
CTIX™ OPERATING SYSTEM MANUAL

Version C
Volume 1

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document
Designer, The Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220,
S/320, S/640, S/1280, Multibus, TeleCluster, Voice/Data Services,

Voice Processor, WGS/Calendar, WGS/Desktop Manager,
WGS/Mail, and X-Bus are trademarks of

Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under license from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator's/User s
Reference Manual and Programmer's Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/320 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02262-01

Copyright © 1989 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 1

Summary of Changes vii
Guide to Technical Documentation ix
How to Use This Manual xvii
How to Get Started xxi
Permuted Index xxvii

1. Commands and Application Programs: A-L
Table of Related Entries Section 1
intro introduction to commands and application programs
300 handle special functions of DASI300 and 300s terminals
4014 paginator for the Tektronix 4014 terminal
450 handle special functions of the DASI 450 terminal
Uutrv trv to contact a remote svstem with deHn uovpo nn v -J DO O " "
accept allow or prevent LP requests
acct overview of accounting and miscellaneous accounting commands
acctcms command summary from per-process accounting records
acctcom search and print process accounting file(s)
acctcon connect-time accounting
acctmerg merge or add total accounting files
acctprc process accounting
acctsh shell procedures for accounting
adb absolute debugger
adman administer a CTIX system
admin create and administer SCCS files
adv advertise a directory for remote access
ar archive and library maintainer for portable archives
arp address resolution display and control
as common assembler
asa interpret ASA carriage control characters
assist assistance using system commands
astgen generate/modify ASSIST menus and command forms
at execute commands at a later time
awk pattern scanning and processing language
banner make posters
basename deliver portions of path names
be arbitrary-precision arithmetic language
bcheck print the list of blocks associated with an
bcopy interactive block copy
bdiff big difif
bfs big file scanner
brc system initialization procedures
bs a compiler/interpreter for modest-sized programs
cal print calendar
calendar reminder service
captoinfo convert a termcap description into a terminfo description

- xxxviii -

cat concatenate and print files
cb C program beautifier
cc C compiler
cclsw front-end to the cc command
cd change working directory
cdc change the delta commentary of an SCCS delta
cflow generate C flowgraph
chkshlib compare shared libraries tool
chmod change mode
chown change owner or group
chroot change root directory for a command
chrtbl generate character classification and conversion tables
ckbupscd check file system backup schedule
clear clear terminal screen
clri clear i-node
cmp compare two files
col filter reverse line-feeds
comb combine SCCS deltas
comm select or reject lines common to two sorted files
config configure a CTIX system
conlocate locate a terminal to use as the virtual system console
conv common object file converter
convert convert archive files to common formats
cp copy, link, or move files
cpio copy file archives in and out
cpp the C language preprocessor
cprs compress a common object file
cpset install object files in binary directories
crash examine system images
createdev create device nodes for assorted device types
cron clock daemon
crontab user crontab file
crypt encode/decode
csh a shell (command interpreter) with C-like syntax
csplit context split
ct spawn getty to a remote terminal
ctags create a tags file
ctinstall install software
ctrace C program debugger
cu call another UNIX system
cut cut out selected fields of each line of a file
cw prepare constant-width text for troff
cxref generate C program cross-reference
date print and set the date
dbconsole change the kernel debugger system console port
dc desk calculator
dcopy copy file systems for optimal access time
dd convert and copy a file
delta make a delta (change) to an SCCS file
deroff remove nrofl/trof£ tbl, and eqn constructs
devnm device name
df report number of free disk blocks and i-nodes

- xxxviii -

diff differential file comparator
difB 3-way differential file comparison
diflmk mark differences between files
dircmp directory comparison
dis object code disassembler
diskusg generate disk accounting data by user ID
dname print Remote File Sharing domain and network names
du summarize disk usage
dump dump selected parts of an object file
echo echo arguments
ed text editor
edit text editor (variant of ex for casual users)
efl extended FORTRAN language
egrep search a file for a pattern using full regular expressions
enable enable/disable LP printers
enpstart configure Ethernet processor
env set environment for command execution
eqn format mathematical text for nroff or troff
errdead extract error records and status information from dump
errdemon error-logging demon
errpt process a report of logged errors
errstop terminate the error-logging demon
ex text editor
expand expand tabs to spaces, and vice versa
expr evaluate arguments as an expression
extproc turn external processing on or off
factor obtain the prime factors of a number
ff lg 0
fgrep search a file for a character string
file determine file type
fine fast incremental backup
find find files
finger user information lookup program
fingerd remote user information server
fold fold long lines for finite width output device
free recover files from a backup tape
fsck check and repair file systems
fsdb file system debugger
fsize report file size
fsplit split FORTRAN, ratfor, or efl files
fsstat report file system status
fstyp determine file system identifier
ftp ARPANET file transfer program
ftpd DARPA Internet File Transfer Protocol server
fumount forced unmount of an advertised resource
fusage disk access profiler
fuser identify processes using a file or file structure
fwtmp manipulate connect accounting records
gdev graphical device routines and filters
ged graphical editor
gencc create a front-end to the cc command
get get a version of an SCCS file

- xxxviii -

getopt parse command options
getopts parse command options
getservad get network address of service host
getty set terminal type, modes, speed, and line discipline
glossary definitions of common CTTXT system terms and symbols
graph draw a graph
graphics access graphical and numerical commands
greek select terminal filter
grep search a file for a pattern
gutil graphical utilities
hd hexadecimal and ascii file dump
head give first few lines
help system Help Facility
helpadm make changes to the Help Facility database
hinv hardware inventory
hostid set or print identifier of current host system
hostname set or print the Internet host name of the current system
hp handle special functions of Hewlett-Packard terminals
hpio Hewlett-Packard 2645A terminal tape file archiver
hyphen find hyphenated words
id print user and group IDs and names
idload Remote File Sharing user and group mapping
ifconfig configure network interface parameters
includes determine C language preprocessor include files
inetd internet "super-server"
infocmp compare or print out terminfo descriptions
init process control initialization
install install commands
ipcrm remove a message queue, semaphore set or shared memory ID
ipcs report inter-process communication facilities status
iv initialize and maintain volume
join relational database operator
kill terminate a process
killall kill all active processes
labelit provide labels for file systems
Id link editor for common object files
lddrv manage loadable drivers
ldeeprom load EEPROM
lex generate programs for simple lexical tasks
line read one line
link link and unlink files and directories
lint a C program checker
list produce C source listing from a common object file
locate identify a system command using keywords
login sign on
logname get login name
lorder find ordering relation for an object library
lp send/cancel requests to an LP line printer
lpadmin configure the LP spooling system
lpr line printer spooler
lpsched start/stop the LP scheduler and move requests
lpset set parallel line printer options

- xxxviii -

l p s t a t print LP status information
list contents of directory

- xxxviii -

SUMMARY OF CHANGES

This second edition of the CTIX Operating System Manual, Version C, documents the
new commands and features of the CTIX operating system for S/Series systems.

Changes to the manual are summarized below.

Volumes 1 and 2

• Revised front matter

• New pages:

createdev (1M), masterupd (1M), passmgmt (1M), pwconv (1M), pwunconv (1M),
rmnttry(1M), rumount(lM), serstat(lM).

• Deleted pages:

apcon{ 1), apnum{\), catman(1), console (\M), crup(1M), dismount
keystate{ 1M), man(l), mkboot(\M), muser(lM), ofcli (IM), ofcopy(1M),
ofcpin(1M), ofdf(1M), ofeditors{ 1M), oflog{ 1M), o/?.f(lM), ofmkdir(\M),
ofrm(lM),pbuf(lM),perc(l),pmon(lM), tc(1).

Volume 3

• Revised front matter

• New pages:

nfssys(2).

get spent OX), putspent(3X).

• Deleted pages:

excall(2), exchanges(2), exfinal(2), exrequest(2), exrespond(2), exserverq(2),
exwait(2), nfs_getfh{2), nfs_svc(2).

of create (iX), ofdirQX), ofopenQX), ofreadQX), ofrename{ 3X), ofstatus{3X),
quadd(3X), quremoveQX), spawn{3X), swapshort(3X) wmgetid{3X) wmgop(3X)
wmlayout(3X) wmsetid(3X)

- xxxviii -

Volume 4

• Revised front matter

• New pages:

loginlog(4), queuedefs(4), shadow(4).

stape(7).

• Deleted pages:

pilfi 5).
mt{l).

GUIDE TO TECHNICAL DOCUMENTATION

This manual is one of a set that documents the Convergent Family of information
processing systems. The set can be grouped as follows:

Hardware
S/Series

MightyFrame VME Ethernet Controller Card Manual
S/80 Installation Manual
S/80 Diagnostics Manual
S/80 Technical Reference Manual
S/80 SCSI/LAN Board Technical Refernce Manual
SI 120 Installation Manual
S/220 Installation Manual
S/221 and 5/222 Installation Manual
S/280 Installation Guide
S/320 and S/220 Hardware Manual and Si120 Supplement
S/320 and S/640 Installation Manual
S/320 VME Half-Inch Tape Controller Card Manual
S/320 VME SMD Controller Card Manual
S/480 Installation Manual
SI480 Technical Reference Manual
S/640 Technical Reference Manual
S/MT Series Diagnostics Manual
S/Series SCSI Expansion Cabinet Installation Manual
S/MT Series SCSI/RS-232 I/O Expansion Technical Reference
S/MT Series Ethernet Combo Board Technical Reference
S/MT Series I/O Processor (IOP) Expansion Technical Reference
S/MT Series Remote IIO Processor Technical Reference
S/MT Series RS-232-C Expansion Technical Reference
S/MT Series RS-422 Expansion Technical Reference
MPCC VME Communications Controller Card Technical Reference
S/MT Series VME Communications Controller Card Technical Reference
S/MT Series VME Expansion Technical Reference

Graphics Terminal
Graphics Terminal Hardware Manual
Graphics Terminal Installation Manual

Programmable Terminal
Programmable Terminal Hardware Manual
Programmable Terminal Installation Manual
Programmable Terminal Programmer's Guide

Operating Systems
CTIX Operating System Manual, Version C

- xxxviii -

System Administration
SISeries CTIX Administrator s Guide
CTIX Administration Tools Manual

Program Development
CTAM Applications Programmer's Guide
Programmer's Guide: CTIX Supplement
AT&T UNIX System VRelease 3.2 Programmer's Guide.
AT&T UNIX System VRelease 3.2 Streams Primer.
AT&T UNIX System V Release 3.2 Streams Programmers Guide.

Programming Languages
CTIX BASIC Interpreter and Compiler Manual
CTIX FORTRAN Manual
CTIX Enhanced FORTRAN and Pascal Debugger
CTIX Pascal Manual

Communications and Networks
CTIX BSC 278013780 RJE Terminal Emulator Manual
r"rrv dcv 3T7/1 r„,,)„<„..
U I I / I UU^ J ^ / U ± C./ IIUIH*I

CTIX Network Administrator's Guide
CTIX Network Programmer1 s Primer
CTIX SNA 3270 Terminal Emulator Manual
CTIX SNA LU6.2 APPC Server Manual
CTIX SNA Network Gateway Manual
CTIX SNA PU Type 2.1 Network Gateway Manual
CTIX SNA RJE Manual
CTIX X.25 Network Gateway Manual
CTIX X.25 Terminal/Host Adaptor Manual
AT&T UNIX System VRelease 3.2 Network Programmer's Guide.

Data Management Facilities
CTIX ISAM Manual

The following section outlines the contents of these manuals.

- xxxviii -

HARDWARE

S/Series

The MightyFrame VME Ethernet Controller Card Manual describes the Ethernet card,
which is installed in a card cage of MightyFrame computer systems. The manual
provides detailed descriptions of the card (and Ethernet network), software interfaces,
and the theory of operation.

The S/80 Installation Manual describes how to install and expand the S/80 computer
module. In addition, it describes the procedure for attaching peripheral devices and
installing hard disk drives.

The S/80 Diagnostics Manual describes the tests used to verify the proper operation of
all S/MT Series systems. Individual tests for peripheral devices are covered.

The S/80 Technical Reference Manual introduces and provides reference material for the
S/MT Series S/80 CPU board and memory expansion. This information serves system
programmers who need to make additions and/or modifications to the operating system
or diagnostics. The manual also serves hardware engineers and technicians who require
a functional understanding of the boards and provides a performance description of the
S/80 CPU board.

The S/80 SCSI/LAN Board Technical Reference Manual provides principles of operation,
software interface information, and host software control information for programmers
and hardware designers.

The S/120 Installation Manual describes procedures for locating, inspecting, and booting
the S/120, and for attaching peripherals and installing expansion boards and hard disk
drives. It also includes a summary of system status codes and instructions for building
required cables.

The S/220 Installation Manual describes procedures for locating, inspecting, and booting
an S/220 system, and for attaching peripherals and installing expansion boards and hard
disk drives. The manual also includes a summary of system status codes and instructions
for building required cables.

The 5/227 and S/222 Installation Manual describes procedures for locating, inspecting,
and booting S/221 and S/222 systems, and for attaching peripherals and installing
expansion boards and hard disk drives. The manual also includes summaries of system
status codes and instructions of building required cables.

The S/280 Installation Guide provides instructions for setting up, configuring, and
installing options in the S/280, including preparations required for software installation.

The S/320 and S/220 Hardware Manual (Vols. 1 and 2) provides information on the
functional description, software interface, and theory of operation for the S/320 and
S/220 computer systems.

The SI120 Supplement to the S/320 and S/220 Hardware Manual provides information
on the functional description, software interface, and theory of operation for the S/120.

- xiii -

The S/320 and S/640 Installation Manual provides principles of operation, register
descriptions, and connector information for programmers and hardware designers. It
includes instructions for setting up, configuring, and installing internal options in the
S/320 and S/640.

The S/320 VME Half-Inch Tape Controller Card Manual describes the Half-Inch Tape
Controller card, which is installed in the VME card cage of a S/320 or S/640 computer
system. S/320 or S/640 computer system. The manual provides a detailed description of
card installation, theory of operation, and software interfaces.

The S/320 VME SMD Controller Card Manual describes the SMD Controller card,
which is installed in the VME card cage of an S/320 or S/640 computer system, which is
installed in the VME card cage of an S/320 or S/640 computer system. The manual
provides a detailed description of card installation, theory of operation, and software
interfaces.

The MPCC VME Communications Controller Card Technical Reference Manual
describes the X.21 version of the MPCC card.

The S/MT Series VME Communications Controller Card Technical Reference Manual
provides hardware functional description and interfacing information for the MPCC
X.25 card.

The S/MT Series VME Expansion Technical Reference Manual provides hardware
functional description and interfacing information for the MPCC X.25 expansion card.

The S/480 Installation Manual describes procedures for locating, inspecting, and booting
an S/480 system, and for attaching peripherals and installing expansion boards and hard
disk drives. The manual also includes summaries of system status codes and instructions
for building required cables.

The S/480 Technical Reference Manual provides principles of operation, register
descriptions, and connector information for programmers and hardware designers.

The S/640 Technical Reference Manual provides principles of operation, software
interface information, and host software control information for the SCSI-only S/640.

The S/MT Series Diagnostics Manual describes how to use diagnostics for models S/120,
S/220, S/221, S/222, S/320, S/480, and S/640, and their options.

The S/Series SCSI Expansion Cabinet Installation Manual provides instructions for
setting up the Mass Cab and connecting it to an S/Series host computer system. The
manual, which includes procedures for installing and removing storage devices and
connecting to an external SCSI device, serves as a companion to the appropriate S/Series
host computer's installation manual.

The S/MT Series SCSI/RS-232 I/O Expansion Technical Reference Manual provides
principles of operation, register descriptions, and connector information for
programmers and hardware designers.

The S/MT Series Ethernet Combo Board Technical Reference Manual provides
installation information, with a description of the software interface and theory of
operation.

- xxxviii -

The S/MT Series I/O Processor (IOP) Expansion Technical Reference Manual contains a
description of the software interface and theory of operation.

The S/MT Series Remote I/O Processor Technical Reference Manual contains
installation information, a description of the software interface, and theory of operation.

The S/MT Series RS-232-C Expansion Technical Reference Manual describes both 10-
port and 20-port versions of the board. Includes functional descriptions of interrupt
handling, processor interface, and I/O operations.

The S/MT Series RS-422 Expansion Technical Reference Manual describes the hardware,
including clock, bus and channel control. It also covers the onboard line printer
interface.

The MPCC VME Communications Controller Card Technical Reference Manual
describes the X.21 version of the MPCC card.

The S/MT Series VME Communications Controller Card Technical Reference Manual
Hardware functional description and interfacing information for the MPCC X.25 card.

The S/MT Series VME Expansion Technical Reference Manual Hardware functional
description and interfacing information for the MPCC X.25 expansion card.

Graphics Terminal

The Graphics Terminal Hardware Manual describes the architecture and theory of
operation of the Graphics Terminal.

The Graphics Terminal Installation Manual describes procedures for installing,
powering up, testing, and connecting the Graphics Terminal. The manual also describes
how to connect peripherals and how to connect terminals in a cluster.

Programmable Terminal

The Programmable Terminal Hardware Manual describes the architecture and theory of
operation of the Programmable Terminal.

The Programmable Terminal Installation Manual describes procedures for installing,
powering up, testing, and connecting the Programmable Terminal. The manual also
describes how to connect peripherals and how to connect terminals in a cluster.

The Programmable Terminal Programmer's Guide describes the terminal's boot ROM
software and programmable functions, including text display, interchangeable hard
fonts, and local editing.

- xxxviii -

OPERATING SYSTEMS

The CTIX Operating System Manual, Version C, describes Releases 6.x of the CTIX
operating system, Release 6.x of CTIX is derived from the UNIX System V operating
system. The manual describes CTIX commands, application programs, system calls,
library subroutines, special files, file formats, games, miscellaneous facilities, and system
maintenance procedures. This manual is the starting point for detailed information about
CTIX features.

SYSTEM ADMINISTRATION

The S/Series CTIX Administrator's Guide defines the responsibilites of an S/Series
system administrator and provides procedures for the administrator to follow. The
manual explains the concepts an administrator must understand to maintain an S/Series
computer system including user support, CTIX modes, CTIX file systems, peripheral
devices, and troubleshooting procedures.

The CTIX Administration Tools Manual provides an introduction to the principles of
CTIX system administration. This manual, and the appropriate administrator's reference
manual, represent a complete set of administration instructions.
PROGRAM DEVELOPMENT

The Programmer's Guide: CTIX Supplement addresses the programmer's need for
detailed explanations about the CTIX operating system. The guide discusses major
tools, including basic interaction with the operating system, calculator languages, text
editing, and C programming. The guide is used in conjunction with the CTIX Operating
System Manual and the UNIX System VRelease 3.2 Programmer's Guide

The AT&T UNIX System V Release 3.2 Programmer s Guide describes standard System
V, Release 3.2 programming tools and operating system facilities.

The AT&T UNIX System VRelease 3.2 Streams Primer contains basic information for
programming with the System V, Release 3.2 facilities.

The AT&T UNIX System VRelease 3.2 Streams Programmer's Guide provides detailed
programming information about System V, Release 3.2 I/O.

AT&T UNIX System VRelease 3.2 Streams Primer provides basic how-to information for
programming using the System V, Release 3 Streams I/O facilities.

- xxxviii -

PROGRAMMING LANGUAGES

The CTIX BASIC Interpreter and Compiler Manual describes the BASIC language, the
built-in editors with which source files can be created, and the use of both the interpreter
and compiler to create and execute BASIC programs.

The CTIX FORTRAN Manual is a reference and user's guide for both standard and
enhanced versions of CTIX FORTRAN.

The CTIX Enhanced FORTRAN and Pascal Debugger Manual describes the interactive
execution and debugging of enhanced FORTRAN and Pascal programs, including
reference material on debugger concepts and commands, and example sessions with the
debugger.

The CTIX Pascal Manual is a reference and user's guide for both standard and enhanced
versions of CTIX Pascal.

COMMUNICATIONS AND NETWORKS

The CTIX BSC 2780/3780 RJE Terminal Emulator Manual describes the daemon,
configuration files, operational, maintenance, and line monitoring utilities, as well as the
CTIX BSC device drivers, which are components of the Terminal Emulator. This
manual is designed to assist end users and system administrators who must configure,
operate, and maintain the CTIX BSC 2780/3780 RJE Terminal Emulator.

The CTIX BSC 3270 Terminal Emulator Manual provides a product description, a list of
IBM Information Display System components emulated by the 3270, CTIX BSC device
drivers and servers used, and operational, maintenance, and line monitoring utilities.
This manual is designed to assist end users and system administrators who must
configure, operate, and maintain the CTIX BSC 3270 Terminal Emulator.

The CTIX Network Administrator's Guide describes how to administer networking on an
S/Series system: it explains the responsibilities of the network administrator and
provides a roadmap to the network setup process.

The CTIX Network Programmer's Primer contains instructions for programmers on
choosing a networking method. The manual includes details of the CTIX
implementations of networking standards.

The CTIX SNA 3270 Terminal Emulator Manual outlines the features and functions of
the SNA 3270 Terminal Emulator for the CTIX operating system. The manual provides
detailed instructions for using, installing, configuring, and troubleshooting the emulator
software.

The CTIX SNA LU6.2 APPC Server Manual describes the features, functions,
advantages, and components of the server. The manual is designed to assist system
administrators and transaction programmers who must install, configure, maintain, and
troubleshoot the LU6.2 Server.

- xxxviii -

The CTIX SNA Network Gateway Manual provides technical information and operating
procedures for the installation, configuration, operation, and maintenance of a CTIX
SNA Network Gateway. The manual also defines IBM SNA general concepts and
describes the Gateway components.

The CTIX SNA PU Type 2.1 Network Gateway Manual provides a complete description
of the Gateway along with installation, configuration, operation, maintenance, and
troubleshooting procedures designed to aid the system administrator.

The CTIX SNA RJE Manual describes the SNA RJE subsystem. Build on the SNA
Network Gateway, SNA RJE allows multiple, concurrent logical unit sessions with
remote IBM-compatible hosts. The manual describes user interface features,
installation, and a procedural interface for user-defined RJE application systems.

The CTIX X.25 Network Gateway Manual describes the S/Series CTIX SNA network
gateway, including basic SNA concepts and detailed instructions for using, installing,
configuring, and troubleshooting the gateway software.

The CTIX X.25 Terminal/Host Adaptor Manual describes how to set up and configure the
PAD and Host Adaptor for use with the CTIX X.25 network gateway.

The AT&T UNIX System VRelease 3.2 Network Programmer's Guide contains detailed
information on the System Transport Interface.

DATA MANAGEMENT FACILITIES

The CTIX ISAM Manual documents the CTIX ISAM software package. It provides a
tutorial on writing ISAM applications, describes ISAM procedures, and presents
information about utilities designed for ISAM maintenance.

- xxxviii -

HOW TO USE THIS MANUAL

This second edition of the CTIX Operating System Manual, Version C, describes the
commands, system calls, libraries, data files, and device interfaces that make up the CTIX
Operating System for S/Series Computer Systems. This manual should always be your
starting point when you need to find the documentation for a CTIX feature with which
you are unfamiliar.

The manual consists of a large number of short entries, sometimes called "the man
pages," after the command that accesses the entries when they are kept online. Each
entry briefly documents some feature of CTIX. Some features require longer
documentation than an entry in this manual; such features have an entry that outlines the
feature and cross-references the manual that documents the feature fully. Entries that do
not refer to other manuals are self-contained and are the final word on the features they
describe.

Organization of the manual. The entries are organized into sever, sections in four
volumes:

Volumes 1 and 2:
1. Commands and Application Programs.

Volume 3:
2. System Calls.
3. Subroutines and Libraries.

Volume 4:
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special Files.

Within each section, entries are alphabetical by title, except for an intro entry at the
beginning of each section.

Entry Title Conventions. An entry title looks like this example:

I I Entry Type
I I
I Section Number
I
Name

Name is the name of the entry. Section Number indicates the section that contains the
entry. In this case, the entry is in Section 3, which is in Volume 2. Entry Type appears
only on entries that belong to special categories; refer to the section's intro entry for an
explanation. In this case, a reference to intro(3) would tell you that erf{3M) describes
functions from the Math Library, which the C compiler does not load by default.

I 11

- xxxviii -

Finding the entry you need. To find out which entry you need, refer to the following
guides:

• The Permuted Index. This indexes each significant word in each entry's
description. It is useful when you have only a general notion what you're
looking for. It is also useful when you know the name of the command or
function you are interested in, but there is no entry by that name.

• The Table of Contents. This is a simple list of entries, by section, together with
the entry descriptions. Volumes 1 and 2 have Tables of Contents for Section 1.
Volume 3 has a Table of Contents for Sections 2 and 3. Volume 4 has a Table of
Contents for Sections 4 through 7.

• The Table of Related Entries. For Volume 1 only. A table of entries organized
so that related entries are grouped together.

Section organization. Each section begins with an intro entry, which provides
important general information for that section.

Section 1, Commands and Application Programs, describes programs intended to be
invoked directly by the user or by command ianguage procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside
in /usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Commands that were not transported from UNIX
System V reside in /usr/Iocal/bin; this directory is recommended for locally
implemented programs. Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are logged in as root;
otherwise use the full path name given under SYNOPSIS or change the PATH
environment variable to include the command's directory.

Section 2, System Calls, describes the entries into the CTIX kernel, including the C
language interfaces.

Section 3, Subroutines and Libraries, describes the available library functions or
subroutines. Their binary versions reside in various system libraries in the directories
/lib and /usr/lib. See intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular kinds of files; for example,
the format of the output of the link editor is given in a.out(4). Excluded are files used by
only one command (for example, the assembler's intermediate files). In general, the C
language struct declarations corresponding to these formats can be found in the
directories /usr/include and /usr/include/sys.

Section 5, Miscellaneous Facilities, contains descriptions of character sets, macro
packages, and other such information.

Section 6, Games, describes the games and educational programs that reside in the
directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that actually refer to
input/output devices.

- xxxviii -

Entry organization. AH entries are based on a common format, in which some parts are
optional:

NAME The NAME part gives the name(s) of the entry and briefly states its
purpose.

SYNOPSIS The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 1
(Commands and Application Programs):

Bold Boldface strings are literals, and are to be typed just as
they appear.

Regular Regular face strings usually represent substitutable
argument prototypes and program names found
elsewhere in the manual.

[] Square brackets around an argument prototype indicate
that the argument is optional. When an argument
prototype is given as "name" or "fiie," it always refers
to a file name.

Ellipses are used to show that the previous argument
prototype can be repeated.

- + = A final convention is used by the commands themselves.
An argument beginning with a minus (-) , plus (+), or
equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , +, or =.

DESCRIPTION The DESCRIPTION part discusses the subject at hand.

EXAMPLE(S) The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

FILES The FILES part gives the file names that are built into the program.

SEEALSO The SEE ALSO part gives pointers to related information.

DIAGNOSTICS The DIAGNOSTICS part discusses the diagnostic indications that
may be produced. Messages that are intended to be self-explanatory
are not listed.

NOTES The NOTES part gives information that might be helpful under the
particular circumstance described.

WARNINGS The WARNINGS part points out potential pitfalls.

BUGS The BUGS part gives known bugs and sometimes deficiencies.
Occasionally, the suggested fix is also described.

A table of contents is provided at the front of each of the four volumes, along with a
complete permuted index derived from the tables. On each index line, the title of the

- xxxviii -

entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a
particular system call.

- xxxviii -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on CTIX: how to
log in and log out, how to communicate through your terminal, and how to run a
program. (See the Programmer's Guide: CTIX Supplement for a more complete
introduction to the system.)

Logging in. Most S/Series terminals are 9600 baud asynchronous terminals. An unused
terminal prompts login:.

Most asynchronous terminals have a speed switch that should be set to the appropriate
speed and a half-/full-duplex switch that should be set to full-duplex. When a
connection (at the speed of the terminal) has been established, the system displays a
login: prompt; you should enter your user name and press Return. If you have a
password (and you should!), the system prompts for it, but does not print (echo) it on the
terminal.

It is important that you use lowercase characters, if possible, to enter your login name; if
you use uppercase, CTIX assumes that your terminal cannot generate lowercase letters
and that you mean all subsequent uppercase input to be treated as lowercase.

Once you log in successfully, the shell displays a dollar sign ($) prompt. (The shell is
described below, under "How to run a program.")

For more information, consult login (\), which discusses the login sequence in more
detail, and stty(\), which tells you how to describe the characteristics of your terminal to
the system. The profiled) page describes how to have the shell automatically perform
startup tasks when you log in. To log out, type an end-of-file indication to the shell
(ASCII EOT character, Control-D on most terminals). The shell terminates and the
login: message appears again.

How to communicate through your terminal. When you type, the system gathers and
saves your characters. These characters are not given to a program until you press
Return, as described above under "Logging in."

Terminal input/output is full-duplex. It has full read-ahead, which means that you can
type at any time, even while a program is displaying information on the screen. Of
course, if you type during output, the output display is interspersed with your input
characters. However, whatever you type is saved and interpreted in the correct
sequence. There is a limit to the amount of read-ahead, but it is generous and not likely
to be exceeded unless the system is in trouble. When the read-ahead limit is exceeded,
the system throws away characters.

On an input line from a terminal, the character @ kills all the characters typed before it.
The Backspace key (Control-H if your terminal lacks a Backspace key) erases the last
character typed. Successive uses of Backspace erases characters back to, but not
beyond, the beginning of the line; to print the @ and Backspace characters, precede each
with a backslash (\l). The default erase and kill characters can be changed; see rtO'(l)-

The ASCH DC3 (Control-S) character can be used to temporarily stop output. It is useful
with terminals to prevent output from disappearing before it can be read. Output is
resumed when a DC1 (Control-Q) or a second DC3 (or any other character, for that
matter) is typed. The DC1 and DC3 characters are not passed to any other program when
used in this manner.

The ASCII DEL character is not passed to programs, but instead generates an interrupt
signal, just like the break, interrupt, or attention signal. This signal generally terminates
a running program. It is typically used to stop a long printout that you don't want.
However, programs can arrange either to ignore this signal altogether, or to be notified
when it happens (instead of being terminated). The editor ed(1), for example, catches
interrupts and stops what it is doing, instead of terminating, so that an interrupt can be
used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character It not only causes a
running program to terminate, but also generates a file with the core image of the
terminated process. Quit is useful for debugging.

The system tries to detect whether you have a terminal with the new-line function, or
itiKatKor tf mupf Ka oimnlotaH n71 th o /xintnnA fAhien nnH lina faa/1 noir In fVio totfor r*r\nc% RViivuivi 11 IIIUOI UV OIIIIUIUIVU m u i a vtuiiagv/ lv iu in UIIU I I N V I V W pat i . 111 uiv iaiu/1
all input carriage return characters are changed to line-feed characters (the standard line
delimiter), and a carriage return and line-feed pair is echoed to the terminal. If you get
into the wrong mode, the rtO'(l) command can rescue you.

Tab characters are used freely in programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and
echoed as spaces during input. Again, the stty(l) command sets or resets this mode. The
system assumes that tabs are set every eight character positions. The tabs (I) command
sets tab stops on your terminal, if that is possible.

How to run a program. Once you successfully log in, a program called the shell is
listening to your terminal. The shell reads the lines you type, splits them into a
command name and its arguments, and executes the command. A command is simply an
executable program. Normally, the shell looks first in your current directory (see "The
current directory" below) for a program with the given name; if the program does not
exist there, the shell looks in system directories. There is nothing special about system-
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell to
find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell ordinarily regains control, prompting with the $
prompt to indicate that it is ready for another command. The shell has many other
capabilities, which are described in detail in s/i(l).

The current directory. The Cl'iX file system is arranged in a hierarchy of directories.
When the system administrator assigns you a user name, that person should also create a
directory for you (ordinarily given your name, and known as your login or home
directory). When you log in, that directory becomes your current or working directory,
and any file name typed is by default assumed to be in that directory. Because you are

- xxxviii -

the owner of this directory, you have full permissions to read, write, alter, or destroy its
contents. Permissions for other directories are granted or denied to you by their
respective owners, or by the system administrator. To change the current directory use
cd(1).

Path names. To refer to files not in the current directory, you must use a path name.
Full path names begin with /, which is the name of the root directory of the whole file
system. After the slash comes the name of each directory containing the next sub-
directory (followed by a /), until finally the file name is reached: for example,
/usr/ae/filex refers to file filex in directory ae, while ae is itself a subdirectory of usr;
usr springs directly from the root directory. See intro (2) for a formal definition of path
name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed /). Unless
otherwise specified, a path name can be used anywhere a file name is required.

Important commands that modify the contents of files are cp(1), mv, and rm(1), which
respectively copy, move (that is, rename), and remove files. To find out the status of fiies
or directories, use ls(1). Use mkdir(1) for making directories and rmdir(l) for
destroying them.
For more information about file systems, you might want to glance through Section 2 of
this manual, which discusses system calls, even if you don't intend to deal with the
system at that level.

Writing a program. To enter the text of a source program into a file, use ed(1), ex(\),
or vi(l). After the program text has been entered and written into a file (whose name has
the appropriate suffix), you can give the name of that file to the appropriate language
processor as an argument Normally, the output of the language processor is left in a file
in the current directory named a.out (if that output is significant, use mv(l) to give it a
less vulnerable name).

When you have finally gone through this entire process without provoking any
diagnostics, the resulting program can be run by giving its name to the shell in response
to the $ prompt.

If any execution (run-time) errors occur, you should use adb(1) to examine the remains
of your program.

Your programs can receive arguments from the command line just as system programs
do; see exec (2).

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it is a good idea to leam something about them, because someone else
may aim them at you. To communicate with another user currently logged in, use
write (l)\ mail (I) leave a message whose presence is announced to another user when he
or she next logs in. The corresponding entries in this manual also suggest how to
respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

- xxxviii -

Changes from UNIX System V. This second edition of the CTIX Operating System
Manual, Version C, documents Release 6.2 of CTIX for S/Series systems, which is
derived from UNIX System V, Release 3.2.

The manual also includes descriptions of the CTIX Internetworking programs and tools.

These are the important changes in UNIX software in CTIX:

The language support provided by the bs, eft, ratfor, sno, and f77 programs. In their
place, Convergent Technologies can provide the following CTIX languages: GSA
high level COBOL; GSA-certified FORTRAN 77; Pascal; BASIC.

A terminal name is of the form ttyxxx instead of ttyxx. RS-232 terminal numbers
range from ttyOOO to tty255; RS-422 terminal numbers range from tty256 to tty511.

There are two changes in terminal defaults. The default speed for RS-232 terminals
is 9600 baud instead of 300 baud. The default erase character for all terminals is
BACKSPACE (control-h if your terminal lacks a BACKSPACE key) instead of #.

Ls columnizes its output by default if the standard output is a terminal, making Is
easier to use on video terminals. This convention and the associated -C option are
borrowed from the Berkeley Software Distribution.

Many Berkeley Software Distribution programs, libraries, and networking programs
are included. See especially the indispensible head(l), more(1), renice(1), and
ul(l). In addition to the curses [based on terminfo(4)], the Berkeley ocurse library
(based on termcap(4)) is supported.

Compatibility of CTIX features. The following lists are provided for cross-machine
comparisons of commands and files on Convergent systems. The programs listed in the
categories below are not provided with the standard UNIX System V operating system.

Note that most CTIX commands for S/Series systems are compatible with other
operating systems based on the UNIX System V operating system. In this manual,
commands or certain features that apply only to one system are clearly announced in the
text. Note that although most CTIX commands on S/Series systems are CTIX- and
UNIX-compatible, they may not be identical on other computer systems; to ensure
portability, compare the documentation for each system to be used.

- xxxviii -

S/Series:

See the following pages for CTIX features that are provided by Convergent exclusively
for S/Series systems; they are not available on other CTIX or UNIX systems:

Section 1: conlocate (IM), errdead(lM), errdemon(\M), errpt(\M), erstop(\M),
extproc(1M), z'v(lM), reboot (\M), riopcfg{ 1M), riopqry(\M), scsimapi IM),
swap(lM), rio(l).

Section 2: uadmin(2).

Section 3: libdev(3X).

Section 4: errfile (4), gateways (4), system (4), tapedrives (4).

Section 7: en(7), err{l), ipt(l), qic(l), stape{7), tiop{7), vme(l).

Convergent Systems Only:

The following pages apply only to Convergent systems:

Section 1: bcopy(1M), ccijw(l) , createdev(1M) ctinstall(l), getservaddr(IM),
Ipset (1M), masterupd(1M), mkdbsym(1M), rtpenable (1M), serstat(1M),
tapeset{ 1M), tsioctl(l), uconf(lM), update (IM).

Section 2: locking (2), notify (2).

Section 4: tapedrives {A).

Section 5: Devices (5), Dialers(5), naddr.d(5).

Section 7: scsi(7).

(Note that this is not an exhaustive list of all CTIX features. For further information
about the special features of CTIX on other Convergent systems, see the appropriate
operating system manuals and Release Notices.)

- xxxviii -

PERMUTED INDEX

This index includes entries for all pages of Volumes 1 through 4, The entries themselves
are based on the one-line descriptions or titles found in the NAME portion of each
manual page; the significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that has three columns. To
use the index, read the center column to look up specific commands by name or by
subject topics. Note that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the entry, and a slash (J)
indicates where the entry has been continued or truncated. The right column gives the
manual page where the command or subject is described.

hpio: Hewlett-Packard 2645A terminal tape file/ hpio(l)
/special functions of DASI 300 and 300s terminals 300(1)

for Interphase V/TAPE 3200 half-inch tape/ /interface ipt(7)
13tol, ltol3: convert between 3-byte integers and long/ 13tol(3C)

comparison. difl3: 3-way differential file difl3(l)
paginator for the Tektronix 4014 terminal. 4014: 4014(1)

special functions of the DASI 450 terminal. 450: handle 450(1)
long integer and base-64/ a641,164a: convert between a641(3C)

abort: generate a SIGABRT. abort(3C)
value, abs: return integer absolute abs(3C)

adb: absolute debugger adb(l)
abs: return integer absolute value abs(3C)

/floor, ceiling, remainder, absolute value functions floor(3M)
tiop: terminal accelerator interface tiop(7)

t_accept: accept a connect request t_accept(3n)
prevent LP requests, accept, reject: allow or accept(lM)

a directory for remote access, adv: advertise adv(lM)
of a file, touch: update access and modification times touch(l)

utime: set file access and modification times utimc(2)
accessibility of a file, access: determine access(2)
commands, graphics: access graphical and numerical graphics(lG)

sputl, sgetl: access long integer data in a/ sputl(3X)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler. sadp(lM)
ldfcn: common object file access routines. ldfcn(4)

copy file systems for optimal access time, dcopy: dcopy(lM)
locking: exclusive access to regions of a file locking(2)

/setutent, endutent, utmpname: access utmp file entry getut(3C)
access: determine accessibility of a file access(2)

enable or disable process accounting, acct: acct(2)
acctcon2: connect-time accounting, acctconl, acctcon(lM)

acctprcl, acctprc2: process accounting acctprc(lM)
tumacct: shell procedures for accounting, /startup, acctsh(lM)

/accton, acctwtmp: overview of accounting and miscellaneous/ acct(lM)
accounting and miscellaneous accounting commands, /of acct(lM)

diskusg: generate disk accounting data by user ID diskusg(lM)
acct: per-process accounting file format acct(4)

- xxxviii -

search and print process accounting file(s). acctcom: acctcom(l)
acctmerg: merge or add total accounting files acctmerg(lM)

summary from per-process accounting records, /command acctcms(lM)
wtmpfix: manipulate connect accounting records, fwtmp, fwtmp(lM)

runacct: run daily accounting runacct(lM)
process accounting, acct: enable or disable acct(2)

file format acct: per-process accounting acct(4)
per-process accounting/ acctcms: command summary from acctcms(lM)

process accounting file(s). acctcom: search and print acctcom(l)
connect-time accounting, acctconl, acctcon2: acctcon(lM)

acctwunp: overview of/ acctdisk, acctdusg, accton acct(lM)
accounting files, acctmerg: merge or add total acctmerg(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
orderly release/ t_rcvrel: acknowledge receipt of an t_rcvrel(3n)

trig: sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)
killall: kill all active processes killall(lM)

sag: system activity graph sag(lG)
sar: sal, sa2, sadc: system activity report package sar(lM)

sar: system activity reporter. sar(l)
current SCCS file editing activity, sact: print sact(l)

report process data and system activity, /time a command; timex(l)
Dialers: ACU/modem calling protocols Dialers(5)

random, hopefully interesting, adage, fortune: print a fortune(6)
adb: absolute debugger adb(l)

acctmerg: merge or add total accounting files acctmerg(lM)
putenv: change or add value to environment putenv(3C)

/inet_netof: Internet address manipulation routines inet(3)
getservaddr: get network address of service host getservad(lM)

control, arp: address resolution display and arp(lM)
arp: Address Resolution Protocol arp(7)

endpoint. t_bind: bind an address to a transport t_bind(3n)
allow synchronization of the/ adjtime: correct the time to adjtime(2)

system, adman: administer a CTIX adman(l)
SCCS files, admin: create and administer admin(l)

network listener service administration, nlsadmin: nlsadmin(lM)
rfadmin: Remote File Sharing administration rfadmin(lM)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

swap: swap administrative interface swap(lM)
remote access, adv: advertise a directory for adv(lM)

advent: explore Colossal Cave advent(6)
remote access, adv: advertise a directory for adv(lM)

fumount: forced unmount of an advertised resource fumount(lM)
alarm: set a process alarm clock alarm(2)

clock, alarm: set a process alarm alarm(2)
sendmail. aliases: aliases file for aliases(4)

aliases: aliases file for sendmail aliases(4)
the data base for the mail aliases file, /rebuild newaliases(l)

t_alloc: allocate a library structure t_alloc(3n)
change data segment space allocation, brk, sbrk: brk(2)

realloc, calloc: main memory allocator, malloc, free, malloc(3C)
mallinfo: fast main memory allocator, /calloc, mallopt, malloc(3X)

accept, reject: allow or prevent LP requests accept(lM)
adjtime: correct the time to allow synchronization of the/ adjtime(2)

process by changing/ renice: alter priority of running renice(l)
sort: sort and/or merge files sort(l)

link editor output a.out: common assembler and a.out(4)
introduction to commands and application programs, intro: intro(l)

- xxxviii -

mainLainer for portable/ ar: archive and library ar(l)
format, ar: common archive file ar(4)

number: convert Arabic numerals to English number(6)
language, be: arbitrary-precision arithmetic bc(l)

for portable archives, ar: archive and library maintainer ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file. Ahe archive ldahread(3X)
formats, convert: convert archive files to common convert(l)

an archive/ Idahread: read the archive header of a member of ldahread(3X)
2645A terminal tape file archiver. /Hewlett-Packard hpio(l)

tar: tape file archiver tar(l)
maintainer for portable archives, /archive and library ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

formatted output of a varargs argument list, /print vprintf(3S)
command, xargs: construct argument list(s) and execute xargs(l)

getopt: get option letter from argument vector. getopt(3C)
expr: evaluate arguments as an expression expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)

number facts, arithmetic: provide drill in arithmctic(6)
display and control, arp: address resolution arp(lM)

Protocol, arp: Address Resolution arp(7)
ftp: ARPANET file transfer program ftp(l)

expr: evaluate arguments as an expression expr(l)
as: common assembler as(l)

/attach and detach serial lines as network interfaces si attach (IM)
/locate a terminal to use as the virtual system console conlocate(lM)

characters, asa: interpret ASA carriage control asa(l)
and/ /gmtime, asctime, cftime, ascftime, tzset: convert date ctime(3C)

ascii: map of ASCII character set ascii(S)
hd: hexadecimal and ascii file dump hd(l)

set ascii: map of ASCII character ascii(5)
long integer and base-64 ASCII string, /convert between a641(3C)

strings: extract the ASCII text strings in a file strings(l)
ctime, localtime, gmtime, asctime, cftime, ascftime,/ ctime(3C)

trig: sin, cos, tan, asin, acos, a tan, atan2:/ trig(3M)
output a.out: common assembler and link editor a.out(4)

as: common assembler. as(l)
assertion, assert: verify program assert(3X)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
system commands, assist: assistance using CTIX assist(l)

astgen: generate/modify ASSIST menus and command/ astgen(l)
commands, assist: assistance using CTIX system assist(l)

print the list of blodcs associated with an. bcheck: bcheck(lM)
/create device nodes for assorted device types createdev(lM)

menus and command forms, astgen: generate/modify ASSIST astgen(l)
a later time, at, batch: execute commands at at(l)

/sin, cos, tan, asin, acos, atan, atan2: trigonometric/ trig(3M)
cos, tan, asin, acos, atan, atan2: trigonometric/ /sin, trig(3M)

description file, queuedefs: at/batch/cron queue queuedefs(4)
double-precision/ strtod, atof: convert string to strtod(3C)

integer, strtol, atol, atoi: convert string to strtol(3C)
integer, strtol, atol, atoi: convert string to strtol(3C)

as/ slattach, sldetach: attach and detach serial lines slattach(lM)
resources, rmnttry: attempt to mount remote rmnttry(lM)
log of failed login attempts, /usr/adm/loginlog: loginlog(4)

- xxxviii -

processing language,
ungetc: push character

back: the game of
fine: fast incremental

ckbupscd: check file system
free: recover files from a

newaliases: rebuild the data
Sun rpc program number data

terminal capability data
terminal capability data

between long integer and
(visual) display editor

from proto file; set links
portions of path names.

later time, at,
arithmetic language,

blocks associated with an.
system initialization/ brc,
string operatic!!?, bcopy,

byte string operations.

cb: C program
about the operating system for

jO,jl,jn, yO, yl, yn:
yn: Bessel functions.

cpset: install object files in
fread, fwrite:

bsearch:
tfind, idelete, twalk: manage

bind:

endpoint. t_bind:

nfsd, bcopy, bemp, bzero:

bj: the game of
bcopy: interactive

sum: print checksum and
sync: update the super

sync: update super
df: report number of free disk

bcheck: print the list of
libdev: manipulate Volume Home

powerfail: system/
space allocation,

modest-sized programs.
sorted table,

stdio: standard
setbuf, setvbuf: assign

mknod:
vme: VME

between host and network
bcopy, bemp, bzero: bit and

await completion of process wait(l)
awk: pattern scanning and awk(l)
back into input stream ungelc(3S)
back: the game of backgammon back(6)
backgammon back(6)
backup ftnc(lM)
backup schedule ckbupscd(lM)
backup tape frec(lM)
banner make posters banner(l)
base for the mail aliases/ newaliases(l)
base, rpc: rpc(4)
base, term cap: termcap(4)
base, terminfo: teiminfo(4)
base-64 ASCII string, /convert a641(3C)
based on ex. /screen-oriented vi(l)
based on. /out file lists qlist(l)
basename, dimame: deliver basename(l)
batch: execute commands at a at(l)
be: arbitrary-precision bc(l)
bcheck: print the list of bcheck(lM)
bcheckrc, drvload, powerfail: brc(lM)
bemp, bzero: bit and byte- . b«Uing(3)
bcopy, bemp, bzero: bit and bstring(3)
bcopy: interactive block copy bcopy(lM)
bdiff: big diff. bdiff(l)
beautifier. cb(l)
beginning users, /information starter(l)
Bessel functions, bessel: bessel(3M)
bessel: jO, j 1, jn, yO, y 1 bessel(3M)
bfs: big file scanner. bfs(l)
binary directories cpset(lM)
binary input/output fread(3S)
binary search a sorted table bseardi(3C)
binary search trees, tsearch, tsearch(3C)
bind a name to a socket bind(2)
bind an address to a transport t_bind(3n)
bind: bind a name to a socket bind(2)
biod: NFS daemons nfsd(lM)
bit and byte string/ bstring(3)
bj: the game of black jack bj(6)
blackjack bj(6)
block copy bcopy(lM)
block count of a file sum(l)
block sync(lM)
block sync(2)
blocks and i-nodes df(lM)
Mocks associated with an bcheck(lM)
Blocks (VHB) libdev(3X)
brc, bcheckrc, drvload, brc(lM)
brk, sbik: change data segment brk(2)
bs: a compiler/interpreter for bs(l)
bsearch: binary search a bsearch(3C)
buffered input/output package stdio(3S)
buffering to a stream setbuf(3S)
build special file mknod(lM)
bus interface vmef7)
byte order, /convert values byteorder(3)
byte string operations bstring(3)

- xxxviii -

size: print section sizes in bytes of common object files size(l)
swab: swap bytes swab(3C)

operations, bcopy, bcmp, bzero: bit and byte string bstring(3)
cc: C compiler. cc(l)

cflow: generate C flowgraph cflow(l)
cpp: the C language preprocessor cpp(l)

include/ includes: determine C language preprocessor includes(l)
cb: C program beautifier. cb(l)

lint: a C program checker. lint(l)
cxref: generate C program cross-reference cxref(l)

ctrace: C program debugger ctrace(l)
extract and share strings in C programs, xstr: xstr(l)
time, cprofile: setting up a C shell environment at login cprofile(4)

object file, list: produce C source listing from a common list(l)
cal: print calendar. cal(l)

dc: desk calculator dc(l)
cal: print calendar. cal(l)

calendar: reminder service calendar(l)
cu: call another UNIX system cu(lC)

data returned by stat system call, stat: stat(S)
Dialers: ACU/modem calling protocols Dialers(5)

malloc, free, realloc, calloc: main memory allocator malloc(3C)
fast/ malloc, free, realloc, calloc, mallopt, mallinfo: malloc(3X)

intro: introduction to system calls and error numbers intro(2)
common shared NFS system calls, nfssys: nfssys(2)

request, nimount: cancel queued remote resource rumount(lM)
to an LP line printer, lp, cancel: send/cancel requests lp(l)

termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

description into a terminfo/ captoinfo: convert a termcap captoinfo(lM)
asa: interpret ASA carriage control characters asa(l)

text editor (variant of ex for casual users), edit: edit(l)
files, cat: concatenate and print cat(l)

advent: explore Colossal Cave. advent(6)
cb: C program beautifier cb(l)
cc:C compiler cc(l)

cc2sw, cc2fp: front-end to the cc command, cclsw cclsw(l)
create a front-end to the cc command, gencc: gencc(lM)

to the cc command, cclsw, cc2sw, cc2fp: front-end cclsw(l)
command, cclsw, cc2sw, cc2fp: front-end to the cc cclsw(l)

cc command, cclsw, cc2sw, cc2fp: front-end to the celsw(l)
cd: change working directory cd(l)

commentary of an SCCS delta, cdc: change the delta cdc(l)
/ceil, fmod, fabs: floor, ceiling, remainder, absolute/ floor(3M)

cflow: generate C flowgraph cflow(l)
/localtime, gmtime, asctime, cftime, ascftime, tzset:/ ctime(3C)

strings, cftime: language specific cftime(4)
delta: make a delta (change) to an SCCS file delta(l)

priority of running process by changing nice, renice: alter renice(l)
pipe: create an interprocess channel pipe(2)

terminal's local RS-232 channels, tp: controlling tp(7)
stream, ungetc: push character back into input ungetc(3S)

conversion/ chrtbl: generate character classification and chrtbl(lM)
and neqn. eqnchar: special character definitions for eqn eqnchar(5)

_toupper, setchrclass: character handling. /_tolower, ctype(3C)
user, cuserid: get character login name of the cuserid(3S)

/getchar, fgetc, getw: get character or word from a/ getc(3S)
/putchar, fputc, putw: put character or word on a stream putc(3S)

- xxxiii

ascii: map of ASCII character set ascii(5)
fgrep: search a file for a character string fgrep(l)

interpret ASA carriage control characters, asa: asa(l)
_tolower, toascii: translate characters. /_toupper conv(3C)

tr: translate characters tr(l)
lastlogin, monacct, nulladm,/ chargefee, ckpacct, dodisk acctsh(lM)

directory, chdir: change working chdir(2)
fsck, dfsck: check and repair file systems fsck(lM)

schedule, ckbupscd: check file system backup ckbupscd(lM)
permissions file, uucheck: check the uucp directories and uucheck(lM)

constant-width text for/ cw, checkcw: prepare cw(l)
text for nroff or/ eqn, neqn, checkeq: format mathematical eqn(l)

lint: a C program checker lint(l)
grpck: password/group file checkers, pwck, pwck(lM)

systems processed by fsck and/ checklist: list of file checklist(4)
formatted with the MM/ mm, checkmm: print/check documents mm(l)

file, sum: print checksum and block count of a sum(l)
chown, chgrp: change owner or group chown(l)

times: get process and child process times times(2)
terminate, wait: wait for child process to stop or wait(2)

libraries tool, chkshlib: compare shared chkshlib(l)
chmod: change mode chmod(l)
chmod: change mode of file chmod(2)

of a file, chown: change owner and group chown(2)
group, chown, chgrp: change owner or chown(l)

chroot: change root directory chroot(2)
for a command, chroot: change root directory chroot(lM)

classification and conversion/ chttbl: generate character chrtbl(lM)
backup schedule, ckbupscd: check file system ckbupscd(lM)

monacct, nulladm,/ chargefee, ckpacct, dodisk, lastlogin, acctsh(lM)
chrtbl: generate character classification and conversion/ chrtbl(lM)

strclean: STREAMS error logger cleanup program strclean(lM)
uucp spool directory clean-up. uucleanup: uucleanup(lM)

clear: clear terminal screen clear(l)
clri: clear i-node clri(lM)

clear: clear terminal screen clear(l)
status/ ferror, feof, clearerr, fileno: stream fenor(3S)

the listener, nlsgetcall: get client's data passed through nlsgetcall(3n)
(command interpreter) with C-like syntax, csh: a shell csh(l)

synchronization of the system clock, /the time to allow adjtime(2)
alarm: set a process alarm clock alanm(2)

cron: clock daemon cron(lM)
clock: report CPU time used clock(3C)

on a STREAMS driver, clone: open any minor device clone(7)
ldclose, ldaclose: close a common object file ldclose(3X)

close: close a file descriptor. close(2)
t_close: close a transport endpoint t_close(3n)

fclose, fflush: close or flush a stream fclose(3S)
telldir, seekdir, rewinddir, closedir: directory/ /readdir, directory(3X)

clri: clear i-node clri(lM)
cmp: compare two files cmp(l)

dis: object code disassembler. dis(l)
line-feeds, col: filter reverse col(l)

advent: explore Colossal Cave. advent(6)
comb: combine SCCS deltas comb(l)

common to two sorted files, comm: select or reject lines comm(l)
nice: ran a command at low priority nice(l)

cc2fp: front-end to the cc command, cclsw, cc2sw cclsw(l)

