




























































































































































































































































































































Page B-16- 7900 DOS Manual CGC 7900 

B.3 DOS Jump Tables 

Name: DOS 

Address: $8gC008 

This is the main entry point to DOS. It requests the user's password 
and begins accepting DOS commands. 

Name: EXDOS 

Address: �$�8�~�C�0�0�C� 

Entry: 

Exit: 

A 1.L = pointer to command line. 

A1.L = pointer to next (unprocessed) character in line. 
D0.B = error code (if any), or zero if no error. 

EXDOS attempts to execute a transient. The name of the transient 
should be pointed to (on the command line) by A1. EXDOS calls GETNAM to 
parse the transient name, OPEN to locate the file on disk,. and LOAD to 
load the file into memory. If successful, execution begins at the 
transient's start address. The- TRANSIENT is responsible for returning A 1 
and 00 as required above. 

Name: OPEN 

Address: $80C010 

Entry: A0.L = pointer to UFT in use. 

Exit: D0.B = error code (if any), or zero if no error. 

OPEN looks up a file on a disk. Before calling OPEN, the UFT (User 
File Table) should contain the complete filename: primary, secondary, 
password, and drive. (The UFT is an area of RAM which defines the current 
status of a file, and includes all of the file's vital statistics. OFT's 
are discussed later.) See GE'INAM for a way to parse the filename. If 
successful, OPEN will add the following information to the UFT: START, 
LENGTH, ACCESS, STATUS, BPNTER, BLNGTH, SLOT. If unsuccessful, DD.B holds 
the error code. 



CGC, 7900 7900 DOS Manual Page B-17 

Name: CLOSE 

Address: $80C014 

Entry: A0.L = pointer to UFT in use. 

Exit: D0.B = error code (if any), or zero if no error. 

CLOSE enters a new fil e into the disk directory. The UFT' must be 
completely built before calling CLOSE. CLOSE is only used on files which 
have been created by CREATE, not on existing files which have been OPENed. 
If the file name specified in the UFT already exists, the old file by that 
name is killed automatically. 

Name: CREATE 

Address: $80C018 

Entry: A0.L = pointer to UFT to be used. 

Exit: D0.B = error code (if any), or 'zero if no error. 

CREATE prepares the largest available free space on the disk for 
writing. Before calling CREATE, the UFT should contain the complete 
filename: primary, secondary, password, and drive number. CREATE will add 
SLOT, START, LENGTH, ORIGn~, ACCESS, BPNTER and BLNGTH. These items will 
reflect th~ largest currently available disk space. 

Name: LOAD 

Address: $80C020 

Entry: A0.L = pointer to UFT in use. 

Exit: D0.B = error code (if any), or zero if no error. 

LOAD reads ar.l executable file into memory. The file must be in load 
module form, as a .SYS file. If the file is loaded successfully, RAM 
location GOADDR ($11B4) will contain the file's normal execution address. 
LOAD returns to the caller, who may then jump to the address in GOADDR if 
desired. 



Page B-18. 7900 DOS Manual CGC 7900 

Name: RWB YTE 

Address: $8~C024 

Entry: A~.L = pointer to UFT in use. 

Exit: D0.B = error code (if any), or zero if no error. 

RWBYTE is the main disk read/write routine. The UFT must contain 
proper values in BUFFP, MBYTES, DRIVE, CONTROL, BPNTER, BLNGTH, and 
STATUS. BUFFP is the memory address to/from which data will be moved. 
MBYTES is the number of bytes. If MBYTES <128, then data may be 
transferred to/from an odd memory address. If MBYTES >= 128, data must be 
transferred to/from even addresses only. 

On exit, BUFFP points past the memory location where the last 
transfer took place. MBYTES will be zero if all requested bytes were 
transferred, else it will be the number of bytes NOT transferred (due to 
error). The EOF bit of CONTROL will be set appropriately. BPNTER and 
BLNGTH will be updated according to the current state of the file. 

Name: GElNAM 

Address: $8~C064 

Entry: A0.L = pointer to UFT to use. 

Exit: 

Al.L = pOinter to input buffer (command line). 
A2.L = pointer to default filename. 

D0.B = error code (if any), or zero if no error. 
D1.B = last character processed. 
A1.L = pointer to first unprocessed character. 

GElNAM parses the input buffer and extracts a file name. All parts of 
the file name are loaded into the UFT. A string of 11 characters to be 
used as a default name (if no name was entered) must be pointed to by A2. 
If no password was entered, the current user password is copied into the 
UFT. If no drive number was entered, the current drive number is copied 
into the UFT. 

GElNAM returns D1.B with the delimiter it found after the file name. 
This may be a colon, in which case you must flag to DOS that another 
command exists on the input line. It may also be a semicolon, used to 
delimit an option field. A1 should be saved for return to DOS, or used as 
a pointer to further arguments on the command line (if your program 
expe ct s any). 



CGC 7900 7900 DOS Manual Page B-19 

Name: PRTMSG 

Address: $8~CD84 

Entry: A0.L = pointer to ASCII string (terminated by zero). 
LogDev.W ($13E4). must contain the appropriate logical unit 
number. 

PRTMSG transmits an ASCII string to a logical output device. PRTMSG 
goes through CTRLOUT to allow Escape and User code processing. BREAK and 
CTRL S/CTRL Q are active during this routine. -

Name: PRTHEX 

Address: $8~CD94 

Entry: DD.L = data (hex long ward). 
D1.L = number of hex digits to print (1 to 8). 
LogDev. W ($13E4) must contain the appropriate logical unit 
number. 

