
CTIXTM INTERNETWORKING MANUAL
(Preliminary Edition)

Specifications Subject to Change.

Convergent Technologies and NGEN are registered
trademarks of Convergent Technologies, Inc.
Art Designer, Convergent, CT—DBMS, CT-MAIL,

CT-Net, CTIX, CTOS, DISTRIX, Document Designer,
The Operator, AWS, CWS, IWS, MegaFrame,
MightyFrame, MiniFrame, MiniFrame Plus,
Voice/Data Services, Voice Processor,
and X-Bus are trademarks of Convergent

Technologies, Inc.
Microsoft, MS, GW, and XENIX are trademarks

of Microsoft Corporation.
UNIX is a trademark of Bell Laboratories.

Preliminary Edition (May 1986) 09-00665-00

Copyright ©1986 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of
the documentation contained herein shall at all
times remain in Convergent Technologies, Inc.,
and/or its suppliers. The full copyright notice
may not be modified except with the express
written consent of Convergent Technologies, Inc.

CONTENTS

RELATED DOCUMENTATION

CONVENTIONS

ACKNOWLEDGEMENTS

1 INTRODUCTION 1-1
SCOPE OF THIS MANUAL
TERMINOLOGY USED IN THIS INTRODUCTION
OVERVIEW

Features of CTIX Internetworking
Internetworking Protocols
Internetworking Media

HOW TO USE THIS MANUAL
Section Descriptions
Chapter Descriptions
What's Next?

2 USING NETWORK COMMANDS 2-1
ABOUT THIS SECTION
OVERVIEW

What Does Internetworking Provide the User?
CTIX Networking Object Types
Overview of CTIX Networking Commands

UNIX 4.3BSD Commands and ARPANET Commands
Using Networking Commands in Different
Machine Environments

What is User Equivalence?
VIRTUAL TERMINALS AND REMOTE LOGIN

Telnet(IN)
Remote Login (rlogin)

TRANSFERRING FILES
Ftp and Rep
Uucp(lC)

REMOTE COMMAND EXECUTION (remd)
Invoking Rcmd
Sample Rcmd Session

REMOTE PRINTING
SHELLSCRIPT PROGRAMMING USING THE INTERNET
CONNECTIONS NAMES AND ADDRESSES
ACCESS AND PASSWORD PROBLEMS

Contents i

USING THE VIRTUAL TERMINAL....
THE TELNET COMMAND

Command and Input Modes
Telnet Options
Invoking Telnet
Telnet Commands
Sample Sessions

Session #1
Description of Session #1
Session #2
Description of Session #2

THE RLOGIN COMMAND
Invoking Rlogin

Rlogin Options
Using a Tilde in the Text
Exiting Rlogin

3-1

4 TRANSFERRING FILES 4-1
OVERVIEW
THE FTP COMMAND

Compatibility of Ftp Commands with Internet
Systems
Ftp Sessions
Ftp File Transfer Modes
Ftp File Naming Conventions
Invoking Ftp

Ftp Command Options
Using the .Netrc File For Automatic Login

Ftp Command Descriptions
Sample Ftp Sessions

Session #1
Description of Session #1
Session #2
Description of Session #2
Session #3
Description of Session #3

CTIX FILE COPY - THE RCP COMMAND
Invoking Rep
Options to Rep

Sample Rep Sessions

ii CTIX Internetworking Manual

5 USING NETMAN 5-1
OVERVIEW
INVOKING NETMAN
OPERATING NETMAN

Help Display
Valid Key Display

MACHINE STATUS DISPLAY
Descriptions of Machine Status Display
Headings

NETWORK USERS STATUS DISPLAY
Descriptions of the Network Users Status
Display Headings

DETAILED USER STATUS DISPLAY
Descriptions of Display Headings

USER AND MACHINE EQUIVALENCE
User Equivalence to Self
How to Set Up User Equivalences

Administration Menu
Add Equivalent User Form
Delete Equivalent User Form

6 SETTING UP A NETWORK 6-1
THE ADMINISTRATOR

Chief Administrator
Administrator Privileges

SYSTEM CONFIGURATION
How Routing is used to Form an Internetwork
Example of Configuring an Internet Using a
Gateway Machine

OVERVIEW OF SETTING UP A NEW NODE IN THE
NETWORK

Preliminary Guidelines in Setting Up a Node
Machine-Specific Setup Procedures

MightyFrame Setup Overview
MegaFrame Setup Overview

After Setting Up Your Machine
What's Next?

Contents iii

7 NETWORK CONFIGURATION 7-1
CONFIGURATION FILES

Format for the /Etc/Hosts File
NAMES AND ADDRESSES

Network and Node Names
Network and Node Addresses

DARPA Internet Addresses
Hosts with Multiple Network Addresses

Ethernet Addresses
Ethernet Address Resolution Protocol (ARP)

SETTING UP NETWORK DATABASE FILES
Updating the Network Database Files
Large Networks

Network Master
Procedural Synopsis
Using Netman to Configure the Hosts Database

Adding a New Machine to the Hosts Database
Changing a Host Entry

Retrieving Host Files from the Network
Master

Example
Automatic Updating of Network Database Files

ROUTING
Setting Up Routing
SLIP and UUCP Routing (See Chapter 10,
"Internetworking Media.")

iv CTIX Internetworking Manual

8 NETWORK MANAGEMENT 8-1
USING NETMAN ADMINISTRATION FUNCTIONS
Using Netman Administration Forms
Directory of Administration Menu Selections

MACHINE AND USER EQUIVALENCE
User Equivalence

Root Equivalence
Setting Up User Equivalences

Machine Equivalence
Setting Up Machine Equivalence
Add Equivalent Machine Form
Delete Equivalent Machine Form

MANAGING NETWORK SERVICES
Using Netman to Start Network Services
Adding a Network Service
Deleting a Network Service

DESCRIPTIONS OF NETWORK SERVERS
Rexcd

USING OTHER NETWORK MANAGEMENT COMMANDS
Ifconfig(1NM)

MANAGEMENT TECHNIQUES
Using the Initialization Files to Set Up a
Node
Unloading the Networking Subsystem
Setting the System Prompt

NETWORK STATUS MONITORING 9-1
OVERVIEW
USING NETMAN TO DISPLAY STATUS

Network Interface Statistics Menu
Active Connections Display

Descriptions of the Display Headings
Network Interface Display

Descriptions of the Display Headings
Memory Usage Display

Descriptions of the Display Headings
Routing Tables

Descriptions of the Display Headings
Protocol Statistics Display

Descriptions of the Display Headings
STATUS COMMANDS

Contents v

10 INTERNETWORKING MEDIA 10-1
SYSTEM PERFORMANCE AND REQUIREMENTS FOR
MEDIA PROTOCOLS

ETHERNET
Ethernet Hardware Requirements

All Machines
Additional Requirements for MightyFrame
Additional Requirements for MiniFrame
Additional Requirements for MegaFrame

SERIAL LINE INTERNET PROTOCOL (SLIP)
Setting Up SLIP

Using Only SLIP on the MightyFrame
UUCP

Uucp Routing
Procedure for Setting Up Uucp for
Internetworking
Systems File Formats

4.3 BSD Format
AT&T Format
Entry Example

Handling Sites with Earlier Release Levels
Uucpd

CTIX TCP/IP-X.25 INTERFACE
X.25 Gateway Nodes
Point-to-point X.25 Networking
Internetworking with Ethernet and X.25
Economy and Error Handling Features
Related X.25 Documents

DDN NETWORK GATEWAY

11 INTERNETWORKING CONCEPTS 11-1
OVERVIEW
THE OSI MODEL AND CTIX INTERNETWORKING
HOW PROTOCOLS COMMUNICATE
GATEWAYS

Gateway Routing Protocols
IP Gateway Protocol

TCP AND IP PROTOCOLS
Transmission Control Protocol (TCP)

Interface with Application Process
TCP Ports and the Socket Interface
TCP and Reliable Transmission
Flow Control

Internet Protocol
Addressing
Hosts Having Multiple Addresses
Routing
Fragmentation

vi CTIX Internetworking Manual

12 SYSTEM ARCHITECTURE 12-1
OVERVIEW
SOFTWARE CONFIGURATION AND FUNCTIONAL
IMPLEMENTATION
MINIFRAME
MIGHTYFRAME

MightyFrame CTIX IP Gateways
MEGAFRAME

MegaFrame TCP/IP and Ethernet
MegaFrame a Non-Gateway Machine

13 USING THE PROGRAMMATIC INTERFACE 13-1
OVERVIEW
SOCKETS
Types of Sockets

Stream Sockets
Datagram Sockets
Raw Sockets
Other Types of Sockets

How Sockets are Controlled
SYSTEM CALLS

Error Returns
Creating a Socket

Selecting a Protocol
Socket Creation Errors

Binding Socket Names
Getting a Connection

The Client
The Server
Connections Errors

Transferring Data
Discarding Sockets
Connectionless Sockets (Sock_Dgram)

Sending from Datagram Sockets
Receiving on Datagram Sockets
Using Connect on a Datagram Socket

INPUT/OUTPUT MULTIPLEXING
NETWORKING LIBRARY ROUTINES

Overview
Mapping Host Names
Mapping Network Names
Mapping Protocol Names
Mapping Service Names
Handling Network Dependencies

Manipulating Byte Strings and Handling
Byte Swapping

USING THE CLIENT/SERVER MODEL
Overview
Server Process
Client Process
Connectionless Server Process

Contents vii

IPC PROGRAMMING TECHNIQUES
Out of Band Data
Signal and Process Groups
Pseudo Terminals
Internet Address Binding
Broadcasting and Datagram Sockets
Using Special Signals

Preventing Zombies
TYPICAL TCP/IP PROCESS
TYPICAL UDP PROCESS
PROGRAMMING HINTS
Adding and Checking for Services
Error Handling in Programming (See Chapter
14, "Troubleshooting.")

14 TROUBLESHOOTING 14-1
MIGHTYFRAME OPERATOR MESSAGES
ERROR HANDLING IN PROGRAMMING
ERROR MESSAGES

Datagram Socket Error Messages
Alphabetical List of Error Messages

APPENDIX A TELNET COMMAND SUMMARY

APPENDIX B FTP COMMAND SUMMARY

APPENDIX C SAMPLE /etc/rc FILE

APPENDIX D SAMPLE /etc/hosts FILE

APPENDIX E SAMPLE /etc/networks FILE

APPENDIX F SAMPLE /etc/gethosts FILE

APPENDIX G Internet Addresses

viii CTIX Internetworking Manual

LIST OF FIGURES

Figure Page

1-1 CTIX Internetworking Scheme Based on
TCP/IP and Ethernet

I-2 Manual Study Guide
5-1 Netman Main Menu
5-2 Valid Key Display
5-3 Machine Status Display
5-4 Network Users Status Display
5-5 Detailed User Status Display
5-6 Diagram of an Example User Equivalence
5-7 User Administration Menu
5-8 Add Equivalent User Form
5-9 Delete Equivalent User Form
5-10 Currently Equivalent Users Display
6-1 Example Internetwork Connected By

Available Media
6-2 Example of An Internetwork Using a

MightyFrame as a Gateway
7-1 Add Host Form
7-2 Change/Delete Host Form
8-1 Administration Menu
8-2 Add Equivalent Machine Form
8-3 Remove Equivalent Machine Form
8-4 Currently Equivalent Machines Display
8-5 Add Network Service Form
8-6 Remove Network Service Form
9-1 Netman Main Menu
9-2 Network Interface Statistics Menu
9-3 Active Connections Display
9-4 Network Interface Activity Display
9-5 Memory Usage Display
9-6 Routing Tables Display
9-7 Protocol Statistics Display, Page 1
9-8 Protocol Statistics Display, Page 2
9-8 Protocol Statistics Display, Page 3
10-1 Wide Area X.25 Used to Connect LANs
10-2 CTIX Systems Linked by Point-To-Point

X.25
10-3 Example X.25/Ethernet Internetworking

Configuration
II-1 Comparison of OSI Model and CTIX

Internetworking Model
11-2 Example of How Protocols Communicate
12-1 MiniFrame Internetworking Implementation
12-2 MightyFrame Internetworking Implementation

Contents ix

LIST OF FIGURES (Continued)

Figure Page
12-3 Routing Path in An Internetwork Using the

Internet Protocol as a Gateway
12-4 MegaFrame Internetworking Implementation
12-5 MegaFrame Ethernet Configuration Example
13-1 Example of a Hostent Routine
13-2 Remote Login Client Code
13-2 Remote Login Client Code
13-3 Remote Login Server
13-4 Ruptime Display Output
13-5 Example of a Rwho Server
13-6 Flushing Terminal I/O on Receipt of Out of

Band Data
13-7 State Diagram for TCP Stream Socket
13-8 State Diagram for UDP Datagram Socket
G-l Classes of Internet Addresses

LIST OF TABLES

Table Page

1-1 Section and Chapter Titles of the CTIX
Internetworking Manual

2-1 Chapter Directory for Network Functions
2-2 CTIX Networking Commands
5-1 Netman Control Keys
6-1 Chapter Directory for Administrator Tasks
7-1 CTIX Networking Configuration Files
8-1 Chapter Directory for Netman Administrator

Menu
8-2 CTIX Networking Services
9-1 CTIX Networking Status Commands
10-1 CTIX Internetworking Media Availability
13-1 CTIX Networking System Calls
13-2 C Programming Language Function Calls
13-3 C Run-Time Routines

x CTIX Internetworking Manual

1 RELATED DOCUMENTS

4.2BSD Networking Implementation Notes

4.2BSD Interprocess Communications Primer

4.2BSD System Manual

The C Programming Language, Kernighan and Ritchie

CTIX Operating System Manual, Version B

DDN MegaFrame Reference Manual

Internet Protocol Transition Workbook, SRI
International

Internet Protocol - RFC-791

Transmission Control Protocol - RFC-793
Name, Addresses, Ports, and Routes, RFC-814

The Ethernet, A Local Area Network Data Link Layer
and Physical Layer Specification!^ (available from
Digital Equipment, Intel, or Xerox corporations)

MegaFrame CTIX Administrator's Reference Manual

MegaFrame CTIX Operating System Manual

MightyFrame CTIX X.25 Network Gateway Manual

MightyFrame Administrator's Reference Manual

MiniFrame Administrator's Manual

Release Notice for MegaFrame CTIX TCP/IP

Release Notice for the MegaFrame CTIX X.25
Interface

Related Documents yi

Release Notice for MightyFrame CTIX TCP/IP

Release Notice for MightyFrame CTIX TCP/IP-X.25
Interface

Release Notice for MightyFrame CTIX X.25 Network
Gateway

Release Notice for MiniFrame Ethernet CTIX TCP/IP

X.25 Network Gateway Manual (CTOS for MegaFrame)

r , X-// CTIX Internetworking Reference Manual
(Preliminary)

CONVENTIONS

Underline Variables strings and the names of
commands, when referenced in the
text, are indicated by underlining,
for example, the command, ftp.
This convention is in place of
italics used in UNIX manuals.
The names of manuals are also
underlined.

Boldface Boldface strings are literals to be
typed just as they appear, for
example, a pathname, /etc/rc.
Boldface is also used for command
options used within a command
program, for example the -v option
of ftp.
Boldface is also used for
subcommands used within a command
program, for example the bye
command used within ftp.

References to CTIX Operating System Object Types
When first mentioned in a chapter,
the names of CTIX commands, system
calls, library routines, and files
include a numeric reference
designation to the appropriate CTIX
Operating System Manual. For
example, in the reference to the
command, ftp(IN), the number in
parentheses refers to the chapter
number of the CTIX Operating System
Manual which contains the
description of the command. For
more information, see the
appropriate CTIX Operating System
Manual.

Conventions xiU

ACKNOWLEDGEMENTS

CTIX Internetworking documentation is based in
part on the Fourth Berkeley Software Distribution
(BSD), under license from the Regents of the
University of California.

Chapter 13, "Using the Programmatic Interface" is
adapted from A 4.2BSD Interprocess Communications
Primer, November 19, 1984, by Samuel J. Leffler,
Robert S. Fabry, and William N. Joy, all from
University of California, Berkeley.

X-// CTIX Internetworking Reference Manual (Preliminary)

1 INTRODUCTION

SCOPE OF THIS MANUAL

This manual provides a framework of information
for understanding and using CTIX internetworking
resources. These resources can be used at
different levels depending on the type of network
user. Accordingly the manual is divided into
sections specifically aimed principally at the
following types of users, or readers:

o the network user, who wishes to access
resources located on networked machines
in addition to his own. As a network
user, you use specialized network
commands, similar to other CTIX commands.
To use this manual, you should have some
familiarity with using standard CTIX
commands, the shell, and basic utilities.

o the CTIX applications programmer, who
requires interprocess communication to
implement an application system across
the network. Of course, a programmer is
usually also a network user.

o the network administrator who is
responsible for setting up and
maintaining a network or internetwork.
Of course, an administrator is usually
also a network user.

Internetworking and the user types are explained
further in this introduction.

Introduction 1-1

TERMINOLOGY USED IN THIS INTRODUCTION

Acronyms and terms with special definitions in
this manual are defined in the text where they
occur. A glossary at the back of this manual
defines some other selected terms. In addition
there are some terms used in this introduction and
the rest of the manual that you should be
acquainted with before reading further.

4.3BSD. 4.3 Berkeley Software Distribution is the
name of a UNIX standard developed and maintained
by the Department of Electrical Engineering and
Computer Science of the University of California,
Berkeley. 4.3BSD is the designation of the 1986
release version. 4.2BSD is the 1983 release
version.

CTIX-compatible. The ability of other UNIX
systems (specifically 4.3BSD UNIX) to communicate
with CTIX internetworking protocols and vice
versa.

CTIX machine. A MightyFrame, MiniFrame, or
MegaFrame or other computer that run the CTIX
operating system.

DARPA. Department of Defense Advanced Research
Project Agency, formerly called ARPA. This agency
sponsored the network architecture research
project upon which ARPANET is based. ARPANET is a
large governmental internetwork, called the
Internet, part of which is the Defense Data
Network (DDN). See also DDN and Internet.

1-2 CTIX Internetworking Manual (Preliminary)

DDN. Defense Data Network. The Defense Data
Network (DDN) is part of the DARPA Internet. The
membership of the DDN is controlled by the
Department of Defense (DoD). Members of the DDN
are mostly government agencies, military, and
universities engaged in defense-related work. The
DDN allows users of these computer systems to send
mail and files between systems and to access other
computers on the network in interactive terminal
sessions.

gateway. A software service installed at a
switching node that connects two or more networks,
especially if they use different protocols.

Internet. The Internet (spelled with initial
capitalization) is the DARPA Internet System. See
DARPA.

internetwork. An internetwork is made up of two
or more networks. A CTIX internet is made up of
two or more CTIX or CTIX-compatible nodes
communicating over CTIX protocol(s).

layer. A layer is a separate set of clearly
defined network functions that performs part of
the communications tasks. Each layer interfaces
only with its adjacent layers.

machine. A machine is a host computer. The use
of this term is similar to "host," and "node," but
"machine" connotates the machine-specific or
hardware aspects of the host computer, whereas
"node" connotates the logical aspects of a network
host. Host connotates the relationship of the
local node machine to application systems and
remote hosts.

Introduction 1-3

OVERVIEW

A network is two or more separate computer systems
that provide their users with a common pool of
resources by exchanging data over homogeneous
communications links. An internetwork is two or
more similar or dissimilar networks linked by
communications gateways to form a supernetwork.
Unless otherwise specified, this manual uses the
term "network" or "networking" to include
"internetwork" or "internetworking."

Networking communications requires software
implemented on several levels, or layers, because
of the complexity of the task. (A protocol is a
set of conventions used to enable communicating
entities to understand each other.)

The two most important levels from the point of
view of this manual are the generalized terms
"transport level protocol" and "link level
protocol." In this manual, "protocol" signifies
the network level and "media" signifies the media
level. The media protocol in turn requires a
specific set of communications hardware called the
"physical media."

(For practical purposes,
uses "media" for both the
singular "medium.")

this manual generally
plural "media" and the

In a CTIX environment, CTIX Internetworking
provides network communications among the
MiniFrames, MightyFrames, and MegaFrames and other
compatible UNIX systems.

Figure 1-1 diagrams a simple CTIX network. In
this network, three CTIX machines and a compatible
UNIX machine are linked via an Ethernet Local Area
Network (LAN). The protocol used is Transmission
Control Protocol/Internet Protocol (TCP/IP) and
the media used is Ethernet. (These entities are
explained in this introduction.)

1-4 CTIX Internetworking Manual (Preliminary)

Figure 1-1. CTIX Internetworking Scheme Based on
TCP/IP and Ethernet.

FEATURES OF CTIX INTERNETWORKING

CTIX Internetworking provides the usual advantages
of internetworking.

o centralization of scarce resources

o avoids having to install and maintain
duplicate services on multiple machines.
For example, a communications server,
such as the X.25 Network Gateway can be
installed on only one MightyFrame node
yet be accessible to others on the
internet

o allows similar or dissimilar networks to
be combined into a wide area internet

Introduction 1-5

CTIX Internetworking supports file transfer,
remote terminal, and electronic mail in a local
area network environment. It provides the same
services transparently through wide area leased
line networks and public data networks (PDNs).
CTIX Internetworking is characterized by these
features.

o supports multiple protocols and network
media in various combinations

o supports commonly used ARPANET and
Berkeley 4.3BSD commands and is
compatible with Berkeley 4.2BSD commands

o complies with a wide range of DoD ARPANET
specifications. (For a list of these,
see the "Release Notice for MegaFrame
TCP/IP.")

o menu-driven netman for network users and
administrators

o provides for routing data to remote nodes
through adjacent nodes

INTERNETWORKING PROTOCOLS

CTIX Internetworking is a protocol-independent
networking system. Currently TCP/IP is the only
supported transport/network protocol; however,
other communications protocols can be added.

Uucp(IN) is a higher level protocol (presentation
and session layers) that is fully supported by
CTIX Internetworking. Uucp is a standard UNIX
file transfer program that has protocol-like
features such as reliable transport service and
RS-23 2-C asynchronous autodial. It can run on top
of TCP/IP in a CTIX internetwork based on
Ethernet.

1-6 CTIX Internetworking Manual (Preliminary)

INTERNETWORKING MEDIA

CTIX Internetworking is an inherently media-
independent networking system that can employ a
number of link level media protocols. Currently
the following media are provided:

o Ethernet
o X.25

o Serial Line Internet Protocol (SLIP)

CTIX uucp can run on top of TCP/IP.

HOW TO USE THIS MANUAL

Network users, administrators, and programmers (as
defined in "Scope of this Manual," above), can
access the information they need by following the
section-and-chapter organization of this manual.
The manual is divided into five sections, each
beginning with a printed tab divider.

The first chapter is each section contains
suggestions for using the other chapters in the
section.

Only Sections 1 and 2 are written for the network
user. All other sections are designed primarily
for network administrators and programmers.

Table 1-1 shows the section-and-chapter structure
of the manual at a glance.

Introduction 1-7

Table 1-1.
Section and Chapter Titles of the CTIX

Internetworking Manual.

1 CTIX Internetworking
Contents
Related Documentation
Ch 1, Introduction

2 Using the Network
Ch 2, Using Network Commands
Ch 3, Using the Virtual Terminal
Ch 4, Transferring Files
Ch 5, Using Netman

3 Configuration and Management
Ch 6, Setting Up a Network
Ch 7, Network Configuration
Ch 8, Network Management
Ch 9, Network Status Monitoring
Ch 10, Internetworking Media

4 Architecture and Programming
Ch 11, Internetworking Concepts
Ch 12, System Architecture
Ch 13, Using the Programmatic Interface

5 Troubleshooting
Ch 14, Troubleshooting

6 Appendixes
A, Telnet Command Summary
B, FTP Command Summary
C, /etc/rc
D, /etc/hosts
E, /etc/networks
F, /etc/gethosts
G, Internet Addresses

7 Glossary
8 Index

1-8 CTIX Internetworking Manual (Preliminary)

SECTION DESCRIPTIONS

The five manual sections are described as follows:

Tab 1 CTIX Internetworking. This section
contains the manual contents,
Related Documentation, and Chapter
1, "Introduction." All three types
of readers should read this
section.

Tab 2 Using the Network. This section
contains Chapters 2 through 5.
These chapters are written
primarily for the network user.
Chapter 2, "Using Network
Commands," introduces the other
three chapters. A H network users
should read Chapter 2. Chapters 3
through 5 go into the details of
the networking commands used for
common network user functions. You
can use and reference these
chapters as needed.

Tab 3 Configuration and Management. This
section contains chapters 6 through
10. They are intended for the
network administrator. Chapter 6,
"Setting Up a Network," introduces
and serves as a guide for the
section. The remaining sections
can be referred to as needed from
the master procedures in Chapter 6.

Introduction 1-9

Tab 4 Architecture and Programming. This
section contains Chapters 11
through 13. They are written
primarily for the applications
programmer; however, an
administrator may find them useful
as background for understanding and
troubleshooting a network
(especially Chapter 12, "System
Architecture").

Tab 5 Troubleshooting. This tab section
consists entirely of Chapter 14.
It is provided for administrators,
although programmers may find it
helpful in debugging an
applications system.

Tab 6 Appendixes. This section contains
Appendixes A through F. Appendixes
A and B are command summaries for
telnet and ftp. These can be
helpful to the network user. The
remaining appendixes are for the
administrator. They provide sample
network database files.

The Glossary and Index, of course can be helpful
to all three types of readers.

CHAPTER DESCRIPTIONS

This is both a tutorial and a reference manual.
Its sections and chapters are organized in a
certain logical sequence, but you can access
sections, chapters, and even individual paragraphs
randomly to accommodate your learning and re-
reference pattern. "Signposts" are positioned at
various transition points to help you go to the
next step or find collateral or tangential
material.

1-10 CTIX Internetworking Manual (Preliminary)

A paragraph at the beginning of each chapter
summarizes the subjects treated in the chapter.

Chapter 2, "Using Network Commands," is an
overview of using the network from the network
user's point of view. It also leads into the
following network user sections, which describe
the major functions you can perform over the net.

Chapter 3, "Using the Virtual Terminal" explains
in detail the virtual terminal commands, telnet
and rlogin.

Chapter 4, "Transferring Files," explains how to
use the file transfer commands, ftp and rep.

Chapter 5, "Using Netman," describes the menu-
driven user interface for the network.

Chapter 6, "Setting Up a Network," is an overall
guide for the administrator in setting up and
maintaining one or more nodes in a network.

Chapter 7, "Network Configuration," gives detailed
information on some of the steps necessary to
configure a node.

Chapter 8, "Network Management," tells how to load
and maintain network services and provides some
network management techniques.

Chapter 9, "Network Status Monitoring," describes
the commands used to monitor network status and
activities.

Chapter 10, "Internetworking Media," gives media-
specific information on the media that are
available for use with CTIX internetworking.

Chapter 11, "Internetworking Concepts" gives a
survey of the major CTIX concepts and protocols.

Introduction 1-11

Chapter 12, "System Architecture," describes CTIX
internetworking implementation and operation.

Chapter 13, "Using the Programmatic Interface,"
surveys the system call and library routines that
the programmer can use in developing application
systems for running over the net. This chapter
also outlines a typical exchange between networked
machines and provides other programming
information.

Chapter 14, "Troubleshooting," provides some
information to aid in maintaining a node or
network and in remedying major networking
problems.

WHAT'S NEXT?

The flowchart, Figure 1-2, gives suggested study
paths for the three major types of readers of this
manual. The flowchart directs you to each
appropriate section or chapter in a recommended
sequence. The first chapter in each section
contains suggestions for using the other chapters
in the section.

1-12 CTIX Internetworking Manual (Preliminary)

iKoul 4

5 (

IWWIJ

cv. s: |

i
W 3 .
CoVN-Pf̂ . Ĉ

CVS. \\ ^

X
C H If
""WoublrSpioofv*,

A n —

1
US;«« iht

•J 1

\ <
;,4ppe«\<A; xes

CYv- U L^ER- N*TVWOTA I WOT Co^te pts . J

c V \o.
TV^RR <V<JVWUOT Jr,\.(,
VMeAi a J

AvcKVWc+s/ire-

C\A.
"yVo v ̂ V r k e ott v\ ̂

Append, x, G-
Ivvlrr v\ (ft-

G-l tj

Figure 1-2. Manual Study Guide.

Introduction 1-13

2 USING NETWORK COMMANDS

This chapter introduces this section of the
manual, which is titled "Using the Network." This
chapter is an overview of CTIX internetworking
commands for the network user and for the new
administrator or programmer. You can use this
chapter as a guide to the other three chapters in
this section.

Some of the subjects discussed in this chapter
include:

o CTIX network object types
o network commands
o use of a virtual terminal
o remote command execution (rcmd)
o transferring files to and from remote

machines
o remote printing
o using pipes and shell scripts
o user and machine equivalences and

passwords

ABOUT THIS SECTION

Chapters 3 through 5 provide detailed explanations
and examples of the networking commands used for
common network user functions. You can use and
reference these chapters as needed, but they are
intended only to supplement the coverage of the
commands found in the appropriate CTIX Operating
System Manual. (See the note below.)

Using Network Cooanands 2-1

Chapter 3, "Using the Virtual Terminal" explains
in detail the virtual terminal commands, telnet
(IN) and rlogin (IN).

Chapter 4, "Transferring Files," explains how to
use the file transfer commands, ftp (IN) and rep
(IN).

Chapter 5, "Using Netman," describes the menu-
driven user interface for the network.

Table 2-1 references some of the things you may
want to do over the internet to the chapters that
describe them.

Table 2-1

Chapter Directory for Network Functions

Function Coraand Chapter

equivalences netman 2, 5
remote command remd 2
execution

remote printing l£ (1) 2
shell scripts pipe (2) 2
status netman 5

transfer files ftp, rep 4
virtual terminal telnet, rlogin 3

1-2 CTIX Internetworking Manual (Preliminary)

OVERVIEW

CTIX is a command-oriented operating system. To
make use of the remote resources in a CTIX
internetworking environment, the user invokes
network-specific commands. These commands are
fully integrated with CTIX and may be invoked from
the shell command line and shell programs or
executed from within user programs with the
fork(2) or exec(2) system calls, or the system(3)
library routine.

These commands are user processes of the operating
system which require network software to function.
In CTIX the name of the command is the same as the
name of the file that contains the process
program.

NOTE

The treatment of networking commands in this
section (and the rest of the manual) is not
intended to be the definitive reference source
for network commands. The reference manual
for all CTIX commands, system calls, library
routines and file types is the appropriate
CTIX Operating System Manual. (See "Related
Documents.")

Using Network Cooanands 2-3

WHAT DOES INTERNETWORKING PROVIDE THE CTIX USER?

A CTIX network based on Ethernet provides a means
of linking up to 1000 CTIX and UNIX machines so
that the network user on any one of these machines
can access resources and data on any of the other
machines. A CTIX internet is two or more
networks, possibly using a variety of machine
types, protocols, and media, welded together in a
flexible manner to form a larger network. The
internetworking linkage is invisible at the
command interface level so that the system appears
to the network user as a single network.

Some of the many things you can do as a network
user whose machine is connected in a CTIX network
are as follows:

o Log onto another machine on which you have an
account

o Move logically from one remote machine to
another without having to enter your password
(if your system administrators have "equated"
the machines or if you have created a user
equivalence for that machine)

o execute commands on any machine in the network
you can execute commands where the data is
(thus avoiding the moving of files)

- you can execute commands where the load is
lowest
you can construct sequences of CTIX
commands including pipes which move data
between machines for processing. For
example:

cb main.c I pr -f I rcmd mifc lp
where mifc is the name of the machine
that has the printer you wish to use.

1-4 CTIX Internetworking Manual (Preliminary)

o Access public data from all machines

o Copy or transfer files frcm one machine to
another

o Share remote devices such as printers and tape
drives

o Share remote resources such as remote
spoolers, network gateways to IBM hosts or
X.25 PDNs

o Access electronic mail systems that have been
implemented for the network

o Run applications resident on other machines
o Access other UNIX machines such as a VAX or

Sun that are running the appropriate
communications protocol.

CTIX NETWORKING OBJECT TYPES

There are five types of CTIX networking objects:

1. executable commands (See Table 2-2.)

2. demons, or servers, supporting the
commands (See Chapter 8, "Network
Management.")

3. configuration files (See Chapter 7,
"Network Configuration.")

4. system calls (for use by programmers)
(See Chapter 13, "Using the Programmatic
Interface.")

5. library function calls (C programming
language) (See Chapter 13, "Using the
Programmatic Interface.")

