mitra 15

compagnie internationale
pour I'informatique

Reference manual

Contents

General

Introduction

MITRA 15 main features

Models MITRA 15/20, MITRA 15/30
MITRA 15 operating system
Applications

GENERAL LAYOUT

Core memory

Processing units

Micro-programmed ROM (or micro-processor)
Registers

Logical and arithmetical operator

Indicators

Communication with the environment
Interrupts, suspensions, traps

Mode and protection

STRUCTURE OF A PROGRAM

Definition of modularity

Definition of a section

Section and segment bases

Consequences of modularity on MITRA 15 programs
Constituents of a program

Section calls

System's management concepts

ASSEMBLY LANGUAGE
Source line format

Basic character set
Symbols

Constants

Expressions

ADDRESSING MODES
Symbolic representation of the instruction
Addressing mode representation

PSEUDO-INSTRUCTIONS
Source text segmentation
Assembly pseudo-instructions
Page pseudo-instruction

@compagnie internationale pour I'informatique 1973

| — o — =
1

UL | - 11
—_ 0 W — — —

NDNDNDNMNDNMNMDNDNDDNDNDNDNDN
1
VOO A BN —— —

WWWwwowaowaw
suLLLL LY

w
]
—

4057 U/EN
203 pages

4057

Contents

INSTRUCTIONS
General

Sy mbolic notations
Load and store instructions
LBL

SBL

LBR

SBR

LBX

LDA

STA

LDE

STE

LDX

STX

LDR

STR

LEA

SPA

STS

DLD

DST

Fixed-point arithmetic
ADD

ADM

SUB

MUL

DIV

Logical operations
IOR
EOR
AND
CMP

Register incrementation and decrementation
ICX
DCX
ICL
DCL

Shift operations
SHR
SLLS
SRCS
SAD
SLCD
SLCS
SAS
SRLS
SRCD
SHC
SLLD
SRLD
PTY
NLZ

N NN N NN
1 U
OO VOO N — —

N NN NN
[I I R B |
— — — — —
A WN

7-15
7-16
7-17
7-18
7-19
7-20
7-21

7-22
7-23
7-24
7-25

7-25
7-26
7-27
7-28
7-29
7-30

7-31
7-31
7-32
7-33
7-34

7-35
7-35
7-36
7-37
7-37

7-38
7-40
7-41

7-42
7-43
7-44
7-45
7-46
7-47
7-48
7-49
7-51

7-52
7-53
7-54

4057

Contents

Inter-register operations
SRG
XAE
XAX
XEX
XAA
CCE
ACE
CCA
AEE
CNX
AlIE
AAE
LNE
CNA
CMX

Floating-point arithmetic
FAD
FSU
FMU
FDV

Byte string processing
MVS

CPS

TRS

Branch instructions
BRU
BRX
BCT
BOT
BCF
BOF
BAZ
BAN
BE
BZ
BL
BLZ
BNE
BNZ
BGE
BPZ

System communication instructions

CLS
RTS
Ccsv
RSV
DIT
DITR

Control instructions
TES

STM

CLM

7-55
7-56
7-57
7-57
7-58
7-58
7-59
7-59
7-60
7-60
7-61
7-61
7-62
7-62
7-63
7-63

7-64
7-66
7-67
7-68
7-69

7-70
7-70
7-71
7-72

7-73
7-74
7-75
7-76
7-77
7-78
7-79
7-80
7-81

7-82
7-83
7-84
7-85
7-86
7-87
7-88
7-89

7-90
7-90
7-93
7-94
7-96
7-97
7-100

7-101
7-102
7-103
7-103

4057

Contents

RD
WD
LDP

INPUT/OUTPUT CONTROL SYSTEM
Input/output system organization
Input/output interface

Transfers ‘,(
Operational labels

Handler utilization

LIST OF PSEUDO-INSTRUCTIONS
LIST OF INSTRUCTIONS
ADDRESSING MODES

ASSEMBLER OPERATION

The informations contained in this manual can be modified without warning.

Mitra 15

1. General

I-1. INTRODUCTION

MITRA 15 is a real time computer relying on a modular design and advanced micro-programmed structure
for an efficient approach to numerous application fields, such as process control, scientific computation,
remote-processing or transaction management,

The system includes up to four processing units specialized through read-only micro-programmed memories
(ROM) and arranged around a planar structure core memory. According to their micro-programs, these units
become CPU's, IOP's or special-purpose units. Each processing unit is provided with a "MINIBUS" for
connecting a comprehensive range of peripheral units.

MITRA 15 is available in two fully compatible models which only differ by their processing capacity and
the range of connectable peripheral units. Thus, each user can select the model and configuration best
suited to its specific requirements,

-2, MITRA 15 MAIN FEATURES

1-2.1. Core memory

MITRA 15's memory is a lithium-ferrite core random access memory organized in 16-bit words with 2 addi-
tional bits, 1 for parity and 1 for protection. The very short 800 nanoseconds word read/write cycle provi-
des an outstanding transfer rate of 2.5 Mbytes per second (millions of bytes/second).

Memory contents are adressable on a byte basis and alterable on a byte, half-word or word basis.

The memory is made up of 4 096-word blocks (i.e. 8 192 bytes) up to a maximum of eight. lts capacity can
thus be extended from 4 096 words to 32 768 words per 4 096-word increments.

m Dynamic memory protection

This feature provides full protection to any memory area against unwanted attemps to alter its contents.
The protection its assigned on a dynamic basis (LDP instruction).

A 1-bit protection "lock" is associated with every memory word. Besides, an indicator of the program
status acts as a "key" : when this indicator is set to 1, the program is able to gain access to all memory
locations; otherwise the program can only gain access to unprotected areas.

® Parity

Full parity ckeck is provided both in the memory an during I/O operations.

1-2.2. Processing units

The functions available in a conventional computer are shared between a wired module, indentical for all
processing units, the so-called "micro-processor", and the contents of a ready=-only control memory which
"specializes" the micro-processor to provide the functions of a CPU, IOP or special-purpose unit.

A processing unit comprises a fast register block, five program indicators, a micro-programmed read-only
memory, an operator and an inferrupf/suspension system.

4057 U

@ Fast register memory

This memory is implemented in MSI bipolar integrated circuit registers which are organized in eight 16-bit
program-adressable register blocks. The capacity of each processing unit can be extended from two to eight

8-register blocks per 2-block modules. Access time

: 60 nanoseconds per word,

In the CPU, the first block (block 0) is assigned to the program context, the remaining blocks being availa-

ble for peripheral transfers.

In an [OP, all block are available for peripheral transfers.

P
L
G
Block 0 of CPU
A
E
X
® Program indicators
C Carry or operation test

Program counter

Local base

General base

Accumulator

Program context

Extended A reg.

Index

Overflow or operation test

MS Mode : master/slave
MA Interrupt Mask
PR Memory protection

For detailed description of indicators see chapter Il.

B Instructions

MITRA 15 has a set of 86 instructions including :

- 40 memory reference instructions,

- 29 register instructions,
- 12 shift instructions,

- 5 special instructions,

All instructions have a fixed format :

or

3 5 8

Mode Function Displacement
4 4 8

Mode |Function Displacement

4057 U

They operate on bytes (half-words), wbrds, double-words or unlimited length byte strings.
Addressing modes :

- immediate addressing for operands which can be coded in one byte;

- direct, indirect and indexed addressing with respect to the local base;

- direct, indirect and indexed addressing with respect to the general base.
8 Micro-programmed read-only memory

This non-destructive read out permanent memory is pre-recorded. Each 16-bit word contains one micro-
instruction. The memory is implemented in MSI bipolar IC's and its access time is 60 nanoseconds. lts
capacity is 512 or 1024 words per processing unit.

Three different versions are available for the following functions :

MC1 : executes the basic instruction code and the coupling functions for peripherals which are connec-
table to CPU's Minibus only.

MC2 : executes the complementary code (optional instructions) and the coupling functions for peripherals
which are connectable to the Minibus of either the CPU or an IOP,

MC3 : executes the coupling for peripherals which are connectable to an IOP's Minibus.
| Interrupts (IT)

32 priority interrupt levels are available which can be armed, masked or triggered by program. They provide
up to 112 discrete external interrupts by grouping.

When an interrupt is triggered, the program context is automatically swapped in 30 ps.

For a special high speed interrupt level, this swapping is effected in 5 us only, by register block switching.
B Suspensions

MITRA 15 also offers 32 suspension levels organized on a priority basis for micro-program coupling of
peripherals requiring urgent or frequent transfers,

The maximum response time is 300 ps.
B Minibus
Each processing unit is provided with a Minibus for device controllers connection. This Minibus is implemen-

ted as a printed circuit located in the chassis wiring and provides non-specialized plug=-in locations for all
controller cards.

1-3. MODELS MITRA 15/20, MITRA 15/30

MITRA 15/20

B MITRA 15/20 CPU comprising, as standard :
- 512-word micro-programmed ROM (MC1),

- 64 fast access registers,

- Basic code providing for 77 instructions,

- Priority interrupt system.

4057 U

B Core memory
4K to 32K 16-bit words per 4K increments.
B Performance

- Addressing mode : direct, indirect, indexed, relative, immediate, local and general.
-1 index, 2 bases.
- 77 instructions, including 33 memory reference instructions.

- Load, store or add word in 2.1 ps.
B Main options

- Up to 3 direct memory accesses (DMA)

- Additional micro-programmed ROM (MC2)

- Up to 32 priority interrupt levels per 1 or 4 levels modules.
- Wired MUL/DIV (7 and 8 ps).

- Floating point operator (OVF).

- Power failure protection,
m Software

- MITRAS 1 Assembler; MITRAS 2 Extended Assembler; LP 15; BASIC; FORTRAN V.
- Linkage editor.
- 2 Monitors : Basic Monitor MOB and Real-Time Monitor MTR.

- Libraries.
B Basic peripherals (Range 1)

- Console typewriter (with paper tape reader/punch),

- 300 char./sec. paper tape reader,

- 60 char./sec. paper tape punch,

- Logging slow printer (15 char./sec.),

- 2 to 128 16-bit digital input lines for logical levels, or filtered, or relayed,
- 2 to 64 16-bit digital output lines for logical levels or relayed,

- Counter inputs; real-time clock,

- Analog inputs,

4057 U

CORE MEMORY

4K

words

4K

4K 4K 4K

words | words | words | words

4K

words

4K

words

4K

words

Typewriter

CPU MINIBUS

|

MUL

DIV

Paper Tape reader/punch

O

A

Logging

Real time clock

digital inputs

Q.
«Q,
—
o
o
[
=
o
c
=
»

analog inputs

(o]
o
c
3
=3
[1]
=
5
he]
C
=
17

interrupts

MITRA 15/20 general layout

4057 U

MITRA 15/30

® MITRA 15/30 CPU comprising, as standard :
- 1024-word micro-programmed ROM,

- 32 fast access registers,

- Extended operation code for 86 instructions,
- Priority interrupt system,

- Wired MUL/DIV,

- Power failure protection.

m Core memory

4K to 32K 16-bit words per 4K increment
m Performance

- Addressing modes : direct, indirect, indexed, relative, immediate, local and general.
-1 index, 2 bases

- 86 instructions, including 40 memory reference instructions

- Load, read, write or add word in 2.1 ps

MUL/DIV in 7 and 8 ps, respectively.

B Main options

Up to 3 direct memory accesses (DMA)

Up to 3 input/output processors (IOP)

Extension to 128 fast access registers per processing unit (64-level modules)

32 priority interrupt levels per 1 or 4 level modules

- Floating-point operator (OVF)
g Software

- MITRAS 1 Assembler; MITRAS 2 Extended Assembler; Macro-generator; LP 15; BASIC; FORTRAN IV;
Librarian; File management system.

- 3 Monitors : Basic Monitor MOB; Real-Time Monitor MTR; Disk Real-Time Monitor MTRD.
m Peripherals

e Range | (Model 20)
e Range Il :

- One head per track fixed-disks; average access time 10 ms, transfer rate 150 kbyte/sec, capacity 100 to
1600 kbytes.

= Movable head disk-pack units; average access time 60 or 90 ms; transfer rate 100 or 150 kbyte/sec;
capacity 2.5 to 5 Mbytes or 6.2 to 24.8 Mbytes.

- Card reader : 200 or 600 cpm.
- Card punch : 20 or 40 cpm.

-6

4057 U

CORE MEMORY

1K
or 4 K 4K 4K 4K 4K 4K 4K
4 K words | words | words | words | words | words | words
words
| | |] | J
|
CPU
CPU MINIBUS I0P MINIBUS
1 Fast access disks
OVF ,ﬂl|||||||||||||||||||[HIIH!;
QI
Typewriter MUL/DIV.
Cartridge disk
ngerﬂ Card reader
tape reader/punch
Logging Card punch
G Real-time clock
P
o —— High-speed printer
digital inputs
.1
L]
—
digital outputs Tape handlers
R
&==—=== analog inputs -
Synchronous ",.""
data links d“"!ll’
= counter o
m— | DUTS iy
n"’
Asynchronous .,.-'
data links -lllnly,
A . .."
Se——interrupts L

MITRA 15/30 general layout

Interface for
10000 and IRIS
series peripherals

Card reader

Lo

Line printer

Tape handlers

Disk packs

4057 U

- Line printers : 132 columns; 200, 400 or 600 lpm.
- Communication controller for 1 synchronous data link, full duplex, 1200/4800 bauds

- Communication controller for 2 asynchronous data links, full duplex, 50 to 1200 bauds.

o Range Il :

- OCTET interface for connecting all CII 10 000 or IRIS Series peripherals : (card readers, printers, tape
handlers, etc...).

-4, MITRA 15 OPERATING SYSTEM

Depending on the availability of a fast access disk unit, the software is offered in two different versions :
the resident system and the disk system.

m The resident system provides :

- 2 Monitors : the Basic Monitor MOB and the Real-time Monitor MTR
- Assemblers : MITRAS and LP 15; Compilers : BASIC and FORTRAN and a Macro-generator.

m The disk system provides :

- The real-time Monitor MTRD

- The resident system processors, a librarian and a linkage module.

In addition, the software includes :

- Debugging commands available as extension of each monitor.

- A comprehensive library of "real-time" mathematical programs, and a file management system.

- MITRA 15 Simulators available for use on Cl1 10 070, IRIS 50, IRIS 80, IBM 360, etc.

MITRAS | Assembler

Translates the symbolic MITRAS language generates in one single pass a relocatable binary object-listing
and a list of error diagnostics.
. J

Both source and relocatable binary programs are normally on paper tape; memory requirement : 4K words.

MITRAS 2 Extended Assembler

Translates the symbolic MITRAS language; has a larger set of pseudo-instructions than MITRAS |. Memory
requirement : 8K words.,

LINKAGE EDITOR

Operates in two passes for converting binary relocatable programs generated during various assembly or
compilation runs, into a relocatable memory image format which can be loaded for execution by the Basic
Monitor,

The linkage editor also provides a memory map of the relative location of the various modules and a listing
of the common sub-routines which are called. Memory requirement : 4K words.

4057 U

BASIC MONITOR MOB

Perform computer control and handles user's communications with the system and the basic processors. Its
main functions are :

- trap processing,

internal interrupt control,

program loading,

input/output control,

- program execution control .

Memory requirement : 4K words.

REAL-TIME MONITOR MTR

Handles simultaneously interrupt-dependent batched jobs in core. Controls and supervises all privileged
operations, such as 1/O handling or memory protection, and provides operator communication. Memory
requirement : 8K words,

4 Kwords 8 Kwords 12 Kwords 16 Kwords Simulation
OPERATING
SYSTEM
resident Basic Monitor Real-time control command
system MOB Monitor MTR analyzer
interpreter
disk disk real-time linkage
system Monitor MTRD module
PROGRAM
GENERATION
resident MITRAS | MITRAS 2 LP 15 FORTRAN 1V [Assembler
system linkage editor BASIC linkage editor
loader-editor
disk MITRAS 2 FORTRAN IV | Macro- LP 15
system linkage editor generator
BASIC
LP 15
Librarian
LIBRARY Mathematical programs real-time

programs communication programs
file management system packages

Structure of MITRA 15 standard software

4057 U

DISK REAL-TIME MONITOR MTRD

This disk-oriented version of the MTR Monitor has additional capabilities for overlay control and user's
libraries management, as well as for automatic linking of batched programs (compile-link, load-and-go);
requires 8K words memory and a fast access disk unit.

LOADER - LINKAGE EDITOR

Operates in one pass for loading binary relocatable programs for immediate execution.

This processor can only accept binary programs generated by MITRAS |. Memory requirement : 4K words.

LP 15

This assembler type language has a syntax which is closely related to that of sophisticated languages such
as ALGOL, but with the feature of direct access to MITRA 15's registers.

The binary object programs thus generated have an efficiency which is practically equivalent to that of
assembled programs. Memory requirement : 12K words without a disk unit.

BASIC

This conversational compiler provides for time-shared operation and alphanumerical data processing.
Memory requirement : 8K words.

FORTRAN IV

This compiler generates in one single pass a relocatable binary object-program in the format required by
the linkage editor. May call sub-routines written in another language and translated in relocatable binary
format; compatible with Cl1I 10 020, IRIS 45 and IRIS 50. Memory requirement : 16K words or 12K words
with a disk unit,

AMAP EXTENSION (DEBUGGING AIDS)

An AMAP extension available with every monitor as a debugging aid and provides instruction execution
records, halt on address, memory dumps and contents alteration, through special monitor commands.

LINKAGE MODULE

Provides for automatic linking of batched programs in the deffered processing area with concurrent real-
time programs,

This processor is controlled by the disk real-time monitor MTRD; requires 12K memory words and a fast
access disk unit,

MACRO-GENERATOR

Translation program using user-defined procedures. It provides in one pass a program in assembly or compi-
lation language. Memory requirement : 16K words.

LIBRARIAN

Provides for handling the system library constitutive files through commands such as : insert, replace, copy,
load, dump on external medium... Memory requirement : 8K words and a fast access disk unit.

4057 U

UTILITY PROGRAMS

These programs are available for :
- Updating and correcting source programs on sequential access media (paper tape, magnetic tape, etc.).

- Handling and updating library programs on sequential access media. Memory requirement : 4K words.

MITRA 15 SIMULATORS

These simulation programs are available for CI1 10 070, IRIS 50, IRIS 80, IBM 360, etc. computers and
include :

- a MITRA 15 interpreter,

- MITRAS Assembler and Linkage editor,
- a system generator,

- LP 15 Compiler.

They perform assembly, linkage edition and debugging functions on programs intended for later exploitation
on any MITRA 15 configuration.

1-5. APPLICATIONS

LABORATORIES Spectrometry
Gazeous chromatography
Cristallography

MEDECINE Chemical analysis
Electrocardiography
ENGINEERING Components testing
Seismography
Ranging
INDUSTRY Chemicals
Monitoring Oil and derivates
Automation Steel industry
Process control Mechanical engineering, aerospace, etc.
REMOTE PROCESSING Deconcentrated companies
Front-end computers Public Administrations
Satellite stations Universities
Front ends
SCIENTIFIC COMPUTATION Education
Time=-sharing Design office
Data centers Private companies
TRANSACTION PROCESSING Insurance companies
Data collection Banks
File management Public services...

Mitra 15

2. General layout

MITRA 15 is built around a planar structure core memory the capacity of which can be extended modularly
by 4K 16-bit words blocks. This core memory has four access ports for connecting up to four processing units
or direct memory access controllers.

Each processing unit includes a micro-programmed read-only memory (ROM); a specific micro-program pre-
recorded in this memory specializes the associated processing unit for performing the functions of :

- a central processing unit (CPU),
- an input/output processor (IOP), or
- a special-purpose unit for a particular process.

Each processing unit controls a so-called MINIBUS which is a peripheral bus designed for direct connection
of peripheral controllers,

[1-1. CORE MEMORY

The core memory is basically organized in 18-bit words each comprising 16 data bits, 1 parity bit and 1
memory protection bit,

Read/write operations are executed in two separate half-cycles. A read cycle includes a destructive read-
out half-cycle followed by a rewrite half-cycle. A write cycle includes a clear half-cycle followed by a
write half-cycle.

Memory access time is 400 ns (1/2 cycle) and a full read/write cycle lasts 800 ns.

Though memory transfers are performed on a word basis, micro-commands allow the programmer to operate
on bytes, i.e. on half-words. Thus, all MITRA 15 addresses point to byte locations, even-numbered
addresses corresponding to word locations.

The memory is built up with 4096-word modules, i.e. 8192 bytes. MITRA 15 is designed for a maximum of
eigh modules corresponding to a maximum capacity of 32 768 words (or 65 536 bytes).

The control logic supplies the timing signals required for operating the memory proper (half-cycles timing
control), and the transfer signals for data exchanges with the processing units; in addition it deals with the
four accesses relative priorities.

11-2. PROCESSING UNITS

The operation of a MITRA 15 processing unit, and more specifically of the CPU, may be described at two
fully distinct levels :

m A first level corresponding to what may be termed "user-level" and the knowledge of which is sufficient
for programming an application on MITRA 15.

it includes the following features :

- the standard instruction set detailed in chapter VIi;

- six general registers of block 0;

- the five program indicators;

- the interrupt system,
-1

4057 U

B A second level corresponding to what may be termed "micro-processor” level

This micro-processor includes the following features :
- a set of about forty hardware-implemented basic micro-instructions;

- a read-only memory implemented on module boards and which contains the sub-routine set, (also called
"micro-programs") defining MITRA 15's standard instructions set and peripheral coupling functions;

- operational registers;
- micro-processor status indicators;

- a so-called "suspension system" corresponding, for the second level, to the interrupt system of the first
level.

The following sections describe the various components of a processing unit, viz :
- micro-programmed ROM

- S and M memory transfer registers

- fast-access register blocks

- status indicators

- interrupt and suspension systems.,

11-3. MICRO-PROGRAMMED ROM (OR MICRO-PROCESSOR)

This non-destructive ROM is pre-recorded in factory and implemented in integrated circuits (access time :
60 ns per word) .

Each memory word is 16 bits long and contains one micro-instruction.

The control ROM of a processing unit contains either 512 words (MC1), or 1024 words (MC1 + MC2).

Any micro-instruction is executed in 300 ns.

The address of the currently executed micro-instruction is contained in a 10-bit register called T-register.

A micro-instruction has the following format :

M orp CccC AD

Each micro-instruction has a dual purpose :

1) It controls a number of functions, viz. :

- memory control (2 bits : M-field)

- basic operation code (generally 5 bits : OP-field)

- complementary operation code (3 bits : CC-field) defining for instance a general register address

2) It defines the address of the next micro-instruction (through a é-bit modifier : AD-field), by updating
T-register contents,

In fact, micro-instructions are not stored sequentially.

No indexing adder is associated with T-register, since its contents is not incremented by one unit from a
micro-instruction to the next, as in a sequential addressing scheme.

-2

4057 U

CPU's and IOP's are differenciated by the kind and contents of their respective control memories.

In the CPU, MCI1 control memory (512 words) executes the basic operation code and the coupling functions
for peripherals which are connectable to its Minibus only (Range I).

MC2 control memory provides for executing the complementary operation code (optional instructions) and
the coupling functions for peripherals which are connectable either to the Minibus of the CPU, or to the

Minibus of an IOP (Range 11).

The CPU's control memory then includes 1024 words (MC1 + MC2).

MC3 control memory executes the coupling functions for peripherals which are connectable to the Minibus

of an IOP only (Range Il1).

CORE MEMORY

1K
or 4 K 4K 4K 4K 4K 4K 4K
4K words |words |words |words |words |words | words
words
] MEMORY BUS
— — — — — — ‘ _— -
— Oddress _ _ _ _
read/ write
S U M (PR)
f— |
l mr—1
J | | :
Operator | I .
| |_.__m|cro-processor
Register | ROM I
memory | |
. Le——_]
int X e e suspen- command
interrup sions execution
A

MINIBUS

commands

Processing unit layout

suspensions

-3

4057 U

I1-4, REGISTERS

11-4.1. Memory transfer registers

S-register is a 15-bit address register, though actual addresses are 16 bits long. The rightmost bit of an
address, which specifies the desired byte within the addressed word, is in fact ignored by the memory logic.

M-register is an 18-bit data register receiving the transferred memory words. Two of these bits are reserved
for parity and protection tests; the 16 other bits are used for date exchanges with U-register.

11-4.2. Fast-access registers

A standard MITRA 15 processing unit includes eight register blocks each comprising eight 16-bit integrated
circuit registers numbered 0 through 7. Eight optional blocks are available on 15/30 model.

These registers have different assignments in the CPU and in an |OP,

In the CPU, the first block (block 0) is reserved for program execution; its first six registers have the follo-
wing functions :

- Accumulator,
- Accumulator extension,

A

E

P - Program counter,
X - Index register,

L

- Llocal base register,
G - General base register,
the last two registers, V and W ared used by micro-programs.

The other blocks are normally assigned to peripheral transfers through the suspension system (channel memo-
ries).

Inan IOP, all register blocks are available for peripheral transfers.

Each register has a unique address form 0 to 63 (or 127). In the micro-programs, a general register address
is generated from :

- the contents of the corresponding field of the micro-instruction format (3 bits).
- the contents of J-register.

it will be seen in section 11-8. that a high-speed interrupt causes an automatic switching of the register
block. In the new block, the registers have then the same assignment as in block 0, but for other programs,

'1-5. LOGICAL AND ARITHMETICAL OPERATOR

The logical and arithmetical operator includes a universal register, or U-register, and a dual-input opera-
tor. The 16-bit U-register cannot be directly accessed by the instructions, but constitutes an accumulation
register for the micro-processor. In this respect it can contain one operand of a micro-instruction and/or
store the result. Both operands of a micro-instruction may also be provided by :

- a general register (operand 2)
- M-register in connection with the core memory (operand 1)

the 1/O interface (operand 2)

the control memory (operand 2)

4057 U

- the stack (operand 2)

- the indicators (operand 2)

The results of the operation are stored in the following devices :

U-register (universal)

M-register (data
9 () for core memory transfers

S-register (address)

a general register

the indicators

I1-6. INDICATORS
MITRA 15's central processor includes nine indicators :

B Four indicators reserved for micro-processor use :
B-indicator : assigned to U-register overflows
Tz-indicator : for a zero micro-instruction result
To-indicator : for the sign of a micro-instruction result

Ao-indicator : address of the processed byte.

B Five program-accessible indicators

C-= CarrY

This indicator has two different meanings according to the last instruction by which it is set.

o Carry/borrow (arithmetic type instruction)

- When a positive number is added (negative number subtracted),

zero, C is reset (C =0).

- When a positive number is added (negative number subtracted),

zero, C isset (C =1),

- When a negative number is added (positive number subtracted),

zero, C isset (C=1),

- When a negative number is added (positive number subtracted),

zero, C isreset (C =0).

if the result is obtained without becoming

if the result is obtained after becoming

if the result is obtained without becoming

if the result is obtained after becoming

e For othei instructions using C-indicator, the status C-indicator, the status C =1 after execution denotes
a zero value in a register or, in the case of a comparison, equality of two values.

O = Overflow

This indicator also has two different meanings according to the last instruction executed.

e For arithmetic type instructions, O-indicator is used for overflow. More precisely, when both operands
have the same sign, if the result is of the opposite sign, O is set (O =1). Otherwise, O isreset (O =0).

® For other instructions using O-indicator, the status O =1 after execution denotes a negative value in a
register (leftmost bit set) or, in the case of a comparison, that A-register value is less than the addressed

word value.

-5

4057 U

MS = Master/Slave mode

For programs executed in Master mode, this indicator is set to 1, otherwise the program is executed in nor-
mal or "slave" mode.

See chapter VIl "Instructions” for detailed description of the above three indicators for every instruction.

MA = Interrupt mask indicator

This indicator is set to 1 for masked interrupts, otherwise MA =0,

PR = Memory protection "key"

When PR =1, the program is able to gain access to any memory location.

When PR =0, the program is only allowed to gain access to unprotected memory areas ("protection lock"
cleared).

These five indicators are included in the context of a specific program.

11-7. COMMUNICATION WITH THE ENVIRONMENT

The processing unit is coupled to the peripheral controllers via a so-called MINIBUS which is accessible
through micro-instructions. The interface includes :

- for data : 16 output bit lines and 16 input bit lines;

- three function bit lines;

- for addresses : 6 bit lines or 10 bit lines in particular cases;
- a sync line;

a reset line.

The peripheral Minibus, on which the peripheral controllers are connected, includes 16 unidirectional data
lines, both for input and output, an address and peripheral control bus, as well as interrupt and suspension
lines.

11-8. INTERRUPTS - SUSPENSIONS - TRAPS

11-8.1, Interrupts

The interrupt system operates when :
- an interrupt signal occurs;

- a special micro-instruction, located by definition at specific "interrupt point", occurs;

interrupts are unmasked;
- the priority level of the current program is lower than that of the incoming interrupt.

There are 32 interrupt levels (IT levels). Each of these levels has an associated memory address containing
the context pointer of a program specifically assigned to this level. These 32 context pointers are stored in
a table pointed to by the contents of memory address 10.

When an interrupt condition occurs :
~ the condition is stored in a flip-flop (one per signal),

- its IT-level is hardware-coded and compared with that of the task currently processed (register 8),

-6

4057 U

- if the interrupt is accepted, its specific IT-level (0 through 32) is stored in the hardware of the micro-
processor when the interrupt test micro-instruction is executed,

- then, the micro-program performs the following operations :

. Storage of the interrupted task context at an address depending on its rank (the latter being stored in
register 8).