PRTHEX prints a hex number to a logical output device. The number is 
preceded by a dollar sign ($). D1 specifies the number of hex digits to 
print, and these are taken from the least significant digits of DD. (If 
D1 = 2, then the low byte of DD is printed.) The hex number is 
left-justified, and padded on the right with spaces if necessary, to fill 
out the number of characters specified by D1. This is the' format of hex 
numbers printed in the disk directory. BREAK and CTRL S/CTRL Q are active 
during this routine. 

Name: GETCLK 

Address: $8~CD98 

Exit: DO.L = packed time and date information from clock. 

GETCLK reads the Real Time Clock and encodes time and date 
information into a long word. If the clock option is not installed, the 
long word contains zero. This routine is intended for use with CLKBCD 

. (next page). 



Page B-20' 7900 DOS Manual CGC 7900 

Name: CLKBCD 

Address: $8~C0A~ 

Entry: D0.L = packed time and date in GETCLK format. 
A~. L = pointer to 19-character buffer. 

Exit: Buffer is loaded with ASCII time and date. 

CLKBCD unpacks the time and date information produced by GETCLK. The 
buffer pointed to by Ail will be loaded with month, day, year, hour, and 
minute information in ASCII form. A zero byte is appended to the ASCII 
text so that it can be printed by PRTMSG. If Df) contained zero on entry 
to CLKBCD, the buffer will be loaded with 18 spaces and a zero. 

Name: GETAR G 

Address: $8~C0A8 

Entry: 

Exit: 

Al.L = pointer to input buffer. 

Al.L = pointer to character past delimiter. 
Dl.L = hex argument returned. 
D0.B = zero if no error, non-zero if error. 

GETARG parses a hex number from an input buffer. The value of the 
argument is returned in Dl. D0 is non-zero if a non-hex character was 
detected before the delimiter was reached. If D0 is zero, no error was 
detected. Al is advanced past the argument. 

Name: DOSERR 

Address: $8ilC0BC 

Entry: A~.L = pointer to UFT of the file which caused an error. 
D0.B = error code. 

DOSERR prints a DOS error message. The drive number of the offending 
file is printed also. Error codes available in DOSERRare listed in 
Appendix E. Note that DOS automatically prints error messages if your 
transient returns to DOS with D0.B non-zero. 

Error messages always go to logical unit 0. 

/ 



CGC· 7900 7900 DOS Manual Page B-21 

B.4 Inline Calling Sequences 

Name: INLINE 

Address: $80A00C 

Entry: A 1.L = pointer to input buffer to be used (must be at least 84 

Exit: 

characters long). . 
D1.W = Logical Input Device number to read from. 
D7.B = control bits (see below). 

Zero flag SET if the user hit DELETE. Zero flag CLEAR if the 
user hit RETURN. 

INLINE is the 7900' s general-purpose input routine, used by DOS, the 
Monitor, and Thaw. It reads a line of up to 83 characters from the user, 
allowing character editing, Recall Last Line, . etc. Bits in D7 control 
INLINE as follows: 

Bit Meaning g ..§g 

5 Treat line-feeds as logical line separators (newline 
character) • 

3 Echo the input line to the screen after RETURN is pressed ("in 
expanded form, Modes and tabs executed normally). 

2 Process Escape and User codes as they are entered. 

Use "A7" character set for control-characters displayed in 
compressed form. 

Do not display the characters as they are entered (you can't 
see what you type). The line will NOT be put into the Recall 
Buffer. 

DOS uses D7 equal to $.0E, D1 equal to zero, and A 1 pointing to the 
DOS input buffer in low RAM. The end of the user's input line is 
indicated by- a RETURN character ($.0D) in the buffer. Note that INLINE 
does not echo a RETURN/LINEFEED when then user enters RETURN. 



Page B-22 7900 DOS Manual CGC 7900 

Name: INLINE1. 

Address: $8~A~18 

Entry: 

Exit: 

A1.L = pointer to input buffer to be used. 
D1.W = Logical Input Device number to read from. 
D2.L = length of input buffer. 
D7.B = control bits as described for the INLINE routine. 
A4.L = pointer to table of line termination characters. 

Zero flag CLEAR if user hit RETURN; DO.L undefined. 

Zero flag SET if the user entered a line delete character 
sequence. DD.L = index into termination table of characters 
causing delete (i.e. the instruction MOVE.L ~(A4,DiJ.L),DiJ will 
put the terminating characters into DiJ). 

INLINE1 is used to read lines of non-standard length. The length of 
the input buffer is given in D2.L. INLINE1 will read up to length-l 
characters into the buffer, with the end of the line being flagged by the 
RETURN character ($0D). INLINE1 also provides for changing the list of. 
characters which delete an input line (DELETE, BREAK and CTRL C are the 
standard line termination characters). -

Note that lines longer than 255 characters will not be stored in the 
Recall Buffer. 

As an example, suppose you are writing an editor. You want to be able 
to edit lines of up to 150 characters. Furthermore, you want the 
characters CTRL X, INS LINE and DEL LINE to cause INLINE to abort input. 
The following is a program fragment to accomplish this. 