Using Network Cooanands 2-5

All these types are documented in the first four
chapters of the CTIX Operating System Manual. In
that manual, all the CTIX programs, including the
networking programs, are listed alphabetically
within chapter types. The chapter number of the
program is given in parenthesis after the name of
the command. The networking commands are
designated by a "N" (for network) or "MN"
(maintenance networking) suffixed to the chapter
number of the program. For example:

ftp(lN)

OVERVIEW OF CTIX NETWORKING COMMANDS

The networking commands only are listed
alphabetically in Table 2-2 with a brief
description. Not all CTIX networking commands are
intended for use by the network user. Some are
for network administrative functions.

Unless otherwise stated, all Berkeley-UNIX-type
commands in this manual are compatible with both
the 4.2BSD and 4.3BSD release versions.

1-6 CTIX Internetworking Manual (Preliminary)

Table 2-2
CTIX Networking Commands

Command Description

enpstart(1NM) (MightyFrame only) intelligent
processor board startup

ftp(lN) file transfer program
ifconfig(1NM) configure network interface

parameters
mkhosts(1NM) make node name commands
netman(1NM) form-based network management
netstat(IN) show network status
rcmd(IN) remote shell command execution

("rsh" in Berkeley UNIX)
rep(IN) remote file copy
rlogin(IN) remote log in
route(1NM) manually manipulate the

routing table
ruptime(lN) display status of nodes on

local network
rwho(lN) who is logged in on the local

network
setaddr(lNM) (MiniFrame only) set DARPA

Internet address from nodename
setenet(1NM) (MiniFrame only) write

Ethernet address on disk
slattach,
sldetach(lNM)

attach and detach serial lines
as network interfaces

telnet(lN) user interface to DARPA TELNET
protocol

tftpd(lN) user interface to the DARPA
Trivial File Transfer Protocol
(TFTP)

trpt(lNM) print protocol trace
uucp(1C) CTIX system to CTIX system

copy

Using Network Cooanands 2-7

UNIX 4.3BSD Cawtnds and ARPANET Caaaands

Included in the CTIX commands are a set of
commands often referred to in a Berkeley UNIX
environment as the "r-commands." The r stands for
"remote." These commands work similarly to their
Berkeley counterparts. These 4.3BSD type commands
are designed to be UNIX-specific and are most
suitably used when you are working on a Berkeley
4.3BSD type host. The Berkeley UNIX command
"rsh", remote shell, is equivalent to the CTIX
command, rcmd.)

Another set of commands, such as telnet and ftp,
originated from ARPANET. They are designed to be
operating-system independent. The protocols used
in these commands are specified by the DoD
Internet specification.

The major difference between these two different
types of commands is that the 4.3BSD commands
propagate UNIX-style permissions across the
network. The ARPANET commands do not understand
the UNIX permissions.

1-8 CTIX Internetworking Manual (Preliminary)

Using Networking Commands in Different Machine
Environments

The CTIX Internetworking commands are invoked and
execute the same way on all three machine
products:

o MightyFrame
o MiniFrame and MiniFrame Plus
o MegaFrame

However, in some earlier release levels of CTIX
Internetworking protocols, certain commands may
not be implemented on the MegaFrame or MiniFrame
or may work somewhat differently. For a list of
such commands, see the machine-appropriate CTIX
Operating System Manual and the appropriate
release notice for the protocol you are using.
Usually, if the command is not implemented on the
MegaFrame, a user message to that effect is
displayed after you have entered the command.
Where a command is used exclusively on a
particular machine, this manual makes a note of
it.

WHAT IS USER EQUIVALENCE?

User equivalence is an existing statement on a
local machine to the effect that a particular user
on a remote machine is equivalent to a user by the
same or a different name on the local machine and
has the exact same privileges as the existing
local user. The equivalent user does not need a
password to log in when (s)he uses a program that
understands user equivalence. Implicit in this
equivalence is that the remote user now has
password privileges on the local machine.

The remote user still needs a separate account and
password set up on the remote machine. The
equivalent user can use the same name on both
machines or a different name.

Using Network Cooanands 2-9

Note that you need to have an equivalence set up
for your own user name even on your local machine.
If you pipe to another machine (see sh(l) or
rcp(IN), you will need an equivalence to that
machine.

(For more information on equivalences, see Chapter
3, "Using Netman.")

VIRTUAL TERMINALS AMD REMOTE LOGIN

The 4.3BSD command rlogin(lN) and the ARPANET
command telnet(IN) provide the user with a virtual
terminal capability. A virtual terminal is
created when the user on one machine logs on to
another machine and presents his terminal as being
logically on that machine. Between CTIX-
compatible machines, switching your terminal
between machines can be as easy as typing the name
of the machine to which you wish to connect.

Virtual terminal capability differs from remote
command execution in that the user can use
programs that depend on accessing the terminal
directly, such as vî , netman, or rogue. These
commands use the terminal in raw mode. That is,
they read from the terminal character by
character, instead of line by line.

The following is a brief overview of telnet and
rlogin. For more information on these commands,
see Chapter 3, "Using the Virtual Terminal."

1-10 CTIX Internetworking Manual (Preliminary)

TELNET(IN)

The telnet command provides virtual terminal
access to other machines on the internet. Using
telnet, you can log in to any host on the network
for which you have an account just as if you were
a local user of that machine. Once telnet is
invoked, your terminal is linked to a remote
machine and data that you type is passed to that
machine. Responses from the remote machine will
be displayed on your terminal's screen. (Telnet
ignores UNIX equivalences.)

For more information on telnet, see Chapter 3,
"Using the Virtual Terminal."

REMOTE LOGIN (rlogin)

The virtual terminal command, rlogin, allows the
user to remotely log into another CTIX-compatible
machine. This command requires a password on the
host you are logging into unless you have user
equivalence on that machine. The command, rlogin,
is a UNIX-specific command and is most suitably
used when you are working on a Berkeley 4.3BSD
type host or other CTIX-ccmpatible host.

For more information on rlogin, see Chapter 3,
"Using the Virtual Terminal."

TRANSFERRING FILES

FTP AND RCP

The ARPANET command, ftp, allows a user to
manipulate files on two machines simultaneously.
You can examine directories and move single or
multiple files between systems. This program is
designed to be highly independent of the operating
system.

Using Network Cooanands 2-11

An additional feature of ftp is that it allows an
anonymous user who does not have an account on
your machine to pick up or deposit certain files
without a password from a protected area of the
ftp home directory- Ftp does not require (or
understand) user equivalence.

The remote file copy command, rep, does require
user equivalence. The command, rep, is a UNIX-
specific command and is most suitably used when
you are working on a Berkeley 4.3BSD-type host.
For more information of ftp and rep, see Chapter
4, "Transferring Files."

UUCP(IC)

You can also use uucp to transfer files. If you
use uucp to transfer files across a telephone line
over the internet, it ties up the line for a
single session until you release it.

Uucp is not strictly an internetworking command
because it can be used without the internetworking
protocol drivers. However it is logically and
practically related to networking management.
(See the discussion in Chapter 1, "Introduction.")
See also uuclean(lM) and uustat(lC) in the
machine-appropriate CTIX Operating System Manual.

Further information on uucp and instructions for
Administrators who need to set up uucp to run over
TCP/IP, in contained in Chapter 10,
"Internetworking Media."

1-12 CTIX Internetworking Manual (Preliminary)

REMOTE COMMAND EXECUTION (rcmd)

The Berkeley UNIX command "rsh", remote shell, is
equivalent to the CTIX command, rcmd(IN). The
rcmd command allows you to send commands to remote
CTIX machines for execution and have the results
returned to you. To use rcmd you do not have to
log onto the remote machine. (It is like a pipe
to another machine.) This command is useful for
constructing distributed shell programs. To use
rcmd, the user must have equivalence on the target
machine (the machine on which (s)he is trying to
execute the command).

This command may only be used with remote machines
running CTIX or a compatible operating system.
Rcmd passes the command its standard input and
outputs the command's standard output and standard
error.

You must have /usr/hosts in your search path to
access machines directly. (For more information,
see the entry for rcmd(IN) in the appropriate CTIX
Operating System Manual.)

INVOKING RCMD

Rcmd is invoked from the CTIX shell. You must
specify the name of a remote machine and one or
more commands to be executed, for example,

rcmd admin <command>

In most cases, you may omit specifying rcmd to the
shell and simply put the name of the remote
machine and a command, for example,

admin <cammand>

Using Network Cooanands 2-13

Your system administrator must have configured
CTIX to accept the name of the remote machine
without specifying rcmd in order for you to be
able to use this feature. Your system
administrator can advise you on how your machine
is configured.
Also, you may specify two options when invoicing
rcmd:

-1 user Generally, the command you specify
will be executed under your user
name on the remote machine. This
option allows you to specify that
the command be executed under
another user name, for example,

read a da in -1 tea <cc—irind>

Whether you use your user name or
another user name, you must have
established permission for yourself
on the remote machine which will
execute the command (using netman).
The system administrator of the
remote machine can advise you on
how the remote machine is
configured.

-n This option prevents rcmd from
sending the standard input file to
the remote command you specify and
prevents rcmd fron reading up the
standard input file by making its
standard input /dev/null instead of
rcmd's standard input. For
example,

rend adnin -n -1 ton <command*

"Reading up" means reading the file
and buffering it. Rcmd buffers
data in the standard input file
regardless of whether the remote
command reads it.

1-14 CTIX Internetworking Manual (Preliminary)

SAMPLE RCMD SESSION

The following example shows rcmd being used to run
the who(l) command on a remote machine called
"admin" and to place the output in a file on the
local machine by redirecting standard output.

read admin who > /tmp/admin.who

REMOTE PRINTING
Remote printing (often referred to as remote
spooling) is one of the services provided
invisibly by internetworking facilities. As a
network user, you need not learn any special
networking commands to direct a file to a remote
printer. When you wish to print to a remote
printer, use the _l£(l) command and specify the
name of the printer as set up by your
administrator. The administrator must have set up
the remote printer as a "pseudo printer" on your
local system.

If you are an administrator, you can find specific
details and instructions on how to set up remote
spooling in the administrator's manual for the
appropriate machine. In general, you can set up a
pseudo printer by writing a shellscript using uucp
or rcmd. Uucp is recommended because it provides
security in spooling. Rcmd requires a machine or
user equivalence for the user lp.

SHELLSCRIPT PROGRAMMING USING THE INTERNET

Many useful shell programs can be written using
the capabilities of the CTIX networking commands
to use pipes across the network. (See pipe(2).)
Such shell programs can be the glue that make a
distributed system most useful. Some examples of
systems based on shell programs are:

Using Network Cooanands 2-15

o remote line printer spooling using the
System V ljo system.

o distributed text processing using
troff(l). In this system,
macroprocessing is done at the user's
node, the font crunching is done on a
lightly loaded back-end machine, and
printing is done on a machine with a
laser printer.

o a software distribution system using
anonymous ftp to load new software across
the net. This feature can also tell the
user what software is available and give
detailed information about particular
software packages.

o programs that back up file trees across
the net.

o a program that automatically updates host
files on all the machines in the network
as new hosts are added. (See Chapter 7,
"Network Configuration.")

CONNECTIONS. NAMES AND ADDRESSES

From the perspective of the user, internet
protocols are connection-oriented. This means
that for information to be communicated between
your machine and a remote machine over the
internet you must first have established a
connection to that machine. Establishing a
connection is similar to dialing a phone number
when making a phone call; it defines the parties
in the call and sets up a connection between them.

1-16 CTIX Internetworking Manual (Preliminary)

Although the data sent over the connection is
packet-switched, rather than circuit switched as
in the telephone system, the functions are alike.
TCP performs the mechanics of establishing
connections for you but in many cases, telnet and
ftp in particular, you have to be aware of
connections and give commands to get them
established.

As with dialing a phone, you must first know how
to reach the recipient of your call when setting
up a connection. Each host on the internet has a
unique address, like a phone number, by which it
can be "called" in establishing a connection.
Because network addresses are not always easy to
remember, the internet software allows for the use
of names instead of addresses. Host names are
established by your system administrator who
should tell you the names of the hosts with which
you may communicate. Since hosts may be used for
several purposes, it is possible to have several
names (aliases) for the same host address.
However, each name always stands for a single host
address and will connect you to the same host each
time you use it.

ACCESS AND PASSWORD PROBLEMS

Often in an internetworking environment, different
host machines are under the jurisdiction of
different departments and personnel. Those in
charge of a host machine often wish to limit
access to their own machine for various security
and procedural reasons. Privileges to a machine
can be given only from the machine in question.
If you are unable to access a machine you have a
need for, you or your supervisor can see the
network administrator of the host machine you wish
to access.

Using Network Cooanands 2-17

If you need access beyond anonymous ftp (see
"Transferring Files" above), the administrator can
set up a machine or user equivalence between your
native host and the remote host. You will need
the an account and password and on the remote
machine. If you have an account on a remote
machine, you can set up a user equivalence
yourself. (See "What Is User Equivalence?"
above.)

(For more information on equivalences, see Chapter
3, "Using Netman.")

1-18 CTIX Internetworking Manual (Preliminary)

3 USING THE VIRTUAL TERMINAL

This chapter explains two commands that provide
virtual terminal capability. "Terminal" indicates
that the command allows your terminal on your
local machine to act as a terminal on a remote
machine over the internet. "Virtual" indicates
that no physical connection is made to the remote
machine. Rather, the command simulates a physical
line between your terminal and a remote machine.

The virtual terminal commands are
o telnet(IN)
o rlogin(IN)

(The virtual terminal capability does not include
multiplexing and reliability.)

The telnet command provides virtual terminal
access to other machines on the internet. Using
telnet, you can login to any host on the network
for which you have permission just as if you were
a local user of that machine. Once telnet is
invoked, your terminal is linked to a remote
machine and data that you type is passed to that
machine. Responses from the remote machine will
be displayed on your terminal's screen.

For communicating with other machines running the
CTIX operating system, the rlogin command can be
used in place of telnet. Rlogin provides a
virtual terminal access to CTIX-like machines that
is specific to the CTIX operating system. See
"The Rlogin Command," below.

Using the Virtual Terminal 3-1

THE TELNET COMMAND

Telnet is an interactive program which allows you
to communicate with a remote machine in a terminal
session. Once you invoke telnet, you will
interact with telnet until you exit and return to
the shell (calling program).

COMMAND AND INPUT MODES

Whenever telnet is connected to a remote machine,
it operates in input mode. Input mode transfers
all the characters you type to the remote machine
and displays all data sent to you by the remote
machine on your terminal's screen. The one
exception to this is a special character called
the escape character, which places telnet in
command mode if you type it. (This escape
character is not the same as the Escape command of
your keyboard. It is produced by typing Control-]
or Code-], depending on which keyboard you are
using.)

In command mode, data that you type is interpreted
by telnet to allow you to control telnet
operation. Command mode is also active when
telnet is not connected to a remote host.

TELNET OPTIONS

When telnet is in input mode, it communicates with
the remote host based on a number of options.
These options specify how operating system and
terminal specific properties of terminal to
computer communications, such as whether the
echoing of the characters you type is done by
telnet locally or by the remote machine, will be
performed. Telnet and the remote machine you
specify will negotiate these options and establish
a compatible set of options for your terminal when
you connect to a host.

1-2 CTIX Internetworking Manual (Preliminary)

INVOKING TELNET

You invoke telnet from the CTIX shell with the
command telnet.

Optionally, you may specify the name of the remote
machine with which you wish to communicate. For
example:

$ telnet, admin

Machine names are defined by your system
administrator. Before using telnet, you can use
the netman command to examine the machine names
available to you. For a description of how to
examine the machine names available to you, see
Chapter 5, "Using Netman."

When you specify a machine name when you invoke
telnet, telnet will establish a network connection
to that machine and enter input mode. You may
also invoke telnet without a machine name, for
example:

$ telnet

If you do not specify a machine name, you must
open a connection from within telnet using
telnet' s open command before you can log into a
remote host. See "Telnet Commands" below.

TELNET COMMANDS

You may enter telnet commands whenever the telnet
command mode prompt is displayed. The telnet
command prompt looks like:

telnet>

Using the Virtual Terminal 3-3

Telnet will be in command mode if you are not
connected to a remote machine or when you enter
the escape character from input mode.

If command mode was not entered from input mode,
telnet will generally remain in command mode and
display the command mode prompt again after you
enter each command. If you use the open command
to establish a telnet connection to a remote
machine, telnet will enter input mode.

If command mode is entered from input mode, telnet
generally will return to input mode after
processing your command. If you use the close
command to close the remote host connection,
telnet will remain in command mode after the
command is processed. If you use the quit
command, telnet will exit and return you to the
calling program, usually the shell.

Each command you give to telnet in command mode
must be followed by a Return. Telnet will not
start a command until it receives a Return from
you. If you make a mistake while typing a
command, you may use the shell line editing
commands erase (Backspace) and kill (Cancel) to
edit the characters that you have typed.

Telnet command names are in boldface.

1-4 CTIX Internetworking Manual (Preliminary)

When entering a command, you do not have to enter
the full command name, only enough characters to
distinguish the command from other telnet
commands. In each command description, the
minimum number of characters you are required to
enter are underlined in the command name. A
telnet command summary is provided in Appendix A.

AO This command causes telnet to tell
the remote machine to abort sending
any output that is in progress.
This command is useful if the
remote host is sending you data
that you do not wish to see and you
would like telnet to return to
command mode on the remote machine.
The only output aborted is that
currently being sent, you may
continue to communicate with the
remote machine once the current
output has been stopped.

AYT This command causes telnet to send
an "are you there?" message to the
remote machine. The remote machine
will send you a message back if it
is active. This message is often
simply causing the bell on your
terminal to sound although it may
be a string of text which is
displayed on your terminal. This
message is useful if the remote
host has not responded to your
input and you wish to see if it is
inactive or just busy.

Using the Virtual Terminal 3-5

BREAK This command sends a message to the
remote machine which has the same
significance as pressing the Break
key on your terminal would to your
local machine. Since Break is
implemented between a terminal and
a local machine as a set of
physical signals, rather than data,
pressing the Break key on your
terminal affects only the local
machine and is not sent to the
machine to which you are connected
via telnet. You must use the Break
command if you want to send a break
indication to a remote machine.

EC This command sends the telnet erase
character message to the remote
machine. EC has the same meaning
as the shell erase (backspace)
command does on your local machine.
Since different operating systems
implement the erase character
operation differently, you may have
to use the EC command, rather than
the shell erase character, when
interacting with a remote machine.
The shell erase character can be
used in command mode since command
mode's operation is local to your
machine.

EL This command sends the telnet erase
line message to the remote machine.
EL has the same meaning as the
shell kill (erase line) command
does on your local machine. Since
different operating systems
implement the erase line operation
differently, you may have to use
the EC command, rather than the
shell kill command, when
interacting with a remote machine.

1-6 CTIX Internetworking Manual (Preliminary)

The shell kill command may be used
in command mode since command
mode's operation is local to your
machine.

^P This command sends the telnet
interrupt process message to the
remote machine. IP has the same
meaning as the shell interrupt
command does on your local machine.
Since different operating systems
implement the interrupt operation
differently, you must use the IP
command, rather than the shell
interrupt command, when interacting
with a remote machine. The shell
interrupt command may be used in
command mode since command mode's
operation is local to your machine.

SYNCH This command sends a message to the
remote machine telling it to ignore
any input you have sent but which
has not yet been processed on the
remote machine. This command is
useful if you have typed ahead a
number of commands and wish to
cancel these commands without
terminating the telnet connection
to the remote machine.

close This command closes the connection
to the remote host and causes
telnet to enter command mode. This
command is useful if you wish to
stop communicating with one machine
in order to start a connection to a
new machine without leaving telnet.

Using the Virtual Terminal 3-7

crmod This conunand turns on carriage
return mapping in which a carriage
return character from the remote
machine is turned into a carriage
return character followed by a line
feed character. The next time you
enter this command, telnet will
turn carriage return mapping off.

escape This command allows you change the
escape character used to enter
command mode from input mode.
After you enter this command,
telnet prompts you for a new escape
character to be used. Once you
enter this character followed by a
Return, the new escape character
will be in effect.

help This command displays information
on your terminal about operating
telnet. If you specify a command
name to help, information about
that command is displayed. If you
just enter help, a list of all
commands is displayed.

open This command establishes a telnet
connection to a remote machine.
You may specify the name of the
remote machine when invoking the
command, for example,

telnet > open admin

or you may just use the command
name and have telnet prompt you for
the machine name, for example,

telnet> open

(to) admin

1-8 CTIX Internetworking Manual (Preliminary)

You may only use this command when
you do not already have an open
telnet connection.

options This command turns on display of
the messages sent between telnet
and the remote machine to negotiate
options. The next time you enter
this command, telnet will turn
option negotiation display off.

guit This command terminates your telnet
session and exits telnet. The quit
command closes the connection to
the remote machine if one is
active.

£tatu8 This command shows you the status
of the connection to the remote
host as well as the current options
and escape character.

Another name for the help command.

SAMPLE SESSIONS

A number of sample sessions are shown below which
illustrate how telnet can be used in a variety of
ways. Communications with a host named USAF-TC
are shown.

Using the Virtual Terminal 3-9

Session #1

? telnet USAF-TC
Trying.-.
Connected to USAF-TC
Escape character is '"]'
Megaframe CTIX (tm: Convergent Technologies) User Mode (USAF-TC)
login: torn
S Is
netman passwd volcopy whodo 5 ']
teLnet> quit
Connection closed. ?

Description of Session #1

This is a simple session illustrating basic telnet
use. Telnet is invoked with a host name and opens
a connection to that host. Telnet displays
"Trying..." to indicate it is trying to establish
a connection and a message indicating it is
connected when the connection is established.
Telnet displays the current escape character.
(There is no options status display.) At this
point, telnet has established the connection to
the remote machine and the remote machine displays
its login prompt. The user then logs into the
machine using the same procedures that would be
used for a local terminal on that machine. The
user does a listing of his directory on the remote
machine. Having completed his work, the user then
types the escape character and telnet enters
command mode and displays the command mode prompt.
The user enters the quit command and telnet closes
the connection to the remote machine and returns
to the local shell.

3-10 CTIX Internetworking Manual (Preliminary)

Session #2

S telnet
telnet> status
No Connection.
Escape character is '"]'
local echo is off
telnet> open USAF-TC
Tryi ng.. .
Connected to USAF-TC
Escape character is '~] '
Megaframe CTIX (tm: Convergent Technologies) User Mode (USAF-TC)
Login: torn
5 Is
netman passwd volcopy whodo
? exit
Connection closed by foreign host.

Description of Session

This session illustrates alternative ways to log
in and out of a remote machine with telnet.
Telnet is invoked without a machine name and
enters command mode. The user does a status
command and telnet indicates that no connection is
established. The user then uses the telnet open
command to establish a connection and place telnet
into input mode. The user receives a login
message from the remote system. The user then
logs into the machine using the same procedures
that would be used for a local terminal on that
machine. Having completed his work, the user logs
out of the remote machine. The remote machine
then closes the connection. Telnet terminates
automatically and returns to the local shell.

Using the Virtual Terminal 3-11

THE RLOGIN COMMAND

The rlogin(lN) command connects you to a shell on
a remote machine. Rlogin is similar to telnet but
is specific to CTIX-compatible machines and allows
you to access the same CTIX commands on a remote
machine as telnet but is more convenient than
telnet in that, once you have logged onto a remote
machine, it is as if it is now your local machine
and you do not have to know the special commands
used in telnet. This command can only be used
with remote machines running CTIX or a compatible
operating system. The TERM variable in the remote
shell is set to the value you are using in your
local shell.

Once invoked, rlogin will pass all data you input
to the remote machine and display all output from
that machine on your terminal's screen.

INVOKING RLOGIN

Rlogin is invoked from the CTIX shell. You must
specify the name of a remote machine, for example,

$ rlogin admin

In most cases, you may omit specifying rlogin to
the shell and simply put the name of the remote
machine, for example,

$ admin

Your system administrator must have configured
CTIX to accept the name of the remote machine
without specifying rlogin in order for you to be
able to use this feature. You must also have
/usr/hosts in your search path. Your system
administrator can advise you on how your machine
is configured.

1-12 CTIX Internetworking Manual (Preliminary)

Rlogin Options

Also, you may specify two options when invoking
rlogin.

-ec The -e options causes rlogin to use
the character c instead of tilde
(~) as the escape character to
enter when exiting rlogin, for
example,

$ rlogin adain -el
sets the exclamation point as the
rlogin escape character.

-1 <user> The -1 option (lower-case L) allows
you to specify that you wish to be
logged in under another user name,
for example,

$ rlogin admin -1 torn

(Generally, rlogin logs you in to
the remote machine with the same
user name as you are using on your
local machine.)
Whether you use your user name or
another user name, you must have
established user equivalence for
yourself on the remote machine to
which you are logging in. The
system administrator of the remote
machine can advise you on how the
remote machine is configured.

USING A TILDE IN THE TEXT

To send a line of input beginning with a tilde (~)
to the remote machine, begin that line with
another tilde (the escape character).

Using the Virtual Terminal 3-13

EXITING RLOGIN

To exit rlogin and return control to your local
shell, type the escape character (the tilde) and a
period (~.).

Simply exiting your remote shell also causes
rlogin to return control to your local shell.

1-14 CTIX Internetworking Manual (Preliminary)

4 TRANSFERRING FILES

This chapter describes two command programs you
can use to transfer files, ftp(IN) and rcp(IN).
Information in this chapter includes:

o when and why to use the commands,
including sample sessions

o how to invoke and exit the commands
o how to use the command options
o detailed descriptions of the commands you

can use within the ftp program

o description of the rep program

OVERVIEW
The ftp command allows you to transfer files
between your current node and other machines on
the internet. Ftp is an ARPANET command program.
Ftp is an interactive program which allows you to
input a variety of commands for file transmission
and reception, and for examining and modifying
file systems of machines on the network. Once you
invoke ftp, you interact with ftp's command mode
until you exit ftp and return to the calling
program.

Once ftp is invoked, a set of commands is provided
for use within ftp. These are described below in
alphabetical order under "FTP Commands."

Ftp is available under a wide range of operating
systems. When communicating with machines running
the CTIX operating system, the rep command can be
used in place of ftp. Rep provides file transfer
among CTIX machines that is specific to the CTIX
operating system.

Transferring Files 4-1

THE FTP COMMAND

COMPATIBILITY OF FTP COMMANDS WITH INTERNET
SYSTEMS

In addition to ftp commands that use standard ftp
protocol functions, a number of commands are
provided that use optional ftp protocol functions
that cannot be supported by all operating systems.
These commands should be used only in
communicating with machines running CTIX or a
compatible operating system. The commands whose
use should be restricted in this way are indicated
in the command descriptions, below. When
communicating with a remote machine that does not
run CTIX, you should ask your system administrator
before using them whether it supports these ftp
commands. Some ftp server do not support all the
commands.

FTP SESSIONS

Ftp requires that you open a connection over the
internet to a remote machine before you use an ftp
command that involves that machine. Ftp allows
you to have multiple connections active
simultaneously, although generally you may only
issue commands that operate on a single
connection. The multiple connection facility
allows you to communicate with several remote
machine within a single ftp session without having
to log in and out of these machines every time you
wish to change connections. The connection that
ftp will use at any given time is called the
current connection.

Ftp connections are maintained with ftp's open and
close commands. A connection created with the
open command becomes the current connection and is
used for subsequent file transfer commands until
the next open command you issue. See "Invoking
FTP" for a description of the open and close
commands.
1-64 CTIX Internetworking Manual (Preliminary)

Generally, you will close a connection with the
close command before you use the open command to
begin a new connection. However, if you will be
communicating with several hosts during an ftp
session, you may wish to have several connections
to different hosts open at the same time. To
accomplish this, do not use the close command on
your current connection before using open to begin
a new connection.

Although the open command will cause the new
connection you request to become the current
connection, your old connection will not be
closed. To switch among several active
connections, use the open command with the host
name you used to open one of your connections
originally. This will cause the connection you
previously opened to become the current connection
rather than starting a new connection. Also, you
will need to have several connections open to use
the copy command. Copy requires that you do two
opens without a close to establish connections to
both the machine to copy from and the machine to
copy to.

To close a previously opened connection other than
the current connection, first use the open command
to make the connection current and then close it
with the close command. The bye and quit commands
will close all your open connections for you.

Transferring Files 4-3

FTP FILE TRANSFER MODES

Ftp allows you to transfer files in one of two
modes: ASCII mode and binary mode. ASCII mode is
used for text files which can be represented in
standard ASCII code. Binary mode is used for
binary data which must be represented as strings
of contiguous bits. For communication among CTIX
machines, the ASCII mode can be used for most file
transfers. For communication to non-CTIX
machines, the binary mode may be required for
transferring some files such as program object
modules. Your system administrator can advise you
on when to use which file transfer mode.

FTP FILE NAMING CONVENTIONS

If the first character of a file name you specify
to ftp is a hyphen (-), ftp uses its standard
input (for reading) or the standard output (for
writing).

If the first character of a file name you specify
to ftp is a vertical bar (I), the remainder of the
file name is interpreted as a shell command. Ftp
will create a shell with the file name supplied as
a command and then use its standard input (for
reading) or the standard output (for writing). If
the shell command includes spaces, the file name
must be appropriately quoted. For example

"I Is -Is"

INVOKING FTP

You invoke ftp from the CTIX shell with the
command ftp.

1-64 CTIX Internetworking Manual (Preliminary)

After ftp is started, the ftp prompt is displayed
on your terminal. The ftp prompt looks like:

ftp>

Optionally, you may specify the name of the remote
machine with which you wish to communicate. For
example:

ftp admin

Machine names are defined by your system
admi nistrator. Before using ftp, you can use the
netman command to examine the machine names
available to you. See Chapter 5, "Using Netman"
for a description of how to examine the machine
names available to you.

When you specify a machine name when you invoke
ftp, ftp will establish a network connection to
that machine to allow you to transfer files. This
is equivalent to using the ftp open command to
start a connection to the host you name. You may
also invoke ftp without a machine name, for
example:

ftp

If you do not specify a machine name from the
shell, you must open a connection from within ftp
using ftp's open command before you can transfer
files. See "FTP Commands" for a description of
the open command.

Transferring Files 4-5

Ftp Command Options

In addition to specifying a host name when
invoking ftp, you may also specify a number of
options which modify how ftp will operate. These
options must be placed after the command name
(ftp) but before the host name if you are
specifying one. The options you may specify when
invoking ftp all consist of a hyphen (-) followed
by a single letter, for example, -v.

(Each of these options has a corresponding
command, of the same name, that can be used within
ftp. You should compare the use of the options
with the corresponding ftp command. See "Ftp
Commands" below, for a description of the ftp
commands.)

-v causes ftp to operate in verbose
mode. In verbose mode, the ftp
protocol messages sent by the
remote machine to ftp are displayed
on your terminal. Also, if you use
verbose mode, statistics are
displayed after the completion of
each file transfer. If you do not
use the —v option, this information
is not displayed. You may also
modify whether verbose mode
information is displayed from
within ftp with ftp's verbose
command.

-d causes ftp to operate in debug
mode. In debug mode, the ftp
protocol messages sent by ftp to
the remote machine are displayed on
your terminal. If you do not use
the -d option, this information is
not displayed. You may also modify
whether debug mode information is
displayed from within ftp with
ftp's debug command.

1-64 CTIX Internetworking Manual (Preliminary)

-i causes ftp to transfer files in
image (binary) mode. If you do not
use the -i option, files are
transferred in ASCII mode. You may
also modify which file transfer
mode to use from within ftp with
ftp's ASCII and binary commands.

-n causes ftp to not use autologin
mode when connecting to a remote
machine. When autologin mode is
used, ftp will try to automatically
identify you to the remote machine
and log you in to that machine. If
you use the -n option to turn off
autologin, you will have to use the
user command to login to the remote
machine manually.

-g causes ftp to disable expansion of
CTIX file name wild cards such as
*. If you do not use the -g
option, ftp will expand file names
you enter with wild cards in them
into lists of files. You may also
modify whether wild card expansion
is used from within ftp with ftp's
glob command.

Some examples of options:

ftp -v —d admin
invokes ftp with verbose and debug
modes on and causes ftp to open a
connection to the remote machine
named admin. Debug mode causes the
command s sent to the remote machine
to be displayed. Verbose mode
causes us to see the responses
received and the statistics in
bytes received.

Transferring Files 4-7

ftp -v -d
invokes ftp with verbose and debug
modes on but does not cause any
connection to be opened.

ftp -n -g admin
invokes ftp with autologin and wild
card expansion mode off and causes
ftp to open a connection to the
remote machine named admin.

ftp -n -g
invokes ftp with autologin and wild
card expansion mode off but does
not cause any connection to be
opened.