- xxxviii -

change root directory for a command, chroot: chroot(lM)
examples, usage: retrieve a command description and usage usage(l)

env: set environment for command execution env(l)
rcmd: remote shell command execution rcmd(l)

uux: UNIX-to-UNIX system command execution uux(lC)
/ASSISTmenus and command forms astgen(l)

create a front-end to the cc command, gencc: gencc(lM)
quits, nohup: run a command immune to hangups and nohup(l)

C-like syntax, csh: a shell (command interpreter) with csh(l)
getopt: parse command options getopt(l)

getopts, getoptcvt: parse command options getopts(l)
locate executable file for command, path: path(l)

/shell, the standard/restricted command programming language sh(l)
returning a stream to a remote command, /routines for rcmd(3)

and system/ timex: time a command; report process data timex(l)
uuxqt: execute remote command requests uuxqt(lM)

return stream to a remote command, rexec: rexec(3)
per-process/ acctcms: command summary from acctcms(lM)

system: issue a shell command system(3S)
used by the /etcftapeset command.. /information tapedrives(4)

test: condition evaluation command test(l)
time: time a command , time(I)

locate: identify a CTIX system command using keywords locate(l)
argument list(s) and execute command, xargs: construct xargs(l)

and miscellaneous accounting commands, /of accounting acct(lM)
intro: introduction to commands and application/ intro(l)

assistance using CTIX system commands, assist: assist(l)
at, batch: execute commands at a later time at(l)

access graphical and numerical commands, graphics: graphics(lG)
install: install commands inslall(lM)

mkhosts: make node name commands mkhosts(lM)
multi-user/ rc2, rc3: run commands performed for rc2(lM)

' operating system. rcO: run commands performed to stop the rcO(lM)
network useful with graphical commands, stat: statistical stat(lG)

streamio: STREAMS ioctl commands streamio(7)
manipulate the object file comment section, mcs: mcs(l)

cdc: change the delta commentary of an SCCS delta cdc(l)
ar: common archive file format ar(4)

editor output, a.out: common assembler and link a.out(4)
as: common assembler. as(l)

glossary: definitions of common CllX system terms and/ glossary(l)
convert archive files to common formats, convert: convert(l)

routines, ldfcn: common object file access ldfcn(4)
conv: common object file converter conv(l)

cprs: compress a common object file cprs(l)
ldopen, ldaopen: open a common object file for/ ldopen(3X)
/line number entries of a common object file function ldlread(3X)
ldclose, ldaclose: close a common object file ldclose(3X)

read the file header of a common object file, ldfhread: ldfhread(3X)
entries of a section of a common object file, /number ldlseek(3X)

the optional file header of a common object file, /seek to ldohseek(3X)
/entries of a section of a common object file ldrseek(3X)

/section header of a common object file ldshread(3X)
an indexed/named section of a common object file, /seek to ldsseek(3X)

of a symbol table entry of a common object file, /the index ldtbindex(3X)
symbol table entry of a common object file, /indexed ldtbread(3X)

seek to the symbol table of a common object file, ldtbseek: ldtbseek(3X)
line number entries in a common object file, linenum: linenum(4)

- xxxviii -

C source listing from a common object file./produce list(l)
nra: print name list of common object file nm(l)

relocation information for a common object file, reloc: reloc(4)
scnhdr: section header for a common object file scnhdr(4)

line number information from a common object file, /and strip(l)
/retrieve symbol name for common object file symbol/ ldgetname(3X)

table format, syms: common object file symbol syms(4)
filehdr: file header for common object files filehdr(4)

Id: link editor for common object files ld(l)
section sizes in bytes of common object files, /print size(l)

calls, nfssys: common shared NFS system nfssys(2)
comm: select or reject lines common to two sorted files comm(l)

ipcs: report inter-process communication facilities/ ipcs(l)
/ftok: standard interprocess communication package stdipc(3C)

talkd: remote user communication server. talkd(lM)
socket: create an endpoint for communication socket(2)

/configuration file for uucp communications lines Devices(5)
diff: differential file comparator diff(l)

descriptions, infocmp: compare or print out tenminfo infocmp(lM)
chkshlib: compare shared libraries tool chkshlib(l)

cmp: compare two files cmp(l)
SCCS file. sccsdifF: compare two versions of an sccsdiff(l)

diffi: 3-way differential file comparison difB(l)
dircmp: directory comparison dircmp(l)

expression, regcmp, regex: compile and execute regular regcmp(3X)
regexp: regular expression compile and match routines regexp(5)

regcmp: regular expression compile regcmp(l)
term: format of compiled term file term(4)

cc: C compiler cc(l)
tic: terminfo compiler. tic(lM)

yacc: yet another compiler-compiler yacc(l)
modest-sized programs, bs: a compiler/interpreter for bs(l)

erf, erfc: error function and complementary error function erf(3M)
wait: await completion of process wait(l)

cprs: compress a common object file cprs(l)
pack, peat, unpack: compress and expand files pack(l)

table entry of a/ ldtbindex: compute the index of a symbol ldtbindex(3X)
cat: concatenate and print files cat(l)
test: condition evaluation command test(l)

system, config: configure a CTIX config(lM)
NFS file systems export configuration file, exports: exports(4)

(internet/inetd.conf: configuration file for inetd inetd.conf(4)
communications/ Devices: configuration file for uucp Devices(5)

gateways: routed configuration file gateways(4)
netcf: Network Configuration File netcf(4)

resolv.conf: resolver configuration file resolver(4)
STREAMS linker, load socket configuration, /ldsocket: slink(l)

rtab: Remote I/O Processor configuration table rtab(4)
config: configure a CTIX system config(lM)

enpstart: configure Ethernet processor enpstart(lM)
parameters, ifconfig: configure network interface ifconfig(lM)

I/O Processor, riopefg: configure system for Remote riopcfg(lM)
system, lpadmin: configure the LP spooling lpadmin(lM)

system, uconf: configure the operating uconf(lM)
t_rcvconnect: receive the confirmation from a connect/ t_rcvconnect(3)

to use as the virtual system/ conlocate: locate a terminal conlocate(lM)
fwtmp, wtmpfix: manipulate connect accounting records fwtmp(lM)

on a socket, connect: initiate a connection connect(2)

- xxxviii -

t_accept: accept a
t_listen: listen for a

the confirmation from a
getpeemame: get name of
an out-going terminal line

connect: initiate a
down part of a full-duplex

or expedited data sent over a
data or expedited data over a

t_connect: establish a
listen: listen for

acctconl, acctcon2:
to use as the virtual system
the kernel debugger system

console:
for implementation-speci fic

math: math functions and
file header for symbolic

cw, checkcw: prepare
mkfs:

execute command, xargs:
nrofl/troff, tbl, and eqn

debugging on. Uutry: try to
Is: list

ttoc, vtoc: graphical table of
csplit:

address resolution display and
asa: interpret ASA carriage

ioctl:
scsi: scsi

Serial Line Internet Protocol
fcntl: file

floating point environment
init, telinit: process

icmp: Internet
msgctl: message

semctl: semaphore
shmctl: shared memory

fcntl: file
tcp: Internet Transmission

uadmin: administrative
uadmin: administrative

uucp status inquiry and job
vc: version

V/TAPE 3200 half-inch tape
set drive parameters for tape

interface, tty:
RS-232 channels, tp:

converter.
_toupper, _tolower, toascii:/

terminals, term:
units:

character classification and
into a terminfo/ captoinfo:

dd:
English, number:

common formats, convert:
integers and/ 13tol, ltol3:

connect request t_accept(3n)
connect request t_listen(3n)
connect requesL /receive t_rcvconnect(3)
connected peer. getpeemame(2)
connection, dial: establish dial(3C)
connection on a socket connect(2)
connection, shutdown: shut shutdown®
connection, /receive data t_rcv(3n)
connection. t_snd: send t_snd(3n)
connection with another/ t_connect(3n)
connections on a socket listen(2)
connect-time accounting acctcon(lM)
console, /locate a terminal conlocate(lM)
console port, /change dbconsole(lM)
console terminal console(7)
constants, /file header limits(4)
constants math (5)
constants, unistd: unistd(4)
constant-width text for troff. cw(l)
construct a file system mkfs(lM)
construct argument list(s) and xargs(l)
constructs, deroff: remove dero£f(!)
contact a remote system with Uutry(lM)
contents of directory ls(l)
contents routines, toe: dtoc, toc(lG)
context split csplit(l)
control, arp: arp(lM)
control characters asa(l)
control device ioctl(2)
control device scsi(7)
control facility, /switched slipd(lM)
control fcntl(2)
control, /fpsetsticky: IEEE fpgetround(3)
control initialization init(lM)
Control Message Protocol icmp(7)
control operations msgctl(2)
control operations semctl(2)
control operations shmctl(2)
control options fcntl(5)
Control Protocol tcp(7)
control uadmin(lM)
control uadmin(2)
control, uustat: uustat(lC)
control vc(l)
controller, /for Interphase ipt(7)
controllers, tapeset: tapeset(lM)
controlling terminal tty(7)
controlling terminal's local tp(7)
conv: common object file conv(l)
conv: toupper, tolower, conv(3C)
conventional names for term(5)
conversion program units(l)
conversion tables, /generate chrtbl(lM)
convert a termcap description captoinfo(lM)
convert and copy a file dd(lM)
convert Arabic numerals to number(6)
convert archive files to convert(l)
convert between 3-byte 13tol(3C)

xxxvii -

and base-64 ASCII/ a641,164a: convert between long integer a641(3C)
to common formats, convert: convert archive files convert(l)

/cftime, ascftime, tzset: convert date and time to/ ctime(3C)
to string, ecvt, fcvt, gcvt: oonvert floating-point number ecvt(3C)

scanf, fscanf, sscanf: convert formatted input scanf(3S)
strtod, atof: convert string to/ strtod(3C)

strtol, atol, atoi: convert string to integer strtol(3C)
htonl, htons, ntohl, ntohs: convert values between host/ byteorder(3)
conv: common object file converter. conv(l)

timod: Transport Interface cooperating STREAMS module timod(7)
dd: convert and copy a file dd(lM)

bcopy: interactive block copy bcopy(lM)
cpio: copy file archives in and out cpio(l)

access time, dcopy: copy file systems for optimal dcopy(lM)
cp, In, mv: copy, link, or move files cp(l)

volcopy: make literal copy of file system volcopy(lM)
rep: remote file copy rcp(l)

uuname: UNIX-to-UNIX system copy, uucp, uulog, uucp(lC)
UNIX-to-UNIX system file copy, uuto, uupick: public uuto(lC)

core: format of core image file core(4)
synchronization of/ adjtime: correct the time to allow adjtime(2)

atan2:/ trig: sin, cos, tan, asin, acos, atan, trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)

sum: print checksum and block count of a file sum(l)
wc: word count wc(l)

move files, cp, In, mv: copy, link, or cp(l)
cpio: format of cpio archive cpio(4)

and out. cpio: copy file archives in cpio(l)
preprocessor, epp: the C language cpp(l)

environment at login time, cprofile: setting up a C shell cprofile(4)
file, cprs: compress a common object cprs(l)

binary directories, cpset: install object files in cpset(lM)
clock: report CPU time used clock(3C)

craps: the game of craps craps(6)
crash: examine system images crash(lM)

rewrite an existing one. creat: create a new file or creat(2)
command, gencc: create a front-end to the cc gencc(lM)

file, tmpnam, tempnam: create a name for a temporary tmpnam(3S)
an existing one. creat: create a new file or rewrite creat(2)

fork: create a new process fork(2)
mkshlib: create a shared library mkshlib(l)

ctags: create a tags file ctags(l)
tmpfile: create a temporary file tmpfile(3S)

communication, socket: create an endpoint for socket(2)
channel, pipe: create an interprocess pipe(2)

files, admin: create and administer SCCS admin(l)
assorted device/ createdev: create device nodes for createdev(lM)

umask: set and get file creation mask umask(2)
cron: clock daemon cron(lM)

crontab: user crontab file crontab(l)
cxref: generate C program cross-reference. cxref(l)

pg: file perusal filter for CRTs pg(l)
crypt: encode/decode. crypt(l)

encryption functions, crypt: password and file crypt(3X)
generate hashing encryption, crypt, setkey, encrypt: crypt(3C)

interpreter) with C-like/ csh: a shell (command csh(l)
csplit: context split. csplit(l)

terminal, ct: spawn getty to a remote ct(lC)

- xxxviii -

ctags: create a tags file ctags(l)
for terminal, ctermid: generate file name ctermid(3S)

asctime, cftime, ascftime,/ dime, localtime, gmtime, ctime(3C)
ctinstall: install software ctinstall(l)

adman: administer a CTIX system adman(l)
config: configure a CTIX system config(lM)

uname: get name of current CTIX system uname(2)
/definitions of common CTIX system terms and/ glossary(l)

ctrace: C program debugger. ctrace(l)
cu: call another UNIX system cu(lC)

ttt, cubic: tic-tac-toe ttt(6)
uname: get name of current CTIX system uname(2)

endpoint. t_look: look at the current event on a transport t_look(3n)
get/set unique identifier of current host./sethostid: gethostid(2)

sethostname: get/set name of current host, gethostname, gethostname(2)
set or print identifier of current host system, hostid: hostid(l)

uname: print name of current CTIX system uname(l)
activity, sact: print current SCCS file editing sact(l)

t_getstate: get the current state t_getstate(3)
the Internet host name of the current system./set or print hostname(l)

slot in the utmp file of the current user, /find the ttyslot(3C)
getcwd: get path-name of current working directory getcwd(3Q

scr_dump: format of curses screen image file scr_dump(4)
handling and optimization/ curses: terminal screen curses(3X)
spline: interpolate smooth curve. spline(lG)

name of the user, cuserid: get character login cuserid(3S)
each line of a file, cut: cut out selected fields of cut(l)

constant-width text for/ cw, checkcw: prepare cw(l)
cross-reference, cxref: generate C program cxref(l)

cron: clock daemon cron(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

routed: network routing daemon routed(lM)
strerr: STREAMS error logger daemon strerr(lM)

nfsd, biod: NFS daemons nfsd(lM)
runacct: run daily accounting runacct(lM)

Protocol server, ftpd: DARPA Internet File Transfer ftpd(lM)
number mapper, portmap: DARPA port to RPC program portmap(lM)

telnetd: DARPA TELNET protocol server telnetd(lM)
tftp: user interface to the DARPA TFTP protocol tftp(l)

Protocol server, tftpd: DARPA Trivial File Transfer tftpd(lM)
/handle special functions of DASI 300 and 300s terminals 300(1)

special functions of the DASI 450 terminal, /handle 450(1)
/time a command; report process data and system activity timex(l)

file, new aliases: rebuild the data base for the mail aliases newaliases(l)
rpc: Sun rpc program number data base rpc(4)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

generate disk accounting data by user ID. diskusg: diskusg(lM)
t rcvuderr: receive a unit data error indication. t_rcvuderr(3)

/sgetl: access long integer data in a machine-independent/ sputl(3X)
plock: lock process, text, or data in memory plock(2)

connection. t_snd: send data or expedited data over a t_snd(3n)
over a/ t_rcv: receive data or expedited data sent t_rcv(3n)
nlsgetcall: get client's data passed through the/ nlsgetcall(3n)

prof: display profile data prof(l)
call, stat: data returned by stat system stat(5)

I/O Processor for online data, riopqry: query Remote riopqry(lM)
brie, sbric: change data segment space allocation brk(2)

- xxxviii -

/receive data or expedited data sent over a connection t_rcv(3n)
types: primitive system data types types(5)

t_rcvudata: receive a data unit t_rcvudata(3)
t_sndudata: send a data unit t_sndudata(3)

changes to the Help Facility database, helpadm: make helpadm(lM)
join: relational database operator join(l)

using the mkfs(l) proto file database./and verify software qinstall(l)
delete, firstkey, nextkey: database subroutines, /store, dbm(3X)

/dbm_error, dbm_clearerr: database subroutines ndbm(3X)
a terminal or query terminfo database, tput: initialize tput(l)

udp: Internet User Datagram Protocol udp(7)
settimeofday: get/set date and time, gettimeofday gctlimeofday(2)

/ascftime, tzset: convert date and time to string ctime(3C)
date: print and set the date date(l)

date: print and set the date date(l)
debugger system console port, dbconsole: change the kernel dbconsole(lM)

/dbm_nextkey, dbm_eiror, dbm_clearerr: database/ ndbm(3X)
dbm_storey dbm_open, dbm_close, dbm_fetch, ndbm(3X)
/dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,/ ndbm(3X)

/dbm_firstkey, dbm_nextkey, dbm_error, dbm_clearerr:/ ndbm(3X)
dbm_open, dbm_close, dbm_fetch, dbm_store,/ ndbm(3X)

/dbm_store. dbm_delete, dbm_firstkey. dbm_nextkey./ ndhm(3X)
firstkey, nextkey: database/ dbminit, fetch, store, delete, dbm(3X)
/dbm_delete, dbm_firstkey, dbm_nextkey, dbm_error,/ ndbm(3X)

dbm_fetch, dbm_storeJ dbm_open, dbm_close ndbm(3X)
/dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3X)

dc: desk calculator dc(l)
optimal access time, dcopy: copy file systems for dcopy(lM)

dd: convert and copy a file dd(lM)
adb: absolute debugger adb(l)

ctrace: C program debugger ctrace(l)
fsdb: file system debugger fsdb(lM)

load symbols in kernel debugger, mkdbsym: mkdbsym(lM)
sdb: symbolic debugger sdb(l)

dbconsole: change the kernel debugger system console port dbconsole(lM)
contact a remote system with debugging on. Uutry: try to Uutiy(lM)

timezonc: set default system time zone timezone(4)
sysdef: output system definition sysdef(lM)

eqnchar: special character definitions for eqn and neqn eqnchar(5)
system terms and/ glossary: definitions of common CHX glossary(l)

dbminit, fetch, store, delete, firstkey, nextkey:/ dbm(3X)
names, basename, dirname: deliver portions of path basename(l)

file, tail: deliver the last part of a tail(l)
delta commentary of an SCCS delta, cdc: change the cdc(l)

file, delta: make a delta (change) to an SCCS delta(l)
delta, cdc: change the delta commentary of an SCCS cdc(l)

rmdel: remove a delta from an SCCS file rmdel(l)
to an SCCS file, delta: make a delta (change) delta(l)

comb: combine SCCS deltas comb(l)
errdemon: error-logging demon errdemon(lM)

terminate the error-logging demon, errstop: errstop(lM)
mesg: permit or deny messages mesg(l)

tbl, and eqn constructs, deroff: remove nroff/troff, deroff(l)
usage: retrieve a command description and usage/ usage(l)
description into a terminfo description, /a termcap captoinfo(lM)

queuedefs: at/batch/cron queue description file queuedefs(4)
system: system description file system(4)

captoinfo: convert a termcap description into a terminfo/ captoinfo(lM)

- X l -

compare or print out terminfo descriptions, infocmp: infocmp(lM)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

getdtablesize: get descriptor table size getdtablesize(2)
dc: desk calculator. dc(l)

slattach, sldetach: attach and detach serial lines as network/ slattach(lM)
file, access: determine accessibility of a access(2)

preprocessor/ includes: determine C language includes(l)
identifier, fstyp: determine file system fstyp(lM)

file: determine file type file(l)
drivers: loadable device drivers drivers(7)

lines for finite width output device, fold: fold long fold(l)
master: master device information table master(4)

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

device/ createdev: create device nodes for assorted createdev(lM)
clone: open any minor device on a STREAMS driver clone(7)

/tekset, td: graphical device routines and filters gdev(lG)
scsi: scsi control device. scsi(7)

device nodes for assorted device types./create createdev(lM)
for uucp communications/ Devices: con figuration file Devices(5)

scsimap: set mappings for SCSI devices scsimap(lM)
devnm: device name devnm(lM)

blocks and i-nodes. df: report number of free disk df(lM)
systems, fsck, dfsck: check and repair file fsck(lM)

terminal line connection, dial: establish an out-going dial(3C)
ratfor rational FORTRAN dialect ratfor(l)

protocols. Dialers: ACU/modem calling Dialers(5)
bdifif: big diff. bdiff(l)

comparison. difi3: 3-way differential file difB(l)
sdiff: side-by-side difference program sdiff(l)

diffink: mark differences between files diffink(l)
diff: differential file comparator. diff(l)

difB: 3-way differential file comparison difB(l)
dir: format of directories dir(4)
dircmp: directory comparison dircmp(l)

file, uucheck: check the uucp directories and permissions uucheck(lM)
install object files in binary directories, cpset: cpset(lM)

dir: format of directories dir(4)
link and unlink files and directories, link, unlink: link(lM)

mkdir, mkdirs: make directories mkdir(l)
rm, rmdir remove files or directories rm(l)

cd: change working directory cd(l)
chdir: change working directory chdir(2)

chroot: change root directory chroot(2)
uucleanup: uucp spool directory clean-up uucleanup(lM)

dircmp: directory comparison dircmp(l)
file, getdents: read directory entries and put in a getdents(2)

file system independent directory entry, dirent: dirent(4)
unlink: remove directory entry unlink(2)

chroot: change root directory for a command chroot(lM)
/make a lost+found directory for fsck mklostfnd(lM)

adv: advertise a directory for remote access adv(lM)
path-name of current working directory, getcwd: get getcwd(3C)

Is: list contents of directory ls(l)
mkdir: make a directory mkdir(2)
mvdir: move a directory mvdir(lM)

- xli -

pwd: working directory name pwd(l)
/'seekdir, rewinddir, closedir: directory operations directory(3X)
ordinary file, mknod: make a directory, or a special or mknod(2)

rmdir: remove a directory rmdir(2)
independent directory entry, dirent: file system dirent(4)

path names, basename, dimame: deliver portions of basename(l)
dis: object code disassembler. dis(l)

t_unbind: disable a transport endpoint t_unbind(3n)
printers, enable, disable: enable/disable LP enable(l)

acct: enable or disable process accounting acct(2)
dis: object code disassembler. dis(l)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)
t_snddis: send user-initiated disconnect request t_snddis(3n)

retrieve information from disconnect. t_rcvdis: t_rcvdis(3n)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler sadp(lM)
ID. diskusg: generate disk accounting data by user diskusg(lM)

df: report number of free disk blocks and i-nodes df(lM)
disk: general disk driver disk(7)

update: provide disk synchronization update(lM)
Hiv summarize disk usage du{IM)

accounting data by user ID. diskusg: generate disk diskusg(lM)
arp: address resolution display and control arp(lM)

vi: screen-oriented (visual) display editor based on ex vi(l)
information, rmntstat: display mounted resource rmntstat(lM)

prof: display profile data prof(l)
statistics, serstat: display serial port error serstat(lM)

local network, ruptime: display status of nodes on ruptime(l)
hypot: Euclidean distance function hypot(3M)

/lcong48: generate uniformly distributed pseudo-random/ drand48(3C)
Sharing domain and network/ dname: print Remote File dname(lM)
routines. /res_send, res_init, dn_comp, dn_expand: resolver resolver(3)

/res_send, res_init, dn_comp, dn_expand: resolver routines resolver(3)
MM/ mm, checkmm: print/check documents formatted with the mm(l)

macro package for formatting documents, mm: the MM mm(5)
slides, mmt, mvt: typeset documents, view graphs, and mmt(l)

nulladm,/ chargefee, ckpacct, dodisk, lastlogin, monacct, acctsh(lM)
whodo: who is doing what whodo(lM)

/print Remote File Sharing domain and network names dname(lM)
named: Internet domain name server. named(lM)

/atof: convert string to double-precision number strtod(3C)
gtdl, ptdl: RS-232 terminal download, tdl tdl(l)

nrand48, mrand48, jrand48,/ drand48, erand48, lrand48 drand48(3C)
graph: draw a graph graph(lG)

arithmetic: provide drill in number facts arithmetic(6)
controllers, tapeset: set drive parameters for tape tapeset(lM)

used by the/ tapedrives: tape drive specific information tapedrives(4)
facilitate usage of a tape drive, tsioctl: tsioctl(l)

any minor device on a STREAMS driver, clone: open clone(7)
disk: general disk driver disk(7)

lddrv: manage loadable drivers lddrv(lM)
drivers, drivers: loadable device drivers(7)

initialization/ brc, bcheckrc, drvload, powerfail: system brc(lM)
table of contents/toe: dtoc, ttoc, vtoc: graphical toc(lG)

du: summarize disk usage du(lM)
and status information from dump, /extract error records errdead(lM)

hd: hexadecimal and ascii file dump hd(l)

- xlii -

od: octal
object file, dump:

descriptor,
descriptor,

descriptor, dup:
descriptor. dup2:

echo:
network/ ping: send ICMP

floating-point number to/

program, end, etext,
ex for casual users),

sact: print current SCCS file
/(visual) display

ed, red:text
ex: text

files. Id: link
ged: graphical

common assembler and link
sed: stream

casual users), edit: text
ldeeprom: load

/user, real group, and
and/ /getegid: get real user,

language,
split FORTRAN, ratfor, or
pattern using full regular/

enable/disable LP printers,
accounting, acct:

real-time priorities
enable, disable:

crypt:
encrypt: generate hashing

crypt: password and file
makekey: generate

locations in program,
/getgrgid, getgmam, setgrent,

/gethostent, sethostent,
/getnetbyname, setnetent,

socket: create an
bind an address to a transport

l_close: close a transport
current event on a transport

t_open: establish a transport
manage options for a transport

t_unbind: disable a transport
/getprotobyname, setpnotoent,

/getpwuid, getpwnam, setpwent,
/getservbyname, setservent,

getspent, getspnam, setspent,
utmp/ /pututline, setutent,

convert Arabic numerals to
processor,

getdents: read directory
nlist: get

file, linenum: line number
file/ /manipulate line number

dump od(l)
dump selected parts of an dump(l)
dup: duplicate an open file dup(2)
dup2: duplicate an open file dup2(3C)
duplicate an open file dup(2)
duplicate an open file dup2(3C)
echo arguments echo(l)
ECHO_REQUESTpackets to ping(lM)
ecvt, fcvt, gcvt: convert ecvt(3C)
ed, red: text editor. ed(l)
edata: last locations in end(3C)
edit: text editor (variant of edit(l)
editing activity sact(l)
editor based on ex vi(l)
editor. ed(l)
editor ex(l)
editor for common object ld(l)
editor. ged(lG)
editor output a.out: a.out(4)
editor sed(l)
editor (variant of ex for edit(l)
EEPROM !deeprom(!M)
effective group IDs getuid(2)
effective user, real group getuid(2)
efl: extended FORTRAN efl(l)
efl files, fsplit: fsplit(l)
egrep: search a file for a egrep(l)
en: Ethernet Processor en(7)
enable, disable: enable(l)
enable or disable process acct(2)
enabled/disabled, rtpenable: rtpenable(lM)
enable/disable LP printers enable(l)
encode/decode. crypt(l)
encryption, crypt, setkey crypt(3C)
encryption functions crypt(3X)
encryption key makekey(l)
end, etext, edata: last end(3C)
endgrent, fgetgrent: get group/ getgrent(3C)
endhostent: get network host/ gethostbyname(3)
endnetent: get network entry getnetent(3)
endpoint for communication socket(2)
endpoint. t_bind: t_bind(3n)
endpoint t_close(3n)
endpoint t_look: look at the t_look(3n)
endpoint t_open(3n)
endpoint t_optmgmt: t_optmgmt(3n)
endpoint t_unbind(3n)
endprotoent: get protocol/ getprotoent(3)
endpwent, fgetpwent: get/ getpwent(3C)
endservent: get service entry getservent(3)
endspent, fgetspent, lckpwdf,/ getspent(3X)
endutent, utmpname: access getut(3C)
English, number. number(6)
enpstart: configure Ethernet enpstart(lM)
entries and put in a file getdents(2)
entries from name list nlist(3C)
entries in a common object linenum(4)
entries of a common object ldlread(3X)

- xliii -

/ldnlseek: seek to line number
/ldnrseek: seek to relocation

system independent directory
utmp, wtmp: utmp and wimp

fgetgrent: get group file
endhostent: get network host

endnetent: get network
endprotoent: get protocol

fgetpwent: get password file
getrpcbynumber: get rpc

endservent: get service
utmpname: access utmp file

object file symbol table
/the index of a symbol table

/read an indexed symbol table
putpwent: write password file

write shadow password file
unlink: remove directory

command execution.

cprofile: setting up a C shell
nrnfilp" spttino nn an
I D I

/IEEE floating point
environ: user

execution, env: set
getenv: return value for

putenv: change or add value to
performed for multi-user

stop the Remote File Sharing
interface, and terminal

character definitions for
remove nroS/troff, tbl, and

mathematical text for nro©
definitions for eqn and neqn.

rhosts: remote
mrand48, jrand48y drand48,
graphical device/ gdev: hpd,

complementary error function.

and status information from/

format,
system error/ perror,

function and complementary
receive a unit data

strclean: STREAMS
strerr: STREAMS

log: interface to STREAMS
t error: produce

sys_errlist, sys_nerT: system
to system calls and

information/ errdead: extract
serstat: display serial port

matherr:
errfile:

endemon:
errstop: terminate the

err:

entries of a section of a/ ldlseek(3X)
entries of a section of a/ ldrseek(3X)
entry, dirent: file dirent(4)
entry formats utmp(4)
entry, /setgrent, endgrent, getgrent(3C)
entry, /sethostent gethostbyname(3)
entry, /setnetent getnetent(3)
entry, /setprotoent getprotoent(3)
entry, /setpwent, endpwent, getpwent(3C)
entry, /getrpcbyname getrpcent(3)
entry, /setservent getservent(3)
entry, /setutent, endutent getut(3C)
entry, /symbol name for common ldgetname(3X)
entry of a common object file ldtbindex(3X)
entry of a common object file ldtbread(3X)
entry putpwent(3C)
entry, putspent: putspent(3X)
entry unlink(2)
env: set environment for env(l)
environ: user environment environ(5)
environment at login time cprofile(4)
environment at lo°in time. - - = - profile(4)
environment control fpgetround(3)
environment environ(5)
environment for command env(l)
environment name getenv(3C)
environment putenv(3C)
environment, /run commands rc2(lM)
environment rfstop: rfstop(lM)
environment. Aerminal tset(l)
eqn and neqn. /special eqnchar(5)
eqn constructs, derofif: deroff(l)
eqn, neqn, checkeq: format eqn(l)
eqnchar: special character eqnchar(5)
equivalent users rhosts(4)
erand48, lrand48, nrand48 drand48(3C)
erase, hardcopy, tekset, td: gdev(lG)
erf, erfc: error function and erf(3M)
err error-logging interface erTf7)
errdead: extract error records errdead(lM)
errdemon: error-logging demon errdemon(lM)
errfile: error-log file errfile(4)
errno, sys_errlist, sys_nerr: perror(3C)
error function, /erfc: error erf(3M)
error indication. t_rcvuderr: t_rcvuderr(3)
error logger cleanup program strclean(lM)
error logger daemon strerr(lM)
error logging and event/ log(7)
error message t_error(3n)
error messages, /ermo, perror(3C)
error numbers, introduction intro(2)
error records and status errdead(lM)
error statistics serstat(lM)
error-handling function matherr(3M)
error-log file format errfile(4)
error-logging demon erTdemon(lM)
error-logging demon errstop(lM)
error-logging interface errf?)

- xliv -

process a report of logged
hashcheck: find spelling

error-logging demon,
another transport/ t_connect:

endpoint. t open:
terminal line/ dial:

setmnt:
with information from
with information from

pwconv: install and update
pwunconv: install and update

/information used by the
in program, end,

en:
enpstart: configure

hypot:
expression, expr:

test: condition
t_look: look at the current

to STREAMS error logging and
notify, urmotify, evwait,

notify, unnotify.

display editor based on
crash:

a file, locking:
execve, execlp, execvp:/

execlp, execvp: execute/ exec:
execvp:/ exec: execl, execv,

/execl, execv, execle, execve,
path: locate

execve, execlp, execvp:
construct argument list(s) and

time, at, batch:
regcmp, regex: compile and

requests, uuxqt:
set environment for command

sleep: suspend
sleep: suspend

monitor: prepare
rcmd: remote shell command

rexecd: remote
profil:

UNIX-to-UNIX system command
execvp: execute/ exec: execl,

exec: execl, execv, execle,
/execv, execle, execve, execlp,

a new file or rewrite an
exit,

exponential, logarithm,/
peat, unpack: compress and

to spaces, and vice versa.
t_snd: send data or

t_rcv: receive data or
advent:

exp, log, log 10, pow, sqrt:
exports: NFS file systems

errors, errpt: errpt(lM)
errors, /hashmake, spellin spell(l)
errstop: terminate the errstop(lM)
establish a connection with t_connect(3n)
establish a transport t_open(3n)
establish an out-going dial(3C)
establish mount table setmnt(lM)
/etc/passwd. //etc/shadow pwconv(lM)
/etc/passwd. //etc/shadow pwunconv(lM)
/etc/shadow with information/ pwconv(lM)
/etc/shadow with information/ pwunconv(lM)
/etcAapeset command tapedrives(4)
etext, edata: last locations end(3C)
Ethernet Processor en(7)
Ethernet processor. enpstart(lM)
Euclidean distance function hypot(3M)
evaluate arguments as an expr(l)
evaluation command. test(l)
event on a transport endpoint t_look(3n)
event tracing, log: interface log(7)
evnowait: manage/ notify(2)
evwait, evnowait: manage/ notify®
ex for casual users) edit(l)
ex: text editor. ex(l)
ex. /screen-oriented (visual) vi(l)
examine system images crash(lM)
exclusive access to regions of locking(2)
exec: execl, execv, execle, exec(2)
execl, execv, execle, execve, exec(2)
execle, execve, execlp exec(2)
execlp, execvp: execute a/ exec(2)
executable file for command path(l)
execute a file, /execle exec(2)
execute command, xargs: xargs(l)
execute commands at a later at(l)
execute regular expression regcmp(3X)
execute remote command uuxqt(lM)
execution, env: env(l)
execution for an interval sleep(l)
execution for interval sleep(3C)
execution profile monitor(3C)
execution rcmd(l)
execution server rexecd(lM)
execution time profile profil(2)
execution, uux: uux(lC)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp:/ exec(2)
execvp: execute a file exec(2)
existing one. creat: create creat(2)
_exit: terminate process exit(2)
exp, log, loglO, pow, sqrt: exp(3M)
expand files, pack, pack(l)
expand, unexpand: expand tabs expand(l)
expedited data over a/ t_snd(3n)
expedited data sent over a/ t_rcv(3n)
explore Colossal Cave advent(6)
exponential, logarithm, power,/ exp(3M)
export configuration file exports(4)

- xlv -

export configuration file, exports: NFS file systems exports(4)
expression, expr: evaluate arguments as an expr(l)

routines, regexp: regular expression compile and match regexp(5)
regcmp: regular expression compile regcmp(l)

expr: evaluate arguments as an expression expr(l)
compile and execute regular expression, regcmp, regex: regcmp(3X)

a pattern using full regular expressions, /a file for egrep(l)
efl: extended FORTRAN language efl(l)

extproc: turn external processing on or off. extproc(lM)
programs, xstr: extract and share strings in C xstr(l)

status information/ errdead: extract error records and errdead(lM)
in a file, strings: extract the ASCII text strings strings(l)

remainder,/ floor, ceil, fmod, fabs: floor, ceiling floor(3M)
drive, tsioctl: facilitate usage of a tape tsioctl(l)

factors of a number, factor: obtain the prime factor(l)
factor obtain the prime factors of a number factor(l)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
true, false: provide truth values true(l)

data in a machine-independent fashion, /access long integer sputl(3X)
fine: fast incremental backup finc(lM)

/calloc, mallopt, mallinfo: fast main memory allocator malloc(3X)
a stream, fclose, fflush: close or flush fclose(3S)

fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

floating-point number/ ecvt, fevt, gcvt: convert ecvt(3C)
fopen, freopen, fdopen: open a stream fopen(3S)

status inquiries, ferror, feof, clearerr, fileno: stream ferror(3S)
fileno: stream status/ ferror, feof, clearerr ferror(3S)

firstkey, nextkey:/ dbminit, fetch, store, delete, dbm(3X)
for a file system, ff: file names and statistics ff(lM)

stream, fclose, fflush: close or flush a fclose(3S)
word from a/ getc, getchar, fgetc, getw: get character or getc(3S)

/getgmam, setgrent, endgrent, fgetgrent: get group file/ getgrent(3C)
/getpwnam, setpwent, endpwent, fgetpwent: get password file/ getpwent(3C)

stream, gets, fgets: get a string from a gets(3S)
/getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf:/ getspent(3X)

character string, fgrep: search a file for a fgrep(l)
times, utime: set file access and modification utime(2)

ldfcn: common object file access routines ldfcn(4)
determine accessibility of a file, access: access(2)

/2645A terminal tape file archiver. hpio(l)
tar: tape file archiver. tar(l)

cpio: copy file archives in and out cpio(l)
pwck, grpek: password/group file checkers pwck(lM)

chmod: change mode of file chmod(2)
change owner and group of a file, chown: chown(2)

mcs: manipulate the object file comment section mcs(l)
diff: differential file comparator. diff(l)

difD: 3-way differential file comparison difl3(l)
fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

conv: common object file converter conv(l)
rep: remote file copy rcp(l)

public UNIX-to-UNIX system file copy, uuto, uupick: uuto(lC)
core: format of core image file core(4)

cprs: compress a common object file cprs(l)
umask: set and get file creation mask umask(2)

crontab: user crontab file crontab(l)

- xlvi -

ctags: create a tags file clags(l)
fields of each line of a file, cut: cut out selected cut(l)

using the mkfs(l) proto file database./software qinstall(l)
dd: convert and copy a file dd(lM)

a delta (change) to an SCCS file, delta: make delta(l)
close: close a file descriptor. close(2)

dup: duplicate an open file descriptor. dup(2)
dup2: duplicate an open file descriptor dup2(3C)

file: determine file type file(l)
hd: hexadecimal and ascii file dump hd(l)
selected parts of an object file, dump: dump dump(l)

sact: print current SCCS file editing activity sact(l)
crypt: password and file encryption functions crypt(3X)

endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)
fgetpwent: get password file entry, /endpwent, getpwent(3C)
utmpname: access utmp file entry, /endutent, getut(3C)

putpwent: write password file entry putpwent(3C)
write shadow password file entry, putspent: putspent(3X)

execlp, execvp: execute a file, /execv, execle, execve, exec(2)
systems export configuration file, exports: NFS file exports(4)

fgrep: search a file for a character string fgrep(l)
grep: search a file for a pattern grepO)

regular/ egrep: search a file for a pattern using full egrep(l)
path: locate executable file for command path(l)

inetd.conf: configuration file for inetd (internet/ inetd.conf(4)
ldaopen: open a common object file for reading, ldopen, ldopen(3X)

netrc: login file for remote networks netrc(4)
aliases: aliases file for sendmail aliases(4)

lines. Devices: configuration file for uucp communications Devices(5)
acct: per-process accounting file format acct(4)

ar: common archive file format ar(4)
errfile: error-log file format. erifile(4)

intro: introduction to file formats intro(4)
entries of a common object file function, /line number ldlread(3X)

gateways: routed configuration file gateways(4)
get: get a version of an SCCS file get(l)
directory entries and put in a file, getdents: read getdents(2)

group: group file group(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
constants, unistd: file header for symbolic unistd(4)

file, ldfhread: read the file header of a common object ldfhread(3X)
ldohseek: seek to the optional file header of a common object/ ldohseek(3X)

split: split a file into pieces split(l)
issue: issue identification file issue(4)

of a member of an archive file, /read the archive header ldahread(3X)
close a common object file, ldclose, ldaclose: ldclose(3X)

file header of a common object file, ldfhread: read the ldfhread(3X)
a section of a common object file, /line number entries of ldlseek(3X)

file header of a common object file, /seek to the optional ldohseek(3X)
a section of a common object file, /relocation entries of ldrseek(3X)

header of a common object file, /indexed/named section ldshread(3X)
section of a common object file. Ao an indexed/named ldsseek(3X)

table entry of a common object file, /the index of a symbol ldtbindex(3X)
table entry of a common object file, /read an indexed symbol ldtbread(3X)

table of a common object file, /seek to the symbol ldtbseek(3X)
entries in a common object file, linenum: line number linenum(4)

link: link to a file link(2)

- xlvii -

listing from a common object file, list: produce C source list(l)
set links/qlist: print out file lists from proto file; qlist(l)

access to regions of a file, locking: exclusive locking(2)
masterupd: update the master file masterupd(lM)

make an ifile from an object file, mkifile: mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory, mknod(2)
ctermid: generate file name for terminal ctermid(3S)

mktemp: make a unique file name mktemp(3C)
for a file system file names and statistics ff(lM)

netcf: Network Configuration File netcf(4)
data base for the mail aliases file, newaliases: rebuild the newaliases(l)

change the format of a text file, newform: newform(l)
name list of common object file, nm: print nm(l)

null: the null file null(7)
/find the slot in the utmp file of the current user ttyslot(3C)

identify processes using a file or file structure fuser(lM)
one. creat: create a new file or rewrite an existing creat(2)

passwd: password file passwd(4)
or subsequent lines of one file, /lines of several files paste(l)

pg: file perusal filter for CRTs pg(l)
/rewind, ftell: reposition a file pointer in a stream . fseek(3S)

lseek: move read/write file pointer. lseek(2)
prs: print an SCCS file prs(l)
queue description file, /at/batch/cron queuedefs(4)

read: read from file read(2)
for a common object file, /relocation information reloc(4)

resolver configuration file, resolv.conf: resolver(4)
Sharing name server master file, rfmaster: Remote File rfmaster(4)

remove a delta from an SCCS file, rmdel: rmdel(l)
bfs: big file scanner bfs(l)

two versions of an SCCS file, sccsdiff: compare sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

header for a common object file, scnhdr. section scnhdr(4)
format of curses screen image file.. scr_dump: scr_dump(4)

/out file lists from proto file; set links based on qlist(l)
shadow: password file shadow(4)

rfadmin: Remote File Sharing administration rfadmin(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

network/ dname: print Remote File Sharing domain and dname(lM)
rfstop: stop the Remote File Sharing environment rfstop(lM)

rfpasswd: change Remote File Sharing host password rfpasswd(lM)
master file, rfmaster: Remote File Sharing name server rfmaster(4)

query, nsquery: Remote File Sharing name server nsquery(lM)
shell/ rfuadmin: Remote File Sharing notification rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)

rfstart: start Remote File Sharing rfstart(lM)
mapping, idload: Remote File Sharing user and group idload(lM)

fsize: report file size fsize(l)
stat, fstat: get file status stat(2)

the ASCII text strings in a file, strings: extract strings(l)
from a common object file, /line number information strip(l)

processes using a file or file structure, identify fuser(lM)
checksum and block count of a file, sum: print sum(l)
swrite: synchronous write on a file swrite(2)

/symbol name for common object file symbol table entry ldgetname(3X)
syms: common object file symbol table format syms(4)

- xlviii -

ckbupscd: check file system backup schedule ckbupscd(lM)
fsdb: file system debugger fsdb(lM)

volume, fs: file system: format of system fs(4)
fstyp: determine file system identifier. fstyp(lM)

directory entry, dirent: file system independent dirent(4)
statfs, fstatfs: get file system information statfs(2)
mkfs: construct a file system mkfs(lM)

mount: mount a file system mount®
/mount, unmount Network File System resources nmountall(lM)

nfsstat: Network File System statistics nfsstat(lM)
ustat: get file system statistics ustat®

fsstat: report file system status fsstat(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
sysfs: get file system type information sysfs(2)

umount: unmount a file system umount(2)
volcopy: make literal copy of file system volcopy(lM)

system: system description file system(4)
/umount: mount and unmount file systems and remote/ mount(lM)

configuration/ exports: NFS file systems export exports(4)
access time, dcopy: copy file systems for optimal dcopy(lM)

fsck, dfsck: check and repair file systems fsck(l M)
labelit: provide labels for file systems labelit(lM)
mount, unmount multiple file systems, /umountall: mountall(lM)

and/ checklist: list of file systems processed by fsck checklist(4)
deliver the last part of a file, tail: tail(l)

term: format of compiled term file term(4)
tmpfile: create a temporary file tmpfile(3S)

create a name for a temporary file, tmpnam, tempnam: tmpnam(3S)
and modification times of a file, touch: update access touch(l)

ftp: ARPANET file transfer program ftp(l)
ftpd: DARPA Internet File Transfer Protocol server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(lM)
uucp system, uucico: file transport program for the uucico(lM)

ftw: walk a file tree ftw(3C)
file: determine file type file(l)

undo a previous get of an SCCS file, unget: unget(l)
report repeated lines in a file, uniq: uniq(l)

directories and permissions file, uucheck: check the uucp uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write®
umask: set file-creation mode mask umask(l)

common object files, filehdr: file header for filehdr(4)
ferror, feof, clearerr, fileno: stream status/ ferror(3S)

and print process accounting file(s). acct com: search acctcom(l)
merge or add total accounting files, acctmerg: acctmerg(lM)

create and administer SCCS files, admin: admin(l)
link, unlink: link and unlink files and directories link(lM)

cat: concatenate and print files cat(l)
cmp: compare two files cmp(l)

lines common to two sotted files, comm: select or reject comm(l)
In, mv: copy, link, or move files, cp, cp(l)

mark differences between files, diffink: dif6nk(l)
file header for common object files, filehdr: filehdr(4)

find: find files find(l)
free: recover files from a backup tape frec(lM)

format specification in text files, fspec: fspec(4)
FORTRAN, ratfor, or efl files, fsplit: split fsplit(l)

- xlix -

string, format of graphical files, /graphical primitive gps(4)
cpset: install object files in binary directories cpset(lM)

language preprocessor include files, includes: determine C includes(l)
intro: introduction to special files intro(7)

link editor for common object files. Id: ld(l)
lockf: record locking on files lockf(3C)

passmgmt: password files management passmgmt(lM)
rm, rmdir: remove files or directories nn(l)

/merge same lines of several files or subsequent lines of/ paste(l)
unpack: compress and expand files, pack, peat, pack(l)

pr: print files pr(l)
in bytes of common object files, /print section sizes size(l)

sort: sort and/or merge files sort(l)
convert: convert archive files to common formats convert(l)

what: identify SCCS files what(l)
fstab: file-system-table fstab(4)

pg: file perusal filter for CRTs pg(l)
greek: select terminal filter. greek(l)

nl: line numbering filter. nl(l)
col: filter reverse line-feeds col(l)

tio: tape io filter tio(l)
graphical device routines «nd filters. Aekset, td: gdev(lG)

tplot: graphics filters tplot(lG)
fine: fast incremental backup finc(lM)

find: find files find(l)
hyphen: find hyphenated words hyphen(l)

ttyname, isatty: find name of a terminal ttyname(3C)
object library, lorder: find ordering relation for an lorder(l)

hashmake, spellin, hashcheck: find spelling errors, spell, spell(l)
of the current user, ttyslot: find the slot in the utmp file ttyslot(3C)

lookup program, finger: user information finger^l)
information server, fingerd: remote user fingerd(lM)

fold: fold long lines for finite width output device fold(l)
dbminit, fetch, store, delete, firstkey, nextkey: database/ dbm(3X)

fish: play "Go Fish" fish(6)
tee: pipe fitting tee(l)

/fpgetsticky, fpsetsticky: IEEE floating point environment/ fpgetround(3)
isnand, isnanf: test for floating point NaN/ isnan: isnan(3C)

ecvt, fevt, gcvt: convert floating-point number to/ ecvt(3C)
/modf: manipulate parts of floating-point numbers frexp(3C)

floor, ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, fflush: close or flush a stream fclose(3S)
remainder/ floor, ceil, fmod, fabs: floor, ceiling floor(3M)

width output device, fold: fold long lines for finite fold(l)
stream, fopen, freopen, fdopen: open a fopen(3S)

advertised resource, fumount: forced unmount of an fumount(lM)
fork: create a new process fork(2)

per-process accounting file format acct: acct(4)
service request/ nlsrequest: format and send listener nlsrequest(3n)

ar: common archive file format ar(4)
enfile: error-log file format enfile(4)

nroff or/eqn, neqn, checkeq: format mathematical text for eqn(l)
newform: change the format of a text file newform(l)

in ode: format of an i-node inode(4)
term: format of compiled term file term(4)
core: format of core image file core(4)
cpio: format of cpio archive cpio(4)

-1 -

file.. scr_dump: format of curses screen image scr_dump(4)
dir format of directories dir(4)

/graphical primitive string, format of graphical files gps(4)
sccsfile: format of SCCS file sccsfile(4)

fs: file system: format of system volume fs(4)
files, fspec: format specification in text fspec(4)

object file symbol table format, syms: common syms(4)
troff. tbl: format tables for nroff or tbl(l)

nroff: format texL nroff(l)
archive files to common formats, convert: convert convert(l)

intro: introduction to file formats intro(4)
wtmp: utmp and wtmp entry formats, utmp utmp(4)
scanf, fscanf, sscanf: convert formatted input scanf(3S)

/vfprintf, vsprintf: print formatted output of a varargs/ vprintf(3S)
fprintf, sprintf: print formatted output, printf, printf(3S)

/checkmm: print/check documents formatted with the MM macros mm(l)
mptx: the macro package for formatting a permuted index mptx(5)

mm: the MM macro package for formatting documents mm(5)
ms: text formatting macros ms(5)

man: macros for formatting manual pages man(5)
me: macros for formatting papers me(5)

ASSIST menus and command forms, /generate/modify astgen(l)
ratfor: rational FORTRAN dialect ratfor(l)

efl: extended FORTRAN language. efl(l)
files, fsplit: split FORTRAN, ratfor, or efl fsplit(l)

hopefully interesting, adage, fortune: print a random fortune(6)
fpgetround, fpsetround, fpgetmask, fpsetmasky fpgetround(3)
fpgetmask, fpsetmask,/ fpgetround, fpsetround, fpgetround(3)
/fpgetmask, fpsetmask, fpgetsticky, fpsetsticky: IEEE/ fpgetround(3)

formatted output, printf, fprintf, sprintf: print printf(3S)
/fpsetround, fpgetmask, fpsetmask, fpgetstickyy fpgetround(3)
fpsetmask J fpgetround, fpsetround, fjpgetmask fpgetround(3)

' point/ fpsetmask, fpgetsticky, fpsetsticky: IEEE floating fpgetround(3)
word on a/ putc, putchar, fputc, putw: put character or putc(3S)

stream, puts, fputs: put a string on a puts(3S)
input/output fread, fwrite: binary fread(3S)
backup tape, free: recover files from a frec(lM)

t_free: free a library structure t_free(3n)
df: report number of free disk blocks and i-nodes df(lM)

memory allocator, malloc, free, realloc, calloc: main malloc(3C)
mallopt, mallinfo:/ malloc, free, realloc, calloc, malloc(3X)

stream, fopen, freopen, fdopen: open a fopen(3S)
parts of floating-point/ frexp, ldexp, modf: manipulate frexp(3C)

free: recover files from a backup tape frec(lM)
list: produce C source listing from a common object file list(l)
/and line number information from a common object file strip(l)

/receive the confirmation from a connect request t_rcvconnect(3)
reevfrom: receive a message from a socket recv, recv(2)
getw: get character or word from a stream, /fgetc, getc(3S)

gets, fgets: get a string from a stream gets(3S)
mkifile: make an ifile from an object file mkifile(lM)
rmdel: remove a delta from an SCCS file rmdel(l)

get opt: get option letter from argument vector. getopt(3C)
t_rcvdis: retrieve information from disconnect t_rcvdis(3n)

records and status information from dump, /extract error errdead(lM)
/etc/shadow with information from /etc/passwd. /and update pwconv(lM)
/etc/shadow with information from /etc/passwd. /and update pwunconv(lM)

read: read from file read(2)

- l i -

ncheck: generate path names from i-numbers ncheck(lM)
nlist: get entries from name list nlist(3C)

acctcms: command summary from per-process accounting/ acctcms(lM)
qlist: print out file lists from proto file; set links/ qlist(l)

getpw: get name from UID getpw(3C)
cclsw, cc2sw, cc2fp: front-end to the cc command cclsw(l)

gencc: create a front-end to the cc command gencc(lM)
system volume, fs: file system: format of fs(4)

formatted input, scanf, fscanf, sscanf: convert scanf(3S)
of file systems processed by fsck and ncheck. /list checklist(4)

file systems, fsck, dfsck: check and repair fsck(lM)
a lost+found directory for fsck. mklost+found: make mklostfnd(lM)

fsdb: file system debugger fsdb(lM)
reposition a file pointer in/ fseek, rewind, ftell: fseek(3S)

fsize: report file size fsize(l)
text files, fspec: format specification in fspec(4)

or efl files, fsplit: split FORTRAN,ratfor fsplit(l)
status, fsstat: report file system fsstat(lM)

fstab: file-system-table fstab(4)
stat, fstat: get file status stat(2)

information, statfs, fstatfs: get file system statfs(2)
identifier, fstyp: determine file system fstyp(lM)

pointer in a/ fseek, rewind, ftell: reposition a file fseek(3S)
communication/ stdipc, ftok: standard interprocess stdipc(3C)

program, ftp: ARPANET file transfer ftp(l)
Transfer Protocol server, ftpd: DARPA Internet File ftpd(lM)

ftw: walk a file tree ftw(3C)
/a file for a pattern using full regular expressions egrep(l)

shutdown: shut down part of a full-duplex connection shutdown(2)
advertised resource, fumount: forced unmount of an fumount(lM)
error/ erf, erfc: error function and complementary erf(3M)
gamma: log gamma function gamma(3M)

hypot: Euclidean distance function hypot(3M)
of a common object file function, /line number entries ldlread(3X)
matherr: error-handling function matherr(3M)

prof: profile within a function prof(5)
math: math functions and constants math(5)

intro: introduction to functions and libraries intro(3)
jO, j l . jn , yO, yl, yn: Bessel functions, bessel: bessel(3M)

password and file encryption functions, crypt: crypt(3X)
logarithm, power, square root functions, /sqrt: exponential exp(3M)

remainder, absolute value functions, /floor, ceiling, floor(3M)
ocurse: optimized screen functions ocurse(3X)
300, 300s: handle special functions of DASI300 and 300s/ 300(1)

terminals, hp: handle special functions of Hewlett-Packard hp(l)
terminal. 450: handle special functions of the DASI 450 450(1)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
atan, atan2: trigonometric functions. Aan, asin, acos, trig(3M)

fusage: disk access profiler fusage(lM)
using a file or file/ fuser: identify processes fuser(lM)

fread, fwrite: binary input/output fread(3S)
connect accounting records, fwtmp, wtmpfix: manipulate fwtmp(lM)

moo: guessing game moo(6)
back: the game of backgammon back(6)

bj: the game of black jack bj(6)
craps: the game of craps craps(6)

wump: the game of hunt-the-wumpus wump(6)
trie: trekkie game tik(6)

