tion contains the data to be used in program ABC.

After your identification and authorization information has been verified, the ‘FTNS." control
statement is executed. This is the first control statement in the job, and thus controls the
corresponding first data section. The ‘FINS5.’ control statement calls the FORTRAN 5 compiler to
compile the source program ABC into machine language (i.e., the compiler will translate program

65202h

ABC from the source language FORTRAN, in which it is written, into machine language, called
object code). The compiler then writes the translated code onto the file LGO. (LGO is the default
name of the file which will contain the object code.)

The second control statement, ‘LGO.’, instructs the computer to execute the contents of file LGO,
in this case program ABC. The data which program ABC requires is found in the data section
following program ABC.

Example 2: Job deck composed of only one section.

Sequence Card
PNC
Job Card
Password Card
[1] ATTACH,PROG,PROGRAMABC.
(2] FTNS,I=PROG.
[3] ATTACH,TAPE1, DATAFILE.
[4] LGO,TAPEL

6/7/8/9

Notes:

[1] Retrieves program ABC (which resides
on disk storage as a permanent file named
PROGRAMABCQC),attaching it as local file PROG.
[2] Compiles program ABC, specifying that
the program is found on local file PROG.
{3] Retrieves file DATAFILE from disk storage
and attaches it as local file TAPE1.
[4] Executes program ABC, specifying that data is on
file TAPE1, to be written on program
ABC's file INPUT.

Although this job consists of only one section—the control section—it performs the same func-
tions as the job in Example 1. In this case, however, program ABC and its data are retrieved from
permanent files stored on disk rather than contained in data sections of the job deck.

You should not worry if some of the control statements are unfamiliar; this example is intended
only to illustrate a job made up entirely of control statements. For an explanation of permanent
files and the ‘ATTACH.’ control statement, see Chapter 5. All control statements are described in
Chapter 7. '

3-4 65202h

Example 3: Job using non-numeric data (a password).
Sequence Card |
PNC
Job Card
Password Card
AUTHORF,CHANGE,PW.
7/8/9
NEWPASSWRD
6/7/8/9

In this job the ‘AUTHORE.’ control statement changes your password from the old password to
the new one, which is presented as data in the data section following the 7/8/9 (EOS) card.

Interactive

Interactive processing has nothing comparable to deck structure in batch processing. The very
nature of the interactive process does not allow a completely prearranged job, but requires that
each instruction you give be determined by the computer’s response to previous instructions. (You
can, however, submit batch jobs from a terminal by using the ‘DISPOSE.’ statement; see Sections
3.5.1and 7.4.1 of this manual, as well as Section 3.11 of the Interactive System User’s Guide.)

3.2
Identification and Authorization

After your application for computer services has been approved and processed, you are assigned a
problem number (PN), user name (ID), and password (PW). These are the three items necessary
for authorization to use the computer, whether in batch or interactive mode. For full descriptions
of the PN, ID and PW, see Sections 2.1.3 and 2.2. :

Batch

The first cards or statements of any batch job are identification and authorization statements. The
number of these statements required in a batch job depends on (a) where the deck is submitted,
and (b) whether a password is required. When present, the four cards must appear in the following
order.

(Password Card 4——— optional

{ Job Card (contains user ID)

(Problem Number Card

Sequence Number Card required on central site card readers—source
B; optional on remote batch terminals.

65202h

3.2.1

The sequence number is used only with decks submitted from the central site card readers (source
B). The password is required if the PWRQD flag in the Authorization File is set to ON. (To find
out if the PWRQD flag has been set to ON in your authorization file, see Sections 2.6.2—PN and
User Fields, and 2.5.4—DISPLAY.)

Interactive

In an interactive job the identification and authorization statements are condensed into one line, as
in the following example.

rasswordrsrroblemnumberyuserid

When you activate the terminal, the system prints the following information, and requests your
authorization and identification information. Although a password may be optional in batch
mode, it is required in interactive mode.

03/19/81 MSU HUSTLER 2 LSD 50.36 03/16/81 CYBER7S50

TYFE FASSWORDs FNs AND USER ID.
REIREARARNA

You must enter the desired information within five minutes or your terminal connection will be
disconnected. The system will black out spaces in which to type your password, in order to insure
your password's security. If you do not enter the correct information, a message will be printed in-
structing you to try again.

If, after three attempts, you are still unsuccessful in logging in, the system will disconnect the ter-
minal after displaying the following message:

YOU HAVE HAD THREE TRIES. GET HELP.

For more details on log-in options in interactive mode, see Chapter 1 of the Interactive System
User’s Guide. :

The following pages describe in detail the function and format of each of the authorization
statements as they are used in batch and interactive processing.

Sequence Number

Batch

If you enter batch jobs from the central site Input/ Output Room (source B), Room 207/208 Com-
puter Center, you must take a pre-punched sequence number card from the rack just inside the
door to Room 207. The sequence number card must be the first card of any deck read by the cen-
tral site card readers. The card contains a sequence number, composed of a two-character source
code and a five digit number, which identifies the job within the system and all of its printed,
punched, and plotted output. If you enter a batch job from a remote site, your sequence number
will be assigned automatically by the computer.

3-6

3.2.2

65202h

Interactive

Each interactive session is assigned a sequence number by the system and is displayed immediately
upon logging in. This number identifies your session and all files disposed to output devices. (This
number will be repeated when any file is disposed during the same session.) A new sequence num-
ber, different from the session number, will be generated when a file is disposed to the batch input
queue. (For more information on ‘DISPOSE.’, see Chapter 7 of the Interactive System User's
Guide.)

CAUTION: The second character of the source code changes if output is directed to a site different
than the input site. For example, if an interactive job has the number SS00001 and output is direc-
ted, via ‘DISPOSE.’, to source B, the output will be identified as SB0O0001.

Problem Number

The problem number (PN) is used in both batch and interactive modes as an account number.

Batch

In batch the problem number card (PNC) is a pre-punched card which contains the PN, and is
issued by the Computer Laboratory to identify an authorized account. In decks submitted from
source B, the PNC follows the sequence card. In decks submitted from remote batch card readers,
the PNC is the first card of the deck since no sequence card is required at remote batch sites.

Note that a password card is not required when you dispose a batch job from an interactive ter-
minal. See Section 3.5.1 — DISPOSE.

Columns 1-60 of the PNC contain the problem number, PN expiration date, problem type, and
name of the PN holder. Columns 61-80 contain “check digits” which are used to insure that the
card is not altered. If a PNC is lost or stolen, the PN Manager can void previously issued cards by
having new PNCs punched with different check digits (see Section 2.1.9).

Possession of a PNC is not considered adequate security for your account. The PNC can be easily
duplicated on ordinary card stock and your ID is considered public information. PN managers are
therefore advised to use the following statement to make password cards mandatory for batch jobs
(see Section 2.2).

AUTHORF,CHANGE,PWRQD=0N.
Interactive
As mentioned in the introduction to this section, the PN is also used as authorization in interactive
mode. The function of the PN is the same in batch and interactive modes. The PN is the second
item you type when logging in.

password, problemnumber,userID

Example:

secret,0000001,smith

65202h 3-7

3.2.3
User Identification

Batch

In batch mode, the Job Card specifies the ID which identifies your account. It may also specify
limits for a variety of system resources used by the job. If a particular type of limit is not specified,
a default value is applied.’

The maximum value that may be specified for each type of job limit is determined by your PN
limits recorded in the Authorization File. If any of the job card limits exceeds the corresponding
PN limit, the job is aborted before it starts executing. During execution, the job is subject to the
specified job limits (or their defaults) and will abort if it attempts to exceed any of these. For more
information and a list of PN limits and their default values, see Sections 2.6.2, 2.6.3 and 2.6.4.

One purpose of job limits is to trap programming errors that would not otherwise be detected.
Unless you know the default limits, know the PN limits, and prepare the job card prudently,
however, job limits will abort as many good jobs as bad jobs. To find out what your job limits are,
have the computer display your PN limits by using the ‘AUTHORF,DISPLAY.’ command as ex-
plained in Section 2.5.4.

The job card format is shown below. Upper case characters are keyword prefixes (which must be
typed as shown, but may be in upper or lower case), and lower case characters represent the values
supplied by you, the user. Brackets [] indicate that the enclosed parameter is optional. Optional
parameters may be specified in any order.

id[, Ccards],[CMwords][JCcents][, Lpages], MSprus]
{,MTtapes][, NOINIT],INIT]{,NTtapes|[,PNpn}[,RGgroup][, Tsec].

Parameter Meaning Unit Default

id the user ID. This is the
only required item.

Ccards the card limit for punched cards DC field from
output. The number you your PN limits.?
specify is rounded up to the
nearest multiple of 8.

CMwords theinitial central memory words DCM field from
Field Length. For jobs that (octal) your PN limits.?

do not require more than
100000, words of memory, this
value has little meaning. For
jobs that require more than
100000, words, this value is
also called the Maximum Field
Length (see Section 7.11).

'Your account may actually be part of a larger account assigned to a PN manager. The PN
manager’s account is identified by the master ID, the ID initially issued with the PN. Any sub-

accounts subsequently created by the PN manager must be identified by a unique ID.

2PN limi‘ts for DC, DCM, DL, and DMS fields are described in Sections 2.5.6, 2.6.2 and 2.6.4.

INIT causes execution of the
initialization file, which
executes a pre-specified
group of statements
automatically after logging
in. The initialization file
can be created and changed
only by the PN manager.

JCcents the maximum compute cost
(total of CP, PP, and CM
charges) in cents. This
limit cannot exceed either
the ID or PN dollar balance.
If JCO is specified, the
limit is set to the lesser
of the PN and ID dollar
balances. As described
in Section 3.7, the job
cost limit also determines
the priority of the job.

See also Tsec.

Lpages the page limit for printed
output. The number you
specify is rounded up to the
nearest multiple of 8.

MSprus the mass storage limit

(on disk). This limit can

be altered during execution
via the ‘LIMIT.’ command.

MTtapes the maximum number of
7-track tape drives to be
used by the job. This
number may be altered
during execution by use
of the TAPRES.’ and 'RETURN.’
control statements (see
Sections 6.4.2 and 6.4.3).
The maximum number of tape
drives available is two.

NOINIT requests that normal
execution of the
initialization file be
bypassed (see INIT). This
log-in option is illegal
if the PN manager has made
initialization required.

cents

pages

100s PRUs

7-track
tape drives

65202h

500

DL field from
your PN limits.?

DMS field from
your PN limits.?

*PN limits for DC, DCM, DL, and DMS fields are described in Sections 2.5.6, 2.6.2 and 2.6.4.

65202h

NTtapes

PNpn

RGgroup

Tsec

Examples:

the maximum number of 9-track
‘O-track tape drives to be -
used by the job. This

number may be altered during
execution by ‘TAPRES.' and
‘RETURN.’ control statements
(see Sections 6.4.2 and

6.4.3). The maximum number
of tape drives available

is four.

your problem number. This
item is required only for
batch jobs created inter-
actively by the ‘DISPOSE.’
command (see Section 7.5.1).

the rate group, which
determines the job priority
and total job cost. See
Section 3.7.

the CPU time limit. If the seconds
JC parameter is specified,

but T is not, the job time

limit is considered

infinite.

1. JONES.

This job card requests default values for all limits:

2 (normal rate)
7 seconds

RG (rate group)
T (CPU time)
JC (job cost) $5.00 (500 cents)
CM (max FL) 100000, words
tape reservation 0

tape drives

2
(for batch
jobs)

3-9

The print, punch, and mass storage limits are taken from the DL, DC, and DMS fields of
your PN limits (see Section 2.6.4).

2. JONES,L250,JC50,RG3.

This job card requests a print limit of 250 pages, a job cost limit of 50 cents, and express
priority. Such limits might be appropriate for listing the contents of a file when it is needed
quickly.

IRG2 is the normal default for batch jobs run between 7:08 a.m. amd 11:00 p.m.; interactive jobs
are always run at RG3 at these times. However, both batch and interactive jobs are run at RG2
between 11:00 p.m. and 7:00 a.m.

3-10

3.2.4
Password

65202h

3. JONES,CM120000,RG1,JC0,T1000.

This job card specifies a maximum field length of 120000 (octal) words, a time limit of 1000
seconds, and a job cost limit equivalent to the current ID or PN dollar balance, whichever is
less. Rate Group 1 is specified in order to reduce total job costs. Such limits might be
requested for a very large and expensive job when fast turnaround is not required.

4, JONES,MT1,NT1,JC2500.

This job card requests a job cost limit of $25, one 7-track tape reservation, and one 9-track
tape reservation. Such limits might be appropriate for copying a 7-track tape to a 9-track

tape.
Interactive

In interactive mode the ID is typed into the system along with the other two identifiers (password
and PN) when logging in. The user ID, password and PN must be correct for you to successfully
login.

Passwords are used to protect individual accounts from unauthorized use.

Batch

In batch mode the password card is required only if the PN manager has set the PWRQD field of
the Authorization File to ON, otherwise the password card is ignored. When present, the
password card must follow the job card with this format:

PW =password

where:

password is the 1-10 character password that you have chosen (see Section 2.5.6). Note
that there is no terminating period on this card.

To help protect the secrecy of the password, flip the PRINT switch off when keypunching the
password card.

= -

0 0 0000 0000000D0000002000000600C000000000000000600000600000500
23455 TN NBUBRUBI AN GBUBETBARNABRBETADRNACUERE A BDNNBUB AN RS R G Q
(AR R R R R R R R R R R R R R R R R R R AR EERERR R R

In this example your password has been punched on the card, but is not printed at the top of the
card.

65202h 3-11

Interactive

In interactive mode your password is typed in along with your user ID and PN. Although a
password may be optional in batch mode, in interactive mode it is required that you supply all
three identifiers to log in. The system will black out the spaces in which you type your entire
password and part of your PN. If you want to blank out all three identifiers as they are typed,
push the keys “CONTROL” and “V” at the same time. Any characters typed on that line will not
print. The “RETURN" key releases “CONTROL-V".

3.3
Control Statements

The first part of this section describes in general terms the syntax of SCOPE/ HUSTLER control
statements.Control statement is a generic term for control card (batch use) and command (in-
teractive use).

The second part of this section explains the notation used by this and other Computer Laboratory
manuals to describe the format of particular control statements. Chapter 7 describes each control
statement in detail with examples, while Appendix] gives brief descriptions of all control
statements, using the notation of this section. In addition, the Interactive System User’s Guide
gives information on commands available only on the interactive system.

3.3.1
Control Statement Syntax

SCOPE/HUSTLER control statements consist of a flagword, followed optionally by a list of
parameters, followed by a terminator. A flagword is the initial part of a control statement, and
identifies the program that will control the processing. A parameter is the part or parts of the con-
trol statement following the flagword, which gives the computer specific information about how
your input is to be processed. (Note: If there exists a local file with the same name as a control
statement flagword, that control statement will usually be interpreted as a request to load and
execute the local file.) Rules for punctuation and spacing between parameters vary somewhat from
one control statement to the next. The following conventions, however, are acceptable to all con-
trol statements and should be adhered to unless otherwise noted:

1) Parameters should be separated from the flagword and from one another by commas.

2) Spaces should not be used between or within parameters.

3) The control statement should be terminated by a period.

4) Any characters following an asterisk are treated as comment lines.

5) Characters following the terminator are treated as a comment in batch mode only. In in-

teractive mode characters following a terminator are treated as another command.
Example:
ATTACH,PROG,PROGRAMABC.

flagword parameters

3-12

65202h

This syntax may be represented by

ﬂgwrd,p,,p;,...,pk.
where the flagword is represented by “flgwrd” and the parameter list by “p,,pa,....p:", the last
parameter being represented by “p.”. You may insert comments after the period in batch mode

only. Replacing the first comma by a left parenthesis and the period by a right parenthesis
produces an alternate, universally accepted, format:

flgwrd(ps,ps, ..., Ps)
Example:

ATTACH(PROG,PROGRAMABCQC)
You may insert comments after the right parenthesis in batch mode only.
Other Delimiters

In some cases, other punctuation may be used to separate the subfields within a particular
parameter. Common parameter forms include:

key=value

key = value/value/.../value
key =value=value=... =value

Examples:

LDSET,STAT=A/B/C,LIB=FORTRAN/CRM.

REQUEST, TAPE, VRN = 5001 = 5002, RW.
Literals
Some control statements accept literals. A literal is a character string delimited by dollar signs.
With a few exceptions, any parameter field that includes characters other than letters or numbers
must be written as a literal. Blanks within the delimiters are retained. If the literal is to contain a
dollar sign, two consecutive dollar signs must be typed. For example SXYSSZ$ is interpreted as
XY$Z. The descriptions of control statements in Chapters 5 and 7 state whether they accept literals
or not.
Example1:

PFLIST,PREFIX=9%].A.L.$,ALL.

This program lists all permanent files with names starting with the characters “J.A.L.”.
Example 2:
PFDUMP, PFN =SMONEYS$PFS,NT =UP1234.

This program writes onto tape UP1234 the permanent file named MONEYSPF. (See Sections 5.3
and 5.4.3 for further information on the control statements ‘PFLIST." and ‘PFDUMP.".)

65202h

) 3.3.2

3-13

Notation for Control Statement Syntax

Computer Laboratory manuals employ the following notation for describing control statement

formats.

UPPER CASE Upper case items are flagwords. These flagwords may be typed in upper or

lower case

(]
[

{1}

lower case on a keypunch or terminal (unless otherwise stated), but they

. must be spelled as shown.

Lower case items are to be replaced by you with appropriate symbols or
values as defined for that parameter.

Items in brackets are optional; they may be omitted.

Several items in brackets and separated by a vertical bar (|) are all op-
tional, but one and only one of the items may appear on the control
statement. None need be present.

Several items in braces and separated by a vertical bar (|) represent a list of
options of which one must be selected. One and only one of these items
must be present.

The preceding item may be optionally repeated on the control statement as
desired.

The preceding item may be repeated, but a comma is required between
repetitions.

Items underscored with a single line are assumed as the default condition if
no item is specified.

Characters underscored with a double line indicate an abbreviation of the
item.

Required parameters, i.e., those that are not surrounded by square brackets, should be specified in
the order shown. Optional parameters may be specified in any order provided that a comma is
shown inside the left bracket, e.g., [,param].

As an illustration of this notation, consider the 'RETURN.’ statement.

RETURN, Ifn, [, lfn,]l,...], MT =mt][, NT =nt].

In English, this says that at least one local file name (Ifn) must be specified after the flagword:
others may follow, each separated by a comma. Tape reservation parameters may be specified,
each starting with MT or NT, followed by an equal sign, followed by a number. Some legal forms
of the 'RETURN.’ statement include:

RETURN,A.

RETURN,A,B,C,D.EF.
RETURN,A NT=2,
RETURN,A MT=1,NT=0.
RETURN,A,BMT=1.

For further information on ‘RETURN.’ see Section 6.4.3.

3-14 65202h

3.3.3
Continuation Cards

Batch

A very long control statement may need more than one card to contain it. In such a case, the con-
trol statement is continued on a following card (or cards) called a continuation card. To signify a
continuation card, do not type a control statement terminator (a period or right parenthesis) until
the last card. The system examines each control card for a termination mark. When none is en-
countered, the system assumes that the next control card is a continuation of the first.

Example: The first control card of ‘PFLIST.’ does not end with a period or right parenthesis; only
the second and final card does.

AORTY CHAFALTERSy SURT=ALCOTHT, _
FLISTs ALLESS=5-15- 511 N1 =UF 3456=UF 3357 =UF 345R=UF 3455 U=LONG TILE NAME UF 10

Continuation cards can be processed only by these programs:

APLIB CATALOG FILEDMP F45 PFLOAD
ATTACH COBOL FIN LISTTY PFLIST
AUTHORF COMPASS FTNS PFDUMP REQUEST
BASIC FILE

Lack of a terminator on a control statement which does not require a continuation card can cause
serious errors, as in the example below.

PNC

REWIND, IFILE
FTNS, 1 =IFILE.
LGO.

Because the terminator is missing on the 'REWIND.’ control statement, the 'FTNS.’ control
statement following it is considered a continuation of ‘REWIND.’. The ‘REWIND." control
statement does not process continuation cards, so the ‘FIN5." statement (in this example) is skip-
ped. The job will abort because the LGO file is empty, not because of a control statement syntax
error; the missing terminator generates an informative dayfile message only.

In programs which do not accept continuation cards, the system will process the first card of the
control statement and then, after the program has executed, skip to the start of the next control
statement. For more information on programs which allow continuation cards, see Chapter 7.

65202h

Interactive

3-15

Commands in interactive processing are subject to the same 80-column limit as commands in batch
processing. If you need to continue a command on the next line, you will need to create an EXEC
file, in which you can continue the command as in batch processing. See Chapter 9 of the In-
teractive System User's Guide for a discussion of EXEC files.

If you are typing a batch program into an interactive file, you may need to continue a line past the
margin. The various editing systems available under EDITOR allow line continuation. For more
information on EDITOR, see Chapter 3 of the Interactive System User’s Guide.

3.4
Sample Jobs

This section contains sample batch and interactive jobs.

Batch

Sequence Card

PNC

Job Card.

PW =verysecret
ATTACH,WORK,PWORK.
FIN5,1=WORK.

LGO.

7/8/9
data
6/7/8/9

Sequence number card

problem number card

contains user ID and job limits

password

attaches a permanent file (PWORK) as a local file (WORK)
compiles the attached file into object code

writes the object-coded file onto the LGO file, which
initiates execution

end-of-section card

data used in the program contained in file WORK
end-of-information card

The job illustrates the process of attaching a local file and compiling a permanent file. The existing
permanent file PWORK is attached and renamed WORK, a local file. The local file WORK is com-
piled by the FORTRAN 5 compiler. (See Section 3.2 for discussion of the PNC, Job Card and PW.)

Interactive

The following is a sample interactive job.

READY 08.24.11

ok.
OK-sustemyfortran
OK-n

100=rrodgram tri (inrutsouteut)

110=rrint 300
120=1 =-1
130=read 100s1l1lss1l
140=read 100s12ys2

150=if ((ll.ea.iht).or.(12.e@.1ht)) 311 exit
160=if (ll.ea.lhh) x=sart(sl¥¥2-s2¥%k2)
170=if (12.ea.1hh) x=sert(s2%%2-sl¥kk2)

3-16 65202h

180=if (:¢.1t.0) u=sart{(slkk2+s2%%¥2)

190=print 200
200=g0 to 1
210=100 formst(a3ls1xrf10.0)
220=200 format(eld.,3)
230=300 format(k to comrute 3rd side of 3 rt., triandler
240=+ ture! Xr/y SxesXh=rn.m For herotenuseXs/»SrXs=n.m
250=+ for sideXr/r Sxrikt to end srogramiy/yX¥X where n.m
260=+ specifies lendgth¥r»%x (format f10.0)%y//)

270=end

280==promrt.
OK-ftrner

COMFILING TRI

s050 CF SECONDIS COMFILATION TIME
EXEC BEGUN.09.05.23,
TO COMFUTE 3RO SIDE OF A RT. TRIANGLEs TYFE?

H=N.M FOR HYFOTENUSE
S=N.M FOR SIDE
T TO -END FROGRAM
WHERE N.M SFPECIFIES LENGTH (FORMAT F10.0)
¥h=9.
Xs=3.
+40000E+01
Xs=4,
Xs=3,
+S0000E+01
Xt
Xt
EXIT

014300 FINAL EXECUTION FL.

.007 CF SECONDS EXECUTION TIME.
OKk-saverintex.,
OR~catalodrintexrintere:.

CATALOG» INTEX» INTEREX.,

In this example, after logging in, you specify the formatting system FORTRAN and initiate
automatic numbering. You then type in a FORTRAN program to calculate the hypotenuse of a
right triangle. This program is then compiled and executed. When the system prompts for input,
you enter the data values. The computer then uses that data to compute the hypotenuse of a right
triangle, and prints the output at your terminal. The program is then saved as local file INTEX and
cataloged as permanent file INTEREX.

65202h

3.5

3-17

Job Submission

This section describes the different procedures used to submit batch and interactive jobs.
Batch

Before submitting a job, you should check to make sure that the deck is complete and properly
organized. One of the most common sources of error is a hastily assembled control section con-
taining mispunched or misplaced cards. The lister-printer, available in Room 208 Computer Cen-
ter, can print your card deck on paper, enabling you to scan the contents for errors.

There are several ways of gaining access to the computer in batch mode: via central site card
readers, remote batch terminals, and through the Merit Network.

The central site card readers at the Computer Center Input/Qutput Room (Room 207/208) are
available for your use on a self-serve basis during production hours. In addition, you may submit
jobs at the Service Window of the Input/Output Room for special handling, e.g., jobs requiring
special forms output or jobs to be read at a later time.

In addition to the Input/Qutput Room facilities, low-speed remote batch terminals are located in
numerous sites (other campus buildings and cities). In order to submit jobs from one of these ter-
minals, you must request authorization for that source and approval of the terminal representative
by contacting the Computer Laboratory Main Office.

The Merit Network is available to both interactive and batch users wishing access to other com-
puting facilities within the network. The network links the computing systems of MSU, the
University of Michigan, Wayne State University, and Western Michigan University. For more
details on Merit, its use and rates, see the Facilities and Policies Handbook, or refer to the Merit
User Memos, available in the User Information Center (Room 313 Computer Center).

All output printed or punched at the central site is filed in the Input/Output Room, 208 Computer
Center, by the IO Room staff. Average length printouts are filed in suspended folders according
to the last three digits of the job sequence number; large printouts are stacked on a self-service
shelf according to the last digit. Large punch output (more than 1,000 cards) is stored in boxes and
placed on the same self-service shelf. Smaller decks are stored in a self-service cabinet in'the same
room according to the last digit of the sequence number. Plot output may be obtained at the Ser-
vice Window.

Interactive

Interactive sessions with the computer take place on interactive terminals that are hardwired or
dial-up. Hardwired terminals are connected directly to the central computer via cables. Dial-up
terminals are connected through a normal phone line and a modem (or acoustic coupler) to the
central computer system. Public interactive terminals are accessible during published building
hours in Room 208 Computer Center. These terminals include hard-copy and CRT models.

Communication between the Cyber 750 and all interactive terminals is handled by the Front-end
computer, a Perkin-Elmer 7/32. This mini-computer is connected to the mainframe computer via a
high-speed channe! interface. The Front-end directly processes control characters which affect ter-
minal function and Front-end commands covering a number of interactive functions. Instructions
not concerning terminal function or Front-end commands are transmitted to the operating system
of the main computer. (For more information on the Front-end, see Chapter 8 of the Interactive
System User's Guide.)

3-18

3.5.1

65202h

As mentioned above, the Merit Network is also available for interactive use. You can access the
other Merit sites without going through the local system by using Hermes, a network-to-terminal
interface. Telenet, an international telecommunication network, when linked with Merit, allows
interactive use of the Merit host computers from anywhere in the United States and a score of
foreign countries. For more information on the use of Merit, Hermes and Telenet, see the Merit
User Memos or the Merit consultant in the User Information Center (Room 313 Computer Center).

Examples of interactive sessions may be found in Appendix H of the Interactive System User's
Guide.

‘DISPOSE’ a Batch Job from an Interactive Job

The SCOPE/HUSTLER operating system allows you to type a batch job on an interactive terminal
in order to easily edit mistakes. The job can then be sent to the batch input queue from the ter-
minal and run as a batch job. The advantage of this arrangement is twofold: 1) any mistakes in the
job can easily be edited while in interactive mode, and 2) you do not have to stay at your terminal
while your job is being processed.

The MSU text editing system called EDITOR enables you to build and edit files. For information
on using EDITOR, please refer to Chapter 3 of the Interactive System User’s Guide.

The ‘DISPOSE.” command allows you to specify how a local file is to be processed when released
from a job. In order to send a file to the central site for batch processing, use this form of the
‘DISPOSE.’ command:

DISPOSE, Ifn,IN.

The parameter “IN” specifies the batch input queue as the destination. You must be authorized for
a particular destination in order to dispose a file to it.

When a job is being disposed to-the central site for processing, it must have the same format as a
card deck that is submitted at the central site. The file must have all the deck’s features except for
the sequence card, PNC and password card. The sequence card is not needed since the sequence
number is automatically assigned, and the PNC and password card are eliminated because your
right to access has been established by successfully logging in. You do, however, need to include
the information contained on those cards, i.e., your ID and PN, in this form on the job card:

id,Pan,[,RGr8][JCct][,CMﬂ][,Tt}[,MTn][,NTx][,Ll][,Cc][,MSm].
Example:
smith, 0000001, rg1,jc2500.

See Section 7.2 of the Interactive System User’s Guide for a description of the job card and its
parameters. :

CAUTION: Do not make your password part of the job to be disposed to batch, since it is
vulnerable to discovery if left in a file.

A ‘DISPOSE.’ command may be inserted in the control section of the job file to specify the
destination, page/card limit, and number of desired copies of the output. If the ‘DISPOSE.’ com-
mand is omitted the output will be printed (or punched) at the central site.

65202h

3.6

S &4

For more information and additional ‘DISPOSE.’ formats, see Chapter 7 of the Interactive System
User’s Guide.

Job Processing

'3.6.1

Whereas the first part of this chapter described the mechanics of putting a job together, the next
few sections explain the logic of the job structure by outlining how the job is processed by
SCOPE/HUSTLER.

Input Queue

3.6.2
Pool

The input queue holds jobs until they can be processed.

Batch

When a batch job deck is read through the card reader, the system first checks to see whether the
required identification and authorization cards are present, correctly sequenced, and properly for-
matted. If they are not, the job is aborted and an appropriate message is displayed. If they are
correct, the job is then copied to disk storage, where it is designated as an input file and identified
by the job sequence number. At any given time, there are usually many jobs in this state. Ordered
by priority, these files form the input queue. The priority, as computed from the job card
parameters Rate Group (RG) and Job Cost limit (JC), is the chief factor determining the order in
which jobs leave the input queue and enter the execution queue or pool. Section 3.7 further
elaborates the priority scheme.

Interactive

Interactive jobs bypass the input queue and go directly to the pool.

From the input queue, the job joins another group known as the pool or execution queue, which is
composed of all interactive jobs and up to twenty batch jobs. The pool comprises all jobs eligible
for execution at a control point. The pool is a software device that places batch and interactive
jobs under the control of a single scheduling algorithm. Internally, the pool consists of tables con-
taining scheduling criteria and other information necessary to interrupt and restart executing jobs.

Once the job enters the pool, normal priority (as determined by Rate Group) is ignored. Instead,
the scheduler attempts to assign control points to an assortment of jobs which makes best use of
central memory, while also providing adequate response to interactive users and distributing ac-
cess equitably among all jobs in the pool.

Jobs which are in the pool but are not executing (not assigned to a control point) are said to be
swapped out, which means they have been transferred from central memory to disk and/or ECS
(extended core storage). An executing job may be swapped out because

a. it is waiting for the operator to assign a tape or disk file;

b. it is waiting for access to a permanent file presently assigned to another job;

3-20

3.6.3
Loading

65202h
c. it is paused and waiting for a GO command from the operator;
d. it is an interactive job waiting fox: input from the terminal ;
e. it is requesting more central memory than is presently available;
f. the operator has requested a swap out;
g a higher priority job must be swapped in (e.g., one which would use the resources of the

computer more efficiently at the time as determined by the HUSTLER scheduler).

The Cyber Loader is the system program used by SCOPE/HUSTLER to transfer all object
programs from disk storage or magnetic tape into central memory. The loader:

(1) loads absolute and relocatable binary programs,
(2) links separately compiled or assembled programs,
(3) loads subprograms from the system library and links them to user programs,

(4) generates overlays and segments,

.(5) prints diagnostics, and

(6) generates memory maps.

Programs that exceed available memory may be organized into relocatable segments or absolute
overlays so that portions or groups of programs may be called, executed and unloaded as needed.
Overlay loading is the more efficient technique, because it requires no linking or delinking.
However, the linking and delinking overhead of segments is negligible.

A load sequence (load set or load operation) involves all of the loader’s processing from the time
the loader is called until the time the loaded program is ready to execute.

The type of loading that occurs during execution of the job depends on the size and organization of
the job. The two types of loading are (1) core image and (2) relocatable, of which the simpler is
core image. Involving only one block of object code (called a core image module), it must be
loaded starting at a particular address in memory, which is stored in the header of the core image
module. After the loader places the module in memory, execution is initiated at an entry point.
The name and address of the entry point are also stored in the module’s header. All control-
statement-callable system programs, such as FIN.,, 'UPDATE., ‘ATTACH.’, ‘COPY.’, and
‘FILE.’, are core image modules.

The second type of loading— relocatable—involves the loading and linking of blocks of object
code called relocatable object modules (or subprograms). The relocatable object module is the
basic unit produced by a compiler or assembler. It consists of a series of binary tables that describe
the subprogram to the loader. Unlike the core image module, a relocatable module lacks a fixed
origin address; this is decided by the loader. '

For a full description of the loader and commands see the CDC Loader Reference Manual or the
User’s Guide Supplement: LIBEDIT — Cyber Loader Libraries.

65202h

3.64
Execution

=41

For more information on pools and control points, see Section 1.4.

A job can execute only when it is assigned to a control point and given core storage. The control
points, like the pool, are simply a software tool for interrelating information about an executing
job. Please refer to Section 1.4 for a discussion on control points, control point areas, and the job
field length.

Batch

Suppose a batch job is in the pool and is selected for execution by the scheduler. The job is brought
to a control point in the following manner.

a. The job is assigned a block of zﬁemory (called the job field length) by setting the RA and FL
values in the control point area. '

b. The job file is designated as a local file and its name is changed to INPUT. (The job
sequence number is saved in the control point area.)

c. The first section of INPUT, the control section, is copied to a buffer in the control point
area, which also maintains a pointer indicating the next control card to be processed.

d. INPUT is left positioned to the start of the second section (the first data section).

e. A local file named OUTPUT is assigned to the job when needed to collect output for
printing.

After the system has completed the job authorization tests described in Section 2.1.6, it begins
execution of the control statements, processing them in sequence one statement at a time until:

(1) thelast control statement has been processed,
(2) anew control section is read in by means of the EXEC utility (see Section 7.1.2), or

3) a fatal error occurs.

In both batch and interactive processing, each control statement may be considered a call to load
and execute a program. The program referred to by the control statement flagword may be stored
either on a system library (as in the case of 'FTNS.’), or on one of the local files assigned to the job
(as in the case of LGO.").

Note that programs which read from file INPUT read sequentially from a disk copy of the job
deck. Therefore, in batch mode, if you want to use the same data section with more than one con-

trol statement, you must explicitly backspace INPUT to be positioned at the beginning of that data
section. (See Section 7.7.) .

Interactive

An interactive job is processed in the following manner.

3-22

65202h

A. When you log in, the system checks the Authorization File, assigns your job a sequence

number, and records the sequence number, ID and PN in the control point area.

B. The system then prompts you for a control statement. Each time you enter a control
statement at the terminal, the system: :

1) records the control statement in the control point area,

2) swaps the job in to a control point, which assigns that control statement a job field
length by recording the address of the job field length (the RA and FL values) in the
control point area, and

3) reads and processes the control statement.

Every time you type a control statement, the system reassigns the job field length, depend-
ing on the central memory requirements of that particular control statement.

C. When a control statement requires data, the program reads it from the source you have in-
dicated, either from an input file or entered from the terminal. This data is recorded in the
job field length.

The distinguishing characteristic of interactive processing is the ability for you to communicate
with the computer while it is running your job. The device which makes an interactive con-
versation with the computer possible is a software item called a connected file. Unlike regular disk
files, connected files do not store information; they simply establish a communication path for
data flow between your terminal and the computer.

When you are running a program that needs your input, the program will send a prompt to your
terminal by issuing a read request on a connected file. When you have finished typing an input
line, it is transferred to your job field length. The program then transfers output to your terminal
by issuing a write request on a connected file. Once a file is connected, it can be used for input,
output, or both; that is, there is no distinction between files connected for read or write
operations.

Connected files are used only for communication between you and the program you are running,
not between you and the operating system. System commands are read directly by the system, and
do not require the use of connected files. Many system commands will, however, connect in-
put/output files for you once they have been called.* If you are running a program which does not
automatically connect files for you, and you want to have the output displayed at your terminal,
you may connect files yourself by using the ' CONNECT.’ control statement (see Section 5.2 of the
Interactive System User's Guide). PASCAL programs are examples of programs which do not
automatically connect files. Other such programs are identified in their documentation.

If you do not want to see your output displayed at your terminal, you may disconnect files by
using the ‘DISCONT.’ control statement, or you may designate the output file to be other than the
terminal. (An example of this is the control statement ‘RANLIB,O=STOREFILE.’. Output from
‘RANLIB.’ will be listed on the file STOREFILE. The interactive default output file is the connected
file ZZZZOT, which is why you would see the output at your terminal if the default were used.)
For more information on ‘DISCONT.’, refer to Section 5.4 of the Interactive System User’s Guide.

sIn order to tell if a file is connected or not, type the system command ‘FILES.’. Any file name then
listed which is preceded by a “C*” is a connected file. An example of this is C*ZZZZOT, where
“2ZZZOT" is the file name, and “C*” designates a connected file.

65202h 3-23

3.6.5
Job Termination

The termination of batch and interactive jobs and the disposition of their files vary depending on
certain conditions specified below.

Batch

Upon termination of a batch job, all files assigned to it are disposed of as follows:

a. Permanent files are retained on disk.

b. The job dayfile is written on file OUTPUT; file OUTPUT is changed from type local to
: type output and renamed to the job sequence number. It joins output files from other jobs

that are also waiting to print. These files, ordered by priority, form the print queues.

c. Local files named PUNCH, PUNCHB, PUNCHC, PUNCHS, and P80C are changed to type
output and renamed to the job sequence number. These files enter the punch queue.

d. Files disposed to be printed or punched at remote sites are sent to those output queues.

e. Any remaining file with a special (non-zero) disposition code is placed in the print or punch
queue, as indicated.

f. Storage held by all other local files is released, and each is evicted from the system.
g Any tape drives reserved for that job are released and the tape is unloaded.

After all files have been disposed of and final job accounting has been completed, the control point
and the job field length are released.