CGC·1900 1900 DOS Manual 

* 
* define input buffer storage 

* 
LmELEN 
INPBUF 

* 

EQU 
DS.B 

150+1 
LmELEN 

* define termination table 

150 characters + CR 
Input buffer 

Page B-23 

* (you must ensure that it is on an even boundary!) 
* 
TRMTBL 

* 
* read a 
* 

trmnSed 

DC.L 
DC.L 
DC.L 
DC.L 

line 

MOVEQ.L 
MOVEQ.L 
LEA 
LEA 
MOVE.L 
JSR 
BEQ 
BRA 

CMP.L 
BEQ 
CMP.L 
BEQ 

$18 
$00013E32 
$00013C32 
0 

110,D1 
#$0E,D7 
*+(TRMTBL-(IPC+2)),A4 
*+(INPBUF-(IPC+2)),A1 
ilL DlELEN , D2 
INLINE1 
trmnSed 
retin 

114,00 

118,00 

CTRL-X 
Insert line (MODE> 2) 
Delete line (MODE < 2) 
End of table marker 

Read from Device 0 
Control bits 
Pointer to termination table 
Pointer to input buffer 
Line Length 
Read line 
If LmE DELETE char entered 
Return entered 

See if INSERT LmE entered 
If yes 
See if DELETE LmE entered 
If yes 



Page B-24 7900 DOS Manual CGC 7900 

Name: INLINE2 

Address: $8gAg1C 

Entry: Registers as set up by INITINL (routine described below) 

Exit: Same as INLINE1 

INLINE2 is a low level routine used to get characters from the 
specified device and preocess them until RETURN or a line term ina tion 
character is entered. Its use will be demonstrated in the INLINE3 example 
below. 

Name: INL INE3 

Address: $80A020 

Entry: Registers as set up by INITINL or returned by INLINE3. 
D~.B = character to process. 

Exit: If Dt'.B was not a line termination character or RETURN, then 
D2.1::91; Zero flag is SET. Registers are updated for another 
character. 

If Dt'.B was RETURN, then D2.1::1, Zero flag CLEAR. 

If D0.B was a line termination character, then D2.L=2; Zero 
flag is CLEAR; Dt'.L=index into termination table. 

Important! Between calls to INLINE3, the only registers that may be 
altered are D~, A1 and AS. Changing any other registers will most likely 
crash the system. Also, INLINE3 will destroy Dt', A1 and AS. 

INLINE3 is the workhorse of the INLINE system. It accepts characters 
one at a time and processes them, performing all editing functions. 

As an example of how these routines tie together, see the program 
fragment below. It shows how the DOS editor (should) display lines for 
editing. Assume that AS points to the line to be edited and that it is 
termina ted by a RETURN. The oode on the following page will display the 
line, then let the user modify it: 



CGC·7900 7900 DOS Manual Page B-25 

* * save pointer to char as INL INE3 eats things 

* 
MOVE.L A5,-(SP) 

• 
• set up inline for a new line: 

* 

* 

MOVEQ.L 
MOVEQ.L 
LEA 
LEA 
MOVE.L 
JSR 

IfJ,D1 
l$fJE,D7 
·+(TRMTBL-(IPC+2)),A4 
·+(INPBUF-(IPC+2)),A1 
IL INELEN' , D2 
INITINL 

Read from device ~ 
Control bits 
Pointer to termination table 
Pointer to input buffer 
Length of input buffer 
Initialize the INLINE system 

* get characters from EDIT buffer and feed to INLINE 
• 
X1 

• 

MJVE.L 
MOVE.B 
CMP.B 
BEQ.S 

. MOVE. L 
JSR 
BRA.S 

(SP)+,A5 
(AS)+,DfJ 
ICR ,DfJ 
X2 
AS ,-( SP) 
INLINE3 
X1 

* let user edit the line 
• 
X2 JSR INLINE2 

* 

Get pointer to char 
Get the character 
End of the line? 
IT it is •••• 
Remember: INLINE3 munches reg's 
Feed char to INLINE3 

• INLINE2 returns EQ/NE. Take appropriate action •••• 
• 



Page B-26. 7900 DOS Manual 

Name: INITINL 

Address: $80A024 

Entry: 

Exit: 

A1.L = pointer to input buffer to be used. 
D1.W = Logical Input Device number to read from. 
D2.L = length of input buffer. 
D7.B = control bits. 
A4.L = pointer to table of line termination characters. 

Registers as required by INLINE3. 

cae 7900 

INITINL is used to initialize all information as required by the 
INLINE system. 

Name: INLHOME 

Address: $8~A~28 

Entry: Registers as set up by INITINL. 

Exit: -Cursor moved to home position of line. 

After a line has been output (see INLINE3 example), INLHOME could be 
used to put the cursor on the first character of the line before allowing 
the user to edit the line. The Chromatics editors supporting INLINE put 
the cursor at the end, but it is only a matter of taste. 



CGC·7900 7900 DOS Manual Page C-1 

Appendix C -- Me.ory Allocation 

C.1 CMOS Memory Allocation 

4096 bytes of CMOS or static memory are installed on the 7900 CPU 
card. This memory is used to store Function Key definitions, information 
for buffer sizes, and other important system pOinters. The CMOS memory is 
optional, and comes with a battery-backed supply so that user-defined 
parameters will be maintained while the system is turned off. This 
concept is described in detail in the 7900 User t s Manual description of 
the ftThaw ft command. If your system does not contain the CMOS option, you 
will have static RAM installed at these addresses, but the data in this 
RAM will still correspond to the following table. 

This section describes the allocation of CMOS memory in the current 
version of firmware, TERMEM 1.3. Alloca tion may change slightly or 
greatly in future releases. All CMOS is reserved for system use, and any 
user programs which occupy CMOS do so at the risk of interfering with 
future system programs. 