- lii -

intro: introduction to games intro(6)
gamma: log gamma function gamma(3M)

file, gateways: routed configuration gateways(4)
number to string, ecvt, fcvt, gcvt: convert floating-point ecvt(3C)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, gdev(lG)

ged: graphical editor ged(lG)
the cc command, gencc: create a front-end to gencc(lM)

maze: generate a maze maze(6)
abort: generate a SIGABRT. abort(3C)
cflow: generate C flowgraph cflow(l)

cross-reference, cxref: generate Cprogram cxref(l)
classification and/ chrtbl: generate character chrtbl(lM)

by user ID. diskusg: generate disk accounting data diskusg(lM)
makekey: generate encryption key makekey(l)

terminal, ctermid: generate file name for ctermid(3S)
crypt, setkey, encrypt: generate hashing encryption crypt(3C)

i-numbers. ncheck: generate path names from ncheck(lM)
lexical tasks, lex: generate programs for simple lex(l)

/srand48, seed48, lcong48: generate uniformly distributed/ drand48(3C)
and command forms, astgen: generate/modify ASSIST menus astgen(l)

srand: simple random-number generator, rand, rand(3C)
gets, fgets: get a string from a stream gets(3S)

get: get a version of an SCCS file get(l)
getsockopt, setsockopt: get and set options on/ getsockopt(2)

ulimit: get and set user limits ulimit(2)
the user, cuserid: get character login name of cuserid(3S)

getc, getchar, fgetc, getw: get character or word from a/ getc(3S)
through the/ nlsgetcall: get client's data passed nlsgetcall(3n)

getdtablesize: get descriptor table size getdtablesize(2)
nlist: get entries from name list nlist(3C)

umask: set and get file creation mask umask(2)
stat, fstat: get file status stat(2)

statfs, fstatfs: get file system information statfs(2)
ustat: get file system statistics ustat(2)

information, sysfs: get file system type sysfs(2)
file, get: get a version of an SCCS get(l)

/setgrent, endgrent, fgetgrent: get group file entry getgrent(3C)
getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

getpeemame: get name of connected peer getpeemame(2)
system, uname: get name of current CTIX uname(2)

provider, nlsprovider get name of transport nlsprovider(3n)
host, getservaddr: get network address of service getservad(lM)

/setnetent, endnetent: get network entry getnetent(3)
/sethostent, endhostent: get network host entry gethostbyname(3)

getmsg: get next message off a stream getmsg(2)
unget: undo a previous get of an SCCS file unget(l)

argument vector, getopt: get option letter from getopt(3C)
/setpwent, endpwent, fgetpwent: get password file entry getpwent(3C)

working directory, getcwd: get path-name of current getcwd(3C)
times, times: get process and child process times(2)

and/ getpid, getpgrp, getppid: get process, process group, getpid(2)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

information. t_getinfo: get protocol-specific service t_getinfo(3n)
/geteuid, getgid, getegid: get real user, effective user J getuid(2)

getrpcbyname, getrpcbynumber: get rpc entry, getrpcent, getrpcent(3)

- l i i i -

getrpcport: get RPC port number getrpcpoit(3)
/setservent, endservent: get service entry getservent(3)

semget: get set of semaphores semget(2)
fgetspent, lckpwdf, ulckpwdf: get shadow, /endspent, getspent(3X)

identifier, shmget: get shared memory segment shmget(2)
getsockname: get socket name getsockname(2)

t_getstate: get the curtail state t_getstate(3)
tty: get the name of the terminal tty(l)

time: get time time(2)
get character or word from a/ getc, getchar, fgetc, getw: getc(3S)
character or word from/getc, getchar, fgetc, getw: get getc(3S)

current working directoiy. getcwd: get path-name of getcwd(3C)
entries and put in a file, getdents: read directory getdents(2)

table size, getdtablesize: get descriptor getdtablesize(2)
getuid, geteuid, getgid, getegid: get real user/ getuid(2)

environment name, getenv: return value for getenv(3C)
real user, effective/ getuid, geteuid, getgid, getegid: get getuid(2)

user/ getuid, geteuid, getgid, getegid: get real getuid(2)
setgrent, endgrent/ getgrent, getgrgid, getgmam getgrent(3C)

endgrent/ getgrent, getgrgid, getgmam, setgrent, getgrent(3C)
getgrent, getgrgid, getgmam, setgrent, endgrent/ getgrent(3C)

sethostent/ gethostbyname, gethostbyaddr, gethostent gethostbyname(3)
gethostent, sethostent/ gethostbyname, gethostbyaddr gethostbyname(3)

gethostbyname, gethostbyaddr, gethostent, sethostent/ gethostbyname(3)
unique identifier of current/ gethostid, sethostid: get/set gethostid(2)

get/set name of current host, gethostname, sethostname: gethostname(2)
getlogin: get login name getlogin(3C)

stream, getmsg: get next message off a getmsg(2)
setnetent,/ getnetent, getnetbyaddr, getnetbyname, getnetent(3)

getnetent, getnetbyaddr, getnetbyname, setnetent/ getnetent(3)
getnetbyname, setnetent/ getnetent, getnetbyaddr, getnetent(3)

argument vector, getopt: get option letter from getopt(3C)
getopt: parse command options getopt(l)

options, getopts, getoptcvt: parse command getopts(l)
command options, getopts, getoptcvt: parse getopts(l)

getpass: read a password getpass(3C)
connected peer, getpeemame: get name of getpeemame(2)

process group, and/ getpid, getpgrp, getppid: get process, getpid(2)
process, process group, and/ getpid, getpgrp, getppid: get getpid(2)
group, and/ getpid, getpgrp, getppid: get process, process getpid(2)

getprotoent, getprotobynumber, getprotobyname, setprotoent/ getprotoent(3)
getprotobyname/ getprotoent, getprotobynumber, getprotoent(3)
getprotobyname, setprotoent/ getprotoent, getprotobynumber getprotoent(3)

getpw: get name from UID getpw(3C)
setpwent, endpwent/ getpwent, getpwuid, getpwnam, getpwent(3C)
getpwent, getpwuid, getpwnam, setpwent, endpwent/ getpwent(3C)

endpwent/ getpwent, getpwuid, getpwnam, setpwent, getpwent(3C)
get rpc entry, getrpcent, getrpcbyname, getrpcbynumber: getrpcent(3)

getrpcbynumber: get rpc/ getipcent, getrpcbyname, getrpcent(3)
number, getrpcport: get RPC port getrpcport(3)

a stream, gets, fgets: get a string from gets(3S)
address of service host, getservaddr: get network getservad(lM)

getservent, getservbyport, getservbyname, setservent/ getservent(3)
setservent^ getservent, getservbyport, getservbyname, getservent(3)

getservbyname, setservent/ getservent, getservbyport, getservent(3)
gettimeofday, settimeofday: get/ set date and time gettimeofday(2)
gethostname, sethostname: get/set name of current host gethostname(2)

current/ gethostid, sethostid: get/set unique identifier of gethostid(2)

- l i v -

getsocknaine: get socket name getsockname(2)
and set options on sockets, getsockopt, setsockopt: get getsockopt(2)

endspent, fgetspent, lckpwdfy getspent, getspnam, setspent, getspent(3X)
fgetspent, Ickpwdf,/ getspent, getspnam, setspent, endspent, getspent(3X)

get/set date and time, gettimeofday, settimeofday: gettimeofday(2)
and terminal settings used by getty. gettydefs: speed gettydefs(4)

modes, speed, and line/ getty: set terminal type, getty(lM)
ct: spawn getty to a remote terminal ct(lC)

settings used by getty. gettydefs: speed and terminal gettydefs(4)
getegid: get real userJ getuid, geteuid, getgid getuid(2)

pututline, setutent,/ getut: getutent, getutid, getutline, getut(3C)
setutent,/ getut: getutent, getutid, getutline, pututline, getut(3C)

getut: getutent, getutid, getutline, pututline,/ getut(3C)
from a/ getc, getchar, fgetc, getw: get character or word getc(3S)

common CTIX system terms and/ glossary: definitions of glossary(l)
ascftime,/ ctime, localtime, gmtime, asctime, cftime, ctime(3C)

fish: play "Go Fish" fish(6)
setjmp, longjmp: non-local goto setjmp(3C)
string, format of graphical/ gps: graphical primitive gps(4)

graph: draw a graph graph(lG)
sag: system activity graph sag(lG)

commands, graphics: access graphical and numerical graphics(lG)
/network useful with graphical commands stat(lG)

/erase, hardcopy, tekset, td: graphical device routines and/ gdev(lG)
ged: graphical editor. ged(lG)

primitive string, format of graphical files, /graphical gps(4)
toe: dtoc, ttoc, vtoc: graphical table of contents/ toc(lG)

gutil: graphical utilities gutil(lG)
numerical commands, graphics: access graphical and graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
mvt: typeset documents, view graphs, and slides, mmt, mmt(l)
package for typesetting view graphs and slides, /macro mv(5)

greek: select terminal filter. greek(l)
pattern, grep: search a file for a grep(l)

/user, effective user, real group, and effective group/ getuid(2)
/getppid: get process, process group, and parent process IDs getpid(2)

chown, chgrp: change owner or group chown(l)
endgrent, fgetgrent: get group file entry, /setgrent getgrent(3C)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names id(lM)
real group, and effective group IDs. /effective user, getuid(2)

setuid, setgid: set user and group IDs setuid(2)
Remote File Sharing user and group mapping, idload: idload(lM)

newgrp: log in to a new group. newgrp(lM)
chown: change owner and group of a file chown(2)

a signal to a process or a group of processes, /send kill(2)
update, and regenerate groups of programs, /maintain, make(l)

checkers, pwck, grpek: password/group file pwck(lM)
ssignal, gsignal: software signals ssignal(3C)

install or relocate a PT or GT local printer, /mvtpy: mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal tdl(l)

hangman: guess the word hangman(6)
moo: guessing game moo(6)

gutil: graphical utilities gutil(lG)
/for Interphase V/TAPE 3200 half-inch tape controller ipt(7)

-IV-

stape: SCSI quarter-inch and half-inch tape stape(7)
system state, shutdown, halt: shut down system, change shutdown(lM)

DASI 300 and 300s/ 300, 300s: handle special functions of 300(1)
Hewlett-Packard/ hp: handle special functions of hp(l)

the DASI 450 terminal. 450: handle special functions of 450(1)
varargs: handle variable argument list varargs(5)

curses: teiminal screen handling and optimization/ curses(3X)
setchrclass: character handling, / tolower, toupper, ctype(3C)

hangman: guess the word hangman(6)
nohup: run a command immune to hangups and quits nohup(l)

graphical/gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)
hinv: hardware inventory hinv(lM)

hcreate, hdestroy: manage hash search tables, hsearch, hsearch(3C)
spell, hashmake, spellin, hashcheck: find spelling/ spell(l)
setkey, encrypt: generate hashing encryption, crypt, crypt(3C)

find spelling errors, spell, hashmake, spellin, hashcheck: spell(l)
search tables, hsearch, hcreate, hdestroy: manage hash hsearch(3C)

dump, hd: hexadecimal and ascii file hd(l)
tables, hsearch, hcreate, hdestroy: manage hash search hsearch(3C)

file, scnhdr: section header for a common object scnhdr(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
unistd: file header for symbolic constants unistd(4)

file, ldfhtead: read the file header of a common object ldfhread(3X)
/seek to the optional file header of a common object/ ldohseek(3X)

/read an indexed/named section header of a common object/ ldshread(3X)
ldahread: read the archive header of a member of an/ ldahread(3X)

helpadm: make changes to the Help Facility database helpadm(lM)
help: CTIX system Help Facility help(l)

help: CTIX system Help Facility help(l)
Help Facility database, helpadm: make changes to the helpadm(lM)
tape file archiver. hpio: Hewlett-Packard 2645A terminal hpio(l)

/handle special functions of Hewlett-Packard terminals hp(l)
dump, hd: hexadecimal and ascii file hd(l)

hinv: hardware inventory hinv(lM)
libdev: manipulate Volume Home Blocks (VHB) libdev(3X)

fortune: print a random, hopefully interesting, adage fortune(6)
/ntohs: convert values between host and network byte order byteorder(3)

endhostent: get network host entry, /sethostent, gethostbyname(3)
unique identifier of current host /sethostid: get/set gethostid(2)

get/set name of current hosL /sethostname: gethostname(2)
get network address of service host, getservaddr: getservad(lM)

/set or print the Internet host name of the current/ hostname(l)
change Remote File Sharing host password, rfpasswd: rfpasswd(lM)

rwhod: host status server rwhod(lM)
or print identifier of current host system, hostid: set hostid(l)

identifier of current host/ hostid: set or print hostid(l)
Internet host name of the/ hostname: set or print the hostname(l)

packets to network hosts, /send ICMP ECHO_REQUEST ping(lM)
of Hewlett-Packard terminals, hp: handle special functions hp(l)

td: graphical device/ gdev: hpd, erase, hardcopy, tekset gdev(lG)
terminal tape file archiver. hpio: Hewlett-Packard 2645A hpio(l)
manage hash search tables, hsearch, hcreate, hdestroy: hsearch(3C)

convert values between host/ htonl, htons, ntohl, ntohs: byteorder(3)
values between host/ htonl, htons, ntohl, ntohs: convert byteorder(3)

wump: the game of hunt-the-wumpus wump(6)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

hyphen: find hyphenated words hyphen(l)

- lvi -

function, hypot: Euclidean distance hypot(3M)
network hosts, ping: send ICMP ECHO_REQUEST packets to ping(lM)

Protocol, icmp: Internet Control Message icmp(7)
disk accounting data by user ID. diskusg: generate diskusg(lM)

semaphore set or shared memory ID./remove a message queue ipctm(l)
and names, id: print user and group IDs id(lM)

setpgrp: set process group ID setpgtp(2)
issue: issue identification file issue(4)

fstyp: determine file system identifier. fstyp(lM)
/sethostid: get/set unique identifier of current host gethostid(2)

system, hostid: set or print identifier of current host hostid(l)
get shared memory segment identifier, shmget: shmget(2)

using keywords, locate: identify a CTIX system command locate(l)
file or file/ fuser: identify processes using a fuser(lM)

what: identify SCCS files what(l)
user and group mapping, idload: Remote File Sharing idload(lM)
id: print user and group IDs and names id(lM)

group, and parent process IDs. /get process, process getpid(2)
group, and effective group IDs. /effective user, real getuid(2)
setgid: set user and group IDs. setuid, setuid(2)
/fpgetsticky, fpsetsticky: IEEE floating point/ fpgetround(3)

interface parameters, ifconfig: configure network . . ifconfig(lM)
mkifile: make an ifile from an object file mkifile(lM)

core: format of core image file core(4)
format of curses screen image file.. scr_dump: scr_dump(4)
crash: examine system images crash(lM)
nohup: run a command immune to hangups and quits nohup(l)

limits: file header for implementation-speci fic/ limits(4)
C language preprocessor include files, /determine includes(l)

fine: fast incremental backup. finc(lM)
dirent: file system independent directory entry dirent(4)

Agoto, tputs: terminal independent operations otermcap(3X)
for formatting a permuted index./the macro package mptx(S)

of a/ ldtbindex: compute the index of a symbol table entry ldtbindex(3X)
ptx: permuted index ptx(l)

a common/ ldtbread: read an indexed symbol table entry of ldtbread(3X)
ldshread, ldnshread: read an indexed/named section header/ ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)
receipt of an orderly release indication, /acknowledge t_rcvrel(3n)

receive a unit data error indication, t rcvuderr: t_rcvuden(3)
family, inet: Internet protocol inet(7)

inet_ntoa, inet_makeaddr,/ inet_addr, inet_network inet(3)
"super-server", inetd: internet inetd(lM)

configuration file for inetd (internet/ inetd.conf: inetd.conf(4)
for inetd (internet/ inetd.conf: configuration file inetd.conf(4)

/inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof:/ inet(3)
/inetnetwork, inet_ntoa, inet_makeaddr, inetlnaof,/ inet(3)

/inet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3)
inet_makeaddry inet_addr, inet_network, inetntoa, inet(3)

inet_addr, inet_network, inet ntoa, inetmakeaddr,/ inet(3)
terminfo descriptions, infocmp: compare or print out infocmp(lM)

inittab: script for the init process inittab(4)
initialization, init, telinit: process control init(lM)

init, telinit: process control initialization init(lM)
/drvload, powerfail: system initialization procedures bic(lM)

terminfo database, tput: initialize a terminal or query tput(l)
volume, iv: initialize and maintain iv(l)

socket, connect: initiate a connection on a connect(2)

- lvii -

t_sndrel: initiate an orderly release t_sndrel(3n)
process, popen, pclose: initiate pipe to/from a popen(3S)

process, inittab: script for the init inittab(4)
clri: clear i-node clri(lM)

inode: format of an i-node inode(4)
number of free disk blocks and i-nodes. df: report df(lM)

start and stop terminal input and output, /manually rsterm(lM)
sscanf: convert formatted input, scanf, fscanf, scanf(3S)
push character back into input stream, ungetc: ungetc(3S)

fread, fwrite: binary input/output. fread(3S)
poll: STREAMS input/output multiplexing poll(2)

stdio: standard buffered input/output package stdio(3S)
fileno: stream status inquiries, /feof, clearerr, ferror(3S)

uustat: uucp status inquiry and job control uustat(lC)
with information from/ pwconv: install and update /etc/shadow pwconv(lM)

with information/ pwunconv: install and update /etc/shadow pwunconv(lM)
using the mkfs(l)/ qinstall: install and verify software qinstall(l)

install: install commands install(lM)
directories, cpset: install object files in binary cpset(lM)

local printer, mktpy, mvtpy: install or relocate a PT or GT mktpy(l)
ctinstall: install software ctinstall(l)

abs: return integer absolute value abs(3C)
/164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
atol, atoi: convert string to integer, strtol, strtol(3C)

3-byte integers and long integers, /convert between 13tol(3C)
bcopy: interactive block copy bcopy(lM)

system, mailx: interactive message processing mailx(l)
print a random, hopefully interesting, adage, fortune: fortune(6)

tset: set terminal, terminal interface, and terminal/ tset(l)
module, timod: Transport Interface cooperating STREAMS timod(7)

err: error-logging interface err(7)
V/TAPE 3200 half-inch/ipt: interface for Interphase ipt(7)

qic: interface for QIC tape qic(7)
lo: software loopback network interface lo(7)

lp: parallel printer interface lp(7)
mem, kmem: system memory interface mem(7)

ifconfig: configure network interface parameters ifconfig(lM)
plot: graphics interface plot(4)

STREAMS/ tirdwr Transport Interface read/write interface tirdwr(7)
/Transport Interface read/write interface STREAMS module tirdwr(7)

plot: graphics interface subroutines plot(3X)
swap: swap administrative interface swap(lM)

termio: general terminal interface termio(7)
tiop: terminal accelerator interface tiop(7)

logging and event/ log: interface to STREAMS error log(7)
telnet: user interface to TELNET protocol telnet(l)

protocol, tftp: user interface to the DARPA TFTP tftp(l)
tty: controlling terminal interface tty(7)

vme: VME bus interface vme(7)
detach serial lines as network interfaces, /attach and slattach(lM)

/inet_lnaof, inet_netof: Internet address manipulation/ inet(3)
Protocol, icmp: Internet Control Message icmp(7)

named: Internet domain name server named(lM)
Protocol server, flpd: DARPA Internet File Transfer ftpd(lM)

hostname: set or print the Internet host name of the/ hostname(l)
names and numbers for the internet, networks: networics(4)
slipd: switched Serial Line Internet Protocol control/ slipd(lM)

- lviii -

inet: Internet protocol family inet(7)
ip: Internet Protocol ip(7)

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

inetd: internet "super-server" inetd(lM)
/configuration file for inetd (internet "super-server") inetd.conf(4)

Protocol, tcp: Internet Transmission Control tcp(7)
Protocol, udp: Internet User Datagram udp(7)

half-inch/ ipt: interface for Interphase V/TAPE 3200 ipt(7)
spline: interpolate smooth curve spline(lG)

characters, asa: interpret ASA carriage control asa(l)
sno: SNOBOL interpreter. sno(l)

syntax, csh: a shell (command interpreter) with C-like csh(l)
pipe: create an interprocess channel pipe(2)

facilities/ ipcs: report inter-process communication ipcs(l)
stdipc, ftok: standard interprocess communication/ stdipc(3C)

suspend execution for an interval, sleep: sleep(l)
sleep: suspend execution for interval sleep(3C)
application programs, intro: introduction to commands and intro(l)

intro: introduction to file formats intro(4)
libraries, intro: introduction to functions and intro(3)

intro: introduction to games intro(6)
intro: introduction to miscellany intro(5)
intro: introduction to special files intro(7)

and error numbers, intro: introduction to system calls intro(2)
generate path names from i-numbers, ncheck: ncheck(lM)

hinv: hardware inventory hinv(lM)
tio: tape io filter. tio(l)

select: synchronous I/O multiplexing select(2)
table, rtab: Remote I/O Processor configuration rtab(4)

riopqry: query Remote I/O Processor for online data riopqry(lM)
configure system for Remote I/O Processor, riopcfg: riopcfg(lM)

streamio: STREAMS ioctl commands streamio(7)
ioctl: control device ioctl(2)
ip: Internet Protocol ip(7)

semaphore set or shared/ ipcrm: remove a message queue, ipcrm(l)
communication facilities/ ipcs: report inter-process ipcs(l)

V/TAPE 3200 half-inch tape/ ipt: interface for Interphase ipt(7)
/islower, isupper, isalpha, isalnum, isspace, iscntrl/ ctype(3C)
/isxdigit, islower, isupper, isalpha, isalnum, isspace,/ ctype(3C)
/ispunct, isprint, isgraph, isascii, tolower, toupper/ ctype(3C)

terminal, ttyname, isatty: find name of a ttyname(3C)
/isalpha, isalnum, isspace, iscntrl, ispunct, isprint,/ ctype(3C)
isupper, isalpha, isalnum/ isdigit, isxdigit, islower ctype(3C)

/iscntrl, ispunct, isprint, isgraph, isascii, tolower,/ ctype(3C)
isalnum/ isdigit, isxdigit, islower, isupper, isalpha, ctype(3C)

for floating point NaN/ isnan: isnand, isnanf: test isnan(3C)
floating point NaN/ isnan: isnand, isnanf: test for isnan(3C)
point NaN/ isnan: isnand, isnanf: test for floating isnan(3C)

/isspace, iscntrl, ispunct, isprint, isgraph, isascii/ ctype(3C)
/isalnum, isspace, iscntrl, ispunct, isprint, isgraph/ ctype(3C)

A supper, isalpha, isalnum, isspace, iscntrl, ispunct/ ctype(3C)
system: issue a shell command system(3S)

issue: issue identification file issue(4)
isdigit, isxdigit, islower, isupper, isalpha, isalnum/ ctype(3C)

isalpha, isalnum/ isdigit, isxdigit, islower, isupper, ctype(3C)
news: print news items news(l)

volume, iv: initialize and maintain iv(l)

- l i x -

functions, bessel: jO, j l , jn , yO, yl, yn: Bessel bessel(3M)
functions, bessel: jO, j l , jn, yO, yl, yn: Bessel bessel(3M)
bj: the game of black jack bj(6)

functions, bessel: jO, j l , jn, yO, yl, yn: Bessel bessel(3M)
operator, join: relational database join(l)

/lrand48, nrand48, mrand48, jrand48, srand48, seed48/ drand48(3C)
mkdbsym: load symbols in kernel debugger. mkdbsym(lM)

port, dbconsole: change the kernel debugger system console dbconsole(lM)
makekey: generate encryption key makekey(l)

a C'l LX system command using keywords, locate: identify locate(l)
killall: kill all active processes killall(lM)

process or a group of/ kill: send a signal to a kill(2)
kill: terminate a process kill(l)

processes, killall: kill all active killall(lM)
mem, kmem: system memory interface mem(7)

quiz: test your knowledge. quiz(6)
3-byte integers and long/ 13tol, ltol3: convert between 13tol(3C)

integer and base-64/ a641, 164a: convert between long a641(3C)
labelit: provide labels for file systems labelit(lM)

scanning and processing language, awk: pattern awk(l)
arbitrary-precision arithmetic language, be: bc(l)

efl: extended FORTRAN language efl(l)
scanning and processing language, nawk: pattern nawk(l)

epp: the C language preprocessor. cpp(l)
files, includes: determine C language preprocessor include includes(l)

command programming language, /standard/restricted sh(l)
cftime: language specific strings cftime(4)

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
shl: shell layer manager. shl(l)

/setspent, endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)
/jrand48, srand48, seed48, lcong48: generate uniformly/ drand48(3C)

object files. Id: link editor for common ld(l)
object file, ldclose, ldaclose: close a common ldclose(3X)

header of a member of an/ ldahread: read the archive ldahread(3X)
file for reading, ldopen, ldaopen: open a common object ldopen(3X)

common object file, ldclose, ldaclose: close a ldclose(3X)
drivers, lddrv: manage loadable lddrv(lM)

ldeeprom: load EEPROM ldeeprom(lM)
of floating-point/ frexp, ldexp, modf: manipulate parts frexp(3C)

access routines, ldfcn: common object file ldfcn(4)
of a common object file, ldfhread: read the file header ldfhread(3X)

name for common object file/ ldgetname: retrieve symbol ldgetname(3X)
line number entries/ ldlread, ldlinit, ldlitem: manipulate ldlread(3X)

number/ ldlread, ldlinit, ldlitem: manipulate line ldlread(3X)
manipulate line number/ ldlread, ldlinit, ldlitem: ldlread(3X)
line number entries of a/ ldlseek, ldnlseek: seek to ldlseek(3X)

entries of a section/ ldlseek, ldnlseek: seek to line number ldlseek(3X)
entries of a section/ ldrseek, ldnrseek: seek to relocation ldrseek(3X)

indexed/named/ ldshread, ldnshread: read an ldshread(3X)
indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
file header of a common/ ldohseek: seek to the optional ldohseek(3X)

object file for reading, ldopen, ldaopen: open a common ldopen(3X)
relocation entries of a/ ldrseek, ldnrseek: seek to ldrseek(3X)

indexed/named section header/ ldshread, ldnshread: read an ldshread(3X)
socket configuration, slink, ldsocket: STREAMS linker, load slink(l)

indexed/named section of a/ ldsseek, ldnsseek: seek to an ldsseek(3X)
of a symbol table entry of a/ ldtbindex: compute the index ldtbindex(3X)

symbol table entry of a/ ldtbread: read an indexed ldtbread(3X)

- l x -

table of a common object/ ldtbseek: seek to the symbol ldtbseek(3X)
getopt: get option letter from argument vector getopt(3C)

generate programs for simple lexical tasks, lex: lex(l)
update, lsearch, lfind: linear search and lsearch(3C)
Blocks (VHB). libdev: manipulate Volume Home libdev(3X)

introduction to functions and libraries, intro: intro(3)
chkshlib: compare shared libraries tool chkshlib(l)

relation for an object library, /find ordering lorder(l)
portable/ ar: archive and library maintainer for ar(l)
mkshlib: create a shared library mkshlib(l)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

t_sync: synchronize transport library t_sync(3n)
implementation-speci fic/ limits: file header for limits(4)

ulimit: get and set user limits ulimit(2)
an out-going terminal line connection, /establish dial(3C)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)

slipd: switched Serial Line Internet Protocol control/ slipd(lM)
line: read one line line(l)

common object file, linenum: line number entries in a linenum(4)
Adlinit, ldlitem: manipulate line number entries of a/ idiread(3X)

ldlseek, ldnlseek: seek to line number entries of a/ ldlseek(3X)
strip: strip symbol and line number information from a/ strip(l)

nl: line numbering filter. nl(l)
out selected fields of each line of a file, cut: cut cut(l)

send/cancel requests to an LP line printer. Ip, cancel: lp(l)
lpset: set parallel line printer options Ipset(lM)

lpr: line printer spooler. lpr(l)
line: read one line line(l)

lsearch, lfind: linear search and update lsearch(3C)
col: filter reverse line-feeds col(l)

in a common object file, linenum: line number entries linenum(4)
/attach and detach serial lines as network interfaces slattach(lM)

files, comm: select or reject lines common to two sorted comm(l)
file for uucp communications lines. Devices: configuration Devices(5)

device, fold: fold long lines for finite width output fold(l)
head: give first few lines head(l)

uniq: report repeated lines in a file uniq(l)
subsequent/ paste: merge same lines of several files or paste(l)

directories, link, unlink: link and unlink files and link(lM)
files. Id: link editor for common object ld(l)

a.out: common assembler and link editor output a.out(4)
link: link to a file link(2)

cp, In, mv: copy, link, or move files cp(l)
link: link to a file link(2)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
lists from proto file; set links based on. /out file qlist(l)

lint: a C program checker. lint(l)
Is: list contents of directory ls(l)

nlist: get entries from name list. nlist(3C)
and statistics for file system list file names S(1M)

an. bcheck: print the list of blocks associated with bcheck(lM)
tun: print name list of common object file nm(l)

by fsck and/ checklist: list of file systems processed checklist(4)
hosts: list of hosts on network hosts(4)

protocols: list of Internet protocols protocols(4)
services: list of Interna services services(4)

- l x i -

terminal number, ttytype: list of terminal types by ttytype(4)
from a common object file, list: produce C source listing list(l)

handle variable argument list, varargs: varargs(5)
output of a varargs argument list, /print formatted vprintf(3S)

t_listen: listen for a connect request t_listen(3n)
socket listen: listen for connections on a listen(2)

data passed through the listener, /get client' nlsgetcall(3n)
nlsadmin: network listener service/ nlsadmin(lM)

nlsrequest: format and send listener service request/ nlsrequest(3n)
file, list: produce C source listing from a common object list(l)
xargs: construct argument list(s) and execute command xargs(l)
links/ qlist: print out file lists from proto file; set qlist(l)

volcopy: make literal copy of file system volcopy(lM)
files, cp, In, mv: copy, link, or move cp(l)

interface, lo: software loopback network lo(7)
ldeeprom: load EEPROM ldeeprom(lM)

/ldsocket: STREAMS linker, load socket configuration slink(l)
debugger, mkdbsym: load symbols in kernel mkdbsym(lM)

drivers: loadable device drivers drivers(7)
lddrv: manage loadable drivers lddrv(lM)

cftime, ascftime/ ctime, localtime, gmtime, asctime, ctime(3C)
the virtual system/ conlocate: locate a terminal to use as conlocate(lM)

command, path: locate executable file for path(l)
command using keywords, locate: identify a CTIX system locate(l)

end, etext, edata: last locations in program end(3C)
memory, plock: lock process, text, or data in plock(2)

files, lockf: record locking on lockf(3Q
regions of a file, locking: exclusive access to locking(2)

lockf: record locking on files lockf(3C)
gamma: log gamma function gamma(3M)
newgrp: log in to a new group newgrp(lM)

error logging and event/ log: interface to STREAMS log(7)
exponential, logarithm/ exp, log, loglO, pow, sqrt: exp(3M)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
logarithm, power/ exp, log, loglO, pow, sqrt: exponential, exp(3M)

/loglO, pow, sqrt: exponential, logarithm, power, square root/ exp(3M)
errpt: process a report of logged errors errpt(lM)

rwho: who is logged in on local network rwho(l)
strclean: STREAMS error logger cleanup program strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
interface to STOEAMS error logging and event tracing !og(7)

/log of failed login attempts loginlog(4)
networks, netrc: login file for remote netrc(4)

gellogin: get login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(l)
rlogind: remote login server. riogind(lM)

login: sign on. login(l)
up a C shell environment at login time, cprofile: setting cprofile(4)

setting up an environment at login time, profile: profile(4)
logname: get login name logname(l)

user, logname: return login name of logname(3X)
a641,164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
between 3-byte integers and long integers. /lto!3: convert 13tol(3C)

- lxii -

output device, fold: fold long lines for finite width fold(l)
setjmp, longjmp: non-local goto setjmp(3C)

finger: user information lookup program finger(l)
lo: software loopback network interface lo(7)

for an object library, lorder: find ordering relation lorder(l)
mklost+found: make a lost+found directory for fsck mklostfnd(lM)

nice: run a command at low priority nice(l)
send/cancel requests to an LP line printer. Ip, cancel: lp(l)

interface. Ip: parallel printer lp(7)
disable: enable/disable LP printers, enable enable(l)
reject: allow or prevent LP requests, accept, accept(lM)

/Ipshut, lpmove: start/stop the LP scheduler and move/ lpsched(lM)
lpadmin: configure the LP spooling system lpadmin(lM)

lpstat: print LP status information lpstat(l)
spooling system, lpadmin: configure the LP lpadmin(lM)

scheduler/ lpsched, Ipshut, lpmove: start/stop the LP lpsched(lM)
lpr line printer spooler. lpr(l)

start/stop the LP scheduler/ lpsched, Ipshut, lpmove: Ipsched(lM)
printer options, lpset: set parallel line lpset(lM)

LP scheduler and/ lpsched, Ipshut, lpmove: start/stop the lpsched(lM)
information, lpstat: print LP status lpstat(l)

jrand48/ drand48, erand48, lrand48, nrand48, mrand48, drand48(3C)
directory. Is: list contents of ls(l)

and update, lsearch, lfind: linear search lsearch(3C)
pointer, lseek: move read/write file lseek(2)

integers and long/ 13tol, ltol3: convert between 3-byte 13tol(3C)
m4: macro processor. m4(l)

mega, unixpc,. machid: mc68k, miti, mini, machid(l)
values: machine-dependent values values(5)

/access long integer data in a machine-independent fashion sputl(3X)
permuted index, mptx: the macro package for formatting a mptx(5)
documents, mm: the MM macro package for formatting mm(5)

view graphs and/ mv: a troff macro package for typesetting mv(5)
m4: macro processor. m4(l)

pages, man: macros for formatting manual man(5)
me: macros for formatting papers me(5)

formatted with the MM macros, ^jrint/check documents mm(l)
ms: text formatting macros ms(5)

/rebuild the data base for the mail aliases file newaliases(l)
users or read mail, mail, rmail: send mail to mail(l)

sendmail: mail routing program sendmail(lM)
processing system, mailx: interactive message mailx(l)

malloc, free, realloc, calloc: main memory allocator. malloc(3C)
/mallopt, mallinfo: fast main memory allocator malloc(3X)

regenerate groups of/ make: maintain, update, and make(l)
iv: initialize and maintain volume iv(l)

ar: archive and library maintainer for portable/ ar(l)
SCCS file, delta: make a delta (change) to an delta(l)

mkdir: make a directory mkdir(2)
or ordinary file, mknod: make a directory, or a special mknod(2)
for fsck. mklost+found: make a lost+found directory mklostfnd(lM)

mktemp: make a unique file name mktemp(3C)
file, mkifile: make an ifile from an object mkifile(lM)

Facility database, helpadm: make changes to the Help helpadm(lM)
mkdir, mkdirs: make directories mkdir(l)

system, vol copy: make literal copy of file volcopy(lM)
regenerate groups of/ make: maintain, update, and make(l)

mkhosts: make node name commands mkhosts(lM)

- lxxxiii -

banner: make posters banner(l)
session, script: make typescript of terminal script(l)

key. makekey: generate encryption makekey(l)
/realloc, calloc, mallopt, mallinfo: fast main memory/ malloc(3X)
main memory allocator, malloc, free, realloc, calloc: malloc(3C)

mallopt, mallinfo: fast main/ malloc, free, realloc, calloc, malloc(3X)
malloc, free, realloc, calloc, mallopt, mallinfo: fast main/ malloc(3X)

manual pages, man: macros for formatting man(5)
A find, tdelete, twalk: manage binary search trees tsearch(3C)

hsearch, hcreate, hdestroy: manage hash search tables hsearch(3C)
lddrv: manage loadable drivers lddrv(lM)

unnotify, evwait, evnowait: manage notifications, notify, notify(2)
endpoint. t_optmgmt: manage options for a transport t_optmgmt(3n)

passmgmt: password files management passmgmt(lM)
window: window management primitives window(7)

sigignore, sigpause: signal management /sigrelse, sigset(2)
wm: window management wm(l)

shl: shell layer manager shl(l)
records, fwtmp, wtmpfix: manipulate connect accounting fwtmp(lM)

of/ ldlread, ldlinit, ldlitem: manipulate line number entries ldlread(3X)
frexp, ldexp, modf: manipulate parts of/ frexp(3C)

comment section, mcs: manipulate the object file mcs(!)
route: manually manipulate the routing tables route(lM)
(VHB). libdev: manipulate Volume Home Blocks libdev(3X)

/inet_netof: Internet address manipulation routines inet(3)
man: macros for formatting manual pages man(5)

routing tables, route: manually manipulate the route(lM)
terminal input and/ rsterm: manually start and stop rsterm(lM)

ascii: map of ASCII character set ascii(5)
port to RPC program number mapper, portmap: DARPA portmap(lM)

File Sharing user and group mapping, idload: Remote idload(lM)
scsimap: set mappings for SCSI devices scsimap(lM)

files, difimk: mark differences between diffink(l)
umask: set file-creation mode mask umask(l)

set and get file creation mask, umask: umask(2)
table, master: master device information master(4)

masterupd: update the master file masterupd(lM)
File Sharing name server master file, rfmaster: Remote rfmaster(4)

information table, master: master device master(4)
file, masterupd: update the master masterupd(lM)

regular expression compile and match routines, regexp: regexp(5)
math: math functions and constants math(5)

constants, math: math functions and math(S)
eqn, neqn, checkeq: format mathematical text fornroff or/ eqn(l)

function, matherr: error-handling matherr(3M)
maze: generate a maze maze(6)
unixpc,. machid: mc68k, miti, mini, mega, machid(l)

file comment section, mcs: manipulate the object mcs(l)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

interface, mem, kmem: system memory mem(7)
memcpy, mem set:/ memory: memccpy, memchr, memcmp, memory(3C)

memset:/ memory: memccpy, memchr, memcmp, memcpy, memory(3C)
memory: memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)

/memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
free, realloc, calloc: main memory allocator, malloc, malloc(3C)

mallopt, mallinfo: fast main memory allocator, /calloc, malloc(3X)
shmctl: shared memory control operations shmctl(2)

queue, semaphore set or shared memory ID./remove a message ipcrm(l)

- lxiv -

mem, kmem: system memory interface mem(7)
memcmp, memcpy, memset:/ memory: memccpy, memchr, memory(3C)
memcmp, memcpy, memset: memory operations, /memchr, memory(3C)

shmop: shared memory operations shmop(2)
lock process, text, or data in memory, plock: plock(2)

shmget: get shared memory segment identifier. shmget(2)
/memchr, memcmp, memcpy, memset: memory operations memory(3C)

astgen: generate/modify ASSIST menus and command forms astgen(l)
sort: sort and/or merge files sort(l)
files, acctmerg: merge or add total accounting acctmerg(lM)

files or subsequent/paste: merge same lines of several paste(l)
mesg: permit or deny messages mesg(l)

msgctl: message control operations msgctl(2)
recv, recvfrom: receive a message from a socket recv(2)

send listener service request message, /format and nlsrequest(3n)
getmsg: get next message off a stream getmsg(2)

putmsg: send a message on a stream putmsg(2)
msgop: message operations msgop(2)

mailx: interactive message processing system mailx(l)
icmp: Internet Control Message Protocol icmp(7)

msgget: get message queue msgget(2)
or shared/ipcrm: remove a message queue, semaphore set ipcrm(l)

t_error: produce error message t_error(3n)
send, sendto: send a message to a socket send(2)

mesg: permit or deny messages mesg(l)
sys_nerr system error messages, /ermo, sys_errlist, perror(3C)

strace: print STREAMS trace messages strace(lM)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

driver, clone: open any minor device on a STREAMS clone(7)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

kernel debugger, mkdbsym: load symbols in mkdbsym(lM)
mkdir: make a directory mkdir(2)

directories, mkdir, mkdirs: make mkdir(l)
mkfs: construct a file system mkfs(lM)

/and verify software using the mkfs(l) proto file database qinstall(l)
commands, mkhosts: make node name mkhosts(lM)
object file, mkifile: make an ifile from an mkifile(lM)

lost+found directory for/ mklost+found: make a mklostfnd(lM)
mknod: build special file mknod(lM)

special or ordinary file, mknod: make a directory, or a mknod(2)
library, mkshlib: create a shared mkshlib(l)

name, mktemp: make a unique file mktemp(3C)
relocate a PT or GT local/ mktpy, mvtpy: install or mktpy(l)

documents formatted with the/ mm, checkmm: print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

documents formatted with the MM macros, /print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

view graphs, and slides, mmt, mvt: typeset documents, mmt(l)
table, mnttab: mounted file system mnltab(4)

chmod: change mode. chmod(l)
umask: set file-creation mode mask umask(l)

chmod: change mode of file chmod(2)
getty: set terminal type, modes, speed, and line/ getty(lM)

uugetty: set terminal type, modes, speed, and line/ uugetty(lM)
bs: a compiler/interpreter for modest-sized programs bs(l)
floating-point/ frexp, ldexp, modf: manipulate parts of frexp(3C)

touch: update access and modification times of a file touch(l)
utime: set file access and modification times utime(2)

- lxv -

Interface cooperating STREAMS module, timod: Transport timod(7)
read/write interface STREAMS module. /Transport Interface tirdwr(7)

/ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
profile, monitor: prepare execution monitor(3C)

moo: guessing game moo(6)
more, page: text perusal more(l)

mount: mount a file system mount(2)
and remote/ mount, umount: mount and unmount file systems mount(lM)

rmnttry: attempt to mount remote resources rmnttry(lM)
mountd: NFS mount request server mountd(lM)

setmnt: establish mount table setmnt(lM)
systems, mountall, umountall: mount, unmount multiple file mountall(lM)

System/ nmountall, numountall: mount, unmount Network File nmountall(lM)
rmountall, rumountall: mount, unmount Remote File/ rmountall(lM)
unmount multiple file/ mountall, umountall: mount, mountall(lM)

server, mountd: NFS mount request mountd(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
showmount: show all remote mounts showmount(lM)

mvdir. move a directory Tr»vdir(lM)
cp,In,mv: copy, link, or movefiles cp(l)

lseek: move read/write file pointer. lseek(2)
the LP scheduler and move requests, /start/stop lpsched(lM)

formatting a permuted index, mptx: the macro package for mptx(5)
/erand48, lrand48, nrand48, mrand48, jrand48, srand48/ drand48(3C)

ms: text formatting macros ms(5)
operations, msgctl: message control msgctl(2)

msgget: get message queue msgget(2)
msgop: message operations msgop(2)

/umountall: mount, unmount multiple file systems mountall(lM)
poll: STREAMS input/output multiplexing poll(2)

select: synchronous I/O multiplexing select(2)
sxt: STREAMS multiplexor. sxt(7)

run commands performed for multi-user environment. /rc3: rc2(lM)
typesetting view graphs and/ mv: a troff macro package for mv(5)

cp. In, mv: copy, link, ormove files cp(l)
mvdir move a directory mvdir(lM)

graphs, and slides, mmt, mvt: typeset documents, view mmt(l)
PT or GT local./ mktpy, mvtpy: install or relocate a rnktpy(l)

server, named: Internet domain name named(lM)
test for floating point NaN (Not-A-Number). Asnanf: • isnan(3C)
processing language, nawk: pattern scanning and nawk(l)

systems processed by fsck and ncheck. /list of file checklist(4)
from i-numbers. ncheck: generate path names ncheck(lM)

mathematical text for/eqn, neqn, checkeq: format eqn(l)
definitions for eqn and neqn. /special character eqnchat(5)

File, netcf: Network Configuration netcf(4)
networks, netrc: login file for remote netrc(4)

netstat: show network status netstat(l)
host, getservaddr: get network address of service getservad(lM)

values between host and network byte order, /convert byteorder(3)
netcf: Network Configuration File netcf(4)

setnetent, endnetent: get network entry, /getnetbyname, getnetent(3)
/numountall: mount, unmount Network File System resources nmountall(lM)

statistics, nfsstat: Network File System nfsstat(lM)
/sethostent, endhostent: get network host entry gethostbyname(3)

- l x i i -

iCMP ECHO_REQUEST packets to network hosts, ping: send ping(lM)
hosts: list of hosts on network hosts(4)
lo: software loopback network interface lo(7)

ifconfig: configure network interface parameters ifconfig(lM)
and detach serial lines as network interfaces, /attach slattach(lM)

administration, nlsadmin: network listener service nlsadmin(lM)
Remote File Sharing domain and network names, dname: print dname(lM)

routed: network routing daemon routed(lM)
status of nodes on local network, tuptime: display ruptime(l)

who is logged in on local network, rwho: rwho(l)
netstat: show network status netstat(l)

commands, stat: statistical network useful with graphical stat(lG)
uucpd, ouucpd: network uucp servers uucpd(lM)
for the internet networks: names and numbers networks(4)

netrc: login file for remote networks netrc(4)
base for the mail aliases/ newaliases: rebuild the data newaliases(l)

a text file, newform: change the format of newform(l)
newgrp: log in to a new group newgrp(lM)

news: print news items news(l)
/store, delete, firstkey, nextkey: database subroutines dbm(3X)

nfsd, biod: NFS daemons nfsd(lM)
configuration file, exports: NFS file systems export exports(4)

mountd: NFS mount request server mountd(lM)
nfssys: common shared NFS system calls nfssys(2)

nfsd, biod: NFS daemons nfsd(lM)
statistics, nfsstat: Network File System nfsstat(lM)

system calls, nfssys: common shared NFS nfssys(2)
process, nice: change priority of a nice(2)

of running process by changing nice, renice: alter priority renice(l)
priority, nice: run a command at low nice(l)

nl: line numbering filter. nl(l)
list, nlist: get entries from name nlist(3C)

service administration, nlsadmin: network listener nlsadmin(lM)
passed through the listener, nlsgetcall: get client's data nlsgetcall(3n)

transport provider, nlsprovider: get name of nlsprovider(3n)
listener service request/ nlsrequest: format and send nlsrequest(3n)

object file, nm: print name list of common nm(l)
unmount Network File System/ nmountall, numountall: mount nmountall(lM)

mkhosts: make node name commands mkhosts(lM)
createdev: create device nodes for assorted device/ createdev(lM)

ruptime: display status of nodes on local network ruptime(!)
hangups and quits, nohup: run a command immune to nohup(l)

setjmp, longjmp: non-local goto setjmp(3C)
test for floating point NaN (Not-A-Number). /isnanf : isnan(3C)

rfuadmin: Remote File Sharing notification shell script rfuadmin(lM)
evwait, evnowait: manage notifications, /unnotify, notify(2)

evnowait: manage/ notify, unnotify, evwait, notify(2)
drand48, erand48, lrand48, nrand48, mrand48, jrand48/ drand48(3C)

nroff: format text nroff(l)
format mathematical text for nroff or troff. /checkeq: eqn(l)

tbl: format tables for nroff or troff tbl(l)
constructs, deroff: remove nrofl/troff, tbl, and eqn deroff(l)

name server query, nsquery: Remote File Sharing nsquery(lM)
between host/ htonl, htons, ntohl, ntohs: convert values byteorder(3)

host and/ htonl, htons, ntohl, ntohs: convert values between byteorder(3)
null: the null file null(7)

/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/ acctsh(lM)
nl: line numbering filter. nl(l)

- lxxvii -

number: convert Arabic
graphics: access graphical and

Network File/ nmountall,
dis:

ldfcn: common
mcs: manipulate the

conv: common
cprs: compress a common
dump selected parts of an

ldopen, ldaopen: open a common
number entries of a common

ldaclose: close a common
the file header of a common

of a section of a common
file header of a common

of a section of a common
section header of a common

section of a common
symbol table entry of a common
symbol table entry of a common

the symbol table of a common
number entries in a common

C source listing from a common
mkifile: make an ifile from an

nm: print name list of common
information for a common

section header for a common
information from a common

entry, /symbol name for common
format, syms: common
file header for common

directories, cpset: install
Id: link editor for common

sizes in bytes of common
find ordering relation for an

number, factor:
od:

functions.

query Remote I/O Processor for
reading, ldopen, ldaopen:

fopen, freopen, fdopen:
STREAMS driver, clone:

dup: duplicate an
dup2: duplicate an

open:
seekdir,/ directory:

starter: information about the
prf:

/prfdc, prf snap, prfpr:
commands performed to stop the

uconf: configure the
bzero: bit and byte string

rewinddir, closedir: directory
memcmp, memcpy, memset: memory

msgctl: message control
msgop: message

tputs: terminal independent

numerals to English number(6)
numerical commands graphics(lG)
numountall: mount, unmount nmountall(lM)
object code disassembler dis(l)
object file access routines ldfcn(4)
object file comment section mcs(l)
object file converter. conv(l)
object file cprs(l)
object file, dump: dump(l)
object file for reading ldopen(3X)
object file function, /line ldlread(3X)
object file, ldclose ldclose(3X)
object file, ldfhread: read ldfhread(3X)
object file, /number entries ldIseek(3X)
object file, /to the optional ldohseek(3X)
object file, /entries ldrseek(3X)
object file, indexed/named ldshread(3X)
object file, indexed/named ldsseek(3X)
object file, /the index of a ldtbindex(3X)
object file, /read an indexed ldtbread(3X)
object file, /seek to ldtbseek(3X)
object file, lineman: line hnenuni(4)
object file, list: produce list(l)
object file mkifile(lM)
object file nm(l)
object file, /relocation reloc(4)
object file, scnhdr: scnhdr(4)
object file, /and line number strip(l)
object file symbol table ldgetname(3X)
object file symbol table syms(4)
object files, filehdr: filehdr(4)
object files in binary cpset(lM)
object files ld(l)
object files, /print section size(l)
object library, lorder: lorder(l)
obtain the prime factors of a factor(l)
octal dump od(l)
ocurse: optimized screen ocurse(3X)
od: octal dump od(l)
online data, riopqry: riopqry(lM)
open a common object file for ldopen(3X)
open a stream fopen(3S)
open any minor device on a clone(7)
open file descriptor. dup(2)
open file descriptor dup2(3C)
open for reading or writing open(2)
opendir, readdir, telldir directory(3X)
operating system for beginning/ starterfl)
operating system profiler prf(7)
operating system profiler. profiler(lM)
operating system. rcO: run rcO(lM)
operating system uconf(lM)
operations, bcopy, bemp, bstring(3)
operations. Aelldir, seekdir, directoty(3X)
operations, /memccpy, memchr, memory(3C)
operations msgctl(2)
operations msgop(2)
operations. Agetstr, tgoto, otermcap(3X)

- lxxxviii -

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory

strcspn, strtok: string
join: relational database

dcopy: copy file systems for
terminal screen handling and

ocurse:
vector, getopt: get

common/ ldohseek: seek to the
fcntl: file control

stty: set the
endpoint. t_optmgmt: manage

getopt: parse command
getoptcvt: parse command

set parallel line printer
/setsockopt: get and set

object library, lorder: find
/acknowledge Teceipt of an

t_sndrel: initiate an
a directory, or a special or

keywords, locate: identify a
assist: assistance using

help:
uname: print name of current

dial: establish an
assembler and link editor
long lines for finite width
/vsprintf: print formatted

sprintf: print formatted
and stop terminal input and

sysdef:
uucpd,

/acctdusg, acct on, acctwtmp:
chown: change

chown, chgrp: change
and expand files,

handling and optimization
permuted/ mptx: the macro

documents, mm: the MM macro
graphs and/ mv: a troff macro

sadc: system activity report
standard buffered input/output

interprocess communication
ping: send ICMP ECHO_REQUEST

more,
macros for formatting manual

4014 terminal. 4014:
me: macros for formatting

lpset: set
lp:

tapeset: set drive
configure network interface
process, process group, and

getopt:
getopts, getoptcvt:

nlsgetcall: get client's data

operations semctl(2)
operations semop(2)
operations shmctl(2)
operations shmop(2)
operations, /strpbrk, strspn, string(3C)
operator. join(l)
optimal access time dcopy(lM)
optimization package, curses: curses(3X)
optimized screen functions ocurse(3X)
option letter from argument getopt(3C)
optional file header of a ldohseek(3X)
options fcntl(5)
options for a terminal stty(l)
options for a transport t_optmgmt(3n)
options getopt(l)
options, getopts, getopts(l)
options, lpset: lpset(lM)
options on sockets getsockopt(2)
ordering relation for an lorder(l)
orderly release indication t_rcvrel(3n)
orderly release t_sndrel(3n)
ordinary file, mknod: make mknod(2)
CITX system command using locate(l)
CTIX system commands assist(l)
CITX system Help Facility help(l)
CTIX system uname(l)
out-going terminal line/ dial(3C)
output a.out: common a.out(4)
output device, fold: fold fold(l)
output of a varargs argument/ vprintf(3S)
output, printf, fprintf, printf(3S)
output /manually start rsterm(lM)
output system definition sysdef(lM)
ouucpd: network uucp servers uucpd(lM)
overview of accounting and/ acct(lM)
owner and group of a file chown(2)
owner or group chown(l)
pack, peat, unpack: compress pack(l)
package. Aerminal screen curses(3X)
package for formatting a mptx (5)
package for formatting mm(5)
package for typesetting view mv(5)
package, sar: sal, sa2, sar(lM)
package, stdio: stdio(3S)
package, /ftok: standard stdipc(3C)
packets to network hosts ping(lM)
page: text perusal more(l)
pages, man: man(5)
paginator for the Tektronix 4014(1)
papers me(5)
parallel line printer options Ipset(lM)
parallel printer interface lp(7)
parameters for tape/ tapeset(lM)
parameters, ifconfig: ifconfig(lM)
parent process IDs. /get getpid(2)
parse command options getopt(l)
parse command options getopts(l)
passed through the listener nlsgetcall(3n)

