60497500

@5) SQNTROL DATA
CORPORATION

SORT/MERGE VERSIONS 4 AND 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

b

60497500

@5) SQNTROL DATA
CORPORATION

SORT/MERGE VERSIONS 4 AND 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1
SCOPE 2

REVISION RECORD

REVISION DESCRIPTION _
A Manual released.
(11-01-75)
B This revision documents version 4.4 of Sort/Merge; changes include feature CP156, Performance
(03-01-76) Enhancements.
C This revision documents version 4.5 of Sort/Merge. Changes include feature CP173, use of the
(11-15-76) Common Memory Manéger for space allocation. This manual is at PSR level 439,
D This revision documents feature CP1731 at PSR level 446. Changes include key comparison
(03-01-77) technique for macro sorts. -
E This revision documents version 4.6 of Sort/Merge at PSR level 472. Changes include feature
(04-15-78) 162, interface with BAM 1.5.
F This revision documents the Sort/Merge interface with FORTRAN 5 at PSR level 528.
(12-02-80)

Publication No.
60497500

Address comments concerning
REVISION LETTERS I, O, @ AND X ARE NOT USED this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086
©COPYFUGHT CONTROL DATA CORPORATION 1975, 1976, 1977, 1978, 1980
All Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

e e e e Y

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
A bar by the page number

in the margins or by a dot near the pa%
indicates pagination rather than content

e

as changed.

Page Revision
Cover -
Title Page -
ii F
iii/iv F
v F
vi F
vii F
1-1 thru 1-3 F
2-1 B
2-2 F
2-3 C
2-4 E
2-5 F
2-6 c
3-1 F
3-2 D
3-3 thru 3-5 A
3-6 E
3-7 E
4-1 F
4-2 F
4-3 c
4-4 C
4-5 F
4-6 F
4-7 E
4-8 E
4-9 F
4-10 E
4-11 A
4-12 B
4-13 A
4-14 A
4-15 F
4-16 F
4-17 thru 4-23 A
4-24 thru 4-27 F
5-1 thru 5-3 E
5-4 L
5-5 c
5-6 B
5-7 E
5-8 B
5-9 A
5-10 A
5-11 F
5-12 E
5-13 thru 5-15 D
6-1 F
6-2 E
6-3 thru 6-10 F
6-10.1 F
6-10.2 F
6-11 A

60497500 F

number if the entire page is affected.

Page

Revision

6-12

6-13

6-14

6-15

6-16

7-1 thru 7-15
A-1 thru A-4
B-1 thru B-4
B-5 thru B-7
B-8

B-9

B-10

B-11 thru B-13
c-1

c-2

c-3

D-1 thru D-11
D-12 thru D-15
E-1 thru E-15
F-1 thru F-3
G-1 thru G-5
H-1

H-2

Index-1 thru -6
Comment Sheet
Mailer

Back Cover

(MMM MmMMmeEE2mMmEMTMMmMMmMmMmTMMmMmTMTMEOoOREo =

iii/iv @

PREFACE

Sort/Merge high-speed record processing facilities are available through the use of control statements and
directives. User programs can call Sort/Merge with the COMPASS assembly language macros, the
FORTRAN interface routine calls, or through the COBOL language.

The user is assumed to be familiar with the operating system on which Sort/Merge is to be run as well as
with the calling language.

The Sort/Merge system is available under the following operating systems:

Sort/Merge Version 4.6 operates under NOS 1 for the CONTROL DATA® CYBER 170 Series; CYBER 70
Models 71, 72, 73, and 74 and 6000 Series Computer Systems.

Sort/Merge Version 4.6 operates under NOS/BE for the CDC®CYBER 170 Series; CYBER 70 Models 71,
72, 73, and 74; and 6000 Series Computer Systems.

Sort/Merge Version 1.0 opet:ates under SCOPE 2.1 for the CONTROL DATA CYBER 170 Model 176,
CYBER 70 Model 76 and 7600 Computer Systems.

Documents of primary interest (in alphabetic order) to Sort/Merge users include the following:

Publieation
Publication Number
COBOL Version 5 Reference Manual 60497100
COMPASS Version 3 Reference Manual 60492600
CYBER Record Manager Basic Access Methods 1.5 60495700
Reference Manual
FORM Version 1 Reference Manual 60466200
FORTRAN Extended Version 4 Reference Manual 60497800
FORTRAN Version 5 Reference Manual 60481300
NOS Version 1 Reference Manual, Volume 1 of 2 60435400
NOS/BE Version 1 Reference Manual 60493800
SCOPE Version 2 Reference Manual 60342600
SCOPE Version 2 Record Manager Reference Manual 60454690
Sort/Merge Version 4 and 1 Instant 60497600
Sort/Merge Version 4 Users Guide 60482900

60497500 F v

The following documents (in alphabetic order) are of secondary interest to users of Sort/Merge:

Publication
Publication Number
CYBER Record Manager Basic Access Methods 1.5 60495800
Users Guide
NOS Version 1 Manual Abstracts 84000420
NOS/BE Version 1 Manual Abstracts 84000470
Software Publications Release History 60481000

The NOS manual abstracts and the NOS/BE manual abstracts are instant-sized manuals containing brief
descriptions of the contents and intended audiences of all NOS and NOS product set manuals, and NOS/BE
and NOS/BE product set manuals, respectively. The abstracts manuals can be useful in determining which
manuals are of greatest interest to a particular user. The Software Publications Release History serves as
a guide in determining which revision level of software documentation corresponds to the Programming
System Report (PSR) level of installed site software.

CDC manuals can be ordered from Control Data Corporation Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
funetioning of undesecribed features or parameters.

® vi 60497500 F

CONTENTS

T e c———— e — e —— e e e B

1. INTRODUCTION

Comparison of Sort/Merge 1
and Sort/Merge 4

Sort/Merge 1

Sort/Merge 4

Sort/Merge Capabilities

Records and Files

Checkpoint/Restart

Sort/Merge Dayfile Messages

2. BSORT KEYS

Sort Key Deseription
Key Length and Position
Key Type
Collating Sequence
Sort Order
Signed Numeric Data
Multiple Keys
Alternate Specification of Key Types

3. OWNCODE ROUTINES

Exit 1: Processing of Input Records
Exit 2: Processing of Input Files
Exit 3: Processing of Output Records
Exit 4: Processing of Output Files
Exit 5: Processing of Duplicate Keys
Exit 6: Processing of Nonstandard Labels
Input
Output
Owncode Summary
Job Example

4, DIRECTIVE SORT/MERGE PROCESSING

Control Statement Requirements
SORTMRG Statement

Parameters
Sort/Merge Directive Conventions
Sort/Merge Directives

SORT

MERGE

BYTESIZE

FILE

FIELD

KEY

SEQUENCE

EQUATE

OPTIONS

OWNCODE

Character Sets

Sort/Merge Diagnostics
Incompatibilities

Sort/Merge and Record Manager

oow>

60497500 F

1-1 TAPE (Sort/Merge Version 4 Only)
END
Job Examples
1-1 Sample Deck Structures
1-1 Job Deck Containing a Single Sort/Merge Run
1-2 Job Deck Containing Two Sort/Merge Runs
1-2
1-2
1-2 5. MACRO CALLS
1-3
System File Macro
Sort/Merge Macro Calls
2-1 SORT
MERGE
2-1 BYTESIZE
2-1 FILES
2-2 KEY
2-3 SEQUENCE
2-4 EQUATE
2-4 OPTIONS
2-5 OWNCODE
2-6 TAPE
POINTER
SMLIST
3-1
6. FORTRAN EXTENDED CALLS
3-2
3-3 FORTRAN Extended Calls to Sort/Merge
3-3 SMSORT, SMSORTB, SMSORTP, and SMMERGE
3-4 SMFILE
3-4 SMKEY
3-4 SMSEQ
3-4 SMEQU
3-5 SMOPT
3-5 SMTAPE
3-6 SMEND
SMOWN and SMRTN
; SMABT
4-1 Sample Program
4-1
4-1 7. FORTRAN 5 CALLS
4-2
4-4 FORTRAN 5 Calls to Sort/Merge
4-5 SMSORT,SMSORTB,SMSORTP, and SMMERGE
4-5 SMFILE
4-6 SMKEY
4-7 SMSEQ
4-7 SMEQU
4-8 SMOPT
4-10 SMTAPE
4-11 SMEND
4-13 SMOWN and SMRTN
4-15 SMABT
4-16 Sample Program
APPENDIXES
A-1 E Tape Sort/Merge Processing Options
B-1 F Merge Order
C-1 G Glossary
D-1 H Future System Migration Guidelines
INDEX

4-17
4-18
4-18
4-26
4-26
4-27

5-1

5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-7
5-9
5-11
5-12
5-13
5-14
5-14

z

mmmclnmcn
LS B =

)b i s

LY
= = D w00

E-1
F-1
G-1
H-1 |

vii

INTRODUCTION 1

— e e e e e e e e e

The primary function of Sort/Merge is the manipulation and rearrangement of records into a presecribed
order, according to a user specification.

CDC offers guidelines for the use of the software deseribed in this manual. These guidelines appear in
appendix H. Before using the software deseribed in this manual, the reader is strongly urged to review the

content of this appendix. The guidelines recommend use of this software in a manner that reduces the
effort required to migrate application programs to future hardware or software systems.

COMPARISON OF SORT/MERGE 1 AND SORT/MERGE 4

Some of the material in this manual applies only to Sort/Merge Version 1; other material applies only to
Sort/Merge Version 4. The difference is indicated as follows:

Material shaded in this manner is applicable only tO'Sortherge Version 1, supported under SCOPE 2.

I\N!gtsirml shaded in tl'us manner is applmable only to Sortherge Versmn 4 supported under NOS and
BE. i

Material presented without shading is appliable to both Version 1 and Version 4 of sort/Merge.

_- Sort/Merge' _ des in the hb ry or th COPE 2 opera ng tem. Input for th:s versmn eonslsts of the
-following s _ - ’

“ft.:s‘ré‘isa'rga_ciéemef whan 5c i;s‘-sé-ecji.ﬁed

e on miass storage only.

eonsists of the 1 nmng

-Control statements and directives (Sort{M e Version 3 dIrectwes are ac epted, vuth the }imlts '_
e speciffed in append;x C whm BC m specih ‘on the SORTMRG control statement}\ L

- Maero cal!s.

' 'Input files residing on mnss storage and{or magnet ctape. |

60497500 F 1-1 @

lntermed‘iate storage areas or mtermediate merge ﬁles can reside on enther mass atorage ot magnetic tape.

: Output is d:rected to mass storage or magnenc tape

SORT/MERGE CAPABILITIES

The modular construction of the Sort/Merge program enhances the record processing options by providing
the following capabilities:

Sort-only Sorts records from one or more input files into an order specified by the user.
Merge-only Combines from 2 to 100 presorted input files into 1 output file.

Sort and Merge Sorts from 1 to 100 input files into an order or sequence specified by the user and
merges the output with from 1 to 100 presorted files. No more than 100 files can
be used in both phases combined.

RECORDS AND FILES

An understanding of Record Manager requirements for records and files in terms of structure and format as
presented in appendix D is essential for proper application of the Sort/Merge program. More detail may be
found in the Record Manager reference manuals.

CHECKPOINT/RESTART

A Sort/Merge job can be terminated at any tlme during program execution as a result of machine
malfunction, as well as operator or program error. Sorted and merged records would be lost if abnormal
termination ‘occurred durmg a final pass, necesmtating that the job be resubm:tted from the begmnmg

The checkpoint/restart system fac;hty stores on magnetlc tape the total environment of a job abnormally
terminated so the job can be restarted from a checkpoint, rather than from its beginning. Total
environment includes local files associated with the control point of the job. For mass storage files, the
complete file is captured as well as the relative position within the file. For magnetic tape files, only the
relatwe posmon on the tape is capturod. so the tape can be properly reposntioned durmg restart.

Cheek/restart cannot hand!e : e e M
 Rolloutjobs S
.l'.,-Randornﬁles Sl e anoE
5 _Multi—-ﬁle reels
e 'Tape sorts Fe i _ &
'To use the check pointfrmtart facility, the checkpolnt!restart optxon must be specifxed on the OPTIONS
directive or macro for execution after a user specified number of records have been read from the Input

ﬁ]e or written to the output file or on the end of each reel of .input or output.

Each time a checkpomt dump is taken, a ﬁle is written containing all information needed to restart the job
at that point, Each checkpoint dump is numbered automatically in ascending order by the system. Several
checkpoint dumps should be taken durmg a long Sortherge job so the user can retum to any one of them to
restart the job. :

¢
Consult the NOS or NOS)‘BE re a;er‘em:oa manual for mformatmn about requestmg a flle to be used asa
checkpoint file, and for information about restarting a checkpoint job, , :

o 1-2 60497500 F

SORT/MERGE DAYFILE MESSAGES

Upon successful completion of a Sort/Merge run, tallies are printed in the dayfile, providing statisties for
that run. The following messages are output, indieating how many records were inserted, deleted, sorted,
and output.

** INSERTIONS DURING INPUT FEREKEERER [
** DELETIONS DURING INPUT w¥dkAkRERE
** TOTAL RECORDS SORTED *kkkRERRRE
** INSERTIONS DURING OUTPUT *#*#*###+4
** DELETIONS DURING OUTPUT **¥*¥¥kk*k¥
** TQOTAL RECORDS OUTPUT *ERRHARRRE)

The following message is printed if intermediate merge files are used:
** MERGE ORDER USED WAS FERERREERE

The following message is printed when records occur out of sequence on a merge run without the VERIFY
option:

** RECORDS OUT OF SEQUENCE **¥**%¥¥%¥p

After all tally messages, one of the following messages is printed, depending on the kind of run:
** END SORT RUN
** END MERGE RUN

60497500 F 1-3 @

SORT KEYS 2

A sort key is a field of information within each record in a sort or merge input file that is used by Sort/
Merge to determine the order in which records will be written to the output file.

An example of a record with sort keys is a typical record in a personnel file. Each such record might contain
the name, age, department number, salary, and employment date of an individual employee.

This file could be sorted by any one of these fields or by a combination of fields. For example, the file could
be sorted by the name field, or it could be sorted by age (as the major key) and salary (as the minor key).
In the latter case, if two or more employees were the same age, their records would appear on the output file
in order by salary.
SORT KEY DESCRIPTION
Every field to be used as a sort key must be described by the user. The user of the directive version describes
fields with the FIELD directive and the KEY directive (section 4); the user of the macro version describes
fields with the KEY macro (section 5).
Sort key descriptions include the following information:

Key length

Starting location of key within record

Type of data found in key field

Sort order

Collating sequence to be used (for character keys only)

KEY LENGTH AND POSITION

Key field length is specified on the FIELD directive or KEY macro as the number of bytes and bits in the
field; the default byte is a 6-bit character. The length of any single key must not exceed minimum record
length for any file.

Starting position of a sort key field may be anywhere within the record, but it must be the same for all
records of all files to be sorted or merged. Character coded keys that span a word boundary must begin on
a character boundary. Keys in variable length records must lie wholly within the fixed length portion of the
record; if the last character of any key is not within the minimum record length, sort order is undefined.
If more than one sort key field exists, fields may overlap.

60497500 B 2-1

KEY TYPE

| Data in sort key fields can be of any of the following types:

LOGICAL
| INTEGER
|
| FLOAT
| INTBCD
| DISPLAY

Unsigned binary integers of any length (any number of bits); they are assumed to be non-
negative, and are sorted by magnitude. Under certain conditions, described later in this
section, data of other types can be sorted more efficiently when it is specified as logical type.

60-bit integers; they can start anywhere within the record (not necessarily on a character
or word boundary), and are sorted by numeric value. Integer data includes numbers of
FORTRAN Extended INTEGER type when written by a binary write. Under certain con-
ditions, described later in this section, data of other types can be sorted more efficiently
when it is specified as type INTEGER.

The range of INTEGER keys must not exceed 2°9-1(259-1 = 576 460 752 303 423
487). If two sort keys differ by more than 25941, improper sorting may take place
with no diagnostic issued. -0 is considered equal to +0. :

60-bit normalized or unnormalized floating point numbers; they can start at any bit
position within the record, and are sorted by numeric value. When written by a binary
write, ALGOL numbers of #REAL# or #INTEGER+# type, FORTRAN Extended num-
bers of REAL type, and COBOL COMPUTATIONAL-1 and COMPUTATIONAL-2 num-
bers are all valid FLOAT keys.

The full range of floating point numbers is permitted in FLOAT keys. This range is:
110322 < x < -107293 or x = -0 (=+0) or 107293 < x < 10322

Infinite numbers, positive or negative, and indefinite numbers are also allowed. A positive
indefinite number is treated as though it had a value near 140 737 488 355 327.5,
which cannot be represented exactly as a floating point number, and a negative indefinite
number is treated as though it had a value near -140 737 488 355 327.5, which cannot
be represented exactly as a floating point number.

Key fields written in internal BCD character code (appendix A); they can be any integral
number of characters in length (any integral multiple of 6 bits). Some tapes written by
CDC 3000 Series computers are internal BCD, but the code is not standard in the oper-
ating systems which support Sort/Merge. INTBCD keys are sorted according to the spec-
ified collating sequence.

Key fields written in display code (appendix A); they can be any integral number of
characters in length (any integral multiple of 6 bits). DISPLAY keys are sorted according
to the specified collating sequence. The special case of signed numeric data is discussed
below.

60497500 F

COLLATING SEQUENCE

Collating sequence applies only to character data, not to numeric data. Unless the key is specified as INTBCD or
DISPLAY, a collating sequence is not needed. The collating sequence can be any of the following:

ASCII6 'i‘he American Standard Code for Information Interchange collating sequence (appendix A)
COBOL6 A CDC collating sequence (appendix A)

DISPLAY The CDC display code collating sequence (appendix A)

INTBCD Internal BCD collating sequence (appendix A)

In addition, the user can specify a collating sequence with the SEQUENCE and EQUATE directives or macros.
The collating sequence chosen need not correspond to the character set used in coding the data; collating
sequence is independent of character set. The character set determines the translation that will take place
from a 6-bit binary value occupying a character position to one of the letters, digits, and special characters
available as graphics. The collating sequence, on the other hand, determines the precedence given to each
character already translated, when the key is sorted.

For example, a file written using the internal BCD character set can be sorted by any of the collating sequences.
Three-records in a file have key fields whose contents are as follows:

Record Key (octal)
Record 1 0707030303
Record 2 4331626333
Record 3 1212121313

When INTBCD is specified as the character set and INTBCD as the collating sequence, records are written to
the output file in the following order:

Collating Position of

Record Key (octal) Key (INTBCD) Characters in Key (INTBCD)
Record 1 0707030303 77333 07,07,03,03,03
Record 3 1212121313 rn== 12,12,12,13,13
Record 2 4331626333 LIST. 43,31,62,63,33

60497500 C 2-3

The same records sorted according to INTBCD character set and DISPLAY collating sequence would be written
in the following order:

Collating Position of

Record Key (octal) Key (INTBCD) Characters in Key (DISPLAY)
Record 3 1212121313 == 00,00,00,54,54
Record 2 4331626333 LIST. 14,11,23,24,57
Record 1 0707030303 77333 42,42,36,36,36

If these records were sorted again according to the DISPLAY character set and the DISPLAY collating sequence,
they would be written in the following order:

Collating Position of

Record Key (octal) Key (DISPLAY) Characters in Key (DISPLAY)
Record 1 0707030303 GGCCC 07,07,03,03,03
Record 3 1212121313 JIJKK 12,12,12,13,13
Record 2 4331626333 8Y]%0 43,31,62,63,33
SORT ORDER

The order for sorting keys can be specified as ascending or descending.

Ascending Numeric keys are sorted so that the record having the key with the highest value is
written last on the output file. Character keys are sorted according to the collating
sequence specified.

Descending Numeric keys are sorted so that the record having the key with the lowest value is
written last on the output file. Character keys are sorted according to the collating
sequence specified, taken in reverse.

SIGNED NUMERIC DATA

Signed numeric data is integer data stored internally in display code, rather than in 60-bit integer format. Signed
numeric data is specified either by the word SIGN on the sort or merge key descriptor or by #SIGN+# or
#SEPARATE# on the SMKEY call. Embedded blanks cannot appear within a signed numeric data field.

In contrast to data specified as type DISPLAY that sorts according to display code values, signed numeric data
sorts according to the magnitude and value of the integer the display code represents.

The sign of the integer can be specified as any of the following:

Sign overpunch representation of the last digit in the field. The display code value of the low order digit
is equivalent to the key punch code resulting when a digit is overstruck with a + or - sign, as shown in the
list below. The sign of the overpunch specifies the sign of the integer. The overpunch can be omitted im-
plying a positive integer.

=4 60497500 E

'

Sign overpunch representation of the first digit in the field. The display code value of the high order
digit is equivalent to the key punch code resulting when a digit is overstruck with a + or - sign, as
shown in the list below. The sign of the overpunch digit specifies the sign of the integer.

SEPARATE specifies that the positive and negative signs are the 'characiers + and - respectively. If
SEPARATE is specified, the + or - character can be the first or last character of the field.

When the character is shown in printed output or is received in input as a card image, the signed
digit appears as specified in the third column of the sign overpunch code list. When the item is to
be received as input from a card, the signed digit must be punched as specified in the second column
of the list. Positive or unsigned integers can be mixed with integers represented by a sign overpunch
in an input file. The negative sign is represented by a - overpunch in row 11; the positive sign is
represented by the absence of an overpunch or the presence of a + overpunch in row 12.

Sign overpunch codes are:

Sign and Digit "~ Hollerith Punch Output Representation
+9 12-9 I
+8 © 128 H
+7 127 G
+6 12-6 F
+5 12-5 E
+4 124 D
+3 12-3 C
+2 122 B
+1 12-1 A
+0 120 <
-0 110 v
-1 11-1 J
-2 112 K
-3 11-3 L

114 M
-5 11-5 N
11-6 (0]
-7 11-7 P
-8 118 Q
-9 119 R

Positive integers can be mixed with integers represented by a sign overpunch in an input file.

MULTIPLE KEYS

At least one sort key must be specified for each sort or merge run; as many as 100 keys can be specified.
When multiple keys are specified, they can differ as to type, collating sequence, and sort order.

If more than one key is specified, the order (left to right) in which they appear in the KEY directives or
macros determines their precedence for sorting. The key fields on the first KEY directive or macro, from left
to right, are compared first; then those on subsequent KEY directives or macros are compared until 2 field is
found in which the two records have unequal values. Then, the records are sequenced appropriately . If all the
key fields for the two records have the same value, they are sequenced arbitrarily, unless the RETAIN option
has been selected causing records with identical keys to be written in the order they were read.

60497500 F 25

ALTERNATE SPECIFICATION OF KEY TYPES

Because Sort/Merge processes integer and logical keys more quickly than floating point or character coded keys,
it is advantageous for the user to specify key type as INTEGER or LOGICAL whenever such specification will
result in a correct sorting order.

For example, floating point keys will sort properly as integers if either of the following two conditions is true:

1. All keys in the file are normalized. FORTRAN Extended numbers of REAL type, ALGOL numbers
of #REAL+# or #INTEGER# type, and COBOL COMPUTATIONAL-2 numbers are all normalized
floating point numbers. In addition, all keys in the file must lie within one of the following ranges:

41014 <X <-10293 or X=0 or 10293 <X < 1014
X=0 or 107293 < X < 10322 (non-negative values)
-10322 £ X < -10293 or X=0 (non-positive values)

2. All keys in the file have the same exponent. This condition is true for COBOL COMPUTATIONAL-1
numbers, when they contain 14 or fewer decimal digits.

Certain kinds of character keys can be sorted more efficiently as integers. The most common example is a key
consisting of a COBOL item defined by the clause

PICTURE 9(n) SYNCHRONIZED RIGHT USAGE IS DISPLAY.

where 1 < n < 9. Since an item of this description always occupies a full word, and the leftmost digit is

always a display code 0 (33 octal), sorting keys of this description as integers results in a proper sort by mag-
nitude.

For character keys, when the character set and the collating sequence have the same name (INTBCD character
set and INTBCD collating sequence, or DISPLAY character set and DISPLAY collating sequence), Sort/Merge
sorts them as logical keys, since logical keys sort faster than character keys.

Alternate key type specification also can be used to sort fields that do not conform to the characteristics of
any data types recognized by Sort/Merge. For example, if a field whose length is 64 bits contains positive

and negative integer values in ones complement form, it cannot be sorted as INTEGER type since fields of
INTEGER type must be 60 bits long; nor does it sort properly as LOGICAL type, since fields of LOGICAL
type are assumed to be unsigned. If the field is divided into two subfields, however, one consisting of the sign
bit and the other of the magnitude of the integers, the field can be sorted by the following specifications:

FIELD,SIGN(.1,.1,LOGICAL)
FIELDMAGNITUDE(.2,.63,LOGICAL)
KEY,SIGN(D),MAGNITUDE(A)

In this case, unlike INTEGER keys, keys equal to -0 are less than keys equal to +0.

2-6 60497500 C

OWNCODE ROUTINES 3

Owncode routines represent closed subroutines written by the user as COMPASS language programs. Although
owncode routines are not required for Sort/Merge execution, they provide the capability for the user to insert,
substitute, modify, or delete input and output records. Refer to appendix H for recommendations on the use
of COMPASS owncode routines.

All owncode routines specified by the OWNCODE directive must be assembled previously in relocatable binary
form and placed in the file “INPUT™ or on an alternative source as specified on the SORTMRG control
statement (see section 4).

Owncode routines can be specified with the OWNCODE macro call. The routines are assembled in the program
calling Sort/Merge or assembled and referenced in a program occupying memory at the same time as the program l
calling Sort/Merge.

The following program exits can occur during Sort/Merge processing.

Exit 1 After reading each record from any sort input file while the record is still in the intermediate
input area, or during a search for a new record when no input file is specified. (This exit is
not allowed in a merge-only run.)

Exit 2 After reading the last record from each sort input file, but before file disposal action is
initiated. (This exit is not allowed in a merge-only run.)

Exit 3 After each record is selected for output but before the record is moved into the final output
area, or when no output file has been specified.

Exit 4 After the last record has been moved into the final output area, but before file disposal
action is initiated.

Exit § When two records with identical sort keys are encountered.

Exit 6 Each time a file with a ‘user specified nonstandard label is to be checked, while th;é label is
being read during input or written during output.

Upon entry to all owncode exits, register A2 contains the address of the current data record and register X0
contains the record length. In addition, during entry into owncode exit 5, registers A3 and X4 are used for
the address and length of the second record of a comparison involving identical sort key data.

Exits 1 and 2 owncode routines are not allowed in a merge-only run. Their purpose can be fulfiled by using
Exits 3 and 4 owncode routines in a merge-only run, or by using Exits 1 and 2 owncode routines in a sort run
with supplementary merge files. An Exit 1 or 2 owncode routine specified in a merge-only run is ignored except
that a non-fatal diagnostic message is issued.

When Sort/Merge transfers control to the user routine, the upper 30 bits of the X0 register contain the record
length in characters of the current record, and the lower 30 bits contain the length in words of this re cord.

60497500 F 3-1

Example

59 47 30 17 0

X0 0 characters 0 words

Transfer to owncode routines is accomplished with a return jump (RJ) instruction which fills the entry point
of the owncode routine with a return to the Sort/Merge program. To re-establish Sort/Merge control, the user
must jump to the entry point of the owncode routine. The user can request specific processing action by
altering the return address in the entry point of the owncode routine.

EXIT 1: PROCESSING OF INPUT RECORDS

Exit 1 is taken after reading each record from the input file while the record is still in the intermediate input
area, or during a search for a new record when no input file is specified. The user must specify processing
action with a jump to one of the following addresses. Exit 1 is not allowed in a merge-only run.

Normal return address Sort/Merge accepts the record whose address is in register A2 and whose
length is in register X0. Before returning to this address the user can :

Retain current record without modification; A2 and X0 are unchanged.

Modify record in central memory without changing its address in A2.
X0 should contain the correct length of the modified record; the
record length must not exceed the maximum for the run.

Replace the current record by changing the contents of A2 and X0
to reflect the address and length of a replacement record.

Provide an input record when no input files have been specified. The
address and length of the record are put in A2 and XO.

Normal return address+] Sort/Merge deletes current input record.

Normal return address +2 Sort/Merge inserts a user specified record after current record is read.
Address and length of record to be inserted are returned by the user in
the A2 and XO registers. Sort/Merge continues to return control to the
Exit 2 routine until a transfer is made by the user to a different return
address. The address and length of the original input record are put in
registers A2 and X0 each time Sort/Merge returns control.

r

Normal return address+3 Sort/Merge terminates record input from current input file and proceeds to
next input file. If current file is the last, Sort/Merge proceeds to Exit 2, if
specified, or to the merge phase. Current record is not processed.

3-2 60497500 D

EXIT 2: PROCESSING OF INPUT FILES

Exit 2 is taken after the last record is read from each file but before final file handling action is initiated.
The user can specify a jump to either of the following addresses. Exit 2 is not allowed in a merge-only run.

Normal return address

Normal return address+1

Sort/Merge continues normal record processing by proceeding to the next
input file or to the next phase of Sort/Merge.

Sort/Merge inserts a user specified record after the last record read. Address
and length of record are put by the user in registers A2 and X0. Control
returns to Exit 2 until a normal return is executed.

EXIT 3: PROCESSING OF OUTPUT RECORDS

Exit 3 is taken before each record is moved into the final output area or when no output file has been speci-
fied. The user can specify one of the following addresses:

Normal return address

Normal return address+l

Normal return address+2

Normal return address+3

60497500 A

Sort/Merge writes the record whose address is in register A2 and whose
length is in register X0. Before returning to this address the user may:

Retain current output record without modification; A2 and X0 are
unchanged.

Modify record in central memory without changing address in A2.
X0 should contain the correct length of the modified record; the
record length must not exceed the maximum for the run.

Replace the current record by changing the contents of A2 and X0
to reflect the address and length of a replacement record.

Sort/Merge deletes the output record. If no output file has been specified,
all output records must be deleted.

Sort/Merge inserts a user specified record before current record is written.
Address and length of record to be inserted are in A2 and XO registers.
Sort/Merge continues to return control to the Exit 3 routine until a return
is made to a different address. The address and length of the original output
record are put in registers A2 and XO each time Sort/Merge returns control.

Sort/Merge terminates record output to the current output file and proceeds
with Exit 4 execution if specified. Current record is not processed.

3-3

EXIT 4: PROCESSING OF OUTPUT FILES

Exit 4 is taken after the last record is moved into the final output area but before final file handling action
is initiated. The user can specify either of the following addresses:

Normal return address Sort/Merge continues normal record processing by proceeding to the end-of-
file procedures for the output file.

Normal return addresst1 Sort/Merge inserts a user specified record after the last record is written.
Address and length of record are in registers A2 and X0. Control returns to
Exit 4 until a normal return is executed.

EXIT 5: PROCESSING OF DUPLICATE KEYS

Exit 5 is taken when two records with identical sort keys are encountered. One of the following addresses
must be specified if this exit is selected.

Normal return address Sort/Merge accepts two records: one with address in register A2 and length
in register X0, and the other with address in register A3 and length in
register X4. Before returning to this address the user may:

Retain both current records without modification; address and length
registers of current records are unchanged.

Modify either record, or both records, in central memory without
changing the addresses in A2 and A3. The corresponding X registers
(X0 and X4) should contain the correct lengths of the modified
records; the record length must not exceed the maximum for the run.

Replace either record, or both records, by changing the contents of
the address and length registers to reflect addresses and lengths of
replacement records.

Normal return address+1 Sort/Merge deletes one of two records with identical sort keys. The user
provides address and length of the record to be retained in registers A2
and XO.

EXIT 6: PROCESSING OF NONSTANDAFID LABELS

T

Exit 6 is used for checking or verifying user specified nonstandard labels while ‘the labels are being read during
input or written during output. This routine is cafled for all nonstandaxd labels on files whose FILE control
statement specifies LT-NS ULP#NO.

INPUT

During record input, registers A2 and X0 contain the address and length of a nonstandard label record read
by Sort/Merge. :

Normal return address User returns to this address when nonstapdard label checking is complete.

34 60497500 A

Normal return address+1 User returns to this address if an additional nonstandard label is to be read

and program control is to be returned to the user. Control returns to Exit 6
until a normal return is executed.

OUTPUT

During record output registers A2 and X0 contain the address and length of the label record submitted by
the user.

Normal return address User returns to this address when the last, or only, nonstandard label is to
be written to the output file. The address and length of this label are in
registers A2 and XO.

Normal return addresst1 User returns to this address if an additional nonstandard label is to be passed
to Sort/Merge for writing on the output file. Sort/Merge enters the user rou-
tine again through Exit 6 after the current label is written on the output file.

OWNCODE SUMMARY

Processing Action Exit 1 Exit 2 Exit 3 Exit 4 Exit 5 Exit6
Substitute record NR NR NRT v
Insert record NR+2 NR+1 NR+2 NR+1

Delete record NR+1 NR+1 NR+1TT

Verify label
record during read

Verify last label
record during read

Supply a label
record during write

Supply last label
record during write

Terminate fileTtT NR+3 NR+3
Normal record NR NR NR NR NR
processing

+Both records, designated by the A2 and X0 and the A3 and X4 registers, can be substituted with new
address and length specifications.

T1Record designated by A3 and X4 registers is deleted.
t11Current record designated by A2 and XO registers is not included in Sort or Merge processing.