. Loading of the interrupting task context from an address depending on its rank.

. Call of the first instruction of the interrupting task. (See "Communication with the micro-processor"
page 11-8).

When the task is over or must wait for the occurence of a specific event, it releases the processing unit
through an interrupt de-activation and context swapping instruction DIT which :

- acknowledges the interrupt calling for the task,
- stores the task's context, and

- calls for the next task waiting at the same IT-level, or, if there is no such task, for a task waiting at the
next lower IT-level.

if no task is waiting, the computer executes a wait loop until an external event occurs at the lowest level.

The total number of interrupt levels is 32, 4 internal and 28 external. Besides, up to 4 interrupts may be
on a same level, providing a total number of multiplexed external interrupts equel to 112 (28 x 4).

As a rule, standard peripheral controllers use one interrupt level each.
Internal interrupt levels are assigned to the following tasks :

- operator's console interrupt request,

- power turn on,

- power shut down,

- program (level 0).

High-speed interrupt

Optionally, one external IT-level may be of the "high-speed" type, i.e. may call for a task the context
of which is stored in a register block other than block 0, which contains the interrupted task context.
Consequently, the task switching only requires that the indicators be transferred in block 0; it lasts about
2 us.

When this "high-speed task" is acknowledged, the control is returned to the interrupted task (the context
of which is still in block 0) through a special DITR instruction by-passing the usual context swapping in
biock 0.

11-8.2. Suspensions

The suspension system is able to interrupt the current micro-program at the end of every micro-instruction,
and to launch a special micro-program. The suspension request is either issued by a peripheral or internal
to the micro-processor (processing unit).

On occurence of a suspension, the micro-processor's status, i.e. the contents of U-, J-, T-registers and
of B, Tz, To, Ao indicators are transferred in a stack. The suspension micro-program is then executed.

At the end of the suspension program, the initial contents of U-, J-, T-... registers are restored from the
values previously saved in the stack.

-7

4057 U

63

0
2
4

()i\JO)mwa-'O

-

REGISTERS

VM

PM

Al

PA

1]
ES

X|mir|ojr|™

MS
MA

i= 1T rank SRD(k)

Ul

PG
PR

M”

CORE MEMORY
0

Mode violation

Memory protection violation
Non-existing address

Parity error

Non-implemented instruction
1/O error

Mode indicator (Master/Slave)
Interrupt mask

Program indicators
Double-word specifying the
assignment of Supervisor's k-section
Trap in a program or I/O
Access to protected areas

PRTS (PRT Supervisor)

L-G

7))
77771 =11 c 1

0O » ® O

CPT address

.
 Jwmlem|ai[eafii]es]rs
P-G

i)

PRTS address

~—

-8

CPT (i)

Lk
g SRD(k)
Pk
4k
e e —
Lo
SRD(o)
Po 2

DVT (32 v;ordf) T?blej of associated deactivation words

13 15

ofvia]

[]

TriggerJ

Enable
Arm

-~

group IT no IT group

CPT Ti task context
Taoie ot — I 0
context X
pointers E
:
L
P

Communication with the micro-processor

4057 U

The stack has a capacity of four suspensions, i.e. the number of suspension levels is four. The number of
suspension signals is 32, or 8 per level, assigned as follows :

- 5 internal suspensions :

. traps (1)

. interrupts (2)

. control panel (1)
. power failure (1)

27 external suspensions associated with peripherals.

11-8.3. Traps

The origin of a trap is an abnormal condition detected at the end of a micro-instruction.
The trap processing micro-program :

- protects bytes 4 to 9 of the memory which contain L- and P-register values and the indicators status of
the context of the instruction which initiated the trap;

- signals the cause of the trap by setting a bit in memory word 2;

- performs a call to supervisor section 0.

The following abnormal conditions initiate a standard trap :

- non-existing memory address : the user has specified an address exceeding the available memory.
- memory protection violation : the user attempts to write in a protected memory area with a zero PR-key.
~ parity fault in core memory read-out signals.

Other traps may be initiated by the following causes :

- operating mode violation : attempt to use priviledged instructions in a slave mode program.

- invalid instruction : incorrect OP-code specified.

- "watch-dog" timer runout.

In all these situations :

- the current instruction is aborted,

- the micro-processor's stack is not triggered,

~ a special micro-program generates a supervisor call.

The operations performed by the standard monitors in response to a trap condition are described in the
corresponding utilization manuals. The trap status word is described in "Communication with the micro-
processor" diagram page |1-8.

11-9. MODE AND PROTECTION

11-9.1. Operating modes

- Normal or "slave" meode.

In this mode, priviledged instructions cannot be executed and any attempt to execute such an instruction
causes a "mode violation" trap. MS indicator is reset (MS =0).

4057 U

- Priviledged or "master" mode.
In this mode all instructions, whether priviledged or not, are executable. MS indicator is set (MS =1),

The various supervisor modules are examples of programs which must be executed in master mode. (See
CSV and RSV instructions).

It should be noted that addressing modes are different in master and slave modes (see Chapter V "Addressing
modes") to provide absolute addressing capability in master mode.

11-9.2. Memory protection system

The protection system becomes operative whenever PM key-switch is turned on the control panel.
The operation is as follows :

- a 1-bit protection "lock" is associated with each memory word and may be set by a LDP instruction
(LoaD Protection).

- the program status includes a PR-indicator which acts as a "key".
If key value is 1 (override key), the program may gain access to all memory locations.

If key value is 0, the program may only gain access to memory locations whose lock value is 0.

® PR-key loading

The PR indicator is loaded with the program context.

It is preserved before being forced to 1 during any supervisor call SVC and restored to its previous value
when the supervisor returns the control to the calling program.

m Protection violation)

If a "zero key" program attemps an access to any location having a 1 lock value, the protection system
operates and initiates a "protection violation" trap.

Memory protection and operating mode are independent,

1H-10

Mitra 15

3. Structure of a program

I11-1. DEFINITION OF MODULARITY

In programming art, as in other techniques, the modularity consists in breaking down a system in to smaller
elements with standard interfaces.

Since the introduction of the "sub-program" concept, modularity is an acomplished fact in programmation.
As a main program may also be considered as a module, we rather call them "sections". The following
advantages are due to modularity :

- easier system specification,

- easier software writing, by sharing the work between a number of programmers,

identical sections may be used in different system without rewriting,

easier debugging and assistance on software products,

I11-2. DEFINITION OF A SECTION

A section mainly comprises an instruction sequence called a program segment. The purpose of these instruc-
tions is to process data which are either assigned to the section, or shared between a number of sections.

Data which pertain to a section in proper make up a "local data segment" (LDS).
Data which are common to several sections make up a "common data section" (CDS).

Accordingly a section is either the common data section CDS, or a local data segment (LDS) plus an execu-
table program segment (Local Program Segment = LPS),

The CDS is accessible from any point in the program.

More particularly, the CDS may be accessed from a LDS in general addressing mode (direct, indirect or
indexed indirect).

Symbols and labels defined in the CDS are applicable to the whole program.
A LDS is accessed from the associated LPS in local addressing mode (direct, indirect or indexed indirect).

Symbols and labels defined in a LDS are applicable to the section only. Nevertheless, they may be referen-
ced in the CDS. A program segment is exclusively made up of unalterable items (instructions), and this
improves relocatability and simplifies writing of re-entrant sub-routines.

111-3, SECTION AND SEGMENT BASES

o General base G

General base G is uniquely assigned to the program; it constitutes an implicit base to which every address
referenced by this program is related. Accordingly, the micro-processor automatically adds this base value
to all addresses specified in the instructions.

o Local base L

Local base L is the implicit base value for all local data contained in a local data segment (LDS).

-1

4057 U

e Program base P

Program base P is assigned to a local program segment (LPS).

Initially, base P is the starting address of the section and from there on acts as a program counter for the
currently executed section (see Chapter I11-2.).

The actual values of L- and P-bases may be unknown at the time a program is written. At linkage edition
time, they are automatically generated in relative value with respect to the general base of the program
and stored in the associated PRT.

[11-4. CONSEQUENCES OF MODULARITY ON MITRA 15 PROGRAMS

From the hardware viewpoint, modularity implies the existence of special instructions for section calls and
returns,

From the software viewpoint, program modularity is a fundamental concept of the assembly language which
includes so-called "segmentation" pseudo-instructions :

CDS : Common Data Section (
LDS : Local Data Segment
LPS : Local Program Segment

FIN : End of segment or section (LDS, LPS or CDS)
IDS : Indirect Data Segment.

We shall call "program module" the result of an assembly or compilation processing. When a module is
written in assembly language it is rather called "assembly module". Every assembly module must conclude
with an END pseudo-instruction. A program may be built up from modules of various origins (differing by
their source language, author, creation date, etc.).

The linkage editor interconnects the various modules into a complete executable program.
Remark :

To facilatate the programming, particularly in the case of re-entrant sub-routines, the assembler recognizes
so-called "dummy data segments" which are images of later-defined data or of data belonging to another
LDS (or CDS) than the LDS in which the dummy area is defined.

These dummy segments are treated as formal parameters, in particular for defining relative displacements ‘
with respect to the beginning of the segment (description of dynamic data blocks, index values, etc.) but
generate no object code.

Example 1 : Typical organization of a program

COMMON CDS
TWB RES 16 common
cl DATA 1 data
FIN section
LOCAL LDS ool
RES 2 data
c2 DATA &F0 cootion
FIN
Section 1
SPROG LPS LOCAL
DEB LDA =
AND c2 program ‘
RTS section
FIN DEB

1H1-2

4057 U

Example 1 : Typical organization of a program (continued)

LOCP

U

Vv
TAB
ATAB

PRINC
INIT

End of file code (%EOD on card and paper tape).

LDS
RES
DATA, 1
DATA, 1
DATA
RES

FIN

LPS
LDA
ADD
STA
CLS
Ccsv
FIN
END

2

28

31
ATAB
1024

LOCP
u

=Cl
TAB
SPROG
M:EXIT
INIT
PRINC

Example 2 : Other possible special organizations

PROG

LPS1

CDS
FIN
LPS

PROG

local
data
section

Section 2

program
section

This LPS having no associated LDS cannot use
the local addressing mode; it must use the
general addressing mode

- - - - - - - - e " = = - - - - - " o - e 0 e S e e - " = = = = = -

LDS1

LPS1

LPS2

LDS1

LDSI1

These two LPS are both associated with the
same LDS. The local symbols are deleted at
the beginning of the next LDS. Nevertheless,
there are two distinct sections (two items in
the PRT).

The local base L being initially the same for
both sections, no mutual calls are allowed
(through CLS pseudo-instructions).

-3

4057 U

Example 2 : Other possible special organizations (continued)

First module

CDS
FIN
LDS1 LDS
FIN
LDS2 LDS
FIN
LPS2 LPS
FIN
END LPS2
Examgle 3:

Second module

This LPS hav

ing no associated LPS, it is only

accessible through indirect addressing via an
item of the CDS.

This LPS cannot refer to the LDS called LDS2,
since local symbols are deleted after every
occurence of an LDS pseudo-instruction.,

Third module

Remarks

PROG CDS
RES 16

C1 DATA 2

C2 RES 4

C3 DATA DI

C4 RES 2

C5 DATA C2
FIN

LDST LDS
RES 2

D1 DATA C1
FIN

LPST LDS LDS1

DEB1 LDA DI
CLS LPS2
CLS LPS3
CSV M:EXIT
FIN DEB1
END LPSI1

1-4

PROG CDS DUM
RES 16

Cl DATA 2

C2 RES 4

c3 DATA DI

C4 RES 2

C5 DATA C2
FIN

PROG CDS DUM
RES 16

Ci DATA 2

C2 RES 4

C3 DATA D1

C4 RES 2

C5 DATA C2
FIN

These CDS reflet each others.
The dummy CDS DUM do not
generate any object code.
They use to satisfy the general
addressing modes and the refe-
rences, Also they enable each
program to have in clear the
elements it uses.

4057 U

Example 3 :

"First module Second module Third module Remarks
LDS2 LDS LDS2 LDS DUM The two program segments
RES 2 RES 2 LPS2 and LPS3 are linked to
D2 DATA 4 D2 DATA 4 the same data segment LDS2.
RES 5 RES 5 They are separely assembly,
D3 DATA C2 D3 DATA C2 but one of the two references
D4 DATA C4 D4 DATA C4 a dummy segment DUM which
FIN FIN also uses to satisfy the local
LPS2 LPS LDS2 addressing modes and allows
DEB2 LDA D2 the programmer to have in
LDX =2 clear the elements he uses.
STA Ch,x The DUM segment do not
RTS generate any object code.
FIN DEB2
END
LPS3 LPS LDS2
DEB3 LDA D4
LDX =
STA C4
RTS
FIN DEB3
END
-- ﬁ----------------------------

After these three modules be linked, a executable IMT of the following forme will be obtain.

CDS LDS LPS LDS LPS LPS
PROG || LDS1 LPS1 LDS2 LPS2 LPS3

¢

Running
section

{11-5. CONSTITUENTS OF A PROGRAM

® Task Working Block (TWB)
The first sixteen words of the CDS are called the "Task Working Block" or TWB.

This 16-word area is reserved to the Monitor which may store therein the return address to the calling task,
as well as the caller's local data base (L) and the program indicators.

The Monitor may maintain in the TWB a pointer to the system's common data area (ZC).
All programs which require Monitor Calls must reserve 16 words at the beginning of their respective CDS.

This feature allows for monitor sections re-entry, the latters operating in the calling program.

-5

4057 U

m Program Relocation Table (PRT)

The sections are assigned through a section relocation double-word (SRD), which contains the initial values
of L and P with respect to G :

0 15

Section relocation double-word (SRD)

The PRT is made up of all the SRD of the program sections.

This PRT is stored in the locations immediately preceding G-address, thus the SRD of section no. n has an
address given by :

G - 4n
This table is built at linkage edition time.

Note : ‘

The Monitor's PRT is pointed to by the contents of a fixed address as that of the micro-processor (address 12).

The PRT is the communication area between the different sections of a same program or between a program
and the Monitor (for the Monitor's PRT).

Context
Level] Indicators
Pointer X
E
A CTX
G
L
P
IN
pN
Wi PRT (2 N words)
pi
000000 lo]o.0- * e o000
G pl
TWB CDS
3 lnm.al Sections 1 through N
section
Where li = Li - G and pi = Pi - G (

Structure of a program

-6

4057 U

Remark :

The CDS, which is accessible from any section of a program, constitutes an implicit communication area
between the sections.

m De-activation word table or DeVice Table (DVT)

This 32-word table precedes in core memory the Context Pointer Table (CPT) which is also 32-word long.

A DVT word has the following format :

0 1 2 3 14 15

Trigger «———|

Enable IT no. in the group group no.

Arm

Bits 3 to 15 are also called "interrupt configuration".
P g

The interrupt system and the DVT are described in Chapter Il

m Context (CTX)

The context is the communication area between a priority level and an associated program. It groups seven
words :

Word 1 : Status indicators
Word 2 Initial X value
Word 3 : Initial E value
Word 4 : Initial A value
Word 5 : Initial G value
Word 6 : Initial L value

Word 7 : Initial P value

The context is used for initializing and restarting a task, and for protecting its status when the correspond-
ing level is activated or de-activated.

When activated, a task level defines in the context table (CTX) the specific pointer fo the associated
context. P-, L-, G-, A-, E- and X-registers, as well as the status indicators are loaded from the context
area and program execution begins at address P.

Conversely, when a level is interrupted by a higher priority level, or when it is acknowledged, the current
contents of P-, L-, G-, A-, E- and X-registers and of the status indicators are stored in the context area.

For further details, see DIT instruction description (Chapter VII).

[11-6. SECTION CALLS

There are two kinds of sections :
- sections pertaining to a given program, accessible through a CALL SECTION (CLS).

- sections available to all programs : supervisor section or common library section, accessible through a
CALL SUPERVISOR (CSV).

-7

4057 U

m Program section call (CLS instruction)

During the execution of a CLS instruction, the processor :

- stores the contents of P (program address) and L (local data base) in the first two words of the called
section's local area (after subtracting G-base). These elements are required for "returning" to the task
and therefore must be saved.

- Loads P- and L-registers with the starting address and the local data segment address, respectively, of
the called section which may then be executed.

During the execution of a RTS (ReTurn Section), the processor :

- Restores in P- and L-registers the values which had been saved at the beginning of the called section's
local segment.

Note :

When several sections of a program are separately assembled, if one contains a call to another, it is not
necessary to declare that the calling section is external to the module. This declaration is implicit and the
linkage editor performs the necessary checks.

The transfer diagram is given in the description of CLS instruction (Chapter VII "Instructions").

m Supervisor call (CSV instruction)

The supervisor sections and the sections constitued by common sub-programs make up the "resident operat-

ing system",

Hereafter, we shall call “system section" a section of the operating system.
A "system section" :

a) remains at the calling program's priority level;

b) processes both the calling task's data and its own local data;

c) is automatically executed in master mode.

Moreover, since a task is identified by its G-base value it is logical to associate the call with this base
rather than L-base.

In the CALL SUPERVISOR, i.e. in a system section, G has the same function as L in the CALL SECTION,

Paragraph (c) above, which is associated with class 0 addressing modes (see chapter V), implies paragraph
(b) since a system section may :

~ access its own data in LD, LI and LIX addressing modes, it being understood that these data have absolute
addresses and, therefore, system sections are resident with an implicit zero local base. (In this respect,
the operating system is a single program).

- access the calling task data in GD and GIX addressing modes, since the general base G remains that of
the calling task.

When executing a RETURN SUPERVISOR instruction (RSV), the processor restores in L- and P-registers the
values which had been previously saved in the calling program's TWB.

The mode of the calling program is automatically re-established by RSV instruction.

The communication diagram of a supervisor call is given in the description of CSV instruction (Chapter VII).

111-8

4057 U

Example of re-entrant section programmation

M:MOVE module of MOB Monitor for moving a byte string.

¢ Main program

PRINC CDS
RES
FIN

LDS1 LDS

CH1 TEXT

CH2 RES,1
FIN

LPSI1 LPS

DEB LEA
XAX
LEA
LDE
csv
FIN
END

e M:MOVE re-entrant module

FICTIV CDS
RES
T0 RES
T1 RES
T2 RES
T3 RES
T4 RES
15 RES
Té RES
17 RES
N3 RES
N2 RES
NI RES
NO RES
FIN
SUPER LDS
FIN
M:MOVE LPS
SPA
BRU
RSV
R:MOVE XEX
DST
C DCX
BCF
LBR
SBR
’ BRU

16 TWB

"ABCDEFGHIJKL"

12

LDSI1

CH2

CHI Parameters loading

=12

M:MOVE

DEB

LPS1

DUM

4

1

1

1 Dummy TWB. Generates no object code.

1 Used for proper generation of instruction displacements
1 in the LPS.

1 Since a CSV does not alter G-base value, M:MOVE
1 will operate in the main program's TWB.

1

1

1

1

1

SUPER .

A/ NO Entry point of the module for the CSV.

$+2

A T0 Entry point of the module for a branch instruction
(0]

AT, X

3 A#T710,X

C

-9

4057 U

o LDA # T1
BRU 2 # NO
FIN
END

I11-7. SYSTEM'S MANAGEMENT CONCEPTS

m Functions of the Supervisor

- Task management : connection at interrupt levels, queuing and "distribution" functions.

- Input/Output management : initialization on user's call, checking of interrupt-initiated transfers
termination, etc...

- Resource management : reservation and release on user's call.
- Event management.
- Delay management,

- Ete...

Operation and re-entrance of Supervisor calls

Supervisor S Si Return is;z /_Return i
r‘
: |
ITf, o —— - —— —_—
: DIT [
| I
I I
) S DR i L

= e = —— Supervisor's processing at task's level

The Supervisor operates at the level of the calling task and this provides supervisor context protection at
this level.

Besides, for full re-entrance capability, variable data operated upon by the Supervisor must be stored in
an area specified by the calling task : this is the purpose of the TWB described in paragraph Il1-5,

B Data area management

e System common data area

In order that a relative address may always be positive with respect to any G-base value, this area is loca-
ted in the upper portion of the memory.

It comprises a group of fixed-length blocks which are dynamically assigned on user's request.

To have the program relocatable with respect to this area, it is the address ZC of the whole common area
which the Supervisor stores in G + 6, in relative value with respect to G, the address of the actually
assigned block being provided in a register (preferably X) as a relative value with respect to ZC. This
awdress is assigned by the Loader.

11-10

4057 U

The task will address this block in GIX mode with :

-D =6,

- (G +6) =ZC,

- (X) = Block address with respect to ZC.

To progress in the block, the task increments or decrements X-register.
This procedure has an obvious advantage :

When a program is dynamically relocated, e.g. after a swapping, the only action of the system is to
update (G + 6) contents with the new ZC relative address to provide the connection with its data, without
any attention from the user.

Thus, the main purpose of this area is :
- to provide communication between separate programs,

- to allow for dynamic relocatability of the programs.

e Program common data area

Every program includes a common data section (CDS) accessible in general addressing mode. This address-
ing mode. This addressing being always relative to G-base, the actual location of the program may be
unknown to the user without any influence on the programmation.

e Local data areas

Since every program section may have a local data area, the corresponding base must be updated at the
beginning of the section (when a called section is entered) or upon return to the calling section.

This updating is automatic and requires no attention from the programmer who needs only state the name
of the section to be executed.

The linkage editor builds a relative location table in which every section is defined by the relative
addresses of its entry point and local data segment.

Some programs may require a direct access to more than 256 bytes in a data segment; this is provided for
by instructions for incrementing and decrementing L-base, where by the direct access area is shifted. The
Assembler is made aware of such shifting by a BASE pseudo-instruction.

Hi=11

Mitra 15

4. Assembly language

The Assembler is.a language translation processor which converts a source program, written in "symbolic
assembly language", into an object program.

The programmer is assisted in its task by the following convenient features :

- assembly "pseudo-instructions" for generating data of various kinds,

- possibility of sharing the job between several programmers (program divided into segments and sections),
~ possibility of easily writing re-entrant sub-routines owing to full separation of data and work areas.
The source program is processed in a single assembly pass during which :

- every source line is read,

- symbols are entered into tables,

- relative addresses are assigned at the beginning of declared segments,

- pseudo-instructions are executed,

- the "relocatable binary" (RB) object text is edited along with a directory of satisfied references, the
object listing and a list of errors which have been detected at this level,

- "forward" or downstream references, which cannot be solved by the Assembler, are actually processed
by the Linkage Editor.

MITRAS 1 Assembler requires the following minimum hardware resources :

- 4 K-words of core memory (including 1/O processing), and

- a console typewriter (Teletype ASR33).

MITRAS 2 Extended Assembler requires an additional 4 K-word memory module.
Remarks :

1. Hereafter the features which are available with. MITRAS 2 only are distinctly pointed out by a vertical
dotted line in the margin.

Pseudo-instructions which are not accepted by MITRAS | are underlined.

2, MITRAS 1 Assembler requires about 4800 bytes (without label table) thus leaving, under MOB basic
monitor, about 1000 bytes of table space, i.e. 100 common labels.

Source language instructions are of two kinds :

- Machine code instructions, which are each converted into a single machine word specifying an instruc-
tion executable by MITRA 15's internal logic. In the following they will be called "instructions".

- Assembly instructions which are command statements controlling the assembler either for assembly proce-
dure, or for data or text generation. In the following they will be called "pseudo-instructions".

4057 U

IV-1. SOURCE LINE FORMAT

IV-1.1. Instruction or pseudo-instruction line

An instruction or pseudo-instruction line has a maximum of four fields :
~ a label field :

Always beginning at column 1 and containing a 1 to 6-character symbol beginning with an alpha character
and ending with a blank column.

- a command field :

Beginning at the first non blank column after the label field (or at the first non blank column after column
1 when the label field is unused) and ending with a blank column. This field must contain a command
statement both for an instruction and a pseudo-instruction.

- an argument field :

Beginning at the first non blank column after the command field and ending with a blank column, except
if the first non blank column contains a special character "#" in which case this field is ignored as such.

The argument field cannot extend beyond column 57 with MITRAS | and column 72 with MITRAS 2.
- a comment field :
Beginning at the first column after the special character "x"

IV-1.2., Comment lines

A comment line is a line the first non blank character of which is a special character "*", These lines are
ignored by the Assembler but appear in the object listing.

IV-1.3. Blank lines

Blank lines are accepted and treated as empty comment lines.

IV-2. BASIC CHARACTER SET

The Assembler accepts all the following characters :

- alphabetic characters : letters A through Z and ":",

- numeric characters : digits 0 through 9.

~ special characters : blank + = % / . , () " = # $ % & @ etc.

Furthermore it accepts all characters recognized by the peripherals. These characters make up a subset of
EBCDIC,

No check is performed on the characters which are included in a comment field or a byte string.

IV-3. SYMBOLS

A svmbol is an identifiable group of up to 6 alphanumerical characters, the first of which is alphabetical.
No polank or special characters are allowed.

A symbol is defined when it appears in the label field of a source line.

in ail cases, a symbol identifies the source line to which it belongs.

4057 U

It may also identify the memory address of the code generated by the source line. In such a situation, a
numerical value is assigned to the symbol and is equal to the most significant byte memory address.

IV-3.1. Pseudo-instructions prohibiting assignment of a value to the label

Those are :
GOTO, BASE, BND, DEF, REF, FIN, END, PAGE
A symbol may appear in the label field, but no value is assigned to it.

Its only purpose is to mark the corresponding line in the argument field of a GOTO pseudo-instruction.

IV-3.2. Commands for assigning an address value to the label

- Assignment commands :
the EQU pseudo-instruction provides for assigning a numerical value to the symbol in a label field.
- Generation commands :

. Machine instructions
. Generation of pseudo-instructions :

RES, DATA, GEN, TEXT, DO.
. Segmentation pseudo-instructions :

CDS, LDS, IDS, LPS, BASE,

Any symbol appearing in the label field of such a command is entered into the assembly symbol table and
an address value is assigned to it.

The address value is always relative to the beginning of the segment which contains the symbol in a label
field.

An address value specified in operand field of DATA and GEN pseudo-instructions will be relocated, at
linkage edition time, by the value of L or P base of the segment in which it has been defined, so as to
become relative to the general base G of the program.

In resident programs declared in Master Mode, the loader will generally relocate the address values by the
general base G, since, in that case, local mode indirect addresses must be absolute.

However, in a LDS, it is possible to force a label expression to remain relative to the base, even for a
program executable in Master Mode,

For this, the label expression must be preceded by the special character "#" .

This procedure is allowed in a CDS, though it is basically ineffective.

V=4, CONSTANTS

Data may be directly entered in assembly language as alphanumerical constants. Three types of constants
are permitted in statements :

IV-4.1, Decimal integer constants

A decimal integer constant is represented by a decimal integral numbyr of 5 digits or less, with or without
a sign :

ExamEIe : +75 75 75 ® -

4057 U

The maximum absolute value for an unsigned number is 2'° -1 = 65,535,

The constant generated by the Assembler is in pure binary form (in two's complement for negative values)
and occupies the area speclfned in the generatlon pseudo- |nsfruct|on

IV-4.2. Hexadecimal constants

A hexadecimal constant is represented by an integral hexadecimal number of 4 digits or less, preceded by
the special character "&".

Example : &1A &E3FF

iV-4,3. Character string constants

A character string constant is a sequence of alphabetical, numerical or special characters in quotation
marks. The internal representation of normalized characters is "EBCDIC".

A translation module included in all sf&nderd rhfohif‘qrs\:provides for automatic translation ASCII-EBCDIC and
EBCDIC-ASCII, should they be required; this translation is performed by the input-output system,

Example : "CHARACTER STRING"

A quotation mark is represented in the string by two consecutive quotation marks.

Example : Lo

"NEXT""CHARACTER" represents : NEXT"CHARACTER o
|

IV-5. EXPRESSIONS | ,ﬂ

An expression is made up of one or several symbols or constants combined through arithmetic opvofonﬂi‘

An expression is represented by a single value which is computed by the Assembler or by the Linkage
tditor according to the rules specified in section IV-3.2. ,

An expression is said to be computable when its value may be determined at the first encounter; therefore,
it must contain no forward or external references. .

. .°| B /i"
IV-5.1. Operators ‘ e /

The Assembler accepts the following operators :
“Minus" unary operator (example : -3)
Subtraction operator (example : A-3)

+ Addition operator

Wt:n the unary minus operator is followed by a constant, the Assembler generates the latter in pure binary
two': complement form.

iV -5.2 Expression evaluation

Two kinds of expressions are to be considered :

~ label expression : P
' Id
A svmbol identifying a specific memory location whose addres syne value of the label.

Sucn a symbol may be reduced to R special tharacter $ in whidh case it specifies the current location
counter value.

4057 U

- Predefined symbol :

A predefined symbol specifies no memory location; its value is absolute and defined by EQU pseudo-instruc-
tions preceding its utilization.

- (Forward) reference

A forward reference is a symbol which has not yet been defined. It may be defined later on either by a
label, or through an EQU or REF pseudo-instruction.

- Conventional representations :

Elements of assembly language syntax are represented by their denominator contained between square
brackets (e.g. : <expression>).

The definition is given as an identity relation the lefthand portion of which is the representation of the
n

elements to be defined. The identity symbol is ": : =" and the righthand portion specifies the various
compositions of the elements to be defined. When this portion contains several elements in succession, the
latters must appear in the same order. However, when such elements are separated by "slash marks" (/),
one must select one or the other.