- lxix -

management, passmgml: password files passmgmt(lM)
passwd: change login password passwd(l)
passwd: password file passwd(4)

functions, crypt: password and file encryption crypt(3X)
/endpwent, fgetpwent: get password file entry getpwent(3C)

putpwent: write password file entry putpwent(3C)
putspent: write shadow password file entry putspent(3X)

passwd: password file passwd(4)
shadow: password file shadow(4)

passmgmt: password files management passmgmt(lM)
getpass: read a password getpass(3C)

passwd: change login password passwd(l)
Remote File Sharing host password, rfpasswd: change rfpasswd(lM)

pwck, grpck: password/group file checkers pwck(lM)
several files or subsequent/ paste: merge same lines of paste(l)

for command, path: locate executable file path(l)
dimame: deliver portions of path names, basename basename(l)

ncheck: generate path names from i-numbers ncheck(lM)
directory, getcwd: get path-name of current working getcwd(3C)
grep: search a file for a pattern grep(l)

processing language, awk: pattern scanning and awk(l)
processing language, nawk: pattern scanning and nawk(l)

egrep: search a file for a pattern using full regular/ egrep(l)
signal, pause: suspend process until pause(2)

expand files, pack, peat, unpack: compress and pack(l)
a process, popen, pclose: initiate pipe to/from popen(3S)

get name of connected peer, getpeername: getpeername(2)
rc2, rc3: run commands performed for multi-user/ rc2(lM)

operating/ rcO: run commands performed to stop the rcO(lM)
check the uucp directories and permissions file, uucheck: uucheck(lM)

mesg: permit or deny messages mesg(l)
macro package for formatting a permuted index, mptx: the mptx(5)

ptx: permuted index ptx(l)
format, acct: per-process accounting file acct(4)

acctcms: command summary from per-process accounting/ acctcms(lM)
sys_nerr: system error/ perror, errno, sys_errlist, perror(3C)

pg: file perusal filter for CRTs pg(l)
more, page: text perusal more(l)

CRTs, pg: file perusal filter for pg(l)
split: split a file into pieces split(l)

packets to network hosts, ping: send ICMP ECHO REQUEST ping(lM)
channel, pipe: create an interprocess pipe(2)

tee: pipe fitting tee(l)
popen, pclose: initiate pipe to/from a process popen(3S)

fish: play "Go Fish" fish(6)
data in memory, plock: lock process, text, or plock(2)

plot: graphics interface plot(4)
subroutines, plot: graphics interface plot(3X)

ftell: reposition a file pointer in a stream, /rewind, fseek(3S)
lseek: move read/write file pointer lseek(2)

multiplexing, poll: STREAMS input/output poll(2)
to/from a process, popen, pclose: initiate pipe popen(3S)

kernel debugger system console port, dbconsole: change the dbconsole(lM)
serstat: display serial port error statistics serstat(lM)
getrpcport: get RPC port number. getrpcport(3)

mapper, portmap: DARPA port to RPC program number portmap(lM)
and library maintainer for portable archives, /archive ar(l)

basename, dirname: deliver portions of path names basename(l)

- lxx -

program number mapper.
banner: make

logarithm/ exp, log, loglO,
/sqrt: exponential, logarithm,

brc, bcheckrc, drvload,

/lastlogin, monacct, nulladm,
/monacct, nulladm, prctmp,

for troff. cw, checkcw:
monitor:

cpp: the C language
includes: determine C language

accept, reject: allow or
unget: undo a

profiler,
profiler: prfld, prfstat,

prfsnap, prfpr:/ profiler:
/prfstat, prfdc, prfsnap,

system/ /prfld, prfstat, prfdc,
prfpr:/ profiler: prfld,

factor: obtain the
graphical/ gps: graphical

types:
window: window management

interesting, adage, fortune:
prs:

date:
cal:

of a file, sum:
editing activity, sact:
cat: concatenate and

pr:
vprintf, vfprintf, vsprintf:

printf, fprintf, sprintf:
host system, hostid: set or

lpstat:
object file, nm:
system, uname:

news:
proto file; set links/ qlist:

infocmp: compare or
file(s). acct com: search and

domain and network/ dname:
of common object files, size:

s trace:
of the/ hostname: set or

associated with an. bcheck:
names, id:

formatted with/ mm, checkmm:
lp: parallel

requests to an LP line
or relocate a PT or GT local

lpset: set parallel line
lpr: line

disable: enable/disable LP
print formatted output,

rtpenable: real-time
nice: run a command at low

portmap: DARPA port to RPC portmap(lM)
posters banner(l)
pow, sqrt: exponential exp(3M)
power, square root functions exp(3M)
pow erf ail: system / brc(lM)
pr: print files pr(l)
prctmp, prdaily, prtacctJ acctsh(lM)
prdaily, prtacct, runacct/ acctsh(lM)
prepare constant-width text cw(l)
prepare execution profile monitor(3C)
preprocessor cpp(l)
preprocessor include files includes(l)
prevent LP requests accept(lM)
previous get of an SCCS file unget(l)
prf: operating system prf(7)
prfdc, prfsnap, prfpr:/ profilerflM)
prfld, prfstat, prfdc, profiler(lM)
prfpr: operating system/ profiler(lM)
prfsnap, prfpr: derating profiler(lM)
prfstat, prfdc, prfsnap, profiler(lM)
prime factors of a number factor(l)
primitive string, format of gps(4)
primitive system data types types(5)
primitives window(7)
print a random, hopefully fortune(6)
print an SCCS file prs(l)
print and set the date date(l)
print calendar cal(l)
print checksum and block count sum(l)
print current SCCS file sact(l)
print files cat(l)
print files pr(l)
print formatted output of a/ vprintf(3S)
print formatted output printf(3S)
print identifier of current hostid(l)
print LP status information lpstat(l)
print name list of common nm(l)
print name of current CTIX uname(l)
print news items news(l)
print out file lists from qlist(l)
print out terminfo/ infocmp(lM)
print process accounting acctcom(l)
print Remote File Sharing dname(lM)
print section sizes in bytes size(l)
print STREAMS trace messages strace(lM)
print the Internet host name hostname(l)
print the list of blocks bcheck(lM)
print user and group IDs and id(lM)
print/check documents mm(l)
printer interface lp(7)
printer, /cancel: send/cancel lp(l)
printer, /mvtpy: install mktpy(l)
printer options lpset(lM)
printer spooler lprO)
printers, enable, enable(l)
printf, fprintf, sprintf: printf(3S)
priorities enabled/disabled rtpenable(lM)
priority nice(l)

- Ixxi -

nice: change priority of a process nice(2)
changing nice, renice: alter priority of running process by renice(l)

errors, enpt: process a report of logged errpt(lM)
acct: enable or disable process accounting acct(2)

acctprcl, acctprc2: process accounting acctprc(lM)
acctcom: search and print process accounting file(s) acctcom(l)

alarm: set a process alarm clock alarm(2)
times, times: get process and child process times(2)

/alter priority of running process by changing nice renice(l)
init, telinit: process control/ init(lM)

time*: time a command; report process data and system/ timex(l)
exit, _exit: terminate process exit(2)

fork: create a new process fork(2)
/getpgrp, getppid: get process, process group, and parent/ getpid(2)

setpgrp: set process group ID setpgip(2)
process group, and parent process IDs. /get process, getpid(2)
inittab: script for the init process inittab(4)

kill: terminate a process kill(l)
nice: change priority of a process nice(2)

kill: send a signal to a process or a group of/ kill(2)
initiate pipe to/from a process, popen, pclose: popen(3S)

getpid, getpgrp, getppid: get process, process group, and/ getpid(2)
Remote File Sharing daemon process, rfudaemon: rfudaemon(lM)

ps: report process status ps(l)
memory, plock: lock process, text, or data in plock(2)

times: get process and child process times times(2)
wait: wait for child process to stop or terminate wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

wait: await completion of process wait(l)
/list of file systems processed by fsck and ncheck checklist(4)

to a process or a group of processes, /send a signal kill(2)
killall: kill all active processes killall(lM)

structure, fuser: identify processes using a file or file fuser(lM)
awk: pattern scanning and processing language awk(l)

nawk: pattern scanning and processing language nawk(l)
extproc: turn external processing on or off. extproc(lM)

mailx: interactive message processing system mailx(l)
rtab: Remote I/O Processor configuration table rtab(4)

en: Ethernet Processor. en(7)
enpstart: configure Ethernet processor. enpstart(lM)
riopqry: query Remote I/O Processor for online data riopqry(lM)

m4: macro processor. m4(l)
system for Remote I/O Processor, riopcfg: configure riopcfg(lM)

a common object file, list: produce C source listing from list(l)
t_error: produce error message t_error(3n)

prof: display profile data prof(l)
function, prof: profile within a prof(5)

profile, profit: execution time profil(2)
prof: display profile data prof(l)

monitor: prepare execution profile monitor(3C)
profil: execution time profile profil(2)

environment at login time, profile: setting up an profile(4)
prof: profile within a function prof(5)

fusage: disk access profiler fusage(lM)
prf: operating system profiler. prf(7)
prfdc, prfsnap, ptfpr:/ profiler: prfld, prfstat, profiler(lM)

prfpn operating system profiler, /prfdc, prfsnap, profiler(lM)

- lxxii -

sactp: disk access
standard/restricted command

software using the mkfs(l)
on. /print out file lists from

arp: Address Resolution
/switched Serial line Internet
/setprotoent, endprotoent: get

inet: Internet
icmp: Internet Control Message

ip: Internet
DARPA Internet File Transfer

telnetd: DARPA TELNET
DARPA Trivial File Transfer

Internet Transmission Control
user interface to TELNET

interface to the DARPA TFTP
udp: Internet User Datagram

Dialers: ACU/modem calling
protocols,

information. t_getinfo: get
update:

arithmetic:
systems, labelit:

true, false:
get name of transport

/nulladm, prctmp, prdaily,

/generate uniformly distributed
/mvtpy: install or relocate a

download, tdl, gtdl.

stream, ungetc:
put character or word on a/

character or word on a/ putc,
environment,

stream.
entry,

stream,
password file entry,

/getutent, getutid, getutline,
a/ putc, putchar, fputc,

file checkers,
/etc/shadow with information/

/etc/shadow with information/
qic: interface for

software using the mkfs(l)/
from proto file; set links/

tape, stape: SCSI
File Sharing name server

online data, riopqry:
tput: initialize a terminal or

queuedefs: at/batch/cron
msgget: get message

rmount:

profiler sadp(lM)
programming language. Ahe sh(l)
proto file database, /verify qinstall(l)
proto file; set links based qlist(l)
Protocol arp(7)
Protocol control facility slipd(lM)
protocol entry getprotoent(3)
protocol family inet(7)
Protocol icmp(7)
Protoool ip(7)
Protocol server, ftpd: ftpd(lM)
protocol server. telnetd(lM)
Protocol server, tflpd: tftpd(lM)
Protocol, tcp: tcp(7)
protocol, telnet: telnet(l)
protocol, tftp: user tftp(l)
Protocol udp(7)
protocols Dialers(5)
protocols: hst of Internet protocols(4)
protocol-speci fic service t_getdnfo(3n)
provide disk synchronization update(lM)
provide drill in number facts »ri?hmetic(6)
provide labels for file labelit(lM)
provide truth values true(l)
provider, nlsprovider: nlsprovider(3n)
prs: print an SCCS file prs(l)
prtacct, runacct, shutacct,/ acctsh(lM)
ps: report process status ps(l)
pseudo-random numbers drand48(3C)
PT or GT local printer. mktpy (1)
ptdl: RS-232 terminal tdl(l)
ptrace: process trace ptrace(2)
ptx: permuted index ptx(l)
push character back into input ungetc(3S)
putc, putchar, fputc, putw: putc(3S)
putchar, fputc, putw: put putc(3S)
putenv: change or add value to putenv(3C)
putmsg: send a message on a putmsg(2)
putpwent: write password file putpwent(3C)
puts, fputs: put a string on a puts(3S)
putspent: write shadow putspent(3X)
pututline, setutent, endutent/ getut(3C)
putw: put character or word on putc(3S)
pwck, grpek: password/group pwck(lM)
pwconv: install and update pwconv(lM)
pwd: working directory name pwd(l)
pwunconv: install and update pwunconv(lM)
QIC tape qic(7)
qinstall: install and verify qinstall(l)
qlist: print out file lists qlist(l)
qsort: quicker sort. qsort(3C)
quarter-inch and half-inch stape(7)
query, nsquery: Remote nsquery(lM)
query Remote I/O Processor for riopqry(lM)
query terminfo database tput(l)
queue description file queuedefs(4)
queue msgget(2)
queue remote resource mounts rmount(lM)

- lxxxiii -

ipcrm: remove a message queue, semaphore set or shared/ ipcrm(l)
request rumount: cancel queued remote resource rumount(lM)

description file, queuedefs: at/batch/cron queue queuedefs(4)
qsort: quicker sort qsort(3C)

command immune to hangups and quits, nohup: run a nohup(l)
quiz: test your knowledge quiz(6)

random-number generator, rand, srand: simple rand(3C)
adage, fortune: print a random, hopefully interesting, fortune(6)

rand, srand: simple random-number generator rand(3C)
fsplit: split FORTRAN, ratfor,or efl files fsplit(l)

dialect ratfor: rational FORTRAN ratfor<l)
ratfor: rational FORTRAN dialect ratfor(l)

stop the operating system. rcO: run commands performed to rcO(lM)
performed for multi-user/ rc2, rc3: run commands rc2(lM)

for multi-user/rc2, rc3: run commands performed rc2(lM)
execution, rcmd: remote shell command rcmd(l)

routines for returning a/ rcmd, rresvport, ruserok: rcmd(3)
rep: remote file copy rcp(l)

getpass: read a password getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table ldtbread(3X)
header/ ldshread, ldnshread: read an indexed/named section ldshread(3X)

in a file, getdents: read directory entries and put getdents(2)
read: read from file read(2)

rmail: send mail to users or read mail, mail, mail(l)
line: read one line line(l)

read: read from file read(2)
member of an/ ldahread: read the archive header of a ldahread(3X)

common object file, ldfhread: read the file header of a ldfhread(3X)
directory: opendir, readdir, telldir, seekdir,/ directoiy(3X)

open a common object file for reading, ldopen, ldaopen: ldopen(3X)
open: open for reading or writing open(2)

lseek: move read/write file pointer. lseek(2)
tirdwr: Transport Interface read/write interface STREAMS/ tirdwr(7)

allocator, malloc, free, realloc, calloc: main memory malloc(3C)
mallinfo: fast/ malloc, free, realloc, calloc, mallopt, malloc(3X)

enabled/disabled, rtpenable: real-time priorities rtpenable(lM)
reboot: reboot the system reboot(lM)

mail aliases/new aliases: rebuild the data base for the newaliases(l)
specify what to do upon receipt of a signal, signal: signal(2)

t_rcvrel: acknowledge receipt of an orderly release/ t_rcvrel(3n)
t_rcvudata: receive a data unit t_rcvudata(3)

socket recv, reevfrom: receive a message from a recv(2)
indication. t_rcvuderr: receive a unit data error t_rcvuderr(3)

sent over a/ t_rcv: receive data or expedited data t_rcv(3n)
a connect/ t_rcvconnect: receive the confirmation from t_rcvconnect(3)

lockf: record locking on files lockf(3C)
from per-process accounting records, /command summary acctcms(lM)
from/ enxlead: extract error records and status information errdead(lM)

manipulate connect accounting records, fwtmp, wtmpfix: fwtmp(lM)
tape, free: recover files from a backup frec(lM)

message from a socket, recv, reevfrom: receive a recv(2)
from a socket, recv, reevfrom: receive a message recv(2)

ed, red: text editor. ed(l)
execute regular expression, regcmp, regex: compile and regcmp(3X)

compile, regcmp: regular expression regcmp(l)
make: maintain, update, and regenerate groups of programs make(l)
regular expression, regcmp, regex: compile and execute regcmp(3X)
compile and match routines, regexp: regular expression regexp(5)

- lxxiv -

locking: exclusive access to regions of a file locking(2)
match routines, regexp: regular expression compile and regexp(5)

regcmp: regular expression compile regcmp(l)
regex: compile and execute regular expression, regcmp regcmp(3X)

file for a pattern using full regular expressions, /search a egrep(l)
requests, accept, reject: allow or prevent LP accept(lM)

sorted files, coram: select or reject lines common to two comm(l)
lorder: find ordering relation for an object/ lorder(l)

join: relational database operator join(l)
/receipt of an orderly release indication t_rcvrel(3n)

t_sndrel: initiate an orderly release t_sndrel(3n)
for a common object file, reloc: relocation information reloc(4)
mktpy, mvtpy: install or relocate a PT or GT local/ mktpy(l)

ldrseek, ldnrseek: seek to relocation entries of a/ ldrseek(3X)
common object file, reloc: relocation information for a reloc(4)
/fmod, fabs: floor, ceiling, remainder, absolute value/ floor(3M)

calendar: reminder service calendar(l)
adv: advertise a directory for remote access adv(lM)

for returning a stream to a remote command, /routines rcmd(3)
uuxqt: execute remote command requests uuxqt(lM)

rexec: return stream to a remote command rexec(3)
rhosts: remote equivalent users. rhosts(4)

rexecd: remote execution server. rexecd(lM)
rep: remote file copy rcp(l)

administration, rfadmin: Remote File Sharing rfadmin(lM)
process, rfudaemon: Remote File Sharing daemon rfudaemon(lM)

network names, dname: print Remote File Sharing domain and dname(lM)
environment rfstop: stop the Remote File Sharing rfstop(lM)
password, rfpasswd: change Remote File Sharing host rfpasswd(lM)
server master file, rfmaster: Remote File Sharing name rfmaster(4)

server query, nsquery: Remote File Sharing name nsquery(lM)
notification shell/ rfuadmin: Remote File Sharing rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/rumountall: mount, unmount Remote File Sharing (RFS)/ rmountall(lM)

rfstart: start Remote File Sharing rfstart(lM)
group mapping, idload: Remote File Sharing user and idload(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
online data, riopqry: query Remote I/O Processor for riopqry(lM)

riopefg: configure system for Remote I/O Processor riopcfg(lM)
rlogin: remote login rlogin(l)

rlogind: remote login server rlogind(lM)
showmount: show all remote mounts showmount(lM)

netrc: login file for remote networks netrc(4)
rmount: queue remote resource mounts rmount(lM)

rumount: cancel queued remote resource request rumount(lM)
and unmount file systems and remote resources, /mount mount(lM)

rmnttry: attempt to mount remote resources rmnttry(lM)
execution, tcrnd: remote shell command rcmd(l)

rshd: remote shell server. rshd(lM)
on. Uutry: try to contact a remote system with debugging Uutry(lM)

ct: spawn getty to a remote terminal ct(lC)
server, talkd: remote user communication talkd(lM)

server, fingerd: remote user information fingerd(lM)
table, rmtab: remotely mounted file system rmtab(4)

file, rmdel: remove a delta from an SCCS rmdel(l)
rmdir: remove a directory rmdir(2)

semaphore set or/ipcrm: remove a message queue ipcrm(l)
unlink: remove directory entry unlink(2)

- lxxv -

rm, imdir: remove files or directories mi(l)
eqn constructs, deroff: remove nroffAroff, tbl, and deroff(l)

running process by changing/ renice: alter priority of renice(l)
fsck, dfsck: check and repair file systems fsck(lM)

uniq: report repeated lines in a file uniq(l)
clock: report CPU time used clock(3C)
fsize: report file size fsize(l)
fsstat: report file system status fsstat(lM)

communication/ ipcs: report inter-process ipcs(l)
blocks and i-nodes. df: report number of free disk df(lM)

errpt: process a report of logged errors errpt(lM)
sa2, sadc: system activity report package, sar: sal, sar(lM)
timex: time a command; report process data and system/' timex(l)

ps: report process status ps(l)
file, uniq: report repeated lines in a uniq(l)

rpcinfo: report RPC information rpcinfo(lM)
sar: system activity reporter. sar(l)

stream, fseek, rewind, ftell: reposition a file pointer in a fseek(3S)
and send listener service request message, /format nlsrequest(3n)

cancel queued remote resource request rumount: rumount(lM)
mountd: NFS mount request server mountd(lM)

t accept: accept — connect request. t_accept(3n)
tjisten: listen for a connect request t_listen(3n)
confirmation from a connect request, /receive the t_rcvconnect(3)

send user-initiated disconnect requesL t_snddis: t_snddis(3n)
reject: allow or prevent LP requests, accept, accept(lM)
the LP scheduler and move requests./lpmove: start/stop lpsched(lM)

syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ lp(l)

uuxqt: execute remote command requests uuxqt(lM)
res mkquery, ressend, res_init, dn_comp, dn_expand:/ resolver(3)

res_init, dn_comp, dn_expand:/ res_mkquery, res_send, resolver(3)
control, arp: address resolution display and arp(lM)

arp: Address Resolution Protocol arp(7)
configuration file, resolv.conf: resolver resolver(4)

resolv.conf: resolver configuration file resolver(4)
res_init, dn_comp, dn_expand: resolver routines. /res_send, resolver(3)

unmount of an advertised resource, fumount: forced fumount(lM)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
rumount: cancel queued remote resource request rumount(lM)

a Remote File Sharing resource, unadv: unadvertise unadv(lM)
file systems and remote resources, /mount and unmount mount(lM)

unmount Network File System resources, /numountall: mount, nmountall(lM)
attempt to mount remote resources, rmnttry: rmnttry(lM)

Remote File Sharing (RFS) resources, /mount, unmount imountall(lM)
dn_expand:/ res_mkquery, res send, resinit, dn_cotnp, resolver(3)

and usage examples, usage: retrieve a command description usage(l)
disconnect. t_rcvdis: retrieve information from t_rcvdis(3n)

common object file/ ldgetname: retrieve symbol name for ldgetname(3X)
abs: return integer absolute value abs(3C)

logname: return login name of user logname(3X)
command, rexec: return stream to a remote rexec(3)

name, getenv: return value for environment getenv(3C)
stat: data returned by stat system call stat(5)

/ruserok: routines for returning a stream to a remote/ rcmd(3)
col: filter reverse line-feeds col(l)

file pointer in a/ fseek, rewind, ftell: reposition a fseek(3S)

- lxxvi -

/readdir, telldir, seekdir, rewinddir, closedir: directory/ directory(3X)
creat: create a new file or rewrite an existing one. creat(2)

remote command, rexec: return stream to a rexec(3)
server, rexecd: remote execution rexecd(lM)

administration, rfadmin: Remote File Sharing rfadmin(lM)
name server master file, rfmaster Remote File Sharing rfmaster(4)
Sharing host password, rfpasswd: change Remote File rfpasswd(lM)

unmount Remote File Sharing (RFS) resources, /mount, rmountall(lM)
Sharing, rfstart: start Remote File rfstart(lM)

Sharing environment rfstop: stop the Remote File rfstop(lM)
notification shell script rfuadmin: Remote File Sharing rfuadmin(lM)

daemon process, rfudaemon: Remote File Sharing rfudaemon(lM)
users, rhosts: remote equivalent rhosts(4)

Remote I/O Processor, tiopcfg: configure system for tiopcfg(lM)
Processor for online data, riopqry: query Remote I/O riopqry(lM)

rlogin: remote login rlogin(l)
rlogind: remote login server rlogind(lM)

directories, rm, rmdir: remove files or rm(l)
read mail, mail, rmail: send mail to users or mail(l)

SCCS file, rmdel: remove a delta from an rmdel(l)
rmdir: remove a directory rmdir(2)

directories, rm, rmdir remove files or rm(l)
resource information, rmntstat: display mounted rmntstat(lM)

remote resources, rmnttry: attempt to mount rmnttry(lM)
mounts, rmount: queue remote resource rmount(lM)

unmount Remote File Sharing/ rmountall, rumountall: mount, rmountall(lM)
system table, rmtab: remotely mounted file rmtab(4)

chroot: change root directory chroot(2)
chroot: change root directory for a command chroot(lM)

logarithm, power, square root functions, /exponential exp(3M)
routing tables, route: manually manipulate the route(lM)

gateways: routed configuration file gateways(4)
daemon, routed: network routing routed(lM)

Aekset, td: graphical device routines and filters gdev(lG)
rcmd, rresvport, ruserok: routines for returning a/ rcmd(3)

Internet address manipulation routines. /inet_netof: inet(3)
common object file access routines, ldfcn: ldfcn(4)

expression compile and match routines, regexp: regular regexp(5)
dn_comp, dn_expand: resolver routines. /res_send, res_init, resolver(3)

graphical table of contents routines, /dtoc, ttoc, vtoc: toc(lG)
routed: network routing daemon routed(lM)
sendmail: mail routing program sendmail(lM)

route: manually manipulate the routing tables route(lM)
getrpcbynumber: get rpc entry, /getrpcbyname, getrpcent(3)

rpcinfo: report RPC information rpcinfo(lM)
getrpcport: get RPC port number. getrpcport(3)

rpc: Sun rpc program number data base rpc(4)
portmap: DARPA port to RPC program number mapper portmap(lM)

data base, rpc: Sun rpc program number rpc(4)
information, rpcinfo: report RPC rpcinfo(lM)

for returning a stream/rcmd, rresvport, ruserok: routines rcmd(3)
controlling terminal's local RS-232 channels, tp: tp(7)

tdl, gtdl, ptdl: RS-232 terminal download tdl(l)
standard/restricted/ sh, rsh: shell, the sh(l)

rshd: remote shell server. rshd(lM)
stop terminal input and/ rsterm: manually start and rsterm(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
priorities enabled/disabled, rtpenable: real-time rtpenable(lM)

- lxxvii -

resource request, rumount: cancel queued remote rumount(lM)
Remote File/ rmountall, rumountall: mount, unmount rmountall(lM)

nice: run a command at low priority nice(l)
hangups and quits, nohup: run a command immune to nohup(l)

multi-user/rc2, rc3: run commands performed for rc2(lM)
the operating system. rcO: run commands performed to stop rcO(lM)

mnacct: run daily accounting runacct(lM)
runacct: run daily accounting runacct(lM)

/prctmp, prdaily, prtacct, runacct, shutacct, startup/ acctsh(lM)
renice: alter priority of running process by changing/ renice(l)

nodes on local network, ruptime: display status of ruptime(l)
returning a/ rcmd, rresvport, raserok: routines for rcmd(3)

local network, rwho: who is logged in on rwho(l)
rwhod: host status server. rwhod(lM)

activity report package, sar: sal, sa2, sadc: system sar(lM)
report package, sar: sal, sa2, sadc: system activity sar(lM)

editing activity, sact: print current SCCS file sact(l)
package, sar: sal, sa2, sadc: system activity report sar(lM)

sadp: disk access profiler sadp(lM)
sag: system activity graph sag(lG)

activity report package, sar: sal, sa2, sadc: system sar(lM)
sar: system activity reporter sar(l)

space allocation, brk, sbfk: change data segment brk(2)
formatted input, scanf, fscanf, sscanf: convert scanf(3S)

bfs: big file scanner. bfs(l)
language, awk: pattern scanning and processing awk(l)

language, nawk: pattern scanning and processing nawk(l)
the delta commentary of an SCCS delta, cdc: change cdc(l)

comb: combine SCCS deltas comb(l)
make a delta (change) to an SCCS file, delta: delta(l)

sact: print current SCCS file editing activity sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
rmdel: remove a delta from an SCCS file rmdel(l)

compare two versions of an SCCS file, sccsdiff: sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

undo a previous get of an SCCS file, unget: unget(l)
val: validate SCCSfile val(l)

admin: create and administer SCCS files admin(l)
what: identify SCCS files what(l)

of an SCCS file, sccsdiff: compare two versions sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

check file system backup schedule, ckbupscd: ckbupscd(lM)
/lpmove: start/stop the LP scheduler and move requests lpsched(lM)

uusched: the scheduler for the UUCP system uusched(lM)
common object file, senhdr: section header for a scnhdr(4)

screen image file.. scr_dump: format of curses scr_dump(4)
clear: clear terminal screen clear(l)

ocurse: optimized screen functions ocurse(3X)
optimization/ curses: terminal screen handling and curses(3X)

scr_dump: format of curses screen image file scr_dump(4)
display editor based on/vi: screen-oriented (visual) vi(l)

inittab: script for the init process inittab(4)
terminal session, script: make typescript of script(l)

Sharing notification shell script, rfuadmin: Remote File rfuadmin(lM)
scsi: scsi control device scsi(7)

scsimap: set mappings for SCSI devices scsimap(lM)
half-inch tape, stape: SCSI quarter-inch and stape(7)

- lxxxviii -

devices.

program,
string, fgrep:

grep:
using full regular/ egrep:

bsearch: binary
accounting file(s). acct com:

lsearch, lfind: linear
hcreate, hdestroy: manage hash

tdelete, twalk: manage binary
object file, scnhdr:

object/ /read an indexed/named
the object file comment

Ao line number entries of a
Ao relocation entries of a

/seek to an indexed/named
common object/ size: print

Anrand48, jrand48, srand48,
section of/ ldsseek, ldnsseek:

a section/ ldlseek, ldnlseek:
a section/ ldrseek, ldnrseek:

header of a common/ ldohseek:
common object file, ldtbseek:

/opendir, readdir, telldir,
shmget: get shared memory

brk, sbrk: change data
to two sorted files, coram:

multiplexing,
greek:

of a file, cut: cut out
file, dump: dump

semctl:
semop:

ipcrm: remove a message queue,
semget: get set of

operations.

t_sndudata:
putmsg:

send, sendto:
a group of processes, kill:
over a connection. t_snd:

to network hosts, ping:
nlsrequest: format and

mail, mail, rmail:
to a socket.

requesL t_snddis:
line printer. Ip, cancel:
aliases: aliases file for

program,
socket, send,

/receive data or expedited data
control/ slipd: switched

/sldetach: attach and detach

scsi: scsi control device scsi(7)
scsimap: set mappings for SCSI scsimap(lM)
sdb: symbolic debugger sdb(l)
sdiff: side-by-side difference sdiff(l)
search a file for a character fgrep(l)
search a file for a pattern grep(l)
search a file for a pattern egrep(l)
search a sorted table bsearch(3C)
search and print process acctcom(l)
search and update lsearch(3C)
search tables, hsearch hsearch(3C)
search trees, tsearch, tfind tsearch(3C)
section header for a common scnhdr(4)
section header of a common ldshread(3X)
section, mcs: manipulate mcs(l)
section of a common object/ ldlseek(3X)
section of a common object/ ldrseek(3X)
section of a common object/ ldsseek(3X)
section sizes in bytes of size(l)
sed: stream editor. sed(l)
seed48, lcong48: generate/ drand48(3C)
seek to an indexed/named , ldsseek(3X)
seek to line number entries of ldlseek(3X)
seek to relocation entries of ldrseek(3X)
seek to the optional file ldohseek(3X)
seek to the symbol table of a ldtbseek(3X)
seekdir, rewinddir, closedir:/ directory(3X)
segment identifier. shmget(2)
segment space allocation brk(2)
select or reject lines common comm(l)
select: synchronous I/O select(2)
select terminal filter. greek(l)
selected fields of each line cut(l)
selected parts of an object dump(l)
semaphore control operations semcd®
semaphore operations semop(2)
semaphore set or shared memory/ ipcrm(l)
semaphores semget®
semctl: semaphore control semctl®
semget: get set of semaphores semget®
semop: semaphore operations semop®
send a data unit t_sndudata(3)
send a message on a stream putmsg®
send a message to a socket send®
send a signal to a process or k i l l®
send data or expedited data t_snd(3n)
send ICMP ECHO_REQUEST packets pTng(lM)
send listener service request/ nlsrequest(3n)
send mail to users or read mai l®
send, sendto: send a message send®
send user-initiated disconnect t_snddis(3n)
send/cancel requests to an LP lp(l)
sendmail aliases(4)
sendmail: mail routing sendmail(lM)
sendto: send a message to a send®
sent over a connection t_rcv(3n)
Serial Line Internet Protocol slipd(lM)
serial lines as network/ slattach(lM)

- lxxix -

serstat: display serial pott error statistics serstat(lM)
error statistics, serstat: display serial port serstat(lM)

remote user information server, fingerd: fingerd(lM)
File Transfer Protocol server, ftpd: DARPA Internet ftpd(lM)

Remote File Sharing name server master file, rfmaster: rfmaster(4)
mountd: NFS mount request server. mountd(lM)

named: Internet domain name server. named(lM)
Remote File Sharing name server query, nsquery: nsquery(lM)

rexecd: remote execution server. rexecd(lM)
rlogind: remote login server rlogind(lM)

rshd: remote shell server rshd(lM)
rwhod: host status server. rwhod(lM)

remote user communication server, talkd: talkd(lM)
telnetd: DARPA TELNET protocol server telnetd(lM)

Trivial File Transfer Protocol server, tftpd: DARPA tftpd(lM)
uucpd, ouucpd: network uucp servers uucpd(lM)

make typescript of terminal session, script: script(l)
buffering to a stream, setbuf, setvbuf: assign setbuf(3S)

Aoascci, _tolower, _toupper, setchrclass: character/ ctype(3C)
IDs. setuid, setgid: set user and group setuid(2)

getgrent, getgrgid, getgmam, setgrent, endgrent, fgetgrent:/ getgrent(3C)
/gethostbyaddr, gethostent, sethostent, endhostent: get/ gethostbyname(3)

identifier of/ gethostid, sethostid: get/set unique gethostid(2)
current host, gethostname, sethostname: get/set name of gethostname(2)

goto, setjmp, longjmp: non-local setjmp(3C)
hashing encryption, crypt, setkey, encrypt: generate crypt(3C)

setmnt: establish mount table setmnt(lM)
/getnetbyaddr, getnetbyname, setnetent, endnetent: get/ getnetent(3)

setpgrp: set process group ID setpgrp(2)
protocol/ /getprotobyname, setprotoent, endprotoent: get getprotoent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent:/ getpwent(3C)
/getservbyport, getservbyname, setservent, endservent: get/ getservent(3)

options on/ getsockopt, setsockopt: get and set getsockopt(2)
lckpwdf,/ getspent, getspnam, setspent, endspent, fgetspent, getspent(3X)

time, gettimeofday, settimeofday: get/set date and gettimeofday(2)
environment at/ cprofile: setting up a C shell cprofile(4)

login time, profile: setting up an environment at profile(4)
gettydefs: speed and terminal settings used by getty gettydefs(4)

group IDs. setuid, setgid: set user and setuid(2)
setuname: set name of system setuname(lM)

/getutid, getutline, pututline, setutent, endutent, utmpname:/ getut(3C)
stream, setbuf, setvbuf: assign buffering to a setbuf(3S)

data in a/ sputl, sgetl: access long integer sputl(3X)
standard/restricted command/ sh, rsh: shell, the sh(l)

lckpwdf, ulckpwdf: get shadow, /endspent, fgetspent, getspent(3X)
putspent: write shadow password file entry putspent(3X)

shadow: password file shadow(4)
xstr: extract and share strings in C programs xstr(l)

chkshlib: compare shared libraries tool chkshlib(l)
mkshlib: create a shared library mkshlib(l)

operations, shmctl: shared memory control shmctl(2)
queue, semaphore set or shared memory ID./a message ipctm(l)

shmop: shared memory operations shmop(2)
identifier, shmget: get shared memory segment shmget(2)

nfssys: common shared NFS system calls nfssys(2)
rfadmin: Remote File Sharing administration rfadmin(lM)

rfudaemon: Remote File Sharing daemon process rfudaemon(lM)
dname: print Remote File Sharing domain and network/ dname(lM)

- lxxx

rfstop: stop the Remote File Sharing environment rfstop(lM)
rfpasswd: change Remote File Sharing host password rfpasswd(lM)

file, rfmaster: Remote File Sharing name server master rfmaster(4)
nsquery: Remote File Sharing name server query nsquery(lM)

script, rfuadmin: Remote File Sharing notification shell rfuadmin(lM)
unadvertise a Remote File Sharing resource, unadv: unadv(lM)

/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)
rfstart: start Remote File Sharing rfstart(lM)

mapping, idload: Remote File Sharing user and group idload(lM)
rcmd: remote shell command execution rcmd(l)

with C-like syntax, csh: a shell (command interpreter) csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment at login/ cprofile(4)
shl: shell layer manager. shl(l)

shutacct, startup, tumacct: shell procedures for/ /runacct acctsh(lM)
File Sharing notification shell script. /Remote rfuadmin(lM)

rshd: remote shell server. rshd(lM)
command programming/ sh, rsh: shell, the standard/restricted sh(l)

shl: shell layer manager. shl(l)
operations, shmctl: shared memory control shmctl(2)

segment identifier, shmget: get shared memory shmget(2)
operations, shmop: shared memory shmon(2)

mounts, showmount: show all remote showmount(lM)
/prdaily, prtacct, runacct, shutacct, startup, tumacct:/ acctsh(lM)

system, change system state, shutdown, halt: shut down shutdown(lM)
full-duplex connection, shutdown: shut down part of a shutdown(2)

program, sdiff: side-by-side difference sdifl(l)
abort: generate a SIGABRT. abort(3C)

sigpause: signal/ sigset, sighold, sigrelse, sigignore, sigset(2)
sigset, sighold, sigrelse, sigignore, sigpause: signal/ sigset(2)

login: sign on login(l)
sigrelse, sigignore, sigpause: signal management /sighold, sigset(2)
pause: suspend process until signal pause(2)
what to do upon receipt of a signal, signal: specify signal(2)

of processes, kill: send a signal to a process or a group kill(2)
ssignal, gsignal: software signals ssignal(3C)

/sighold, sigrelse, sigignore, sigpause: signal management sigset(2)
signal/ sigset, sighold, sigrelse, sigignore, sigpause: sigset(2)

sigignore, sigpause: signal/ sigset, sighold, sigrelse, sigset(2)
lex: generate programs for simple lexical tasks lex(l)

generator, rand, stand: simple random-number rand(3C)
atan, atan2:/ trig: sin, cos, tan, asin, acos, trig(3M)

functions, sinh, cosh, tanh: hyperbolic sinh(3M)
fsize: report file size fsize(l)

get descriptor table size, getdtablesize: getdtablesize(2)
object/ size: print section sizes in bytes of common size(l)

detach serial lines as/ slattach, sldetach: attach and slattach(lM)
serial lines as/ slattach, sldetach: attach and detach slattach(lM)

an interval, sleep: suspend execution for sleep(l)
interval, sleep: suspend execution for sleep(3C)

documents, view graphs, and slides, mmt, mvt: typeset mmt(l)
typesetting view graphs and slides, /macro package for mv(5)

linker, load socket/ slink, ldsocket: STREAMS slink(l)
Internet Protocol control/ slipd: switched Serial Line slipd(lM)

current/ ttyslot: find the slot in the utmp file of the ttyslot(3C)
spline: interpolate smooth curve spline(lG)

sno: SNOBOL interpreter sno(l)
bind: bind a name to a socket bind(2)

- lxxxii -

ldsocket: STREAMS linker, load socket configuration, slink slink(l)
initiate a connection on a socket, connect: connect(2)

communication, socket: create an endpoint for socket(2)
listen for connections on a socket, listen: listen(2)

getsockname: get socket name getsockname(2)
receive a message from a socket, recv, reevfrom: recv(2)

sendto: send a message to a socket send, send(2)
get and set options on sockets, /setsockopt: getsockopt(2)

ctinstall: install software ctinstall(l)
interface, lo: software loopback network lo(7)

ssignal, gsignal: software signals ssignal(3C)
qinstall: install and verify software using the tnkfs(l)/ qinstall(l)

sort: sort and/or merge files sort(l)
qsort: quicker sort qsort(3C)

sort: sort and/or merge files sort(l)
tsort: topological sort tsort(l)

or reject lines common to two sorted files, comm: select comm(l)
bsearch: binary search a sorted table bsearch(3C)

object file, list: produce C source listing from a common list(l)
brk, sbrk: change data segment space allocation brk(2)

/unexpand: expand tabs to spaces, and vice versa expand(l)
terminal, ct: spawn getty to a remote ct(lC)

the/ tapedrives: tape drive specific information used by iapedrives(4)
cftime: language specific strings cftime(4)

fspec: format specification in text files fspec(4)
receipt of a signal, signal: specify what to do upon signal(2)
/set terminal type, modes, speed, and line discipline getty(lM)
/set terminal type, modes, speed, and line discipline uugetty(lM)
used by getty. gettydefs: speed and terminal settings gettydefs(4)

spelling/ spell, hashmake, spellin, hashcheck: find spell(l)
spellin, hashcheck: find spelling errors, /hashmake, spell(l)

curve, spline: interpolate smooth spline(lG)
split: split a file into pieces split(l)

csplit: context split csplit(l)
efl files, fsplit: split FORTRAN, ratfor, or fsplit(l)

uucleanup: uucp spool directory clean-up uucleanup(lM)
lpr: line printer spooler lpr(l)

lpadmin: configure the LP spooling system lpadmin(lM)
output printf, fprintf, sprintf: print formatted printf(3S)

integer data in a/ sputl, sgetl: access long sputl(3X)
power/ exp, log, loglO, pow, sqrt: exponential, logarithm exp(3M)

exponential, logarithm, power, square root functions, /'sqrt: cxp(3M)
generator, rand, srand: simple random-number rand(3C)

/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3C)
input, scanf, fscanf, sscanf: convert formatted scanf(3S)

signals, ssignal, gsignal: software ssignal(3C)
package, stdio: standard buffered input/output stdio(3S)

communication/ stdipc, ftok: standard interprocess stdipc(3C)
sh, rsh: shell, the standard/restricted command/ sh(l)

half-inch tape, stape: SCSI quarter-inch and stape(7)
and output rsterm: manually start and stop terminal input rsterm(lM)

rfstart: start Remote File Sharing rfstart(lM)
operating system for/ starter: information about the staiter(l)

and/ lpsched, lpshut, lpmove: start/stop the LP scheduler lpsched(lM)
/prtacct, runacct, shutacct, startup, tumacct: shell/ acctsh(lM)

stat, fstat: get file status stat(2)
useful with graphical/ stat: statistical network stat(lG)
stat: data returned by stat system call stat(S)

- lxxxii -

system information, statfs, fstatfs: get file statfs(2)
with graphical/ stat: statistical network useful stat(lG)

ff: file name and statistics for a file system ff(lM)
nfsstat: Network File System statistics nfsstat(lM)

display serial port error statistics, serstat: . serstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
/extract error records and status information from dump errdead(lM)

lpstat: print LP status information lpstat(l)
feof, clearerr, fileno: stream status inquiries, fenor, ferror(3S)

control, uustat: uucp status inquiry and job uustat(lC)
communication facilities status, /report inter-process ipcs(l)

netstat: show network status netstat(l)
network, ruptime: display status of nodes on local ruptime(l)

ps: report process status ps(l)
rwhod: host status server. rwhod(lM)

stat, fstat: get file status stat(2)
input/output package, stdio: standard buffered stdio(3S)

interprocess communication/ stdipc, ftok: standard stdipc(3C)
stime: set time stime(2)

wait for child process to stop or terminate, wait: wait(2)
rsterm: manually start and stop terminal input and/ rsterm(lM)

rcO: run commands performed to stop the operating system rcO(lM)
environment, rfstop: stop the Remote File Sharing rfstop(lM)

nextkey:/ dbminit, fetch, store, delete, firstkey, dbm(3X)
messages, strace: print STREAMS trace strace(lM)

strcmp, stmcmp/ string: strcat, strdup, stmcat, string(3C)
/strcpy, stmcpy, strlen, strchr, strrchr, strpbrk/ string(3C)

cleanup program, strclean: STREAMS error logger strclean(lM)
/strcat, strdup, stmcat, strcmp, stmcmp, strcpy,/ string(3C)

/stmcat, strcmp, stmcmp, strcpy, stmcpy, strlen/ string(3C)
/strrchr, strpbrk, strspn, strcspn, strtok: string/ string(3C)
stmcmp/ string: strcat, strdup, stmcat, strcmp, string(3C)

sed: stream editor sed(l)
fflush: close or flush a stream, fclose fclose(3S)

fopen, freopen, fdopen: open a stream fopen(3S)
reposition a file pointer in a stream, fseek, rewind, ftell: fseek(3S)

get character or word from a stream, /getchar, fgetc, getw: getc(3S)
getmsg: get next message off a stream getmsg(2)

fgets: get a string from a stream, gets, gets(3S)
put character or word on a stream, /putchar, fputc, putw: putc(3S)

putmsg: send a message on a stream putmsg(2)
puts, fputs: put a string on a stream puts(3S)

setvbuf: assign buffering to a stream, setbuf, setbuf(3S)
/feof, clearerr, fileno: stream status inquiries ferror(3S)

/routines for returning a stream to a remote command rcmd(3)
rexec: return stream to a remote command texec(3)

push character back into input stream, ungetc: ungetc(3S)
commands, streamio: STREAMS ioctl streamio(7)

open any minor device on a STREAMS driver, clone: clone(7)
program, strclean: STREAMS error logger cleanup strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
event/log: interface to STREAMS error logging and log(7)

multiplexing, poll: STREAMS input/output poll(2)
streamio: STREAMS ioctl commands streamio(7)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
Interface cooperating STREAMS module, transport timod(7)

Interface read/write interface STREAMS module. /Transport tirdwr(7)

- lxxxiii -

sxt: STREAMS multiplexor sxt(7)
strace: print STREAMS trace messages strace(lM)

daemon, strerr: STREAMS error logger strerr(lM)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

convert date and time to string, /ascftime, tzset: ctime(3C)
floating-point number to string, /fcvt, gcvt: convert ecvt(3C)

search a file for a character string, fgrep: fgrep(l)
gps: graphical primitive string, format of graphical/ gps(4)

gets, fgets: get a string from a stream gets(3S)
puts, fputs: put a string on a stream puts(3S)

bemp, bzero: bit and byte string operations, bcopy bstring(3)
strspn, strcspn, strtok: string operations, /strpbrk, string(3C)

number, strtod, atof: convert string to double-precision strtod(3C)
strtol, atol, atoi: convert string to integer stitol(3C)

cftime: language specific strings cftime(4)
text strings in a file, strings: extract the ASCII strings(l)

extract the ASCII text strings in a file, strings: strings(l)
xstr: extract and share strings in C programs xstr(l)

number information from a/ strip: strip symbol and line strip(l)
information from a/ strip: strip symbol and line number strip(l)
/stmcmp, strcpy, stmcpy, strlen, strchr, strrchr/ string(3C)

string: strcat, strdup, strncat, strcmp, stmcmp/ string(3C)
/strdup, stmcat, strcmp, stmcmp, strcpy, stmcpy/ string(3C)

/strcmp, stmcmp, strcpy, stmcpy, strlen, strchr/ string(3C)
/strlen, strchr, strTchr, strpbrk, strspn, strcspn,/ string(3C)

/stmcpy, strlen, strchr, strrchr, strpbrk, strspn/ string(3C)
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/ string(3C)

to double-precision number, strtod, atof: convert string strtod(3C)
/strpbrk, strspn, strcspn, strtok: string operations string(3C)

string to integer, strtol, atol, atoi: convert strtol(3C)
processes using a file or file structure, fuser: identify fuser(lM)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

terminal, stty: set the options for a stty(l)
another user, su: become super-user or su(lM)

firstkey, nextkey: database subroutines, /store, delete dbm(3X)
dbm_clearerr: database subroutines. /dbm_error ndbm(3X)
plot: graphics interface subroutines plot(3X)

/same lines of several files or subsequent lines of one file paste(l)
count of a file, sum: print checksum and block sum(l)

du: summarize disk usage du(lM)
accounting/' acctcms: command summary from per-process acctcms(lM)

base, rpc: Sun rpc program number data rpc(4)
sync: update the super block sync(lM)

sync: update super block sync(2)
inetd: internet "super-server" inetd(lM)

/file for inetd (internet "super-server") inetd.conf(4)
su: become super-user or another user su(lM)

interval, sleep: suspend execution for an sleep(l)
interval, sleep: suspend execution for sleep(3C)

pause: suspend process until signal pause(2)
swab: swap bytes swab(3C)

swap: swap administrative interface swap(lM)
swab: swap bytes swab(3C)

interface, swap: swap administrative swap(lM)
Protocol control/ slipd: switched Serial Line Internet slipd(lM)

file, swrite: synchronous write on a swrite(2)
sxt: STREAMS multiplexor sxt(7)

- lxxxii -

information from/ strip: strip
file/ ldgetname: retrieve

name for common object file
object/ /compute the index of a

ldtbread: read an indexed
syms: common object file

object/ ldtbseek: seek to the
unistd: file header for

sdb:
common CTIX system terms and

mkdbsym: load
symbol table format.