60497500 A 3-5

JOB EXAMPLE

The following Sort/Merge job example illustrates the use of an exit 1 owncode routine to supply input records
from a multifile set to a directive sort. The example consists of a COMPASS subroutine, Sort/Merge directives,
and job control statements.

OWNCODE ROUTINE

Through the COMPASS subroutine shown below, records are retrieved from the input file set SORTIN. When
all records have been obtained, the file set is closed and a branch is taken to normal return address + 3. This
branch indicates that Sort/Merge is to terminate record input and proceed to the merge phase.

LOCATION OPERATION VARIABLE SUBFIELDS COMMENTS
IDENT MULTIFL
SST
ENTRY MULTIFL
MULTIFL BSS 1 DEFINE ENTRY/EXIT WORD
SA1 OPENED CHECK AND SET OPEN FLAG
NZ X1,MULTIFL1 .
MX6 1 .
SA6 A1 -
OPENM SORTIN,INPUT,R OPEN FILE FOR INPUT WITH
REWIND
MULTIFL1 GET SORTIN READ RECORD
CHECK SORTIN "
FETCH SORTIN,RL,X0 SET X0 TO RECORD LENGTH
LX0 30 SHIFT REC LENGTH TO UPPER
30 BITS
SA2 REC SET A2 TO WSA
EQ MULTIFL EXIT, SUPPLYING RECORD
MULTIFL2 BSS 1 DEFINE ENTRY/EXIT WORD
FETCH SORTIN,FP,X1 CHECK FOR END-OF-INFORMATION
SX1 X1-=EOI= .
NZ X1,MULTIFL1 .
CLOSEM SORTIN CLOSE FILE
CHECK SORTIN .
SA1 MULTIFL BRANCH TO NRA + 3
LX1 30 é
SB7 X1 §
JP B7+3 s
OPENED DATA 0 OPEN FLAG
L EQU 10028 LENGTH OF BUFFER
SORTIN FILE BT=C,RT=2,FL=40,BFS=L, SORTIN FILE DESCRIPTION
FWB=BUF ,WSA=REC, .
DX=MULTIFL2 .
BUF BSS L DEFINE FWB
REC BSS 4 DEFINE WSA
END
3-6 60497500 E

SORT/MERGE DIRECTIVES

The Sort/Merge directives used for this example include an OWNCODE that specifies the exit number 1 and

the entry point name MULTIFL for the owncode routine. The maximum record length of the input records is

defined in this directive as 40 characters. Because input records are being supplied by the exit 1 owncode

routine, no input file is specified in the FILE directive.

SOR.T

| il R TN GO N N N L N O G L S S S N S T RN A Y (S S |

ELLT LD e [swolololulululn]uln]nlnlaloluis[ulrinlalwlnliolojuisinlninlnistalolaleie]

| S OO N TN Y N N N Y [N N N W |

F |J.LJEI ’ plUJTI PIU:TI;i.SlOleTIOIU T

F R TN T U T T T T |

j I N N (NN NS NN T [AN N Y [N (N S |

.OI\‘\:!\IICIOIDJ_EI' lM RILI=]4|0| ’Il l=IMUlLlT | F L

T I S B [0 WS e . O [[[() o, |

F1 l_lElLlol 4 IKJEIYi(|2| ’1] TR |DLIJLS PLAY)

| O O TN (S OO N N S NS S N T |

KEY, KEY

S T N R Y Y NN S N O SO N 'Y O N (OO O Y NV (N SO Y S |

| N S N S TN N TR (N T S W N

END

[N TN SN T T Y O N Y A Y Y O TN Oy N N T N [O N - |

[N Y TR TN N N S N S T (S (N |

JOB CONTROL STATEMENTS

The COMPASS control statement causes the owncode routine to be

FILE statement is included to describe the output file SORTOUT. A FILE statement for the input file set
SORTIN is not needed because a FILE macro is specified within the owncode routine.

assembled in relocatable binary form. A

The COPYBR state-

ments copy three records from the system INPUT file onto three separate files. The files are then copied onto
one multifile set by the COPYBF statements. Sort/Merge processing begins with the SORTMRG control state-

ment. The OWN parameter indicates that the owncode binaries are

COMPASS(S=IOTEXT,A)
FILE(SORTOUT,BT=C,RT=Z,FL=40)
COPYBR(INPUT,FILE1)
COPYBR(INPUT,FILE2)
COPYBR(INPUT,FILE3)
REWIND(FILE1,FILE2,FILE3)
COPYBF(FILE1,SORTIN)
COPYBF(FILE2,SORTIN)
COPYBF(FILE3,SORTIN)
SORTMRG(OWN)

60497500 E

located on the file LGO.

3.7

DIRECTIVE SORT/MERGE PROCESSING 4

CONTROL STATEMENT REQUIREMENTS

Processing of Sort/Merge directives is accomplished through the SORTMRG control statement. The directives
are assumed to be the next unexecuted section on the INPUT file unless an alternative source is specified on
the SORTMRG statement. Sample deck structures for various types of Sort/Merge runs are illustrated at the
end of this section.

Because Sort/Merge performs all input and output through Record Manager, a Record Manager FILE control
statement must be provided for every input or output file to be processed by a directive sort or merge. This
control statement specifies the record and block structure of the file as well as file handling options. The
FILE control statement is described in appendix D.

In Sort/Merge Version 1, if the file INPUT is used as a sort input file, its FILE statement should specify
OF=N and CF=N (no rewind on open or close).

Internally, Sort/Merge requires a value for maximum record length, even for Record Manager record ty pes
that do not require this specification. This value can be specified by the MRL or FL parameters on the
FILE control statement, or by the MRL parameter on the OWNCODE directive. The largest value provided
is used by Sort/Merge as the value for all files.

SORTMRG STATEMENT

The SORTMRG statement calls for execution of a sort and/or merge based on specifications provided by Sort/
Merge directives. This statement can take one of two forms:

SORTMRG.
or
SORTMRG (parameter list)

Parameters can be specified in any order with default values supplied for omitted parameters. The following
parameters can be included on the SORTMRG control statement.

60497500 F 4-1

PARAMETERS
DIRECTIVE FORMAT PARAMETERS 6C AND 7C
The format of the Sort/Merge directives is indicated by specification of 6C or 7C:
6C Indicates Sort/Merge directives are in the formats that apply for Sort/Merge Version 3.

7C Default; indicates Sort/Merge directives are in Sort/Merge Version 4 format.

SOURCE INPUT PARAMETER |
This parameter specifies the file on which the Sort/Merge directives are located. The directives must be a
separate section on this file, terminated by an end-of-section delimiter (7/8/9 card equivalent). The format
of this parameter is:
I=lfn/R or I=lfn/NR or Islfn or I or omitted
I=lfn Sort/Merge directives are on the file whose logical file name is lfn.
R File is rewound before opening.
NR Default; file is not rewound before opening.
1 Sort/Merge directives are on the file COMPILE.

omitted Sort/Merge directives are on the file INPUT.

If the system INPUT file is indicated, R should not be specified.

LIST FILE PARAMETER O

This parameter identifies the file to which output by Sort/Merge is written. The output includes directives
and any diagnostics. The format of this parameter is:

O=lfn/R or O=lfn/NR or O=lfn or O or omitted

O=lfn Listings are written to the file whose logical file name is Ifn.

The format of the file is BT=C, RT=Z, and FL=140. Specification of different
parameters can result in I/O errors.

The format of the file is RT=W, unblocked, and FL=137, unless a FILE control
statement overrides this format. Specification of different parameters can result
in I/O errors.

R File is rewound before opening.
NR Default; file is not rewound before opening.

0 or Listings are written to the file OUTPUT.
omitted

4-2 60497500 F

OWNCODE FILE PARAMETER OWN

This parameter indicates the name of the file on which the owncode binaries are located. It has the following
format:

OWN=lfn/R or OWN=lfn/NR or OWN=lfn or OWN or omitted
OWN=Ifn Owncode binaries are located on file whose logical file name is Ifn.
R File is rewound before opening.

NR Default; file is not rewound before opening.

OWN Owncode binaries are on file LGO.
omitted Owncode binaries are on the file INPUT.

If the system INPUT file is indicated, R should not be specified.

MERGE ORDER PARAMETER MO

The MO parameter specifies the intermediate merge order, which is an intemal parameter that govems the
number of buffers used by Sort/Merge in the intermediate merge phase. Higher merge orders can produce
faster sorts at the expense of greater field length requirements; however, an inefficient merge order might
degrade Sort/Merge performance. Appendix F, which explains merge order, should be consulted before merge
order is changed. Specification of merge order on the SORTMRG statement overrides specification on the
OPTIONS directive. The format of the parameter is:

MO=n or omitted
MO=n Merge order; 2 < n < 64. If insufficient core is available to merge at the requested

order, a fatal error occurs, and a diagnostic indicates how much additional core would
be required.

omitted Sort/Merge computes a merge order based on the amount of memory available.

EXAMPLES

SORTMRG(OWN=MYFILE,6C)

Calls for execution of Sort/Merge based on directives located on the file INPUT, and owncode binaries
on the file MYFILE. Listings are written to the file OUTPUT. The directives are in Sort/Merge WVersion

3 format.

60497500 C 4.3

SORTMRG(7C,0=LISFL/R,J=INPUT/NR)

Calls for execution of Sort/Merge based on directives located on the INPUT file, which is not rewound.
These directives are in Sort/Merge Version 4 format. Any owncode binaries are on the INPUT file.
Listings are written on LISFL, which is rewound before it is opened.

SORTMRG.
This call is equivalent to:

SORTMRG(7C,FINPUT/NR,0=OUTPUT/NR,OWN=INPUT/NR)

SORT/MERGE DIRECTIVE CONVENTIONS

Sort/Merge directives can begin in column 1 but must not continue beyond column 72 on any one source line.
Directives can be continued but must have a comma in column 1. The number of continuations for any one
directive is limited only by the parameter specifications for the particular directive. As an alternative to con-
tinuation, the same directive can be respecified with additional parameters. Blank source lines are allowed.

An asterisk in column 1 indicates the statement is used strictly for comments. The comment statement is ignored
by the system during processing and can be placed anywhere in the Sort/Merge input deck. Contents of comment
statements are printed out where they occur in the deck.

The following characters are reserved by the program as field or parameter separators for directives. Restrictions
placed on separators allowed for each directive type depend on the syntax rules for each directive.

To simplify presentation, only the comma is used as a separator in the directive description. Blanks occurring
. before and after separators are ignored by the system, except in the case of the SEQUENCE directive. The
comma is reconmended, but any of the following separators can be used in directives.

(left parenthesis - minus sign
) right parenthesis / slash
blank * asterisk
period = equals sign
+ plus sign

Unique user parameters can consist of any number of letters and digits, the first a letter, with no embedded
blanks, for such specifications as field names, names assigned to user defined collating sequences, filename, etc.
The first seven characters, however, must be unique for each specification within a single Sort/Merge run
input deck.

44 ' 60497500 C

)}‘

SORT/MERGE DIRECTIVES

The Sort/Merge directives for execution are presented below. The order in which they are listed does not imply
a standard input order, With the exception of the END directive, which must appear as the last staterment of
each section of Sort/Merge directives, the directives specified for any single Sort/Merge run can appear in any
sequence.

SORT

MERGE

BYTESIZE

FILE

FIELD

KEY

SEQUENCE

EQUATE

OPTIONS

OWNCODE

END

SORT

The SORT directive is required to specify the kind of Sort Only or Sort/Merge processing.

OPERATING SYSTEM INCOMPATIBILITIES

60497500 F 4-5

FORMAT

SORT,VAR=type, LCMSB=ba
type Processing indicators as listed below. If this parameter is omitted, the system assumes mass
storage.
DISK Mass storage Sort/Merge processing.
TAPE Polyphase tape
POLYPHASE Polyphase tape
or POLY :
BALANCED Balanced tape
or BAL ShiTE
ba Optional parameter specifies, in decimal, the total large core memory (LCM) buffer area for
SCOPE 2 Record Manager for all intermediate scratch files de\reloped mtemaﬂy by Sort/Metge.
 Default value is an installation parameter. ; . : :
EXAMPLES

Using a default value as follows, selects a mass storage sort:

MERERTE

S .8, 2(8 |9 Winiag

SORT

Selacts polyphase tape sort PIOCEMB

1 h-i'sn

5 ru! lnin'u s u‘

f{sa”r

MERGE

VAB”P@LY

The MERGE directive specifies merge-only processing. The SORT directive is omitted when merge only is
selected. See example 5, under JOB EXAMPLES in this section.

FORMAT

4-6

MERGE

60497500 F

BYTESIZE

The BYTESIZE directive specifies the number of bits per byte. Defining the bytesize with this directive
establishes a standard bytesize for subsequent parameter references to bytes in the FIELD directive. If this
directive is omitted, a default value of 6 bits per byte is assumed by the system.

FORMAT

BYTESIZE nn

nn Decimal number of bits per byte.
EXAMPLE

To specify 60 bits per byte:

V1203 (alslefr]ajefw[ufu]
BYTESIZE,60
it N e S

I 1.1 ¥ & & . |

FILE

A FILE directive is required to specify all the input and output files to be used during a Sort/Merge run. For
a merge run, only MERGE and OUTPUT file types can be specified; for a sort run, SORT, MERGE, INPUT,
and OUTPUT file types can be specified.

Each input file is opened with rewind unless the system INPUT file is specified; INPUT is opened with no
rewind.

FORMAT
FILE,type=name(action),name(action),...,type=...
Either FILE or FILES can be specified as the first word of the FILE directive.

The = and () symbols are required as shown in this directive; therefore they cannot be used as
separators in other positions.

type File type identifier; all files of a particular type must be specified in one group

INPUT or SORT Sort input file. If no input file is specified, the user must specify
Exit 1 on the OWNCODE directive to read in the input records.

MERGE Merge input file.
OUTPUT Sort or merge output file. If no output file is specified, the user must

indicate owncode Exit 3 to write the output records. Only one output
file is allowed for each sort or merge.

60497500 E 4.7

name Logical file name of a file to be processed by Sort/Merge. The name must have been specified
previously on a FILE control statement.

action Specifies system action to be performed after file processing is complete.

C Close the file

R Rewind the file

8] Close and unload the file

N No action is to be taken; however, if type=OUTPUT, an end-of-file is written
CR Close and rewind the file

RC Close and rewind the file; default

CU Close and unload the file

EXAMPLE
The FILE directive example has the following parameter specifications.
Two input files, WNO2 and IN2, and one output file named RESULT.

The system is requested to close the two input files and unload the output file.

" [a]sJalslelzfafofwivifialvajralosfralor]vafvofa0far [22 23] 2 [as {26 [2r{2n{20] 30] 31 52 [33] 2 o8 |36 [3r]58 [39] 4o [ar a2]3] aa]
FILE,S@RT=WNO2(C) ,IN2(C),BUTPUT=RESULT(U)

JJJJ'IIJlilIiIII11 |l Ml e i Rk L1 1 1 |

FIELD

The FIELD directive is required to specify the starting position, length, and data type of a sort or merge key
field. These attributes of a key field are described in section 2. At least one FIELD directive must be included
in a Sort/Merge run; no more than 100 fields can be specified.

Any sort key can be defined or referenced more than once during a single Sort/Merge run providing a new
keyname is specified- each time the sort key is defined.

The size of the bytes referenced in the FIELD directive for each job is predefined in the BYTESIZE directive.
If BYTESIZE is omitted, the default value of 6 bits per byte is assumed.

OPERATING SYSTEM INCOMPATIBILITIES
The separate sign feature for signed numeric data and the sign overpunch in the leading character position are

supported under Sort/Merge Version 4; therefore, the location and SEPARATB options are applicable to Sort/
Merge Version 4. .

48 60497500 E

FORMAT

FIELD,keyname(start length,type,SIGN location,SEPARATE),... keyname...)

The left and right parentheses and the periods are required as shown for this directive; therefore, they
cannot be used in other positions.

keyname

start

length

type

SIGN

location

SEPARATE

60497500 F

Name assigned by user to sort key; keyname can be any number of letters and digits.
The first seven characters must be unique and at least one must be alphabetic.

Starting position of the sort key as follows:

byte Byte number in the record in which the sort key first appears. Bytes
' are numbered from 1.

.bit _ Bit number, numbered from 1, within the first byte in which the sort
key first appears. The system assumes a value of one for an unspecified
byte position. The bit number may exceed the number of bits per byte.

byte.bit Combination of the byte number and the number of the first bit within
that byte in which the sort key first appears.

Length of the sort key in one of the following formats:

nbytes Number of bytes in the key. A default value of 6 bits per by te is
assumed unless specified differently by the BYTESIZE directive.
.nbits Number of bits in key. The number of bits may exceed the number of

bits per byte.

nbytes.nbits Number of bits and bytes in key. A default of 6 bits per by te is
assumed unless specified differently by the BYTESIZE directive. The
number of bits may exceed the number of bits per byte.

Sort key type identifier as follows:

DISPLAY Internal display code

FLOAT Floating point data

INTBCD Internal BCD code

INTEGER Signed integer data

LOGICAL Unsigned integer data (assumed by system if parameter is omitted)

Optional parameter, valid only for sort keys containing numeric data in display code. It
indicates the sign is represented by an overpunch on the low order digit of the sort key.

Optional parameter, valid only for sort keys containing numeric data in display code. It
indicates the sign is represented either by an overpunch digit or a separate + or -~ sign, as
described by the two following parameters. If SEPARATE is not used, the sign character is

‘an overpunch.

Sign position indicator, valid only if SIGN is used, as follows:

LEADING Sign character or overpunch digit is at the beginning of the data field.

TRAILING Sign character or overpunch digit is at the end of the data field (assumed
if parameter is omitted).

The sign character is an overpunch character unless SEPARATE appears.

Indicator signifying the sign character is a separate + or - character appearing at the beginning
or end of the data field. Valid only if SIGN is used.

4.9

EXAMPLE

The FIELD directive example has the following specifications.

Names assigned to the two sort key fields are NAME and JOB.

Starting positions for each sort key field are specified in terms of bytes and bits; the NAME sort key
begins in the first byte and the first bit; JOB sort key field begins in byte eleven, bit one. (A BYTESIZE
directive has defined bytes to be 12 bits long.)

Length of both sort key fields is specified in terms of bytes: length of the NAME key is ten bytes;
length of the JOB key is one byte.

Both keys are written in DISPLAY code.

V1] Jals e s ale(winfufofuluulonlwlnin]a uip(winis 3[m 7] 98 [99 48 [a) a2 a2 | aa]as |as
FfllElLion’|N|AME1(_111’L‘1'I]|o|’|D|l|SJP|L|A|YI)|’_|‘LOIB|(|]|]:'a]|’l]|’|01|LSIP1LLA|Y1)1

KEY

The KEY directive is required to specify the order and collating sequence of 1 to 100 sort keys for a Sort/
Merge run.

FORMAT

4-10

KEY keyname(order,colseq),....keyname(...)

The left and right parentheses are required as shown for this directive; therefore, they cannot be used in
other positions.

keyname Name assigned to sort key; it must be specified in the FIELD directive.
order Specifies the order in which keys are to be sorted and merged.

A = ascending order (assumed if parameter is omitted)
D = descending order

colseq Name of user specified collating sequence defined in the SEQUENCE directive or one of the
following standard collating sequence identifiers. These standard collating sequences are

presented in appendix A. A collating sequence is not needed unless the sort key type has been
defined to be INTBCD or DISPLAY on the FIELD directive.

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set.

COBOL6 6-bit COBOL collating sequence; default for installation using the CDC
character set.

60497500 E

DISPLAY Internal display collating sequence
INTBCD Internal BCD collating sequence
The default collating sequences can be replaced and respecified with an alternate collating sequence using the
SEQUENCE directive.
EXAMPLE
This KEY directive example has the following parameter specifications:
Two sort keys are named ACCOUNTS and INVEST; both keys are to be sorted in ascending order.

The ACCOUNTS key is to be collated according to the 6-bit ASCII collating sequence. Internal BCD
is the collating sequence assigned to the INVEST sort key.

2l lelslelzale i!eln]—u[u.[—u—[vs e 17]ow | vwlaofz (2229 (2u 25 [26 27 28 20 30[31 32330 3a 35 [26[a7 [mm[0]an a1
IKIEJY | ! lAlclclglULN[T|s|(IA| "AlslcillI |6l)|’ |I |N|VIE|S|T|(lAl ' II |N 1T|BICLD1) |
1

SEQUENCE
The SEQUENCE directive provides the following capabilities:

Specification of user’s own unique collating sequence.

Redefining a standard collating sequence or a user collating sequence to be the default collating sequence.
The collating sequence may be specified by means of characters, octal values, or both. Characters occurring in
a user collating sequence are interpreted according to the character set specified as the type parameter of the
FIELD directive. Octal values are interpreted as the contents of character positions in memory, regardless of
the character set specified.
FORMAT

SEQUENCE colseqg(c,ccicy - .« -)

The left and right parentheses and comma are required in the positions shown for this directive; therefore,
they may not be used in other positions.

60497500 A 4-11

colseq Specifies collating sequence to be used:
Name of user’s unique collating sequence.

One of the standard collating sequence identifiers for respecifying a default collating sequence
(appendix A):

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 6-bit COBOL collating sequence; default for installation using the CDC
character set

DISPLAY Internal display collating sequence
INTBCD Internal BCD collating sequence
Omitted; indicates the collating sequence in parentheses is to be the default collating sequence.

c Each c is a character or octal value specified in the sequence in which it is to appear in the
user collating sequence. Characters or values not specified are considered equal and collated
after the specified characters or values.

The system assumes a two-digit number is an octal value (the number must not be followed
by a B). When this value occurs as the contents of a character position in a sort key, it is
sorted according to the position the value occupies in the user collating sequence, regardless
of what character it represents in the character code specified in the FIELD directive.

When a character is specified, the system translates it to a value according to the character
set (DISPLAY or INTBCD) specified in the FIELD directive. When this value occurs in a
character position in a sort key, it is sorted according to the position the character ¢ occupies
in the user collating sequence. A single digit is assumed to be a character, not an octal value.

If colseq identifies a standard collating sequence, no list is provided by the user.
If colseq is omitted, the list in parentheses redefines the default collating sequence.

If the following symbols are included in the user’s collating sequence, they must be specified in the ¢ parameter
according to their octal equivalent.

Display Code Internal BCD
Character Octal Equivalent Octal Equivalent
(51 74
) 52 34
p 56 73
- 65 75

4-12 60497500 B

The collating sequence may be continued if necessary. In this case, specification of the collating sequence should
extend through column 72 of the first statement and recommence immediately with column 2 of the second
statement. Extraneous blanks should not appear because they are not ignored by Sort/Merge. If consecutive
blanks appear in the parameter list of the SEQUENCE directive, the system interprets the first blank as a sepa-
rator, the second blank as the occurrence of the blank character in the collating sequence, the third blank as a
separator, and so on. To avoid ambiguity, blanks should not occur within the SEQUENCE directive except to
indicate the collating position of the blank character,

EXAMPLES

In this example the nonstandard collating sequence is named NEWSEQ and A, B, C, D, E, F,G, H, I, J,
K comprise the collating sequence.

21314156789 10 19p12)13)18 816 17|18 19)20| 21 222324 125281 27|28 29 30| 31| 3233 34 j35 3837y 38 39 140

I
IS EIQIUIEIN CIE|’|NIE|wISIEPI(JAI' Iai' c D!'|E1'1F|‘|GJ' HI’III'IJI.'[KI)I 1

The default collating sequence is replaced in the following example:

2)31415 |86 7189 [16] npzpiapiapispie i 18 [19j20| 21 2223124 1261260 2728 28 30| 31 3233 34 {35 3837138 9 |40

i
Is Elqluls 'clEl' I(IBI'IDl'lFl' 1Ht'|J1' L1'1N| '1P1'1R1' 1T|'Vi)| L1t

A continuation statement is used:

1[2y31485]8]718 8 10| nprzprapapspisprpreps f o768 00y 70| 71 1223y 74 7575 77 78 70 | 8O
S[EQUEINCE NEWSQ(, ;» A Y 2010

|
'1|'|2|'3 ’|4|’15 ’|6|’17:'18|'|9|)? R N

N |

EQUATE

The EQUATE directive specifies two or more characters already in the collating sequence as equal for com-
parison purposes.

FORMAT

EQUATE,colseq(c,c.cc)ce, . . .)

Parentheses and ‘commas are required for this directive in the positions shown; therefore, they may not
be used in other positions.

60497500 A 413

colseq Collating sequence:
Name of a user collating sequence specified in the SEQUENCE directive.
One of the standard collating sequence identifiers:

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 6-bit COBOL collating sequence; default for installations using the CDC
character set

DISPLAY Internal display collating sequence
INTBCD Internal BCD collating sequence
c Characters or values to be equated. The collating position of the list specified within the
parentheses is equal to the position of the last character or value specified in the list. Mean-

ing of specification of characters or values is explained under the SEQUENCE directive.

The following symbols, if included in the user’s collating sequence, must be specified in the c¢ parameter
according to their octal equivalent.

Display Code Internal BCD
Character Octal Equivalent Octal Equivalent
(51 74
) 52 34
: 56 73
& 65 75

EXAMPLE

4-14

In this example, the collating sequence is named LIST.

The characters L, R, T, and 5 are to be equated or assigned a collating value equal to B in the first
character string.

In the second character string, the collating values of the characters M and Q are equated to the col-
lating value of the character 3.

v 213 Ja s Jelo s]olrofvifoalofwafs{oefor{ralvofz0as {20242 [26[2r]20f20] a0]1]0a] 0] 5a]0s
EIQ|U|AITIEI!EL11|81T](1LI’ 1R|' ITI, lsl’ lBI)I(|M| 4 |Q| 1 |3.)

11 4 1 1 1 1

60497500 A

OPTIONS

The OPTIONS directive allows the user to specify special record handling options or operations for sort or merge
processing.

OPERATING SYSTEM INCOMPATIBILITIES

The checkpom_t dump features (VOLDUMP DUMP and NOﬁUMP) of Sort[Merge are supported only under
-'Satt!Merge Vet Of S :

TMOBDERoptron'iaappj bleorﬂyto'Sart{M&erge_Version N S

The COMPARB at EXTRAC‘I‘ optxons are applicable only_ _
FORMAT
OPTIONS,option,option, . ..
option Record handling option identifiers:
VERIFY Output file is checked for correct sequencing. If the order of records on

the output file is incorrect, the job terminates and the output file is lost.
This option verifies that records from merge input files, or inserted through
owncode Exits 3, 4, and 5, are in order; it need never be specified for a sort
with no-owncodes.

If this parameter is omitted, a sequencing error during a merge run with no

inserted records produces a non-fatal error message; all records are written

to the output file, but they will not be in order. When records are inserted,
no checking takes place; thus omission of this parameter allows the user to

to deliberately insert records (such as page headers) out of sequence.

RETAIN Records with identical sort keys that are read from sort input files are
written in the order they are read. That is, all the records from each file are
grouped together, and the groups occur in the order that the files are speci-
fied in the FILE directive. Records from merge files are sequenced arbitrarily.
When this parameter is omitted, records with identical sort keys are
sequenced arbitrarily.

VOLDUMP Checkpoint dump is to be taken when end-of-volume condition on input
' file or new-volume condition on output file exists. A checkpoint file must
have been previously requested. See the NOS or NOS/BE reference manual
for mfonnanon about requesting checkpoint files. -

DUMP(nn) Parentheses are feqmred for this parameter in the position shown they can-
not be used in other positions in this directive. Checkpoint dump is to be
taken when the specified number of records is read from the input file and
when the same number of records is written on the output file. nn is
decimal. A checkpoint file must have been previously requested. See the
-NOS or. NOSIBE referem:e manual for mformatlon about requesting check-

i pc-im fileg o

e DUMP is speclﬁed wlthout nn, a checkpomt dt;mp is takqn after each
group of 50,000 records on input and output files. A checkpoint file must
~ have been previously requested. See the NOS or NOS/BE refarerlce manual
; -_;for informatmn about requesung checkpoint ﬁles '

. NODUMP o ‘No checkpomt dumps are taken default.

60497500 F 4-15

ORDER(n) = Parenthem are. requised for this parameter they cmri.ot be used ln other
3 z - positions in this directive. n specifies the intermediate merge order;
 2<n<64. Merge order is explained in appendxx F. Specification of merge
“order on the SORTMRG control statement overrides specification here. If
core is not sufficient to merge at the order specified, a fatal error occurs and
a diagnostic indicates how much additional core would be required. When no
-merge order is specified, Sort/Merge compu‘tes one based on the amount of

_ memory available.
COMPARE The key comparison tech:nque is to be used. This techmque requxres less
) elapsed time and more central processing (CP) time than ‘key extraction.
EXTRACT " The key extraction techmque is to be used. This lechmque requires less CP

. time and more elapsed tune than key comparison.

The COMPARE and EXTRACT options are mutually exclusive within a smgle sort. I.fne:ther optlon is speclfied
Sort,(Merge attempts to choose the best techmque :

If the user requests the OPTIONS directive more than once onl}r the last OPTIONS dlrectxve apphes

EXAMPLE ;

This example requests the VERIFY optma It also requests the DUMP option afte.r each 10, 000 records are read
: from the input file and written on the output file.

l'I’j"””‘I'n‘r’_f‘“r"iﬂln'u!ulu wlll]li]ah:hg[.g]. Talalz] s . ey
PPTxans VERIFY, DUMP(!OOOO) S | -
I

OWNCODE

The OWNCODE directive is required to specify legal entry point names to a user’s relocatable owncode exit routines.

OPERATING SYSTEM INCOMPATIBILITIES

Owncode exit 6 for checking nonstandard labels on input files is provided only under Sort[Merge Vemon 4, Therefore,
exit 6 cannot be specified for the exitno parameter under Sort/Merge Version 1.

FORMAT
OWNCODE MR L=mrl exitno=entry exitno= . . .

The equals sign is required for this directive in the positions shown; therefore, it cannot be used otherwise.

mrl Maximum decimal record length in 6-bit characters. This parameter is required if an input file
has not been specified, and not required otherwise.

exitno Number of the owncode exit desired.

entry Corresponding entry point name of exit.

When using OWNCODE binaries, Sort/Merge momentarily uses 10000B more words than when first called. The
additional 10000B word requirement must be included in the maximum field length. The maximum field length is
determined by the CM parameter on the JOB control statement. If CM is not specified, the maximum field length is
the machine capacity.

If the extra 10000B words required for loading OWNCODE binaries are not available, a diagnostic message is issued,

During the actual sort or merge, no more than the initial field length is used.

4-16 60497500 F

EXAMPLE

In this example, the maximum record length is forty 6-bit characters; exits 2 and 4 are specified with the
entry point names INTRO and OUTFROM.

Y1213 1alslel7|a|wfw]vfwmfults]wlw[w]wlofaln]|2]a]as[ze[a]2]20]0]a1]sa]33]34]
le‘|N|cIGIDJEJ'JM|R|L|=14;01'Iai:IIlNlTlajgl'|4L0|U|TIF|R}GM

| -

TAPE ('SORT!MERG'E VERSION 4 ONLY)
'I‘he TAPE dlrectwe is required for the tape version of Sort/Mery to speclfy all magnetlc tape intermediate merge

‘files. If the tape files have not been defined in a previous job step (REQUEST, REWIND, etc) Sort,r‘Merge issues
requests for scratd1 tapes to be asmgned to the intennechate files as needed.

Balaneed Merge i a L ;
A minimum of four tapes is requlsed the mamnum is hmited on]y by the nmrlber of tape drives available

_A ha!anced merp is more efﬁcient if an even number of tapes is speciﬁed

Palyphase Me!‘ﬁe

A mmuumn of thme tapes :s reqmred the mxunum is lnnlted only hy the nmﬂm of taye dﬂm available

= _'j_' . nnuumunnnmmnumnmnmnmnnmnnnnnmmnmnmmn o
u TAPE,JIINTE,R,M, E NTER‘Mtzl.,INTERMESHr'[I TEF !“'.4. e

END

The END directive is required to signify the end of each Sort/Merge run deck.

FORMAT

END

60497500 A 4-17

JOB EXAMPLES

The following Sort/Merge job examples provide direct applications of the Sort/Merge directives.

The structure of the records used as input for these examples is defined below. The record format dimensions
are represented in 6-bit characters.