Example 1 :
<ab> ::=-<value>/<value>

In this case, "ab" may be indentical with "-value" or "value".

ExcmEIe 2:

<value> ::= <term>/<value><sign><term>

In this case, "value" may be identical with "term" or "value" followed by "sign" followed by "term", This
is equivalent to the statement that "value" is a sequence of "term" separated by a "sign".

MITRAS | Version

<Term > :: = <constant>/<predefined symbol>

<Constant> :: = <integral decimal constant>/<integral hexadecimal constant>

< Label expression> :: =<label>/<label> <sign><term>

<Reference expression> :: = <reference>/<reference><sign> <term>

<Sign> 1:=+/ -

<Predefined expression> :: =< term>/-<term>/<label expression>

Predefined expressions are always computable by the Assembler. Some expressions may be computable at

linkage edition time only,

MITRAS 2 Version

<Constanf‘>b : : = <integral decimal constant>/< integral hexadecimal constant>

<Term> :: =<constant>/<predefined symbol>

<Displacement> :: =<label>-<label>

<Value> ::= <term>/<displacement>/<value>+<displacement>/<value><sign><term>
< Label expression> :: =<label>/<label><sign><value>

<Reference expression> :: =< reference>/<reference> <sign> <value>

<Predefined expression> :: = <value>/-<value>/<label expression>

<Expression> : same structure as for "predefined expression", but any label may be replaced by an address
reference,

4057 U

Predefined expressions are always computable by the Assembler. Some expressions may be computable at
linkage edition time only,

Remark :

A label may be reduced to the special character $ (current value of the location counter) but only as the
first term of an expression.

Example of such label expressions :

$+2 valid

2+$% invalid

Mmitra 15

5. Addressing modes

V-1. SYMBOLIC REPRESENTATION OF THE INSTRUCTIONS

V-1.1. Representation conventions

Hereafter the following representation conventions will be used :

_ - One of the terms between braces may be specified and excludes all others (possible terms are
. stacked vertically).

- [] The term between square brackets may be omitted being either optional or implicit.

The expression bounded by the end separator immediately preceding the ellipsis mark and the
associated begin separator may be repeated.

Exameles :
A
B [,D]
C

One term out of A, B and C must be specified, D is optional.
[A)
B

C

One term out of A, B and C must be specified, but A may be omitted when selected.

} A [,8]...,C £

D

The expression between braces may be repeated; in the first possible term, B element is optional but may
be repeated.

V-1.2. Instruction representation

All instructions are represented in accordance with the following format :

%=i b [,x]

@
[label] oOP

[#]
a# D X

4057 U

Wherein :
OP : Operation code

D : Displacement

.

Immediate addressing (parameter) operand value = displacement

a : Indirect addressing

7 : Relative addressing with respect to general base (CDS)
' X : Indexing

Remark :

For instructions or pseudo-instructions whose name has four characters, the first three only are used for
operation code recognition purpose.

V-2. ADDRESSING MODE REPRESENTATION

V-2.1. Addressing class

MITRA 15 addressing capabilities are adapted according to the various instruction operation codes.

Addressing functions may be classified into three main groups corresponding to three instruction classes :

o Class 0 instructions

These instructions control the following operations
- register load and store operations

- fixed-or floating-point arithmetic operations

- logical operations

- byte string operations

- comparaison

e Class 2 instructions

These are conditional or unconditional branch instructions.

s Class 1 instructions

- shift operations

- index operations

- base operations

~ section or supervisor calls
- input/outpuf operations

- register operations

~ interrupt and interrupt masking operations

These three groups make up a very comprehensive instruction set which will be discussed later on after a
brief description of addressing forms pertaining to each type.

4057 U

The following conventions are used in the dicussion :

L Local base

G General base

G' General base in slave mode or zero in master mode
X Index register

P Program base

D Displacement

() Contents of

® Class 0 addressing

Mode Assembly Addressed data Addre?sing
language function
Direct, Local IDENT Byte, word or double-word Y=(L)+D
DL located in the first 256 bytes
of the local segment.
Indirect, Local iy
L @ IDENT Byte, word or double-word Y=G'+((L)+D)
located anywhere and pointed
at through the local segment.
Indirect, Local, Indexed @ IDENT, X Element of a byte, word or Y=G'+((L)+D)+(X)
ILX double-word array located
anywhere and pointed at
through the local segment,
Direct, General # IDENT Byte, word or double-word Y=(G)+D
DG located in the first 256 bytes
of the common segment.
Indirect, General, Indexed . ##IDENT,X Element of an array pointed Y=(G)+((G)+D)+(X)
1IGX at through the common
segment,
Parameter or immediate =OPERAND A 1-byte operand is specified | (Y) =
P in the instruction. This byte Y = (P)
may be extended on the left
by 8 leading zeroes, if
required.,

4057 U

Example of class 0 addressing

Common segment

(G)
CSCAL INFO 6
CTAB ACTAB
ACTAB
INFO 5
INFO 5
Instruction Operand
LDA #CSCAL INFO 6
DLD a#CTAB, X | INFO 5

Local segment

(L)
SCAL INFO 1
ATAB
POINT APOINT
APOINT INFO 2
(X)
ATAB (X)
INFO 3
Instruction Operand
LDA SCAL INFO 1
LDA 3POINT INFO 2
LBR 9TAB, X INFO 3
Instruction Operand
LDA =INFO 4 | INFO 4

4057 U

m Class 1 addressing

This class includes :
- either instructions without actual operand, i.e. register contents swapping, section end, etc...

- or instructions whose operand is generally known (possibly through an unknown modifier) at programmation
time : shift, increment, index, etc.

The following modes are permitted :

Mode Assembly Operand Addrefsmg

Language function

Parameter or immediate =PARAM. Operand defined by displacement value (Y)=D

P Y=(P)

Parameter, Indexed =PARAM, X Operand defined by value plus X-register (Y)=D+(X)

PX contents, Y=(P)

Direct, Local IDENT Operand located in the first 256 bytes of Y=(L)+D

DL the local segment.

Remark 1 :

To simplify program writing, a number of symbolic instruction codes recognized by the Assembler specify
both the operation code and the displacement.

For example SRG, which is a register instruction, is specified through its displacement :

SRG =02 exchange A and E
SRG =04 A and X
SRG =06 E and X
SRG =1C -A—A

etc.

In actual practice, for the Assembler,

XAE is equivalent to SRG =02
XAX SRG =04
XEX SRG =06
CNA SRG = 1C
etc.

In cddition, MITRAS 2 Assembler recognizes 14 shift instruction mnemonics which specialize the two opera-
tion codes SHR and SHC.

4057 U

Examples :

SHR = &23 equivalent to SRCS = 3 (shift, right, circular, single)
SHR = &E8 equivalent to SRCD = 8 (shift, right, circular, double)
SHC = &0B equivalent to SLLD =11 (shift, left, logical, double)
SHC = &4E equivalent to SRLD =14 (shift, right, logical, double)
Remark 2 :

Instructions CLS and CSV may be used in two different ways :

a) The operand is a LPS name; the Assembler generates a blank word and the Linkage Editor determiaes,
one the one hand, if the instruction to be generated is a CLS or a CSV according to the section type
(monitor or user section) and, on the other hand, the corresponding section number.

This is the normal case wherein the user is not concerned with the section number.

b) The operand is not a LPS name. These instructions are treated as any class 1 instruction, the three
addressing modes being available.

Example for a program module

PROG CDS
RES 16
FIN
L1 LDS
FIN
P1 LPS L1
RTS
FIN P1
L2 LDS
FIN
P2 LPS L2
RTS
FIN P2
L3 LDS
FIN
P3 LPS L3
RTS
FIN P3
L4 LDS
RES 3
NUMSEC DATA 3
FIN
P4 LPS L4
DEB CLS S1 —Call S1
CLS =2 —»=Call S2
LDX =1 These utilizations require the knowledge
CLS =2, X |—==Call S3 of the section number in the program's PRT
CLS N UMSEC|——Call $3
Ccsv M:EXIT |—Call monitor
FIN DEB
END P4

Noie : CLS NUMSEC is not available with MITRAS 1.
V-6

4057 U

m Class 2 addressing

Normally, instructions pointed at by a branch instruction belong to the same section as the branch instruc-
tion. However program section length is unlimited.

Four addressing modes are permitted :

Mode Assembly Branch instruction Addrefsmg
language function

Relative downstream LABEL Any instruction within 512 bytes downstream | Y=(P)+2D
(plus) RP
Relative upstream LABEL Any instruction within 512 bytes upstream Y=(P)-2D
(minus) RM
Indirect, Local ALABEL Any instruction pointed at through the Y=G'+((L)+D)
IL local segment.
Indirect, General a744LABEL Any instruction pointed at through the Y=G'+((G)+D)
IG common segment,

In addition, an indexed unconditional branch instruction is also available. For indirect branch instructions,
the index is used for pre-indexation (more convenient for "Branch table" processing), contrary to data
indexation which is a post-indexation (more convenient for accessing element of an array).

Exomeles :

Program section

< Bl |BRU B2
—s-B0 | BAZ Bl
L .82 |BE aBL
- B3 | BOT a4BC
—=B4 | BRX aTB

B5 _—' -

Common Local
BL | pATA B3 .
l—=BC DATA B4
TB
A
(X)
J B5 .

4057 U

V=-2.2, Permitted expressions

e Class 0

Predefined or reference expression

P : value

PX : value

DL : predefined or reference expression
o Class 2

RP : reference expression

RM : label expression

DL : predefined or reference expression

DG : predefined or reference expression

Mitra 15

6. Pseudo-instructions

VI-1. SOURCE TEXT SEGMENTATION

Vi-1.1, General
The source text is translated by the Assembler into an object module in "relocatable binary" format (RB).
The Assembler can only satisfy the reterences to symbols of the assembled source text.

The Assembled modules are converted by the Linkage Editor into a complete program represented by a
"relocatable memory image" (RMI1). All external references (section names) between program modules are
then satisfied.

The RMI is loaded into core by the Loader starting from a general base address G which is only defined at
loading time.

VI-1.2. Source text

The source text is the assembly unit. It comprises one or several segments and must be terminated by an
END pseudo=-instruction.

Source Source
Module Module
MITRAS MITRAS
Iorll 1 or2

4
+ ! +

Assembly RB RB Assembly
_“f— MOdUIG Module -y—'
Linkage RB 'POdeIe
editor copied in the
library
RMI
program

Vi-1

4057 U

VI-1.3. Common data section

If the assembly module is to include an actual or dummy common data section (CDS), the latter must always
be declared before any other segment of the assembly module.

VI-1.4. Sections
Every section must include an executable local program segment (LPS) which defines the section. A local
data segment (LDS) is normally associated with a LPS,

When such a LDS is actually defined in the same module as the LPS, it must precede the latter in the source
text. Several LPS may be associated with a single LDS and the number of sections is equal to the number of
LPS.

VI-1.5. ldentifier scopes

Identifiers may be classified into internal labels defined within the assembly module, and external labels
declared through DEF and REF pseudo-instructions.

B |nternal labels

e Labels defined in the CDS

These labels are defined for the whole assembly module and may be referenced from any segment. However,
they connot be redefined as local labels without causing a "double definition" error.

e Labels defined ina LDS

These labels are defined until the appearance of another LDS pseudo-instruction.

They may be referenced from the CDS, from the LDS itself and from any LPS following the LDS in which the
label is defined, up to a new LDS.

o Labels defined in a LPS

They may be referenced from LPS itself, from the CDS or from the associated LDS (which normally precedes
the LPS).

m External labels

A label is said to be "external" when it has a meaning outside the assembly module in which it has been
defined (where it appears in label field).

Thus, being known at linkage edition time, it provides a convenient link to other modules without resorting
to a CDS (actual or dummy) or to a Call Section.

A label is external when declared through a DEF pseudo-instruction which must appear in the segment in
which the label has been defined.

The external label may be referenced in another module provided that it is declared in the latter module
through a REF pseudo-instruction. The REF pseudo-instruction must appear in the segment where the external
label is used.

The "external" status does not modify the notions of "common" or "local" labels, for the Assembler.

When a label belonging to the CDS is to be declared in a REF pseudo-instruction, it must be preceded by
a "/#" special character.

Vi-2

4057 U

ExamEIe :
REF #LAB1, #LAB2, #LAB3

Do not confuse external labels and segment names, The latters, though known outside the assembly module
at linkage edition time, are only accessible through Call Section or Call Supervisor.

Exumele s

PROG CDS
DEF ETIQO
RES 16
ETIQO DATA 1
FIN
LDS1 LDS
RES 8
DEF ETIQI
REF ETIQ3
ETIQ1 DATA 2
DATA ETIQ3
FIN
LPS1 LPS LDS1
REF ETIQ2
Z LDA ETIQ2
FIN A
END
LDS2 LDS’
REF ETIQ1
REF AETIQO0
X DATA ETIQ1
ETIQ2 DATA 0
ETIQ3 DATA 4
FIN
LPS2 LPS LDS2
Y LDA AETIQO0
STA X
LDA ETIQ1
FIN X
Remark :

It is important to remember that, for local external labels, the displacement is generated relative to the
LDS of the section containing the corresponding DEF but used relative to the LDS of the section containing
the corresponding REF.

VIi-1.6. Location counter

The location counter contents is a byte address with a maximum value of 2'® -1 =65 535.
The location counter is symbolically represented by the special character "$".

This counter is reset to zero at every segment declaration, so that all references calculated at assembly
time are always relative to the starting address of the declared segment.

4057 U

VI-1.7. Segmentation pseudo-instructions

These pseudo-instructions define the assembly module structure in terms of sections and segments.
They are :

- Common data section : CDS

- Local data segment : LDS

- Indirect data segment : IDS

- Executable local program segment : LPS
~ End of segment : FIN
- End of module : END

Every segment opened by a segmentation pseudo-instruction must conclude with a FIN pseudo-instruction.

® CDS/FIN pseudo=-instruction

This pseudo-instruction identifies the common data section CDS.

Format :
Label Command Argument
<Name> CDS (bum]
[<label>] FIN
Result :

- The location counter is reset.
- All labels may be referenced form the module declared sections.

- |f DUM option is specified, no code is generated and the section is dummy.

m LDS/FIN pseudo-instruction

This pseudo-instruction identifies a local data segment LDS.

- The location counter is reset,

Format :
Label Command Argument
<Name> LDS [pum]
[<labels] FIN
Result :

- "Name" defined in label field is an implicit external definition.

- If DUM option is specified, no code is generated and the segment is dummy.

Vi-4

e 060600 e 8 ec0 00000000

s e 0 00

4057 U

m IDS/FIN pseudo-instruction

This pseudo-instruction identifies an indirect access data segment within a LDS or CDS. This segment is
such that any label located between the IDS pseudo-instruction and the associated FIN pseudo-instruction
is defined in relative value within the declared indirect segment.

Format :
!
Label Command Argument
<Name> IDS [oum]
[<label>] FIN
Result :

- The location counter is reset, but its current value is saved.

When the indirect segment IDS has been terminated by a FIN pseudo-instruction, the location counter is
restored to its previous value incremented by its current relative value (zero if the IDS is dummy).

- If the DUM option is used, no code is generated and the segment is dummy.
- A label defined in an IDS pseudo-instruction is treated as a normal LDS label for an actual IDS, orasa

zero value for a dummy IDS.

m LPS/FIN pseudo-instruction

This pseudo-instruction identifies an executable program segment LPS and thus a program section.

Format :
Label Command Argument
<Name-1> LPS <Name=-2>
[<|abe|>] FIN <label-2>
Result :

- The location counter is reset.

- <Name-1> identifies the LPS and the section; this is an external implicit definition.
The name referenced in a CALL SECTION is the corresponding external implicit reference.
- <label-2> is the effective starting address for section execution.

- <Name-2> references the associated LDS.

4057 U

m END pseudo-instruction

This pseudo-instruction marks the end of an assembly module.

Format :

Label Command Argument

[<Label>) END [<Section name>])

Result :
~ The assembly of the module is terminated.

- <section name> specified in argument field defines the first section executed after program loading. This
label constitues an implicit external reference.

- At linkage edition time, only one END pseudo-instruction may be encountered and its argument field
must declare a section name.

® Processing of %EOD

It should be noted that the Assembler's symbolic input file is a source file terminated by a standard end-of-
file record (%EOD).

This file end marker is not strictly necessary for program end recognition, however the absence of %EOD
will cause an undetermined operation sequence, particularly under linking module control.

An %EOD record detected before an END pseudo-instruction (i.e. in the course of a program) is indicated
by a third level error causing immediate assembly abortion.

VI-2, ASSEMBLY PSEUDO-INSTRUCTIONS

These statements are used either to direct common or local data assembly or executable program segment
assembly.

Assembly pseudo-instructions are classified as follows :

Pseudo-instruction Data Program
Segment Segment
1. Addressing
RES X X
BND X
BASE X
2. Symbol definition
EQU X X
3. Assembly control
GOTO X X
Do X
PAGE X

4057 U

Pseudo-instruction Data Program
Segment Segment
4. Data generation
DATA X
TEXT X
GEN X X
5. External definition identification
DEF X X
REF X X

VI-2.1. Assembly of a data segment

B Addressing statements

e RES pseudo-instruction

Reservation of a memory area.

Format :
Label Command Argument
[<Label>] RES [,1] <Value>
TOTO RES 3
RES, 1 5
Result :

- The [,1] option specified in the command field, indicates that the reservation unit is the byte, other-

wise it is the word.

- If the selected unit is the word, the location counter is first advanced to the word boundary.

- The value which is assigned to the symbol defined in label field points at the first address of the reserved

area,

o BND pseudo-instruction

The location counter is advanced to a word boundary.

Format :
Label Command Argument
[<Label>] BND
TOTO BND

4057 U

Result :

The location counter is advanced to an even value, i.e. a word boundary.

m Symbol definition statement : EQU pseudo-instruction

Format :
Label Command Argument
Name EQU <predefined expression>
/" <character>"
/" <character> <character>"
ZON RES 4
TOTO EQU ZON
TATA EQU ZON+2
TUTU EQU 5
TITI EQU "AB"
Result :

- An expression specified an argument field defines the symbol which is declared in label field. No forward
reference is allowed in the expression.

- One or two alphanumeric characters between quotes (") may appear in argument field.
- The $ symbol representing the current value of the location counter is allowed in argument field,
- Any symbol specified in label field of an EQU pseudo-instruction cannot be redefined.

- No string is allowed with MITRAS I,

m Assembly control statements

e GOTO pseudo-instruction

Format :
Label Command Argument
<Label> GOTO ,k |[<label 1>,
<label 2>,
<label n>
TOTO GOTO ,2 BR1,BR2,BR3,...,BRn
NN EQU2
TATA GOTO,NN |BR1,BR2,BR3

4057 U

Result :

- The assembler jumps to the source line whose label field contains the K label declared in argument field
of the GOTO pseudo-instruction.

- K is a "value" type expression (see page |V-6 and |V-7) which may be calculated when the GOTO
pseudo-instruction is processed.

- All labels declared in argument field must refer to source lines following the GOTO pseudo-instruction.

- When K is not comprised between 1 and n, an error message is edited and assembly is resumed at the line
following the GOTO pseudo-instruction.

- If an END pseudo-instruction appears before the selected label is reached, the assembly process is inter-
rupted and an error message is issued,

e DO pseudo-instruction

Iterative assembly of an instruction.

Format :
Label Command Argument
[<Label>] bo <value>
TOTO DO 7
DATA &78A2
Result :

- The absolute expression declared in argument field must be computable and provides an integral value
less than 128 representing the number of iterative assemblies of the next line in sequence.

- The iteration index is symbolically represented by the special character "%" and may be included in the
line to be assembled. At each iteration step it is replaced by the iteration counter contents.

- The iteration counter is initially set to 1 during the first loop.

- When the iteration is over, the assembly process is normally resumed at the second line after the DO
pseudo=-instruction,

- If the absolute expression is negative or zero, or if it is not computable (in the second case, an error
message is issued), the Assembler directly steps to the second line after the DO pseudo-instruction.

~ When a label is specified in label field, it is associated with the first generated byte.

m Data and text generation statements

o DATA pseudo-instruction

Data generation.

Format +
Label Command | Argument
[<Label>] DATA (1] [#] <exp 1> [,[#)<exp2>]...
TOTO DATA ETIQT,#ETIQ2,ETIQI-ETIQ2, 3, &8AF2
DATA,1 7,88E, 5+4

4057 U

Result :
- A DATA pseudo-instruction generates data items having the values of "i-expressions",

- An "i-expression" is an expression as defined in IV-5.2, or a string of 1 or 2 characters. (The string is
not allowed with MITRAS 1).

- Every generated data item is right justified on one or two bytes, according to the selection or omission
of [,1] option in command field.

- When a label is specified in label field, it is associated with the first generated byte.

- If <exp 1> is preceded by a #¢ symbol, the corresponding expression must be left relative to G during a
master mode loading.

Remark :

Under MITRAS 2, operational labels (standard and user's) are common explicit symbols. Thus, an operation-
al label may be specified in an 1/O control block just by writing :

DATA,1 M:BI
in the case of M:Bl operational label.

Under MITRAS | the operational number must be either specified directly or defined through an EQU pseudo-
instruction.

For further information on operational labels, see chapter 8 "Input/Output control system",

Examele :

MITRAS 2
CDS
FIN

LDS1 LDS

CB DATA 0
DATA,1 &80
DATA,1 M:EO
DATA # STRING
DATA 8

STRING TEXT "WRITING"
FIN

LPS1 LPS LDS1

DEB LEA CB
Ccsv M:10
LEA CB
Ccsv M:WAIT
Ccsv M:EXIT
FIN DEB
END LPST

END OF FILE

VI-10

4057 U

MITRAS 1
CDS CDS
. M:EO EQU 6
FIN FIN
LDS1 LDS LDS1 LDS
CB DATA 0 CB DATA 0
DATA,1 &80 DATA,1 &80
DATA,1 6 DATA,1 M:EO
DATA # STRING DATA # STRING
DATA 8 DATA 8
STRING TEXT "WRITING" STRING TEXT "WRITING"
FIN FIN
LPSI1 LPS LDS1 LPS1 LPS LDS1
DEB LEA CB DEB LEA CB
csv M:10 csv M:10
LEA CB LEA CB
Csv M:WAIT Ccsv M:WAIT
csv M:EXIT Ccsv M:EXIT
FIN DEB FIN DEB
END LPS1 END LPS1
END OF FILE END OF FILE
¢ GEN pseudo-instruction
Value generation
Format :
Label Command Argument
[<che|>] GEN, area list Expression list
GEN,4,2,2 7,1,1
TOTO GEN,1,1,3,8,2,1 0,1,2,&F2,3,1
Result :

- The GEN pseudo-instruction generates a byte or word having a specific binary configuration.

- "Area list" is a sequence of term-type expressions each specifying the length (in bits) of an area to be

generated. The generated areas must have a total length of 8 or 16 bits, and no zero-length area is

allowed.

- "Expression list" a sequence of expressions of the same type as those which are defined by a DATA pseudo-

instruction, defining the contents of every generated area. At assembly time, the listed values are inserted

in the corresponding areas on a rank basis from left to right (first value in first area, and so on).

All values are right justified in their respective areas. The first area contains the most signifiant value.

The items of area list and expression list are separated by commas.

4057 U

o TEXT pseudo-instruction

Generation of a character string.

Format :
Label Command Argument
[<Label>] TEXT " <character string>"
TOTO TEXT "CHARACTER STRING"
Result :

- The character string is assemblied in EBCDIC format in an area beginning at the current address of loca-
tion counter and ending at an address corresponding to the last generated character.

- The first character of the string is storéd in the first byte of the area, and so on,

- If a label is specified in label field, it is associated with the first generated byte.

o DEF pseudo-instruction

Format :
Label Command Argument
[<Labe|-l>] DEF <Llabel-2>,.
DEF ETIQ
Result :

- Labels are declared as external definitions.
- Labels are defined in the current section.

- A label must be declared as external definition prior to being used in the section.

o REF pseudo-instruction

Format :
Label Command Argument
[<Label>] REF [#] <Label>..
ETIQ1 REF ETIQT
REF # ETIQ2
Result :

- Labels are declared as external definitions.

- The labels must be defined prior to being used in the current section and will be defined later on at assem-
bly time.

VI-12

4057 U

- A label belonging to the CDS must be preceded by the symbol # .

VI-2.2. Program segment assembly

m Addressing statements

e RES pseudo-instruction

Reservation of @ memory area (see section VI-2.1, page VI-7).

o BASE pseudo-instruction

Directs relative addressing.

Format :
Label Command Argument
[<Label>] BASE [<Label>]
ETIQ BASE
ETIQ1 BASE ETIQ2
Result :

- The label declared in argument field is a LDS label.

- All LDS labels referenced in the program segment between two BASE pseudo-instructions are generated
inrelative value with respect to the address specified in argument field.

- A BASE pseudo-instruction without label declaration in argument field simply terminates the relative
addressing specified by the preceding BASE pseudo-instruction.

- A new relative addressing requires another BASE pseudo-instruction with a label declaration in argument
field.

- A BASE pseudo-instruction with label declaration in argument field terminates the relative addressing of
the preceding BASE pseudo-instruction and opens a relative addressing on the new label declared in argu-
ment field.

- A BASE pseudo-instruction with label declaration is closed either by a new BASE pseudo-instruction or
by a FIN pseudo-instruction which terminates the assembly of the program segment.

m Symbol definition statement : EQU pseudo=-instruction

See section VI-2,1, page VI-7.

B Assembly control statements

¢ GOTO pseudo=instruction

Conditional assembly branch (see section VI-2.1. page VI-8).

VI-13

“ e e s e s

4057 U

B Instruction generation statements

e GEN pseudo-instruction

Generates a value. (See section VI-2.1, page VI-11).

This pseudo-instruction used in an executable program area allows to generates non-standard instructions
specific to a special configuration.

If, after GEN pseudo-instruction, the incremented location counter is not on a word boundary (generation
of an odd number of bytes), the Assembler signals an error, generates a zero value byte and steps the
location counter by one unit.

® External definition identification statements

o DEF pseudo-instruction

See section VI-2.1. page VI-12.

e REF pseudo-instruction

See section VI-2,1, page VI-12.

V1-3. PAGE PSEUDO-INSTRUCTION

This pseudo-instruction asks for printing the assembly listing on the next page, when the output device is
a printer.

Format :
Label Command Argument
[<Label>] PAGE
ETIQ PAGE

VI-i4

mitra 15

VII-1. GENERAL

7. Instructions

This chapter describes MITRA 15's instruction set which is divided into eleven functional categories :

- Load and store instructions

- Fixed-point arithmetic operations

- Logical operations
- Register incrementation

- Shift operations

- Inter-register operations (SRG or set register)

- Floating-point arithmetic operations

Branch instructions

- System communication instructions

Control instructions

String processing instructions

In addition, every instruction has three fundamental attributes :

« Class : indicating the permitted addressing modes and thus the exact meaning of the calculated address

in each case.

Class Permitted addressing modes
0 DL Direct, Local
P Parameter
DG Direct, General
IL Indirect, Local
1IGX Indirect, General, Indexed
ILX Indirect, Local, Indexed
0' DL Direct, Local
DG Direct, General
IL Indirect, Local
IGX Indirect, General, Indexed
ILX Indirect, Local, Indexed
1 DL Direct, Local
PX Parameter, Indexed
P Parameter

VIl-1

4057 U

Class Permitted addressing modes
2 RP Relative, Plus
RM Relative, Minus
IL Indirect, Local
1G Indirect, General

The functions of these addressing modes are described in chapter V.,

However, as regards addressing a few instructions have a particular behavior which will be described
individually. These instructions are BRX and TES.

e Mode : indicates the operational mode(s) of the CPU in which the instruction may be executed. A so-
called "priviledged" instruction is executable in master mode only. These instructions give rise to an addi-
tional trap condition : "mode violation".

o Option. Some "optional" instructions are not standard on all CPUs. They give rise to an additional trap
condition : "non-implemented instruction".

However SHC, DIV, FAD, FSU, FMU and FDV may be simulated by a special monitor module (TRAP modu-
le).

VI1-2. SYMBOLIC NOTATIONS

B Used in instruction function description

A Accumulator register

(Z) Logical complement of A
Ag-7 Most signifiant byte of A
Ag_is Least signifiant byte of A
C Carry indicator

D Displacement value (rightmost byte in the instruction format extended to the left by a zero value
byte). Thus :

XXXXXXXXYYYYYYYY - Instruction

00000000yyyyyyyy <—— Displacement

E Accumulator extension register
E, A Extended accumulator : juxtaposition of E and A in this order. Most signifiant word in E.
G General base value
G [n Master mode G'=G
In Slave mode G =0
L Local base value
MA Interrupt mask indicator
MS Mode indicator (Master/Slave)
N Calculated operand (Contents of Y-address word)

Nji-15 Contents of bits 11-15 of calculated operand

VIl-2

4057 U

0] Overflow indicator

P Program base value

PR Memory protection indicator

Rn n-number general register

X Index register

Y Calculated memory address (Displacement value processed according to addressing mode function)
Y, Word address corresponding to y

IfY is even: Y=Y
If Y is odd : Yo =Y -1

a Current rank in a byte or word string processed by an instruction; the first byte or word in the
string is rank zero.

bp Protection bit
r Contents of R-register
rn Contents of Rn-register
y Y -address byte
Y2 Y, -address word
() Contents of ... E.g. vy, =(Y7)
N =(Y;)
— Replaces
-— Exchanged
Vod Altered but non-signifiant
@ Exclusive OR
A Logical AND
v Logical OR

B Used in examples

The purpose of this chapter is to familiarize the user with assembly language writing, thus with every ins-
truction examples are given to show various possibilities which will enable him to program without a comple-
te knowledge of Assembler capabilities.