The CMOS entries which determine buffer sizes should not be al tered 
except through the Thaw command. If these entries do not agree with 
actual RAM allocation at all times, the system may crash. 

Addresses $E40000 through $E40100 are also used by hardware registers 
in the 7900 system. Accessing these addresses affects CMOS and the 
hardware as well. 

Where appropriate in the following tables, each entry is marked with 
ft.Bft, ft.Wft, or ft.Lft, to indicate the data size of the entry. 

Address 

$E40000 .W 
$E40002 .W 
$E40004 .W 
$E40006 .B 
$E40007 .B 
$E40008-$E40009 
$E4000A-$E4000F 
$E40010 .W 
$E40012 • W 
$E40014 • W 
$E40016 • W 
$E40018 • W 
$E4001A .W 
$E4001C-$E4001F 
$E40020-$E4003E 

Use 

Bitmap roll counter 
X pan register 
Y pan register 
X zoom register 
Y zoom register 
(Reserved) 
Raster processor registers 
Blink select register 
Plane select register 
Plane video switch register 
Color status foreground register 
Color status background register 
Overlay roll counter 
(Reserved) 
Raster processor registers 



Page C-2 

Address 

$E40040-$E4010B 
$E4010C .L 
$E40110-$E40113 

$E40114 .w 
$E40116 .w 
$E40118 .B 
$E40119 
$E4011A .w 
$E'4011C .w 
$E4011E .w 
$E40120 .w 
$E40122 .w 
$E40124 .w 
$E40126 .w 
$E40128 .w 
$E4012A .L 

$E4012E .L 
$E40132 .L 
$E40136 -$E40141 
$E40142 .L 
$E40146 .L 
$E4014A .L 

$E4014E-$E4015D 
$E4015E .L 
$E40162 .L 
$E40166-$E40169 
$E4016A .L 
$E4016E .L 
$E4017 2-$E4017 9 
$E4017A-$E4017B 
$E4017C-$E401C7 
$E401C8-$E40213 
$E40 214-$E40 21 D 
$E4021E .L 

$E40222 .B 
$E40 223 -$E40 224 
$E40225 .B 
$E40 226 -$E40 229 
$E4022A .B 
$E4022B-$E4022C 
$E4022D .B 
$E4022E-$E40231 

$E40232-$E407FF 
$E40800-$E408FF 
$E40 900-$E40BFF 
$E40C00-$E40CFF 
$E40D00-$E40FFF 

7900 DOS Manual 

Use 

(Reserved) 
CMOS verifier long word 
(Reserved) 

Size of DOS Transient Program Area 
Size of DOS Buffer 
Number of active windows 
(Reserved) 
Size of keyboard buffer 
Size of Function Key stack (nesting) 
Size of RS-232 input buffer 
Size of RS-232 output buffer 
Size of RS-449 input buffer 
Size of RS-449 output buffer 
Size of Escape code argument stack 
Size of system stack 
Highest RAM address used by system 

Pointer to INLmE recall buffer 
Recall buffer size 
Pointers for INLINE 
Pointer to start of Function Key buffer 
Pointer to end of Function Key buffer 
Pointer to Case Table 

(Reserved) 

CGC 7900 

Address of default program (executed by Boot) 
Address to search for RAM modules 
TERMEM status flags 
Address of Bitmap plot cursor descriptor 
Address of Bitmap alpha cursor descriptor 
(Reserved) 
INLINE Recall flags 
Defaul t Boot string 
Default Reset string 
Host EOL sequence 
Address of vector-drawn character font 

R3-232 mode command 
(Reserved) 
R3-232 handshake flags 
(Reserved) 
R3-449 mode command 
(Reserved) 
R3-449 handshake flags 
(Reserved) 

(Reserved) 
Case Table 
Function Key buffer 
INLINE Recall buffer 
(Reserved) 



caC·7900 7900 DOS Manual Page C-3 

C.2 Low RAM Allocation 

The area of RAM between addresses $40k" and $FFF is used by the 7900 
system for pointers and miscellaneous constants. The area between $1k"k"0 
and $1C3B is used for DOS tables and pointers. As mentioned earlier, 
areas marked "Reserved" should be left alone, for compatibility with 
future releases of software. 

Address 

$400-$463 
$464-$495 
$496-$4E5 
$4E6-$5k"9 
$50A-$69B 
$69C-$BFF 
$C.00 .L 
$C.04 .L 
$C.08 .L 
$C.0C • W 
$C.0E .L 
$C12 • W 
$C14 • w 
$C16 • w 
$C18-$C1B 
$C1C .L 
$C20 .L 
$C24 .L 
$C28 .L 
$C2C .L 
$C3.0 .L 
$C34 .L 
$C38 .L 
$C3C • L 
$C40 .L 
$C44 .L 
$C48 .L 
$C4C .L 
$C50 .L 
$C54 .L 
$C58-$C5D 
$C5E-$C61 
$C62 .w 
$C64 .w 
$C66 • w 
$C68-$C7F 
$C80 .L 
$CB4 .L 
$CB8-$CBD 
$CBE • L 