RECORD FORMAT

1 24 26 27 33 39 41 42
4 Als

Name f, €| Salary |Start Datefg |e L

b|% efx|S

Name

Job

Dept

Salary

Start Date

Age

4-18

23-character internal BCD coded field

2-character internal BCD coded field containing a job grade identifier

2 employee

4 foreman

6 supervisor

8 manager

10 general manager
12 director

1-character display coded field containing a department identifier
A production department
B shipping department
C personnel department
D accounting department
E sales department
6-character display coded field
6-character display coded field in the format mmddyy:

mm month
dd day

yy year

2-character internal BCD coded field

60497500 A

Sex 1-character display coded field

MS 1-character display coded field containing marital status
M married
S single
D divorced
EXAMPLE 1

Job Requirements:
1. Sort the records located on the input file IN1 on the basis of:
Department in alphabetical order
Name in alphabetical order
Salary beginning with the highest paid

2. Retumn the output to file OUTI.

Job Code:
T 1213 lals a7 |olefwlvifwlufralos|relvz]e[ol20{21 [22[23]2 [25 26 (27 28] 29 30} 31)32 333435 [36]37 38} 39 a0 a1 a2} Inslmirs[re [27lm 9] 00
SIGJELTL_l | N N ST [N N S [N e O o Ot) DN) L [OO (O PN N NN NN RN YN N CSUY (N 1 (LY) | | | X 'lL[I',NgE| '
FILE,INPUT=INI,@UTPUT=@UTI %) LINE 2
F11'E1L101'1N1A1M1E|(JIL'12131’|I:N|T|B|C!D')|’iDlE.PLAlR|T|M|E1N}Te(n216|'-.I"m | ,L-IlNlEj I 3
,DISPLAY) ,SALARY(27,6,DISPLAY) ~~ ~ ((LINE 4
KEY,DEPARTMENT(A,DI SP LLALYI)I INIALME(A,DISPLAY), (0 LINE 5
SALARY(D DISPLAY) LINE 6
| EE ["2 () Y (N Y (S NN (N AN [N (O (N NN U SN N A L1 ¥ |
IEINID.'IIlll;J_lliulllI|II1IIII1||IIIIIIII|‘I_) |L|I|N|E||]?
Code Interpretation:
Line Significance
1 SORT directive specifies a mass storage sort.
2 FILE directive specifies the input file as IN1 and the output file as OUTI.

60497500 A 4-19

Line Significance

3&4 FIELD directive defines:
NAME key, 23 bytes in length, beginning in byte 1, and coded in internal BCD.
DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.
SALARY key, 6 bytes in length, beginning in byte 27, and coded in display.

5&6 KEY directive specifies:

DEPARTMENT key to be sorted in ascending order according to the display collating
sequence.

NAME key to be sorted in ascending order according to the display collating sequence.

SALARY key to be sorted in descending order according to the display collating
sequence.

EXAMPLE 2
Job Requirements:

1. Sort the records on the input file IN1 on the basis of:
Department, in the order: sales, personnel, accounting, shipping, and production
Salaries within these departments beginning with the highest salary
Ages, beginning with the oldest, of employees in each department and salary level

2. Return the output to file OUT1.

Job Code
T 1213 lals s 7 a]olw[vifwfw/rals]rwlrr|vefw|so]ar 2a]2a[aafas [a6{ar]2n]20]30]0119235]3a]s [26[37[38]30 a0 ur [a2]us .[?I]?"t]?i A ENE |
SIQIRI AR TN W TN N S NN SN N NN N T N (N N N N T W U I T U W WA W O A] [LIIINIEJ 1 :'
FI LE ':IlN;P|UT| 1I|N1I| |G|UET|P|U|T| 0|U|T|I| N Y Y T N NN U N Y O N Y B ILIIINIEI | |2
FIELD DElF‘LAIRITME NT(26:'. 0 I|'.'IIIIISF'LJ!\Y)|1;S1A1L1A|R|Yt(127”[6 LL|I|N|E|)
DISPLAY),AGIE(Z':Q I2 |INTBC|D) : : 4 LIINE 4
K E Y D £ P ART M EN T(|A| |0|w|N{) ' IALIAIRIYi(|D|’ LD|I:S'P|L1A:Y|) 1 1 1L_1_I1NLE| | |5
AGE(D DISPLAY[’I AN T T A S TN N T N N N Y N N AN T N Y N N A SN TN N LINIEI | |6
SIElQIUIENCE 'lelWN(I L] |' | | |'| |) S T S TN A 1 A G 1 S (il I 125 IL[IIN!EI 1 ?
lE-N|D| T N IR T Y N N U N T Y R NN N (N Y NN O Y Y S A A A S NN S Y S S W' sLaI1N|E-. | |8
I .
420

60497500 A

Code Interpretation

Line Significance

1 SORT directive specifies a mass storage sort.

2 FILE directive specifies the input file as IN1 and the output file as OUT1.
3&4 FIELD directive defines:

DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.
SALARY key, 6 bytes in length, beginning in byte 27, and coded in display.
AGE key, 2 bytes in length, beginning in byte 39, and coded in internal BCD.

5&6 KEY directive specifies:

DEPARTMENT key to be sorted in ascending order according to a unique collating
sequence assigned the name OWN.

SALARY key to be sorted in descending order according to the display collating
sequence.

AGE key to be sorted in descending order according to the display collating sequence.

7 SEQUENCE directive specifies the unique collating sequence, OWN, used for sorting the
DEPARTMENT key in the order requested.

EXAMPLE 3
Job Requirements:

1. Sort records on the input file IN1 on the basis of:
Employee start dates beginning with the most recently hired
Ages of employees starting with the oldest
Marital status; divorced and single employees are to be considered on an equal basis

Names of employees in alphabetical order

2. Return the output to file OUTI1.

60497500 A 421

Job Code:

T 1213 als s l2 08 |9 w|tj[m[walrs]w[rrfow|wlao]21 22232425 [26[27]20[29[30] 31 02[33]5a[0s 36|37][08]0]a0far[az]unlaalus[(La]ralss]rs]77]a][ro]00
SORT i da i) LINE |
FILE,INPUT=INI,@UTPUT=QUT I . . .| 0 LINE 2
FIELD,YEAR(37,2,DISPLAY) ,MONTH(33, 2, DISPLAYJHI LINE 3
' DAY (35,2 DISPLAY),AGE(39 2, INTBCD);MS(42 L, .)p LINE 4
4{'6f§PLAY) NAME(I 23, INTBCD) i b ...) LINE 5
KEY,YEAR(D, DISPLAY)”MpyTH(D DISPLAY) Dﬁx(p,1ll LINE 6
p;pf}ﬁy)”ﬁps(n DISPLAY], ”?}PJFPFFFP),FFFF T
,(A,DISPLAY) ") LINE 8
EQUATE ,INTBCD(S,D) lLtINe o
ENP,.....;[LAI.I,Lll..A...l..l......1 . . M LINE 10
I

Code Interpretation:

Line Significance

1 SORT directive specifies a mass storage sort.

2 FILE directive specifies the input file as IN1 and the output file as OUT1.
3,4,5 FIELD directive defines:

YEAR key extracted from the last two bytes of the START DATE field. The key

begins in byte 37, is 2 bytes in length, and is coded in display.

MONTH key extracted from the START DATE field. The key begins in byte 33,

is 2 bytes in length, and is coded in display.

DAY key taken from the START DATE field. The key begins in byte 35, is 2

bytes in length, and is coded in display.

AGE key, begins in byte 39, is 2 bytes in length, and is coded in INTBCD.

MS key begins in byte 42, is one byte in length, and is coded in display.

NAME key, begins in byte 1, is 23 bytes in length, and is coded in INTBCD.

6,7,8 KEY directive specifies:

YEAR key is to be sorted in descending order according to the display collating

sequence.

MONTH key is to be sorted in descending order according to the display collating

sequence.

DAY key is to be sorted in descending order according to the display collating

sequence.

4-22 60497500 A

AGE key is to be sorted in descending order according to the display collating
sequence.

MS key is to be sorted in descending order according to the internal BCD collating
sequence.

NAME key is to be sorted in ascending order according to the display collating
sequence.

9 EQUATE directive assigns equal processing value to marital status indicators, for divorced
(D) and single (S).

: considered as eqnal in status
swwbgmwgwmmmmmamm

SGRT VAR =BAL

é|niu|n|u|n|n}_n|#

3 el s S e e B s | D ey | FE) St oYl e (B 0 2 G :. L IN | ll

FILE |I|NPUT| II!N:I1(C)I,pUTIPUT aUeTill(ICIRI)J s 2 r 12 e |];NLE| I |2
TAP:El i 1NTEB I NTE R Mrai | |N-r F R|M|31' |IJNT1E1RLM|4| Fop (i pds lLlIl L] 3
FIELDI;NlALMIE I'I2I3I'IINTBICIDI)I’IJ|0 1 dl 1'1 therTiBico} ’l)] LIINIEI i 4
SALARY(ZT 6 DISPLAl |)n N B S S e e 4}] rLiI1 jeir 115
KErYj' |‘j ptal(1D| :I|M|TI|Bcnl) 1! |SJA|L|A1R|Yc(|D| DIIESJPILlAIYI, 1! JNFA!MlEI 1 | |L|IAN1E1 1 6
(A, DISPLAY) LINE 7
i Gt T T (L Tt d i i o I M il 1et1) S W B ot 40 L 8 0k o Do L L P P 3 1) | Vo 8 S
IEQUATE'iINTBCDt(|4; I |)» 1 |.| [A ck | .| R LN Vo R R S T L A S (e l) | .L.I1N|E; ! |8
kPTIGNs DUMP(IOIolol)l Tl U o ey i sy 1T (e B Il S R Sl o, e LAk b i b I {.I i t LtI| Thadt i § |9
.lEINEDI ! .| e e K| | O e Dt A PR o1 R 0 S S U5 L 10t e ool 0 Mkl LI B 00 Tl o SIS [Lk Lo)) LI|N|E| | |0

60497500 A 4-23

Code Interpretation:
Line

1

4 &5

6 & 7

EXAMPLE 5

Job Requirements:

Significance
SORT directive specifies a balanced tape sort.
FILE directive specifies:
Input file as IN1; after processing, the file is to be closed.
Output file as OUT1; after processing the file is to be closed and rewound.

TAPE directive specifies four intermediate merge files for the balanced Sort/Merge.

FIELD directive specifies:
NAME key begins in byte 1, is 23 bytes in length, and is coded in internal BCD.
JOB key begins in byte 24, is 2 bytes in length, and is coded in internal BCD.
SALARY key begins in byte 27, is 6 bytes in length, and is coded in display.

KEY directive specifies:

JOB key is to be sorted in descending order according to the internal BCD collating
sequence.

SALARY key is to be sorted in descending order according to the display collating
sequence.

NAME key is to be sorted in ascending order using the display collating sequence.

EQUATE directive assigns equal processing value to the job grade indicators for foreman
(4) and supervisor (6).

OPTIONS directive specifies a restart dump to be taken after every 1000 records are read
and written.

1. Merge the records located on the pre-sorted files, IN1 and IN2.

2. Return the output to file OUT1.

4-24

60497500 F

Job Code:

LG E LR L e lele elol e e ln s in el ale = Islenlalslnlaloluls lxlolnlnlalal) JInlnnlelnlalsle
MERGE . 0ttt RC LINE
FILEMERGE=INTIN2OUTPUT=OUTY ca)). LINE 2
FIELD,NAVEE(1,23 DISPLAY) DEPARTMENT(26,1,DISPLAY) SALARY (27,6DISPLAY) §) LINE 3
KEY,NAME(A,DISPLAY),DEPARTMENT (A DISPLAY) SALARY(A,DISPLAY))) LI NE, . 4
END4111} LINE 5

Code Interpretation:

Line Significance

1 MERGE directive specifies merge-only processing.

2 FILE directive specifies the merge files as IN1 and IN2 and the output file as OUT1.
3 FIELD directive defines:

NAME key, 23 bytes in length, beginning in byte 1, and coded in display.
DEPARTMENT key, 1 byte in length, beginning in byte 26, and coded in display.
SALARY key, 6 bytes in length, beginning in byte 27, and coded in display.

3 KEY directive specifies:

NAME key to be sorted in ascending order according to the display collating
sequence.

DEPARTMENT key to be sorted in ascending order according to the display
collating sequence.

SALARY key to be sorted in ascending order according to the display collating
sequernce.

Processing of a MERGE directive is accomplished through the SORTMRG control statement, which must

immediately precede the MERGE directive. A Record Manager FILE control statement must be provided for
every file processed by a directive sort or merge.

60497500 F 425 o

SAMPLE DECK STRUCTURES

The NOS operating system requires a job name statement and a USER statement. Depending on installation
option, a CHARGE statement might also be required.

Both the NOS/BE and SCOPE operating systems require a job name statement. An ACCOUNT statement
might be required as an installation option.

JOB DECK CONTAINING A SINGLE SORT/MERGE RUN WITH OWNCODE

/

OO~N®

+A binary deck run on NOS/BE must be followed by two 7/8/9 cards.

® 4-26

,
/
7T = =
8 /BINARY DECK
9 |77
8
9 v -

L

o~ N

rd
/SORT DIRECTIVES

LSORTM RG Statement

/F|LE Control Statement

0o~

/ Appropriate QOperating System Statement(s).

60497500 F

JOB DECK CONTAINING TWO SORT/MERGE RUNS WITH OWNCODE

ooodo

7
g'ﬂ =
i
8 s

9 /BINARY DECK

L
L

/som DIRECTIVES

0o~

/

L
£
L
¥ 4

y 4
/BINAHY DECK

0o~

W00~

L

L

" -

,
/soa‘r DIRECTIVES

OO0~ N

/ SORTMRG Statement
/ SORTMRG Statement
7 / FILE Control Statement
8

9/ FILE Control Statement

Appropriate Operating System Statement(s)

Ta binary deck run on NOS/BE must be followed by two 7/8/9 cards.

60497500 F 4-27

MACRO CALLS 5

When Sort/Merge functions as a COMPASS subroutine for a COMPASS program or as a relocatable program
generated for the COBOL SORT verb, the calling sequence is written as a series of macro instructions. In

specifying macro instructions, the user must satisfy the following requirements:

A SORT or MERGE macro call must precede all other Sort/Merge macro calls specified.

All macro calls for any one Sort/Merge run must be specified in a continuous sequence, except wher
the POINTER and SMLIST macros are used.

The system control statement LIBRARY(SRTLIB) is required preceding the relocatable load of the
macro binaries.

The Sort/Merge macros should not be assembled with the COMPASS LIST M or F options turned
on because of the large number of source statements they generate. LIST G can be used to check
the macro formats generated.

S=SMTEXT is required on the call for COMPASS assembly to ensure proper expansion of Sort/

' Merge macros under Sort/Merge Version 4.

To ensuze'ptoper _expa‘ns,ipn- of Sort!Merge maéros_wi_th Sort/Merge Version 1, the control statement

A’ITACH(SRTMACS SR’I’MACS mupanun)

st precede the COMPASS control statement, and the COMPASS progmm must include the statement

SRTMACS 3 XTF.XT @

w:th SRTMACS in the Iocation ﬁeld and XTBXT in the operaﬁm field.

After processing each series of macro calls, Sort/Merge returns control to the location immediately following
the last macro specified in that series.

Sort/Merge Version 4 uses the Common Memory Manager (CMM) to allocate its space; it does not use the -
area specified by RA+65B through field length. At least 22000B words of space should be available for
Sort/Merge. Sorts with more than 2000 character records, with many user-supplied merge input files, or with
other exceptional conditions might require more words. If an insufficient field length for the sort is specified
in the CM parameter on the job statement ~or if the memory limit is reached during the sort, Sort/Merge
issues a diagnostic and aborts. . .

60497500 E 5-1

SYSTEM FILE MACRO

Every input or output file to be processed by Sort/Merge macros must have a valid file information table when
macros are executed. Usually, this table is created through the Record Manager FILE macro. Record Manager
requirements for macro sorts and merges are described in appendix D.

Internally, Sort/Merge requires a value for maximum record length in characters, even for Record Manager file struc-
tures which do not require this specification (for example, BT=I, RT=W). This value can be specified by the MRL or
FL parameters on the FILE control statement, FILE macro, or STORE macro for input or output files, or by
the MRL parameter in the OWNCODE macro. Sort/Merge will use the greatest of the values provided.

For Sort/Merge Version 1, if the input file is the standard system INPUT file (filename on the FILE macro is
INPUT), the FILE macro should be specified with no rewind for the open file and close file parameters.
SORT/MERGE MACRO CALLS

Each macro call presented in this section is described for all operating systems. Incompatibilities among the
systems in terms of macro call specification are identified within the presentation of each macro call.

The following macro calls are provided for Sort/Merge execution under the operating systems:

SORT EQUATE
MERGE OPTIONS
BYTESIZE OWNCODE
FILES TAPE (Sort/Merge Version 4)
KEY POINTER (Sort/Merge Version 4)
SEQUENCE SMLIST (Sort/Merge Version 4)
SORT

The SORT macro call is required to initiate Sort/Merge functions as a subprogram within a job requesting
Sort/Merge processing.

OPERATING SYSTEM INCOMPATIBILITIES

The tape variant of Sort/Merge is supported only under Sort/Merge Version 4. Therefore SORTB and SORTP
macro call variants of the SORT macro are available only under Version 4.

The MAXCM and CM parameters can be specified only under Sort/Merge Version 4.

The ba parameter can be specified only under Sort/Merge Version 1.
FORMAT

LOCATION OPERATION VARIABLE SUBFIELDS

SORT ba,MAXCM=n, CM=BELOWHHA

5-2 60497500 E

ba This optional parameter specifies in decimal the total large core inemoi'y (LCM) buffer area
: for SCOPE 2 Record Manager for all intermediate scratch files constructcd mtemally by
Sort/Merge. The default value is an installation parameter,

Two ..ltemate formats of the SORT macro call for the tape vmiant of Sorthery are as follows.

Foz a balanced mery (appendix E)

“LOCATION

e brﬁ'ai_rioﬂ VARIABLE SUBFIELDS

i

SORTB Méxc'msn,. CM=BELOWHHA

For a polyphase merge (appendix E):

LOCATION OPERATION VARIABLE SUBFIELDS
SORTP MAXCM=n, CM=BELOWHHA
MAXCM=n This required parameter specifies the maximum number of central memory (CM) words

CM=BELOWHHA

MERGE

that Sort/Merge is to use for its working storage area, including space needed for Sort/
Merge subroutines. At least 22000B words should be provided. If zero is specified,
Sort/Merge uses a default size. n can specify a register.

This optional parameter is meaningful only for overlay programs. If specified, the
Common Memory Manager preferentially allocates the working storage area for Sort/
Merge between the last word address (LWA) of the last loaded overlay and the highest
LWA of all overlays, which is the highest high address (HHA). If the parameter is
omitted, the working storage area for Sort/Merge begins higher than the highest LWA
of all overlays. If an overlay containing a sort does not load other overlays during its
execution, this parameter should be specified in order to reduce the amount of memory
required for the program. The parameter should not be specified if overlays are loaded
during the sort, since the contents of the workmg stomge area for Sort/Merge would be
overlayed and lost.

The MERGE macro call specifies merge-only processing.

FORMAT
l LOCATION OPERATION VARIABLE SUBFIELDS
MERGE MAXCM=n, CM=BELOWHHA
MAXCM=n This required parameter specifies the maximum number of central memory (CM) words
that Sort/Merge is to use for its working storage area, including space needed for Sort/
Merge subroutines. At least 22000B words should be provided. If zero is specified,
Sort/Merge uses a default size. n can specify a register.
60497500 E 5-3

CM=BELOWHHA This optional parameter is meaningful only for overlay programs. If specified, the
Common Memory Manager preferentially allocates the working storage area for Sort/
Merge between the last word address (LWA) of the last loaded overlay and the high-
est LWA of all overlays, which is the highest high address (HHA). If the parameter
is omitted, the working storage area for Sort/Merge begins higher than the highest
LWA of all overlays. If an overlay containing a sort does not load other overlays
during its execution, this parameter should be specified in order to reduce the amount
of memory required for the program. The parameter should not be specified if over-
lays are loaded during the sort, since the contents of the working storage area for
Sort/Merge would be overlayed and lost.

BYTESIZE

The BYTESIZE macro call specifies the number of bits per byte. Defining the bytesize with this macro call
establishes a standard bytesize for subsequent parameter references to bytes in the KEY macro call:

FORMAT
LOCATION OPERATION VARIABLE SUBFIELDS
BYTESIZE nn
nn Specifies the number of bits per byte.
EXAMPLE

Specifies 60 bits per byte with the BYTESIZE macro call:

LOCATION OPERATION VARIABLE SUBFIELDS

BYTESIZE 60

FILES

The FILES macro call defines the names of all input and output files to be used during Sort/Merge processing.
The files to be defined can be specified in any order. With the exception of the output file which is limited to
one specification, any of the remaining file types listed below can have up to 62 individual files specified with
a maximum of 63 files per macro call. A FILES macro is required to specify all the input and output files
to be used during a Sort/Merge run. For a merge run, only MERGE and OUTPUT file types can be specified;
for a sort run, SORT, MERGE, INPUT, and OUTPUT file types can be specified.

If an input file is not specified, the user must define owncode Exit 1 for record input. Omission of an output
file specification requires the user to specify owncode Exit 3 to provide for record output.

54 60497500 C

Each input file is opened with rewind unless the file is already open or unless the system INPUT file is speci-
fied; INPUT is opened with no rewind.

FORMAT

LOCATION OPERATION VARIABLE SUBFIELDS

FILES (type,name,name),(type,name, . .

type Type identifiers:
SORT Sort input file
INPUT Sort input file
MERGE Merge input file
OUTPUT Output file

name Location of file information table for file to be processed by Sort/Merge.

EXAMPLE

This example has two input files named ACCOUNTS and ASSETS. One output file is specified, named
RESULT.

LOCATION OPERATION VARIABLE SUBFIELDS

FILES (INPUT,ACCOUNTS, ASSETS),(OUTPUT,RESULT)

KEY

The KEY macro call specifies each sort key used in sort and merge processing. A single KEY macro call is
required for each sort key specified. A maximum of 100 sort keys can be specified in any one run.

The placement of the individual KEY macro calls within the program determines the processing priority of

each sort key. Each sort key specified within a macro call is processed before subsequent sort keys specified
in additional macro calls.

Sort keys are discussed more fully in section 2.

OPERATING SYSTEM INCOMPATIBILITIES

The separate sign feature for signed numeric data and the sign overpunch in the leading character position are support-
ed under Sort/Merge Version 4; therefore. the location and SEPARATE options are applicable to Sort/Merge Version 4.

60497500 C 5.5

FORMAT

OPERATION VARIABLE SUBFIELDS

LOCATION
KEY bytepos,bitpos,nbytes,nbits, type,colseq,order S GN, location SEPARATE
bytepos Position of first byte of sort key in relation to first byte of record, counting from 1.
bitpos Position of first bit of sort key in the byte indicated by bytepos, counting from 1.
nbytes Specifies number of complete bytes in sort key.
nbits Specifies number of bits in sort key in addition to number of complete bytes specified in the

previous parameter. The number of bits per byte is 6 unless a BYTESIZE macro is provided.

The following parameters are optional.

5-6

type

colseq

order

Coding identifier; this parameter always must precede any colseq parameter specified.
DISPLAY Internal display code

FLOAT Floating point data

INTBCD Internal BCD code

INTEGER Signed integer data

LOGICAL Unsigned integer data

Name of a user specified collating sequence defined in the SEQUENCE macro call or one

of the following collating sequence identifiers (appendix A). A collating sequence need be speci-

fied only if the sort key type is identified as INTBCD or DISPLAY.

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII character
set

COBOL6 6-bit COBOL collating sequence; default for installations using the CDC character
set

DISPLAY Internal display collating sequence
INTBCD Internal BCD collating sequence

The default collating sequences can be replaced and respecified with an alternate collating
sequence using the SEQUENCE macro call,

Sequencing order of sort and merge processing:

A Ascending (assumed if parameter is omitted)
D Descending

60497500 B

SIGN This optional parameter is valid only for sort keys containing numeric data in display code.
It indicates the sign is represented by an overpunch on the low order digit of the sort key.

This optional parameter is valid only for sort keys containing numeric data in display code.
It indicates the sign is represented either by an overpunch digit or a separate + or - sign, as
described by the two following parameters. If SEPARATE is not used, the sign character is
an overpunch. ' '

location Sign position indicator, valid only if SIGN is used. The sign character is an overpunch char-
acter unless SEPARATE appears:
LEADING Sign character or overpunch digit is at the beginning of the data field
TRAILING Sign character or overpunch digit is at the end of the data field (assumed
if parameter is omitted)

SEPARATE Indicator signifying that the sign character is a separate + or - character appearing at the
beginning or end of the data field. Valid only if SIGN is used.

EXAMPLE

The KEY macro call example has the following specifications.

Sort key begins in byte 1, bit 7.

Key size consists of 1 byte and 12 bits.

Sort key is coded in DISPLAY.

Sort key is to be sequenced according to the internal BCD collating sequence.
Sequencing is ascending.

LOCATION OPERATION VARIABLE SUBFIELDS

KEY 1,7,1,12,DISPLAY,INTBCD,A

SEQUENCE

The SEQUENCE macro call provides the following capabilities:
Specification of user’s own unique collating sequence.
Redefining as default a user collating sequence or a standard collating sequence other than the system default.

A collating sequence need be specified only if the sort key type is specified as INTBCD or DISPLAY.

FORMATS

To specify a complete sequence with a single statement:

LOCATION OPERATION VARIABLE SUBFIELDS

SEQUENCE colseq,(c,c,...),END

60497500 E 5-7

To define a continuing sequence with successive macro calls:

LOCATION OPERATION VARIABLE SUBFIELDS
SEQUENCE colseq,(c,c.cc.ccccc.cc)
SEQUENCE {c,c.c.c.cc.c),END
colseq Collating sequence:

Name of user’s unique collating sequence; it cannot be A, D, SIGN, or END.

Standard collating sequence identifier for respecifying the default collating sequence
(appendix A).

ASCII6 ASCII collating sequence; default for installations using the ASCII character set
COBOL6 COBOL collating sequence; default for installations using the CDC character set
DISPLAY Internal display collating sequence

INTBCD Internal BCD collating sequence

Omitted; indicates the collating sequence in parentheses is to be the default collating sequence.

Each c is a character or octal value specified in the sequence in which it is to appear in
the user collating sequence. Characters or values not specified are considered equal and col-
lated after the specified characters or values.

The system assumes a two-digit number is an octal value (the number must not be followed by
a B). When this value occurs as the contents of a character position in a sort key, it is sorted
according to the position the value occupies in the user collating sequence, regardless of what
character it represents in the character code specified in the KEY macro.

When a character is specified, the system translates it to a value according to the character
set (DISPLAY or INTBCD) specified in the KEY macro. When this value occurs in a char-
acter position in a sort key, it is sorted according to the position the character ¢ occupies
in the collating sequence. A single digit is assumed to be a character, not an octal value,

If colseq identifies a standard collating sequence, no list is provided by the user.

If colseq is omitted, the list in parentheses redefines the default collating sequence.

The following symbols, if included in the user’s collating sequence, must be specified in the ¢ parameter
according to their octal equivalent or by the corresponding descriptive identifiers assigned to the symbol.
The descriptive identifiers are considered to be characters, as defined above.

5-8

60497500 B

Character

blank

EXAMPLES

Display code Internal BCD Descriptive
octal equivalent octal equivalent Identifier
51 74 LEFT
52 34 RIGHT
55 60 BLANK or SPACE
56 73 COMMA
65 75 ARROW

This example names the nonstandard collating sequence, NEWSEQ, and specifies the characters
comprising the sequence.

LOCATION

OPERATION

VARIABLE SUBFIELDS

SEQUENCE

NEWSEQ,(A 8,C,D,F,GH,1,J,K),END

The default collating sequence is replaced by the following collating sequence to be used by the system
as a new default value for the KEY macro.

LOCATION

OPERATION

VARIABLE SUBFIELDS

EQUATE

SEQUENCE

(B,D,FJLNPRTV)END

The EQUATE macro call equates or specifies two or more characters already specified in a collating sequence
as equal when comparisons are made between these characters for sort and/or merge processing.

FORMAT
LOCATION OPERATION VARIABLE SUBFIELDS
EQUATE colseq,(c,c,c),(c,c), END
colseq Collating sequence
Name of a user specified collating sequence specified on the SEQUENCE macro call
60497500 A

5-9

Collating sequence identifier:

ASCII6 6-bit ASCII collating sequence; default for installations using the ASCII
character set

COBOL6 6-bit COBOL collating sequence; default for installations using the CDC char-
acter set

DISPLAY Internal display collating sequence
INTBCD Internal BCD collating sequence
c Characters or values to be equated. The collating position of the list specified within the parentheses
is equal to the position of the last character or value specified in the list. Meaning of specification

of characters or values is explained under the SEQUENCE macro.

The following symbols, if included in ‘the user’s collating sequence, must be specified in the ¢ parameter
according to their octal equivalent or by their descriptive identifiers assigned to the symbol.

Character Display code Internal BCD Descriptive
octal equivalent octal equivalent Identifier
(51 74 LEFT
) 52 34 RIGHT
blank 55 60 BLANK or SPACE
s 56 73 COMMA
-> 65 75 ARROW

Descriptive identifiers are considered the same as characters, as defined under the SEQUENCE macro.

EXAMPLE

The name assigned to the collating sequence is LIST; the characters L, R, T, and 5 are to be equated
and assigned a collating value equal to B in the first character string.

In the second grouping of characters the collating values of the characters M and Q are equated to the
collating value of the character 3.

LOCATION OPERATION VARIABLE SUBFIELDS
EQUATE LIST,(L,R,T 5,B),(M,Q,3) END

5-10 60497500 A

OPTIONS

The OPTIONS macro call specifies special record handling options or operations for sort and/or merge

processing.

OPERATING SYSTEM INCOMPATIBILITIES

The checkpoint dump features of Sort/Merge are supported only under Sort/Merge Version 4; therefore, the
VOLDUMP, DUMP, NODUMP options are applicable to Sort/Merge Version 4.

The ORDER option is applicable only to Sort/Merge Version 4.

The COMPARE and EXTRACT options are applicable only to Sort/Merge Version 4. °

The OPTIONS macro must immediately follow the SORT or MERGE macro under Sort/Merge Version 1.

FORMAT
LOCATION OPERATION VARIABLE SUBFIELDS
OPTIONS option,option,...
option One or a combination of the following record handling identifiers:

60497500 F

VERIFY

RETAIN

VOLDUMP

(DUMP,nn)

NODUMP

Output file is checked for correct sequencing. If the order of records on the
output file is incorrect, the job terminates and the output file is lost. This
option verifies that records from merge input files, or inserted through owncode
exits 3, 4, and S, are in order; it need never be specified for a sort with no owncodes.

If this parameter is omitted, a sequencing error during a merge run with no
inserted records produces a non-fatal error message; all records are written to
the output file, but they will not be in order. When records are inserted, no
checking takes place; thus omission of this parameter allows the user to de-
liberately insert records (such as page headers) out of sequence.

Records with identical sort keys that are read from sort input files are written in
the order they are read. That is, all the records from each file are grouped together,
and the groups occur in the order that the files are specified in the FILE directive.
Records from merge files are sequenced arbitrarily. If this parameter is omitted,
records with identical sort keys are sequenced arbitrarily.

Checkpoint dump is taken when any end-of-volume condition is encountered on the
input file or when a new volume condition is detected on the output file. A check-
point file must have been previously requested. See the NOS or NOS/BE reference
manual for information about requesting checkpoint files.

Checkpoint dump is taken when nn records (decimal) are read and written. A check-
point file must have been previously requested. See the NOS or NOS/BE reference
manual for information about requesting checkpoint files.

If nn is not specified, a checkpoint dump is taken after each group of 50,000 records
is read and after each group of 50,000 records is written. A checkpoint file must
have been previously requested. See the NOS or NOS/BE reference manual for
information about requesting checkpoint files.

No checkpoint dumps are taken; default,

. (ORDER;n) n is the intermediate ‘merge order; 2<n<64. Merge order iswexplauned in o
ad appendix F. If core is not sufficient to merge at the order sp: '
_ eITor OCCuUrs and a diagnostic. indicates how much additional aote would be
qm:ed When merge order is not specified, it is calculated by Sortherge :
based on the amount of memary avaxlable.

COMPARE The key compansun techmque is to be used. 'I'hls téchﬂ:que usually reqmres
- less elapsed t;me and more central prbcessmg (CP} time than lcey extractmn '

EXTRACT The key extraction technique is to be used Thls techmque usually requnes
less CP tnme and more eiapsed nme than key companson e e
 The CBMPARE and EXTRACT ophons are mutually excluswe wnthm a smgle sort If__.'héi'the't'bbtidn'.is
specified, Sort/Merge attempts to choose the best techmque Sl el SRk

EXAMPLE

: Tlus example requests the VERIFY option. It aho requests that the DUMP optlon be taken aﬂer each
10, 000 records are mad from the mput ﬁle and wntten on ﬂ:e uutput file i -

-;Q?A-ii_on ~ |oreraTioN - 'vamus suamws 5

|opTioNs vsmpv tnumr mzm;

OWNCODE

The OWNCODE macro call is required to specify the entry point names to a user’s relocatable owncode exit
routines,

OPERATING SYSTEM INCOMPATIBILITIES

An owncode Exit 6 for the checking of labels ¢ on m:put f'des is pm\nded only ;mder So:therge Versmn 4;
therefore, Ex:t 6 is an allowab!e specxﬁeahon or the exitno parameter of ui
Version 4. : EE s e

FORMAT
LOCATION OPERATION VARIABLE SUBFIELDS
OWNCODE (MRL,mrl),(exitno,entry), (exitno, ...
mrl Maximum record length in 6-bit characters. This parameter is required if an input file has
not been specified, and not required otherwise.
exitno Number of owncode exit.
entry Entry point name for exit specified.

5-12 60497500 E

EXAMPLE
In this example, the maximum record length is forty 6-bit characters.

Exits 2 and 4 are specified with the entry point names INTRO and OUTFROM

LOCATION CPERATION VARIABLE SUBFIELDS

OWNCODE (MRL,40),(2,INTRO),(4, OUTFROM)

TAPE ol

The TAPE macro call is required to specify all magnéti_c' tape intermediate merge files used for the tape variant of
Sort/Merge. Sort/Merge generates the necessary file information tables and fields. If the file names have not been
defined previously (such as by the REQUEST or REWIND functions), Sort/Merge issues requests for scratch tapes
to be assigned to the files as needed.