Interactive
There are several ways of terminating an interactive session, depending on how you want your
files disposed. If you wish to drop all local files, and do not want detailed accounting information,
type the following command:

LOGOUT,T.
If you want to specify disposition of each local file individually, type:

LOGOUT

The system will display one local file name (followed by a question mark) at a time. Enter one of
the following disposition codes for each local file name displayed.

D to drop the file,
R to retain the file,
T to terminate display of file names and drop all remaining files, or

HELP torequest a list of valid responses.

3-24

3.6.6
Dayfile

65202h

Retained files will be available for two hours after LOGOUT under the user ID/problem number
combination which was used to retain them. After you enter a T disposition, or after all local files
have been disposed of, the system will disconnect the terminal after displaying accounting in-
formation.

For more information on terminating an interactive session, see Section 1.2 of the Interactive
System User's Guide.

When a job begins execution, the system creates a local file to collect dayfile messages. These
messages include accounting and authorization information, error messages (if any), and a copy of
each control statement in your program as it is executed. The final lines give a partial summary of
the job cost, as described in Section 2.7.3. When the job ends, the dayfile is inserted into file OUT-
PUT. :

The first dayfile line is the syétem header, which identifies the current operating system. The
following example identifies each part of the header.

03/19/81 MSU HUSTLER 2 LSDh S0.36 03/16/81 CYBER7S0
03/19/81 Today's date.
MSU PﬁJSTLéR 2 The name of the operating system.

LSD 50.36 Latest System Delivered number. Revisions made to the MSU operating
system, HUSTLER 2, are numbered by the LSD number. There are two kinds
of revisions indicated in this number: major or non-upward compatible, and
minor or upward compatible. The digits to the right of the decimal point in-
dicate which minor revision is current, while the digits to the left of the
decimal point indicate the latest major revision. Minor or upward compatible
revisions do not affect a program which has been run successfully before the
revision was made. Major or non-upward compatible revisions usually
require changes in user programs for them to run successfully. When non-
upward compatible revisions are installed, the LSD number is raised to the
next integer (e.g., LSD 51.00) and you are notified through various Com-
puter Laboratory publications in advance of its installation.

03/16/81 The date that LSD 50.36 was installed.

CYBER 750 The name of the MSU academic computer.

Following the header are several lines of accounting and authorization information. Accounting
messages are also interspersed throughout the entire dayfile. In addition, the dayfile includes

copies of your control statements, various system statistics, error diagnostics and informative
messages.

65202h

Batch

3-2!

The following e.xample contains a batch job card deck and its dayfile.

/ 9.6 ‘.2

A
/ END
PRINT#5 Xy Yy AYG

QVG=(X+Y)/§.D
RERD%, Xs %
PROGRAM EXAMPLE CINFUT» QUTFUT)

»u»u“»upp»Mﬁ“pp»»»»pﬂuph»

R By _M5U_413
DI Mnad §Yo 1S
‘00 1432,)0 "QEBO‘
bellyJ2JALFFFT,
l’.l“céZ.LA}T ACJsS
bell,T2,RUMS=- NQ20C
lo.lk.v?...z.u.-ld'
weily 32.PF naanng
Welle32.0P=iF Sl
heilbe32.FTNE,
“.l“.?cl 55""7[%
‘001“0370 "..0.;2_
‘001‘0.37.Q? PEVIAECE AR &
‘0.1"‘.1"‘0"‘;’; SE:.
40106429,LG0.
Gellagiy, ENnD
“ol“o“?c 21000
boelbh,uwg, osit
Lol Lz MpX FILZS
hoelbewlerP UUIIG[‘.i
Dolwe+?, FE [
belboea2,CP JSE
belliguw?2,2P JSt i
4ol h2eCM TISE
weiuloZiforel Lowe
BeileS5Claei.. 5 A

LSO S0.36
01“01‘0.29.
3413781
AN
£

c3/L6/8L CYLIRTS:

-
S

.....

O(
S0
2>
¢ DC I
Dm"‘\
P (N
I 3

=
0

=T
=]
el pemMe <
LTl [BT
OO ool
(=1 D
h)
[
<V R
-

e
e

LgR7:1%7]
® LYy

™Y (e nOCMm ey eoony

L2Vt X OX
=

: “im
= O
PO
e
- 3 UC
TS
=

¥
ul

0 £P
B
>
"o

ror

m
3 X
B

J XX
SVG
Sy
oC
NG
» XC
IR -y

TCO

42
v
- Sy Yty |
Nuw i

Mo LM gr
e
s
Q

—

N

Mg
VIEANNVNS AT

Q>

<<<
LD
o
mim:mn

9%

n
"—1. * e :ptIC) T

1MMBS= N TP T™

)
[

4L
>

§ -~

WL OO i

»
—

()

L
"

'
Tro-

IHT. FOQ 3 n.'s(a.? Wi ’(32

Since dayfile messages are often the only way of detecting errors in your batch program, be sure to
check the dayfile of each job you run. See Section 2.7.4 for more information on dayfile messages.

3-26

3.7
Priority

65202k

Interactive

In interactive mode the DAYFILE.’ statement will display specified line ranges of the dayfile at the
terminal. Because of the nature of interactive processing, the dayfile is not crucial for detecting
errors. As each line of input is entered at the terminal, the computer displays error messages, if

necessary.

For more information on the use of the DAYFILE.’ statement in interactive processing, see Chap-
ter 6 of the Interactive System User’s Guide (or Section 7.13 of this manual).

This section details the software mechanism used to schedule jobs for execution on the MSU com-
puting system.

Batch

When a batch job is submitted to the system, it is placed in the input queue and assigned a base
priority. Each job in the input queue periodically has its priority incremented to reflect the fact
that it has been waiting to enter the execution queue and should have a higher priority than a job
with the same base priority which was just submitted. This process is referred to as aging. When a
slot is available in the execution queue, the system searches the input queue to find the highest

* priority job, subject to several restrictions, and places that job in the execution queue. These

restrictions and base priority are discussed, in detail below.
A. Base Priority
The base priority of a job is determined by two parameters supplied by the user on the job

card. The first of these is the type of service or rate group (RG) in which the job is to be run.
This parameter determines the rate to be charged to the user and the major priority value.

See Table 1 below.
Table 1
Job Card Type of Major Priority
Parameter Service Value (OCTAL)
RG3 Express 3000
RG2 Normal 2000
RG1 Reduced 1000

Interactive jobs, which automatically run at RG3 rates, will have the highest priority of all jobs in
the system. Thus they bypass the input queue and appear directly in the execution queue or pool.
Of the batch jobs in the input queue, short Express jobs will have the highest priority, and Long
Reduced jobs will have the lowest priority. In general, Express jobs will start executing before Nor-
mal jobs. Reduced jobs will not run until 5:00 pm and not until Normal and Express jobs have run.
For a given Rate group, Short jobs will start executing before Medium jobs, and Medium jobs will
start executing before Long jobs.

65202h

3-2

/

The second parameter is job cost (JC). This parameter determines the maximum amount of money
which may be used by the job during its execution and also determines the job’s minor priority.

See Table 2 below.
Table 2

Job Card Job Cost Minor Priority
Parameter : Value (OCTAL)
JCs0 ' 000 < JC < 50 700

T JCs00 ’ 0.51 € JC < 5.00 500
JC2500 501 < JC < 2500 300
JC10000 25.01 € JC < 100.00 100
JCo 100.01 <€ JC < nomaximum

The base priority, then, is the sum of the major and minor priority values.

The dollar value of Normal Rate Group jobs will be calculated using the MSU computer service
rates. An Express job will cost 50% more than the same job run as a Normal job. A Reduced job
will cost 50% of the same job run as a Normal job. Interactive jobs will be assigned a dollar value
on the same basis as Express batch jobs (RG3), except between 11:00 p.m. and 7:00 a.m., when
they .re run as reduced jobs (RG1).

B.

Aging

Approximately every two minutes, jobs in the input queue have their priorities increased
by one. This means that in about four hours a JC500 job would have the same priority as a
JCS0 job which just entered the queue. Any job with a base priority of 2000, or greater may
age to a maximum priority of 3777,. Any job with a base priority of 1776, or less may age
to a maximum of 1777,. [t takes about 17 hours for an RG2 job of a given type to have the
same priority as a similar RG3 job. Note that even though an RG2 job may have an aged
priority greater than 3000, it still is charged RG2 service rates.

Restrictions

The system selects a job for entry into the job pool based on priority, and subject to the
restrictions listed below.

Note: Certain variables in the restrictions can be controlled by the operator. They are:

*maximum job cost (MAX$)

*small job-cost cut-off (B$)

*number of large job-cost slots in the execution queue (N)
*number of RG1 slots in the execution queue

3-28

65202h

1. Very large jobs (JC 2 MAXS, where MAXS$ is normally infinite) will not enter the
execution queue. Instead, Operations will make a list of these jobs at the start of
each production day and run them serially in order of priority. Only one such job
will be allowed in the execution queue at any given time, and none will be started
when less than 10 hours of production time remain.

2. Only N large cost jobs (B$ € JC € MAXS) are allowed in the execution queue. Nor-
mally B$ = $25 and MAXS is infinite. These values are considered to be RG2, so
that if MAX$ = $500, an RG3 job with a JC of up to $750 will be considered less
than MAX$. The value of N, B$ and MAX$ can be changed to allow orderly ter-
mination of production, to remedy unexpected bottlenecks, and, when necessary, to
assure reasonable turnaround time for small batch jobs (JC < $5) during the prime
hours of 8:00 a.m.-8:00 p.m., while servicing large batch jobs during non-prime
hours.)

3. A maximum of five large CM jobs (CM > 100000) are allowed in the execution
queue, but only two of these may be large JC jobs (B$ < JC < MAXS$).

4. RGI1 jobs are not admitted to the execution queue between 8:00 a.m. and 5:00 p.m.
During other hours the number of RG1 jobs in execution will be limited by the
operator so as to minimize their effect on RG2 and RG3 jobs. Normally the
maximum will be six. There is no guaranteed turnaround time for RG1 and no
special provisions will be made to eliminate large back logs in this rate group.

s. No more than 10 tape jobs are allowed in the execution queue. Multi-tape jobs (MT
+ NT >1) are admitted only when the necessary tape units are available.

Interactive

The concept of “aging” does not affect interactive jobs, since they do not spend any time in the in-
put queue, but go directly to the execution queue. Because of their nature (immediate response
from the computer) interactive jobs always have the highest priority rate, RG3, except those
beginning between 11:00 pm and 7:00 am. During these hours, interactive jobs are automatically
run at RG1 to reduce costs. For details on interactive rates and connect time, see Chapter 1 of the
Interactive System User’s Guide.

4.1
File System

Files

Introduction

SCOPE/HUSTLER is a file-ori;ented system: with few exceptions all information within t]

" system is organized into files and file subdivisions called sections. Some knowledge of the role ar

organization of files is necessary to prepare even a simple job.

This chapter does not describe control statements, utility programs, or other specific file handlir
procedures, but explains the concepts, terms, and details of system design needed to understar
and apply those procedures. Not all of the information presented in this chapter will be of intere
or value to every user. As a minimum, users should learn the terms local file and permanent file
they should learn the restrictions on file names and the significance of several special file names
and they should be aware of the distinctions between the physical and logical structure of files.

Chapter Directory

4.1 File System
Introduces the system of data organization used by the SCOPE/HUSTLER operatin
system, including the difference between temporary, permanent and local files, the con
ventions for naming files, and those file names with special significance.

4.2 Physical File Structure
Explains how data is physically stored on various storage media; disk, tape, cards.

4.3 Logical File Structure
Discusses the logical organization of data used with SCOPE/HUSTLER; defining commor
terms and file positions, and going into greater detail on records, sections, section levels
and partitions.

4.4 File Manipulation
An overview of the file manipulations — reading, writing and positioning — that are
possible using SCOPE/HUSTLER control statements.

4.5 Coded and Binary Mode
Explains the difference between coded and binary files — the way information is encoded
and translated for use by the computer,

4.6 Input/Output Control
Describes the user and system tables controlling file processing and non-standard file struc-
tures which are available for special purposes. These are esoteric concepts used by
relatively few programmers. :

4-2

4.1.1

65202,

For some computer systems, the term “file” refers to a specific type of information stored on a
specific device. Under SCOPE/HUSTLER the term “file” applies to virtually any type of in-
formation stored outside of central memory. Simply defined, a file is a unit of information which
resides on an external device (e.g., tape, disk, or cards) and which is referenced by a file name.
Since nearly all information handled by SCOPE/HUSTLER is either a file or part of a file, almost
every phase of job processing can be described in terms of files. This is why SCOPE/HUSTLER is
said to be “file-oriented.”

With input from several batch sites and numerous interactive terminals, there are normally several
hundred jobs in the system at one time. Most of these are batch jobs waiting to begin execution or
jobs that have already been executed and consist of output waiting to be printed or punched. A job
in either of these stages is usually associated with only one set of information.

There are typically about sixty batch and interactive jobs in some phase of execution at the same
time. Associated with each of these jobs are various user and system programs, various sets of in-
put data, and various sets of output. All these “sets of information” are files. The task of the file
system is to keep track of where these sets of information are stored, to whom they belong, and
how they should be handled. This task is accomplished by means of tables stored in central
memory, Extended Core Storage and on disk, which define the identity, location, and numerous
other attributes of the files. These tables will be described in Section 4.6.

Two major responsibilities of the file system are: to control storage allocation so that two files are
not assigned the same location, and to control access so that one job cannot change or destroy a
file while another job is trying to read it. To fulfill these duties, SCOPE/HUSTLER requires that:
1. All information used or produced by a job must be defined as a file or part of a file.

2. A job can access only those files that have been assigned to it.

3. Except for permanent files attached with read-only permission, a file can be assigned to
only one job at a time. (See Section 5.1.5 for further discussion of multi-read access.)

Temporary Files

Files are said to be temporary if they are eliminated from the system when the job is finished. Most
temporary files are destroyed as soon as they are returned to the system. That is, if a file is a disk
file, the file’s allocated storage is freed; if it is a tape file, the tape is rewound and unloaded, and
the tape drive is freed.

Temporary disk files may receive special processing before they are destroyed. They may be prin-
ted, punched, or placed in the input queue and treated as a separate job: all these are forms of file
disposition. Certain file names, listed in Section 4.1.5, have a default disposition. Any other tem-
porary disk file can be assigned a special disposition through use of the DISPOSE control

statement (see Section 7.5.1).

In interactive use, you may retain temporary files for up to two hours after logging out (by
hanging up or using the R parameter on the LOGOUT statement.) Logging back in within this
two-hour period using the same ID, automatically assigns the retained files to your terminal.

All files originate as temporary files. Once created, any disk-resident temporary file can be
declared permanent.

652028

4.1.2

' Permanent Files

4.1.3
Local Files

4.1.4
File Names

Permarnent files (PFs) are files that may be retained on disk indefinitely. The identification and
location of permanent files is recorded independently of other types of files in special disk-resident
tables, which are protected from accidental destruction. In addition, you can protect the privacy
of permanent files by specifying a set of passwords to control various types of access (See Section
5.1.4).

When a temporary file is made permanent, it is cataloged as a permanent file. In order to use a
previously cataloged file, you attach it as a local file. But unlike temporary local files, the disk
space allocated to a permanent file is not released when the file is returned. When an attached per-
manent file is made temporary again, it is said to have been purged; its disk space will be released
when the file is returned. See Chapter 5 for a complete description of the permanent file utilities:
CATALOG, ATTACH, and PURGE

The files assigned to a particular job are said to be local to that job. Local files are sometimes said
to be attached to a job. When no longer assigned or attached, they are said to be released, or
returned from the job. There is a limit to the number of local files which can be assigned to a job at
any one time. This is set in the Authorization File. Defaults range from fifteen to sixty-three local
files. If you need more files, you can return unneeded files prior to job termination by using the
RETURN, DISPOSE, or UNLOAD statement. All remaining local files will be returned at job
termination. When a local file is returned, the processing of the file depends in part on whether it is
temporary or permanent. Temporary files are eliminated from the system. Permanent files are
retained.

Local File Names

Each file in use by a job is identified by a local file name, which:

1. consists of one to seven alphanumeric characters (A through Z, and 0 through 9),
2. the first of which must be alphabetic (A through Z).
3. Eachlocal file name must be unique within a given job.

Two different jobs may use the same local file name since the system can distinguish these files by
other means.

Permanent File Names
Each permanent file is identified by a permanent file name, which:
1. consists of one to forty alphanumeric characters, and

2. must be unique within the system.

4-4 65202

If you choose a permanent file name (pfn) that is not unique, the operating system will
automatically prefix the pfn with a random digit. you will receive an informative message in your
job dayfile when this action is performed. When a permanent file is attached to a job, it has both a
local file name and a permanent file name.

4.1.5
Special File Names

Certain local file names have a special significance to the system. Those listed below as special
names are associated with a special disposition or special processing; that is, they are assigned to
user files for a particular purpose. Reserved names are for system use and should not be used by
other users.

Special Names

INPUT This is the name automatically assigned to the job file of a batch job when it begins
execution. In other words, a reference to INPUT is a reference to one or more of
the data sections of the job deck.

OUTPUT This is the standard print file, assigned automatically to every batch job. At job
termination OUTPUT is printed at the site of job origin, unless you specify other-
wise by means of the DISPOSE control statement (see Section 7.4.1).

EWFILE This is the name of the EDITOR work file assigned automatically to an interactive
session when an EDITOR directive is issued. All EDITOR directives operate on the
contents of EWFILE, which is assumed to consist of numbered text lines written in
a special format (see the Interactive System User's Guide.)

LGO This is not a special file name in the same sense as the others on this page, but it is
commonly used as the default name for object code output by many CDC language
processors. Note that the LGO control statement is therefore no different than any
other call for loading and executing a user program.

TTYTTY Thisis an interactive communication file.

INITFIL This is the local file name of the initialization file which may be implemented by
the PN manager (See Section 7.1.2).

When returned by a batch job or at the termination of an interactive job, the following files are
punched at the central site, unless the user has specified otherwise by means of the DISPOSE
statement.

PUNCH The contents of this file are punched in 026 keypunch codes. “Records” (see Section
4.3.1) greater than 80 characters are continued onto successive cards.

PUNCHY The contents of this file are punched in 029 keypunch codes. Unit records greater
than 80 characters are continued onto successive cards.

PUNCHC Like PUNCH, except that the first 80 characters of each record are punched on one
card and the excess characters are discarded.

PUNCHB The contents of this file are punched in standard binary format, containing a 7 and
9 multipunched in column one of each card.

652028

4.2

PsoC The contents of this file are punched in free-field binary format, sixteen central
memory words to a card.

Reserved Names

ZZZZxxx The lower case x’s indicate that several files have the prefix ZZZZ. Files with reser-
ved names are intended for system use only. These names should not be assigned to
a user file. The consequences of a file name conflict between a user file and system
file are unpredictable.

Physical File Structure

Physically, a file is composed of physical record units. A physical record unit is the smallest unit of
information that can be transferred to or from a file device. The size of a physical record unit
(PRU) is determined by the storage medium (i.e., it is device dependent). The specific size and for-
mat of a PRU are chosen to take advantage of the mechanical characteristics of the device. On tape
we use the term block to describe a physical record; on disk the correct term is physical record
unit. In this chapter, the term physical record unit will be used unless it is necessary to differentiate
between disk and tape.

To make an analogy to printed text, a physical record unit is similar to a page in a book. A page
can contain information from any part of a chapter: beginning, middle, or end. A page can con-
tain an entire chapter. A page may or may not be full. In other words, the physical structure of the
book — the way it is divided-into pages — is independent of the logical structure of the book. This
is also true of files.

The information stored on disk, tape, and card files is written as a sequence of bits. The term "bit”
is derived from “binary digit,” i.e., a digit having the value 0 or 1. The physical representation of a
bit depends on the device; it may be the presence or absence of a punched hole, the presence or ab-
sence of a magnetic flux change, or the positive or negative direction of the flux change. Perhaps
the closest analogy for the bit in a printed medium is the character, since it is the smallest physical
element of information. But whereas a character may have more than a hundred forms, the bit has
only two. Thus, computers adopt coding schemes using 6, 7, or 8 bits to represent each character
(see Section 4.5).

When discussing files, we are primarily concerned with units of information stored on magnetic
disks and magnetic tapes. Files are also stored on punched cards, but your program never actually
reads data from a card file. Instead when your program “reads a card” it reads from a disk file con-
taining a copy of the card images in the deck. Nevertheless, it is appropriate to speak of “card files”
since they have the same logical structure as disk and tape files.

Within the storage device, bits are grouped into physical record units in much the same way that
characters are grouped into pages. In the computer, a physical record unit is the smallest unit of in-
formation that can be read or written on a file device. The device cannot read or write part of a
PRU in one operation, and the rest of the PRU in another operation. In terms of our analogy, you
cannot turn half a page while reading a book; or print less than a page at a time using most prin-
ting processes.

The structure of bits within the physical record unit varies among different devices. On cards, data
is punched in eighty 12-bit columns. On magnetic tape, data is recorded in 7-bit or 9-bit columns
across the width of the tape. On disks, bits may be written serially on one surface or in parallel on
several surfaces and/or several tracks. The arrangement of bits within the physical record unit is
generally not important to the user, but it points up problems that the operating system must solve
in order to define a logical structure which can be transferred intact from one device to another.

65202g

Figure 4-1
Card Example

cefceveqao0oe00goscacoooece000c08000000000000063008000000080000000000843¢
FETRIRIEI R RL R B un"ﬂﬂ"uﬂ'"”n“ﬂl""“ﬂﬂ‘l“d‘ll“‘llllilﬂ““““!'ll‘—lﬂ“ul‘“ﬁul"l“-'IH nnasinane

-G8wB0000
IEERENRNN]
IREERRERRE ERERARERET IR AR RS R R R R R AR R R R R R R AR R R R R R RN R RN

—
- e

27222222222222722°222222222222
3313333333323333032333333333333333323333333333333333333333333323333333333333331333313
Gt bt e aaatattidtdstatttaaaaaaaaiadadidsdtdtdnanttadessdiaiidititiiintacane
5585555585 sMeIS5S5555 8555559555555 555585555555555598539959559585533353
§EECEoEEobG666868co oG666665666666686686666C6666665566666666656066666636556605866666
R R R R R R R R R R R FRE AR AR R AR R R R R R R R R R R R R R R R R RN R R R R R R R R R R R R R R R RRRRRRRERE)
SUNS eSS R Be Nt ENsnUNenINaBssaIBnsBIRIROIERBRINNIOOBRBORBABSBROETIOALBIIOBIRONGSE

9999999999 ffeaassasfesssssy 999995989999999999699999999999999899989898939
R R R L R LR R R L RIE R R B B R R R R R R)
i 203 - ILAES LR

On cards, a single card image is one physical record unit.

Figure 4-2
Tape Example

end-of-tape marker

interblock

gap

bt

),

beginning-of-tape marker

Tape is a sequential access medium. On tapes, a block is one physical record. Blocks are delimited
by interblock gaps. Additional data verification information is included when the tape is written.
For more information on tapes, see Chapter 6.

652028 4-

Figure 4-3
Disk Example

Disk is a continuously rotating, random access medium. The concentric circles on the disk surfaces
are tracks. Each track is divided into the same number of equal length sectors. A PRU is stored on

one sector.

The length of a PRU may be an unalterable attribute of the device, or it may be determined by the
operating system, or it may be left to the user’s choice." "

Here the term “length” refers to the number of bits or characters of data contained in the physical
record unit rather than a dimension of the storage device. The maximum length PRU permitted for
a given device, mode, and format will be called the PRU size for disk and block size for tape. The
following sizes are given in terms of 60-bit central memory words.

PRU size
Disk files 64 CM words
maximum
block size
SCOPE coded tapes 128 CM words
SCORPE binary tapes 512 CM words
S tapes 512 CM words
L tapes unrestricted

'SCOPE/HUSTLER permits the user to select the physical record size only for the “stranger” tape
file formats (see Section 6.9.3)

4-8

4.3

65202,

Logical File Structure

Before the days of rotating storage devices, such as magnetic disks, each read or write request from
a system or user program called for the transfer of one “record.” There was no distinction between
a physical and a logical record (what we now call a section). The use of one physical record for
each section is feasible for a sequential access device that stops between each operation, but not for
a random access device that rotates continuously and must be repositioned for each operation. In
order to access data efficiently, the storage space of a disk is divided into fixed-length addressable
units — PRUs. If each section were written as one unit, short sections would waste too much
space, and long sections would simply be prohibited.

At this time, logical file structure is completely independent of physical file structure. A “record” is
a logical construct defined directly by the user (or indirectly through a compiler). You determine
the logical relationships between the pieces of information you wish to manipulate. For ease of
communication, certain data organization terms? are defined here.

record a group of related characters. You (or a compiler) define a record format
which specifies how a record begins and ends.

section one or more logically related records. A section begins with the first
record after the end of the preceding section and ends with an end-of-
section mark.

partition one or more logically related sections. A partition begins with the first
section after the end of the preceding partition and ends with an end-of-
partition mark.

file a logically connected set of information. Each file has a name. A file
begins with the beginning-of-information (BOI) and ends with the end-
of-information (EOI).

These logical divisions allow you to structure the information in a file. In terms of our analogy to a
book or manual, a record can be seen to be a sentence — a unit of data beginning with a capital let-
ter and terminated with a period. A section could be a chapter. The file could be the book itseif.
Just as an author can choose an appropriate format for his/her ideas, you as a computer user can
choose an appropriate format for your information. Note that these data organization units are
hierarchical in structure and differ primarily in how they begin and end.

The following subsections elaborate on the structure introduced here, describing how the logical
subdivisions of a file begin and end, the structure of records, sections, and partitions, and the con-
cept of section levels.

? The terms used to describe the logical structure of files have changed over the years. You may
encounter words used in an outdated sense. “Record” used to refer to both physical record units
and sections. Sections were also called “logical records.” The term “unit record” was used instead
of the current term record. On some occasions the term file referred to a partition, and on other
occasions file referred to the entire file. This may explain some apparent inconsistencies—e.g. the

system displays EOR instead of EOS for end-of-section and EOF or EOR17 instead of EOP for
end-of-partition.

652028 4-¢

' 4.3.1
File Positions

A file position is a physical or logical point within the file. Because information is always tran-
sferred to and from the file devices in physical record units, the file will always be positioned bet-
ween two PRUs or blocks. This may or may not coincide with a logical division. When dealing
with a higher level language, such as FORTRAN and COBOL, the current file position is masked
by the use of buffers and is of no concern to you. Certain file positions coinciding with logical
divisions are significant enough to have names: beginning-of-information, end-of-information,
end-of-section, and end-of-partition.

File Delimiters: BOI, EOI

The position preceding the first PRU in a file is called beginning-of-information (BOI), and the
position following the last PRU is the end-of-information (EOI). BOI and EOI are the physical
beginning and end of the file. You may not read or skip to a point beyond the boundaries of your
own file.

Section Delimiter: EOS

The position following the last record in a section is called the end-of-section (EOS). In a card
deck, end-of-section is indicated by a card containing 7, 8 and 9 multipunched in column one. An
end-of-section may be followed by a level number (see Section 4.3.4). If the level number is omit-
ted, level 0 is assumed.

’ Partition Delimiter: EOP

The position following the last section in a partition is called the end-of-partition (EOP). This is
equivalent to a level 17, EOS (see Section 4.3.4).

Y]/ 2

OUGUOUOOﬂU
lllllll lll

22222222227
13133233333
ad 442444480

R650666R66:
Bidrrii177 RERRRRRRRRN |
82095828389 088888527259
RN Besgasensy;

'R M

000000000000
Pedad e a2y
ERRERRRRRER
212222222220
7333332233333
YRR NNRYY
$55555555555¢
65666666666¢
R17717771171711 %
Bo0988235288¢6¢
lwfe‘ 95995599

. ' RN TY)
R,

EOS card (level 0) EOP card EOI card

222222222
13333131332
444444444
§33558535%.
6666656666

L i

4-10

4.3.2
Records

4.3.3
Sections

65202,

A record is a group of characters (or bits) that are related to each other by convention. It is the
smallest collection of information that is passed between the operating system and you. You (or
the compiler) define the structure and characteristics of records within a file by declaring a record
format. The beginning and ending points of a record are characteristic of the format.

There are several record formats available. One common type of record is the zero-byte ter-
minated record.’

.

Many input and output devices have media, structure, and coding schemes which are readable by
humans. The most common of these are media consisting of paper or cards structured into
variable length lines of characters. When a computer system file contains such textual information
it implicitly has another logical substructure: it is divided into lines by terminators called end-of-
lines (EOLs). Another term for a line within a section is a record and the [/O devices (such as card
readers and line printers) handling such text files are sometimes called unit record equipment. To
be meaningful, text files to be printed contain lines whose maximum length is no greater than the
output device on which they are to be written, otherwise a loss of information occurs. Upon input,
the trailing blanks following the last non-blank character on the line are removed to save space. A
line (record) consists of whole words of ten characters per word. The end-of-line (record marker)
must be represented by at least two and up to eleven character codes containing all zero bits (i.e. 2
to 11 display code characters which represent 12 to 66 zero bits).

Figure 4-4
text line word 1 word 2 word 3
TESTING» TESTINGs152,3,4 TESTING,TE STING»1+2, 3r4
(Dismlaw Code) 24052324111607562405 23241116075634563556 3656370000000000000
3.14159265358979424 3.14159265 358979424
(Dismlay Code) 36573437344044354140 36404344424437353700 0000000000000000000

Although both text lines use three words, the second actually contains 19 characters or two words.
The third word is necessary to fulfill the end-of-line (EOL) requirement of at least 12 zero bits.

All files consist of one or more sections, which in turn consist of a sequence of PRUs. Each section
starts at the beginning of a separate PRU. Two sections never occupy the same PRU.

Except for magnetic tape files written in the S and L tape formats (see Section 6.9.3), data is always
written in multiples of central memory words. Aside from this restriction, a section can be any
length. If, for instance, a file is composed of sections that are shorter than the PRU size, each sec-
tion will be written as one physical record. If a section is longer than the PRU size, all but the last
physical record will be maximum length.

To further illustrate the independence of the physical and logical structure of files, consider our
analogy between a section and a chapter. Note that each chapter in this manual begins at the top of
a page. This practice almost always leaves a partially empty page at the end of each chapter, i.e., a |
short PRU. (A short PRU is the same length as any other PRU in the file. ‘Short’ refers to the
amount of data in the PRU.)

3This discussion and example are adapted from the University Computer Center User's Manual
from the Universitv of Minnesota.

65202g

4.3.4

4-11

Suppose, now, that the text of this volume were double-spaced or that it were printed on smaller
sheets of paper, representing a change in the PRU size. Although each page would contain less in-
formation, the content of the chapter would be the same, and the concepts of full and short PRUs
wouid still apply. In this way, information can be transferred between devices having different
physical record sizes without destroying the logical structure of the file.

Section Levels and Partitions

When writing a file, the system automatically appends an eight-character level mark to the last
PRU of each section*. The level mark, also referred to as an end-of-section (EOS) mark, contains a
number from 00, to 17, specifying the rank of the end-of-section. Level numbers are used to group
sets of sections within a hierarchy of up to 16 levels. If the section happens to be an exact multiple
of the PRU size (so that the last PRU of the record is maximum length), the level mark is written as
a separate physical record, which’is said to be “zero length” because it contains no data. (Once
again the zero-length PRU is the same physical size as all others in the file: it simply contains ‘zero’
data.)

To refer once more to our analogy, section levels are similar to the hierarchy of sections and sub-
sections in this manual. for example, Chapter 4 is divided into six parts labeled 4.1 to 4.6. In tumn,
4.1 is divided into five subsections, 4.1.1 to 4.1.5. This is a hierarchical arrangement of in-
formation. Similarly, you may define a hierarchy in your file using section levels.

This feature is seldom used, however, because the high-level programming languages—e.g. FOR-
TRAN, BASIC, COBOL—do not provide not provide means for specifying the level number. So,
most files consist of one or more level 0 sections (specifying end-of-section) and terminate with a
zero length PRU containing a level 17 mark (specifying end-of-partition).

The lowest level number within a file is associated with a single section. A higher level EOS mark
defines a set of sections, consisting of the section being terminated and the immediately preceding
sections of lower levels. A level 17 mark defines a partition consisting of all preceding sections of
level O through 16.

The use of level numbers is best explained by example. In the following diagram each block
represents a SCOPE section. The number inside each block is the level of the EOS which ter-
minates that section.

Figure 4-5
00 00 01 02 00 00 17
M _ P ~ -
R ™\

level 01 level 01 level 01
S N '

level 02 - level 02

N -~ __
levels 03 through 17,

*This does not apply to S and L tapes, but is true for all disk files and SCOPE tapes.

~12

4.4

652028

When the user specifies a level 01 EOS for the third section, the first three sections are, in effect,
grouped together into one section of level 01. Similarly, the level 02 mark in the fourth section
defines a set consisting of four level 0 sections—or two level 01 sections.

Note that a section assigned a level number of n is also considered a section of all levels less than n.
For example, if SCOPE/HUSTLER were instructed to skip four sections of level 0, the file would
be positioned to the start of the fifth section. If instructed to skip three sections of level 01, the file
would be positioned to the end-of-partition. :

Level numbers are assigned according to the following rules.

1. If a level number is not specified, as in the case of FORTRAN, BASIC, and COBOL
programs, level 0 is assigned to each section.

2. When a level number is specified, as in the COMPASS WRITER macro, the specified level
number is written in the EOS mark appended to the section.

3. If the user’s buffer is empty when a level number is specified, SCOPE writes a zero length
PRU containing the specified level number.

4. When writing an end-of-partition, SCOPE/HUSTLER ensures that the level 17 mark is
written as a zero length PRU by first generating a level 0 EOS for the section in progress.
End-of-partition is written by ENDFILE statements in FORTRAN and WRITEF macros in
COMPASS. The FORTRAN and COBOL input/output routines also write an end-of-
partition when an output file is rewound (or simply closed in COBOL) and when the
program terminates.

File Manipulation

4.4.1

The SCOPE/HUSTLER operating system allows you to selectively read, write and position a file.
These are all forms of file manipulation. All file manipulations deal with logical subdivisions of the

file.

Types of File Manipulatiohs

SCOPE/HUSTLER provides several control statements for file manipulation. These are en-
numerated and detailed in Chapter 7. Basically, a file is manipulated section by section. A file is
read until an end-of-section is reached. No explicit control statement is necessary to read a file. To
write a file requires a control statement which copies sections of one file to another file. This in-
formation may or may not be reformatted during the copy operation, at your discretion. The con-
trol statement tells SCOPE/HUSTLER how much of the file to copy. See Section 7.5.

After part of a file is read or written, it is positioned at an end-of-section. You can change position
within a file by skipping forward using the control statement SKIPF or back using the statements
SKIPB and REWIND through the file, but you will always end up at a logical file division (i.e. end-
of-section or end-of-information). See Section 7.7.

65202g

4.4.2

4-12

' Rules for File Manipulation

4.5

Some general rules for file manipulation are:

1. All read or write operations begin at the current position of a file.

2. Rewind a file before attempting to read from the beginning-of-information.

3. Skip to the end of the file before attempting to write information at the end-of-information.
4, Write operations are usually followed by an end-of-section, then an end-of-information.

5. An error always results from trying to read past end-of-information.

Coded and Binary Mode

4.5.1

Information undergoes several translations as it is prepared and submitted to the computer for
processing. Written characters on coding forms become punched characters on cards, coded
characters on disk and binary characters in central memory. The way characters are encoded is
called the mode of the file. There are two file modes: coded and binary.

Coded files contain data represented according to certain industry standards established to
facilitate the exchange of data between computers having different internal coding schemes.

Binary files contain data represented in exactly the same form as it is represented in memory. On
disk the distinction between coded and binary mode is irrelevant, since everything is in Display
code.

Types of Coded Files

On the MSU computer system there are several types of coded files: ASCII, Display code (or QOld
Mistic), BCD and EBCDIC.

Interactive terminals transmit (8-bit) ASCII (Americal Standard Code for Information In-
terchange) characters. There are 128 characters in the full ASCII character set, including:
numerals, special characters, both upper and lower case alphabetic characters, and device control
characters. Two forms of the ASCII character set exist at MSU, ASCII (AS) and ASCII Fancy
(AF). See the Interactive System User's Guide, Chapter 5, for details.

(6-bit) Display code (called Old Mistic or OM in interactive use) does not contain lower case letters
and lacks some of the special symbols available in full ASCII.

There are also (6-bit) BCD (Binary Coded Decimal) for 7-track tapes and (8-bit) EBCDIC (Ex-
tended Binary Coded Decimal Interchange Code) for 9-track tapes.

In addition, cards produced at the keypunch are punched in (12-bit) Hollerith codes, one character
per column. Standard 026 and 029 keypunch code conventions reflect industry standards; 026
codes conform to CDC usage, 029 codes conform to IBM usage. All keypunches at MSU use 026

4-14

4.5.2
Binary Files

65202

codes. (MSU users can use standard 029 keypunches if they punch ‘29’ in columns 79 and 80 of the
jobcard and each end-of-section card in the deck.) When a card file is read into the computer, it is
translated into (6-bit) Display code.

Data intended for character manipulation (sorting, etc.) may remain in coded mode. Data in-
tended for numeric calculation must be converted to binary mode: either fixed-point (integer) or
floating-point (real) notation. A source program must be translated into CPU instructions in
binary machine code (consisting of operation codes, memory addresses, and register ordinals).

Binary representation is an exact image of characters as they would be stored in central memory.
Internal representation may vary from installation to installation; it is not subject to industry-
wide standards. For example, CDC uses a character represented by 6 bits. IBM, on the other hand,
uses 8 bits to represent a character.

On binary-cards, each.row position within a column represents a bit. A punch is equivalent to a
“1” bit and a non-punch is equivalent to a “0” bit.

Information which is not intended to be printed, or which is frequently used is often kept in its in-
ternal form as a binary file. For instance, it is often more efficient to save the binary output file
produced by a compiler as a permanent file rather than recompile a program each time it is used.