The following conventions will be used in order to simplify example representation :

Identifiers include four letters followed by a serial number. These letters have the following meaning :

1st letter
2nd letter
3rd letter

4th letter

ExamEIe :

—0O v P»>UYW uvm

|
|
|
|

Label
Symbol (defined through an EQU pseudo-instruction)

Predefined
Anticipated

Defined in a data segment
Defined in a program segment

Common
Local

EPDC27 denotes a predefined label of the common data.

VII-3

4057 U

Thus all examples are written relatively to a CDS and a LDS having the following form :

EXEMPL CDS

EPDCI DATA 7
EPDC2 DATA EPDCI
EPDC3 DATA EPDC4
EPDC4 RES 20
EPDC5 DATA, 1 &FF,00
EPDC6 DATA EPDC5
EPDC7 DATA EPDC8
EPDCS RES, 1 10
EPDCY DATA "AB"
DATA "CD"
EPDCIO DATA EPDC9
EPDCII DATA 6
EPDC12 DATA 382
EPDCI3 DATA EPPL2
EPDCI14 DATA EPPL3
EPDCI5 DATA EPPLI
DATA EPPL2
DATA EPPL3
DATA EPPL4
EPDC16 TEXT "ABCDEFGHIJ"
EPDCI17 DATA EPDC16
EPDC18 DATA, 1 nA"
DATA, 1 ngw
DATA, 1 ny
EPDC19 DATA EPDCI8
EPDC20 DATA EPDC21
DATA EPDC21 +2
DATA EPDC21 + 4
EPDC21 DATA 3
DATA 4
DATA 5
EPDC22 DATA EPDC23
DATA EPDC23 + 2
DATA EPDC23 + 4
DATA EPDC23 + 6
DATA EPDC23 + 8
EPDC23 RES 10
EPDC24 DATA EPDC25
DATA EPDC25 + 1
DATA EPDC25 + 2
DATA EPDC25 + 3
EPDC25 RES, 1 5
EPDC26 DATA &30A2
DATA &4008B
DATA &40FA
DATA &BFO1
EPDC27 DATA EPD26
DATA EPDC26 + 4
EPDC28 RES 5
EPDC29 DATA EPDC28
SPDC] EQU EPDLI
SPDC2 EQU 3

Vil-4 X

4057 U

SPDC3
SPDC4

LDS1

EPDLI
EPDL2
EPDL3
EPDL4
EPDLS
EPDLS
EPDL7
EPDLS
EPDL?

EPDL1O
EPDLI11
EPDLI12
EPDLI3
EPDL14
EPDL15

EPDL16
EPDL17
EPDL1S8

EPDLI?
EPDL20

EPDL22

EPDL23
EPDL24

EPDL25
EPDL26

EPPL27

EQU
EQU
FIN

LDS

DATA
DATA
DATA
RES
DATA,1
DATA
DATA
RES,1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
TEXT
DATA
DATA,1
DATA,1
DATA,1
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
RES
DATA
DATA
DATA
DATA
RES,1
DATA
DATA
DATA
DATA
DATA
DATA

SPL2
EPDL14

7
EPPL1
EPDL4
20
&FF,00
EPDL5
EPDL6
10
IIAB n
IICDII
EPDLY
6

&82
EPPL2
EPPL3
EPPLI
EPPL2
EPPL3
EPPL4

"ABCDEFGHIJ"

EPDL16
IIAII

IIEII

llx"
EPDL18
EPDL21
EPDL2Y +2
EPDL21 + 4
3

4

5

EPDL23
EPDL23 + 2
EPDL23 + 4
EPDL23 + 6
EPDL23 +8
10

EPDL25
EPDL25 + 1
EPDL25 + 2
EPDL25 + 3
5

&30A2
&400B
&40FA
&BFO1
EPPL26
EPPL26 + 4

VIil-5

4057 U

EPDL28 RES 5
EPDL29 DATA EPDL28
SPDLI EQU EPDLI
SPDL2 EQU 3
SPDL3 EQU SPDL2
SPDL4 EQU EPDL14
FIN
LPS1 LPS LDSI1

Instructions

FIN EPPLI
END LPS1

ViI-3. LOAD AND STORE INSTRUCTIONS

VIi1-3.1. Introduction

Tha following table contains the load and store instruction which are individually described hereafter.

Byte Word Double word

Load Store Load Store Load Store

Data LBL SBL LDA STA DLD DST
LBR SBR LDE STE
LBX LDX STX
LDR STR
Address LEA SPA
Selective STS

VI1I-3.2., Description

These instructions are described in the following order :

LBL Load Byte Left in A
SBL Store Byte Left in A
Byte LBR Load Byte Right in A
SBR Store Byte Right in A
LBX Load Byte right in X
LDA LoaD A
STA STore A
LDE LoaD E
STE STore E
Word LDX LoaD X
STX STore X
LDR LoaD Register
STR STore Register
\ LEA Load Effective Address

Vil-4

4057 U

Word

Double word

SPA
STS

DLD
DST

Store Program Address
STore Selective in A

Double LoaD of E, A extended accumulator
Double STore of E, A extended accumulator

Vil-7

4057 U

NAME : Load Byte Left in A LBL

Class : 0 Non-priviledged Standard

Instruction format :
Address Displacement

S OEEN

Addressing mode | Hexadecimal code | Execution time (us)
DL 0D 2,6
P 2D 3
DG 4D 2,6
IL 6D 3,6
1IGX 8D 3,6
ILX AD 3,6

Function: y — (Ag_,)
(Aa-ls) unaffected

Y -address operand loaded in leftmost byte of A-register.
Rightmost byte of A-register unaffected.

Modified elen
- Registe A0_7
- Mem y locaﬁons
- Indic : C-0O
Indicators :
C ®) Upon execution
0 0 (A) > 0
0 1 (A) <0
1 0 (A) = 0

Trap conditions : standard

Examples :

LEL EPDLT +1
LBL =0

LBL # EPDCI
LBL 3 EPDLé6

LBL 8 # EPDC7,x
LBL ?a EPDL7,x

Vil-8

NAME : Store Byte Left in A SBL
Class : 0' Non-pr iviledged Standard

Instruction format :

eeeeeeeeeeeeeeeee

A d adec | code | Execution time (vs)
DL 14 2,5
DG 54 2,5
4 3,5
1IGX 94 3,5
ILX B4 3,5
FFFFF ion: (Ag-7) —
(A) unaff d
Leftmost byte of A-r d at Y-add
Modified el ts :
- Memory | i
Trap conditi dard
ExamEles :
SBL EPDLS
SBL # EPDC8 +3
SBL aEPDL24
SBL a7 EPDC24,x
SBL AEPDL24,x

VIi-9

4057 U

NAME : Load Byte Right in A LBR

Class : 0 Non-priviledged Standard

Instruction format :

Addressing mode| Hexadecimal code | Execution time (ps)
DL OE 2,6
P 2E 3
DG 4E 2,6
IL 6E 3,6
IGX 8E 3,6
ILX AE 3,6
Functi Ly — (AB-]S)
0 (Ap-7)
Y-add operand loaded by fA
eftmost byte of A-regist | d
Modified elements :
~ Regi : A
- Me locations
- Indi s: C-0O
indica :
C 0] Upon execution
0 0 (A) 0
1 0 (A) 0
Trap ¢ dard
amp
LBR SPDL4
LBR =SPDL2
LBR # EPDCI
LRR AEPDLéS
LBR a# EPDC7,x
BR aEPDLY, x

VII-14

4057 U

NAME : Store Byte Right in A SBR

Class : 0' Non-priviledged ~~ Stan dard

| uction format :

eeeeeeeeeee

Addressing mode | Hexadecimal code |Execution time (ws)
15 2,5
DG 55 2,5
75 3,5
IGX 95 3,5
ILX B5 3,5
Function: (Ag_15) —e
(A) unaff d
Rightmost byte of A-r d dd
Modified el ts :
- Memory | Ty
Trap conditi ndard
Examples :
SBR EPDL8 + 3
SBR 7 EPDC8
SBR aEPDL
SBR a % EPDC24,x

SBR 37 EPDL24,x

4057 U

NAME : Load Byte Right in X LBX

C 0] Upon executi
0 0 (X) 0
1 0 (X) 0

Trap conditi dard

Examples :

LBX EPDL5S

LBX =]

LBX 7 EPDC5

LBX AEPDL6

LBX a=EPDC7,x

LBX 8EPDL7, x

4057 U

NAME : LoaD A LDA
_ Dmmm

4057 U

NAME : STore A STA

Class : 0' Non-pr iviledged Standard

Instruction format :

Addressing mode | Hexadecimal code | Execut ion time (ps)
L 2,2
DG
IL 71 3,2
IGX 91 3,2
ILX Bl 3,2
nction : (A) —
(A) unaffected
A-register cont red at Y.
Modified el
- Memory | 1y,
Trap cond ndard
ples
STA EPDL23 + 4
STA # EPDC23
A I EPDL3
STA @ # EPDC
STA a EPDL22

4057 U

NAME : LoaD E LDE

Class : 0 Non-pr iviledged Standard

eeeeeeeeeee

Add d adec | code | Execut ion time (us)
01 2,3
21 2,5
G 41 2,3
L 61 3,4
GX 81 3
X Al 3
Functio Y, — (E)
Y, -add erand load
Modified element
- Regi E
- Me locatio
- Indi : C-0
Indica .
C (@] Upon execution
0 0 (E) 0
0 (E) 0
1 0 (E) 0
Trap conditi dard
ExomEIes :
LDE SPDLI
LDE =&FF
LDE # SPDC1
LDE JEPDL3
LDE 3% EPDC3, x
LDE JEPDL3, x

4057 U

NAME :

STore E

Class : 0'

ttttttttt

n format :
SS

Non-privi

ledge

d

Displacement

1l 5SS

14 15

Hexadecima

| code

Execution t ime (ps)

12
52

B2

Addressing mode

DL
DG
IGX
ILX

Function : (E) — Y,

(E) unaffe

E-register contents st tY, -

Modified ele :

- Memory loc

Trap conditio

Examples :

STE EPDL4

STE AEPDC4 + 2

STE AEPDL3

STE 27 EPDC22

STE @ EPDL22,x

VIl-16

STE

Standard

4057 U

NAME : LoaD X

Class : 0

dddddd

Non-priviledged

isplacement

b e

10

12 13 14 15

LDX

Addressing mode | Hexadecimal code | Execut ion time (us)
DL 02 2,3
P 22 2,5
DG 42 .3
IL 62 3,4
IGX 82 3,4
ILX A2 3,4
C (@) Upon execution
0 0 (X) 0
0 1 (X) 0
1 0 (X) 0
dard
EPDL2
=4
FAEPDCI
?EPDL3
3% EPDC3, x
3EPDL3, x

Vil-17

NAME : STore X STX
Class : 0' Non-pr iviledged Standard

Instruction format :

Addressing mode Hexadecimal code | Execut ion time (us)
DL 13 2,2
DG 3
L 73 3,2
1GX 93 3,2
ILX A3 3,2
Funct : (X)) —
(X) un d
X-register cont t Yy - I
Modified el
- Memory |
Trap conditi d
ples :
PDL23 +
S 7# EPDC23
TX EPDL22
7# EPDC22
PDL22,x

4057 U

NAME : LoaD Register LDR
____ I

4057 U

NAME : STore Register

Class : 1

Instruction format :
Add

eeeeee

Addressing mode exadecimal code | Execution time (ps)
DL 3A 4
PX EA 4
P FA 4
Function : (A) — (Rn)
(A) unaffected
with n = (Y)

A-register contents stored in n-register (n = register no.).

Modified elements :

- Standard and mode violation

Miscellaneous :

This instruction is executable in master mode only since it alters the contents of a given re

ly 1/O registers). Normally reserved for monitor or operating system use.

ExamEIes :

STR EPDLI
STR =2,x
STR =4

VI1-20

STR

Standard

gister (specifical-

4057 U

NAME : Load Effective Address LEA
Class : 0 Non-priviledged Standard

Instruction format :

Address Displacement

— BT

~—~——

Master Slave
mode mode

Function: Y - (G) — A

G-register contents subtracted from computed address. Result, representing the actual address, stored in
A-register,

‘Modified elements :

- Registers : A
Trap conditions : standard

Examples :

LEA EPDC7

LEA =&2F

LEA # EPDLI1I

LEA JEPDC2

LEA 374 EPDC22,x
LEA 3EPDL22

Vii-21

4057 U

NAME : Store Program Address

Class : 0'

Instruction format :
Address

Non-priviledged

Displacement

> AN

Function: (P) +G'— v,

SPA

Standard

This instruction is normally followed by an indirect branch to a sub-routine. Therefore, the current address

incremented by four (P-register contents + 4) is stored in A-register.

routine return address,

Modified elements :

- Registers
- Memory locations : y,
- Indicators
Trap conditions : standard
Examples :

Return
SPA EPDL28
BRU) BRU JEPDL28
SPA 7 EPDC28
BRU a BRU 974 EPDC28
SPA JEPDL29
BRU 0] > BRU @ EPDL29
SPA 3 % EPDC29,x
BRU @ = BRU a # EPDC29
SPA AEPDL29, x
BRU Q ~ BRU 3EPDL29

Vil-22

This new address is generally the sub-

4057 U

NAME : STore Selective in A STS
Class : 0' Non-priviledged Standard

Instruction format :

= [N

Functions : y, A () v (A) A (E) — Yy
(A) and (E) unaffected

The bits of A-register which correspond to set bits in E-register are stored into corresponding position of
yo memory address. Remaining bits of the memory word are not modified. Thus, for instance :

LOIOJILOIOIOIQLOIOIIlolololololol y2

(1,1,00,0,1,0,031,1,1,1,0,0 1 1 E Before execution

[0,1,1,1,0,1,1,000,0,1,1,1,1,0,1; A

[OLIII,O,OLILO,O|0,0|III,0,b,0,l| Yo Upon execution

Modified elements :

- Registers
- Memory locations : y,
- Indicators : C-O

Indicators :
C ©) Upon execution
0 0 Result > 0
0 1 Result < O
1 0 Result = 0

Trap conditions : standard

Examples :

STS EPDL4

STS # EPDC23

STS AEPDL3

STS 7% EPDC22,x

STS aEPDL22,x

VIl-23

4057 U

NAME : Double LoaD of A and E DLD

Class : 0' Non-priviledged Standard

Instruction format :
Add ress DIS Iacement

5

Addressing mode | Hexadecimal code| Execution time (ps)
DL 10 3,6
DG 50 3,6
IL 70 4,8
IGX 90 4,8
ILX BO 4,8

Function : (Y,) — (E)
(Y, +2) — (A)

E-register loaded with the contents of Y, memory address and A-register loaded with the contents of Y, +2
memory address.

Modified elements

- Registers : E-A
- Mem I atio
- Ind f : C- O
ndicators :
C o Upon execution
0 0 () >0
0 1 (E) < O
1 0 (E) = 0

Trap conditions : standard

Excmales :

DLD EPDL?

DLD 7# EPDC9
DLD JEPDLIO
DLD a# EPDC3,x
DLD AEPDL3, x

Vil-24

4057 U

NAME : Double STore of A and E DST
Class : 0' Non-priviledged Standard

Instruction format :

= [NNEN =5

Function : (E) —(Y,)
(A) -— (Y, +2)
(A) and (E) unaffected

E-register contents stored at Y, -memory address and A-register contents stored at Y2 + 2 memory address.

Modified elements :

- Registers
- Memory locations : (Y,) and (Y, +2)
- Indicators

Trap conditions : standard

Exameles :

DST EPDL4

DST 7 EPDC4

DST 2 EPDL3

DST ? # EPDC22,x
DST @ EPDL22,x

VIi-4, FIXED-POINT ARITHMETIC

VIl-4.1. Introduction
Operands are signed numbers on one or two words.

mantissa on 15 bits mantissa on 31 bits

| TS B S B S B | PN BT U IR BT R AN BT ES ST DS Er N AP S A RS |

Sign Sign
Negative numbers are represented by two's complement of their absolue value.

VIl-4.2, Description

Fixed-point arithmetic instructions perform the four operations and are described in the following order :

ADD ADDition in A MUL MULtiply integer
ADM ADd to Memory DIV DIVide integer
SUB. SUBtract

VII-25

4057 U

NAME : ADDition in A ADD

Class : 0 Non-priviledged Standard

Instruction format :
Add ess Displacement

Addressing mode | Hexadecimal code | Execution time ('ps)
DL 05 2,3
P 25 2,5
DG 45 2,3
IL 65 3,4
1IGX 85 3,4
ILX A5 3,4

Function: (A) +y, — (A)
Y2 -address operand added with A-register contents; result in A,
Modified elements :

- Registers : A
- Mem yl atio
- Indicators : C- O
Indicators :
C o Upon t
1 - Carry
1 Overflow
Trap conditio standard
Examples :
ADD EPDL12
ADD =122
ADD # EPDC12
ADD AEPDL2
ADD 374 EPDC20,x
ADD dEPDL20, x

VII-26

4057 U

NAME : ADd to Memory ADM

Class : 0' Non-priviledged Standard

Instruction format :

= DENEE -

Function: y, +(A) — Yz and A
A-register contents added to Y, -address contents; result in A and at Y, -address.

Modified elemen
- Registers : A
- Me locatio
- Indi : C-0
Indic
C 0] Upon execution
1 Car
1 Overflo
Trap conditi ndard
Exameles :
ADM EPDL4
ADM 7## EPDC4
ADM A EPDL3
ADM @ % EPDC20, x
ADM a2 EPDL20,x

VIi-27

4057 U

NAME : SUBtract in A SUB

VI1i-28

4057 U

NAME : MULtiply integer
Class : 0 Non-priviledged

Instruction format :

=a. e

Wired Micro-programmed

n = no. of set bits in multiplier

Function : (A) x Y, —(E,A)

Y, -address operand multiplied algebraically by A-register contents; result in E and A,
The most significant portion of the result is stored in E, the least significant in A

Modified elements :

- Registers : E-A
- Memory locations
- Indicators : C-O

Indicators :
C 0] Upon execution
0 0 E >0
0 1 E <O
1 0 E =0

Trap conditions : standard

ExamEIes :

MUL EPDLII

MUL =&2E

M UL # EPDCI
MUL AEPDL20
MUL a# EPDC20,x
MUL AEPDL20,x

MUL

Standard

VI1I1-29

4057 U

NAME : DIVide integer DlV

Class: 0 Non-priviledged Optional

Instruction format :

e B =

Wired Ricro-progrommed

n = no. of set bits in the quotient.

Function : (E,A) : Y, — (A)
remainder — E
Remainder sign same as dividend sign (except when zero, in which case the sign is +).

Extended accumulator contents (least significant portion of the dividend in A, most significant portign in
E) divided by Y, -address operand (divisor). Quotient in A, remainder in E.

The remainder is of the same sign as E-register initial contents, except when there is no remainder, in
which case the sign is +.

Modified elements :

- Registers : E-A (unaffected if divisor =0 or if an overflow occurs).
- Memory locations
- Indicators : C-O

Indicators :

C (0] Upon execution

1 Overflow or zero divisor

Trap conditions : standard and non-implemented instruction

Examples :

DIV EPDLI

DIV =5

DIV # EPDCI1
DIV aEPDL2

DIV a7£ EPDC20, x
DIV aEPDL20, x

V11-30

4057 U

VII-5. LOGICAL OPERATIONS

IOR Inclusive OR
EOR Exclusive OR
AND AND

CMP CoMPare

NAME : Inclusive OR

Class : 0

Instruction format :
Address

5

Non-priviledged

Displacement

8 9 10 1"

AN

12 13 14 15

Addressing mode

Hexadecimal code

Execution time (ps)

DL
P
DG
IL
IGX
ILX

07
27
47
67
87
A7

2,3
2,5
2,3
3,4
3,4
3,4

Function: (A) v y, —= (A)
Inclusive ORing between

Modified elements :

- Registers : A
- Memory locations
- Indicators : C-O

Indicators :

Y, -address operand and A-register contents; result in A,

C 0] Upon execution
0 0 (A) > 0
0 1 (A) < 0
1 0 (A) =0

Trap conditions : standard

ExomEIes :

IOR EPDL21

IRO =&01

IOR AEPDLY

IOR AEPDL20

IOR a## EPDC20, x
IOR dEPDL20,x

IOR

Standard

ViI-31

4057 U

NAME : Exclusive OR EOR

Class : 0 Non-priviledged Standard

Instruction format :
Addres: Displac m

Addressing mode| Hexadecimal code | Execution time (ps)
DL 03 2,3
P 23 2,5
DG 43 2,3
IL 63 3,4
IGX 83 3,4
ILX A3 3,4

Function: (A) @ y, —(A)
Exclusive ORing between Y, -address operand and A-register contents; result in A,
Modified elements :

- Registers : A
- Memory locations
- Indicators : C-O

Indicators :

C @) Upo t
0 0 (A) > 0
0 1 (A) < 0
1 0 (A) =0

Trap conditions : standard

Exameles :

EOR EPDL1

EOR =880

EOR 7# EPDCI

EOR AEPDL2

EOR 37 EPDC20,x
EOR aEPDL20

VIl-32

4057 U

NAME : Logical AND AND
Class : 0 Non-priviledged Standard
Instruction format :

Address Displacement

—

Addressing mode | Hexadecimal code | Execution time (us)
DL 09 2,3
P 29 2,5
DG 49 2,3
IiL 69 3,4
IGX 89 3,4
ILX A9 3,4

Function: (A) A y, — (A)
Logical ANDing (intersection) between Y, -address operand and A-register contents; result in A,
Modified elem

- Registers : A

- Mem y locations

- Indic s: C-0O

Indicators :

C 0] Upon execution
0 0 (A) > 0
0 1 (A) 0
1 0 (A) 0

Trap conditions : standard

Examples :

AND EPDLI

AND =&0F

AND # EPDCI
AND AEPDL20
AND a7 EPDC20,x
AND AEPDL20,x

VII-33

4057 U

NAME : CoMpare CMVP

Class : 0 Non-priviledged Standard

Instruction format :

_ D —

Function : Algebraic comparaison between (A) and Y,
Result in indicators

A-register contents compared to Y, -address operand; result of comparaison in Carry and Overflow indica-
tors.

A-register contents is treated as the first term of the comparaison, Y, -address operand as the second.

Modified elements :

- Indicators : C-O

Indicators :

C (@) Upon execution
0 0 (A) > Y
0 1 (A) <
1 0 (A) = %

Trap conditions : standard

fxameles :

CMP EPDLI

CMP =3

CMP #* EPDCI
CMP a EPDL2

CMP @ # EPDC20, x
CMP @ EPDL20, x

VIi-34

4057 U

VII-6. REGISTER INCREMENTATION AND DECREMENTATION

ICX
DCX
ICL
DCL

NAME :

Class : 1

InCrement X
DeCrement X
InCrement L

DeCrement L

InCrement X

ICX

Standard

Non-priviledged

Instruction format :

Address Displacement

S DEWEE e

n 12 13 14

Addressing mode

Hexadecimal code

Execution time

(ps)

DL
PX
p

32
E2
F2

2,2
2,2
2,2

Function : (X) +y, — (X)
X-register contents incremented by Y, -address operand; result in X-register.

Modified elements :

- Registers : X

- Indicators : C-O

Indicators :
C @) Upon execution
1 - Carry

1 Overflow
Trap conditions : standard
Examples :
ICX EPDLI
ICX =&1A,x
ICX =22
ICX =0,X X multiplied by 2.

VII-35

4057 U

NAME : DeCrement X DCX

Class : 1 Non-pr iviledged Standard

Instructi

eeeeeeeeeee

Addressing mode| Hexadecimal code | Execution time (ps)

Vil-36

4057 U

NAME : InCrement

Class :

Instruction

format :

Function :
L-register c
Modified el
- Registers
Trap condit
Examples :
ICL

ICL

ICL

NAME : DeCrement

Class :

Instruction

1

for

Func : (L)
L-re conten
Modi elemen
- Registers : L
Trap conditions :

eeeeeeeeeee

BE]
Addressing mode | Hexadecimal code |Execution time (ps)
DL 35 2,2
PX E5 2,2
P F5 2,2
— (L)
mented by Y; -add nd; |
ndard
EPDL5S
=50, x
=255
L
Non-privi ledged

lllllllllll

Addressing mode | Hexadecimal code | Execution time (ps)
DL 36 2,2
PX E6 2,2
P Fé6 2,2
— (L)
emented by Y, -address contents; result in L-register.

ICL

Standard

DCL

Standard

VII-37

4057 U

ExamEIes:

DCL EPDL5
DCL =5,x

DCL =&1F

VII-7. SHIFT OPERATIONS

VII-7.1. Introduction

There are two basic shift instructions : SHR (SHift Register) and SHC (SHift speCial). Both use a word
located at Y, memory address to specify the shift type and the number of shift steps.

Address Code Displacement
T T, N\t
| FET U U ST VT ST N AU TR W SR SRR

(P)-address word

\
W PRI BT RPR | Y, -address word

——
Shift No. of
type positions

In most cases, the addressing mode is parameter (immediate) and these two words are obviously identical,
For the sake of clarity, each instruction derived from SHR and SHC will be described separately.

Their mnemonics are recognized by MITRAS II.

Remark 1 :

A particular case of the SHC family, DITR, is not a shift instruction. Though mentionad with SHC derivates,
it will be fully described with system branch instructions.

Remark 2 :

"Direct, Local" addressing is only applicable to SHR and SHC themselves, since it is meaningless for their
derivates (SLLS..., SLLD...).

VIl-7.2. Description

SHR SHift Register
SLLS Shift Left Logical Single (A)
SRCS Shift Right Logical Single (A)
SAD Shift Arithmetic Double (E, A)
. SLCD Shift Left Circular Double (E, A)
SHR derivates ¢ ¢/ s Shift Left Circular Single (A)
SAS Shift Arithmetic Single (A)
SRLS Shift Right Logical Single (A)
SRCD Shift Right Circular Double (E, A)
SHC SHift speCial
SLLD Shift Left Logical Double (E, A)
. SRLD Shift Right Logical Double (E, A) "
d ’
SHC derivates | o1y compute PariTY (A)
NLZ NormaliZe length (E, A)

VIi-38

4057 U

The following notation will be used in the description of the hexadecimal code of SHR and SHC families.

XX

hexadecimal code of SHR
or SHC instruction

-n

r{m. of shift steps
dditional code in hexadecimal

Q-

ExomEle :
SRLS =5

Address 0o 0o 0 o}J1 1 0!0 O 1 o0 1

EO C-n n=5—>E0 C5

VI1-39

4057 U

NAME : SHift Register
Class : 1 Non-priviledged

Instruction format :

W

Addressing mode | Hexadecimal code

DL 30
PX EO
P FO

Execution time depending on operation type.
Function : r shifted —= r (r denoting A or E, A)

- arithmetic shift : roy repeated at each shift step
- circular shift :ry considered as following r

Ni-is number of shift steps (0SN,,_,. < 31)

Ng_-10 shift type
-0 Left, Logical, single (A) SLLS
-1 Right, circular, single (A) SRCS
-2 Arithmetic, double (E, A) SAD
-3 Left, circular, double (E, A) SLCD
-4 Left, circular, single (A) SLCS
-5 Arithmetic, single (A) SAS
-6 Right, logical, single (A) SRLS
-7 Right, circular, double (E, A) SRCD

Modified elements :

- Registers : A (and E for double length shifts)
- Memory locations
~ Indicators : C-O

Indicators :

C @) Upon execution
0/1 # Last bit shifted out of r
If step no. = zero

Trap conditions : standard

Examples :

SHR EPDLS5 (equivalent to SRCD = 31)

SHR =11,x (if (x) =0, equivalent to SLLS =11)

SHR =&41 (equivalent to SAD =1)

V1i-40

SHR

Standard

4057 U

NAME : Shift Left, Logical, Single

Class : 1 Non-priviledged

Instruction format :

Address Number of shift steps

= [

0 1 2 3 1

12 13 14 15

Addressing mode | Hexadecimal code

Execution time (ps)

PX EO 0-n
P FO 0-n

4,3+1,2n
4,3+1,2n

n = number of shift steps

Function : (A) shifted — (A)
n=(Py_s =Nuoys

Contents of A-register shifted n positions to the left. Lower order bits replaced by 0's.

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :

C 0] Upon execution
0/1 7# Last bit shifted out of A
| 1f initial shift = 0

Trap conditions : standard

Examples :

SLLS =SPDL3, x

SLLS =2 . _
SLLS =4, x equivalent to SLLS =6

SLLS

Standard

VIii-41

4057 U

NAME : Shift Right, Circular, Single

Class : 1

Instruction format :

Non-priviledged

n = number of shift steps

Function : (A) shifted arith. __ (A)
n=((Phu-1s =Ny

Contents of A-register shifted circularly n positions to the right, bit 0 following bit 15,

Modified elements :

- Registers : A
- Indicators : C-O

Indicartors :

Cc 0] Upon execution
0/1 # Last bit shifted out of A
If initial shift =0
Trap conditions : standard
Examples :
SRCS =5,x
SRCS =SPDL3

VIl-42

SRCS

Standard

4057 U

NAME : Shift Arithmetic, Double

Class : 1

Instruction format :

Non-priviledged

= D= ===

n = number of shift steps

(E, A) shifted — (E,A)
n=((Pn-1s =Nyos

Function :

SAD

Standard

Contents of E, A extended register shifted arithmetically n positions to the right. Bit 0 (sign bit) restored

after each shift step.