BALANCED MERGE

A minimum of four tapes is required; :fhe maximum is limited only by the number of tape drives available
(appendix E). Balanced merging is more efficient if an even number of tapes is specified.

POLYPHASE MERGE

A minimum of three tapes is required; the maximum is limited only by the number of tape drives available
(appendix E).

FORMAT
LOCATION OPERATION VARIABLE SUBFIELDS
TAPE filename,filename,filename, .. .
filename Name assigned to the intermediate merge file
EXAMPLE

The names assigned to four intermediate merge files are INTERM1, INTERM2, INTERM3, INTERM4.

LOCATION OPERATION VARIABLE SUBFIELD .

TAPE INTERM1,INTERM2,INTERM3,INTERM4

60497500 D 5-13

.
L]

60497500 D

5-14

EXAMPLE

The OPTIONS, SEQUENCE, and IOGICAL KEY macros are used for two sorts, yet they are specified
only once in the program. The LOGICAL key is the primary key for the first sort and the secondary
key for the second sort. The second sort is not affected by the embedded SMLIST macro, since

SMLIST macros are processed only when a POINTER macro is encountered.

LOCATION OPERATION VARIABLE SUBFIELDS COMMENTS
SORT MAXCM=0 FIRST SORT
POINTER LISTEM
KEY 1,1,5,0,DISPLAY MYSEQ
SORT MAXCM=0 SECOND SORT
LISTEM SMLIST OPTM,SEQM
KEY 10,1,4,0,DISPLAY,MYSEQ
POINTER LISTEM
OPTM OPTIONS RETAIN
KEY 73,8, LOGICAL
CON 0 TERMINATE MACRO SEQUENCE
SEQM SEQUENCE MYSEQ,(AB,C,3,2,1) END
60497500 D

5-15/5-16

FORTRAN EXTENDED CALLS 6

A set of library routines is provided for calling Sort/Merge from a FORTRAN Extended program. All are
called by standard FORTRAN Extended CALL statements; all conventions for FORTRAN Extended statements
must be observed.

The FORTRAN Extended calls and corresponding Sort/Merge directives are listed below:

CALL SMSORT SORT directive

‘CALL SMSORTB SORT directive (Sort/Merge Version 4)
CALL SMSORTP SORT directive (Sort/Merge Version 4)
CALL SMMERGE MERGE directive

CALL SMFILE FILE directive

CALL SMKEY KEY directive

CALL SMSEQ SEQUENCE directive

CALL SMEQU EQUATE directive

CALL SMOPT OPTIONS directive

CALL SMTAPE TAPE directive (Sort/Merge Version 4)
CALL SMEND END directive

CALL SMOWN OWNCODE directive

CALL SMRTN No corresponding directive

CALL SMABT No corresponding directive

The first call must be to SMSORT, SMSORTRB, SMSORTP, or SMMERGE. The last call for any one sort must be
to SMEND, which initiates processing using the information collected by the other calls.

Any Hollerith constants shown below as parameters delimited by the paired symbols # # can be indicated by the

nHf (left justified with blank fill) representation of a Hollerith constant or a variable containing such a value. nRf
and nLf representations are required in some instances, as noted below.

FORTRAN EXTENDED CALLS TO SORT/MERGE
SMSORT, SMSORTB, SMSORTP, AND SMMERGE

One of these calls must be the first call for any sort.

60497500 F 6-1

SMSORTSB is used for a balanced tape sort, SMSORTP for a polyphased tape sort, and SMMERGE for merge only
processing. All other sorts use the call to SMSORT.

OPERATING SYSTEM INCOMPATIBILITIES

The tape variant of Sort/Merge is not supported under Sort[Merge Versmn I meféfbpé, SMSORTB and
SMSORTP calls are allowed only under Version 4. R Sery g e B

FORMAT

CALL SMSORT(mrl ba)

CALL SMMERGE(mrl ba)

mil Maximum length in characters, of record to be sorted.

ba

SMFILE

This call defines the names of all input and output files to be used during Sort/Merge processing. One call is
needed for each unless the output file is handled by SMOWN, which requires no call to SMFILE.

A file should be positioned before any Sort/Merge processing.

FORMAT
CALL SMFILE(smo,type,lfn,action)

* $mMO Specifies file processing:

#SORT#
#MERGE+#
#FOUTPUT#

type Indicates type of input/output used for file access:
#FFORMATTED# Formatted

or #CODED+
#BINARY# Unformatted
0 (zero) Record Manager interface routines

6-2 60497500 E

Ifn File name can be a tape number or the name left justified with zero fill (nLifn). If type is
zero, 1fn is an array containing a FIT to be used in conjunction with Basic Access Methods
(BAM) interface routines, and an OPENM must have been done on the file previously.
Further, the file names must not appear on a2 PROGRAM statement. If type is not zero,
the files specified by SMFILE must appear on the PROGRAM statement.

action Indicates action to be taken with the file upon Sort/Merge completion:
#FREWIND+#
#FUNLOAD+
#NONE+# (Default)
EXAMPLE

The file TAPE] is an input file for a sort. As no action is specified, the default (ANONE#) is used.

CALL SMFILE(#SORT##FORMATTED+,1)

SMKEY

One SMKEY call is required to describe each sort key to be used. Sort keys are discussed more fully in section 2.

OPERATING SYSTEM INCOMPATIBILITIES

The separate sign feature for signed numeric data and the sign overpunch in the leading character position are
supported under Sort/Merge Version 4; therefore, the LEADING TRAILING, and SEPARATE options are appli-
cable to Sort/Merge Version 4.

FORMAT

CALL SMKEY/(bytepos,bitpos,nbyte,nbits,ty pe,colseq,order)

bytepos Starting position of the sort key in relation to the first 6~bit byte of the record,
bitpos counting from 1. bytepos gives the byte, bitpos gives the bit within the byte.

Eme } Length of sort key in 6-bit bytes, or characters (nbyte), plus bits (nbits).

The remaining three parameters are optional:

type Specifies the type of code used to interpret keys. Type is a character expression
having the following values:

#DISPLAY## Internal display code
#FLOAT# Floating point data
#INTEGER#* Signed integer data
#LOGICAL#* Unsigned integer data (default)

60497500 F 6-3

The identifiers #SIGN#, #SEPARATE#, #TRAILING#, and #LEADING# must be preceded by type
#DISPLAY#; the identifiers must be separated by commas, as indicated:

#DISPLAY#, Numeric data in display code; represented by an

#'SIGN* _ . overpunch on the low order character of the 'ke'y
: R Numenc data in display code; requued u‘ data has
ey szgn overpunch,
#DISPLA-Y#, 2 Numeric data in dasplay code +or - s:gn present
#SIGN#, & overpunch at beginning of the field G

#LEADING#

%DISPLA?Y.’#,I:. i _Numenc data m dlsplay code, +or - sign prosent
FRIGNE, - ol s an overpunch at the end of me field.

. '__Nmneﬁc.dsta m display code sign zs '
: : _ d'

colseq Name of user supplied collating sequence defined by SMSEQ call, or one of the follow-
ing collating sequences:

#ASCII6# 6-bit ASCII collating sequence (default for installations using
ASCII character set)

#COBOL6+# 6-bit COBOL collating sequence (default for installations using
CDC character set)

#DISPLAY# Internal display code collating sequence

FINTBCD+# Internal BCD collating sequence

name Name of a collating sequence specified by a call to SMSEQ

A colseq parameter cannot be used unless the type parameter specifies #DISPLAY#.

When a type parameter other than #DISPLAY# is used, the colseq parameter must be omitted. No indication of
the omitted parameter is necessary.

order Sequencing order for sort processing. It can be either of the following:
FAF Ascending (default)
#D+# Descending

6-4 60497500 F

EXAMPLE
The SMKEY call example has the following specifications:

Sort key begins in byte 1, bit 1.

Key size is 20 bytes.

Sort key is coded in #DISPLAY#.

Sort key is to be sequenced according to the installation default.
Sequencing is ascending.

CALL SMKEY(1,1,20,0,#DISPLAY# #A+¥).
The order parameter follows the sort key parameter when colseq is not needed.
The following SMKEY example is invalid:

CALL SMKEY(13,6,10,0 #INTEGER#,0,7A+#)

Sort/Merge interprets the second 0 (zero) as the name of a collating sequence because it is not a key type or #A#
or #D+#. Inclusion of a collating sequence parameter with a non-character key type is invalid.

The correct calling sequence is:

CALL SMKEY(13,6,10,0,#INTEGER# #A+)

SMSEQ

This call specifies and names a user supplied collating sequence.

FORMAT
CALL SMSEQ(colseq,array)

colseq Names the collating sequence being defined. The collating sequence cannot be =ASCII6+,
#COBOL6+#, #DISPLAY# or #INTBCD+#.

array Name of array containing characters in the order they are to be collated. Each character
should be in nRx format (right justified with zero fill) or ijB format (octal). Unspecified

characters collate high and equal. The collating sequence is terminated by a negative
number.

EXAMPLE

A new collating sequence is specified:

60497500 F 6-5

INTEGER COL(8)
DATA COL / 1RA, 1R, 1RI, IR1, 57B, IRS, 51B, -1/

CALL SMSEQ(#MINE#,COL)

SMEQU

This call specifies two or more characters (already specified in a collating sequence) as equal when comparisons
are made between these characters for Sort/Merge processing.

FORMAT
CALL SMEQU(colseq,array)

colseq Specifies the collating sequence containing the characters to be equated. The collating
sequence cannot be #ASCII6#, #COBOL6%#, #DISPLAY+# or #INTBCD+.

array Name of array specifying the characters to be equated. Each character should be in
nRx format (right justified with zero fill) or ijB format (octal). The end of the list
of characters to be equated is indicated by a negative number.

EXAMPLE
The characters A, B, and 1 in the collating sequence #MINE+ are equated:

INTEGER EQ(4)
DATA EQ / 1RA, IRB, IR1, -1/

CALL SMEQU(*MINE#,EQ)

SMOPT
This call specifies special record handling options or operations for Sort/Merge processing.

OPERATING SYSTEM INCOMPATIBILITIES

The checkpoint dump features of Sort/Merge are supported only by Sort/Merge Version 4; therefore the
#VOLDUMP+#, #DUMP+#, and #NODUMP= options are applicable only for the option parameter of the
SMOPT call under Sort/Merge Version 4.

The #ORDER#, #NODAY#, #COMPARE##, and #EXTRACT# options are also applicable only under
Sort/Merge Version 4.

If SMOPT is called under Sortherge Versmn 1, the call must be made immediately after the call to SMSORT
or SMMERGE.

6-6 60497500 F

FORMAT

CALL SMOPT(optiony, . . . , option_)

option; Any of the following record handling options may be specified:

#VERIFY#

#RETAIN#

#VOLDUMP#

' #&DﬁMP#,n

i

#NODAY#

60497500 F

Qutput file is checked for correct sequencing. If the records
are not in correct order, the job terminates and the output
file is lost. This option verifies that records from the merge
input file or inserted through owncode exits 3, 4, and 5 are
in order; it need never be specified for a sort with no
owncodes.

If this parameter is omitted, a sequencing error during a
merge run with no inserted records produces a nonfatal error
message. All records are written to the output file, but they
will not be in order. When records are inserted, no checking
takes place; thus, omission of this parameter allows the user
to insert records (such as page headers) out of sequence.

Records with identical sort keys that are read from sort input
files are written in the order they are read. That is, all the
records from each file are grouped together. Records from
merge files are sequenced arbitrarily. When this parameter is
omitted, records with identical sort keys are sequenced
arbitrarily.

A checkpoint dump is taken at end-of—volume condition on

the input file or new-volume condition on the output file.

A checkpoint file must have been previously requested. See
the NOS or NOS,’BE reference manual for information about

requesting checkpoint ﬁles

A checkpoint dump is taken when n records have been read
from the input file or written to the output file. n is decimal.
A checkpoint file must have been previously requested. See
the NOS or NOS/BE reference manual for information about

-requestmg checkpoint files.

Inis not specaﬁed a ciwckpoim dump is taken after 50,000

~ records are read or written. A checkpoint file must have been
~ previously requested. See the NOS or NOS/BE reference
: _manual for mformatlon about requeitmg checkpoint files.

5, No checkpoint dumps a:e taken defauit _'

5 Dayfile messages are suppremd

#FORDER#,mo mo specifies the intermediate merge order; 2 < mo < 64,
Merge order is explained in appendix F. If core is not
sufficient to merge at the order specified, a fatal error occurs
and a diagnostic indicates how much additional core is re-
quired. When merge order is not specified, it is calculated
by Sort/Merge based on the amount of memory available.

#FOMPARE+# The key comparison technique is to be used. This tech-
nique usually requires less elapsed time and more central
processing (CP) time than key extraction.

#FEXTRACT# The key extraction technique is to be used. This tech-
nique usually requires less CP time and more elapsed
time than key comparison.

The COMPARE and EXTRACT options are mutually exclusive within a single sort. If neither option is specified,
Sort/Merge attempts to choose the best technique.

If SMOPT is called more than once, only the last call applies.

EXAMPLE

This example requests the #VERIFY# option and a checkpoint dump after each 10,000 records are read from
the input file or written to the output file.

CALL SMOPT(#VERIFY# #DUMP+#,10000)

SMTAPE

This call is reqﬁired for .ﬂ_xe.tgpe variant of Sort/Merge Version 4 to specify all magnetic tapé intermediate merge
files. If the tape files have not been defined in a previous job step (REQUEST, REWIND, etc.), Sort/Merge issues
requests for scratch tape assignment as needed for intermediate files.

A minimum of four tapes is required for a balanced merge; this merge is more efficient if an even number of
tapes is specified.

A minimum of three tapes is required for a polyphased merge. The maximum number of tapes for either type
of merge is limited only by the number of tape drives available.
OPERATING SYSTEM INCOMPATIBILITIES
Tﬁe tape variant of Sort/Merge is not sﬁpponed under Version 1; therefore, the SMTAPE call is allowed only
under Sort/Merge Version 4.
FORMAT _
CALL SMTAPE(fny, . . . , fn_)
Ifn; Name assigned to intermediate merge file. Each file name must be in nLlfn format

(left justified with zero fill) and must not be defined by the FORTRAN Extended
program. A maximum of 63 file names may be specified.

6-8 60497500 F

EXAMPLE
Names are assigned to four intermediate merge files:

CALL SMTAPE(SLPOPPY,SLPANSY,SLDAISY,SLVIOLA)

SMEND

This call initiates Sort/Merge processing. It must be the last call for any one sort or merge.

FORMAT
CALL SMEND

This call has no parameters.

SMOWN AND SMRTN

The call to SMOWN allows owncode routines to be set up. This call provides the capability to insert, substitute,
modify, or delete input and output records.

If the owncode routine is a FORTRAN Extended subroutine, the call to SMRTN is used to return from the
owncode subroutine and resume Sort/Merge processing. Specific processing action can be requested from Sort/
Merge by altering the return address with a parameter on the SMRTN call.

An owncode routine must be supplied for each owncode exit specified in the call to SMOWN. Exits that may
be specified and the use of COMPASS owncode routines are discussed in section 3.

FORMAT
CALL SMOWN(exitnuml,subnameI, P ,exitnumn,subnamen)
exitnum, Number of owncode exit to be taken.
subname; Name of the user-supplied owncode exit subroutine to be called when exitnum,
is taken.

Each name specified in a call to SMOWN must appear in an EXTERNAL statement in the calling program.
For each subname specified, the user must supply a subroutine that exits through a call to system subroutine
SMRTN, in accordance with the owncode exit number and return address as follows:

Exitnum Entry Exit
lor3 SUBROUTINE subname(a,rl) CALL SMRTN(retaddr), for retaddr=1 or 3

CALL SMRTN(retaddr,b,rl), for retaddr=0 or 2

60497500 F 69

Exitnum Entry Exit

20r4 SUBROUTINE subname CALL SMRTN(retaddr), for retaddr=0
CALL SMRTN(retaddr,b,1l), retaddr=1

5 SUBROUTINE subname(al,ril,az,rlz) CALL SMRTN{bl,rll,bz,rlz), for retaddr=0

CALL SMRTN(b, l,), for retaddr=1

a Integer array of length rl+9/10 in which Sort/Merge stores a record when subname is
called. Storing into array a causes indeterminate results.

b Integer array of length r14+9/10 in which the user stores a record when subname is
called. Array b should not be the same as a.

il Record length in characters.
retaddr Alters the normal return address used to resume Sort/Merge processing as follows:
retaddr Return address:
0 Normal return address
1 Normal return address +1
2 Normal return address +2
3 Normal return address +3

The retaddr parameter of the SMRTN call determines the processing action requested. Actions that can be
requested are discussed in section 3. These actions are summarized as follows:

Processing Action Exit 1 Exit 2 Exit 3 Exit 4 Exit 5
Substitute a retaddr retaddr retaddr
record

Insert a record retaddr+2 retaddr+1 retaddr+2 retaddr+1

Delete a record retaddr+1 retaddr+1 retaddr+1
Terminate a file retaddr+3 retaddr+3

Normal processing retaddr retaddr retaddr retaddr retaddr

When the processing action requested is file termination, the current record in array a is not included in
Sort/Merge processing.

Special factors to consider when using Exit 5 owncode routines are:

If SMRTN is called from an Exit 5 owncode routine, the number of parameters on the SMRTN call
determines the processing action requested.

® 610 _ 60497500 F

If an Exit 5 owncode routine is used for record subsitution, the record contained in both area a and
array b can be substituted with both new address and new field length specifications.

If an Exit 5 owncode routine is used to delete a record, the record contained in array b is deleted.

SMABT

This call terminates a sequence of Sort/Merge interface calls without initiating an execution of Sort/Merge.
The state of the interface is the same as if no calls had been made.

The format of the SMABT subroutine is as follows:
CALL SMABT

This call has no parameters.

EXAMPLE
CALL SMOWN(3,SUB3)

SUBROUTINE SUB3(X,N)
DIMENSION X(20)

CALL SMRTN(1)

SAMPLE PROGRAM

The following sample program adds new records to a master file, merges two files containing updates to the
master file, updates the master file, and produces a report.

The master file is a list of students by name and student number, along with the grade to date. The updates
are the results of an exam. The updated grade is used to produce the report.

A main program and two subprograms, one of them an owncode routine, were used:

60497500 F 6-10.1

PROGRAM GRADES(INPUTsOQUTPUT s TAPES=INPUT» TAPEG=0UTPUT »

CLASS1sTAPE11=CLASS]1+sCLASS2yTAPE21=CLASS2,

& MASTERs TAPE31=MASTER,TAPE22s TAPE32sTAPE334TAPE34)
IMPLICIT INTEGER (A=2)

COMMON /n0WN/ NCTs RECRL

DIMENSION NAME(2)s CURVE (542)

EXTERNAL UPDATE

DATA (CURVE(Js2)s J = 14 5) /1HAs 1HBs 1HCs 1HDs 1HF/

DATA NCT 0/

REwWIND 11

REwWIND 21

REwIND 3%

READ(%+1000) CSIZEs NCTye RECRL
CSIZE = ¢SIZE + NCT

CALL SMSNRT(20)

CALL SMFTLE("SORT"s"CODED"911e"REWIND")
CALL SMFTLE("SORT"+"CODED"¢21+"REWINDM)
CALL SMFTLE("QUTPUT"s"CODED"922y"REWIND)
CALL SMKEY(1s196904"DISPLAY")

CALL SMEND

CALL SMSNRTI(RECRL)

CALL SMFTILE("SURT"+"CODED" 431 s"REWIND")
CALL SMFTLE(MOUTPUTWs"CODED"¢32¢"REWIND")
CALL SMKFY(2lsle6s0s"DISPLAYM)

CALL SMOWN(2+UPDATE)

CALL SMEND

| 6102 60497500 F

DO 100 T = 1ls CSIZE

READ (22 1001) STULs GRDI

READ (32 1002) NAME(1), NAME(2)y STU2s GKHD2

IF (STL1 oMEs STUZ) CALL ERRORS(Is STULls STU2)

GRIN3 = GaD2 + GKNDI

WRITE (33. 1002) NAME(l)y NAME (2)e STU2e GRD3
100 CONTINUF

REWIND 32

CALL SMSNRT(RECRL)

CAlLLL SMFTILE (WSORT"4"CODED" ¢339 "REWINDM)
CALL SMFTLE ("OUTPUTMsMCODEDM ¢ 34 ¢ "HEWINDM)
CALL S'")KFY({3leledsUetDISPLAYNIN)

CALL 5KFY(lelel0sQe"DISPLAYM)

CALL SMKFY (2le]l eb90e)ISPLAYY)

CALL 5SMEND

CHRVE (1e1) = CURVE (591) «15 # CSIZE + .S
CURVE {(Z241) = CURVE (4+1) «20 % CSIZE + .5
CUrVE (Je1) = «30 # CSIZF ¢ .5
#»RITE (0e 2002)

o Loz 1= 1« B

LIMIT = CURVE(Je 1)

LETTER = CUuRVE(Js 2)

V0 10] Kk = 1l¢ LIMIT

READ (344 1002) NAME (1) NAME(2) s STUZ, GRULZ

wRITE (£.200)) NAME (1)s NAME(2)e STUPs GRD2y LETTFR
101 CONTIHUFE

IF (J «FNe 3) wRITE(A«2003)
102 CONTInNIE

STOP

1000 FORMAT (3I3)

1001 FORMAT (A6s 4Xy 13)

1002 FORMAT (2Al109 AGs 4Xe J&)

2001 FORMAT (TXxe 2A10s Abse 11Xe [&e 5Xe Al)

2002 FORMAT (1Hle 6Xe "NAMEN, [12Xe USTUDENT NUMBER'Ys TXe "SCNREM, 3IXe
NGRADE" // HXe MPASSINGY /)

2003 FORMAT (/ SKe "FAJLING® /)

END

60497500 A 6-11

SURKO
IMPLI
COMMO

JTIME UPDATE (ARRAY,
CIt INTEGER (A=Z)
N /nvin/ NCTeRECRL

ARL)

DIMENSTION ARRAY (4) ¢ RECORD (%)

IF (M
NCT =
KEAD
CALL

STOP

1001 FORMA

END

CT .EQe 0) CALL SMRTN(N)

NCT = 1

(5« 1001) (RECORD(K)e K = 1o &)

SMRTM(le RECORPDs RFECRL)

17

T (4A10)

SUBROUTTME ERRURS (Me NO1e NO2)

CALL
CALL
CALL
CALL
CALL
CALL
END

REMARRK (35K
DIseLA(29H
DISLLA(29H
DIseLA(?1lH
REMARK (20H
EXTT

The following files were used as input to the program:

6-12

MASTER

SMITH s JOHN
BROWNsWILLIAM
DUEy CHERYL
JONES,CHRISTOPHER
NORTH.PATRICIA
GORULONs ROBERT
NOE » JANE
WATSONy JUSEPH
HARRIS s JEAN
CARTER,BARBARA
SHARPsDANIEL
SMITHsCATHERIME
ROLLINSsSARAH
ANDERSONIPETER
LYNCH,DENNIS
HALL s MARY
HENUERS +GERALD
THOMPSONCLOUISE

105432
113751
100222
11574
107043
102771
113542
102782
114154
116319
108467
111696
107461
103167
112373
104725
118B53A4
10188+

M)

271
193
22
2has
247
178

156

267
1A9
734
217
1&7
177
1R4
lup
27?3
249
21

STUDEMT NUMHBERS DO NOT MATCH
FIRST STUDENT NUMBER IS »
SECORND STUDENT NUMHER IS»
ITERATION EQUALSH
JOB TERMINATED

NOD1)
NO2)

60497500 A

INPUT

CLASSI

CLASS2

18 5 40
PETERSs» SANDRA
GRAY ¢HENRY
MARTINsPATRICIA
ANDERSONsWILLIAM
ANDERSONy JAMES
105432 97
102778 9]
113751 89
108467 87
113542 82
102782 77
100222 74
111696 69
114154 68
115741 63
107C43 59
111113 Yé
116315 55
103759 81
107461 62
103167 T4
112373 83
104725 91
118534 87
101886 68
115254 79
111411 9e
111112 96

103759
115254
111111
1111l¢
111113

The program was run using the following control statements:

FTN.

LGO.

60497500 D

147
1AR
300
299
2949

6-13

The following report was produced:

6-14

NAME

PASSING

MARTINyPATRICIA
ANDERSONs JAMES
ANDERSONswILLIAM
SMITH, JOHN
WATSON» JOSEPH
HENDERS s GERALD
JONESsCHRISTOPHE
HALL ¢ MARY
SHARP+DANIEL
NORTHsPATRICIA
DOE ¢ CHERYL
CARTER.:BARBARA
BROWNsWILLIAM
THOMPSONs LOUISE
LYNCHeDENNIS

FAILING

GORDONsROBERT
PETERSs SANDRA
ANDERSONPETER
SMITHyCATHERINE
GRAYHENRY
ROLLINS+SARAH
NQE s JANE
HARRISs JEAN

STUDENT NUMRER

111111
111113
111112
105432
102782
118538

R 115741
104725
108467
107043
100222
116315
113751
101886
112373

102778
103759
103167
111696
115254
107461
113542
114154

SCORE

198
395
395
368
364
336
317
314
304
301
295
289
282
279
275

269
263
258
256
247
239
238
237

GRADE

0OO0O000O0ONOTTTTTT>» PP

MMMOoOOCC

60497500 A

Four scratch files were used; when the job finished execution, they were as follows:

TAPE 32 POE s CHERYL 100222 221
THOMPSONLOUISE 101886 21
BORUONs<OBERT 102778 17a
WATSONs JOSEPH 102782 267
ANDE RSONHGFPETER 103167 184
PETEKSy SANDRA 103759 lda?
HALL ¢+ MARY 104725 2213
SMITH.JOHN 105432 271
NORTHsPATRICIA 107043 24?2
ROLL INS+SARAH 10746 177
SHARP +DANIEL 108467 21
MARTINyPATRICIA 111111 3nn
ANDERSON wILLIAM 111112 2949
ANDERSON» JAMES 111113 299
SMITHsCATHERINE 111696 147
LYNCHeDENNIS 112373 197
NOE s JANE 113547 1Ak
BROwNswILLIAM 113751 193
HARRISs JEAN 114154 1A9
GRAY s HENRY 115254 1M1
JONES,CHRISTOPHER 115741 254
CARTER,BARBARA 116315 2134
MHENUERS s GERALD 1185383 249

TAPE 22 100222 T4
101686 68
102778 91
102782 17
103167 74
103759 8l
104725 9l
105432 97
107043 59
107461 62
108467 87
111111 9K
111412 Y6k
111113 96
111696 ~9
112373 53
113542 82
113751 g9
114154 68
115254 79
115741 63
116315 55
118538 87

60497500 D

6-16

TAPE33

TAPE34

DOE s CHERYL
THOMPSONSLOUISE
60RDONROBERT
WATSONs JOSEPH
ANDERSUONSPETER
PETERSySANDRA
HALL s MARY
SMITH . JOKN
NORTHsPATRICIA
ROLLINS,SARAH
SHARPsDANIEL
MARTIN+PATRICIA
ANDERSONyWILLIAM
ANDERSON s JAMES
SMITHsCATHERINE
LYNCHDENNIS
NOE ¢ JANE
BROwWNWILLIAM
HARRISs JEAN
GRAY ¢ HENRY
JONES s CHKISTOPHER
CARTERsHBARBARA
HENDERS «GERALD

MARTINSPATRICIA
ANDERSON«JAMES
ANDERSOWNsWILLIAM
SMITH s JOHN
WATSONs JOSEPH
HENUERS «GERALD
JONESsCHRISTOPHER
HALL +MARY
SHARP,DANIEL
NORTH«PATRICIA
DOE+sCHERYL
CARTERsBAKBARA
BROWNWILLIAM
THOMPSONoLOUISE
LYNCHsDENNIS
GORDONsROBERT
PETERSs SANDKA
ANDERSONSPETER
SMITHsCATHERINE
GRAY sHENRY
ROLLINS+sSARAH
NOE » JANE
HARRISyJEAN

100222
101886
102778
102782
103167
103759
104725
105432
107043
10746)
108467
111111
111112
111113
111696
112373
1135472
113751
114154
115254
115741
116315
11853#

111111
111113
111112
105432
102782
118538
115741
104725
108467
107043
100222
116315
113751
101886
112373
102778
103759
103167
111696
115254
107461
1135472
114154

295
279
269
344
25K
2613
3)a
3nR
301
2y
INa
39R
3yg
3y
256k
2758
23R
Y
2137
ca
317
2K9
336

39R
3985
KT
3AR
344
A4k
317
314
304
30
245
2Ry
2R?
279
27s
2hY
261
25R
25A
cul
¢3iv
3R
247

60497500 A

FORTRAN 5 CALLS 7

Fortran 5 provides the capability for processing data pecords under Sort/Merge. Fortran 5 interfaces with
Sort/Merge through the subroutines described in this section. Because Sort/Merge uses the unused part of

the field length as a scratch area, the ARG=FIXED control statement option is not permitted for programs
using Sort/Merge. All conventions for FORTRAN 5 statements must be observed.

The Fortran 5 calls and corresponding Sort/Merge directives are as follows:

CALL SMSORT SORT directive

CALL SMSORTB SORT directive (Sort/Merge Version 4)
CALL SMSORTP SORT directive (Sort/Merge Version .4)
CALL SMMERGE MERGE directive

CALL SMFILE FILE directive

CALL SMKEY KEY directive

CALL SMSEQ SEQUENCE directive

CALL SMEQU EQUATE directive

CALL SMOPT OPTIONS directive

CALL SMTAPE ~ TAPE directive (Sort/Merge Version 4)
CALL SMEND END directive

CALL SMOWN OWNCODE directive

CALL SMRTN No corresponding directive

CALL SMABT No corresponding directive

FORTRAN 5 CALLS TO SORT/MERGE

The series of calls to Sort/Merge subroutines must begin with a call to SMSORT, SMSORTB, SMSORTP or
SMMERGE. If a file is processed by CYBER Record Manager subroutines, OPENM should be called before
any of these routines. The last call for any one sort must be to SMEND, which intiates processing using the
information collected by the other calls.

In an overlay structured program using blank common, the Sort/Merge interface routines must not be called
from the 0,0 overlay.

SMSORT, SMSORTB, SMSORTP, AND SMMERGE

One of these calls must be the first call for any sort.

SMSORTSB is used for a balanced tape sort, SMSORTP for a polyphased sort, and SMMERGE for merge only
processing. All other sorts use the call to SMSORT.

60497500 F -1 ®

OPERATING SYSTEM INCOMPATIBILITIES

The tape variant of Sort/Merge is not supported under Sort}'Merge Version 1. Therefore, SMSORTB and
SMSORTP are allowed only under Version 4.

FORMAT

CALL SMSORT (mrl, ba)

CALL SMSORTB (mr], ba)

CALL SMSORTP (mrl, ba)

CALL SMMERGE (mr], ba)

mrl Maximum length in characters of record to be sorted.

ba Optional total in decimal of large core memory (LCM) buffer area for SCOPE 2 Record
manager for all intermediate serateh files eonstructed mtemaily by Sort/Merge. ba can be
zero. Default is the installation parameter.

Optional number of words of central memory to be used by Sort/Merge for working
storage. Default is 22000B.

SMFILE

This call defines the names of all input and output files to be used during Sort/Merge processing. SMFILE
must be called for each file to be sorted or merged and must be called once for the file to receive the
output (unless SMOWN is called).

Files should be properly positioned before any Sort/Merge processing.

FORMAT

® 7-2

CALL SMFILE (dis, i/o, 1fn, action)

dis Character expression indicating file processing:
'SORT' File is to be sorted.
'MERGE' File is to be merged.
'OUTPUT File is to receive output.
i/o Character expression indicating mode of file input/output:

'FORMATTED' File accessed with formatted input/output.

'CODED’ File accessed with formatted input/output.
'BINARY' File accessed with unformatted input/output.
0 (zero) File accessed with interfacing Record Manager Subroutines.

60497500 F

Ifn Character or boolean file name indicator:
u Logical unit number, 0 through 99

L "filename" File name left justified with zero fill

fit Array containing the file information table when i/o is specified as 0
(zero)
action Character expression indicating the action to be taken for the file upon Sort/Merge
completion:
"REWIND'
'UNLOAD'

'NONE' (default)

EXAMPLE
The file TAPEL1 is an input file for a sort. The file is to be rewound upon Sort/Merge completion.
CALL SMFILE ('SORT','FORMATTED',1,'REWIND")

SMKEY
This call describes the sort key to be used. One SMKEY is required for each key. The first call for each
file indicates the major key; subsequent calls indicate addtional or minor keys in the order encount ered.
Sort keys are discussed more fully in section 2.
OPERATING SYSTEM INCOMPATIBILITIES
The separate sign feature for signed numeric data and the sign overpunch in the leading character position
are supported under Sort/Merge Version 4; therefore, the LEADING, TRAILING, and SEPARATE options
are applicable to Sort/Merge Version 4 only.
FORMAT

CALL SMKEY (charpos,bitpos,nchar,nbits,type,colseq,order)

charpos Integer specifying the relation of the first character of the sort key to the first character
of the record. The first character of the record is in position 1.

bitpos Integer specifying the position of the first bit of the sort key of the character (or 6-bit
byte) specified by charpos. The first bit of the record is considered bit number 1.

nchar Integer specifying the number of characters or complete 6-bit bytes in the sort key.
nbits Integer specifying the number of bits in the sort key in excess of those indicated by nchar.
The remaining three parameters are optional:

type Specifies the type of code used to interpret keys. Type is a character expression having
the following values:

'DISPLAY' Internal display code.