Example of Data Translation

When the card is read into the computer, the keypunch codes, 1 and 0, are converted to six-bit
Display codes, 34, and 33,, for disk storage. (The following example uses octal representation for
convenience.) : :

34335555555555555555 Display Code:
left-justified,
blank-filled. (Blanks are Display code '55°.)

Before the 10 can be used as an arithmetic operand, the Display code must be converted to the
binary value of 10 in either fixed-point or floating-point format.

00000000000000000012 fixed-point
17245000000000000000 floating-point

After computation, results and operands must be converted back to Display code characters if
they are to be printed.

Alphabetic information is not subject to this type of conversion except in the case of source
language programs, where user-intelligible expressions such as

IF(X.EQ.0) GO TO 25

are translated into their binary machine language equivalents.

65202g

4.6

4-15

Input/Qutput Control

4.6.1
- Active Files

4.6.2

The central processor (as described in Chapter 1) communicates only with central memory and
ECS, and leaves all input and output tasks to the peripheral processors (PPs). Consequently your
CPU program cannot read, write, or act on a file in any way, except by making requests to a
system PP program. The execution of these requests involves an interlinked set of user and system
tables for identifying and locating the file, for specifying file characteristics and processing op-
tions, and for communicating the results of an operation to you.

The manipulation of user tables needed to control file processing can be quite complex. But
language processors, applications programs, and utility programs do most of this work, so that
few users are ever exposed to the details involved. And as a result, many programmers have only
vague notions of how their READ and WRITE statements are executed. The following subsections
discuss system and user tables and their function.

Local files are just one type of active file, which is the term applied to all files currently in use
within the system. Active files consist of

local files assigned to user jobs,
input files jobs waiting to begin execution,
output files files waiting to be printed or punched.

Each active file is defined to the system by a File Name Table (FNT), which serves as the central
link between your program and the system PP routines which transfer data between central
memory and the device on which the file is stored. Any file not defined in an FNT is either inactive
(i.e., an unattached permanent file) or it is nonexistent as far as SCOPE/HUSTLER is concerned.

File Environment Tables and Buffers

Each file which is to be read, written, or otherwise manipulated or positioned by a program, must
be provided with a File Environment Table (FET) and a buffer within your program'’s allocation of
central memory (field length). The FET may be characterized as a parameter table or a com-
munications area through which the program supplies SCOPE/HUSTLER with the information
necessary to execute a given file request, and through which the operating system supplies the
program with information about the results of the request. If you program in FORTRAN,
COBOL, or other high-level languages you are never directly concerned with the FET; it is con-
structed by the compiler and manipulated by the object-time subroutines of the language, which
are loaded with your program. However, if you program in low level assembly language, COM-
PASS, you have the capability of manipulating the FET.

The standard SCOPE FET is five to thirteen central memory words in length. The FET constructed
by a compiler, though, may have additional words. For instance, the FORTRAN compiler creates
a 17-word FET for each file named in the PROGRAM statement, and the COBOL compiler creates
a 33-word table for each file defined in the File Control paragraph. The additional words contain
information used by the language’s object-time subroutines and the system I/O routines (CRM,
MSURM).

4-16

65202g

The minimum size of the FET is five central memory words, which allows for processing of any
sequential file. Words 6-13 of the FET are needed when blocking and deblocking unit records,
processing indexed files, processing magnetic tape labels or processing stranger (S and L) tapes. To
give you an idea of its layout, the first five words of the FET are diagrammed in Figure 4-6.

Figure 4-6
) 4 3 2 9
word 1 logical file name code and status
. . di iti
word 2 device type flag bits ELAM G FIRST
0
word 3 IN
word 4 0 OuT
word 5 FNT pointer recorg ZbEIOCk PRU size LIMIT

The first word of the FET contains the file name (7 characters, left-justified with zero fill) and an
18-bit “code and status” field, in which the program stores a function code when making a file
request and in which the system stores a status code after completing the request. This is how the
program is informed of an end-of-section, an end-of-partition, a parity error, an illegal request,
etc. Miscellaneous fields in words two and five contain the device type code, the disposition code,
the PRU size, and a set of flag bits specifying a variety of processing options. The lower eighteen
bits of words 2-5 define the circular buffer.

The buffer is the area of central memory within your field length to which the PP transfers data
when reading from the file, and from which it takes data when writing to the file. Since in-
formation is always transferred to and from the file in physical record units, the buffer must be at
least as large as the PRU size of the file. The size of the buffer is defined by two FET fields, named
FIRST and LIMIT, which contain the first word address and the last word address +1 of the buf-
fer. These address fields are called pointers.

Two other pointers, IN and OUT, define the location of the data within the buffer. IN points to the
location in which the next data word will be entered, and OUT points to the location from which
the next data word will be removed. During a read operation, the system advances IN as it fills the
buffer, while you advance the pointer OUT as the program removes data for processing. During a
write the actions are reversed; you advance IN as you fill the buffer, and the system advances
OUT as it transfers the data to the file. The data always occupies the locations from OUT through
IN-1, while locations IN through QUT-1 are considered “empty.”

The buffer is said to be circular because it is filled and emptied as if it were wrapped around a
cylindrical surface, such that LIMIT overlaps FIRST. Data is never stored at location LIMIT, for
after IN or QUT advances to LIMIT, it is reset to FIRST. In this manner, OUT follows IN “around
the end” of the buffer. Note that when OUT equals IN, the buffer is empty, and when IN equals
QUT-1 the buffer is completely full. The buffer is also considered full when the space from IN to
QUT-1 is less than a full PRU. The diagrams in Figure 4-7 illustrate the manipulation of IN and
OUT during a read operation.

65202 4-17

Figure 4-7
1. Buffer initially empty. 2. . Buffer filled by PP.
FIRST—}| ~—IN=QUT FIRST
LIMIT : LIMIT
3. Buffer emptied by user. 4. Buffer refilled by PP.
FIRST—] FIRST
~—IN=QUT
LIMIT. LIMIT,

Whenever SCOPE/HUSTLER receives a read request, it fills the buffer until:

1. The next PRU will not fit into the buffer.

2. An end-of-section or end-of-partition is encountered.

3. End-of-information is encountered.

4. A file action error, such as a tape parity error, occurs. (See Section 6.8.7)
S. For S and L tapes, one block is read.

For each write request, SCOPE/HUSTLER transfers as many full PRUs to the file as contained in
the buffer. For each write end-of-section or write end-of-partiton request, SCOPE/HUSTLER
“flushes” the buffer of all data and writes a short or a zero length PRU, depending on whether the
amount of data remaining in the buffer is an exact multiple of the PRU size.

Note that each section requires a separate input or output request. If the section is long, a great
deal of data can be transferred with one request. But if the section is short, as little as one PRU can
be transferred. The time needed to process a request is on the order of 100 times longer than the
time needed to transfer one PRU. A large number of requests for short sections can significantly in-
crease the peripheral processing time in proportion to the amount of data handled. For short sec-
tions it is much more efficient to use the central processor to block and deblock zero-byte records
than to repeatedly call on the PP routines to transfer data a few words at a time.

4-18

4.6.3

652025

File Name Table and File Status Table

4.6.4

A File Name Table (FNT) is a three-word system table which is created for each local file, and each
file in the input and output queues. The collection of FNTs forms a list of all files known to the
system, with the exception of unattached permanent files. When a job is being executed, the FNTs
for all of its local files will reside in low core, outside your field length. When the job is swapped
out, most (if not all) of its FNTs will be swapped to ECS to conserve central memory.

The first word of an FNT contains the file name, the file type, and the control point number. The
second and third words contain different types of information depending on the nature of the file.
These last two words form a subset of the FNT, known as theFile Status Table (FST).

The FNT/FST is the central link between your program and the system PP programs that process
file action requests. When your program requests to open a file (an initialization procedure, which
is performed implicitly the first time the file is referenced), SCOPE/HUSTLER searches the FNTs
for one containing the matching file name and control point number. If the operating system can-
not locate the FNT — that is, if the file was not previously defined — SCOPE/HUSTLER will
create an FNT and assign a disk unit to the file.

During execution of a request, pointers in the FST are used to locate the file and, if it is disk-
resident, to locate the PRU to which it is currently positioned. Other FST fields regulate
processing. For example, one field indicates whether the file is open for input or for output. Upon
completion of an operation, the system input/output routines store a status code in the FST, which
is then passed to the file's FET.

Four file types are defined within the FNT: input, output, punch, and local. A particular file may
pass through several of these categories. For example, a job deck begins as an input file but is
changed to a local file when selected for execution. And at the end of a job, each local file is either
changed to an output file (or possibly an input file), or its FNT is immediately deleted. The tran-
sition from one phase of job processing to another consists mainly of rewriting the 3-word FNT.

When a permanent file is attached to a job, SCOPE/HUSTLER creates an FNT specifying type
local. The FST entry differs from those of other local files, though, in that it indicates which of the
four access permissions — read, modify, extend, and control — have been granted. When the at-
tached permanent file is returned, its FNT is deleted but the file is not destroyed since it is defined
independently in special disk-resident tables, called the Permanent File Directory (PFD) and the
Record Block Table Catalog (RBTC).

Record Block Reservation Table and Record Block Table

Recall the organization of disk storage into tracks, sectors, and record blocks. A track is divided
into sectors containing the equivalent of 64 central memory words. Disk storage is allocated in
groups of sectors called record blocks. The purpose of the Record Block Reservation table (RBR)
and the Record Block Table (RBT) is to record whxch record blocks have been assigned, and to
which files.

An RBR is a block of words (in ECS) associated with a particular disk unit. Each bit of the RBR
corresponds to a specific record block of that unit. If a bit is zero, the corresponding record block
is available and may be assigned to a file; if a bit is one, the corresponding record block is
unavailable, i.e., either already assigned to a file or physically unusable.

652028

4.6.5

4-

An RBT is a central memory table (in high core) associated with a particular file. An RBT consist:
of a “chain” of two-word entries linked together by pointer fields which contain the addresses o
the preceding and succeeding entries. The other fields of each entry contain the disk address o
each record block assigned to the file. The record block addresses are listed in the order that they
are written, thus maintaining the sequential order of the file.

When a disk file is created, SCOPE/HUSTLER assigns a disk unit and then searches the associatec
RBR for an available record block. Having found one, SCOPE/HUSTLER reserves the recorc
block by setting the corresponding RBR bit to one the operating system then places the address of
the record block in the first entry of the file's RBT, and places the address of the RBT in the
FNT/FST. The file will be recorded in consecutive sectors of the record block until it is filled.
Then, to write another PRU, SCOPE/HUSTLER must find another available record block and add
its address to the RBT chain. As each PRU is written, SCOPE/HUSTLER updates the PRU count
in the FNT, plus a pointer to the RBT word containing the address of the current file position.

Rewrite-in-Place

4.6.6

On disk files, all write operations are said to take place at end-of-information because the last link
of the record block table chain corresponds to the last PRU written. If a write function is issued
when the file is not positioned at EQI, subsequent PRUs are dropped from the record block table
chain, and the last physical record written by the operation becomes the new EOI. To replace in-
formation in the middle of a disk file, COMPASS provides several rewrite-in-place functions, but
each record written must be exactly the same length (i.e. contains the same number of PRUs) as the
record it replaces.

When a magnetic tape is written, previously recorded data is erased just ahead of the write heads.
Still, all write operations define a new end-of-information, just as for disk files. Moreover, there
are no rewrite-in-place functions defined for tape files. The reason for this is discussed in Chapter

6.

If you want to be certain of the structure produced when you add information to the end of a file,
you must be familiar with the procedures that were used to create the file as well as with those you
are using to position the file. If the file ends in an EOP, you can be certain that it is written in a zero
length PRU and that the preceding section terminates in a level 0 EOS. By skipping to the end-of-
partition and then backspacing over the EOP, you can add another section without starting a new
local file. However, a file does not necessarily terminate with an end-of-partition. For example, a
file written with the SAVE directive in EDITOR will not terminate in an EOP unless the last text
line saved is a “*EQF".

Non-Standard File Structures

All I/0O operations under the SCOPE/HUSTLER operating system involve files. A record
management utility is a set of execution time routines that handles the transfer of data between the
user’s program and the SCOPE/HUSTLER operating system. When you are programming in a
higher level language, many of the details of file processing are built into the language. You need
not deal with the details of describing the file because the compiler handles that task
automatically.

Record management utilities require the use of PP calls, system tables and system file
organization. Individual users can write programs to perform these functions, but most do not,

4-20

65202

choosing instead to rely on existing system programs. At MSU there are two record management
utilities: Cyber Record Manager (CRM) and MSU Record Manager (MSURM). You can call these
programs directly using only CPU code (as opposed to PP calls, etc.). Direct calls provide a wider
variety of data handling methods and structures than standard [/O statements provide.

Cyber Record Manager

Cyber Record Manager supplies the users with five different file organizations and eight record
types. Within these structures most data organization problems can be solved. Data management
procedures for higher language programmers are detailed in the appropriate CDC language
reference manuals. Background information and operational specifications for COMPASS
programmers are fully discussed in the Cyber Record Manager Reference Manual and the Cyber
Record Manager User’s Guide. The following discussion outlines the data structures available on
the MSU computer system.

File Types

Sequential: records are placed in order of presentation.

Word Addressable: words within the file are numbered 1 to n, each word con-
taining 10 characters. Data is written or retrieved by the
word number, which is called the word address.

Indexed Sequential : records are stored in fixed length data blocks using symbolic
or numeric keys which are stored in a fixed length index
block.

Actual Key: data records of fixed or variable length are stored in fixed
length data blocks which contain a fixed number of slots for
data. Each record is assigned a key (block and slot number)
as it is written.

Direct Access: relative position of records is unimportant. A record is
stored and retrieved using a key to generate the address.

Blocking Types

C: character count blocks; produced by FORTRAN Extended
formatted WRITE statements. Each block contains a fixed
number of characters.

I: internal control word blocks (the first word of every block is
reserved by the system for information used internally);
produced by FORTRAN Extended 4 unformatted WRITE
statements.

E: whole record blocks; frequently found on S and L tapes.

The maximum number of characters in the block is preset.
This blocking structure is used at non-CDC sites.

65202g

4-21

Record Types

F: fixed length record.

D: record length is given as a character count, by using a length field contained within
the record. :

R: a record is terminated by record mark character specified by the user.

T: record composed of a fixed length header followed by a variable number of fixed

length trailers; the header contains a trailer count field.

U: record length is defined by the user.

W: record length is contained in a control word prefixed to the record by the record

manager.
Z: record terminated by a zero byte.
S: section (in Cyber Record Manager called a logical record). Zero or more PRU’s ter-
minated by a short PRU.
MSU Record Manager

MSU Record Manager is a subset of Cyber Record Manager for use with FORTRAN programs.
MSURM provides sequential and word-addressable file organizations, C and I blocking types and
S, W, and Z type records.

65202g

5

Permanent Files

Permanent files are the simplest, most convenient medium for storing information. They relieve
the user of carrying burdensome, dog-eared card decks and free him/her of much of the
bookkeeping and file manipulation needed to maintain a large number of files on magnetic tape.

A permanent file (PF) is a file stored on disk that can be retained for bye as long as the user likes.
The location and identification of permanent files are maintained by the system in spedial, disk-
resident tables known as the PFD (permanent file directory) and RBTC (record block table
catalog). These tables ensure that a permanent file is not destroyed when the job using it ends.
They also enable permanent files to be preserved during system deadstarts (see Section 1.4.7). In
addition, the user may protect the privacy of his/her permanent files by specifying a set of
passwords when the files are created.

Any temporary disk file can be made permanent. The action of making a local file permanent is
called cataloging a file. The file is not transferred or repositioned; the system simply creates an en-
try in the permanent file tables.

To use a previously cataloged permanent file, the user attaches it as a local file. Again, there is no
transfer of data from the permanent file to a local file; instead, the system locates the permanent
file in the PFD and assigns it a user-specified local file name (i.e., it creates an FNT (file name table)
entry). This action establishes the permanent file as an active, local file. When the job terminates,
the FNT entry is deleted but, unlike an ordinary local file, the permanent file remains defined in
the PFD and RBTC.

SCOPE/HUSTLER provides the folléwing standard permanent file functions.

CATALOG makes an existing temporary file permanent.

ATTACH assigns a requested permanent file to the user’s job, subject to permissions tests.

EXTEND makes permanent any information that has been added to the end of an existing per-
manent file. (The permanent file tables are updated using the local file tables, if ap-

propriate permission has been granted on an attach.)

PURGE changes an attached permanent file to a temporary local file (subject to any per-
missions which have been granted.) .

The control cards that perform these functions are fully described in Section 5.2.

SCOPE/HUSTLER provides several additional utilities that are local to Michigan State Univer-
sity. '

PNPURGE enables the user to purge any permanent file charged to his or her account, without
having to know its passwords. See Section 5.2.5.

5.1

65202c

PFLIST reports the status of selected permanent files. The files included in this listing may be
selected according to a variety of criteria. See Section 5.3.

PFLOAD reloads specified permanent files from magnetic tape backup copies. See Section
5.4.3.

PFDUMP dumps specified PFs from disk and/or PF dump tapes onto a new dump tape. This
allows the user to merge files from disk and existing dump tapes on a new dump tape.
See Section 5.4.4.

In addition to PFLOAD, Section 5.4 describes the permanent file backup system and the Computer
Laboratory policies regarding permanent file purging, dumping, and reloading.

Terms and Concepts

5.1.1

Terms and concepts used throughout this chapter are defined below.

Permanent File Names

5.1.2
Cycles

5.1.3

Within the Permanent File Directory (PFD), each file is uniquely identified by a permanent file
name and a cycle number. It is important to understand the distinction between the permanent file
name and the local file name. When the user attaches a file, he/she specifies both the permanent
file name and the local file name. The permanent file name is used to locate the file in the PFD and
assign it to the user’s job. After the file is attached, the user always refers to it by the local file

name.

Permanent file names may be 1-40 characters, whereas local file names may be only 1-7
alphanumeric characters. The permanent file name may contain non-alphanumeric characters.

Up to five files may be cataloged under one permanent file name and its associated set of passwor-
ds; each file is called a cycle. Cycles are not necessarily related beyond sharing the same per-
manent file name and passwords; each is a unique file. Cycles are identified by a number from 1 to
63 assigned by the user when the file is cataloged. If the cycle number is omitted on the CATALOG
card, cycle 1 is assumed. Although cycle numbers may be assigned in any order, it is useful to
assign them in ascending sequence for the following reason: If the cycle number is omitted on an
ATTACH request, the system selects the highest numbered cycle, whether or not it is the most
recently cataloged.

WRITE/REWRITE

A write function is one designed to add information to a file (i.e., it writes at the end of the file). A
rewrite function is one designed to replace information (i.e., it writes in the “middle” of a file). Un-
der SCOPE/HUSTER almost all output functions, including the FORTRAN, BASIC, and COBOL
write statements, are write rather than rewrite functions. When they are used to overwrite the
existing contents of a file, all information beyond the newly written data is dropped.

To prevent the user from accidentally destroying a permanent file, the system will permit him/her
to write on the file only if it is positioned at end-of-information. The last PRU can be destroyed by
a write function. If the last PRU is not a zero length EOF, this can result in a loss of data. If the user

65202¢

5.1.4

tries to write at any other position, the system will abort the job and print the dayfile message,
PFNOT POSITIONED CORRECTLY FOR WRITE

When information is added to a permanent file, the EXTEND function must be executed to make
the appended records permanent.

The rewrite functions—namely the COMPASS macros REWRITE, REWRITER, REWRITEF, and
WRITIN—are generally difficult to apply. Some system utilities, such as EDITOR, are designed to
do rewrites on permanent files. A more typical method of inserting, deleting, or replacing in-
formation within a permanent file (or any other type of file) is to generate a second file containing
the corrections. This is the method employed by the UPDATE utility.

Privacy Controls

5.1.5

When cataloging a file, the user may specify up to five passwords to protect it from access by other
users. A permanent file password consists of 1-9 alphanumeric characters. Each password may
control one or more of the following types of access.

Read Read (RD) permission is required to read the contents of the permanent file.
Extend Extend (EX) permission is required to write information at the end of the permanent file

Modify Modify (MD) permission is required to change the existing contents of the permane:
file, using a rewrite function.

Control Control (CN) permission is required to purge the permanent file, or to catalog addition:
cycles.

Turnkey If a turnkey (TK) password is specified when the file is cataloged, none of the other pe
missions can be granted when the file is attached unless the turnkey password is als
specified. This amounts to “attach” permission.

To gain a particular type of access permission, the user must specify the associated password on
the ATTACH card. If the password does not exist, that is, if it was not specified when the per-
manent file was cataloged, then that form of access is granted automatically whenever the file is at-
tached. For example, if the CATALOG card specifies only a Read password, then the ATTACH
card need not specify any passwords to gain Extend, Modify, and Control permissions. If the
CATALOG card specifies a Turnkey password, then the ATTACH must always specify at least
the Turnkey password to gain any type of permission.

Multiple-Read Access

The permanent file is the only type of file that can be assigned to two or more jobs simultaneously,
provided the following restrictions are met. The system will permit more than one job to read the
same file; but the system cannot allow one job to alter the file while another job is attempting to
read it. Several jobs can read the same file only if the ATTACH does not give Modify, Extend or
Control permission. This is done by either (a) attaching the file with the MR =1 parameter (see
Section 5.2.1) or (b) cataloging the file with EX, MD and CN passwords and not supplying any of
these passwords on the ATTACH card. .

If several jobs attempt to access the same permanent file without multiple-read access, only one

5-4 65202¢

job at a time will run. The remaining jobs will be swapped out. These jobs may be rerun or drop-
ped at the operator’s discretion. Jobs are not likely to be dropped unless the RERUN parameter is

OFF.

5.1.6

Purging/Retention
A permanent file will be retained until it is purged. If the user does not purge his/her own files,
they will be purged by the Operations staff when the retention period of the files expires, when the
user’s PN expires, or when either the user’s PN or ID dollar balance is reduced to zero or less. The
retention period, from zero days to infinity, is specified on the CATALOG card. If omitted, the
default retention period is 15 days.
Before a file is purged by the Computer Laboratory, it is copied to a magnetic tape. If the purged
file is still needed, it can be retrieved from this tape within a 14 day period. See Section 5.4 for
details. -

5.2

PF Utilities . '
The CATALOG, ATTACH, EXTEND, PURGE, and PNPURGE control cards are described in the
following sections. '

5.2.1

CATALOG

The CATALOG card catalogs (makes permanent) the local file ‘lfn’ by assigning it the permanent
file name ‘pfn’, plus optional passwords and identifiers.

CATALOG, lfn,pfn[,RP=rp][,RD =rdpw][,EX =expw][,MD =mdpw]
[,CN=cnpw][, TK =tkpw][,PW =cnpw [, tkpw]] [,CY =cy]|(,ID =name]
[, BC=n], MR=n].! _

lfn the local file name of the file being cataloged.
pfn the permanent file name which is to be assigned to the file.
RP=rp specifies the retention period (rp) in terms of days (0€rp<999). If rp is O the file

expires at the end of the day. If rp is 999 the file has an infinite retention
period. The default is 15 days.

RD =rdpw specifies a Read password, which will be required for read permission
whenever the file is attached.

EX =expw specifies an Extend password, which will be required for permission to write at
the end of the file whenever it is attached.

MD =mdpw specifies a Modify password, which will be required for rewrite permission
whenever the file is attached.

1The parameter list of the CATALOG card may be split after any comma and continued on the
next card. :

65202¢

CN=cnpw specifies a Control password, which will be required for purge permission
whenever the file is attached.
- TK=tkpw specifies a Turnkey password, which will be required for all attach requests.

PW =cnpw,tkpw Specifies passwords necessary to catalog additional cycles of a permanent file
name. If control and/or turnkey passwords were specified on previous cycles,
they must appear here. Up to two passwords may be necessary.

CY=cy specifies the cycle number (1<cy<63). If omifted, cycle 1 is assumed. The user
may catalog up to five cycles under one permanent file name.

[D=name specifies a 1-9 character owner identifier to aid the user in identifying his/her
permanent files in a PFLIST report (see Section 5.3).

BC=n If BC=1, the Computer Laboratory will maintain a copy of the file on a
backup tape. If BC is omitted, BC=1 is assumed. If BC=0, the Computer
Laboratory will not maintain a backup copy of the file.

MR=n If n is not 0, the file will have Read only permission after the CATALOG is
completed, and will be accessible to other users. If n is 0 or MR is not specified,
the permanent file will remain attached with all permissions and must be retur-
ned and attached with the proper pemussxons to obtain Read only access and
allow access by other users.

All passwords (pw) consist of 1-9 alphanumeric characters. A particular password may be used for
several permission types. If the CATALOG does not specify a password for a certain type of ac-
cess, permission for that form of access is automatically granted whenever the file is attached,
unless the multi-read option is in effect.

Since cataloging only involves the manipulation of system tables, it alters neither the contents nor
the position of the local file. After the file has been cataloged, it remains assigned to the job. If it
was cataloged with MR =1, multi-read access is allowed. If MR =0 or MR is not spec1f1ed the file is
assigned to the job as if it were attached with all passwords specified.

The permanent file name (pfn) consists of 1-40 alphanumeric characters and should uniquely iden-
tify the cataloged file unless a new cycle of an existing permanent file name is being created. To en-
sure that every file is cataloged with a unique permanent file name and cycle number,
SCOPE/HUSTLER will add a digit prefix to the user-specified permanent file name in any of the
following circumstances.

-

The permanent file name, pfn, already exists and a CY =cy parameter is not specified.
2. The CY =cy parameter specifies an existing cycle of the permanent file name.
3. There are already five cycles of the permanent file name.

4. The PW=cnpw,tkpw parameter did not specxfy the correct turnkey and/or control
passwords during a new-cycle catalog.

65202¢

Example 1: Cataloging a new permanent file.

PNC
JONES,JC80,T10,RG3.
FTN.
CATALOG,LGO,JONESLGO,RD=READ,EX =CHANGE MD=ALTER,CN=CHANGE,
ID=JONES.
LGO.
7/8/9

FORTRAN program
7/8/9

data
6/7/8/9

In this example, John Jones catalogs his load-and-go file, LGO, as JONESLGO. When he attaches
JONESLGO in a future job, John must specify the password READ in order to load and execute
the program. Note that Extend and Control permissions have the same password, and that Modify
permission is always granted. Because the CY parameter is omitted, cycle 1 is assumed. Because
the RP parameter is omitted, a 15 day retention period is assumed.

Example 2: Cataloging a new cycle of an existing file.

Suppose Example 1 was run earlier and John Jones now catalogs a new cycle of JONESLGO.
Because the CN password is defined for JONESLGO, John must submit the password CHANGE
with the PW parameter. Cycle 10 of JONESLGO will have the same passwords as cycle 1, but it
will have an infinite retention period.

PNC
JONES,]JC75,T10.
FTN.
CATALOG,LGO,JONESLGO,CY =10,PW =CHANGE,RP=999.
LGO.
7/8/9
FORTRAN program
7/8/9
data
6/7/8/9

Example 3: A duplicate permanent file name.

Suppose that Sue Jones, unaware that John jones has already cataloged a file named JONESLGO,
submits the following job:

PNC
JONES,JC100.
COMPASS.
CATALOG,LGO,JONESLGO,ID =SUEJONES, TK =SENQO]J.
LGO.
7/8/9
COMPASS program
7/8/9
data
6/7/8/9

65202¢

5.2.2
ATTACH

5-

If everything else is correct, Sue Jones’ job will run smoothly. But if she checks her dayfile she will
find a message that might read,

PF ALREADY EXISTS
FILE CATALOGED AS- SJONESLGO

I she does not check the dayfile she will discover the alteration the first time she attempts to attach
JONESLGO. In effect she will attempt to attach John Jones’ file using the password SENO]J, which
will cause her job to abort with the message,

NO CORRECT PASSWORDS SUBMITTED

This message will probably puzzle Sue until she realizes that her permanent file name was modified
to avoid duplicating an existing name. If Sue has discarded the output from her first run, how can
she determine what prefix her permanent file name was given? Solution: She can execute a
PFLIST(PNORD) control card, which will list all active permanent files cataloged with her
problem number and user ID. '

Although there is a simple solution to Sue’s problem, she will still have wasted a run. The moral of
Sue’s story is 1) try to specify a permanent file name that is likely to be unique, and 2)check the
dayfile of every job!

The ATTACH card is used to access an existing permanent file. [t makes the permanent file "pfn’
local by assigning it the local file name 'lfn’.

ATTACH, lfn,pfn[,PW =pw1,pw2,...,pw5][,CY =cy][[MR =n].?

lfn the local (logical) file name that will be assigned to the permanent file. If a file named
Ifn is already assigned to the job, the job will abort.
pfn the permanent file name of the file to be attached.

PW=pwl

pw5 specifies up to five passwords for any combination of permission types. The passwords
(pwl, pw2, ..., pw5) can be listed in any order. Because permission is automatically
granted for any type of access which was not given a password when the file was
cataloged, the PW parameter may be omitted when no passwords exist for the desired
types of access.

CY=cy specifies the cycle number of the permanent file. If this parameter is omitted, the
highest cycle number of pfn will be attached.

MR=n If nis O, the parameter is ignored. If n is not 0, multi-read access is allowed. The file
will have only Read permission, assuming the proper RD password was also sub-
mitted. No one will be allowed to alter the file at this time, even if they have submitted

The parameter list of the ATTACH card can be split after any comma and continued on the next

card.

5-8

65202¢

the proper passwords. Jobs which may alter the file must wait until the multi-read
job(s) are completed.

A permanent file may be assigned with Read only permission to several users simultaneously,
provided that none of them has Control, Modify, or Extend permission. This entails the
specification of CN, MD, and EX passwords when the file was cataloged or the specification of a
non-zero MR parameter when the file is attached. If a job attempts to attach a permanent file
which is already assigned to another job and multiple access is not possible, the second job will
wait until the first has returned the file. Similarly, if a job attempts to alter a file already attached
for multiple read access (i.e. the job specified MR=0), the second job will automatically wait for
the preceding Read only jobs to return the file. Note: Only batch jobs will wait. Interactive jobs
will abort.

Example 1: Attaching a file with Read permission.

Suppose John Jones (from Examples 1 and 2 of the preceding section) wants to execute JONESLGO
with a new set of data. He would submit the following job.

PNC
JONES,JC40,Ts.
ATTACH,X,JONESLGO,PW=READ.
X.
7/8/9

data
6/7/8/9

Because the CY parameter is omitted, the highest cycle of JONESLGO—cycle 10—is attached.
In this case, JONESLGO is attached with Read permission only. Extend, Modify and Change per-
missions were specified on the CATALOG card. A

Example 2: An ATTACH involving the Turnkey password.
Suppose a file is cataloged with,

CATALOG, TAPE2, PFEXAMPLE, TK=A ,RD=B,CN=C,EX=D,MD=E.
Consider then the following ATTACH cards:

a. ATTACH,ABC,PFEXAMPLE,PW=A B,CD.E.
b. ATTACH,ABC,PFEXAMPLE,PW=A.
c. ATTACH,ABC,PFEXAMPLE PW=B,C.

Card (a) will give the user access to PFEXAMPLE with all permission types granted. Card (b) will
not allow the user to use the file because none of the other four permissions were specified. The
user will receive the message “NO CORRECT PASSWORDS SUBMITTED.” Card (c) will cause
the job to abort since the Turnkey password must be specified on the ATTACH card in order to

gain any of the other four permissions.

Example 3: Multi-read access.
Assume that a file has been cataloged with,

CATALOG,FILE MULTIREAD,CN=C,EX=E MD=M.

65202¢

5.2.3
PURGE

The following ATTACH card could be used by two or more jobs to read MULTIREAD
simultaneously.

ATTACH,lfn, MULTIREAD.-

Each user may specify a different local file name (lfn), but each must attach MULTIREAD with
Read permission only. In this example, none of the users need be concerned with passwords
because Read permission is granted automatically.

If the following ATTACH card, which supplies the control password, has been processed:
ATTACH,X,MULTIREAD,PW=C.

other jobs agtempting to attach MULTIREAD will have to wait until this job has returned it.

Suppose a file was cataloge.d without specifying all Extend, Modify and Control passwords.
CATALOG, FILE, PFEXAMPLE,CN=C,EX=E,RD=F.

Consider the following ATTACH cards

a. ATTACH,X,PFEXAMPLE PW=F.
b. ATTACH,Y PFEXAMPLE, MR=1,PW=F,
c. ATTACH,Z PFEXAMPLE MR=1.

Card (a) will not allow multi-read access because Modify permission is granted. Card (b) will
allow two or more users to read the file simultaneously. Card (c) will not allow the user to read the
file because the Read password is not specified. The MR parameter does not grant Read per-
mission, it merely limits access to the file to Read-only jobs. The user will receive the message “NO
CORRECT PASSWORDS SUBMITTED.”

The PURGE card changes the attached permanent file, Ifn, to a temporary local file.

PURGE, lfn.

Ifn thelocal file name of an attached permanent file.

In order to execute the PURGE function, the permanent file must be attached with Control per-
mission. After the file has been purged, it remains assigned to the job as a temporary file. Like any
temporary file, it will be evicted from the system when the job terminates, or when the file is
released from the job with a 'RETURN, Ifn.’ control card.

Caution: One crucial difference remains between a purged permanent file and an ordinary local
file. Unless the purged PF was attached with all permissions, it cannot be recataloged. Otherwise,
Control permission would be equivalent to all permissions, since then a user could attach a file
with Control permission only, purge the file, and recatalog it with new passwords. Thus, the per-
missions granted when a permanent file is attached preceding a purge remain in effect for the
corresponding local file.

5-10

5.2.4
EXTEND

65202¢

Example1: Gettihg rid of an unwanted permanent file.

Cycle 1 of MYPF is an obsolete permanent file costing several dollars per day for storage. Assume
it was cataloged with,

CATALOG,Z MYPF,RD =VERY,EX=SECRET,CN =STUFF,RP =999.

The following sequence of control cards attaches MYPF, purges it, and then releases it from the
job, thereby evicting it from the system. (Because the user intends to destroy MYPEF, the control
password, STUFF, is sufficient.)

PNC

Job Card

ATTACH,A MYPF,CY=1PW=STUFF.
PURGE, A.

RETURN,A.

6/7/8/9

Example 2: An incorrect attempt to purge and recatalog a PF.

In this example, cycle 5 of MYPF is a valuable permanent file that the user wants to retain but for
which he/she has neglected to specify an adequate retention period. To avoid having the Com-
puter Laboratory purge the file when it expires, the user decides to attach it, purge it, and recatalog
it with a longer retention period. The following deck is submitted:

PNC

Job Card

ATTACH,A MYPF,CY=35,PW =STUFF.
PURGE, A.

CATALOG,A ,MYPF,CY =5,PW=STUFF,RP=999.
6/7/8/9

Imagine this user’s horror when he or she sees a DMPX and reads the fatal error diagnostic in the
job dayfile, '

ATTEMPT TO CATALOG AN EXISTING PERMANENT FILE

The user forgot to attach cycle 5 of MYPF with all permissions. After MYPF was purged it was
evicted from the system when the job was aborted for the illegal catalog attempt. Fortunately all is
not lost. If cycle S of MYPF is more than a day old, there should be a backup copy on a permanent
file dump tape maintained by the Computer Laboratory (unless the file was cataloged with a
BC =0 parameter, in which case, all may well be lost.) Section 5.4.3 describes the control card
used to reload permanent files from the dump tapes.

The EXTEND card makes permanent any information that has been written to the end of an at-
tached permanent file.

EXTEND lfn.

Ifn thelocal file name of the attached permanent file.

65202¢

5-1

A permanent file can be changed in two ways:

1. Information can be replaced without changing the length of the file.
2. Information can be added to the end of the file, extending its length.

The first case is known as modifying or rewriting the file. The second case is known as extending
the file.?

Under Case 2, the information appended to a permanent file is not permanent until an EXTEND is
performed. If the job terminates without executing the EXTEND card, the appended information is
evicted—just as in the case of a temporary file—and the permanent file remains the original length.

The typical user modifies a file (Case 1) only when editing an EWFILE under EDITOR. Because
EDITOR not only rewrites records but also adds them, a permanent EWFILE should be attached

‘with both Modify and Extend permissions. EDITOR performs the EXTEND function

automatically for the user. There is no direct way to modify a file using only control cards.

Example 1: Copying a new logical record to the end of a PF.

The following job copies data from the job deck to the end of a permanent file, adding a new
logical record. This record is then cataloged with the EXTEND card.

PNC

Job Card

ATTACH,OLD,FOXYDATA,PW =READ,EXTEND.
SKIPF,OLD,1,17.

SKIPB,OLD,1.

COPYCF,INPUT,OLD.

EXTEND,OLD.

7/8/9

_ data

6/7/8/9

Read permission is required to skip forward on OLD and extend permission is required for copying
INPUT to OLD.

NOTE: This job will only work if OLD ends with an end-of-file mark. Recall from Section 4.2.5
that when SCOPE/HUSTLER writes an EQOF, it first terminates the logical record in progress (if
any) with a level 0 EOR and then writes the level 17 mark (EOF) as a zero length PRU. The job in
this example skips to end-of-file and then backspaces over the zero length EOF mark, leaving the
file positioned between the level 0 EOR and the EOF. The COPYCF card overwrites the EOF.

For this particular job, errors would result in the following circumstances.
1. If OLD does not end in an EOF, the SKIPB card will backspace over the last logical record of

data. If this record is not a full PRU, it will be overwritten; if it is greater than a PRU, the job
will abort with the message “PF NOT POSITIONED CORRECTLY FOR WRITE.”

3Section 5.1.4 noted that SCOPE/HUSTLER does not permit the user to “write” on a permanent
file unless it is positioned at end-of-information. More precisely, SCOPE/HUSTLER permits write
functions to overwrite only the last PRU of a permanent file. This allows the end-of-file mark to be
overwritten when the file is extended. :

5-12

5.2.5
PNPURGE

65202¢

2. If OLD contains more than one EOF mark, it will not be positioned correctly after the
‘SKIPF,OLD,1,17.’ card is executed, and the job will abort.