Modified elements :

- Registers : E-A
- Indicators : C-O

Indicators :

C (0] Upon execution
0/1 72 Last bit shifted out of A
Vi Via If initial shift =0
Trap conditions : standard
Examples :
SAD =SPDL2,x
SAD =&03

VII-43

4057 U

NAME : Shift Left, Circular, Double
Class : 1

Instruction format :

Non-priviledged

Number of shift steps

Execution time (us)

____ NN [

4,3+2,1n
4,3+2,1n

n = number of shift steps

(E, A) shifted — (E, A)
n= ((P))n_]s = Njj-15

Function :

SLCD

Standard

Contents of E, A extended register shifted circularly n positions to the left, bit 31 following bit 0.

Modified elements :

- Registers : E-A
- Indicators : C-0O

Indicators :

C 0] Upon execution
0N # Last bit shifted out of E
7 If initial shift =0

Trap conditions : standard

Examples :

SLCD =15,x

SLCD =

Vil-44

4057 U

NAME : Shift Left, Circular, Single SLCS
Class : 1 Non-priviledged Standard

Instruction format :

____ Domnmen

n = number of shift steps

Function : (A) shifted — (A)
n=(Pyos =Nyos

Contents of A-register shifted circularly n positions to the left, bit 15 following bit 0.

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :

C (0] Upon execution
0N # Last bit shifted out of A
If initial shift =0

Trap conditions : standard

Examples :

SLCS =2,x

SLCS =7

VIl-45

4057 U

NAME : Shift right, Arithmetic, Single SAS

Class : 1 Non-priviledged Standard

Instruction format :

R / -

Addressing mode | Hexadecimal code | Execution time (ps)

PX EO A-n 4,3 +1,5n
P FO A-n 4,3 +1,5n

n = number of shift steps

Function : (A) shifted —— (A)
n=((Pn-s = Nnas

Contents of A-register shifted arithmetically n positions to the right. Bit 0 (sign bit) is restored after each
shift step. '

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :

C @) Upon execution

0/1 Last bit shifted out of A
If initial shift =0

\H\

Trap conditions : standard

Examgles :
SAS =82, x
SAS =SPDL2

Vii-46

4057 U

NAME : Shift Right, Logical, Single
Class : 1

Instruction format :

Non-priviledged

____ mmwmnon

n = number fo shift steps

Function : (A) shifted — (A)
n=((Pn-o1s = Ny

Contents of A-register shifted n positions to the right. Upper order bits replaced by 0's.

Modified elements :

- Registers : A
~ Indicators : C-O

Indicators :

O] Upon execution

0/1

Last bit shifted out of A
If initial shift =0

Trap conditions : standard

ExamEIes :
SRLS =0, x
SRLS =8

SRLS

Standard

Vii-47

4057 U

NAME : Shift Right, Circular, Double

Class : 1

Instruction format :
Address

Non-priviledged

Number of shift steps

R

0 1 2 3

n 12 13

Addressing mode

Hexadecimal code | Execution time (ps)

E-n 4,3 +2,7 n
E-n 4,3 +2,7 n

n = number of shift steps

Function : (E, A) shifted
n=((PHn-ss

- (E, A)

SRCD

Standard

Contents of E, A extended register shifted circularly n positions to the right, bit 0 following bit 31.

Modified elements :

- Registers : E-A
- Indicators : C-O

Indicators :

Trap conditions : standard

Exameles :
SRCD =18, x
SRCD =&12

V1i-48

C Upon execution
0/1 Last bit shifted out of A
If initial shift =0

4057 U

NAME : SHift speCial SHC

Class : 1 Non-priviledged Optional
(Except DITR when N;g=1)

Instruction format :

. B

N ——
Instruction Number of shift steps

If Nyo=1, Njj_;5 is meaningless

Addressing mode | Hexadecimal code

DL 3C
PX EC
P FC

Execution times vary according to shift types.

Function : r shifted — r (ris A or E, A)
Njj-15 number of shift step
0Ny 5 <32
Ng-,o instruction type

-0 Shift left logical in E, A (SLLD)
Njj-15 = number of shift steps
-4 Shift right logical in E, A (SRLD)
N-15 = number of shift steps
-2 Compute parity in A (PTY)

Nji.is = number of shift steps
Upon execution, E contains the number of set bits shifted out of (A)

-6 Double lengh normalize in E, A
Njj.1s = maximum number of shift steps
1
- g High-speed interrupt de-activation (DITR). Only bit N,y is taken into consideration when set.

7

Modified elements :

- Registers : A (and E for double shifts)
- Indicators : C - O

ViI-49

4057 U

Indicators :
C @) Upon execution
0N ## Last bit shifted out
If step no. = zero
Remark :

This page only describes the general usage of SHC. For further details see the individual description of
each particular case.

Trap conditions : Standard and non-implemented instruction
(Mode violation for DITR)

Miscellaneous : DITR will be described separately with the control instruction.

Examples :

SHC EPDL12 (equivalent to SRLD = 2)

SHC =5,x (if x =5, equivalent to SLLS =10)
SHC &48 (equivalent to PTY = 8)

VII-50

4057 U

NAME : Shift Left, Logical, Double

Class : 1

Instruction format :
Address

Non-priviledged

Number of shift steps

2 13 14 15

Execution time (ps)

= ...

4,9 +1,2 n
4,9 +1,2n

n = number of shift steps

Function : (E, A) shifted — (E, A)
n=((Pi-15 =Ny_ys

SLLD

Optional

Contents of E, A extended register shifted n positions to the left, Lower order bits replaced by 0's.

Modified elements :

- Registers : E-A
- Indicators : C-O

Indicators :

O Upon execution

Last bit shifted out of E
7 If step no. = zero

C
0/1
#
Trap conditions : Standard and non-implemented instruction
Examples :
SLLD =5,x
SLLD =&0E

VIl-51

4057 U

NAME : Shift Right, Logical, Double SRLD

Class : 1 Non-priviledged Optional

Instruction format :

___ WD

Addressing mode| Hexadecimal code | Execution time (ps)

PX EC 8-n 4,9+1,8n
P FC 8-n 4,9+1,8n

n = number of shift steps

Function : (E, A) shifted — (E, A)
n= ((P))|1_|5

Contents of E, A extended register shifted n positions to the right. Upper order bits replaced by 0's.

Modified elements :

- Registers : E-A
- Indicators : C-O

Indicators :
C (0] Upon execution
oN # Last bit shifted out of A
If step no. = zero

Trap conditions : Standard and non-implemented instruction

Exameles :
SRLD =3, x
SRLD =31

V1i-52

4057 U

NAME : PariTY check in A

Class : 1

Instruction format :

Non-priviledged

0

0

"

Number of shift steps

= I

6

7

) "
8 9 10

1" 12 13

14 15

Addressing mode

Hexadecimal code

Execution time (us)

PX

EC
FC

5,8+1,2n+0,3m
5,8+1,2n+0,3m

n = number of shift steps

m = number of set bits detected

(A) shifted — (A)
(E) = number of set bits shifted out of (A)

Function :

n = (P15

= Nj-ys

PTY

Optional

A-register contents shifted circularly in positions to the left. When the instruction is over, E-register
contains the number of set bits which have been shifted out of A,

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :

Trap conditions :

Exameles :
PTY =2,x%
PTY =&F

C O Upon execution
0/1 - Last bit shifted out of A
- 0/1 (Eys) = parity bit

If step no. = zero

Standard and non-implemented instruction

VII-53

4057 U

NAME : double length NormaliZe (option)

Class : 1 Non-priviledged

Instruction format :

IR

n = number of shift steps

Function : (E, A) shifted — (E, A)
X is decremented by the actual number of shift steps
n= ((P))n..]5 = Nn-1s

NLZ

Optional

The contents of E, A extended register is shifted to the left until bit 0 is different from bi 1 or up to a

maximum of n positions. X-register is decremented by the actual number of shift steps.

Modified elements :

- Registers: E-A - X
- Indicators : C-O

Indicators :

C) Upon execution

0 0 Normalization 01
0 1 Stop on zero count

1 0 Normalization 10

Trap conditions : Standard and non-implemented instruction

Exameles :
NLZ =10, x
NLZ =20

VIl-54

4057 U

VI1I-8. INTER-REGISTER OPERATIONS

VII-8.1. Introduction

SRG (SeT Register) is the basic instruction for inter-register operations. A word located at Y memory
address is used to specify the operation type.

structio .
Address Instruction Displacement
code
~———— T e A T
laJnllllllltllLLIYz
Operation
type

In parameter addressing mode which is normally used, these two words are obviously identical.

For the sake of clarity, each instruction derived from SRG will be described separately.

Y, -address word

Their mnemonics are recognized by MITRAS | and II,

Remark 1 :

Two particular cases of SRG, RTS and RSV, do not belong to the inter-register operation class. Though

mentioned with SRG, they will be fully described with system branch instructions.

Remark 2 :

Any addressing mode other than "parameter" is meaningless for SRG-family instructions.

VIil-8.2. Description

Inter-register operations will be described in the following order :

SRG derivates

SRG
XAE
XAX
XAA
CCE
ACE
CCA
AEE
CNX
AlIE
AAE
LNE
CNA
CHX

Set ReGister
eXchange A and E
eXchange A and X
eXchange left byte of A and right byte of A
Copy Complement E
Add Carry and E

Copy Complement A
A Exclusive OR with E
Copy Negative X

A Inclusive OR with E
A And E

Load Negative E
Copy Negative A
Copy Half X

VII-55

4057 U

NAME : Set ReGister
Class : 1 Non-priviledged

Instruction format :

== = =

Instruction type

Addressing mode | Hexadecimal code

DL 31
PX El
P F1

Execution time depending on operation type,

Function : Nyj_i4

-0 ReTurn Section — (RTS)

-1 Exchange contents of A and E — (XAE)
-2 Exchange contents of A and X — (XAX)
-3 Exchange contents of E and X — (XEX)
-4 Exchange (Ag.7) and (Ag-15) — (XAA)
-5 Complement E — (CCE)

-6 Return SuperVisor — (RSV)

-7 Add Carry in E — (ACE)

-8 Complement A —~(CCA)

-9 A Exclusive ORE in A — (AEE)

- A Copy Negative X — (CNX)

- B A ORE in A — (AIE)

-C Aand E in A — (AAE)

-D Load Negative in E — (LNE)

-E Copy Negative A — (CNA)

-F Compute Half X — (CHX)

Modified elements :

- Registers : see individual instructions
- Indicators : see individual instruction

Trap conditions : standard

Examples :

SRG EPDL11 (equivalent to XEX)

SRG =&10,x ((x) = &E, equivalent to CHX)
SRG =14 (equivalent to ACE)

VIl-54

SRG

Standard

4057 U

NAME : eXchange contents of A and E XAE
Class : 1 Non-priviledged Standard

Instruction format :

SERESES PR e

Addressing mode | Hexadecimal code | Execution time (ps)

P F1 02 4,3

Function : (A) — (E)
Contents of A-register and E-register exchanged

Modified elements :

- Registers : E-A

Trap conditions : standard

Examples : XAE

NAME : eXchange contents of A and X XAX

Class : 1 Non-priviledged Standard

Instruction format :

Instruction type

NNIDOONn. DR

o 1 2 3 4 5 6 71 8 9 10

Addressing mode | Hexadecimal code | Execution time (ps)

P F1 04 4,3

Function : (A) «— (X)
Contents of A-register and X-register exchanged.

Modified elements :

- Registers : A - X
Trap conditions : standard

Examples : XAX

VIl-57

4057 U

NAME : eXchange contents of E and X XEx

Class : 1 Non-priviledged Standard

Instruction format :

BONCRCN CRSCRY PR

Addressing mode | Hexadecimal code | Execution time (ps)

P F1 06 4,3

Function : (E)=— (X)
Contents of E-register and X-register exchanged.

Modified elements :

- Registers : E - X

Trap conditions : standard

ExamEIes : XEX

NAME : eXchange left byte of A and right byte of A XAA
Class : 1 Non-priviledged Standard

Instruction format :

RRRNCER _CRRCEY

Addressing mode| Hexadecimal code| Execution time (ps)

P F1 08 2,8

Function : (Ag-7) =— (Ag_ys)
Rightmost and leftmost bytes of A-register exchanged.

Modified elements :

- Registers : A

Trap conditions : standard

Examplies : XAA

V11-58

4057 U

NAME : Copy Complement, logical E CCE
Class : 1 Non-priviledged Standard

Instruction format :

Address Instruction type
ERNIOTTN . OO
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Addressing mode | Hexadecimal code |Execution time (us)

P F1 0A 2,8

Function : (-E) -— (E)
One's complement of E-register contents (bit1 — 0, bit 0 — 1).

Modified elements :

- Registers : E

Trap conditions : standard

ExomBles : CCE

NAME : Add Carry in E ACE
Class : 1 Non-priviledged Standard

Instruction format :

RRRICOON ___DINK

Addressing mode | Hexadecimal code | Execution time (us)

P F1 OE 3,4

Function: (E) +C - — (E)
Carry indicator value added to E-register contents; result in E.

Modified elements :

- Registers : E
- Indicators : C-O

Indicators : C o) Upon execution
1 - Carry
- 1 Overflow

Trap conditions : standard

Exqmeles : ACE

VIi-59

4057 U

NAME : Copy Complement, logical A CCA
Class : 1 Non-priviledged Standard

Instruction format :
Address Instruction type

0 1 2 3 4 6 9 10 13

Addressing mode |Hexadecimal code | Execution time (us)

P F1 10 2,8

Function : (Z) — (A)
One's complement of E-register contents (bit 1 — 0, bit 0 — 1).

Modified elements :

- Registers : A

Trap conditions : standard

ExamEIes : CCA

NAME : A Exclusive ORE in A AEE
Class : 1 Non-priviledged Standard

Instruction format :

Address Instruction type p
0 1 2 3 4 5 - 6 ' 7 8 9 10 1 12 13 14 15

Addressing mode | Hexadecimal code | Execution time (ps)

P F1 12 3,1

Function: (A) @ (E) _. (A)
Exclusive OR between A-register contents and E-register contents; result in A,

Modified elements :

- Registers : A
- Indicators : C-0O

Indicators : C O Upon execution
0 0 A>0
0 1 A<O
1 0 A=0

Trap conditions : standard
Exameles: AAE

Vii-60

4057 U

NAME : Copy Negative X

Class : .1

Instruction format :

Address

1 T 1 1 0 -0 O
6

1
7

Non=-priviledged

Instruction type

‘LOAI om

8 9 10 1"

12 13 14 15

Addressing mode

Hexadecimal code

Execution time (ps)

P

F1 14

3,1

Function: - (X) — (X)

Two's complement (complement to 214) of X-register contents; result in X.

Modified elements :

- Registers : X

Trap conditions : standard

Excmeles : CNX

NAME : A Inclusive or E in A
Class : 1

Instruction format :

Address

1
7

Non-priviledged

Instruction type

1
8 9 0 N

12 13 14 15

Addressing mode

Hexadecimal code

Execution time (ps)

P

F1 16

3,1

(A) v (E) — (A)

Function :

Inclusive OR between A-register contents and E-register contents; result in A,

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :

Trap conditions : standard

Examples : AIE

C o Upon execution
0 0 A>0
0 1 AcO
1 0 A=0

CNX

Standard

AIE

Standard

VIii-61

4057 U

NAME : AAndEin A
Class : 1

Instruction format :

Address

0 1 2 3 4 5 6

Non-priviledged

Instruction type

3\

o1 °.‘°L°.‘7,],‘:2‘?3

8 9 10

14 15

Addressing mode

Hexadecimal code

Execution time (us)

P

F1 18

3,1

(A) ~ (E) — (A)

Function :

Logical AND (intersection) between A-register contents, and E-register contents; result in A,

Modified elements :

- Registers : A
- Indicators : C-0O

Indicators :

C ®) Upon execution
0 0 A> 0
0 1 A <O
1 0 A =0

Trap conditions : standard

Exameles : AAE

NAME : Load, Negative in E

Class : 1

Instruction format :

Address

Non-priviledged

Instruction type

Addressing mode

Hexadecimal code

Execution time (ys)

P

F1 1A

3,1

Function: -1 —= (F)
-1 value loaded into E-register.

Modified elements :

- Registers : E

Trap conditions : standard
Examples : LNE

VII-62

AAE

Standard

LNE

Standard
a

4057 U

NAME : Copy Negative A CNA

Class : 1 Non-priviledged Standard

Instruction format :

T S

Addressing mode | Hexadecimal code | Execution time (ps)

P F1 1C 3,4

Function : - (A) — (A)
Two's complement (complement to 216) of A-register contents; result in A,

Modified elements :

- Registers : A
- Indicators : C-O

Indicators :
C 0] Upon execution
1 - Carry
- 1 Overflow
Trap conditions : standard
Examples : CNA
NAME : Compute Half X CHx
Class : 1 Non-priviledged Standard
Instruction format :
Address Instruction type
AL .
1_1‘1l10_~o.o‘1 1L1_1 1 |
0 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15

Addressing mode | Hexadecimal code | Execution time (us)

P F1 1E 3,1

Function: (X) / 2 — (X)

X-register contents shifted one position to the right. Sign bit (bit 0) restored. As a result, X-register
contents is divided by two.

Modified elements :

- Registers : X

Trap conditions : standard

Exomeles : CHX

VII-63

4057 U

Vil-9. FLOATING-POINT ARITHMETIC

VII-9.1. Introduction
These instructions operate on single precision floating-point format operands and are implemented in an
optional device called "floating-point operator" or OVF.

In single precision floating-point format, the numbers are represented on a double-word. This double-word
has the following structure :

- A sign bit (position 0)
- A base-16 exponent whose value s increased by 64 to provide the "characteristic" (positions 1 through 7).

- A 6 hexadecimal digit mantissa (positions 8 through 31).

01 7 8 15

16 31
|‘Tll1|ll!rlv|l LI S R B A T

Characteristic C Mantissa M

\ 0 Positive number

Sign 1 Negative number

A floating-point number N has the following formel definition :
- 1f N>0 N =M x 16C-64
with M =0 or 164 <M<1 and 0<Cx127

- A positive floating-point number having a zero mantissa must also have a zero characteristic; it represents
the zero value.

- A positive floating-point number is "normalized" if its mantissa satisfies the relation : 1/16<M<1.

- A negative number is represented by the two's complement of its absolute value. More specifically the
representation of a negative number N includes a sign bit (0), a characteristic and a mantissa on a double-
word length. The number N is represented by the two's complement of this double-word.

Normally floating-point arithmetic instructions operate on normalized operands (no pre-normalization
effected) and provide normalized results.

For non-normalized operands, the results are normalized or not, as the case may be.
Limits of normalized floating-point format :

0.86362 x 10770 < N<0.72370 x 1017

VII-9.2. Description

The floating-point instructions perform the four operations and are described in the following order :

FAD Floating ADd

FSU Floating SUbtract
FMU Floating MUItiply
FDV Floating DiVide

Vii-64

4057 U

Examples of floating-point representations :

Nombre Décimal

SINGLE PRECISION FLOATING FORMAT

Hexadecimal

+ C M value
+(16+83)(1-2"%4) O 111 1111 [1111 1111 1111 1100 1101 111 | 7F FFFFFF
+(16%3)(5/16) 0| 100 0011{ 0101 0000 0000 0000 0000 0000 43 500000
+(1673)(209/256) 0| 011 1101|1101 0001 0000 0000 0000 0000| 3D D10000
+(16763)(2047/4096) |0| 000 0001| OT11 1111 1111 0000 0000 0000| 01 7FF000
+1664)(1/16) 0| 000 0000| 000T 0000 0000 0000 0000 0000| 00 100000
0 0| 000 0000| 0000 0000 0000 0000 0000 0000| 00 000000
1-06-54)0,16) 1{ 111 1111 1111 0000 0000 0000 0000 0000| FF F00000
-(16763)(2047,/4096) |1 | 111 1110/ 1000 0000 0001 0000 0000 0000| FF 801000
-(1673)(209/256) 1100 0010{ 0010 1111 0000 0000 0000 0000| C2 2F0000
-(16+3)(5/16) 11011 1100 1011 0000 0000 0000 0000 0000| BC B0O000O
-(16+63)(1-2-24) 1000 0000|0000 0000 0000 0000 0000 0001 [80 000001

VII-65

4057 U

NAME : Floating ADd (option) FAD

Class : 0 Non-priviledged Optional

Instruction format :

e e o

Function : (E, A) +(Y,, Y, +2) — (E,A)

Contents in floating format of E, A extended accumulator added with floating operand contained in
Y, -address double-word; result in E, A.

Modified elements :

- Registers: E - A
- Indicators : C-0O

Indicators :

C (@) Upon execution

0 0 Result #0, no overflow
0 1 Overflow

1 0 Result =0

1 1 Underflow

Trap conditions : standard

Examples :

FAD EPDL26

FAD # EPDC26
FAD AEPDL27

FAD A% EPDC27,x
FAD AEPDL27, x

VIil-66

4057 U

NAME : Floating SUbtract
Class : 0'

Instruction format :

Address

=S . ==

Non-priviledged

Addressing mode | Hexadecimal code
DL 1B
DG 5B
IL 7B
IGX 98B
ILX BB
Function: (E, A) - (Y, Y, +2) — (E, A)

Floating operand contai
extended accumulator; resu

Modified elements :

- Registers : E - A
- Indicators : C-0O.

Indicators :

Itin E, A.

ined in Y, ~address

double-word

subtracte

d from contents

C o Upon execution
0 0 Result #0 erflo
0 1 Overflow

1 0 Result =0

1 1 Underfl

Trap conditions : standard

Examples :

FSU EPDL26

FSU # EPDC26
FSU AEPDL27

FSU 3% EPDC27,x
FSU AEPDL27,x

in floating format

FSU

of E, A

VIl-67

4057 U

NAME : Floating MUItiply
Class : 0'

Instruction format :

FMU

Non-priviledged Optional

= manen -

Contents in floating format of E, A extended accumulator (multiplicand) multiplied by floating operand
contained in Y, -address double-word (multiplier); result in E, A.

Modified elements :

- Registers : E - A
- Indicators : C-O

Indicators :

C ©) Upon execution

0 0 Result #0, no overflow
0 1 Overflow

1 0 Result =0

1 1 Underflow

Trap conditions : standard

Examples :

FMU EPDL26

FMU 7# EPDC26
FMU a EPDL27
FMU @ # EPDC27,x
FMU 8 EPDL27,x

Vii-68

4057 U

NAME : Floating DiVide FDV

Class : 0' Non-priviledged Optional

Instruction format :
Add ress Dlsl eeeeee t

Addressing mode | Hexadecimal code
DL 1D
DG 5D
IL 7D
IGX 9D
ILX BD

Function : (E, A) : (Y, Y, +2) — (E, A)

Contents in floating format of E, A extended accumulator (dividend) divided by floating operand contained
in Y, -address double-word (divisor); result in E, A,

Modified elements :

- Registers : E - A
- Indic f : C-0O
Indicators :

C O Upon execu tion
0 0 Result #0 flow
0 1 Overflow
1 0 Result =0
1 1 Underflow

Trap conditions : standard
Examples :

FDV EPDL26

FDV # EPDC26
FDV 3 EPDL27

FDV a # EPDC27,x
FDV 8 EPDL27,

VII-69

4057 U

VII-10. BYTE STRING PROCESSING

Byte or character string operations are performed by three instructions :

MVsS MoVe byte String
CPS ComPare byte String
TRS TRanslate byte String

NAME : MoVe byte String MVS
Class : 0' Non-priviledged Optional

Instruction format :

B =

n = number fo shift steps

Function : For a varying on a byte basjs from (E) -1 to 0,
((G) +(A) +a) —= (Y + a)

When transfer is over -1 — E

A byte string beginning at an address defined with respect to G-base by the contents of A-register and
whose length (in bytes) is specified in E-register, is stored in core memory starting from Y -address.

When the transfer is over, E-register contents is -1 and A-register contents is unmodified.

Modified elements :

- Registers : E
- Memory locations : (Y) to (Y + (E) - 1)

Trap conditions : standard and non-implemented instruction

Miscellaneous : This instruction is interruptible between each byte transfer

examples :

MVS EPDL4

MVS # EPDC4
MVS dEPDL3
MVS @ % EPDC3, x
MVS dEPDL3, x

VI-7u

4057 U

NAME : ComPare byte String

Class : 0

Instruction format :

Non-priviledged

CPS

Optional

= . ==

n = number of comparaison made

Function : For a varying on a byte basis from 0 to (E) - 1,
y =((G) + (A) + «)

Upon execution :

- if found
- if not found

: A = address of reference byte within the string
: A = address of first non-processed byte

A byte y read at Y-address in core memory is sequentially compared to every byte of a string beginning at
an address defined with respect to G-base by the contents of A-register and whose length is specified in
E-register,

Upon execution :

If the reference byte is found in the string, its address with respect to G-base is in A-register and E-regis-
ter contains the unprocessed string length.

If the reference byte y is not found in the string, A-register contains the starting address with respect to
G-base and E-register final contents is zero.

Modified elements :

- Registers : E - A
- Indicators : C-O

Indicators : C (0] Upon execution
0 0 Character found
0 1 Character no found

Trap conditions : standard and non-implemented instruction
Miscellaneous : This instruction is interruptible between byte comparisons.

ExomEIes:

CPS EPDLIS CPS a EPDLI?

CPS =&6C CPS 2 # EPDC19,x
CPS # EPDCI18 CPS’ a EPDL19,x

VII-71

4057 U

NAME : TRanslatable byte String

Class : 0'

Instruction format :
Address

Non-priviledged

Displacement

—

1
0 1 2 3 4

8 9 0 11 12 13 14 15
Addressing mode | Hexadecimal code | Execution time (ps)
DL 1E 4,5+2,75n
DG 5E 4,5+2,75n
IL 7E 5,5+2,75n
IGX 9E 5,5+2,75n
ILX BE 5,5+2,75n

n : number of bytes to be translated

Function : For « varying on a byte basis from 0 to (E) - 1
(Y +((A) +(G) +a)e) — ((A) +(G) +)

When transfer is over, 0 — (E)

TRS

Optional

Given : an origin code O and a result code R, as well as a 256 consecutive byte translation table starting
at Y-calculated address and organized as follow :

Table relative beginning
address hexadecimal)

Contents

00
01
02

FF

Value of R-code corresponding to 00 value in O-code.
Value of R-code corresponding to 01 value in O-code.

Value of R-code corresponding to 02 value in O-code.

Value of R~code corresponding to FF value in O-code,

A string beginning at an address defined with respect to G-base by the contents of A-register and whose
length is specified in E-register is translated byte per byte through the translation table by TRS instruction.

Starting from Y calculated address, the origin string is overwritten byte per byte by the result string.

Translation table creation is obviously the user's responsibility.

Modified elements :

- Registers : A (if initial E #0) - E
- Memory locations : ((A)) to ((A) + (E) - 1)

Trap conditions : standard and non-implemented instruction

Exomeles:

TRS EPDL18
TRS # EPDCI18
TRS AEPDL19

VIH-72

TRS @ # EPDC19,x
TRS 3 EPDL19,x

4057 U

VII-11, BRANCH INSTRUCTIONS

These instructions normally provide for interrupting the sequential instruction execution in a program

segment .

They include :

BRU
BRX
BCT
BOT
BCF
BOF
BAZ
BAN
BE
BZ
BL
BLZ
BNE
BNZ
BGE
BPZ

Remark 1

BRanch Unconditional
BRanch with indeX
Branch on Carry True
Branch on Overflow True
Branch on Carry False
Branch on Overflow False
Branch on A Zero

Branch on A Negative
Branch on Equel to
Branch on Zero

Branch on Less than
Branch on Less than Zero
Branch on Not Equal to
Branch on Not Zero
Branch on Greater than or Equal to

Branch on Positive or Zero

An indicator is "true" when set and "false" when reset.

Remark 2

If P-register contents is even, the executed instruction is located at (P) absolute address.

If P-register contents is odd, the executed instruction is located at (P) - 1 absolute address.

Remark 3 :

Several conditional branches correspond to the same basic instruction. These additional mnemonics (not
recognized by MITRAS) are provided for easier program writing when used after a load or compare
instruction.

Basic instruction Mnemonics for use after loading Mnemonics for use after comparison
BCT BZ BE
BOT BLZ BL
BCF BNZ BNE
BOF BPZ BGE

VIl-73

4057 U

NAME : BRanch Unconditional BRU
[e

Function : Y — (P)
Y -address is loaded into P-register and execution proceeds at Y-address.

Modified elements :

- Registers : P

Trap conditions : standard

Examples :
BRU JEPDL14

EPPL2 BRU EPPL3+1

EPPL3 BRU a7 EPDCI13
BRU EPPL3-1 — Equivalent to BRU EPPL2
BRU $

VIi-74

4057 U

NAME : BRanch indeXed BRX

Class : 2 Non-priviledged Standard

Instruction format :

[E—

Function: RP : (P) +2 De +2 (X) — (P)
RM : (P)-2De-2(X) — (P)
IL ¢ (De + (L) +(X)) +G' — (P)
IG : (De +(G) +(X))+G' —~ (P)

Y calculated address is loaded into P-register and execution proceeds at Y-address. In indirect addressing,
the index is used for a pre-indexing executed prior to indirect addressing.