/correct the time to allow
update: provide disk

t_sync:
select:
swrite:

interpreter) with C-like
definition,

error/ perror. ermo,
information,

requests,
perror, ermo, sys_errlist,

shutdown, halt: shut down
binary search a sorted

for common object file symbol
/compute the index of a symbol

file, /read an indexed symbol
common object file symbol
master device information

mnttab: mounted file system
ldtbseek: seek to the symbol

/dtoc, ttoc, vtoc: graphical
remotely mounted file system

I/O Processor configuration
setmnt: establish mount

getdtablesize: get descriptor
classification and conversion

tbl: format
hdestroy: manage hash search

manipulate the routing
tabs: set

expand, unexpand: expand
requesL

ctags: create a
a file,
talk:

communication server.
structure.

trigonometric/ trig: sin, cos,
sinh, cosh,

V/TAPE 3200 half-inch
set drive parameters for

information used/ tapedrives:
tsioctl: facilitate usage of a

Hewlett-Packard 2645A terminal

symbol and line number strip(l)
symbol name for common object ldgetname(3X)
symbol table entry, /symbol ldgetname(3X)
symbol table entry of a common ldtbindex(3X)
symbol table entry of a common/ ldtbread(3X)
symbol table formaL syms(4)
symbol table of a common ldtbseek(3X)
symbolic constants unistd(4)
symbolic debugger. sdb(l)
symbols, /definitions of glossary(l)
symbols in kernel debugger mkdbsym(lM)
syms: common object file syms(4)
sync: update super block sync(2)
sync: update the super block sync(lM)
synchronization of the system/ adjtime(2)
synchronization update(lM)
synchronize transport library t_sync(3n)
synchronous I/O multiplexing select(2)
synchronous write on a file swrite(2)
syntax, csh: a shell (command csh(l)
sysdef: output system sysdef(lM)
sys_errlist. sys_nerr: system pcrror(3C)
sysfs: get file system type sysfs(2)
syslocal: special system syslocal(2)
sys_nerr: system error/ perror(3C)
system, change system state shutdown(lM)
table, bsearch: bsearch(3C)
table entry, /symbol name ldgetname(3X)
table entry of a common object/ ldtbindex(3X)
table entry of a common object ldtbread(3X)
table formaL syms: syms(4)
table, master: master(4)
table. mnttab(4)
table of a common object file ldtbseek(3X)
table of contents routines toc(lG)
table, rmtab: rmtab(4)
table, rtab: Remote rtab(4)
table setmnt(lM)
table size getdtablesize(2)
tables, /generate character chrtbl(lM)
tables for nroff or troff. tbl(I)
tables, hsearch, hcreate, hsearch(3C)
tables, route: manually route(lM)
tabs on a terminal tabs(l)
tabs to spaces, and vice/ expand(l)
t_accept: accept a connect t_accept(3n)
tags file ctags(l)
tail: deliver the last part of tail(l)
talk to another user talk(l)
talkd: remote user talkd(lM)
t_alloc: allocate a library t_alloc(3n)
tan, asin, acos, atan, atan2: trig(3M)
tanh: hyperbolic functions sinh(3M)
tape controller. /Interphase ipt(7)
tape controllers, tapeset: tapeset(lM)
tape drive specific tapedrives(4)
tape drive. tsioctl(l)
tape file archiver. hpio: hpio(l)

- lxxxv -

tar: tape file archiver tar(l)
recover files from a backup tape, free: frec(lM)

tio: tape io filter tio(l)
qic: interface for QIC tape qic(7)

quarter-inch and half-inch tape, stape: SCSI stape(7)
specific information used by/ tapedrives: tape drive tapedrives(4)

for tape controllers, tapeset: set drive parameters tapeset(lM)
tar: tape file archiver tar(l)

programs for simple lexical tasks, lex: generate lex(l)
transport endpoint. t_bind: bind an address to a t_bind(3n)

deroff: remove nroffitroff, tbl, and eqn constructs deroff(l)
ortroff. tbl: format tables fornroff tbl(l)

endpoint. t_close: close a transport t_close(3n)
connection with another/ t_cotmect: establish a t_connect(3n)

Cbntrol Protocol, tcp: Internet Transmission tcp(7)
/hpd, erase, hardcopy, tekset, td: graphical device routines/ gdev(lG)

search trees, tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

tee: pipe fitting tee(l)
gdev: hpd, erase, hardcopy, tekset, td: graphical device/ gdev(lG)

4014: paginator for the Tektronix 4014 terminal 4014(1)
initialization, init, telinit: process control init(lM)

directory: opendir, readdir, telldir, seekdir, rewinddir/ directory(3X)
telnetd: DARPA TELNET protocol server telnetd(lM)

telnet: user interface to TELNET protocol telnet(l)
TELNET protocol, telnet: user interface to telnet(l)

server, telnetd: DARPA TELNET protocol telnetd(lM)
temporary file, tmpnam, tempnam: create a name for a tmpnam(3S)

tmpfile: create a temporary file lmpfile(3S)
tempnam: create a name for a temporary file, tmpnam, tmpnam(3S)

terminals, term: conventional names for term(5)
term: format of compiled term file term(4)

terminfo/ captoinfo: convert a termcap description into a captoinfo(lM)
data base, termcap: terminal capability teimcap(4)

for the Tektronix 4014 terminal. 4014: paginator 4014(1)
functions of the DASI 450 terminal. 450: handle special 450(1)

interface, tiop: terminal accelerator tiop(7)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

console: console terminal console(7)
ct: spawn getty to a remote terminal ct(lC)

generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download tdl(l)

Aerminal interface, and terminal environment tset(l)
greek: select terminal filter. greek(l)

Agetstr, tgoto, tputs: terminal independent/ otermcap(3X)
/manually start and stop terminal input and output rsterm(lM)

terminal/ tset: set terminal, terminal interface, and tset(l)
termio: general terminal interface termio(7)
tty: controlling terminal interface tty(7)

dial: establish an out-going terminal line connection dial(3C)
list of terminal types by terminal number, ttytype: ttytype(4)

database, tput: initialize a terminal or query terminfo tput(l)
clear: clear terminal screen clear(l)

optimization package, curses: terminal screen handling and curses(3X)
script: make typescript of terminal session script(l)

getty. gettydefs: speed and terminal settings used by gettydefs(4)
stty: set the options for a terminal stty(l)

- lxxxvi -

tabs: set tabs on a
hpio: Hewlett-Packard 2645A

and terminal/ tset: set
system/ conlocate: locate a

tty: get the name of the
isatty: find name of a

and line/ getty: set
and line/ uugetty: set

number, ttytype: list of
vt: virtual

functions of DASI 300 and 300s
functions of Hewlett-Packard

channels, tp: controlling
term: conventional names for

kill:
exit, _exit:

demon, errstop:
for child process to stop or

tic-
initialize a terminal or query
a termcap description into a

infocmp: compare or print out
data base,
interface,

/of common CTIX system
message,

command,
isnan: isnand, isnanf:

quiz:
ed, red:

ex:
casual users), edit:

change the format of a
fspec: format specification in

/checkeq: format mathematical
prepare constant-width

ms:
nroff: format

plock: lock process,
more, page:

strings: extract the ASCII
troff: typeset

binary search trees, tsearch,
structure.

user interface to the DARPA
DARPA TFTP protocol.
Transfer Protocol server.

tgetstr, tgoto, tputs:/
tputs:/ tgetent, tgetnum,

protocol-sped fic service/
tgoto, tputs:/ tgetent,

state.
tgetent, tgetnum, tgetflag,
Agetnum, tgetflag, tgetstr,

ttt, cubic:
data and system/ timex:

time:

terminal labs(l)
terminal tape file archiver. hpio(l)
terminal, terminal interface, tset(l)
terminal to use as the virtual conlocate(lM)
terminal tty(l)
terminal, ttyname, ttyname(3C)
terminal type, modes, speed, getty(lM)
terminal type, modes, speed, uugetty(lM)
terminal types by terminal ttytype(4)
terminal vt(7)
terminals, /handle special 300(1)
terminals, hp: handle special hp(l)
terminal's local RS-232 lp(7)
terminals term(5)
terminate a process kill(l)
terminate process exit(2)
terminate the error-logging errstop(lM)
terminate, wait: wait wait(2)
terminfo compiler. tic(lM)
terminfo database, tput: tput(l)
terminfo description, /convert captoinfo(lM)
terminfo descriptions infocmpOM)
terminfo: terminal capability terminfo(4)
termio: general terminal tetmio(7)
terms and symbols glossary(l)
t_error: produce error t_enor(3n)
test: condition evaluation test(l)
test for floating point NaN/ isnan(3C)
test your knowledge quiz(6)
text editor ed(l)
text editor. ex(l)
text editor (variant of ex for edit(l)
text file, newform: newform(l)
text files fspec(4)
text for nroff or troff. eqn(l)
text for troff. cw, checkcw: cw(l)
text formatting macros ms(5)
text nroff(l)
text, or data in memory plock(2)
text perusal more(l)
text strings in a file strings(l)
text. troff(l)
tfind, tdelete, twalk: manage tsearch(3C)
t_free: free a library t_free(3n)
TFTP protocol, tftp: tftp(l)
tftp: user interface to the tftp(l)
tftpd: DARPA Trivial File tftpd(lM)
tgetent, tgetnum, tgetflag otermcap(3X)
tgetflag, tgetstr, tgoto, otermcap(3X)
t_getinfo: get t_getinfo(3n)
tgetnum, tgetflag, tgetstr, otermcap(3X)
t_getstate: get the current t_getstate(3)
tgetstr, tgoto, tputs:/ otermcap(3X)
tgoto, tputs: terminal/ otermcap(3X)
tic: terminfo compiler. tic(lM)
tic-tac-toe ttt(6)
time a command; report process timex(l)
time a command time(l)

j

- lxxxvii -

execute commands at a later time, at, batch: at(l)
a C shell environment at login time, cprofile: setting up cprofile(4)

systems for optimal access time, dcopy: copy file dcopy(lM)
time: get time time(2)

settimeofday: get/set date and time, gettimeofday gettimeofday(2)
profil: execution time profile profil(2)

up an environment at login time, profile: setting profile(4)
stime: set time stime(2)
time: get time time(2)

of the/ adjtime: correct the time to allow synchronization adjtime(2)
tzset: convert date and time to string, /ascftime ctime(3C)

clock: report CPU time used clock(3C)
timezone: set default system time zone timezone(4)

process times, times: get process and child times(2)
update access and modification times of a file, touch: touch(l)

get process and child process times, times: times(2)
file access and modification times, utime: set utime(2)

process data and system/ timex: time a command; report timex(l)
time zone, timezone: set default system timezone(4)

cooperating STREAMS module, timod: Transport Interface timod(7)
tio: tape io filter tio(l)

interface, tiop: terminal accelerator tiop(7)
read/write interface STREAMS/ tirdwr Transport Interface tirdwr(7)

request t_listen: listen for a connect t_listen(3n)
event on a transport/ t_look: look at the current t_look(3n)

file, tmpfile: create a temporary tmpfile(3S)
for a temporary file, tmpnam, tempnam: create a name tmpnam(3S)

Asascii, tolower, toupper, toascci, Jolower, _toupper,/ ctype(3C)
/tolower, _toupper, _tolower, toascii: translate characters conv(3C)

graphical table of contents/ toe: dtoc, ttoc, vtoc: toc(lG)
popen, pclose: initiate pipe to/from a process popen(3S)

Aoupper, tolower, _toupper, _tolower, toascii: translate/ conv(3C)
tolower, toupper, toascci, tolower, toupper,/ /isascii, ctype(3C)

toascii:/ conv: toupper, tolower, toupper, _tolower, conv(3C)
compare shared libraries tool, chkshlib: chkshlib(l)

endpoint. t_open: establish a transport t_open(3n)
tsort: topological sort tsort(l)

a transport endpoint. t_optmgmt: manage options for t_optmgmt(3n)
acctmerg: merge or add total accounting files acctmerg(lM)

modification times of a file, touch: update access and touch(l)
Aoupper, toascci, _tolower, toupper, setchrclass:/ ctype(3C)

conv: toupper, tolower, toupper, tolower, toascii:/ conv(3C)
local RS-232 channels, tp: controlling terminal's tp(7)

tplot: graphics filters tplot(lG)
query terminfo database, tput: initialize a terminal or tput(l)

Agetflag, tgetstr, tgoto, tputs: terminal independent/ otermcap(3X)
tr: translate characters tr(l)

strace: print STREAMS trace messages strace(lM)
ptrace: process trace ptrace(2)

error logging and event tracing, /interface to STREAMS log(7)
ftp: ARPANET file transfer program ftp(l)

ftpd: DARPA Internet File Transfer Protocol server. ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server. tftpd(lM)

/_toupper, _tolower, toascii: translate characters conv(3C)
tr: translate characters tr(l)

tcp: Internet Transmission Control Protocol tcp(7)
t_bind: bind an address to a transport endpoint t_bind(3n)

t_close: close a transport endpoint t_close(3n)

- lxxxviii -

look at the current event on a transport endpoint. t_look: t_look(3n)
t_open: establish a transport endpoint t_open(3n)

/manage options for a transport endpoint t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

cooperating STREAMS/ timod: Transport Interface timod(7)
interface STREAMS/ tirdwr: Transport Interface read/write tirdwrf7)

t_sync: synchronize transport library t_sync(3n)
system, uucico: file transport program for the uucp uucico(lM)

nlsprovider get name of transport provider. nlsprovider(3n)
a connection with another transport user, /establish t_connect(3n)

expedited data sent over a/ t_rev: receive data or t_rcv(3n)
confirmation from a connect/ t_rcvconnect: receive the t_rcvconnect(3)

from disconnect. !_rcvdis: retrieve information t_rcvdis(3n)
of an orderly release/ trcvrel: acknowledge receipt t_rcvrel(3n)

unit. t_rcvudata: receive a data t_rcvudata(3)
data error indication, trcvuderr: receive a unit t_rcvuderr(3)

ftw: walk a file tree ftw(3C)
twalk: manage binary search trees. Afind, tdelete, tsearch(3C)

trk: trekkie game trk(6)
tan, asin, acos, atan, atan2: trigonometric functions, /cos, trig(3M)

server, tftpd: DARPA Trivial File Transfer Protocol tftpd(lM)
trk: trekkie game. trk(6)

constant-width text for troff. cw, checkcw: prepare cw(l)
mathematical text for nroff or troff./neqn, checkeq: format eqn(l)

typesetting view graphs/mv: a troff macro package for mv(5)
format tables for nroff or troff. tbl: tbl(l)

troff: typeset text troff(l)
true, false: provide truth values true(l)

with debugging on. Uutry: try to contact a remote system Uutry(lM)
twalk: manage binary search/ tsearch, tfind, tdelete, tsearch(3C)

interface, and terminal/ tset: set terminal, terminal tset(l)
tape drive, tsioctl: facilitate usage of a tsioctl(l)

data over a connection. t_snd: send data or expedited t_snd(3n)
disconnect request. t_snddis: send user-initiated t_snddis(3n)

release. t_sndrel: initiate an orderly t_sndrel(3n)
t_sndudata: send a data unit t_sndudata(3)
tsort: topological sort. tsort(l)

library. t_sync: synchronize transport t_sync(3n)
contents routines, toe: dtoc, ttoc, vtoc: graphical table of toc(lG)

ttt, cubic: tic-tac-toe ttt(6)
interface, tty: controlling terminal tty (7)
terminal, tty: get the name of the tty(l)

a terminal, ttyname, isatty: find name of ttyname(3C)
utmp file of the current/ ttyslot: find the slot in the ttyslot(3C)

types by terminal number, ttytype: list of terminal ttytype(4)
endpoint. t_unbind: disable a transport t_unbind(3n)

/runacct, shutacct, startup, tumacct: shell procedures for/ acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary search/ tsearch(3C)

file: determine file type. file(l)
sysfs: get file system type information sysfs(2)

getty: set terminal type, modes, speed, and line/ getty(lM)
uugetty: set terminal type, modes, speed, and line/ uugetty(lM)

ttytype: list of terminal types by terminal number. ttytype(4)
nodes for assorted device types, /create device createdev(lM)

types, types: primitive system data types(5)
types: primitive system data types types(5)

session, script: make typescript of terminal script(l)
graphs, and slides, mmt, mvt: typeset documents, view mmt(l)

- lxxxix -

troff: typeset text troff(l)
mv: a troff macro package for typesetting view graphs and/ mv(5)
to/ /asctime, cftime, ascftime, tzset: convert date and time ctime(3C)

control, uadmin: administrative uadmin(lM)
control, uadmin: administrative uadmin(2)
system, uconf: configure the operating uconf(lM)

Protocol, udp: Internet User Datagram udp(7)
getpw: get name from UID getpw(3C)

ul: do underlining ul(l)
/endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)

limits, ulimit: get and set user ulimit(2)
creation mask, umask: set and get file umask(2)

mask, umask: set file-creation mode umask(l)
systems and remote/ mount, umount: mount and unmount file mount(lM)

umount: unmount a file system umount(2)
multiple file/ mountall, umountall: mount, unmount mountall(lM)

File Sharing resource, unadv: unadvertise a Remote unadv(lM)
Sharing resource, unadv: unadvertise a Remote File unadv(lM)

CTIX system, uname: get name of current uname(2)
Cl iX system, uname: print name of current uname(l)

ul: do underlining ul(l)
file, unget: undo a previous get of an SCCS unget(l)

spaces, and vice/ expand, unexpand: expand tabs to expand(l)
an SCCS file, unget: undo a previous get of unget(l)

into input stream, ungetc: push character back ungetc(3S)
/seed48, lcong48: generate uniformly distributed/ drand48(3C)

a file, uniq: report repeated lines in uniq(l)
mktemp: make a unique file name mktemp(3C)

gethostid, sethostid: get/set unique identifier of current/ gethostid(2)
symbolic constants, unistd: file header for unistd(4)

t_rcvuderr: receive a unit data error indication t_rcvuderr(3)
t_rcvudata: receive a data unit t_rcvudata(3)

t_sndudata: send a data unit t_sndudata(3)
units: conversion program units(l)

mc68k, miti, mini, mega, unixpc,. machid: machid(l)
execution, uux: UNIX-to-UNIX system command uux(lC)

uucp, uulog, uuname: UNIX-to-UNIX system copy uucp(lC)
uuto, uupick: public UNIX-to-UNIX system file copy uuto(lC)

link, unlink: link and unlink files and directories link(lM)
entry, unlink: remove directory unlink(2)

umount: unmount a file system umount(2)
mount, umount: mount and unmount file systems and/ mount(lM)

mountall, umountall: mount, unmount multiple file systems mountall(lM)
nmountall, numountall: mount, unmount Network File System/ nmountall(lM)

resource, fumount: forced unmount of an advertised fumount(lM)
rmountall, rumountall: mount, unmount Remote File Sharing/ rmountall(lM)

manage notifications, notify, unnotify, evwait, evnowait: notify(2)
files, pack, peat, unpack: compress and expand pack(l)

times of a file, touch: update access and modification touch(l)
of programs, make: maintain, update, and regenerate groups make(l)

pwconv: install and update /etc/shadow with/ pwconv(lM)
pwunconv: install and update /etc/shadow with/ pwunconv(lM)
lfind: linear search and update, lsearch, lsearch(3C)

synchronization, update: provide disk update(lM)
sync: update super block sync(2)

masterupd: update the master file masterupd(lM)
sync: update the super block sync(lM)

du: summarize disk usage du(lM)

- XC -

a command description and usage examples, /retrieve usage(l)
tsioctl: facilitate usage of a tape drive tsioctl(l)

description and usage/ usage: retrieve a command usage(l)
stat: statistical network useful with graphical/ stat(lG)

id: print user and group IDs and names id(lM)
setuid, setgid: set user and group IDs setuid(2)

idload: Remote File Sharing user and group mapping idload(lM)
talkd: remote user communication server talkd(lM)

crontab: user crontab file crontab(l)
character login name of the user, cuserid: get cuserid(3S)

udp: Internet User Datagram Protocol udp(7)
/getgid, getegid: get real user, effective user, real/ getuid(2)

environ: user environment environ(5)
disk accounting data by user ID. diskusg: generate diskusg(lM)

program, finger: user information lookup finger(l)
fingerd: remote user information server. fingerd(lM)

protocol, telnet: user interface to TELNET telnet(l)
TFTP protocol, tftp: user interface to the DARPA tftp(l)

ulimit: get and set user limits ulimit(2)
logname: return login name of user. logname(3X)

/get real user, effective user, real group, and/ getuid(2)
become super-user or another user, su: - su(!M)

talk: talk to another user. talk(l)
with another transport user, /establish a connection t_connect(3n)

the utmp file of the current user, /find the slot in ttyslot(3C)
write: write to another user. write(l)

requesL t_snddis: send user-initiated disconnect t_snddis(3n)
(variant of ex for casual users), edit: text editor edit(l)

mail, rmail: send mail to users or read mail mail(l)
rhosts: remote equivalent users rhosts(4)

operating system for beginning users, /information about the starter(l)
wall: write to all users wall(l)

fuser: identify processes using a file or file/ fuser(lM)
search a file for a pattern using full regular/egrep: egrep(l)

identify a CTIX system command using keywords, locate: locate(l)
assist: assistance using CTIX system commands assist(l)

/install and verify software using the mkfs(l) proto file/ qinstall(l)
failed login attempts, /usr/adm/loginlog: log of loginlog(4)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

modification times, utime: set file access and utime(2)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

endutent, utmpname: access utmp file entry, /setutent, getut(3C)
ttyslot: find the slot in the utmp file of the current user ttyslot(3C)

/pututline, setutent, endutent, utmpname: access utmp file/ getut(3C)
directories and permissions/ uucheck: check the uucp uucheck(lM)

for the uucp system, uucico: file transport program uucico(lM)
directory clean-up. uucleanup: uucp spool uucleanup(lM)

/configuration file for uucp communications lines Devices(5)
uucheck: check the uucp directories and/ uucheck(lM)

uucpd, ouucpd: network uucp servers uucpd(lM)
uucleanup: uucp spool directory clean-up uucleanup(lM)

control, uustat: uucp status inquiry and job uustat(lC)
file transport program for the uucp system, uucico: uucico(lM)

uusched: the scheduler for the UUCP system uusched(lM)
UNK-to-UNIX system copy, uucp, uulog, uuname: uucp(lC)

servers, uucpd, ouucpd: network uucp uucpd(lM)
modes, speed, and line/ uugetty: set terminal type, uugetty(lM)

- xci -

system copy, uucp, uulog, uuname: UNIX-to-UNIX uucp(lC)
copy, uucp, uulog, uuname: UNIX-to-UNIX system uucp(lC)

system file copy, uuto, uupick: public UNIX-to-UNIX uuto(lC)
UUCP system, uusched: the scheduler for the uusched(lM)

and job control, uustat: uucp status inquiiy uustat(lC)
UNIX-to-UNIX system file/ uuto, uupick: public uuto(lC)
system with debugging on. Uutry: try to contact a remote Uutry(lM)

command execution, uux: UNIX-to-UNIX system uux(lC)
requests, uuxqt: execute remote command uuxqt(lM)

val: validate SCCS file val(l)
abs: return integer absolute value abs(3C)

getenv: return value for environment name getenv(3C)
ceiling, remainder, absolute value functions, /fabs: floor floor(3M)

put env: change or add value to environment. putenv(3C)
/htons, ntohl, ntohs: convert values between host and/ byteorder(3)

values, values: machine-dependent values(5)
true, false: provide truth values true(l)

values: machine-dependent values values(5)
/print formatted output of a varargs argument list vprintf(3S)

argument list, varargs: handle variable varargs(5)
varargs: handle variable argument list varargs(5)

users), edit: text editor (variant of ex for casual edit(l)
vc: version control »c(l)

option letter from argument vector, getopt: get getopt(3C)
assert: verify program assertion assert(3X)

mkfs(l)/ qinstall: install and verify software using the qinstall(l)
tabs to spaces, and vice versa, /unexpand: expand expand(l)

vc: version control vc(l)
get: get a version of an SCCS file get(l)

sccsdiff: compare two versions of an SCCS file sccsdiff(l)
formatted output of/ vprintf, vfprintf, vsprintf: print vprintf(3S)

manipulate Volume Home Blocks (VHB). libdev: libdev(3X)
display editor based on ex. vi: screen-oriented (visual) vi(l)
expand tabs to spaces, and vice versa, expand, unexpand: expand(l)

mmt, mvt: typeset documents, view graphs, and slides mmt(I)
macro package for typesetting view graphs and slides. Aroff mv(5)

/a terminal to use as the virtual system console conlocate(lM)
vt: virtual terminal vt(7)

on ex. vi: screen-oriented (visual) display editor based vi(l)
vme: VME bus interface vme(7)

file system, volcopy: make literal copy of volcopy(lM)
file system: format of system volume, fs: fs(4)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
iv: initialize and maintain volume iv(l)

print formatted output of a/ vprintf, vfprintf, vsprintf: vprintf(3S)
vt: virtual terminal vt(7)

ipt: interface for Interphase V/TAPE 3200 half-inch tape/ ipt(7)
contents/ toe: dtoc, ttoc, vtoc: graphical table of toc(lG)

process, wait: await completion of wait(l)
or terminate, wait: wait for child process to stop wait(2)

ftw: walk a file tree ftw(3C)
wall: write to all users wall(l)
wc: word count. wc(l)
what: identify SCCS files what(l)

signal, signal: specify what to do upon receipt of a signal(2)
whodo: who is doing what whodo(lM)

network, rwho: who is logged in on local rwho(l)
who: who is on the system who(l)

- xcii -

whodo: who is doing what whodo(lM)
fold long lines for finite width output device, fold: fold(l)

window: window management primitives window(7)
wm: window management wm(l)

primitives, window: window management window(7)
wm: window management wm(l)

cd: change working directory cd(l)
chdin change working directory chdir(2)

get path-name of current working directory, getcwd: getcwd(3C)
pwd: working directory name pwd(l)

swrite: synchronous write on a file swrite(2)
write: write on a file write(2)

putpwent: write password file entry putpwent(3C)
entry, putspent: write shadow password file putspent(3X)

wall: write to all users wall(l)
write: write to another user write(l)

write: write on a file write(2)
open: open for reading or writing open(2)

utmp, wtmp: utmp and wtmp entry formats utmp(4)
accounting records, fwtmp, wtmpfix: manipulate connect fwtmp(lM)

hunt-the-wumpus. wump: the game of wump(6)
list(s) and execute command, xargs: construct argument xargs(I)

strings in C programs, xstr: extract and share xstr(l)
bessel: jO, j l , jn, yO, y 1, yn: Bessel functions bessel(3M)

bessel: jO, j l , jn, yO, yl, yn: Bessel functions bessel(3M)
compiler-compiler, yacc: yet another yacc(l)

bessel: jO,jl,jn, yO, yl, yn: Bessel functions bessel(3M)
set default system time zone, timezone: timezone(4)

- xciii -

e

TABLE OF RELATED ENTRIES

Administration

Accounting and Profiling
acct overview of accounting and miscellaneous accounting commands
accterns command summary from per-process accounting records
acctcom search and print process accounting fi!e(s)
acctcon connect-time accounting
acctmerg merge or add total accounting files
acctprc process accounting
acctsh shell procedures for accounting
fwtmp manipulate connect accounting records
prof display profile data
runacct run daily accounting
sar system activity report package

Backups
ckbupscd check file system backup schedule
ff list file names and statistics for a file system
fine fast incremental backup
free recover files from a backup tape
tio asynchronous tape i/o filter
volcopy copy file systems with label checking

Controlling System State
brc system initialization shell scripts
crash examine system images
getty set terminal type, modes, speed, and line discipline
init process control initialization
killall kill all active processes
login sign on
rcO run commands performed to stop the operating system
rc2 run commands performed for multi-user environment
reboot reboot the system
shutdown terminate all processing
telinit direct the actions of init
wall write to all users

Disk Management
bcopy interactive block copy
clri clear i-node
dcopy copy file systems for optimal access time
devnm device name
df report number of free disk blocks
fsck file system consistency check and interactive repair
fsdb file system debugger
fsstat report file system status
fstyp determine file system identifier
fiiser identify processes using a file or file structure
iv initialize and maintain volume
labelit provide labels for file systems
link exercise link and unlink system calls
mkfs construct a file system

mklost+found make a lost+found directory for fsck
mount = , mount and dismount file system
mountall mount, unmount multiple file systems
mvdir move a directory
ncheck generate names from i-numbers
scsimap set mappings for SCSI devices
setmnt establish mount table
swap swap administrative interface
sync update the super block
update provide disk synchronization

General
adman administer a CI IX system
config configure a CTIX system
conlocate locate a terminal to use as the virtual system console
cpset install object files in binary directories
createdev create device nodes
cron clock daemon
errdead extract error records and status information from dump
errdemon error-logging demon
errpt process a report of logged errors
errstop terminate the error-logging daemon
helpadm makes changes to the Help Facility database
install install commands
masterupd update master file
mkdbsym load symbols in kernel debugger
mknod build special file
passmgmt password files management
path locate executable file for command
pwck password/group file checkers
pwconv convert shadow password file
pwuconv convert shadow password file
rsterm manually start and stop terminal input and output
serstat display serial port error statistics
setuname set name of system
uadmin administrative control
uconf configure the operating system
whodo who is doing what

Interprocess Communication
ipcrm remove a message queue, semaphore set or shared memory id
ipcs report inter-process communication facilities status

Assist
assist assistance using CTDC system commands
astgen generate/modify ASSIST menus and command forms

Basic File Commands
cat concatenate and print files
chmod change mode
chown change owner or group
dircmp directory comparison
cp copy, link or move files
dd convert and copy a file
file determine file type
find find files
Is list contents of directory

Pwd working directory name
mkdir make a directory
nn remove files or directories
umask set file-creation mode mask

Basic General Commands
calendar
date .
finger
id . .
kill . .
logname
makekey
newgrp .
news
passwd
ps . .
sum .
uname ,
who .

Communication Between Systems
ct . .
cu
uuclean
uucp
uustat ,
uuto .
Uutry
uux

Communication Between Users
mail .
mailx
mesg .
sendmail
talk . .
talkd .
write .

Document Formatting and Checking
col filter reverse line-feeds
cw prepare constant-width text for troff
deroff remove nrofl/troff tbl, and eqn constructs
du summarize disk usage
eqn format mathematical text for nroff or troff
greek select terminal filter
hyphen find hyphenated words
mm print/check documents formatted with the MM macros
mint typeset documents, view graphs, and slides
nroff format text
ptx permuted index
spell find spelling errors
tbl format tables for nroff or troff
Toff typeset text

reminder service
print and set the date

. . . user information lookup program
. . print user and group IDs and names

terminate a process
get login name

generate encyption key
log in to a new group

print news items
change login password

report process status
print checksum and block count of a file

print name of system
who is on the system

spawn getty to a remote terminal
call another computer system
uucp spool directory clean-up

copy data between computer systems
uucp status inquiry and job control

public computer system-to-computer system file copy
. . try to contact a remote system with debugging on

remote system command execution

. . . send mail to users or read mail
interactive message processing system

permit or deny messages
send mail over die Internet

talk to another user
. . remote user communication server

write to another user

Internetworking Tools
arp address resolution display and control
finger user information lookup program
fingerd remote user information server
ftp file transfer program
ftpd DARPA Internet File Transfer Protocol server
hostid set or print identifier of current host system
hostname set or print the Internet host name of the current system
ifconfig configure network interface parameters
inetd Internet "super/server"
mkhosts make node name commands
named Internet domain name server
netstat show network status
ping send ICMP ECHO_REQUEST packets to network hosts
portmap DARPA port to RPC program number mapper
rcmd remote shell command execution
rep remote file copy
rexecd remote execution server
rlogin remote login
rlogind remote login server
route remove files or directories
routed network rounting daemon
ipeinfo report RPC information
rshd remote shell server
ruptime display status of nodes on local network
rwho who is logged in on local network
rwhod node status server
setaddr set DARPA Internet address from nodename
setenet write Ethernet address on disk
slattach attach serial lines as network interfaces
sldetach detach serial lines as network interfaces
slink streams linker, load socket configuration
slipd switched Serial Line Internet Protocol control facility
telnet user interface to TELNET protocol
telnetd DARPA TELENET protocol server
tftp user interface to the DARPA TFTP protocol
tftpd DARPA Trivial File Transfer Protocol server

Network File System (NFS) Utilities
mountd mount request server
nfsd NFS daemons
nfsstat Network File Systran statistics
nmountall mount, unmount Network File Systran resources
showmount show all remote mounts

Networking Support Utilities
nlsadmin network listener service administration
strace print STREAMS trace messages
strclean STREAMS error logger cleanup program
strerr STREAMS error logger daemon

Mathematics Tools
be arbitrary-precision arithmetic language
dc desk calculator
factor factor a number
spline interpolate smooth curve

units conversion program

Miscellaneous
glossary definitions of common CTIX system terms and symbols
locate identify a CTIX system command using keywords
makekey generate encryption key
nl line numbering filter
pack compress and expand files
script make typescript of terminal session
starter information about the operating system for beginning users
su become super-user or another user
usage retrieve a command description and usage examples
wc word count

Offline Storage
cpio copy file archives in and out
tapeset set drive parameters for tape controllers
tsioctl facilitate usage of a tape drive
tar tape file archiver

Printer Spooling
accept allow/prevent LP requests
enable enable/disable LP printers
lp • send/cancel requests to an LP line printer
lpadmin configure the LP spooling system
Ipr line printer spooler
lpsched start/stop the LP request scheduler and move requests
lpset set parallel line printer options
lpstat print LP status information

Program Development
adb absolute debugger
ar archive and library maintainer for portable archives
as mc68010 assembler
bs a compiler/interpreter for modest-sized programs
cb C program beautifier
cc C compiler
cclsw front-end to the cc command
cflow generate C flow graph
conv common object file converter
convert convert archive files to common formats
cpp the C language preprocessor
cprs compress a common object file
ctags create a tags file
ctrace C program debugger
cxref generate C program cross reference
dis object code disassembler
dump dump selected parts of an object file
efl extended FORTRAN language
fsplit split FORTRAN, ratfor, or efl files
gencc create a front-end to the cc command
hd hexadecimal and ascii file dump
Id link editor for common object files
lint a C program checker
list produce C source listing from a common object file
lorder find ordering relation for an object library

- 5 -

m4 macro processor
mcs manipulate the object file comment section
make maintain, update, and regenerate groups of programs
mkshlib create a shared library
nm print name list of common object file
od octal dump
ratfor rational FORTRAN dialect
regcmp regular expression compile
size print section sizes of common object files
sno SNOBOL interpreter
strings extract the ASCII text strings in a file
strip strip symbol and line number information
time time a command
timex time a command; report process data and system activity
touch update access and modification times of a file
tsort topological sort
xstr extract and share strings in C programs

Remote File Sharing (RFS) Utilities
adv advertise a directory for remote access
dname print Remote File Sharing domain and network names
fumount forced unmount of an advertised resource
fusage disk access profiler
idload Remote File Sharing user and group mapping
nsquery Remote File Sharing name server query
rfadmin Remote File Sharing domain administration
rfpasswd change Remote File Sharing host password
rfstart start Remote File Sharing
rfstop stop the Remote File Sharing environment
rfuadmin Remote File Sharing notification shell script
rfudaemon Remote File Sharing daemon process
imntstat display mounted resource information
rmnttry attempt to mount remote resources
imount retry remote resource mounts
rmountall mount, unmount Remote File Sharing resources
rumount cancel queued remote resource request
unadv unadvertise a Remote File Sharing resource

The Shell
basename deliver portions of path names
chroot change root directory for a command
cd change working directory
echo echo arguments
env set environment for command execution
expr evaluate arguments as an expression
getopt parse command options
getopts parse command options
line read one line
machid processor type
nice run a command at low priority
nohup run a command immune to hangups and quits
rtpenable real-time priorities enabled/disabled
sh shell, the standard/restricted command programming language
sleep suspend execution for an interval
tee pipe fitting
test condition evaluation command
true provide truth values

- 6 -

wait await completion of process
xargs . construct argument list(s) and execute command

Source Code Control System (SCCS)
admin create and administer SCCS files
cdc change the delta commentary of an SCCS delta
comb combine SCCS deltas
delta make a delta (change) to an SCCS file
get get a version of an SCCS file
help ask for help
prs print an SCCS file
nndel remove a delta from an SCCS file
sact print current SCCS file editing activity
sccsdiff compare two versions of an SCCS file
unget undo a previous get of an SCCS file
val validate SCCS file
v c version control
what identify SCCS files

Terminal Support
300 handle special functions of DASI 300 and 300s terminals
4014 paginator for the TEKTRONIX 4014 terminal
450 handle special functions of the DASI 450 terminal
asa interpret ASA carriage control characters
clear clear terminal screen
captoinfo convert a termcap description into a terminfo description
hp handle special functions of HP 2640 and 2621-series terminals
infocmp compare or print out teTminfo descriptions
stty set the options for a terminal
tabs set tabs on a terminal
tdl RS-232 terminal download
tic terminfo compiler
tset set terminal, terminal inteface, and terminal environment
tty get the terminal's name
wm window management

Text Tools

Browsers, Editors, and Splitters
bfs big file scanner
csplit context split
ed text editor
ex text editor
more text perusal
newform change the format of a text file
Pg file perusal filter for soft-copy terminals
split split a file into pieces
vi screen-oriented (visual) display editor based on ex

Comparing Files
bdiff big diff
cmp compare two files
comm select or reject lines common to two sorted files
diff differential file comparator
difB 3-way differential file comparison
diffink mark differences between files

sdiff side-by-side difference program

Customizable Filters and Text Programming Languages
awk pattern scanning and processing language
cut cut out selected fields of each line of a file
crypt encode/decode
egrep search a file for a pattern using full regular expressions
fgrep search a file for a character string
fold fold long lines for finite width output device
p e p search a file for a pattern
join relational database operator
lex generate programs for simple lexical tasks
paste merge same lines of several files or subsequent lines of one file
pr print files
sed stream editor
sort sort and/or merge files
tail deliver the last part of a file
tr translate characters
uniq report repeated lines in a file
yacc yet another compiler-compiler

Graphics and Displays
banner make posters
cal print calendar
graph draw a graph

INTRO(l) INTRO(l)

NAME

intro - introduction to commands and application programs

DESCRIPTION
This section describes CTIX commands in alphabetical order. Certain
distinctions of purpose are made in the headings:
(1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.

(IM) Commands for system maintenance and administration.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and
other arguments according io the following syntax:

name [option (s)] [cmdarg (s)]

where:

name The name of an executable file.

option - noargletter (s) or,
- argletter o optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument

optarg Argument (character string) satisfying preceding argletter.

cmdarg Path name (or other command argument) not beginning with -
or, - by itself indicating the standard input.

Throughout the manual pages there are references to TMPD1R, BINDIR, INCDIR,
LIBDIR, and LLIBDIR. These are not environment variables and cannot be set;
instead, they represent directory names whose value is specified on each
manual page as necessary. [Note there is also an environment variable called
TMPDIR, which can be set. When TMPDIR is referred to as an environment
variable, it is printed in boldface. Commands that acknowledge TMPDIR are
noted as such on the appropriate manual pages; see also tmpnam(3S).]

INTRO(l) INTRO (1)

NOTES
CTIX Internetworking man pages frequently cite appropriate RFCs (Requests for
Comments). RFCs can be obtained from the DDN Network Information Center,
SRI International, Menlo Park, CA 94025.

SEE ALSO
getopt{\), getopts{\), exit(2), wait(2), getopt(3C).
Section 6 for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal"
termination) one supplied by the program [see wait(2) and exit(2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful
execution and non-zero to indicate troubles such as erroneous parameters, or
bad or inaccessible data. It is called variously "exit code," "exit status," or
"return code," and is described only where special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and
therefore become confused upon encountering a null character (the string
terminator) within a line.

300(1) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION
The 300 command supports special functions and optimizes the use of the DASI
300 (GSI 300 or DTC 300) terminal; 300s performs the same functions for the
DASI 300s (GSI 300s or DTC 300s) terminal. It converts half-line forward,
half-line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text It also reduces printing time 5 to 70%. The
300 command can be used to print equations neatly, in the sequence:

neqn f i l e . . . | nroff | 300

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 Permits use of 12-pitch, 6 lines/inch text DASI 300 terminals
normally allow only two combinations: 10-pitch, 6 lines/inch, or
12-pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch
combination, the user should turn the PITCH switch to 12, and use
the +12 option.

Controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment equals
1/48 of an inch, a 10-pitch line-feed requires 8 increments, while a
12-pitch line-feed needs only 6. The first digit of n overrides the
default value, thus allowing for individual taste in the appearance of
subscripts and superscripts. For example, nroff half-lines could be
made to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

Controls delay factors. The default setting is -d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless,
non-identical characters. One null (delay) character is inserted in a
line for every set of t tabs, and for every contiguous string of c non-
blank, non-tab characters. If a line is longer than I bytes, l+(total
length)/20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.

-n

-d t,l,c

300(1) 300(1)

Also, a value of zero for t (c) results in two null bytes per tab
(character). The former may be needed for C programs, the latter for
files like /etc/passwd.

Because terminal behavior varies according to the specific
characters printed and the load on a system, the user might have to
experiment with these values to get correct output. The -d option
exists only as a last resort for those few cases that do not otherwise
print properly. For example, the file /etc/passwd can be printed by
using -d3,30,5. The value -dO,l is a good one to use for C programs
that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stryO) modes nlO cr2 or
nlO cr3 are recommended for most uses.

The 300 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a document.
Instead of pressing the return key in these cases, you must use the line-feed key
to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files . . . is equivalent to nroff files . . . | 300
nroff -T300-12 flies . . . is equivalent to nroff files . . . I 300 +12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 300 are shown in greek (5).

SEE ALSO
450(1), eqn(l), graph(lG), mesg(l), nroff(l), stty(l), tabs(l), tbl(l), tplot(lG),
greek(5).

BUGS
Some special characters cannot be printed correctly in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

300(1) 300(1)

WARNINGS
If your terminal has a PLOT switch, make sure it is turned on before you use the
300 command.

k

4014(1) 4014(1)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t] [-n] [-cN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014 arranges for
66 lines to fit on the screen, divides the screen into N columns, and contributes
an eight-space page offset in the (default) single-column case. Tabs, spaces,
and backspaces are collected and plotted when necessary. Teletype Model 37
half- and reverse-line sequences are interpreted and plotted. At the end of each
page, 4014 waits for a new-line (empty line) from the keyboard before
continuing on to the next page. In this wait state, the command lemd sends the
cmd to the shell.

The command line options follow:

-t Do not wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-cN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and 1 (lines);
default is lines.

SEE ALSO
pr(l), tc(l), troff(l).

I

i

450(1) 450(1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
The 450 command supports special functions of, and optimizes the use of, the
DASI 450 terminal, or any terminal that is functionally identical, such as the
Diablo 1620 or Xerox 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as 300(1).
Use 450 to print equations neatly, in the sequence:

neqn file . . . | nroff | 450

Use 450 with the nroff -s flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of pressing the
Return key in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files . . .
or

nroff -T450-12 files . . .

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 450 are shown in greek(5).

SEE ALSO
300(1), eqn(l), graph(lG), mesg(l), nroff(l), stty(l), tabs(l), tbl(l), tplot(lG),
greek(5).

BUGS
Some special characters cannot be printed correctly in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the latter has
a tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

450(1) 450(1)

WARNINGS
If your terminal has a PLOT switch, make sure it is turned on before you use the
450 command. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines per inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

UUTRY(IM) UUTRY(IM)

NAME
Uutry - try to contact a remote system with debugging on

SYNOPSIS

/usr/lib/uucp/Uutry [-x debug_level] [-r] system_name

DESCRIPTION
The Uutry shell script is used to invoke uucico (IM) to call a remote site.
Debugging is enabled; the -x option overrides the default debug level (5). The
-r option causes Uutry to override any minimum retry time for the designated
system. The debugging output is put in the file ltmplsystem_name. A tail -f of
the output is executed. A terminal "interrupt" returns control to the terminal
while uucico (IM) continues to run, putting its output in the file
/tmplsystemname.

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/locks/LCK.*
/usr/spool/uucppublic/*
/tmp/system_name

SEE ALSO
uucico(lM), uucp(lC), uux(lC).
S/Series CTIX Administrator's Guide.

ACCEPT (IM) ACCEPT(IM)

NAME
accept, reject - allow or prevent LP requests

SYNOPSIS
/usr/lib/accept destinations
/usr/lib/reject [-rfreason]] destinations

DESCRIPTION
The accept command allows lp(1) to accept requests for the named
destinations. A destination can be either a printer or a class of printers. Use
lpstat (I) to find the status of destinations.

The reject command prevents lp(1) from accepting requests for the named
destinations. A destination can be either a printer or a class of printers. Use
lpstat (I) to find the status of destinations. The following option is useful with
reject =

-r[reason] Associates a reason with preventing Ip from accepting requests.
This reason applies to all printers mentioned up to the next -r
option. The reason is reported by Ip when users direct requests to
the named destinations and by lpstat (I). If the -r option is not
present or the -r option is given without a reason, a default reason
is used.

FILES
/usr/spool/lp/*

SEE ALSO
enable(l), lp(l), lpadmin(lM), lpsched(lM), lpstat(l).
S/Series CTIX Administrator's Guide.

ACCEPT (IM) ACCEPT(IM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of accounting and
miscellaneous accounting commands

SYNOPSIS
/usr/lib/acct/acctdisk

/usr/Iib/acct/acctdusg [-u file] [-p file]

/usr/lib/acct/accton [file]

/usr/lib/acct/acctwtmp "reason"

DESCRIPTION
Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting systems.
The acctsh(\M) command describes the set of shell procedures built on top of
the C programs.

Connect time accounting is handled by various programs that write records into
/etc/utmp, as described in utmp(4). The programs described in acctcon(IM)
convert this file into session and charging records, which are then summarized
by acctmerg(IM).

Process accounting is performed by the CTIX system kernel. Upon termination
of a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctprc(IM) summarize this data for
charging purposes; acctcms(IM) is used to summarize command usage.
Current process data may be examined using acctcom(l).

Process accounting and connect time accounting [or any accounting records in
the format described in acct {4)) can be merged and summarized into total
accounting records by acctmerg [see tacct format in acct (A)], prtacct [see
accw/i(lM)] is used to format any or all accounting records.

The acctdisk command reads lines that contain user ID, login name, and number
of disk blocks and converts them to total accounting records that can be merged
with other accounting records.

The acctdusg command reads its standard input (usually from find / -print) and
computes disk resource consumption (including indirect blocks) by login. If -u
is given, records consisting of those filenames for which acctdusg charges no
one are placed in file (a potential source for finding users trying to avoid disk
charges). If -p is given, file is the name of the password file. This option is not
needed if the password file is /etc/passwd. [See diskusg(\M) for more details.]

ACCEPT (IM) ACCEPT(IM)

Alone, accton turns process accounting off. If file is given, it must be the name
of an existing file, to which the kernel appends process accounting records [see
acct (2) and acct(4)].

The acctwtmp command writes a utmp (4) record to its standard output. The
record contains the current time and a string of characters that describe the
reason. A record type of ACCOUNTING is assigned [see utmp (A)]. The reason
must be a string of 11 or fewer characters, numbers, $, or spaces. For example,
the following are suggestions for use in reboot and shutdown procedures,
respectively:

acctwtmp uname » / e t c /wtmp
acctwtmp "file sav4' » / e t c /wtmp

/etc/passwd used for login name to user ID conversions

/usr/lib/acct holds all accounting commands listed in sub-class 1M of this
manual

/usr/adm/pacct current process accounting file

/etc/wtmp login/logoff history file

SEE ALSO
acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), diskusg(lM), fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator's Guide.

FILES

ACCTCMS(IM) ACCTCMS (1M)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
/usr/lib/acct/acctcms [options] files

DESCRIPTION
The acctcms command reads one or more files, normally in the form described
in acct (4). It adds all records for processes that executed identically-named
commands, sorts them, and writes them to the standard output, normally using
an internal summary formaL The options follow:

-a Print output in ASCII rather than in the internal summary format The
output includes command name, number of times executed, total
kcore-minutes, total CPU minutes, total real minutes, mean size (in K),
mean CPU minutes per invocation, and "hog factor", characters
transferred, and blocks read and written, as in acctcom(l). Output is
normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.

- j Combine all commands invoked only once under ' ' * **other'

-n Sort by number of command invocations.

-s Any filenames encountered hereafter are already in internal summary
format.

-t Process all records as total accounting records. The default internal
summary format splits each field into prime and non-prime time parts.
This option combines the prime and non-prime time parts into a single
field that is the total of both, and provides upward compatibility with
old style acctcms internal summary format records.

The following options can be used only with the -a option:

-p Output a prime-time-only command summary.

-o Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non-prime time
report is produced. All the output summaries report total usage, except number
of times executed, CPU minutes and real minutes, which are split into prime and
non-prime.

ACCTCMS(IM) ACCTCMS (1M)

A typical sequence for performing daily command accounting and for
maintaining a running total follows:

acctcms file . . . >today
cp total previoustotal
acctcms -a today previoustotal > total
acctcms -a -s today

SEE ALSO
acct(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator's Guide.

BUGS
Unpredictable output results if -t is used on new style internal summary format
f J l a o r * r i f i t i c n r v t HCAH i x / i t K n l H o t t /1#» i n t A m o l c u m m o w f n r m o t f t l p c ItlVJ) Vi 11 li AO HVi UlTW niui U1U >J \.J IV tii bVl HUi UUIIIIIIVW J ^ V*»tiub a.Aâ-u*

ACCTCOM (1) ACCTCOM(l)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] . . .

DESCRIPTION
The acctcom command reads file, the standard input, or /usr/adm/pacct, in the
form described by acct (4) and writes selected records to the standard output
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for
fork without exec), STAT (the system exit status), HOG FACTOR, KCORE MIN,
CPU FACTOR, CHARS TRNSFD, and BLOCKS READ (total blocks read and
written).

A # is prepended to the command name if the command was executed with
superuser privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /usr/adm/pacct is read;
otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file
is normally read forward, that is, in chronological order by process completion
time. The file /usr/adm/pacct is usually the current file to be examined; a busy
system may need several such files of which all but the current file are found in
/usr/adm/pacct?. The options follow:

-a Show some average statistics about the processes selected. The
statistics will be printed after the output records.

-b Read backwards, showing latest commands first This option has
no effect when the standard input is read.

-f Print the fork/exec flag and system exit status columns in the
output. The numeric output for this option will be in octal.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its
execution. This hog factor is computed as (total
CPU time)/(elapsed time).

-i Print columns containing the I/O counts in the output

-k Instead of memory size, show total kcore-minutes.

ACCTCOM(l) ACCTCOM(l)

-m Show mean core size (the default).

-r Show CPU factor [user time/(system-time + user-time)].

-t Show separate system and user CPU times.

-v Exclude column headings from the output

-1 line Show only processes belonging to terminal Idev/line.

-u user Show only processes belonging to user that may be specified by
a user ID; a login name that is then converted to a user ID; a #,
which designates only those processes executed with superuser
privileges; or ?, which designates only those processes
associated with unknown user IDs.

-g group Show only processes belonging to group. The group can be
designated by either the group ID or group name.

-s time Select processes existing at or after time, given in the format
hr[:min [\sec]].

-e time Select processes existing at or before time.

-S time Select processes starting at or after time.

-E time Select processes ending at or before time. Using the same time
for both -S and -E shows the processes that existed at time.

-n pattern Show only commands matching pattern that can be a regular
expression as in ed(1), except that + means one or more
occurrences.

-q Do not print any output records, just print the average statistics
as with the -a option.

-o ofile Copy selected process records in the input data format to ofile;
supress standard output printing.

-H factor Show only processes that exceed factor, where factor is the
"hog factor" as explained in option -h above.

-O sec Show only processes with CPU system time exceeding sec
seconds.

-C sec Show only processes with total CPU time, system plus user,
exceeding sec seconds.

-I chars Show only processes transferring more characters than the cutoff
number given by chars.

- 2 -

ACCTCOM (1) ACCTCOM(l)

Listing options together has the effect of a logical and.

FILES
/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO
ps(l),
acct(lM), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), runacct(lM), su(l), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator's Guide.

BUGS
The acctcom command reports only on processes that have terminated; use
ps(l) for active processes. If time exceeds the present time, time is interpreted
as occurring on the previous day.

ACCTCON(IM) ACCTCON(1M)

NAME
acctconl, acctcon2 - connect-time accounting

SYNOPSIS
/usr/Iib/acct/acctconl [options]

/usr/lib/acct/acctcon2

DESCRIPTION
The acctconl command converts a sequence of login/logoff records read from
its standard input to a sequence of records, one per login session. Its input
should normally be redirected from /etc/wtmp. Its output is ASCII, giving
device, user ID, login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (numeric), and starting date and time. The
options follow:

-p Print input oniy, showing line name, login name, and time (in both
numeric and date/time formats).

-t The acctconl command maintains a list of lines on which users are
logged in. When it reaches the end of its input, it emits a session record
for each line that still appears to be active. It normally assumes that its
input is a current file, so that it uses the current time as the ending time
for each session still in progress. The -t flag causes it to use, instead, the
last time found in its input, thus assuring reasonable and repeatable
numbers for non-current files.

-I file File is created to contain a summary of line usage showing line name,
number of minutes used, percentage of total elapsed time used, number
of sessions charged, number of logins, and number of logoffs. This file
helps track line usage, identify bad lines, and find software and
hardware oddities. Hangup, termination of login(1) and termination of
the login shell each generate logoff records, so that the number of
logoffs is often three to four times the number of sessions. See init (IM)
and utmp(4).

- o f i l e File is filled with an overall record for the accounting period, giving
starting time, ending time, number of reboots, and number of date
changes.

The acctconl command expects as input a sequence of login session records
and converts them into total accounting records [see tacct format in acct (A)}.

ACCTCON(1M) ACCTCON(1M)

EXAMPLES
These commands are typically used as shown below. The file ctmp is created
only for the use of acctprc (1M) commands:

acctconl -t -I lineuse -o reboots <wtmp | sort +1n +2 > ctmp
acctcon2 <ctmp | acctmerg > ctacct

FILES
/etc/wtmp

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctmerg(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), init(lM), login(l), runacct(lM), acct(2), acct(4), utmp(4).
SlSeries CTIX Administrator's Guide.

BUGS
The line usage report is confused by date changes. Use wtmpfix [see
fwtmp{ 1M)] to correct this situation.

ACCTMERG(IM) ACCTMERG(IM)

NAME

acctmerg - merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmerg [options] [file] . . .

DESCRIPTION
The acctmerg command reads its standard input and up to nine additional files,
all in the tacct format [see acct (4)] or an ASCII version thereof. It merges these
inputs by adding records whose keys (normally user ID and name) are identical,
and expects the inputs to be sorted on those keys. Options follow:

-a Produce output in ASCII version of tacct.

-i Input files are in ASCII version of tacct.

-p Print input with no processing.

-t Produce a single record that totals all input.

-u Summarize by user ID, rather than by user ID and name.
-v Produce output in verbose ASCII format, with more precise notation for

floating point numbers.
EXAMPLES

The following sequence is useful for making "repairs" to any file kept in this
format:

acctmerg -v <file1 >file2

Edit file2 as desired ...

acctmerg -i <file2 >file1

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctprc(lM), acctsh(lM),
fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator s Guide.

<c- -

! i I
t

ACCTPRC(IM) ACCTPRC(IM)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprcl [ctmp]

/usr/lib/acct/acctprc2

DESCRIPTION
The acctprcl command reads input in the form described by acct (4), adds login
names corresponding to user IDs, then writes for each process an ASCII line
giving user ID, login name, prime CPU time (ticks), non-prime CPU time (ticks),
and mean memory size (in memory segment units). If ctmp is given, it is
expected to contain a list of login sessions, in the form described in
acctcon (IM), sorted by user ID and login name. If this file is not supplied, it
obtains login names from the password file. The information in ctmp helps it
distinguish among different login names that share the same user ID.

The acctprc2 command reads records in the form written by acctprcl,
summarizes them by user ID and name, then writes the sorted summaries to the
standard output as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct | acctprc2 >ptacct

FILES

/etc/passwd

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctsh(lM),
cron(lM), fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).

BUGS
Although it is possible to distinguish among login names that share user IDs for
commands run normally, it is difficult to do this for those commands run from
cron(\M), for example. More precise conversion can be done by faking login
sessions on the console by using the acctwtmp program in accf(lM).

CAVEAT
A memory segment of the mean memory size is a unit of measure for the
number of bytes in a logical memory segment on a particular processor. For
example, S/Series systems measure this in 4-kilobyte units.

ACCTSH(IM) ACCTSH(IM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,
prtacct, runacct, shutacct, startup, tumacct - shell procedures for accounting

SYNOPSIS
/usr/lib/acct/chargefee login-name number

/usr/lib/acct/ckpacct [blocks]

/usr/lib/acct/dodisk [-o] [files . . .]

/usr/lib/acct/lastlogin

/usr/lib/acct/monacct number

/usr/lib/acct/nulladm file

/usr/lib/acct/prctmp

/usr/lib/acct/prdaily [-1] [-c] [mmdd]

/usr/lib/acct/prtacct file ["heading"]

/usr/lib/acct/runacct [mmdd] [mmdd state]

/usr/lib/acct/shutacct ["reason"]

/usr/lib/acct/startup

/usr/lib/acct/turnacct on I off I switch

DESCRIPTION
The chargefee command can be invoked to charge a number of units to login-
name. A record is written to /usr/adm/fee, to be merged with other accounting
records during the night.

The ckpacct command, which should be initiated through the use of cron(lM),
periodically checks the size of /usr/adm/pacct. If the size exceeds blocks, 1000
by default, turnacct is invoked with argument switch. If the number of free
512-byte disk blocks in the /usr file system falls below 500, ckpacct
automatically disables collection of process accounting records through the use
of the off argument to turnacct. When at least this number of blocks is restored,
the accounting is activated again. This feature is sensitive to the frequency at
which ckpacct is executed, usually by cron.

The dodisk command should be invoked by cron to perform the disk accounting
functions. By default, it performs disk accounting on the special files in
/etc/fstab. If the -o flag is used, it performs a slower version of disk accounting
by login directory. The files parameter specifies the one or more filesystem
names where disk accounting is performed; If used, disk accounting is
performed on these filesystems only. If the -o flag is used, files should specifiy

- 1 -

ACCTSH(IM) ACCTSH(IM)

mount points of mounted filesystems; If omitted, files should specify the special
file names of mountable filesystems.

The lastlogin command is invoked by runacct to update
/usr/adm/acct/sum/loginlog, which shows the last date on which each person
logged in.