3. If the information added to OLD is not in the last logical record of the job ‘deck, the
‘COPYCF,INPUT,OLD.’ card will copy succeeding data decks as well as the intended data
deck.

This example illustrates that writing an extension to a file is not always as simple as it might seem.
Although it is fairly easy to position a file at end-of-information and then copy some data to it, the
resulting file structure depends on the operations used to write the extension and the operations
originally used to create the file. Getting desired results requires a fairly sophisticated un-
derstanding of file structure and the file manipulation procedures.

Example 2: Recataloging a permanent file.

To avoid creating a new SCOPE logical record each time data is added to the end of a permanent
file, usually the file must be recataloged rather than extended. One method is to use the COPY and
COMBINE utilities as illustrated below.

PNC
Job Card
ATTACH,A MYPE.
SKIPF,A,999,17.
COPYCR,INPUT, A.
REWIND,A.
COMBINE, A,B,999.
CATALOG,B,MYPF2,RP=999.
PURGE,A.
7/8/9

data
6/7/8/9

The SKIPF card positions A to end-of-information (assuming there are not more than 999 EOF
marks), and the COPYCR card copies the data cards to the end of A. Next the COMBINE card
combines all logical records on file A (assuming there are not more than 999) and writes them as a
single logical record on file B. The last cards purge file A and catalog file B in its place.

PNPURGE permits the user to purge unwanted permanent files without having to attach the files
or supply any passwords. PNPURGE only requires that the file “belong” to the user. More
specifically, a problem number manager is allowed to purge any file cataloged under his/her PN,
while a non-PN manager can only purge the files cataloged under his/her user ID.

PNPURGE is called as follows:
PNPURGE/[,PFN = pfn|, DPFN =dpfnd]{,CY =nn][,I=I1fn].
PFN =pfn specifies the permanent file name (pfn). The name may be as long as 40 charac-

ters and may include any characters other than a comma, period or paren-
theses.

65202¢

DPFN =dpfnd

CY=nn

I=lfn

5-1:

specifies the permanent file name, where pfn is the permanent file name and d
is any character the user selects to be a delimiter. Note that PNPURGE is the
only PF control card which allows user defined delimiters. The delimiter
character must appear immediately after the equal sign, and it may be any
character (including the blank) that does not occur in the permanent file name. -

"All characters between the first and second occurrence of the delimiter—in-

cluding blanks, commas, periods and parentheses—are treated as part of the
name (except in an interactive job, where the occurrence of a period or right
parenthesis signals the end of a command.)

specifies the cycle number (nn) of the file to be purged. Single digit cycle num-
bers may be specified with or without a leading zero. If this parameter is omit-
ted, the highest numbered cycle of the file is assumed.

specifies an input file (lfn) from which PNPURGE is to read the names and
cycle numbers of the files to be purged. This option may be used separately or
in combination with the PFN or DPFN parameter in order to specify several
permanent file names. The format of the PNPURGE input file is compatible
with unheadered output from PFLIST, see section 5.3. The input file should
consist of card images having the following format :

cols. 3-42 permanent file name (left-justified)

cols. 55-56 cycle number (single-digit numbers may be right- or left-justified)

All parameters are optional. The control card ‘PNPURGE." is equivalent to

‘PNPURGE,I=INPUT.

The errors “PERMANENT FILE NOT ON SYSTEM” and “CYCLE REFERENCED DOES NOT
EXIST” will not cause an abort. Other errors, such as trying to purge a file belonging to another
user or trying to purge a file which is already attached, will cause an abort only after PNPURGE
has attempted to complete all requested functions.

Example 1:

PNPURGE,DPFN =3$FANCY PF. NAMES, CY =2.

This card purges cycle 2 of FANCY PF. NAME, provided that the file was cataloged by a job using
the same ID (or for a master ID, by a job using the same PN).

Example 2:

PNC

USER,JC300,T30.
PFLIST,U=NAMES,SIZE=500.
REWIND,NAMES.

PNPURGE, I =NAMES.

6/7/8/9

This job uses PFLIST (see Section 5.3) to generate a list of the user’s permanent files that are 500

PRUs or larger. This list, which is written to file NAMES, is properly formatted for input to PN-

PURGE.

5-14

5.3
PFLIST -

65202¢

Users may generate a report describing the status of their permanent files by executing PFLIST, an
MSU utility which searches the permanent file tables for information about selected files.

Ordinarily, PFLIST lists just the files that “belong” to the user. That is, a PN manager will receive
a list of all permanent files charged to the PN dollar balance, but a non-PN manager will receive a
list of only the files charged to his/her ID dollar balance. Information for files cataloged with other
PN or PN ordinals may be requested by using one of the many PFLIST control card options.

The content and format of the PFLIST report is determined by whether the program is executed in
batch or interactive mode, as well as by control card options. Detailed format specifications are
provided in Tables 5-1 and 5-2, and a sample report froma PFLIST batch run is shown in Figure
S-1.

Because of the large number of control card options, the format of the PFLIST card is given as,
PFLIST[,p1.p2, ... ,pnl.

If there are no parameters specified, PFLIST lists all active permanent files that belong to the user,
as explained above. The parameters, pl through pn, are described below in two categories: those
that control the format of the PFLIST report, and those that specify selection criteria for the files
listed. All parameters are optional and may be specified in any order.

Format Control

O=lfn specifies the file on which PFLIST is to write a labeled report (i.e., containing
‘ page headers). If O=lfn is omitted, the default file is OUTPUT for batch jobs and
TTYTTY for interactive jobs (which means that output will not be listed at the

terminal until PFLIST has ended). If the O parameter appears alone, O=ZZZZOT

is assumed for interactive jobs (where ZZZZOT is connected). O=0 directs that

labeled output not be generated.

U=lfn specifies the file on which PFLIST is to write an unlabeled report. This file will
always be in BATCH format. This output is more suitable for input into another
program. If the U parameter appears alone, U=UNHEAD is assumed.

FDO=Ifn designates the file on which PFLIST will write a full detail output file. All in-
formation (except dump information) about a particular PF will be listed on one
very long (400 characters maximum) line. This file is intended for user programs to
process and extract the desired information. This file is not normally generated. (See
Table 5-3 for column specifications). FDO alone is illegal.

TTY write labeled output files in a format suitable for a 72-column terminal (see Table 5-
2). TTY is assumed for interactive jobs, unless the BATCH parameter is specified.

BATCH write labeled output files in a format Asuitable for the line printers (see Table 5-1).
BATCH is assumed for batch jobs unless the TTY parameter is specified. This for-
mat may also be used for terminals with a wide carriage (136 column).

VRN list the VRN(s) of the tape(s) on which each permanent file was last dumped. This in-
formation is printed in place of the last alteration, last access, and number of at-
taches data.

65202¢

= SAT4 W10l
1TINIO0Ud260LUILS =

i

= Snud V1oL

con

s XvQ/1s0D V1ol

LYI1S

4110SVvd

JSVASHY
ELNFHNOISSVSLI D

097141

IVIHIAOSHYISVASHUE -
LINBANOISSVGLI D=

JWYN 31Td ININVHYId

SI1I4 LNINVRUEd 40 1SI7

ITIVIVAZ60LHTLS ~
SLHBINDISSVSLI D

AVIHIAOIIYXSV IS YU »

YILLYHYOI3 YV
F1T3MT | JAOHINW! 00

7171717122 1707 1. -1+]
17371717121 i le e e}
g arc

133HD

OO b st et i ot it ottt
_,emfINVNNN==O0OC0OO
R S S S Y -
SN O = QOO0
SSSSSSESSSSE
o=y B e e e Bt L
00000000
MNNNBWUN‘
et
o EEE—EEED
—— DA £ SN2
coococooo0ReY
= S

NN A S CRNNNNNN Y
OO et e O ™Y

T EEEEDDRODRD
eba-Jacta-ta-da-da-Ja-ta-fa-tacd

nom<

ooz

TUZ

=
[=T-]

cNYA

ENYA

|

4
i
Nd 3ZIS SOVI3 WNUA

n
N —ga\m =
AU O e s OV NI
ot ot s o St s o s
-t b vt ot o et S e
OO OO DO
VNN O

NI W
SR EEEREREET

o0 ©Co 08
NI ERR]
COOQOOC =002
CO=OOVINOQO
COWO QOO

Jnnd

8L/02/10 “6n 1121 AWIL

39vd

1

*NYA‘ 104 1ST 14

SAdd viol

= SIS WIioL

A11IMIO0UdCO0LY LS =

il

£on

= X¥as1s03 1viol

(1744

41712SVd

ELNTANDISSVSLL D

09797054
CINIUNOISSVSLITD

XVTIHIAOSHUASVISHH -
JLNIINDISSVSLI e

JWYN 114 ININVHHEd

S31I4 ININVWYEd J0 ISIT

d114VIVACH0LHILS =
IVIMIAQIIYXSYASHE =
YALLVWHOJIHTIVISYASHE =
F114M31 JAOHARWI 00 LHTLS

oo e S B B PR PR B
CO0OOOOOOOO
=

a

NNNNNNNNNNNCS
——r et DO D et e e D T I
Nl N EESEENYN
SNNS NSNS NN T

i =] e eI == O
R/ X DRPRT DD

et} NNV O
>
oo =~
nNE -3
oo Qoo o
-t - — —
o -—
QW wn
PR WG S
[=X=T=-1 VP (=1]

1IN4 1S1144

gL/02/10 *20°L0°21° 3HIL

35vd

= SIATIJ V10l

S

= SMdd V1OL

9l

= Xyas/1s0d VIOl

4110SVd
ELNIHNDISSYSLLD
SINANDISSVSLL D

JWYN 37T ININVAUI

114431 JAOHINHL ONLYILS
S3114 ININVWHId 40 ISIT

gLs/02/10 *0£°20°21° FWIL

3ovd

3

*LSTUd

5-1

1—¢ angdig

5-16

65202¢

Table 5—1
PFLIST 'BATCH' Formats

Normal Format

column

1
3-42
43
45-53
55-56
57
59-66

68-75
77-81

83-90

92-99
101-108
111-114
116=121
123-128
130-136

Entries

contents

carriage control

permanent file name

origin (source code character)

owner ID (from CATALOG card)

cycle number

cycle altered flag (= if altered)

creation date (or date of last catalog if ~LASTCAT'
specified)

expiration date

time of last alteration (or time of last catalog i
“LASTCAT' specified)

date of last alteration

date file was last dumped to tape

date of last access

number of attaches

size of file in PRUs

PN ordinal (identifies user ID)

cost per day (or PN if 'LISTPN' is specified)

for purged files (FULL' or "PURGE' specified) have thi

following differences.

2
102-108
115-121

purged file flag (= if purged)
sequence number of the job that purged the file
problem number of the job that purged the file

VRN Format (VRN' or "FULLVRN' selected)

column

68-72
T4-81
83-88
90-95
97-102
104-109

contents

time of dump
date of dump
VRN 1 :
VRN2 (first overflow reel)
VRN3(second overflow reel)
VRNY4 (third overflow reel)

65202¢

110=-111
112
113
114
117=-121

5-1

number of VRNs used for dump
verification status

dump obsolete flag

7 or 9-track tape flag (7/9)
size of file in PRUs

If there are more than 4 VRNs used for the dump, additional lines are
printed listing the extra VRNs only.

83-88
90-95
97-102
104-109

VRN (I)
VRN (I+1)

» 8

Table 5—2
PFLIST "TTY' Format.

Normal Format

column
1
. 3-42

24-25
6

2
27-35
37-41

4347
e

Entries

contents

carriage control
ermanent file name. If the permanent file name is longer
ghan 20 characters, the remaining information is printed
on a separate line, ,
¢ycle number
eycle altered fla% (» if altered)
owner ID (from CATALOG card) .
creation date (or date of last catalog if LASTCAT' is
specified)
expiration date
date of last access
number of attaches
size of file in PRUs .)
cost per day (or PN if 'LISTPN' is specified)

for purged files ('FULL' or °'PURGE' specified) have the

following differences.

2
49-53
56-62
64=70

purged file flag (= if purged)

date of last alteration

sequence number of the job that purged the file
problem number of the job that purged the file

VRN Format (VRN' or "FULLVRN' selected)

column

27-31
1a-1s
47-52

54-59
60-61

22
1
67=71

contents
date of dump

VRN 1

VRN2 (first overflow reel)
VRN3 (second overflow reel)
VRN third overflow reel)
number of VRNs used for dump
verification status

dump obsolete flag

7 or 9-track tape flag (7/9)
size of file in PRUs

If there are more than 4 VRNs used for the dump, additional lines are
printed listing the extra VRNs only.

5-18

65202¢

Table5—3
Full Detail Output (FDOQ) Format

Primary Entry for Permanent File (Line 1)

colum
1-136

151=-153

2
11-16
1822
24-31
33-35
37

38

39
41-42
44-133

156-273
296-399

contents

identical to standard batch format with "LISTPN' selected
LASTCAT' not selected, and columns 102-121 not modified
for purged files.

number of dump history entries (i.e. number of continuation
lines for this PF)_

random file flaé ("RND' if random)

the characters CR=

creation time

the characters BC=

BC count from the CATALOG card

the characters CAT=

time of last catalog

date of last catalog

the character §$

cost per day

the characters PRG= (for urged files only)

sequence number of the job that purged the file

problem number of the job that purged the file

ump History OQutput
ne line is generated for each dump history entry.

the character +
the characters DUMPED

time of dump

date of dump

position of dump on first VRN
verification status

dump obsolete flag

7 or 9-track tape flag (7/9)
number of VENs used for dump
VANs of the first 13 dump tapes (listed in 6 character
colums, separated by blanks)
VRNs 14-30

VRNs 31-45

65202¢

S5-1¢

FULLVRN list full dump history for each file. A line giving the dump date/time and the dump ‘
tape VRN is printed for each time the file was dumped.

SORT=key sort the output (on the file specified by O =lfn or U=1fn) as indicated by key, where
key is one of the following keywords.

ALPHA sortby permanent file name
ACCOUNT sort by PN and PN ordinal within the PN

PN sort by PN

SIZE sort by size (smallest first)
LASTACC sort by last access (most recent first)
o] no sort

SORT.=ALPHA is assumed if the SORT keyword appears alone. SORT =0 is
assumed if the SORT option is omitted. : :

LISTPN print the PN of the PF owner for each file in place of the cost.

LASTCAT print the date on which the file was last cataloged in place of the creation date and
the time when last cataloged in place of the last alteration time.

Note: The 'VRN', ‘FULLVRN' and ‘LASTCAT" parameters are mutually exclusive.

File Selection

PFLIST determines which files are to be listed by performing a logical AND on the specified search |
criteria. For example, PFLIST(PREFIX =ABC,SIZE=100) says: “List all permanent files whose
names begin with ‘ABC’ and that are 100 PRUs or more and that belong to this user.”

MT =vrn=..,
Search the specified 7-track PF dump tape set rather than the system RBTC tables.

NT=vrn=...
Search the specified 9-track PF dump tape set rather than the system RBTC tables.

Any number of PF dump tape sets may be specified using multiple occurrences of the MT
and NT parameters.

PFN=pfn
List only the specified PF. This parameter will accept ‘S’ delimiters when special characters
are included in the permanent file name. A ‘S’ within the name must be represented as ‘$$’.

PREFIX = prefix
List the permanent files whose names begin with the characters specified. A prefix of up to 40
characters may be specified. This parameter will accept ‘$’ delimiters when special charac-
ters are to be in the prefix. A ‘$’ within the prefix must be represented as ‘5%’

ID=id1[=id2 =id3 =id4 =id5]
List only the files cataloged with one of the IDs specified. This does not refer to the ID of the
job card, but to the ID =name parameter of the CATALOG card. '
SOURCE[=ABC ... Z12 ... 0]
List only the files that were cataloged from the source specified (see Appendix E). If the
keyword SOURCE is used alone, SOURCE =B is assumed.

5-20

65202¢

SIZE =pru
List only the files that are Iarger than or equal to the number of PRUs specified.

ATTACH)][=attaches]
List only the files whose attach count is less than or equal to that specified. If the ATTACH
keyword appears alone, ATTACH =0 is assumed.

DUMPED{ =mm/dd/yy]
List those files dumped on or after the specified date. If no date is specified, the current date
is assumed.

ALTERED[=mm/dd/yyl
List only the files that have been altered on or after the date specified. If no date is specified,
list only the files that have been altered since their last dump date.

LASTALT[=mm/dd/yy]
List only the files that were last altered on or before the date specified. If no date is specified,
the current date is assumed.

ACCESS|=mm/dd/yy]
List only the files that have been attached on or after the date specified. If no date is
specified, the current date is assumed.

LASTACC[=mm/dd/yyl
List only the files that were last accessed on or before the date specified. If no date is

specified, the current date is assumed.

EXPIRED[=mm/dd/yy]

List only the files that expire on or before the date specified. If no date is specified, the
current date is assumed.

PURGED
List only the files that have been purged (since the last initial deadstart or within ap-
proximately three weeks; see Section 1. 7).*

FULL
List both purged and active files.*

ALL
List all files satisfying the options specified, including those cataloged under different PNs. If
ALL is the only parameter specified, all permanent files in the system will be listed.

PN{=pnl= ... =pn5]
List only these files that have been cataloged under the PNs specified. If the PN keyword ap-
pears alone, the PN of the user is assumed. “PN” is the default option for problem number
managers unless the ALL, PNDEPT, or an explicit PN or PNORD parameter is used.

PNORD{ =pnordl = ... =pnord5]
List only those files that have been cataloged under the PN ordinals specified. The PN or-
dinal uniquely identifies each PN subaccount (user ID) in the Authorization File. If the
PNORD keyword appears alone, the PN ordinal of the user is assumed. This is the default
option for non-PN managers unless the ALL, PNDEPT, PN, or an explicit PNORD
parameter is used. The PNORD can be obtained with the AUTHOREF utility.

*Information for purged files is lost after an initial deadstart.

65202g

S-2

PNDEPT] =dept]
List only the files cataloged under department code dept, where dept is the first two charac-!
ters of the problem number. If the PNDEPT keyword appears alone, the user’s department
code is assumed. :

BACKUP [=U]
If the BACKUP keyword appears alone, list only the files which are not adequately backed
up. Only verified dumps which are not obsolete are counted. If BACKUP=U is specified,
unverified dumps will also count.

FULLDMP

If FULLDMP is specified, list all files for which BC#0 (i.e. all files which are backed up by
the Computer Laboratory) is specified.

Default Parameters

From batch, the control card ‘PFLIST.’ is equivalent to
PFLIST,O=OUTPUT,SORT =0,BATCH,PNORD.

In interactive use, the command ‘PFLIST.’ is equivalent to

PFLIST,O=TTYTTY,SORT=0,TTY,PNORD.
Exception: PNORD is replaced by PN for jobs run with a master ID.
Examples:
1. PFLIST.

Lists all files belonging to the user. If entered from a terminal, the report will be printed at the
terminal in an abbreviated format.

2. PFLIST,PREFIX=$].A.L.$,ALL.
Lists all files whose names start with the characters ‘J.A.L.’
3. PFLIST,ALL,FULL,LISTPN.

Lists all permanent files found in the tables, both active and purged. The PN number for each
file will be printed in place of the cost/day. WARNING: this job is very expensive.

4. PFLIST,PNDEPT =01,SORT =SIZE.

Lists all permanent files cataloged by PNs assigned department code 01 (Computer
Laboratory). The files will be sorted by size from smallest to largest.

5. PFLIST,EXPIRED,PN =018072 =018073 =018074.

Lists all files cataloged under problem number 018072, 018073, or 018074 and that expire
today (or that have already expired but for some reason have not been purged).

6. PFLIST,U=FILE,O=0,SIZE=100,LASTACC=03/01/77, ATTACH =0.
Lists all files belonging to the user which are 100 PRUs or larger, which were last used on or

before March 1, 1977, and which were never attached. The report is written on file FILE in an
unlabeled format, which would be suitable for input to the PNPURGE program.

5-22

5.4
PF Backup

5.4.1

65202¢

7. PFLIST PURGED,VRN.

Lists all files belonging to the user that have been purged. In general, information for purged

- files is retained for only as long as the files are backed up on permanent file dump tapes. Nor-
mally the report would give the sequence number of the job which purged the file, the PN of
the job, and the date and time the file was purged. But because the VRN option is selected,
dump tape information will be printed instead.

8. PFLIST,NT=UP2021=UP2022.

Lists all files belonging to the user which are on the 9-track PF dump tape set UP2021 and
UP2022.

Occasionally, permanent files can be lost due to hardware failure, software problems, etc. Per-
manent files are protected against most forms of accidental destruction, but they will be lost in any
system failure which involves an initial deadstart (see Section 1.4.7) to reload the system. An
initial deadstart erases all tables, including the Permanent File Directory and the RBTC. For this
reason the Computer Laboratory tries to keep a current, magnetic tape copy of every permanent
file on a temporary basis. The user can maintain privately owned backup tapes, rely on Computer
Laboratory backup tapes or have no backup tapes at all. It is recommended that users maintain
their own backup copies of infrequently used files, using the PFDUMP utility. The user can opt
for no Computer Laboratory backup tapes by specifying BC =0 on the CATALOG card.

At the end of the daily production schedule, every permanent file that has been created or changed
during that day is normally dumped (copied) to tape. The Computer Laboratory backup copy of a
PF will be up to one day old. In case of accidental destruction the user can reload the PF from the
Computer Laboratory tape within a two week period. After two weeks, it is still possible that a
copy of the file exists. It may, however, be an older version. To locate such a copy, the user should
contact the Operation Shift Supervisor. Periodically all permanent files are dumped and a new set
of daily dumps is begun.

Another set of tapes is used to hold backup copies of permanent files purged by the Computer
Laboratory. At the end of the production day, each permanent file is examined to determine if (1)
the retention period has expired, (2) the owner’s PN has expired, or (3) the owner’s PN or ID dollar
balance has been expended. Files that fall into any of these categories are dumped to tape and then
purged.

The following sections described the Computer Laboratory policies and procedures for dumping,
reloading, and purging permanent files. In addition, Section 5.4.3 explains how to use the
PFLOAD control card to reload permanent files that have been purged or lost due to either system
failure or user error. Section 5.4.4 describes how the user may use the PFDUMP utility to dump
PFs from disk and/or existing dump tapes onto new dump tapes. The PFDUMP utility allows the
user to maintain his/her own library of backup tapes.

Computer Laboratory Dumping/Loading Policies

All permanent files (which are not cataloged with a BC =0 parameter) are copied to a backup tape
on a regular basis. Files that have been changed or created during a day’s production are copied to
a backup tape daily at the end of the production schedule. PFs are also dumped at the end of each
quarter. Copies of Quarter Dumps are kept for two terms. Files may also be dumped at other times

65202¢

5.4.2

5-2

for special reasons, such as disk maintenance. ‘
NOTE: A permanent file cannot be dumped if it is attached to a user’s job with more than read
permission. Users will be notified prior to any dump operation so that they can return files they
wish to have dumped.

In the event of a system failure or user error which results in the loss of permanent files, only the
files created during the current production day should be lost. All other files will be recreated from
the backup tapes.

Purging Policies

5.4.3
PFDUMP

Permanent files are dumped to tape and then purged in any of the following cases.

1. Expired permanent files are dumped and purged on the day of their expiration at the end of
the production schedule on weekdays. EXCEPTION: Expired APLIB files are purged only if
they have not been attached during the past four days. The default retention period for
APLIB files is one day. Remember that the default retention period for other permanent files
is 15 days. By specifying RP=0 on the CATALOG card, the user can have the file purged at
the end of the day on which it is cataloged.

2. Unexpired permanent files are dumped and purged if

a. the user (ID) dollar balance is less than or equal to zero and the file is not owned by a
Master ID; or

b. the PN dollar balance is less than or equal to zero and the file is not owned by a Master
ID; or

c. the file is owned by the Master ID and the PN dollar balance is less than or equal to
- $10.

Note: Permanent files which belong to a user D which has been deleted by the PN manager will
not be automatically purged. ’

3. If a PN is expired, all files charged to the PN are dumped and purged at the end of the
production day following the PN expiration date.

The Computer Laboratory will not provide any backup service for files cataloged with
BC=0.

Files that have been dumped and purged for any of these reasons are kept for a minimum of 14
days. The user can locate the VRN of the purged files using PFLIST and can recreate the file by
using the PFLOAD control card, as described below.

PFDUMP allows the user to create a new dump tape or tape set by dumping selected PFs from disk
and/or existing PF dump tapes onto the new dump tape set. Existing tape sets are called the “old”
tape sets. The tape set which is being created is called the “new” tape set. PF dump tapes all have a

_special VRN of the form UPnnnn. The user can purchase special PF dump tapes at the Service Win-

“dow in the 17O room. The user can also transfer regular tapes to UPnnnn tapes. It normally takes
24 hours to process a tape transfer. :

5-24

652028

For security reasons, PF dump tapes can be accessed only by the PF utilities (PFDUMP, PFLOAD
and PFLIST). These tapes will not be released to the owner until they have been completely erased
by the Computer Laboratory, since they may contain sensitive information and PFs which belong
to other people.

PFDUMP allows users to maintain their own PF backup, independent of the normal PF backup
procedure followed by the Computer Laboratory. PF backup tapes can be kept for as long as the
user wishes. Large infrequently used files can be kept on tape rather than disk. This reduces the
cost to the user and frees valuable disk space. The user can update and edit his/her own backup
tapes.

The PFDUMP control card is of the following form:
PFDUMP [,p1,p2, ...,pn].
The control card parameters are divided into five groups:

Tape Specification

Disk Specification

Output File Specification

Specification of Existing PF Dump Tapes

Specification of PFs to Copy from Existing PF Dump Tapes

Tape specification:

MTsvmm=__. specifies which tapes are to be written; this applies only to 7-track tapes. MT
alone is illegal.

NT=vm=... specifies which tapes are to be written; this applies only to 9-track Eapes. NT
alone is illegal. '

NEWPN=nnnnnn specifies the PN to be written on the new tape labels. ‘nnnnnn’ may be a 6 or 7
digit problem number. If NEWPN is not specified, the PN under which the
job is running is used. If NEWPN =0, any subsequent job will be allowed to
rewrite the new tapes. Any non-zero value for NEWPN restricts the ability to
rewrite the new tapes to the designated PN.

Note: Up to 62 VRNs may be specified. The ‘MT’ and ‘NT" parameters are mutually exclusive, but

one of them must be supplied. No VRN may appear more than once (i.e. new dump tapes and old
dump tapes must be mutually exclusive).

Disk specification:

PFN =xx specifies a single PF to be dumped. The PFN may be delimited '$’, allowing
the use of special characters within the PFN (in which case a ‘¢’ within the
PFN must be represented by '$%’).

CY =xx allows a cycle number to be specified in conjunction with the PFN parameter,
and is illegal unless the PFN parameter is also used. Legal forms are:

CY=xx where xx is the cycle number to be dumped 1<xx<63.

CY = ANY causes the first cycle encountered on disk to be dumped. If CY is
omitted, CY = ANY is assumed.

CY=ALL causes all cycles of that PFN to be dumped.

65202g ' 5-24.1

ADD=lfn=_.. specifies up to 5 lfns which hold a list of the PFs to be dumped from disk onto
: tape. If ADD appears alone, ADD =INPUT is assumed. (See PFDUMP Input
Lists, for format specifications.)

WAIT specifies that PFDUMP should wait for any PFs that are in use by another
job. Use of the WAIT parameter does not ensure that the PFs will be dumped
in the order specified in the ADD list. If ‘'WAIT" is not specified, PFDUMP
will skip the file in use, noting the action in the output file.

ORDER specifies that the disk PFs are to be dumped in the order in which they are
specified in the ADD list. This is normally the case, but if PFDUMP must
wait for a PF that is in use, the order might not be retained without the use of
this parameter.

65202c

T Lad

Qutput file specification:

O=Ifn specifies the file upon which PFDUMP will echo all input lists (along with ap-
propriate diagnostics) followed by a commentary on every PF that is
processed. If O is not specified or O appears alone, O=OQUTPUT is assumed.

U=lfn specifies the file on which PFDUMP will write an unheadered output file con-
taining one line for each PF that it processes. The format and content is the
same as the ‘O’ file without the echo of input lists. If U is not specified, no
such file is generated. If U appears alone, U=UNHEAD is assumed.

IX=lfn specifies the file on which PFDUMP will write an index output file, which is a
list of those PFs which were actually dumped on the new tapes. PFs are listed
in the order that they occur on the new dump tapes, along with information
about the tapes on which they reside.

Note: The output files use the following PFLIST compatible format.

Col. 3-42 PFN.

Col. 54-56 cycle number.

Col. 58-134 commentary; code number, description of
what was done with the PF, a list of VRNs on
which this PF was dumped.

Specification of existing PF dump tapes:

OLDMT =vrn=... specifies the VRNs of one or more existing 7-track PF dump tapes that are to
be merged with the PF's dumped from disk. OLDMT alonre is illegal.

OLDNT =vrn=... specifies the VRNs of one or more existing 9-track PF dump tapes that are to
be merged with the PF's dumped from disk. OLDNT alone is illegal.

Note: ‘OLDMT and ‘OLDNT’ may be specified up to twenty times, with each occurrence
specifying the VRN of exactly one set of PF dump tapes that were written at the same time as con-
tinuation reels. Up to 62 VRNs may be specified with each occurrence of the ‘OLDMT" or ‘OLD-
NT’ parameters. The VRNs must be specified in the same order as when they were written. If
neither are specified, only PFs from disk will be written on the new dump tapes.

Specification of PFs to copy from existing PF dump tapes:

DROP=lfn=.. specifies up to 5 lfns which hold a list of the PFs to be skipped during the
copying of the old dump tapes to the new dump tapes. All PFs not on this list
will be copied onto the new dump tapes unless they already exist on the new

- dump tapes. (See PFDUMP Input Lists for format specification.)

KEEP =lfn= ... specifies up to 5 lfns which hold a list of PFs to be copied from the old dump
tapes to the new dump tapes.PFs not on this list will not be copied. (See PF-
DUMP Input Lists for format specification)

Note: '‘DROP’ and ‘KEEP’ are mtually exclusive. Neither parameter has a default value. If the
user does not supply a DROP or KEEP list, all PFs on the tapes are copied.

PFDUMP Input Lists:

The input lists (for the ‘ADD’, 'KEEP’, and ‘DROP’ parameters) may be in either of two formats.

5-26 65202¢

' PFDUMRP will detect the proper format when it reads the input files.

One format is called PFLIST format, since it is compatible with unheadered PFLIST.output_. The
relevant fields in this format are:

Col. - 1 must be blank to indicate PFLIST format.

Col. 3-42 permanent file name.

Col. 54-56 cycle specification (right justified) : Legal entries are:
XX dump cycle number xx where 1Sxx<63.

ALL dump all cycles of the PF ,
ANY copy the first cycle encountered on tape; or

' dump the highest cycle on disk.
blank sameas ANY

The other format is keyword format, since it uses a control card type of keyword format. Each
card must start in column 1 (to distinguish this format from PFLIST format) and looks like:

pfn[,CY =xx]
or if the permanent file name contains special characters,

$pfnd[,CY =xx]
The PFN or the ‘S’ delimiter must start in column 1. A ‘$’ within a delimited PFN must be represen-
ted as ‘S$’. CY =xx is an optional parameter which specifies the cycle to be dumped. The legal for-
' ms of this parameter are the same as for PFLIST format, above.
The format used by one input list does not affect the formats of the other input lists (if any):
however, all cards on the same PFDUMP input list should follow the same format. PFDUMP will

accept mixed formats but will issue a warning message that the format was not consistent. This is
intended to highlight possible errors in the preparation of the input lists.

PFDUMP Qutput Files:

There are three types of PFDUMP output files: the general output file specified by the O
parameter, the unheadered output file specified by the U parameter, and the PF index output file
specified by the IX parameter.

The general output file contains the following information:

1. anecho of the PFDUMP control cards.
2. anecho of all input cards along with any error diagnostics which may have been generated.

3. PFDUMP result list, which contains information on all PFs processed by PFDUMP. This in-
formation is identical to the information produced for an unheadered output file.

4. ashort tape usage estimate; giving the number of PRUs written on the last reel, the estimated
' ‘ number of feet of tape used, the estimated number of PRUs of PFs which would fill the

remaining space.

65202c¢ 5-27

The unheadered output file is in machine readable format and contains one or more lines of output
for each PF processed by PFDUMP. The format is as follows:

Entries for all files
column contents
3-42 permanent file name.
45-53 owner [D.
54-56 cycle number, ANY or ALL.
58-62 time of last alteration.
64-71 date of last alteration.
130-131 A code number which indicates the action taken with this PF. See

Table 5-4.

Entries for files which were not dumped or copied

73-85 the characters 'NOT DUMPED-, if the PF were to be dumped from
disk; or the characters NOT COPIED-, if the PF were to be copied
: from tape.
86-122 one of the following explanatory messages:
NO ROOM ON NEW TAPES
PF ALREADY ON TAPE
PFN,CY ON DROP LIST
PFN,ANY ON DROP LIST
PFN,ALL ON DROP LIST
DEFAULT DROP (This PFN and cycle did not appear in KEEP input
list.)
ERROR IN PF HEADER - PF UNKNOWN
INCOMPLETE CYCLE
FILENOT IN SYSTEM
CYCLENOT IN SYSTEM

ALREADY ATTACHED BY THIS JOB (This PFis attached by this job
and cannot be dumped.)

IN USE BY OTHER JOB (This PF is in use by another job with more
than read-only permission, and PFDUMP has not

been told towait for it.)
ATTACH ERROR CODE = NNN

Entries for files which were dumped or copied have the following differences:

73-81 the character string DUMPED TO or COPIED TO depending on
whether the PF was dumped from disk or copied from tape.
83-88 fir-+ VRN to which the PF was dumped/ copied.
90-95 continuation VRN (if any).
97-102 continuation VRN (if any).
104-109 continuation VRN (if any).
110-111 number of VRN used to dump/copy this PF.
114 7 or 9 track tape flag.
115-120 size of the PF in disk PRUs.
122-128 possible warning message:
blank no errors

ERROR disk or tape parity error.

Table 5—4

CODE MEANING

10

1

12

16

17

18

19

PF was dumped from disk without problem.

PF was dumped from disk with one or more disk
parity errors.

PF was copied from tape without problem.

PF was copied from tape with one or more errors
detected on the old dump tape.

PF was not copied from the o0ld dump tape because
%Ea% PFN and cycle were specified in the DROP input

PF was not copied from the old dump tape because
that PFN and a cycle of ANY were specified in the
DROP input list, and this is the first cycle of
that PFN that has been encountered during the
tape-to-tape copy.

PF was not copied from the old dump tape because
that PFN and a cycle of ALL were specified in the
DROP input list. .

PF was not cogied from the old dumg tape by default
li.g'j the P was not specified in the KEEP input
st.

PF was not dumped from disk or was not copied from
the o0ld dump tape because that PFN and cycle has
already been written on the new dump tape set.

PF was not dumped from disk or was not copied from
the old dump tape because that PFN and cycle has
already been written on the new dump tape set.

PF was not dumped from disk because no such PFN
exists on the system.

PF was not dumped from disk because the specified
cycle of that PFN does not exist on the system.

PF was not dumped from disk because it was in use
by another jo and the WAIT parameter was not
specified on the control card.

PF was not dumped from disk because it was already
attached by this job.

PF was not dumped from disk because it 1is an
incomplete cycle.

PF was specified in the KEEP input list but was
never encountered on any old dump tape.

PF was specified in the DROP input 1list but was
never encountered on any old dump tape.

An error was encountered on the old dump tape
within a ~PF header' As such, the PFN and cycle are
unknown and that PF _has been skigped. he PFN
field of this line will hold something along the
order of == UNKNOWN PF =*,

PF was not dumped from disk to tape because an
unrecognized error occurred during the attach. The
return code from the attach is also printed on this
line.

65202c

65202¢

5-2

Additional lines for files which were dumped or copied.

83-88 continuation VRN (if any)
90-95 continuation VRN (if any)
97-102 continuation VRN (if any)
104-109 continuation VRN (if any)

Entries for files which were on the DROP or KEEP input list that were not found on any old
tape set have the following differences:

73-79 the characters WAS ON.

80-83 the characters DROP or KEEP.
84-134 the characters LIST BUT WAS NOT FOUND ON ANY OLD TAPE.

The PF index output file contains only entries for those PFs which were actually dumped or copied
to the new PF tapes in the same format as the unheadered output file. This provides an index to the
contents of the new tape set.

Note:

1. PFDUMP maintains no particular order on the new dump tapes. All disk PFs are first dum-
ped to the new dump tapes, then the PFs from old dump tapes are copied to the new dump
tapes. These copied PFs are taken in the order they are found on the tapes.

2. Each PFN and cycle number specifies a unique PF on the new dump tapes. PFDUMP will
keep track of which PFs have already been written on the new dump tapes, and if that PFN
and cycle number occur again it is either ignored (if it was to be dumped from disk) or
automatically dropped (if it was to be copied from the old dump tapes). Thus a PF that was
successfully dumped from disk will replace any copy of itself that might have been on the old
dump tapes. However, if for any reason a PF should be unable to be dumped from disk, it
will automatically be put on the ‘KEEP’ list, overriding any command to the contrary. This
will ensure that a PF on the old dump tapes is not lost due to the disk copy being in use, etc.

Example 1:

The following job will make a backup tape copy of all permanent files belonging to the user’s PN.
The PFLIST card generates the list of permanent files. The PFDUMP card causes the files specified
in LIST to be dumped to the PFDUMP tape UP1200. This job will wait for PFs which may be in use

by another job.

PNC

id, MT1,...

PFLIST,U=LIST.

PFDUMP ,MT =UP1200,ADD=LIST, WAIT.
6/7/8/9

Example 2:

In this example, disk files are merged with selected files from the old dump tape (UP1200) to
produce a new dump tape {UP1201). The input list (in keyword format) specifies that PFDUMP (
copy all cycles of SAMPLEPF1, the first cycle of SAMPLEPF2 encountered on the tape, cycle two
of SAMPLEPF3 and the first cycle encountered of MONEYSPF. This job prints a list of the con-
tents of UP1201, sorted in alphabetical order.