Using the .Netrc File For Automatic Login

As an optional convenience feature, you can create
a file named, $HOME/.netrc (4N), (in your home
directory). This file contains a line entry
containing the login data for each machine you
wish ftp to open automatically.

When you invoke ftp specifying a machine, or when
you subsequently open a machine, ftp reads the
•netrc file. If you have an entry for that
particular machine, ftp automatically conducts the
login protocol exchange with its counterpart at
the remote machine. It supplies your login name
and password if you have entered your password in
the file. If you open a machine in verbose mode,
you can see the transactions taking place.

The format of the file consists of blank-separated
fields introduced by keywords:

machine <name> login <name> password <password>

1-64 CTIX Internetworking Manual (Preliminary)

where machine, login, and password are keywords
followed by the literal data needed for login:

machine The name of the node.

login The user login name for that node.

password The user's password on that node.
(The password is given in normal,
unencrypted text.) If you do put
your password in the file, you must
read/write protect the file, by
setting permissions, to prevent
discovery of your password,
otherwise ftp will not let you use
the file. (There is still some
risk here in putting your password
in the file. You must weigh the
security considerations.) Ask your
system administrator before using
this feature.

If you do not enter your password
in the file, ftp prompts you for
your password.

Example:

machine admin login superuser password open

where "admin" is the node? "superuser" is the user
who logs into admin; "open" is superuser's
password.

FTP COMMAND DESCRIPTIONS

When ftp displays this prompt, you can enter one
of the commands described below. When the command
is complete, the ftp prompt is displayed again.
Depending on whether you turn on verbose or debug
modes, other messages may also appear on your
terminal.

Transferring Files 4-9

Each command you give to ftp must be followed by a
Return. Ftp will not start a command until it
receives a Return from you. If you make a mistake
while typing a command, you may use the shell line
editing commands erase (Backspace) and kill (Erase
Line) to edit the characters that you have typed.

You do not have to enter the full command name,
only enough characters to distinguish the command
from other ftp commands. In each of the following
command descriptions, the minimum number of
characters you are required to enter are
underlined in the command name at the beginning of
the description.

Ftp command names are in boldface.

The 1 command causes ftp to be suspended and a
shell on the local machine to be invoked on your
terminal. Any character (s) you type after
entering the exclamation point are executed as a
command. You can return to ftp by pressing the
Finish key. This returns all ftp options and
remote machine connections in the same state as
before you gave this command.

append. The append command causes ftp to add the
contents of a local file to the end of a file on
the remote machine to which you are currently
connected. You may specify the files to be used
when invoking the command, for example

ftp> append localfile remotefile

or you may just use the command name and have ftp
prompt you for the file names, for example,

ftp> append
(local-file) localfile
(remote-file) remotefile

1-64 CTIX Internetworking Manual (Preliminary)

When you use the append command, the remote
machine you are connected to must be a machine
running CTIX or a compatible operating system.

ASCII. The ASCII command causes ftp to transfer
files in ASCII mode.

bell. The bell command causes ftp to sound the
bell at your terminal after each file transfer is
completed. The next time you enter the bell
command, ftp will stop sounding the bell after
file transfers.

binary. The binary command causes ftp to transfer
files in binary mode.

bye. The bye command terminates your ftp session
and exits ftp. The bye command closes all your
open connections.

c. The cd command changes the directory that you
are working in on the remote machine to a new
directory name. You may specify the new directory
name when invoking the command, for example,

ftp > cd /usr/bin

or you may just use the command name and have ftp
prompt you for the new directory, for example,

ftp> cd
(remote-directory) /usr/bin

close. The close command closes the current
connection.

copy. The copy command is used to transfer a file
between two remote machines without first moving
the file to your local machine. You may specify
the host and file names when you invoke the
command, for example.

Transferring Files 4-11

ftp> copy admin:payrol1 finance:adminspayroll

Or you may just use the command name and have ftp
prompt you for the host and file names, for
example,

ftp> copy
(hostl:file) admin:payroll
(host2:file) finance:adminspayroll

In order to use the copy command, you must first
have opened connections to both of the remote
machines. Also, you must use the same file
transfer type for both connections.

debug. The debug command turns on and off debug
mode. If debug mode is on, messages sent by ftp
to the remote machine are displayed on your
terminal. If debug mode is off, this information
is not displayed.

delete. The delete command deletes a file on the
remote machine to which you are currently
connected. You may specify the name of the file
to be deleted when invoking the command, for
example,

ftp> delete remotefile
or you may just use the command
name and have ftp prompt you for
the file name, for example,
ftp> delete
(remote-file) remotefile

dir. The dir command displays a detailed listing
of the contents of a directory on the remote
machine to which you are currently connected.
(Compare Is below.) You can specify the name of
the directory- to be listed when invoking the
command, for example,

ftp> dir /usr/local/bin

1-64 CTIX Internetworking Manual (Preliminary)

If you do not specify a directory name, the
current working directory on the remote machine is
listed.

You can also specify that the results of this
command are placed in a file rather than displayed
on your terminal by giving ftp a file name on your
local machine in which to store the directory
listing, for example,

ftp> dir /usr/local/bin printfile

You must specify a directory name with the
printfile. If you want to list the current
directory in a file called "printfile," use:

ftp> dir . printfile

where "." stands for the current directory.

form. The form command displays the file format
used. Currently, only the nonprint format is
supported.

get. The get command retrieves a file from the
remote machine to which you are currently
connected and stores it on your machine. You may
specify the name of a file on the remote machine
and a file name on your machine for the file to be
stored in when you invoke the command, for
example,

ftp> get remotefile localfile

Or you can simply specify the name of a file on
the remote machine to retrieve the file to your
local machine and give it the same name as the
file on the remote machine,

ftp> get remotefile

Transferring Files 4-13

Or you may just use the command name and have ftp
prompt you for the file names to use, for example,

ftp> get
(remote-file) remotefile
(local-file) localfile

If you omit the local file name, the get command
will create a file on your machine with the same
name as the file on the remote machine.

glob. The glob command causes ftp to disable
expansion of CTIX file name wild cards such as *.
The next time you enter the glob command, wild
card expansion will be reenabled. If wild card
expansion is enabled, ftp will expand file names
you enter with wild cards in them into lists of
files.

hash. The hash command causes ftp to display a
pound sign (#) after each block of data it sends
to or receives from the remote host. The size of
a data block is 1024 bytes. The next time you
enter the hash command, ftp will stop displaying
pound signs after each data block.

help. The help command displays information on
your terminal about operating ftp. If you specify
a command name to help, information about that
command is displayed. If you just enter help, a
list of all the ftp commands is displayed.

led. The led command changes the working
directory used by ftp on your machine. You may
specify a directory name to be used as the working
directory, for example,

ftp> led /usr/andy

If you do not specify a directory name, your home
directory will be used.

1-64 CTIX Internetworking Manual (Preliminary)

Is* The Is command displays an abbreviated
listing of the contents of a directory on the
remote machine to which you are currently
connected. You may specify the name of the
directory to be listed, for example,

ftp> la /usr/local/bin

If you do not specify a directory name, the
current working directory on the remote machine is
listed.

You may also specify that the results of this
command are placed in a file rather than displayed
on your terminal by giving ftp a file name on your
local machine in which to store the directory
listing, for example,

ftp> Is /usr/local/bin printfile

You must specify a directory name with the
printfile. If you want to list the current
directory in file called "printfile," use:

ftp> Is . printfile

where "." stands for the current directory.

mdelete. The mdelete command deletes a list of
files on the remote machine to which you are
currently connected. You may specify the name of
the files to be deleted when invoking the command,
for example,

ftp> mdelete remotefilel remotefile2

or you may just use the command name and have ftp
prompt you for the file name(s), for example:

ftp> mdelete
(remote-file) remotefilel remotefile2

Transferring Files 4-15

mdir. The mdir command obtains a directory
listing for a list of remote files and places the
result in a local file. You may specify the list
of remote files and the local file when invoking
the command for example,

ftp> mdir remotefilel remotefile2 printfile

or you may just use the command name and have ftp
prompt you for the file name, for example,

ftp> «dir
(remote-files) remotefilel remotefile2 printfile
local-file printfile? y

mget. The mget command retrieves several files
from the remote machine to which you are currently
connected and stores them on your machine. The
files stored on your machine have the same names
as the files on the remote machine.

You may specify the list of remote files when
invoking the command for example,

ftp> mget remotefilel remotefxle2

or you may just use the command name and have ftp
prompt you for the file names, for example,

ftp> mget
(remote-files) remotefilel remotefile2

mkdir. The mkdir command creates a directory on
the remote machine to which you are currently
connected. You may specify the name of the
directory to be created when invoking the command
for example,

ftp> mkdir /u/mydir

1-64 CTIX Internetworking Manual (Preliminary)

or you may just use the command name and have ftp
prompt you for the directory name, for example,

ftp> mkdir
(directory-name) /u/mydir

Not all ftp servers support the mkdir command.

mis. The mis command obtains an abbreviated
directory listing for a list of remote files or
directories and places the result in a local file.
You may specify the list of remote files or
directories and the local file when invoking the
command for example,

ftp> mis remotefilel remotefile2 printfile

or you may just use the command name and have ftp
prompt you for the file name, for example,

ftp> mis
(remote-files) remotefilel remotefile2 printfile
local-file printfile? y

mput, The mput command transfers several files
frcm the local machine to the remote machine to
which you are currently connected and stores them.
The files stored on the remote machine have the
same names as the files on your machine.

You may specify the list of files when invoking
the command for example,

ftp> mput localfilel localfile2

or you may just use the command name and have ftp
prompt you for the file names, for example,

ftp> mput
(local-files) localfilel localfile2

Transferring Files 4-17

open. The open command establishes a connection
to a remote machine which may then be used for
file transfer commands. You may specify the name
of the remote machine when invoking the command,
for example,

ftp > open adain

or you may just use the command name and have ftp
prompt you for the machine name, for example,

ftp> open
(to) adain

If you specify a host name when invoking the
command, you may also optionally specify a port
number on the remote machine. If a port number is
specified, ftp will attempt to open a connection
to the remote machine at that port rather than the
default port for ftp. You should only use this
option if you are asked to do so by your system
administrator. If you do not specify a port
number, ftp will not prompt you for one.

prompt. The prompt command causes ftp not to ask
you for permission to proceed between files in
multiple file commands such as aget. The next
time you enter the prompt command, ftp will start
asking you for permission to proceed between
files.

put. The put command transfers a file from the
local machine to the remote machine to which you
are currently connected and stores it. You may
specify the name of a file on your machine and a
file name on the remote machine when you invoke
the command, for example,

ftp> put. localfile remotefile

1-64 CTIX Internetworking Manual (Preliminary)

or

ftp> put localfile

or you may just use the command name and have ftp
prompt you for the file name(s) to use, for
example,

ftp> put
(local-file) localfile
(remote-file) remotefile

If you omit the remote file name, the put command
will create a file on the remote machine with the
same name as the file on the local machine.

pwd. The pwd command cause ftp to print the name
of the current working directory on the remote
machine to which you are currently connected.

quit. (The same as the bye command above)

quote. The quote command causes the arguments you
enter to be sent to the remote machine for
execution. Arguments must be ftp protocol
commands and arguments. The ftp protocol commands
that a remote host supports may be displayed with
the remotehelp command. You may enter the command
string to be sent when invoking the command, for
example,

ftp> quote NLST

or you may just use the command name and have ftp
prompt you for the command line to use, for
example,

ftp> quote
(command line to send) NLST

You should not use this command unless asked to do
so by your system administrator.

Transferring Files 4-19

recv. (The same as the get command above)

remotehelp. The remotehelp command requests help
from ftp at the remote machine to which you are
currently connected. The information returned by
the remote machine indicates which ftp commands it
can support.

rename. The rename command renames a file on the
remote machine to which you are currently
connected. You may enter the file names to be
used when invoking the command, for example,

ftp> rename remotefilel remotefile2

or you may just use the command name and have ftp
prompt you for the file names to use, for example,

ftp> rename
(from-name) remotefilel
(to-name) remotefile2

rmdir. The rmdir command removes a directory on
the remote machine to which you are currently
connected. You may specify the name of the
directory to be removed when invoking the command
for example,

ftp> rmdir /u/mydir

or you may just use the command name and have ftp
prompt you for the directory name, for example,

ftp> rmdir

(directory-name) /u/mydir

Not all ftp servers support the rmdir command.

send. (The same as the put command above)

1-64 CTIX Internetworking Manual (Preliminary)

sendport. The sendport command causes ftp to
disable specifying a local port to the remote
machine for a data connection. The next time you
enter the sendport command, specification of local
ports will be reenabled. The default mode for
local port specification when ftp is invoked is
on. You should not use this command unless asked
to do so by your system administrator.

status. The status command causes ftp to display
its current status on your terminal. This status
includes the modes you select with the bell, form,
hash, glob, port, prompt, and type commands.

type. The type command sets the file transfer
type to one that you specify. Valid values are
ASCII and binary. The type command is another way
of invoking the ASCII and binary commands. If you
do not specify a type when invoking this command,
ASCII is used.

trace. The trace command causes ftp to enable
packet tracing. The next time you enter the trace
command, specification packet tracing will be
disabled. You should not use this command unless
asked to do so by your system administrator.

user. The user command allows you to identify
yourself to the remote host when establishing a
connection. If autologin was not disabled with
the -n option when invoking ftp, this command is
not required. If autologin is disabled or an
autologin is not configured for you on the remote
machine, you will have to use the user command to
tell the remote machine who you are.

Three pieces of information are used to tell the
remote machine who you are: a login name, a
password, and an account name.

Transferring Files 4-21

User name is required for all machines, password
and account name are required only by some
systems. Your system administrator can tell you
what information is required by what machines and
what are valid user and account names and
passwords for a machine you wish to communicate
with.

(See "Using the .netrc File For Automatic Login,"
above.")

You may enter the information to be used with the
user command when invoking the command, for
example,

ftp> user ten cat myaccount

Also you may just use the command name and have
ftp prompt you for the information to use, for
example,

ftp> user
(username) torn
password:
Account: myaccount

Note that ftp will not echo your password when you
type it to protect the security of this
information. If a password or account is not
required on the remote machine with which you are
connecting, the password and account prompts will
not be displayed.

verbose. The verbose command causes ftp to enable
verbose mode. The next time you enter the verbose
command, verbose mode will be disabled. In
verbose mode, the ftp protocol messages sent by
the remote machine to ftp are displayed on your
terminal. Also, if you use verbose mode,
statistics are displayed after the completion of
each file transfer. If you do not use verbose
mode, this information is not displayed.

?. (Another name for the help command.)

1-64 CTIX Internetworking Manual (Preliminary)

SAMPLE FTP SESSIONS

These sample sessions illustrate how ftp can be
used in a variety of ways. Three hosts are used
in these sessions, the local host CT-SPG and the
remote hosts USAF-TC and USAF-TC1.

Session 1
ftp USAF-TC
ftp> cd /etc
ftp> Is
netman
passwd
volcopy
whodo
ftp> get passwd
ftp> put wal1
ftp> Is
netman
passwd
volcopy
wall
whodo
ftp> bye
*

Description of Session 1

This is a simple session illustrating ftp use for
sending and receiving files. Ftp is invoked with
a host name and automatically logs the user into
that host since the -n (disable autologin) option
was not used.

The user first changes working directory on the
remote machine to the /etc directory. Since
neither the -d (debug) or -v (verbose) options
were used, no messages other than the ftp prompt
are displayed by ftp.

Transferring Files 4-23

The user does a directory listing of the /etc
directory on USAF-TC using the Is command for an
abbreviated listing. Ftp shows four files in /etc
on USAF-TC. The command get "passwd" is then
issued to copy the file passwd from USAF-TC to CT-
SPG. A file named passwd is created on CT-SPG
since no local file name was specified.

The put command is then used to copy a file called
wall from the current working directory on the
local machine to the remote working directory
(/etc) on the remote machine (USAF-TC). Once
again, the same file name is used since no remote
file name was specified. After the transfer is
complete, a directory listing is requested which
now shows five files in /etc on USAF-TC including
the file wall which was just sent from CT-SPG.

The bye command is then used to exit ftp and
return to the shell.

Session 2

t ftp USAF-TC
ftp> debug
Debugging on (debug = 1)
ftp> verbose
Verbose mode on.
ftp> cd /etc

> CWD /etc
200 CWD command okay.
ftp> pwd

> XPWD
251 "/etc" is the current directory,
f tp > hash
Hash mark printing on (1024 bytes/hash mark).
ftp> get wall nyfile

> PORT 3,20,0,2,4,51
200 PORT command okay.

> RETR wall
150 Opening data connection for wall (3.20.0.2,1075)(24384 bytes).
ttmttttfttttttfttttttt
226 Transfer complete.
24550 bytes received in 12.00 seconds (2 Kbytes/s)
ftp> close

> QUIT
2 21 Goodbye.
ftp> bye t

1-64 CTIX Internetworking Manual (Preliminary)

Description of Session 2

This session illustrates the displays caused by
using a number of ftp options. After invoking ftp
with the remote host name, the user issues
commands to turn on debug and verbose mode. Ftp
displays messages indicating that these options
are now enabled.

The user then changes the remote working directory
to /etc. Since debug and verbose modes are on,
ftp displays messages showing the command sent to
the remote machine, (> CWD /etc), and the
response received from the remote machine, (200
CWD command okay.). Note that the cd command,
which has a form the same as CTIX's change
directory command, is sent as a CWD command (for
change working directory) to the remote machine.
The CWD command is ftp's way of saying cd
independently of any specific operating system
command language.

Following the cd command, the user does a pwd
command to verify the working directory. Once
again, ftp displays the messages sent between the
local and remote machines and then displays the
current remote working directory. The user then
turns on the hash option. Ftp displays a message
indicating that this option is now enabled.

The command "get wall myfile" tells ftp to
retrieve the file wall and place it in the file
myfile in the user's local working directory. Ftp
displays the messages sent between the two hosts
to begin the transfer and then prints a hash mark
for each block (1024 bytes) of information
received. After the transfer is complete,
statistics are displayed showing the total time
required and the data rate for the transfer.

Transferring Piles 4-25

After the fi le is received, the user closes the
connection with the close command and exits ftp
with the bye command.

Session 3

* ftp -v -d
ftp> cd /etc
Not connected.
ftp> open
(to) USAF-TC
Connected to USAF-TC
220 USAF-TC FTP server (Version 3.4 Mon Aug 12 16:48:21 PDT 1985) ready.
331 Password required for torn.
2 30 User torn logged in.
£tp> cd /etc

> CWD /etc
ftp> Is

> PORT 3,20,0,2,4,65
200 PORT Command okay.

> NLST
150 Opening data connection for (3.20.0.2.1089) (0 bytes).
netman
passwd
volcopy
whodo
226 Transfer complete.
24 bytes received in 1.00 seconds (87.023 Kbytes/s)
ftp> open USAF-TCl
Connected to USAF-TCl
220 USAF-TCl FTP server (Version 3.4 Mon Aug 12 16:48:21 PDT 1985) ready.
Name (USAF-TCl:torn): torn
Password:
3 31 Password requi red for torn.
230 User torn logged in.
ftp> cd /etc

> CWD /etc
ftp> get wall

> PORT 3,20,0,2,4,66
200 PORT command okay.

> RETR wall
150 Opening data connection for wall (3.20.0.2,1090)(24 384 bytes).
226 Transfer complete.
24550 bytes received in 12.00 seconds (2 Kbytes/s).
ftp> open USAF-TC
Re-connected to USAF-TC.
ftp> put wall

> PORT 3,20,0,2,4,67
200 PORT command okay.

> STOR wall
150 Opening data connection for wall (3.20.0.2,1091)(24384 bytes).
226 Transfer complete.
24550 bytes received in 12.00 seconds (2 Kbytes/s).
ftp> bye

> QUIT
221 Goodbye.

> QUIT
221 Goodbye. *

1-64 CTIX Internetworking Manual (Preliminary)

Description of Session 2

This session illustrates the use of multiple
connections to remote hosts. The user invokes ftp
with verbose and debug modes on but without a host
name and then tries to do a cd command. Since no
connection to a remote host is active, ftp cannot
execute this command and indicates that it is not
connected.

The user then uses the open command to establish a
connection to USAF-TC. Note that ftp prompts for
the remote machine name and logs the user into
that machine automatically. The user then changes
his/her working directory to /etc on USAF-TC and
lists the contents of this directory. Noticing
that the file he needs is not in the directory,
the user then opens a connection to USAF-TC1.

Since the user did not have an automatic login
configured for USAF-TC1, ftp asks the user for
his/her name and password. Since an account name
is not required on USAF-TC1, ftp does not ask for
one. Once logged in on USAF-TC1, the user changes
working directory to /etc and transfers the file
wall to his local working directory. Then, the
user opens a connection to USAF-TC. Since the
user did not issue a close command before opening
his connection to USAF-TC1, his connection to
USAF-TC is still active and a message indicating
that the user is reconnected to USAF-TC is
displayed.

The user then transfers wall to USAF-TC. Since
the connection to USAF-TC was never closed, the
user does not have to issue another cd /etc
command to set his working directory before
sending the wall file to the remote machine.
After completion of the transfer, the user issues
a bye command and ftp closes both of his/her open
connections and returns to the shell.

Transferring Piles 4-27

CTIX FILE COPY - THE RCP COMMAND

The rep command allows you to copy files between
any two CTIX machines on the internet. Rep is
similar to ftp but has a syntax much like the CTIX
cp command. This command may only be used with
remote machines running CTIX or a compatible
operating system.

INVOKING RCP

Rep is invoked from the CTIX shell. You must
specify the name of local files to copy and where
they are to be copied to, for example,

rep localfile admin.torn:/usr/local/bin

As shown, file names for rep follow a convention
that is an extension of the CTIX file name
convention. File names may take one of three
forms, where a file name names a file or a
directory. Valid forms for file names are:

o machine.user:filename
o machine:filename
o filename
where,

machine is the name of the machine which
contains or will contain the file.
If you do not specify a machine,
the file is assumed to reside on
your local machine.

1-64 CTIX Internetworking Manual (Preliminary)

user is the user name on the machine you
specify. If you do not specify a
user name, your user name on your
local machine is used. Whether you
use your user name or another user
name, you must have established
permission for yourself on the
machine where the file is located.

The system administrator of the
remote machine can advise you on
how the remote machine is
configured.

filename is a standard CTIX file name which
may include a directory path. If
the filename you specify does not
begin with a slash (/), the
filename is assumed to be relative
to the specified user's home
directory. The filename may
include wild cards but these may
have to be quoted to prevent their
expansion on your local machine.

An exclamation point may be used in place of the
colon in rep filenames.

If you specify only a directory name for the
destination of an rep command, the file(s) you
specify are copied into that directory with the
same names as the files copied.

Options to rep

You can specify an option when invoking rep.

Transferring Files 4-29

-r This option allows the copying of
directory trees. If the file
specified for copying is a
directory and you specify -r, the
entire directory tree under that
directory is copied. When -r is
specified, the destination of the
rep command must be a directory.
When you do not specify the -r
option, requesting the copying of a
directory is an error.

SAMPLE RCP SESSIONS

In the following examples, two remote machines on
the network are used named USAF-TC and USAF-TCl.

The first example copies a file named list from
the user's current directory to his/her home
directory on USAF-TC:

rep list USAF—TC:list

The next example copies a directory hierarchy to a
directory tree rooted in sre within user's heme
directory on USAF-TC.

rep -r /net/arc USAF-TCtsre

This example shows the user copying a file from
the hcxne directory of a user named torn on USAF-TC
to the /usr/tmp directory on USAF-TCl. The copy
on USAF-TCl is to belong to a user named Andy.

rep USAF-TC.ton:list USAF-TCl.andy:/usr/tmp

1-64 CTIX Internetworking Manual (Preliminary)

5 USING NETMAN

This chapter introduces the menu and forms-based
network management tool, netman. This chapter
describes only the network user's version. The
administrator's version contains additional
network management functions. (See Chapter 8,
"Network Management.")

OVERVIEW

CTIX Internetworking provides a unique network
management program, netman. The user version of
netman, is a terminal-independent program which
network users can access to view the certain
network status information and to add and delete
their remote user equivalences to and frcm their
account. (A user equivalence gives their remote
accounts privileges equivalent to their own or
someone else's local account. This is explained
in greater detail in this chapter.)

Netman is menu and forms-driven; the user does not
need to know CTIX editors or other tools. Help
files are accessible within all its forms.

The netman displays and interactive forms
described in this chapter reflect a generic
version of netman. The actual forms and displays
may vary depending on the M/Frame system you are
using.

INVOKING NETMAN

To call up netman, type the command:

netman

and press Return

The main menu appears as shown in Figure 5-1.

Using Netman 5-1

--I Network Manager I
Main Function Menu

* Machine Status
Network Users
Administration

Network Interface Statistics

Choose the network function you wish to perform

Figure 5-1. Netman Main Menu

OPERATING NETMAN

You can operate netman on a workstation.
Programmable Terminal (PT), Graphics Terminal
(GT), or other terminals. On terminals other than
those supplied with M/Frame systems, the names and
keyboard locations of the control keys can be
different. Table 5-1 summarizes the netman key
functions and gives some equivalent key functions
for some terminals.

When the main menu is initially displayed, an
asterisk (*) is shown at the left of the first
line item, "Machine Status." This asterisk is the
menu selection pointer. Use Return or the arrow
keys to move the asterisk to the line selection
you wish to access.

When you have selected a menu function with the
asterisk, press Next to go to that display.

To return to the Main menu from a display you have
selected, press Cancel. (On some terminals, press
Control-X.)

1-64 CTIX Internetworking Manual (Preliminary)

Press Next Page to see additional page displays if
any. If there are additional pages the word
"-more-" is displayed in the lower right corner of
the display. When there are no more page
displays, the display returns to the main menu.

You can also use the down arrow key or Return to
scroll one line at a time.

To exit a menu function and return to the main
menu, press Next. (On some terminals, press Line
Feed.)

Some displays are also interactive forms, to
execute a completed form, press Next.

To exit from a display, press Cancel. (On some
terminals, press Control-X/Code-X.)

You can press Help to display some helpful
suggestions. (See "Help Displays," below.)

If you press the wrong key, the Valid Key menu is
displayed. (See "Valid Key Display," below.)

Using Netman 5-3

Table 5-1
Netman Control Keys

Key Function Terminal
Equivalent

Arrow Keys Moves pointer to next entry
Bound Calls up additional

form.
Cancel Exits to main menu Control-X
Help
Next

Displays help menu.
Executes form and/or
returns to main menu

<Escape>
<Linefeed>

Next Page Displays next page or
returns to main menu.

Return Moves pointer to next entry
<wrong key> Displays valid key menu.

HELP DISPLAYS

You can press Help to display the help display
associated with whichever menu or display is
currently active. (On some terminals, press
<Escape>). The help display for the Main menu
gives a brief explanation of what you can do with
netman and the basic instructions for operating
it.

The file specification for the help file is given
at the top of the display. For example:

Help (/usr/lib/netman/main.help)
Press Next to exit a help display.

1-64 CTIX Internetworking Manual (Preliminary)

VALID KEY DISPLAY

If you press an invalid key, the Valid Key Display
for that particular display appears. The one
shown in Figure 5-10. is displayed for the Main
Function Menu display.

• I Valid Key Display I
Valid Keys

Up: Move to previous field.
Down: Move to next field.
Return: Move to next field.
Next: Accept modified field.
Cancel: Abort.
Left: Move to previous field.
Right: Move to next field.

Press any key to exit this window

Figure 5-2. Valid Key Display.

MACHINE STATUS DISPLAY

Machine Status display is dynamically updated to
report on current network machines. Machine
Status shows the name of each machine active on
the net, its current status, the time it has been
up, its number of active users, and its recent
work load. (This selection is equivalent to
running the network command, ruptime.) Figure 5-3
shows an example display.

Using Netman 5-5

--1 Remote Machine Statistics I

Machine Status Time Users Load

BTJmini up 0: : 31 , 1 user, load 1. .0(3, 1 00, 1 00 CommDV up 22: : 37, 1 user. load 0. .06, 0, .06, 0. . 36
TQmini up 21 : : 38, 1 user. load 1 . .00, 1. .0(3, 1. .00
Andrew up 3 + 23: : 31, 1 user. load 1. .06, 1. .06, 1 . .03
dvl up 6 + 18: : 22 , 5 users, load 1. , (10, 1. • 03, 1. , 27
j js up 1+01: 0 users, load 2. .06, 2, .06, 2. .36

Touch the 'next' key to continue

Figure 5-3. Machine Status Display.

DESCRIPTIONS OF MACHINE STATUS DISPLAY HEADINGS

Machine

Status

Time

The name of the machine, or node.

Whether the machine is up or down.
A node is "down" if its rwhod
server has not broadcast for five
minutes. (See Chapter 8, "Network
Management.")

The time the node has been up in
days, hours, and minutes. The plus
sign (+) delimits the days from the
hours.

Users The number of logged-in users who
have used their keyboards in the
last hour.

Load The average number of jobs in the
run queue for the 1st one minute,
five minutes, and 15 minutes.

1-64 CTIX Internetworking Manual (Preliminary)

NETWORK USERS STATUS DISPLAY

Network Users display is dynamically updated to
report on logged in users. Itlists alphabetically
all users currently logged onto the network. It
displays their terminal session number and other
information about their login session. (This
selection is equivalent to running the network
command, rwho -a.)

An example of the Network Users display is shown
in Figure 5-4.

Network Users I-

USER WHERE LOGIN TIME IDLE TIME

*andrew andrew:tty000 Dec 13 14:54 :07
andrew dvl:ttypfl0 Dec 16 15:50 3:41
andrew nifb:ttyp00 Dec 13 16:33 23:38
bjb mitinoose:tty261 Dec 16 08:50 :43
carl mitimoose:ttyp03 Dec 13 14:12 95:46

Touch the 'next' key to continue

Figure 5-4. Network Users Status Display.

DESCRIPTIONS OF THE NETWORK USERS STATUS DISPLAY
HEADINGS

USER The name of each user who has been
active during the last hour.

WHERE The name of the user's machine and
the terminal number attached to
that machine.

Using Netman 5-7

The "p" after tty signifies a
pseudo terminal. A pseudo terminal
is a virtual terminal created on
the local node by the user from
another node. A user can have more
than one pseudo terminal. There is
one for each virtual terminal
session beyond the original session
on the node where the user
initially logged on.

LOGIN TIME The date and time the user logged
in for this session.

IDLE TIME If the user has not used the
keyboard in the last minute, the
user's idle time is displayed here
in hours and minutes. After 99:59
the value remains constant.

DETAILED USER STATUS DISPLAY

You can display additional information on what an
individual user is doing by moving the asterisk
down the left column to the name of the user and
pressing Next. Figure 5-5 shows an example of the
information displayed for the selected user.

--I Detailed User Status~|

Process Information for user bjb at node mitimoose

UID PID PPID C STIME TTY TIME COMMAND
bjb 10365 139 1 Dec 16 t261 0:04 /bin/ksh

Touch the 'next' key to continue

Figure 5-5. Detailed User Status Display.

5-8 CTIX Internetworking Manual (Preliminary)

Ordinarily you can check the Detailed User Status
only for users on your local machine. To check
the Detail User Status of a user on a remote
machine requires a special permission. If you do
not have this permission, the error message
appears:

You don't have permission to check status
on machine xn

(Where "xn" is the name of the machine)

If you need this permission, see your
administrator.

Descriptions of the Display Headings

UID User ID.

PID Process ID.

PPID Parent Process ID.

C Processor scheduling information.

STIME Start Time.

TTY Terminal Number.

TIME CPU Run Time for the process.

COMMAND The command the user is currently
executing or has last executed.

For more information on process status reporting,
see £s(l) in the appropriate CTIX Operating System
Manual.

Using Netman 5-9

USER AND MACHINE EQUIVALENCE

(Administrators, see also Chapter 8, "Network
Management.)

Equivalence can be established on a

o per user basis by making an entry in the
file, .rhosts, on the local machine
(This is called user equivalence.) You
can make this entry by using an editor or
by using netman.

o per machine basis (called machine
equivalence) by entering the name of the
remote machine in the file
/etc/hosts.equiv on the local machine.
(See your administrator for this type.
For more information on machine
equivalence, see Chapter 8, "Network
Management.")

User equivalence is a mapping between a user on a
remote machine and a user on a local machine.
User equivalence allows a user from one machine to
have user privileges on another machine under the
same or different user name without entering a
password for the remote machine.

This equivalence can be established by equating
different users on different machines, on a host
by host basis. For example, On host B, Joan,
whose native host is host A, can be equated with
Tricia of host B. See Figure 5-6.