Use 

Monitor input line 
Monitor flags and breakpoint storage 
Monitor pseudo-register storage 
Monitor register display formats 
Morti tor stack 
(Reserved) 
Pointer to base of TERMEM dispatch tables 
Pointer to Keyboard buffer start 
Keyboard input pointer 
Keyboard buffer character count 
POinter to Keyboard buffer end 
Joystick X center offset 
Joystick Y center offset 
Joystick Z center offset 
Light pen argument list 
Function Key stack pointer 
Pointer to Function Key buffer 
Pointer to Function Key stack 
Pointer to RS-232 input buffer 
POinter to RS-232 output buffer 
Pointer to RS-449 input buffer 
Pointer to RS-449 output buffer 
Pointer to Esc argument stack 
POinter to DOS buffer 
Pointer to window table base 
Pointer to top (start) of stack 
POinter to bottom (end) of stack 
Pointer to start of Create Buffer 
POinter to end of Create Buffer space 
Pointer to DOS transient area 
TERMEM storage for keyboard light data 
TERMEM storage for HVS calculations 
Active image planes in system 
Copy of interrupt mask register 
Copy of baud rate generator data 
Escape code processor storage area 
Pointer to current character in Create Buffer 
Pointer to end of Create Buffer data (EOF+1) 
Joystick data storage area 
Warmstart vector (for USER W) 



Page C-4 

Address 

$C92-$C99 
$C9A-$CA 1 
$CA2-$CA9 
$CAA-$CB1 
$CB2-$FFF 

1900 DOS Manual 

Use 

RS232 input ring buffer pointers 
RS232 output ring buffer pointers 
RS449 input ring buffer pointers 
RS449 output ring buffer pointers 
(Reserved) 

DOS memory allocation begins here •••• 

$1000-$1009 

$100A-$103F 

$1040-$113F 
$1140-$1143 
$1144-$118B 
$118C-$11B3 

$11B4 .L 

DOS command block for disk controller 

Default DOS UFT (details below) 

Directory buffer space 
Command block variable space 
DOS input line buffer· 
DOS variables and pointers 

GOADDR: Start address for executable files 

$11B8-$11C3 DOS pOinters 

$11C4 .B 
. $11C5 .B 
$11C6 • w 

$11C8-$11CD 

$11CE • W 
$11DD .W 

$11D2-$11E1 

REVN: Revision number of file (not used) 
DRIVEN: Drive from which last transient came 
USERN: Password of· current user (** = public) 

DOS variables 

FLSTAT: File status used by CLOSE 
SLASH0: Slash/0 mode flag 

Disk controller variables 

$11E2-$1211 TUFT1: Transient UFT #1 I 

$1218-$1243 DOS variables 

$1244-$1279 TUFT2: Transient UFT #2 

$127A-$1389 DOS variables 

$138A-$13FF Reserved for DOS expansion 

CGC 1900 



caC·7900 7900 DOS Manual Page C-5 

C.3 The User File Table 

DOS maintains a User File Table (UFT) in memory for each file 
currently being accessed. The UFT contains the file name, password, 
directory location, size, and various pointers which uniquely identify 
that file. Whenever DOS reads from or writes to a file, the UFT is 
updated to show the current file status. The UFT must remain intact as 
long as a file is in use, or until a new file is closed. 

Each UFT occupies 54 bytes; DOS has three UFTs allocated in low RAM. 
Your program may use these areas to build UFTs, or you may use other RAM. 

Each item in the UFT is defined below. If A~ points to the start of a 
UFT, the item of interest may be accessed with the "Indirect with 
Displacement" addressing mode; e.g. OFFSET(A~). 

Offset in UFT 

$00 .W 

$02 .L 

$RlA .W 

$RlC .B 

$0D .B 

Description 

s..OT: Location of a file in the disk 
directory. 

BUFFP: Memory address to/from which the 
data transfer will take place on 
the next read or write. 

MBYTES: Number of bytes to transfer on 
next read or write. 

CONTRL: Defines the next operation to 
be performed. In this word, 

Bit Meaning 
9 1 = End of file 
8 1 = Read, ~=Write 
7 1 = Enable retry 
6 1 = Enable ECC 

DRIVE: Logical unit number of disk 
drive: 0 and 1 are floppy 
disks, 2 is the hard disk. 

ERROR: Error code of last operation. 



Page C-6 

Offset in UFT -----
$0E .L 

$12 .L 

$16-$1D 

$1E-$20 

$21 

$22-$23 

$24 .L 

$28 .L 

$2C .L 

$30 .L 

$34 .w 

7900 DOS Manual 

Description 

BPNTER: Pointer to current byte in 
file. 

BLNGTH: Current length of file (goes to 
zero as file is read in). 

PNAME: 8-character primary fil ename. 

SNAME: 3-character secondary filename. 

(not used) 

PSWRD: 2-character password. Public 
files are given password " •• ". 

START: Starting address of -file on 
disk (bytes). 

LENGTH: Length of file on disk (bytes). 

ORIGIN: File origin time/date. 

ACCESS: Time/date of last access. 

STATUS: File attributes as follows ••• 

Bit Meaning if SET 
15 Blind rue-
a Active slot 
7 Write-protected 
6 Delete-protected 
4 Free (deleted) 
3 Execute-onlY 
1 Odd length 
o Killed 

CGC 7900 



CGC 7900 7900 DOS Manual Page D-1 

Appendix D - Custc:. Cursors and Character Sets 

D.1 Custom Character Sets 

The 7900 allows user-defined character sets to be used in the Bitmap 
in place of the two character sets supplied with the system. An entry in 
each Window Table (Charadr) pOints to the base of the character set for 
that window, and the size of the font (X by Y pixels) may also be defined 
for each window. The character font dimensions may be up to 16 in the X 
direction, and 256 in the Y direction. 