5-30

5.4.4
PFLOAD

65202c

PNC

id, MT2,...

PFLIST,U=LIST.

PFDUMP,ADD =LIST MT =UP1201, WAIT, OLDMT =UP1200,KEEP =INPUT.
PFLIST,SORT MT =UP1201. ‘
7/8/9

SAMPLEPF1,CY=ALL
SAMPLEPF2

SAMPLEPF3,CY =2
$SMONEYS$$PFS

6/7/8/9

The PFLOAD card reloads one or more permanent files from a dump tape. The file is reloaded
with the cataloging information still intact. '

The user has the option of dumping his/her own files onto tape. PFLOAD allows the user to reload
information from both system and user dump tapes.

The PFLOAD control card looks like

PFLOAD [,p1,p2, ... ,pn].

The parameters are categorized into 4 groups.

Tape specification:

MTa=vrn=... specifies a global tape set to be loaded; this applies only to 7-track tapes.
NT=vrn=... specifies a global tape set to be loaded; this applies only to 9-track tapes.
MT alone, indicates that the tapes whose VRN's are supplied in the input list are

7-track. (See PFLOAD Input files below.)

NT alone, indicates that the tapes whose VRN's are supplied in the input list are
9-track. (See PFLOAD Input files below.)

Note: Up to 62 VRN's may be specified in each global tape set. The global tape sets are used when
reloading the PF specified by the PFN parameter or PFs designated by the input list with no local
tape set specified. More than one global tape set may be specified, simply by specifying multiple
occurrences of the MT and/or NT parameters.

Both 7-track and 9-track tape sets may be used on the same run.

PF selection:
ALL reload all PFs on the specified tapes.

[=lfn=_. specifies up to 5 lfns which hold a list of the PFs to be reloaded. (See PFLOAD
Input files below)

65202¢

PFN = xx

5-3]

specifies a single PF to be reloaded. The pfn may be delimited by ‘§’, allowing
the use of special characters with the PFN (in which case a ‘¢’ thhm the PFN
must be represented by ‘$%’).

allows a cycle number to be specified in conjunction with the PFN parameter,
and is illegal unless the PFN parameter is also used. Legal forms are:

CY =xx where xx is the cycle number to be reloaded. 1€xx<63.

CY=ANY causes the first cycle encountered on the tape set to be
reloaded. If CY is omitted, CY = ANY is assumed.

CY=ALL causes all cycles of that PFN to be reloaded.

Note: The ‘ALL’, T and ‘PFN’ parameters are mutually exclusive.

Recataloging information.

RP=xx

DUP = xx

specifies the retention period of the reloaded PF's in days. Legal forms are:

RP=xx where O <xx<999. If RP is omitted, RP =15 is assumed.
RP=SAME uses the RP value assigned to each PF before it was dum-
ped.

specifies the action to be taken when PFLOAD attempts to recatalog a PF and
finds that the PFN, or PFN and cycle number, are already in use by another
disk PF. Legal forms are:

DUP=IGNORE causes PFLOAD to skip this PF (noting this action in the
output file) and continue on to the next PF.

DUP =NEWNAME causes PFLOAD to create a new pfn, cataloging the PF
under the new name. DUP =NEWNAME is assumed if

DUP is not specified.

Output file specification:

O=lfn

U=lfn

specifies the file upon which PFLOAD will echo the control cards, all input
cards, and then list all the results of the reload attempts. If O is not specified,
O=0QUTPUT is assumed.

specifies the file upon which PFLOAD will write an unheadered list of the
results of the reload attempts. U alone implies U=UNHEAD.

Note: If U is omitted, no unheadered output is generated. Both headered and
unheadered output lists use the following PFLIST compatible format.

Col. 3-42 pfn of PF as on tape.
Col. 48-52. The word CYCLE.

Col. 54-56 cycleof PF as on tape.

5-32

65202¢

Col. 58-134 results: if the PF was not reloaded, this field indicates
why. If the PF was reloaded, this field indicates any new
pfn and cycle if one was created.

PFLOAD Input files:

All input files are rewound and read from the beginning-of-information to end-of-file, except for
INPUT. The file INPUT will be read from the current position up to an end-of-record.

The input files may be in either of two formats. PFLOAD will detect the proper format when it
reads the input files.

One format is called ‘PFLIST format’ since it is compatible with unheadered ‘PFLIST, VRN’ output.
The relevant fields in this format are:

Col. 1 blank to indicate PFLIST format.

Col. 3-42 permanent file name.

Col. 54-56 cycle specification (right-justified). Legal options are:
XX reloads cycle xx

ALL reloads all cycles of the PF
ANY reloads the first cycle encountered on the tape
blank sameas ANY

Col. 83-88 VRN from which to reload this PF.

Col. 9095 continuation reel VRN (if any).

Col. 97-102 continuation reel VRN (if any).

Col. 104-109 continuation reel VRN (if any).

Col. 114 tape type specification
7 specified 7-track
9 specified 9-track

blank use the type specified on the control card. If
no type was specified on the control card, ‘7" is
assumed. If both MT and NT were specified
an error diagnostic is issued and the input card
is ignored.

The VRN field may contain one or more VRN, in which case this PF may be reloaded only from
the specified tape(s) (local tape set), or it may be blank, in which case this PF may be reloaded only
from the tapes specified by the MT and/or NT parameters (global tape set). This is to allow for
cases in which the PF may exist on several tapes that were dumped at different times, and a par-
ticular copy is to be retrieved. If any VRN field is blank, the rest of the continuation reel VRN's on
this card are ignored.

The other format is ’keyword format’, since it uses a control card type of keyword format. Each
card must start in column 1 (to distinguish this format from PFLIST format) and looks like:

pfn,CY =xx, keyword = xx, keyword =xx...
or, if the permanent file name contains special charécters,
$pfn%, CY = xx, keyword =xx, ...

The permanent file name or the ‘¢’ delimiter must start in column 1. A 'S’ within a delimited PFN
must be represented as ‘$$’.

65202¢

5-3

CY =xx ' specifies the cycle or cycles to be reloaded. Legal forms
are:
CY =xx where xx is the cycle number to be reloaded.
1€xx®63.

CY=ALL reloads all cycles of the PF
CY=ANY reloads the first cycle encountered on the tape.
1f CY is not specified CY = ANY is assumed.
MT=vrn=... the PFis reloaded from the specified 7-track tapes. MT and
NT are mutually exclusive.

NT=vrmn=... the PFis reloaded from the specified 9-track tapes. MT and
NT are mutually exclusive
RP =xx specifies the retention period for this PF only. This

overrides the RP parameter on the control card. If RP is
omitted in the input file, the RP value on the control card is
used. Legal forms are the same as the control card
parameter.

DUP =xx specifies the action to be taken when PFLOAD attempts to
recatalog this PF and finds that the pfn, or pfn and cycle
number, are already in use by another disk PF. This
overrides the DUP parameter on the control card. Legal
forms are the same as the control card parameter. If DUP is
omitted in the input file, the DUP value on the control card
is used.

If the last non-blank character on a card is a comma, the next card will be read as a continuation
card.

The format used by one input file does not affect the formats of the other input files (if any).
However, all cards within any one PFLOAD input file should follow the same format. PFLOAD
will accept mixed formats but will issue a warning message that the format was not consistent.
This is intended to highlight possible errors in the preparation of the input lists.

Passwords:

PFLOAD will catalog a new cycle of an existing disk PF only if all passwords of the existing disk PF
and the new PF are identical. This varies from the requirement of new cycle generation when a
user catalogs a PF, in which the new cycle must get only Turnkey and Control permissions. Other-
wise a PF reloaded and cataloged as a new cycle of an existing PF could possibly have its Read, Ex-
tend, and Modify passwords changed to those of the existing PF. This can cause problems:

1. A possible breach of security, since the owner of the existing PF can get all permissions to the
new cycle.

2. The owner of the new cycle may not be able to access his/her PF due to the passwords
having been changed.

Example 1:

In this example all files whose names begin with “COMMON PREFIX” on the 9-track PF dump
tapes UP1000 or UP1001 are reloaded as permanent files with-a retention period of 15 days.

5-34

65202¢

PNC

MARTIN,JC999,NT1.

PFLIST,PREFIX =$COMMON PREFIX$ U=QUT,VRN,NT =UP1000 = UP1001.
PFLOAD,I=QUT.

6/7/8/9

Example 2:

All cycles of the file "MONEYS$PF” located on two separate sets of 7-track PF dump tapes UP0001-
UP0002 and UP0009-UP00010 are reloaded on disk with their original retention periods.

PNC

JAMES,JC999,MT1.

PFLOAD,PFN =$MONEY$$PFS,CY = ALL,RP =SAME,
MT =UP0001 =UP0002, MT =UP0009 =UP0010.
6/7/8/9

Example 3:

In this example, all files stored on the 7-track PF dump tape UP1020 and the 9-track PF dump tape
UP1040 are reloaded with an infinite retention period. Files already on disk are ignored.

PNC

SMITH,JC999,MT1,NT1.

PFLOAD,ALL MT =UP1020,NT =UP1040,RP =999, DUP =IGNORE.
6/7/8/9

Example 4:

In this example, the first cycle of JONESLGO is reloaded from the global tape set, UP0012 and
UP0034. All cycles of SMITHLGO are reloaded from the 9-track dump tape UP2109. Cycle 60 of
GOODFPF is reloaded from the 7-track tape UP2001 (unless a copy already exists on disk). Cycle 1
of BADPF is reloaded from the 9-track tape UP1984 with its original retention period. All PFs with
the exception of BADPF will have a retention period of 60 days.

PNC

LASTONE,JC999 MT1,NT1.

PFLOAD MT =UP0012,NT =UP0034, RP =60, DUP = NEWNAME.
7/8/9

JONESLGO

SMITHLGO,CY = ALL,NT =UP2109

GOODPF,CY =60,MT =UP2001, DUP =IGNORE

BADPF,CY =1 NT =UP1984, RP=SAME

6/7/8/9

65202d

6.1

6
Magnetic Tapes

Reader’s Guide and Glossary

This chapter is intended to be a comprehensive guide to magnetic tape usage under
SCOPE/HUSTLER. Sections 6.2 through 6.6 give the user the basic information necessary to use
tapes, including a discussion of tape vs. disk storage (6.2), information on obtaining tapes (6.3),
appropriate control statements for reserving tape drives (6.4) and requesting tapes (6.5), and a
description of tape error messages (6.6). The interested user may also want to read Sections 6.7
and 6.8, which give detailed descriptions of tape equipment and tape structures.

Sections 6.9 through 6.16 will be useful to the more experienced user. The topics covered are: the
structure of data on tapes (6.9 and 6.10), tape labels (6.11 and 6.12), tape security (6.13), tape
parity error procedures (6.14), and special problems involving tapes (6.15). COMPASS
procedures have been separated from the text and placed in Section 6.16; this was done to
facilitate their removal when the SCOPE/HUSTLER COMPASS Reference Manual is completed.

Several of the terms used in this chapter to describe files have been redefined with the purpose of
eliminating overlapping terminology and making the terms more precise. These terms are defined
below.

File
A file is a physically connected set of information. It is all the data between the beginning-of-
information and the end-of-information.

Record or Unit Record
A record is a physical division of data comparable to a punched card, or one line of code or string
of characters. Different types of records may be defined under Cyber Record Manager.

Logical Record

A logical record has been redefined as a group of logically related data within a file. A logical
record comprises one or more unit records but has no unique delimiter. For example, data for a
single observation may span several cards. This group of cards is termed a “logical record”; it is
not separated from other cards by a special delimiter.

Section

A section consists of one or more records. It is less than a partition and greater than a record, but it
may be identical to either or both. A section begins at beginning-of-information or immediately af-
ter the end of the preceding section, and ends when an end-of-section (EOS) delimiter is detected.

End-of-Section Delimiter (EOS)

All sections are terminated by an end-of-section delimiter. This delimiter is automatically ap-
pended to the user’s data upon writing a section but js not returned with the data when reading a
section. A level number is associated with each end-of-section delimiter. This level number may be
from O to 17, (octal). A level 17, end-of-section is called an end-of-partition delimiter.

Partition
A partition consists of one or more sections terminated by an end-of-partition delimiter.

End-of-Partition (EOP)
An EOP is equivalent to an end-of-section delimiter of level 17,.

6.2

65202d

Block and Physical Record

A block is a physical grouping of information on tape. It is the smallest amount of information
which may be written or read on a magnetic tape, although block size may vary. Blocks are
delimited by interblock gaps.

Although sometimes used to describe disk files, the term block has little significance for those files.
On disk the smallest unit of information read or written is fixed in size and is called a sector or a
physical record (PRU). When the term block is applied to disk files it is used as a logical grouping
of information physically recorded as a whole number multiple of PRUs.

Volume
A volume is the unit of information contained on a physical reel of magnetic tape. A file may con-
sist of more than one volume, and a volume can contain any number of sections or partitions.

Tape vs. Disk Storage

6.2.1

Magnetic tapes are an economical alternative to permanent files for storing large or infrequently
used files. They are also a compact medium for transporting large amounts of information from
one computer to another.

This section discusses some of the differences between magnetic tape storage and disk storage,
which most users are more familiar with. These comparisons will also furnish a basis for choosing
the type of storage best suited to the user’s needs.

Economic Advantages

The chief attraction of magnetic tape is that it is the least expensive medium for storing large or in-
frequently used files. For example, at the current disk storage rate of about 1 cent per 80 column
card image per month, it costs $20 per month (about $.67 a day) to maintain a 4000 card (320,000
character) permanent file. In many cases it is wiser to invest a flat fee covering purchase price,
storage and handling fees for a 2400 foot magnetic tape and thereafter pay only tape read charges
and a 25-cent tape mount charge each time the tape is used.

A coded 7-track tape written at 800 characters per inch (cpi) can hold the equivalent of 15 million
characters (24,000 disk PRUs); a binary tape can hold 20 million characters (31,000 disk PRUs). A
coded 9-track tape written at 1600 cpi can hold 23 million characters (36,000 disk PRUs); a binary
tape can hold as much as 46 million characters (72,000 PRUs). Several unrelated sets of data can be
stored on one tape, as in the case of PFDUMP, thus allowing for maximum use of the entire tape.

Another factor is the frequency with which a file is modified. The disk is a random-access device
which allows a user to modify one section without affecting any of the others. Magnetic tape is a
sequential device, which means that any change to a given block will affect all of the blocks which
follow it. Usually the user must rewrite the entire tape in order to modify one of its blocks. A two-
tape process is recommended to do this; see Section 6.2.6.

Another critical factor, in addition to size and frequency of use, is whether or not the user’s
problem number is subsidized. If it is, the user’s department will be billed for only a fraction of the
permanent file costs but for all of the tape mount costs. However, the department is billed for only
a fraction of the charges for channel time (roughly speaking, the time the tape is in motion).

Punched cards, incidentally, are the most expensive form of storage except for very small or
seldom used files. A file of 320,000 characters is equivalent to at least 4000 coded cards, and
usually more. It costs $4.32 to read a deck of 4000 cards, not to mention the burden of carrying
those two 5-pound boxes.

65202d . 6-3

6.2.2
Random Access vs. Sequential Access

A random access, or direct access, device is one where storage is organized into addressable
locations and where the access time to any location is constant, relatively short, and independent
of the location previously addressed. A sequential access device is one where data can only be ac-
cessed in the sequence in which it is stored on the device; in other words, to process a particular
item, one must first process or pass over all of the preceding items.

The best example of random access storage is magnetic core memory. In comparison, magnetic
disks provide only “semi-random” access, for even though disk surfaces are organized into ad-
dressable sectors, the access time to a given sector can vary considerably depending on whether
the read/write head assembly must be repositioned. Occasionally magnetic tape is formatted so
that it too can provide semi-random access. But since the maximum access time—the time
necessary to reposition the tape from a section at the beginning to a section at the end—is
measured in minutes rather than milliseconds, random access tapes are simply too slow for high-
speed computers. The 6500 and all comparable computers use magnetic tape strictly as a sequen-
tial access device. '

To illustrate some differences between tape and disk structure, think of the disk as a book. Like the
pages of a book, each disk PRU has a fixed capacity and a’specific location designated by a number
(i.e., an address). A file, however, would not necessarily be written on successive pages. For in-
stance, it might be written on pages 40, 41, 30, 31, and 52 in that order. SCOPE/HUSTLER main-
tains the sequence of the file by means of an index listing the “page numbers” in proper order. In-
dexing enables SCOPE/HUSTLER to add, delete, or rewrite pages without affecting any of the
other files. It also enables SCOPE/HUSTLER to retrieve an item without examining the data itself.
In effect, SCOPE/HUSTLER looks up the item in a table of contents and then flips to the indicated
page number.

In contrast, magnetic tape is similar in both appearance and logical structure to a scroll. Data is
written in variable-length blocks which have no fixed location on the tape. As a result, the only
way to locate a particular item is to start at the beginning of the tape and read each block.

6.2.3
Convenience

The difference between random access and sequential access accounts for much of the added con-
venience of disk files. One immediate benefit of using disk files is better turnaround time. Since
random access storage can be allocated to several jobs at one time, there is no waiting for access to
a disk file. Jobs requesting a magnetic tape, on the other hand, must wait for an available tape
drive. If the job uses several tapes simultaneously, or if the system is heavily loaded with tape
requests, the job may have to wait several hours.

Another convenience of disk files is that the system takes care of all bookkeeping chores, while the
magnetic tape user must make careful records of which reel contains which partitions and in what
order the partitions are written. If the user fails to do this or makes a mistake, valued information
may be accidentally overwritten.

6.2.4
Writing and Rewriting Data

When information is being recorded on magnetic tape, an erase head removes previously recorded
data before the tape moves past the write head (see Section 6.7.2). Information beyond the over-
written portion of tape, although not erased, must also be considered destroyed. This is also true
when a write function is used to modify a disk file; the rest of the file is dropped and the last PRU

6-4

6.2.5
Security

65202d

written becomes the end-of-information. But SCOPE/HUSTLER also provides special rewrite-in-
place functions for disk files, available as COMPASS macros, which allow the user to replace a
section in the middle of a disk file with another section of the same length.

While it may seem possible to do a rewrite-in-place on a magnetic tape, this. procedure (if it were
permitted) would be unreliable for the following reasons:

1. Tape motion is not sufficiently consistent to guarantee that two blocks containing the same
number of characters will occupy the same length of tape.

2. The erase head, positioned about 1/2 inch ahead of the write heads, might erase part of the
next block.

3. If a parity error occurred during the write, the tape drive would erase about six inches of

tape before retrying the write.

SCOPE/HUSTLER does not permit the user to issue a read following a write, without first
repositioning the file. Repositioning a file causes SCOPE/HUSTLER to write an end-of-
information indication which, on a tape, would be written over previously recorded data.

There are two kinds of security concerns: safety and privacy.

In principle, a permanent file will only be destroyed if the expiration date has passed, the owner’s
PN is expired, or the owner’s dollar balance is expended. In reality, though, the safety of a per-
manent file is obviously tied to the reliability of the computer and its operating system.
Recognizing this, the Computer Laboratory maintains a temporary backup copy on magnetic tape
for every permanent file, including the expired files purged by the Computer Laboratory (see Sec-
tion 5.4).

The use of magnetic tape to make backup copies of permanent files should not be interpreted to
mean that magnetic tape is inherently safer than a permanent file. Tapes, more than disks, are sub-
ject to the dangers of human handling; they can be dropped, they can be stretched by malfunc-
tions of the tape drive, and they can be permanently damaged if stored under improper conditions.
In rare cases, a mechanical failure of the tape drive will stretch or snap a tape in two. A tape will
also wear out if used frequently enough.

To protect a file that would be expensive or impossible to recreate, the user should keep a
duplicate on a separate tape and use that copy only as a backup tape (see Section 6.2.6). If a tape is
removed from the machine room, it should be protected from dust and kept in an environment
free from extremes of temperature and humidity. Tapes should be stored on edge, not laid flat on
top of one another.

When appropriate precautions are taken, magnetic tape provides a high degree of reliability. Per-
manent files, however, provide a higher and more flexible level of privacy. Access to a permanent
file may be controlled by a set of up to five passwords, each protecting a different type of access
(read, extend, modify, control, and turnkey).

The utilities PFDUMP and PFLOAD described in Chapter 5 can be used to back up files with the
full security of permanent files. Other methods of backing up files which use the
SCOPE/HUSTLER automatic tape labeling feature restrict permission to write on a magnetic tape
to jobs submitted with the owner’s problem number. However, anyone can request and read a
non-PFDUMP tape, unless the owner removes it from the machine room. See Section 6.13 for a
more complete discussion of the security system.

65202d 6-5

6.2.6
Backup of Important Data

For safety reasons, the Computer Laboratory strongly recommends that a two tape system be
used, with one tape acting as the “working” copy of the data, and the other as a “backup” copy.
This backup system should also be used for multi-volume tape sets.

Whenever the user wishes to change the working copy, the modified data is written onto the
backup copy, leaving the working copy unchanged. Once the desired changes are made and
verified to be correct, the new copy then becomes the working copy. The old working copy
becomes the new backup copy.

Each time a change is made, this process is repeated, saving the original copy of the data in case
errors occur in the updating process. Note: If a tape is infrequently modified (i.e., less than once a
year), the backup copy should be exercised periodically to prevent deterioration of the tape (see
Section 6.3.2). '

6.3
Using Tapes at MSU

This section describes the procedures necessary to obtain and use magnetic tapes on the MSU
6500.

6.3.1
Obtaining a Tape

Magnetic tapes can either be purchased from the Computer Laboratory or obtained at another in-
stallation. The Computer Laboratory sells a high-quality tape in the 2400-foot length; also
available are 200-foot, 400-foot, and 600-foot tapes for use in mailing data to and from other in-
stallations. :

Tapes are handled only by the machine room operators; therefore, a tape to be used on the 6500
must be stored in the machine room.

All requests for purchase of tapes are made via a Tape Service Request Form obtainable at the Ser-
vice Window in Room 208 Computer Center. Policies regarding these services are discussed in the
Facilities and Policies Handbook, Section 7.3.

6.3.2
Storage of Tapes

Magnetic tapes used with the 6500 must be stored in the Computer Laboratory’s tape library.
There are two types of storage: temporary and permanent.

Temporary storage allows a user to store a tape in the tape library for a short period of time (nor-
mally ten working days). It is designed to allow a tape to be used on a short-term project and then
removed. Note: A user who has a labeled tape in temporary storage may encounter difficulties
when requesting the tape. See Section 6.15.2 under “Incompatible Labels” for more information.

A tape that the user wishes to store indefinitely will be assigned to permanent storage. Users who
bring tapes from other sites pay a one-time storage fee. If a tape is purchased from the Computer
Laboratory, the storage fee is included in the purchase price. Tapes are stored in a controlled en-
vironment and exercised periodically.

6-6 65202d

The Computer Laboratory offers several additional tape services, as described below. Requests for
these services can be made at the Service Window in Room 208. There is a nominal charge for each
service.

1. Cleaning a tape
2. Relabeling a tape (see Section 6.13.2)

3. Stripping and adding load points (i.e. removing the first several feet of a tape and adding a
beginning-of-tape reflective marker. This is done when the first part of a tape is bad, and
the remaining length of the tape is considered to be good.)

6.3.3
Visual Reel Name (VRIN)

When a tape is received for storage in the tape library, it is given a visual reel name (VRN), which
is written on a paper label and glued to the tape reel. The VRN acts as an identifier for both the
user and the operator.

To request a tape, the user’s job must contain a REQUEST control statement (see Section 6.5.1),
the COMPASS macro MSUREQ (see Section 6.16.1), or the FORTRAN function MSUREQ (see
Section 6.5.2), specifying the VRN of the desired tape. Such a request causes a message to be
displayed on the operator’s console, requesting that the tape be mounted and assigned.

Tapes that have 'a VRN prefix ‘'VIM' are usable only by Computer Laboratory personnel. Tapes
with a VRN prefix ‘PF’ may only be written on by Computer Laboratory personnel but may be
read by anyone using PFLIST or PFLOAD. VRNs with the prefix ‘UP’ are used only with the
utilities PFLIST, PFDUMP and PFLOAD. Further information on PFLIST, PFDUMP and
PFLOAD may be found in Section 5.4.

6.4
Tape Drive Reservation

To permit job scheduling and efficient allocation of the 7-track and 9-track tape drives
SCOPE/HUSTLER requires the user to specify the maximum number of tape drives that will be
used simultaneously by the job. The system does not display a tape request to the operator unless
there are enough tape drives available (unreserved) to satisfy the maximum tape drive requirement
of that job. When the first tape is assigned to the job, the system reserves the remainder of its tape
drive requirement so that the tape drives will be immediately available when needed.

The job 7-track tape drive reservation is set initially by the job card ‘MTmt’ parameter, which has
a default value of 0. The 9-track drive reservation is set by the ‘NTnt’ parameter on the job card,
which also has a default of 0. These values may be reset using the TAPRES control statement, the
MT =mt and NT =nt parameters of the RETURN control statement, or one of the TAPRES object-
time requests. If a job subsequently requests more tape drives than it has reserved, it will be abor-
ted. In addition, all tape reservation changes, whether specified by a TAPRES statement, a
RETURN statement, or an object-time request, are subject to the following rules.

1. A job cannot raise its tape reservation if tapes are currently assigned to it.
2. A job cannot lower its tape reservation below the number of tapes currently assigned to it.
3. A maximum of four 7-track and four 9-track tape drives may be reserved. The minimum

reservation is zero.

4, A job cannot raise its tape reservation above that specified on the job card.

65202d

6.4.1
Job Card

6.4.2

6-7

If a magnetic tape is used in a job, a tape drive reservation parameter must be included on the job
card. If this parameter does not appear on the job card, the job will abort at the first-attempt to use
the tape; the dayfile will contain the message

MORE TAPES REQUESTED THAN RESERVED.

Seven-track and 9-track tape drives are reserved separately. The parameters are:

MTmt the number of 7-track tape drives to be reserved for the job; 0<mt<4. The default is 0;
that is, no 7-track drive will be reserved if this parameter is omitted.

NTnt the number of 9-track tape drives reserved; 0<nt<4. The defaultis 0.

TAPRES Control Statement

The TAPRES control statement specifies the maximum number of tape drives needed by the job at
any one time. Its use is subject to the rules listed in Section 6.4.

TAPRES MT =mt,NT =nt.

MT =mt the number of 7-track tape drives (0Smt<4) to be reserved when the first tape is
assigned.

NT=nt the number of 9-track tape drives (0€nt<4) to be reserved when the first tape is assigned.

Note: mt and nt may be the word ‘'SAME’ in which case the corresponding reservation is un-
changed.

Example:

PNC

id, MT3,NT1.

PW =password

TAPRES,MT=1,NT=0.

REQUEST,OLDPL, VRN =502.

UPDATE.

RETURN,OLDPL. Tape 502 must be returned (see Section 6.4.3), giving
a tape reservation of 0, before TAPRES can raise the
7-track reservation to 3.

COBOL,I=COMPILE.

TAPRES,MT =3 NT=1.

REQUEST, TAPE1, VRN =1021.

REQUEST, TAPE2, VRN =1022. *

REQUEST, TAPE3, VRN =1023.

REQUEST, TAPE10, VRN =989, NT ,RW.

LGO.

7/8/9

UPDATE directives

6/7/8/9

6-8

6.4.3

65202d

This example illustrates an intelligent use of the TAPRES statement, since it allows the user to
retrieve, update, compile and load the program before reserving all four tape drives. If update or
compilation errors occur, the user will get relatively fast turnaround. On the other hand, if the
user had not included the TAPRES statement to decrease the tape reservation count, he/she would
have had to wait unitil three 7-track drives and one 9-track drive were available before performing
the UPDATE. The system does not actually reserve a tape drive for the job until the first use of a
tape (see Section 6.5) and so, although the REQUEST statements for tape 1021-1023 and 989 are
placed before the LGO statement, the drives are not reserved and the tapes are not mounted until
the files are used by the program.

Suppose the program loads successfully and references tape 1022. The job must then wait until
four tape drives are free before the operator can mount and assign tape 1022. When 1022 is
assigned, SCOPE/HUSTLER reserves all four tape drives for the job.

Note that the tape reservation count specified on a TAPRES statement may never exceed the num-
ber of 7- and 9-track tape drives specified on the job card. Note also that the RETURN control
statement normally decrements the tape reservation count (see Section 6.4.3) and so it is often
necessary to reset the reservation counts after a RETURN.

In the example, the tape reservation counts for 7- and 9-track tapes are zero after the RETURN
statement. If more tape drives are needed after a RETURN, the reservation count may be reset
with a TAPRES statement or with optional parameters on the RETURN statement (see Section
6.4.3).

RETURN Control Statement

The RETURN control statement detaches the specified local files from the user’s job and returns
them to the system for final disposition. The system handling of a returned file depends on
whether the file is a cataloged permanent file, a special disposition file (print, punch, or input), or
a magnetic tape file. If it is a tape file, the tape is rewound and unloaded, and the tape drive is
made available to other jobs.

Normally the job tape reservation is decremented by 1 for each tape returned. To avoid decremen-
ting the tape reservation, the user may specify a tape reservation parameter.

RETURN,Ifn, lfn,,...[,MT=mt][,NT =nt].
lfn the name(s) of the local file(s) being returned.

MT =mt either a digit (0<mt<4) specifying a new 7-track tape reservation, or SAME specifying
that the 7-track tape reservation is to remain the same.

NT=nt either a digit (0€nt<4) specifying a new 9-track tape reservation, or SAME specifying
that the 9-track tape reservation is to remain the same.

The values of mt and nt are subject to rules 1-4 listed at the beginning of Section 6.4. For example,
suppose that a job has reserved three 7-track tape drives and that all three tapes are assigned. If
only one tape is returned (leaving two still assigned), the MT parameter cannot be used to lower
the reservation to 1 or to raise it to 4. If all three tapes are returned, mt may then be assigned any
value from 1 to 3. ‘

65202d 6-9
Example 1: Raising the tape unit reservation.
In the preceding section (illustrating the use of the TAPRES control statement) the same effect
could have been achieved by using the RETURN statement MT parameter when tape 502 was
returned:
RETURN,OLDPL MT=3 NT=1.
Example 2: Maintaining the current tape drive reservation.
PNC
id,JC100,NT2.
REQUEST, TAPE1, VRN =100,RW,NT.
REQUEST, TAPE2, VRN =101,NT.
COPYCR, TAPE2, TAPEL.
RETURN,TAPE2, NT=SAME.
REQUEST, TAPE3, VRN =102,NT.
COPYCR,TAPE3, TAPEL.
6/7/8/9
If the NT parameter were omitted from the RETURN statement, the job tape drive reservation
would drop to 1 when tape 101 is returned, and the job would abort on the request for tape 102.
6.5
Tape Requests

Magnetic tape files must be explicitly requested before they are used by a job. Tapes are usually
requested with a REQUEST control statement, which is described in Section 6.5.1. COMPASS
programmers may make object-time tape requests using the MSUREQ macro, which is described
in Section 6.16.1.

The user’s tape request is relayed to the operator by a message displayed on the console. Although
the tape request must be made before the file is referenced, the request message is not displayed un-
til a program actually attempts to use the file. This procedure, known as “first use assignment,”
avoids having the operator mount tapes that are never used because of fatal job errors. When a
tape file is first referenced by a program, the job is swapped out and placed in a wait state until the
operator has assigned the tape. As described in Section 6.4, the operator cannot assign the tape
unless there are enough tape drives available to meet the job’s maximum tape drive requirement.
Thus, it may take from several minutes to several hours to fulfill a tape request, depending on the
job’s tape drive reservation count and the number of other jobs awaiting tape assignments.

The tape request message displays the tape VRN and indicates whether the tape is to be mounted
with or without a write-enable ring (see Section 6.7.3). After mounting the reel and positioning the
tape, the tape is assigned to the user's job. If the tape is labeled (see Section 6.11), it is assigned
automatically by the system; if the tape is unlabeled, the operator assigns the tape by typing a
command on the console keyboard. At this point the system initiates the tape security checks
described in Section 6.13.1. The tape security system will reject the assignment if the ring status is
incorrect, if the VRN is incorrect, or if the problem number is incorrect when a ring (see Section
6.7.3) is requested. Additional label checking is performed on tapes requested as labeled (see Sec-
tion 6.11.5), but these do not provide any real security since the operator normally instructs the
system to continue processing the job in spite of label discrepancies.

6-10

6.5.1
)

65202d

REQUEST Control Statement

The REQUEST control statement is used to request the assignment of a device for either a disk or
magnetic tape file. Because SCOPE/HUSTLER will create a disk file automatically whenever a job
references a previously undefined local file name, explicit requests for disk files are not necessary.

REQUEST. Ifn[, VRN =vrn, = vrn, = ...][, NEWPN =pn][,NB]{,rng]

Ifn

VRN =vmrm

(. fmt][,Ibl][, dns][,cm][,NR].

the local file name to be assigned to the file. If Ifn is the only parameter specified, the
request is assumed to be for a disk file; otherwise it is assumed to be a tape request.

a list of visual reel names (VRN). When the volume trailer label is encountered, the
system will rewind and unload the reel and request the next VRN in the list. If the
VRN list is exhausted, the job will abort. Normal termination will occur only if the
system encounters a file trailer label (EOF1). The user may specify up to 62 VRNS in
this list.

If the VRN list is omitted but some other tape parameter is specified, a scratch tape
will be assigned. Caution: In the interest of efficiency, disk files should be used
rather than scratch tapes. There is no way to guarantee the contents of a scratch tape
from one run to another, or even to request the same scratch tape.

NEWPN =pn specifies a 6 to 7 character problem number, or zero. This parameter is used only

NB

mg

1bl

when creating a labeled tape; it has no effect when either the RO or Z parameter is
specified. The value specified by pn is written into the PN field of the header label. A
value of 0 (zero) will permit any user to write on the tape.

If NEWPN=pn is omitted when a labeled tape is created, the problem number from
the job PNC is used, unless the tape is a scratch tape, in which case the PN field is
left blank.

no brackets—suppresses noise bracketing of unusable tape; alternate procedures for
recovering write parity errors are used instead. This parameter does not apply to 9-
track tapes. See Section 6.14. .

specifies whether the reel is to be mounted with or without a write-enable ring (see
Section 6.7.3):

RW read-write (mount with ring)

RO read-only (mount without a ring)
omitted read-only (mount without a ring)
specifies the data format (see Section 6.9):

S stranger tape

L long record stranger tape
omitted SCOPE tape

specifies the label format (see Section 6.11):

V4 unlabeled
Y MSU 3600 labels (obsolete)
NS nonstandard labels; may be used in conjunction with Z.

omitted SCOPE-ANSI labels

202d

6-11

If an unlabeled tape is requested as labeled and the first action is a write, a labeled
tape will be created. But if the first action is a read, the system will attempt to check
label information against the values of the FET and, finding unrecognizable in-
formation, will post the “TYPE DROP OR GO’ message to the operator. The same
action will occur if the wrong label style is specified. If a labeled tape is requested as
unlabeled, (Z parameter) the tape will be positioned past the label. If both Z and NS
are specified, the tape will be positioned before the label (at load point) to allow user
processing of labels.

dns specifies the density at which the data will be recorded or read (see Section 6.8.3).
This also specifies whether the tape is 7-track or 9-track. The density must always be
specified on a request for a 9-track SCOPE tape; otherwise the system assumes the
tape is 7-track. If the tape is a 9-track stranger tape, the cm parameter described
below takes precedence. When a labeled tape is read, the density parameter is
overridden by the density specified in the header labels, if the two values differ.

7-track tapes 9-track tapes
LO 200 cpi HD 800 cpi
HI 556 cpi NT 1600 cpi (phase encoded)
HY 800 cpi PE - 1600 cpi (phase encoded)
MT 556 cpi

omitted 556 cpi

cm character conversion mode for 9-track stranger (S and L) tapes (see Section 6.9.3).
Inclusion of this parameter implies that the tape is 9-track. The density is assumed to
be 1600 cpi (phase encoded); if an appropriate preamble and postambie for a phase
encoded tape (see Section 6.8.7) are not found, the tape will be reread at 800 cpi.

AS perform ASCII to Display code character translation.
EB perform EBCDIC to Display code character translation.
omitted perform ASCII to Display code character translation.

NR no parity error recovery; blocks are returned to the buffer exactly as they are read,
and no parity error checking is performed (see Section 6.14).

When a user reads a 9-track S or L tape in coded mode, the tape drive control unit converts the
data from 8-bit ASCII or EBCDIC to a é-bit Didplay code value. The opposite conversion is per-
formed on output, using a 64-character subset of the ASCII or EBCDIC character set. See Ap-
pendix A for the conversion table.

Examples:
1. REQUEST, TAPE1, VRN =1025,RW, HY.

This statement requests tape 1025 with a write-enable ring and assigns it the local file name
TAPE1. The tape will be written in SCOPE format with SCOPE-ANSI labels at a density of 800

cpi.
2. REQUEST, TAPE2, VRN =1025.

This statement would be used to request the tape created in Example 1 if the user only intends to
read it. The tape will be mounted without a ring. Note that the HY parameter is omitted since the
density is specified in the SCOPE volume header label.

3. REQUEST, TAPE3, VRN =601=602=603.

This statement requests tape 601, with continuation reels 602 and 603 as SCOPE-ANSI labeled,
SCOPE-formatted tapes. The reels will be mounted without a ring.

6-12 65202d

4. REQUEST, TAPE4, VRN =3789,5,Z.

' This statement requests tape 3789 as a HI density, unlabeled stranger tape. The tape will be moun-
ted without a ring.

‘5. REQUEST,TAPES, VRN =102, RW,NEWPN =016930.

This statement requests tape 102, a labeled SCOPE tape, with a ring. If the first action is a write,
016930 will be written into the PN field of the volume header label.

6. REQUEST, TAPES,RW.
This statement requests a scratch tape.
7. REQUEST, TAPE7, VRN =107,EB.

This statement requests tape 107, a 9-track stranger tape coded in EBCDIC.