1-64 CTIX Internetworking Manual (Preliminary)

Figure 5-6. Diagram of an Example User
Equivalence

User equivalence is established by the receiving
machine, but the corresponding entry must be made
in the .rhostB file on the user's own machine.

Because it it granted host by host, this type of
equivalence is not reciprocal unless it is made
explicit? that is, in the above user equivalence
example, an equivalence set up on host B such
that, Joan on host A = Tricia host B does not also
mean that, on host A, Tricia B = Joan A, unless
this reciprocal equivalence is set up separately.

User equivalence can also be made by equating the
same user to him/herself on different machines.
If the user desires a different name on a remote
machine, (s)he must have a separate password entry
for that name. In effect (s)he is a different
user as far as the remote machine is concerned,
but the different names can be equated using
.rhosts.

Using Netman 5-11

User Equivalence to Self

It is recommended that a user be made equivalent
to himself on his local machine. This equivalence
is necessary to use the net under certain
circumstances:

o if you have shell script program that do
a loopback operation (an operation in
which a step in the program requires an
operation on a remote host and then an
operation back on your native machine)

o if you run a command like Detailed User
Status in netman the local machine

User equivalence is requireB for the Berkeley-
derived utilities, rlogin, rcmd, and rep. It does
not work for standard ARPANET-derived utilities.

HOW TO SET UP USER EQUIVALENCES

As a network user, you can use Netman to set up
user equivalences. On the Main Function Menu,
select Administration. The Administration menu
has two selections:

o Add an equivalent user
o Delete and equivalent user

Administration Menu

To call up netman's administration menu, select
"Administration" on the Main menu. The User
Administration menu appears as shown in Figure 5-
7.

1-64 CTIX Internetworking Manual (Preliminary)

— I User Administration I

* Add an equivalent user
Delete an equivalent user

Move to the operation you wish to perform and touch 'next'

Figure 5-7. User Administration Menu.

You use these menu functions only on your local
machine. You can however establish a virtual
terminal on the remote machine and invoke netman.

When you select a function on the Administration
Menu, the corresponding form appears. After
making an entry or editing the form as
appropriate, press Next to execute the form.

If you need to edit your entries, use the cursor
keys to position over the character you wish to
change.

Add Equivalent User Form

When you select "Add an equivalent user," the form
appears as shown in Figure 5-8.

Using Netman 5-13

— I Add Equivalent User |

Give a remote user your privileges
Machine Name | |
Remote User

Use cursor keys to edit

Figure 5-8. Add Equivalent User Form.

1. Enter the name of the remote machine to which
you are granting the privileges.

2. Enter the name of the remote user to be
granted the equivalence.

3. Press Next to execute the form.

Delete Equivalent User Form
When you select "Delete an equivalent user," the
form appears as shown in Figure 5-9.

I — I Delete Equivalent User I I
I Retract your privileges from a remote user |
I Machine/User I | I

I Move to your selection and touch 'next' |

Figure 5-9. Delete Equivalent User Form.

5-14 CTIX Internetworking Manual (Preliminary)

1. The form comes up already displaying the
name of one of the remote users. If
this is not the name of the user you
wish to delete, press Bound to get the
Currently Equivalent User display as
shown in the example in Figure 5-10.

— I Currently Equivalent User I

Move to your selection and touch 'next'

Figure 5-10. Currently Equivalent Users Display

2. Using the arrow keys, move the asterisk
to the machine/user name from whom you
wish to retract the privileges and press
Next. The name is inserted into the
Delete Equivalent User form.

3. Press Next to execute the deletion.

Machine/User
* tom-src
tom-src
mi fa

torn
torn
torn

Using Netman 5-15

6 SETTING UP A NETWORK

This chapter is an overall guide to configuring
and managing a CTIX internetworking system. This
Chapter also introduces tab section 3,
"Configuration and Management," which consists of
chapters 6 through 10. You can use this chapter
as a starting point and refer back to it for the
next step after performing specific procedures and
information described in the release notices or
other chapters. Table 6-1, at the end of this
chapter, cross-references each area of network
configuration and management to the chapter in
this section that discusses it.

Chapters 7 through 10 discuss in greater detail
specific subjects only touched upon in this
chapter. This chapter discusses

o the administrator(s)
system configuration of a node an network
MightyFrame gateways
routing
overview of setting up a node
release notices for machine types

o MightyFrame Setup Overview
o subjects covered in other chapters of

this section
the initialization files

Setting Up A Network 6-1 6

THE ADMINISTRATOR

The administrator must bring each new machine into
the network separately and locally. Similarly,
once the local machine is on the network, the
administrator typically maintains only his node's
interface to the network. However, if there is a
chief administrator or an administrator in charge
of one or more machines, some maintenance tasks
can be performed from a remote machine or the
chief administrator can physically go around to
each machine as necessary. There is no central
network console.

Most configuration and network management tasks
can be performed using netman.

CHIEF ADMINISTRATOR

In the case of larger networks, even if there is a
chief administrator for a network, the
administrator could be inhibited from performing
some tasks by not having access to all the machine
passwords.

ADMINISTRATOR PRIVILEGES

The administrator for each machine must have root
privileges to accomplish his tasks. This means
that you must know the password for the root
account on your system and login to the system as
root before you invoke netman to perform
administrative duties.

1-64 CTIX Internetworking Manual (Preliminary)

SYSTEM CONFIGURATION

An internetwork consists of more than one physical
network connected through common node(s).
Machines that serve as connecting nodes are called
gateways. Ethernet, SLIP connections, and X.25
links can be consolidated by gateways to form a
transparently accessible internetwork. To the
user an internetwork looks exactly like a larger
single network. Some of the advantages of
internetworking are:

o High speed local area networks (LANs) and
slower wide area networks (WANs) can be
mixed to allow for maximum balance
between performance and economy.
Typically, this means that people and
machines within a local workgroup or LAN
can get high performance networking among
themselves and still have transparent
access to remote people and machines.

o Gateways can allow high volume network
traffic areas to be localized. On a
large Ethernet, traffic from a small set
of stations can congest the entire
network. By localizing traffic
efficiently through individual LANs
connected by gateways, each part of the
internet can have sufficient bandwidth.

o Previously existing networks can usually
be combined into an internetwork by
connecting a single gateway machine to
the existing networks.

Figure 6-1 shows some of the ways an internetwork
can be configured using the available media
protocols and other connection protocols.

Setting Up A Network 6-3 6

Figure 6-1. Example Internetwork Connected By
Available Media

HOW ROUTING IS USED TO FORM AN INTERNETWORK

In order to use the internetworking features of
CTIX TCP/IP, you must set up routes. A route is a
record kept by the socket driver of which gateway
to use in order to get to a certain remote
network. These records are kept by the socket
driver in a table. You can add and delete routes
from the table using the route(1NM) command. Once
a route to a remote network is established, users
can use all the networking commands and refer to
machines on that network as if they were on the
local network.

For details on setting up routing, see Chapter 7,
"Network Configuration."

1-64 CTIX Internetworking Manual (Preliminary)

EXAMPLE OF CONFIGURING AN INTERNET USING A GATEWAY
MACHINE

Figure 6-2 shows how a MightyFrame can be used to
connect an X.25 network and an Ethernet network.

Ho^f- A

ork 1

v̂ o<r¥ B
/YV^Wy-

c

A ' e t w c k r 91
(F M e r r v c V)

Figure 6-2. Example of An Internetwork Using a
MightyFrame as a Gateway

For more information on system configuration, see
Chapter 10. "Internetworking Media."

Setting Up A Network 6-5 6

OVERVIEW OP SETTING UP A NEW NODE IN THE NETWORK

Some general aspects of the process of setting up
a network node are presented here to give an
overview of the detailed steps in the networking
software release notice appropriate for your
system.

Planning for network and internetwork topology and
for the distribution and of network resources
should be done with the entire, final
configuration of the (inter)network in mind. The
setup of the individual nodes should be
coordinated with that of the other nodes to the
extent this is practicable.

The process of setting up an individual network
node on a specific machine type is detailed in the
machine-appropriate release notice. The steps
include the following categories, generally in the
order given:

o configuring and installing the required
hardware

o installing the required networking
software from the distribution media to
the system disk

o configuring the system files and
initialization files for the higher level
protocols networking software to be
loaded

o configuring the system files and
initialization files for the media
protocols to be used in the system

o installing the loadable drivers
containing the networking protocols by
initializing the system (rebooting).
(This step can be followed by the
automatic downloading of the higher level
protocol and/or media drivers to
intelligent boards.)

Setting Up A Network 6-7 6

o initializing special media protocol such
as SLIP

o setting up (an possibly automating) the
network database files

o setting up routing paths
o starting up network services

These steps are repeated for each node in the
network.

The steps described above can are discussed
further in this chapter according to the following
organization:

o preliminary steps (Follow these for all
M/Frame machines.)

o M/Frame-specific procedures (Select the
appropriate one.)
- MightyFrame

MiniFrame
- MegaFrame

o final steps to complete your node setup
(Follow these for all machines.)

PRELIMINARY GUIDELINES IN SETTING UP A NODE

These guidelines are generalized to include all
machines. They cannot substitute for the
instructions in the machine-specific procedures of
the appropriate release notice for the networking
software. (See "Machine-Specific Procedures,"
below.

In addition, the release notices refer the
appropriate administrator's manual for the
particular system.

1-64 CTIX Internetworking Manual (Preliminary)

1. Check the current release notice to
determine compatibility requirements
between the internetworking protocol and
the operating system version you are
using.

2. Make sure that all hardware requirements
for the data link and physical media are
in place according to the directions in
the appropriate release notice. (For
more information on Ethernet hardware
requirements, see also Chapter 10,
"Internetworking Media.")

3. Make sure the current networking
software has been installed from the
distribution media to the system disk,
before you begin configuring the system.

MACHINE-SPECIFIC SETUP PROCEDURES

For the MightyFrame and MiniFrame, if you are
merely updating your networking software, simply
reboot the system after installing the software
from the distribution media. If this is the first
installation of TCP/IP on the machine, perform the
procedures for adding a machine to a network as
given in the appropriate release notice:

(Each machine has its own internetworking software
package which is accompanied by a release notice.)

Release Notice for MightyFrame CTIX
TCP/IP

MightyFrame

MiniFrame

MegaFrame

Release
Ethernet

Release
TCP/IP

Notice for
CTIX TCP/IP

MiniFrame

Notice for MegaFrame CTIX

Setting Up A Network 6-9 6

MightyFrame Setup Overview

In the MightyFrame, the network interface for a
given protocol is a loadable socket driver that
runs in the kernel. (For more information on
loadable device drivers and lddrv(lM), see the
MightyFrame Administrator's Reference Manual.

MightyFrame runs the Ethernet driver on an
intelligent controller board. The Ethernet driver
portion of the TCP/IP loadable driver is
downloaded onto the Ethernet controller.

MegaFrame Setup Overview

MegaFrame installation requires that both TCP/IP
and the Ethernet driver be downloaded onto an
intelligent board.

MegaFrame higher level networking protocols
require a CTOS server in addition to the loadable
protocol drivers.

AFTER SETTING UP YOUR MACHINE

After you have completed the appropriate machine-
specific procedures, continue with the following
administrative tasks to complete setting up the
node.

1. The name of your machine must be
included in the network databases
contained on all nodes that intend to
access your node. Your local node must
also have an entry for all hosts it
intends to access.

If you have a large network or one that
you expect to grow to a large network,
setup a program to automate the updating
of the network databases.

1-64 CTIX Internetworking Manual (Preliminary)

For details see Chapter 7, "Network
Configuration."

2. When you have created the hosts
database, run /etc/mkhosts to create the
/usr/hosts directory. Users on your
local machine need /usr/hosts in their
search path to access machines directly.
(For more information, see the entry for
rcmd(IN) in the appropriate CTIX
Operating System Manual.)

3. Set up appropriate user and machine
equivalences, using netman. (For
details, see Chapter 8, "Network
Management.")

4. Start up the servers as explained in
Chapter 8, "Network Management."

The machine is up and running in the network.

After your node is set up, monitoring status,
additional network management tasks and
techniques, and troubleshooting issues can be
addressed. See Table 6-1, below.

Setting Up A Network 6-11 6

WHAT'S NEXT

Table 6-1 cross-references each area of network
configuration and management to the chapter in
this section that discusses it.

Table 6-1
Chapter Directory for Administrator Tasks

Administrator Function Chapter

adding hosts with netman 7
configuration files 7
database files 7

automatic updating 8
equivalences 8
Ethernet 10
initialization file 6, 8
media, optional protocols 10
netman

configuring 7
managing 8
status monitoring 9

network names and addresses 7
routing 6, 7
services 8
SLIP 10
status monitoring 9
system prompt 8
updating network software 8
uucp 10

1-64 CTIX Internetworking Manual (Preliminary)

7 NETWORK CONFIGURATION

Section 6, "Setting up a Network" contains the
basic procedures for adding a node to the network.
This chapter and Chapter 8, "Network Management"
give some background and more detailed
descriptions for some of the steps necessary to
configure a network node. This chapter contains

o a discussion of network configuration
files

o a discussion of network names and
addresses as background for understanding
the process of establishing the network
database files

o recommendations and procedures for
establishing and updating network
database files

o instructions for using netman to add or
change a host entry in the /etc /hosts
file

o a discussion and instructions for setting
up routing

Network Configuration 7-1}t

CONFIGURATION FILES

Some of the files documented in Chapter 4 of the
CTIX Operating System Manual are configuration
files used in networking. These files are listed
with brief descriptions in Table 7-1. All the
files are designated (4N).

The administrator can modify these files to
configure the node to local requirements. (The
files protocols and services should not usually be
modified.) These files can be manipulated
directly using a text editor or with netman(1NM).
All the following files are in the directory
/etc.)

Table Table 7-1.
CTIX Networking Configuration Files.

File Description

drvload(4N) list of loadable drivers to be
loaded at boot time

hosts(4N) list of nodes on the network
networks(4N) names and numbers for the

network in the internet
protocols(4N) list of internet protocols
services(4N) list of internet services

In addition to the configuration files in Table 7-
1, the file .rhosts is located in the home
directories of the network users. It contains the
remote equivalent users. See Chapter 2, "Using
Network Commands."

1-64 CTIX Internetworking Manual (Preliminary)

FORMAT FOR THE /ETC/HOSTS FILE

For each machine in the network with which your
node wishes to communicate, there must be an entry
in the /etc/hosts file similar to the following
example line:

3.0.0.16 mifa

where
3.0.0.16 is the internet address of the

machine
mifa is the machine's name in this

example, as defined by the setuname
in /etc/rc

For further description of the /etc/hosts file
format, see hosts(4N) in the appropriate CTIX
Operating System Manual.

NAMES AMD ADDRESSES

UUCP AND NETWORK NODE NAMES

Node names are used primarily for configuring uucp
connections. (See Chapter 10, "Internetworking
Media.") An internetwork node name is a
convenience for the user to refer to a node's
unique network number. The Internet Protocol,
(IP) does not need the name of a node to route
data. It does this using the node address. The
network node name does not have to be the same as
the uucp node name. Nevertheless, it is
convenient to have the node's primary name the
same as its uucp node name.

Network Configuration 7-3}t

The name of the node is the same as the name of
the machine, uname(1) . Node names need not be
unique throughout an internet. Each machine can
have more than one name, the primary name and a
number of aliases. (An alias is an alternate host
name, which can be created as a convenience in
addressing a host on a local network whose unique
primary name is long and/or complicated.)

The node name can be a maximum of eight letters.
The node name is mapped to the unique network/node
address so that the user can specify either a node
name or a node address to designate a unique node.

Networks can also have names for the user's
convenience.

NETWORK AND NODE ADDRESSES

Even servers translate host names to addresses
before doing any of their functions, using the
library routine, gethostbyname ? therefore the
kernel never needs to know the name of its own
machine or those of other hosts. Host names are
strictly for network user convenience.

The system translates names into network
addresses. A network address is a 32-bit value
that identifies the network to which a host is
attached and the logical location of the host on
the net. Network addresses are entered in
/etc/hosts, the official copy of which can be kept
on a network master. This file can be distributed
to each host in the local network or even to an
entire internetwork. (See "Setting Up Network
Database Files" below.)

The Internet Protocol uses addresses to route
paths among hosts and networks. (See "Routing"
below.)

1-64 CTIX Internetworking Manual (Preliminary)

If your network is to be an "in-house,"
freestanding network with no link to the DDN, or
to an external internet, there are no special
requirements for node addresses other than those
conventions already existing for CTIX generally.
A suggested address format is shown in Appendix G,
"Internet Addresses."

An example of an internet addressing system is

3.12

where 3 is the network number and 12 is the
machine number.

A recommendation would be to use low-numbered
Class A type addresses as shown in Appendix G.

If you have several LANs within your organization,
it is recommended that unique network addresses be
assigned even if the LANs are not currently
connected, in anticipation that they may be
connected eventually.

For a node that has multiple addresses for the
network interfaces attached to it, it is
recommended that its name be the same for all the
attached of network interfaces.

Although, it is permitted for a local machine to
have different names for remote machines from
those used by the remote machines themselves, it
is easier for the end user and the administrator
if names are unique for machines commonly
accessed. Otherwise a common hosts file cannot be
distributed among affiliated hosts or networks.

Network Configuration 7-5}t

In fact, if there is any difference at all in the
node naming conventions for a local node, from the
host file of the master node, a separate host file
for the local node is required. However, as long
as the local hosts file corresponds with the host
name entries in the local route table entries, it
does not matter if a remote host is known by a
different name by its local users or by
intermediate nodes in the routing path since the
names are translated into unique addresses before
sending from the local node.

DARPA Internet Addresses

If you are planning to attach to the Defense Data
Network (DDN) or any other part of the DoD
Internet, you should obtain a set of addresses
before you add too many nodes. (See Appendix G,
"Internet Addresses." For more information on the
DDN see Chapter 10, "Internetworking Media.")

Hosts with Multiple Network Addresses

A host must have separate addresses for each
network it is on, otherwise, it could not be
identified from the point of view of each separate
network. In the case of a host that is on
multiple networks, the host serves as a gateway to
each of the networks and to itself. It has a
primary address which it uses to address itself.

Mapping of Network Addresses

TCP/IP internetwork addresses require mapping to
underlying networks such as Ethernet and X.25, and
vice versa. On Ethernet mapping is generally
performed automatically by Address Resolution
Protocol (ARP). In X.25, mapping must be
explicit.

Network Configuration 7-7}t

ETHERNET ADDRESSES

There are three types of addresses associated with
Ethernet:

o the bus address of the media driver
board, such as the Intelligent Ethernet
controller. This is part of the hardware
configuration described in the Release
Notice for MightyFrame CTIX TCP/IP.

o the unique Ethernet LAN address. In the
MightyFrame and MegaFrame, the Ethernet
board address is fixed in the board at
time of manufacture. Consequently the
address is not contained in the volume
home block as it is in the MiniFrame.

o the internet address, which is the
combination of the network and host
address. This is the address of the
Ethernet network. It is used by other
hosts on the network to access a
particular host on a particular Ethernet
network.

Ethernet Address Resolution Protocol (ARP)

The Ethernet interface drivers use ARP(7N) to
dynamically map between the network address and
the Ethernet address on the local Ethernet
network. The protocol is not directly accessible
to users.

(If your network does not support ARP, consult
your technical support personnel.)

Network Configuration 7-7k

SETTING UP NETWORK DATABASE FILES

Network users use convenient host names to access
a remote host and perform other network functions.
The user need not know the actual numeric network
address. The system maps these names to the
numeric addresses which are used by the routing
protocols. User programs such as ftp and telnet,
also use names as a user convenience but the
program itself must know the actual numeric
addresses, either by being informed of it by the
user or by reading /etc/hosts. In order to
communicate, all the network hosts must know each
others network and host names and addresses.
Providing and distributing this information in
certain system acessible files is essentially what
is meant by establishing the network database
files.

UPDATING THE NETWORK DATABASE FILES

The size of a network is a governing factor in
determining what strategy the administrator should
use in maintaining the network database files. If
a network is small, made up of two or three
machines, and is destined to remain this size for
the indefinite future, you can use netman to set
up the appropriate host databases on each machine
separately. (See below, "Using Netman to
Configure the Hosts Database.") If the network is
large and dynamic or is expected to grow quickly,
it is recommended that you maintain a central
master copy of the hosts known to all nodes on the
network and update each machine periodically from
the master file. (See "Large Networks" below.)

7-8 CTIX Internetworking Manual (Preliminary)

LARGE NETWORKS

If the network is large or growing and changing
rapidly, there should be a chief administrator
responsible for maintaining a central host
database. The machine on which this database is
kept is referred to as the network master. (See
"Network Master" below.) When a new machine is
added, the local administrator retrieves the host
database files from the network master. This
procedure is explained below in "Retrieving host
files from the Master Machine."

In a very large dynamic network, additions and
changes are most likely taking place constantly.
The administrators may want to update the host
database files for their own network or for all
the nodes in the internetwork periodically or even
on a daily basis. In this case it is highly
recommended that this process be automated. This
step is discussed below in "Automatic Updating of
Network Database Files."

Network Master

A network master is a machine in the network whose
files are copied by other nodes to update their
network database files. It usually has the most
complete host and network files. Network master
is logical concept used for the convenience of the
administrators. It is not necessary to have a
unique master node for the internetworking to
work. In a large internet there may be several
"regional" network masters depending on the system
configuration and the communications patterns of
the individual networks. Whether the master files
are distributed locally or throughout an entire
internetwork is an administrative decision.

Network Configuration 7-9

PROCEDURAL SYNOPSIS

Set up the network database files as follows:

1. On the network master, use netman to add
the new machine's name (and aliases) and
address to the host file, /etc/liosts.
(Do this even if the only machine in the
network as yet is your own machine.)

See "Using Netman to Configure the Hosts
Database," below.

If you are adding a new network, add the
new network's information to the file
/etc/networks on the network master.

2. On the new machine, use netman to add
the new machine's name (and aliases) and
address to the host file, /etc/hosts so
that the host database of the local
machine reflects that of the network
master.

As an alternative for larger systems,
you can retrieve the host and networks
files from the network master (after you
have added the new machine) by using
ftp. (See "Retrieving Host Files From
the Network Master," below.)

3. If you have or anticipate an large
dynamic system, you can automate the
process. (See "Automatic Updating of
the Network Database.")

Network Configuration 7-

USING NETMAN TO CONFIGURE THE HOSTS DATABASE

In a small network, you can use netman to add new
machine names and addresses to the hosts file
/etc/hosts. (You can also use the visual editor,
vMl), to edit the host file.)

Select the Administration function on the main
menu. When the Administration menu is displayed,
select one of the following as appropriate:

o Add a new host
o Change a host entry

Adding a New Machine to the Hosts Database

When you select "Add a new host," on the
Administration menu, the form appears as shown in
Figure 7-1.

— I Add Host 1

Add a new machine to the network
Host Name I |
Network Address
Aliases
Comment
Use cursor keys to edit

Figure 7-1. Add Host Form.

1. Enter the name of the host you wish to
add to the hosts database.

2. Enter the network address.

Network Configuration 7-11}t

3. Enter the aliases if applicable.

4. Enter any comment.

5. Press Next to execute the form. (Press
Linefeed on some terminals.) The data
is entered in the /etc/hosts file.

Changing or Deleting a Host Entry

When you select "Change a host entry, " on the
Administration menu, the form appears as shown in
Figure 7-2.

— I Change Host Entry I

Enter the machine name to change

Host Name I I

Use cursor keys to edit

Figure 7-2. Change/Delete Host Form.

To delete the host, press Next. A prompt appears:
"Do you wish to delete the host?" Press Next to
execute the deletion. Press Cancel to leave the
host entry unchanged.

To change a host entry, enter the name of the host
you wish to change or delete. Press Next to
execute the form. The data is entered in the
/etc/hosts file.

7-12 CTIX Internetworking Manual (Preliminary)

RETRIEVING HOST FILES FROM THE NETWORK MASTER

If you have master host database, usually you will
want to take advantage of it by retrieving the
master database for each new machine you add to
the network.

1. Before copying the network database
files, have your chief administrator add
your new machine to the master file
/etc/hosts. This way when a new node is
added to the network, only one file
needs to be updated for the whole
network to find out about the new node.

2. After you have installed your networking
software and configured the local node,
you can copy the hosts files from the
network master so that your new machine
has the information on the other
machines in the network.

3. Only after starting the Ethernet board
by rebooting, use ftp to retrieve the
host and networks files from the master
machine (You must first reboot the
system to enable the network command,
ftp.)

In this usage of ftp, use the internet
address of the destination machine
rather than its name.

Follow the example below.

Network Configuration 7-13}t

Example

(The symbol "#" is the system prompt. The
commands you enter are in bold. Verbose mode is
off.)

ftp
ftp> open 3.0.0.16
Connected to 3.0.0.16
Name (3.0.0.16:root): root
Password (3.0.0.16:root): (enter root password for

machine 3.0.0.16)
ftp> cd etc
ftp> led /etc
ftp> get hosts
ftp> get networks
ftp> bye #

AUTOMATIC UPDATING OF THE NETWORK DATABASE

It is essential to update the files containing
new, changed, or deleted

o users
o host machines
o uucp node names

The administrator can write a shell script that
automatically updates the host file and the
network file. This shell script must be installed
on every system when it is configured and put in
crontab(l). The database files are pulled from
the master by the slave as opposed to being pushed
by the master.

You can use the cron(lM) command to pick up a new
edition of the master file each night.

Appendix G, "Sample /etc/gethosts File" is an
example of such a shell script.

7-14 CTIX Internetworking Manual (Preliminary)

ROUTING

The network protocol translates an address into a
route, which is the sequence of steps a packet
must take to reach a specified address. There are
two types of routes, host-specific routes and
network-specific routes. A host route specifies a
gateway to use from the local node to a particular
host whether it be in local network or whether it
is actually in another network. A network route
specifies an intermediate node through which all
or a portion of the traffic in the local network
can be routed to on the way to destinations in
another network. Each network route specifies the
route to one network.

The network protocol distinguishes between these
on the basis of the host routes being exceptions.
When translating an address, the protocol looks in
the route table first for a host route entry. If
it finds one it uses it even if there is a
corresponding network route.

SETTING UP ROUTING

Routing is controlled by the route(1NM) command
which the administrator uses to configure the
network routing tables resident at each node. The
route program takes two commands: add a route, and
delete a route. The command takes the form:

route add DEST Gateway N

DEST is the name or network number of
the network to which you are
connecting.

Gateway is the name or internet address of
the gateway machine.

Network Configuration 7-15

N is the number of gateways between
this network and the one you are
connecting to. (There must be at
least one.)

You must use the metric option of the route
command when creating routes through gateways.

For two nodes to communicate, both must have a
route to the other.

To set up routes at boot time for permanent use,
add the route command lines to the /etc/rc file
after the enpstart command and all the slattach
commands (if any).

For more information on routing, see Intro(7) in
the appropriate CTIX Operating System Manual.

For information on uucp routing, see Chapter 10,
"Internetworking Media.")

16-10 CTIX Internetworking Manual (Preliminary)

8 NETWORK MANAGEMENT

This chapter explains the following administrative
tasks:

o using netman to manage the node
o setting up user and machine equivalences
o starting up and deleting network services

This chapter also explains several techniques the
administrator can use to facilitate network
management duties:

o setting up system initialization
o automatically updating network database

files
o unloading the networking subsystem
o setting the system prompt

This chapter also descibes some of the network
services, such as and Rexecd(1NM) and some network
commands, such as ifconfig(lNM).

Network Management 8-1

USING NETMAN ADMINISTRATION FUNCTIONS

There are two versions of netman menus based on
levels of permissions within netman, the network
user and the administrator. The administrator
version of netman can be accessed only with the
Super User password supplied to network
administrators. The various netman functions
reserved for the administrator are explained in
the appropriate chapter.

(To familiarize yourself with the network user
functions of netman, see Chapter 5, "Using
Netman.")

To perform administrator functions, you must know
the password for the root account on your system
and you must log in to the system as root before
you invoke netman.

super-user can

o equate machines
o start and stop network services
o modify a machine's host database
o invoke CTIX status commands through a

menu (See Chapter 9, "Network Status
Monitoring.")

To call up netman's administration menu, select
"Administration" on the Main menu. The
Administration menu appears as shown in Figure 8-
1.

8-2 CTIX Internetworking Manual (Preliminary)

— I Network Administration I

Administrator's Menu

* Add an equivalent user
Delete an equivalent user
Add an equivalent machine
Delete and equivalent machine
Add a new network service
Delete a current network service
Add a new host
Change a host entry

Choose the network function you wish to perform

Figure 8-1. Administration Menu.

You use these menu functions only on your local
machine. They are not designed to perform
administrative functions on remote machines even
if you are the administrator of the remote
machine. You can however establish a virtual
terminal on the remote machine and invoke netman.

USING NETMAN ADMINISTRATION FORMS

When you select a function on the Administration
Menu, the corresponding form appears. After
making an entry or editing the form as
appropriate, press Next to execute the form.

If you need to edit your entries, use the cursor
keys to position over the character you wish to
change.

DIRECTORY OF ADMINISTRATION MENU SELECTIONS

In Table 8-1, the selections on the administrator
menu are cross-referenced to the chapter in which
they are covered.

Network Management 8-3

Table 8-1

Chapter Directory for Netman Administrator Menu

Administrator Function Chapter

Add an equivalent user 5
Delete an equivalent user
Add an equivalent machine 8

5

Delete and equivalent machine
Add a new network service
Delete a current network service
Add a new host
Change/delete a host entry

8

8
8

7
7

MACHINE AND USER EQUIVALENCE

The first four selections on the Administration
menu are for adding and deleting user and machine
equivalence •

o Add an equivalent user
o Delete an equivalent user
o Add an equivalent machine
o Delete and equivalent machine

Equivalence can be established on a

o per user basis by making an entry in the
file, .rhosts, on the local machine
(This is called user equivalence.) You
can make this entry by using an editor or
by using netman.

o per machine basis by entering the name of the
remote machine in the file /etc/hosts.equiv on
the local machine

8-4 CTIX Internetworking Manual (Preliminary)

CAUTION

User and machine equivalence can be a
potential weak spot in network security. If
there are a lot of equivalences in a network,
it is difficult to keep track of who is
accessing your machine.

USER EQUIVALENCE

User equivalence is established by making an entry
in the in the .rhosts file on the user's own
machine.

(For more information and instructions on setting
user equivalence, see Chapter 5, "Using Netman.")

Root. Equivalence

When you are logged in as root, the Delete
Equivalent User form displays the user, Root.

User Root cannot be equated by making equivalent
machines. However, you can equate Roots on
different machines thrugh explicit user
equivalence. Also a network user can be made
equivalent to Root.

Setting Up User Equivalences

You can use netman to set up user equivalences.
On the Main Function Menu, select Administration.
The Administration menu has two selections

o Add an equivalent user
o Delete and equivalent user

Network Management 8-5

For instructions on setting up user equivalences.
See Chapter 5, "Using Netman."

MACHINE EQUIVALENCE

Machine equivalence is an arrangement on the local
machine such that whatever users are on a
designated remote machine, they are to be accepted
equally on the local machine, provided they have
with the same name on the local machine. In order
to be reciprocal, the equivalence must be set up
explicitly on both the machines that want
equivalences with each other. Machine
equivalences can be changed at any time.

For very open systems where all machines can be
equivalent, entries in a gethosts type command
file can automate the equating of new machines.
(See "Automatic Updating of the Network Database"
in Chapter 7, "Network Configuration.")

Machine equivalences can be changed at any time.

SETTING UP MACHINE EQUIVALENCE
You can set up a machine equivalence invoking the
Administrator menu in netman and selecting the
appropriate function as described below.

Add Equivalent Machine Form

When you select "Add an equivalent machine," the
form appears as shown in Figure 8-2.

6-10 CTIX Internetworking Manual (Preliminary)

I — | Add Equivalent Machine I I

I Give a machine equivalence to this one I

I Machine Name I I I

I Use cursor keys to edit I

Figure 8-2. Add Equivalent Machine Form.

1. Enter the name of the remote machine you wish
to make equivalent to your local machine.

2. Press Next to execute the form.

Delete Equivalent Machine
When you select "Delete an equivalent machine,"
the form appears as shown in Figure 8-3.

I — I Delete Equivalent Machine 1 I
I Retract equivalence from a remote machine I
I Machine Name I I I

I Touch "select" for choices I

Figure 8-3. Delete Equivalent Machine Form.

Network Management 8-7

1. The form comes up already displaying the
name of one of the remote machines. If
this is not the name of the machine you
wish to delete, enter the name of the
remote machine you wish to delete as an
equivalent to your local machine.