Y -address is calculated according to the above formulae.
Remark :

BRX may be used with relative plus or minus addressing modes, but its most frequent application is based on
indirect addressing to provide multiple branch capability through an address table.

Modified elements :

- Registers : P

Trap conditions : standard

Examples :

EPPLO BRX EPPLI (for X =2, branch at EPPL3)

EPPLI BRX EPPL3 (for X =1, branch at EPPL4)

EPPL2 BRX EPPL3 (for X =0, branch at EPPL3)

EPPL3 BRX EPPL2 (for X =1, branch at EPPLI1)

EPPL4 BRX EPPL2 (for X =2, branch at EPPLO)
BRX ? EPDL15 (for X =0, branch at EPPLI1)
BRX a # EPDC15 (for X =2, branch at EPPL2)
BRX 3 EPDL1S (for X = 4, branch at EPPL3)
BRX a # EPDCI15 (for X = 6, branch at EPPL4)

VII-75

4057 U

NAME : Branch on C True BCT
Class : 2 Non-priviledged Standard

Instruction format :

Address Displacement
Aleres
s PN . e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Addressing mode | Hexadecimal code | Execution time (ps)
RP Co 2,1 1,9
RM (F 2,1 1,9
IL DO 3,3 1,9
1G D8 3,3 1,9
L ?—lf continue in sequence
- If branch

Function: IfC =1 =Y — (P)
- fFC=0=(P)+2 — (P)

If Carry indicator is set (1), Y calculated address in loaded into P-register and execution continues at
Y -address.

If Carry indicator is reset (0), execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C o Function according to initial value
0 Continue in sequence
1 Branch
Trap conditions : standard
Examples :
BCT 27 EPDC14
EPPL2 BCT $+1
EPPL3 BCT EPPL3+1 — Equivalent to BCT $+1
BCT 9EPDL13

VII-76

4057 U

NAME : Branch on O True

Class : 2

Instruction format :
Address

Non-priviledged

Displacement

NN DOm0

8 1 12 13 14 15
Addressing mode | Hexadecimal code | Execution time (us)

RP C2 2,1 1,9

RM CA 2,1 1,9

IL D2 3,3 1,9

1G DA 3,3 1,9

Function: IfO =1 —Y — (P)
— FO=0=—3() +2 — (P)

Y -address.

S~~~

BOT

Standard

‘ A
LIf continue in sequence
If branch

If Overflow indicator is set (1), Y calculated address is loaded into P-register and execution continues at

If Overflow indicator is reset (0), execution proceeds in sequence.

Indicators :
Cc O Function according to initial value
0 Continue in sequence
1 Branch
Trap conditions : standard
Examples :
EPPL4 BOT EPPLI
EPPLI BOT ? # EPDC14
EPPL3 BOT dEPDL13
EPPL2 BOT EPPL4

VIi-77

4057 U

NAME : Branch on C False
Class : 2

Instruction format :
Address

Non-priviledged

Displacement

1 . S

Function: IfC=0 =Y — (P)
fC=1 —=((P)+2 —(P)

Y -address.

M 12 13 14 15
Addressing mode | Hexadecimal code | Execution time (us)
RP C3 2,1 1,9
RM CB 2,1 1,9
IL D3 3,3 1,9
IG DB 3,3 1,9

BCF

Standard

L TJF continue in sequence
If branch

If Carry indicator is reset (0), Y calculated address is loaded into P-register and execution continues at

If Carry indicator is set (1), execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

Function according to initial value

Branch

Continue in sequence

C

0

1
Trap conditions : standard
Examples :
EPPL4 BCF EPPLI
EPPL3 BCF EPPL4
cPPL2 BCF a EPDL14
EPPLI BCF a ## EPDCI13

VII-78

4057 U

NAME : Branch on O False BOF
Class : 2 Non-priviledged Standard

Instruction format :

DON I e

Function: If O =0 —=Y — (P)

l LIf continue in sequence
If branch
fO=1=(P)+2 — (P)

If Overflow indicator is reset (0), Y calculated address is loaded into P-register and execution continues
at Y-address,

If Overflow indicator is set (1), execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C (@) Function according to initial value
0 Branch
1 Continue in sequence
Trap conditions : standard
Examples :
EPPLI BOF EPPL2+2
EPPL2 BOF aEPDL14
EPPL3 BOF a7 EPDC13
BOF EPPL2-1 — Equivalent to BOF EPPL1

VII-79

4057 U

NAME : Branch on A Zero BAZ

Class : 2 Non-priviledged Standard

Instruction format :

Address Displacement

R mesEe

1
L
3 4 s 6

1M 12 13 14 15
Addressing mode| Hexadecimal code | Execution time (us)
RP C5 2,4 2,2
RM CcD 2,4 2,2
IL D5 3,5 2,2
1G DD 3,5 2,2

Function: If (A) =0 —>Y — (P)

, TIf continue in sequence
If branch
If (A) #0 —=(P) +2 — (P)

If A-register contents is zero, Y calculated address is loaded into P-register and execution continues at
Y -address.

If A-register contents is not zero, execution proceeds in sequence.

Modified elements :

- Registers : P

Trap conditions : standard

Examples :

EPPL2 BAZ % EPDC14
BAZ $+2

EPPL2 BAZ $-1
BAZ AEPDL13

VII-89

4057 U

NAME : Branch on A Negative BAN

Class : 2 Non-priviledged Standard

Instruction format :

mw__Don ___——
T \,T\::\:;;:on::;ue in sequence

Function: If (A) <0 —Y — (P)
If (A) >0 —(P) +2 — (P)

If A-register contents is negative, Y calculated address is loaded into P-register and execution continues
at Y-address,

If A-register contents is zero or positive, execution proceeds in sequence.

Modified elements :

- Registers : P

Trap conditions : standard

Examples :
EPPLI BAN $+2
EPPL3 BAN EPPLI
BAN aEPDL13
EPPL2 BAN ? 74 EPDC14

VI1I-81

4057 U

NAME : Branch if Equal BE
Class : 2 Non-priviledged Standard

Instruction format :

o
1G D8 \’3\,:/\1:{9\/

If continue in sequence
L If branch

Function: If Carry =1 =—Y — (P)
If Carry =0 —(P) +2 — (P)

Normally, this instruction is preceded by a comparison.

If the first term of the comparison was equal to the second, Y calculated address is loaded into P-register
and execution continue at Y-address.

If the first term of the comparison was different from the second, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

Cc 0] Function according to initial value
0 Continue in sequence
1 Branch

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BCT

Examples :

EPPLI BE EPPL4
EPPL4 BE a7 EPDC13
EPPL2 BE d EPDL14
EPPL3 BE EPPL1

V1I1-82

4057 U

NAME : Branch if Zero BZ
Class : 2 Non-priviledged Standard

Instruction format :

Address Displacement

r—If continue in sequence
If branch

Function : If Carry =1 —Y — (P)
If Carry =0 —(P) +2 — (P)

This instruction is normally preceded by a load instruction.

If the previously stored value is zero, Y calculated address is loaded into P-register and execution continues
at Y-address.

If the previously stored value is different from zero, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C (0] Function according to initial value
0 Continue in sequence
1 ' Branch

Trap conditions : standard

Miscellaneous : This instruction is equivalent to @ BCT

Examples :

EPPL4 BZ AEPDL14
EPPL2 BZ EPPLI

EPPL3 BZ a7#£ EPDC13
EPPLI BZ EPPL4

VII1-83

4057 U

NAME : Branch if Less BL

Class : 2 Non-priviledged Standard

Instruction format :

8 Don o =
T %T;\::/Efannt:;ue in sequence

Function : If Overflow =1 —> Y — P
If Overflow =0 —> (P) +2 — (P)

Normally, this instruction is preceded by a comparison.

If the first term of the comparison was less than the second, Y calculated address is loaded into P-register
and execution continues at Y-address.

If the first term of the comparison was equal to or greater than the second, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C (@) Function according to initial value
0 Continue in sequence
1 Branch

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BOT

Examples :

EPPL4 BL JdEPDL14
EPPL2 BL EPPL1
EPPL3 BL a7 EPDCI13
EPPLI BL EPPL4

Vii-84

4057 U

NAME : Branch if Less Zero BLZ
Class : 2 Non-priviledged Standard

Instruction format :

B
| Fmern e

Function : If Overflow =1 —>Y — (P)
If Overflow =0 —>(P) +2 . (P)

This instruction is normally preceded by a load instruction.

If the previously stored value was less than zero, Y calculated address is loaded into P-register and
execution at Y-address.

If the previously stored value was equal to or greater than zero, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C (@] Function according to initial value
0 Continue in sequence
1 Branch

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BOT

Examples :

EPPLO BLZ a7 EPDC14

EPPL2 BLZ EPPLI

EPPL3 BLZ aEPDL13

EPPLI BLZ $-3 — Equivalent to BLZ EPPLO

VIl-85

4057 U

NAME : Branch if Not Equal BNE

Class : 2 Non-priviledged Standard

Instruction format :

o

t.lf continue in sequence
If branch
Function : If Carry =0 —>Y — (P)
If Carry =1 —=(P) +2 _—~ (P)

Normally, this instruction is preceded by a comparison.

If the first term of the comparison was different from the second, Y calculated address is loaded into
P-register and execution continues at Y-address.

If the first term of the comparison was equal to the second, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C @) Function according to initial value
0 Branch
1 Continue in sequence

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BCF

Examples :

BNE $+

BNE a EPDL13
EPPL2 BNE 2 # EPDC14
EPPL3 BNE $-3

Vil-86

4057 U

NAME : Branch if Not Zero BNZ
Class : 2 Non-priviledged Standard

Instruction format :

T e

l tlf continue in sequence
If branch

Function: If Carry =0 =—Y — (P)
If Carry =1 = (P) +2 — (P)

This instruction is normally preceded by a load instruction.

If the previously stored value was different from zero, Y calculated address is loaded into P-register and
execution continues at Y -address,

If the previously stored value was equal to zero, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

C O Function according to initial value
0 Branch
1 Continue in sequence

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BCF

Examples :

EPPL3 BNZ EPPLI
EPPL4 BNZ AEPDLI3
EPPL2 BNZ 37 SPDC14
EPPLI BNZ EPPL4

Vii-87

4057 U

NAME : Branch if Greater or Equal BGE

Class : 2 Non-priviledged Standard

Instruction format :

o

G DE 3,3 1,

If continue in sequence
If branch

Function : If Overflow =0 — Y — (P)
If Overflow =1 —=>(P) +2 — (P)

Normally, this instruction is preceded by a comparison.

If the first term of the comparison was greater than or equal to the second, Y calculated address is loaded
into P-register and execution continue at Y-address.

If the first term of the comparison was less than the second, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

(0] Function according to initial value
0 Branch
1 Continue in sequence

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BOF

Examples :

EPPL4 BGE EPPLI

EPPLI BGE aEPDL13
EPPL2 BGE 274 EPDC14
EPPL3 BGE EPPL4

VII-88

4057 U

NAME : Branch if Positive or Zero

Class : 2 Non-priviledged

Instruction format :

N e

‘ If continue in sequence
If branch

Function : [f Overflow =0—Y — (P)
If Overflow =1 — (P) +2 — (P)

This instruction is normally preceded by a load instruction.

BPZ

Standard

If the previously stored value was greater than or equal to zero, Y calculated address is loaded into

P-register and execution continues at Y-address.

If the previously stored value was less than zero, execution proceeds in sequence.

Modified elements :

- Registers : P

Indicators :

(o] Function according to initial value
0 Branch
1 Continue in sequence

Trap conditions : standard

Miscellaneous : This instruction is equivalent to a BOF

Examples :
EPPL2 BPZ AEPDL14
EPPL3 BPZ $42
BPZ a # EPDC13
BPZ $-2 —= Equivalent to BRU EPPL3

VI11-89

4057 U

VII-12. SYSTEM COMMUNICATION INSTRUCTIONS

These instructions perform sophisticated call and communication operations between system constituents :
program modules, monitor modules, interrupt subroutines.

They include :

CLS Call Section

RTS ReTurn Section

Csv Call SuperVisor

DIT De-activate InTerrupt

DITR De-activate high-speed InteRrupt

NAME : Call Section CLS

Class : 1 Non-priviledged Standard

Instruction format :

.

L In master mode
In slave mode
Function: (P) - G' -— (((G) - 4 N) + (G))
(L) - G' — (((G) - 4 N) +(G) +2)

(G) +((G) -4 N) — (L)
(G) +((G) -4N+2) — (P)

where N is the calculated operand, i.e. (Yy)

N#0

Note

As discussed before, a program is made up of a number of sections individually characterized by a local
base L and a program base P. These characteristic values are entered in the program's PRT (one SRD per
section).

Purpose of the CLS

A CLS is basically a branch instruction providing connection between a given section ("calling") and
another section ("called") of the same program, while ensuring permanent communications between the
two sections as well as an easy return means.

VII-20

4057 U

Involved elements

- Program's PRT
- First two words of the calling section's LDS

- Contents of CLS calculated address which contains the called section number. (Note that Assemblers and
Compilers which operate with a Linkage Editor offer the convenient possibility of calling a section by its
name; thus, the actual number of the section may be unknown to the programmer).

Operation of the CLS

- L- and P-base values, relative to G, of the calling section are stored in the first two words of the called
section's LDS.

- With the section number, L- and P-base values of the called section are fetched and stored in the corres-
ponding registers.

- A branch is made at the called section.

Communication with the calling section

Three methods are available for transferring the parameters between calling and called sections :
1) Through the Common Data Section (CDS)
2) In indirect local (IL) or indirect local indexed (ILX) addressing modes, via the second word of the LDS.

3) Via A, E, X-registers and/or C-O indicators.

VII-91

4057 U

Operation flow chart

j = called section no.

i = calling section no. l
] '
| L}
| i
] 1
SRD d —
PRT Pi -
i !
| |
SRDI 3 L
G pl
|]
: 1
l |
I i
LDSi ! I
LPSi
Si ,
l
Pi CLS
I
Li — L l !
Pi —=P : : ‘
LDS; ! —])
! | Pi-G' =]
|
Li - G ~—
i + ' —_—
LPS; i+ G L
S pi+G' —
Pi | e -
#
RTS
-1

Modified elements :

- Registers: L - P
- Memory locations : first two words of called section's LDS.

Trap conditions : standard

Miscellaneous : The CLS operating with elements of the called section is not re-entrant. It may be used
both in Master mode and Slave mode.

Exameles :

CLS LPS1
CLS =2
CLS =2,x

Vil-92

4057 U

NAME : ReTurn Section RTS

Class : 1 Non-priviledged Standard

Instruction format :

Address Instruction type
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Addressing mode | Hexadecimal code | Execution time (us)

P F1 00 4,3 4,7

Function: ((L)) +G'+2 — (P)

In master mode
In slave mode
(L) +2) + G' — (L)

The RTS placed in a section called by a CLS provides the return to the calling section by restoring in L
and P-registers the corresponding values contained in the first two words of the called section's LDS.

The operation of the RTS is illustrated on the CLS diagram.

Modified elements :

- Registers : L -P

Trap conditions : standard

ExamEIes : RTS

VI1-93

4057 U

NAME : Call SuperVisor CSV
Class : 1 Non-priviledged Standard

Instruction format :

== = =

Function : (P) - (G) — ((G))
(L) - (G) — ((G) *+2)
Indicators — ((G) + 4)

1 — PR

1 — MS

((12) - 4 N) — (L)

(12) =4N+2) ~ (P

Where N is the calculated operand, i.e. (Y;)

Note :

As discussed before, a monitor is made up of a number of sections individually characterized by a local
base L and a program base P. These characteristic values are entered in the PRTS (Supervisor's PRT) located
anywhere in the memory and pointed at through absolute address 12 (decimal). A monitor operates in
Master mode and overrides memory protection.

Purpose of the CSV

A CSV is basically a branch instruction providing connection between a user program section and a super-
visor section, while ensuring the re-entrance of the Supervisor section and an easy return to the user
program.

Involved elements

- PRTS (Supervisor's PRT)

- PRTS pointer
- First three words of the calling program's CDS

- Contents of CSV calculated address which contains the called section number. (Note that Assemblers and
Compilers which operate with a Linkage Editor offer the convenient possibility of calling a supervisor
section by a name M:xxxx; thus, the actual number of the section may be unknown to the programmer).

Operation of the CSV

- L- and P-base values, relative to G, of the current section, and its indicators are stored in the first
three words of the calling program's CDS.

- With the section number, L- and P-base values are fetched.

- MA and PR indicators are forced to 1.

VIil-94

4057 U

- A branch is made at the called section.

Communication with the calling section

These communications are made in indirect general indexed (IGX) addressing mode via the second word of
the calling program's CDS.

However, it is still possible to transfer the parameters via A, E and X-registers.

Re-entrance

For full re-entrance, the supervisor section stores all variable elements it handles in the calling program's
CDS (addressing mode : direct general or direct general indexed).

Standard modules use a 16-word TWB for this purpose.

Operation flow chart

Absolute
PRTS pointer | .
address 12 ‘ P . :;s PRTS (Supervisor)
' . - S

LDSs = 1 ; :
Ls — L ; E

LPSs Ps— P
1 — MS
1 — PR

Start
execution | ‘
{ \
- RSV
Y
User program
G PRT
I - I A ‘
|| _le-G' =
La—L - Indicators —= l
Pa—P . i |
Indicators | ! '
restored E E Indicator storing format in G + 4
LDSa | ' ‘
i L Il Il 1 1 1 { I PR LA‘ MSI C | 0
LPSa
Pa ‘
_ sV s _

VIH-95

4057 U

Modified elements :

- Registers : L-P
- Memory locations : The first three words of the calling's program's CDS, i.e. (G) through (G+5)

- Indicators : MS set
PR set

Trap conditions : standard

Miscellaneous : The program is interruptible between a CSV and the immediately following instruction
(for interrupt masking, should it be required).

Examples :

Csv M:10

Ccsv =2

Ccsv =2,x

NAME : Return SuperVisor RSV
Class : 1 Priviledged Standard

Instruction format :

T

Addressing mode |Hexadecimal code | Execution time (ps)

P F1Co 6,7

Function : ((G) + 4) — Indicators
(G) +((G) +2) — (L)
(G) +2 +((G)) — (P)

The RSV placed in a monitor section (Master mode) called by a CSV provides the return to the calling
section by restoring in L- and P-registers the corresponding values contained in the first two words of the
CDS of the program to which the calling section belongs. It also restores the initial status of the indicators.

Modified elements :

- Registers : L-P
- Indicators : All indicators are restored (to the value they had before the CSV if the G-base has not been
changed in the meantime).

Trap conditions : standard and mode violation

Exameles : RSV

Vil-26

057 U

NAME : De-active InTerrupt DIT

Class : 1 Priviledged Standard

Instruction format :

As discussed before, the level of a program is the interrupt level at which it may be activated. A program
which cannot be activated at any interrupt level is said to be "at zero level",

MITRA 15's interrupt system is based on structure of hierarchized levels.

When an interrupt is received at a higher level than that of the current program, the latter is interrupted
otherwise. If the interrupt level is lower than that of the current program the interrupt is placed in waiting
state unitl the upper level is de-activated.

Purpose of the DIT

Since the acceptance of an interrupt causes a branch to the corresponding subroutine, the function of DIT
is to terminate this interrupt subroutine and to return control to the interrupted program.

In this respect, the DIT instruction is an actual system branch .

Elements involved

The program context comprises the current contents of X, E, A, G, L, P registers and indicators.

Every interrupt has an associated pointer indicating a memory area in which the context may be saved on
occurence of an interrupt at this level. The memory area for saving the context at a given level is actually
reserved only if a program is connected to this level. Generally, this area is located immediately after the
program storage area.

This area contains the register and indicator values at the last interrupt time (either if a higher level
interrupt has been accepted, or if the level has been de-activated). If the program is never interrupted,
the saving area contains the initial program contents (at the time its execution is started).

The 32 context pointers (indicating the saving area of each level) are stored in increasing level order in
the context pointer table (at increasing addresses starting from CPT address).

Saved elements are stored on a one-element-per-word basis at increasing addresses starting from the pointed
address in the following order :

- Indicators, X, E, A, G, L, P.

VIi-97

4057 U

Example of interrupt process

Level i

Level j < i [r—

Level O _‘

Reception of an
interrupt at level j

De-activation of level j

Reception of an interrupt
at level i

Operation of the DIT

- P-register incremented by 2

- Current level de-activated

AN

De-activation of level j

De-activation of level i

Reception of an interrupt
at level i

Reception of an interrupt
at level j

De-activation of level j

De-activation of level i and
acceptance of the interrupt
waiting at level |

Reception of an interrupt at level |,
placed in waiting state

- Conrext stored from the address which is pointed by the corresponding context pointer

- Acceptance of the highest priority waiting level (R8 updated)

- Context loaded with the contents of the saving area which is pointed at by the new level's pointer

(execution is started).

VIii-98

4057 U

Acceptance of an interrupt

DIT performs the return branch of the interrupt subroutine which had been call at the time the correspond-
ing interrupt was accepted. This instruction :

- Stores the interrupted level context from the memory address indicated by the associated context pointer.
- Accepts the level of the highest priority interrupt (R8 up-dated)

- Loads the context from the saving area which is pointed at by the new level (execution is started).

Interrupt configurations

There are 31 interrupt configurations (obviously zero level needs none). These configurations are used by
DIT to know located exactly the interrupt level to be de-activated.

They are stored in ascending level order in DVT table (in descending address order starting from CPT
address) .

DVT

DVT i

31 words

DVT j

DVTI1

cPT Address CTXO0

Address CTXj

32 words

Address CTXi

Address CTX31

Where i > j

This table may be located anywhere in the memory, the CPT address being in a word whose absolute
address is 10 (decimal).

Current program level

The current program level is indicated by R8-register which contains the double of this level number.

Modified elements :

- Registers: A, E, X, P, L, G, R8
- Memory locations : The eight words of the de-activated interrupt context
- Indicators : All

Trap conditions : standard and mode violation

Miscellaneous : Since DIT performs a context swapping, no protection or masking is required.
All interrupt subroutine must conclude with a DIT.
A DIT is meaningless at level zero (which cannot be de-activated).

Examglgi: DIT
VII-99

4057 U

NAME : De-activate high-speed InTerrupt DITR

Class : 1 Priviledged Optional

Instruction format :

__ DNERE

Comparative analysis of normal and high-speed interrupt

e Acceptance of a normal interrupt includes the following operations :

- Context of currently executed level (specified by R8) is saved in core memory.

- Calling level (Na) is accepted and R8 is updated.

- Context elements corresponding to Na are loaded in the registers.

o Acknowledgment of a normal interrupt is performed by the final DIT instruction of the interrupt subroutine
and includes the following operations :

- Context of currently processed interrupt is saved in core memory.

- Corresponding level is de-activated.

- Waiting level is accepted and R8 is updated.

- Context elements corresponding to the new level are loaded in the registers,

e Acceptance of the high-speed interrupt includes the following operations :

- Normal interrupts are placed in waiting status until acknowledgment of the high-speed interrupt.
- Current indicators are saved in register 6 of block 0.

- R12 is loaded with the number of the block which is reserved for high-speed interrupt processing.
- Indicators are loaded with the contents of register 6 in the reserved block.

o Acknowledgment of the high-speed interrupt is performed by the final DITR instruction of the interrupt
subroutine and includes the following operations :

Indicators are saved in register 6 of the reserved block.

R12 is cleared (return to block 0).

High-speed level is de-activated (normal interrupts are enabled).

Previous indicators saved in register 6 of block 0 are restored.

VII-100

4057 U

Modified elements :

- Registers :
- Indicators :

Trap conditions : standard and mode violation

ExamEIes : DITR

return to block 0

restored

VII-13. CONTROL INSTRUCTIONS

TES
STM
CLM
RD
WD
LDP

TEst and Set

SeT interrupt Mask
ClLear interrupt Mask
Read Direct

Write Direct

LoaD memory Protection

VII-101

4057 U

NAME : TEst and Set TES

Class : 1 Priviledged Optional

Instruction format :

s e T

Function: (De)y — A
0 — (De),

(De + (X)), —A
Px? 0 — (De * (X)),

((De + (L)), — A
ot 3 0 — ((De + (L)),

This instruction tests and clears a memory location without being interrupted. Initial value loaded in A,
Test result loaded in the indicators. This instruction is used when several processors work in a common
memory area, for example to enable a processor to perform an "occupation test" on a table.

The protection bit is also reset.

Modified elements :

- Registers : A
- Memory locations : y,
- Indicators : C-O

Indicators :

C 0] Upon execution
0 0 Y2 < 0
0 1 y, > 0
1 0 y2 < 0

Trap conditions : Mode violation

ExomEIes :

TES EPDL28
TES =&3E, x
TES =9

VI1I-102

4057 U

NAME : SeT interrupt Mask

Class : 1 Priviledged

Instruction format :

Address

e (ESESN .

Addressing mode | Hexadecimal code |Execution time (ps)

P F4 3,4

Functions : (N,,) —= Interrupt mask (MA)

MA-indicator is set.
As a consequence all interrupt levels are masked.

Modified elements :

- Indicators : MA

Trap conditions : standard and mode violation

ExamEIes : STM

NAME : Clear interrupt Mask

Class : 1 Priviledged

Instruction format :

T —

Addressing mode | Hexadecimal code | Execution time (ps)

P F4 3,4

Function : (N,) —= Interrupt mask (MA)

MA-indicator is reset. As a consequence, all interrupt levels are masked.

Modified elements :

- Indicators : MA

Trap conditions : standard and mode violation

ExamEIes : CLM

STM

Standard

CLM

Standard

VII-103

4057 U

NAME : Read Direct RD

o o —

RD is the input instruction and its meaning depends on the addressed controller.

NAME : Write Direct WD

T [o o o —

WD is the output instruction and its meaning depends on the addressed controller.

Vii-104

4057 U

NAME : LoaD memory Protection LDP
Class : 1 Priviledged Optional

Instruction format :

i . B

Addressing mode | Hexadecimal code | Execution time (us)

DL 3B 3,1 +1,8n
PX EB 3,1 +1,4n
P FB 3,1 +1,4n

n = number of words in the string.

Function : For X varying 0 and (E)-1
Nis — bp((A) +2X)

Upon execution E = -1
A = Address of the first non-processed word

LDP loads the protection bit in a word string.
The starting address is in A and the string length is specified in E.

Each protection bit is loaded with the value of bit 15 in the calculated operand (contents of calculated
address) . The string is protected when this bit is set (1), otherwise, there is no protection.

Modified elements :

- Registers : E-A
- Memory locations : (y2) to (y, +(E) - 1)

Trap conditions : standard and mode violation

Miscellaneous : This instruction is interruptible between two words

Examples :

LDP =1

LDP =0

LDP =0, x
LDP EPDL21

VII-105

mitra 15

8. Input/Output control system

VIli-1. INPUT/OUTPUT SYSTEM ORGANIZATION

The following sections only describe Input/Output operations under Monitor control.

Though the procedure has a standard aspect and is mainly nriented towards standard peripheral transfers, it
will be seen later that it also provides for processing non-standard peripheral transfers and offers the conve-
nient feature of a direct user check on the validity of such transfers.

An Input/Output operation may be divided into five steps :

a) Reservation of a buffer, if required.

b) Transfer request (resident system call).

c) Transfer initialization.

d) Transfer completation.

e) Transfer end and validity check.

Step a) is and independent supervisor call : reservation of a dynamic data block.
Steps a) and b) are performed by the requesting task (CSV M:10 or M:Z10).

Step c) is performed by the Monitor in response to the M:10 call. Control is returned to the calling program
upon transfer initialization,

Steps d) and e) are controlled by the system in full independence from the calling task, and in apparent

simultaneity with the currently executed tasks; the calling program may follow the transfer progress, if
required (CSV M:WAIT or M:ZWAT).

Remark :

if the device is busy at transfer request time, two different processes may be initiated (according to the
Monitor).

1) The request is queued and control is returned to the calling task.

From the user's viewpoint, everything goes on as if transfer initialization step c) were actually completed,
i.e. he may consider that step d) has begun and may wait for transfer end, if required.

In such a case, step d) combines the delay for waiting for the logical release of the device and the duration
of the actual transfer initialization and performance.

Quevuing is always possible at or above MTR-level,

2) No queuing of the request; control is returned to the calling task only when the transfer has beep
actually initialized,

VIII-2. INPUT/OUTPUT INTERFACE

VIIi-2.1., Definition

Most of supervisor processing is common to all types of transfer during steps b), c) and e) described above :

1) Transfer request is analyzed for a possible preliminary processing,

Vii-

4057 U

2) Logical occupation of the handler is tested,
3) |If required, the transfer request is queued and the Supervisor manages the queue,
4) All parameters required for physical initialization and transfer control are set up,

5) If possible, the device initial status is partially or completely read and analyzed if the whole procedure
or part of it is common to all devices,

6) A branch is made to the specific control module of the device (handler),

7) A number of error conditions are acknowledged and processed when the transfer is over (sole processing
specific to step e)).