6.5.2
MSUREQ Subroutine

A function MSUREQ is available to request tapes from FORTRAN. COBOL users can also utilize
this function. MSUREQ is documented in the Computer Laboratory Publication FORTRAN Ex-
tended Library Routines. -

D 66

Tape Error Messages

When an error occurs in reading or writing a tape, the system routines attempt to diagnose the
error and provide an informative dayfile message. Because of space limitations in some system
tape-handling programs, these dayfile messages are sometimes quite cryptic. The common ab-
breviations used are:

RD read

WRT write

RVD recovered

PAR parity

ERR error

REC record

DEV CAP EXC device capacity exceeded
SNR standard noise record

IRG inter-record (interblock) gap

Thus, the dayfile message “RD RVD LOST DATA"” means that lost data was recovered during a
read operation. “RD ERR TAPE PAR ERR” means an unrecoverable tape parity error occurred
during a read operation.

Since the complete list of error messages is lengthy and changes frequently, it is not included in this
manual. Users who encounter a dayfile message whose meaning is not clear should contact the
consultants in the User Information Center (Room 313 Computer Center, phone 353-1800) for
help.

65202d

6.7

6-13

Tape Equipment

6.7.1

This section discusses the physical characteristics of tapes and tape drives.

Magnetic Tape

6.7.2

Magnetic tape consists of a long strip of plastic, called the base or backing, which is coated on one
side with a highly retentive magnetic material. Generally this coating is composed of a fine iron
oxide powder mixed into a binder of organic resins. Information is represented in this medium by
alternating the polarity of minute magnetized areas. '

The standard width for magnetic computer tape is 1/2 inch. Length and reel size vary, but the
standard full size reel measures 10-1/2 inches in diameter and holds about 2400 feet of tape.
Because the Computer Laboratory stores tape reels in seals rather than canisters, the reel should be
solid-sided to protect the tape from dust and dents. A tape seal is a plastic ring which snaps around
the outer edge of the reel, and which provides a hook for hanging the reel on a storage rack.

The quality and price of magnetic tape can vary substantially. For top performance, the oxide par-
ticles must be a uniform size and shape so that the coating is not abrasive. The oxide layer must
also be a uniform thickness, or there will be sharp differences in the strength of the recorded signal.
The plastic backing must be straight, fairly strong, and free of splices. The substance binding the
oxide to the backing must be tough but flexible so that the oxide does not chip or flake off. It must
also be non-adhesive so that tape layers do not stick to one another when wound tightly on a reel.
When purchasing a tape, remember that the differences in price between a high-grade tape and an
ordinary tape seldom covers the cost of replacing lost data.

Tape Drives and Control Units

The device that reads and writes magnetic tape is called a tape drive, tape unit or tape transport. [t
consists of a set of read/write heads and a mechanism for transporting the tape past the heads,
from the supply reel to a take-up reel. Basically the tape drive resembles a common audio recorder
but has the ability to drive a tape at high rates of speed (150 inches/second for 7-track drives and
200 inches/second for 9-track drives) and to stop and restart the tape motion in distances of less
than an inch.

MSU'’s 6500 system is equipped with 7-track tape drives and 9-track tape drives. The 7-track drives
and the 9-track drives are connected to separate control units, or controllers. Both control units
buffer and control the flow of the information between the tape drives and two of the twelve 6500
data channels. All of the read and write logic (circuitry) is contained in the control units rather
than the drives.

The head assembly of a tape drive consists of individual read and write heads, an erase head, two
tape cleaners, and a pneumatic pressure pad. Each of the read/write heads has two magnetic gaps:
one for writing and one for reading. The gaps are arranged so that during a write operation, the
tape first passes under the write gap to record the data and then under the read gap to check the
writing. The broad band erase head removes any information recorded on the tape before rew in-
formation is recorded at the write gap. Precise contact pressure between the tape and the head gaps
is maintained by air blown through the pneumatic pad. The two tape cleaners, located on either
side of the heads, vacuum loose particles from the tape surface.

6-14

tape
cleaner

read
head

write
head

erase

head

tape
cleaner

'

o

|

|

l

l

VWA

65202d

tape

¢

i

air

<«—— Forward Motion

Figure 6-1: Read-Write Unit

A write head is an electromagnet consisting of a coil of wire wound around a steel core. To con-
centrate the magnetic field that is induced when current is sent through the coil, the core is U-
shaped, leaving only a small gap between the poles. When a magnetic tape is recorded, the oxide
particles directly beneath the write gap are magnetized by this field. The alignment (or polarity) of
the magnetized oxide particles is determined by the polarity of the gap, which in turn is determined
by the direction of electrical flow through the coil. Thus one can reverse the polarity of the oxide
particles by reversing the electrical flow. Such a reversal is called a flux change.

Current is sent through coil.

Current is reversed.

A

1

\

$ oxide S —s N

Ne—3:S

IR oxide
)
§

LA

Figure 6-2: Write Head Flux Change

A read head is similar in construction to a write head, except that the magnetic field of the oxide
particles is used to induce a current in the coil. When a read head senses a flux change, there is not
only a reversal of electrical flow in the coil, but a surge of voltage which the read circuits are
designed to detect and amplify.

65202d 6-15

6.7.3
Write-Enable Ring

Magnetic tape reels-are supplied with a plastic ring that fits into a groove on the backside of the
reel. When the reel is mounted on a tape drive, the ring presses a switch that allows the drive to
write. If the ring is removed from the reel, the tape can only be read.

Under SCOPE/HUSTLER the user’s tape request always indicates whether a reel is to be mounted
with or without the write-enable ring (see Section 6.5.1). If the operator fails to comply with this
part of the request, the system will reject the tape assignment and instruct the operator to insert or
remove the ring, as requested.

6.8
Physical Data Structure

This section describes how information is represented on a tape.

6.8.1 |
Tracks and Frames

One may visualize the information recorded on a magnetic tape as a matrix of magnetized spots,
each spot representing a bit. The rows of bits that run longitudinally parallel to the edges of the
tape are called tracks, and the columns are called frames. The 7-track tape drives have read/write
heads that simultaneously process seven tracks of information perpendicular to the tape edges. A
frame, therefore, contains seven bits, of which six are data bits and one is a parity bit (see Section
6.8.7). Since 7-track coded tapes consist of 6-bit codes, written one character per frame, the terms
“frame” and “character” are often used interchangeably. The 9-track tape drives are similar;
however, their read/write heads are made to process nine tracks of information. Each frame then
contains eight data bits and one parity bit.

Tape Motion

01:0:0011000
11011001000
0000101010
0011000100

Parity Track

01:0:1110111
11:1:1001000

Fame |

Figure 6-3: Frames and Tracks

It should be clear that the difference between a “7-track tape” and a “9-track tape” is not a property
of the tapes but of the tape drives that recorded the data. Seven-track tape drives were once the in-
dustry standard, but they are being replaced by 9-track drives due to the popularity of the IBM
System/360 computers and the EBCDIC character set. Tapes written on a 9-track drive cannot be
read on a 7-track drive and vice versa (see Section 6.15.1).

6-16

6.8.2

65202d

) Recording Techniques

NRZI

.NRZI (which stands for Non-Return to Zero—Invert on ones) is the most commonly used recor-

ding method for 7-track tapes and for 9-track tapes recorded at 800 cpi (see Section 6.8.3).

The NRZI technique explicitly records only the “1” bits; that is, a flux change (see Section 6.7.2)
indicates a “1” bit and the absence of a flux change indicates a “0” bit. At this point you can
probably see that the image of magnetically encoded data as a “matrix of magnetized spots” given
in Section 6.8.1 is not entirely accurate. Each track is a continuous stream of fully magnetized par-
ticles. The demarcation of a frame, therefore, is a matter of timing rather than a physical gap.

+1 : .
write . . . :
current :
-1 _
1 ieioio i1 iaiioiiqio
oxide NN SS NN SS
base '
’ Figure 6-4: NRZI (Non Return to Zero—Invert on ones)
Phase Encoding

Another technique, known as phase encoding (PE), is commonly used for very high density (1600
cpi) 9-track tapes. In the PE technique, a “1” bit is recorded by sending current to the write head in
one direction for the first half of the bit interval, and then in the other direction for the second halif.
A “0” bit is recorded in the same way except that the phase is shifted 180 degrees. Thus at the cen-
ter of each bit interval there is a positive voltage for a “1” bit or a negative voltage for a “0” bit.

+1.
write . . :
current : : : : : :
1] . . . e
1 0 o : o : 1 - 1 =+ 0 : 1 : O
oxide ==t NN <= S See NN*S SN N*SS e N NS S=NN SS NN SS——e
base ‘ ‘

Figure 6-5: Phase Encoding

65202d

6.8.3
Density

6.8.4

6-17

Density refers to the spacing between successive tape frames, and it is measured in terms of the
number of characters per inch (cpi) in each track. (It is sometimes referred to as bits per inch, bpi,
or frames per inch, fpi.) For instance, a density of 800 cpi means that data is recorded at 800
characters (or frames) per inch. The CDC 7-track tape drives can read or write at any of three den-
sities: 200 cpi (LO), 556 cpi (HI), or 800 cpi (HY), while the CDC 9-track tape drives can read or
write at 800 cpi (HD), or 1600 cpi (NT or PE).

Tape manufacturers often specify the maximum density at which their tapes should be used in
terms of flux changes per inch (fci). Because the NRZI recording technique produces, at most, one
flux change per character, a tape certified at 800 fci is sufficient for recording at 800 cpi. For the PE
recording technique, the fci certification should be twice the cpi density, that is, 3200 fci certifica-
tion for 1600 cpi usage.

Blocks and Interblock Gaps

6.8.5
File Gaps

A block is the group of frames written by one output instruction issued to the tape control unit.
Blocks are sometimes referred to as physical record units or PRUs. Blocks are separated from one
another by an interblock gap (or inter-record gap), which is a section of “blank” tape (no flux
changes) approximately 3/4 inch long.

Under SCOPE/HUSTLER the minimum block length is 48 bits (8 frames for 7-track tapes, 6
frames for 9-track tapes). Any block shorter than 48 bits is considered noise and is ignored. The
maximum block length depends on the procedures used to write the tape. See the discussion of
data formats in Section 6.9.

Whatever the length of a block, it is the smallest unit of information that can be physically trans-
ferred to or from the tape. Recall that the tape travels at 150 or 200 inches per second and that
data is packed at densities of up to 1600 characters per inch. Obviously it is impossible to stop the
tape between adjacent frames, so it is impossible to read or write one portion of a block and then
another portion of the same block. The interblock gap represents the length of tape necessary to
stop and restart the tape motion between operations, typically about 3/4 inch. :

Theoretically a 2400-foot tape recorded at 800 cpi can hold more than 23 million characters, but
this does not take into account the tape used for interblock gaps. Because of this spacing between
blocks, the capacity of a tape depends on the length of the blocks, i.e., the number of frames per
block. To illustrate, suppose a tape is written in blocks of 100 characters each. At 800 cpi, the
physical length of each block would be 1/8 inch plus 3/4 inch for the interblock gap. Thus, about
85 percent of the tape would consist of interblock gaps and only 15 per cent would consist of data.
By increasing the block size to 1280 characters (the standard block size for coded SCOPE tapes),
these percentages are almost reversed —70 per cent data and 30 percent interblock gaps.

Blocks are grouped into partitions. Partitions are terminated by a file gap, also called a physical
file mark. A file gap is a unique block written six inches after the last block of the file and 3/4 inch
before the first block of the next file. The pattern written for a file gap depends upon the recording
method as follows:

6-18

6.8.6

65202d

7-track NRZI: (all densities)
Even-parity block containing one 17, character and LRC character (longitudinal
redundancy check character)

9-track NRZI: (800 cpi (HD) density)
O}::ld-parity block containing one 23, character, with no cyclic redundancy check
character

9-track phase encoded: (1600 bpi (PE) density)
Control block of 82 flux reversals at 3200 reversals/inch in tracks 2, 5, and 8. Tracks 1, 3,
4, 6, 7, and 9 (parity) are DC erased. (DC means direct current. This produces tracks with
no flux changes.) On a read operation a file gap is recognized containing 64 to 256 flux
reversals on tracks 2, 5, and 8.

Under SCOPE/HUSTLER the file gap serves as an end-of-partition only for the stranger tape
formats (see Section 6.9.3). File gaps appear on standard SCOPE tapes only to delimit system-
written labels from data blocks. '

Beginning-of-Tape and End-of-Tape Markers

6.8.7
Parity

Magnetic tapes must have several feet of unused tape at the beginning and end of the reel so that
the tape can be threaded onto the tape drive. The beginning and end of the usable portion of tape
are marked by aluminum reflective strips glued to the uncoated side of the tape. The tape drive
uses a photocell to detect the presence of these strips. :

The beginning-of-tape (BOT) marker is placed about 15 feet from the physical beginning of the
tape. Since this is the position to which the tape is positioned when it is loaded onto the tape drive,
it is sometimes called the load point. Rewinding the tape returns it to the load point if the tape is
unlabeled; if the tape is labeled, a rewind positions it immediately after the label. The end-of-tape
(EOT) marker is placed about 25 feet from the physical end of the tape. When the tape drive
detects this marker, the system will start end-of-volume procedures as soon as the current block
has been read or written.

As noted in Section 6.8.1, a 7-track tape frame consists of six data bits and one parity bit. The
parity bit is set by the tape drive control unit in such a way that the number of “1” bits in each
frame is always even or always odd. The choice of odd or even parity (corresponding to binary or
coded mode) is either implicit in the type of input/output procedure or an explicit user option. For
example, the FORTRAN formatted READ and WRITE are even parity (coded) procedures, while
the unformatted READ and WRITE are odd parity (binary) procedures. The parity of BUFFER IN
and BUFFER OUT statements, on the other hand, is specified by a 1 or a 0 as the second argument.
With 9-track tapes, however, the frame parity is always odd, regardless of whether the data is
written by coded or binary procedures.

As a tape is read, the tape drive control unit checks the parity of each frame to verify that it agrees
with the mode of the request. If it does not, the control unit signals the operating system that a
parity error has occurred. See Section 6.14 for a discussion of SCOPE/HUSTLER tape parity error
procedures.

Additional checking of the tape data is made by adding one or two check characters to the end of
each data block when the NRZI recording technique is used. For 9-track tapes, a “cyclic redun-
dancy check character” (CRC character) is generated as the data is written, and is written four

65202d 6-19

spaces after the last data character in the block. For both '7- and 9-track tapes, a “longitudinal
redundancy check character” (LRC character) is generated and written four spaces after the CRC
character on 9-track tapes, or four spaces after the last data character on 7-track tapes. The value
of the LRC character is calculated such that each track will contain an even number of “1” bits. In
other words, the longitudinal parity is always even, whereas the vertical parity for 7-track tapes
depends on whether the block is created with a binary or a coded write.

9-track phase-encoded tape blocks do not contain any check characters. They do contain a 41-
character preamble and postamble. The preamble consists of 40 characters which are “0” in all
tracks, and a single character of a “1” in all tracks. The postamble is a mirror image of the pream-
ble; that is, the first character is a “1” in all tracks and the last 40 characters are “0” in all tracks.

7-Track

9-Track (NRZI) :

3{¥‘c‘ ve wa(Y‘“
X2
S ot e |

Il 6 i l~— 34" -—1 | pe2st

9-Track (Phase-encoding)

e
g_lﬁve \3 & x em““e‘
a0 ot e e a s at xa?
ges‘“‘“ \\oad"o ‘gaﬂ‘b\ woc¥ 90513‘“‘0 N “‘e‘\’\" Qe s?® @™ e“d-°ﬁ ‘
I\ l i] | } .
e B 555
e [I
1

15 ft.o-'r-— 3 .{

Figure 6-6: Physical Data Structures

6-20

' 6.8.8:

65202d

Coded Tapes

6.8.9

A coded tape is one on which information is recorded as external BCD (Binary Coded Decimal),
EBCDIC (Extended Binary Coded Decimal Interchange Code), or ASCII (American Standard
Code for Information Interchange) characters. The 6-bit BCD codes are normally used for 7-track
tapes, and the 8-bit EBCDIC and ASCII codes for 9-track tapes. External BCD, EBCDIC, and
ASCII are industry standards established to facilitate the exchange of data between computers
having different internal coding schemes.

When a user reads a coded 7-track tape, the tape drive control unit converts the data from external
to internal BCD, and then the channel converter converts the internal BCD to Display code. The
opposite conversions are performed on output. Except for the colon, which is changed to a “0” in
the translation, these conversions will be transparent to the user.

To prevent the user from reading a coded 7-track tape in binary mode, or vice versa,
SCOPE/HUSTLER adopts the industry standard of writing coded tapes in even parity and binary
tapes in odd parity. When a tape is written in even parity, the six data bits of each frame must con-
tain at least one "“1” bit to avoid the possibility of a group of all-zero frames, which would appear
to the tape drive control unit as an interblock gap. Consequently none of the Display codes con-
vert to an external BCD 00. The following table lists some peculiarities of this conversion from
disk to tape and back to disk.

Display Internal External Internal Display
Code BCD BCD BCD Code

binary zero 00 16 16 16 00
zero (0) 33 00 12 00 33
colon (:) 63 12 12 00 33
end-of-line 0000 1672 1632 1672 0000
blank followed by] 5562 1672 1632 1672 0000

When a user reads a 9-track S or L format tape in coded mode, the tape drive controller converts
the data from 8-bit ASCII or EBCDIC to a 6-bit Display code value. The opposite conversion is
performed on output, using a 64-character subset of the ASCII or EBCDIC character set. See Ap-

pendix A for the conversion table.

Unlike 7-track tapes, 9-track coded tapes are written in odd parity.

Binary Tapes

A binary tape is one on which information is recorded in the same form as it is represented in
memory. For 7-track tapes, each central memory word is disassembled into ten tape frames, six
bits per frame. With 9-track binary tapes, each pair of 60-bit words is unpacked into 15 frames on
the tape. There is no code conversion involved in reading or writing a binary tape.

Because the data bits within a frame or a sequence of frames may be all 0's, binary tapes are recor-
ded in odd parity. This ensures that each frame contains at least one “1” bit. If even parity were
used, a group of all-zero frames would be interpreted as an interblock gap.

The motivation for using binary mode tapes is to avoid superfluous conversion between internal
and external forms. For example, a binary tape may contain character data stored in 6-, 7-, or 8-bit
character codes, numeric data stored in fixed-point or floating-point format, or object code output
from a compiler. Because these internal forms are machine-dependent, binary tapes are usually
inappropriate for exchanging data with another computer.

65202d _ 6-21

6.9

Logical Data Formats
SCOPE/HUSTLER is capable of processing magnetic tapes in any of three data formats: standard
SCOPE format, stranger (S) format, and long block stranger (L) format.
SCOPE format is assumed unless the S or L parameter is specified on the REQUEST control
statement (see Section 6.5.1). The format selected determines the record structure of the tape; that
is, it determines the format of the tape blocks. Each format can accommodate binary or coded data
(see Section 6.8.8 and 6.8.9), and each can be processed as labeled or unlabeled (see Section 6.11).

6.9.1

SCOPE Tapes

The record structure of SCOPE tapes is essentially the same as that of disk files except for the block
size, which is 128 central memory (CM) words for coded mode tapes and 512 CM words for binary
mode tapes. Like disk files, SCOPE tapes are organized into one or more SCOPE sections, where
each section consists of a sequence of blocks terminating in a short or zero length block. In other
words, all tape blocks are a uniform length (either 128 or 512 CM words), except for the last block
of each SCOPE section.

SCOPE records, which typically represent card images and print lines, are packed into 128-word
blocks. To produce uniform length blocks, records are split between blocks wherever necessary. A
file of records consists of at least one SCOPE section.

On output, the system automatically appends a 48-bit level mark to the last block of each SCOPE
section. If the section happens to be an exact multiple of the block size (so that the last block of the
section is maximum length), the level mark is written as a separate block, which is said to be “zero
length” because it contains no data. On input, the level marks are removed from the data and the
level number contained in the mark is passed to the user as part of the end-of-section status in-
formation. Thus, the presence of the level marks is transparent to the user, unless the tape is read
as a stranger tape or under the control of a non-SCOPE operating system.

The level mark, sometimes referred to as an end-of-section (EOS) mark, contains a number from
00, to 17, specifying the level of the end-of-section. (The level mark contains the following in-
formation: 55233552275400!l, for all 9-track tapes and binary 7-track tapes or 20202020202020il,
for coded 7-track tapes, where Il is level of section.) Level numbers may be used to group sets of
sections within a hierarchy of up to 16 levels (see Section 4.2.4). The section or set of sections ter-
minated by a level 17 EOS forms a partition. That is, the level 17 EOS is equivalent to an end-of-
partition (EOP) mark. The system ensures that an EOP mark is written as a zero length block so
that it can be overwritten without loss of data if the file is subsequently extended. File gaps appear
on SCOPE tapes only in conjunction with system labels (see Section 6.11.2).

SCOPE-ANSI file trailer labels (EOF1) and SCOPE-ANSI volume trailer labels (EOV1) are used to
indicate end-of-information and end-of-volume, respectively, for unlabeled as well as labeled
SCOPE tapes. The EOF1 label is automatically written whenever a file is closed, rewound, or
backspaced following a write operation. The EOV1 label is written whenever a file is continued
onto another reel of tape.

EVE
@ block block O Of*| EOF1{*{* M
S|P I
Begixsning-of-tape marker level 0 mark t I trgiler file end-of-tape marker
(load point) level 17 mark label gaps

Figure 6-7: Unlabeled SCOPE Tape Containing one Partition

6-22

6.9.2

65202d

Multifile SCOPE Tapes

6.9.3

A multifile volume set is a tape or a set of tapes containing more than one pair of file header and
trailer labels. The purpose of multifile tapes is to allow the user to store a large number of files on a
series of tapes without having to remember how many sections or partitions must be skipped in or-
der to position a tape to a specific file.

Because each file trailer label is a SCOPE end-of-information and because the system does not per-
mit the user to read or skip forward beyond end-of-information, special procedures are required to
access any file written after the first file of a multifile tape.

" Multifile SCOPE tapes cannot be created under SCOPE/HUSTLER. When the file trailer label is

written, the tape drive backspaces over it. Any additional write will destroy this label. As a result
only one valid file trailer label will remain on the tape.

Stranger Tapes

The stranger tape formats are used to read or write tapes that have been received from, or will be
sent to, installations that do not operate under a SCOPE-compatible system. Two stranger tape
formats exist; these are S format and L (long block) format. The file structure of S and L tapes
relies only on the concepts of tape blocks and standard file gaps. For example, certain COMPASS
statements that normally process SCOPE sections or SCOPE records will each read or write a
single tape block when the S or L format is declared (see Section 6.16.3). FORTRAN, although
normally operating as described for COMPASS, can employ Cyber Record Manager to provide
automatic blocking and deblocking of S or L tapes. COBOL provides methods for blocking and
deblocking user sections with S and L tape blocks. The effect of various input/output procedures
on S and L tapes will be described in more detail below.

S tapes may contain blocks ranging in size (in frames) as shown below.
7-track 9-track

binary 8-5120 6-3840
coded 8-5120 8-5120"

The L format is identical to the S format except that the maximum block size is restricted only by
the user program’s buffer size. Blocks within a file may vary or they may be fixed at an arbitrary
length, depending on the procedures used to create them. Because the peripheral processors and
the data channels transfer data in 12-bit bytes, the blocks must be a multiple of two characters for
7-track tapes. Nine-track tapes may have an odd character count.

Partitions are delimited by a standard file gap, which can be written with an end-of-partition
operation such as the ENDFILE statement in FORTRAN or the WRITEF macro in COMPASS. On
input, a file gap is treated as an end-of-partition equivalent to a SCOPE level 17 end-of-section.
All other blocks read under the S or L format are treated as SCOPE sections of level 0.

If an S or L tape is requested as unlabeled, SCOPE/HUSTLER automatically writes four con-
secutive file gaps following the last block written by the user. These gaps however, are not
equivalent to a SCOPE end-of-information. The program which reads the tape must be designed
to recognize the file gaps (or a user-defined mark) or it will continue to read data beyond the last
valid block. If the tape is labeled, the user is protected by a file trailer label which signals end-of-
information, or by a volume trailer label which initiates continuation reel processing.

'When a 9-track tape is written in coded mode, the 6-bit Display code character is converted to an
8-bit character. In binary mode, no such conversion is made, four 6-bit characters will fit in three
8-bit frames.

65202d 6-23

I -
- .. T
SOt | Partition 1 » Partition 2 » Partition 3 wle|nfe [E—O—J
i
SN—
Beginning-of-tape marker File gap File gap 4Filegaps End-of-tap
(load point) marker

Figure 6-8: Unlabeled Stranger Tape Containing Three Partitions

6.9.4
Specifying Block Sizes for Stranger Tapes

FORTRAN Procedures

The formatted READ statement treats each block of an S or L tape as a record (e.g., a card image).
If a block exceeds the maximum of 150 characters, or that defined on the PROGRAM statement,
FORTRAN will ignore it and attempt to process the next block.

The formatted WRITE statement writes one S or L tape block and omits the SCOPE end-of-line
mark. A single record per block is written. The maximum record size for a formatted WRITE is
137 characters or the record size specified on the program header statement; FORTRAN will ap-
pend blank characters as necessary to make each record an integer multiple of central memory
words. For example, if a FORMAT statement indicates a record of 137 characters, the record will.
be padded with three trailing blank characters when it is written to the tape.

The BUFFER IN and BUFFER OUT statements also process one S or L tape block, and they are
capable of processing binary tapes as well as coded tapes. There is no maximum block size for L
tapes; the maximum is 512 central memory words for S tapes. If the S format is requested for a
tape containing blocks that are longer than 512 CM words, an attempt to BUFFER IN those blocks
causes the following: (1) the block is not transferred to the buffer and the tape is positioned at the
start of the next block, (2) the UNIT function returns “READY, NO ERROR"” and (3) the LENGTH
function returns zero. An attempt to BUFFER OUT a block longer than 512 central memory words
on an S tape causes a fatal execution error.

Binary (unformatted) READ and WRITE statements should be used on S and L tapes only in con-
junction with Cyber Record Manager and an appropriate FILE statement. The binary READ and
WRITE statements normally use an internal blocking scheme which is usable only on SCOPE
tapes.

Cyber Record Manager may be used to provide a number of different blocking and tape for-
matting options in conjunction with standard FORTRAN coded READ and WRITE statements, as
well. See Section 6.10 for a brief discussion of Cyber Record Manager.

COBOL Procedures

Records are blocked according to the BLOCK CONTAINS clause of the File Description entry for
S and L formatted tapes. Or, if the BLOCK CONTAINS clause is omitted, each user section is
written as one block.

The user may read and write blocks that are shorter than the block size, but never longer. The
block size may be specified in terms of the number of records or the number of characters it con-
tains. When the block size is stated in terms of records and the records are variable length, the
length of the longest record is used to compute the block size. Tape blocks on 7-track tapes must
contain an even number of characters. If an odd block size is specified, an extra character will be
generated; the actual character will be unpredictable.

6-24

6.10

65202d

On SCOPE tapes, each user record is terminated by an end-of-line mark (Display code 0000 in the
lower 12 bits of a central memory word). The end-of-line mark is not'used on S or L tapes, so there
is no system-supplied delimiter separating the records within a block. Consequently, records are
not split between blocks on S or L tapes as they are on SCOPE tapes. For example, if the user
specifies a block size of 250 characters and a record size of 100 characters, the tape will be written
with 200-character blocks. :

Cyber Record Manager

6.10.1

Cyber Record Manager (CRM) is a CDC utility whose primary tasks are to provide record and
block input/output for files. Various types of records, blocks, and file organizations can be iden-
tified by CRM, and several methods of record boundary determination and blocking are available.

Following is a brief description of Cyber Record Manager. An example of CRM used to read and
write a blocked stranger tape is found in Section 6.15.3. For a complete discussion of Cyber
Record Manager, see the CDC Cyber Record Manager Reference Manual.

File Organizations

6.10.2

Record Manager supports six file organizations; only one of these, sequential files, is discussea
here in relation to magnetic tapes. -

Sequential files are tape-like in structure. Records are placed in the order of presentation;
physically, a record immediately follows the previous record. Given the location of one record,
the location of the next record is determined in relation to the given record only. A sequential file
may extend across any number of volumes and may only be accessed sequentially.

Block Types

Four block types exist for use with sequential files. Each block type provides a different method of
grouping records within a tape block.

Internal Blocking Type I
Each block contains 5120 characters, with internal control words which describe the records and
block. Records can span blocks.

Character Count Block Type C
Each block contains 5120 characters if written in binary mode, or 1280 characters if written in
coded mode on a SCOPE tape. Records can span blocks.

Record Count Block Type K

This is the preferred method of blocking stranger tapes. Each block contains an integer number of
records per block (specifiable by the user) of a fixed record length (also user-specifiable). Records
may not span blocks. ‘

Exact Records Block Type E
Each block contains as many complete records as possible without exceeding a user-specified
maximum block size. Records cannot span blocks.

65202d 6-25

6.10.3
Record Types

Eight record types are defined in Cyber Record Manager. Each record type represents a different
method of describing record boundaries (the beginning and end of records). Not all record types
may be used with the various block types; refer to the Cyber Record Manager Reference Manual
for more information.

Decimal Character Count Type D
A field in each record specifies the length of that record.

Fixed Length Type F
This is the preferred record type for stranger tapes. Each record is a fixed length. If necessary,
short records are padded with blanks to achieve the desired length.

Record Mark Type R
Each record ends with a user-defined “end-of-record” character.

SCOPE Logical Record Type S
Each record is a SCOPE section (in Cyber Record Manager, called a a logical record). On stranger
tapes, this is a single block.

Trailer Count Type T
Each record may contain a number of fixed length trailer portions. The number of these trailer
portions is recorded within the record.

Undefined Type U
This record type allows processing of otherwise-undefined record types.

Control Word Type W
Each record is prefaced by a control word used to identify record boundaries.

Zero Byte Type Z
Each record is terminated by a 12-bit byte of zeros in the low-order bits of the last word of the
record.

6.11
Tape Labels

Tape labels are 80-character blocks that identify the reel of tape and the files it contains.
SCOPE/HUSTLER supports ANSI standard labels. Tapes containing labels of any other format
are considered unlabeled. (Exception: 3600 labels may be read by SCOPE/HUSTLER. See Section
6.11.2.) To create an unlabeled tape, the user must specify the Z and S parameters on the
REQUEST control statement (see Section 6.5.1). To read an unlabeled tape the user must specify
the Z parameter on the REQUEST statement. In the absence of a Z parameter, the tape will be
processed as a SCOPE-ANSI labeled tape. See Section 6.11.2.

6.11.1
Advantages of Labeled Tapes

-Since system-supported labels are automatically written and read by the operating system, their

presence is transparent to the user. Nonetheless they provide the user with a number of ad-
vantages.

6-26

6.11.2

65202d

1. Labels enable the system to verify that the correct tape has been mounted and assigned.
This phase of label checking is a locally designed feature and is described in detail in Section
6.13.1.

2. Labels improve the reliability of end-of-information and end-of-volume procedures for S

and L tapes. Labels are used for this purpose on SCOPE tapes even when they are requested
as unlabeled. '

3. The system records a block count in the trailer labels and subsequently checks this count
against the number of blocks read.

4, The user can specify information to be written into the labels or into additional user labels
which may later help to identify the contents of the tape.

The only significant disadvantage of using labeled tapes is that they may be incompatible with the
label format of another system. For example, both SCOPE/HUSTLER and the MTS system at the
University of Michigan use label formats based on the ANSI standard, but MTS records two sets
of file header and trailer labels for each file while SCOPE/HUSTLER records only one. If a tape is
to be sent to another installation, it may be best to create an unlabeled tape and record the per-
tinent identification information separated from the data by a file gap.

SCOPE/ANSI Label Formats

The Computer Laboratory supports SCOPE-ANSI labels which are designed to conform with the
ANSI standard submitted by the X3.27 Committee in 1966. Since 1966, the ANSI standard for
magnetic tape labels has been revised to include several additional types of labels and several ad-
ditional fields for existing labels. The SCOPE label format uses four types of labels, each identified
by the first four characters of the label.

VOL1. Volume header label
HDR1 File header label
EOF1 File trailer label
EOV1 Volume trailer label

Each label is 80 characters in length and is recorded at the same density as the data. The only local
modification to the SCOPE label format is the inclusion of the problem number field in characters
13 through 19 of the volume header label.

The following terms are used to describe the tape file structure defined by SCOPE-ANSI labels.
volume synonymous with a reel of magnetic tape.

file in the sense used here, the information delimited by a file header label and a file
trailer label. This unit of information may in turn consist of one or more par-
titions, each terminated by a level 17 end-of-partition for SCOPE tapes or a file
gap for S and L tapes. The file trailer label functions as a SCOPE end-of-
information mark.

volume set the tape reel or sequence of reels on which a file or set of files is recorded. If a
volume set is recorded on more than one reel, it is called a2 multireel volume set. If
a volume set contains more than one pair of file header and trailer labels, it is
called a multifile volume set. Since multifile volume sets contain more than one
end-of-information, they require special handling in order to position the tape to
a particular file. See Section 6.9.2 for a discussion of multifile tapes.

65202d 6-27

file gap the same special block used to delimit files in the S and L data formats. File gaps
separate label blocks from data blocks. They are considered part of the labels and
are read and written automatically by the system. An EOV1 label followed by a
double file gap indicates end-of-volume in a multi-volume set; an EOF1 label
followed by a double file gap indicates the end of the set.

The structure of SCOPE labeled tapes is shown in Figure 6-9. The label identifier is used to denote
the entire 80-character record, and asterisks are used to denote file gaps.

Single volume file:

% VOL1/HDRY+ data - EOF1 |~ fé-ﬁ

Multivolume file:

5@_} VOL1{HDR1}» data = EQV1f«|+ @ reel 1
%ﬁ VOL1{HDRY~* data * EQOF1]*|* @j reel 2

Multifile volume:'

@:j VOL1HDR1|* File A + EQOF1 |+{HDR1|* FileB | EOF1|#{+» @
Multifile multivolume:'

Eﬂ VOL1{HDR1|+ File A | EQF1 |*{HDR1{~ FileB +[EOQOV1{=*{» @ reel 1

@ ' ree] 2

*

EOF1

L4
*

Continuation of File B

*

VOL1HDR1,
Bot]

Figure 6-9: Structure of SCOPE Labeled Tapes

The exact format of the information recorded in each label is described in Appendix I, but the
following will summarize their function and content.

Volume header label:

The VOLL1 label is the first block of each reel. The ‘1’ in the label identifier has no relation to the
sequence of reels in a multireel volume set; the reel number is contained in the file header label.
The volume header label contains the visual reel name (VRN), the user’s problem number, and the
density of the data. '

"Multifile tapes are not supported at MSU and their use is discouraged.

6-28

6.11.3

65202d

File header label:

The HDR1 label follows the volume header label and, for a multifile volume set, precedes each
subsequent file as well. If a file spans two or more reels, the header label for that file is repeated af-
ter the VOL1 label for each continuation reel. A file header label contains the following fields: the
file name, the multifile name, the reel number for multireel files, the file position number for
multifile volume sets, the edition number, the creation date, and the expiration date. Normally
many of these fields will be blank. Section 6.11.3 explains how to specify the information written
into these fields.

File trailer label:

The EOF1 label terminates the file defined by the preceding HDR1 label; it is the SCOPE end-of-
information for the file. The file trailer label contains the same information as the preceding header
label plus a count of the blocks contained in the file.

Volume trailer label:

The EOV1 label is written when a file is continued onto another reel of tape; that is, it is written

whenever the end-of-tape (EOT) reflector is sensed before the file trailer label is written. The for-
mat of this label is identical to that of the file trailer label except for the label identifier.

3600 Labels (obsolete)

Tape labels created on the CDC 3600, though now obsolete, can be read by SCOPE/HUSTLER.
The structure of the 3600 label is described in Appendix I.

To read a tape with a 3600 label, specify the 'Y’ parameter on the REQUEST control statement.

Label Processing

For most users, the use of labeled tapes requires no special considerations. After requesting: the
tape, FORTRAN or COMPASS programmers can read or write data as they would for any
sequential disk file. A COBOL programmer uses the LABEL RECORD IS clause to specify whether
the tape has standard system labels, user data-name labels, or no labels. Tape labels created
without any extra consideration will contain blank characters in many of the informational fields,
but will still supply the security and reliability advantages listed in Section 6.13.

The information recorded in a label is taken from several sources: the REQUEST statement
parameters, the job PNC, the File Environment Table (FET, described in Section 4.3.1), and values
calculated by the system. Under SCOPE/HUSTLER, most label information is merely for user
documentation. When a labeled tape is read, any user information in the label fields of the File En-
vironment Table is checked against the corresponding fields of the file header label. If there is a
discrepancy, the operator will be instructed to type “DROP” or “GO" to either abort the job or to
continue processing. At MSU the operator types “GQO,” since initial label checking (performed
when the tape is assigned) ensures that the correct tape is mounted and that it has the VRN
specified on the user's REQUEST statement. If the user wishes to abort the job in such a situation,
he/she must inform the operator or perform his/her own label checking.

Normally when a labeled tape is created, label fields are left blank, or are given defauit values as
shown in Appendix [. The FORTRAN or COBOL user can insert values into the label fields. The
LABEL subroutine call in FORTRAN or the LABEL RECORD IS clause in COBOL may be used.

65202d

FORTRAN
The FORTRAN subroutine LABEL is called with

6-29

CALL LABEL (u,fwa)

the unit number of the file or the file name in left-justified zero-filled Display code.

the first element of a four-word array that contains label mformatxon in the format

described below.
59 47 29 23 17 -0
File Label Name (first 10 characters) Word 1
File Label Name (last 7 characters) Position Number Word 2
Edition No. Retention Cycle Creation Date Word 3
Multifile Name Reel Number Word 4

File 17 alphanumeric characters (starting with a letter), left-justified with zero

Label Name fill, identifying the file. If this field is zero when labels are written, the tape
labels will contain blanks in the file label name field. The fxle label name is
always checked when the tape is read.