Or press Bound to get the Currently
Equivalent Machines display as shown in
the example in Figure 8-4.

— I Currently Equivalent Machines I
Machine

* tom-src
CommDV
mi fa
mitiSomm
mitisoft

Touch "select" for choices

Figure 8-4. Currently Equivalent Machines Display

Using the arrow keys, move the asterisk
to the machine name from which you wish
to retract the privileges and press
Next. The name is inserted into the
Delete Equivalent Machine form.

2. Press Next to execute the deletion.

8-10 CTIX Internetworking Manual (Preliminary)

MANAGING NETWORK SERVICES

Network services are those programs which the
local node is willing to provide for use by other
nodes. These services can be added and deleted by
the local administrator. An example is the remote
login system service rlogind. Unless the local
administrator adds this service, remote nodes
cannot use rlogin to access the local node. All
the network commands have a corresponding network
service that supports the command. These services
are called "demons," as is denoted by the "d"
appended to the command name to form the name of
the service.

Table .8-2 shows the services associated with
network commands.

Table 8-2
CTIX Networking Services.

Service Description

ftpd(lNM) DARPA Internet File Transfer
Protocol Server

olduucpd(1NM) Network uucp server
rexecd(1NM) remote execution server
rlogind(1NM) remote login server
rshd(1NM) remote shell server
rwhod(1NM) node status server
telnetd(1NM) telnet protocol server
tftpd(1NM) tftp server
uucpd(1NM) Network uucp server

Network Management 8-9

USING NETMAN TO START NETWORK SERVICES

A pair of Administration menu selections (see
Figure 8-1) are for provided managing network
services:

o Add a new network service
o Delete a current network service

The most convenient way of starting and stopping
network services is to is to use netman. Netman
start servers immediately when you use the Add a
Network Service form.

Netman also modifies the initialization file
/etc/rc by adding a shell script. Netman also
sees to it that the servers keep running if the
system fails or is reset and then reinitialized.

(It is not recommended to start servers by
directly editing the file /etc/rc. Doing so would
also require rebooting to start the server.)

For a service to be started, it must be entered in
the configuration file, /etc/services. This file
does not cause the service to be started but
assigns a port number to the added service. The
service reads this file for information. Unless
you or a programmer needs to add a new service,
the file supplied with the operating system will
suffice.

NOTE FOR MEGAFRAME ONLY

On the MegaFrame, do not start up demons
before the intelligent boards are started.
Otherwise the demons will not be aware of the
existence of the intelligent boards.

8-10 CTIX Internetworking Manual (Preliminary)

Adding and Deleting a Network Service
When you select "Add a Network Service," the form
appears as shown in Figure 8-5.

- - I __Ad d a Network Service I

Active Network Services

* Remote Login (rlogind)
Remote Command (rshd)
Remote Execute (rexecd)
Reunite User Machine Status (rwhod)
Telnet Protocol (telnetd)
File Transfer Protocol (ftpd)
Trivia] File Transfer Protocol (tftpd)
UUCP-Ethernet (uucpd)

Move to the service you wish to cancel and touch 'next'

Figure 8-5. Add Network Service Form.

The form lists all the services you can add.
Netman looks in the file /etc/services to
determine which services have been loaded on your
system.
1. Select the name of the network you wish to add

by pressing Return or the arrow keys until the
asterisk (*) is positioned in front of the
service you wish to add.

2. Press Next to execute the form. The server is
started immediatedly.

If you invoke the Add Network Service form when
all the services are already active, an error
message is displayed.

Deleting a Network Service
When you select "Delete a Network Service," the
form appears similar to the example shown in
Figure 8-6.

Network Management 8-11

— I Remove a Network Service I

Active Network Services

* Remote Login (rlogind)
Remote Command (rshd)
Remote Execute (rexecd)
Remote User Machine Status (rwhod)
Telnet Protocol (telnetd)
File Transfer Protocol (ftpd)
Trivial File Transfer Protocol (tftpd)
UUCP-Ethernet (uucpd)

Move to the service you wish to cancel and touch 'next1

Figure 8-6. Remove Network Service Form.

1. Select the name of the network you wish to add
by pressing Return or the arrow keys until the
asterisk (*) is positioned in front of the
service you wish to delete.

2. Press Next to execute the form.

DESCRIPTIONS OF NETWORK SERVERS

UUCPD

(See Chapter 10, "Internetworking Media.")

REXCD

Rexecd is the server for the rexec (3N) routine.
(See Chapter 13, "Using the Programmatic
Interface.") The server provides remote execution
facilities. Authentication is based on user names
and encrypted passwords.

12-10 CTIX Internetworking Manual (Preliminary)

Rexecd listens for service requests indicated in
the "exec" service specification; see services
(4). When a service request is received, the
rexecd initiates the protocol described in the
CTIX Operating System Manual.

USIHG OTHER NETWORK MANAGEMENT COMMANDS

IFCONFIG(INM)

Ifconfig is used at boot time to assign a network
address to each network interface on a machine.
All the network initialization commands (slattach,
enpstart, and setaddr) do an implicit ifconfig to
set the address and mark the interface "up." (See
the appropriate CTIX Operating System Manual Note
that trailers are currently ignored.)

You can use it any time later to redefine a
network interface address, check the flags or
modify the up/down state.

Network Management 8-13

MANAGEMENT TECHNIQUES

USING THE INITIALIZATION FILES TO SET UP A NODE

When the system reboots, the initialization file
/etc/initab calls the file /etc/drvload to load
the higher level communications protocol such as
TCP/IP. It then calls /etc/rc (/etc/allrc on the
MegaFrame) which can be used to set up many of the
network configuration parameters.

Although almost all the steps required to set up a
node can be accomplished by entering commands
manually from the console, it is recommended to
put as many of the basic setup commands as
possible into /etc/rc. When you reboot the
system, the commands in this file are executed.
This method has the added benefit of providing for
automatic reinitialization after a system failure
or reset. (See Appendix C, "Sample /etc/rc
File.")

Commands in /etc/rc can

o identify the uname and address of the
machine

o download the media drivers onto
intelligent boards

o start network servers

For example the following commands can be put in
/etc/rc:
o route
o slattach
o sldetach
o ifconfig
You can also set the uucp node name in this file.

8-14 CTIX Internetworking Manual (Preliminary)

UNLOADING THE NETWORKING SUBSYSTEM

You can unload the TCP/IP socket networking
subsystem driver only when it is not in use. The
subsystem guarantees that all the hardware drivers
are reset and all memory is deallocated.

SETTING THE SYSTEM PROMPT

In a large network, it is recommended that each
administrator set the system prompt to the name of
the node. When a user is using a virtual
terminal, often the user moves the terminal from
node to node. If the node name is in the prompt,
the problem of remembering at any given time which
node the terminal is on, is eliminated.

To set the system prompt for Bourne shell users,
make the following entry in /etc/profile:

PS1 = 'uname -n"$

The file /etc/profile is a global file for the
Bourne shell. Therefore, this entry sets the
prompt for all users of the shell.

For those using C-shell, csh(l), each user must
set their prompt in their .cslurc file. Example
entry:

if (1??HOST) then setenv HOST 'uname -n'
end if
if (J $?HOST) then set prompt ="$HOST%"
end if

Setenv is the command to set environment.

Network Management 8-15

9 NETWORK STATUS MONITORING

This chapter provides information on
o using netman for status displays
o CTIX network status commands

OVERVIEW

Netman is introduced in Chapter 5, "Using Netman."
Netman makes available in a menu-driven tabular
display some of the networking status commands,
such as netstat(IN), ruptime(lN), and rwho(lN).
(See Table 9-1.)

Note that some status programs, such as Program
Status, are run on remote machines and require
equivalence for the administrator to run them.

USING NETMAN TO DISPLAY STATUS

Netman(1NM) has three status displays accessible
from the Main menu shown in Figure 9-1.

— I Network Manager I

Main Function Menu

* Machine Status
Network Users
Administration
Network Interface Statistics

Choose the network function you wish to perform

Figure 9-1. Netman Main Menu

Network Status Monitoring 9-1

These status display are:

o Machine Status
o Network Users

o Network Interface Statistics

The first two, Machine Status and Network Users,
are described in Chapter 5, "Using Netman." These
can be displayed by ordinary users as well as by
the administrator; however the Network Interface
Statistics is primarily of interest to the
administrator.

This chapter describes additional netman status
displays available to the administrator. They are
accessed through the Main menu selection, Network
Interface Statistics. (The network user can also
access this selection but the displays are
designed primarily for the administrator.)

NETWORK INTERFACE STATISTICS MENU

When you select Network Interface Statistics on
the Main menu, the Network Statistics menu is
displayed as shown in Figure 9-2.

— I Network Interface Statistics |

* Active Connections
Network Interfaces
Memory Usage
Routing Tables
Protocol Statistics

Choose the network function you w l..':h to view

Figure 9-2. Network Interface Statistics Menu

9-2 CTIX Internetworking Manual (Preliminary)

Each of these menu selections calls up a status
display. Some of these displays are also
available through the netstat command. (See
"Status Commands," below.)

The displays are described as follows.

ACTIVE CONNECTIONS DISPLAY

When you select Active Connections on the Network
Interface Statistics menu, the Active Connections
display appears as in the example shown in Figure
9-3.

— I Currently Active Statistics 1 "

Active Connections
Proto Recv-Q Send-Q Local Address Foreign Address State
t C p 0 0 mitimoose.login tom-src.1023 ESTABLISHED
tcp 0 1 mitimose.1021 mifa.login LAST_ACK

Figure 9-3. Active Connections Display

The Active Connections display is the default
display of the netstat command. It displays a
line of information for each active connection on
the local machine under the headings described
below.

Network Status Monitoring 9-3

Descriptions of the Display Headings

Proto The protocol used in the connection

Recv-Q Receive queue. The number of
received characters (bytes) 'of data
waiting to be processed.

Send-Q Send queue. The number of
characters (bytes) of data waiting
to be transmitted.

Local Address
The port number of the local
connection, displayed symbolically.
The port numbers are taken from the
/etc/services file.

Foreign Address
The port number of the remote
connection, displayed symbolically.
The port numbers are taken from the
/etc/services file.

State The current state of the
connection. Each protocol has its
own set of states. For the
protocol-dependent states that can
be displayed, see the appropriate
protocol specification.

9-8 CTIX Internetworking Manual (Preliminary)

NETWORK INTERFACE DISPLAY

When you select Network Interfaces on the Network
Interface Statistics menu, the Network Interface
Activity display appears as in the example shown
in Figure 9-4.

— I Network Interface Activity I

Name Mt.u Network Address Irkts lerrs Opkts Oerrs Colli®
.1)0 1500 Engineerin mitimoose 415147 3 250823 0 7
lo0 1536 Loopback loopback 5157 0 5157 0 0

Figure 9-4. Network Interface Activity Display

This display describes activities on all the local
machine's interfaces to the net, in the form of a
table of cumulative statistics. This display is
available through netstat with the -i option.

Each interface is described by a line with the
following headings.

Network Status Monitoring 9-5

Descriptions of the Display Headings

Name The name of the network interface.
For example, en0 is the name of the
first ethernet interface board.

Mtu Maximum transmission unit (in
bytes). This is the largest size
permitted for any single packet
sent through this interface.

Network The name of the network address of
the interface as given in
/etc/networks.

Address The name of the machine address of
the interface as given in
/etc/networks.

Ipkts Input packets. The number of
packets received on the interface

Ierrs Input errors. The number of errors
detected in packets of data
received on this interface.

Opkts Output packets. The number of
packets transmitted on the
interface

Oerrs Output errors. The number of
errors detected and corrected in
packets of data transmitted on this
interface.

Coll is Collisions that have occurred on
the network

9-8 CTIX Internetworking Manual (Preliminary)

MEMORY USAGE DISPLAY

When you select Memory Usage on the Network
Interface Statistics menu, the Memory Usage
display appears as in the example shown in Figure
9-5.

— | Memory Usage I

78/320 mbufs in use:
34 mbufs allocated to data
5 mbufs allocated to packet headers
13 mbufs allocated to socket structures
24 mbufs allocated to protocol control blocks
2 mbufs allocated to routing table entries

0/0 mapped pages in use
40 Kbytes allocated to network (24% in use)
0 requests for memory denied

Touch the 'next' key to continue

Figure 9-5. Memory Usage Display

The Memory Usage display shows the amount of host
memory currently being used for data storage by
the internetworking software. The CTIX memory is
divided into structures known as mbufs. Each mbuf
uses 128 bytes of memory.

Network Status Monitoring 9-7

Descriptions of the Display Headings

mbufs in use: the total number of mbufs in use
for the following purposes
mbufs allocated to data
mbufs allocated to packet headers
mbufs allocated to socket
structures
mbufs allocated to protocol control
blocks
mbufs allocated to routing table
entries

mapped pages in use

Kbytes allocated to network (n% in use)
how many mbufs are allocated to the
network and how many mbufs are
currently in use

requests for memory denied
how many requests for mbufs could
not be fulfilled due to the lack of
an available mbuf. If the network
node seems to be having problems
getting or losing connections, this
statistic can be an important
indicator.

ROUTING TABLES

When you select Routing Tables on the Network
Interface Statistics menu, the Routing Tables
display appears as in the example shown in Figure
9-6.

9-8 CTIX Internetworking Manual (Preliminary)

— I Routing Table I
Routing Tables
Destination
Loopback
Engineering-Net

Gateway
loopback
mitimoose

Flags U U
Refcnt
0
5

Use
0
250910

Interface
lo0
en0

Touch the 'next' key to continue

Figure 9-6. Routing Tables Display

The Routing Table display provides information
about the usage of each route you have configured.
A route consists of a destination host or network
and a network interface used to exchange packets.
Direct routes are created for each interface
attached to the local host. The information
displayed for each route is as follows.

This display is also available through netstat.

Descriptions of the Display Headings

Destination The network or machine to which
this route allows you to connect

Gateway The name of the gateway you
configured for this route. If you
are directly connected, this is a
local address. Otherwise it is the
name of the machine through which
packets must be routed.

Network Status Monitoring 9-3

Flags The state of the route. Valid
states are:
U up
G the route is to a gateway
N a route to a network
H a route to a host

Refcnt The current number of active
connections using the route.
Connection-oriented protocols
normally hold on to a single route
for the duration of the connection,
while connectionless protocols
obtain a route and then discard it
as needed.

Use The current number of packets sent
using this route

Interface The name of the physical network
interface used to begin the route.

PROTOCOL STATISTICS DISPLAY

The Protocol Statistics display provides one or
more display frames of protocol-specific errors.
(This information is not available through
netstat. The errors in the display are grouped
under headings for each higher level protocol in
your system. The headings are protocol-specific.
Error types displayed in the example shown in
Figures 9-7 through 9-9 are grouped under the
following protocols:

164-10 CTIX Internetworking Manual (Preliminary)

o Internet Protocol (ip)

o Internet Control Message Protocol (icmp)

o Transmission Control Protocol (tcp)

o User Datagram Protocol (udp)

When you select Protocol Statistics on the Network
Interface Statistics menu, the first page of the
Protocol Statistics display appears as in the
example shown in Figure 9-7.

— I Protocol Statistics I

ip:
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length

icmp:
0 calls to icmp error

0 errors not generated because old message too short

Touch the 'next' key to continue -more-

Figure 9-7. Protocol Statistics Display, Page 1

If the prompt "-more-" is displayed in the lower
righty corner, press Next to display the next
page. Figure 9-8 and 9-8 are the second and third
pages of the example display. Figures 9-8 and 9-9
are continuing pages.

Network Status Monitoring 9-11

— I Protocol Statistics I-

tcp:

0 errors not generated berause old message was icrap
0 message with bad code fields
0 message < minimum length
0 bad checksums
0 message with bad length
0 message responses generated

0 bad header checksums
0 bad header offset fields

Touch the 'next' key to continue

Figure 9-8. Protocol Statistics Display, Page 2

— I Protocol Statistics I
-more-

0 incomplete headers
udp:

0 bad header checksums
0 incomplete headers
0 bad data length fields

Touch the 'next' key to continue

Figure 9-9. Protocol Statistics Display, Page 3

166-10 CTIX Internetworking Manual (Preliminary)

Descriptions of the Display Headings

ip: The Internet Protocol

bad header checksums

with size smaller than minimum
This heading means there is not
enough data for a header

with data size < data length
The received packet had less data
than its header claimed.

with header length < data size

with data length < header length

icmp:

calls to icmp_error

errors not generated because because old message
too short

STATUS COMMANDS

The CTIX networking commands specialized to
monitor network status are shown with brief
descriptions and their netman equivalents are
shown in Table 9-1.

Network Status Monitoring 9-13

Table 9-1
CTIX Networking Status Counands

Command

netstat(IN)

rupti me (IN")

rwho (IN)

Netman Equivalent Description

Network Interface
Statistics

Machine Status

Network Users

show network status
(statistics)

display status of nodes
on local networks

who is logged in on
local network

These commands are run automatically when you
select the corresponding selection from the netman
menu. Netman displays the statistical data in
tables. Running the operating system command
directly generally gives you more options. See
the machine-appropriate operating system manual
for a complete description of a command and its
options.

See the protocol release notice for the
appropriate M/Frame machine for implementation
status of these commands.

Network Status Monitoring 9-3

10 INTERNETWORKING MEDIA

This chapter gives media-specific information on
the media protocol drivers and other connection
services that are available for use with CTIX
Internetworking.

Media currently available are are shown in Table
10-1.

Table 10-1
CTIX Internetworking Media Availability

M i ghtyFrame MiniFrame MegaFrame

Ethernet X X X
SLIP X X
X.25 X
DDN Gateway X
uucp X X X

Some of the connection services shown in Table 10-
1 (DDN Gateway and uucp) are not strictly media
protocols, but they are also described in this
chapter because they can be used to connect nodes
and networks in the CTIX Internetworking scheme.

Internetworking Media 10-1

SYSTEM PERFORMANCE AND REQUIREMENTS FOR MEDIA
PROTOCOL^

Currently, all media protocols are packaged with
their associated higher level protocols, TCP/IP.
Therefore, see the current CTIX TCP/IP release
notice for your M-Frame machine for the definitive
system requirements for the media protocol.

System requirements include:

o operating system compatibility
o memory requirements
o hardware requirements

For media performance specifications also see the
appropriate release notice.

ETHERNET

Ethernet is a 10 megabits-per-second Local Area
Network protocol that specifies the data link and
physical layers of the OSI model. CTIX Ethernet
subscribes to the IEEE 802.3 CSMA/CD network
class. (For general information on Ethernet, see
The Ethernet. For information on the CTIX
Internetworking implementation of Ethernet, see
Chapter 12, "System Architecture."

ETHERNET HARDWARE REQUIREMENTS

A generalized summary of Ethernet hardware
requirements are given below. See the appropriate
TCP/IP release notice for the definitive
descriptions of hardware requirements.

2-10 CTIX Internetworking Manual (Preliminary)

All Machines

All hardware must be in place before loading the
protocol drivers, media drivers, and supporting
internetworking software and before reconfiguring
the kernel with the internetworking software. For
each Ethernet network added, one of each of the
following is required:

1. IEEE 802.3-compatible transceiver
2. Transceiver drop cable that connects the

machine to the transceiver

3. Ethernet backbone cable per network. (This
cable connects the various transceivers.)

4. Set of transceiver tapping tools and
instructions

Additional Requirements for MightyFrame
The MightyFrame TCP/IP driver can support more
than one Ethernet network. Each Ethernet network
requires its own hardware set. (See the Release
Notice for the maximum number supported.)
1. VME Expansion consisting of an interface board

and card cage. To use more than four Ethernet
controllers in a system, a MightyFrame VME
Cabinet is required.

2. Intelligent Ethernet controller

MiniFrame
1. MiniFrame or MiniFrame-Plus with at least one

megabyte of memory.
2. Ethernet board

Internetworking Media 10-3

Additional Requirements for MegaFrame

1. Intelligent Ethernet board

2. For each Ethernet board added, an
additional dedicated TP or CP is
required to run a CTOS Ethernet Server.
(To run the CTOS server with cluster or
terminal code degrades the network
performance.)

3. For memory and other requirements

4. MegaFrame expansion enclosure, if the
base enclosure does not have enough slot
space.

5. Ethernet on the MegaFrame requires some
hardware configuration procedures for
the Multibus Adapter and the Intelligent
Ethernet board. These procedures are
contained in the "Release Notice for
MegaFrame TCP/IP."

10-4 CTIX Internetworking Manual (Preliminary)

SERIAL LINE INTERNET PROTOCOL (SLIP)

Serial Line Interconnect Protocol (SLIP) is a
standard media protocol packaged with TCP/IP.
Currently SLIP supports only direct (point-to-
point) serial connections; however, it is
inherently capable of supporting asynchronous
autodial. It is available for the MightyFrame and
MiniFrame. On the MightyFrame SLIP supports baud
rates up to 19200 baud.

SETTING UP SLIP

To connect nodes using SLIP, you must explicitly
initialize each network connection using the
program slattach(lNM). Slattach sets up the
appropriate interface and route descriptions
within the socket driver. For each serial port
that you want to use for SLIP, you must add a line
to the /etc/rc file which runs slattach for that
port.

Internetworking Media 10-5

You can also use slattach and sldetach at any time
to create and remove SLIP links. Whether you
choose to run these commands from /etc/rc or from
the command line, should be determined by how
often the connections change.

1. Connect the two machines with the
appropriate cable attached to their
communications ports. If the machines
are to communicate over a leased line,
connect the appropriate cables and
modems.

2. Make an slattach entry in the /etc/rc of
both machines. (This will automatically
reinstate the connection upon
reinitialization.) It is recommended
that these lines immediately follow the
line for enpstart (whether or not you
are using Ethernet).

3. Reboot the system.

4. If either or both of the machines is to
be a gateway for the other, establish
the default route to the gateway machine
through the route command. (The default
route is the route that all outbound
messages take that are addressed to
nodes beyond the gateway, that is, all
messages not intended for the local node
or the gateway node.)

Using Only SLIP on the MightyFrame

If you wish to run only the SLIP media, you need
to uncomment a line in the Load Driver file. The
"commented out" line reads to the effect, "Load
the driver if there is an Ethernet board in the
system." When the system reads the uncommented
line it loads the Ethernet driver automatically.

6-10 CTIX Internetworking Manual (Preliminary)

UUCP

Uucp(lC) is a batch-oriented protocol used to
transfer files across phone lines using
autodialers, direct lines, and networks. CTIX
uucp can run on top of TCP and therefore can run
over CTIX Ethernet or X.25 in a system distributed
over a CTIX Internetwork. MightyFrame uucp is
compatible with 4.3BSD and AT&T 3B2 releases.

NOTE

See the release notices for the machine-
appropriate operating system and TCP/IP
distribution for operating system
compatibility and other special requirements
for uucp being used with TCP/IP.

Uucp is used by electronic mail and other
application systems. It can also be used directly
from the shell. Once the setup described below is
performed, uucp uses the internetwork
communications transparently to the user
processes.

UUCP ROUTING

Uucp takes the role analogous to the presentation
and session layers of the OSI model. Uucp expects
only "logical phone lines." Its routes can
consist of multiple hops made up of both physical
and logical phone lines. You must specify these
routes in their entirety since uucp itself
provides no routing protocol. Uucp1s routing is
at the presentation layer, therefore, if a lower
level protocol such as TCP/IP is available for one
or more hops, these protocols may do routing
without uucp being aware of it.

Internetworking Media 10-7

TCP/IP can make use of Ethernet and X.25 medias
and supports point-to-point links (direct cables
and leased lines) through SLIP. Thus a hybrid
route can be formed using uucp phone links and
lines based on other connection media.

Uucp, using the data communications program
uucico, places the call, logs into the remote
host, negotiates with the remote host for the uucp
protocol to be used in the data transfer, and
begins transferring data. Some of these protocols
suppress the checksum and packetizing functions
because they are redundant when running over TCP.

PROCEDURE FOR SETTING UP UUCP FOR INTERNETWORKING

Uucp requires an entry for each site you wish to
communicate in a the file /usr/lib/uucp/Systems
which Uucico uses to make connections. The entry
takes the form given in the procedures below.

To set up uucp to run over TCP/IP,

1. Set up uucp as directed in the
appropriate release notice.

2. Use netman to start up the uucp server.

3. Add an entry for each site you wish to
communicate with using uucp to
/usr/lib/uucp/Systems according to the
following specifications.

SYSTEMS FILE FORMATS

A 4.3BSD file format and an AT&T UNIX file format
are provided below. Each type of line entry
allows connection to both types of systems. The
4.3BSD format may be necessary in some situations
because of host names. The AT&T format is
provided for compatibility with an AT&T user
interface.
8-10 CTIX Internetworking Manual (Preliminary)

4.3BSD Format

The 4.3BSD entry line in /usr/lib/uucp/Systems for
each site you wish to call using uucp takes the
form:

UcName TimetoCall DevCode Port! NetName LoginProto

AT&T Format

The AT&T UNIX entry line in /usr/lib/uucp/Systems
for each site you wish to call using uucp takes
the form:

SName TimetoCall DeviceCode " " "_" LoginProto

The Systems file supports continuation lines.

where

SName is the name of the site you wish to
call as identified by uucp. Uucp
name space antedates AF_INET name
space and therefore can be
different from NetName, below.
This name must be unique within the
file Systems. The actual address
is taken from NetName.

TimetoCall is the time you want to place the
calls. For example, "Any" ii

DeviceCode BSD systems: UCBTCP
AT&T systems: TCP

Internetworking Media 10-9

"_" unused. The double quotes ("") are
place holders in the login protocol
meaning "expect nothing from the
remote node at this point in the
exchange." There are two unused
fields in the TCP style line. You
can insert any string but the word
"unused" is recommended.

Portf Always enter: uucp
Uucp looks up the word in
/etc/services. (AT&T entries do
not require a port number.)

NetName Enter the host name from
/etc/hosts. This entry determines
the actual address of the remote
host. (AT&T entries do not require
a network name. The AT&T version
looks up SName in /etc/hosts.

LoginProto The normal uucp chat script is
simplified for netowork logins.
There is no need to wait for any
return strings, although login and
password prompts are sent.

Entry Example

rochester Any TCP uucp ur-»eneca "-" uucplogin "-" uucppaaswd

In this example, rochester is a name known to uucp
but known to the Internet as ur-seneca. Rochester
also happens to be the name of a different
Internet host.

The double quotes ("") are place holders in the
login protocol meaning "expect nothing from the
remote node at this point in the exchange." At
the end of the login protocol, the local node is
logged into the remote node.

10-10 CTIX Internetworking Manual (Preliminary)

(For more information on uucp, see uucp and
related entries in the appropriate CTIX Operating
System Manual and CTIX Administrator's Reference
Manual.)

HANDLING SITES WITH EARLIER RELEASE LEVELS

Some sites you wish to communicate with may not
have updated their release version of uucp. This
may be indicated by the fact that the above
systems file entry does not work in their case.
You can still communicate with them is you make
entries in the following earlier format:

UucpName TimetoCall DeviceCode BaudRate RemoteLoginAcct

where
UucpName is the same as the current format

above
TimetoCall is the same as the current format

above
DeviceCode Enter: INET
BaudRate Always enter: 9600
Remot e Log i nAc ct

Enter: nuucp

If you need to communicate with an "old site" for
which you have made an entry in the above format,
you must start olduucpd(1NM). Use netman. See
Chapter 8, "Network Management."

Internetworking Media 10-11

UUCPD

Uucpd is the network server for CTIX file transfer
using the uucp user interface and protocols. It
is similar to rshd(1NM) server, except:

1. The remote socket need not be
privileged.

2. The shell invoked must be
/usr/1ib/uucp/uucico.

A network uucp connection is indicated with the
INET keyword in /usr/lib/uucp/L.sys. Uucpd is
normally executed by the startup file, /etc/rc.

See also the other "uu" entries in the CTIX
Operating System Manual.

10-12 CTIX Internetworking Manual (Preliminary)

CTIX TCP/IP-X.25 INTERFACE

The MightyFrame CTIX TCP/IP-X.25 Interface is an
optional internetworking media product which
enables CTIX TCP/IP to access the MightyFrame CTIX
X.25 Network Gateway. TCP/IP thereby makes use of
X.25 as a media protocol to extend CTIX
Internetworking to Wide Area Networks (WANs).
Thus CTIX hosts and Local Area Networks (LANS)
that run network servers and application systems
on top of TCP/IP can communicate through X.25
packet-switched Public Data Networks (PDNs).
Using X.25 as a connection media can be cost
effective in joining more than two LANs into a
larger internetwork. See Figure 10-1.

10-12.\ CTIX Internetworking Manual (Preliminary)

When you establish the appropriate routes between
hosts across the gateway(s), the TCP/IP-X.25
Interface becomes fully transparent to the network
user and to user application systems.

X.25 GATEWAY NODES

The CTIX TCP/IP-X.25 Interface runs only on a
MightyFrame. There is no comparable product for
the MegaFrame and MiniFrame. Therefore only a
MightyFrame can act as a host for TCP/IP using
X.25 as an internetworking media protocol. (See
Figure 6-2.)

The CTIX TCP/lP-X.25 Interface can coexist on a
host with other protocols, such as SNA and the
SLIP and Ethernet media protocols.

To connect a TCP/IP networked MightyFrame to the
PDN, the MightyFrame X.25 Network Gateway is
required in addition to the CTIX TCP/IP-X.25
Interface. The MightyFrame CTIX X.25 Network
Gateway is a loadable driver that supports X.25
applications by providing access to X.25 PDNs.

POINT-TO-POINT X.25 NETWORKING

The MightyFrame and the MegaFrame have different
software configurations for their X.25 gateway
capabilities. The MightyFrame version is called
the MightyFrame CTIX X.25 Network Gateway. The
MegaFrame CTIX X.25 Interface interfaces to the
CTOS X.25 Network Gateway to provide the same
functionality at the MightyFrame counterpart. A
product similar to the MightyFrame X.25 Network
Gateway is also available for the MiniFrame.

Internetworking Media 10-13

The MightyFrame and MegaFrame X.25 gateways are
compatible in a point-to-point X.25 network
configurations. Both X.25 gateways can be used
for point-to-point X.25 connections to other hosts
or to an X.25 PDN without any further interfaces.
(See Figure 10-2.)

Figure 10-3 shows a MightyFrame connected point-
to-point to a PDN.

f\A 3 w\sa_

Figure 10-2. CTIX Systems Linked by Point-To-
Point X.25.

A point-to-point X.25 network is a separate and
distinct network without routing capability other
that that provided by the X.25 PDN. CTIX
Internetworking can be implemented only using
TCP/IP.

C T I X
X . 3 5 " yyv'gWVy J ntevfWe

C-TX-X

)< • s h e l y f i j o r k

Po, Mi-

14-10 CTIX Internetworking Manual (Preliminary)

A point-to-point X.25 network and a TCP/IP
internetwork can share the same MightyFrame X.25
Network Gateway. See the example shown in Figure
10-3. TCP/IP can share a MightyFrame CTIX X.25
Network Gateway on the same host with other
service applications such as the CTIX
X.3/X.28/X.29 PAD.

The network user cannot directly access standard
PDN facilities such as the CTIX X.3/X.28/X.29 PAD
using standard TCP/IP commands. However, it is
possible to use TCP/IP virtual terminal
capabilities to log onto a host that is directly
connected to a PDN and has the PAD available for
terminals.

INTERNETWORKING WITH ETHERNET AND X.25

MegaFrame and MiniFrame hosts on Ethernets
connected to the MightyFrame gateway hosts can be
internetworked across an X.25 PDN. An example of
such a configuration is shown in Figure 10-3. All
features available on Ethernet can be accessed
transparently across the PDN using a MightyFrame
as a gateway.

Internetworking Media 10-15

O-
_Lllif*

A

Poi^"1
x.zs
Co

- C I

£ Cra^wl^ <3 n ̂

hA'î VcVy fO'
Sfa n J a /one
Sysl c

/Ve"/ k"
G-aAe^tyJ

m^Vvt-y^ame

Qijh'-Jiy d^d
Tc f/iP-X,' 3 sr-

jn-^v-Oue. •

c_

Figure 10-3. Example X.25/Ethernet
Internetworking Configuration

Figure 10-3 shows an internetwork configuration
example consisting of

o a TCP/IP Internetwork using Ethernet and
X.25 as media protocols (hosts A, B, E.
and F)

16-10 CTIX Internetworking Manual (Preliminary)

o two separate non-TCP/IP X-25 point-to-
point networks consisting of a standalone
MightyFrame (host C) connected to a PDN
and a standalone MiniFrame (host D)
connected point-to-point to a MightyFrame
(host B)

In the TCP/IP internetwork, note that the
MegaFrame host A can access host F, another
MegaFrame on an Ethernet, across the X.2 5 PDN.