60497500 F -3 @

e 7-4

colseq

order

'FLOAT'
TNTEGER'
'LOGICAL'

Floating point data
Signed integer data

Unsigned integer data (default)

The identifiers 'SIGN', 'SEPARATE', 'TRAILING' and 'LEADING' must be preceded by type
'DISPLAY"; the identifiers must be separated by commas, as indicated:

'DISPLAY",'SIGN'

'DISPLAY",'SIGN',
'LEADING'

'DISPLAY','SIGN',
'"TRAILING'

'DISPLAY',
'SEPARATE,
'LEADING'

'DISPLAY",
'SEPARATE!,
'TRAILING'

Numeric data in display code; represented by overpunch on low
order character of the key.

Numerie data is display code; required if data has a sign
overpunch,

Numeriec data in display code; + or - sign present as overpunch at
beginning of the field.

Numeric data in display code; + or - sign present as an
overpunch at the end of the field.

Numeric data in display code, sign is a separate character at
beginning of the field.

Numeric data in display code, sign l.S a separate character at the
end of the field :

Name of user-supplied collating sequence defined by SMSEQ call, or one of the following

collating sequences:

'ASCI6'

'COBOLS'

'DISPLAY'
'INTBCD'

segname

6-bit ASCII collating sequence (default for installations using
ASCII collating character set).

6-bit COBOL collating sequence (default for installations using
CDC character set).

Internal display collating sequence.
Internal BCD collating sequence.

Name of a user supplied collating sequence specified in a call to
SMSEQ.

A colseq parameter cannot be used unless the type parameter specifies '"DISPLAY'. When a
type parameter other than 'DISPLAY' is used, the colseq parameter must be omitted. No
indication of the missing parameter is necessary.

Character expression specifying the order of sort processing. It can be either of the

following:
1 A'I

1Dl

Ascending (default)

Descending

60497500 F

EXAMPLE
In the following SMKEY example, the first two parameters describe a sort key beginning in position 1, bit 1:
CALL SMKEY(1,1,20,0,'DISPLAY",'A")
Other parameters specify the number of characters in the sort key (exactly 20), the sort key type (display),
and the order of processing (ascending). The colseq parameter is omitted; therefore, the sort key is
collated according to installation default. The order parameter directly follows the sort key parameter
when colseq is omitted.
The following SMKEY example is invalid:
CALL SMKEY (13,6,10,0,'INTEGER',0,'A")
The second 0 will be intepreted as the name of a collating sequence because it is not a key type or 'A'
or 'D'. Inclusion of a collating sequence parameter with a non-character key type is invalid. The correct
calling sequence for the example is:

CALL SMKEY (13,6,10,0,'INTEGER','A")

SMSEQ

This call specifies and names a user-supplied collating sequence.

FORMAT
CALL SMSEQ (segname,segspec)

segname Names the user-supplied collating sequence being defined. The collating sequence cannot
be 'ASCII6', 'COBOLS6', 'DISPLAY' or INTBCD'.

segspec Names the integer array containing charaeters in the order they are to be collated. Each
character should be in nR"s" format (right justified with zero fill) or O"o" format (octal).
Unspecified characters collate high and equal. The collating sequence is terminated by a
negative number.

EXAMPLE
A new collating sequence is specified:
INTEGER COL(8)
DATA COL/R"A",R"1",R"I",O"57",R"$",0"51",-1/

CALL SMSEQ('MINE',COL)

SMEQU

This call specifies that two or more characters already specified in a user's collating sequence are equal for
comparison.

60497500 F -5 @

FORMAT
CALL SMEQU(colseg,equspec)

colseg Specifies the user collating sequence determined by a previous eall to SMKEY or SMSEQ.
The collating sequence cannot be 'ASCII6', 'COBOLS6', 'DISPLAY', or 'INTBCD'.

equspec Defines the name of an integer array that specifies the characters to be equated. Each
character should be in nR"s" format (right justified with zero fill) or O"o" format (octal).
The end of the list of characters to be equated is indicated by a negative number.
EXAMPLE
The characters A, B, and 1 in the collating sequence 'MINE' are equated:

INTEGER EQ(4)
DATA EQ}'R“A",R“B",R"1"."11’

CALL SMEQU('MINE',EQ)

SMOPT

This call specifies special record handling options or operations for Sort/Merge processing.

OPERATING SYSTEM INCOMPATIBILITIES

The checkpoint dump features of Sort/Merge are supported only by Sort/Merge Version 4; therefore the
'VOLDUMP!, 'DUMP", and 'NODUMP' options are app].icab]e only for the optim parametel‘ of the SMOPT
call under Sortherg'e Version 4.

The 'ORDEH' ’NODAY' 'COMPARE' and 'EXTRACT‘ Optims are also applicable cnly under Sort/Merge
Version 4.

If SMOPT is called under Sortherge Version 1, the can must be made unmediately after the call to
SMSORT or SMMERGE.

FORMAT
CALL SMOPT(opt ,opt ...)
opt Any of the following nonordered options can be specified:
'VERIFY' Output file is checked for correct sequencing. If the records are not in

correct order, the job terminates and the output file is lost. This option
verifies that records from the merge input file or inserted through
owncode exits 3, 4, and 5 are in order. 'Verify' need never be specified
for a sort with no owncodes.

'RETAIN' Records with identical sort keys that are read from sort input files are
written in the order in which they are read. All the records from each
file are grouped together. Records from merge files are sequenced
arbitrarily. When this parameter is omitted, records with identical sort
keys are sequenced arbitrarily.

e 7-6 60497500 F

'VOLDUMP' A checkpoint dump is taken at end-of-volume condition on the input file
: or new-volume condition on the output file. A checkpoint file must
have been previous]y requested. See the NOS or NOS/BE reference
manual. : .

'DUMP! A checkpoint dump is taken after 50,000 records are read or written. A
; checkpoint file must have been previously requested. See the NOS or
NOSIBE reference manual.

'DUMP',n A checkpoint dump is taken when n records have been read from the
input file or written to the output file. n is decimal. A eheekpomt file
must have been previwsly requested. See the NOS or NOS/BE
reference manual.

'NODUMP! No checkpoint dumps are taken; default.

'NODAY' Dayfile messages are suppressed.

'ORDER',mo mo specifies the intermediate merge order; 2<mo<64. Merge order is
explained in appendix F. If core is not sufficient to merge at the order
specified, a fatal error occurs and a diagnostic indieates how much
additional core is required. When merge order is not specified, it is
caleulated by Sort/Merge based on the amount of memory available.

'COMPARE' The key comparison sorting technique is to be used. This technique
usually requires less elapsed time and more central processing (CP)
time than key extraction.

'EXTRACT' The key extraction technique is to be used. This technique usually
requires less CP time and more elapsed time than key comparison.

The 'COMPARE' and 'EXTRACT‘ opt:ons are mutually exclusive. If neither optwn is
specified, Sort/Merge attempts to choose the best technique. i

EXAMPLE

This example requests the 'VERIFY' option and a checkpoint dump after each 10,000 records are read from
the input file or written to the output file.

CALL SMOPT('VERIFY', 'DUMP"',10000)

If SMOPT is called more than once, only the last call is processed.

SMTAPE

This call is required for the tape variant of Sort/Merge Version 4 to specify all magnetic tape inter mediate
merge files. If the tape files have not been defined in a previous job step (LABEL, REWIND, ete.),
Sort/Merge issues requests for scratch tape assignment as needed for intermediate files.

A minimum of four tapes is required for a balanced merge; this merge is more efficient if an even number
of tapes is specified.

A minimum of three tapes is required for a polyphased merge. The maximum number of tapes for either
type of merge is limited only by the number of tape drives available.

60497500 F -7

OPERATING SYSTEM IHCOMPATIB_»II.ITIES. :
The tape variant of Sort/Merge is not supported under Vérsio‘n 1; therefore, the SMTAPE call is allowed
only under Sort/Merge Version 4.
FORMAT
CALL SMTAPE(taplist)
taplist List of logical file names, each in the form L"filename", to be used in balanced or

polyphase tape merge. The file names in taplist must not be declared in the PROGRAM
statement. A maximum of 63 file names can be specified.

EXAMPLE

Names are assigned to four intermediate merge files.

CALL SMTAPE(SLPOPPY,5LPANSY,5LDAISY,5LVIOLA)

SMEND

This call initiates Sort/Merge processing. It must be the last call for any one sort or merge. The format
for the call SMEND subroutine is as follows:

CALL SMEND

This call has no parameters.

SMOWN

The call to SMOWN allows owncode routines to be set up. This call provides the capability to insert,
substitute, modify, or delete input and output records.

If the owncode routine is a FORTRAN 5 subroutine, a call to SMRTN is used to return from the owncode
subroutine and resume Sort/Merge processing. Specific processing action can be requested from
Sort/Merge by altering the return address with a parameter on the SMRTN call.

An owncode routine must be supplied for each owncode exit specified in the call to SMOWN. Exits that can
be specified and the use of COMPASS owncodes are discussed in section 3.
FORMAT
CALL SMOWN(exitnum,subnamey,exitnum, ,subname,, . ..)
exitnum Number of the owncode exit.
subname Name of the user-supplied owncode exit routine.
Each subname specified in a call to SMOWN must appear in an EXTERNAL statement in the calling

program. For each subroutine specified, the user must specify a subroutine that exits through a call to
system subroutine SMRTN, in accordance with the owneode exit number and return address as follows:

e 7-8 60497500 F

Exitnum Entry

lor3 SUBROUTINE subname (a,rl)

20r4 SUBROUTINE subname

5 SUBROUTINE subname(ay,rly,aq,rly)

Exit

CALL SMRTN (retaddr), for retaddr=1 or 3

CALL SMRTN (retaddr,b,rl), for retaddr=0

or 2

CALL SMRTN (retaddr), for retaddr=0

CALL SMRTN(retaddr,b,rl), for retaddr=1

CALL SMRTN(bl.rll,bz,rlz), for
retaddr=1

CALL SMRTN(by,rly), for retaddr=1

a Integer array of length (rl +9)/10 in which Sort/Merge stores a record when
subname is called. Storing into array a causes indeterminate results.

b Integer array of length (rl +9)/10 in which the user stores a record when subname
is called. Array b should not be the same as array a.
rl Record length in characters.
retaddr Alters the normal return address used to resume Sort/Merge processing as follows:
retaddr Return address:

Lo~ o

Normal return address

Normal return address +1
Normal return address +2
Normal return address +3

The retaddr parameter of the SMRTN call determines the processing action requested. Actionsthat can be

requested are discussed in section 3. These actions are summarized as follows:

Processing Action Exit 1
Substitute a retaddr
record

Insert a record retaddr+2
Delete a record retaddr+1
Terminate a file retaddr+3

Normal processing retaddr

Exit 2

retaddr+1

retaddr

Exit 3

retaddr

retaddr+2
retaddr+1
retaddr+3
retaddr

Exit 4

retaddr+1

retaddr

Exit 5

retaddr

retaddr+1

retaddr

When the processing action requested is file termination, the current record in array a is not

included in Sort/Merge processing.

Special factors to consider when using Exit 5 owncode routines are:

If SMRTN is called from an Exit 5 owncode routine, the number of parameters on the
SMRTN call determines the processing action requested.

60497500 F

7-9

If an Exit 5 ownecode routine is used for record substitution, the record contained in both
area a and array b can be substituted with both new address and new field length
specifications.

If an Exit 5 ownecode routine is used to delete a record, the record contained in array b is
deleted.

EXAMPLE

CALL SMOWN(3,SUB3)

SUBROUTINE SUBS3(L,N)
DIMENSION L(20),M(20)

CALL éMRTN(z.M.N)

SMABT

This call terminates a sequence of Sort/Merge interface calls without initiating execution of Sort/Merge.
The state of the interface is the same as if no calls had been made.

The format for the SMABT subroutine is as follows:
CALL SMABT

This eall has no parameters.

SAMPLE PROGRAM

The following program merges STDFILE, a master file containing student records, and NEWFILE, a file
containing new student records.

New records are added to NEWGRAD, a file containing student grades for this semester.

The program computes new grade point averages, and the total units and grade points to date for each
student.

A new master file is created, MFILE. Records of students on probation are deleted from MFILE and placed
on REPORT.

A main program and three subprograms are used. Two of the subprograms are owneode routines.

e 7-10 60487500 F

PROGRAM GPA
IMPLICIT INTEGER(A-Z)

DI

MENSION STUDNAM(2)

COMMON/OWN/RECRL +NRECRL s REPRTRL
EXTERNAL UPDATE
EXTERNAL LIST

REAL GPlsUNITS|sGPAlsUNITS2+GPA2sTOTGPsTOTUNITGP

L 2 23
LA 24
* & 3
LA 24
* 3
LA A
3
* 3
w48
&
i & 4
#* i 4
L.2-2-]
L2 22
i & i
i 3
% & 3
& W3
#an
3
LA 2
* 88
& i &
i & 3
i 3
L2 4

%
i

OO0ONOOOO0O0O0O0OO0000000000000 000 00

OPEN THE FOLLOWING FILES TO BE USED IN PROGRAM GPA-

INPUT CONTAINS THE STUDENT NUMBER, GRADE POINT AVERAGE AND TOTAL
UNITS OF NEW STUDENTS.

REPORT CONTAINS THE FINAL OUTPUT FILE FOR THOSE STUDETNS ON PROBATION,

STDFILE CONTAINS STUDENT RECORUS OF THOSE ENROLLED AT THE SCHOOL PRIOR
TO THE PRESENT SEMESTER.

NEWFILE CONTAINS THE STUDENT RECORDS OF NEW STUDENTS.

NEWGRAD CONTAINS THE STIDENT NUMBER, GRADE POINT AVERAGE AND UNITS TAKEN
THIS SEMESTER FOR STUDENTS WITH RECORDS IN STDFILE.

TEMP]1 IS A FILE THAT CONTAINS SORTED RECORDS FROM BOTH STDFILE AND
NEWFILE.

TEMPZ2 IS A SORTED FILE COMPOSED OF THE FILES INPUT AND NEWGRAD.

TEMP3 IS A FILE CONTAINING THE RECORDS OF THOSE STUDENTS PLACED ON
PROBATION TH[S SEMESTER.

MFILE CONTAINS THE OUTPUT FILE FUR THOSE STUDENTS WITH NOKRMAL ST ANDING.

OPEN(SsFILE=2INPUT#*)
OFEN(6sFILE=*REPORT*)
OPEN(TsFILE=TSTDFILE?T)
OPEN(BsFILE=*NEWGRAD?*)
OPEN(9sFILE=TNEWFILET)
OPEN(10sFILE=+TEMP1*)
OPEN(L1Ll+FILE=+TEMPZ2*)
OPEN(12+FILE=4TEMP32)
OPEN(14«FILE=*MFILE")

C u#
REWIND 7
REWIND B8
REWIND 9
c 2]
c £-X -3
READ (59 1)RECRL + NRECKL s REPRTRL+CSIZE
c * %
(o L X3
C SORT STDFILE AND NEWFILE ACCORDING TO STULENT NUMBERSs PLACE
C RESULTS IN TEmPIl.
C us
C &

CALL SMSORT (NRECRL)
CaLlL SMFILE(*SIRTAe+2COLEUL s+ *REWINDA)
CALL SMFILE(*SORT*+*CODED*«74*REWIND*)

60497500 F

T-11 @

00 000

s NeNslisNeEnlg

OO0 00

OO0 OO0 000 0

° 7-12

CALL SMFILE(*OUTPUT*+¢2CODED*,10+*REWIND?)
CALL SMKEY (219196909 +LOGICAL*)
CALL SMEND
.
.
SORT NEWGRAD ACCORDING TO STUDENT NUMBERe PLACE IN TEMPZ2.
e
.
CALL SMSORT(RECRL)
CALL SMFILE(*SORT*++4CODFED+484+REWIND4)
CALL SMFILE(*OUTPUT+++CODED®s11++REWIND*)
CALL SMKEY(l914690stL0GICAL"™)
CALL SMOWN(2sUPDATE)
CALL SMEND

T

.

COMPUTE TOTGP(TOTAL GRADE POINTS) TOTUNIT(TOTAL UNITS TAKEN TO DATE)

AND GP (NEW GRADE POINT AVERAGE) &

WRITE NEW RECORDS ON TEMP3.

w0

"o

DO 100 I=1,CSIZE
READ(10+5+END=150)STUDMAM(]1) sSTUDNAM(2) s STUDNO1+GPA]1 sUNITS1
READ(11469END=150) STUDNOZsGPAZ2sUNITS2
IF(STUDNO1 .NE. STUDNOZ2) THEN
CALL ERROIR(1+STUDNO] 9sSTUDNO2)

LSE
GP1=UNITS1%GPA]l
GP2=UNITS2%#GPA2
TOTGP=GP | +GP2
TOTUNIT=NITS1+UNITS?
GP=TOTGP/TOTUNIT
ENDIF
WRITE(12,10)STUDNAM(]) «STUUNAM(2) sSTUDNOZ+GPsTOTUNIT « TOTGP
100 CONTINUE
150 REWIND 12
#i

s
WRITE HEADERS FOR REPORT(TAPE6) AND MFILE(TAPEL4).
s

+* &

WRITE(6,11)
WRITE(14412)

WRITE(6413)

WRITE(14913)
na

E-X-3
SORT TEMP3.
BEFQRE THE FINAL QUTPUT FILE 1S WRITTENe SEND THE RECORDS TO OWNCODE
ROUTINE (SUBROUTINE LIST). SUBROUTINE LIST DETERMINES WHETHER THE
VALUE OF THE FIEL)) CONTAINING THE GRKADE POINT AVERAGE IS LESS THAN 2.0.
IF THe GRADE POINT AVERAGE [S HELOW 2+0s SUBROUTINE LIST WRITES
THE RECORD TO REPHRTs AND DELETES THE RECORD FROM THE FINAL QUTPUT FILEs
MFILE.
FIRST SORT KEY FOR MFILE-GRAUE POINT AVERAGE (GP) IN DESCENDING ORDER.
SECOND SORT KEY FOR MFILE=STyUDENT NAME (STUUNAM) IN ALPHABETICAL ORDER.
THIRD SORT KEY FO2 MFILE=STUNENT NUMBER (STUONO)
L-X-]
L. 2-3

CALL SMSORT (RESRTRL)

CALL SMFILE (*SNRT*42CODED4 4129 *REWIND?)

60497500 F

CALL SMFILE(®OHTPUT*9+CODED* 14 *REWIND*)
CALL SMKEY (439 1+490+tLDGICAL*s2D*)

CALL SMKEY(l914+2350¢+LOGICAL*)

CALL SMKEY(25+19690+tLOGICAL™)

CALL SMOWN(3sLIST)

CALL SMEND

1 FORMAT(12+12912412)
S FORMAT(2A1091642X9F3e192XsF5a1)
6 FORMAT(I692X9eF 3.192XeF5.1)
10 FORMAT(2A1094Xs169]12XsFbe?el5X9F5.1915X9F5.1)
11 FORMAT(*STUDENTS ON PROBATION:+4+/)
12 FORMAT (#STUDENTS WITH NORMAL STANDING:++/)
13 FORMAT(BX s *NAME®+ 10X 9 +STUDENT NO*sZ2Xs+*GRADE POINT AVERAGE®:6X,
TOTAL UNITS+S5Xs2TOTAL GRADE POINTS*s/)
STOP
END

SUBROUTINE ERROR(ITERATEsNOleNOZ2)
CALL REMARK (+STUDENT NUMBERS DO NOT MATCH*+)

CALL DISPLA(AFIRST STUDENT NUMBER IStsNO1)
CALL DISPLA(*SECOND STUDENT NUMBER IS*sNO2)
CALL REMARK(+JNB TERMINATED?*)

CALL DISPLA(*AT ITERATION+,ITERATE)

CALL EXIT
END

SUBROUTINE UPDATE (ARRAY+ARL)
IMPLICIT INTEGFR(A=Z)

COMMON/OWN/RECRL sNRECRL «REPKTRL
DIMENSION RECORD(2) ¢ ARRAY (2)
READ(S+100+END=18) (RECORD(K) ek=192)
CALL SMRTN(1sRECORD+RECRL)

18 CALL SMRTN(0)
STOP 77

100 FORMAT(2A10)
END

SUBROUTINE LIST(NeA)
IMPLICIT INTEGFR(A=Z)

COMMON/OWN/RECRL + NRECRL + REPRTRL
REAL TEMP
DIMENSION WN(9) NEWREC(9)
DECODE (461 4N) TEMP
IF(TEMP oLT+2.0)THEN
WRITE(6s2) (N(K)sK=14+9)
CALL SMRTN(1)
ENDIF
ENCODE (U s 29eNEWREC) (N(K) sK=1+9)
20 CALL SMRTN(0sNFEWRECWREPRTRL)
STOP 77
FORMAT (42X +F 4, 2)
2 FORMAT(9A10)
END
T7/78/9

—

60497500 F 7-13 @

The following files were used as input to the program:

STDFILE

Dayl1s s SUSAN 103392 2.0 102.5
ZABROSK] +GERRI 294531 4.0 88.0
CASSET +PETER 271217 2.8 115.5
BORCHARD »JOAN 307337 2.7 70.0
ANDERSON yGEORGE 408227 2.5 95,5
DE LA CruZ sLILY 666358 3.3 500
DAMIEN +SCOTT 305483 3.1 101.5
HICHAELS ,TERESA 669240 40 45.0
MONTE s MARK 578910 2.1 87.0
ROBBINS +STEVE 225121 1.9 620
MARTIN »y JUDY 145010 2.5 57.5
PHILLIP +RALPH 741020 2.4 120.0
STEVENS MARY 393478 3.3 78.5
MﬁETER :RON 343621 2.1 12445
YAFFEE +JOSEPH A06080 3.7 T4.0
FILICE +DON £94321 3.9 24.5
PHILPS +SUE 313559 2.8 115.0
WILSON ¢ JOHN 215990 2.9 160
INPUT

20409023

B57932 3.5 15.0

239410 1.9 6.0

973249 2.4 10.0

423911 3.0 12.°¢

143976 4.0 13.0

7/8/9

6/7/8/9

NEWGRAD

313559 1.9 75

215996 2.9 13.0

807337 1.5 8.0

271217 2.9 150

294531 3.9 8.5

103392 1.0 100

606080 3.2 60

593478 3.5 15.

694321 3.8 1240

943621 1.7 9.0

145010 3.0 100

225121 1.5 12.0

578910 2.0 Y.0

741020 2.5 15.

669240 3.8 15.0

805483 2.9 11.0

666358 2.5 17.0

408227 3.8 15.0 .

o 7-14 60497500 F

NEWFILE

ROBBINS » SAM 273249 0.0 000.0
WHELDQN 2 GERT 143976 0.0 000.0
NEWMAN WAL 239410 0.0 000.0
TORRES sMANUAL 357932 0.0 00040

The program was run using the following control statements:
FTNS.
LGO.

The following reports were produced:

MFILE

STUDENTS WITH NORMAL STANDING:

NAME STUDENT NO GRADE POINT AVERAGE TOTAL UNITS TOTAL GRADE POINTS

WHELDON ,GERT 143976 4.00 15.0 52.0
LABROSKI »GERRI 294531 3.99 96.5 385.0
MICHAELS +TERESA 669240 3.95 60.0 237.0
FILICE »DON 694321 3.85 36.5 140.6
YAFFEE +JOSEPH 606080 3.66 80.0 292.8
TORRES +MANUAL 857932 3.47 15.0 52.0
STEVENS »MARY 593478 3.33 93.5 31 a
DE LA CRUZ ,LILY 666358 3.09 67.0 207.0
DAMIEN ,SCOTT BO5483 3.07 112.5 345.7
BIANCI SNANCY 423911 2.96 12.5 37.0
WILSON »JOHN 215996 2.88 29.0 B3.4
CASSET +PETER 271217 2.81 130.5 366.4
PHILPS #SUE 313559 2.74 122.5 336.0
ANDERSON »GEORGE 408227 2.68 110.5 295.8
BORCHARD #JOAN BO7337 2.58 78.0 201.0
MARTIN LJUDY 145010 2.57 67.5 173.8
PHILLIP +RALPH 741020 2.61 155.0 325.0
ROBBINS s SAR 973249 2.40 10.0 24.0
MONTE +MARK 578910 2.09 96.0 200.7
MASTER +»RON 943621 2.07 133.5 276.5
REPORT

STUDENTS ON PROBATION:

NAME STUDENT NO GRADE POINT AVERAGE TOTAL UNITS TOTAL GRADE POINTS
DAVIS »SUSAN 103392 1.91 112.5 215.0
ROBBINS +,STEVE 225121 1.84 74.0 135.8
NEWMAN AL 239410 1.83 6.0 11.0

60497500 F 15 @

CHARACTER SETS A

CONTROL DATA operating systems offer the following variations of a basic character set:

CDC 64-character set
CDC 63-character set
ASCII 64-character set

ASCIT 63-character set
The set in use at a particular installation was specified when the operating system was installed.

Depending on another installation option, the system assumes an input deck has been punched either in 026

or in 029 mode (regardless of the character set in use). Under NOS/BE 1, the alternate mode can be specified
by a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode
remains in effect through the end of the job unless it is reset by specification of the alternate mode on a sub-
sequent 7/8/9 card.

Under NOS 1, the alternate mode can be specified by a 26 or 29 punched in columns 79 and 80 of any
6/7/9 card, as described above for a 7/8/9 card. In addition, 026 mode can be specified by a card with 5/7/9
multipunched in column 1, and 029 mode can be specified by a card with 5/7/9 multipunched in column 1
and a 9 punched in column 2.

Graphic character representation appearing at a terminal or printer depends on the installation character' set and
the terminal type. Characters shown in the CDC Graphic column of the standard character set table (table A-1)
are applicable to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals.

STANDARD COLLATING SEQUENCES

If the installation character set is the CDC character set, the collating sequence default is COBOL6. If the
installation character set is ASCII, the collating sequence default is ASCII6 (as shown in table A-2).

COLLATION OF ARBITRARY CHARACTERS

Several graphics are not common for all codes. Where these differences in graphics occur, arbitrary assignment
of collation positions and of translations between codes must be made. For example, display code data that is
collated in the ASCII6 collating sequence requires assignment of specific graphics. One of these graphics is the
identity character = (60) in display code that is interpreted as the number character (#) in ASCII6. The iden-
tity is collated in position 03, according to the ASCII6 collation column in table A-2.

60497500 F Al

A-2

TABLE A-1. STANDARD CHARACTER SETS
coc ASCII
Display Hollerith External .
Cfde Graphic Punch BCD c;::’g:: ':;;g; {c"del
{octal) (026) Code octal}
oot : (colon)TT 8.2 00 : {colon) 1 82 072
01 A 121 61 A 1211 101
02 B 12-2 62 B 12-2 102
03 o] 123 63 [+ 12.3 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 12:6 66 F 126 106
07 G 127 67 G 127 107
10 H 128 70 H 128 110
1 | 129 Al I 129 m
12 J 11 41 J 1141 112
13 K 112 42 K 12 13
14 L 1-3 43 L 113 114
15 M 11-4 44 M 14 115
16 N 115 45 N 15 116
17 o] 11-6 46 o} 116 117
20 P 11.7 47 P 17 120
21 Q 118 50 o} 18 121
22 R 119 b1 R 119 122
23 S 0-2 22 S 02 123
24 T 0-3 23 1] 03 124
25 u 0-4 24 u 04 125
26 v 05 25 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
3 Y 08 30 Y 08 131
az Fd 09 3 z 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1" 9 9 071
45 + 12 60 + 12-8-6 053
46 ; 1 40 ; 1" 055
47 11-8-4 54 11-8-4 052
50 I 01 21 ! 01 057
51 (084 34 (128-5 050
52) 12-8-4 74) 1185 051
53 S 11-8-3 53 s 1183 044
54 = B-3 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , (comma) 083 a3 , lcomma) 0-8-3 054
57 . {period) 1283 73 . (period) 12-8-3 056
60 = 086 36 # 83 043
61 [87 17 C 1282 133
62] 082 32] 1182 135
63 % Tt 86 16 9% 084 045
64 = 84 14 " (guote) 87 042
65 ~ 085 35 _ lunderline) 085 137
66 v 11-0 52 I 12-8-7 041
67 A 0-8-7 37 & 12 046
70 t 1185 55 ! (apostrophe) 85 047
71] 1186 56 ? 08.7 077
72 < 120 72 < 12-8-4 074
73 > 1187 57 > 08-6 076
74 < B5 15 @ B84 100
75 2 1285 75 N 082 134
76 =, 12-8-6 76 = {circumflex) 1187 136
77 ; (semicolon) 12.8.7 77 ; [semicolon) 1186 073
Mrwelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than
two colons,

' installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55g).

60497500 F

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUENCES

COBOLG6* DISPLAY' INTBCD ASCII6Tt
Display Display CDC
Graphics| Code Graphics| Code |Graphics|INTBCD|Graphics |Sequence

blank 55 : oot 0 00 blank 00
< 7471 A 01 1 01 ! 01
A 63 B 02 2 02 " 02
[61 c 03 3 03 # 03
- 65 D 04 4 04 $ 04
= 60 E 05 5 05 o, 1 05
A 67 F 06 6 06 & 06
t 70 G 07 7 07 ' 07

71 H 10 8 10 (10
> 73 I 11 9 11) 11
> 75 J 12 : 12 * 12
— 76 K 13 = 13 + 13
; 57 L 14 £ 14 ; 14
) 52 M 15 < 15 - 15
; 71 N 16 %o 16 . 16
+ 45 o) 17 [17 / 17
$ 53 P 20 + 20 0 20
* 47 Q 21 A 21 1 21
- 46 R 22 B 22 2 22
/ 50 S 23 C 23 3 23
) 56 T 24 D 24 4 24
(51 U 25 E 25 5 25
= 54 v 26 F 26 6 26
£ 64 W 27 G 27 7 217
< 72 X 30 H 30 8 30
A 01 Y 31 1 31 9 31
B 02 Z 32 < 32 : 32
C 03 0 33 . 33 ; 33
D 04 1 34) 34 < 34
E 05 2 35 > 35 = 35
F 06 3 36 - 36 > 36
G 07 4 37 i 37 ? 37

60497500 F

TABLE A-2. 6-BIT CHARACTER CODE COLLATING SEQUENCES (Contd)

COBOLS6 t DISPLAY f INTBCD ASCII6 1
Graphics| PiSP1ay |G raphics| DiSP1ay |G raphics]I(J:TP]%:CD Graphics| Sequence
Code Code Code
H 10 5 40 = 40 @ 40
11 6 41 dJ 41 A 41
v 66 7 42 K 42 B 42
J 12 8 43 L 43 C 43
K 13 g 44 M 44 D 44
L 14 + 45 N 45 E 45
M 15 - 46 0] 46 F 46
N 16 * 47 P 47 G 47
o 17 / 50 Q 50 H 50
P 20 (51 R 51 I 51
Q 21) 52 Vv 52 J 52
R 22 $ 53 $ 53 K 53
] 62 = 54 * 54 L 54
S 23 blank 55 t 55 M 56
T 24 , 56 1 56 N 56
U 25 . 57 > 57 O 57
v 26 - 60 blank 60 P 60
W 217 [61 / 61 Q 61
X 30] 62 S 62 R 62
Y 31 %ot 631 T 63 S 63
Z 32 # 64 U 64 T 64
: 00t = 65 N 65 U 65
0 33 v 66 w 66 A 66
1 34 ,\ 617 X 67 W 67
2 35 t 70 Y 70 X 70
3 36) 71 Z 71 Y 71
4 37 < 72] 72 Z 72
5 40 > 73 s 73 [73
6 41 < 74 (74 \ 74
7 42 > 75 - 75] 75
8 43 - 76 = 76 ~ 76
9 44 H i | N 77 _ 77
+Under the CDC 63-character set, there is no percent graphic; the colon is display code 63. Display
Code 00 is not used.
++Under the ASCII 63-character set, there is no percent graphic: the colon collates in position 05, not
position 32.

60497500 F

SORT/MERGE DIAGNOSTICS B

DIRECTIVE DIAGNOSTICS

During directive processing, Sort/Merge returns the diagnostic messages listed in table B-1. The dayfile message
for Sort/Merge directive errors will be one of the following:

n NON-FATAL DIRECTIVE ERROR(S) or n FATAL DIRECTIVE ERROR(S)
A diagnostic message is written to the output file for each error. The messages appear in three formats:
This format is used for error conditions detected during a syntax check.
*xtypex*CARD NBR num message AT param subparam

type F Fatal error causing abnormal termination of job

N Nonfatal error; job processing continues

num Number of directive or statement in error
message One of the diagnostics listed

param Parameter that contains error

subparam Specific character causing the error

Because Sort/Merge continues syntax checking after an error is detected and a diagnostic is returned to the
user, subsequent diagnostics for a given directive may not correctly apply to the intended syntax. Subsequent
syntax (which may or may not be correct) could have been made illegal by a preceding error.

This diagnostic format is listed after the END directive is printed. It indicates errors encountered during
cross checks made by Sort/Merge on internal tables generated from directive specifications.