The monacct command should be invoked once each month or each accounting
period. The number parameter indicates the month or period. If number is not
given, the default is the current month (01-12). This default is useful if
monacct is executed through cron(1M) on the first day of each month. The
monacct command creates summary files in /usr/adm/acct/fiscal and restarts
summary files in /usr/adm/acct/sum.

The nulladm command creates file with mode 664 and ensures that owner and
group are adin. It is called by various accounting shell procedures.

The prctmp command can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctconl [see acctcon{ 1M)].

The prdaily command is invoked by runacct to format a report of the previous
day's accounting data. The report resides in /usr/adm/acct/sum/rprtmm<W
where mmdd is the month and day of the report The current daily accounting
reports can be printed by using prdaily. Previous days' accounting reports can
be printed by using the mmdd option and specifying the exact report date
desired. The -1 flag prints a report of exceptional usage by login id for the
specified date. Previous daily reports are cleaned up and therefore inaccessible
after each invocation of monacct. The -c flag prints a report of exceptional
resource usage by command, and may be used on current day's accounting data
only.

The prtacct command can be used to format and print any totai accounting
(tacct) file.

The runacct command performs the accumulation of connect, process, fee, and
disk accounting on a daily basis. It also creates summaries of command usage.
For more information, see runacct{ 1M).

The shutacct command should be invoked during a system shutdown (usually in
/etc/shutdown) to turn process accounting off and append a " reason" record to
/etc/wtmp.

The startup command is invoked to turn accounting on at system initialization
through the presence of a zero-length file named /etc/rcopts/ACCT.

The turnacct command is an interface to accton [see acc/(lM)], used to turn
process accounting on or off. The switch argument disables accounting, moves

ACCTSH(IM) ACCTSH(IM)

the current /usr/adm/pacct to the next free name in /usr/adm/pacctincr (where
incr is a number starting with 1 and incrementing by one for each additional
pacct file), then enables accounting again. This procedure is called by ckpacct
and can be automated by cron and used to keep pacct to a reasonable size. The
acct command starts and stops process accounting through the use of init and
shutdown.

FILES
/usr/adm/fee

/usr/adm/pacct

/usr/adm/pacct*

/etc/wtmp

/usr/lib/acct/ptelus.awk

/usr/lib/acct/ptecms.awk

/usr/adm/acct/nite

/usr/lib/acct

/usr/adm/acct/sum

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
cron(lM), diskusg(lM), fwtmp(lM), runacct(lM), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator's Guide.

accumulator for fees

current file for per-process accounting

used if pacct gets large and during execution of
daily accounting procedure

login/logoff summary

contains the limits for exceptional usage by
login ID

contains the limits for exceptional usage by
command name

working directory

holds all accounting commands listed in sub-
class IM of this manual

summary directory, should be saved

k

ADB(l) A D B (l)

NAME
adb - absolute debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
The adb program is a general purpose debugging program. It can be used to
examine files and to provide a controlled environment for the execution of
CTIX programs.

The objfil parameter is normally an executable program file, preferably
containing a symbol table; if not, the symbolic features of adb cannot be used,
but the file can still be examined. The default for objfil is a.out. The corfil
parameter is assumed to be a core image file produced after executing objfil;
the default for corfil is cors.

Requests to adb are read from the standard input and responses are to the
standard output If the -w flag is present, both objfil and corfil are created, if
necessary, and opened for reading and writing so that files can be modified
using adb. Note that adb ignores QUIT; INTERRUPT causes return to the next
adb command.

In general, requests to adb are of the following form:

[address] [, count] [command] [;]

If address is present, dot is set to address. Initially dot is set to 0. For most
commands count specifies how many times the command is executed. The
default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged then addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping see
ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

" The last address typed.

integer Hexadecimal by default or if preceded by Ox; octal if preceded by Oo
or OO; decimal if preceded by Ot or 0T.

integer .fraction
A 32-bit floating point number.

- 1 -

ADB(l) ADB(l)

'cccc ' The ASCII value of up to 4 characters. A \ may be used to escape a '.

< name The value of name, which is either a variable name or a 68010/68020
register name. Adb maintains a number of variables (see VARIABLES)
named by single letters or digits. If name is a register name, then the
value of the register is obtained from the system header in corfil. The
registers are dO through d7, aO through a7, sp, pc, cc, sr, and usp.

symbol A symbol is a sequence of upper or lower case letters, underscores or
digits, not starting with a digit. The value of the symbol is taken from
the symbol table in objfil.

From C, only external variables are available as symbols. The symbol
name is the same as the C variable name, except that an underscore
(_) is prepended to any name that is the same as the name for a
register.

(exp) The value of the expression exp.

Monadic operators:

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

-exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic

operators.

el +e2

el-e2

el *e2

el %e2

el&e2

el \ e2

el#e2

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers.
The following verbs are available. (The commands ? and / may be followed by
*; see ADDRESSES for further details.)

Integer addition.

Integer subtraction.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

El rounded up to the next multiple of e2.

ADB(l) ADB(l)

? / Locations starting at address in objfil are printed according to the
format/. The value of dot is incremented by the sum of the increments
for each format letter (q.v.).

If Locations starting at address in corfil are printed according to the
format / and dot is incremented as for ?.

=/ The value of address is printed in the styles indicated by the format / .
(For i format ? is printed for the parts of the instruction that reference
subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is
incremented by the amount given for each format letter. If no format is given
then the last format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are
preceded by 0.

O 4 Print 4 bytes in octal.

q 2 Print in signed octal.

Q 4 Print long signed octal.

d 2 Print in decimal.

D 4 Print long decimal.

x 2 Print 2 bytes in hexadecimal.

X 4 Print 4 bytes in hexadecimal.

u 2 Print as an unsigned decimal number.

U 4 Print long unsigned decimal.

f 4 Print the 32-bit value as a floating point number.

F 8 Print double floating point.

b 1 Print the addressed byte in octal.

c 1 Print the addressed character.

C 1 Print the addressed character using the following escape
convention. Character values 000 to 040 are printed as @
followed by the corresponding character in the range 0100 to
0140. The character @ is printed as

s n Print the addressed characters until a zero character is
reached.

- 3 -

ADB(l) ADB(l)

S n Print a string using the @ escape convention. The value n is
the length of the string including its zero terminator.

Y 4 Print 4 bytes in date format [see dime (3C)].

i n Print as machine instructions. The value n is the number of
bytes occupied by the instruction. This style of printing
causes variables 1 and 2 to be set to the offset parts of the
source and destination, respectively.

a 0 Print the value of dot in symbolic form. Symbols are checked
to ensure that they have an appropriate type as indicated
below:

/ local or global data symbol
*) In^nl a«> rr1/\kn1 tovf oi »mK/\1 • iuvoi ui g iuuai u/ai a j uiisvsi

= local or global absolute symbol

p 2 Print the addressed value in symbolic form using the same
rules for symbol lookup as a.

t 0 When preceded by an integer, tabs to the next appropriate tab
stop. For example, 8t moves to the next eight-space tab stop.

r 0 Print a space.

n 0 Print a new-line.

0 Print the enclosed string.

The value of dot is decremented by the current increment.
Nothing is printed.

+ The value of dot is incremented by I. Nothing is printed.

The value of dot is decremented by 1. Nothing is printed.

new-line

Repeat the previous command with a count of 1.

[?/]! value mask
Words starting at dot are masked with mask and compared with value
until a match is found. If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot is unchanged;
otherwise dot is set to the matched location. If mask is omitted then -1
is used.

- 4 -

ADB(1) ADB(1)

[?/]w value...
Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[?/]m bl el //[?/]
New values for (b l , e l , f l) are recorded. If less than three expressions
are given then the remaining map parameters are left unchanged. If
the ? or / is followed by * the second segment (b2, e2 ,f2) of the
mapping is changed. If the list is terminated by ? or /, the file (objfil or
corfil, respectively) is used for subsequent requests. (So that, for
example, /m? causes / to refer to objfil.)

>name The value of dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following !.

$,modifier

Miscellaneous commands. The available modifiers follow:

<f Read commands from the file/ and return.

>/ Send output to the file/, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc.

The value of dot is set to pc.

b Print all breakpoints and their associated counts and
commands.

c C stack backtrace. If address is given then it is taken as the
address of the current frame (instead of fp). If count is given
then only the first count frames are printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o All integers input are regarded as octal.

d Reset integer input as described in EXPRESSIONS.

q Exit from adb.

v Print all non-zero variables.

f Print the 68881 floating-point registers.

- 5 -

ADB(l) ADB(l)

m Print the address map.
•.modifier

Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is executed

count-1 times before causing a stop. Each time the
breakpoint is encountered the command c is executed. If this
command sets dot to zero the breakpoint causes a stop.

d Delete breakpoint at address.
r Run objfil as a subprocess. If address is given explicitly then

the program is entered at this point; otherwise the program is
entered at its standard entry point. The value count specifies
how many breakpoints are to be ignored before stopping.
Arguments to the subprocess can be supplied on the same line
as the command. An argument starting with < or > causes the
standard input or output to be established for the command.
All signals are turned on on entry to the subprocess.

cs The subprocess is continued with signal s [see signal (2)]. If
address is given, the subprocess is continued at this address.
If no signal is specified then the signal that caused the
subprocess to stop is sent Breakpoint skipping is the same as
for r.

SJ As for c except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the
remainder of the line is treated as arguments to the
subprocess.

k The current subprocess, if any, is terminated.

VARIAB
The adb command provides a number of variables. Named variables are set
initially by adb, but they arc not used subsequently. Numbered variables are
reserved for communication as follows.

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

On entry, the following are set from the system header in the corfil. If corfil
does not appear to be a core file, these values are set from objfil.

b The base address of the data segment.

ADB(1) ADB(1)

d The data segment size.

e The entry point.

m The "magic" number (0407,0410, or 0413).

s The stack segment size.

t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two triples
(bl, e l . f l) and (b2, e2,f2) and the file address corresponding to a written
address is calculated as follows:

bl<address<el => file address=address+fl-bl

otherwise:

b2<address<e2 => file address =address +f2-b2,

otherwise, the requested address is not legal. In some cases (for example, for
programs with separated I and D space) the two segments for a file can overlap.
If a ? or / is followed by an asterisk (*), only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then, for that file, bl is set to 0, el is set
to the maximum file size and f l is set to 0; in this way the whole file can be
examined with no address translation.

So you can use adb on large files, all appropriate values are kept as signed 32-
bit integers.

FILES
/dev/kmem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(4), core(4).

DIAGNOSTICS
" A d b " when there is no current command or format. Comments about
inaccessible files, syntax errors, abnormal termination of commands, and so on.
Exit status is 0, unless last command failed or returned nonzero status.

ADB(1) ADB(1)

BUGS
A breakpoint set at the entry point is not effective on initial entry to the
program.

When single stepping, system calls do not count as an executed instruction.

Local variables whose names are the same as an external variable may foul up
the accessing of the external.

Shared libraries are not included in the map.

- 8 -

ADMAN(l) ADMAN (1)

NAME
adman - administer a CTIX system

SYNOPSIS
adman

DESCRIPTION
The adman program is used to administer a CTIX system. It is a form- and
menu-based program that can run on a wide variety of terminals. It performs
administrative functions such as backup and restore, adding users to the system,
printer management, disk management, network configuration, Remote File
Sharing configuration, Network File System configuration, and so forth. Help
text is available for all adman functions.

Because some administrative functions, such as adding or removing users, are
available o n l y to superuser, certain menu items are not displayed when adman
is invoked by a non-privileged user.

The following is a list of administrative features of adman.

• User Administration

— List User Accounts

— Change Your Password

— Add a User

— Add a Group

— Change User Information

— Change a User's Password

— Delete a User

— Bar a User

— Re-admit a User

• System Status

— View Hardware Inventory

— Error Log Functions

— View Summary Report

— View Detailed Report

— Reset Error Log

— Console Log Functions

ADMAN(l) ADMAN (1)

— View Network Log

— Reset System Console

— Networking Log Functions

— View Console Log

— Reset

— Enable/Disable System Activity Reporting

— Enable/Disable Process Accounting

• Backup and Restore

— Backup Functions

— Complete Backup

— Incremental Backup

— Partial Backup

— User Backup

— Restore Functions

— View Tape Contents

— Complete Restore

— Partial Restore

• Disk and File System Administration

— View Disk Description

— Configure a Disk

— View/Change Partition Uses

— Monitor Disk Usage

— List Files of a Certain Age

— List Largest Files

— List Largest Users of Disk Space

• Terminal Administration

— Enable a Login on a Serial Port

— Disable a Login on a Serial Port

— Configure Cluster Lines and Devices

- 2 -

ADMAN(l) ADMAN (1)

— View Port Status

• Printer Administration

— View Print System Status

— View Print Queue Status

— Add a Printer

— Change Printer Status

— Remove a Printer

— Set the Default Printer

— Start/Stop the Print System

— Make a Printer Model

• UUCP Administration

— Show Systems Entries

— Rename This System

— Add A Remote System Entry

— Change Entry Information

— Delete a Remote System Entry

— Add a Modem to a Port

— Delete a Modem from a Port

• Network Administration

— Machine Status

— Network Users

— Network Setup

— Add an Equivalent User

— Delete an Equivalent User

— Add an Equivalent Machine

— Delete an Equivalent Machine

— Add a Network Service

— Delete a Network Service

— Add a New Host Entry

- 3 -

ADMAN(l) ADMAN(l)

— Change a Host Entry

— Delete a Host Entry

— Network Interface Statistics

— Active Connections

— Network Interface

— Routing Tables

— Memory Usage

— Protocol Statistics

• Remote File Sharing Administration

— Share Resources

— List Local Machine's Advertised Resources

— List Mounted Remote Resources

— List Mountable Remote Resources

— Advertise a Local Resource

— Remove a Local Resource from Advertised List

— Mount a Remote Resource

— Unmount a Remote Resource

— Configure the Domain

— List All Systems in Current Domain

— Add an Entry for a Primary from a Different Domain

— Administer Secondary Name Servers in Current Domain

— List Secondary Name Servers

— Add a New Secondary Entry

— Delete an Existing Secondary Entry

— Add a System to the Domain

— Delete a System from the Domain

— Delete All Systems in the Domain

— Set Up Your Machine to Run RFS

— Start or Stop RFS

- 4 -

ADMAN (1) ADMAN(l)

— Map or Exclude Remote Users or Groups

— Change Your RFS Password

— Display Current Primary

— Transfer Name Server Responsibilities

Network File System Administration

— Share Resources

— List Local Machine's Exported Resources

— List Mounted Remote Resources

— Show Machines That Have Mounted Any Local Resource

— List Other Machines' Exported Resources

— Export a Local Resource

— Remove a Local Resource From Exported List

— Mount a Remote Resource

— Unmount a Remote Resource

— Set Up Your Machine for NFS

— Start NFS

— Stop NFS

— Network File System Status

• SCSI Tape Administration

— Add a SCSI Tape Drive

— Delete a SCSI Tape Drive

— Change Entry Information

— View SCSI Tape Status

FILES
/usr/lib/terminfo/?/*
/usr/lib/adman/*
/usrAib/ctam/fonts/*
/usr/lib/ctam/kbmaps/*

SEE ALSO
CTIX Administration Tools Manual.

ADMAN(l) ADMAN (1)

NOTES
The "Network Administration" menu items are available only if TCP/IP is
installed; the "Remote File Sharing Administration" menu items are available
only if RFS is installed; the "Network File System Administration" menu items
are available only if NFS is installed; the "SCSI Tape Administration" menu
items are available only if you have a system with SCSI.

ADMAN (1) ADMAN(l)

NAME
admin - create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]]
[-dflag[flag-val]] [-alogin] [-elogin] [-mfmrlist]] [-y[comment]]
[-h] [-z] files

DESCRIPTION
The admin command is used to create new SCCS files and change parameters of
existing ones. Arguments to admin, which can appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that SCCS file
names must begin with the characters s.). If a named file does not exist, it is
created, and its parameters are initialized according to the specified keyletter
arguments. Parameters not initialized by a keyletter argument are assigned a
default value. If a named file does exist, parameters corresponding to specified
keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed. Again, non-SCCS files
and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

-ifname] The name of a file from which the text for a new SCCS file is
to be taken. The text constitutes the first delta of the file (see
-r keyletter for delta numbering scheme). If the i keyletter is
used, but the file name is omitted, the text is obtained by
reading the standard input until an end-of-file is encountered.
If this keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file can be created by an admin
command on which the i keyletter is supplied. Using a single
admin to create two or more SCCS files requires that they be
created empty (no -i keyletter). Note that the -i keyletter
implies the -n keyletter.

-rrel The release into which the initial delta is inserted. This
keyletter can be used only if the -i keyletter is also used. If

ADMIN(l)

-tfname]

-tflna

ADMIN(l)

the -r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

The name of a file from which descriptive text for the SCCS
file is to be taken. If the -t keyletter is used and admin is
creating a new SCCS file (the -n and/or -i keyletters also
used), the descriptive text file name must also be supplied.
In the case of existing SCCS files: (1) a -t keyletter without a
file name causes removal of descriptive text (if any)
currently in the SCCS file, and (2) a -t keyletter with a file
name causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value for the
flag, to be placed in the SCCS file. Several f keyletters can
be supplied on a single admin command line. The allowable
flags and their values are:

b Allows use of the -b keyletter on a get (I)
command to create branch deltas.

cceil The highest release (ceiling), a number greater
than 0 but less than or equal to 9999, which can
be retrieved by a get (I) command for editing.
The default value for an unspecified c flag is
9999.

ffloor The lowest release (floor), a number greater than
0 but less than 9999, which can be retrieved by a
gc«(l) command for editing. The default value
for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a
get (I) command.

i[str] Causes the No id keywords (ge6) message issued
by get (I) or delta (I) to be treated as a fatal
error. In the absence of this flag, the message is
only a warning. The message is issued if no
SCCS identification keywords [see get(1)] are
found in the text retrieved or stored in the SCCS
file. If a value is supplied, the keywords must

- 2 -

ADMIN (1)

j

1 list

n

qtext

m mod

ttype

\pgm

ADMIN(l)

exactly match the given string, however the
string must contain a keyword, and no embedded
newlines.

Allows concurrent gefO) commands for editing
on the same SID of an SCCS file. This allows
multiple concurrent updates to the same version
of the sccs file.

A list of releases to which deltas can no longer
be made (get -e against one of these " locked"
releases fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range>~::= | a

The character a in the list is equivalent to
specifying all releases for the named SCCS file.

Causes delta(1) to create a "nu l l " delta in each
of those releases (if any) being skipped when a
delta is made in a new release (for example, in
making delta 5.1 after delta 2.7, releases 3 and 4
are skipped). These null deltas serve as ' 'anchor
points" so that branch deltas can later be created
from them. The absence of this flag causes
skipped releases to be non-existent in the SCCS
file, preventing branch deltas from being created
from them in the future.

User definable text substituted for all
occurrences of the %Q% keyword in SCCS file
text retrieved by get(l).

Mod ule name of the SCCS file substituted for all
occurrences of the %M% keyword in SCCS file
text retrieved by get{ 1). If the m flag is not
specified, the value assigned is the name of the
SCCS file with the leading s. removed.

Type of module in the SCCS file substituted for
all occurrences of %Y% keyword in SCCS file
text retrieved by get (I).

Causes delta (I) to prompt for Modification
Request (MR) numbers as the reason for creating
a delta. The optional value specifies the name of

- 3 -

ADMIN(l) ADMIN(l)

an MR number validity checking program [see
delta (1)]. (If this flag is set when creating an
SCCS file, the m keyletter must also be used
even if its value is null.)

Causes removal (deletion) of the specified flag from an SCCS
file. The -d keyletter can be specified only when processing
existing SCCS files. Several -d keyletters can be supplied on
a single admin command. See the -f keyletter for allowable
flag names.

Hist A list of releases to be "unlocked." See the -f
keyletter for a description of the 1 flag and the
syntax of a list.

A login name, or numerical CTIX system group ID, to be
added to the list of users which can make deltas (changes) to
the SCCS file. A group ID is equivalent to specifying all
login names common to that group ID. Several a keyletters
can be used on a single admin command line. As many
logins, or numerical group IDs, as desired can be on the list
simultaneously. If the list of users is empty, then anyone can
add deltas. If login or group ID is preceded by a ! they are to
be denied permission to make deltas.

A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the SCCS
file. Specifying a group ID is equivalent to specifying all
login names common to that group ID. Several e keyletters
can be used on a single admin command line.

-m[mrlist] The list of Modification Requests (MR) numbers is inserted
into the SCCS file as the reason for creating the initial delta
in a manner identical to delta (1). The v flag must be set and
the MR numbers are validated if the v flag has a value (the
name of an MR number validation program). Diagnostics
will occur if the v flag is not set or MR validation fails.

-y[comment] The comment text is inserted into the SCCS file as a comment
for the initial delta in a manner identical to that of delta(1).
Omission of the -y keyletter results in a default comment line
being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

-dflag

-zlogin

•elogin

- 4 -

ADMIN (1) ADMIN (1)

The -y keyletter is valid only if the -i and/or -n keyletters are
specified (that is, a new SCCS file is being created).

-h Causes admin to check the structure of the SCCS file [see
sccsfile(5)], and to compare a newly computed check-sum
(the sum of all the characters in the SCCS file except those in
the first line) with the check-sum that is stored in the first
line of the SCCS file. Appropriate error diagnostics are
produced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied, and is, therefore,
only meaningful when processing existing files.

-z The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted file can
prevent future detection of the corruption.

The last component of all SCCS file names must be of the form sfile-name.
New SCCS files are given mode 444 [see chmod(1)]. Write permission in the
pertinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file called xfile-name, [see gef(l)], created with
mode 444 if the admin command is creating a new SCCS file, or with the same
mode as the SCCS file if it exists. After successful execution of admin, the
SCCS file is removed (if it exists), and the x-file is renamed with the name of
the SCCS file. This ensures that changes are made to the SCCS file only if no
errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that
SCCS files themselves be mode 444. The mode of the directories allows only
the owner to modify SCCS files contained in the directories. The mode of the
SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode can be
changed to 644 by the owner allowing use of ed(1). Care must be taken! The
edited file should always be processed by an admin -h to check for corruption
followed by an admin -z to generate a proper check-sum. Another admin -h is
recommended to ensure the SCCS file is valid.

admin also makes use of a transient lock file (called zfile-name), which is used
to prevent simultaneous updates to the SCCS file by different users. See get{ 1)
for further information.

ADMIN(l) ADMIN (1)

FILES
g-file Existed before the execution of delta; removed after completion

of delta.

p-file Existed before the execution of delta; can exist after completion
of delta.

q-file Created during the execution of delta; removed after completion
of delta.

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after completion
of delta.

/usr/bin/bdiff Program to compute differences between the "got ten" file and
the g-file.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l), sccsfile(4).
UNIX System VRelease 3.2 Programmer's Guide.

DIAGNOSTICS
Use help(1) for explanations.

ADV(IM) (R F S U t i l i t i e s) ADV(IM)

NAME
adv - advertise a directory for remote access

SYNOPSIS

adv [-r] [-d description] resource pathname [clients . . .]

adv -m resource -d description I [clients . . .]

adv -m resource [-d description] I clients . . .

adv
DESCRIPTION

The adv command is the Remote File Sharing command used to make a
resource from one computer available for use on other computers. The machine
that advertises the resource is called the server, while computers that mount and
use the resource are clients. [See mount(1M).J (A resource represents a
directory, which could contain files, subdirectories, named pipes and devices.)

There are three ways adv is used:

1) To advertise the directory pathname under the name resource so it is
available to Remote File Sharing clients.

2) Modify client and description. To modify fields for currently
advertised resources.

3) To print a list of all locally-advertised resources.

The following options are available:

Restricts access to the resource to a read-only basis. The
default is read-write access.

Provides brief textual information about the advertised
resource, description is a single argument surrounded by
double quotes (") and has a maximum length of 32
characters.

This is the symbolic name used by the server and all
authorized clients to identify the resource. It is limited to a
maximum of 14 characters and must be different from every
other resource name in the RFS domain. All characters must
be printable ASCII characters but must not include periods
(.), slashes (/) , or white space.

-r

.H descriptic

resource

A D V (I M) (R F S U t i l i t i e s) ADV(IM)

This is the local pathname of the advertised resource. It is
limited to a maximum of 64 characters. This pathname
cannot be the mount point of a remote resource and it can
only be advertised under one resource name.

These are the names of all clients that are authorized to
remotely mount the resource. The default is that all
machines that can connect to the server are authorized to
access the resource. Valid input is of the form node name,
RFSdomain.nodename, RFSdomain., or an alias that
represents a list of client names. A RFS domain name must
be followed by a period (.) to distinguish it from a node
name. The aliases are defined in /etc/host.aIias and must
conform to the alias capability in mailx(\).

This option modifies information for a resource that has
already been advertised. The resource is identified by a
resource name. Only the clients and description fields can
be modified. (To change the pathname, resource name, or
read/write permissions, you must unadvertise and re-
advertise the resource.)

When used with no options, adv displays all local resources that have been
advertised; this includes the resource name, the pathname, the description, the
read-write status, and the list of authorized clients. The resource field has a
fixed length of 14 characters; all others are of variable length. Fields are
separated by two white spaces, double quotes (") surround the description, and
blank lines separate each resource entry.

This command may be used without options by any user; otherwise it is
restricted to the super-user.

Remote File Sharing must be running before adv can be used to advertise or
modify a resource entry.

EXIT STATUS
If there is at least one syntactically valid entry in the clients field, a warning
will be issued for each invalid entry and the command will return a successful
exit status. A non-zero exit status will be returned if the command fails.

pathname

clients

-m resource

ADV(IM) (R F S U t i l i t i e s) ADV(IM)

ERRORS
If (1) the network is not up and running, (2) pathname is not a directory, (3)
pathname isn't on a file system mounted locally, or (4) there is at least one
entry in the clients field but none are syntactically valid, an error message will
be sent to standard error.

FILES

/etc/host.alias

SEE ALSO

mailx(l), mount(lM), rfstart(lM), unadv(lM).
S/Series CTIX Administrator's Guide.

e

AR(1) AR(1)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] . . .

DESCRIPTION
The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files as used by the link editor. It
can be used, though, for any similar purpose. The magic string and the file
headers used by ar consist of printable ASCII characters. If an archive is
composed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure is described in detail in
ar(A). The archive symbol iable [described in ar(4)] is used by the link editor
[W(l)] to effect multiple passes over libraries of object files in an efficient
manner. An archive symbol table is only created and maintained by ar when
there is at least one object file in the archive. The archive symbol table is in a
specially named file which is always the first file in the archive. This file is
never mentioned or accessible to the user. Whenever the ar(1) command is
used to create or update the contents of such an archive, the symbol table is
rebuilt. The s option described below will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar's command
line. The key (which may begin with a -) is formed with one of the following
letters: drqtpmx. Arguments to the key, alternatively, are made with one of
more of the following set: vuaibcls. Posname is an archive member name used
as a reference point in positioning other files in the archive. Afile is the archive
file. The names are constituent files in the archive file. The meanings of the
key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with dates of modification later
than the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be present
and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. This option is

AR(1) AR(1)

useful to avoid quadratic behavior when creating a large archive
piece-by-piece. Unchecked, the file may grow exponentially up to the
second degree.

t Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present and,
as in r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive
file from the old archive and the constituent files. When used with t,
give a long listing of all information about the files. When used with
x, precede each file with a name.

c Suppress the message that is produced by default when afile is created.

1 Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(1) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip{ 1)
command has been used on the archive.

FILES
$TMPDIR/* temporary files

$TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnamQ in tmpnam(3S)].

SEE ALSO
ld(l), lorder(l), strip(l), tmpnam(3S), a.out(4), ar(4).

NOTES
If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

ARP(IM) (CTIX Internetworking) ARP(IM)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname
arp -a [namelist] [corefile]
arp -d hostname
arp -s hostname ether_addr [temp] [pub] [trail]
arp -f filename

DESCRIPTION
The arp program displays and modifies the Intemet-to-Ethernet address
translation table, which is normally maintained by the address resolution
protocol [arp(7)].

When hostname is the only argument, arp displays the current ARP entry for
hostname. The host may be specified by name or by number, using Internet dot
notation [see hosts{4) and inet{l)\.

Options are interpreted as follows:

-a [namelist] [corefile]
Display all of the current ARP entries by reading the table from the
file corefile (default /dev/kmem) based on the kernel file namelist
(default /etc/Iddrv/unix.exec).

-d Delete an entry for the host whose name is hostname. (This can be
performed only by the super-user.)

-s hostname ether_addr [temp] [pub] [trail]
Create an ARP entry for the host whose name is hostname with the
Ethernet address ether_addr. The Ethernet address is given as six
colon-separated, two-digit hexadecimal numbers. The entry will be
permanent unless the argument temp is specified on the command
line. If pub is specified, the entry will be "published": that is, this
system will act as an ARP server, responding to requests for hostname
even though the host address is not an address of the local host. If
trail is specified, trailer encapsulations are to be used with this host.

-f filename
Read the file filename and set multiple entries in the ARP tables.
Entries in the file should be of the form

hostname ether_addr [temp] [pub] [trail]

with argument meanings as given above.

ARP(IM) (C T I X I n t e r n e t w o r k i n g) ARP(IM)

SEE ALSO
inet(3), arp(7), ifconfig(lM).
CTIX Network Administrator's Guide.

- 2 -

AS(1) AS(1)

NAME
as - common assembler

SYNOPSIS
as [options] filename

DESCRIPTION
The as command assembles the named file. The following flags may be
specified in any order:

-o objfile Put the output of the assembly in objfile. By default, the output
file name is formed by removing the .s suffix, if there is one,
from the input file name and appending a .o suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Do not produce line number information in the object file.

-T Truncate symbols to eight characters.

-V Write the version number of the assembler being run on the
standard error output.

-Y [md],dir Find the m4 preprocessor (m) and/or the file of predefined
macros (d) in directory dir instead of in the customary place.

FILES
TMPDIR/* temporary files

TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
cc(l), ld(l), m4(l), nm(l), strip(l), tmpnam(3S), a.out(4).
Programmer's Guide: CTIX Supplement.

WARNING
If the -m (m4 macro processor invocation) option is used, keywords for m4 [see
m4(1)] cannot be used as symbols (variables, functions, labels) in the input file
since m4 cannot determine which are assembler symbols and which are real m4
macros.

AS(1) AS(1)

BUGS
The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS
Arithmetic expressions may only have one forward referenced symbol per
expression.

NOTES
Wherever possible, the assembler should be accessed through a compilation
system interface program [such as cc(l)].

ASA(l) ASA(l)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
The asa command interprets the output of FORTRAN programs that utilize ASA
carriage control characters. It processes either the files whose names are given
as arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character, with the following
meanings:

' ' (blank) Single new line before printing

0 Double new line before printing

1 New page before printing

+ Overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with blank. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic appears on standard error. This program
forces the first line of each input file to start on a new page.

To view the output of FORTRAN programs that use ASA carriage control
characters, use the following asa command:

a.out | asa | Ip

The output, properly formatted and paginated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by using the following
command:

asa file

e -

I

ASSIST(l) ASSIST(l)

NAME
assist - assistance using CTIX system commands

SYNOPSIS
assist [name]
assist [-s]
assist [-c name]

DESCRIPTION
The assist command invokes the ASSIST menu interface software for the CTIX
system. The ASSIST menus categorize CTIX system commands according to
function in a hierarchy. The menus lead to full-screen forms (called command
forms) that aid you in the execution of a syntactically correct CTIX system
command line. The menus also lead to interactive simulations of CTIX system
commands or concepts (called walkthrus).

If you type assist without options, you enter at the top of the menu interface
hierarchy. New users may want to use the -s option to select an introductory
tutorial explaining how to use the ASSIST software.

Options to assist follow:

name Invoke an ASSIST-supported CTIX system command form or
walkthru tor name.

-c name Invoke the version of name in your current directory.

-s Reinvoke the ASSIST setup module and check or modify your
terminal variable; or access the introductory information about
ASSIST.

When you invoke assist, you perform operations within the program by using
assist commands. To see a list of the assist commands, press Control A
(control-a) or F8 (function-key 8) when you are in assist. A list of the
commands is dispalyed on standard output The entire set of commands is
described in the "Glossary of ASSIST Commands" in the AT&T ASSIST Software
User's Guide.

EXAMPLE
This example illustrates how to go directly to a particular command form. In
this case, mkdir is the desired command form.

assist mkdir

FILES
$HOME/.assistrc information needed by assist (for example, about

the terminal you are using)

ASSIST(l) ASSIST(l)

/usr/lib/assist default directory containing assist command forms,
walkthrus, and executable programs

NOTES
The first time you invoke assist it ignores any options and asks for information
about the terminal. Once it has saved this information in a file named .assistrc
in your home directory, it displays a list of basic assist commands and offers an
introduction to ASSIST.

SEE ALSO
astgen(l).
AT&T ASSIST Software User's Guide.

ASTGEN (1) ASTGEN(l)

NAME
astgen - generate/modify ASSIST menus and command forms

SYNOPSIS
astgen name[.fs]

DESCRIPTION
The astgen command starts is an interactive program to generate information
files (ASCII text data files) that define a menu or command form used by the

program.

Both the astgen and assist(\) programs recognize and process information files
whose names are suffixed with three characters: .fs. If no .fs file exists for the
specified name, astgen assumes that a new menu or command form is to be
created. If name is given without .fs, astgen automatically creates the file
name, fs.

SEE ALSO
assist(l).
AT&T ASSIST Development Tools Guide.
AT&T ASSIST User's Guide.

k

AT(1) AT(1)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+ increment]

at -r job...

at -I [job ...]

batch

DESCRIPTION
at and batch read commands from standard input to be executed at a later time.
at allows you to specify when the commands should be executed, while jobs
queued with batch will execute when system load level permits, at may be used
with the following options:
-r Removes jobs previously scheduled with at.

-1 Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost

Users are permitted to use at if their name appears in the file
/usr/Iib/cron/at.aIIow. If that file does not exist, the file /usr/lib/cron/at.deny
is checked to determine if the user should be denied access to at. If neither file
exists, only root is allowed to submit a job. If at.deny exists and is empty,
global usage is permitted. If at.allow exists and is empty, no usage is permitted.
If at.allow exists, at.deny is ignored. The allow/deny files consist of one user
name per line. These files can only be modified by the superuser.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alternately
be specified as two numbers separated by a colon, meaning hour-.minute. A
suffix am or pm may be appended; otherwise a 24-hour clock time is
understood. The suffix zulu may be used to indicate GMT. The special names
noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special
"days", today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less.

AT(174) AT(1)

If the given month is less than the current month (and no year is given), next
year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

batch submits a batch job. It is almost equivalent to "at now", but not quite.
For one, it goes into a different queue. For another, "a t now" will respond with
the error message too late.

at -r removes jobs previously scheduled by at or batch. The job number is the
number given to you previously by the at or batch command. You can also get
job numbers by typing at -1. You can only remove your own jobs unless you are
the super-user.

EXAMPLES
The at and batch commands read from standard input the commands to be
executed at a later time. sh(l) provides different ways of specifying standard
input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:

batch
sort filename >outfile
<Control-D> (hold down 'Control' and press 'D')

This sequence, which demonstrates how to redirect standard
error to a pipe, is useful in a shell procedure (the sequence of
output redirection specifications is significant):

batch « !
sort filename 2>&1 >outfile | mail loginid
I

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:

echo "sh shellfile" | at 1900 thursday next week

AT(1) AT(1)

FILES
/usr/lib/cron main cron directory

list of allowed users
list of denied users

/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area

SEE ALSO
cron(l), kill(l), mail(l), nice(l), ps(l), sh(l).

DIAGNOSTICS
Complains about various syntax errors and times out of range.

- 3 -

t —

I

AWK(l) AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc] [prog] [parameters] [files]

DESCRIPTION
awk scans each input file for lines that match any of a set of patterns specified
in prog. With each pattern in prog there can be an associated action that will
be performed when a line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as - f f i l e . The prog string should
be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space. (This default can
be changed by using FS; see below). The fields are denoted $1, $2, . . . ; $0
refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional; expression) statement
break
continue
{ [statement] . . . }
variable = expression
print [expression-list] [expres s ion]
printf format [, expression-list] [e x p r e s s i o n]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, /, %, and
concatenation (indicated by a blank). The C operators ++, --, +=, -=, *=, /=,

AWK(l) AWK(l)

and %= are also available in expressions. Variables may be scalars, array
elements (denoted x[i]) or fields. Variables are initialized to the null string.
Array subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and
terminated by the output record separator. The printf statement formats its
expression list according to the format [see printf(iS)].

The built-in function length returns the length of its argument taken as a string,
or of the whole line if no argument There are also built-in functions exp, log,
sqrt, and int. The last truncates its argument to an integer; substr(s, m, n)
returns the n -character substring of s that begins at position m. The function
fro*) m f/*/ Am t itvnv /ivnr \ fr\rm oto avnraooirtnp o/»/'Ai»HinfT tr* ttia C\
i y y t u h j \ j i t H j c A p r , i u i i i i t t i o u i v V A p i w o o i u n o (i w w i u i i i g i v y u i v s j s i n n j \ U \ J j

format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, | | , &&, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep [see grep(1)]. Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns separated
by a comma; in this case, the action is performed for all lines between an
occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either
(for contains) or (for does not contain). A conditional is an arithmetic

expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the
first input line is read and after the last. BEGIN must be the first pattern, END
the last.

A single character c may be used to separate the fields by starting the program
with:

BEGIN { FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,

- 2 -

AWK (1) AWK(l)

the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default % .6g).

EXAMPLES

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, S 1 }

Add up first column, print sum and average:

{•+=$1}

END { print "sum is", s, " average is", s/NR I

Print fields in reverse order:

{ for (i = NF; I > 0; - i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:
/Page/ { $2 = n++; }

{Print}
command line:

awk -f program n=5 input

SEE ALSO
grep(l), lex(l), malloc(3X), nawk(l), sed(l).
UNIX System V Release 3.2 Programmer's Guide.

BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (" ") to i t

BANNER(l) BANNER (1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on
the standard output.

SEE ALSO
echo(l).

k

BASENAME(l) BASENAME(l)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]

dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used
inside substitution marks (- N) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /nsr/src/crnd/eat.c,
compiles the named file and moves the output to a file named cat in the current
directory:

c c $1

mv a.out " basename $1 . c '

The following example will set the shell variable NAME to /usr/src/cmd:

NAME=* dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(l).

BC(1) BC(1)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-c] [-I] [file ...]

DESCRIPTION
be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The bc(1) utility is actually a preprocessor for dc(1), which
it invokes automatically unless the -c option is present. In this case the dc input
is sent to the standard output instead. The options are as follows:

-c Compile only. The output is send to the standard output.

-1 Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in I* and */.

Names
simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
s q r t (E)
length (E) number of significant decimal

digits
scale (E) number of digits right of decimal

point

L (E ,... , E)

Operators

(% is remainder;A is power)
++ - (prefix and postfix; apply to names)
== < = > = ! = < >

= =+ = - = * =/=% =

- 1 -

BC(1) BC(1)

Statements
E
{ S ; . . . ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L,.. . , L) {

auto L, . . . , L
S;... S
return (E)

}
Functions in -1 math library

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be retained
on arithmetic operations in the manner of dc(\). Assignments to ibase or obase
set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables are
pushed down during function calls. When using arrays as function arguments
or defining them as automatic variables, empty square brackets must follow the
array name.

- 2 -

BC(1) BC(1)

EXAMPLE
scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
8 = 1

for(i=1; 1=1;!++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = s+c

}
}
defines a function to compute an approximate value of the exponential function
and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO
dc(l).
Programmer's Guide: CTIX Supplement.

BUGS
The be command does not yet recognize the logical operators, && and | | .
For statement must have all three expressions (E's).
Quit is interpreted when read, not when executed.

BCHECK(IM) BCHECK(IM)

NAME
bcheck - print the list of blocks associated with an i-node or i-nodes

SYNOPSIS
/usr/local/bin/bcheck [-i number] special

DESCRIPTION
The bcheck command prints a list of all 1024-byte blocks associated with each
i-node for a filesystem on special, where special is the device name. If the -i
number option is given, the printout is restricted to the i-node number.

EXAMPLES
bcheck /dev/rdsk/c0d0s1

bcheck -I 2 /dev/rdsk/c0d0s3

SEE ALSO
ncheck(lM).

BCOPY(IM) BCOPY(IM)

NAME
bcopy - interactive block copy

SYNOPSIS
/etc/bcopy

DESCRIPTION
bcopy copies from and to files starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting " t o " block number),
from: (you name the file or device to be copied from),
offset: (you provide the starting " f rom" block number),
count: (you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a chance to
concatenate blocks at the to+offset+count location). If you answer from with a
carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(l), dd(l).

i

I

BDIFF(I) BDlFF(l)

NAME
bdiff-big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
The bdiff command is used in a manner analogous to diff(1) to find which lines
in two files must be changed to bring the files into agreement. Its purpose is to
allow processing of files which are too large for d i f f .

The parameters to bdiff are:

filel (file2)
The name of a file to be used. If filel (file2) is -, the standard input is
read.

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the
value for n. This is useful in those cases in which 3500-line segments
are too large for d i f f , causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic
messages from diff(1), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder
of each file into n-line segments, and invokes diff upon corresponding
segments. If both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is exactly that of d i f f , with line numbers adjusted to account
for the segmenting of the files (that is, to make it look as if the files had been
processed whole). Note that because of the segmenting of the files, bdiff does
not necessarily find a smallest sufficient set of file differences.

FILES
/tmp/bd?????

SEE ALSO
diff(l), help(l).

DIAGNOSTICS
Use help (I) for explanations.

B F S (l) BFS(l)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
The bfs command is (almost) like ed(1) except that it is read-only and processes
much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512
characters, including new-line, per line (255 for 16-bit machines), bfs is
usually more efficient than ed{ 1) for scanning a file, since the file is not copied
to a buffer. It is most useful for identifying sections of a large file where
csplit {1) can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes. Input
is prompted with * if P and a carriage return are typed, as in ed(1). Prompting
can be turned off again by inputting another P and carriage return. Note that
messages are given in response to errors if prompting is turned on.

All address expressions described under ed(1) are supported. In addition,
regular expressions may be surrounded with two symbols besides / and ?: >
indicates downward search without wrap-around, and < indicates upward
search without wrap-around. There is a slight difference in mark names: only
the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, = , ! and null commands operate as described under ed(1).
Commands such as - - - , +++-, +++=, -12, and +4p are accepted. Note that
l,10p and 1,10 will both print the first ten lines. The f command only prints the
name of the file being scanned; there is no remembered file name. The w
command is independent of output diversion, truncation, or crunching (see the
xo, xt and xc commands, below). The following additional commands are
available:

x f f i l e Further commands are taken from the named file. When an end-
of-file is reached, an interrupt signal is received or an error occurs,
reading resumes with the file containing the xf. The xf commands
may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo [file] Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666 (readable and
writable by everyone), unless your umask setting [see unwsk(l)]

BFS(l) BFS(l)

dictates otherwise. If file is missing, output is diverted to the
standard output. Note that each diversion causes truncation or
creation of the file.

: label This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first

3. The regular expression does not match at least one line in
the specified range, including the first and last lines.

On success,. is set to the line matched and a jump is made to label.
This command is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are
bad before other commands are executed. Note that the command

xb/7 label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. The
commands xv5100 or xv5 100 both assign the value 100 to the
variable 5. The command xv61,100p assigns the value l,100p to
the variable 6. To reference a variable, put a % in front of the
variable name. For example, using the above assignments for
variables 5 and 6, the following statements all print the first 100
lines:

1,%5p
1,%5
%6

- 2 -

B F S (l) BFS(l)

g/%5/p

globally searches for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \ must
precede it.

g/".*\%[cds]/p

could be used to match and list lines containing printf of
characters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a CTIX command can be stored into a variable. The only
requirement is that the first character of value be an !. For
example:

.w junk
xvSicat junk
!rm junk
lecho "%5"
xv6!expr%6 +1

would put the current line into variable 5, print it, and increment
the variable 6 by one. To escape the special meaning of ! as the
first character of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label
xbn label These two commands will test the last saved return code from the

execution of a CTIX command ('.command) or nonzero value,
respectively, to the specified label. The two examples below both
search for the next five lines containing the string size.

xv55

/size/

xvSiexpr %5 - 1
•iff 0%5 != 0 exit 2
xbn I
xv45

/size/

- 3 -

B F S (l) BFS(l)

xv4!expr%4 - 1
!if 0%4 = 0 exit 2
xbz I

xc [switch] If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has strings
of tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(l), ed(l), umask(l).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

BRC(IM) BRC(IM)

NAME
brc, bcheckrc, drvload, powerfail - system initialization procedures

SYNOPSIS
/etc/brc

/etc/bcheckrc

/etc/drvload

/etc/powerfail

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by inir(lM)
whenever the system is booted (or rebooted). Except for powerfail, they are run
when the system is changed out of SINGLE USER mode, powerfail is executed
whenever a system power failure is detected.

First, the bcheckrc procedure performs all the necessary consistency checks to
prepare the system to change into multi-user mode. It actually contains two
procedures: an interactive procedure that runs/rafc(lM) and sets the time; and
a noninteractive procedure that only checks the file system, bcheckrc looks for
the presence of a file named /etc/rcopts/BCRCCON: if there is such a file, the
interactive procedure is selected. If the noninteractive procedure is selected
and it fails because of file system problems or because it was interrupted from
the controlling terminal, bcheckrc switches the system to state 6, which is
normally CTIX Administrator Mode, bcheckrc also sets the date to the date
currently in the time-of-day clock.

Then, the brc procedure clears the mounted file system table, /etc/mnttab and
puts the entry for the root file system into the mount table.

The drvload procedure causes any desired device drivers and additional swap
areas to be loaded into the system. The namelist of the running system
(/etc/lddrv/unix.exec) is built up, starting with /unix and adding each of the
loaded drivers. This procedure uses /iwiv(lM) to determine what hardware
exists and then loads the appropriate drivers. In addition, a number of files in
/etc/rcopts control the loading of drivers that are not associated with hardware.

The powerfail procedure is invoked when the system detects a power failure
condition. It calls shutdown (IM) to bring down the system gracefully.

After the three boot procedures have executed, init checks for the initdefault
value in /etc/inittab. This tells init in which run level to place the system.
Since initdefault is initially set to 2, the system is placed in the multi-user state
by use of the Ietclrc2 procedure.

BRC(IM) BRC(IM)

Note that bcheckrc should always be executed before brc. Also, these shell
procedures can be used for several run-level states.

FILES
/unix
/etc/log/confile
/etc/rcopts/BCRCCON

SEE ALSO
conlocate(lM), date(l), fsck(lM), hinv(lM), init(lM), rcO(lM), rc2(lM),
shutdown(lM), who(l), inittab(4), mnttab(4).
S/Series CTIX Administrator's Guide.

B S (1) BS(1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION
bs is a remote descendant of Basic and SnoboW with a little C language thrown
in. bs is designed for programming tasks where program development time is
as important as the resulting speed of execution. Formalities of data declaration
and file/process manipulation are minimized. Line-at-a-time debugging, the
trace and dump statements, and useful run-time error messages all simplify
program testing. Furthermore, incomplete programs can be debugged; inner
functions can be tested before outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before
the console is read. By default, statements read from the file argument are
compiled for later execution. Likewise, statements entered from the console are
normally executed immediately (see compile and execute below). Unless the
final operation is assignment, the result of an immediate expression statement is
printed.

bs programs are made up of input lines. If the last character on a line is a \, the
line is continued, bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can
have the same name.

A bs statement is either an expression or a keyword followed by zero or more
expressions. Some keywords (clear, compile,!, execute, include, ibase, obase,
and run) are always executed as they are compiled.

Statement Syntax
expression

The expression is executed for its side effects (value, assignment, or
function call). The details of expressions follow the description of
statement types below.

break
Break exits from the inner-most for/while loop,

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

B S (1) BS(1)

compile
[expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name for
further input. A clear is associated with this latter case. Compile is
executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump
[name]
The name and current value of every non-local variable is printed.
Optionally, only the named variable is reported. After an error or interrupt,
the number of the last statement and (possibly) the user-function trace are
displayed.

exit
[expression]
Return to system level. The expression is returned as process status,

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run below).

for
name = expression expression statement

for
name = expression expression

next

for
expression , expression , expression statement

for

expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group of
statements (second form) under control of a named variable. The variable
takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

- 2 -

B S (1) BS(1)

fun
f ([a , . . .]) [v , . . .]

nuf
Fun defines the function name, arguments, and local variables for a user-
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be I/O associated. Function
definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation
operator (?) below. If interrogation is not present, freturn merely returns
zero. When interrogation is active, freturn transfers to that expression
(possibly by-passing intermediate function returns).

goto
name
Control is passed to the internally stored statement with the matching label.

ibase
N
Ibase sets the input base (radix) to N. The only supported values for N are
8,10 (the default), and 16. Hexadecimal values 10-15 are entered as a-f. A
leading digit is required (that is, fOa must be entered as OfOa). Ibase (and
obase, below) are executed immediately.

if expression statement
if expression

[else
. . .]

fi
The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. The strings 0 and "" (null) evaluate
as zero. In the second form, an optional else allows for a group of
statements to be executed when the first group is not. The only statement
permitted on the same line with an else is an i f , only other fi's can be on the
same line with a fi. The elision of else and if into an elif is supported. Only
a single fi is required to close an i f . . . elif... [else ...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being
compiled. Include statements may not be nested.

- 3 -

B S (1) BS(1)

obase
N
Obase sets the output base to N (see ibase above).

onintr
label

onintr
The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been executed
at the time onintr was executed. The effect of the statement is cleared after
each interrupt. In the second form, an interrupt will cause bs to terminate.

return
[expression]
The expression is evaluated and the result is passed back as the value of a
function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first internal
statement. If the run statement is contained in a file, it should be the last
statement.

stop
Execution of internal statements is stopped, bs reverts to immediate mode.

trace
[expression]
The trace statement controls function tracing. If the expression is null (or
evaluates to zero), tracing is turned off. Otherwise, a record of user-
function calls/returns will be printed. Each return decrements the trace
expression value.

while
expression statement

while
expression

next
While is similar to for except that only the conditional expression for loop-
continuation is given.

! shell command
An immediate escape to the Shell.

...
This statement is ignored. It is used to interject commentary in a program.

- 4 -

BS(205) BS(1)

Expression Syntax
name

A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared in
fun statements, all names are global to the program. Names can take on
numeric (double float) values, string values, or can be associated with
input/output (see the built-in function open() below).

name
([expression [, expression] . . .])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a fun statement. Arguments to
functions are passed by value.

name
[expression [, expression] . . .]
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer and
used as a specifier for the name. The resulting array reference is
syntactically identical to a name; a[l,2] is the same as a[l][2]. The
truncated expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
FORTRAN style, and contains digits, an optional decimal point, and possibly
a scale factor consisting of an e followed by a possibly signed exponent.

string
Character strings are delimited by " characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), backspace
(\b), and tab (\t) characters to appear in a string. Otherwise, \ stands for
itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression,
expression [, expression . . .]) [expression]
The bracketed expression is used as a subscript to select a comma-separated

B S (2 0 6) BS(1)

expression from the parenthesized list. List elements are numbered from the
left, starting at zero. The expression:

(False, True)[a == b]

has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than
its value. At the moment, it is useful for testing end-of-file (see examples in
the PROGRAMMING TIPS section below), the result of the eval built-in
function, and for checking the return from user-written functions (see
/return). An interrogation "trap" (end-of-file, etc.) causes an immediate
transfer to the most recent interrogation, possibly skipping assignment
statements or intervening function levels.

- expression
The result is the negation of the expression.

++ name
Increments the value of the variable (or array reference). The result is the
new value.

-- name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape
command.

expression
operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. Except for the assignment,
concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.

Binary Operators (in increasing precedence)

= (equals sign) is the assignment operator. The left operand must be a name
or an array element. The result is the right operand. Assignment binds right
to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

BS(207) BS(1)

& |
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; | (logical or) has result zero
if both of its arguments are zero. It has result one if either of its arguments
is non-zero. Both operators treat a null string as a zero.

< < = > > = = = ! =

The relational operators (< less than, <= less than or equal, > greater than,
>= greater than or equal, == equal to, != not equal to) return one if their
arguments are in the specified relation. They return zero otherwise.
Relational operators at the same level extend as follows: a>b>c is the same
as a>b & b>c. A string comparison is made if both operands are strings.

+ -

Add and subtract.

* / %
Multiply, divide, and remainder.

A

Exponentiation.

Built-in Functions
Dealing with arguments

arg(i)
is the value of the i-th actual parameter on the current level of function call.
At level zero, arg returns the i-th command-line argument [arg(O) returns
bs],

narg()
returns the number of arguments passed. At level zero, the command
argument count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -tc/2 and Jt/2.

ceil(x)

returns the smallest integer not less than x.

cos(x) is the cosine of x (radians).

B S (1) BS(1)

exp(x)
is the exponential function of x.

floor(x)

returns the largest integer not greater than x.

log(x)

is the natural logarithm of x.

rand()

is a uniformly distributed random number between zero and one.

sin(x) is the sine of x (radians).
sqrt(x)

is the square root of x.