Since the character set address for a window is stored in the Window 
Table, it will defaul t back to the normal character set whenever Boot or 
Soft Boot is executed. 

The character set for the Overlay is stored in high-speed PROM, and 
is not alterable through software. 

The following. program is a module, designed to be linked into the 
7900 system software. It will install a custom character set in any 
window which receives a MODE i command. This program is an example DNLY. 
It does not include a complete character set definition. The data set 
which should accompany this program would be too long to fit into the 
standard 7900 memory, unless ·you do one of the following: (1) change the 
ORG address, which requires changing address RAMMDLE with the Thaw 
command, (2) change the height of the character set to reduce the data 
required, or (3) install additional memory above address $20000. 



Page D-2 7900 DOS Manual 

• 
• Sample module to install a new character set. 
• The set is installed in a window by the command: 
• 
• MODE i • 
• To return to the standard set, use SOFT BOOT. 
• • 
• 
• cac 79~~ equates ••• 
• 
Mode EQU 

CharXZ EQU 
CharYZ EQU 
CharDX EQU 
CharDY EQU 
Charadr EQU 

• 
• 
• 

$78 
$7A 
$7C 
$7E 
$9C 

MODE is Control-A 

Offset in window table for X raster size 
Y raster size 
X intercharcter spacing (step) 
Y intercharcter spacing 
Address of font for this window 

ORG.L $1F.000 This is the address called "MDLE" 
as specified by the Thaw command. • 

• 
• • 
• • • 
• • 

• 

DC.L 

DC.W 

DC.B 

DC.W 
DC.W 

'MDLE' 

CharEnd-IPC 

Mode, 'i' 

$~~0~ 
$00~~ 

This header must be present if 
the module is located in RAM. 

This is the length of the 
module (including the 
character set at end) 

We are executed when the user 
types this sequence. 

We require no arguments. 

• Execution begins here after MODE i is entered. 
• TERMEM preloads A0 with the base of the window table. 
• 

MOVE.W 16,CharXZ(A0) Load character size (X) 
MOVE.W 18,CharYZ(A~) (Y) 
MOVE.W 16,CharDX(A0) Load step size (X) 
MOVE.W 18,CharDY(A0) (Y) 
MOVE~L IBASE,Charadr(A0) Load address of font 
RTS That's all! 

CGC 7900 



CGC·7900 7900 DOS Manual 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• What follows is the character font definition. 
• 
• It is arranged as 128 regular characters, followed by 128 
• A7 characters. All 256 characters should be defined. 
• * Assume the font is set in a field X by Y. (Default is 
• X = 6 and Y = 8.) Then each character requires 8 words 
* of data, one for each Y scan; and 6 bits of each word 
* are used. The active 6 bits are left-justified in the 
* 16-bit word. 
* 
* * . Example: the character "A" 
* 
• bit I • 
• 
* • 
* 
* 
* • • 
• 
• 
* • • 

Word I 
(one per Y scan) 

1 

111111 
54321~987654321~ 

.XXX' •••••••••••• 
2 X ••• X ••••••••••• 
3 
4 
5 
6 
7 
8 

x ... x .......... . 
XXXXX ••••••••••• 
x ... x ... e •••••••• 

x ... x .......... . 
x ... x .......... . ................ 

• The X by Y field must include any necessary 
• spacing between characters or between lines. 
• • 
• Memory requirements: 

Hex value 

$7~~~ 
$880~ 
$8800 
$F80~ 
$8800 
$880~ 
$880~ 
$0000 

* • This module will require 256 * Y words, plus 23 words of 
overhead for the preceding code. This much memory must 

Page D-3 

• 
• • 
* • 

exist between address "RAMMDLE" and the physical end of memory. 
If necessary, use Thaw to alter the address of "RAMMDLE" (be 
sure to put it where nothing will stomp on it!) 

• 



Page D-4 

* 
* 

7900 DOS Manual 

* This Scale Factor will left-justifY a 6-bit number in a 
* 16-bit field, by shifting 1~ bits. All of the numbers in 
* this database are 6-bit for convenience, and S justifies 
* them properly. 

* 
S 

* 
* 
BASE 

* 

EQU 1024 

EQU IPC This is where it all begins. 

* This is the regular character set. 

* 

* 
* 
* 

* 
* 
* 
* 

DC.W 
DC.W 

DC. W 
DC. W 

$24*S,$34*S,$3C*S,$2C*S,$24*S,$04*S,$04*S,$07*S 
$0C*S,$10*S,$08*S,$0S*S,$1D*S,$07*S,$0S*S,$0S*S 

etc. for regular se t. 

$01*S,$0E*S,$10*S,$00*S,$00*S,$00*S,$00*S,$00*S 
$0A*S,$1S*S,$0A*S,$1S*S,$0A*S,$1S*S,$0A*S,$00*S 

* Alternate (A7) character set begins here. 

* 

* 
* 
* 

* 
* 

DC.W 
DC.W 

DC. W 
DC. W 

$1F*S,$1S*S,$15*S,$1F*S,$1S*S,$1S*S,$1F*S,$00*S 
$08*S,$15*S,$02*S,$08*S,$1S*S,$02*S,$00*S,$00*S 

etc. for A7 set. 