**ktype*+statement,message

type F Fatal error causing an abnormal termination of job

N Nonfatal error resulting in continued processing of the job
statement Directive in error
message One of the diagnostic messages listed
This format is used for all diagnostics returned to the dayfile:

SORTMRG message

60497500 E B-1

TABLE B-1.

DIRECTIVE DIAGNOSTICS

Message

Significance

Action

BAD CALL TO SORTL

BOUNDARY OVERLAP

BYTE AND BIT MISSING

BYTESIZE MISSING

CARD AFTER END CARD

CODE SIZE CONFLICT

DATA OVERFLOW

DEFAULT REPLACES

DUPLICATE BYTESZ CARD

DUPLICATE COLLATION

EMPTY MERGE FILE...file-name

System or user error; SORTL is no
longer supported.

Character in sort key overlaps a
word boundary.

Byte and bit specifications have
been omitted from FIELD
directive.

Byte parameter was specified on
BYTESIZE directive, but no bit
specification followed the period.

Card other than a blank card or a
comment card detected after END
directive.

Sort key length for INTBCD or
DISPLAY type key is not an
integer multiple of character code
size.

Too many characters specified in
user’s collating sequence.

Default value defined by installa-
tion has been used for LCMSB
parameter in SORT directive.

More than one BYTESIZE
directive has been specified in a
single run.

One character appears more than
once in user’s collating sequence.
This might occur when the
SEQUENCE directive is continued
on a second card and trailing
blanks have been specified on the
first card.

No records contained in merge
file. File-name is name of merge
file specified in FILE directive.

Notify a systems analyst.

Use LOGICAL type key, or refor-
mat records and FIELD directive
to align characters on character
boundaries.

Respecify FIELD directive with
byte and bit parameters included.

Delete the period.

Delete illegal card.

Specify length of sort key as
integral multiple of 6 bits.

Reduce number of characters to
64 or less.

Specify LCMSB parameter on
SORT directive.

Remove duplicate BYTESIZE
directive.

Delete duplicate occurrence of
character in user collating
sequence.

None.

60497500

TABLE B-1.

DIRECTIVE DIAGNOSTICS (Cont’d)

Message

Significance

Action

EOF, NO LEGAL CARD

EXIT NUMBER LT 1

EXIT NUMBER GT 6

EX1, EX2 OWN ILLEGAL

EX-1 OWNCODE ILLEGAL

EXTRA SEPARATOR

FATAL ERRORS LOADING

SORT

FIELD SIZE # 60 BITS

ILLEGAL ATTRIBUTE

ILLEGAL BIT =0

ILLEGAL BYTE = 0

ILLEGAL CARD TYPE

ILLEGAL CONTINUATION

ILLEGAL DELIMITER

ILLEGAL EQUALS

ILLEGAL FILE TYPE

60497500 E

No SORT or MERGE directive
has been specified.

Improper exit number specified on
OWNCODE directive.

Improper exit number specified on
OWNCODE directive.

Exit 1 or exit 2 owncode specified
for a merge-only run.

Exit 1 owncode specified for a
merge-only run.

Too many separators specified in
directive.

Sort/Merge system was installed
incorrectly.

Length of integer or floating
point sort key is not 60 bits.

Parameter specification is illegal or
partially missing.

Bit parameter illegally specified as
0 in FIELD directive.

Byte parameter illegally specified
as 0 in FIELD directive.

Unrecognizable card was
submitted.

Card following an incomplete
directive did not have a comma in
column 1.

Separator other than the ones
legally designated has been used.

Equals sign specified in wrong
position.

Illegal file type specified on FILE
directive.

Include SORT or MERGE directive
in sort or merge run.

Specify exit number as a value
from 1 to 6.

Specify exit number as a value
from 1 to 6.

Change to sort run.

Change to sort run.

Delete illegal separators.

Notify a systems analyst.

Respecify FIELD directive with
length of sort key equal to 60 bits.
Respecify parameter correctly.
Change bit parameter to value

other than zero.

Change byte parameter to value
other than zero.

Correct directive format.

Either complete the directive on
the previous line or use a contin-
uation line with a comma in

column 1.

Replace illegal separator with legal
one.

Correct directive format.

Correct type parameter
specification.

B-3

TABLE B-1. DIRECTIVE DIAGNOSTICS (Cont’d)

Message

Significance

Action

ILLEGAL KEYWORD

ILLEGAL MERGE ORDER

ILLEGAL NBYTE = NBIT =0

ILLEGAL OPTION

ILLEGAL PERIOD

ILLEGAL PROG NAME

ILLEGAL RIGHT PAREN

ILLEGAL TERMINATION

INPUT MRL NOT GIVEN

INSUFFICIENT CM FOR
SPECIFIED MERGE ORDER
xxxxx MORE REQUIRED

INSUFFICIENT SCM

B-4

Entry parameter specified with
illegal exit number on OWNCODE
directive; or MRL, VAR, or
LCMSB specification omitted or

illegal.

Merge order specified was not an
integer between 2 and 64 inclusive.

Zero cannot be specified for both
nbyte and nbit parameters in the
FIELD directive.

Illegal option specified.

Period cannot be used to separate
start and length parameters in the
FIELD directive.

First character specified in entry
point name was numeric, or name
exceeded 7 characters,

Right parenthesis specified
incorrectly; sort key definition
incomplete.

Incomplete specification of
required parameter.

Maximum record length not
specified as input to Sort/Merge.

Insufficient core was provided for
Sort/Merge to merge intermediate
strings at the order specified.
xxxxx is the number of extra
words (in octal) required.

Not enough small core memory
was allocated.

Specify legal exit number for entry
parameter; or specify MRL, VAR,
or LCMSB parameter correctly.

Specify merge order value as an
integer between 2 and 64 on the
SORTMRG control statement or
through the ORDER option of the
OPTIONS directive.

Specify value other than zero for
nbyte and/or nbit.

Correct option specification.
Respecify FIELD directive with
other legal separator between

start and length parameters.

Correct entry point name in
OWNCODE directive.

Correct directive format.

Correct parameter specification.

Specify MRL or FL parameter on
FILE control statement, or MRL
parameter on OWNCODE
directive.

Increase field length for control
statement sorts.

Increase field length for control
statement sorts.

60497500 E

TABLE B-1. DIRECTIVE DIAGNOSTICS (Cont’d)

Message

Significance

Action

INVALID DIRECTIVE

INVALID SEQUENCE

LFEN = filename, BFS = 0, FWB
NZ, FWB IGNORED

MEMORY NEEDS EXCEED
MAXIMUM. PROBABLY
CAUSED BY USING OWN-
CODE WITH RESTRICTED
FIELD LENGTH

MERGE, MERGE ASSUMED

MERGE ORDER xx USED

MINIMUM REPLACES

MISSING ATTRIBUTES

MISSING EQUAL SIGN

MISSING FILE NAME

MISSING FILE TYPE

MISSING KEY NAME

60497500 F

SORT, SORTB, SORTP, or
MERGE must be the first directive
encountered in a SORTMRG call
in 6C format.

Collating sequence cannot be
specified for a sort key not
character coded.

The FIT for the file named was
provided with a value for FWB,
but no buffer size was given. The
FWB is ignored.

Extra 10000B words needed for
OWNCODE binaries not included
in maximum field length (CM

parameter or machine capacity).

A merge with INPUT= was
specified on the FILE directive.
MERGE-= is assumed for the
merge.

Insufficient core was provided to
attain the maximum merge order
specified; order xx was used
instead.

Value specified in LCMSB param-
eter was less than installation
defined minimum; installation
default value was used instead.

Keyword specified with no

following parameters.

The equals sign, required after the
file type specification in the FILE
directive, was omitted.

File name was omitted from FILE
directive.

File type was omitted from FILE
directive.

Sort key name was omitted from
FIELD or KEY directive or did
not follow required separator.

Insert SORT, SORTB, SORTP, or
MERGE directive in correct
position.

Delete colseq parameter from KEY
directive or define field as
DISPLAY.

Either clear FWB to zero or set
BFS to size of allocated space.

Remove CM from job card or
reduce the RFL by 10000B
before using Sort/Merge.

Change INPUT= to MERGE-=.
Or if merge was assumed due to
the omission of the SORT card,
supply the SORT directive.

Increase field length for control
statement sorts.

Increase value specified for
LCMSB parameter.

Correct directive format,

Insert equals sign.

Include file name on the FILE
directive.

Include file type on the FILE
directive.

Specify key name correctly on
FIELD or KEY directive.

TABLE B-1. DIRECTIVE DIAGNOSTICS (Cont’d)

Message

Significance

Action

MISSING LEFT PAREN

MISSING OPTION

MISSING RIGHT PAREN

MISSING SORT CARD

MORE THAN 1 OUT-FILE

MRL UNDEFINED

MULTIPLE SORT CARD

MULTIPLY DEFINED

NBYTE AND NBIT MISSING

NEED MRL FOR ... filename

NO LEGAL CARD

NON-NUMERIC

ONLY 1 MERGE FILE

OVER 100 KEYS

B-6

Left parenthesis was omitted from
a directive.

No option specified on OPTIONS
directive.

Right parenthesis was omitted
from a directive.

The first directive is not a
SORT or MERGE directive.
MERGE is assumed.

More than one output file was
specified on the FILE directive.

MRL parameter for an exit 1 was
omitted from the OWNCODE
directive.

More than one SORT directive
was specified in a single run.

If fatal error, a parameter was
specified in different ways within
one run, If nonfatal error, a
parameter was specified in the
same way more than once within
one run.

Nbyte and nbit specifications were
omitted from the FIELD
directive.

MRL parameter was not specified
on FILE control statement. File
name is name specified on FILE

directive.

End-of-file condition was
detected before a legal control
statement was processed.

Alphabetic character was specified
in numeric field.

Merge-only processing requires
more than one presorted input
file.

More than 100 sort keys were
specified.

Respecify directive with left
parenthesis included.

Delete OPTIONS directive or
specify an option on it.

Respecify directive with right
parenthesis included.

Supply a SORT or MERGE
directive.

Delete all but one output file.

Respecify OWNCODE directive
with MRL parameter included.

Delete all but one SORT directive.

Delete all but one occurrence of
parameter.

Respecify FIELD directive with
nbyte and/or nbit included.

Specify MRL parameter on FILE
control statement.

Insert legal control statement.

Delete alphabetic character from
field or redefine field.

Replace the sort operation with a
copy operation.

Reduce number of sort keys to
100 or less.

60497500 F

TABLE B-1. DIRECTIVE DIAGNOSTICS (Cont’d)

Message

Significance

Action

OVER 100 SEQUENCES

OWNCODE NOT FOUND, entry

RESERVED COL-SEQ

SORT/MERGE ABORT

UNDEFINED FIELD

UNDEFINED IN-FILE

UNDEFINED I/0O FILE

UNDEFINED KEY(S)

UNDEFINED OUT-FILE

UNDEFINED SEQUENCE

VALUE OF P5 GT 6

More than 100 collating sequences
were specified.

Entry name specified in
OWNCODE directive was not
found in the input file. Entry is
the entry point name of an exit
owncode.

Standard collating sequence name
was specified as a user’s collating
sequence.

Sort/Merge program aborted
because of preceding fatal error,

Sort key name was not specified
on FIELD directive.

An input file was not specified
either on a FILE directive or with
exit 1 on an OWNCODE directive.

No files or owncode exits were
specified for input or output.

No sort key was specified.

An output file was not specified
on a FILE directive and no exit 3
was specified on an OWNCODE
directive.

Collating sequence name was
nonstandard, but was not followed
by a user’s unique collating
sequence.

Value of 6C RECORD directive
parameter P35 is restricted to

1 <p5<6. P5issetto6and
p4 to p4 + pS - 6.

Reduce number of collating
sequences to 100 or less.

Correct entry name or include
owncode routine in input file.

Redefine user collating sequence
name.

Fix preceding fatal error.

Respecify FIELD directive with
key name included.

Specify input file on FILE or
OWNCODE directive.

Specify input or output file on
FILE or OWNCODE directive.

Specify sort key on FIELD
directive.

Specify output file on FILE or
OWNCODE directive.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

See Sort/Merge Version 3
Reference Manual.

ZERO FIELD Bytesize specified in BYTESIZE Specify bytesize or MRL field as
directive or MRL value specified value other than zero.
in OWNCODE directive cannot
be zero.
60497500 F

B-7 |

MACRO AND FORTRAN EXTENDED DIAGNOSTICS
The dayfile message for Sort/Merge macro or FORTRAN Extended call error will be one of the following:
n NON-FATAL SORT MACRO ERROR(S) or n FATAL SORT MACRO ERROR(S)
A diagnostic message is written to the output file for each error. The messages appear in three formats:
This format is returned in the user’s assembly listing for errors detected during syntax checking.
P ERR message
message One of the diagnostic messages listed.

This format is returned to the dayfile; it involves errors encountered during cross checks made by
Sort/Merge on internal tables generated from.macro specification or FORTRAN Extended calls.

SORTMRG **type**macro,message

type F Fatal error causing an abnormal termination of job

N Nonfatal error; job processing continued
macro Macro call in error
message One of the diagnostic messages listed
This format returns informative messages to the dayfile regarding Sort/Merge processing.
SORTMRG message

message One of the messages listed

The diagnostic messages for Sort/Merge macro or FORTRAN Extended call errors are listed in table B-2.

B-8 60497500 E

TABLE B-2.

MACRO AND FORTRAN EXTENDED DIAGNOSTICS

Message

Significance

Action

A LEGAL TYPE DOES NOT
PRECEDE SEQ NAME, name

AT LEAST THREE SCRATCH
TAPES ARE REQUIRED

BOTH BYTE AND BIT MAY NOT
BE NULL

BOTH NBYTE AND NBIT MAY
NOT BE ZERO

BOUNDARY OVERLAP

CODE SIZE CONFLICT

DUPLICATE COLLATION

DUPLICATE PARAMETER,
param

EMPTY MERGE FILE

FIELD SIZE # 60 BITS

FORMAT: NAME, (SEQUENCE),
END

ILLEGAL FILE TYPE, filetype

ILLEGAL NULL PARAMETER

60497500 E

Sequence name indicated appeared
before type parameter specification
in KEY macro call.

Less than three scratch tapes were
specified in TAPE macro call.

Byte and bit parameter specifica-
tions were omitted from KEY
macro call.

Zero cannot be specified for both
nbyte and nbit in KEY macro
call.

Character in character-coded sort
key overlapped a word boundary.

Sort key length for INTBCD or
DISPLAY type key is not an
integer multiple of character code
size.

One character appears more than
once in user’s collating sequence.

The parameter indicated by param
was specified more than once.

No records contained in merge
file.

Length of integer or floating point
sort key is not 60 bits.

Format error detected in initial
SEQUENCE macro call,

Type parameter in FILES macro
call had illegal file type or was
omitted.

First parameter of EQUATE
macro call was specified as null
but END did not follow it.

Rearrange order of parameters.

Specify a minimum of four tapes
for a balanced merge, three tapes
for a polyphase merge.

Respecify KEY macro call with

byte and bit parameters included.

Specify value other than zero for
nbyte and/or nbit,

Specify starting position of sort
key on character boundary.

Specify length of sort key as
integral multiple of 6 bits.

Delete duplicate occurrence of
character in user’s collating
sequence.

Delete all but one occurrence of
parameter.

None.
Respecify KEY macro call with
length of sort key equal to 60

bits, or use LOGICAL type key.

Correct macro call format.

Correct type parameter
specification.

Correct macro call format.

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont’d)

Message

Significance

Action

B-10

ILLEGAL OWNCODE EXIT

ILLEGAL OWNCODE PARAM

ILLEGAL PARAMETER, param

IMPROPER OCTAL
PARAMETER, param

INSUFFICIENT FIELD LENGTH
FOR MERGE BUFFERS

INSUFFICIENT SCM

INVALID SEQUENCE

KEY NOT WITHIN RECRD

MERGE ONLY BUFFERS
EXCEED MEMORY LIMITS

MISSING END PARAM

MISSING FILE PARAMETER

MISSING OWNCODE
PARAMETER

MISSING PARAMETER

Value other than 1 through 6 was
specified for exit number of OWN-
CODE macro call.

Illegal parameter was specified in
OWNCODE macro call,

An illegal parameter was specified.

Param is illegal octal parameter.

Sort/Merge attempted to sort a
file too large for it to handle with
the memory allocated.

Small core memory allocated is
insufficient for Sort/Merge
processing.

Collating sequence cannot be
specified for a sort key not
character coded.

A sort key is not completely
within the record size.

Small core memory allocated is
insufficient for Sort/Merge
processing.

END parameter was omitted from
SEQUENCE or EQUATE macro
call.

Type and name parameters were
omitted from FILES macro call.
MRL parameter was omitted from

OWNCODE macro call.

Option parameters were omitted
from OPTIONS macro call.

Specify exit number as one of the
digits 1 through 6.

Correct macro call parameter
specification.

Correct parameter specification.

Correct parameter specification.

Increase field length of macro
called sort with MAXCM

parameter of SORT macro call; or
increase field length of FORTRAN
called sort with ba parameter of
SMSORT call.

Same as above.

Delete colseq parameter.

Specify MRL or FL for all input
files. The second parameter within
a field specification must be the
length of the key; the second
parameter is not the ending byte
position.

Increase field length of macro
called sorts with MAXCM param-
eter of SORT macro call; or
increase field length of FORTRAN
called sorts with ba parameter of
SMSORT call.

Respecify macro call with END
parameter included.

Respecify FILES macro call with
type and name parameters
included.

Respecify OWNCODE macro call
with MRL parameter included.

Delete OPTIONS macro call or
respecify it with options included.

60497500 F

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont’d)

Message

Significance

Action

MORE THAN ONE OUT-FILE

MULTIPLE A/D
PARAMETER, A

MULTIPLE A/D
PARAMETER, D

MULTIPLE DUMP
PARAMETER, DUMP, nn

MULTIPLE TYPE OR
SEQUENCE, name

MULTIPLY DEFINED

MULTIPLY DEFINED AT

OWNCD EXIT num

NEED MRL FOR FILE ...

filename

NO BYTESIZE PARAMETER

NO EQUATE STRING

NO LEGAL PARAMETER

NO NAME AND NO EQUATE

STRING

60497500 E

More than one output file was
specified on the FILES macro call.

More than one A specification was
included for order parameter in
KEY macro call.

More than one D specification was
included for order parameter in
KEY macro call.

DUMP parameter was specified
more than once on OPTIONS
macro call.nn is number of records
specified in the DUMP parameter.

Type or colseq parameter indicated
by name was specified more than
once in KEY macro call.

Parameter was specified in
different ways within one run.

Same exit number was assigned

to more than one entry point
name. num is the exit number
specified in the OWNCODE macro
call.

MRL parameter was not specified
on system FILE macro for file
indicated by filename.

Bytesize parameter was omitted
from BYTESIZE macro call.

Listing of all characters to be
equated was omitted from
EQUATE macro call.

No legal parameter specification
was detected.

Initial EQUATE macro call was
submitted without name param-
eter and equated characters.

Delete all but one output file.

Delete extra occurrences of A.

Delete extra occurrences of D.

Delete extra occurrences of DUMP
parameter.

Delete extra occurrences of type
or colseq parameter.

Delete all but one occurrence of
parameter.

Assign each exit number to only
one entry point name.

Specify MRL parameter on system
FILE macro.

Respecify BYTESIZE macro call
with bytesize parameter included.

Respecify EQUATE macro call
with characters listed correctly.

Correct parameter specification.

Respecify EQUATE macro call
with name parameter and equated
characters included.

B-11

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont’d)

Message

Significance

Action

NO NAME AND NO SEQUENCE

NO OWNCODE EXIT PARAMS

NO SEQUENCE

NON-STANDARD NAME WITH
NO SEQUENCE

NULL PARAMETER IN CHAR
STRING

ONE MRL (MAX RCD LENGTH)
PARAM IS REQUIRED

ONE-ORIGIN BIT MAY NOT
BE ZERO

ONE-ORIGIN BYTE MAY NOT
BE ZERO

ONLY END OR NULL AFTER
SEQUENCE

ONLY 1 MERGE FILE

OPTION OUT-OF-PLACE

OVER 100 SEQUENCES

OWNCODE > 6 PARAMS

B-12

Initial SEQUENCE macro call was
submitted without sequence name
parameter and sequence.

No legal exit was specified on
OWNCODE macro call.

Initial SEQUENCE macro call was
submitted without sequence.

Nonstandard sequence name was
specified without an associated
user collating sequence.

No character position in character
list of SEQUENCE or EQUATE
macro call can be null.

MRL parameter was specified
more than once or not at all.

Bit parameter was illegally
specified as zero.

Byte parameter was illegally
specified as zero.

Sequence in SEQUENCE or
EQUATE macro call was followed
by a parameter other than END or
null.

“Merge-only processing requires
more than one presorted input file.

OPTIONS macro call must
immediately follow the SORT or
MERGE macro call.

More than 100 collating sequences
were specified.

More than six parameters were
specified on OWNCODE macro
call.

Respecify SEQUENCE macro call
with sequence name parameter and
sequence included.

Specify legal exit on OWNCODE
macro call.

Respecify SEQUENCE macro call
with sequence included.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

Insert character into null position
or delete null position.

Correct parameter specification.
Change bit parameter to value
other than zero.

Change byte parameter to value
other than zero.

Respecify SEQUENCE or

EQUATE macro call in correct
format,

Include another merge file.

Insert OPTIONS macro call
directly after SORT or MERGE
macro call.

Reduce number of collating
sequences to 100 or less.

Delete all but six parameters.

60497500 E

TABLE B-2. MACRO AND FORTRAN EXTENDED DIAGNOSTICS (Cont’d)

Message

Significance

Action

PARAM AFTER END

SORT CANNOT USE
SPECIFIED/DEFAULT CM —
SORT USING xxxxx CM
WORDS INSTEAD

STANDARD NAME AFTER
SEQUENCE

UNDEFINED IN-FILE

UNDEFINED 1/0 FILE

UNDEFINED KEY(S)

UNDEFINED OUT-FILE

UNDEFINED SEQUENCE

Parameter was specified after END
in SEQUENCE or EQUATE macro
call.

Value of MAXCM parameter on
SORT or MERGE macro call or
ba parameter on SMSORT or
SMMERGE was too small.

Standard collating sequence name
was specified with user collating
sequence.

An input file was not specified
either on a FILES macro call or
with exit 1 on an OWNCODE
macro call.

No files or owncode exits were
specified for input or output.

No sort key was specified.

An output file was not specified
either on a FILES macro call or
with exit 3 on an OWNCODE
macro call.

Collating sequence was
nonstandard, but was not followed
by a user’s unique collating
sequence.

Delete parameter after END or
insert it before END.

Specify a larger value.

Change collating sequence name
to nonstandard name.

Specify input file on FILES or
OWNCODE macro call.

Specify input or output file on
FILES or OWNCODE macro call.

Specify sort key on KEY macro
call.

Specify output file on FILES or
OWNCODE macro call.

If standard collating sequence is
desired, change sequence name
accordingly. If user collating
sequence is desired, specify
sequence after nonstandard name.

60497500 E

B-13

INCOMPATIBILITIES C

The following information concerns the mcompatlbilmes exrst.mg between SortIMerge Version 3 and Sort/Merge
Version 4. These incompatibilities require conversion of existmg Sort;'Merge Versron 3 programs if they are to
be executed under the new versron of Sortherge ; i :

'be prmted by executmg the qootrol statement CREMEP,H)

_.thrs capability and does not include the padding reeord ‘counts as
-messages. However, conversion to Sor Merge"'Vemion
'._number of peddmg optrons

':-Sort[Me:ge Vers.xorl 4 does ho _
_'._Sorthetge Version 3 control statements in
ina fu]l record scart by Sortmerge V‘ersron 4

Sort[!clerse Verslon 3 macros are not eompatible wuh Sort!Merge Versron 4. Programs using
Version 3 macros must have these macro calls manually recorded in the new Sort/Merge macro
format and the programs must be reassembled o : :

T‘he default reeord-mark (default R type) re‘cord format wlth Sort{Merge Versron 4 drffers from
Sort/Merge Version 3 for bmaxy files in operating system format and S or L tapes. Sort/Merge
Version 4 always reads/writes a BT=C, R’l“'Z file for default R type records. Sort/Merge Version 3
reads/writes logical records on binary files or unblocked physral records on S or L tapes for de-

fault R type records. System Iogu:al records (and physical records on S or L tapes) can be sorted

by Sortherge Version 4, although they cannot be sPeei:l'ied by the 6C directives alone. A FILE
control statement preoedmg the SOR’I‘MRG(GC) control statement must speerfy RT=S, MRL=n,

_where n is the maxnnum record length in eharacters

_Psmty errors are proeessed by Basle Access Meﬂmds (BAM) for Vers:on 4 rather than by Sort/Merge

for Version 3. Therefore, parity errors with the display option are recorded in an internal error
file maintamed by BAM rather than in the output file as for _Sortherge Version 3. The ﬁle can

I!re default actzon for a panty exror is job emumtion for SortMerge VemOn 4 rather than
droppmg of the bad record as for Sort[Merge Vemon 3 ' i SaE

;'Ihe Sort/Merge Versmn 3 paddmg capability per:mils paddi.ng the last blo(:k of m S o L tape

that contains only fixed length records and a fixed blocki.ns factor. E This padding feature allows
the user to make the last block equai in length to all preceding b"locks.' BAM does not provide
of the dayfile tally
throagh BAM an mcreased

does pm:de,

' tag sozt speciﬁcatmns from
wd Thrs conversron results

Sort{Merge Vemon 4 can’ aceommoﬂate labeled and multi-labeled tapes, but does not perform

label processing. When Sort{Merge directives under Version 4 are used with a nonstandard labeled

tape, the user must specify owncode exit 6. The label is sent to the user through this exit for
checking before the system skips over the label to process the record data.

Exit 6 is not available under Sort/Merge Version 3. Instead the nonstandard LABEL control state-
ment is specified for Sort/Merge Version 3 when nonstandard labeled tapes are used. Use of this
control statement positions the file immediately past the label, without label processing.

60497500 F C-1

10.
11.

12,

Owncode routines for Sort/Merge Version 4 have the record address residing in the location specified
by the contents of the register A2. ‘Under Sort/Merge Version 3, the record addresses for owncode
routines reside in the location specified by the contents of A2+2 (there is a two word header). There=~
fore, Version 3 owncode routines must be modified to specify the record address in A2.

Exit 1 for Sort/Merge Version 4 inserts the user record aftér the original input record, whereas exit 1
under Sort/Merge Version 3 inserts the record before the original record. This difference in exit 1 exe-

~ cution is significant only when the user record and input record have identical keys, and the user has
_specified that the original order of records with identical keys is to be preserved. In the rare event

that Version 3 ordering is required, the user can either change his record formats and/or keys, or he
can revise his application to supply the record through owncode exits or the SORT verb in COBOL.

When input files described by Sort/Merge Version 3 control statements meet the following conditions:
display coded
produoed by the 6000 FORTRAN
each record on the file is ter:m_nated by a short PRU_,.O;'--Level 0 PRU,

BAM takes the end-of-data exit in sort after each record and Sort/Merge Version 4 interprets this
on end-of-file. To overcome this situation, insert a FILE statement for the file ahead of the
SORTMRG control statement. The FILE statement should describe the file with BT=K,RB=1,MRL~=n.

Sort/Merge Version 3 can use blank common; biank common is preserved by Sort/Merge Version 4.

Sort/Merge Version 3, by default, preserved the original order of records with equal keys. For effi-
ciency, Sort/Merge Version 4 does not preserve order by default. Use the RETAIN parameter of
OPTIONS to force the original order of equal keys.

If a nonexistent file is specified for Sort/Merge Version 3, 2 REQUEST will be issued; Sort/Merge Ver—
sion 4 assumes that the file resides on disk.

The following incompatibilities do not require conversion.

C-2

Record blocking and record types specified on Sort/Merge Version 3 control statements are related
internally by Sort/Merge Version 4 to corresponding BAM control statement specifications defining
record blocking and record types. Therefore, FILE control statements are not required with Sort/
Merge Version 3 control statements in specifying blocking and record types.

Parity error procedures for Sort/Merge Version 4 must be specified on the FILE control statement.
These parity error procedures, if already listed for Sort/Merge Version 3, will correspond to the new
Sort/Merge procedures and therefore do not require FILE statement specifications.

The following parameters on Sort/Merge Version 3 SORT, SORTB, SORTP, and MERGE control
statements are ignored by Sort/Merge Version 4. Processing of the Version 3 Sort/Merge job continues.

M option in parameter 1 because multireel files are handled automatically by BAM

Parameter 7

60497500 E

4. The maximum number of input files has increased from 32 to 100.

5. If p2 of the RECORD directive is V and decimal character count (RT=D) records are being described,
the number of 6-bit bytes in the character count field (p5) cannot exceed 6. Version 4 Sort/Merge
adjusts the values of p4 and p5 accordingly and issues a nonfatal error. If the source program exceeds
this limit, the program must be revised. :

60497500 A C-3

SORT/MERGE AND RECORD MANAGER D

This appendix describes the use of Record Manager by Sort/Merge Versions 1 and 4, with the primary emphasis
on Version 4. It also describes, for the Sort/Merge user, aspects of Record Manager that he must know to use
Sort/Merge, as well as some features that will be helpful in using Sort/Merge efficiently.

Sort/Merge performs all input and output through Record Manager, and it requires that all input and output
files conform to Record Manager record and block structures. Files created through COBOL, ALGOL 4, or
FORTRAN Extended are compatible with Record Manager file structures. To determine if files created through
other products are compatible with Record Manager, and to determine record and block structure, consult the

individual product reference manual. Files structured differently can perhaps be reformatted through the FORM
utility.

The Sort/Merge user must provide file structure descriptions for each input or output file:

The Sort/Merge directive user must provide a FILE control statement for all files. Under Sort/Merge
Version 4, FILE control statements are not necessary for the special system files INPUT, OUTPUT, and
PUNCH. The FILE statement provides values for file information table fields needed to process the file;
optional parameters may be included, subject to the restrictions outlined below. Sort/Merge will construct

the actual table and set some of the fields. The FILE statement is the only part of Record Manager avail-
able to the user who restricts his processing to directives.

The Sort/Merge macro user must ensure each input or output file has a valid file information table at the
time the macros are executed. In most cases, the Record Manager FILE macro is used for this purpose; the
FILE statement also may be used to alter file information table fields when the file is opened. Since the
full range of Record Manager processing is available to the macro user, the user should be aware of how
Sort/Merge uses Record Manager, so that he or she does not interfere with normal Sort/Merge processing.

The FORTRAN Extended call user normally need not be concerned with Record Manager. FORTRAN
Extended provides a file information table for all files specified in the PROGRAM statement. If the
FORTRAN Extended Record Manager interface routines are used with the Sort/Merge calls. the user

must ensure each input or output file has a valid file information table at the time the calls are executed.

The user also should be aware of how Sort/Merge uses Record Manager, so that he does not interfere with
normal Sort/Merge processing.

FILE CONTROL STATEMENT

Format
FILE(Ifn, field=value, . . . , field=value)
Ifn Logical file name; 1 to 7 letters or digits, beginning with a letter.
field File information table field mnemonic, 2 or 3 characters.

60497500 E D-1

value Value to be placed in corresponding field; integer (assumed to be decimal unless a B suffix
indicates octal) or symbolic (character string).

The FILE control statement specifies values for file information table fields to be set when the SETFIT macro
is executed or the file is opened during execution. The FILE statement does not establish the file information
table; rather, it causes the system to save the values specified. Subsequently, when a call is made to open the
file, the saved values are placed in the file information table, overriding any previous contents.

Not all fields can be set by the FILE statement; in particular, fields whose values are relative storage locations
cannot be so set (such as WSA, EX, DX, etc.). The descriptions of specific FIT fields given below indicate
whether each can be set by the FILE statement.

Under Sort/Merge Version 4, some fields (such as C1 and SB) are set only by the FILE statement. In most
cases, Sort/Merge does not change file information table values provided by the user on a FILE statement; but
Sort/Merge will reset a field if it requires a specific value that differs from the value provided by the user. The
special system files INPUT, OUTPUT, and PUNCH do not require FILE control statements under Sort/Merge Ver-
sion 4, since BAM provides the following default charactenstlcs for these ﬁles

File Name Block Type (BT) .. . Record Type (RT) Fixed Length (FL)
INPUT el Tl Bt e e
OUTPUT SR R
BReR eioe ot S el g

Under Sort/Merge Version 1, a FILE control statement that specifies CF"N and OF=N must be provided for
INPUT, OUTPUT, and PUNCH. The same statement should specify these values

File Name : Block Type (8T) b Record Type (RT)
INPUT, OUTPUT, or PUNCH Unblocked W

RELEVANT FILE INFORMATION TABLE FIELDS

File information table fields applicable to sequential files that can be set by the user are listed below. For
each field, indication is made whether it can be set by the FILE control statement, whether and under what
circumstances Sort/Merge will alter a user-provided value, and what default value is provided if the user does
not set the field. For a complete description of each field and possible values, consult the appropriate Record
Manager reference manual.

ASCII Character set bits for terminal processing. Can be set by FILE statement; Sort/Merge does not
alter user setting. Default is 64-character display code.

BBH Buffer allocated below highest high address. Can be set by FILE statement; Sort/Merge does
not alter user setting. Default is NO. X

BFS Buffer size in words. Can be set by FILE statement.