String operations

size(s)

the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification
in the style of printf(3S). Only the % . . . f , % . . . e , and % . . . s types are
safe.

index(x, y)
returns the number of the first position in x that any of the characters from y
matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in / to a
character in the same position in t. Source characters that do not appear i n /
are copied to the result. If the string / is longer than t, source characters that
match in the excess portion o f / do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starring position and width.

match(string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(1)
command. The characters [,], * (inside brackets), * and $ are special.
The mstring function returns the n-th (1 <= n <= 10) substring of the
subject that occurred between pairs of the pattern symbols \(and \) for the
most recent call to match. To succeed, patterns must match the beginning

- 8 -

BS(209) BS(1)

of the string (as if all patterns began with A). The function returns the
number of characters matched. For example:

match("a123ab123", ",*\[a-i]\)") == 6
mstring(1) == "b"

File handling

open(name, file, function)
close(name)

The name argument must be a bs variable name (passed as a string). For the
open, the file argument may be 1) a 0 (zero), 1, or 2 representing standard
input, output, or error output, respectively; 2) a string representing a file
name; or 3) a string beginning with an ! representing a command to be
executed (via sh -c). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the name
reverts to being an ordinary variable. The initial associations are:

open("get", 0, V)
openffcut", 1, ' V)
open("puterr", 2, "V)

Examples are given in the following section.

access(s, m)
executes access (2).

ftype(s)
returns a single character file type indication: f for regular file, p for FIFO
(that is, named pipe), d for directory, b for block special, or c for character
special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array.
"Subscripts" (called keys) are strings (numbers are converted). The name
argument must be a fa variable name (passed as a string). The size
argument sets the minimum number of elements to be allocated, bs prints
an error message and stops on table overflow.

item (name, i)
key()

The item function accesses table elements sequentially (in normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the "subscript" of the previous item call.

BS(1) BS(1)

The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table; for
example:

tableft", 100)

If word contains "party", the following expression
adds one to the count of that word:
++t[word]

To print out the the key/value pairs:
for i = 0, ?(s = item(t, i)), ++i if key() put = key()_":"_s

iskey(name, word)
The iskey function tests whether the key word exists in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated asabs expression. The function is handy
for converting numeric strings to numeric internal form. Eval can also be
used as a crude form of indirection, as in:

name = "xyaf'
eval("++"_ name)

which increments the variable xyz. In addition, eval preceded by the
interrogation operator permits the user to control bs error conditions. For
example:

?eval("open(\"X\", \"XXX\", \"r\")")

returns the value zero if there is no file named "XXX" (instead of halting the
user's program). The following executes a goto to the label L (if it exists):

label="L"
if !(?eval("goto "_ label)) puterr = "no label"

plot(request, args)
The plot function produces output on devices recognized by tplot(\G). The
requests are as follows:

Call Function

plot(0, term) causes further plot output to be piped into tplot(\G)
with an argument of -Tterm.

- 1 0 -

BS(1) BS(1)

plot(4) ' 'erases'' the plotter.

plot(2, string) labels the current point with string.

plot(3, x l , y l , x2, y2)
draws the line between (xl ,yl) and (x2 ,y2).

plot(4, x, y, r) draws a circle with center (x j) and radius r.

plot(5, x l , yl, x2, y2, x3,y3)
draws an arc (counterclockwise) with center (xl ,yl) and
endpoints (x2,y2) and (x3,y3).

plot(6) is not implemented.

plot(7, x, y) makes the current point (x,y).

plot(8, x, y) draws a line from the current point to (x,y).

plot(9, x, y) draws a point at (x,y).

plot(10, string) sets the line mode to string.

plot(ll , x l , y l , x2, y2)
makes (xl ,yl) the lower left corner of the plotting area
and (x2 ,y2) the upper right comer of the plotting area.

plot(12, x l , y l , x 2 , y2)
causes subsequent x (y) coordinates to be multiplied by
xl (yl) and then added to x2 (y2) before they are
plotted. The initial scaling is plot(12,1.0,1.0,0.0,0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot(\G). See plot(4) for
more details.

last()
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5 2 8 0 * 1 2 / 1 6 9
11.78496

Compound interest (6% for 5 years on $1,000).
int = .06 / 4

- 11 -

B S (1) BS(1)

bal = 1000
for i = 1 5*4 bal = bal + baMnt
bal -1000
3346.855007

exit

The outline of a typical bs program:

initialize things:
varl = 1
openfYead", "infile", V)

compute:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit
last input line:
run

Input/Output examples:

Copy "oldfileT to "newfile".
openCVead", "oldfile", "r")
open('Write", "newfile", "w")

while ?(write = read)

c lose "read" and "writ*':
closeCYead")
close("write")

Pipe between commands.
open("laf', "lis *", "r")
open('^>f", "!pr -2 -h Usf", 'W)
while ?(pr = Is) . . .

- 1 2 -

B S (1) BS(1)

be sure to close (wait for) these:
closef'ls")
close("pi")

SEE ALSO
ed(l), sh(l), tplot(lG), access(2), printf(3S), stdio(3S), plot(4).

- 1 3 -

CAL(l) CAL(l)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for the
present month is printed. Year can be between 1 and 9999. The month is a
number between 1 and 12. The calendar produced is that for England and the
United States.

EXAMPLES
An unusual calendar is printed for September 1752. That is the month 11 days
were skipped to make up for lack of leap year adjustments. To see this
calendar, type: cal 9 1752

BUGS
The year is always considered to start in January even though this is historically
naive.

Beware that "cal 8 3 " refers to the early Christian era, not the 20th century.

k

CALENDAR(l) CALENDAR(l)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
The calendar command consults the file calendar in the current directory and
displays lines that contain today's or tomorrow's date anywhere in the line.

The command expects American date format, not European, and does not
accept tabs within a date. Most reasonable month-day dates, such as "Aug.
24," "august 24," and "8/24," are recognized (but not "24 August" or
"24/8"). On weekends "tomorrow" extends through Monday.

When an argument is present, calendar does its job for every user who has a
file calendar in his or her login directory and sends them any positive results
by mail(\). Normally this is performed daily by facilities in the CTIX operating
system.

FILES
/usr/lib/calprog to figure out today's and tomorrow's dates

/etc/passwd

/tmp/cal*

SEE ALSO
mail(l).

BUGS
Your calendar must be public information for you to get reminder service.

The calendar command's extended idea of "tomorrow" does not account for
holidays.

CAPTOINFO(IM) C APTOINFO (1M)

NAME
captoinfo - convert a termcap description into a terminfo description

SYNOPSIS

captoinfo [-v . . .] [-V] [-1] [-w width] file . . .

DESCRIPTION
The captoinfo command looks in file for termcap descriptions. For each one
found, an equivalent terminfo (4) description is written to standard output, along
with any comments found. A description which is expressed as relative to
another description (as specified in the termcap tc= field) will be reduced to the
minimum superset before being output
If no file is given, then the environment variable TERMCAP is used for the
filename or entry. If TERMCAP is a full pathname to a file, only the terminal
whose name is specified in the environment variable TERM is extracted from
that file. If the environment variable TERMCAP is not set, then the file
letcltermcap is read.

-v print out tracing information on standard error as the program runs.
Specifying additional -v options causes more detailed information to
be printed.

-V print out the version of the program in use on standard error and exit.

-1 cause the fields to print out one to a line. Otherwise, the fields will be
printed several to a line to a maximum width of 60 characters.

-w change the output to width characters.

FILES
/usr/lib/terminfo/?/* compiled terminal description database

CAVEATS
Certain termcap defaults are assumed to be true. For example, the bell
character (terminfo bel) is assumed to be "G. The linefeed capability (termcap
nl) is assumed to be the same for both cursordown and scrollJorward
(terminfo cudl and ind, respectively.) Padding information is assumed to
belong at the end of the string.

The algorithm used to expand parameterized information for termcap fields
such as cursor_position (termcap cm, terminfo cup) will sometimes produce a
string which, though technically correct, may not be optimal. In particular, the
rarely used termcap operation %n will produce strings that are especially long.
Most occurrences of these non-optimal strings will be flagged with a warning
message and may need to be recoded by hand.

C APTOINFO (1M) C APTOINFO (1M)

The short two-letter name at the beginning of the list of names in a termcap
entry, a hold-over from an earlier version of the CTIX system, has been
removed.

D I A G N O S T I C S

tgetent failed with return code n (reason).
The termcap entry is not valid. In particular, check for an invalid 'tc='
entry.

unknown type given for the termcap code cc.
The termcap description had an entry for cc whose type was not
boolean, numeric or string.

wrong type given for the boolean (numeric, string) termcap code cc.
The boolean termcap entry cc was entered as a numeric or string
capability.

the boolean (numeric, string) termcap code cc is not a valid name.
An unknown termcap code was specified.

tgetent failed on TERM=term.
The terminal type specified could not be found in the termcap file.

TERM=term: cap cc (info ii) is NULL: REMOVED
The termcap code was specified as a null string. The correct way to
cancel an entry is with an '(§>', as in ':bs@:'. Giving a null string could
cause incorrect assumptions to be made by the software which uses
termcap or terminfo.

a function key for cc was specified, but it already has the value w.
When parsing the ko capability, the key cc was specified as having the
same value as the capability cc, but the key cc already had a value
assigned to it.

the unknown termcap name cc was specified in the ko termcap capability.
A key was specified in the ko capability which could not be handled.

the vi character v (info ii) has the value xx, but ma gives n.
The ma capability specified a function key with a value different from
that specified in another setting of the same key.

CAPTOINFO(IM) CAPTOINFO (1M)

the unknown vi key v was specified in the ma termcap capability.
A vi (1) key unknown to captoinfo was specified in the ma capability.

Warning: termcap sg (nn) and termcap ug (nn) had different values.
terminfo assumes that the sg (now xmc) and ug values were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be rewritten by hand.

Null termname given.
The terminal type was null. This is given if the environment variable
TERM is not set or is null.

cannot open file for reading.
The specified file could not be opened.

S E E A L S O

infocmp(lM), tic(l), curses(3X), terminfo(4).
UNIX System VRelease 3.2 Programmer's Guide.

N O T E S

captoinfo should be used to convert termcap entries to terminfo(4) entries
because the termcap database (from earlier versions of CTIX) may not be
supplied in future releases.

CAT(l) CAT(l)

N A M E
cat - concatenate and print files

S Y N O P S I S

cat [-u] [-s] [-v [-t] [-e]] file . . .

DESCRIPTION
The cat command reads each file in sequence and writes it on the standard
output Thus, the following command prints file to the terminal:

cat file

The next command concatenates filel and file2, and writes the results in file3:

cat filel file2 > file3

If no input file is given, or if the argument - is encountered, cat reads from the
standard input file,

The following options apply to cat:

-u The output is not buffered. (The default is buffered output.)

-s Causes cat to be silent about non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-lines
and form-feeds) to be printed visibly. ASCII control characters (octal
000 - 037) are printed as 'n, where n is the corresponding ASCII
character in the range octal 100 - 137 (@, A, B, C X, Y, Z, [,\1,],

and _); the DEL character (octal 0177) is printed *?. Other non-
printable characters are printed as M-A:, where x is the ASCII character
specified by the low-order seven bits.

When used with the -v option, the following options are available:

» Causes tabs to be printed as T's.

-e Causes a $ character to be printed at the end of each line (prior to the
new-line).

The -t and -e options are ignored if the -v option is not specified.

W A R N I N G

Redirecting the output of cat onto one of the files being read causes the loss of
the data originally in the file being read. For example, the following command
causes the original data in filel to be lost

cat filel file2 >file1

SEE ALSO
cp(l),pg(l),pr(l).

CB(1) CB(1)

N A M E

cb - C program beautifier

S Y N O P S I S

cb [-s] [-j] [-1 leng] [file ...]

D E S C R I P T I O N

The cb comand reads C programs either from its arguments or from the standard
input, and writes them on the standard output with spacing and indentation that
display the structure of the code. Under default options, cb preserves all user
new-lines.

cb accepts the following options.

-s Canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language.

-j Causes split lines to be put back together.

-1 leng Causes cb to split lines that are longer than leng.

S E E A L S O

cc(l).
The C Programming Language. Prentice-Hall, 1978.

B U G S

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

CC(1) CC(1)

N A M E

cc - C compiler

S Y N O P S I S

cc [options] files

D E S C R I P T I O N

The cc command is the interface to the C Compilation System. The
compilation tools consist of a preprocessor, compiler, optimizer, assembler and
link editor. The cc command processes the supplied options and then executes
the various tools with the proper arguments. The cc command accepts several
types of files as arguments:

Files whose names end with .c are taken to be C source programs and may be
preprocessed, compiled, optimized, assembled and link edited. The compilation
process may be stopped after the completion of any pass if the appropriate
options are supplied. If the compilation process runs through the assembler
then an object program is produced and is left in the file whose name is that of
the source with .o substituted for .c. However, the .o file is normally deleted if
a single C program is compiled and then immediately link edited. In the same
way, files whose names end in .s are taken to be assembly source programs, and
may be assembled and link edited; and files whose names end in .i are taken to
be preprocessed C source programs and may be compiled, optimized,
assembled and link edited. Files whose names do not end in .c, .s or .i are
handed to the link editor.

Since the cc command usually creates files in the current directory during the
compilation process, it is necessary to run the cc command in a directory in
which a file can be created. The following options are interpreted by cc.
-##

-### These options cause cc to display each command that it would
generate if it were to execute, but to fully execute only in the case of
-#. Thus, -# specifies execution in verbose mode; -## specifies
verbose mode (what cc would do if it were to execute), check
permissions on all necessary files, but do not compile; and -###
specifies verbose mode (what cc would do if it were to execute), but
do nothing.

-c Suppress the link editing phase of the compilation, and do not remove
any produced object files.

-g Cause the compiler to generate additional information needed for the
use of sdb (1).

CC(1) CC(1)

-o outftle
Produce an output object file by the name outftle. The name of the
default file is a.out. This is a link editor option.

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, profiled
versions of libc.a and libm.a (with -lm option) are linked and
monitor^3C) is automatically called. A mon.out file will then be
produced at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

-w Tell the linker (Id) not to print warnings about symbols that partially
matched. This option is meaningful only when the -T option is also
specified.

D „

-t/p02ai;
These options will be removed in the next release. Use the -Y option.

-E Run only cpp(1) on the named C programs, and send the result to the
standard output

-H Print out on stderr the pathname of each file included during the
current compilation.

-O Do compilation phase optimization. This option will not have any
affect on .s files.

-P Run only cpp(1) on the named C programs and leave the result in
corresponding files suffixed .i. This option is passed to cpp(\).

-S Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed

-T Truncate variable names to eight characters. Tell the loader to match
eight character names (same as -G in the loader).

-Wc, argl[, arg2...]
Hand off the arguments] argi to pass c where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,-m passes -m to the assembler.

-Y [p02aISILUc], dirname I processor
Specify a new pathname, dirname, for the locations of the tools and
directories designated in the first argument; or select a processor type,
processor, for which to generate code. [p02alSILUc] represents:

- 2 -

CC(1) CC(1)

p preprocessor
0 compiler
2 optimizer
a assembler
1 link editor
S directory containing the start-up routines
I default include directory searched by cpp(1)
L first default library directory searched by ld(1)
U second default library directory searched by ld(1)
c select the processor type, specified by the second argument, for
which to generate code: 68020, 68010, 68881. For example,
-Y c,68020 selects the 68020 processor with software floating point
instructions. Note that 68881 implies 68020.

If the location of a tool is being specified, then the new pathname for
the tool will be dirname/tool. If more than one -Y option is applied to
any one tool or directory, then the last occurrence holds.

The cc command also recognizes -C, -D, -H, -I and -U and passes these options
and their arguments directly to the preprocessor without using the -W option.
Similarly, the cc command recognizes -1, -m, -o, -r, -s, -t, -u, -w, -x, -z, -F, -G,
-L, -M, -N, -V and -Z and passes these options and their arguments directly to
the loader. See the manual pages for cpp(1) and ld(1) for descriptions.

Other arguments are taken to be C compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C compatible routines and
are passed directly to the link editor. These programs, together with the results
of any compilations specified, are link edited (in the order given) to produce an
executable program with name a.out unless the -o option of the link editor is
used.

If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, that is, prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDld and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.

The C compiler uses one of three code generators for the 68010, 68020, and
68020/68881. There are several ways to select a particular code generator, but
the selection is normally done using one of two basic mechanisms.

The first is to specify the processor on the cc command line, for example, by
using the -Y option. (An equivalent mechanism is provided by the gencc(\)
command, and also by the cclsw(1), cc2sw, or cc2fp command.) The -Y option

- 3 -

CC(1) CC(1)

has additional arguments that allow you to specify pathnames of default
libraries, include files, and tools as described earlier.

The second mechanism is to use the CENVIRON shell variable. Note that the
first mechanism, specifying the processor and/or search path of libraries and
include files, overrides the CENVIRON and any other shell variable settings.

The CENVIRON variable has the following syntax:

CPU=xxxxx,FPU=yyyyy

where CPU indicates the central processor to generate for and FPU indicates the
style of floating-point math to use. xxxxx may be 68010 or 68020, and yyyyy
may be 68881 or SOFTWARE. The FPU parameter may be omitted; the default
is SOFTWARE. The CENVIRON variable should always be set to the appropriate
values in the .profile or .cshrc files or in the makefile. [See Wnv(lM).]

The C compiler interprets two shell variables which, along with the CENVIRON
variable, allow cross-compilation for any CTIX machine:

LIBROOT This variable is a path which is prepended to normal library
names when searching for a library. See also ld(l).

INCROOT This variable is a path which is prepended to the
/usr/include and /usr/include/sys directories during include
file searches. See also cpp(1).

The C language standard was extended to allow arbitrary length variable names.
The option pair "-Wp,-T -WO,-XT" will cause cc to truncate arbitrary length
variable names to 8 characters.

FILES
file.c C source file
file.i preprocessed C source file
file.o object file
file.s assembly language file
a.out link edited output
UBDIR/*cnl.o start-up routine
LIBDIR/cnn.o start-up routine
TMPDIR/* temporary files
LIBDIRficpp preprocessor, cpp (I)
LIBDIR/ccom 68010 compiler
UBDIR/ccom20 68020 compiler
UBDIR/ccorn20m 68020/68881 compiler
LIBDIRfioptim optimizer
BINDIRfas assembler, as(l)

- 4 -

CC(233) CC(1)

BINDIR/Id link editor, ld(1)
LIBDIR/libc.a standard C library
LIBDIR/libc_s.a standard C shared library

LIBDIR is usually /lib
BINDIR is usually /bin
TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
as(l), ld(l), cclsw(l) , cpp(l), gencc(l), lint(l), prof(l), sdb(l), tmpnam(3S).
Kemighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

CAVEATS
cc will complain if it encounters inconsistencies between the processor selected
and default libraries or include files.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic. Occasional
messages may be produced by the assembler or link editor.

NOTES
By default, the return value from a compiled C program is completely random.
The only two guaranteed ways to return a specific value is to explicitly call
exit (2) or to leave the function main() with a "return expression;" construct.

CClSW(l) CClSW(l)

N A M E
cclsw, cc2sw, cc2fp - front-end to the cc command

SYNOPSIS
cclsw [options] files
cc2sw [options] files
cc2fp [options] files

D E S C R I P T I O N
cclsw, cclsw, and cc2fp provide a front-end to cc for use in cross-compilation.
cclsw generates code for a 68010 processor with software floating point, cc2sw
generates code for a 68020 processor with software floating point, and cc2fp
generates code for a 68020 processor with hardware floating point. The
commands call cc with the following -Y options:

cclsw -Y c,68010
-Y S, /cross /lsw/lib
-Y L,/cross/lsw/lib
-Y U,/cross/lsw/usr/Iib

cc2sw -Y c,68020
-Y S,/cross/2sw/lib
-Y L, /cross /2sw/lib
-Y U,/cross/2sw/usr/lib

cc2fp -Yc,68881
-Y S,/cross/2fp/lib
-Y L,/cross/2fp/lib
-Y U,/cross/2fp/usr/lib

Options are those options available for cc.

The default include directories searched by cc (called by cclsw, cc2sw, or
cc2fp) are /usr/include and /usr/include/sys. The default include directories
can be overridden by using the -Y I dirname option or setting the INCROOT
environment variable [see cc(l)].

FILES

file.c
file.i
file.o
file.s
a.out

C source file
preprocessed C source file
object file
assembly language file
link edited output
start-up routine
start-up routine

UBDIRhcnl.o
LIBDIR/cTta.o

CCISW(I) CClSW(l)

TMPDIR/*
LIBDIRfcpp
LIBDIR/ccom
UBDIR/ccom20
UBDIR/ccom20.S 1
LIBDIR/optim
BINDIR/as
BINDIR/ Id
LIBDIR/
UBDIR/ libc_s.a

temporary files
preprocessor, cpp (I)
68010 compiler
68020 compiler
68020/68881 compiler
optimizer
assembler, as (l)
link editor, ld(1)
standard C library
standard C shared library

UBDIR is usually / lib
BINDIR is usually /bin
TMPDIR is usually / tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(3S)}.

SEE ALSO
cc(l), gencc(lM).

CD(1) CD(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the
new working directory. If directory specifies a complete path starting with / , . ,
.directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by the
$CDPATH shell variable. $CDPATH has the same syntax as, and similar
semantics to, the $PATH shell variable, cd must have execute (search)
permission in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recognized
and is internal to the shell.

SEE ALSO
pwd(l), sh(l), chdir(2).

tr

CDC(l) CDC (1)

N A M E

cdc - change the delta commentary of an SCCS delta

S Y N O P S I S

cdc -rSID t -m[mrlist]] [-y[comment]] files

D E S C R I P T I O N

The cdc command changes the delta commentary, for the SID (SCCS
IDentification string) specified by the -r keyletter, of each named SCCS file.
Delta commentary is defined to be the Modification Request (MR) and
comment information normally specified via the delta (I) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see WARNINGS) and each line of
the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter
arguments and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the SCCS /Dentification (SID) string of
a delta for which the delta commentary is to be
changed.

-m [mrlist] If the SCCS file has the v flag set [see admin (1)] then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A. null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta (1). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed in
the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

CDC(l) CDC(l)

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character
terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If
a non-zero exit status is returned from the MR number
validation program, cdc terminates and the delta
commentary remains unchanged.

-y[comment] Arbitrary text used to replace the comment (s) already
existing for the delta specified by the - r keyletter. The
previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If -y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the
comment text

Simply stated, the keyletter arguments are either (1) if you made the delta, you
can change its delta commentary; or (2) if you own the file and directory you
can modify the delta commentary.

- 2 -

CDC(l) CDC (1)

E X A M P L E S
cdc -r1.6 -m"bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.fl le

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the
MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc-r 1.6 s.file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

W A R N I N G S
If SCCS file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and -y keyletters must also be used.

FILES
x-file [see delta (I)]
z-file [see delta (\)]

SEE A L S O
admin(l), delta(l), get(l), help(l), prs(l), sccsfile(4).
UNIX System VRelease 3.2 Programmer s Guide.

D I A G N O S T I C S
Use help(l) for explanations.

i
\

C F L O W (1) C F L O W (1)

N A M E
cflow - generate C flowgraph

S Y N O P S I S
cflow [-r] [-ix] [-i_] [-dnum] files

D E S C R I P T I O N

The cflow command analyzes a collection of C, yacc, lex, assembler, and object
files and attempts to build a graph charting the external references. Files
suffixed with .y, .1, and .c are yacced, lexed, and C-preprocessed as appropriate.
The results of the preprocessed files, and files suffixed with .i, are then run
through the first pass of lint(1). Files suffixed with .s are assembled.
Assembled files, and files suffixed with .o, have information extracted from
their symbol tables. The results are collected and turned into a graph of
external references which is displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol
followed by a colon and its definition. Normally only function names that do
not begin with an underscore are listed (see the -i options below). For
information extracted from C source, the definition consists of an abstract type
declaration (for example, char *), and, delimited by angle brackets, the name of
the source file and the line number where the definition was found. Definitions
extracted from object files indicate the file name and location counter under
which the symbol appeared (for example, text). Leading underscores in C-style
external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition may be
found. For undefined references, only < > is printed.

As an example, given the following in f i le.c:

int i;

main()
{

f();
g();
»();

}
{

i = h();

}

- 1 -

CFLOW(1) CFLOW(l)

the command

cflow -ix file.c

produces the output:

1
2
3
4
5

main: lnt(), <file.c 4>
f: int(), <file.c 11>

h:<>
i: int, <file.c 1>

g:<>

When the nesting level becomes too deep, the output of cflow can be piped to
pr(1), using the -e option, to compress the tab expansion to something less than
every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they are
by cc(l) and cpp(1)], the following options are interpreted by cflow:

-r Reverse the "caller :callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in
lexicographical order by callee.

-ix Include external and static data symbols. The default is to include only
functions in the flowgraph.

-i_ Include names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

-dnum The num. decimal integer indicates the depth at which the flowgraph is
cut off. By default this is a very large number. Attempts to set the
cutoff depth to a nonpositive integer will be ignored.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and only
believes the first Other messages may come from the various programs used
(for example, the C-preprocessor).

SEE A L S O
as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), pr(l), yacc(l).

B U G S
Files produced by lex(1) and yacc(1) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

CHKSHLIB (1) CHKSHLIB(l)

N A M E

chkshlib - compare shared libraries tool

S Y N O P S I S

chkshlib [-b] [-i] [-n] [-v] filel [file2 file3 . . .]

D E S C R I P T I O N

The chkshlib tool checks for compatibility between files. Input files can be
combinations of host shared libraries, non-stripped target shared libraries, and
non-stripped executable files. A file is compatible with another file if every
library symbol in it that should be matched is matched in the second (that is, the
symbol exists and has the same address in both files). The pathname for the
target shared library in both files must be identical (unless the -i option is set.)
It is possible for filel to be compatible with file2 without the reverse also being
true.

If one incompatibility is found it is reported to stdout and processing stops
(unless the -v option is set)

The options to chkshlib follow:

-v Cause verbose reporting of all incompatibilities to stdout.

-b If there are symbols found in filel that are not in the bounds of file2
report warning messages to stderr.

-i Turn off the restriction that the pathnames for the target shared library
need to be identical for two files to be compatible.

-n Indicate that there are exactly two input files, which are target shared
libraries, where the first references symbols in the second ("includes"
the second).

The output of chkshlib depends upon the input. If the first input file is an
executable file and the other input files, if any, are target shared libraries, the
output states whether or not the executable file can execute using each target
shared library. If there are no target shared libraries supplied, chkshlib
performs the compatibility check against the target shared libraries specified in
the Jib section of the executable file.

If the first input file is an executable file and the other input file(s) is a host
shared library, the output states whether or not the executable file could have
been produced using each host

If one input file is a host shared library and the other input file, if any, is a target
shared library, the output states whether or not the host shared library could
produce executable files that run with the target shared library. If no target

CHKSHLIB(l) CHKSHLIB(l)

shared library is supplied, then chkshlib performs the compatibility check
against the target specified in the .lib section of the library definition file found
in the host

If both input files are target shared libraries or both input files are host shared
libraries, the output states whether or not the first file could replace the second
and vice versa.

If both input files are target libraries and the -n option is set, the output states if
the first file references symbols in the second file ("includes" the second).

Compatibility of all other combinations of host shared libraries, target shared
libraries, and executable files has no useful meaning and these other
combinations of files are not accepted as valid input to chkshlib.

S E E A L S O

mkshiib(l).
"Shared Libraries" chapter in the UNIX System V Release 3.2 Programmer s
Guide.

D I A G N O S T I C S

Exit status is 0 if no incompatibilities are found, 1 if an incompatibility is
found, and 2 if a processing error occurs.

C A V E A T

The chkshlib command requires that you use the -i option whenever you use the
-n option.

Standard binaries distributed with the UNIX system are stripped and chkshlib
cannot be used with them.

CHMOD(l) CHMOD (1

N A M E

chmod - change mode

S Y N O P S I S

chmod mode file ...

chmod mode directory ...

D E S C R I P T I O N

The permissions of the named files or directories are changed according to
mode, which can be symbolic or absolute. Absolute changes to permissions are
stated by using octal numbers, as follows:

chmod nnnfile(s)

where n is a number from 0 to 7. Symbolic changes are stated by using
mnemonic characters, as follows:

chmod a operator bfile(s)

where a is one or more characters corresponding to user, group, or other;
where operator is +, - , and =, signifying assignment of permissions; and where
b is one or more characters corresponding to type of permission.

An absolute mode is given as an octal number constructed from the OR of the
following modes:

4000 set user ID on execution
20#0 set group ID on execution if # is 7 , 5 , 3 , or 1

enable mandatory locking if # is 6 , 4 , 2 , or 0
1000 sticky bit is turned on [see chmod(2)]
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Symbolic changes are stated by using letters that correspond to access classes
and to the individual permissions. Permissions to a file can vary depending on
user identification number (UID) or group identification number (GID).
Permissions are described in three sequences, each having three characters:

User Group Other

rwx rwx rwx

CHMOD(l) CHMOD (1

This example (meaning that user, group, and others all have reading, writing,
and execution permission to a given file) demonstrates two categories for
granting permissions: the access class and the permissions.

The following command syntax shows how to change the mode of a file's (or
directory's) permissions by using chmod's symbolic method:

[who] operator [permission(s)],...

A command line using the symbolic method appears as follows:

chmod g+rw file

The above command makes file readable and writable by the group.

The who part of the symbolic method syntax can be stated as one or more of the
ÂII AimnfT 1 otforp • iVi iurviJ ig iwiivi J.

u user's permissions
g group's permissions
o others' permissions

The letter a (all) is equivalent to ugo, and is the default if who is omitted.

Operator can be a plus sign (+) to add permission to the file's mode, a minus
sign (-) to take away permission, or an equal sign (=) to assign permission
absolutely. (Unlike other symbolic operations, = has an absolute effect in that it
resets all other bits.) Omitting permission is useful only with = to take away all
permissions.

Permission is any compatible combination of the following letters:

r reading permission
w writing permission
x execution permission
s user or group set-ID is turned on
t sticky bit is turned on
1 mandatory locking will occur during access

Multiple symbolic modes separated by commas are valid, although no spaces
can intervene between these modes. Operations are performed in the order
given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously. The letter s is
meaningful only with u or g, and t works only with u.

Mandatory file and record locking (1) refers to a file's ability to have its reading
or writing permissions locked while a program is accessing that file. It is not
possible to permit group execution and enable a file to be locked on execution

CHMOD(l) CHMOD (1

at the same time. In addition, it is not possible to turn on the set-group-ID and
enable a file to be locked on execution at the same time. The following
examples are, therefore, illegal and elicit error messages:

chmod g+x,+l file
chmod g+s,+l/ife

Only the owner of a file or directory (or the super-user) can change a file's
mode. Only the super-user can set the sticky bit on a nondirectory file;
otherwise, if a regular user uses chmod +t, chmod masks the sticky bit but does
not return an error. To turn on a file's set-group-ID, your own group ID must
correspond to the file's, and group execution must be s e t

EXAMPLES
The following two examples deny execution permission to all; the second,
absolute (octal), example permits only reading permissions:

chmod a-x file
chmod 444 file

The following two examples make a file readable and writable by the group and
others:

chmod go+rw file
chmod 666 file

The following example causes a file to be locked during access:

chmod +1 file

The last two examples enable all to read, write, and execute the file; they also
turn on the set-group-ID.

chmod =rwx,g+s file
chmod 2777 file

SEE ALSO
ls(l), chmod(2).

NOTES
In a Remote File Sharing environment, you do not have the permissions that the
output of the Is -I command leads you to believe. For more information see the
S/Series CTIX Administrator's Guide.

CHOWN(l) CHOWN (1)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file ...

chown owner directory ...

chgrp group file ...

chgrp group directory ...

DESCRIPTION
chown changes the owner of the files or directories to owner. The owner may
be either a decimal user ID or a login name found in the password file.
Chgrp changes the group ID of the files or directories to group. The group may
be either a decimal group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

Only the owner of a file (or the super-user) may change the owner or group of
that file.

FILES
/etc/passwd
/etc/group

SEE ALSO
chmod(l), chown(l), group(4), passwd(4).

NOTES
In a Remote File Sharing environment, you may not have the permissions that
the output of the Is -1 command leads you to believe; see the S/Series CTIX
Administrator's Guide for more information.

CHROOT (IM) CHROOT(IM)

NAME
chroot - change root directory for a command

SYNOPSIS
/etc/chroot newroot command

DESCRIPTION
chroot causes the given command to be executed relative to the new root. The
meaning of any initial slashes (/) in the path names is changed for the command
and any of its child processes to newroot. Furthermore, upon execution, the
initial working directory is newroot.

Notice, however, that if you redirect the output of the command to a file:

chroot newroot command >x

will create the file x relative to the original root of the command, not the new
one.

The new root path name is always relative to the current root: even if a chroot
is currently in effect, the newroot argument is relative to the current root of the
running process.

This command can be run only by the super-user.

SEE ALSO
cd(l), chroot(2).

BUGS
One should exercise extreme caution when referencing device files in the new
root file system.

t

CHRTBL(IM) CHRTBL(IM)

NAME
chrtbl - generate character classification and conversion tables

SYNOPSIS
chrtbl [file]

DESCRIPTION
The chrtbl command creates a character classification table and an
upper/lower-case conversion table. The tables are contained in a byte-sized
array encoded such that a table lookup can be used to determine the character
classification of a character or to convert a character [see ctype(3C)]. The size
of the array is 257*2 bytes: 257 bytes are required for the 8-bit code set
character classification table and 257 bytes for the upper- to lower-case and
lower- to upper-case conversion table.

chrtbl reads the user-defined character classification and conversion
information from file and creates two output files in the current directory. One
output file, ctype.c (a C-language source file), contains the 257*2-byte array
generated from processing the information from file. You should review the
content of ctype.c to verify that the array is set up as you had planned. (In
addiition, an application program could use ctype.c.) The first 257 bytes of the
array in ctype.c are used for character classification. The characters used for
initializing these bytes of the array represent character classifications that are
defined in /usr/include/ctype.h; for example, _L means a character is lower
case and _S | _B means the character is both a spacing character and a blank.
The last 257 bytes of the array are used for character conversion. These bytes
of the array are initialized so that characters for which you do not provide
conversion information will be converted to themselves. When you do provide
conversion information, the first value of the pair is stored where the second
one would be stored normally, and vice versa; for example, if you provide
<0x41 0x61>, then 0x61 is stored where 0x41 would be stored normally, and
0x61 is stored where 0x41 would be stored normally.

The second output file (a data file) contains the same information, but is
structured for efficient use by the character classification and conversion
routines [see ctype(3C)]. The name of this output file is the value of the
character classification chrclass read in from file. This output file must be
installed in the /lib/chrclass directory under this name by someone who is
super-user or a member of group bin. This file must be readable by user, group,
and other, no other permissions should be set To use the character
classification and conversion tables on this file, set the environmental variable
CHRCLASS [see environ (5)] to the name of this file and export the variable; for
example, if the name of this file (and character class) is xyz, you should issue
the commands: CHRCLASS=xyz ; export CHRCLASS .

- 1 -

CHRTBL(IM) CHRTBL(IM)

If no input file is given, or if the argument - is encountered, chrtbl reads from
the standard input file.

The syntax of file allows the user to define the name of the data file created by
chrtbl, the assignment of characters to character classifications and the
relationship between upper- and lower-case letters. The following character
classifications are recognized by chrtbl:

chrclass name of the data file to be created by chrtbl.

isupper character codes to be classified as upper-case letters.

islower character codes to be classified as lower-case letters.

isdigit character codes to be classified as numeric.

isspace character codes to be classified as a spacing (delimiter)
character.

ispunct character codes to be classified as a punctuation character.

iscntrl character codes to be classified as a control character.

isblank character code for the space character.

isxdigit character codes to be classified as hexadecimal digits.

ul relationship between upper- and lower-case characters.

Any lines with the number sign (#) in the first column are treated as comments
and are ignored. Blank lines are also ignored.

A character can be represented as a hexadecimal or octal constant (for example,
the letter a can be represented as 0x61 in hexadecimal or 0141 in octal).
Hexadecimal and octal constants may be separated by one or more space and
tab characters.

The dash character (-) may be used to indicate a range of consecutive numbers.
Zero or more space characters may be used for separating the dash character
from the numbers.

The backslash character (\) is used for line continuation. Only a carriage
return is permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as
ordered pairs of octal or hexadecimal constants: <upper-case character
lower-case_character>. These two constants may be separated by one or more
space characters. Zero or more space characters may be used for separating the
angle brackets (< >) from the numbers.

CHRTBL(IM) CHRTBL(IM)

EXAMPLE
The following is an example of an input file used to create the ASCII code set
definition table on a file named ascii.

chrclass ascii
Isupper 0x41 - 0x5a
islower 0x61 - 0x7a
isdigit 0 x 3 0 - 0 x 3 9
isspace 0x20 0x9-Oxd
ispunct 0x21 • 0x2f 0x3a - 0x40 \

0x5b - 0x60 0x7b - 0x7e
Iscntrl 0x0 - 0x1 f 0x7f
is blank 0x20
Isxdigit 0 x 3 0 - 0 x 3 9 0x61-0x66 \

0x41 - 0x46
ul <0x41 0x61 > <0x42 0x62> <0x43 0x63> \

<0x44 0x64> <0x45 0x65> <0x46 0x66> \
<0x47 0x67> <0x48 0x68> <0x49 0x69> \
<0x4a 0x6a> <0x4b 0x6b> <0x4c 0x6c> \
<0x4d 0x6d> <0x4e 0x6e> <0x4f 0x6f> \
<0x50 0x70> <0x51 0 x 7 1 x 0 x 5 2 0x72> \
<0x53 0x73> <0x54 0x74> <0x55 0x75> \
<0x56 0x76> <0x57 0x77> <0x58 0x78> \
<0x59 0x79> <0x5a 0x7a>

FILES

/lib/chrclass/*

/usr/include/ctype.h

SEE A L S O
ctype(3C), environ(5).

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory.
They indicate errors in the command line or syntactic errors encountered within
the input file.

data file containing character classification and
conversion tables created by chrtbl
header file containing information used by character
classification and conversion routines

CKBUPSCD(IM) CKBUPSCD(IM)

NAME
ckbupscd - check file system backup schedule

SYNOPSIS
/etc/ckbupscd [-m]

DESCRIPTION
ckbupscd consults the file /etc/bupsched and prints the file system lists from
lines with date and time specifications matching the current time. If the -m flag
is present an introductory message in the output is suppressed so that only the
file system lists are printed. Entries in the /etc/bupsched file are printed under
the control of cron.

The file /etc/bupsched should contain lines of 4 or more fields, separated by
spaces or tabs. The first 3 fields (the schedule fields) specify a range of dates
and times. The rest of the fields constitute a list of names of file systems to be
printed if ckbupscd is run at some time within the range given by the schedule
fields. The general format is:

time[,time] day[,day] monthf,month] fsyslist

where:

time Specifies an hour of the day (0 through 23), matching any time
within that hour, or an exact time of day (0:00 through 23:59).

day Specifies a day of the week (sun through sat) or day of the month
(1 through 31).

month Specifies the month in which the time and day fields are valid.
Legal values are the month numbers (1 through 12).

fsyslist The rest of the line is taken to be a file system list to print.

Multiple time, day, and month specifications may be separated by commas, in
which case they are evaluated left to right.

An asterisk (*) always matches the current value for that field.

A line beginning with a sharp sign (#) is interpretted as a comment and ignored.

The longest line allowed (including continuations) is 1024 characters.

EXAMPLES
The following are examples of lines which could appear in the /etc/bupsched
file.

06:00-09:00 frl 1,2,3,4,5,6,7,8,9,10,11 /applic

CKBUPSCD(IM) CKBUPSCD(IM)

Prints the file system name lapplic if ckbupscd is run between 6:00am and
9:00am any Friday during any month except December.

00:00-06:00,16:00-23:59 1,2,3,4,5,6,7 1,8 /

Prints a reminder to backup the root (/) file system if ckbupscd is run between
the times of 4:00pm and 6:00am during the first week of August or January.

FILES
/ete/bupsched specification file containing times and file system to

back up

SEE ALSO
cron(lM), echo(l), sh(l).
S/Series CTIX Administrator's Guide.

BUGS
ckbupscd will report file systems due for backup if invoked any time in the
window. It does not know that backups may have just been taken.

CLEAR(l) CLEAR(l)

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION
clear prints the string that clears your terminal's screen. The program obtains
this string from the terminfo (A) database, using the TERM environment
variable to determine the type of terminal.

FILES
/usr/Iib/terminfo/?/* terminal capability database

SEE ALSO
sh(l), terminfo(4).

k

CLRI(IM) CLRI(IM)

NAME
clri - clear i-node

SYNOPSIS
/etc/clri special i-number ...

DESCRIPTION
clri writes nulls on the 64 bytes at offset i-number from the start of the i-node
list. This effectively eliminates the i-node at that address. Special is the device
name on which a file system has been defined. After clri is executed, any
blocks in the affected file will show up as "not accounted for" when/sc£(lM)
is run against the file-system. The i-node may be allocated to a new file.

Read and write permission is required on the specified special device.

This command is used to remove a file which appears in no directory; that is, to
get rid of a file which cannot be removed with the rm command.

SEE ALSO
fsck(lM), fsdb(lM), ncheck(lM), fs(4).

WARNINGS
If the file is open for writing, clri will not work. The file system containing the
file should NOT be mounted.

If clri is used on the i-node number of a file that does appear in a directory, it is
imperative to remove the entry in the directory at once, since the i-node may be
allocated to a new file. The old directory entry, if not removed, continues to
point to the same file. This sounds like a link, but does not work like one.
Removing the old entry destroys the new file.

t

CMP(l) CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp [-1] [-s] [-an] [-o] filel file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ,
it announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

-a/i Start the comparison at byte offset n, where n is an octal number. (Note
that the byte offset will be the same for both files.)

-o Ignore time and date stamp differences when comparing the contents of
binary files.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

COL(l) COL(l)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-f] [-x] [-p]

DESCRIPTION
The col command reads from the standard input and writes onto the standard
output. It performs the line overlays implied by reverse line feeds (ASCII code
ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-8). col is
particularly useful for filtering multicolumn output made with the .rt command
of nroff and output resulting from use of the tbl (1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if two or more characters are to appear in the same
place, only the last one read will be output

Although col accepts half-line motions in its input, it normally does not emit
them on output Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -f (fine)
option; in this case, the output from col may contain forward half-line-feeds
(ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which each
input character belongs is remembered, and on output SI and SO characters are
generated as appropriate to ensure that each character is printed in the correct
character set

On input, the only control characters accepted are space, backspace, tab, return,
new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT character
is an alternate form of full reverse line-feed, included for compatibility with
some earlier programs of this type. All other non-printing characters are
ignored.

Normally, col will ignore any escape sequences unknown to it that are found in
its input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO
nroff(l), tbl(l).

COL(l) COL(l)

NOTES
The input format accepted by col matches the output produced by nroff with
either the -T37 or -Tip options. Use -T37 (and the -f option of col) if the
ultimate disposition of the output of col will be a device that can interpret half-
line motions, and -Tip otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

COMB (1) COMB (1)

NAME
comb - combine SCCS deltas

SYNOPSIS
comb [-o] [-s] [ipsid] [-clist] files

DESCRIPTION
The comb command generates a shell procedure [see sh(1)] which, when run,
will reconstruct the given SCCS files. The reconstructed files will, hopefully, be
smaller than the original files. The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is
named, comb behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silendy ignored. If a name of - is
given, the standard input is read; each line of the input is taken to be the name
of an SCCS file to be processed; non-SCCS files and unreadable files are silently
ignored. The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-o For each get -e generated, this argument causes the reconstructed file
to be accessed at the release of the delta to be created, otherwise the
reconstructed file would be accessed at the most recent ancestor. Use
of the -o keyletter may decrease the size of the reconstructed SCCS
file. It may also alter the shape of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 * (original - combined) /' original
It is recommended that before any SCCS files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

-pSID The 5CCS /Dentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-clist A list [see get(\) for the syntax of a list] of deltas to be preserved.
All other deltas are discarded.

If no keyletter arguments are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

COMB (1) COMB (1)

F I L E S
s.COMB The name of the reconstructed SCCS file,
comb????? Temporary.

S E E A L S O
admin(l), delta(l), get(l), help(l), help(l), prs(l), sh(l), sccsfile(4).

D I A G N O S T I C S

Use help (I) for explanations.

B U G S

comb may rearrange the shape of the tree of deltas. It may not save any space;
in fact, it is possible for the reconstructed file to actually be larger than the
original.

COMM(l) COMM(l)

N A M E

comm - select or reject lines common to two sorted files

S Y N O P S I S

comm [- [123]] filel file2

D E S C R I P T I O N

comm reads filel and file2, which should be ordered in ASCII collating
sequence [see son(l)] , and produces a three-column output: lines only in filel;
lines only in file2; and lines in both files. The file name - means the standard
input.

Flags 1,2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the
first file but not in the second; comm -123 prints nothing.

S E t ALSO
cmp(l), diff(l), sort(l), uniq(l).

CONFIG(IM) CONFIG (IM)

NAME
config - configure a CTIX system

SYNOPSIS
/etc/config [-I file] [-c file] [-m file] [-t] [-b num] [-d num]
[-s num] f -f num] dfile

DESCRIPTION
The config program takes a description of a CTIX system, generates a
configuration table file, and generates a hardware interface file. The
configuration table file is a C program defining the configuration tables for the
various devices on the system. The hardware interface file provides
information about the interface between the hardware and device handlers.

The options to config (IM) are as follows:

-1 Specifies the name of the hardware interface file; low.s is the default.

-c Specifies the name of the configuration table file; conf.c is the default.

-m Specifies the name of the file that contains information about
supported devices; /etc/master is the default name. This file is
supplied with the CTIX system and should not be modified unless the
user fully understands its construction.

-t Requests a short table of major device numbers for character- and
block-type devices. This can facilitate the creation of special files.

-b Specifies the minimum number of entries in the bdevsw array. The
default value is 20.

-d Specifies the minimum number of entries in the cdevsw array. The
default value is 128.

-s Specifies the minimum number of entries in the fmodsw array. The
default value is 16.

-f Specifies the minimum number of entries in the fstypsw array. The
default value is 8. The -b, -d, -s, and -f options are provided to ensure
that a sufficient number of empty slots are available for loadable
modules, such as drivers, stream modules, software modules, and file
system types.

The user must supply dfile, which must contain device information for the
user's system. The dfile is divided into two parts: the first part contains
physical device specifications; the second part contains system-dependent
information. Any line with an asterisk (*) in column 1 is a comment. A sample
dfile file is provided in the /usr/sys/cf directory.

CONFIG(IM) CONFIG (IM)

First Part of dfile
Each line in the first part of the dfile contains one field, devname, which is the
name of the device, software module, stream module or file system type (as it
appears in the /etc/master device table).

The disk driver section is the first group of the first part; this first group must
contain only disk driver devname entries.

Note that for disk controllers, the position of devname in dfile determines the
/dev/dsk controller number assigned to the devname driver. For tape
controllers, the position of devname has no significance. The tape controller
number mapping is performed by the CTIX installation tools, using the
mknod(lM) command.

The following example shows how controller numbers are assigned from an
» /ow or afiie:

dfile Entry Controller Number

diskonbd /dev/dsk/cOd? (ST506)
Vsmd3200 /dev/dsk/c1d? (1st SMD)
scsidisk /dev/dsk/c2d? (SCSI)
Vsmd3200 /dev/dsk/c3d? (2nd SMD)

scsi (required line for SCSI)
stape (SCSI QIT and HIT)

In the example, above the Quarter-Inch Tape (QIT) drive is a SCSI device,
assigned to /dev/rmt/cOd?. The VME-based Half-Inch Tape controller is
assigned /dev/rmt/cld? by the installation tools. The driver (/etc/lddrv/ipt.o)
is loaded dynamically at boot time, so ipt is not entered in the dfile.

For the S/120, S/22x, and S/320, disk controller numbers are assigned as they
are on the S/640 and S/480, but tape controller numbers are assigned
differently, as shown below:

dfile Entry Controller Number

qic /dev/rmt/cOdO (QIC-2)
scsi (required line for SCSI)
stape (SCSI QIT and HIT)

As shown above, the first Quarter-Inch Tape drive is QIC-2 controller-based; it
is assigned /dev/rmt/cOdO. Again, the VME-based Half-Inch Tape drive

CONFIG(IM) CONFIG (IM)

controller is assigned /dev/rmt/cld? by the installation tools. The SCSI
Quarter-Inch Tape and Half-Inch tape drives are assigned /dev/rmt/c2d.?.

For the S/80 and S/280, the controller number assignment is different, because
the onboard disk controller is the SCSI controller and there is no VME
expansion:

dfile Entry Controller Number

scsidisk /dev/dsk/cOd? (SCSI)

scs i (required line for SCSI)
stape (SCSI QIT and HIT)

As shown above, the first Quarter-Inch Tape drive is assigned /dev/rmt/cOdO.
Remaining tape drives are assigned /dev/rmt/cOd? (where ? is 1 through 7).

Second Part of dfi le
The second part of the dfile contains four types of lines, listed and described
below. Note that all specifications of this part are required, although the order
is arbitrary.

1. Root/pipe device specification

Two lines of three fields each:

root devname minor
pipe devname minor

where minor is the minor device number (in decimal) of the slice on the
fixed disk.

2. Swap device specification

One line that contains five fields, as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and nswap
is the maximum number of lK-byte disk blocks (decimal) in the swap area.
The kernel sizes the actual swap area size and configures itself for up to
this maximum.

3. Dynamic device number assignment

The devnames for root, swap, and pipe can be specified as any. The
major device numbers are undetermined until boot time.

CONFIG(IM) CONFIG (IM)

The key word parameter dynamic can be used with the any devname to
force the major device number of the boot device to 0. For example, if the
devnames in the dfile are diskonbd and scsidisk, and the boot device is
the scsidisk, the kernel swaps the device numbers so that scsidisk can be
accessed through major device number 0 instead of 1, as specified in the
dfile. All access to SCSI disks is through /dev/dsk/cOd?s?, and all access
to ST506 disks is through /dev/dsk/cld?s?. If any is not used, dynamic
has no effect.

4. Parameter specification

Any number of lines of two fields each, chosen from the following list.
Number is decimal. Note that the following parameter list is not complete;
parameters not on the list either must not be changed or have no effect.

buffers number /* number of 1024-bytefile system
caching buffers */

buffers_4k number /* number of 4096-byte file system
caching buffers •/

dmmxsz number /* max number of pages per loadable
driver */

inodes number /* max open inodes in system */
s5inodes number /* max open s5inodes in system */
files number /* max open files in system */
flkrec number /* max locks active in system */
mounts number /* max file systems mounted */
regions number /* total number of regions In system */
procs number /* max processes In system •/
maxproc number /* max processes per user ID */
maxfsiz number /• ulimit default in 512-byte blocks */
maxumem number 1* max number of pages per process */
cbufsize number /* console circular buffer size in bytes */
msgmax number /* max chars In a message */
msgmni number /* max active message queues *l
msgmnb number 1* max total chars in message queues */
msgtql number /* max messages In system */
m s g s s z number
msgseq number /• msgssz * msgseq = number bytes of

system buffering *l
nlldrv number 1* max number of loadable drivers *l
setnmni number /* max active semaphores */
semmns number 1* max semaphores in system */
semmsi number /* max semaphores per ID */

CONFIG(IM) CONFIG (IM)

•emopm number I* max operations per semop call */
semume number /* max undo structures per p r o c e s s */
semmnu number /* max undo structures In s y s t e m */
dirlosz number /« direct I/O default size */
shmmax number I* max bytes in a shared segment */
shmmln number I* min bytes in a shared segment */
shmmni number /* max active shared segments */
shmseg number /* max attached segments per p r o c e s s */
shmbrk number I* gap in pages between data and

shared memory */
nqueue number /* max stream queues */
nstream number /* max streams */
nblk4096 number /* number of 4096 byte stream bufs */
nblk2048 number I* number of 204S byte stream bufs */
nblk1024 number I* number of 1024 byte stream bufs */
nblk512 number /* number of 512 byte stream bufs */
nblk256 number /* number of 256 byte stream bufs */
nblk128 number I* number of 128 byte stream bufs */
nblk64 number I* number of 64 byte stream bufs */
nblk16 number /* number of 16 byte stream bufs */
nblk4 number /* number of 4 byte stream bufs */
shlbmax number /* max # of shared libs per process */
nofiles number /* max # of open files per process »/
ntimod number /* max # of TLI connections */
ntirdwr number /* max # of TLI read/write connect ions */
nsp number /• max # of stream pipes */

Certain parameters, if set to 0, allow the kernel to autoconfigure. For example,
procs, regions, clists, i-nodes, s5inodes, files, and buffers are
autoconfigurable. The value of procs is based on the number of users; The
values for regions, i nodes, sSinodes, and files are based on the value of procs.
The value of clists is based on the number of serial and cluster ports. The value
of buffers is based on the amount of physical memory. Any or all of the
autoconfigured values can be overridden. The value of maxumem can also be
set to 0, in which case it floats between IM byte and one quarter of the total
swap space.

E X A M P L E

This example assumes an S/640 system with the following devices:

• Onboard ST506 disks (root)
• First Interphase SMD disk controller

CONFIG(IM) CONFIG (IM)

SCSI disks
Second Interphase SMD disk controller
RS-232-C (any number of ports)
SCSI tape drives
one parallel line printer
root device is a disk (drive 0, section 1)
pipe device is a disk (drive 0, section 1)
swap device is a disk (drive 0, section 2), with a swplo of 1 and an
nswap of 8000
number of buffers is 100
number of processes is 100
maximum number of processes per user ID is 25
number of mounts is 6
number of inodes is 100
number of files is 120
number of character buffers is 64
messages are to be included
semaphores are to be included

The S/640 system configuration would be specified as follows in the
dfile:

diskonbd
Vsmd3200
scsidisk
Vsmd3200
serial
scs i
stape
console
pip
root any 01
pipe any 01
swap any 02 0 8000
* Comments are inserted in this manner
buffers 100
procs 100
maxproc 25
mounts 6
inodes 100
files 120
mesg 1

CONFIG(IM) CONFIG (IM)

s e m a 1
c l is ts 64

FILES
/etc/master default input master device table
/usr/sys/cf/dfile default system configuration
/usr/sys/cf/low.s default output hardware interface
/usr/sys/cf/conf.c default output configuration table

SEE ALSO
ldeeprom(lM), uconf(lM), master(4).
S/Series CTIX Administrator s Guide.

D I A G N O S T I C S
Diagnostics are routed to the standard output and are self-explanatory.

B U G S
The -t option does not know about devices that have aliases.