Position 3 numeric digits specifying the sequence of the file in a muitifile set. Like

Number the multifile name, this field may be ignored.

Edition 2 numeric characters identifying successive editions of the same file. If zero
when labels are written, 01 is assumed. If zero when labels are checked,
the edition number field is ignored.

Retention 3 numeric characters specifying the number of days that the tape is to be

Cycle protected from accidental destruction. This value is added to the creation
date to compute the expiration date when labels are written. The ex-
piration date is checked when the tape is opened for writing. The default
value is zero. A value of 999 is considered an infinite retention period.

Creation 5 numeric characters: the first two specifying the year, the other three

Date specifying the Julian day of the year (001 to 366). If omitted or zero when
labels are written, the current date is used. If zero when labels are checked,
the creation date is ignored.

Multifile 6 alphanumeric characters (starting with a letter), left-justified with zero

Name fill. Since the multifile capability is not implemented in
SCOPE/HUSTLER, this field should be ignored.

Reel 4 numeric characters specifying the sequence of reels in a multireel file. If

Number omitted when labels are written, reel number 0001 is assumed. The reel

number is incremented by one at the conclusion of volume trailer label
processing for each reel. It is reset to 0001 when the file is closed. If omit-
ted when labels are checked, the reel number is ignored.

6-30

65202d

Example:

PROGRAM SAMPLE (TAPE1, TAPE2)

DIMENSION INFO(4)

DATA INFO /10LSURVEY 2R, 7LAW DATA, 5L01999, 0/
CALL LABEL (2,INFO(1))

WRITE (2,201) X
The call to LABEL specifies the file label name as SURVEY 2 RAW DATA, the edition number as
01, and the retention cycle as 999. The system inserts default values for the creation date and the
reel number.

Note: This subroutine will fail if called under MSU Record Manager; it will work correctly with
Cyber Record Manager.

COBOL
For standard labeled tapes the following LABEL RECORD clause is used.

RECORDIS
LABEL RECORDS ARE STANDARD

[{ID literal-1
VALUE OF I IDENTIFICATION IS data-name-1
- literal-2
DATE-WRITTEN IS data-name-2

-
- literal-3
EDITION-NUMBER IS data-name-3

literal-4
data-name-4

i
'
!
f

REEL-NUMBER IS

-

RETENTION-CYCLE IS

literal-S }-
data-name-5}

L

The notation used here is that of the COBOL Reference Manual.

The label fields have the same meanings as those described above for FORTRAN. Note that the ID
field (the file label name) is required but all other label fields are optional. Default values are sup-
plied by SCOPE/HUSTLER for omitted fields, as described above.

Example:
IDENTIFICATION DIVISION.

DATA DIVISION.

FILE SECTION.

FD FILE-1
LABEL RECORDS ARE STANDARD
VALUE OF ID IS “SURVEY 2 RAW DATA”
EDITION IS “02”
RETENTION IS “999”

65202d

6.11.4

6-31

The OPEN and CLOSE Functions

In order to understand when labels are created and checked, the user must be acquainted with the
open and close functions. The open function prepares a file for processing by setting certain fields
of the File Environment Table (see Section 4.3.2), setting up a File Name Table entry if one does
not already exist, reading in the index for random-access files, and processing labels on magnetic
tape files. The close function is used to write an end-of-information mark, write out the index for a
random file, and rewind or return the file.

Label Creation

6.11.5

A volume header label and a file header label are written when a file is opened for writing as the

* first operation on the tape. An open for writing operation will read labels if a read operation has

been done or if a previous open to write operation has been done. A file trailer label is written
whenever the tape is closed and the file is positioned after a newly written record.

To the FORTRAN programmer, this means that volume and file header labels are written if the
first action on a file is a write. A file trailer label will be written when there is reverse motion on

the tape following a write.

Label Checking

6.11.6

Any tape containing recognizable labels will be checked when the tape is assigned to make sure
that the label VRN matches the requested VRN and, if a write-enable ring was also requested, that
the label PN matches the job PN.

The file header label is read and its contents are checked against the specified tape label fields of the
File Environment Table a tape file that is currently closed is opened to be read. To the FORTRAN
programmer, this means that label checking takes place when the first action on a fileis a read or a
skip-forward, or if the file was rewound just prior to the read. The user is reminded, however, that
the system checking of the file header label has no real effect, since the operator will instruct the
system to continue program execution in spite of label discrepancies.

Note: Labels are processed unless the tape is requested with nonstandard labels (NS parameter). If
a labeled tape is requested unlabeled (using the Z parameter), the tape will be positioned past the
header labels. If an unlabeled tape is requested as labeled and the first action is a read or a skip, the
system will look for a label, discover it missing, and post the “TYPE DROP OR GO’ message to
the operator. Normally, the operator will respond “GO.”

Caution: If an unlabeled tape is to remain unlabeled, it should always be requested using the Z
parameter on the REQUEST statement. Otherwise, a write operation at the beginning-of-tape
marker will cause the tape to be labeled.

Printing the Label: PRINTLB Control Statement

The PRINTLB card is used to print out the contents of tape header labels.

PRINTLB, Ifn.

Ifn thelocal file name of the tape.

6-32

6.12

65202d

In order to use PRINTLB successfully, the tape must be requested with the S, Z, and NS
parameters on the REQUEST control statement. PRINTLB reads the first blocks and, if it
recognizes a SCOPE-ANSI label, copies the information to OUTPUT.

Example:

PNC

id, MT1.

PW =password

REQUEST, TAPE,VRN=861,S,NS,Z.
PRINTLB,TAPE.

6/7/8/9

End-of-Volume Procedures

The end-of-volume procedures performed by SCOPE/HUSTLER depend on whether:
1. the tape is a SCOPE or a stranger tape,
2. the tape is labeled or unlabeled,

3. the user processing option has been requested by a COBOL program (see Section 6.12.1) or
COMPASS program (see Section 6.16.5).

Normally—which is to say, when the user processing option is not requested —SCOPE/HUSTLER
processes continuation reels automatically. When the end-of-volume is detected, it will rewind and
unload the tape and request the next reel of tape specified in the VRN list of the REQUEST
statement. If a continuation reel is not specified, or if the VRN list is exhausted, the system will
abort the job and issue an appropriate dayfile message. The assignment of a continuation reel, like
any other tape request, is subject to the tape security checks described in Section 6.13. After the
tape is assigned, SCOPE/HUSTLER will also perform the standard SCOPE label procedures for
tapes requested as labeled. Then it will resume the operation that was in progress on the preceding
reel.

During a write, the end-of-volume condition is signaled by the EOT reflective marker. The
following table summarizes the steps performed when the EOT marker is sensed during the last
block written.

Labeled Unlabeled Labeled Unlabeled
SCOPE SCOPE Stranger Stranger

Write EOV trailer label X P : b

Write four file gaps X

Rewind and unload reel x X X X

Request next reel X X X X

Write header label(s) X ‘ X

Continue function x x _ x x

During a read, the end-of-volume condition is signaled by the EOV or EOT trailer label if the tape
is labeled or SCOPE formatted. If the tape is an unlabeled stranger tape, the end-of-volume con-
dition is signaled by the EOT marker. Detection of the end-of-volume is not as reliable on
unlabeled stranger tapes; see Section 6.12.2.

65202d

6.12.1

6-33

User Processing Options

6.12.2

The user may request alternative end-of-volume procedures in COBOL by selecting the user
processing option. This is done when a USE procedure is declared for checking and/or preparing
tape labels (generally for user data-name labels). See the discussion of the USE statement in the
COBOL Reference Manual.

End-of-Volume Errors on Unlabeled Stranger Tapes

6.13

When reading an unlabeled stranger (S or L) tape, a spurious end-of-partition status may be
returned at end-of-volume. This is an unavoidable problem caused by the following sequence of

events.

stops here on write _, End-of-tape marker
o i | B
block TTTsiiin

Nt =g’
stops here on read file gaps

Figure 6-10: End-of-Volume Error on Unlabeled Stranger Tape

When the tape is written, the data section may end before the EOT marker, but the tape may coast
far enough to detect the marker and initiate end-of-volume procedures. These procedures, as
described earlier, consist of writing four file gaps (end-of-partition marks) and requesting a con-
tinuation reel.

When the tape is subsequently read, the tape may not coast quite as far and so not detect the EOT
marker. The next read would detect both the EOT marker (end-of-volume) and the first file gap
(end-of-partition). Note that the effect is random. On another run, the tape may coast farther,
detect the EOT marker when the last data section is read, and initiate reel swapping without an
end-of-partition indication.

The only way to avoid this situation is to use either labeled or SCOPE formatted tapes.

Tape Security System

The SCOPE/HUSTLER tape security system, designed locally and implemented in 1970, provides
the following types of protection. The first item applies to all tapes, but the second and third items
apply only to labeled tapes (i.e., tapes written with either SCOPE-ANSI or MSU 3600-style

labels).

1. It ensures that the user cannot write on a tape unless he/she has explicitly requested a write-
enable ring. '
2. It ensures that the operator mounts and assigns the correct reel, i.e., the VRN that was

requested.

6-34

6.13.1

65202d

3. It ensures that the user cannot write on a tape unless the user’s problem number matches
that of the label on the tape, or no problem number is specified in the label.

The tape security system cannot prevent any user from reading most tapes. Nor can it prevent a
user from mistakenly overwriting one of his/her own tapes as long as the operator mounts the reel
as specified.

A “File Protect” ring can be installed on a reel of tape that physically prevents the operator from
inserting a write-enable ring. There is a nominal charge for this service; a special tool is required to
install or remove the “File Protect” ring. Inquire at the Service Window in Room 208 Computer
Center. : :

Security Procedures

The mechanics of the tape security system are relatively straightforward. When the operator at-
tempts to assign a magnetic tape drive to the user’s job, the system checks for the presence or ab-
sence of a write-enable ring. If the tape was not mounted as requested, it is immediately unloaded
and the operator is instructed to remove or insert the ring. If the tape is labeled, the system checks
the header label to see if it contains the correct VRN. If, in addition, a ring was requested, the
system also checks the label to see if it contains the correct problem number. A discrepancy in
either case causes the assignment to be rejected. If the discrepancy resulted from an operator error,
the operator is allowed to mount the correct reel and reissue the assignment command; otherwise
the job must be aborted. This procedure is defined more precisely in the following algorithm.

1. Does the tape have a recognizable label? (regardless of whether or not it was requested as
labeled)

IfNO, goto5.
2. Does the label VRN match the requested VRN? If not, is the label VRN blank or zero? Or

was the REQUEST VRN omitted (i.e., will a scratch tape be assigned; see Caution on
scratch tapes in Section 6.5.1)7 A YES to any of these questions constitutes a “correct

VRN.
IfNO, goto 7.
3. Was a ring requested?
IENO, go fo s.

4, Does the label PN match the job PN? If not, is the label PN blank or zero?
IfNO, goto 6.

S. Was the tape mounted with or without a write-enable ring, as specified by the REQUEST
statement?

If YES, go to 8.

6. Was a scratch tape requested? This test is made when the user is requesting to write on a
labeled tape, where the label PN does not match the job PN. It may be that the scratch tape
mounted by the operator was labeled by another user. But if the user did not request a
scratch tape and the correct VRN was assigned (step 2), then the job is aborted because the
user is requesting permission to write on a tape that he/she is not authorized to write on.

If YES, go to 8.

7. Assignment Error. The tape is unloaded and the operator is informed of the error. If the

_operator was responsible for the error, he/she will correct the condition and reassign the

tape drive. Otherwise the job will be dropped after an informative dayfile message has been
entered from the operator’s console.

8. Tape is assigned.

6.13.2 |
Changing the Label PN

Unless the REQUEST statement Z or NEWPN =0 parameter is specified, tapes created under
SCOPE/HUSTLER are written with labels containing the user’s problem number (PN). Once the
labels are written, only jobs submitted with the same PN are allowed to request the tape with a
write-enable ring. Note that when creating a labeled tape, the user can specify a PN other than the
job PN through use of the REQUEST statement NEWPN parameter. Specifying NEWPN =0 will
cause the PN field of the labels to be left blank and thus allow any user to request the tape with a
write-enable ring.

If you later wish to change the label PN, note that the NEWPN option is effective only if (1) the
tape is being rewritten from the beginning, and (2) the job to rewrite the tape is submitted with the
PN currently recorded in the labels.

If you do not want to change the other contents of the tape you should first make a copy of the
complete tape on a second, or backup, tape. Only when the copy is found to be complete and
correct should the PN in the label of the original tape be changed. Sample jobs to change the PN of
a binary 7-track SCOPE tape containing five partitions are shown below.

PNC (for problem number 010001)

id, MT2.

REQUEST, TAPE1, VRN =872.

REQUEST, TAPE2, VRN =873, NEWPN =010002,RW.
COPYBF, TAPE1, TAPE2,5.

REWIND, TAPE1, TAPE2.
COMPARE, TAPE1, TAPE2,999,17.

6/7/8/9

The COMPARE control statement verifies that a complete duplicate of the tape has been suc-
cessfully made. If the compare shows no errors, the following job can be run.

PNC (for problem number 010001)

id, MT2.

REQUEST, TAPE1, VRN =873.

REQUEST, TAPE2, VRN =872, NEWPN =010002,RW.
COPYBF, TAPE1, TAPE2,5.

REWIND, TAPE1, TAPE2.

COMPARE, TAPE1, TAPE2,999,17.

6/7/8/9

If you do not have access to the PN used to create the labeled tape, you must request the Computer
Laboratory to “blank-label” the tape (i.e., rewrite the label records with blanks).

Note: Blank-labeling a tape effectively destroys the contents of the tape. You should be sure to
have a backup copy of the data before requesting the blank-labeling operation,

6.14

You may request that a tape be blank-labeled by filling out a Tape Service Request form available
at the Service Window in Room 208. All tape service requests must specify the PN and the account
number associated with the tape when it was submitted for storage; your department can supply
this information. After the tape has been blank-labeled, you should rewrite it with a non-blank
label if you want to restrict write access. Otherwise any user will be able to request the tape with a
write-enable ring.

Parity Error Procedures

6.14.1

The tape drive control unit constantly checks for errors during all read and write operations. It
does this by checking the number of “1” bits in each frame to see if it agrees with the odd or even
parity specified by the user’s read/write request. It also keeps a count of the “1" bits in each track
to verify the even-parity longitudinal redundancy check character (LRC character) at the end of
each block. A discrepancy in either test constitutes a parity error.

Parity errors detected during a write are usually caused by damaged or dirty tape, although the
tape drive or accumulations of oxide on the read/write heads may also be at fault. Read parity
errors, in contrast, are sometimes the fault of the user rather than the tape or tape drive. Two
types of user errors are possible:

1. Reading the tape in the wrong mode (binary instead of coded or vice versa). Although this
type of parity error is unrecoverable, it will be diagnosed. The message “MT xx RD ERR
READ OPP MODE" will appear in the dayfile for 7-track tapes.

On 9-track tapes, when a binary SCOPE tape is read in coded mode, the message “DEVICE
CAPACITY EXCEEDED” will appear; when a coded 9-track SCOPE tape is read in binary
mode the user will receive the message, "RECORD FRAGMENT.” The “DEVICE
CAPACITY EXCEEDED"” message also appears if an S tape with blocks of 3841 to 5120
characters is read in binary instead of coded mode.

2. Requesting the wrong density. Because the density used to read labeled tapes is taken from
the volume header label, this type of error can occur only on 7-track tapes requested as
unlabeled. Nine-track tape drives automatically select correct density.

The tape drive is designed to check each block as it is being read or written. If an error is detected
within a block, SCOPE/HUSTLER immediately initiates a sequence of procedures to reread or
rewrite that block unless “NR” is specified on the REQUEST statement. If the block cannot be
reread or rewritten without error after many retries, the error is declared to be “unrecoverable.”

The remainder of this section is divided into three parts. The first two detail the write and read
error recovery procedures. The third explains how unrecoverable errors are handled.

Write Parity Error Recovery

The SCOPE/HUSTLER peripheral processor routines that handle magnetic tape input/output
provide extensive parity error recovery procedures, which include noise bracketing of unusable
tape. SCOPE/HUSTLER defines a noise record to be any tape block of less than eight characters.
Noise bracketing consists of writing special, “system noise records” (SNRs) at the beginning and
end of an unwriteable length of tape. When the tape is read, the system ignores all information bet-
ween SNRs. This applies only to 7-track tapes; 9-track tapes do not use noise bracketing.

Noise bracketing greatly improves the user’s ability to read and write tapes in spite of errors in the
tapes and/or tape drive hardware, Tapes containing noise brackets, however, may not be read
properly under other operating systems. For this reason, the dayfile message “MTxx
WARNING—BRKT WRITTEN-NON STANDARD TAPE" is issued whenever noise brackets are
written. In addition to MSU’s SCOPE/HUSTLER system, tapes containing noise brackets can be
read normally at any CDC 6000, 7000, or CYBER series installation operating under SCOPE 3.3,
SCOPE 3.4, NOS/BE, or 7000 SCOPE 2.0. If a tape is to be shipped to an installation other than
these, the NB (no bracketing) parameter should be included on the REQUEST control statement
when the tape is created. The NB parameter selects an alternate method of write parity error
recovery.

For those interested, here is the algorithm for write parity error recovery :

1. Perform a “controlled backspace” (reverse erase) function. This erases the bad block and
should leave the tape positioned to the interblock gap following the last good block.

2. Perform a reverse read followed by a forward read to ensure that the controlled backspace
went far enough, or that it did not go too far and erase part of the last good block.

3. If the block read in Step 2 was a nonstandard noise record (not an SNR), backspace over it
and repeat Step 2.

4. The tape is now positioned at the end of the last good block.

5. Perform a “skip bad spot” function, which erases about six inches of tape in the forward
direction, and then rewrite the block. If there are no parity errors in the rewrite, stop and
issue the “WRITE ERROR RECOVERED" message. Otherwise backspace to the position
arrived at in Step 4.

If the NB parameter was specified for the file, go to Step 12.

(o)

7. Write a system noise record (SNR) consisting of four Display code zeros (converted to Ex-
ternal BCD for coded tapes), and set the SNR counter to zero.

8. Perform a “skip bad spot.”

9. Increment the SNR counter by one, convert it to a four-digit octal Display code number,
and write a system noise record consisting of these four coded digits (converted to external
BCD for coded tapes).

10. If there were parity errors during the writing of the system noise record, erase it and go to
Step 8.

11. Attempt to write the data. If successful, stop and issue the “"WRITE ERROR RECOVERED”
message. The write error recovery procedure is finished. Otherwise, backspace to the
position arrived at in step 4.

12. Perform repeated “skip bad spot” functions and write attempts until the block is suc-
cessfully written or until 25 feet of tape have been erased (about 50 rewrite attempts). If the
record is successfully written the “WRITE ERROR RECOVERED" message is written in the
dayfile. Otherwise unrecoverable parity error procedures are initiated (see Section 6.14.3).

In any of the above steps, a block is considered to have been successfully recovered if the block
and the SNR (if any) preceding it can be read in both forward and reverse directions.

6.14.2
Read Parity Error Recovery

Here is the algorithm for read parity error recovery. If the block is read without error during Steps
1, 3, or 4, the system issues an informative dayfile message and continues reading normally.

1. Backspace to the beginning of the block and reread it in the specified mode (i.e., binary or
coded). If necessary, try this step twice.

Backspace to the beginning of the block and reread it in the opposite mode. If successful,
transfer the data to the user’s buffer and return the unrecovered parity error status code’
(FET error code 04), along with the dayfile message “MT xx RD ERR READ OPP MODE.”
Repeat this step one more time if the parity error persists. Note that the data transferred to
the buffer will not be properly converted. If the user attempts to read a coded tape in binary
mode, the characters will be received in internal BCD. If the user attempts to read a binary
tape in coded mode, the data will be interpreted as external BCD characters and translated
to Display code.

(39

3. Try Step 1 two more times.

4. Backspace over the three blocks preceding the bad block and then skip forward three blocks
and read the fourth. This procedure, known as “on-the-fly” recovery, is an attempt to clean
the tape of any obstructions that may be causing the parity error. This step is tried up to
eight times.

5. Stop—unrecoverable parity error.

When 9-track NRZ] tapes are read, the cyclic redundancy check character (CRC) is also checked.
If it is incorrect, it will indicate which track is in error. If more than one track is indicated, the
error is unrecoverable. The block is reread if a single-track error, and any frame with vertical
parity error is corrected in the track indicated as bad. If this generates a good CRC character com-
pare, the data is given to the user as good. '

On 9-track phase-encoded tapes, if a bit is dropped in one track of a frame, it is automatically
regenerated from the data in the other 8 bits. If more than one track drops a bit, parity error
recovery procedures are used.

Whenever the system encounters a noise record (a block of less than eight characters) on a 7-track
tape that it does not recognize as a system noise record (SNR), it checks to be sure it is not a
misread data block. First, the block is reread in both the forward and reverse directions, and then
one of the following actions is taken:

1. If the block appears as noise when read in both directions, search forward to the next non-
noise block. The dayfile message “MT xx NOISEWARNING n" is issued for each non-
standard noise record encountered.

2. If the block is found to be a file mark, begin normal end-of-file processing.

3. If the block can be reread as a non-noise block, the block is reco?ered and the dayfile
message "MT xx RD RVD NOISE IN IRG" is issued.

4. If the block can be reread as a non-noise block but parity errors occur, switch to the normal
read parity error recovery algorithm listed above:

5. If the block appears as noise in a forward direction and non-noise in the reverse direction,
attempt to read the tape in reverse and then reverse the data to proper order as it is trans-
ferred to the user’s buffer.

6.14.3

Unrecoverable Parity Errors

The handling of unrecovered read and write parity errors depends on whether error processing has
been requested for that file. This is requested automatically for input files used in FORTRAN
programs and is a user option for files used in COBOL (see below) and COMPASS programs (see
Section 6.16.4). The error processing is not in effect when the file is used by a COPY utility or
most of the other system routines.

If the error processing option is not set and an unrecoverable parity error is encountered on the
file, the system suspends execution of the job and displays a message at the operator’s console. If
the operator types “RECHECK,” the system will repeat the error recovery algorithm. If he/she
types “GQO,” the system will ignore the error and resume normal execution. If several
unrecoverable errors occur in succession, the operator will type "DROP” to abort the job.

Several unrecovered parity errors occurring on a tape may indicate that either the tape itself or a
tape drive is defective. If all efforts to read a tape have been tried without success, the Computer
Laboratory will, on a case-by-case basis, adjust a tape drive in an attempt to accommodate the
tape. Users should contact the shift supervisor at the Service Window in Room 208.

FORTRAN Parity Error Procedures

The FORTRAN input routines set a flag when an unrecovered read parity error occurs on a tape-
resident file. If this flag is not checked before the next read request for the file, the program will
abort with an appropriate error message. When using formatted or unformatted READ state-
ments, the IOCHEC function should be used to check the error status of the previous read. The
UNIT function should be used after BUFFER IN statements. Write parity errors are not checked by
FORTRAN:; instead, the decision to stop or continue job execution is left to the operator, as
described above.

The block containing the unrecovered read parity error will be transferred to the user’s program,
but in the case of BUFFER IN, the LENGTH function will return zero. The data in this block may
or may not be usable; it may happen that only a parity bit is bad and all the data bits are good. If
the data is bad, though, the parity error may lead to other errors, such as error number 78:
“ILLEGAL DATA IN FIELD.”

Another note of caution is that, for SCOPE tapes, the FORTRAN routines called by the formatted
and unformatted READ statements usually read several blocks ahead of the one being processed
by the user’s program. For example, if IOCHEC returns non-zero (parity error) after the user’s
program has executed a formatted READ statement five times, the error is more likely to be the
250th block than in the 5th. The exact position of the error cannot be readily determined by the
user’s program. FORTRAN does not read ahead for stranger tapes or for BUFFER IN statements.
Cyber Record Manager can be used to suppress the read ahead process.

COBOL Parity Error Procedures

In COBOL, the error processing option is set by specifying a USE AFTER STANDARD ERROR
PROCEDURE statement in the Declaratives Section of the Procedure Division. If this declarative
is not in effect for the offending file, parity error processing will be handled by SCOPE/HUSTLER
in the fashion described above. Otherwise, parity error processing is controlled by the COBOL in-
put/output routines as follows:

1. For stranger tapes, the user may specify (following the USE AFTER STANDARD ERROR
PROCEDURE statement) routines to be executed in the event of a read parity error; if a file
with the implement-name ERRFILE is defined, the bad block will be placed in the ERRFILE
block area, along with the implementor-name of the file from which it was read.

2. For SCOPE tapes and write parity errors, COBOL will terminate the run.

6.15
Special Problems

The following sections deal with problems for which users frequently seek help from the con-
sultants.

6.15.1
Changing the Number of Tape Tracks

Physically, there is no difference between 7- and 9-track tapes. Either type of tape can be mountea
on either type of tape drive if the tape has been certified for 3200 fci (see Section 6.8.3). However,
if a 9-track tape is read on a 7-track drive, or vice versa, gibberish and unrecoverable parity errors
are returned. Since labels would not be recognized, the tape security system would be voided. To
prevent this, 9-track tapes have distinctive paper labels glued to the tape reel. The operators will
not mount any tape so labeled on a 7-track drive, neither will they mount any tape without such a
label on a 9-track drive. This process is subject to human error, and is one of the reasons that users
should maintain backup copies of important data.

A user who wishes to use a 7-track tape as a 9-track tape, or vice versa, must make such a request
at the Service Window in Room 208. Since a blank-label operation (see Section 6.13.2) is per-
formed when this is done, it is important to note that any data on the tape is effectively destroyed,
and, if desired, a backup copy of the data should be made beforehand.

6.15.2 .
Exchanging Tapes with Other Sites

Compactness and portability make magnetic tape a convenient medium for transporting in-
formation in a computer-readable format. The exchange of magnetic tapes between two sites is
complicated, however, by the wide variety of schemes used to structure the data. This section
identifies common sources of incompatibility and suggests ways of avoiding them. It also suggests
how to handle some typical problems. '

Hardware Compatibility

The CDC 7-track tape drives are compatible with IBM 727 and 729 I through VI tape drives, and
they can read and write at densities of 200, 556, or 800 cpi. The CDC 9-track drives can read and
write at densities of 800 or 1600 cpi. Users who wish more detailed information about the tape
drives should contact the consultants, who will arrange an appointment with one of the Control
Data engineers.

Documentation Suggestions

Insufficient information causes most of the problems users experience when they try to read a tape
received from another site. The following items should be provided. Do not hesitate to request this
information when you send for a tape.

1. Number of tracks. MSU can handle 7- and 9-track tapes.

2. Density. MSU can handle 200, 556, or 800 cpi for 7-track, 800 or 1600 for 9-track. If there

are header blocks (labels), are they recorded at the same density as the data? SCOPE-ANSI
labels are always written (and read) at the same density as the data.

3. QOdd or even parity. Again, if there are special header blocks, are they the same parity as
the data? SCOPE-ANSI labels are always even-parity on 7-track tapes regardless of the
parity of the data blocks. '

4. Character codes. Is the data encoded in BCD, EBCDIC, ASCII, or CDC Display code?
Seven-track coded (even-parity) tapes created by SCOPE/HUSTLER are written in 6-bit ex-
ternal BCD codes. Nine-track coded tapes are written in ASCII or EBCDIC. On input, the
system assumes that even-parity tapes contain external BCD codes and converts them to
Display code. Binary (odd-parity) tapes are written in whatever codes the user’s program
uses internally. The internal coding scheme of tapes written at another site will rarely be
compatible.

5. Labels. Are there special header blocks other than standard SCOPE-ANSI labels? If so,
provide a complete description of their contents, format, and location. Include their den-
sity, parity, and use of file gap delimiters.

6. Continuation reels. If data spans two or more reels, what is the structure of the data around
the EOT reflective marker and at the beginning of the next reel?

7. Record Structure.

a. Block length. Are the blocks (physical records) fixed or variable-length? If variable,
what is the maximum and minimum lenth? How can the length of a particular block
be determined?

b. Record length. Are the records fixed or variable-length? If variable, what is the
minimum and maximum, and how can the length of a particular record be deter-
mined?

c. Blocking scheme. Is each block a record or are two or more records contained in

each block? Can a record span two blocks?

d. Delimiters. How are end-of-partition, end-of-information, and end-of-tape in-
dicated? Are there non-data characters within the data? For example, coded SCOPE
tapes contain special bytes indicating end-of-line, end-of-section, and end-of-
partition.

8. Contents. Describe the number of files and their position on the tape. If a file contains data
rather than programs, describe the fields within each record. Is each field numeric or
alphabetic? -

Format Suggestions

The following suggestions are offered on the premise that it is usually much easier for the sender to
create a format compatible with the receiver’'s computer than for the receiver to decipher an in-
compatible format.

If you send for a tape from a non-CDC site, request that it be written in even-parity using the ex-
ternal BCD character set for a 7-track tape, or odd parity using EBCDIC or ASCII character set for
9-track; these are industry-wide standards and should be available. If a 7-track tape arrives writ-
ten in odd-parity or using a different coding scheme, you must write a program to convert the data
to the CDC Display code used internally by SCOPE/HUSTLER. When you write a tape using a
coded (even-parity) operation, such as the formatted WRITE statement in FORTRAN, the data is
automatically converted from Display code to external BCD for 7-track tapes, or EBCDIC or
ASCII for 9-track tapes, by the tape drive hardware. To write a tape using other codes, you can
generate the codes with your program and use a binary (odd-parity) mode operation to transfer
the data to tape without conversion.

Header and trailer labels, although useful to the system that writes them, are geaerally more
trouble than they are worth to other systems. Similarly, minor differences in end-of-volume
procedures can cause major difficulties. If more than one reel is needed, split the data into two files
rather than span the file across two reels. In general, when you send a tape to a site other than a
CDC 6000 or 7000 installation operating under a version of SCOPE, write the tape as an unlabeled
stranger (S or L) tape and suppress the noise bracketing feature for unrecovered write parity
errors. In other words, include the following options on the REQUEST control statement for 7-
track tapes:

REQUEST,lfn, VRN =vrn,RW,S,Z NB.

where RW means “read-write,” S means ‘‘stranger tape format,” Z means “unlabeled,” and NB
means “no bracketing” for write parity error recovery. The density will be 556 cpi.

For 9-track tapes, the REQUEST statement would be similar:
REQUEST lfn, VRN=vrn,RW,S,Z NB,EB.

where EB provides EBCDIC characters; use AS instead if ASCII characters are desired. (The AS or
EB parameter indicates that the tape is 9-track.) The density will be 800 cpi.

Although most systems are flexible enough to handle a variety of record and block structures for
magnetic tape, the simplest, and therefore most universal, format consists of fixed-length, un-
blocked records. Unless the tape can be written in SCOPE format, this will also be the easiest to
read on the 6500. “Unblocked” means that each block is a single record. This is the format
produced by FORTRAN formatted WRITE statements and BUFFER OUT statements when the
REQUEST statement S or L parameter is specified; that is, each statement writes one block.
“Fixed-length” means that the records are all the same length. To accomplish this, the FORTRAN
programmer can adjust the FORMAT statements or the buffer limits of the BUFFER OUT
statements to pad shorter records with trailing blanks.

Blocked formats (two or more records per block) can be created or read by using Cyber Record
Manager. COBOL programmers have the BLOCK CONTAINS clause to produce blocked S or L
tapes automatically. Before creating a blocked format, be sure you understand the blocking con-
ventions used at the other site.

Line images are automatically blocked into 1280-character blocks for coded SCOPE tapes, but sen-
ding a SCOPE tape to a non-SCOPE installation will only cause them needless problems.

If possible, records and blocks should be a multiple of the memory word-size of the computer that
will read the tape. For instance, for tapes sent to another CDC 6500 site, records should be a

multiple of 10 characters.

Incompatible Labels

When you send for a magnetic tape, ask the sender to omit the special header blocks known as
labels. Although the labeling scheme followed by SCOPE/HUSTLER was designed to conform
with the ANSI standard, the standard has since changed to include additional types of labels and
additional fields within the labels. The standard also provides fields for local options, which are a
common source of conflict. Here are two typical problems caused by incompatible label formats.

1. Wrong VRN. Columns 5-10 of the VOL1 label contain the visual reel name (also called the
volume serial number) by which the tape is identified to the operator. SCOPE/HUSTLER
checks the contents of this field against the REQUEST statement VRN parameter whether
or not the tape is requested as labeled. Consequently, if a tape arrives with 1234 in the VRN
field of the volume header label, it must be requested with REQUEST, lfn, VRN =1234." etc.
Temporary tapes are normally stored with a physical identification of TMPnnn. Therefore,
special arrangements must be made with the operator so that he/she will mount the correct
reel when 1234 is requested. This may be done by preceding the REQUEST statement witha
statement of the form ‘'HAL,PAUSE,USE TMP152 FOR 1234.

2. Wrong PN. The contents of columns 13-19 of the standard VOL1 label are not normally
used, but under SCOPE/HUSTLER they contain the user’s problem number. If a tape with
a recognizable volume header label contains some other information in these columns, you
will be unable to request the tape using the RW parameter. To gain write permission, you
must have the tape “blank-labeled” by the operator. See Section 6.13.2.

Incompatible Codes

Unless your tape is written in even-parity and is coded in external BCD on 7-track, or ASCII or
EBCDIC on 9-track, or was written in binary by a CDC 6000 SCOPE system, you will have to
write a program to convert the data to CDC Display code.

In FORTRAN, the general method of these conversions is to construct an array of Display code
characters, such that subscripting the array with a character from the source set yields the
corresponding Display code. For example, the letter ‘A’ is represented as 01 (octal) in Display code
and 61 (octal) in external BCD. To translate external BCD to Display code, you would build an
array—say ICHAR—such that ICHAR(61B) contains the integer 01B. To set up the conversion,
you would first read a record into an array—say IN—and then unpack each 6, 7, or 8-bit character
from IN and store it as a separate element of another array—call it IBYTE—in R format (right-
justified with zero fill). The conversion can then be stated as IBYTE(I) =ICHAR(IBYTE(I)).

The simplest case of code conversion is one where the data on a 7-track tape is written in odd-
parity external BCD or some other 6-bit code. You would then read the tape in binary mode, and
the data would be transferred to memory exactly as it appears on the tape.

When data is written in even-parity, the conversion program is complicated by the fact that the
system automatically treats the data as external BCD and converts it to Display code. So, to con-
struct the ICHAR array, you would have to map each character from the source code to external
BCD to Display code, and then from the mistranslated Display code to the proper Display code.

Codes constructed of 7 or 8 bits present two problems. First, the unpacking algorithm is more
complex because some of the characters will be split between two words. Secondly, 7- and 8-bit
character sets are two or four times as large as 6-bit character sets. Thus, you must decide how to
handle the characters that are not defined in Display code.

6.15.3
Reading and Writing Blocked Stranger Tapes

Magnetic tapes exchanged between computer sites are often written in a blocked format; that is,
each block may contain more than one record. The advantage of blocked tapes is that the data
occupies less space, or rather, the larger block size means there is less space taken up by interblock
gaps. The disadvantage of blocked stranger tapes (S or L tapes) is that additional control state-
ments are required to unblock them, except through COBOL.

Blocked stranger tapes typically contain fixed-length records. The FORTRAN procedure for
reading or writing these is straightforward and will be demonstrated shortly. If blocked records
are variable-length, each block will normally contain some control bytes indicating the length of
the block andAor each record within the block. For example, below is a diagram of the IBM “VB’.
(variable length, blocked) tape structure,

BDW|RDW record 1 RDW record 2 RDW| record3...

Figure 6-11: IBM Tape Structure

where BDW is a 4-character Block Descriptor Word containing the length of the block, and RDW
is a 4-character Record Descriptor Word containing the length of the record.

As an illustration, suppose a tape arrives with fixed-length 80-character card images blocked 100
cards per block. The FORTRAN procedure for unblocking the tape is simple: Cyber Record
Manager is used to describe the blocked file and to do the actual unblocking and the FORTRAN
program need only read in and write out each line in 8A10 format. A sample program and job
deck are shown below. Note that because the 8000-character blocks exceed the 5120-character
maximum allowed for S tapes, the L format must be declared. In this example, the user writes the
unblocked card images on a SCOPE tape; he/she could just as well write them on a disk file and
catalog it as a permanent file or dispose it to punch.

PNC

id, MT2.

REQUEST, TAPE1l,VRN=TMP123,L,Z HY.

REQUEST, TAPE2, VRN =5061,RW.

FTN.

FILE, TAPE1,BT =K,RT=F,RB=100,FL =80, MBL =8000.
LDSET,LIB=FORTRAN/CRM.

LDSET, FILES=TAPE1.

LGO.

7/8/9
PROGRAM UNBLOCK (TAPE1, TAPE2,OUTPUT)

DIMENSION LINE(8)

1 READ(1,2) LINE

2 FORMAT (8A10)
IF(EOF(1).NE.0)GOTO 3
WRITE(2,2) LINE
GOTO1

3 CONTINUE
END

6/7/8/9

A job to write a stranger tape with the same format of the above example is similar. The FOR-
TRAN program would be the same; only the control statements identifying which tape is read
from or written to are changed:

PNC

id, MT2.

REQUEST, TAPE1, VRN =5061.

REQUEST, TAPE2, VRN=TMP123,L,Z HY RW.

FTN.

FILE, TAPE2, BT =K,RT =F RB=100,FL =80, MBL =8000.
LDSET,LIB=FORTRAN/CRM.

LDSET, FILES=TAPE2.

LGO.

7/8/9

FORTRAN program as shown above

6/7/8/9

6.15.4
' Copying Random Files to Magnetic Tape

The most commonly used input/output procedures (such as the READ, WRITE,. and BUFFER
statements in FORTRAN) are designed to read and write file sections in sequential order.
However, SCOPE/HUSTLER provides procedures for processing “random” or “indexed” files.
These terms refer to the way a file is processed rather than to characteristics of file structure. An
indexed file can be read without regard to positioning; instead the user identifies the section to be
read by a key (a name or number), and SCOPE/HUSTLER automatically positions the file to that
section. :

Whether a file (either on tape or disk) is processed by random-access or sequential access methods
is determined by a flag, the RP (random processing) flag. In most cases this flag is not set and the
file is processed sequentially as would any tape-resident file.