If BFS for any file is set by the user to a value other than 0, Sort/Merge does not change
user setting, If BFS # 0 and FWB # 0, Sort/Merge uses the specified buffer; if BFS # 0
and FWB = 0, Sort/Merge sets FWB and allocates a buffer whose length is given by BFS.
For all files whose BFS is 0, Sort/Merge calculates a reasonable buffer size for each such file
and then sets BFS of all these files to the largest value calculated. The algorithm used to
calculate buffer size is described under the title “Buffer Size Calculation” below.

D-2 60497500 E

BT Block type. Can be set by FILE statement. Sort/Merge does not alter user setting; block type
chosen may require setting of additional file information table fields.

Default for Sort/Merge Version 4 is BT=I.
Default for Sort/Merge Version | is unblocked.

CF File disposal code. For directive sorts or merges, user setting of CF has no effect, because
Sort/Merge disposes file in accordance with file disposition code specified on FILE directive.
For macro sorts, Sort/Merge takes no file disposal action; files are not closed before control
is returned to the user.

Under Sort/Merge Version 1, a FILE control statement must be provided for the special
system files INPUT, OUTPUT, and PUNCH in order to specify CF=N and OF=N.

CL Length in characters of count field for T type records. Can be set by FILE statement; Sort/
Merge does not alter user setting. No default when RT=T.

CM Conversion mode for tapes. Can be set by FILE statement. Sort does not alter user setting;
used in calculation of BFS. Default is NO.

CNF Connected file ﬂag Can be set hy FILE statement Sort[Merga does not alter user setting,
Default is NO. S L e : e :
Cp Starting location of count field for T type record. Can be set by FILE statement. Sort/

Merge does not alter user setting. Default is O.

C1 Count field of D or T type record is COMPUTATIONAL—L Can be set by FILE statement.
Sort!Merge does nc-t alter user setting. Defzmlt is NO._ : :

DFC : Dayﬁlc error message control Can be set by FILE statemem Sort[Merge does not alter user
: o setting. Defaultlsﬂ S G N ol e A S S : 5

DX Data exit for end-of-section, end-of-partition, end-of-information. Sort/Merge sets this field
unconditionally; user setting is ignored.

EFC Error file message control C‘ar[be set by FiLE statement,_Sort[Merge does not alter user
. setting. [iefa\dt is 0 e G R .. o

EO Error option for parity errors. Not applicable for NOS 1. Can be set by FILE statement.
Sort/Merge does not alter user setting. Default is T (terminate file under NOS/BE 1; termi-
nate job under SCOPE 2.1).

ERL = Trivial error limit. Can be set by FILE statement. If ER.I_.FO' -Sm‘therge sets 1o L 1If
© ERL#, ‘Sor!jMerge does not. alter user- :setti‘n r_g;-Default 0.

EX Error exit routine. Can be set by FILE macro but not by FILE statement. Sort/Merge does
not alter user setting. Default is no exit routine.

FL Fixed length of F and Z type records; same field as MRL. Can be set by FILE statement;

Sort/Merge does not alter user setting. FL is required for files with RT"F or Z; either MRL
or FL is requlred for all files processed by Sort/Merge.

60497500 E D-3

D-4

FO

HL
LA
LBL
LCR
LEN
LL
LP
LT
LX
MBL
MNB
MNR

MRL

MUL

File organization. Can be set by FILE statement. Sort/Merge requires FO=SQ, sequential
files, which is default.

Address of 1/0 buffer. Cannot be set by FILE statement. Sort/Merge does not alter user
setting. If not set by user, Sort/Merge allocates a buffer of BFS words and sets FWB to its
address FWB#O BFS=0 is a nonfatal error, Sort[Merge overrides user setting of FWB m thls

Header length in characters for T type records. Can be set by FILE statement; Sort/Merge
does not alter user setting. No default when RT=T.

Address of label area. Cannot be set by FILE statement. Sort/Merge sets LA when LT=NS,
ULP#NO, and an Exit 6 owncode muune has been ‘provided, and ignores it otherwise.

Length of label area in characters. Sortf.Me_rge sets this field when LT=NS, ULP#NO, and an
Exit 6 owncode routine has been -provided, and ignores it otherwise.

Label check/creation. Must be specified on FILE statement for tape sorts, Sort/Merge does
not alter user setting. No default.

Logical file name, one to seven ch_axacters__b'égihning "'\ﬁth a letter. Can be set by FILE
statement; Sort/Merge does not alter user setting. No default. ; ;

Length in characters of count field for D type records. Can be set by FILE statement;
Sort/Merge does not alter user setting. No default when RT=D.

Starting position of count field for D type records. Can be set by FILE statement; Sort/
Merge does not alter user setting. Default is O (first character of record).

Label type for tapes. Can be set by FILE statement Sort/Merge does not alter user setting.
Default S (ANSI standard]abals) : i = : i - =i

Label exit for user label pmsmg routine. Sort/Merge sets LX only if LT-NS ULP#NO
and an Exit 6 owncode routine is provided, and ignores it otherwise. = -

Maximum block length. Can be set by FILE statement; Sort/Merge does not alter user setting.
For defaults, see the appropriate Record Manager reference manual.

Minimum block length for K and E blocks. Can be set by FILE statement; Sortherge does
not alter user setting. No default. ;

Minimum record length in characters. Can be set by FILE statement; Sort/Merge does not
alter user setting. Default is 0.

Maximum record length in characters. Can be set by FILE statement. Sort/Merge does not
alter user setting. Either MRL or FL is required for every file processed by Sort/Merge; MRL
is required on the OWNCODE directive or macro if no input file is specified.

Multiple of characters for padding on K or E type blocks. Can be set by FILE statement;
Sort/Merge does not alter user setting. Default is MUL=2.

60497500 E

ocC

OF

PD

VF

WSA

60497500 E

i Sort[Merge -does ot alter user settmg. Default is NO

Open/close status. Not set by user; referenced internally by Sort/Merge. For a macro sort
or merge, a file may be either open (OPE), closed (CLO), or never opened (NOP) when con-
trol is transferred to Sort/Merge; if the file is open (OPE), or closed (CLO), Sort/Merge
assumes its FIT is valid.

Open flags. Sort/Merge rewinds every file whose logical file name is not OUTPUT; user

setting is overridden. If a file is already open when control is transferred to Sort/Merge, its
current position is not changed. Under SCOPE 2.1, FILE control statements must be provided
for the special system files INPUT, OUTPUT, and PUNCH to specify OF=N and CF=N,

~ Padding chatacter' for K and E type blocks. Speclﬁed ir display code, It must not be the
. same as the reeo mar

: haracter, Can be set by FILE statemenl Sortherge does not alter
6 (octal) o

Processing direction. Can be set by FILE statement. Sort/Merge requires that input files be
open for input or for input/output, and that output files be open for output or for input/
output. If PD is set incorrectly, Sort/Merge will reset it to INPUT for input files and to
OUTPUT for output files.

Number of records per block for K type blocks. Can be set by FILE statement; Sort/Merge
does not alter user setting. Default is RB=1.

Record length in characters. Cannot be set by FILE statement. This field is used internally
by Sort/Merge; the user is not involved with its handling. If the field is set when control is
transferred to Sort/Merge, the user setting is overridden.

Record mark character for R type records. Can be set by FILE statement; Sort/Merge does
not alter user setting. Default is 62 (octal).

Record type. Can be set by FILE statement. Sort/Merge does not alter user setting and
permits any record type except U. Default is RT=W. SCOPE 2 permits RT=U when BT=K
and RB=1..

Suppress read ahead and write behind. Can be set by FILE statement; Sort/Merge does not
alter user setting. Default is NO.

_ Trailer length in ‘characters for T type records ‘Can: be set by FILE statement‘ Sort/Merge
2 does not alter user settmg No default whm RT*-T .

 User labei processmg. Can be set by FILE statemem Sortherge does nat alter user settmg.'

An Exit 6 owncode routine is valid only when LT=NS and ULP#NO. Default is ULP=NO.

Volume disposition code. Can be set by FILE statement; Sort/Merge does not alter user
setting. Default is VF=U.

Address of current record. Cannot be set by FILE statement. Used internally by Sort/
Merge; user setting is overridden.

SORT/MERGE VERSION 4 USE OF BAM

The remainder of this appendix is intended primarily for macro Sort/Merge users; it is applicable only to Sort/
Merge Version 4. Directive Sort/Merge users need not be concerned with internal use of BAM by Sort,’Merge
since they can access BAM only through the FILE statement.

When the macro user transfers control to Sort/Merge, files may be open, closed, or never opened. If a file is
open, Sort/Merge assumes it has a valid file information table. In particular, processing direction (PD) must be
set correctly, as well as MRL or FL, RT, BT, etc., and the file must have a valid buffer (BFS and FWB_must
be set properly in the FIT). Closed files (files with OC=CLO) and files that have never been opened (files
with OC=NOP) will be opened and rewound. File position of open files (files with OC=OPE) is not changed
by Sort/Merge.

In most cases, Sort/Merge does not alter file information ‘table fields set by the user. Some fields are set un-
conditionally, and user settings are overridden (WSA, RL, DX, LX). Other fields are set only if the user did
not set them (FWB, BFS, ERL). The processing direction field (PD) is changed only when an inappropriate
value was provided. If FWB#0 and BFS=0, an error message is issued and the user setting for FWB is
overridden. : - '

-~

FILE INFORMATION TABLE MANIPULATION FOR INPUT FILES

The procedures outlined below comprise a summary rather than a precise algorithm for how Sort/Merge handles
the file information table. The purpose of this discussion is to clarify, for macro Sort/Merge users, the order
and manner in which FIT fields are set, so the user knows what to expect when control is returned to him
through an EX error exit, at the completion of Sort/Merge processing, or in an owncode exit routine.

Sort/Merge processes input files as follows:

1. If ERL=0, sets ERL to 1: otherwise not changed.

3. Performs initialization (described below).

4. If FWB#0, goes to step 7. (The error case FWB+#0, BFS=0 is diagnosed during initialization.)
5. Sets FWB to the address of‘ the allocated buffer.

6. If BFS=0, sets BFS for this file to the largest value of BFS for any sort input file.

7. If RT=Z for this inpht file and RT=F for the output file, saves the output FL for use as input
RL, to preserve trailing blanks.

8. If LFN=INPUT, sets DX to address of routine described in step 22.
i LFN#NPUT. sets DX to address of routine described in step 21.

10. If the file is open (OC=0PE). goes to step 17.

D-6 60497500 E

11.

12.

14.

15.

i

7.
18,
':1_9.

»
2.

2.

23.

25.

26.

If LT#NS, goes to step 13.
This file has nonstandard labels; they should be processed either by an Exit 6 owncode routine or

according to the 6C LABEL directive. LX is set to address of routine described in step 23 if an
Exit 6 owncode routine is provided and to address of routine described in step 26 otherwise.

If LEN=INPUT, performs

OPENM fit INPUT

and goes to step 17.

' If PD?*I-O sets PD-INPUT

Performs :
OPENM fit,R
Sets WSA-'appr_bptiat_eiy.

Reads a record wnth the GET macro.

Length of record read is determmed either by RL fielcl of FIT or as in step 7.

Goes to step 17

Data exit for all files exc'e'pt INPUT. If this exit was taken at end-of-section, goes to step 17.

Data exit for end of section on INPUT, end of partition or end of information on any other file
DlSposes file according to Sort/Merge disposition code

N ENDFILE ft
CR, RC CLOSEM fitR
gl CLOSEM fit N
U,CU CLOSEM fitU
R REWINDM _ fit

Label exit to interface with the Exit 6 owncode routine. Reads a label with GETL and calls the
Exit 6 owncode routine, returning to step 24 or step 25.

Exits to OPENM or CLOSEM with a CLOSEL.
Verifies label and goes to step 23.

Label exit to implement the 6C LABEL directive. Reads a label with GETL, verifies it, and exits
to OPENM or CLOSEM with a CLOSEL.

60497500 E D-7

FILE ZNFORMATION TABLE MANIPULATION FOR MERGE FILES -

Sortherge processes merge ﬁles o follows o

D-8

: ._1_;

14.

15.

16.

17.

I ERL’{I, sets ERL-:

: -'Performs mitmlizanon (described below);

Sets wsa

If FWB=0 sets FWB

If RT=Z for this file and RT—F for the output ﬁle saves output FL for use as mput RL to

preserve trallmg blanks T

If LFN—INPUT sets DX to address of rouune descnbed in step 21

i b LFN#INPUT sets DX to address of routine descnbed in step. 20

If file is open (OC=OPE),goes to step 17.
If LT#NS, goes to step 13.
File has nonstandard labels. The labels should be processed either Ey an Exit 6 owncode roﬁtine

or according to the 6C LABEL directive. LX is the same routine as described in input step 23 if
an Exit 6 routine is provided, and the same routine as described in input step 26 otherwise.

If LFN=INPUT, performs
OPENM fit INPUT

and goes to step 17.

If PD#1-0, sets PD=INPUT.

Since LEN#INPUT, performs
OPENM fit,,R

Reads a record.

Assumes record length is given by RL field, unless step 7 applies.

60497500 E

19. Goes to step 17.

20. Data exit for all files except INPUT. Goes to step 17 if this exit was taken because of end-of-
section (FP=EQS).

21. Data exit for end-of-section on INPUT, and end-of-partition and end-of-information on all files.
Dispose the file according to the Sort/Merge disposal code:

N : ENDFILE fit
CR, RC CLOSEM fit,R
C CLOSEM fit,N
U, cU CLOSEM fit,U
R REWINDM fit

FILE INFORMATION TA_BLE MANIPULATION FOR OUTPUT FILES
Sort/Merge processes output files as follows: :

1. If ERL=0, sets ERL to 1.

-3.° Performs initial_i’z.atibn'(descﬁbgd below).
4. If the file is open (OC=OPE), goes to step 12.

5. If FWB=0, sets FWB. *

7. If PD#I-0, sets PD=OUTPUT.
8. If LEN=OUTPUT, performs
OPENM fit,N
and goes to step 12.

9. If LT=NS, goes to step 11.

10. File has nonstandard labels. They should be processed either by an Exit 6 owncode routine or
according to the 6C LABEL directive. If an Exit 6 owncode routine is provided, sets LX to the
address of the routine described in step 16; otherwise, sets LX to the address of the routine de-
scribed in step 19.

11. Performs

OPENM fit,,R

60497500 E D9

12.>
13.
14.

15.

16.

17.
18.

19.

"Sets WSA and RL

If no more records reniain to be outpug. goes to step 15

Wdtes a record and soes to step 12

Dlsposes the file accordmg to the Smtherge ﬁle dlspomion code:

N e ENDFILE fit
CR.RC & CLOSEM fit,R
c '~ CLOSEM fitN
UicH v CLOSEM fit,U
R REWINDM ft

Label exit to interface with the Exit 6 owncode routine. Calls the Exit 6 owncode routine,
returning to step 17 or 18.

Writes user label with PUTL and exits to OPENM or CLOSEM with a CLOSEL.
Writes user label with PUTL and goes to step 16.

Label exit to implement the 6C LABEL directive. LA and LBL have already been set, so writes
the label with PUTL and exits to OPENM or CLOSEM with a CLOSEL.

INITIALIZATION FOR ALL FILES

1

2.

D-10

If this file has ever been open (OC#NOP), goes to step 11.
If BFS#0, goes to step 7.
If FWB=0, goes to step 5.

A user setting of FWB#0,BFS=0 is prohibited as the buffer size calculated by Sort/Merge might
be so large as to cause overwriting of valid user data. Therefore displays the error message:

LFN=axxxxxx,BFS=0,FWB NZ, FWB IGNORED
and sets FWB to 0.
Uses the STATUS macro to determine whether the file is on disk or tape. A nonexistent file is
assumed to be on disk (such a file can only be an output file). A tape with CM=YES is a BCD
tape, and a tape with CM=NO is a binary tape.

Chooses a reasonable buffer size based on file residency and MBL. Sets BFS to the computed value;
saves this value for use in step 8.

60497500 E

7. Performs SETFIT. This BAM routine sets defaults for BT, RT, and FL for files INPUT, QOUTPUT,
and PUNCH, then accesses the latest FILE control statement to update the file information table,
and sets OC to NOP.

8. If BFS=0 after FILE statement processing, sets BFS to the value computed in step 6.

9. If file not a sort input file, goes to step 11.

10. If BFS for this file is greater than the maximum BFS for all sort input files, sets the maximum to
this BFS. [f Sort/Merge is to allocate the buffer (FWB=0), sets BFS to 0. (It will be set to the

maximum at input step 5.)

11. Updates the MRL of all files except the output fﬂe, so that the MRL of all files is equal to the
greatest value of any provided. o 5

BUFFER SIZE CALCULATION

If the user does not speczfy a buffer size (BFS) for a particulax ﬁle, Sortherge (rather than BAM) ca!culates
a value. An attéempt is made by BAM to mimmrze buffer size, bu; Sort/Merge makes use of larget buﬂ‘ers to
increase the speed of mput{output The followmg algonthm 13 used:

1. Sets BFS to 2“‘MBL -rounded up to a :multlple of PRU size for the device.

2. If step 1 would result m BFS = 40003 sets BFS to MBL, rounded up to a multlple of PRU size
for the devu:e '. _' S5 : L : ;

CaooH BFS < defauh for dev}ce sets BFS to defauit for device.

are Adds 3 to BFS One wotd is added so the in pomter of ti\e ﬁle mfonnauon table is not equal
-~ to the out pointer when the buffer is exactly fuil Two words are added S0 that Z*MBL wiﬂ not
-'-ﬁllthebufferforanSorLtapc LR -

PRU sxzes for devim

Default buffer sizes for devices

e i

60497500 E D-11

SAMPLE PROGRAMS
USER ERROR EXIT ROUTINE

This sample program demonstrates a macro sort with a user error exit subroutine. The main program begins

at the entry point SORT; during a sort, when an error is encountered, the routine with entry point ERREXIT
is called. This subroutine determines if error was type 142, excess data. The writer of this program evidently
decided excess data would not be a problem; if an input record longer than 20 characters is read, the excess
data is truncated. Any other error produces an abort. If excess data was encountered, + is put in column 19
of the record. Then SDS is set to NO, and ERL to 0 so needless error messages are displayed, and the pro-
gram is not aborted when Record Manager gets control. A count is kept of the type 142 errors encountered.

After Sort/Merge processing is completed, control in the main program advances to the line containing
ERRCOUNT and a message indicating the number of errors is sent to the dayfile.

D-12 60497500 A

Source code for this COMPASS program:

IDENT
ENTRY
SORT so2r
FILES
KEY
KEY
SAL
RJ
SA6

MESSAGE
ENDRUN

»

ERRCOUNT DATA
ERRMESS BSS

DATA
SORTIN FILE
SORTOUT FILE

»

SORT
SORT

(INPUT,SORTIN) , (OUTPUT,SORTOUT)
11,495, s DISPLAY

19910,,LOGICAL

ERICOUNT CONVERT ERROR COUNT
=XZONVERT TO DISPLAY CODE
ERRMESS INSERT INTO MESSASE

ERRMESSysR ODISPLAY THE ERROR COUNT
END THIS JOB STEP
0 COUNTY OF RM ERROR 142-S
1

28L LONG RECORDS WERE TRUNCATED
LFN=SORTINyBT=CyRT=ZyFL=20,EX=ERREXIT4ERL=2
LFN=SORTOUT, BT=CyRT=F,FL=20

¥ ERROR ROUTINE - 81i=1, AQ=FIT

ERREXTT

FETCH
Sxi
NZ
FETCH
SA2
MX0
SX3
X6
IX6
SA6
STORE
STORE
SA1
MX6
IX6
SA6
EQ

END

60497500 A

ENTRY/ZEXIT WORD
A0y IRS, X1 IF NOT A 142 ERROR
X1-1428 THEN ABORT
X1,4000008+*
ADyWSA,X1 GET FWA RECORD
X1+81 INSERT A PLUS
60-6 INTO COL. 19
1R+
-X0*Xx2
X6+ X3
A2
A0, SDS=NO DO NOT DISPLAY ERROR MESSAGES
A0,y ERL=0 ALLON INFINITELY MANY TRIVIAL ERRORS
ERRCOUNT ADVANCE LOCAL ERRIR COUNT

59 (X6 = =1)

Xi-X6

Al

ERREXIT EXIT TO *GET*®
SORT E

D-13

The following message appears when this program is executed:

*ess*sv*12 LONG RECORDS WERE TRUNCATED

USE OF BFS TO REDUCE CENTRAL MEMORY REQUIRED

This directive merge illustrates user specification of BFS to reduce the amount of central memory required to
run the job. Since 20 files are to be merged, memory requirements under default processing would be prohi-
bitive; if Sort/Merge were allowed to calculate BFS, 2003B words would be required for each file, or a total
of 50074B, in addition to other memory required by Sort/Merge. To reduce this requirement, the user takes
advantage of the fact that the records in all the files are relatively short (40 words); therefore, he specifies

a buffer size that is just as large as 1 record, rounded up to 65 words (1 PRU + 1 word). This way the
entire merge is able to complete in only 30000B words. The execution time required, however, will probably
be greater than it would be if larger buffers were used, since more mass storage accesses are required.

Directives for this job, as listed on OUTPUT file:

MERGE
FILES
FILES

’
FIELD
KEY
END

fo TN e BV I PV RV R

OUTPUT = 0OUT

MERGE = INO1ls INO2s INO3s INO&s INOSe TNOG6s INOT»
INOBs INO9y INI1Os IN1ls IN12s IN13s INl4s
INISe INl6s IN17s IN1Be IN19. INZ2O

KEY(2+ 1o LOGICAL)

KEY

60497500 A

V 00SL6¥09

NNY 3O¥3N ON3ss *SE°25°91
09nnunsnsne LNdINO0 SQH023Y TIvi0L =# °*SE°*2S°91
Ounspnsnsas INALNO ONIGNA SNOIL3ITNIQ ## °SE®25°91
Ouanpanssa ANDINO ONIENOG SNOILHISNI we °SE°2S°91
Onnnenanes 03140S SOH023d WL0L =#s °SE°25°91
Onsennnnas INANI 9NI¥NAG SNOILIN3Q #»e °*SE°*2S°951
Oeannpounns ANdN1 9NIHNG SNOILH3ISNI *qE*ds 9l

'95“1&05'60 1991

(0000€) 14 €S 6%° 91
(99=S48409="1442=14¢2=18%0EN])3114°05°6%*91
(99=S48409=14%2=148%0=186INI) 311 4°L%°6%°*91
(S9=S48°09="14%Z=144D=18" BIN113713'9? 699l
(S9=519'0?‘1J‘£‘1&‘3=18‘LINI13113 w°6%°91
(5935484 0%=14Z=1440=18*9INI) 311 4°En°*6%°91
(89=S48%0%=14%2=14¢D=18¢SINI) I 3°6E£°69°91
lS9=SdG‘0#-1J‘Z=lu‘3'18‘¢tﬂl}3113'15 6h*91
(99=S 464 09="14%2=18%2=18°CIN]) 311 4°9€ 67°91
(S9=2S48*0%=14%L=14¢0=182INI) 34 9E*67°91
_(59’533‘0?313‘2818‘3=18‘IIN1131IJ 62°6%7°91
(S9=S48¢09=14*L=18¢J=16*0INf)F 11 4°S2"* 6%°91
(S92S38¢0%7=14¢Z=18%I=18%60NI) 31 4°22°67° 91
(S92S48¢09=14Z=18¢I=18°6ONI) 3T 4°LT1*6%°91
(S9=S48¢0%9="14¢£=14¢D=18¢L0N]) 3] 4°<0°%6%°*91
(S9=S48409=14%2=142=108*90N]1) 311 3°00°6%°91
(598538‘07=1J‘Z=13‘3=19‘50NI)3113‘00'69'91
(S92S48*0%=14*Z=18¢2=18*70N])3114°8S°8%°91
(S9=S48¢09=T14¢Z=14¢I=1HEON[) 3] 4°LS*8%°91
(S9=S48¢0%=14*2=14¢D=18420NT)3114°2S°8%°*91
(S9aS48¢0%7=14°Z=184J=18¢T0N]) 311 4°9S°8%*91
(0B=T14*Z=14%2=18*1N0)3114°25*8%°* 91

b) (19,07

TAPE SORT/MERGE PROCESSING OPTIONS E

The tape variant of Sort/Merge provides two forms of Sort/Merge processing; balanced and polyphase. Either
form is specified by the user on the SORT directive or the SORT macro call.

The following sections are provided to give the user a graphic description of both balanced and polyphase

sort processing related to the three phases of Sort/Merge execution; the internal sort phase, the intermediate
merge phase, and the final merge phase.

BALANCED SORT

INTERNAL SORT PHASE

Strings are written onto half of the assigned work tapes consecutively in the internal sort phase.
Example:

Record string distribution for the internal sort phase using the balanced sort process. The output for this

example consists of nine record strings. The tape directive specified six intermediate merge tapes.

SORT PASS 1

Input Buffered Sequenced
Records Records Records ,;\"9
S

5
1 - B - “\n‘é
4 28>
o,
Input Tape Input Tournament Output & ng
Buffer Selection Area Buffer

Total Number of Record

(DD

Strings on Tapes after These three
Tape No. Each Pass tap?s are unused
during the
2 ! internal sort phase
3 1
4
Pass 1

60497500 A E-1I

SORT PASS 2

£
L)
6,
th St
Qutput 9
Buffer 4
SORT PASS 3
7
A
gth String
91‘,5 Sl‘r;
Output 29
Buffer 4

E-2

Total Number of
Strings on Tapes after

Tape No. Each Pass
2 2
3 1 2
4 1 2
Pass 1 Pass 2
Total Number of
Strings on Tapes
Tape No. after Each Pass
2 1 2 3
3 1 2 3
4 1 2 3
Pass 1 Pass 2 Pass 3
60497500 A

INTERMEDIATE MERGE PHASE

During each pass of the intermediate merge phase in a balanced merge, half of the tapes are used for input to
the merge and half are used as output. The tapes are rewound after each pass and the output tapes from one
pass became input tapes for the next pass.

Example:

MERGE PASS 1

The following example of the balanced merge uses the record string distribution from the internal sort example.
For the intermediate merge phase, 5, 6, and 7 function as output tapes for the first merge pass. Tapes 2, 3,
and 4 will serve as input units for this pass. The distribution pattern involves record strings read off tapes 2,

3, and 4 and merged into a single string in the merge selection area. The newly merged strings are then written
on tapes 5, 6, and 7 consecutively.

FIRST MERGE

Merge Output
Selection Buffer

60497500 A E-3

- Se!ectmn Area o

\ umber f’ Strmgs on

At thls pomt there IS at most one smng on each tape The tapes used as output on the merge pass Just
completed (5 and 6) are rewound. The tapes used input (2, 3, and 4), on. each of wiuch one stnng remains
to be’:eac,‘l*,_are not | ‘wound and the ﬁnal merge ‘se ls entered ,

E4 60497500 A

If in this example more :eeord strings had been on tapes 2,3, and 4, the inte:medlate merge would

continue, following the same merge distxibutmn pattem untjl all record strings ‘were read off these three tapes.
The two sets of work tapes reverse Opemtlons. that is, the input tapes become qutput tapes and the output
tapes become input tapes. ‘The reversal of tape‘-'fumtiom onntinues until not rnore than a smg!e record string

is located on each tape of the work'-'tape gto

Final Outp.ut'.
String

String
: >

Output
Buffer

60497500 A E-5

POLYPHASE SORT

The pcly;ihasa sort routine during internal sort phase processing distributes record strings onto n minus 1
tapes specified by the user, where the distribution pattern is based on the Fibonacci sequence numbers. The
internal sort phase distributes the sequenced record strings in the following manner:

1. Reserve the last tape (T,)) in a list of n tapes on the TAPE directive or macro for the first merge
output. No strings are written on this tape during the internal sort phase distribution.

2. Write one string on each tape in the list T, To, T3 . . . Tn-1

3. Skip T,,and distribute the number of strings which are on T, onto each of the other tapes in the
list Ty, T3, Ty - - - Ty

4. Skip the next tape (T,) in the list and distribute the number of strings which are on T, onto
each tape in the list Ty, T3, Ty, - - - Tpyg.

The following section gives a graphic example of this distribution pattern.
Example:

Distribution pattern of record strings for the internal sort phase using a polyphase sort. Output for this
example consists of 17 record strings. The tape directive specified four intermediate tapes.

~

FIRST PASS
Work Tapes
Buffered Sequenced \S-‘“g
Record Records Records \‘;“5
Input
B0t > 2, 2nd String
Input 4 i 27 7%
Input Tape Srey S,
Input Tournament Output ?f:}-,g

Buffer Selection Area Buffer

Total Number of
Tape No. | Strings/Tape

N =
-

Pass 1

E-6 60497500 A

SECOND PASS _ s
Work tape 1 is bypassed and the fourth and fifth record strings are placed on tapes 2 and 3.
A o

THIRD PASS

'i‘apé 2 is bypassed and a nd:hber of record strings is written to tapes 1 and 3 equal to the number of record
strings on tape 2 at the completion of pass 2. That is, two record strings are written on each of tapes 1 and 3.

Tape NoJ Total Number of Strings/Tape
Output Buffer s : :

60497500 A

1
1
1

1
2
2

«]
2
4

Pass 1

Pass 2

Pass 3

E-8

FOURTH PASS

_10th String

11th String

12th Stri

15th

16th Stri
17th String

Tape 3 is skipped and tapes 1 and 2 each receive four record strings (based on an amount equal to the number
of record strings located on tape 3 at the completion of pass 3).

Tape No. | Total Number of Strings/Tape
1 1 1 3 7
2 1 2 2 6
3 1 2 4 4
Pass 1 Pass 2 Pass 3 Pass 4

60497500 A

The total number of record strings on tapes 1, 2, and 3 at the completion of the internal sort phase consists of
the following distribution pattern:

Total Number
Tape No. Record Strings
1 7
2 6
3 4
Total

If a larger number of record strings was to be generated during this internal sort phase, Sort/Merge would
continue to distribute the remaining record strings by bypassing tape 1 and writing a number of strings
onto tapes 2 and 3 equal to the number of strings located on tape 1.

INTERMEDIATE MERGE PHASE

For a polyphase merge, the intermediate merge phase performs successive merge passes until no more than
one string remains on each of the intermediate tapes. The distribution pattern for this phase involves the
following operations: Sh
1. The last tape listed on the TAPE directive or macro is reserved as the output unit for the record
string output from the first intermediate merge pass.

2. Each tape containing record strings merges onto the output tape a number of strings equal to the
smallest number of strings on any of the tapes.

3. For the second merge pass and subsequent merge passes, the tape with no record strings at the
completion of the previous merge pass is reassigned by the system as the output tape for that
particular pass.

4, The number of strings distributed from each of the input tapes to the output tape during a
particular merge pass is equal to the smallest number of strings remaining on one of the input
tapes at the beginning of that merge pass.

The following example used the record string distribution from the internal sort example for a polyphase sort.
Tape 4 is the output tape for the first merge pass. The number of record strings read off tapes 1, 2, and 3
for merging onto tape 4 equal the lowest number of record strings located on any one of the input tapes

at the beginning of the merge pass (in this case, tape 3 with 4 record strings). Therefore, four record strings
are read from each tape (a record string from each tape per merge) and merged into 4 record strings to be
written on tape 4.

60497500 A E-9

MERGE PASS 1

FIRST MERGE

G} i)

1 String

1 String 1 String
1 String Merged 1 Merged
1 String o Records String
1 String
Input Buffers Qutput Buffer
] ‘Merge
Selection
“Area
S “Number of Strings F!emaming
Tape No. after Each Merge
o _'_-8 .
L8 i 5o
3 3
S s
Mqrgg 1

60497500 A

SECOND MERGE

1 String 1 String

1 String

o

§

1 Merged
String

Merge Selection Area

THIRD MERGE

L §e)

1 String

1 String

ke 1

o

2t

1 Merged
String

Merge Selection Area

FOURTH MERGE

1 String 1 String

1 String

N

%

1 Merged
String

Merge
Selection
Area

60497500 A

Number of Strings

Tape No. | Remaining after Each Merge
1 6 5
2 5 4
3 3 2
4 1 2
Merge 1 | Merge 2
Number of Strings
Tape No. | Remaining after Each Merge
1 6 5 4
2 5 4 3
3 3 2 1
4 1 2 3

Tape No.

Merge 1 { Merge 2 | Merge 3

Number of Strings
Remaining after Each Merge

HWN =

- W, o;m
NN O
W = W

B ONW

Merge Pass 1

MERGE PASS 2

Tape 3 is assigned as the output tape. The two record étﬂngs located on tape 2 determine the number of
record strings to be read from tapes 1, 2, and 4 during this merge pass.