Note also that point-to-point connections can
coexist with a TCP/IP internetwork. Both the
TCP/IP internetwork and the link between host B
and host D share the MightyFrame X.25 Network
gateway in host B. However, the non TCP/IP host D
cannot route through B to access the PDN.

The non-TCP/IP host C, can access X.25 application
systems on host B through the PDN but cannot
access host D through the MightyFrame X.25 Network
Gateway installed on host B.

ECONOMY AND ERROR HANDLING FEATURES

The MightyFrame CTIX TCP/IP-X.25 Interface
automatically closes an active virtual circuit
that remains inactive for five minutes.

The MightyFrame CTIX TCP/IP-X.25 Interface
recovers from transmission errors encountered in
an active X.25 virtual ciruit by automatically
closing the faulty circuit and opening a new one.
This process is entirely transparent to the user
program.

Internetworking Media 10-17

RELATED X.25 DOCUMENTS

For more information and installation instructions
for the MightyFrame CTIX TCP/IP-X.25 Interface,
see the "Release Notice for The MightyFrame CTIX
TCP/IP-X.25 Interface."

Additional information on the X.25 media protocol,
is contained in Chapter 12, "System Architecture."

For more information and installation instructions
for the MightyFrame X.25 Network Gateway, the
MegaFrame CTIX X.25 Interface, and the CTOS X.25
Network Gateway, see the appropriate manual and
release notice, as listed in "Related Documents"
at the front of this manual.

DDN NETWORK GATEWAY

The DDN Network Gateway is an optional, separately
packaged product that links a standalone MegaFrame
to the Defense Data Network. It is available only
on the MegaFrame. Other hosts on a CTIX
internetwork cannot access the DDN across a
MegaFrame on the internetwork since MegaFrame does
not support CTIX IP gateways. (See Chapter 12,
"System Architecture.")

The Defense Data Network (DDN) is a set of
communications capabilities which links together
computer systems within the Department of Defense
(DoD). The DDN allows users of these computer
systems to send mail and exchange files between
systems and to access other computers on the
Internet in interactive virtual terminal sessions.
The DDN is based on TCP/IP and X.25.

(For more information, see Chapter 12, "System
Architecture." and DDN MegaFrame Reference
Manual.)

10-18 CTIX Internetworking Manual (Preliminary)

11 INTERNETWORKING CONCEPTS

This chapter reviews some basic network concepts
relating to CTIX internetworking, TCP/IP, and
network gateways. At the generalized level of
discussion in this chapter, CTIX internetworking
closely parallels corresponding concepts in the
DARPA Internet Program and 4.3BSD UNIX. More
CTIX-implementation-specific information on CTIX
protocol configurations is given in Chapter 12,
"System Architecture."

OVERVIEW

TCP (Transmission Control Protocol) and IP
(Internet Protocol) form an end-to-end
transmission and routing protocol that supports
CTIX commands and applications. TCP/IP was
originally developed for the DoD for use in
ARPANET, the first major network to use packet-
switching technology. (ARPA stands for Advanced
Research Projects Agency.) (Packet switching is
an alternative to the circuit switching technology
used in telephone and telex systems in which a
dedicated communication path is allocated to
communications between two users for the duration
of a communication.) Packets are also called
datagrams. A message can be broken up into
several packets, or datagrams.

The Defense Data Network (DDN) is based on ARPANET
standard TCP/IP. The DDN is the implementation
stage in the evolution of work done by ARPA of the
DoD on packet switching network technology. (SRI,
under contract with the DoD, publishes a standard
for TCP/IP.)

Currently, TCP/IP are also widely used in UNIX
environments and are included in UC Berkeley UNIX.
CTIX TCP/IP is similar to and usually compatible
with other systems running TCP/IP over Ethernet.

Network Concepts 11-1

THE OSI MODEL AND CTIX INTERNETWORKING

Although CTIX Internetworking is not strictly an
implementation of the well known seven-layer OSI
network model, it is helpful to compare them in
explaining CTIX Internetworking concepts. Figure
11-1 shows the OSI model and the roughly
corresponding CTIX Internetworking layers.

OSI Model Layer CTIX Internetworking

Application

Presentation

Session

Transport

Network

Link

Physical

7

6

5

4

3

2

1

Applications, e.g.:
Applications
ftp, telnet

(Applications in CTIX
include level 6 and
some functions of 5.)

Socket Interface
and

Transport Control
Protocol

Internet Protocol

Media Protocol

Physical Media

Figure 11-1. Comparison of OSI Model and CTIX
Internetworking Model

Layer four in CTIX Internetworking can be
implemented in different protocols. In this
chapter, TCP is used as an example of layer four
and is explained in some detail. The CTIX
Internet Protocol (IP) which implements layer
three is also explained. TCP/IP makes possible
the end-to-end nature of CTIX Internetworking.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The data link layer are implemented in CTIX
Internetworking as Media protocols, such as
Ethernet. They are often implemented in hardware.
Media Protocols are explained in chapter. 10
"Internetworking Media."

There are also several higher level specialized
protocols for specific applications such as
terminal traffic (telnet) and file transfer (ftp)
and protocols for other network functions such as
gateway status monitoring and control and error
reporting, but, in this manual, these are not
usually referred to as protocols, but rather as
programs or services. The same applies to the
link level protocols, such as Ethernet, which are
referred to as a media protocol or simply a media.

HOW PROTOCOLS COMMUNICATE

Protocols communicate logically only with their
counterpart protocols and physically only with the
layers directly above and below themselves. For
example, TCP, at layer 4, the Transport layer of
host A, communicates logically only with its
counterpart in the remote host, but, to do so, it
communicates physically with the layer directly
beneath it, the IP at the network layer 3. IP in
turn, IP passes the message from TCP down to its
neighboring layer, and so on. The physical layer
transmits the message to host B. (See Figure 11-
2).

The message passes up through the layers of host B
to arrive at the TCP for host B which is able to
decode the message and disposition it
appropriately. The intervening layers are unaware
of the contents of the message. They only decode
its destination address to the extent they must to
pass it to the next layer.

Network Concepts 11-3

Host A Layer Host B

1 ft£
"1
1 7
1
1
1 6
1

1
I ft£

1
1
1

I Socket Interface
1 and
1 Transport Control
1 Protocol ^

"1
1 5
1
1 ̂ 1
1
1

1
1 Socket Interface
1 and

Transport Control
1 A Protocol

1 Internet Protocol | 1

"1
1 3
1

1 I
1 , Internet Protocol
1 1

1 1
1 Ethernet Driver i

"1
1 2
1

1 1
1 | Ethernet Driver
1

1 Ethernet Hardware 1
1 1

"1
1 1
1

1
1 1 Ethernet Hardwara
1 1 1 1 _

Figure 11-2. Example of How Protocols Ccuunicate

Each layer therefore must understand the language
of the adjoining upper and lower layers in
addition to performing its own proper functions.

GATEWAYS

While Figure 11-1 does not describe the topology
or composition of an internetwork using TCP and
IP, such an internetwork can be composed of
different CTIX-compatible networks running
different local protocols but tied together by a
higher level end-to-end protocol such as TCP/IP.
To unify a potentially diverse networks into a
single internetwork, network gateways are used. A
gateway is a switching node that connects two or
more networks, especially if they use different
protocols. (If a gateway runs on a dedicated
processor, the processor is also considered a
component of the gateway.)

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

GATEWAY ROOTING PROTOCOLS

The networks connected by gateways can employ the
same protocols or different protocols. If the
same, the gateway must contain modules of the
protocol being used. For example, if the networks
both use TCP/IP, the gateway must contain TCP and
IP modules. If different, the gateway must
contain services capable of converting from one
network protocol to another.

When a message arrives at a gateway, the gateway
determines the destination network and
encapsulates the internet protocol with the
protocol header appropriate to the new network.

IP GATEWAY PROTOCOL

The network level protocol, IP, is designed to act
as a gateway. All CTIX Internetworking nodes,
including gateways, contain an internet module.
This IP module contains the appropriate software
services for switching and retransmitting packets
(or virtual circuits) to their next gateway, to
the next network, or to the destination host.
Gateways are placed wherever necessary to
implement the desired topology and configuration
of an internet. A gateway is usually one of the
network hosts but it can reside in its own
dedicated processor.

Network Concepts 11-5

TCP AND IP PROTOCOLS

TCP and IP are actually separate protocols that
work together implementing the major lower level
functions in CTIX internetworking.

TRANSMISSION CONTROL PROTOCOL (TCP)

Transmission Control Protocol is a transport
level, connection-oriented protocol that provides
highly reliable end-to-end message transmission
between hosts in packet-switched networks and in
interconnected systems, or internets. TCP
interfaces on one side with user or applications
processes and on the other side to a lower level
protocol such as Internet Protocol (IP). TCP
communicates asynchronously with the application
process and the IP or other network level
protocols. TCP is totally byte-stream oriented.

TCP operates a sufficiently high level (OSI level
4 and 5) to be media independent. Lower layers
can support hard-wired (direct), circuit-switched,
and packet-switched communications links. Thus an
internetwork using TCP to provide an end-to-end
transport service, can be made up of multiple
subnets using a variety of media protocols.

A TCP module resides at each node in the internet
that communicates with other TCP nodes. TCP can
reside in the host or in a front-end
communications processor.

To provide its service under the expected
circumstances of the datagram model, TCP
implements mechanisms for the following functions:

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

o support for interprocess communication
(IPC) and connection functions

o basic data transfer and transmission

o end-to-end reliability
o multiplexing, flow control, and message

sequencing
o precedence and security
o out of bound data

Interface with Application Process

TCP provides the basis for CTIX interprocess
communications over the internet. The interface
between TCP and application processes consists of
a set of calls much like the calls an operating
system provides to a process or manipulating
files. For example, there are calls to open and
close connections and to send and receive data on
established connections. (A connection is a
logical concept rather than virtual circuit as in
X.25.

Datagrams are routed individually and dynamically
over the best available routing path. They are
reassembled at the receiving end.)

TCP Ports and the Socket Interface

TCP provides a set of numbered ports to identify
and be used by the calling processes. A TCP port
is not a hardware communications port such as an
RS-232-C port. A TCP port is the portion of a
socket that specifies which logical input or
output channel of a process is associated with the
data.

Network Concepts 11-7

A socket is an address which specifically includes
a port identifier, that is, the concatenation of
an internet address with a TCP port. Port
connections are displayed in the Active
Connections Display of netman. See Chapter 9,
"Network Status Monitoring." (See also
"Glossary.") A process, for example, could be a
number of terminals talking to a host.

For more information on sockets and how TCP uses
them, see Chapter 13, Using the Programmatic
Interface."

TCP and Reliable Transmission

The primary purpose of TCP is to provide a
reliable, secure, virtual circuit connection
service between pairs of communicating processes.
(Security provisions such as limiting user access
to certain nodes can be implemented at the TCP
layer. See Chapter 13, Using the Programmatic
Interface.")

TCP is concerned only with total end-to-end
reliability. It makes few assumptions about the
possibility of obtaining reliable datagram
service from the lower protocols. If a datagram
is sent across an internet to a remote node, the
intervening networks do not guarantee delivery.
Likewise, the sender of the datagram has no way of
knowing the routing path used to send the
datagram. Source to destination reliability is
provided by TCP.

Reliability is achieved through checksums (error
detection codes), positive acknowledgment of data
received, and retransmission of unacknowledged
data.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Flow Control

Flow control is accomplished by allowing the
receiver to regulate the data rate. TCP provides
a means for the receiver to govern the amount of
data sent by the sender. This is achieved by
returning a "window" with every ACK indicating a
range of acceptable sequence numbers beyond the
last segment successfully received. The window
indicates an allowed number of octets that the
sender may transmit before receiving further
permission.

For more information on TCP, see Internet Protocol
Transition Workbook, "Transmission Control
Protocol," RFC-793.

INTERNET PROTOCOL

Internet Protocol is the network level protocol
designed for packet-switched networks. The IP
limits itself to only the delivery of datagrams
through an internet. Reliability is the
responsibility of TCP) As with TCP, there must be
an Internet Protocol module at each node and each
gateway that communicates using Internet Protocol.
This module is called the internet module.

The IP addresses, routes, and forwards datagrams
to the next gateway or destination host via the
local network interface. Internet gateway
functions are performed at the IP layer.

Network Concepts 11-9

IP functions are:

o addressing
o security classification, and

compartmentation of TCP segments
o internet datagram routing

o communications with gateways and host
protocol modules

o fragmentation and reassembly

Addressing
An IP message retains the TCP fixed-length, 45-bit
address across the internet. The address consists
of a network number and a local host address (32
bits) and a 16-bit port address. The local
address field contains the address of the host
within the network. There are three classes, or
formats, of addresses to accommodate networks of
different size. (See Appendix G, "Network
Addressing.")

TCP and User Datagram Protocol (UDP) also use a
16-bit number to address a connection.

The internet module maps internet addresses to
local net addresses. Local nets and gateways map
from local net addresses to routes. A host can
have several physical interfaces to different
networks in the internetwork with each interface
having its own logical internet address.

Hosts Having Multiple Addresses

In the case of a host that is on multiple
networks, the host serves as a gateway to each of
the networks and to itself. It has a primary
address which it uses to address itself.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

If the packet is for itself (a local process), the
host sends the packet to the loopback driver of
the routing code, which chains the output back to
the input.

Routing

An internet module can be located in a gateway or
a network host. It decides the routing path for
the datagram, packages it with the next address,
and forwards the resulting internet datagram to
the next gateway or to the destination host. IP
treats each datagram as an independent entity
during all phases of routing. (TCP sees the
datagram only at the endpoints.) Internet modules
reassemble datagrams into the original messages
only at the destination host.

An internet module packages received datagrams
with the appropriate internet header, containing
the address of the final destination. Such a
datagram is called and internet datagram.

At the destination host, the local network
interface strips the internet datagram of its
local net header and hands it to the internet
module.

The internet module determines whether the
datagram is for an application system in the local
host. The internet module passes the message
(after reassembling it if necessary) to the
application system in response to a system call.
If the datagram is not for the local host, the IP
passes it on.

For more information on Internet Protocol, see RFC
791, "Internet Prototocol," in the Internet
Protocol Transition Workbook.

Network Concepts 11-11

Fragmentation

In a packet-switched network, packets can be sent
by different routes and are retransmitted if
necessary. If datagrams arrive at the destination
host out of sequence, the IP reassembles them into
the original message for the destination host.
Some networks have different message sizes. If
necessary at the destination host, the IP
fragments incoming datagrams to the size required
by the destination network.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

12 SYSTEM ARCHITECTURE

This chapter describes some machine-specific
implementations of the CTIX internetworking
protocols.

OVERVIEW

Functionally CTIX internetworking software
consists of several layers from top to bottom:

o user command interface

o network servers
o system calls, and library subroutines
o sockets interface
o transport service protocol
o internet protocol
o physical media

As a consequence of significant architectural
differences among the CTIX machines, the
implementation of these layers varies considerably
from machine to machine. Also the configuration
of the internetworking software for a given CTIX
machine can vary from release to release and is
dependent on the current version of the operating
system for the respective machines. Therefore it
is essential to consult the current release
notices for your system's internetworking software
and operating system.

The major aspects of different implementations of
the CTIX internetworking software currently used
are described in this chapter.

System Architecture 12-1

SOFTWARE CONFIGURATION AND FUNCTIONAL
IMPLEMENTATION

It is important to distinguish between the
software configuration of the networking software
and its functional implementation in the
architecture of the particular CTIX machine.
Software configuration means how the various
protocols are bundled or unbundled in the loadable
protocol drivers. For example, on the MightyFrame
and MiniFrame machines, the TCP/IP kernel driver,
the Ethernet driver are bundled in the same
loadable/unloadable driver. (The CTIX machine-
specific version of the driver is different for
each machine type.)

Software configurations are best known by
referring to the appropriate release notice for
the networking software.

Functional implementation means how the functional
components of the internetworking software relate
to the machine architecture and to other
functional components of the internetworking
software. Some examples are as follows.

o In the MiniFrame, all the networking
protocols run in the kernel. But the
MightyFrame release also contains the
executive image for the MightyFrame1s
intelligent Ethernet controller card and
the program that downloads the Ethernet
driver onto the intelligent controller
during system startup.

o Each machine type has its own limitations
as to the number of TCP virtual circuits
it can support.

o All the CTIX machines have their own
versions of the Ethernet processor board.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Figures 12-1 through 12-3 show CTIX
Internetworking functional implementations on the
different CTIX machines.

MINIFRAME

In common with the other CTIX machines, user
programs, such as the network servers, run above
the surface of the kernel. The socket layer
interfaces between the user processes and the
transport and session protocols such as TCP and
UDP. The socket driver functions at a level
analogous to the OSI session layer.

In the MightyFrame and MiniFrame, the kernel
driver that runs the TCP/IP protocol, the Ethernet
and SLIP network interfaces are all in one
loadable/unloadable socket driver.

In the MiniFrame, TCP and UDP, the Internet
Protocol and the Media protocols, Ethernet and
SLIP all run in the kernel. See Figure 12-1.

MIGHTYFRAME

In the MightyFrame, the transport and network
protocols run in the kernel. The SLIP and X.25
media protocols also run in the kernel. The
Ethernet driver is downloaded to run on an
intelligent controller. MightyFrame can support
multiple Ethernet controllers. (See Figure 12-2.)

System Architecture 12-3

Figure 12-1. MiniFrame Internetworking
Implementation.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Pigure 12-2. MightyFrame Internetworking
Implementation.

System Architecture 12-5

MIGHTYFRAME CTIX IP GATEWAYS

Only the MightyFrame architecture is fully capable
of providing a CTIX internetworking gateway. An
example of a CTIX IP gateway module linking an
X.25 network and an Ethernet network is shown in
Figure 12-3.

H05V £ Hos^ c

av^e o v
WVvv.F-r^a-

(<r3 -/t;̂ ?/
fUoie^)

y , is-

0a1a

Figure 12-J. Routing Path in An Internetwork
Using the Internet Protocol as a Gateway

The data at the data link layer from the
MightyFrame (Host A) on the X.25 network is routed
by the network layer of the MightyFrame (Host B)
to the data link layer of the MegaFrame (Host C)
at the data link layer. (The dashed line
describes the data path.)

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

MEGAFRAME

In MegaFrame the socket drivers are part of the
TCP/IP loadable driver. After loading, the socket
drivers are relinked to the kernel resulting in a
new kernel configuration.

Currently MegaFrame TCP/IP does not support User
Datagram Protocol (UDP) and Internet Protocol
(IP). Consequently, those programs and functions
that rely on these protocols (such as ruptime,
rwho, and calls using datagram sockets) are not
implemented. See the release notice for your
release version of the product to determine which
protocols are supported.

MegaFrame Ethernet is currently implemented in a
single subsystem with TCP/IP. Both run on the
Intelligent Ethernet Card which is decoupled from
the CTIX kernel. See Figure 12-4.

MEGAFRAME TCP/IP AND ETHERNET

The TCP/IP and Ethernet driver is downloaded to
run on an intelligent controller board. The board
plugs into a Multibus adapter. The Multibus
adapter attaches to the MegaBus of the MegaFrame.
(See Figure 12-5.)

The Multibus adapter is tightly coupled with a
dedicated Terminal Processor (TP) or Cluster
Processor (CP). A dedicated TP or CP runs the
CTOS Ethernet Server which enables the sharing of
the same Ethernet board by multiple Applications
Processors (APs). For each Ethernet board added,
an additional dedicated TP or CP is required to
run a CTOS Ethernet Server.

Note that to run the CTOS server with cluster or
terminal code degrades the network performance.

System Architecture 12-7

T v i ^ *

C T I)(
A fp^^'o^b

PxOce'AO't

"TPoxC?

^o^ktVs

X
I rfWv\ef D D TJ

1 — —

DDA/
ĉ-r̂ e-r

Figure 12-4. MegaFrame
Internetworking Implementation.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

| A P | | A P | | A P
I I I I I I C T I X | | C T I X | | C T I X

I I I I I I I I I I I I + + + + + .
M E G A B U S + +• + +
ii II ii II

| C T O S I I MULTIBUS |
j | | ADAPTER j--+ | TP OR CP j | | |

ETHERNET | BOARD |

E T H E R N E T

Figure 12-5. MegaFrame Ethernet. Configuration
Example.

MEGAFRAME A NON-GATEWAY MACHINE

Its architecture does not permit the MegaFrame to
be used as a gateway machine. Its IP module,
which runs on an intelligent controller board, is
not available in the kernel for routing as is the
MightyFrame's; therefore, any such routing scheme
using a MegaFrame would have to be implemented at
the session level using sockets and is currently
not supported.

System Architecture 12-9

13 USING THE PROGRAMMATIC INTERFACE

This section describes the programmatic interface
supported by CTIX Internetworking. The
programmatic interface provides a framework for
interprocess communications both within the same
host and across CTIX Internetworking protocols.

OVERVIEW

A client process, such as a user application
system, usually needs to communicate with a server
process to perform its functions. One way that
this interprocess communication (IPC) is provided
for in CTIX is pipes, already discussed in Chapter
2, "Using Network Commands." CTIX Internetworking
also provides a more flexible and powerful
independent subsystem especially designed to
support IPC in a distributed environment. This
subsystem is called the sockets interface, or
"sockets." The CTIX Internetworking sockets
interface comprises the programmatic interface and
the basis for IPC both within a host and across an
internet.

The CTIX Internetworking sockets interface is an
implementation compatible with the Berkeley 4.3BSD
socket mechanisms distributed for the Internet
Domain. The Berkeley sockets interface was
designed to interface TCP/IP and other protocols
with the UNIX kernel. The CTIX Internetworking
version is also capable of supporting other
communications protocols.

The CTIX internetworking software distribution
contains the socket subsystem protocol that is
necessary to support CTIX interprocess
communication, networking system calls and the
library subroutines.

Using the Programmatic Interface 13-1

The TCP/IP loadable driver implements the socket
abstraction and protocol. By linking their
programs with the facilities in the library,
libsocket.a, programmers can write their own
distributed programs using interprocess
communication. The library routines call the
kernel directly. The calling programs can be
written in the C language or another language.

The library, libsocket, contains system calls and
library routines. The calls are linked to the
actual system call primitives in the kernel. The
system calls perform basic functions for an
application system.

The library routines are commonly used name
handling routines. The library routines are
listed and described below.

(For information on the internal system
implementation of the sockets interface, see
4.2BSD Networking Implementation Notes.)

SOCKETS

A socket is a software entity that provides the
basic building block for interprocess
communications. Sockets allow processes to
rendezvous in a CTIX name space through which they
exchange data. A socket is an endpoint of
communication between processes. For Internet
addresses, a fully named pair of sockets uniquely
identify a connection between two communicating
sides:

<<node.port> <node.port>>

where node is the four-byte network address and
port is two bytes identifying the network
interface. The socket on the left is the local
socket and the socket on the right is the remote,
or foreign, socket.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The activity status of the user processes can be
seen in the Active Connections display of netstat.
If both sides of a socket pair are operating on
the local machine, each is listed separately.
(See Chapter 9, "Network Status Monitoring."

Sockets exist within communications domains. A
communications domain is system of communications
properties of the communicating processes and of
the underlying communications facilities of the
domain itself. One such property is the scheme
used to name sockets. Currently CTIX supports
only sockets existing in the name space of the
Internet Domain. Sockets normally exchange data
only with sockets in the same domain; otherwise a
translation process is required.

TYPES OF SOCKETS

A socket has a type and one or more associated
processes. Sockets are typed by the
communications properties visible to the
programmer. Usually a socket type is associated
with the particular protocol which the socket
supports. Processes usually communicate between
sockets of the same type. Three types of sockets
are available to the programmer:

o stream socket
o datagram socket
o raw socket

Using the Prograaanatic Interface 13-3

Stream Sockets

A (SOCK STREAM) is the recommended and most
commonly used type. In the AF_INET communications
domain, a stream socket takes advantage of the
inherent reliability of the transport level byte
stream protocol, TCP. It provides bidirectional,
sequenced, and unduplicated flow of data without
boundaries.

Datagram Sockets

A datagram socket (SOCK_DGRAM) supports
bidirectional flow of data in the datagram model
of the network level protocol. (See Chapter 11,
"Internetworking Concepts.") Record boundaries
are preserved. The receiving process must perform
resequencing, elimination of duplicates, and
reliability assurance. The datagram socket can be
used in applications where reliability of an
individual packet is not essential, for example,
in broadcasting messages for the purpose of
updating a status table.

Unreliable datagram protocol (UDP) supports the
datagram socket. (See "Connectionless Sockets,"
below.)

Raw Sockets

With a raw socket (SOCK_RAW), the programmer has
access to the underlying communications protocols
which support sockets, such as the IP. Raw
sockets can be implemented variously depending on
the interface provided by the communications
protocols chosen.

Raw sockets are not intended for the general user;
they have been provided mainly for those
interested in developing new communication
protocols, or for gaining access to some of the
more esoteric facilities of an existing protocol.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Other Types of Sockets

Reliable datagram and sequenced packet sockets are
not currently available in CTIX.

HOW SOCKETS ARE CONTROLLED

The socket subsystem keeps track of sockets
through a set of protocol control blocks (PCBs)
which describe the processes and their addresses.
When a process opens a socket, the subsystem
checks its chain of active PCBs to see if the
socket pair is already being used.

SYSTEM CALLS

System calls are used to perform interprocess
communications primarily by manipulating sockets.
The linker editor, ld(l), searches these functions
under the -1 socket(2N) option. The calls
directly invoke CTIX system primitives in the
kernel.

Together with the other CTIX system calls, the
CTIX networking system calls are documented in
Chapter 2 of the appropriate CTIX Operating System
Manual. In that manual, all networking system
calls are designated 2N. For example:

accept(2N)

The networking system calls are listed and briefly
described in Table 13-1. In the following
paragraphs the calls are discussed under the
various process operations.

Using the Programnatic Interface 13-5

Table 13-1.
CTIX Networking System Calls

Call Description

accept(2N)

bind(2N)
connect(2N)

getpeername(2N)
getsockname(2N)
getsockopt(2N),
setsockopt

listen(2N)

recv,

recvfrom(2N)
send, sendto(2N)
shutdown(2N)
socket(2N)

accept a connection on a
socket
bind a name to a socket
initiate a connection on a
socket
get name of connected peer
get socket name
get and set options on sockets

listen for connections on a
socket
receive a message from a
socket
send a message to a socket
shut down part of a full-
duplex connection
create an endpoint for
communication

ERROR RETURNS

All the system calls return -1 in case of error.
The error number is put in the variable errno.
Error numbers are defined in <sys/errno.h>.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

In a model exchange between a calling process and
a serving process, the client is the active
process, the server is the passive process. The
client and the server use different types of
socket calls that are appropriate to their roles.
Some of the system calls that can be used are
paired and arranged in logical order as follows:

Serving Process
create socket
bind
listen
accept
read
write
close

Client Process
create socket
bind
connect

write
read
close

CREATING A SOCKET

To create a socket, use the socket system call:

s = socket(domain, type, protocol);

Where
domain In CTIX, the domain is always

AF INET (address family_Internet
domain). The manifest constants
are named AF_whatever because they
indicate the "address family" to
use in interpreting names.

type Types are

o SOCK_STREAM
O SOCK_DGRAM
o SOCK RAW

Using the Prograaanatic Interface 13-7

type If the protocol is unspecified (a
value of 0), the system selects an
appropriate protocol from those
available to support the requested
socket type. The system returns a
small integer descriptor, or
handle, to use in later system
calls which operate on sockets.
This is equivalent to a file
descriptor. See open(2).
To select a particular protocol,
select from those defined in
sys/in.h. You can also use one of
the library routines described
below, such as getprotobyname.

Example: s = socket(AF INET, SOCK STREAM,0);

Selecting a Protocol

To obtain a particular protocol one selects the
protocol number, as defined within the
communication domain. For the Internet domain,
the available protocols are defined in sys/in.h
or, better yet, one may use one of the library
routines discussed below, such as getprotobyname
(getprotoent(3N)):

•include <sys/types.h>
•include <sys/socket.h>
•include <netinet/in.h>
•include <netdb.h>

pp = getprotobyname("tcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Socket Creation Errors

ENOBUFS The system lacks sufficient memory
for an internal data structure

EPROTONOSUPPORT

Unknown protocol or protocol not
supported.

EPROTOTYPE Socket type request has no
supporting protocol.

ENODEV The socket driver is not loaded.

BINDING SOCKET NAMES

A socket is created without a name, but, to be
used, it must be given a name. The bind call is
used to assign a name to a socket on the local
side of a connection:

bind(s, name, namelen);

S is the socket descriptor.
"Creating a Socket," above.)

(See

The bound name is a variable length
byte string to be interpreted by
the supporting protocol(s)
according to the domain type. In
the Internet domain, names contain
an Internet address and port
number.

namelen Namelen is the length of the name.

You do not have to specify an address unless you
want a certain one. To bind an Internet address,
the call is:

Using the Programmatic Interface 13-9

•include <sys/types.h>
•include <sys/in.h>

struct sockaddr_in sin;

bind(s, &sin, sizeof (sin));

To determine what to place in the address sin, see
"Networking Library Routines," below. If you set
sin to 0, the system binds to the server for you
and returns the address it used.

GETTING A CONNECTION

Once a process has bound a local socket, the
process can rendezvous with an unrelated foreign
process. Usually the rendezvous takes the form of
a client server relationship.

The Client

The client completes the other side of the socket
pair when it requests services from the server by
initiating a connection by issuing a connect call:

struct sockaddr_in server;
connect(s, fcserver, sizeof (server));

If the client process's socket is unbound when it
issues the connect call, the system automatically
selects a name and binds the socket. If the
socket is successfully associated with the server,
data transfer can begin. If not, an error is
returned. Only the active process uses connect.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The Server

A completed connection is identified by a unique
pair of sockets, each socket being an endpoint
associated with one of the reciprocating
processes. For the server to receive a client's
connection, the server must issue two system calls
after binding its socket. The first is to
indicate a willingness to listen for incoming
connection requests; the second is to accept the
client's connect. To "listen" is to passively wait
to accept a connection from a client process:

listen(s, 5);

The second parameter, 5, indicates the maximum
number of outstanding connections which can be
queued awaiting the acceptance of the server.
This limit prevents processes from hogging system
resources. Should a connection be requested while
the queue is full, the server does not refuse the
connection, but ignores the messages which
comprise the request. This forces the client to
retry the connection request and gives the server
time to make room in its queue.

Had the connection been returned with the
ECONNREFUSED error, the client would be unable to
tell if the server was up or not. As it is now it
is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure
supplied with the listen call is limited by the
system to a maximum of five pending connections
on any one queue. This avoids the problem of
processes hogging system resources by setting an
infinite backlog, then ignoring all connection
requests.

Using the Programmatic Interface 13-11

Wildcard Addressing a Socket. Location. A server
can underspecify its location to service incoming
service requests from multiple network interfaces
by using the wild card symbol (*). A service such
as ftp can installed only once on a host which is
connected to multiple network interfaces Ftp, can
listen on all the network interfaces:

< <*.21> <*.*>>

This tuple signifies that the local ftp on port 21
is listening on multiple interface addresses for
whatever client processes that wish to connect.

To name a socket that listens on all network
interfaces, the Internet address INADDR_ANY must
be bound. If a listening port is not specified,
the system assigns one. (Wildcarding is discussed
further in "IPC Programming Techniques," below.)

Accepting a Connections. With the socket marked
as listening, the server can now accept a
connection:

fromlen = sizeof (from);
snew = accept(s, Scfrom, &fromlen);

The server returns a new descriptor to the client
on receipt of a connection (along with a new
socket). If the server wishes to find out who its
client is, it may supply a buffer for the client
socket's name. Fromlen is a value-result
parameter initialized by the server to indicate
how much space is associated with from (the
client). It is modified on return to reflect the
true size of the name. Only a passive process
uses accept.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Accepts normally blocks. That is, the call to
accept will not return until a connection is
available or the system call is interrupted by a
signal to the process. Further, there is no way
for a process to indicate it will accept
connections from only a specific individual, or
individuals. It is up to the user process to
consider who the connection is from and close down
the connection if it does not wish to speak to the
process. If the server process wants to accept
connections on more than one socket, or not block
on the accept call, there are alternatives which
are considered in "IPC Programming Techniques,"
below.)

Servers often bind multiple sockets. When a
server accepts a connection, it usually spins off
(forks) a process which is the connected socket.
The parent then goes back to listening on the same
local socket.

Connection Errors

Of the many errors that can be returned when a
connection fails, the following are the most
common.