$01*S,$02*S,$02*S,$04*S,$08*S,$10*S,$10*S,$20*S 
$00*S,$00*S,$00*S,$00*S,$00*S,$00*S,$00*S,$3F*S 

CharEnd EQU IPC 
-1 ,-1 

This is the end of our module. 
No more modules follow this one. DC.L 

END 
* 
* 

CGC 7900 

DL 

DL 



CGC·7900 7900 DOS Manual Page D-5 

D.2 Installing a New Cursor 

The 7900 Bitmap cursors, Plot and Alpha, are each described by a set 
of data. This set is pointed to by pOinters in the CMOS area, one pointer 
for the Plot cursor and one for the Alpha cursor. 

Plotcur 
Al ph cur 

EQU $E4~16A 
EQU $E4~16E 

The cursor descript or data is a list of up to 32 long war ds • Each 
long war d describes the displacement of one pixel of the cursor, with 
respect to the center pixel of the cursor. The list is terminated with a 
zero word. Since this zero word is part of the descriptor, the center 
pixel of the cursor is always ON. 

The displacements are given as addresses in Bitmap memory. Each pixel 
in Bitmap memory corresponds to a word (two bytes) of memory, so an X 
displacement of one pixel is produced by an address displacement of two. 
(Positive X displacement is to the right.) Similarly, a Y displacement of 
one pixel corresponds to an address change of 2~48 bytes (1024 pixels per 
Y line of the screen, times two bytes per pixel. A positive Y 
displacement is in the down direction. 

A sample cursor might look like thiS, where X's correspond to pixels 
included in the cursor: 

X 
XXX 

X 

The data list for this cursor would be: 

+2 (the pixel to the right of center) 
-2 (the pixel to the left of center) 

+2~48 (the pixel below center) 
-2~48 (the pixel above center) 

0 (the center pixel, and end of the list) 

To install a new cursor, first define it in the form above. Store 
this data in memory. Then, alter -the pointer in CMOS (either Plotcur or 
Al ph cur ) so that it points to your data. Note that if you store your 
cursor in RAM other than CMOS, the description will vanish when system 
power is turned off, but the CMOS pointer will remain! This will cause you 
to have NO cursor at all. To reload CMOS defaul ts, use CTRL SHIFT M1 M2 
!!§!!. -- --- - -



Page D-6 7900 DOS Manual 

***************************************************************** 
* * Sample program PUTCURS 

* 
* Installs a new cursor as the Bitmap plot cursor. 

* * This program stores its cursor descriptor in upper CMOS 
* memory, unused by current 79g~ software. This may not be 
* compatible with future 79g~ releases. 
* 
* 
* 

ORG.L $1C3C We run in DOS area 

Point to some unused CMOS PUTCURS MOVE.L IHiCMOS,A2 
MOVE.L ICursor,A3 Point to our new cursor descriptor 

PUTloop MOVE.L 
TST.L 
BNE.S 

(A3)+,(A2)+ Copy a long word into CMOS 
-4(A2) Was it zero? 
PUTloop No, continue copying 

HiCMOS 
Plotcur 

Cursor 

MOVE.L IHiCMOS,Plotcur Set up pointer to new cursor 

CLR.L D0 
CLR.L D1 
RTS 

EQU $E4~E~0 
EQU $E4016A 

DC.L -4*1024 
DC.L -4*1024+2 
DC.L -4*1024-2 
DC.L -2*1024-4 
DC.L -2*1024+4 
DC.L -4 
DC.L ·+4 
DC.L +6 
DC.L +8 
.DC.L -2*1024+8 
DC.L -2*1024+1~ 
DC.L -2*1024+12 
DC.L -2*1024+14 
DC.L -4*1024+1~ 
DC.L -4*1024+12 
DC.L -4*1024+14 
DC.L -4*1024+16 
DC.L 4*1024 

Flag no error occurred 
(We don't check for colon on line) 
Return to DOS 

CMOS area (unused in TERMEM 1.3) 
Plot cursor pOinter 

New cursor descriptor 

cac 7900 



CGC·1900 1900 DOS Manual Page D-1 

DC.L 4*HJ24+2 
DC.L 4*HJ24-2 
DC.L 2*1024-4 
DC.L 2*1024+4 
DC.L 2*1024+8 
DC.L 2*1024+10 
DC.L 2*1024+12 
DC.L 2*1024+14 
DC.L 4*1024+10 
DC.L 4*1024+12 
DC.L 4*1024+14 
DC.L 4*1024+16 
DC.L 0 (end of list) 

END PUTCURS 



CGC ·1900 1900 DOS Manual Page E-1 

Appendix E - DOS Error Messages 

The following error s may be reported by DOS. To for ce DOS to print an 
error message, load the error number into Dtl.B before returning to DOS. 