If the RP flag is set when a file is created, the file is thereafter considered a random file. Random
files created by this method are called “SCOPE random files.” If the RP flag is not initially set,
SCOPE/HUSTLER flags the file as sequential, but provides random-access processing if the RP
flag is subsequently set. Random files created in this way are called “indexed sequential,” or
“pseudo-random” files.

Programs that use index manipulation facilities almost invariably create SCOPE random files. An
example is the UPDATE program library. Programs that perform their own index manipulation
(e.g. EDITOR) normally use “pseudo-random” files.

Given the distinction between these two types of random files, we can state that problems in
copying random files to and from magnetic tape typically arise only when copying SCOPE ran-
dom files. There are two causes for these problems.

' 1. SCOPE/HUSTLER copy utilities always generate a sequential output file; that is, the RP
flag is not set when the file is created.

2. COPYCF and COPYBF write an end-of-partition mark at the end of the output even when
none is present on the input file. SCOPE random files terminate in a single level 0 end-of-
section; if an additional partition mark is appended by COPYBF, SCOPE/HUSTLER will
assume the index to be missing the next time it opens the file.

The HAL utility FCOPY can be used to circumvent these problems. Designed specifically for fast
real-time copying, FCOPY reads and writes simultaneously. It also copies a file exactly (appending
no extra section marks), and it will, upon your request, create a random output file. The following
example shows how a random UPDATE program library can be stored to and retrieved a tape.

To copy to tape:

ATTACH,OLDPL,RANDOMPL.
REQUEST, TAPE, VRN =123 RW.
HAL FCOPY,I=0LDPL,O=TAPE.

To copy to disk:

REQUEST, TAPE,VRN=123.
HAL,FCOPY,I=TAPE,O=OLDPL/RND.
CATALOG,OLDPL,RANDOMPL.
UPDATE.

Note that the ‘/RND’ suffix indicates that the output file is to be a SCOPE random file.
A similar situation exists when the user wishes to copy word addressable files (described in the

Cyber Record Manager Reference Manual, Chapter 2) to and from magnetic tape. FCOPY has a
WA’ suffix that is used for such files in the same way as the ‘RND’ suffix discussed above.

6.15.5

Recovering Data From Blank-Labeled Tapes

As stated in Section 6.13.2, blank-labeling a tape effectively destroys the contents of the tape. A
labeled tape has the following structure:

VOL1|HDR1« data =| EOF1]+|+

Figure 6-12: Labeled Tape

where

VOL1 is a volume header label
HDR1 is a file header label
EOF1 is afile trailer label

* is a file gap

Blank-labeling consists of writing a header label sequence followed immediately by a trailer label
sequence, thereby indicating an empty tape, as follows:

'VOL1{HDRY+|«|EOF1

*
*
*
*

Figure 6-13: Empty Tape

The term “blank” refers to the fact that most of the information normally recorded in the labels is
left blank.

Blank-labeling writes a trailer label over what was previously data, so that approximately the first
twenty inches of data (8000-15000 characters) are irretrievably lost. The rest of the data remains
intact, but efforts to recover it are impeded by the trailer label, which acts as an end-of-
information indicator. The simplest method of getting past this label is to request the tape as an
unlabeled stranger tape (using the Z and S options on the REQUEST statement). In this mode, the
labels are treated as data and the file gaps as end-of-partitions. -

Skip the first four partitions and the first section of the next partition. Then copy the remainder of
the fifth partition to another stranger tape. Since end-of-partitions do not look like file gaps, they
will not be affected by the copy.

Example:

PNC

id,MT2. .

REQUEST,A,VRN=100,5,Z. Requests blank-labeled tape as stranger,
unlabeled.

REQUEST,B,VRN=101,5,RW. Requests scratch tape as labeled, stranger.

SKIPF,A 4,17, Skip four file gaps to end of first trailer label
sequence. N

SKIPF,A,1. Drop the first block of data, because it is
probably incomplete and would cause a record
fragment error when read as a SCOPE tape.

COPYCF,A,B. Copy through next file gap to recover remaining
data.

REWIND,B.

HAL,FILEDMP,I=B,BCD=0O,R=5. Examine first five blocks to determine how much
data was lost.

6/7/8/9

Recovering data from blank-labeled tapes of other formats—such as binary files or indexed
files—would require other, or additional, steps.

6.16
COMPASS Procedures

The following sections discuss COMPASS procedures for several magnetic tape operations. They
have been removed from the body of the chapter to facilitate the transfer of this information to
another reference manual at a later time.

6.16.1
MSUREQ Macro

Tape requests using the REQUEST control statement are discussed in Section 6.5.1.

COMPASS programmers may issue object-time tape requests. The majority of the tape attributes
are specified in the FET of the file, although the tape VRN(s) is stored in the file’s buffer. The actual
request is issued using the MSUREQ macro. Although the standard SCOPE macro, REQUEST,
has been retained for compatibility, its use is discouraged. The REQUEST macro does not allow
the user to specify the ring status, the NEWPN parameter, or more than one VRN. The format of
the MSUREQ macro call is

MSUREQ Ifn{,rng][,NB]

lfn the local file name, i.e., the address of a FET.

mg RO for read-oniy (no ring)
RW for read-write (ring)
AUTO for automatic assignment (disk requests only)
The default is RO.

NB No bracketing—This option selects alternate write parity error recovery procedures in
place of the noise bracketing of unusable tape (applies only to 7-track tapes). See Section
6.14.1. -

MSUREQ assembles into a call to CPC:

59 29 17 (o]

SA1 lfn R] CPC
REQ of1 n+m 000500
where n =0 forRO andm =0 for NB omitted
=1 forAUTO =10s for NB selected
=4 forRW

Except for the NB and RO/RW/AUTO options, all parameters for the MSUREQ function are held
in the FET indicated by lfn, and its buffer. These options can be inserted in the FET at execution
time, or may be specified when the FET is created with the appropriate FILEx FET creation macro
(i.e., FILEB, FILEC, RFILEB or RFILEC). The following fields of the FET are used.

Word 1: bits 59-18 local file name
bits 17-0 function code (set by CPC)
Word2: bits 59-48 device type
bits 35-24 disposition code
bits 17-0 address of VRN list (FIRST —pointer to first word of buffer)

The device type field has two parts. To request a magnetic tape, bits 59-54 of the device type field
must contain the tape identifier value: 40, for a 7-track tape request, or 41, for a 9-track tape
request. Bits 53-48 of this field specify the format identifier value, which contains the sum of the
values for the recording density, the label format, and the data format as follows:

binary octal
bits 53-48

7-TRACK TAPES
xxxx00 HI density, 556 bpi 0
xxxx01 LO density, 200 bpi 1
xxxx10 HY density, 800 bpi 2
xx00xx unlabeled 0
xx01xx SCOPE-ANSI labels 4
xx10xx 3600 labels 10
00xxxx SCOPE data format 0
10xxxx S data format 40
11xxxx L data format 60

9-TRACK TAPES

xxxx10 HD density, 800 bpi 2
xxxx11 PE density, 1600 bpi 3
xx00xx . unlabeled 0
xx01xx SCOPE-ANSI labels 4
00xxxx SCOPE data format 0
10xxxx S data format 40
11xxxx L data format 60

The format identifier is calculated by summing the octal values for the density, label, and data for-
mat.

To form the device type field it is necessary to concatenate the tape identifier and format identifier
values. For example, to request a 7-track unlabeled S tape at 800 cpi, a device type of 4002, must
be specified. To request a 9-track labeled SCOPE tape at 800 cpi, the device type is 4106s.

In the FILEx macro, the parameter DTY = is used to specify the device type. For example,
DTY =4107 specifies a labeled SCOPE 9-track tape recorded at 1600 bpi. A device type of 4040s
requests an unlabeled stranger 7-track tape recorded at 556 bpi.

Bits 35-30 of the disposition code field specify the NS, NR and NB options as well as the con-
version mode for 9-track tapes. The format is as follows:

binary octal
xxxx01 EB, EBCDIC conversion 1
xxxx10 AS, AS conversion 2
xxx1xx NB, no noise brackets 4
x1xxxx NR, no error recovery 20
IxXXXX NS, nonstandard labels 40

The disposition code is specified with the DSC= parameter on the FILEx macro. For example,
DSC =4200, specifies a tape recorded in ASCII and expects nonstandard labels which will be

processed by the user.

The NEWPN parameter and the VRN list are specified in the file buffer, starting at the location
pointed to by FIRST. The format of this parameter vector is:

Word 0 NEWPN the 6 or 7 character problem number (stored in L format) to be written into
the tape header label, If this word is binary zero, the PN is taken from the
job PNC. To specify NEWPN=0 (no PN), this word should contain
7L0000000.)

Word 1 VRN,

Word k .VRN., :l'he VRN(s) of the tape(s) to be requested. These should be right-justified
within the upper six characters of the word. If a VRN is less than six
characters, add leading Display code zeros (e.g., 6L.000321).

Wordk+1 0 the list terminator: a word of binary zero.

Examples:

1. Request tape 1025 as unlabeled, HI density, 7-track, SCOPE formatted, and with a write-
enable ring.

TAPE1 FILEC BUF1,513,DTY =4000B,(WSA =WSA1,20B)

BUF1 DATA 0
DATA 6L001025
DATA 0
BSS 510

WSA1 BSS 20B

MSUREQ TAPE1,RW

2. Request tape 601, with continuation reels 602-603, as 7-track SCOPE-ANSI labeled,
SCOPE formatted, and read-only.

TAPE2 FILEB BUF2,1029,DTY =4004B

BUEF2 DATA 0
DATA 6L000601,6L000602,6L000603
BSSZ 1025
MSUREQ TAPE2 default is read-only

3. Request tape 102 as an unlabeled stranger 9-track, recorded in ASCII at 1600 bpi.

TAPE3 FILEC BUF3,137,DTY = 4143B,DSC =0200B
BUF3 DATA 0,6L000102,0

BSS 133

MSUREQ TAPE3,NB,RW

4. Request tape 3889, with continuation reel 3912, as a HY density, labeled SCOPE tape.
Request the reels to be mounted with write-enable rings and specify NEWPN=0 to allow
write access for any PN.

TAPE4 FILEB BUF4,1029,DTY =4006B
BUF4 DATA 710000000
DATA 61.003889,6L003912
BSSZ 1025
MSUREQ TAPE4,RW

6.16.2
COMPASS Label Processing

Label processing is discussed in Section 6.11.3. This section discusses the COMPASS LABEL
macro, which allows the user to insert values into the FET fields that describe the label. Words 10-
13 of the FET supply the following data:

FET Tape Label Fields
59 47 29 23 17 0
File Label Name (first 10 characters)
File Label Name (last 7 characters) Position Number
Edition No. Retention Cycle . Creation Date
Multifile Name Reel Number

File 17 alphanumeric characters (starting with a letter), left-justified with zero fill,

Label Name identifying the file. If this field is zero when labels are written, the tape labels will
contain blanks in the file label name field. When the tape is read, the file label
name is checked even if the FET field is zero.

Edition 2 numeric characters identifying successive editions of the same file. If zero when
labels are written, 01 is assumed. If zero when labels are checked, the edition

number field is ignored.

Retention 3 numeric characters specifying the number of days that the tape is to be protec-

Cycle ted from accidental destruction. This value is added to the creation date to com-
pute the expiration date when labels are written. The expiration date is checked
when the tape is opened for writing. The default value is zero. A value of 999 is
considered an infinite retention period.

Creation 5 numeric characters: the first two specifying the year, the other three specifying

Date the Julian day of the year (001 to 366). If omitted or zero when labels are written,
the current date is used. If zero when labels are checked, the creation date is
ignored.

Reel 4 numeric characters specifying the sequence of reels in a multireel file. If omitted

Number when labels are written, 0001 is stored in the FET and written in the tape labels.

The FET field is incremented by one at the conclusion of volume trailer label
processing for each reel. It is reset to 0001 when the file is closed. If omitted when
labels are checked, the reel number is ignored.

Multifile 6 alphanumeric characters (starting with a letter), left-justified Qith zero fill.

Name Since the multifile capability is not implemented in SCOPE/HUSTLER, this field
should be ignored.

Position 3 numeric digits specifying the sequence of the file in a multifile set. Like the

Number multifile name, this field may be ignored. ’

The tape label fields of the FET may be specified using the LABEL macro. This macro call must im-
mediately follow a FILEB or FILEC macro call containing the LBL parameter. The format of the
LABEL macro is

lfn LABEL fln,ed,ret,create,reel, mfn,pos

lfn local file name (identical to the location field of the preceding FILEB or FILEC
macro).

fln file label name

ed edition number

ret retention cycle

reel reel number

mfn multifile name

pos position number

6.16.3

Example:

IDENT SAMPLE

ENTRY START
TAPE2 FILEB OBUF,1029,LBL

TAPE2 LABEL (SURVEY 2 RAW DATA),02,999

Processing Stranger Tapes in COMPASS

Stranger tapes are discussed in Section 6.9.3. This section describes COMPASS input/output
procedures for stranger tapes.

A 7-word FET is mandatory for processing S and L tapes. Word 7 of the FET specifies the unused

bit count (UBC) and the maximum logical record size (MLRS) as follows:

59 29 23 17 0

UBC MLRS

The unused bit count allows the user to process records which are not an integer multiple of cen-
tral memory words. For a READ or READSKP request, SCOPE/HUSTLER will store into the
UBC field the number of low-order unused bits in the last data word of the record (pointed to by
IN-1). For a WRITE, WRITER, or WRITEF request, SCOPE/HUSTLER will read the UBC field
and adjust the length of the record accordingly. For example, to write a record of 124 characters,
the user would set IN and OUT to reflect 13 words of data, set the UBC field to 36, and then issue a
WRITE or WRITER request. On 7-track tapes, data is transferred in 12-bit bytes, and UBC should
contain a multiple of 12; if it is not a multiple of 12 for a write request, SCOPE/HUSTLER will
reduce the value to the nearest multiple of 12, but without changing the FET. For 9-track tapes,
UBC may be a multiple of 6 (coded mode) or 8 (binary mode).

The MLRS field specifies the maximum number of words that a record may contain. If the data
from OUT to IN-1 exceeds MLRS on a write request, the device capacity exceeded code (10B) is
returned to the FET, and nothing is written. If the tape contains a block longer than MLRS on a
read request, error code 10B is returned and nothing is transferred to the circular buffer. If the
MLRS field contains zero for an S tape FET, the maximum value of 512 words is assumed. For L
tapes, the default is LIMIT-FIRST-1 for standard reads and writes, and LIMIT-FIRST-2 for
READN and WRITEN.

The effects of various input/output requests are outlined below.

READ Each request transfers one block to the circular buffer. If the buffer does not have at
least MLRS words available, the request is ignored. If the block exceeds MLRS words,
no data is transferred to the buffer, the tape is positioned to the next block, and error
code 10B is returned to the FET. Users who are doing read requests without auto-
recall should note that the EOR bit is set after each request. The EOF bit is set after a
file gap is sensed. An EOR level 00; is returned for each block read on an S or L tape;
afile gap on an S or L tape generates an EOR level 17, (EOF).

READSKP For S and L tapes, the READSKP request is identical to the READ request except that
the buffer does not need to have MLRS available words. If the buffer is filled before
the entire block is transferred to it, the remainder of the record is discarded and the
tape is positioned to the next block.

WRITE Each request writes one block, the size of which is determined by the IN and OUT

WRITER pointers and the UBC field. If the record size exceeds MLRS words or constitutes a

WRITEF noise record (less than 8 characters for 7-track, or 6 characters for 9-track), no data is
transferred and error code 10B is returned. A WRITER request is identical to a
WRITE request with a level number less than 17 ; that is, the level number is ignored.
A WRITEF request or a WRITER request of level 17, writes one block (if the buffer is
not empty) followed by a file gap. '

READN These procedures, used exclusively for S and L tapes, allow several records to be

WRITEN transferred with a single request. A READN request will transfer as many blocks as
possible until end-of-partition or end-of-information, or until the buffer does not con-
tain room for the next record (MLRS+1 words). Reading may continue at tape speed
(i.e., without releasing and reloading the PP between records) as long as the available
buffer space does not drop below 2(MLRS+1)+1 words. At the beginning of each
record, the system inserts a header word stating the length of the record and the num-
ber of unused bits in the last data word.

The same header word must be supplied by the user for each record written with a
WRITEN request. The header words are not transferred to the tape but merely inform
the system of where one record ends and the next begins. Output will be continuous
as long as the user stays one full record ahead of the system output routine.

SKIPF If level 17, is specified, the tape is skipped until a tape mark has been read. If any
SKIPB other level is specified, it is assumed to be level 0. Each S or L tape block is treated as a
section of level 0.

6.16.4
COMPASS Parity Error Procedures

Parity errors are described in Section 6.14. The handling of unrecovered read and write parity
errors depends on whether the error processing (EP) bit is set in the FET of the file. In COMPASS,
this processing is optional.

The COMPASS programmer may set the EP bit (bit 44 of the second FET word) by specifying the
EPR parameter of the FILEC or FILEB macro. If the EP bit is set, the system will store error code 04
in bits 9-13 of the FET code and status field and return control directly to the program rather than
request operator action. :

In the case of an unrecoverable read parity error, the bad block is transferred to the buffer and the
IN pointer is updated as usual. In the case of an unrecoverable write error, the bad block remains
written on the tape but the OUT pointer is not updated.

If file action requests are made through CPC or CIO=, the user may establish an “owncode”
routine to be executed when an error condition is detected on the previous request. The owncode
option is specified with the (OWN =eoi,err) parameter of the FET creation macro, where eoi is the
address of an end-of-information routine and err is the address of the error processing routine. To
omit the eoi address, use the form (OWN = err).

When CPC or CIO= is called for a file action request, the code and status field of the FET is
checked to determine if there was an error on the previous request. If so, word 9 of the FET is
examined for an error processing address. If word 9 is zero, the error code is ignored and the
current request is processed; otherwise, control is transferred to the indicated code.

More precisely, the owncode routine is called by copying the exit word from CPC or CIO = (the
.one that returns control to the user) into the first word of the routine, putting the contents of the
first FET word into X1, and branching to the second word of the routine. By branching to its first

6.16.5

word, the user's owncode routine will cause a branch to the point in the program to which control
would have returned had the error not occurred (i.e.; the instruction word following the call to
CPCorClO=).

The following program illustrates how to set up an error processing owncode routine. The routine
in this case does not do very much. It checks the code and status field and, depending on whether
or not there was a parity error, either dumps the FET and buffer of TAPE1 or aborts the run.

IDENT EXAMPLE
ENTRY START, TAPE1
EXT ERR
TAPE1 FILEB BUF1,1029,DTY =4004B,(OWN = ERR),EPR
BUF1 DATA 0,6L003812,0
BSS 1026
START MSUREQ TAPE1,RO
OPEN TAPE1,READ,RECALL
READ TAPE1,RECALL
SAl TAPE1+2
IDENT ERR
ENTRY ERR
ERR BSSZ 1 entry/exit word
AX1 9 position error code
MX2 55 form mask
BX2 -X2*X1 extract error code
SX3 4 4 =parity error code
IX3 X2-X3 test for 04 code
ZR X3,PE . branch if parity error
ABORT otherwise abort
PE DMP =XTAPE1,=XSTART dump buffer and FET
JP ERR return (would return to SAl
TAPE1+2)
END

COMPASS End-of-Volume Procedures

End-of-volume procedures are described in Section 6.12. The user may request alternative end-of-
volume procedures by setting the user-processing (UP) bit in the FET.

In COMPASS, the UP bit can be set by specifying the UPR parameter of the FILEB or FILEC
macro. If the UP bit is set, the system will not swap reels when the end-of-reel is detected, but will
store the end-of-reel code (02s) in the FET and exit to the user. CPC will call the end-of-
information “owncode” routine if one was specified.

7
SCOPE/HUSTLER Control Statements

Chapter 7 serves as a reference guide to all the control statements that access products in the
SCOPE/HUSTLER system having “full support” or “partial support.” “Support” refers to the
amount of maintenance, improvements and consulting help on the products performed by Com-
puter Laboratory staff. See the Facilities and Policies Handbook, Section 7.6, for a full discussion
of support.

Included in this chapter are both standard SCOPE statements developed by CDC, and those
statements modified at or unique to MSU. Some statements are useful only in batch computing;
others may have different functions in batch and interactive modes. This chapter emphasizes batch
use, and contains reference to the Interactive System User’s Guide for users who wish to learn
more about the interactive applications of specific control statements. Those statements unique to
the interactive system are not mentioned here; they are documented in the Interactive System
User’s Guide, Chapter 2.

Control statements with similar functions, such as language processing or file manipulation, are
arranged alphabetically under general categories. Some statements fit appropriately into more
than one category; a chapter table of contents is included here to help users find individual
descriptions.

Categories and Control Statements Section Page
Control Statement Processing 7.1 7-5
CCEXEC ' 7.1.1 7-5
EXEC : 7.1.2 7-6
EXIT 7.1.3 7-8
Authorization File Manipulation 7.2 7-11
AUTHORF 7.2.1 7-11
Job Input 7.3 7-12
Job Card 7.3.1 7-12
Password Card 7.3.2 7-12
Equipment and File Assignment 7.4 7-13
DISPOSE , 7.4.1 7-13
FILE 7.4.2 7-16
FILES ' 7.4.3 7-17
NEWNAME ' 7.4.4 7-18
REQUEST 7.4.5 7-18
RETURN 7.4.6 7-20
TAPRES ‘ 7.4.7 7-21

UNLOAD 7.4.8 7-21

Categories and Control Statements

File Copying and Reformatting
COMBINE
COPY
COPYBCD
COPYBR, COPYCR, COPYBF, COPYCF
COPYL and COPYLM
COPYN
COPYS xx
COPY8P
FCOPRY
FORM
PAPERT
SORTMRG

File Examination
COMPARE
FILEDMP
LISTTY
PRINTLB
SCAN

File Manipulation
BKSP
REWIND
SKIPB, SKIPF

File Editing
EDITOR

Loader Control
EXECUTE
LDSET
LIBLOAD
LOAD
name
NOGO
SATISFY

- SEGLOAD
SLOAD

Loader-Related Control Statements
LIBRARY
MAP

Field Length Control Statements
AUTORFL
MFL
REDUCE
RFL

Job Memory Management Examples

Section

7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11
7.5.12

7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7.7

7.7.1
7.7.2
7.7.3

7.8
7.8.1

7.9

7.9.1
7.9.2
7.9.3
7.9.4
7.9.5
7.9.6
7.9.7
7.9.8
7.9.9

7.10
7.10.1
7.10.2

7.11

7.11.1
7.11.2
7.11.3
7.11.4
7.11.5

Page

7-23
7-23
7-24
7-25
7-25
7-27
7-29
7-31
7-32
7-33
7-34
7-35
7-35

7-36
7-36
7-37
7-41
7-43
7-44

7-46
7-46
7-46
7-47

7-49
7-49

7-53
7-53
7-54
7-58.1
7-59
7-59
7-61
7-61
7-62
7-62

7-63
7-63
7-64

7-65
7-67
7-67
7-68
7-68
7-68

Categories and Control Statements Section Page

Processing Options 7.12 7-70
BANNER 7.12.1 - 7270
COMMENT 7.12.2 7-70
COPIES _ 7.12.3 7-70
DAYMSG 7.12.4 7-71
LIMIT 7.12.5 7-71
PAUSE 7.12.6 7-72
RERUN 7.12.7 7-73
SWITCH 7.12.8 7-74

Debugging 7.13 7-75
DAYFILE 7.13.1 7-75
DMP 7.13.2 7-78
DMPX 7.13.3 7-80
ERRS 7.13.4 7-81
MODE 7.13.5 7-83
TRAP 7.13.6 7-84

Permanent File Utilities 7.14 7-86
ATTACH 7.14.1 7-86
CATALOG 7.14.2 7-87
EXTEND 7.14.3 7-89
PFDUMP 7.14.4 7-89
PFLIST 7.14.5 7-91
PFLOAD 7.14.6 7-94
PNPURGE ' 7.14.7 7-95
PURGE 7.14.8 7-96

Libraries 7.15 7-97
APLIB 7.15.1 7-97
ARCHIVE ' 7.15.2 7-101
COPYCL 7.15.3 7-102
HAL 7.15.4° 7-102
LIBEDIT 7.15.5 7-105
RANLIB 7.15.6 7-106
UPDATE 7.15.7 7-110

Compilation and Assembly 7.16 7-115
APL 7.16.1 7-115
BASIC 7.16.2 7-115
COBOL 7.16.3 7-117
COMPASS 7.16.4 7-120
FTN4 7.16.5 7-123
FTN5 7.16.6 7-129

'F45 conversion aid . 7.16.7 7-129.9
MNF 7.16.8 7-130.2
PASCAL 7.16.9 7-133

On-Line Documentation 7.17 7-134
HELP 7.17.1 7-134

Cyber Record Manager Utilties i 7.18 7-137
ESTMATE 7.18.1 7-137
IXGEN 7.18.2 7-137

SISTAT 7.18.3 7-138

Categories and Control Statements

Data Base Management Utilities
DDL
DFRCV, DFRST
Qu
REPORT

Program Packages
APEX
GCS
SPSS
STAT

The description of each control statement contains the calling sequence, definition of parameters,
and special cases, if any. In some cases, control statements are explained in detail in another Com-
puter Laboratory publication or Control Data publication; the user is referred to other sources

where appropriate.

For quick reference, turn to Appendix] of this volume, which contains a one-sentence summary of
each control statement, as well as detailed notation of the syntax of each. Control statement
descriptions can also be obtained from the system by using the HELP utility, as described in Sec-

tion7.17.

Section

7.19

7.19.1
7.19.2
7.19.3
7.19.4

7.20

7.20.1
7.20.2
7.20.3
7.20.4

Page

7-139
7-139
7-141
7-143
7-144

7-145
7-145
7-148
7-149
7-151

7.1

' Control Statement Processing

7.1.1
CCEXEC

This section describes control statements that allow the user to choose alternate methods of con-
trol statement processing.

The CCEXEC control statement allows control statements to be read from a user-created file. This
statement is an alternative to the more commonly used statement, EXEC, described in Section
7.1.2. The format is:

HAL,CCEXEC, execlfn.

execlfn the name of the local file that contains the control statements to be executed. This is
called an “exec” file.

The file execlfn is rewound, and the first section is copied to the file ZZZZEXC. Then the control
statements following the CCEXEC statement are copied to the file ZZZZEXC and ZZZZEXC is

executed.

CCEXEC_files used by interactive jobs may contain both interactive commands and EDITOR
directives. EDITOR directives must be preceded by the command ‘EDITOR.’ and followed by the
command ‘END." Interactive commands must be preceded by the command ‘MISTIC. See the In-

teractive System User’s Guide, Section 9.1.

Example:

Using the same exec file created in Example 1 of Section 7.1.2, the following job illustrates the dif-
ference between EXEC and CCEXEC. Suppose a user wishes to obtain a printed copy of one of the
files used in the exec file for this run only. The following job can be run:

PNC

job card

PW =password
ATTACH,X,MYEXECFILE.
HAL,CCEXEC, X.
COPYSBF,F,OUTPUT.
7/8/9

data

6/7/8/9

The COPYSBF control statement will be executed after the statements on the exec file have com-
pleted execution. If the EXEC statement had been used, the COPYSBF statement would not have
been executed (see Section 7.1.2).

v

7.1.2
EXEC

The EXEC statement enables the user to execute control statements from a file other than INPUT,
i.e., from a source other than the control section of the job deck.

EXEC, execlfn.

execlfn the name of a coded local file containing card images of SCOPE/HUSTLER control
statements; this file is called an “exec file.”

When the EXEC statement is encountered, subsequent control statements are read from the file
execlfn. The control statement processor always starts from the beginning of the file, regardless of
its current position, but does not reposition the file.

Caution: The EXEC utility does not return to the original control section after executing the con-
trol statements from file execlfn. To continue processing the remaining control statements of the
job deck, the user can use the HAL utility CCEXEC (see Section 7.1.1) or COMPASS macro
EXECM (see Section 8.5.15), rather than the EXEC statement.

Exec files used by interactive jobs may contain both interactive commands and EDITOR direc-
tives. EDITOR directives must be preceded by the command ‘EDITOR.’ and followed by the com-
mand ‘END." Interactive commands must be preceded by the command "MISTIC.’ and followed by
‘END.’ See the Interactive System User’s Guide, Section 9.1.

Example 1: Implementing an exec file.

The EXEC statement is useful when a sequence of control statements is executed repeatedly. To
illustrate, suppose data is frequently merged into a sorted file named CUMULATIVEDATA,
which is then processed to generate several tables of summaries. Both the sorted file and the sum-
maries are then cataloged. The following job catalogs a file of control statements that will later be
used as an exec file.

PNC

job card

PW =password

COPYCR,INPUT, X.

CATALOG,X,MYEXECFILE,RP=999.

7/8/9

ATTACH,A,SORTDIRECTIVES. file with SORT/MERGE directives.
ATTACH,B,CUMULATIVEDATA. old data file.
ATTACH,C,SUMMARIES.

ATTACH,D,BINARYPROGRAM.

SORTMRG,I==A.

D. "Program D writes summary file E and data file F.
SKIPF,C,1.

COPYCF,E,C.

EXTEND,C.

PURGE,B.

CATALOG, F,CUMULATIVEDATA.

6/7/8/9

' After cataloging MYEXECFILE, the user need only suomit the following job each time data are
added to CUMULATIVEDATA.

PNC

job card

PW =password
ATTACH,X,MYEXECFILE.
EXEC,X.

7/8/9

data

6/7/8/9

Auto-Execution

A PN Manager can establish an exec file or program that will automatically execute whenever a
user under that problem number logs in or runs a batch job. Execution of the exec file or program
can be made optional or mandatory.

The exec file to be used at the start of a job is called the initialization file; it can be created and
changed only by the PN manager. The AUTHORF utility is the means for cataloging the
initialization file and for controlling its use. This process is described in Section 2.5.7.

The following discussion describes how an initialization file is executed. (Note: since the in-
. teractive use of auto-exec is covered in Chapter 9 of the Interactive System User's Guide, the
discussion here is limited to batch use of auto-exec.)

After an initialization file has been implemented by the PN manager using AUTHORF, individual
users under that problem number will be subject to its restrictions, unless a user requests other-
wise. The job card parameters INIT and NOINIT allow the user some control over execution of
the initialization file.

NOINIT If specified on the job card, no initialization file will be used, unless the PN manager
has made execution of the file mandatory; in this case, the job will abort.

INIT This causes the initialization file to be used. If the initialization file is not available, or
if the PN manager has requested that the file not be used, the job will abort.

The initialization file, cataloged under the permanent file name “INITFILEFORPNnnnnnBATCH"
is attached at the start of the job to the local file INITFIL. Processing of the file continues as it
meets one of the following conditions:

1. If the file contains a program, the control statement 'INITFIL." is executed, after which any
control statements in the file INPUT are processed.

2. If the file contains a sequence of control statements, those statements will be executed; then
control returns to the INPUT file. The initialization file may contain an EXEC statement;
the control statements added by that EXEC will be executed before control returns to the
INPUT file. Executing an EXIT statement when processing INITFIL will cause control to
return to the file INPUT unless ‘EXIT,U.’ (unconditional termination) or ‘EXIT,C.’ (con-
tinue execution) are specified (see Section 7.1.3).

3. If the initialization file cannot be attached, the job will not be allowed to execute. This
prevents a job from executing a control statement sequence that depends on the results of
the initialization file.

7.1.3
EXIT

4. If the initialization begins with an end-of-section (EQS) or an end-of-partition (EOP), the
job will abort.

Example 2: Executing an auto-exec file

Suppose that the exec file created in Example 1 above is to be automatically executed when a user
submits a batch job which includes data to be merged. The PN manager can create the
initialization file by running the following job:

PNC

job card

PW =password

COPYCR,INPUT, X. .
AUTHORF,CHANGE,BINIT,LFN = X,PW =MRGFILEPW,REQUIRED.

7/8/9
control statements as given in Example 1

6/7/8/9

A user need only run the following job to have the control statements in the initialization file
process the given data.

PNC

job card

PW =password
7/8/9

data

6/7/8/9

The EXIT statement specifies that a group of control statements is to be executed in case of a fatal
job error.

EXIT[,option].

If EXIT." alone is given in the control section, the following actions will take place: if no error oc-
curs, the job will terminate when ‘EXIT.’ is encountered. When an execution error occurs (see list
below) the control statements following the ‘EXIT." statement are executed.

The options described below cause varied results depending on job error status at the time the
‘EXIT,option.’ statement is encountered.

S allows processing to continue even after a control statement error. If a control statement
error occurs, the control section is searched for an ‘EXIT,S.’ statement.

C causes execution to continue even if no errors are encountered; if executed normally, con-
trol will be passed to the following statement, instead of terminating the job. If an error oc-
curs, ‘C’ has no effect.

U causes an unconditional exit (applies to batch initialization files only). If ‘EXIT,U." is
executed normally, the job will terminate. If an error occurs, ‘U’ has no effect.

Without the U or C parameter, if an EXIT statement is executed normally {rom a batch
initialization file, control returns to the input file control section. Note: C and U may not be
specified on the same EXIT statement; either, however, can be used with S.

The following chart summarizes the action caused by the various EXIT statements. “Resume
processing” means control is passed to the next control statement; “skip” means control is passed

to the next EXIT type statement.

Error Condition EXIT. EXIT,C. EXIT,S. EXIT,U. EXIT,C.S.
No error End job* Resume End job* Endjob Resume
Processing Processing

Special errors Skip Skip Resume Skip Resume

{see list below) Processing Processing

Execution errors Resume Resume Resume Resume Resume

(see list below) Processing Processing Processing Processing Processing

Special errors:

1. Control statement errors.

2. Attempt to load output from a bad assembly or compilation.

Execution errors:

1. Requested resources exceeded—Job has used all central processor time, money (job cost),
files, or mass storage that it requested on the job card.

2. Operator drop—processing of a job step is halted by the operator.

3. Arithmetic error—central processor error exit has occurred; this includes mode errors.

4. PP abort—peripheral processor has encountered an illegal request such as illegal file name
or request to write outside the job field length. .

5. CP abort—central processor program has requested that the job be terminated.

6. PP call error—monitor has encountered a peripheral processor call error entered in RA+1
by a central processor program.

7. ECS parity error.

8. Auto-recall error—job entered auto-recall with completion bit set.

9. Job hung in auto-recall—no activity exists for a job in auto-recall, and completion bit is not

set.

Certain conditions cause immediate termination of a job, regardless of the EXIT statement. These

are:

1Return to input file of batch job if encountered on an initialization file.

1. return of the job to the input queue (RERUN);

2. a job card error; or

3. incorrect reading of the job (a checksum error during job input).

Note: Any job interrupted because of resource limits (job cost, time, files or mass storage) being

exhausted will be given an extension of that resource to allow the user to catalog any intermediate
results, list any output, etc. The amount of the extension is equal to the following:

Dollar limit: one-half of the job card JC value or $1.00, whichever is less.
Time limit:) 5 CPU seconds

Disk storage limit: 500, PRUs

File limit: S files

Example:

The example below shows how ‘EXIT.” and ‘EXIT,S.’ might be used to inhibit unwanted output.
Assume that debugging information from program EXAMPLE is to be written on TAPE1.

PNC
job card
PW =password
FTN,L=LIST.
LGO.
EXIT.
REWIND, TAPEL.
COPYCF, TAPE1,OUTPUT.
EXIT,S.
ERRS,I=LIST, ALL.
7/8/9
PROGRAM EXAMPLE(INPUT, OUTPUT, TAPEL)

7/8/9
data
6/7/8/9

If the job executes normally, the ‘EXIT.’ statement will end the control section and only the results
of execution will be printed. Should FTN run-time errors, mode errors, time or dollar limits occur,
control will skip to the ‘EXIT." statement, and the debugging print on TAPE1 will be copied to
OUTPUT; and execution will then terminate. If compilation errors occur, when an attempt is
made to load and execute the compiled binary (the LGO statement) control will skip to the
‘EXIT,S.’ statement and a list of the errors is produced by ERRS (see Section 7.13.4).

7.2
Authorization File Mampulatxon

The following control statement, which is unique to MSU, examines or alters various fields of the
user’s Authorization File entry. For a description of these fields, see Section 2.6.2.

7.2.1
AUTHORF
AUTHORE is a utility for manipulating and displaying the contents of the Authorization File. The
items that may be altered and/or listed are determined by the user’s level of authorization. See
Chapter 2 for a complete description of AUTHORF.
The AUTHOREF control statement has two forms. The following form would be suitable when
only one AUTHOREF directive is to be executed:
AUTHOREF, afdirective. .
afdirective any legal AUTHOREF directive (see Section 2.5).
When more than one AUTHOREF directive is to be executed, the following form should be used:
AUTHORF[,I=inlfn]{,O=outlfn][, ABORT).
I=inlfn specifies the name of the file from which AUTHOREF is to read the directives.
. The default is INPUT in batch mode; in interactive mode the directives will be
read from the terminal.

O =outlfn specifies the name of the file upon which AUTHORF writes error messages,
DISPLAY output, echoed input lines, etc. The default is OUTPUT in batch
mode, terminal for interactive mode.

ABORT requests AUTHORF to abort the job in the event of fatal AUTHOREF errors.
Unless this parameter is specified, AUTHORF will always terminate normally;
that is, control will pass to the next control statement regardless of any
AUTHOREF errors.

Note: Both forms of the AUTHOREF control statement allow the processing of continuation cards
in batch mode. The parameter list may be separated after any comma and continued on the next

card.

Examples: See Chapter 2 for examples, especially Section 2.5.3.

7.3
Job Input

7.3.1
Job Card

7.3.2

The following statements identify the user to the authorization system.

The job card must follow the PNC on all user job decks submitted via card readers, or be the first
statement in a job submitted via DISPOSE. The format is shown below. Optional parameters may
be specified in any order.

id[,Cc]{,CMcm]{,INIT| ,NOINIT{,JCjc][,LI}{,M64]{.MSms