ETIMEDOUT After failing to establish a
connection during a period of time,
the system decided there was no
point in retrying any more. The
cause for this error is usually
that the remote host is down or
that problems in the network
resulted in transmissions being
lost.

ECONNREFUSED The host refused service for some
reason. This error is usually
caused by a server process not
being present at the requested
host.

Using the Prograaanatic Interface 13-13

ENETDOWN or EHOSTDOWN
Status information received by the
client host from the underlying
communication services indicates
the net or the remote host is down.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur
either because the network or host
is unknown (no route to the host or
network is present) or because
status information to that effect
has been delivered to the client
host by the underlying
communication services.

TRANSFERRING DATA

When a connection is established, data flow can
begin using a number of possible calls. If the
peer entity at each end of a connection is
anchored (that is, there is a connection), a user
can send or receive a message, without specifying
the peer, by using the read and write:

write(s, buf, sizeof {buf));
read(s, buf, sizeof (buf));

The calls send and recv are virtually identical to
read and write, except that a flags argument is
added.

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

One or more of the flags can be specified as a
nonzero value as follows.

SOF_OOB Send/receive out of band data. Out
of band data is specific to stream
sockets.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

SOF_PREVIEW Look at data without reading. When
specified in a recv call, any data
present is returned to the user but
treated as though still "unread."
The next read or recv call applied
to the socket will return the data
previously previewed.

SOF_DONTROUTE Send data without routing packets.
(Used only by the routing table
management process.)

DISCARDING SOCKETS

If a socket is no longer of use, the process can
discard it by applying a close to the descriptor:

close(s);

If data is associated with a socket which promises
reliable delivery (a stream socket), the system
will continue to attempt to transfer the data.
However, after a fairly long period of time, if
the data is still undelivered, it will be
discarded. If a user process wishes to abort any
pending data, it can apply a shutdown on the
socket prior to closing it. Shutdown causes any
data queued to be immediately discarded. The call
format is:

shutdown(s, how);

where how is:

0 if the user no longer wishes to read
data

1 if no more data will be sent
2 if no data is to be sent or received.

Using the Prograaanatic Interface 13-15

CONNECTIONLESS SOCKETS (SOCK DGRAM)

UDP Datagram sockets provide only connectionless
interactions. When using datagram sockets, the
programmer does not have to issue a connect call
before sending. A datagram socket provides a
symmetric interface to data exchange. Datagram
processes are still likely to be client and
server, there is no requirment for connection
establishment. Each message includes the
destination address.

Sending from Datagram Sockets

Datagram sockets are created and name bound
exactly as are stream sockets but to send data
from a datagram socket, the process uses the
sendto primitive:

sendto(s, buf, buflen, flags, &to, tolen);

The parameters are the same as those described for
send, above, except the to and tolen values are
used to indicate the intended recipient of the
message.

When using an unreliable datagram interface, it is
unlikely any errors will be reported to the
sender. If information at the sending node
indicates that the message cannot be delivered,
for instance, when a network is unreachable, the
call returns - 1 and the global value errno will
contain an error number.

Receiving on Datagram Sockets

To receive data on an unconnected datagram socket,
use recvfrom:

recvfrom(s, buf, buflen, flags, &from, Scfromlen);

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The parameters are as described above. Note that
fromlen is handled in the value-result manner
described under "Connections," above.

Using Connect on a Datagram Socket

Datagram sockets can also use connect to associate
a socket with a specific address. In this case,
any data sent on the socket is automatically
addressed to the connected peer, and only data
received from that peer will be delivered to the
user.

Only one connected address is permitted for each
socket (that is, no multicasting). Connect
requests return immediately; the system merely
records the peer's address, as compared to a
stream socket where a connect request initiates
establishment of an end to end connection. Other
of the less important details of datagram sockets
are described in "IPC Programming Techniques,"
below.

If connect is used with a datagram socket, read
and write and send and recv can be used to
transfer data.

INPUT/OUTPUT MULTIPLEXING

(The select call is not currently supported.)

An application system can multiplex I/O requests
among multiple sockets and/or files by using
select;

select(nfds, fcreadfds, &writefds, &execptfds,
&timeout);

Using the Prograaanatic Interface 13-17

Select takes three bit-masks as arguments, one for
each of the following:

o the set of file descriptors for which the
caller wishes to be able to read data on

o those descriptors to which data is to be
written

o to indicate which exceptional conditions
are pending

Bit masks are created by or-ing bits of the form
"1 << fd". That is, a descriptor fd is selected
if a 1 is present in the fd'th bit of the mask.
The parameter nfds specifies the range of file
descriptors (that is, one plus the value of the
largest descriptor) specified in a mask.

A timeout value may be specified if the selection
is not to last more than a predetermined period of
time. If timeout is set to 0, the selection takes
the form of a poll, returning immediately. If the
last parameter is a null pointer, the selection
will block indefinitely. (A return takes place
only when a descriptor is selectable, or when a
signal is received by the caller, interrupting the
system call.) Select normally returns the number
of file descriptors selected. If the select call
returns due to the timeout expiring, then a value
of -1 is returned along with the error number
EINTR.

Select provides a synchronous multiplexing scheme.
Asynchronous notifications of output completion,
input availability, and exceptional conditions is
possible through use of the SIGIO and SIGURG
signals. (See "Using Special Signals, below.")

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

NETWORKING LIBRARY ROUTINES

The definitive descriptions of the CTIX networking
library routines are contained in chapter 3 of the
appropriate CTIX Operating System Manual, together
with the other CTIX library routines. In those
manuals, all networking library routines can be
distinguished by the designation 3N. For example:

gethostent(3N)

OVERVIEW

Most of the routines in libsocket are concerned
with providing a uniform interface between the
application system and the network database. The
routines perform commonly used file name handling
and manipulation. The primary uses of these
routines are to locate and construct network
addresses.

These routines have been designed with flexibility
in mind. As more communication protocols become
available, the same user interface will be
maintained in accessing network-related address
databases. The only difference is the values
returned to the user. Since these values are
normally supplied by the system, users should not
need to be directly aware of the communication
protocol and/or naming conventions in use.

Locating a service on a remote host requires many
levels of mapping before client and server may
communicate. A service is assigned a name which
is intended for human consumption; for example,
"the login server on host CT". This name, and
the name of the peer host, must then be translated
into network addresses which are not necessarily
suitable for human consumption.

Using the Programmatic Interface 13-19

Finally, the address must then used in locating a
physical location and route to the service. The
specifics of these three mappings is likely to
vary between network architectures. The mapping
process can be further complicated by additional
layers required to interface disparate systems and
for security considerations as described in the
following example.

For instance, it is desirable for a network to not
require hosts be named in such a way that their
physical location is known by the client host.
Instead, underlying services in the network may
discover the actual location of the host at the
time a client host wishes to communicate. This
ability to have hosts named in a location
independent manner may induce overhead in
connection establishment, as a discovery process
must take place, but allows a host to be
physically mobile without requiring it to notify
its clientele of its current location.

The CTIX networking library routines are C
programming language function calls, which you can
call from your program but which do not go into
the kernel to be executed. They are relinked with
the library at link-time. The interface can
support a variety of protocols. The file
<netdb.H> must be included when using any of these
routines.

Standard routines are provided for mapping:

o host names to network addresses
o network names to network numbers
o protocol names to protocol numbers,
o service names to port numbers and the

appropriate protocol to be used with the
server

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The categories of library routines are listed with
brief descriptions in Table 13-2. Each of these
categories contains multiple functions.

Table 13-2.

C Programming Language Function Calls

byteorder(3N)

gethostent(3N)
gethostname(3N)
getnetent(3N)
getprotoent(3N)
getservent(3N)
inet(3N)
rexec(3N)

convert values between host
and network byte order
get network host entry
get name of current host
get network entry
get protocol entry
get service entry
Internet address manipulation
return stream to a remote
command

(For more information on these routines see the
appropriate CTIX Operating System Manual.)

Using the Prograaanatic Interface 13-21

MAPPING HOST NAMES

A host name to address mapping is represented by
the hostent data structure:

struct hostent
char
char
int
int
char

*h_name;
**h_aliases;
h_addrtype;
h_length;
*h addr;

where
*h_name

**h_aliases
h_addrtype
h_length
*h addr

is the official name of the host,
is the alias list,
is the host address type,
is the length of address,
is the address.

The routine gethostbyname(3N) takes a host name
and returns a hostent structure.
Gethostbyaddr(3N) maps host addresses into a
hostent structure. If a host has more than one
address having the same name, gethostbyname
returns the first entry in /etc/hosts. If this is
not adequate, the lower level routine gethostent
can be used. An example of a routine to obtain a
hostent structure for a host on a particular
network is given in Figure. 13-1.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

•include <ays/types.h>
•include <sys/«ocket.h>
•include <aya/in.h>
•include <netdb.h

struct hostent *
gethostbynameandnet{name,net)

char *name;
int net?

(
register struct hostent *hp?
register char **cp?

sethostent(0);
while ((hp « gethoatent()) I• NULL) {

if (hp->h^addrtype 1- AF_INET)
continue:

if (atrcmp(name, hp->h_name)) I
for (cp • hp->h_aliases; cp *cp l« NULL; cp++)

if (strcmp(name, *cp) •• 0)
goto found;

continue:
i

found:
if (inet_netof(*(struct in_addr *)hp->h_addr)) -» net)

break;
)
endhostent(0);
return (hp);

)

(Inet netof(3H) is a standard routine which
returns the network portion of an Internet
address. (See inet(3N)).

Figure 13-1. Example of a Hostent Routine

Using the Prograaanatic Interface 13-23

MAPPING NETWORK NAMES

As for host names, routines for mapping network
names to numbers, and back, are provided. These
routines return a netent structure:

The network number is limited to 32 bits.

struct netent {
char
char
int
int

where
*n name is the official name of net.

**n_aliases is the alias list.
n addrtype is the net address type.
n net is the network number.

The routines getnetbyname(3N), getnetbynumber(3N)
and getnetent(3N) are the network counterparts to
the host routines described above.

*n_name;
**n_aliases ;
n_addrtype;
n net;

MAPPING PROTOCOL NAMES

For protocols the protoent structure defines the
protocol-name mapping used with the routines
getnetent(3N) and getprotoent(3N):

protoent {
char *p_name;
char **p_aliases;
int p_proto;

struct

) ;

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

where

*p_narae is the official protocol name

p_aliases is the alias list

p_proto is the protocol number

MAPPING SERVICE NAMES

Information regarding services is a bit more
complicated. A service is expected to reside at a
specific "port" and employ a particular
communication protocol. This view is consistent
with the Internet domain, but inconsistent with
other network architectures. Further, a service
may reside on multiple ports or support multiple
protocols. If either of these occurs, the higher
level library routines will have to be bypassed in
favor of homegrown routines similar in spirit to
the "gethostbynameandnet" routine described in
Figure 13-1, above. A service mapping is
described by the servent structure:

struct servent (
char
char
int
char

*s_name;
**s_aliases
s_port;
*s proto;

}
where

* s name is the official service name

**s aliases is the alias list
s_port is the port number

*s_proto is the protocol to use

Using the Programmatic Interface 13-25

The routine getservbyname(3N) maps service names
to a servent structure by specifying a service
name and, optionally, a qualifying protocol. Thus
the call:

sp = getservbyname("telnet", (char *)0);

returns the service specification for a telnet
server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP
protocol.

The routines getservbyport(3N) and getservent(3N)
are also provided. The getservbyport routine has
an interface similar to that provided by
getservbyname; an optional protocol name may be
specified to qualify lookups.

HANDLING NETWORK DEPENDENCIES

With the support routines described above, an
application program should rarely have to deal
directly with addresses. This allows services to
be developed as much as possible in a network
independent fashion. It is clear, however, that
purging all network dependencies is very
difficult. So long as the user is required to
supply network addresses when naming services and
sockets, there will always some network dependency
in a program. For example, the normal code
included in client programs, such as the remote
login program, is of the form shown in Figure 13-
2.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

•include <aya/types,h>
I include <ays/socket.h>
•include <netinet/in.h>
•include <Btdio.h>
•include <netdb.h>

main(argc, argv)
char •argvC];

(
struct sockaddr_^in sin;
struct servent *sp;
struct hostent *hp;
int a;

sp * getservbyname("login", "tcp");
if (sp — NULL) (

fprintf(atderr, "rlogin: tcp/logini unknown service\n");
exit(l);

}
hp a gethostbynarae(argv[l]):
if (hp — NULL) (

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

)
bzero((char *)4sin, sizeof (sin));
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_family • hp->h_addrtype;
sin.sin_port • sp->s_port;
s » socket(AF INET, SOCK_STREAM, 0);
if (s < 0) (

perror("rlogin: socket");
exit(3);

)
if (connect!!, (char *)&sin, sizeof (sin)) < 0) 1

perror("rlogin: connect");
exit(5);

)

Figure 13-2. Remote Login Client Code.

If we wanted to make the remote login program
independent of the Internet protocols and
addressing scheme, within the limitations of the
current IPC organization, we would be forced to
add a layer of routines which masked the network
dependent aspects from the mainstream login code.

Using the Prograaanatic Interface 13-27

Manipulating Byte Strings and Handling Byte
Swapping

Aside from the address-related data base routines,
there are several other routines available in the
run-time library which are intended mostly to
simplify manipulation of names and addresses.
Table 13-3 summarizes the routines for
manipulating variable length byte strings and
handling byte swapping of network addresses and
values.

The byte swapping routines are provided because
the operating system expects addresses to be
supplied in network order. On a VAX, or machine
with similar architecture, this is usually
reversed. Consequently, programs are sometimes
required to byte swap quantities. The library
routines which return network addresses provide
them in network order so that they may simply be
copied into the structures provided to the system.
This implies users should encounter the byte
swapping problem only when interpreting network
addresses. For example, if an Internet port is
to be printed out the following code would be
required:

printf("port number %d\n", ntohs(sp->s_port));

On some machines other than the VAX and Intel
microprocessor-based machines, these routines are
defined as null macros.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Table 13-3.
C Run-Time Routines.

Call Synopsis

memcmp(si, s 2, n) compare byte-strings; 0 if
same, not 0 if otherwise:
returns a number less than 0
if SI < S2; returns a number
greater than 0 if SI > S2.

memcpy(s1, s 2, c, n)

memset(s, c, n)

htonl(val)*

htons(val)*

ntohl(val)*

ntohs(val)*

copy n bytes from si to s2
zero-fill n bytes starting
at base

convert '32-bit quantity from
host to network byte order
convert 16-bit quantity from
host to network byte order
convert 32-bit quantity from
network to host byte order
convert 16-bit quantity from
network to host byte order

* These calls are no-ops on 68000 machines. They
are operations in Intel microprocessor-based
architectures. They should be included for
portability.

Using the Prograaanatic Interface 13-29

USING THE CLIENT/SERVER MODEL

The most commonly used paradigm in constructing
distributed applications is the client/server
model. In this scheme client applications request
services from a server process. This implies an
asymmetry in establishing communication between
the client and server. In the following
paragraphs we will look more closely at the
interactions between client and server, and
consider some of the problems in developing client
and server applications.

OVERVIEW

Client and server require a well known set of
conventions before service may be rendered (and
accepted). This set of conventions comprises a
protocol which must be implemented at both ends of
a connection. Depending on the situation the
protocol may be symmetric or asymmetric.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

In a symmetric protocol, either side may play the
master or slave roles. In an asymmetric protocol,
one side is immutably recognized as the master,
with the other the slave. An example of a
symmetric protocol is the telnet protocol used in
the internet for remote terminal emulation. An
example of an asymmetric protocol is the internet
file transfer protocol, ftp. No matter whether
the specific protocol used in obtaining a service
is symmetric or asymmetric, when accessing a
service there is a "client process" and a "server
process". We will first consider the properties
of server processes, then client processes.

SERVER PROCESS

A server process normally listens at a well known
address for service requests. ("Well known" means
that port assignments for services are usually
stable and can be seen in /etc/services. See
"Typical TCP/IP Exchange Between Machines,"
below.) Alternative schemes which use a service
server can be used to eliminate a number of server
processes clogging the system while remaining
dormant most of the time. For example, the
Berkeley implemention of the Xerox Courier
protocol uses the latter scheme. (This is an
example only; CTIX does not currently support
Courier.)

When using Courier, a Courier client process
contacts a Courier server at the remote host and
identifies the service it requires. The Courier
server process then creates the appropriate server
process based on a database and "splices" the
client and server together, voiding its part in
the transaction. This scheme is attractive in
that the Courier server process may provide a
single contact point for all services, as well as
carrying out the initial steps in authentication.

Using the Prograaanatic Interface 13-31

However, while this is an attractive possibility
for standardizing access to services, it does
introduce a certain amount of overhead due to the
intermediate process involved. Implementations
which provide this type of service within the
system can minimize the cost of client server
rendezvous. The portal notion described in the
4.2BSD System Manual embodies many of the ideas
found in Courier, with the rendezvous mechanism
implemented internal to the system.

In 4.3BSD, most servers are accessed at well known
Internet addresses or UNIX domain names. When a
server is started at boot time, it advertises it
services by listening at a well know location.
For example, the remote login server's main loop
is of the form shown in Figure 13-3.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

main(argc, argv)
int argc;
char **argv;

(
int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp =•=• NULL) I

fprintf(stderr, "rlogind: tcp/login: unknown service\n")
exit(l);

)
lifndef DEBUG

<<disassociate server from controlling terminal**
tendif

sin.sin_port 3 sp->s_port;

f = socket(AF_INET, SOCK_STREAM, 0);

if (bind(f# (caddr t)&sin, sizeof (sin)) < 0) (

listen(f, 5);
for (;;) (

int g, len = sizeof (from);

g » accept(f, ifrom, ilen);
if (g < 0) !

if (errno I• EINTR)
perror("rlogind: accept");

continue;
}
if {fork{) — 0) [

close(f);
doit(g, ifrom);

i
close(g);

)
)

Figure 13-3. Remote Login Server.

Once a server has established a pristine
environment, it creates a socket and begins
accepting service requests. The bind call is
required to insure the server listens at its
expected location. The main body of the loop is
fairly simples

Using the Prograaanatic Interface 13-33

for (;;) {
int g, len = sizeof (from);
g = accept(f, &from, S.len);
if (g < 0) I

if (errno 1= EINTR)
perror("rlogind: accept");

continue; }
if (fork() ==0) (

close(f);
doit(g, Scfrom);

}
close(g);

An accept call blocks the server until a client
requests service. This call could return a
failure status if the call is interrupted by a
signal such as SIGCLD (to be discussed in
"Programming Techniques," below.). Therefore, the
return value from accept is checked to insure a
connection has actually been established. With a
connection in hand, the server then forks a child
process and invokes the main body of the remote
login protocol processing. Note how the socket
used by the parent for queueing connection
requests is closed in the child, while the socket
created as a result of the accept is closed in the
parent. The address of the client is also handed
the doit routine because it requires it in
authenticating clients.

CLIENT PROCESS

The client side of the remote login service is
shown in Figure 13-2. One can see the separate,
asymmetric roles of the client and server clearly
in the code. The server is a passive entity,
listening for client connections, while the client
process is an active entity, initiating a
connection when invoked.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

To consider more closely the steps taken by the
client remote login process, as in the server
process, the first step is to locate the service
definition for a remote login:

sp " getservbyname("login", "tcp");
if (sp -« NULL) (

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1) ;

)

Next the destination host is looked up with a
gethostbyname call:

hp « gethostbyname(argv[1]);
if (hp " NULL) (

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

)

With this accomplished, all that is required is to
establish a connection to the server at the
requested host and start up the remote login
protocol. The address buffer is cleared, then
filled in with the internet address of the foreign
host and the port number at which the login
process resides:

memset((char *)&sin, * 10*,sizeof(sin));
memcpy hp->h_length), (char *)sin.sin_addr, (hp->h_addr;
sin.sin_family = hp->h_addrtype;
sin.sin_port - sp->s_port;

Using the Prograaanatic Interface 13-35

A socket is created, and a connection initiated:

s = socket(hp->h_addrtype, S OCK_ST REAM, 0);
if (s < 0) {

perror("rlogin: socket");
exit(3); }

if (connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror("rlogin: connect");
exit(4); }

The details of the remote login protocol will not
be considered here.

CONNECTIONLESS SERVER PROCESS

While connection-based services are the norm, some
services are based on the use of datagram sockets.
One, in particular, is the rwho service which
provides users with status information for hosts
connected to a local area network. This service,
while predicated on the ability to broadcast
information to all hosts connected to a particular
network, is of interest as an example usage of
datagram sockets.

A user on any machine running the rwho server may
find out the current status of a machine with the
ruptime (1) program. The output generated is
illustrated in Figure 13-4.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Figure 13-4. Ruptime Display Output

Status information for each host is periodically
broadcast by rwho server processes on each
machine. The same server process also receives
the status information and uses it to update a
database. This database is then interpreted to
generate the status information for each host.
Servers operate autonomously, coupled only by the
local network and its broadcast capabilities.

The rwho server, in a simplified form, is pictured
in Figure 13-5. There are two separate tasks
performed by the server. The first task is to act
as a receiver of status information broadcast by
other hosts on the network. This job is carried
out in the main loop of the program. Packets
received at the rwho port are interrogated to
insure they have been sent by another rwho server
process, then are time stamped with their arrival
time and used to update a file indicating the
status of the host. When a host has not been
heard from for an extended period of time, the
database interpretation routines assume the host
is down and indicates such on the status reports.
This algorithm is prone to error since a server
may be down while a host is actually up, but it
works well in a LAN.

Using the Prograaanatic Interface 13-37

main()
t

ap » getservbyname("who", "udp");
net • getnetbyna®e("localnet")?
sin.sin_addr • inet_makeaddr(INADDR_ANY, net);
sin.sin_port • sp->s_port;

s « socket(AF_INET, SOCKJXSRAM, 0);

bind(s« fcsin, siteof (sin));

signal (SIGALRM, onalrin);
onalrm();
for (;;) {

struct whod wd;
int cc, whod, len * sizeof (from);

cc » recvfrom(a, (char *)&wd, sizeof (struct whod). 0, &from
ilen);

if (cc <- 0) (
if (cc < 0 fcfc errno 1- EINTR)

perror("rwhodt recv");
continue;

)
if (f rora. sin_j>ort I- sp->s—port) (

fprintf(stderr, "rwhod: tdi bad from port\n",
ntohs(from.sin_port));

continue;
)
if (I verify(wd.wd_hostname)) {

fprintf(stderr, "rwhodi malformed host name frcni %x\n
ntohl(from.sin_addr.s_addr));

continue;
)
(void) sprintf(path, Hts/whod.%sM, RWHODIR, wd.wd_hoatname);
whod - open(path, O.WRONLYI 0.CREATE I 0.TRUNCATE, 0666);

(void) time (fcwd.wd_recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod); } 1

Figure 13-5. Example of a Rwho Server.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The second task performed by the server is to
supply information regarding the status of its
host. This involves periodically acquiring system
status information, packaging it up in a message
and broadcasting it on the local network for other
rwho servers to hear. The supply function is
triggered by a timer and runs off a signal.
Locating the system status information is somewhat
involved, but not overly creative. Deciding where
to transmit the resultant packet does, however,
indicate some problems with the current protocol.

Status information is broadcast on the local
network. For networks which do not support the
notion of broadcast, another scheme must be used
to simulate or replace broadcasting. One
possibility is to enumerate the known neighbors
(based on the status received). This,
unfortunately, requires some bootstrapping
information, as a server started up on a quiet
network will have no known neighbors and thus
never receive, or send, any status information.
This is the identical problem faced by the routing
table management process in propagating routing
status information.

The standard solution, unsatisfactory as it may
be, is to inform one or more servers of known
neighbors and request that they always communicate
with these neighbors. If each server has at
least one neighbor supplied it, status information
may then propagate through a neighbor to hosts
which are not (possibly) directly neighbors. If
the server is able to support networks which
provide a broadcast capability, as well as those
which do not, then networks with an arbitrary
topology may share status information. (One must,
however, be concerned about "loops." That is, if
a host is connected to multiple networks, it will
receive status information from itself. This can
lead to an endless, wasteful, exchange of
information.)

Using the Prograaanatic Interface 13-39

The second problem with the current scheme is that
the rwho process services only a single local
network, and this network is found by reading a
file. It is important that software operating in
a distributed environment not have any site-
dependent information compiled into it. This
would require a separate copy of the server at
each host and make maintenance a problem. 4.2BSD
attempts to isolate host-specific information from
applications by providing system calls which
return the necessary information. (An example of
such a system call is the gethostname (2) call
which returns the host's "official" name.)

IPC PROGRAMMING TECHNIQUES

A number of facilities have yet to be discussed.
For most users of the ipc the mechanisms already
described will suffice in constructing distributed
applications. However, others will find need to
utilize some of the features which we consider in
this section.

OUT OF BAND DATA

The stream socket abstraction includes the notion
of " out of band" data. Out of band data is a
logically independent transmission channel
associated with each pair of connected stream
sockets. Out of band data is delivered to the
user independently of normal data along with the
SIGURG signal. (On CTIX systems, this is
equivalent to SIG0SR1). In addition to the
information passed, a logical mark is placed in
the data stream to indicate the point at which the
out of band data was sent. The remote login and
remote shell applications use this facility to
propagate signals from between client and server
processes. When a signal is expected to flush any
pending output from the remote process(es), all
data up to the mark in the data stream is
discarded.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

The stream abstraction defines that the out of
band data facilities must support the reliable
delivery of at least one out of band message at a
time. This message may contain at least one byte
of data, and at least one message may be pending
delivery to the user at any one time. For
communications protocols which support only in-
band signaling (that is, the urgent data is
delivered in sequence with the normal data) the
system extracts the data from the normal data
stream and stores it separately. This allows
users to choose between receiving the urgent data
in order and receiving it out of sequence without
having to buffer all the intervening data.

To send an out of band message the SOF_OOB flag is
supplied to a send or sendto calls, while to
receive out of band data SOF_OOB should be
indicated when performing a recvfrom or recv call.
To find out if the read pointer is currently
pointing at the mark in the data stream, the
SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return
data after the mark. Otherwise (assuming out of
band data has arrived), the next read will provide
data sent by the client prior to transmission of
the out of band signal. The routine used in the
remote login process to flush output on receipt of
an interrupt or quit signal is shown in Figure 13-
6.

Using the Prograaanatic Interface 13-41

oob() {
int out = 1+1;
char waste[BUFSIZ], mark;

signal(SIGURG, oob);
/* flush local terminal input and output */
ioctl(1, TIOCFLUSH, (char *)tout);
for (;;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0)
perror("ioctl");
break;

)
i f (mark)

break;
(void) read(rem, waste, sizeof (waste))

)
recv(rem, &mark, 1, SOF_OOB);

)
Figure 13-6. Flushing Terminal I/O on Receipt of

Out of Band Data.

SIGNAL AND PROCESS GROUPS

Because of the existence of the SIGURG signal,
each socket has an associated process group (just
as is done for terminals). This process group is
initialized to the process group of its creator,
but may be redefined at a later time with the
SIOCSPGRP ioctl:

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for
determining the current process group of a socket.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

PSEUDO TERMINALS

Many programs will not function properly without a
terminal for standard input and output. Since a
socket is not a terminal, it is often necessary to
have a process communicating over the network do
so through a pseudo terminal. A pseudo terminal
is actually a pair of devices, master and slave,
which allow a process to serve as an active agent
in communication between processes and users.
Data written on the slave side of a pseudo
terminal is supplied as input to a process reading
from the master side. Data written on the master
side is given the slave as input. In this way,
the process manipulating the master side of the
pseudo terminal has control over the information
read and written on the slave side.

The remote login server uses pseudo terminals for
remote login sessions. A user logging in to a
machine across the network is provided a shell
with a slave pseudo terminal as standard input,
output, and error. The server process then
handles the communication between the programs
invoked by the remote shell and the user's local
client process. When a user sends an interrupt or
quit signal to a process executing on a remote
machine, the client login program traps the
signal, sends an out of band message to the server
process who then uses the signal number, sent as
the data value in the out of band message, to
perform a kill(2) on the appropriate process
group.

Using the Programmatic Interface 13-43

INTERNET ADDRESS BINDING

Binding addresses to sockets in the Internet
domain can be fairly complex. Communicating
processes are bound by an association. An
association is composed of local and foreign
addresses, and local and foreign ports. Port
numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are
always unique. That is, there may never be
duplicate <protocol, local address, local port,
foreign address, foreign port> tuples.

The bind system call allows a process to specify
half of an association,

<local address, local port>

while the connect and accept primitives are used
to complete a socket's association. Since the
association is created in two steps, the
association uniqueness requirement indicated above
could be violated unless care is taken. Further,
it is unrealistic to expect user programs to
always know proper values to use for the local
address and local port since a host may reside on
multiple networks and the set of allocated port
numbers is not directly accessible to a user.

To simplify local address binding the notion of a
"wildcard" address has been provided. When an
address is specified as INADDR_ANY (a manifest
constant defined in sys/in.h), the system
interprets the address as "any valid address."
For example, to bind a specific port number to a
socket, but leave the local address unspecified,
the following code might be used:

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

•include <sys/types.h>
•include <sys/in.h>

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may
receive messages directed to the specified port
number, and addressed to any of the possible
addresses assigned a host. For example, if a host
is on a networks 46 and 10 and a socket is bound
as above, then an accept call is performed, the
process will be able to accept connection requests
which arrive either from network 46 or network 10.

In a similar fashion, a local port may be left
unspecified (specified as zero), in which case the
system will select an appropriate port number for
it. For example:

sin.sin_addr.s_addr = MYADDRESS;
sin.sin_port = 0;
bind(s, (char *)&sin, sizeof (sin));

The system selects the port number based on two
criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users
(that is, the super user). The second is that the
port number is not currently bound to some other
socket. In order to find a free port number in
the privileged range the following code is used by
the remote shell server:

Using the Prograaanatic Interface 13-45

struct sockaddr_in sin;

lport =• IPPORT_RESERVED - 1;
sin.sin_addr.s_addr - INADDR_ANY;

for (;;) {
sin.sin_port = htons((u_short)lport);
if (bind(s, (caddr_t)isin, sizeof (sin)) >- 0)

break;
if (errno 1= EADDRINUSE && errno I- EADDRNOTAVAIL) {

perror("socket");
break;

)
lport—;
if (lport — IPP0RT_RESERVED/2) {

fprintf(stderr, "sockets All ports in use\n");
break;

)
)

The restriction on allocating ports was done to
allow processes executing in a "secure"
environment to perform authentication based on the
originating address and port number.

In certain cases the algorithm used by the system
in selecting port numbers is unsuitable for an
application. This is because of associations
being created in a two step process. For example,
the Internet file transfer protocol, ftp,
specifies that data connections must always
originate from the same local port. However,
duplicate associations are avoided by connecting
to different foreign ports. In this situation
the system would disallow binding the same local
address and port number to a socket if a previous
data connection's socket were around. To override
the default port selection algorithm then an
option call must be performed prior to address
binding:

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0,
0) ;

bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound
which are already in use. This does not violate
the uniqueness requirement as the system still
checks at connect time to be sure any other
sockets with the same local address and port do
not have the same foreign address and port (if an
association already exists, the error EADDRINUSE
is returned).

Local address binding by the system is currently
done somewhat haphazardly when a host is on
multiple networks. Logically, one would expect
the system to bind the local address associated
with the network through which a peer was
communicating. For instance, if the local host is
connected to networks 46 and 10 and the foreign
host is on network 32, and traffic from network 32
were arriving via network 10, the local address
to be bound would be the host's address on network
10, not network 46. This unfortunately, is not
always the case. For reasons too complicated to
discuss here, the local address bound may be
appear to be chosen at random. This property of
local address binding will normally be invisible
to users unless the foreign host does not
understand how to reach the address selected.
(For example, if network 46 were unknown to the
host on network 32, and the local address were
bound to that located on network 46, then even
though a route between the two hosts existed
through network 10, a connection would fail.)

Using the Prograaanatic Interface 13-47

BROADCASTING AND DATAGRAM SOCKETS

By using a datagram socket it is possible to send
broadcast packets on many networks supported by
the system (the network itself must support the
notion of broadcasting; the system provides no
broadcast simulation in software). Broadcast
messages can place a high load on a network since
they force every host on the network to service
them. Consequently, the ability to send broadcast
packets has been limited to the super user.

To send a broadcast message, an Internet datagram
socket should be created:

s = socke t(AF_INET, SOCK_DG RAM, 0);

and at least a port number should be bound to the
socket:

sin.sin_family = AF_INET;
sin.sin_addr. s_addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin_family = AF_INET;
dst.sin_addr.s_addr = INADDR_ANY;

dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buflen, 0, &dst, sizeof (dst));
Received broadcast messages contain the senders
address and port. (Datagram sockets are anchored
before a message is allowed to go out.)