Error 

01 

tl2 

03 

04 

05 

.06 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1A 

2~ 

21 

22 

(hex) Message 

.No index signal detected 

No seek complete 

Write fault 

Drive not ready 

Drive not selected 

No track .00.0 detected 

ID read error 

Uncorrectable data error found during a read 

ID address mark not found 

Data address mark not found 

Block not found 

Seek error 

No host acknowledgement 

Diskette write protected 

Data field error found and corrected 

Bad track found 

Format error 

Invalid disk controller command 

Illegal logical block address 

Illegal function for the specified drive 



Page E-2 

3RJ 

40 

41 

42 

43 

44 

50 

51 

52 

53 

54 

55 

60 

61 

62 

63 

70 

80 

90 

A0 

A1 

7900 DOS Manual 

Diagnostic RAM error 

Disk controller not ready 

Controller time out error 

Unable to determine controller error 

Undefined controller state 

Controller protocol sequence error 

Undefined load error state 

Record count error 

Checksum error 

Premature EOF during ;load 

DOS buffer too small 

Transient program size too small 

End of fil e reached 

File is write protected 

Attempted to read through density barrier 

Attempted to transfer data on odd address 

Unable to find requested file 

Unable to create new file space 

Unable to close requested fil e 

Empty slot found 

Unable to update the directory 

cac 7900 



CGC· 7900 

B1 

B2 

B3 

I B4 

B5 

B6 

B7 

C.D 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

7900 DOS Manual 

No run address 

Unable to find disk name 

Argument error 

Attempt to access a non-existant drive 

Unable to initialize drive 1 

Unable to in1 tialize drive 2 

Syntax error! Missing argument 

Premature format termination 

Error mapping routine not implemented 

Unable to fetch this file 

File is delete protected 

Fil e type error 

File is execute only 

File is to big to append 

Insufficient stack size 

/0 mode is not allowed in argument filenames 

Page E-3 



Index 

DOS (Jump Table Entry) B-16 
DOS Command Line 2-3 
DOS Jump Tabl as B-16 

- A - DOS Transients 3-2 
DOSDR B-20 

ABORT 4-22 DRAW 3-16 
Absolute Long 5-23 DRIVE . 4-20 
Absolute Short 5-23 DS (DetillS Storage) 5-15 ' 
Address Register Indirect 5-19 DSKTST 3-17 
Address Register Indirect with Displacement 5-21 DUPE 3-19 
Address Register Indirect with Index 5-22 
Address Register Indirect with Postincrement 5-19 
Address Register Indirect with Predecrement 5-20 - E -
Addressing Modes 5-18 
APPEND 3-2 Ed! tor Commands 4-5 
ARC B-13 END 5-16 
Argument Parsing A-9 Entering DOS 2-1 
Assembler Errors 5-Z'T EQU (Equate) 5-11 

ESCPROC B-4 
Example ESCAPE code Module A-17 

- B - Example Mode Module A-12 
Example PLOT Module A-15 

BOOT B-5 EIDOS B-16 
BUFF 3-3 ElIT 4-21 
BYECT (Bold Vectors) B-13 EXPLODE 3-21 

- C - - F -
CHAR IN B-2 FETCH 3-22 
CHAR OUT B-1 File Name Patterns 2-10 
CIRCLE B-13 FIND 4-14 
CLXBCD B-20 FORMAT 3-23 
CLOSE (Editor Command) 4-18 FVEeT B-12 
CLOSE (Jump Table Entry) B-17 
CMOS Memory Allocation C-1 
Comments 5-9 - G -
COMPRESS 3-4 
COpy 3-6 GET 4-7 
CREATE B-17 GETARG B-20 
CTRLIN B-3 GETCLK B-19 
CTRLOUT B-3 GE'INAM B-18 
CURVE B-13 
Custom Character Sets D-1 
Custom Cursors D-5 - H-

Handling noppy Disks 1:"3 
- D -

DC (DetillS Constant) 5-13 - I -
DEBUG 3-10 
DELETE (Editor Command) 4-13 Immediate 5-26 
DELETE (Transient) 3-11 IMPLODE 3-26 
DIR 3-12 Initializing a New Diskette 3-25 
Disk Drive Numbers 2-7 INITINL B-26 
Disk Fil e Names 2-5 INLHOME B-26 



Index 

INL INE (Jump Tabl e Entry) B-21 - P -
INL INE (Usage) 4-3 
Inline Calling Sequences B-21 PAGE 4-19 
INLINE1 B-22 PAGE 5-16 
INLINE2 B-24 PC with Displacement 5-24 
INLINE3 B-24 PC wi th Index 5-25 
Input/Output Modules A-7 PICTURE 3-31 
INSERT 4-10 Plot Modul es A-13 
Instructions 5-7 Plotting Functions B-10 
Introduction to DOS 1-2 PLOTII B-12 
Introduction to the Editor 4-1 PLRRC'l' B-9 

POLIG B-14 
PRINT 4-9 - [ - PRTDEC B-8 
PRTHEX B-19 

ICeystut'f B-5 PRTMSG B-19 
[ILL 3-27 Pseudo-Instructions 5-10 

PUT 4-17 

- L -
- R -

Labels 5-6 
Linking Process A-lJ READJOY B-9 
LIST 4-8 REFRESH 3-33 
LIST 5-17 Register Direot Mode 5-18 
LUll' 5-17 Register Setup for Modules A-18 
LOAD B-17 Running the Assembler 5-2 
Low RAM Allocation C-3 RWBYTE B-18 

- M- - S -

~DIFY 4-12 Scankey B-6 
Module Construction A-5 Secondary File Names 2-9 
Modules A-2 SET 5-12 

Boot A-6 SIND" B-8 
Escape A-16 Sour oe Fil e Format 5-5 
Mode A-11 STATIN B-4 
User A-16 STORE 3-34 

MOVEHEAD 3-29 SUBSTITUTE 4-15 
SUMS 3-38 
System Requirements 1-1 

-N-

NOISE B-6 - T -
NOLST 5-17 

TERMEM B-5 
TERMEM Jump Tabl es B-1 

-0- Transients, defined 3-1 

OPEN (Editor Command) 4-6 
OPEN (Jump Table Entry) B-16 - U -
Operands 5-8 
ORG (Origin) 5-10 User File Table C-5 



Index 

- v -
VERSION 3-39 

- W -

Window Sta tus and ESCAPE Code Status A-22 
Window Tables A-19 
Writing Transients A-23 

- I -

IREF 3-40 