(0 G

1 Strmg 1 String

FIRST MERGE

STl SEES e e i _Mu.'_gl_!;__s_plocﬁon.hraa'_ :

| Number of Strings

~ Tape No. _' - Remaining after each Merge
A 6 5 4 3 2
2 5 2 3 2 1
3 3 iR 1 0 1
4 1 b 3 4 3
Merge Pass 1 Merge 1

E-12 60497500 A

SECOND MERGE

60497500 A

1 String

- Merge Selection Area

Nu_mber of Strings

Tape No. Remaining after each Merge
1 6 . 5 4 3 2 1
2 5 4 3 2 1 0
3 3 2 1 0 1 2
4 1 2 3 4 3 2
Merge Pass 1 '; :

Merge Pass 2

MERGE PASS 3

_ Number of Strings

5 Merge Selection Area

One record string is read from 1, 3, and 4, merged, and written on tape 2.

oW -

NN Ao
W= W

Remaining after each Merge

A ONW

W o= - N
MR

Mefge Pass 1

Merge Pass 2

Merge
Pass 3

60497500 A

E-15

60497500 A

MERGE ORDER CF

Merge order is applicable only to disk sorts under Sort/Merge Version 4. The merge order is a parameter used
intemnally by Sort/Merge as the number of strings that can be merged in core at one time to form a longer
sorted string; the merge order determines the number of merge buffers used during the intermediate merge
phase. The user may specify merge order on the SORTMRG control statement (section 4), on the OPTIONS
directive (section 4), or on the OPTIONS macro (section 5); or he may accept a default value calculated by
Sort/Merge. Secondary users of Sort/Merge, such as users of COBOL sorts and QUERY UPDATE sorts, cannot
specify merge order and are limited to the default value. Merge order is irrelevant for tape sorts, since the
number of tapes provided for a balanced or polyphase sort implicitly establishes the merge order.

By specifying a merge order, it is possible to decrease the elapsed time of a sort or merge. The optimal value
for merge order depends on machine configuration, quantity of sort input, input/output devices available,
randomness of input data, and amount of core available for the sort. The merge order for an individual sort
run should be chosen with all these factors in mind. :

To understand how the merge order is used intemnally, it is helpful to know the procedure followed by Sort/
Merge during the sort phase and ﬂw intermediate merge phase.

During the sort phxse._Sortherge reads records from input files (or receives them from an Exit 1 owncode
routine) and produces sorted strings by a tournament replacement technique. If all the records are read
before the tournament is full, the sorted string is equivalent to the output file, so no intermediate strings need
to be written. The size of the tournament and therefore the number of records that can be sorted in core, is
dependent on the field length of the sort (as shown by Equation 1 below).

If, when the tournament is full records still remain to be read, one or more intermediate string files must be
written to make room for the new records in the tournament. Sort/Merge continues to read records and write
them to string files as long as the records will be in proper order when they are written to the end of the
current string. Any record which would not be in proper order is flagged and placed in the tournament.
When the tournament is full, the current string is terminated and a new string begun.

After all records have been received and written to sorted strings, the intermediate merge phase begins. The
number of strings that can be merged in core during this phase is dependent on the amount of central mem-
ory available for use as merge buffers (Equations 2 and 3 below). The number of buffers used is the merge
order. If the number of sorted strings does not exceed the merge order, all the strings can be merged and
written to the output file with no intermediate merge. If the number of sorted strings is greater than the
merge order, several strings must be merged to form longer strings.

This procedure is repeated until the number of strings is less than or equal to the merge order, at which time
the strings are merged onto the output file.

User merge order specification can improve or degrade Sort/Merge performance. If more buffers are available,
fewer passes over the data are necessary, but input/output time might increase. If fewer buffers are available,
input/output time might improve but more passes over the data might be necessary.

-

60497500 B F-1

‘The default merge order has been chosen to yield optimal performance for most users. A different merge
order could improve performance for a particular combination of system configuration, sort key, and input
data. Changing any of these factors might make the user-selected merge order non-optimal. However, users
who frequently execute very similar sorts of large data bases might wish to improve Sort/Merge performance
by selecting and specifying a merge order. The following technical information is intended for use in the
selection of an optimal merge order.
MERGE ORDER FORMUILAS
The number of records that can be sorted in core, N, is calculated as follows:

N = (LF - BFSIN)/(MLW + 2 + K)
The intermediate merge order, MO, is rela‘ted to merge input buffer size as follows:

MO = (LI X .42)/(MIBFS + MLW + K)
The number of passes over the data, P, is calculated as follows:

P = (log NSTR / log MO)
The final merge order, FMO, is calculated as follows:

FMO = (LF - BFSOUT - BFSM)/2003B

where
MIBFS = Merge input buffer size; MIBFS > MAX (101B, MLW + 1)
NSTR = ﬁumber of stﬁhgs generated in the sort phase. Can be estimated as follows:
NSTR = the grégtest integer less than NREC / 2N for random data
= the greatest integer less than NREC / N for data in reverse order
= 1 for sorted data
MLW = Maximum record length'iﬁ words of all input records.
K = Length of extracted keys in words, approximately 11/10 of the sum of all key
~ lengths, if each key length is rounded up to a whole number of words. Add 1
word if the RETAIN option is selected
BFSIN,BFSOUT = Buffer sizes in words for input and output files (see append:x D for Sortherge
defaults)
BFSM .=- Sum of the merge iﬁpui huffer_siz&-in words.
NREC = Number of records to be sorted L

F-2 60497500 B

For directive sorts: _ |
LF = FL - 13000B - length in wﬁrds éf owncode binaries
LI = FL - 65008 '
For macro sorts:
LF = LI = FL - LWA - 1300B
where
FL = total current field length in words of job

LWA = address of last word of code loaded when Sort/Merge is called (contents of RA + 65B).

60497500 B

F-3

GLOSSARY G

ADVANCED ACCESS METHODS (AAM) — A file man-
ager that processes indexed sequential, direct
access, and actual key file organizations, and
supports the Multiple Index Processor. (See
CYBER Record Manager.)

BALANCED TAPE SORT — Sort that always keeps its
intermediate tapes divided into the same two
groups. Sorted strings are merged from one group

" to another as long as possible, then the direction
is reversed.

BASIC ACCESS METHODS (BAM) — A file manager
that processes sequential and word addressable
file organizations. (See CYBER Record Manager.)

BLOCKS — The term block has several meanings
depending on context. On tape, a block is infor-
mation between interrecord gaps on tape.

Record Manager defines several blocks depending
on organization:

Organization Blocks

Indexed sequential Data block; index block

Direct access Home block; overflow block
Actual key Data block

Sequential Block type I,C,K,E

BOI (Beginning-of-Information) — Record Manager
defines beginning-of-information as the start of the
first user record in a file. System-supplied
information, such as an index block or control
word, does not affect beginning-of-information.
Any label on a tape exists prior to beginning-
of-information.

BUFFER — An intermediate storage area used to com-
pensate for a difference in rates of data flow, or

60497500 E

times of event occurrence, when transmitting
data between central memory and an external
device during input/output operations.

COLLATING SEQUENCE — Sequence that determines
precedence given to character data for sorting,
merging, and comparing.

CONTROL WORD — A system-supplied word that
precedes each W type record in storage.

CYBER RECORD MANAGER — A generic term
relating to the common products AAM and BAM
that run under the NOS and NOS/BE operating
systems and that allow a variety of record types,
blocking types, and file organizations to be
created and accessed. The execution time input/
output of COBOL 4, COBOL 5, FORTRAN
Extended 4, Sort/Merge 4, ALGOL 4, and the
DMS-170 products is implemented through
CYBER Record Manager. Neither the input/
output of the NOS and NOS/BE operating systems
themselves nor any of the system utilities such as
COPY or SKIPF is implemented through CYBER
Record Manager. All CYBER Record Manager
file processing requests ultimately pass through
the operating system input/output routines.

DIRECT ACCESS FILE — In the context of CYBER
Record Manager, a direct access file is one of
the five file organizations. It is characterized
by the system hashing of the unique key within
each file record to distribute records randomly in
blocks called home blocks of the file.

In the context of NOS permanent files, a

direct access file is a file that is accessed and
modified directly, as contrasted with an indirect
access permanent file.

DIRECTIVES — Instructions that supplement
processing defined by the SORTMRG control
statement for execution of Sort/Merge record
processing.

EOI (End-of-Information) — Record Manager
defines end-of-information in terms of the file
organization and file residence.

File

Organization

File
Residence

Physical
Position

Sequential

Word
Addressable

Indexed
Sequential,
Actual Key

Direct
Access

Mass storage

Labeled tape
in SLI,
S.L format

Unlabeled
tape in SI,
I format

Unlabeled
tape in S
or L format

Mass storage

Mass storage

Mass storage

After last user record.

After last user record
and before any file
trailer labels.

After last user record
and before any file
trailer labels.

Undefined.

After last word
allocated to file,
which might be
beyond the last user
record.

After record with
highest key value.

After last record in
most recently created
overflow block or
home block with the
highest relative
address.

FILE — A logically related set of information; the
largest collection of information that can be
addressed by a file name. Starts at beginning-
of-information and ends at end-of-information.

FILE CONTROL STATEMENT — A control statement

that contains parameters used to build the file
information table for processing. Must be pro-
vided for every input or output file to be
processed by a directive sort or merge.

G-2

FIT (File Information Table) — A table through which
a user program communicates with Record
Manager. All file processing executes on the
basis of fields in the table. Some fields can
be set by the Sort/Merge user in the FILE
control statement.

HOME BLOCK — Mass storage allocated for a file with
direct access organization at the time the file is
created.

KEY COMPARISON — Internal technique of compar-
ing sort keys that usually requires less elapsed
time and more central processing time than key
extraction.

KEY EXTRACTION — Internal technique of comparing
sort keys that usually requires less central
processing time and more elapsed time than
key comparison.

LEVEL - For system-logical-records, an octal number
0 through 17 in the system-supplied 48-bit
marker that terminates a short or zerolength
PRU.

LOGICAL RECORD — Under NOS, a data grouping
that consists of one or more PRUs terminated
by a short PRU or zero-length PRU. Equivalent
to a system-logical-record under NOS/BE.

MACRO — Sequence of source statements that are
saved and then assembled when needed through
a macro call. Used when Sort/Merge functions
as a COMPASS subroutine for a COMPASS
program or as a relocatable program generated
for the COBOL SORT verb.

MERGE ORDER — Internal parameter governing the
number of buffers used by Sort/Merge
Version 4 in the intermediate merge phase.

NOISE RECORD — Number of characters the tape
drivers discard as being extraneous noise rather
than a valid record. Value depends on installa-
tion settings.

60497500 E

OVERFLOW BLOCK — Mass storage the system adds

to a file with direct access organization when
records cannot be accommodated in the home
block.

OWNCODE ROUTINE — Closed COMPASS subroutine
written by the user that provides the capability
to insert, substitute, modify, or delete input
and output records during Sort/Merge processing.

PARTITION — Record Manager defines a
partition as a division within a file with sequen-
tial organization. Generally, a partition contains
several records or sections. Implementation of
a partition boundary is affected by file struc-
ture and residence.

Device | RT BT | Physical Boundary

PRU |W | A short PRU of level 0
device containing one-word
deleted record pointing
back to last 1 block
boundary, followed by
a control word with
flag indicating partition
boundary.

W C A short PRU of level 0
containing a control
word with a flag indi-
cating partition

boundary.
D,FR,|C A short PRU of level 0
T,UZ followed by a zero-

length PRU of level 17.

SorL |W | Separate tape block con-
format taining as many deleted
tape records of record length
0 as required to exceed
noise record size, fol-
lowed by a deleted one-
word record pointing
back to the last I block
boundary, followed by
a control word with a
flag indicating a parti-
tion boundary.

60497500 E

Device | RT BT Physical Boundary

Any other tape format | Undefined.

w C Separate tape block
containing as many
deleted records of
record length O as re-
quired to exceed noise
record size, followed by
a control word with a
flag indicating a parti-
tion boundary .

D,FT, [CXK,E |Tapemark.
R,UZ

Zero-length PRU of
level number O.

Notice that in a file with W type records, a
short PRU of level O terminates both a section
and a partition.

POLYPHASE TAPE SORT — Sort with only one interme-

diate output tape for each merge phase ; however, the
output tape is changed for each merge phase. A poly-
phase tape sort usually can sort more records than a
balanced tape sort in the same amount of time and
with the same number of intermediate tapes.

PRU — Under NOS and NOS/BE, the amount of
information transmitted by a single physical op-
eration of a specified device. The size of a PRU
depends on the device (see table below). A PRU
which is not full of user data is called a short
PRU; a PRU that has a level terminator but no
user data is called a zero-length PRU.

Device

Size in N umber
of 60-Bit Words

Mass storage

Tape in SI format
with coded data

Tape in SI format
with binary data

Tape in I format

Tape in other fon:nat

64
128

512

512
Undefined

G-3

PRU DEVICE — Under NOS and NOS/BE, a mass

storage device or a tape in SI or I format, so
called because records on these devices are written
in PRUs.

RANDOM FILE - In the context of Record

Manager, a file with word addressable, indexed
sequential, direct access, or actual key organi-
zation in which individual records can be accessed
by the values of their keys.

In the context of the NOS or NOS/BE
operating systems, a file with the random bit set
in the file information table in which individual
records are accessed by their relative PRU
numbers.

RECORD — Record Manager defines a record

as a group of related characters. A record or a
portion thereof is the smallest collection of
information passed between Record Manager
and a user program. Eight different record
types exist, as defined by the RT field of the
file information table.

Other parts of the operating systems and their
products might have additional or different
definition of records.

RECORD TYPE — The term record type can have one

of several meanings, depending on the context.
Record Manager defines eight record types
established by an RT field in the file infor-
mation table. Tables output by the loader are
classified as record types such as text, reloca-
table, or absolute, depending on the first few
words of the tables.

SECTION — Record Manager defines a section

G-4

as a division within a file with sequential
organization, Generally, a section contains more
than one record and is a division within a parti-
tion of a file. A section terminates with a physical
representation of a section boundary.

Device

RT

BT

Physical Representation

PRU
device

SorL
format

tape

D,FR,
T,UZ

DFR,
T,UZ

DvF’R:
T,U,Z

S

Any

CKE

Any

Any other tape format

Deleted one-word

record pointing back to
last I block boundary
followed by a control
word with flags indicating
a section boundary. At
least the control word

is in a short PRU of

level 0.

Control word with flags
indicating a section
boundary. The control
word is in a short PRU of
level O.

Short PRU with level
less than 17 octal.

Undefined.

Undefined.

A separate tape block
containing as many
deleted records of

record length O as required
to exceed noise record

size followed by a deleted
one-word record pointing
back to last I block bound-
ary followed by a control
word with flags indicating
a section boundary.

A separate tape block
containing as many deleted
records of record length

0 as required to exceed
noise record size followed
by a control word with
flags indicating a section
boundary.

Undefined.

Undefined.
Undefined.

The NOS and NOS/BE operating systems equate
a section with a system-logical-record of level 0
through 16 octal.

60497500 E

SHORT PRU — A PRU that does not contain as much

user data as the PRU can hold and that is ter-
minated by a system terminator with a level
number.

Under NOS, a short PRU defines EOR.

Under NOS/BE, a short PRU defines the end
of a system-logical-record. In the BAM con-
text, a short PRU can have several inter-
pretations depending on the record and
blocking types.

SIGNED NUMERIC DATA — Integer data stored
internally in display code. Sorts according
to the magnitude and the value of the integer
the display code represents.

SORT KEY - Field of information within each
record in a sort or merge input file used to
determine the order in which records are
written to the output file.

SORT ORDER — Order for sorting keys, either
ascending or descending.

SYSTEM—LOGICAL-RECORD — Under NOS/BE,
a data grouping that consists of one or more
PRUs terminated by a short PRU or zero-
length PRU. These records can be transferred
between devices without loss of structure.

60497500 E

Under SCOPE 2, a data grouping that
consists of one or more blocks
terminated by a short block.

Equivalent to a logical record under NOS.

Equivalent to a Record Manager S type record.

TAPE SORT — Sort that has its intermediate scratch

files residing on tape rather than disk. Original
input file and/or final output file can reside
on disk or tape.

W TYPE RECORD — One of the eight record types

supported by Record Manager. Such records
appear in storage preceded by a system supplied
control word. The existence of the control
word allows files with sequential organization

to have both partition and section boundaries.

ZERO-BYTE TERMINATOR — 12 bits of zero in

the low order position of a word that marks the
end of the line to be displayed at a terminal or
printed on a line printer. The image of cards
input through the card reader or terminal also
has such a terminator.

ZERO-LENGTH PRU — A PRU that contains system

information, but no user data, Under BAM,
a zero-length PRU of level 17 is a partition
boundary. Under NOS, a zerolength PRU
defines EOF.

FUTURE SYSTEM MIGRATION GUIDELINES H

This appendix contains programming practices recommended by CDC for users of the software described in
this manual. When possible, application programs based on this software should be designed and coded in
conformance with these recommendations.

Two forms of guidelines are given. The general guidelines minimize application program dependence on the
specific characteristies of a hardware system. The feature use guidelines ensure the easiest migration of
an application program to future hardware or software systems.

GENERAL GUIDELINES
Programmers should observe the following practices to avoid hardware dependency:

® Avoid programming with hardcoded constants. Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple such as 6, 10, or 60.

® Do not manipulate data based on the binary representation of that data. Characters should be
manipulated as characters, rather than as octal display-coded values or as 6-bit binary digits.
Numbers should be manipulated as numeric data of a known type, rather than as binary patterns within
a central memory word.

e Do not identify or classify information based on the location of a specifie value within a specific set of
central memory word bits.

® Avoid using COMPASS in application programs. COMPASS and other machine-dependent languages
can complicate migration to future hardware or software systems. Migration is restricted by
continued use of COMPASS for stand-alone programs, by COMPASS subroutines embedded in programs
using higher-level languages, and by COMPASS owncode routines used with CDC standard products.
COMPASS should only be used to create part or all of an application program when the function cannot
be performed in a higher-level language or when execution efficiency is more important than any other
consideration.

FEATURE USE GUIDELINES
The recommendations in the remainder of this appendix ensure the easiest migration of an application
program for use in future hardware or software systems. These recommendations are based on known or

anticipated changes in the hardware or software system, or comply with proposed new industry standards or
proposed changes to existing industry standards.

BASIC ACCESS METHODS

The Basic Access Methods (BAM) offer several features within which choices must be made. The following
paragraphs indicate preferred usage.

File Organizations

The recommended file organization is sequential (SQ). For files with word-addressable (WA) organization,
use an accessing technique that can easily be modified to charaeter position or byte addresses.

60497500 F H-1e

Block Types

The recommended block type is C.

Record Types

The recommended record types are F for fixed length records and W for variable length records. For purely
coded files that are to be listed, Z type records can be used.

Block Size

For C type blocks, set the maximum block length (MBL) to 640 characters for mass storage files and 5120
characters for tape files.

Host Language Input/Output

Use of host language input/output statements (for example, a FORTRAN READ statement) to process BAM
files is always a safe procedure. Host language statements provide appropriate default values for record

type, block type, and block size. Do not use the CYBER Record Manager FORTRAN interface routines to
process sequential files.

SORT/MERGE 4 AND 1

Sort/Merge offers several features among which choices must be made. The following paragraphs indicate
preferred usage.

Key Alignment

Ensure that SORT keys are aligned on character or word boundaries. Do not place SORT keys in arbitrary
bit positions within words.

SORT and MERGE Statements

Always perform logically separated SORT and MERGE operations with separate control statements.

e H-2 60497500 F

INDEX

Action on FILE directive 4-7
Address of record in OWNCODE routine 3-1
Advanced Access Methods G-1
ALGOL types INTEGER and REAL 2-2
Alternate specification of key type 2-6
Ascending

Defined 2-4

KEY maero 5-6

SMKEY call 6-4, 7-4
ASCII FIT field D-2
ASCII6 collating sequence

Description 2-3

KEY directive 4-10

KEY macro 5-6

SMKEY eall 6-4, 7-4
Asterisk used in comment statement 4-4
A2 register 3-1
A3 register 3-1

Ba
SMMERGE call 6-2, 7-2
SMSORT call 6-2, 7-2
SMSORTB call 6-2, 7-2
SMSORTP call 6-2, 7-2
SORT directive 4-5
SORT macro 5-2
BALANCED
BAL on SORT directive 4-6
Description E-1
SMTAPE call 6-8, 7-7
TAPE directive 4-17
TAPE macro 5-13
Tape sort G-1
Basic Access Methods (BAM) D-6
BBH FIT field D-2
Beginning of information (BOI) G-1
BFS
Calculation D-11
Example D-14
Field of FIT D-2
Bitpos
KEY maero 5-6
SMKEY call 6-3, 7-3
Blank
Directive 4-4
SEQUENCE directive 4-13
Blocks G-1
Block types for Record Manager D-1
BT FIT field D-3
Buffer
Definition G-1
Size (BFS) calculation D-11
Bytepos
KEY macro 5-6
SMKEY call 6-3
BYTESIZE
Directive 4-7
Maero 5-4

C on FILE directive 4-8
CF on FILE control statement 4-1, D-3
FIT field D-3

60497500 F

Character
EQUATE directive 4-13
EQUATE maero 5-9
SEQUENCE directive 4-11
SEQUENCE maero 5-8
SMEQU call 6-6, 7-5
SMSEQ call 6-5, 7-5
Character coded key
Collating sequence 2-3
Position 2-1
Sort order 2-4
Character Set A-1
Compared to collating sequence 2-3
DISPLAY as key type 2-2
DISPLAY on FIELD directive 4-9
DISPLAY on SMKEY call 6-4, 7-3
INTBCD as key type 2-2
INTBCD on FIELD directive 4-9
INTBCD on KEY maero 5-6
Charpos 7-3
Checkpoint/restart
Description 1-2
OPTIONS directive 4-15
OPTIONS maero 5-11
SMOPT call 6-6, 7-6
CL FIT field D-3
CM
FIT field D-3
MERGE macro 5-3
SORT macro 5-2
CNF FIT field D-3
COBOL
COMPUTATIONAL-1 2-2
COMPUTATIONAL-2 2-2
COBOLS6 collating sequence
Description 2-3
KEY directive 4-10
KEY maero 5-6
SMKEY call 6-4
Collating sequence
Character coded key 2-3
Compare to character set 2-3
Description 2-3, G-1
EQUATE directive 4-13
EQUATE macro 5-9
KEY directive 4-10
KEY macro 5-6
SEQUENCE directive 4-11
SEQUENCE maero 5-7
SMEQU call 6-6, 7-6
SMKEY call 6-4, 7-4
SMSEQ call 6-5, 7-5
Colseq
EQUATE directive 4-13
EQUATE maero 5-9
KEY directive 4-10
KEY maero 5-6
SEQUENCE directive 4-11
SEQUENCE macro 5-8
SMKEY call 6-4, 7-4
Column requirements for directives 4-4
Comment statement for directives 4-4
Common Memory Manager 5-1

Index-1

COMPARE
OPTIONS directive 4-16
OPTIONS maecro 5-12
SMOPT call 6-7, 7-6
COMPASS
Future software migration guidelines H-1
Maecro example D-12
Owncode routine example 3-6
Sort/Merge as COMPASS subroutine 5-1
User provided subroutines 3-1
COMPILE file as directive source 4-2
Continuation statement
Directives 4-4
SEQUENCE directive 4-13
Control statement
FILE 4-1, D-1
LIBRARY 5-1
Requirements 4-1
SORTMRG 4-1
Control word G-1
CP FIT field D-3
CR on FILE directive 4-8
CU on FILE directive 4-8
CYBER Record Manager D-1, G-1
C1 FIT field D-3

Dayfile tallies and messages 1-3
Deck setup examples 4-25
Default respecify SEQUENCE directive 4-11

SEQUENCE macro 5-7

SMSEQ call 6-5, 7-5
Descending

Description 2-4

KEY macro 5-6

SMKEY call 6-4, 7-4
DFC FIT field D-3
Diagnostics for Sort/Merge B-1
Directive

BYTESIZE 4-7

COMPILE file 4-2

Definition G-1

END 4-17

EQUATE 4-13

FIELD 4-8

FILE 4-7

Format parameters 6C and 7C 4-2

INPUT file 4-2

KEY 4-10

MERGE 4-6

OPTIONS 4-15

OWNCODE 4-16

Processing description 4-1

SEQUENCE 4-11

SORT 4-5

Syntax conventions 4-4

TAPE 4-17
DISK on SORT directive 4-6
DISPLAY

Collating sequence defined 2-3, A-1

FIELD directive 4-9

KEY directive 4-11

Key type defined 2-2

SMKEY call 6-3, 7-3
Display code

Character set A-1

Description 2-2

KEY macro 5-6

SMKEY call 6-3, 7-3
Disposition

Codes on FILE directive 4-8

Exit 2 3-3

Exit4 3-4

Index-2

Dump

OPTIONS directive 4-15

OPTIONS maero 5-11

Recovery 1-2

SMOPT call 6-6, 7-6
Duplicate key processing by Exit 5 3-4
DX FIT field D-3

EFC FIT field D-3
END
Directive 4-17
Location 4-5
End of information (EOI) G-2
Entry point
OWNCODE directive 4-16
OWNCODE macro 5-12
SMOWN call 6-8, 7-9
EO FIT field D-3
EQUATE
Directive 4-13
Macro 5-9
ERL FIT field D-3
Error
Messages B-1
User error exit routine example D-12
EX FIT field D-3
Example
Directive sort and merge 4-18
Error exit routine D-12
FORTRAN Extended program 6-10.1
FORTRAN 5 program 7-10
Job deck setup 4-25
Merge run specifying BFS D-14
Owncode routine 3-6
SORTMRG control statement 4-3
Exit
Exit 1 3-
Exit 2 3-
Exit 3 3-
Exit 4 3-
Exit 5 3-
Exit 6 3-4
Error exit routine example D-12
OWNCODE directive 4-16
OWNCODE maero 5-12
Routine summary 3-5
SMOWN call 6-9, 7-8
EXTRACT
OPTIONS directive 4-16
OPTIONS macro 5-12
SMOPT call 6-6, 7-6

b GO CO B

Field
FIELD directive 4-8
KEY macro 5-5
Setting FIT field D-2
SMKEY call 6-3, 7-3
Sort and merge 2-1
File
COMPILE file 4-2
Definition G-2
Disposition codes 4-8
FILE control statement 4-1, D-1, G-1
FILE directive 4-7
FILE macro 5-2
Initialization D-10
Input disposition 3-3
INPUT file 4-2
List file parameter 0 4-2
Output disposition 3-4
Source file parameter OWN 4-3
Source input file parameter I 4-2

60497500 F

FILES macro 5-4
File Information Table
Definition G-2
Input file D-6
Location on FILES maero 5-5
Merge file D-8
Output file D-9
Setting D-2
FIT fields D-3, D-4, D-5
FL FIT field D-3
FLOAT
Description 2-2
FIELD directive 4-9
KEY macro 5-6
I SMKEY can 6-3, 7-4
Floating point
Description 2-2
Keys sorted as integer 2-6
FO FIT field D-4
FORM utility D-1
Formulas to compute merge order F-2
FORTRAN Extended
Calling Sort/Merge 6-1
Example program 6-10
Types INTEGER and REAL 2-2
FORTRAN 5
Calling Sort/Merge T7-1
Example program 7-10
Future Software migration guidelines H-1
FWB FIT field D-4

HL FIT field D-4

1 on SORTMRG control statement 4-2
Incompatibilities C-1
Indefinite floating point keys 2-2
Infinite floating point keys 2-2
Initialization of file D-10
INPUT file
Directive source 4-2
Disposition through Exit 2 3-3
FILE control statement 4-1, D-2
FILE directive 4-7
FILE macro 5-2
FIT manipulation D-6
Ownecode routines 4-3
Processing through Exit 6 3-4
Input record processing by Exit 1 3-2
Insertion

Input 3-2
Output 3-3
INTBCD

Collating sequence defined 2-3, A-1
FIELD directive 4-9
KEY directive 4-11
KEY macro 5-6
Key type defined 2-2
1 SMKEY call 6-4, 7-4
INTEGER
ALGOL type as key 2-2
FIELD directive 4-9
FORTRAN type as key 2-2
KEY maero 5-6
Key type defined 2-2
Range 2-2
I SMKEY call 6-3,7-4
Sorting integer 2-6
Intermediate
Merge phase E-1
TAPE directive 4-17
TAPE macro 5-12

60497500 F

Internal BCD
Description 2-2
KEY maero 5-6

Job deck setup 4-26

Key
Alternate specification 2-5
Collating sequence 2-3
Directive 4-10
Field description 2-1
FIELD directive description 4-8
KEY macro description 5-5
Multiple requirements 2-5
SMKEY call description 6-3, 7-3
Sort order 2-4

Keyname
FIELD directive 4-9
KEY directive 4-10

Key comparison
Definition G-2
OPTIONS directive 4-16
OPTIONS macro 5-12
SMOPT call 6-6, 7-6

Key extraction
Definition G-2
OPTIONS directive 4-16
OPTIONS maero 5-12
SMOPT call 6-6, 7-6

Key length defined 2-1

Key position defined 2-1

Key type
Alternate specification 2-5
Description 2-2
DISPLAY 2-2
FLOAT 2-2
INTBCD 2-2
INTEGER 2-2
LOGICAL 2-2

LA FIT field D-4
Label processing by Exit 6 3-4
Large Core Memory
SMSORT call 6-2, 7-2
SORT maecro 5-3
LBL FIT field D-4
LCM- see Large Core Memory
LCR FIT field D-4
Length
Description 2-1
FIELD directive 4-9
Record length 3-1
Sorting integer 2-6
Level G-2
LFN FIT field D-4
LGO under Owncode routines 4-3
LIBRARY control statement 5-1
List
COMPASS LIST option 5-1
File parameter 0 4-2
Listing on LIST file 4-2
LL FIT field D-4
Location of END 4-5
LOGICAL
FIELD directive 4-8
KEY maecro 5-6
Key type defined 2-2
SMKEY call 6-3, 7-4
Logical file name
FILE directive 4-7
FILES maero 5-5

Index-3

Sort key
Alternate specification 2-5
Collating sequence 2-3
Definition G-5
Field description 4-8
KEY macro 5-5
Length and position 2-1
Multiple requirements 2-5
Sort order 2-4
Type defined 2-2
Sort/Merge
And Basie Access Methods D-6
And Record Manager D-1
Directive conventions 4-4
Directive processing 4-1
FORTRAN Extended 6-1
FORTRAN S5 7-1
Incompatibilities C-1
Macro processing 5-1
Parameters 6C and 7C 4-2
Versionl 1-1
Version 4 1-1
Sort only
Processing defined 1-1
SORT directive 4-5
Sort order
Description 2-4, G-5
KEY directive 4-10
KEY maero 5-6
SMKEY call 6-3, 7-3
Sort phase in Sort/Merge processing E-1
Source file parameter OWN 4-3
Source input file parameter I 4-2
SPR FIT field D-5
Start parameter on FIELD directive 4-9
Statisties on dayfile 1-3
Subroutines
Sort/Merge as COMPASS 5-1
User provided in COMPASS 3-1
Syntax
Directive conventions 4-4
FILE control statement D-1
SORTMRG control statement 4-1

Tallies and messages in dayfile 1-3
TAPE

Balanced processing E-1

Directive 4-17

Macro 5-13

Polyphase processing E-6

SMSORTB, SMSORTP 6-2, 7-2

SMTAPE call 6-8, 7-7

Sort G-5

SORTB, SORTP 5-2
Terminator in directives 4-4

Index-6

TL FIT field D-5
Type
Alternate specification 2-5
FIELD directive 4-9
FILE directive 4-7
FILES maecro 5-5
KEY maero 5-6
Sort key 2-2
SMKEY call 6-3, 7-3

U on FILE directive 4-8
ULP
FIT field D-5
Under Exit 6 3-4
User provided

Collating sequence by SEQUENCE maero 5-7
Error exit routine by COMPASS macro D-12
OWNCODE routine names by SMOWN call 6-9, 7-8
Routine names by OWNCODE directive 4-16

Routine names by OWNCODE maecro 5-12

SEQUENCE directive 4-11
SMSEQ call 6-5, 7-5
Subroutines in COMPASS 3-1, 3-6

VAR on SORT directive 4-6
VERIFY
OPTIONS directive 4-15
OPTIONS maero 5-11
SMOPT call 6-7, 7-6
VF FIT field D-5
VOLDUMP
OPTIONS directive 4-15
OPTIONS maero 5-11
SMOPT call 6-6, 7-6

WSA FIT field D-5

XTEXT pseudo-op 5-1
X0 register 3-1
X4 register 3-1

3000 series in Internal BCD 2-2

6C on SORTMRG control statement 4-2

63-character set A-2
64-character set A-2

7C on SORTMRG control statement 4-2

60497500 F

CUT ALONG LINE

AA3419 REV. 4,79 PRINTED IN US.A

COMMENT SHEET

MANUAL TITLE: Sort/Merge Versions 4 and 1 Reference Manual
PUBLICATION NO.: 60497500 REVISION: F

NAME:

COMPANY:

STREET ADDRESS:

Ciry: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Contrel Data Corporation weltcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Please reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

APE TAPE
]
pll»] o FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
ET—
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. e]
e]
POSTAGE WILL BE PAID BY)
CONTROL DATA CORPORATION |
Publications and Graphics Division i —
215 Moffett Park Drive —
Sunnyvale, California 94086 T
= e]
T L
[|
]
1
|
A0 "~ rolp

CUT ALONG LINE

» %

	Front Cover
	Revision Record
	Preface
	Contents
	1-Introduction
	2-Sort Keys
	3-Owncode Routines
	4-Directive Sort/Merge Processing
	5-Macro Calls
	6-FORTRAN Extended Calls
	7-FORTRAN 5 Calls
	A-Character Sets
	B-Sort/Merge Diagnostics
	C-Incompatibilities
	D-Sort/Merge and Record Manager
	E-Tape Sort/Merge Processing Options
	F-Merge Order
	G-Glossary
	H-Future System Migration Guidelines
	Index
	Comment Sheet
	Mailer