The Input/Qutput interface of the Operating System includes the whole of these processings common to all
transfers which are performed between the time the user issues a request and the time a handler takes over,
and between the transfer end and the release of its results to the user.

e Input/Output processing levels

Three level classes may be considered :

a) Physical level (level 0) at which the handler performs operations which are specific to a given type of
device.

b) Logical level (level 1) which includes steps 2 through 7 above. This level is that of the resident core
of the basic monitor. It is usually called "1/O supervisor" (or more restrictively, "I/O interface").

c) Upper levels (2 and above) which perform step 1 of the above processing according to a hierarchy which
defines the degree of sophistication of the operating system :

records blocking/unblocking,

file management system,

I/O macros of sophisticated languages (FORTRAN, ...),
- specialized packages.

Level 1 controls all actual user transfers and constitutes a resident program module independent from user
programs, with a number of specialized tools or "handlers" corresponding to the various device types.

In contrast, levels 2 and above are usually subroutine librairies supplied with the system for static or
dynamic integration to a task, according to their origin :

- either resident as common subroutines,
- or selected in a system library and generated with a program by the linkage editor.

These subroutines are mutually related according to the general hierarchy which has been defined elsewhere
for subroutines in general, ‘

The block diagram page VII1-3 illustrates the general 1/O organization.

VIII-2.2. Input/Output control module or "handler"

Hereafter, a device controller should be regarded as including both the physical controller unit and the
coupling micro-program .

The actual initialization of the transfer to or from the device, the initialization control, the possible
transfer attendance and the end of transfer acknowledgment depend on the type of device, i.e. of the
controller. These operations must be performed by a module which is specific of the controller,

This specialized control module is called a "handler".

V-2

4057 U

USER LEVEL LEVEL » 2 LEVEL 1 LEVEL O DEVICE
I
User programs 1 Packages 1/0 supervisor Handler
Sophisticated languages
SGT

1/0 INTERFACE
3

! r ,

Transfer request

(Ccsv) : (upper level) ! >‘
Preliminary treatment :

- reserve buffer
- lock/unlock

Lonect rmstenroaues :
i (CSVi bl .

- Deactivate E
- «Controller busy» test

1

Quening as required

Setting actual transfer
initialization parameters

1

Controller status sensing l

1

Branch to Handler >1

End of controller and '
s

device status sensing

~
H Actual initialization >4 T

._,___,_._i__._A ___{

1 i
; ! - | |
1
: ! ! |
: l Interrupt.
' | |
1 |
' i
1 | . .
| | I End of transfer |
1
| ' J
1 I . N
' | |
) 1)
| | F csv !
' '5 = - Store status and
'b¢ Data distributor control informations
E) - Activate E . |
: 1 !
. Analysis of Activate next 1 . . i, X . _J
' validity informations X queued request
! | I
< RSV
] DIT

General Input/output organization

VIl-3

4057 U

It includes two sections :

- Handler 1 or "initialization handler",

- Handler 2 or."transfer control handler".

Depending on the type of device, the associated controller will operate in one of the following two modes :
- blocked data transfers,

- individual data item transfers.

If a transfer requested at level 1 applies to blocked data, the handler operating mode will be one of the
following :

- The handler controls the transfer of one data block in one single operating cycle;

- The handler controls the elementary data item transfers to or from the data block. This transfer is either
fully controlled by handler 2, or every elementary data transfer is controlled by handler 1 cyclically
re-activated by handler 2 (for exemple to avoid rewriting in handler 2 all initialization and checking
functions of handler 1).

« Handler 1 : initialization of a transfer

Handler 1 has the following functions :

a) If required, it analyses the initial status of the controller and/or device, before initiating the transfer.
In case of abnormal conditions, the transfer is aborted and the error conditions are signalled to the 1/0O
supervisor,

b) It issues a block transfer or read/write command, according to the operating modes of the controller
and handler 2.

c) It checks that the controller actually takes over the initialization for abnormal conditions which do not
require an interrupt. If an abnormal condition is detected, the procedure is as defined in a) above.

d) It returns the control to the calling program.
Handler 1 always operates at the priority level of the calling program.
The calling program is usually the I/O supervisor (level 1), but it may also be handler 2 when the data

transfers are automatically re-activated.

o Handler 2 : transfer control

Handler 2 is a Master mode immediate program which is triggered by the controller interrupts to perform
the following functions :

- it takes over the transfer steps upon interrupt, in turn with the micro-program;
- if required, it re-activates handler 1;
~ it controls the end of transfer operations.

During each step, handler 2 may detect abnormal conditions which may required the transfer to be interrup-
ted or resumed. In the latter case, the transfer is resumed by a return to handler 1.

Handler 2 always operates at the priority level of the controlier interrupt.

At the end of the transfer (normal or abnormal), handler 2 performs a call to the 1/O supervisor to signal
the end and the validity of the transfer, before de-activating the associated interrupt level.

Remark :

Several controllers of the same type may be serviced in apparent simulaneity by handler 2. In effect, the
corresponding interrupts are then grouped at the same level before reaching the processing unit, so that
when handler 2 is occupied by a given interrupt, the other interrupts are waiting.

Vili-4

4057 U

IT Context 1

Controller 1 /
1T2 \ Context 2

Controller 2 —— —

—=-Context n

Handler 2

Controller n

When queue management is available, each device controller has its own queue. Each queue contains
chained elements and is managed through a pair of pointers. The queue elements are taken among free
elements which are also chaine and managed through a pair of "hole pointers".

A "busy indicator" Ci is associated with every serviced controller i.

USER | 1/0 INTERFACE HANDLER 1 HANDLER 2
I~ j,>1
CALL '
Supervisor

- De-activate event

- Table management
- Initialization

- Mask interrupts

yes no ___@

- Insert in queue i -Ci=1
- Unmask interrupt| - Unmask interrupt
- Set 1/O parameters

Initialize and set
parameters for Handlers

Transfer over
RSV

CALL

Return to calling program Supervisor

Y

- Activate event
-Ci=0
- Mask interrupts

Continue transfer

RSV
b Unmask interrupts

no

DIT DIT
Delete element

in queue

e

Input/Output requests management

Vii-5

4057 U

VII1-3. TRANSFERS

VII-3.1. Transfer requests

e I/O calls: CSV M:10 or CSV M:ZIO

A transfer control block CB is associated with the CALL SUPERVISOR of the transfer request. This block
contains user-defined parameters. At the end of the transfer, it also contains status information supplied
by the system.

When the CALL is executed, A-register should contain the CB address relative to G-base. When this
address is defined during execution, one may conveniently use a LEA instruction which provides resolution
relative to G whatever the mode, master or slave.

The calling sequence is then : LEA CB
CSV M:10

For CSV M:ZI10O (available at and above MTR-level), which provides for common area 1/O's, the address
contained in A must be relative to the common area address (available in location 6 of the program).

The resident associates to the transfer request a dynamic event defined by the CB address and returns the
control to the calling program once the transfer is initialized or queued.

The user may then perform a call to the M:WAIT module (wait event) for an event which is the beginning
or the end of the transfer.

o Description of the control block parameters

0 Event byte
1 Indicators
2 Command (function)
3 Operational label
4 Buffer address relative to G or ZC according
5 to M:10 or M:ZI10O
6 % Number of bytes to be transferred
7
Optional 3 8 2 Branch address on error or abnormal
9
Optional 10 Additional information
11 (sector address on disk storage)
Optional g 12 % Time-out
13
Optional % 14 Iinterrupt level no
15 Reserved byte

For M:1O call, the 1/O buffer address and the error branch address must always be relative to G.

In Slave mode this is always the case.

In Master mode, where references are normally translated into absolute addresses at loading time, these
references must be preceded by a "##" character at assembly time (or a "." character in case of a LP
compilation), to preserve relocatability.

V-6

4057 U

For M:Z10O these addresses will be relative to ZC.

o Byte 0 : event byte

When the transfer is over, the resident sets the bits of the "event byte" according to the following code

(bit 0 is set when the resident takes over and reset at the end of the transfer).

Bit 0 3 =0 : 1/O operation over
—_— 1 : 1/O operation in progress
- Bit 1 =1 : error or abnormal end
- Bit 2 3 =0 : logical error (e.g. incorrect call format)
—_— =1 physical error (e.g. signalled by the controller)
_ U=0 : error detected after transfer end
=0 R . . .
- Bit 3 U=1 : status information supplied when the transfer is over

=1 U =0 : error during transfer initialization
U=1 : status information supplied when the transfer is initialized

- Bits 4, 5, 6 and 7 : error or abnormal end code.

Bits 2 through 7 are significant only if bit 1 is set (=1).

Bits 4, 5, 6, 7 provide 16 different codes for every combinaison of bits 2 and 3.

. Bzfel :

O |1 (2|3 (4 |5]|6]7

UIE|S|T|I

U=1 : the user checks the transfer on resultant status information,

E =1 : branch address in case of error or abnormal end (standard error processing).
S =1 : additional information present (e.g. sector address on disk storage)

T=1 : time out requested

I =1 : activate interrupt after transfer

U=1and E =1 conditions are mutually exclusive.

o Byte 2 : specifies the requested I/O function according to the following coding table :

0|1 2 |3 | 4] 5
Read, forward 0 0 0 0 - -
Read, backward 0 0 1 0 - -
Write 1 o |00 | -1 -
Write EOD/Tape mark 1 0 |1 o | -1 -
Format/rewind 1 0 |- |1 -] -
Skip block, forward - 1 0|0 - -
Skip file, forward - |1 0 |1 -1 -
Skip block, backward -1 1 0 -1 -
Skip file, backward -1 1 1 1 - -

Vii-7

4057 U

o Byte 3: contains the numerical value of the operational label specified at assembly time (index in 1/O
tables). (See section VIII-4. hereafter).

« Bytes 4 and 5 : contain the address of the first byte to be transferred to/from the core memory.

o Bytes 6 and 7 : contain the number of bytes to be transferred.

o Bytes 8 and 9 : (optional)

If U=0and E =1, they contain a user-defined branch address used in case of error or abnormal end.

If U=1and E =0, they contain the transfer status bits supplied by the controller and set by the resident.

o Bytes 10 and 11 : (optional)

They contain additional information whose basic function is to indicate a sector address on disk storage.
For other devices, they may contain an other parameter or even the address of an additional parameter
table.

e Bytes 12 and 13 : (optional)

They contain the requested time-out value.

o Bytes 14 and 15 : (optional)

They contain the interrupt level number which must be triggered by the resident when the transfer is over.

Remark :
Optional bytes are evaluated in the order of appearance of U, E, S, T, and | indicators.

When a given option is specified, the bytes corresponding to the preceding options must be reserved.

V1I1-3.2. Transfer validity checking (CSV M:WAIT or CSV M:ZWAT)

The transfer validity may be ascertained either in standard mode, or in user mode :

o Standard mode (U =0)

All controller status bits are sensed by the resident (interface and handler which returns an easily interpre-
table abnormal condition code to the user. If requested in the initial CB (E = 1), the resident may return
the control to a user specified address in case of abnormal condition.

If the error is impossible to correct, the control is not returned to the user, but to the typewriter after
printing the corresponding program identifier and error message.

e User mode (U=1, E=0)

The resident loads the status bits in bytes 8 and 9 without performing any sensing; the control is always
reiurned to the user program.

In both cases, the transfer is considered to be over, even if a blocking condition occurs during initializa-
tion.

e CSV M:WAIT (corresponding to CSV M:10)

e Calling sequence :

LEA CB
Ccsv M:WAIT

At the time the CSV is met, the address relative to G of the /O transfer control block must be stored in
A-register,

Vili-8

4057 U

e Function:
Wait for completion of an 1/O transfer.

If the transfer is already over when the M:WAIT call is received, control is returned to the user (possibly
at a restart address for abnormal conditions, if requested in byte 1 of the CB).

If the transfer is still in progress when the M:WAIT call is received, the latter :
- stores the calling task level in the I/O CB;
- de-activates this level if not zero, or waits for the completion of the transfer if the level is zero.

M:WAIT call temporarily de-activates the level of the program which is waiting for an 1/O transfer end,

in order that lower priority programs be undertaken without being blocked. The pending program is restarted
as soon as the transfer is over, its level being re-activated by the handler of the controller involved in

the transfer.

o Outputted elements :

A < 0 in case of I/O error.
In this case, the user should examine CB byte 0 for ascertaining the cause of the error.

A > 0 no error

o CSV M:ZWAT

Its function is the same as that of M:WAIT but relates to a M:Z10O call. The transmitted CB address must
be relative to ZC.

V111-3.3. Communication between 1/O interface and handler

The 1/O interface (level 1) is basically made up of two modules :

M:10O
and M:102

e Initializer M:10

De-activation of the event which is associated with the CB by resetting bit 0 of CB byte 0.

Bits 1 through 7 reset in CB byte 0.

Controller occupation tested and a waiting loop established, if required

Initialization of logical parameters required for transfer control.

Branch to the transfer control module (H1) of the device.

M:10 supplies the following parameters to H1

(A) = user buffer absolute address
(E) = element of OLTB table associated with the transfer operational label (see table description)
(X) = user CB absolute address

(T3)TWB = byte count for transfer
- Upon return from H1, M:1O examines A-register contents.
A = 0 — return to calling program

A#0 — Ay loaded in CB (0),.; ; associated event activated : CB(0)y =0;

VIi-9

4057 U

and :

If U-indicator [CB(])O] =1 or

If U=0and A 5 0, control is returned to the user

If U=0and A ¢ 0, M:IO edits an error message and the user task is aborted.

Under MOB Basic Monitor, only one user 1/O request is allowed at a time for a given device : no queue
is provided.

Every I/O request of the user program will be associated with an event and the user may request by program
to wait until it is activated.

Any other I/O request for the same controller (e.g. on console interrupt) occuring before the event is
activated will cause a waiting loop at calling program level, until the first transfer is over.

Interrupts should be masked during the test, since the higher priority console interrupt may request an 1/0
transfer and change the logical status of the devices.

Under other Monitors, the user may issue several I/O requests for the same device; they will be queued
and satisfied in turn as soon as the device becomes available.
o Handler 1 : H1

- Senses the controller and/or device initial status as regards specific conditions of this device type, if
required;

- Sends the transfer request according to the controller and handler 2 operation mode;

- Checks the proper acceptance of this initialization by the controller for abnormal conditions which do
not cause an interrupt;

- Returns the control to the calling program.

Note :

Handler 1 always operates at the calling program level, i.e. at the physical interrupt level to which it is
connected.

Upon occurence of abnormal conditions, the transfer is considered over and the error conditions are sent to
interface 1 through A-register,
o Transfer end

When the transfer initialized by handler 1 is over, the interrupt associated with the controller activates
handler 2,

We saw before that a block transfer may be carried out in two different ways :
(i) Transfer of the whole block in one time.

(2) Transfer of the block per data items.

e First case : block fully transferred

Handler 2 :

- Reads device status

- Checks proper device operation during the transfer
- Calls M:102

H2 supplies M:102 with

(T1) = Element of OLTB table
(TO) = User CB absolute address
(A) = Report on the operation which has just been terminated.

VII-10

4057 U

Module 102 :

- Processes transfer errors, if any.

- Re-initializes the logical parameters which were used during the transfer.
- Activates the associated event (CB).

- Returns the control to the calling program.

e Second case : transfer interrupted

Handler 2 :

- Reads the device status,

- Checks for proper transfer : on error, module M:102 is called,

- Tests if all data have been transferred : if transfer is over, see first case above,
- Restarts the next data transfer by a branch to handler 1,

- De-activates the interrupt level.

VIIl-4, OPERATIONAL LABELS

Vill-4,1, General

The operational labels system has been introduced to enable the programs to process a logical environment.

An I/O transfer may be requested through an operational label which represents the actual 1/O function.
The correspondance between operational labels and physical devices is handled by the Monitor through
assignment statements,

With such a system, the |/O programming is practically independent from the physical devices which are
actually used and this ensures a total compatibility of the program with any configuration.

VIli-4.2. Definition

An operational label is a number which is generally a 4-character mnemonic code.

Operational labels are distributed into two classes : standard operational labels written M:XX with a prede-
termined function and user operational labels written U:FX whose functions are user-specified.

IDecimaI number Mnemonic Function Mode
1 M:BI Binary Input Binary
2 M:BO Binary Output Binary
3 M:Cli Command Input Alphanumeric
4 M:0C Operator Console Alphanumeric
5 M:E| Element Input Binary or
Alphanumeric
6 M:EO Element Output Binary or
Alphanumeric
7 M:LO Listing Output Alphanumeric
M:LL Listing Log Alphanumeric

VII-11

4057 U

Decimal number Mnemonic Function Mode
9 M:DO Diagnostic Output Alphanumeric

10 M:S|I Source Input Alphanumeric
11 M:SL System's Library Binary
12 M:UL User's Library Binary
13 M:SY SYstem Binary
14 M:EP Executable Programs Binary
15 M: Gl Go Input Binary
16 M:GO Go Output Binary
17 U:F1
18 U:F2
19 U:F3
20 U:F4
21 U:F5
22 U:Fé6
23 U:F7
24 U:F8
25 U:F9
26 U:FA
27 U:FB
28 U:FC
29 U:FD
30 U:FE
31 U:FF

VIiI-4.3, Operational labels assignment

Every Monitor has for standard operational labels standard assignments defined at generation time. These

assignments may be modified by monitor commands, except the following :

M:0C Typewriter

M:SY
M:EP
M:UL
M:SL
M:GlI
M:GO

System disk unit

User operational labels have no standard assignments and it is the user's responsibility to specify its own

assignments,

VII-12

4057 U

« ASSIGN
This command is available under MOB-E, MTR, MTRD.

%As[SIGN]/[F], m% : 010y, Tityt,, [c :[&]c,cz] ,[D:[&] d] , [% ,2NN$]

F Denotes an operational label reserved for Foreground use (MTR or MTRD)
M:0, O, Specifies the assigned standard operational label

U:0; 0, Specifies the assigned user operational label (MTR or MTRD)

T:ty t, Specifies the type of device to which the operational label is assigned
C:icycy Specifies the controller number within the specified type

D:d Specifies the device number on the controller

BN The corresponding file is binary

AN The corresponding file is alphanumeric

Possible values for device type are :

T:NO Cancel label. An input or output request with such a label is not performed. -
T:TY Typewriter (key-in and type-out)
T:PT Console paper tape reader/punch
T:PR High-speed paper tape reader
T:PP High-speed paper tape punch
T:MC Minicassette
T:LP Line printer
T:CR Card reader
T:CP Card punch
T:DC DIAD disk unit
T:9T 9-track magnetic tape unit
T:DM DIAM disk-pack unit

- T:VU CRT display console
T:PL Plotter
e STOL

This command is available under MTRD.
%STOL/ %'S‘ 10,02, Tetyty, [C 1 [8] AR Y 4], [32’:%]

This command provides for changing operational labels standard assignments.

Options have the same meaning as for %ASSIGN .

A %STOL command without any option restores the normal assignment of standard operational labels.

VIHi=-17

4057 U

VIiil-5. HANDLER UTILIZATION

VIII-5.1. Typewriter handler (# 15 001)

m General
- The typewriter handler controls type-ins and print-outs (T:TY) as well as paper tape read and punch (T:PT),

The various functions are determined by the selected operational label, by its assignment (typewriter or
paper tape, input or output, binary or alphanumeric) and by the function byte (two elements of the I/O CB).

- A typewriter is 72 characters long.

- For alphanumeric input or output, the ISO 7-bit code is used (ASCII). ASCll«— EBCDIC code conver-
sions are performed by the handler, since the internal code is always EBCDIC,

- The paper tape punch drive motor in energized when the "tape on" character is detected (&12 code in
ASCIl). This code is not punched unless the punch is already energized at that time. The motor is shut
down after punching the "tape off" character (&14 code in ASCII).

- The typewriter controller is busy either in typewriter mode or in paper tape mode, and for each of these
modes, in input or output mode. The typewriter functions connot be performed simultaneously.
m Functions

o Available commands

Hexadecimal code Functions
00 Read
80 Write with format
90 Write without format

e Alphanumeric input : typewriter or paper tape code : &00

- The input is made one character at a time and each character is converted in EBCDIC before being
transferred into user's buffer. The transfer is terminated when the specified number of characters has been
reached.

However, the "carriage return" character (&0D code in EBCDIC or ASCII) always terminates the transfer
after being actually transmitted to user.

- The "Paper feed" characters (&0A code in EBCDIC and &15 code in ASCII) are neither transmitted to
the user nor counted in the total number of characters of the transfer.

~ The "TAPE OFF" or "NULL" characters included in a record heading are not transmitted to the user-and
are not counted in the total number of characters of the transfer.

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41 hexa-
decimal and represents an "end-of-file" mark.
o Alphanumeric output : typewriter or paper tape. Codes 80 and 90.

- The output is made one character at a time, each character being converted in ASCII at transfer time
without any alteration of the user's buffer.

The transfer is terminated when the specified number of characters has been reached. No filtering is made.

- When the %EOD group is written in a record heading, the CB event byte (byte 0) is forcad to 41 L-vzda-
cimal and represents an "end-of-file" mark.

- No character filtering is made.

- In paper tape mode, the transferred data are preceded by a "TAPE ON" character (not punched) and
followed by a "TAPE OFF" character (punched).

VII-14

4057 U

If the user's buffer contains a "TAPE OFF", the handler restarts the punch (sends a "TAPE ON" which is not
punched).

- Write with format. Code 80.

The user's buffer data transfer is preceded by two "paper feed" and "carriage return” characters for starting
the line at the left margin.

- Write without format., Code 90.

No line adjustement character is provided. The format is entirely the user's responsibility.

o Binary input from paper tape. Code 00.

- The data are read one character at a time. The transfer is terminated when the specified number of
characters has been reached.

- The "TAPE OFF" or "N ULL" characters included in a record heading are not transmitted to the user and
are not counted in the total number of characters specified for the transfer.

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41
hexadecimal and represents an "end-of-file" mark.

e Binary output on paper tape. Code 80

- The data are punched one character at a time. The transfer is terminated when the specified number of
characters has been reached.

- The user's buffer data transfer is preceded by a "TAPE ON" (not punched) and followed by a "TAPE OFF"
(punched).

All bytes having a value of 14 or 94 hexadecimal (corresponding to a "TAPE OFF") are followed by a
"TAPE ON" (not punched) for restarting the punch motor.

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) in forced to 41
hexadecimal. -

o Example :

ES CDS
RES 16 TWB

BBINS DATA &0001
DATA &0002 BINARY OUTPUT BUFFER
DATA &0003

BALPS TEXT "MESSAGE" Alphanumeric output buffer
BND

BBINE RES 8 Binary input buffer

BALPE RES 7 Alphanumeric input buffer
FIN

L1 LDS
RES 2

CB1 DATA 0
DATA,1 0 Read command
DATA,1 1 or DATA,1 M:BI Binary input
DATA #* BBINE
DATA 16

CB2 DATA 0
DATA,1 0 Read command
DATA,1 4 or DATA,1 M:0C Alphanumeric input
DATA 7 BALPE
DATA 14

VIH-15

4057 U

CB3 DATA 0
DATA,1 80 Write command
DATA,1 2 or DATA,1 M:BO Binary output
DATA # BBINS
DATA 6
CB4 DATA 0
DATA,1 80 Write command
DATA,1 7 or DATA,1 M:LO Alphanumeric output
DATA 7 BALPS
DATA 7
FIN
P1 LPS L1
DEB LEA CBl1
Ccsv M:10 % Input of a 16-byte binary record from M:BI
Ccsv M:WAIT
LEA CB2 Input of an alphanumeric record 14-characters max. from
Csv M:10 typewriter (M:OCQC)
Csv M:WAIT
LEA’ CB3
Ccsv M:10 % Ovutput of a binary record 0001, 0002, 0003 on M:BO
Ccsv M:WAIT
LEA CB4
Ccsv M:10 % Output of "MESSAGE" text on M:LO
Ccsv M:WAIT
FIN DEB
END P1

VIII-5.2. 300 char./sec. paper tape reader handler (# 15 062/60)

m General

- This handler controls the binary or alphanumeric input from the paper tape (T:PR), each of these two
functions being determined by the selected operational label, by its assignment and by the function byte

(two elements of the |/O CB).

- For alphanumeric input, the I1SO 7-bit code is used (ASCII). The ASCIl .——=EBCDIC code conversion is
performed by the handler, since the internal code is always EBCDIC.

B Functions

The available command byte is &00 (read).

e Alphanumeric input. Code &00

- The input is made one character at a time and each character is converted in EBCDIC before being trans-
ferred into user's buffer. The transfer is terminated when the specified number of characters has been
reached.

Hewever, the "carriage return" character (&0D code in EBCDIC or ASCII) always terminates the transfer
after being actyally transmitted to the user.

- The “paper feed" characters (&0A code in EBCDIC and &15 code in ASCII) are neither transmitted to the
user nor counted in the total number of characters of the transfer.

The "TAPE OFF" or "FULL" characters included in a record heading are neither transmitted to the user nor
counted in the total number of characters of the transfer.

VIli-16

4057 U

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41
hexadecimal and represents an "end-of-file" mark.

« Binary input. Code &00

- The data are read one character at a time. The transfer is terminated when the specified number of
characters has been reached.

- The "TAPE OFF" or "N ULL" characters included in a record heading are neither transmitted to the user
nor counted in the total number of characters specified for the transfer.

- When the %EOD group is detected in a record heading, the event byte (CB byte 0) is forced to 41
hexadecimal representing an "end-of-file" mark.

VI11-5.3. 60 char./sec. paper tape punch handler (# 15 060)

m General

- This handler controls the binary or alphanumeric output on paper tape (T:PP), each of these functions
being determined by the selected operational label, by its assignment and by the function byte (two
elements of the 1/O CB).

- For alphanumeric output, the ISO 7-bit code is used (ASCIl). The ASCIl—=EBCDIC code conversion is
performed by the handler, since the internal code is always EBCDIC.
@ Functions

The available command byte is &80 (write)

e Alphanumeric output. Code &80.

- The output is made one character at a time, each character bieng converted in ASCII at transfer time
without any modification of the user's buffer. The transfer is terminated when the specified number of
characters has been reached. No filtering is made.

- When the %EOD group is written in a record heading, the CB event byte (byte 0) is forced to 41
hexadecimal representing an "end-of-file" mark.

e Binary output. Command &80.

- The output is made one character at a time and the transfer is terminated when the specified number of
characters has been reached.

VII-5.4, 300 char./sec. card reader handler (# 15 120)

B General

- This handler controls the binary or alphanumeric input from the cards (T:CR), each of these functions
being determined by the selected operational label, by its assignment and by the function byte (two
elements of the 1/0O CB).

- For alphanumeric input, the EBCDIC card code is used on a one character per column basis (80 characters).

- For binary input, each card contains up to 120 bytes.

B Functions

The available command byte is &00 (read).

o Alphanumeric input. Code 00.

- 80 characters are read.

Vi-17

4057 U

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41
hexadecimal representing an "end-of-file" mark.

o Binary input., Code 00.

- 120 bytes are read.

- When the %EOD group is detected in a record heading, the CB event byte (byte 0) is forced to 41
hexadecimal representing an "end-of-file" mark.

Note that, in this case, %EOD is a 4-character group, punched in the first four columns of the card
(i.e. the first six bytes in binary reading mode).

Thus, the EOD mark is the same in binary and alphanumerical reading.

VII-5.5. 200 I.p.m. printer handler (# 15 412)

m General

This handler controls the alphanumerical outputs on the line printer (T:LP).

The print line is 132 characters long.

The alphanumeric output code is the ISO 7-bit standard code (ASCII). The user's buffer may be coded in
ASCI! or EBCDIC.

- EBCDIC~-coded buffer. This is the most frequent case

The user must use an alphanumeric operational label (M:LO, etc.). The EBCDIC — ASCII conversion is
performed by the handler in the buffer before the output transfer. The reciprocal ASCIl — EBCDIC
conversion will be performed by the handler at the end of the transfer. This double conversion has no
effect on the final contents of the buffer.

- ASCll-coded buffer

The user must use a binary operational label (M:BI, etc.); no code conversion is performed.
m Functions

e Available commands :

Hexadecimal code Function
80 Write without format
90 Write with format

« Write without format mode

A pcper feed is executed after the requested printing.

e Write with format

The first byte in the user's buffer will specify a paper positioning operation executed before the actual
printing.

This skip code is conted in the number of transferred bytes.

The printing operation is normally followed by a paper feed, except when the format byte contains EQ or
60 (EBCDIC code).

VIi-18

4057 U

Table of format byte coding (skip codes)

Code
ASClI EBCDIC Function
5C EO Omit paper feed after printing
2D 60 Skip O line
78 co Skip 1 line
41 Cl Skip 2 lines
42 C2 Skip 3 lines
c3 C3 Skip 3 lines
44 C4 Skip 4 lines
C5 C5 Skip 5 lines
Cé Cé Skip 6 lines
47 Cc7 Skip 7 lines
48 cs8 Skip 8 lines
c9 c9 Skip 9 lines
60 CA Skip 10 lines
El CB Skip 11 lines
E2 CcC Skip 12 lines
63 CD Skip 13 lines
E4 CE Skip 14 lines
65 CF Skip 15 lines
30 FO Skip on channel 0 (botton of form)
Bl F1 Skip on channel 1
B2 F2 Skip on channel 2
33 F3 Skip on channel 3 (top of form)

VIII-5.6. Fast-access disk handler (# 15 200/1/2/3/4)

® General
This handler controls the transfers between the core memory and the fast-access disk.

The associated CB must include an additional information : the disk address. This address specifies a number
of disk-sectors (the first sector being sector 0).