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

USING SPECIAL SIGNALS

There are two signals that can be used in
conjunction with the interprocess communication
facilities. The SIGURG signal is associated with
the existence of an "urgent condition." SIGUSR1
is currently supplied a process when out of band
data is present at a socket. If multiple sockets
have out of band data awaiting delivery, a select
call may be used to determine those sockets with
such data.

Preventing Zombies

Berkeley 4.3BSD uses the signal SICCHLD to reap
child processes after exiting, thus preventing
"zombie" processes from accumulating. However, in
CTIX Internetworking it is recommended to obviate
the need for reaping child processes by using the
following signal set arguments

signal(SIGCLD, SIG_IGN);

Place the argument in the initialization segment,
before you fork the child process. If the child
dies before you make (1) the argument, the child
may have to be reaped as described in the 4.2BSD
Interprocess Communications Primer.

Using the Programmatic Interface 13-49

TYPICAL TCP/IP PROCESS

A state diagram for establishing a TCP stream
socket (SOCK STREAM) is shown in Figure 13-7.

Figure 13-7. State Diagram for TCP Stream Socket.

13-50 CTIX Internetworking Manual (Preliminary)

The calling program issues a socket call to
AF_INET (Address Family Internet) to get access to
the net.

TCP returns a file descriptor. If the calling
program wishes a particular circuit, it looks in
/etc/services, using a qetservent library call,
for the port assignment for the service it
requires and issues a bind call to that address
number. For example, the service ftp is commonly
assigned port 21.

The program gives the port of origin and the the
full destination address (family, port, host
address).

(Well known services have permanently assigned
ports.) TCP ports are logical ports associated
with sockets, not physical communications ports.
(See /etc/services for standard port assignments.)
TCP allocates the port to the calling program. If
the program does not ask to bind a port, TCP
assigns one when it receives the connect call.

The calling program then issues a connect call by
identifying its own full address and the full
destination address. IP addresses should be
retrieved through the gethostent call.

When the connection completes, the connection is
established, the calling program writes and/or
reads.

If the write exceeds the maximum packet size, TCP
breaks it up into separate packets.

Using the Prograaanatic Interface 13-51

The receiving server does much the same thing at
the other end, a socket call and a bind call. The
receiving server then makes a listen call and an
accept, which says, "Wait for a call, and if one
comes in, give it to me." In the example of the
ftp server, when ftp accepts a call, it spins off
a child process which takes over the ftp
operations. The original ftp demon goes back to
waiting for another call. The child process takes
over the new connection.

The TCP protocol on each machine keeps track of
multiple concurrent sessions between machines by
assigning numbered ports to the sessions. For
example, session A is between machine 1.1, port 4
and machine 1.2, port 2; while session B is
between machine 1.1, port 5 and machine 1.2, port
3, and so on.

TYPICAL UDP PROCESS

A state diagram for establishing a UDP datagram
socket (SOCK_DGRAM) is shown in Figure 13-8.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

Figure 13-8. State Diagram for UDP Datagram
Socket.

PROGRAMMING HINTS

ADDING AND CHECKING FOR SERVICES

When you need to add a new service, you must add
its name to the /etc/services file. In your
program you can issue a call to look into
/etc/services to make sure it is on the system,
before using it in your program. See
getservent(3N) and Chapter 8, "Network
Management."

Using the Prograaanatic Interface 13-53

ERROR HANDLING IN PROGRAMMING

(See Chapter 14, "Troubleshooting.")

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

14 TROUBLESHOOTING

CTIX has approximately 70 generic error codes.
Generally, each system service maps it error
condition to these codes. Some errors have been
added for TCP/IP. (See the appropriate CTIX
Operating System Manual.)

MIGHTYFRAME OPERATOR MESSAGES

There is no fixed set system console on the
MightyFrame. If an operator response is required,
the system looks for any active terminal. System
error messages are logged in /etc/log/confile.

ERROR HANDLING IN PROGRAMMING

You should check for error returns after every
system call. Most calls have one or more error
returns. These errors are described in the call
description in the appropriate CTIX Operating
System Manual. An error condition is indicated by
an otherwise impossible returned value. This is
almost always -1. An error number is made
available in the external variable errno. Errno
is set only when an error incurred and is not
cleared on successful calls, therefore test it
only after an error has been indicated. Use
perror(3C) to print error messages. (For a
complete list of the 88 or more error returns
found in errno.h, see intro(2) in the appropriate
CTIX Operating System Manual. Note that the error
numbers are subject to change.)

Troubleshooting 14-1

ERROR MESSAGES

DATAGRAM SOCKET ERROR MESSAGES

If information at the sending node indicates that
the message cannot be delivered, for instance,
when a network is unreachable, the call
returns - 1 and the global value errno will
contain an error number.

ALPHABETICAL LIST OP ERROR MESSAGES

The following is an alphabetical list of
internetworking error message which can be
displayed on the terminal or console. The
protocol or operation during which the error is
likely to occur is given at the beginning of the
explanation.

EADDRINUSE TCP and UDP. An attempt was made
to create a socket with a port
which has already been allocated.

EADDRNOTAVAIL TCP and UDP. An attempt was made
to create a socket with a network
address for which no network
interface exists.

Socket Connection. The host
refused service for some reason.
This error is usually caused by a
server process not being present at
the requested name.

(See ENETDOWN)

(See ENETUNREACH)

TCP. The remote peer actively
refuses connection establishment
(usually because no process is
listening to the port).

ECONNREFUSED

EHOSTDOWN

EHOSTUNREACH

ECONNREFUSED

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

ECONNRESET TCP. The remote peer forced the
session to be closed.

EISCONN IP and UDP. An attempt was made to
establish a connection on a socket
that already has one or an attempt
was made to send a datagram with
the destination address specified
and the socket is already
connected.

EISCONN TCP. An attempt was made to
establish a connection on a socket
that already has one.

ENETDOWN or EHOSTDOWN
Socket Connection. Status
information received by the client
host from the underlying
communication services indicates
the net or the remote host is down.

ENETUNREACH or EHOSTUNREACH
Socket Connection. These
operational errors can occur either
because the network or host is
unknown (no route to the host or
network is present) or because
status information to that effect
has been delivered to the client
host by the underlying
communication services.

ENOBUFS TCP, IP, and UDP. Any Socket
Operation. The system lacks
sufficient memory for an internal
data structure.

ENOTCONN UDP. An attempt was made to send a
datagram, but no destination
address is specified, and the
socket has not been connected.

Troubleshooting 14—3

EPROTONOSUPPORT
Creating a Socket. Unknown
protocol or protocol not supported.

EPROTOTYPE Creating a Socket. Socket type
request has no supporting protocol.

ETIMEDOUT Socket Connection. After failing
to establish a connection during a
period of time (excessive
retransmissions), the system
decided there was no point in
retrying any more. The cause for
this error is usually that the
remote host is down or that
problems in the network resulted in
transmissions being lost.

(For additional networking error messages, see
MegaFrame CTIX Operating System Manual.)

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

APPENDIX A TELNET COMMAND SUMMARY

This appendix contains a brief summary of the
commands available within telnet. Telnet is
described in Chapter 3, "Using the Virtual
Terminal."

Command names are in bold face,
underlined.

Arguments are

AO send abort output
AYT send are you there
BREAK send break
EC send erase character
EL send erase line
IP send interrupt process
SYNCH send synch
crmod toggle cr mapping mode
close close the connection
escape change the escape character
help help
open node establish a connection
options toggle option display
quit exit telnet
status show telnet status

Telnet Command Summary A-l

APPENDIX B FTP COMMAND SUMMARY

This appendix contains a brief summary of the
commands available within ftp. Command names are
in bold face. Arguments are underlined. Optional
arguments are enclosed in square brackets.

i
append local-file Jremote-file]
aacii
bell
binary
bye
cd remote-directory
close
copy hostl:fllel host2:file2
delete remote-file
debug
dir [remote-directory3 [local-file]
get remote-file Clocal-file]
form
glob
hash
help [command-name]
led directory
la remote-directory local-file
•delete remote-files
•dir remote-files local-file
•get remote-filea
•kdir directory-name
•la remote-files local-file
•put local-files
open host [port]
praapt
put local-files remote-file
pwd
quit
quote arql arg2 ...
recv remote-file [local-file]
reaotehelp [command-name]
rename remote-file remote-file
nadir directory-name
aend local-file remote-file
sendport
statua
trace
type [type-name]
uaer user-name [password] [account]
verboee
? [command]

invoke a shell
append a file
use ascii file transfer mode
toggle bell mode
use binary file transfer mode
exit ftp
change remote directory
close current connection
copy file
delete file
toggle debug mode
list directory
receive a file
set file transfer format
toggle wild card expansion
toggle hash display mode
help
change local directory
list directory
delete multiple files
directory for multiple files
receive multiple files
make directory
directory for multiple files
send multiple files
open a connection
toggle prompt mode
send a file
show remote directory
exit ftp
send a string
receive a file
remote help
rename a file
delete a directory
send a file
toggle send port mode
display ftp status
toggle trace mode
set file transfer type
login to a remote machine
toggle verbose mode
help

Ftp Command Sumary B-l

APPENDIX C SAMPLE /etc/rc FILE

TZ=~ cat /etc/TZ*; export TZ
PATH=/bln:/usr/bin:/etc:/usr/local/bin; export PATH

set UUCP node name here
setuname -n network

uncommont the f ollowing 1ine to set Che internet address.
: /etc/setaddr
if [! -f /etc/mnttab]
then

> /etc/mnttab
devmn / | setmnt

fl
tt coming from single going to multi
set "who -r"
if [\("99" = "S" \) -a \("$7" = "2" -o "$7M = "3" \)]
then

: put mounts in mountable
/etc/mountable
rm -f /usr/adm/acct/nite/lock*
/usr/1lb/ex3.9preserve -
tt BACCT (marker for scripts)

tt /bin/su - adm -c /usr/1ib/acct/startup
tt echo process accounting started

ft EACCT
tt BERK (marker for scripts)
/etc/errdead -ae
echo errdemon started
tt EERR
tt BSAR (marker for scripts)

tt /bin/su - sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa"date +%d* &"
tt ESAR
test -f /usr/adm/sulog mv /usr/adm/sulog /usr/adm/OLDsulog
test -f /usr/llb/cron/log && »v /usr/lib/cron/log /usr/1lb/cron/OLDlog
> /usr/1lb/cron/log
/etc/cron
echo cron started
/etc/update 30&
echo update started
mv /usr/tmp/oas.• /usr/preserve/. 2>/dev/nu11
rm -rf /tmp/*
rm -rf /usr/tmp/*
mv /usr/preserve/oas.• /usr/tmp/. 2>/dev/null
rm -f /usr/spool/uucp/LCK*

tt To invoke the lp spooler, uncomment the following lines, and comment
tt the lines concerning lpr/lpd.

tt BLP (marker for scripts)
rm -I /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo "LP Scheduler Started"
tt ELP
tt BLPR (marker for scripts)

tt rm -f /usr/spool/lpd/lock
tt /usr/lib/lpd

tt ELPR
/etc/enpstart network && echo Ethernet Processors Started

tt BNET (marker for scripts)
DEMONS=1 rlogind rshd telnetd uucpd'
echo Starting Network Demons: " \c"
for 1 in $DEMONS
do

/etc/9i
echo $l " \ c" done

echo
tt ENET
tt Set attributes for parallel line printer
ttlpset -i4 -C132 -166

Sample /etc/rc file C-l

APPENDIX D SAMPLE /etc/hosts FILE

List of hosts on the CT Engineering Net.
To add a new host, nail it to Ton Faulhaber who will
distribute it to the net.
The Engineering Ethernet is defined to be network #3 for
no apparent reason. Other network numbers will be created as
needed. See the /etc/networks file for more Information.

tt Machines in the Distributed Unix Group
3. 38
3.12
3 .10
3.14

network
tom-src net3
tom-test net2
andrew

« MiniFrame & TWS Machines
3.16 mifa
3.26 mlni+
MightyFrame Team Machines
3.20
3.18 3.44

moose2 dateserver
mitimouse
raymini

Network Development Mighty - Tom Faulhaber
Network Source Machine - Tom Faulhaber
Network Test Machine - Tom Faulhaber
tt Network Development - Andrew Knutsen

tt MiniFrame Group Development - Rob Farnum
tt Rob Farnum's mini frame plus.

tt MightyFrame Development - Chris Wagner.
MightyFrame Test - Bruce Beare.
tt Ray Bloom's MiniFrame.

General Engineering (Non-development) Machines
3.22
3.24

ml fb
mi fc

tt MiniFrame Hardware - Jamie Riotto.
tt Engineering Management - Carl Rlgg.

Unix Communications Development
3.26 TQmlnl
3.32 BTJmini
3.42 vbmlnl

tt Comm Group MiniFrame - Hemant
tt Comm Group MiniFrame - Bent Jensen,
tt V.B.'s MiniFrame.

tt Commands and Languages
3 . 34
3. 36 JJs wiltse
tt Design Verification.
3.46
3.48

dvl
dv2

tt John Sancho's MiniFrame.
tt Wiltse Carpenter's MiniFrame.

tt Design Verification Mini #1. T.S. Reddy
tt Design Verification Mini #2. T.S. Reddy

tt Network ttl is Tom's asynchronous serial network. 1 .1 1. 2
tt 1 .10

serlall
serla12
tom-test net2

tt Serial test station ttl (tom-test).
tt Serial test station #2 (tom-src) .
tt Network Test Machine - Tom Faulhaber

127.1 loopback tt generic loopback port.

Sample /etc/hosts File D-l

APPENDIX E SAMPLE /etc/networks FILE

This file describes the various networks and gateways
t used at CT.

I If you add a new gateway you should mail it to Tom Faulhaber
• who will update the network.

Serial-Net 1 t Tom* l B Serial Test Network.
Engineering-Net 3 » Main CTIX Development Ethernet.
X25-Net 5 * X.25 Based Network (Comm Group).
DV-Net 7 # Cornn Design Verification's Ethernet
Loopback 127

Sample networks File E-l

APPENDIX F SAMPLE /etc/gethosts FILE

UPD_UUCP=TRUE
UPD_LP=FALSE
UPD_RWHO=TRUE
UPD_HOSTS=TRUE
UPD_MAILX=TRUE

NODE=tom-src
error="fgrep -v 'bytes received' | egrep '~5|Unknown host'"
cd /tmp
/usr/local/bin/ftp -n <<eof 2>41 | eval terror
open 9NODE
user ftp ftp
verbose
cd gethosts
get hosts
get networks
9et mailx.rc
bye
eof
If [9? -eq 0]
then

echo Can\1t get current hosts file -- FAILED,
exit 1

fl
if [! -s /tmp/hosts]
then

echo Hosts file is zero length -- FAILED,
rm -f /tmp/hosts
exit 1

fi
cap -s /tmp/hosts /etc/hosts
if [9? -eq 1]
then

mv /etc/hosts /etc/OLDhosts
cp /tmp/hosts /etc/hosts
chown bin /etc/hosts
chgrp bin /etc/hosts
chmod 644 /etc/hosts
echo Updating file /etc/hosts from 9N0DE

else
echo Host file Is up-to-date

fi
rm -f /tmp/hosts
cmp -s /tmp/networks /etc/networks
If [9? -eq 1]
then

mv /etc/networks /etc/OLDnetworks

cp /tmp/networks /etc/networks
chown bin /etc/networks
chgrp bin /etc/networks
chmod 644 /etc/networks
echo Updating file /etc/networks from 9NODE

else
echo Network file is up-to-date

fl
rm -f /tmp/networks
« This part of gethosts updates the various files based on variables
set at installation time.

Sample /etc/gethosts File F-l

SAMPLE /etc/gethosts FILE
(continued)

if ["9UPD_UUCP" = "TRUE"]
then

update L.sys
cp /usr/lib/uucp/L.sys /usr/lib/uucp/OLDL.sys
fgrep -v INET /usr/lib/uucp/L.sys >/tmp/Ll tt remove names to avoid dup
for i in *awk ' 91 ! = { print 92 >' /etc/hosts"
do

echo "91 Any INET 9600 nuucp" >> /tmp/Ll
done
mv /tmp/Ll /usr/lib/uucp/L.sys
chmod 400 /usr/lib/uucp/L.sys
chown uucp /usr/lib/uucp/L.sys
chgrp bin /usr/lib/uucp/L.sys

update /usr/spool/uucppublic/.rhoscs
mv -f /usr/spool/uucppublic/.rhosts /usr/spool/uucppublic/OLDrhosts
cat </dev/null >/usr/spool/uucppubllc/.rhosts
for i in "awk • 91 •= { print 92 >' /etc/hosts*
do

echo 9i uucp >>/usr/spool/uucppublic/.rhosts
done
chown nuucp /usr/spool/uucppublic/.rhosts
chgrp bin /usr/spool/uucppublic/.rhosts
chmod 400 /usr/spool/uucppublic/.rhosts
echo UUCP updated

fl
if ["9UPD_LP" = "TRUE"]
then

mv /usr/spool/lp/.rhosts /usr/spool/lp/OLDrhosts
cat </dsv/null >/u»r/spool/lp/.rhosts
for 1 in 'awk ' 91 #" { print 92 >' /etc/hosts*
do

echo 91 lp >>/usr/spool/lp/.rhosts
done
chown lp /usr/spool/lp/.rhosts
chgrp bin /usr/spool/lp/.rhosts
chmod 400 /usr/spool/lp/.rhosts
echo LP updated

F-2 CTIX Internetworking Manual (Preliminary)

SAMPLE /etc/gethosts FILE
(continued)

tt check the rwho stuff to make sure there are no discontinues machines.
if ["9UPD_RWH0" - "TRUE"]
then

for i in *awk ' 91 ! = "tt" { print 92 }' /etc/hosts"
do

echo whod.9l >>/tmp/sysllst
done
cd /usr/spool/rwho
for 1 in *
do

fgrep -x 91 /tmp/sysllst >/dev/null 2>&1
if [9? -ne 0 3
then

rm -f 9i
echo Removed /usr/spool/rwho/91

fl
done
rm -f /tmp/syslist
echo Remote Who data updated.

fl
tt update the /usr/hosts directory
if ["9UPD_H0STS" = "TRUE"]
then

rm -f /usr/hosts/*
/etc/mkhosts
echo /usr/hosts directory updated

fi
tt update the /usr/llb/mailx directory
If ["9UPD_MAILX" = "TRUE"]
then

If [! -f /usr/lib/mailx/local.rc]
then

cat /dev/null >/usr/llb/mailx/local.rc
chown bin /usr/lib/mallx/local.rc
chgrp bin /usr/llb/mallx/local.rc
chmod 644 /usr/llb/mallx/local.rc

fi
if [! -f /Usr/1ib/mailx/mcllx.rc]
then

cat /dev/null >/usr/lib/mallx/mallx.rc
fi
cmp -s /tmp/mallx.rc /usr/lib/mallx/mailx.rc
if [9? -eq 1]
then

mv /usr/llb/mallx/mallx.rc /usr/lib/mailx/OLDmailx.rc
mv /tmp/mallx.rc /usr/llb/mailx/mallx.rc
chown bin /usr/1ib/mallx/mailx.rc

chgrp bin /usr/lib/mallx/mailx.rc
chmod 644 /usr/1lb/mallx/mailx.rc
echo /usr/llb/mailx directory updated

else
echo /usr/llb/mailx directory is up-to-date

fl
fl
rm -f /tmp/mailx.rc

Saraple /etc/gethosts File F-

APPENDIX G INTERNET ADDRESSES

Theoretically, an internet address is available
for any machine in the world implementing TCP/IP
networking protocols. This address is provided by
DARPA addressing scheme. These numbers are
assigned by the University of Southern California
Sciences Institute.

An internet address is made up of an address class
identifier, a network number, and a local host
address number. The address class identifier is
either 0, 10, or 110 for Class A, B, or C,
respectively. The network number identifies a
unique physical network in the internet. The
local address carries information to address a
host in the network identified by the network
number.

The internet address is a 32-bit quantity
formatted differently in three types, or classes,
to accommodate different network size
configurations. Class A allocates a 7-bit network
number and a 24-bit local address. Class B
allocates a 14-bit network number and a 16-bit
local address. Class C allocates a 21-bit network
number and an 8-bit local address. Figure G-l
gives the formats of the address types.

This system provides a unique address for the
entire statistical distribution that might be
expected in the total population of networks using
this address system. There would be a smaller
number of large network, having many nodes (Class
A), and a larger number of small networks,
consisting of a lesser number of nodes (Class C),
and a medium number of network made up of a medium
number of nodes (Class B).

Internet. Addresses G-l

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 * 5 6 7 8 9 0 1

101 NETWORK | L o c a l Addrass

C l a s s A Addrass

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+—(—I—I—-t—-I—I—H—K—I—I—I—I—1-—t—I—t—I—t-

II 0| NETWORK | L o c a l Addrass |

C l a s s a Addrass

l 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+ - + - + - + - + - + - + - + - + - + - H I—+-+-+-+—I
U 1 01 NETWORK | L o c a l Addrass I
+ - + _

C l a s s C Addrass

Figure G-l. Classes of Internet Addresses

Because each network can have a particular address
format and length (class A, B, or C) , the IP maps
between the internet local addresses and the
actual address format used in the particular
network. For information on the mapping
relationship between address fields used in the
Internet Protocol and specific network such as
ARPANET, see RFC 814 in the Internet Protocol
Transition Workbook.

Glossary-6.1 CTIX Internetworking Manual (Preliminary)

GLOSSARY

alias. An alias is an alternate host name, which
can be created as a convenience in addressing a
host on a local network whose unique primary name
is long and/or complicated.

ARP. Address Resolution Protocol is used by
Ethernet for address mapping.

ARPA. Now called DARPA, stands for Defense
Advanced Research Projects Agency. ARPANET is the
network based on the work sponsored by this
agency. See also DDN.

block. A block (noun) is usually 1024 bytes.

broadcast network. A broadcast network is one
that "broadcasts" all transmissions instead of
from point to point. Each node then "grabs" the
transmissions intended for them. For example,
Ethernet broadcasts down its bus.

BSD. Berkeley Software Distribution.

bus. A set of parallel signals implemented in
hardware in a standard manner so that multiple
devices can access it and communicate over it.
The MightyFrame uses the VME bus. The MegaFrame
uses the Multibus indirectly through an adapter,
the MiniFrame uses a proprietary bus.

comuni cat ions server. A communications server is
a user-shareable system service installed on a
specific machine and is accessed by the user
explicitly to provide a communications link to an
specific outside service. An example of a
communications server is an X.29 pad.

connection. A connection is a logical
communication path identified by a pair of
sockets.

Glossary-1

CTIX machine. A MightyFrame, MiniFrame, or
MegaFrame or other computer that run the CTIX
operating system.

DARPA. Department of Defense Advanced Research
Project Agency, formerly called ARPA. This agency
sponsored the network architecture research
project upon which ARPANET is based. ARPANET is a
large governmental internetwork, called the
Internet, part of which is the Defense Data
Network (DDN). See also DDN and Internet.

data link level. Data link level is the
communications protocol for the physical media-
link used to transport the data.

datagram. A datagram is a message sent in a
packet switched computer communications network.
The message made up of source and destination
addresses and the data itself. The datagram model
implies that no connection, such as a virtual
circuit is needed, to send them and that they are
not required to be delivered reliably or in
sequence. See also packet.

DDN. Defense Data Network. The Defense Data
Network (DDN) is a set of communications
capabilities which links together computer systems
within the Department of Defense (DoD). The DDN
allows users of these computer systems to send
mail and files between systems and to access other
computers on the network in interactive terminal
sessions. The DDN is part of the DARPA Internet.
See Internet.

DDN Network Gateway. The DDN Network Gateway is a
special product that allows users of the MegaFrame
running the CTIX operating system to access the
Defense Data Network and communicate with other
machines on the network. For more information see
DDN MegaFrame Reference Manual.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

demon. A demon is a CTIX system service. It is a
program that is active in the background but not
connected to a terminal.

destination. The destination address, an internet
header field.

destination Address. The destination address,
usually the network and host identifiers.

download. To download is to move an executable
server from a CTIX file that would usually run in
the processor's main memory to an intelligent
circuit board that on the processor bus. The
intelligent board then executes the server.

ENP. Ethernet Node Processor.

Flags. Flags is an internet header field carrying
various control flags.

flow control. Flow control is the function and
process of regulating the traffic and amount of
data between flowing nodes so that neither node is
sent more data than it can handle at a given time.

gateway. A software service installed at a
switching node that connects two or more networks,
especially if they use different protocols. A
gateway provides CTIX internetworking with an
extended logical network by transparently
attaching one or more physical networks. See also
communications server.

header. A header is the control information at
the beginning of a message, segment, datagram,
fragment, packet or block of data.

host. A host is a computer. In particular a
source or destination of messages from the point
of view of the communication network.

Gl08sary-3

ICMP. Internet Control Message Protocol. ICMP is
used by a gateway or destination host to
communicate with a source host, for example, to
report an error in datagram processing. ICMP,
uses the basic support of IP as if ICMP were a
higher level protocol, however, ICMP is actually
an integral part of IP, and must be implemented by
every IP module.

Identification. Identification is an Internet
Protocol field. This identifying value assigned
by the sender aids in assembling the fragments of
a datagram.

install. Install means to move the executable
files from the distribution media to the system
disk. In context, install can also mean to
perform all the steps necessary to make a server
or protocol operative.

Internet. The Internet (spelled with initial
capitalization) is the DARPA Internet System. See
DARPA.

Internet Address. Internet Address is a source or
destination address specific to the host level.
It consists of a four octet (32 bit) source or
destination address consisting of a Network field
and a Local Address field.

Internet datagram. An internet datagram is the
unit of data exchanged between a pair of internet
modules (includes the internet header).

internet module. An internet module is an
instance or individual implementation of the
Internet Protocol, residing at a local host or
gateway.

Internet Protocol. Internet Protocol (IP) is the
network level protocol used by CTIX
internetworking.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

internetwork. An internetwork is a supernetwork
made up of two or more networks able to
communicate with each other through gateways. See
gateway.

IP. See Internet Protocol.

layer. A layer is a network function or set of
related network functions that forms an autonomous
functional block in the superset of network archi-
tectural functions. This method of partitioning
the necessary network functions allows each layer
to interface transparently to adjoining layers and
thereby provides a method of making network compo-
nents more manageable.

load. Load means to execute a command which
causes a loadable driver, demon, or system service
to be called into memory and become active.

Local Address. The Local Address the address of a
host within a network. The actual mapping of an
internet local address on to the host addresses in
a network is quite general, allowing for many to
one mappings.

local packet. A local packet is the unit of
transmission within a local network.

machine. A machine is a host computer. The use
of this term is similar to "host," and "node," but
"machine" connotates the machine-specific or
hardware aspects of the host computer, whereas
"node" connotates the logical aspects of a network
host. Host connotates the relationship of the
local node machine to application systems and
remote hosts.

Glossary-5

MegaFrame CTIX X.25 Interface. The MegaFrame CTIX
X.25 Interface is a loadable server for the
MegaFrame that provides in interface to an X.25
PDN for the CTIX TCP/IP-X.25 Interface and other
applications. Its counterpart on the MightyFrame
is the MightyFrame X.25 Network Gateway.

mbuf. A memory buffer is a unit of memory usage
used in the Memory Usage display of netman. Each
mbuf uses 128 bytes of memory

MightyFrame CTIX TCP/IP-X.25 Interface. The
MightyFrame CTIX TCP/IP-X.25 Interface is an
optional internetworking product that allows
TCP/IP to access the MightyFrame X.25 Network
Gateway.

module. A module is an implementation, usually in
software, of a protocol or other procedure.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

network. A network is a collection of computer
nodes able to communicate with each other.

network interface. A network interface is the
hardware and driver software that connects a host
to a physical network.

octet. An octet is an eight bit byte.

OS I (Open Systems Interconnection). OS I is a
standard of the ISO. This standard attempts to
provide for consistent hardware and software
interfaces among network products. OSI and other
standard setters such as IBM and the National
Bureau of Standards generally divide network
architecture into seven layers: physical, link,
network, transport, session, presentation, and
application.

packet. A packet is a package of data with a
header which may or may not be logically complete.
More often a physical packaging than a logical
packaging of data.

packet-switching. Packet switching is a method
used by certain networks to transfer data. The
data is transmitted in small segments called
packets. The network communications link is used
only when the packet is being transmitted.

PAD. (Packet Assembler Disassembler). The CTIX
X.3/X.28/X.29 PAD is an application/presentation
level installed service that allows any terminal
to communicate with the X.25 Network Gateway.

PDN. Public Data Network.

pipes. "Pipes" are a programming feature of CTIX
systems that allows terminal I/O to be redirected.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

point-to-point. Point-to-point is a network
configuration in which two points are connected to
each other by a dedicated line, which can be a
direct cable connection, a leased line, or a
dialup to a service providing dedicated lines.

port. A port is the portion of a socket that
specifies which logical input or output channel of
a process is associated with the data.

process. A process is a program in execution. A
source or destination of data from the point of
view of the TCP or other host-to-host protocol.

protocol. A protocol, in general, is a set of
rules that enable a network entity to understand a
communicating entity; however, the entity that
employs these rules, such as the transport level
protocol, TCP, is commonly referred to as a
protocol. Therefore, a protocol is a software
entity that implements a specific layer or
function in a network architecture.

In using the programmatic interface, a protocol is
the next higher level protocol identifier, an
internet header field.

reap. To reap children is to an activity of the
parent process which prevents child processes that
have died from accumulating as zombies. A child
process dies when it exits. See zombie.

RFC. Request For Comment.

root. Root is the login name of the super user.
The super user is the user who has the widest form
of machine privileges.

Glossary-7

routing. Dynamic, or adaptive, routing is the
ability to transfer data automatically to the
destination node via alternative paths consisting
of one or intermediate nodes. Routing includes
the ability to ascertain available paths and to
decide the best path, taking into account topology
changes or node failures as they occur.

search path. A predefined path of directories
that the shell follows when looking for a file you
have specified.

server. A server is a system service, called a
demon. It is usually a user program that runs in
background, in user space, to provide a defined
set of functions to the user who uses it through
the command interface. Each time a user invokes
it, the server provides a separate process for
that user.

shell script. A shell script program is a file
containing a series of command language statements
that are executed by the shell (sh(l)) to perform
various functions, especially those using
interprocess communication.

socket. A socket is a file descriptor made up of
system of data structures and pointers used by the
kernel to identify and keep track of a process.
It is an address which specifically includes a
port identifier, that is, the concatenation of an
Internet Address with a TCP port. Sockets are
transparent to the user. Programs must open
sockets to access network functions. Any one
process cannot have more than 20 open files at a
given time.

super user. See root.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

TCP. Transmission Control Protocol is a transport
level, connection-oriented protocol that provides
reliable end-to-end message transmission over an
internetwork.

tuple. A tuple is a mathematical term for set of
numbers composed of two or more factors. For
example: [(XY)(AB)].

UDP. User datagram protocol is an unreliable user
level transport protocol for transaction-oriented
applications. It handles datagram sockets. It
uses the IP for network services.

uname. Uname (UNIX name) is the name of the host
machine. It is assigned in the file /etc/rc. The
name must be in the file because the machine reads
it at boot time to relearn its name.

user. The user of the internet protocol. This
may be a higher level protocol module, an
application program, or a gateway program. See
also Network User.

VME. A standard microcomputer bus originated by
Motorola. The MightyFrame provides for an
optional upgrade which includes a bus translator
board called the VME interface board. This board
interfaces to the proprietary local I/O bus. The
VME board accepts the Ethernet board.

volume home block. The volume home block is the
disk block on MiniFrame and MightyFrame that
describes the disk layout.

X.25. X.25 is a circuit-switched network protocol
used commonly in Europe and less so in the United
States. X.25 is based on a three-layer, peer-
communications protocol standard defined by the
International Telegraph and Telephone Consultative
Committee (CCITT).

Glossary-9

X.25 Network Gateway. The MightyFrame X.25
Network Gateway is a loadable server that provides
in interface to an X.25 PDN for the CTIX TCP/IP-
X.25 Interface and other applications.

X.25 Interface. See MegaFrame CTIX X.25 Interface
or MightyFrame CTIX TCP/IP-X.25 Interface.

XNS. Xerox Networking System is a network and
transport level protocol originally developed by
Xerox to network Ethernet LANs. It is currently
used widely to support Ethernet-like LANs and
gateways.

zoabie. A zombie is a child process that has died
and not been reaped. See reap.

Glossary-6.1 CTIX Internetworking Manual
(Preliminary)