VIi-19

4057 U

0 Event byte
1 Indicators
2 Command or function
3 Operational label
4
% Buffer address
5
6 g Number of bytes to be transferred
7
8 % Branch address on abnormal end
9
10 .
% Disk-address (sector number)
11

The transfer is always initiated at the beginning of a sector. If the requested byte number is not a mulfiple
of 256, the last sector which is only partly occupied, is filled with zeroes. Thus, the modified memory
area is always a multiple of 256.

The transfer being executed one word at a time, the byte count in the CB must be even.

This handler considers the disk as an ordinary device; the MTRD handler, which is more powerful, performs
the disk area management tasks.

m Functions

o Available commands :

Hexadecimal code Function
00 Read
10 Read and update disk-address
80 Write
90 Write and update disk-address

o Disk-address update :

For 10 and 90 command codes, the disk-address of the CB is incremented by the number of transferred:
sectors. This updating function may simplify the following transfers.

Vii=20

Mitra 15
Appendix A — List of pseudo-instructions

The following representation conventions are used in the table below :

Pseudo : Name of the pseudo-instruction

Format : Operand format
- Type : Type of operand

. LE : Label expression

. RE : Reference expression
.V : Value

. C : Character string

.S : Segment name

Function : Definition of the pseudo-instruction function
- DATA : Authorized ina CDS or LDS

- PROG : Authorized in a LPS

- LAB : Assigns an address to a label

PSEUDO FORMAT Type FUNCTION DATA |[PROG|LAB

CDS [DUM] Definition of the common data x
section or CDS.

No code generated if DUM is
present,

LDS [Dum] Definition of a local data segment x
or LDS.
No code generated if DUM is
present.

IDS [DUM] Identification of an indirect access X
(MITRAS 11 only) data segment. Any label specified
in this segment is defined with
respect to its starting address.

No code generated if DUM is
present,

LPS NAME S Definition of an executable local x
program segment LPS and thus of a
program section.

NAME is the name of the
associated LDS

END SECTION NAME S Indication of the assembly module
end SECTION NAME is the name
of the first section to be executed.

4057 U

PSEUDO

FORMAT

Type

FUNCTION

DATA

PROG

LAB

FIN

RES, 1

BND

EQU

GOTO,n
(MITRAS Il only)

DO
(MITRAS 11 only)

DATA,1

GEN, Area list
(MITRAS Il only)

[LAaBEL]

VALUE

Predefined expression

$

Labl, Lab2, ..., Labn

3VALUE2
%

[#] Expression 1
[, [#] Expression 2]...

Expression list

LE

LE

LE

Indication of a segment end.

- LABEL may only be used in a LPS.
In this case, it defines the starting
address in the segment.

Reservation of a memory area.

- ,1 indicates, when specified,
that the reservation unit is the byte,
otherwise it is the word.

- VALUE defines ghe length of the
memory area.

This pseudo-instructions advances
the location counter to a word
boundary.

Definition of an equivalence
between the symbol in label field
and the quantity defined in operand
field.

Specification of a conditional
branch at assembly time.

- ,n is a value pointing at a label
in operand field at which the branch
is made.

Specification of an iterative
assembly of an instruction.

- VALUE = number of iterations
- % : at every iteration cycle,
this character takes the value of
the iteration counter.

Data generation statement

- ,1 if present in command field
the locations are expressed in
bytes, otherwise in words,

- # This symbol denotes that the
following expression must be left
relative to G upon loading in
Master mode.

Value generation statement.

- Area list is a sequence of values
each defining the length of an area
to be generated.

- Expression list is a sequence of
expressions defining the contents of
the declared areas.

4057 U

PSEUDO

FORMAT

Type

FUNCTION

DATA

PROG

LAB

TEXT

DEF

REF

BASE

PAGE
(MITRAS Il only)

"Character string"

Label [, Label]

(#] Label
[, [#] Label]

[Label]

LE

LE

Generation of a character string.
- Character string is made up of
alphanumeric characters.

Declaration of labels as external
definitions,

Declaration of labels as external
references.

- # indicates that the label belongs
to the CDS.

This statement requests that all
address generated at assembly time
be relative to an address specified
in operand field.

The assembly listing is printed on
the next page if the output device
is the printer,

mitra 156

Appendix B — List of instructions

Instructions are arranged in alphabetic order

Code according to addressing mode Code according to addressing mode
Instr, |Class P DL IL |ILX | DG [IGX]|RP |RM Instr. | Class | P DL | IL |ILX| DG|IGX| RP | RM
ADD 0 25 | 05 | 65|A5 | 45| 85| - - LBL 0 2D | 0D | 6D | AD| 4D | 8D | - -
ADM o' - 17 |77 |87 | 57 | 97 { - - LBR 0 2E | OE | 6E | AE| 4E | BE | - -
AND 0 29 | 09 | 69 |A9 | 49 | 89 | - - LBX 0 2F | OF | 6F | AF| 4F | 8F | - -
BAN 2 - - | D4} - - | bDC|C4|CC LDA 0 20 | 00 [60 | AO| 40| 80 | - -
BAZ 2 - - | D5 - - | DD{C5|CD LDE 0 21 o1 | 61 | A1 | 41] 81 | - -
BCF 2 - - | D3| - — | DB | C3 | CB |]*°LDP 1 FB | 3B | - - - - - -
BCT 2 - - |DO| - — | D8 | CO |C8 J] »LDR 1 F9 | 39 | - - - - - -
BOF 2 - - | D6 - - | DE [C6 |CE LDX 0 22 | 02 | 62 | A2| 42| 82| - -
BoT | 2 |- |- |p2|- | -|oalcafcall tea | o |- | o4 |ea|Aa|aa|8af- | -
BRU 2 - ~ |D7 | - - | DF | C7 |CF MUL 0 2C | 0C | 6C | AC| 4C| 8C| - -
BRX 2 - - |Dlj - - | D9 | Cl |C9 |}* MVS 0’ - 1F | 7F | BF | 5F | 9F | - -
*CM 1 F400| - - - - - - - «RD 1 F402| - - - - - - -
CLS 1 F8 38 | - - - - | E80of - RSV 1 F1 - - - - - - -
CMP 0 2B | OB | 6B |AB | 4B | 8B | - - RTS 1 Flo0| - - - - - - -
*CPS 0 2A | OA | 6AJAA | 4A| BA | - - SBL o' - 14 | 74 | B4 | 54| 94| - -
Csv 1 F7 37 | - - - - | E70| - SBR 0’ - 15|75 | B5| 55| 95| - -
DCL 1 F6 | 36| - - - - 1Ebof - * SHC 1 FC | 3C | - - - - |oEC| -
DCX 1 F3 | 33 | - - - = | E3of - SHR 1 FO | 30 | - - - - |oEO | -
*DIT 1 |F401| - - | - - - - - SPA o' - 18 (78 [B8 | 58 98 | - -
*DIV 0 28 | 08 | 68 (A8 | 48 | 88 | - - SRG 1 F1 31 | - - - - |oEl -
DLD o' - 10170{B0 | 50| 90 | = - STA 0' - 1171 B} 51| 91 - -
DST o' - 16 |76 |B6 | 56 |96 | — | - STE 0' - 12 |72 [B2]| 52| 92| - -
EOR 0 23 |03 |63 |A3 | 43|83 |~ |- *STM 1 F408| - - - - - - -
*FAD o' - 1A | 7A|BA | 5A | 9A [-~ - ¢ STR 1 FA | 3A - |- - - |oEA | -
*FDV o' - 10 {7D|BD | 5D 9D - | - STS o' - 19 {79 [B9 | 59| 99| - -
*FMU o' - 1C|7C|BC | S5C|9C| - | - STX 0’ - 13 |73 (B3] 53 93| - -
*FSU o' |- 1B |7B|BB | SB| 9B - | - sus 0 26 | 06 | 66 | A6 46| 86 | - -
ICL 1 F5 |35 | - - - - | E50] - *TES 1 FD | 3D | - - - - |oED| -
ICX 1 F2 32| -1- - - | E20] - *TRS o' - 1€ | 7E | BE | 5E| 9E | - -
IOR 0 |27 |o7 |é67|A7 |47 |87 |~ |- |JewD v JF403f - |- |- |- - |- -
Note :
e : Priviledged instruction
* : Optional instruction

o : PX addressing mode B-1

4057 U

Instructions are arranged in ascending hexadecimal order

Code| Instruc.| Class | Adr.] Code| Instruc.| Class |Adr.| Code|Instruc.| Class | Adr.| Code] Instruc.| Class | Adr.
00 LDA 0 DL 20 LDA 0 P 40 LDA 0 DG 60 LDA 0 L
01 LDE 0 - 21 LDE 0 - 41 LDE 0 - 61 LDE 0 -
02 LDX 0 - 22 LDX 0 - 42 LDX 0 - 62 L.DX 0 -
03 EOR 0 - 23 EOR 0 - 43 EOR 0 - 63 EOR 0 -
04 LEA 0 - 24 LEA 0 - 44 | LEA 0 - 64 LEA 0 -
05 | ADD| O | - 25 | ADD| O - 45| ADD | 0 - 65 | ADD | o | -
06 SUB 0 - 26 SUB 0 - 46 SuB 0 - 66 SuUB 0 -
07 IOR 0 - 27 IOR 0 - 47 IOR 0 - 67 IOR 0 -
08 | * DIV 0 - 28 | * DIV 0 - 48 | * DIV 0 - 68 | *DIV 0 -
09 AND 0 - 29 AND 0 - 49 AND 0 - 69 AND 0 -
OA | * CPS 0 - 2A | % CPS 0 - 4A [* CPS 0 - 6A | * CPS 0 -
0B CMP 0 - 2B CMP 0 - 4B CMP 0 - 6B CMP 0 -
ocC MUL 0 - 2C MUL 0 - 4C| MUL 0 - 6C MUL 0 -
0D LBL 0 = 2D LBL 0 - 4D LBL 0 - 6D LBL 0 -
OE LBR 0 - 2E LBR 0 - 4E LBR 0 - 6E LBR 0 -
OF LBX 0 - 2F LBX 0 - 4F LBX 0 - 6F LBX 0 -

L, 10 DLD o' - 30 SHR 1 DL 50 DLD 0' - 70 DLD o' -
1 STA o' - 31 SRG 1 - 51 STA o' - 71 STA 0' -
12 STE o' - 32 ICX 1 - 52 STE 0 - 72 STE 0’ -
13 STX o' - 33 DCX 1 - 53 STX o' - 73 STX 0 -
14 SBL 0' = 34 54 SBL 0' - 74 SBL 0' -
15 SBR 0 - 35 ICL 1 - 55 SBR 0' - 75 SBR 0' -
16 DST 0' - 36 DCL 1 - 56 DST o' - 76 DST 0' -
17 ADM o' - 37 Ccsv 1 - 57 ADM 0' - 77 ADM 0’ -
18 SPA o' - 38 CLS 1 - 58 SPA o - 78 SPA o' -
19 STS 0 - 39 | « LDR 1 - 59 STS 0' - 79 STS o' -
1A | * FAD o' - 3A | ¢ STR 1 - 5A | *FAD 0' - 7A | x FAD 0' -
1B [* FSU 0' - 3B | *eLDP 1 - 5B | xFSU o' - 7B | *FSU o' -
1C | * FMU o' - 3C | % SHC 1 - 5C| *FMU o' - 7C | * FMU 0' -
1D | * FDV o' - 3D | * TES 1 - 5D | x FDV o' - 7D | x FDV 0! -
1E | = TRS o' - 3E 5E | *TRS 0’ - 7E | * TRS o' -
TF | * MVS o' | - 3F 5F | *x MVS 0' - 7F | *MVS 0' -

Note :

* Optional instruction

B-2

Priviledged instruction

4057 U

Code| Instruc.| Class | Adr.] Code| Instruc.| Class | Adr. | Code | Instruc.| Class | Adr.| Code| Instruc.| Class | Adr.
80 LDA 0 IGX]| A0 LDA 0 ILX Cco BCT 2 RP EO SHR 1 PX
81 LDE 0 - Al LDE 0 - cl BRX 2 - El SRG 1 -
82 LDX 0 - A2 LDX 0 - Cc2 BOT 2 - E2 ICX 1 -
83 EOR 0 - A3 EOR 0 - Cc3 BCF 2 - E3 DCX 1 -
84 LEA 0 - A4 LEA 0 - C4 BAN 2 - E4
85 ADD 0 - AS ADD 0 - C5 BAZ 2 - ES ICL 1 -
86 SUB 0 - Ab SUB 0 - Cé BOF 2 - E6 DCL 1 -
87 IOR 0 - A7 IOR 0 - c7 BRU 2 - E7 csv 1 -
88 | *DIV 0 - A8 | *DIV 0 - (] BCT 2 RM E8 CLS 1 -
89 AND 0 - A9 AND 0 - c9 BRX 2 - E9 s LDR 1 -
8A | *CPS 0 - AA | ¥ CPS 0 - CA BOT 2 - EA | ¢ STR 1 -
BP CMP 0 - AB CMP 0 - CB BCF 2 - EB |*eLDP 1 -
8C MUL 0 - AC MUL 0 - CccC BAN 2 - EC | * SHC 1 -
8D LBL 0 - AB LBL 0 - CcD BAZ 2 - ED | * TES 1 -
8E LBR 0 - AE LBR 0 - CE BOF 2 - EE
8F LBX 0 - AF LBX 0 - CF BRU 2 - EF
90 DLD o' - BO DLD 0' - DO BCT 2 IL FO SHR 1 P
91 STA o' - B1 STA 0' - D1 BRX 2 - F1 SRG 1 -
92 STE o' - B2 STE 0’ - D2 BOT 2 - F2 ICX 1 -
93 STX o' - B3 STX o' - D3 BCF 2 - F3 DCX 1 -
94 SBL o' - B4 SBL o' - D4 BAN 2 - F4 | o SYSO) 1 -
95 SBR o' - B5 SBR o' - D5 BAZ 2 - F5 ICL 1 -
96 DST 0’ - B6 DST o' - Dé BOF 2 - Fé DCL 1 -
97 ADM o' - B7 ADM o' - D7 BRU 2 - F7 Ccsv 1 -
98 SPA 0' - B8 SPA 0' - D8 BCT 2 I1G F8 CLS 1 -
99 STS o' - B9 STS o' - D9 BRX 2 - F9 | ¢ LDR 1 -
9A | *FAD 0’ - BA | * FAD o' - DA BOT 2 - FA | » STR 1 -
98 | *FSU o' - BB * FSU 0’ - DB BCF 2 - FB |*eLDP 1 -
9C [*FMU o' - BC | * FMU o' - DC BAN 2 - FC | * SHC 1 -
9D |*FDV o' - BD | * FDV o' - DD BAZ 2 - FD | * TES 1 -
9E | *TRS o' - BE * TRS o' - DE BOF 2 - FE
9F |*MVS o' - BF | * MSV o' - DF BRU 2 - FF

Note :

M

Optional instruction

Priviledged instruction

SYS : this mnemonic is not recognized by the Assembler

B-3

4057 U

SRG instruction

SHR instruction

0 10 15
Instruction Function Code @,
AAE (A) N (E) (A) F118 Function v, | Code
ACE (E) +C (E) F10E
AEE A) ® (E)— (A) F112 Shift Logical Left Single 0 | SLLS
AIE A) U (E) (A) Fl116 Shift Circular Right Single 1 | SRCS
CCA) (A) F110 Shift Arithmetic Right Double | 2 | SAD
CCE ® (E) F10A Shift Circular Left Double 3 | SLCD
CHX Arithmetic shift 1 step left| FI11E Shift Circular Left Single 4 [SLCS
CNA A A) Fl1C Shift Arithmetic Right Single | 5 | SAS
CNX X - (X F114 Shift Logical Right Single 6 | SRLS
LNE - T F11A Shift Circular Right Double 7 | SRCD
RTS Return section F100
RSV Return supervisor F10C
XAA Ao? =~ Agors F108 i SHC instruction ; .
XAE (A) +— (F) F102 "
XAX (A) =—— (X) F104
XEX (E) - (X) F106 Function ¢. | Code
SYS insfruction(‘) Shift Logical Left Double 0 | SLLD
Compute parity 2 | PTY
Function Class |Instruction | Code Shift Logical Right Double 4 | srup
Clear IT mask 1 CLM F400 Normalize E,A 6 | NLZ
De-activate IT 1 DIT F401 :
Read direct I F402 De-activate fast IT > biR
Write direct 1 WD F403 g
| Set IT mask 1 STM F408
D SYS : this mnemonic is not recognized by the Assembler
Addressing :
Class 0 Class 0' Class 1 Class 2
P Y=D DL Y=D+(L) P N=D RP Y=(P)+2D
DL Y=D+(L) IL Y=(D+(L))+G' PX N=DH(X) RM Y=(P)-2D
IL Y=(DHLL)+G' ILX Y=(D+(L))+G'+(X) DL N=(D+(L)) DL Y=(D+(L))+G'
IiLtX Y=(D+(L))+G'"+(X) DG Y=D+G) DG Y=(DHG))+G'
DG Y=D+(G) IGX Y=(D+(G))+HG)+(X)
IGX Y=(D+(G))+HG)+(X)

Mitra 15

Appendix D - Assembler operation

I = ASSEMBLY LISTING

I-1. FORMAT OF AN ASSEMBLY LISTING LINE

The general line format of an assembly listing is illustrated below.

A line contains the following informations :

- Up to two error flags.

- A decimal line number.

- The current hexadecimal contents of the location counter.

- The object code (hexadecimal) generated by the Assembler.

- A indication of a forward reference if the argument address is anticipated.
- The source line image.

The lines which are skipped under control of a GOTO are not annotated except when they contain an
invalid operation code.

1 4 9 14 20 72
| | |

EEDDUDUDS LLLL%¥x XXXXA=*xSSS...... s S SS

* : Space

EE : Error flags

DDDD : Decimal number of source line

LLLL : Hexadecimal value of location counter

XXXX or#x XX : Hexadecimal value of a word or byte generated at LLLL location
A : When present, the reference is forward

§S..SS : Source text line

Format of an assembly listing line

1-2. OBJECT LISTING

In addition to the hexadecimal representation of the object code and the edition of the corresponding
source text, the Assembler provides :

- A list of defined and/or referenced segments names, except under MITRAS I.

- A table of satisfied or unsatisfied labels per section (optional).

4057 U

1-2, OBJECT LISTING

In addition to the hexadecimal representation of the object code and the edition of the corresponding
source text, the Assembler provides :

- A list of defined and/or referenced segments names, except under MITRAS 1.

- A table of satisfied or unsatisfied labels per section (optional).

Il - OPERATING OPTIONS

1-1. MITRAS |

B Command format

%ASS 1/options indicated on console switches (M:OC).

m Options
Assembly listing :

- requested : console switch 15 reset
- omitted : console switch 15 set

Relocatable binary :

- requested : console switch 14 reset
- omitted : console switch 14 set

Output of an additional %EOD after the RB module :

- requested : console switch 13 reset
- omitted : console switch 13 set
11-2. MITRAS I

m Command format

%ASS2
%CALL/ASSZ% /Ls110s0) (o] L]

%ASS2/ Output on M:OC by the processor when loaded and started by %LOAD and %RUN .,

%CALL/ASS2/ Output on M:OC by the processor when started without console interrupt. In this case,
options are given on M:OC,

Under control of the linking module, the command and its options are entered via M:Cl.

. Oefions

- Sl : Source file read on M:Sl. When this option is omitted, no other option should be present, and
all options are implicit.

- BO : Relocatable binary output requested.
- LO : Assembly listing output requested.

- LL : Label table printing requested, together with severity level and number of incorrect lines.

D-2

4057 U

o Option for assembly end

When MITRAS Il is loaded and started through a % LOAD and a %RUN, before returning to the beginning
when the assembly is over, the following message is printed on M:OC :

% %EOD?

Meaning that the optional output of an additional "end-of-file" mark after the RB has been allocated.
The operator's answer on M:OC may be :

- OUl if the additional "end-of-file" mark is requested.

- NON if the additional "end-of-file" mark is not requested.

« Additional "end-of-file"

When a program module has been assembled, the relocatable binary output may have one of the following
format :

E
Heading | File o or Heading| File
F

'l'lol'ﬂ

- where E.O.F. stands for "end-of-file".

This is necessary for establishing the RB input file of the Linkage Editor. This file is organized as follows :

E E
Heading 1| File 1 O | Heading 2| File2 | O
F F

Heading n | File n

'I'IOI‘!'I
'l'lom

The Linkage Editor may then output a RMI file with the following format :

E | E
Heading File o] O
F |F

111-2. TABLE FORMAT

[11-2.1. Local label table

A table containing the local labels is printed after every LPS, before FIN pseudo-instruction. It has the
following format :

LABE LLLL Z
- LABE : Label name.
- LLLL : Corresponding value of location counter or label reference number if it has not yet defined.

-7 = LDS label

LPS label

Label value is absolute

Label not yet defined

= Label declared in a REF pseudo-instruction

o X >» O
i

4057 U

111-2.2. Common label table

When the module assembly is completed, after END pseudo-instruction, a table of common labels is printed.
It has the following format :

LABE LLLL Z

- LABE : Label name

- LLLL : Corresponding value of location counter or label reference number if it has not yet been defined.

-Z = CDS label

= LDS label (declared in a DEF of the CDS and defined in a LDS).
= LPS label (declared in a DEF of the CDS and defined in a LPS).
Label value is absolute

= Label not yet defined

= Label declared in a REF

DX P> OOON
1

111-2.3. Severity level

After the common label table, MITRAS | outputs the following message :

NSV

0
]2 NB ERR XXX

3

Indicating the highest error level encountered during assembly and the number of incorrect lines.

I11-3. ERROR PROCESSING

111-3.1. Definition of assy error level

Four error levels will be considered :

- LEVEL O : No error or presumed error during assembly,

- LEVEL 1 : At least one presumed error. Linkage edition and program execution are possible.

- LEVEL 2 : Confirmed error for which the assembler has selected an option. Link edition is possible,
but the edited program cannot be correctly executed in most cases without %MODIFY
cards.

- LEVEL 3 : Major error. The assembly continues but linkage edition will be impossible. The source

program must be corrected and re-assembled,

As a general rule, any level-3 error impedes link edition,

111-3.2. List of errors detected during assembly

The incorrect source line is printed with 1 or 2 leading characters which identify the type of error.
Two error flags are set, at most,

D : Double definition of a label. The first definition is assumed right.

E : Syntactic or semantic error in operand field of an instruction or pseudo-instruction.

- For an instruction, the operand is ignored, the corresponding zone being cleared.

- For a segmentation pseudo, the operand field of the source card is ignored.

D-4

4057 U

- For an EQU, the label becomes equivalent to an absolute zero value.
- For GOTO and DO pseudos, the operand field is ignored.
- For a TEXT pseudo, the operand field is ignored after the error (downstream).

- For a DATA pseudo, if the error affects the definition of the selected resolution, a DATA 0 will be
generated by the Assembler.

If the error affects the operand field, the latter is ignored after the error (downstream).

- For a GEN pseudo, an error in the partitioning of the selected areas will cause a zero-word to be
generated.

An error in the operand field stops the scanning of the card. However, everything upstream the error is
normally taken into consideration.

F : Incorrect expression in operand part of RES pseudo : a zero-word is generated.

G : - Negative variable address.
- Address ~ 255
- Calculated displacement exceeding the available number of bits,
In all cases, incorrect value replaced by zero.

Command unknown to the Assembler : replaced by RES 1.
Instruction or pseudo forbidden in this segment : the command is ignored.
No asterisk between operand and comment field.

(S,
1

Forbidden character in this label : label ignored.

Mandatory label absent for a segmentation pseudo in the RB : label replaced by zero.
Label forbidden in this pseudo (BASE, BND, FIN, ...) : label ignored.

No label for an EQU : card ignored.

Label table overflow.

0o Z
1o

For a DATA, the result of an expression overflows the assigned partitions : result truncated.
Discrepancy between the number of expressions and the number of partitions in a GEN,

P Location counter overflow (>65 535).

R - A %EOD group met before the END card.
T : - Multiple definition of a segment.
X

- At the time a word is generated, the location counter value is odd. A zero-byte is first generated
to increment the counter to a word boundary. If the source line includes a label, the corresponding
value taken is the initial value of the location counter and not the corrected value.

V : The currently assembled source line contains a forward branch whose reach cannot be checked
because the forward branch control table is full.

W : The currently assembled source line has a label to which one or several forward branches have been
made.
Among these branches, at least one has a reach exceeding 255.

111-3.3. Distribution of error types on the levels

Level 0

Level 1 \%
level2 : D
Level 3 : |-

C
E-
N -

G-1-J-0-T-W-X
R

F-
P-

D-5

MmMitra 15

Appendix C — Addressing modes

1) Class 0 addressing

Instructions of this type may only address any data in the local or common segments. Class 0' Prohibits
parameter or immediate addressing.

This class includes :

- Load and store instructions

- Arithmetic instructions (fixed- or floating-point)
- Logical operations

- Byte string instructions

- Comparison instructions

Six addressing modes are allowed :

I
Mode IAssemb y Addressed data Addressing function
anguage
Direct, Local IDENT Byte, word or double-word Y=(L)+D
DL located in the first 256 bytes of
the local segment,
Indirect, Local aIDENT Byte, word or double-word Y=G'+((L)+D)
IL located anywhere and pointed
at through the local segment.
Indirect, Local, Indexed 3|DENT, X | Element of a byte, word or Y=G"'+((L)+D)+(X)
ILX double-word array located
anywhere and pointed at through
the local segment.
Direct, General 7 IDENT Byte, word or double-word Y=(G)+D
DG located in the first 256 bytes of
the common segment.
Indirect, General, Indexed 3% |IDENT, X | Element of an array pointed at Y=(G)+((G)+D)+(X)
1IGX through the common segment.
Parameter or immediate =OPERAND A 1-byte operand is specified (Y)=0D
in the instruction. This byte may | Y = (P)
be extended on the left by 8
leading zeroes, if required.

4057 U

2) Class 1 addressing

These instructions are :

- Either without operand : register swapping, end of section, etc.,

- Or instructions whose operand is generally known (possibly through an unknown modifier) at program

writing time :

This class includes :

- Section or supervisor calls

Shift instructions

Base instructions

I/O instructions

Inter-register operations

shift, index, increment, etc.

Interrupt-initiated and interrupt mask instructions.

Three addressing modes are allowed :

Assembly

Mode | Operand Addressing function
anguage
Parameter or immediate =PARAM Operand defined by displacement| (Y) = D
p value. Y =(P)
Parameter, Indexed =PARAM, X Operand defined by value plus (Y)=D+(X)
PX X-register contents. Y =(P)
Direct, Local IDENT Operand located in the first Y=(L)+D

DL

256 bytes of the local segment.

3) Class 2 addressing

This class includes conditional and unconditional branch instructions.

Normally the instructions which are pointed at by a branch instruction belong to the same section.

Four addressing modes are allowed :

Assembl . .

Mode Ianguagz Branch instruction Addressing function
Relative downstream LABEL Any instruction within Y=(P)+2D
(plus) RP 512 bytes downstream
Relative upstream LABEL Any instruction within Y=(P)-2D
(minus) RM 512 bytes upstream
Indirect, Local 2 LABEL Any instruction pointed at Y=G'+((L)+D)
IL through the local segment.
Indirect, General a #LABEL Any instruction pointed at Y=G'+((G)+D)

iG

through the common segment.

C-2

([1]
Cll COMPAGNIE INTERNATIONALE POUR L'INFORMATIQUE

RC : 669805764 B

R.C. Versailles - SIRENE : 669805764

Siége Social

Direction Commerciale

Division des Petits Ordinateurs
et des Applications Spécialisées
Direction Aprés-Vente

68, Route de Versailles

78430 Louveciennes

Direction Générale
Institut de Formation
Parc de Rocquencourt
78150 Le Chesnay
Tél. 954 4400

Centre de Vélizy

Division Militaire Spatiale
et Aéronautique
Direction Aprés-Vente

Centre des Clayes-sous-bois
Avenue Jean Jaurés

78340 Les Clayes-sous-bois
Tél. 055 8000

Centre de Toulouse

Avenue du Général Eisenhower

31023 Toulouse
Tél. (61) 40 1140.

Tél. 954 9080 10 - 12 avenue de |'Europe
78140 Vélizy
Tél. 946 9670
DELEGATIONS REGIONALES
RHONE-ALPES OUEST SUD-EST EST

177, rue Garibaldi Immeuble M+ M
69003 Lyon
Tél. (78) 62 3065

Tour Mont Blanc

15, bd. du Maréchal Leclerc
38000 Grenoble

Tél. (76) 44 9922

18-20 av. du Maréchal Foch
21000 Dijon
Tél. (80) 32 2047

3 Place du Co.ombier
35000 Rennes
Tél. (99) 30 8454

CENTRE-OUEST

9, place Rouget de Lisle
37000 Tours

Tél (47) 202209

MIDI-PYRENEES

Av. du Général Eisenhower
31023 Toulouse

Tél. (61) 40 3563

433, rue Paradis
13008 Marseille
Tél.(91) 77 0994

AQUITAINE

353, bd du Président Wilson
33200 Bordeaux

Tél. (56) 08 6363

25, avenue Robert Schuman
57000 Metz
Tél. (87) 68 4921

15. rue des Francs Bourgeois
67000 Strasbourg
Tél (88)32 1103

NORD

13. boulevard de la Liberté
59000 Lille

Tél. (20) 57 7353