CONLOC ATE (1M) CONLOC ATE (1M)

NAME
conlocate - locate a terminal to use as the virtual system console

SYNOPSIS
/etc/conlocate [-r] [-in] [-t]

DESCRIPTION
The conlocate command searches for a terminal to use as the system console,
/dev/syscon. Conlocate scans /etc/inittab for terminals that get a gelfy(lM) in
state 6, and then spawns children to monitor the terminals for attempted logins.
Each child performs the I/O control and login verification of the getty-login
sequence, but only root can actually log in. The first terminal to have root log
in gets its tty linked to /dev/syscon. The conlocate command then writes to its
own standard output the new virtual system console's communication options,
which are set from the values in /etc/gettydefs, by using the stty -g command.

The following are options to conlocate:

-r If /dev/syscon exists and can be opened, exit without scanning for a
new system console terminal.

-in Scan run level n instead of run level 6.

-t Begin by monitoring for logins on the existing /dev/syscon. If root
logs in at that terminal within 20 seconds, abandon the search for
another console.

FILES
/dev/syscon

/etc/inittab

/etc/gettydefs

SEE ALSO

init (IM), stty(l), gettydefs(4), inittab(4), termio(7).

WARNING
Beware of collision with other processes that might be trying to open the same
terminals, especially gettys spawned by init.

virtual system console

definitions of operating states

communication options

CONV (1) CONV(l)

NAME
conv - common object file converter

SYNOPSIS
conv [-a] [-o] [-p] -t target [- I files]

DESCRIPTION
The conv command converts object files in the common object file format from
their current byte ordering to the byte ordering of the target machine. The
converted file is written to file.v. The conv command can be used on either the
source (sending) or target (receiving) machine.

Command line options follow:

indicates that the names o f f i l e s should be read from the standard
input.

-a If the input file is an archive, produce the output file in the UNIX
System V Release 2.0 portable archive format.

-o If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

-p If the input file is an archive, produce the output file in the UNIX
System V Release 1.0 random access archive format.

-t target Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This can be
another host or a target machine. Legal values for target follow:
pdp, vax, ibm, x86, bl6, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best used
within a procedure for shipping object files from one machine to another.

The conv command recognizes and produces archive files in three formats: the
pre- UNIX System V format, the UNIX System V Release 1.0 random access
format, and the UNIX System V Release 2.0 portable ASCII format. By default,
conv creates the output archive file in the same format as the input file. To
produce an output file in a different format than the input file, use the -a, -o, or
-p option. If the output archive format is the same as the input format, the
archive symbol table is converted, otherwise the symbol table is stripped from
the archive. The ar(1) command with its -t and -s options must be used on the
target machine to recreate the archive symbol table.

CONV(l) CONV(l)

EXAMPLE
To ship object files from a VAX to a S/MT Computer, execute the following
commands:

conv -t mc68 *.out

uucp *.out.v myS320r/r|e/

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command lines
cause termination. Fatal diagnostics on an input file cause the program to
continue to the next input file.

CAVEATS
The conv command does not convert archives from one format to another if
both the source and target machines have the same byte ordering; use the ci'iX
system tool convert (1) instead.

SEE ALSO
ar(l), convert(l), ar(4), a.out(4).

CONVERT(1) CONVERT (1)

NAME
convert - convert archive files to common formats

SYNOPSIS
convert infile outfile

DESCRIPTION
The convert command transforms input infile to output outfile. Infile must be a
UNIX System V Release 1.0 archive file and outfile will be the equivalent
UNIX System V Release 2.0 archive file. All other types of input to the convert
command will be passed unmodified from the input file to the output file (along
with appropriate warning messages).

Infile must be different from outfile.

FILES
TMPDIR /conv* temporary files

TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam{)m tmpnam(3S)].

SEE ALSO
ar(l), tmpnam(3S), a.out(4), ar(4)

(-

C P (1)

NAME
cp, In, mv - copy, link, or move files

SYNOPSIS
cp filel [file2 ...] target

In [-f] filel [file2 ...] target

mv [-f] filel [file2 ...] target

CP(1)

DESCRIPTION
These commands copy (link, move) filel to target. Under no circumstance can
filel and target be the same [take care when using sh(1) metacharacters]. If
target is a directory, one or more files are copied (linked, moved) to that
directory. If target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it prints the
mode [see chmod(2)], asks for a response, and reads the standard input for one
line; if the line begins with y, the mv or In occurs, if permissible; if not, the
command exits. For mv, when source parent directories or the target directory
is writable and has the sticky bit set, any of the following conditions must be
true:

the user must own the file
the user must own the directory
the file must be writable to the user
the user must be the super-user

When the -f option is used or if the standard input is not a terminal, no questions
are asked and the mv or In is done.

Only mv allows filel to be a directory, in which case the directory rename
occurs only if the two directories have the same parent; filel is renamed target,
li filel is a file and target is a link to another file with links, the other links
remain and target becomes a new file.

When using cp, if target is not a file, a new file is created with the same mode
as filel, except that the sticky bit is not set unless you are super-user; the owner
and group of target are those of the user. If target is a file, copying a file into
target does not change its mode, owner, nor group. The last modification time
of target (and last access time, if target did not exist) and the last access time of
filel are set to the time the copy was made. If target is a link to a file, all links
remain and the file is changed.

SEE ALSO
chmod(l), cpio(l), rm(l).

CP(1) CP(1)

WARNINGS
The In command does not link across file systems. This restriction is necessary
because file systems can be added and removed.

BUGS
I f f i l e l and target lie on different file systems, mv must copy the file and delete
the original. In this case, any linking relationship with other files is lost

CPIO(l) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -o[acBQvV] [-C bufsize] [[-O file] [-M message]]

cpio -i [BQcdmrtuvVfsSb6k] [-C bufsize] [[-1 file] [-M message]]
[pattern ...]

cpio -p [adlmuvV] directory

DESCRIPTION
The cpio -o (copy out) command reads the standard input to obtain a list of path
names and copies those files onto the standard output together with path name
and status information. Output is padded to a 512-byte boundary by default.

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -o. The block size used with cpio -i must be the
same as the block size used with the cpio -o when the archive was made. Only
files with names that match patterns are selected. Patterns are regular
expressions given in the name-generating notation of sh(l). In patterns, meta-
characters ?, and [. . .] match the slash (/) character, and backslash (\) is an
escape character. A ! meta-charaeter means not. (For example, the !abc*
pattern would exclude all files that begin with abc.) Multiple patterns may be
specified and if no patterns are specified, the default for patterns is * (that is,
select all files). Each pattern must be enclosed in double quotation marks;
otherwise, the name of a file in the current directory is used.

The extracted files are conditionally created and copied into the current
directory tree based upon the options described below. The files use the
permissions of the previous cpio -o. The current user is the owner and group of
the files unless the user is super-user, in which case the files use the the owner
and group of the previous cpio -o.

Note that if cpio -i tries to create a file that already exists, and the existing file
is the same age or newer, cpio displays a warning message and does not replace
the file. (The -u option can be used to unconditionally overwrite the existing
file.)

cpio -p (pass) reads the standard input to obtain a list of path names of files that
are conditionally created and copied into the destination directory tree based
upon the options described below.

1) CPIO(l)

The meanings of the available options are:

a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified.

B Input/output is to be blocked 5,120 bytes to the record. The
default buffer size is 512 bytes when this and the C or Q options
are not used. (-B does not apply to the pass option; -B is
meaningful only with data directed to or from a character special
device, for example, /dev/rmtO or raw floppy disks).

Q Input/output is to be blocked 65,536 bytes to the record. Works
like -B option, with which it is mutually exclusive. The -Q
option optimizes quarter-inch tape access.

d Directories are to be created as needed.

c Write header information in ASCII character form for
portability. Always use this option when origin and destination
machines are different types.

C bufsize Input/output is to be blocked bufsize bytes to the record, where
bufsize is replaced by a positive integer. The default buffer size
is 512 bytes when the Q, and B options are not used. (-C does
not apply to the pass option; -C is meaningful only with data
directed to or from a character special device, for example,
/dev/rmtO or raw floppy disks).

I file Read the contents of file as input. If file is a character special
device, when the first medium is full replace the medium and
type a carriage return to continue to the next medium. Use only
with the -i option.

O file Direct the output of cpio to file. If file is a character special
device, when the first medium is full replace the medium and
type a carriage return to continue to the next medium. Use only
with the -o option.

r Interactively rename files. If the user types a null line, the file is
skipped. If the user types a " . " the original pathname is copied.
(Not available with cpio -p.)

t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file does not replace a
newer file with the same name).

CPIO(l) CPIO(l)

v Verbose: causes a list of file names to be printed. When used
with the t option, the table of contents looks like the output of an
Is -1 command [see /s(l)].

V Special Verbose: print a dot for each file seen. Useful to
reassure the user that cpio is working without printing out all file
names.

Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is
corrupted or out of sequence, this option lets you read only those
files with good headers. (For cpio archives that contain other
cpio archives, if an error is encountered cpio can terminate
prematurely, cpio finds the next good header, which can be one
for a smaller archive, and terminates when the smaller archive's
trailer is encountered.) Used oniy with the -i option.

Whenever possible, link files rather than copying them. Usable
only with the -p option.

Retain previous file modification time. This option is ineffective
on directories that are being copied.

Define a message to use when switching media. When you use
the -O or -I options and specify a character special device, you
can use this option to define the message that is printed when
you reach the end of the medium. One % d can be placed in the
message to print the sequence number of the next medium
needed to continue.

f Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

s Swap bytes within each half word. Use only with the -i option.

5 Swap halfwords within each word. Use only with the -i option.

b Reverses the order of the bytes within each word. Use only with
the -i option.

6 Process an old (that is, UNIX System Sixth Edition format) file.
Only useful with -i (copy in).

Note that cpio assumes four-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing to
(-o) or reading from (-i) a character special device, cpio prints the following
message:

I

m

M message

CPIO(l) CPIO(l)

Reached end of medium on output.
To exit - press <E> followed by <RETURN>.
To continue - insert volume #nn and press the <RETURN> key.

To continue, replace the medium and press Return.

EXAMPLES
The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files so
they can be directed (>) to a single file (. ,/newfile). Instead of "Is ," you could
use find, echo, cat, etc. to pipe a list of names to cpio. You could direct the
output to a device instead of a file.

Is | cpio -oc >.Jnewfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat in the
example), takes out those files that match the patterns (memo/al, memo/b*),
creates directories below the current directory as needed (-d option), and places
the files in the appropriate directories. If no patterns were given, all files from
newfile would be placed in the directory.

cat newfile | cpio -icd "memo/al" "memo/b*"

cpio -p takes the file names piped to it and copies or links (-1 option) those files
to another directory on your machine (newdir in the example). The -d options
says to create directories as needed. The -m option says retain the modification
time. (It is important to use the -depth option of find to generate path names for
cpio. This eliminates problems cpio could have trying to create files under
read-only directories.)

find . -depth -print | cpio -pdlmv newdir

SEE ALSO
ar(l), find(l), ls(l), tar(l), cpio(4).

NOTES

1. Path names are restricted to 256 characters.

2. Only the super-user can copy special files.

3. Blocks are reported in 512-byte quantities.

4. If a file has 000 permissions, contains more than 0 characters of data,
and the user is not root, the file is not saved or restored.

CMP(l) CMP(l)

NAME
cpp - the C language preprocessor

SYNOPSIS
LIBDIR/cpp [option ...] [ifile [ofile]]

DESCRIPTION
The C language preprocessor, cpp, is invoked as the first pass of any C
compilation by the cc(l) command. Thus cpp's output is designed to be in a
form acceptable as input to the next pass of the C compiler. As the C language
evolves, cpp and the rest of the C compilation package will be modified to
follow these changes. Therefore, the use of cpp other than through the cc(l)
command is not suggested, since the functionality of cpp may someday be
moved elsewhere. See m4(1) for a general macro processor.

cpp optionally accepts two file names as arguments. Ifile and ofile are
respectively the input and output for the preprocessor. They default to standard
input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified,
all comments (except those found on cpp directive lines) are passed
along.

-Uname Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. Following is
the current list of these possibly reserved symbols.

Define name with value def as if by a #define. If no =def is given,
name is defined with value 1. The -D option has lower precedence
than the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of the
order of the options.

operating system:
hardware:

unix, gcos, ibm, os, tss
interdata, mc68k, mc68000, mc68010,
mc68020, pdp l l , u370, u3b, u3b5,
u3b2, u3b20d,vax
RES, RT
lint

UNIX system variant:
lint(1):

-Dname
-D name=def

- 1 -

CPP(l) CPP(l)

-T The -T option forces cpp to use only the first eight characters to
distinguish preprocessor symbols and is included for backward
compatibility.

-Idir Change the algorithm for searching for #include files whose names do
not begin with / to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in " "
will be searched for first in the directory of the file with the #include
line, then in directories named in -I options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the
directory of the file with the #include line is not searched. By default,
cpp searches for the name enclosed in < > in /usr/include; however, if
the shell variable INCROOT is set, cpp prepends the value of INCROOT
to the standard list. This is particularly useful for cross-compilation.

-Ydir Use directory dir in place of the standard list of directories when
searching for #include files. Use of the -Y option overrides the value
for INCROOT if it is set

-H Print, one per line on standard error, the path names of included files.

Two special names are understood by cpp. The name LINE is defined as
the current line number (as a decimal integer) as known by cpp, and FILE
is defined as the current file name (as a C string) as known by cpp. They can be
used anywhere (including in macros) just as any other defined name.

All cpp directive lines start with # in column 1. Any number of blanks and tabs
is allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg,..., arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma-
separated sets of tokens, and a) followed by token-string, where each
occurrence of an arg in the token-string is replaced by the
corresponding set of tokens in the comma-separated list. When a
macro with arguments is expanded, the arguments are placed into the
expanded token-string unchanged. After the entire token-string has
been expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

- 2 -

CPP(l) CPP(l)

#undef name
Cause the definition of name (if any) to be forgotten from now on. No
additional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is only
searched for in the standard places. See the -I and -Y options above
for more detail. No additional tokens are permitted on the directive
line after the final" or >.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the
C compiler. Integer-constant is the line number of the next line and
filename is the file from which it comes. If "filename" is not given, the
current file name is unchanged. No additional tokens are permitted on
the directive line after the optional filename.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of an
intervening #undef. No additional tokens are permitted on the
directive line after name.

#ifndef name
The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens are
permitted on the directive line after name.

#if constant-expression
Lines following will appear in the output if and only if the constant-
expression evaluates to non-zero. All binary non-assignment C
operators, the ?: operator, the unary - , ! , and" operators are all legal in
constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms: defined

- 3 -

CMP(l) CMP(l)

(name) or defined name. This allows the utility of #ifdef and
#ifndef in a #if directive. Only these operators, integer constants, and
names which are known by cpp should be used in constant-expression.
In particular, the sizeof operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

#if defined(foo) || deflned(fum)

#elif constant-expression
An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The lines
following the #elif directive will appear in the output if and only if the
preceding test directive evaluates to zero, all intervening #elif
directives evaluate to zero, and the constant-expression evaluates to
non-zero. If consiani-expression evaluates to non-zero, all succeeding
#elif and #else directives will be ignored. Any constant-expression
allowed in a #if directive is allowed in a #elif directive.

#else The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening #elif
directives evaluate to zero. No additional tokens are permitted on the
directive line.

The test directives and the possible #else directives can be nested.

SEE ALSO
cc(l), lint(l), m4(l).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The
line number and file name where the error occurred are printed along with the
diagnostic.

NOTES
The unsupported -W option enables the #class directive. If it encounters a
#class directive, cpp will exit with code 27 after finishing all other processing.
This option provides support for " C with classes".

FILES
INCDIR standard directory list for #include files, usually

/usr/include

usually /lib UBDIR

CPP(l) CPP(l)

Because the standard directory for included files may be different in different
environments, this form of #include directive:

#inctud« <file.h>

should be used, rather than one with an absolute path, like:

#include "/u»r/include/file.h"

cpp warns about the use of the absolute pathname.

- 5 -

(F

C P R S (l) CPRS(l)

NAME
cprs - compress a common object file

SYNOPSIS
cprs [-p] filel file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by removing
duplicate structure and union descriptors. The reduced ii\&,file2, is produced as
output.

The sole option to cprs is:

-p Print statistical messages including: total number of tags, total duplicate
tags, and total reduction of filel.

SEE ALSO
strip(l), a.out(4), syms(4).

CPSET(IM) CPSET(IM)

NAME
cpset - install object files in binary directories

SYNOPSIS

cpset [-o] object directory [mode owner group]

DESCRIPTION
The cpset command is used to install the specified object file in the given
directory. The mode, owner, and group, of the destination file may be
specified on the command line. If this data is omitted, two results are possible:

If the user of cpset has administrative permissions (that is, the user's
numerical ID is less than 100), the following defaults are provided:

mode - 0755

owner - bin

group - bin

If the user is not an administrator, the default, owner, and group of the
destination file is that of the invoker.

An optional argument of -o forces cpset to move object to OLDobject in the
destination directory before installing the new object.

For example:

cpset echo /bin 0755 bin bin

cpset echo /bin

cpset echo /bin/echo

All the examples above have the same effect (assuming the user is an
administrator). The file echo is copied into /bin and is given 0755, bin, bin as
the mode, owner, and group, respectively.

cpset utilizes the file /usr/src/destinations to determine the final destination of
a file. The locations file contains pairs of pathnames separated by spaces or
tabs. The first name is the "official" destination (for example: /bin/echo). The
second name is the new destination. For example, if echo is moved from /bin to
/usr/bin, the entry in /usr/src/destinations would be:

/bin/echo /usr/bin/echo

When the actual installation happens, cpset verifies that the old pathname does
not exist. If a file exists at that location, cpset issues a warning and continues.
This file does not exist on a distribution tape; it is used by sites to track local
command movement. The procedures used to build the source are responsible
for defining the official locations of the source.

CPSET(IM) CPSET(IM)

Cross Generat ion
The environment variable ROOT is used to locate the destination file (in the
form $ROOT/usr/src/destinations). This is necessary in the cases where cross
generation is being done on a production system.

SEE ALSO
install(lM), make(l).

CRASH(IM) CRASH (IM)

NAME
crash - examine system images

SYNOPSIS

/etc/crash [-d dumpfile] [-n namelist] [-w outputfile]

DESCRIPTION
The crash command is used to examine the system memory image of a live or a
crashed system by formatting and printing control structures, tables, and other
information. Command line arguments to crash are dumpfile, namelist, and
outputfile.
Dumpfile is the file containing the system memory image. The default dumpfile
is /dev/kmem. The system image can also be slice zero of the raw disk that
contains the dump area (for example, /dev/rdsk/cOdOsO); or it can be the
pathname of a file produced using dd to copy slice zero or just the dump area;
or in the case of a tape dump, the second file on the tape.

The text file namelist contains the symbol table information needed for
symbolic access to the system memory image to be examined. The default
namelist is /etc/lddrv/unix.exec if examining a running system or
/etc/lddrv/prev.unix.exec if examining a dump. If neither of these files exists,
the default is /unix. If a system image from another machine is to be examined,
the corresponding prev.unix.exec must be copied from that machine. The
prev.unix.exec is preferred to /unix because it also contains the namelist for all
the loaded drivers at the correct addresses.

When the crash command is invoked, a session is initiated. The output from a
crash session is directed to outputfile. The default outputfile is the standard
output

Input during a crash session is of the form:

function [argument...]

where function is one of the crash functions described in the FUNCTIONS
section of this manual page, and arguments are qualifying data that indicate
which items of the system image are to be printed.

The default for process-related items is the current process for a running system
and the process that was running at the time of the crash for a crashed system.
If the contents of a table are being dumped, the default is all active table entries.

The following function options are available to crash functions wherever they
are semantically valid:

CRASH(IM) CRASH (IM)

-s process

-wfile

-e

-f

-P

Display every entry in a table.

Display the full structure.

Interpret all address arguments in the command line as physical
addresses.

Specify a process slot other than the default.

Redirect the output of a function to file.

Note that if the -p option is used, all address and symbol arguments explicitly
entered on the command line will be interpreted as physical addresses. If they
are not physical addresses, results will be inconsistent.

The functions mode, defproc, and redirect correspond to the function options
-p, -s, and -w. The mode function may be used to set the address translation
mode to physical or virtual for all subsequently entered functions; defproc sets
the value of the process slot argument for subsequent functions; and redirect
redirects all subsequent output.

Output from crash functions may be piped to another program in the following
way:

function [argument...] ! shell_command

For example,

mount! grep rw

will write all mount table entries with an rw flag to the standard output. The
redirection option (-w) cannot be used with this feature.

Depending on the context of the function, numeric arguments will be assumed
to be in a specific radix. Counts are assumed to be decimal. Addresses are
always hexadecimal. Table address arguments larger than the size of the
function table will be interpreted as hexadecimal addresses; those smaller will
be assumed to be decimal slots in the table. Default bases on all arguments may
be overridden. The C conventions for designating the bases of numbers are
recognized. A number that is usually interpreted as decimal will be interpreted
as hexadecimal if it is preceded by Ox and as octal if it is preceded by 0.
Decimal override is designated by Od, and binary by Ob.

Aliases for functions may be any uniquely identifiable initial substring of the
function name. Traditional aliases of one letter, such as p for proc, remain
valid.

Many functions accept different forms of entry for the same argument.
Requests for table information will accept a table entry number, a physical

CRASH(IM) CRASH (IM)

address, a virtual address, a symbol, a range, or an expression. A range of slot
numbers may be specified in the form a-b where a and b are decimal numbers.
An expression consists of two operands and an operator. An operand may be an
address, a symbol, or a number; the operator may be +, -, *, /, &, or I. An
operand which is a number should be preceded by a radix prefix if it is not a
decimal number (0 for octal, Ox for hexidecimal, Ob for binary). The expression
must be enclosed in parentheses (). Other functions will accept any of these
argument forms that are meaningful.

Two abbreviated arguments to crash functions are used throughout. Both
accept data entered in several forms. They may be expanded into the following:

table_entry = table entry I address I symbol I range I expression

start_addr = address I symbol I expression

FUNCTIONS
? [-w file] List available functions.

!cmd Escape to the shell to execute a command.

adv [-e] [-w file] [[-p] table_entry ...]
Print the advertise table.

base [-w file] number...
Print number in binary, octal, decimal, and hexadecimal. A number in
a radix other then decimal should be preceded by a prefix that
indicates its radix as follows: Ox, hexidecimal; 0, octal; and Ob, binary.

buffer [-w file] [-format] bufferslot

or

buffer [-w file] [-format] [-p] start_addr
Alias: b.
Print the contents of a buffer in the designated format. The following
format designations are recognized: -b, byte: -c, character; -d,
decimal; -x, hexadecimal; -o, octal; -r, directory; and -i, inode. If no
format is given, the previous format is used. The default format at the
beginning of a crash session is hexadecimal.

bufhdr [- f] [-w file] [[-p] table_entry...]
Alias: buf.
Print system buffer headers.
The -f option produces different output depending on whether the
buffer is local or remote (contains RFS data).

CRASH(IM) CRASH (IM)

callout [-w file]
Alias: c.
Print the callout table.

cblk [-e] [-p] [-w file] [-t type] [table_entry ...]
Display contents of cblocks.

clist [-e] [-p] [-w file] [-t type] [table_entry...]
Display usage of clists.

conbuf [-w file]
Display console buffer.

dballoc [-w file] [class...]
Print the dballoc table. If a class is entered, only data block allocation
information for that class will be printed.

dbfree [-w file] [class...]
Print free streams data block headers. If a class is entered, only data
block headers for the class specified will be printed.

dblock [-e] [-w file] [-c class...]

or

dblock [-e] [-w file] [[-p] table_entry ...]
Print allocated streams data block headers. If the class option (-c) is
used, only data block headers for the class specified will be printed.

defproc [-w file] [-c]

or

defproc [-w file] [slot]
Set the value of the process slot argument. The process slot argument
may be set to the current slot number (-c) or the slot number may be
specified. If no argument is entered, the value of the previously set
slot number is printed. At the start of a crash session, the process slot
is set to the current process.

dis [-w file] [-a] start_addr [count]
Disassemble from the start address for count instructions. The default
count is 1. The absolute option (-a) specifies a non-symbolic
disassembly.

disk [-w file]
Display disk information.

CRASH(IM) CRASH (IM)

ds [-w file] virtual_address ...
Print the data symbol whose address is closest to, but not greater than,
the address entered.

fcallout [- w f i l e]
Alias: fc.
Print the fast callout table.

file [-e] [-w file] [[-p] table_entry ...]
Alias: f.
Print the file table.

findaddr [-w file] table slot
Print the address of slot in table. Only tables available to the size
function are available to findaddr.

findsiot [-w file] virtual_address ...
Print the table, entry slot number, and offset for the address entered.
Only tables available to the size function are available to findsiot.

fs [-w file] [[-p] table_entry ...]
Print the file system information table.

gdp [- e] [- f] [- w f i l e] [[-p] table_entry...]
Print the gift descriptor protocol table.

gt Equivalent to

t ty - tgt

(See tty function below.)

help [-w file] function ...
Print a description of the named function, including syntax and aliases.

i node[-e] [- f] [- w f i l e] [[- p] table_entry ...]
Alias: i.

Print the inode table, including file system switch information,

kfp [-w file] [-s process] [-r]

or
k fp [-w file] [-s process] [value]

Print the frame pointer for the start of a kernel stack trace. The kfp
value can be set using the value argument or the reset option (-r),
which sets the kfp from the saved kfp in a dump. If no argument is
entered, the current value of the kfp is printed.

CRASH(IM) CRASH (IM)

lck [-e] [-w file] [[-p] table_entry ...]
Alias: 1.
Print record locking information. If the -e option is used or table
address arguments are given, the record lock list is printed. If no
argument is entered, information on locks relative to inodes is printed.

linkblk [-e] [-w file] [[-p] table_entry...]
Print the linkblk table.

major [-w file] [entry ...]
Print the MAJOR table.

map [-w file] mapname ...
Print the map structure of the given mapname.

mbfree [-w file]
Print free streams message biock headers.

mblock [-e] [-w filename] [[-p] table_entry ...]
Print allocated streams message block headers.

mode [-w file] [mode]
Set address translation of arguments to virtual (v) or physical (p)
mode. If no mode argument is given, the current mode is printed. At
the start of a crash session, the mode is virtual.

mount [-e] [-w file] [[-p] table_entry...]
Alias: m.
Print the mount table.

msg [- e] [- f] [- p] [- w f i l e] [-sprocess]
[table_entry...]

Display IPC message queue headers.

msginfo [-p] [-w file]
Display IPC message information.

msgtext [-e] [-p] [-w file] [-s process]
[table_entry...]

Display IPC message data.

nm [-w file] symbol...
Print value and type for the given symbol.

notify [-e] [-p] [-w file] symbols

od [-p] [-w file] [-format] [-mode] [-s process]
start_addr [count]

Alias: rd.

CRASH(IM) CRASH (IM)

Print count values starting at the start address in one of the following
formats: character (-c), decimal (-d), hexadecimal (-x), octal (-o),
ASCE (-a), or hexadecimal/character (-h), and one of the following
modes: long (-1), short (-t), or byte (-b). The default mode for
character and ASCII formats is byte; the default mode for decimal,
hexadecimal, and octal formats is long. The format -h prints both
hexadecimal and character representations of the addresses dumped;
no mode needs to be specified. When format or mode is omitted, the
previous value is used. At the start of a crash session, the format is
hexadecimal and the mode is long. If no count is entered, 1 is
assumed.

pdt [-e] [-w file] [-s process] section segment

or

pdt [-e] [-w file] [-s process] [-p] start_addr [count]
SI640 Only:
The page descriptor table of the designated memory section and
segment is printed. Alternatively, the page descriptor table starting at
the start address for count entries is printed. If no count is entered, 1 is
assumed.

pfdat[-e] t - w f i l e] [[- p] table_entry ...]
Print the pfdata table.

pfree [-e] [-p] [-w file] table_entry ...
Display free list entries.

phash [-e] [-p] [-w file]

Display page hash table.

proc [-e] t - f] [- w f i l e] [[- p] table_entry ... #procid.. .]

or
proc [-f] [- w f i l e] [- r]

Alias: p.
Print the process table. Process table information may be specified in
two ways. First, any mixture of table entries and process ids may be
entered. Each process id must be preceded by a #. Alternatively,
process table information for runnable processes may be specified with
the runnable option (-r).

CRASH(IM) CRASH (IM)

pt Equivalent to

tty -t pt

(See tty function below.)

qrun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-p] table_entry ...]
Print streams queues.

quit Alias: q.
Terminate the crash session.

r c v d [- e] [- f] [- w f i l e] [[-p] table_entry ...]
Print the receive descriptor table.

redirect [-w file] [-c]

or

redirect [-w file] [file]
Used with a file name, redirects output of a crash session to the named
file. If no argument is given, the file name to which output is being
redirected is printed. Alternatively, the close option (-c) closes the
previously set file and redirects output to the standard output.

region [-e] [-f] [-w file] [[-p] table_entry ...]
Print the region table.

scsi [-w file]
Display SCSI tables.

scsirqb [-f] [-w file] [tbl_entry I start_addr]
Display SCSI request blocks.

sdt [-e] [-w file] [-s process] section

or

sdt [-e] [-w file] [-s process] [-p] start_addr [count]
S/640 Only:
The segment descriptor table for the named memory section is printed.
Alternatively, the segment descriptor table starting at start address for
count entries is printed. If no count is given, a count of 1 is assumed.

CRASH(IM) CRASH (IM)

search [-p] [-w file] [-m mask] [-s process] pattern
start_addr length

Print the words in memory that match pattern, beginning at the start
address for length words. The mask is anded (&) with each memory
word and the result compared against the pattern. The mask defaults
to Oxffffffff.

ser Equivalent to

tty -t ser

(See tty function below.)

shm [-e] [-f] [-p] [-w file] table_entry...
Display IPC shared memory headers.

shminfo [- p i T-wfile 1
Display system IPC shared memory information.

size [-w file] [-x] [strueture_name ...]
Print the size of the designated structure. The (-x) option prints the
size in hexadecimal. If no argument is given, a list of the structure
names for which sizes are available is printed.

s n d d [- e] [- f] [- w f i l e] [[-p] table_entry...]
Print the send descriptor table.

sptb [-e] [-p] [-w file] [start_addr]
Display sptballoc maps.

srmount [-e] [-w file] [[-p] table_entry ...]
Print the server mount table.

stack [-w file] [-u] [process]

or

stack [-w file] [-k] [process]

or

stack [-w file] [[-p] -i start_addr]
Alias: s.
Dump stack. The (-u) option prints the user stack. The (-k) option
prints the kernel stack. The (-i) option prints the interrupt stack
starting at the start address. If no arguments are entered, the kernel
stack for the current process is printed. The interrupt stack and the
stack for the current process are not available on a running system.

C R A S H (I M) CRASH(IM)

stat [-w file]
Print system statistics.

stream [-e] [- f] [-wf i l e] [[-p] table_entry...]
Print the streams table.

strstat [-w file]

Print streams statistics.

swap Display swap map statistics.

swapinfo

Display swap statistics.

trace [-wf i l e] [- r] [process]

or
trace [-w file] [[-p] -i start_addr]

Alias: t.
Print stack trace. The kfp value is used with the -r option. The
interrupt option prints a trace of the interrupt stack beginning at the
start address. The interrupt stack trace and the stack trace for the
current process are not available on a running system.

ts [-w file] virtual_address ...

Print closest text symbol to the designated address.

tty [- e] [- f] [- w f i l e] [- t type[[-p] table_entry . . .]]

or
tty [- e] [- f] [- w f i l e] [[-p]star t_addr]

Valid types: ser, pt, gt, vt.
Print the tty table. If no arguments are given, the tty table for all tty
types is printed. If the -t option is used, the table for the single tty type
specified is printed. If no argument follows the type option, all entries
in the table are printed. A single tty entry may be specified from the
start address.

unnotify [-e] [-p] [-w file] [-s process] symbols
Display queued notifications for process.

u s e r [- f] [- w f i l e] [process]
Alias: u.
Print the ublock for the designated process.

var [-w file]
Alias: v.
Print the tunable system parameters.

- 1 0 -

CRASH(IM) CRASH(IM)

vt Equivalent to

tty -t vt

(See tty function above.)

vtop [-w file] [-s process] start_addr ...
Print the physical address translation of the virtual start address.

FILES
/dev/kmem system image of currently running system

/dev/rdsk/c?d?sO used to access system image on disk

- 1 1 -

CREATEDEV(1M) CREATEDEV(IM)

NAME
createdev - create device nodes for assorted device types

SYNOPSIS

createdev [-d device] [-c controller] [-v] [-r] [-p] [-t]

DESCRIPTION
The createdev command is used to create device nodes of various types. After
parsing various parameters, the command invokes mknod to create the specified
device node or sets of device nodes.
The -d option specifies the device number (for example, unit, drive, or line
number), and is required for every invocation.

The -c option specifies the controller number of the specified device.

The -v option specifies that disk devices are to be created. Both block-type and
character-type device nodes of the form /dev/rdsk/cxdysz and /dev/dsk/cxdysz
are added. Each invocation creates as many slices as the disk supports on CTIX.
(currently 16). For the -v option, both the -d and -c options are required.

The -r option specifies that devices are created to provide access to streaming
tape drives; these are the character-type device nodes. These devices are of the
form: /dev/rmt/cxdy, /dev/rmt/cxdyc, /dev/rmt/cxdyh, /dev/rmt/ocdyhn,
/dev/rmt/cxdyl, /dev/rmt/cxdyln, /dev/rmt/cxdym, /dev/rmt/cxdymn, and
/dev/rmt/cxdyn.

This option is useful when adding SCSI tape devices. For the -r option, both the
-d and -c options are required.

The -t option allows devices to be created of the type /dev/ttyxcx. These are
character-type devices, typically used for terminals, line printers, as well as
other perpherals. For this option, the -d option is required.

The -p option allows devices to be created of the type /dev/ttypx*. These are
character-type devices, typically used for virtual login sessions. An example of
this is an ethernet connection. The -d option is required.

FILES
/dev/tty*
/dev/ttyp*
/dev/dsk/*
/dev/rdsk/*
/dev/rmt/*

SEE ALSO
mknod(lM).

CRON(IM) CRON(IM)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
cron executes commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions found in crontab files in
the directory /usr/spool/cron/crontabs. Users can submit their own crontab
file via the crontab (I) command. Commands which are to be executed only
once may be submitted via the at (I) command.

cron only examines crontab files and at command files during process
initialization and when a file changes via crontab or at. This reduces the
overhead of checking for new or changed files at regularly scheduled intervals.

Since cron never exits, it should be executed only once. This is done routinely
through /etc/rc2.d/S75cron at system boot time. /usr/lib/cron/FIFO is used as
a lock file to prevent the execution of more than one cron.

FILES
/usr/lib/cron
/usr/lib/cron/FIFO
/usr/lib/cron/log
/usr/spool/cron

SEE ALSO
at(l), crontab(l), sh(l).
S/Series CTIX Administrator's Guide.

DIAGNOSTICS
A history of all actions taken by cron are recorded in /usr/lib/cron/log.

main cron directory
used as a lock file
accounting information
spool area

I

CRONTAB(l) CRONTAB(1)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]

crontab -r

crontab -1

DESCRIPTION
The crontab command copies the specified file, or standard input if no file is
specified, into a directory that holds all users' crontabs. The -r option removes
a user's crontab from the crontab directory; the -1 option lists the crontab file for
the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If
cron.deny exists and is empty, global usage is permitted. If cron.al!ow exists
and is empty, no usage is permitted. If cron.allow exists, cron.deny is ignored.
The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a
list of elements separated by commas. An element is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that the
specification of days may be made by two fields (day of the month and day of
the week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the
other field should be set to * (for example, 0 0 * * 1 would run a command only
on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line)

CRONTAB(l) CRONTAB (1)

of the command field is executed by the shell. The other lines are made
available to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users
who desire to have their .profile executed must explicitly do so in the crontab
file. Cron supplies a default environment for every shell, defining HOME,
LOGNAME, SHELL(=/bin/sh), and PATH(=:/bin:/usr/bin:/usr/local/bin).

If you do not redirect the standard output and standard error of your commands,
any generated output or errors are mailed to you.

FILES
/usr/lib/cron
/usr/spool/cron/crontabs
Aisr/lib/cron/log
/usr/lib/cron/cron .allow
Aisr/lib/cron/cron.deny

SEE ALSO
cion(lM), sh(l).
S/Series CTIX Administrator's Guide.

BUGS
If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a CTRL-d. This causes all entries in your crontab file
to be removed. Instead, exit with a DEL.

main cron directory
spool area
accounting information
list of allowed users
list of denied users

CRYPTO) CRYPT(1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

crypt [-k]

DESCRIPTION
The crypt command reads from the standard input and writes on the standard
output The password is a key that selects a particular transformation. If no
argument is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. If the -k option is used, crypt will use the key
assigned to the environment variable CRYPTKEY. crypt encrypts and decrypts
with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the editors ed(1),
edit(l), ex(l) , and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasible;
"sneak paths" by which keys or clear text can become visible must be
minimized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover the amount of work required is likely to be
large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, that is, to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to users
executing /js(1) or a derivative. The choice of keys and key security are the
most vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(l), edit(l), ex(l), makekey(l), ps(l), stty(l), vi(l).

CRYPTO) CRYPT(1)

WARNING
The standard c n x distribution is the international version, which does not
support encryption.

If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

BUGS
If output is piped to nroff and the encryption key is not given on the command
line, crypt can leave terminal modes in a strange state [see rftyO)]-

C S H (l) C S H (l)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX] [arg ...]

DESCRIPTION
The csh interpreter is a first implementation of a command language interpreter
incorporating a history mechanism (see "History substitutions"), job control
facilities (see "Jobs"), and a C-like syntax.

An instance of csh begins by executing commands from the file .cshrc in the
home directory of the invoker. If this is a login shell, then it also executes
/etc/cprofile and commands from the file .login there. It is typical for users on
terminals to put taer(l) in their .login files.

In the normal case, the shell then begins reading commands from the terminal,
prompting with a percent sign (%). Processing of arguments and the use of the
shell to process files containing command scripts is described later.

The shell repeatedly performs the following actions:

• A line of command input is read and broken into words.

• This sequence of words is placed on the command history list and then
parsed.

• Finally each command in the current line is executed.

When a login shell terminates, it executes commands from the file .logout in
the user's home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following
exceptions. The characters & | ; < > (form separate words. If doubled in &&,
j |, « or » these pairs form single words. These parser metacharacters can be
made part of other words, or prevented their special meaning, by preceding
them with \. A newline preceded by \ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, single or double,
form parts of a word; metacharacters in these strings, including blanks and tabs,
do not form separate words. The semantics of quotations are described later.
Within pairs of quotes, a newline preceded by a \ gives a true newline character.

When the shell's input is not a terminal, the character # introduces a comment
which continues to the end of the input line. It is prevented this special
meaning when preceded by \ and within double or single quotes.

CSH(l) CSH(l)

Commands

A simple command is a sequence of words, the first of which specifies the
command to be executed. A simple command or a sequence of simple
commands separated by the pipe (|) character forms a pipeline. The output of
each command in a pipeline is connected to the input of the next. Sequences of
pipelines separated by a semicolon (;), are executed sequentially. A sequence
of pipelines can be executed in the backgrouind (so you don't have to wait for it
to finish before giving another command); follow the command with an
ampersand (&).

Any of the above can be placed in parentheses, (), to form a simple command
(which can be a component of a pipeline or sequence). Separate pipelines with
| | or && to indicate, as in the C language, that the second is to be executed
only if the first succeeds or fails, respectively (see "Expressions").

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs,
printed by the jobs command, and assigns them small integer numbers. When a
job is started in the background by using &, the shell prints a line that looks like
that shown below to indicate that the job was job number 1 and had one (top-
level) process, whose process ID was 1234.

[1] 1234

The shell maintains a notion of the cuiTent and previous jobs. In output
pertaining to jobs, the current job is marked with a plus sign (+) and the
previous job with a minus sign (-) .

Status reporting

This shell learns immediately whenever a process changes state. It normally
informs you whenever a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that it does not
otherwise disturb your work. If, however, you set the shell variable notify, the
shell notifies you immediately of changes of status in background jobs. There
is also a shell command notify, which marks a single process so that its status
changes are immediately reported. By default notify marks the current process.
To mark a specific background job, type notify after starting the job.

- 2 -

C S H (I) CSII(l)

Substitutions

The following paragraphs describe the various transformations the shell
performs on the input in the order in which they occur.

History substitutions

History substitutions place words from previous command input as portions of
new commands, making it easy to repeat commands, repeat arguments of a
previous command in the current command, or fix spelling mistakes in the
previous command with little typing and a high degree of confidence. History
substitutions begin with the exclamation point character (!) and can begin
anywhere in the input stream (provided that they do not nest). The ! character
can be preceded by \ to prevent its special meaning; for convenience, a ! is
passed unchanged when it is followed by a blank, tab, newline, = or (. (History
substitutions also occur when an input line begins with T. This special
abbreviation is described later.) Any input line that contains history
substitution is echoed on the terminal before it is executed as it could have been
typed without history substitution.

Commands input from the terminal that consist of one or more words are saved
on the history list. The history substitutions reintroduce sequences of words
from these saved commands into the input stream. The size of which is
controlled by the history variable; the previous command is always retained,
regardless of its value. Commands are numbered sequentially from 1.

Consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff * write.c

The commands are shown with their event numbers. It is not usually necessary
to use event numbers, but the current event number can be made part of the
prompt by placing ! in the prompt string.

With the current event 13 we can refer to previous events by event number 111,
relatively as in !-2 (referring to the same event), by a prefix of a command word
as in !d for event 12 or !wri for event 9, or by a string contained in a word in
the command as in !?mic? also referring to event 9. These forms, without
further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case !! refers to the previous
command; thus!! alone is essentially a redo.

To select words from an event, follow the event specification with a colon (:)
and a designator for the desired words. The words of an input line are

- 3 -

C S H (l) CSH(l)

numbered from 0, the first (usually command) word being 0, the second word
(first argument) being 1, and so on.

The basic word designators follow:

0 first (command) word

n nth argument

T first argument: that is, 1

$ last argument

% word matched by (immediately preceding) ?s ? search

x -y range of words

-y abbreviates 0-y

* abbreviates T-$, or nothing if only one word in event

x* abbreviates x -S

x - like x * but omitting word '$ '

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a t , $, *, -, or %. A
sequence of modifiers, each preceded by :, can be placed after the
optional word designator; the modifiers are defined as follows:

h Remove a trailing pathname component, leaving the head,

r Remove a trailing .xxx component, leaving the root name,

e Remove all but the extension JCXX part.

s/l/r/ Substitute/ for r

t Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above (&): for example, g&.

p Print the new command but do not execute i t

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a g, the modification is applied only to the first
modifiable word. With substitutions, it is an error for no word to be
applicable.

- 4 -

C S H (l) CSH(l)

The left hand side of substitutions are not regular expressions in the sense of the
editors, but rather strings. Any character can be used as the delimiter in place
of /; a \ quotes the delimiter into the / " " and r " " strings. The & character in
the right hand side is replaced by the text from the left. A \ quotes & also. A
null I uses the previous string either from an I or from a contextual scan string s
" " in !?s?. The trailing delimiter in the substitution can be omitted if a
newline follows immediately, as can the trailing ? in a contextual scan.

A history reference can be given without an event specification: for example,
!$. In this case, the reference is to the previous command unless a previous
history reference occurred on the same line in which case this form repeats the
previous reference. Thus !?foo?T !$ gives the first and last arguments from the
command matching ?foo?.

A special abbreviation of a history reference occurs when the first non-blank
character of an input line is T; this is equivalent to !:s?, providing a convenient
shorthand for substitutions on the text of the previous line. Thus TlbTlib fixes
the spelling of lib in the previous command. Finally, a history substitution can
be surrounded with curly braces, { and }, if necessary, to insulate it from the
characters which follow. Thus, after Is -Id "paul you can use !{l}a to mean ls-ld
"paula, while !la would look for a command starting la.

Quotations with ' and "

The quotation of strings by ' and can be used to prevent all or some of the
remaining substitutions. Strings enclosed in single quotes, are prevented any
further interpretation. Strings enclosed in double quotes, can be expanded as
described below.

In both cases the resulting text becomes (all or part of) a single word; only in
one special case (see "Command substitition" below) does a double quoted (
single quoted strings (' ') never do.

Alias substitution

The shell maintains a list of aliases that can be established, displayed and
modified by the alias and unalias commands. After a command line is scanned,
it is parsed into distinct commands and the first word of each command, left-
to-right, is checked to see if it has an alias. If it does, the text that is the alias
for that command is reread with the history mechanism available as though that
command were the previous input line. The resulting words replace the
command and argument list. If no reference is made to the history list, the
argument list is left unchanged.

C S H (l) C S H (l)

Thus if the alias for Is is Is -1, the command Is /usr maps to Is -1 /usr, the
argument list here being undisturbed. Similarly if the alias for lookup is grep
! t /etc/passwd, then lookup bill maps to grep bill /etc/passwd.

If an alias is found, the word transformation of the input text is performed and
the aliasing process begins again on the reformed input line. Looping is
prevented if the first word of the new text is the same as the old by flagging it to
prevent further aliasing. Other loops are detected and cause an error.

Aliases can introduce parser metasyntax; so the syntax alias print 'pr \!* | Ipr '
creates a command that pr's its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero
or more words. Some of the variables are set by the shell or referred to by it.
For instance, the argv variable is an image of the shell's argument list, and
words of this variable's value are referred to in special ways.

The values of variables can be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell, a number are toggles; the
shell does not use thir values, but needs to know whether they are set or not.
For instance, the verbose variable is a toggle that causes command input to be
echoed. The setting of this variable results from the -v command line option.

Other operations treat variables numerically. The @ command permits numeric
calculations to be performed and the result assigned to a variable. Variable
values are, however, always represented as (zero or more) strings. For the
purposes of numeric operations, the null string is considered to be zero, and the
second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed keyed by dollar sign ($) characters.
The expansion can be prevented by preceding the $ with a \, except within
double quotes, where it always occurs, and within backslashes, where it never
occurs. Strings between single quotes are interpreted later (see "Command
substitution" below) so $ substitution does not occur there until later, if at all.
A $ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are
variable expanded separately. Otherwise, the command name and entire
argument list are expanded together. It is thus possible for the first (command)
word to this point to generate more than one word, the first of which becomes
the command name, and the rest of which become arguments.

Unless enclosed in double quotes or given the :q modifier, the results of
variable substitution can eventually be command and filename substituted.

- 6 -

C S H (I) C S I I (l)

Within double quotes a variable whose value consists of multiple words
expands to a (portion of) a single word, with the words of the variables value
separated by blanks. When the :q modifier is applied to a substitution, the
variable expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into
the shell input. Except as noted, it is an error to reference a variable that is not
set

Sname
${name}

Are replaced by the words of the value of variable name, each separated
by a blank. Braces insulate name from following characters which would
otherwise be part of i t Shell variables have names consisting of up to 20
letters and digits starting with a letter. The underscore character is
considered a letter.
If name is not a shell variable, but is set in the environment, then that
value is returned (but: modifiers and the other forms given below are not
available in this case).

$name[selector]
${name[selector]}

Can be used to select only some of the words from the value of name. The
selector is subjected to $ substitution and can consist of a single number
or two numbers separated by a -. The first word of a variables value is
numbered 1. If the first number of a range is omitted it defaults to 1; if
the last member of a range is omitted it defaults to $#name. The selector
* selects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for later use in
a [selector],

$0 Substitutes the name of the file from which command input is being read.
An error occurs if the name is not known.

Snumber
${number)

Equivalent to $argv[number].

$* Equivalent to $argv[*].

- 7 -

CSH(l) CSH(l)

The modifiers :h, :t, :r, :q, and :x can be applied to the substitutions above as
can :gh, :gt, and :gr. If braces { } appear in the command form then the
modifiers must appear within the braces. The current implementation allows
only one : modifier on each $ expansion.

The following substitutions cannot be modified with : modifiers.

$?name
${?name}

Substitutes the string 1 if name is set, 0 if it is not

$?0 Substitutes 1 if the current input filename is known, 0 if it is no t

$$ Substitute the (decimal) process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied
selectively to the arguments of built-in commands. This means that portions of
expressions that are not evaluated are not subjected to these expansions. For
commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output
redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in single quotes.
The output from such a command is normally broken into separate words at
blanks, tabs and newlines, with null words being discarded, this text then
replacing the original string. Within double quotes, only newlines force new
words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is
thus possible for a command substitution to yield only part of a word, even if
the command outputs a complete line.

Filename substitution

If a word contains any of the characters ?, [, or { or begins with the character
that word is a candidate for filename substitution, also known as "globbing."

This word is then regarded as a pattern, and replaced with an alphabetically
sorted list of file names which match the pattern. In a list of words specifying
filename substitution it is an error for no pattern to match an existing file name,

- 8 -

CSH(l) CSH(l)

but it is not required for each pattern to match. Only the metacharacters *, ?,
and [imply pattern matching, the characters ", and { being more like
abbreviations.

In matching filenames, the dot character (.) at the beginning of a filename or
immediately following a /, as well as the character / must be matched explicitly.
The character * matches any string of characters, including the null string. The
character ? matches any single character. The sequence [. . .] matches any one
of the characters enclosed. Within [.. .], a pair of characters separated by -
matches any character lexically between the two.

The character " at the beginning of a filename is used to refer to home
directories; standing alone, that i s , i t expands to the invoker's home directory
as reflected in the value of the variable home. When ~ is followed by a name
consisting of letters, digits and - characters, the shell searches for a user with
that name and substitutes their home directory; thus "ken might expand to
/usr/ken and "ken/chmach to /usr/ken/chmach. If the character " is followed
by a character other than a letter or /, or appears not at the beginning of a word,
it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for abe ace ade . Left-to-right order
is preserved, with results of matches being sorted separately at a low level to
preserve this order. This construct can be nested. For example, the filename
"source/sl/{oldls,Is}.c expands to /usr/source/sl/oldls.c /usr/source/sl/Is.c
whether or not these files exist without any chance of error if the home
directory for source is /usr/source. Similarly . V{memo,*box} might expand to
. ./memo . ./box . Vmbox. (Note that memo was not sorted with the results of
matching *box.) As a special case {,} and {} are passed undisturbed.

Input/output

The standard input and standard output of a command can be redirected with
the following syntax:

< name
Open file name (which is first variable, command and filename
expanded) as the standard input.

« word
Read the shell input up to a line which is identical to word. Word is not
subjected to variable, filename or command substitution, and each input
line is compared to word before any substitutions are done on this input
line. Unless a quoting , ', or ~ appears in word variable and command
substitution is performed on the intervening lines, allowing \ to quote $,
and \ Commands that are substituted have all blanks, tabs, and newlines

- 9 -

1) CSH(l)

preserved, except for the final newline, which is dropped. The resultant
text is placed in an anonymous temporary file which is given to the
command as standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output If the file does not exist, it is
created; if the file exists, it is truncated, its previous contents being lost.

If the variable noclobber is set, the file must not exist or be a character
special file (for example, a terminal or /dev/null); otherwise an error
results. This helps prevent accidental destruction of files. In this case the
! forms can be used and suppress this check.

The forms involving & route the standard error as well as standard output
into the specified file. Name is expanded in the same way as < input
filenames. You can use the following syntax to route standard output to
one file and standard error to another:

(cmd > filel) >& file2

» name
» & name
» ! name
» & ! name

Uses file name as standard output like >, but places output at the end of
the file. If the variable noclobber is set, the file must not exist unless one
of the ! forms is given. Otherwise, similar to >.

A command receives the environment in which the shell was invoked as
modified by the input-output parameters and the presence of the command in a
pipeline. Thus, unlike some previous shells, commands run from a file of shell
commands have no access to the text of the commands by default; rather they
receive the original standard input of the shell. The « mechanism should be
used to present inline data. This permits shell command scripts to function as
components of pipelines and allows the shell to block read its input.

Diagnostic output can be directed through a pipe with the standard output.
Simply use the form j & rather than just |.

- 1 0 -

CSH(l) CSH(l)

Expressions

A number of the built-in commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the exit, i f , and while commands.
The following operators are available:

I I && I T & == != =" ! - < = > = < > « » + - * / % ! " ()

Here the precedence increases to the right, ==, !=, =", and !", <=, >=, <, and >,
« , and » , +', and - , * , / , and % being, in groups, at the same level. The ==,
!=, =", and!" operators compare their arguments as strings; all others operate on
numbers. The operators =" and !" are like != and == except that the right hand
side is a pattern (containing, for example, *'s, ? ' s and instances of [...])
against which the left hand operand is matched. This reduces the need for use
of the switch statement in sheii scripts when all that is really needed is pattern
matching.

Strings that begin with 0 are considered to be octal numbers. Null or missing
arguments are considered 0. The result of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of
an expression can appear in the same word; except when adjacent to
components of expressions that are syntactically significant to the parser (& |,
<, >, (,)) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions
enclosed in { and} and file enquiries of the form -Iname where I is one of:

r read access
w write access
X execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if
it has the specified relationship to the real user. If the file does not exist or is
inaccessible, all enquiries return false (0). Command executions succeed,
returning true (1) if the command exits with status 0; otherwise they fail,
returning false (0). If more detailed status information is required, the
command should be executed outside of an expression and the variable status
examined.

-11 -

1) CSH(l)

Control flow

The shell contains a number of commands that can be used to regulate the flow
of control in command files (shell scripts) and (in limited but useful ways) from
terminal input. These commands all operate by forcing the shell to reread or
skip in its input and, due to the implementation, restrict the placement of some
of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the
//statement require that the major keywords appear in a single simple command
on an input line as shown below, under "Built-in commands."

If the shell's input is not seekable, the shell buffers up input whenever a loop is
being read and performs seeks in this internal buffer to accomplish the
rereading implied by the loop. (To the extent that this allows, backward goto's
will succeed on non-seekable inputs.)

Built-in commands

Built-in commands are executed within the shell. If a built-in command occurs
as any component of a pipeline except the last, it is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for
name. The final form assigns the specified wordlist as the alias of name;
wordlist is command and filename substituted. Name is not allowed to be
alias or unalias.

break
Causes execution to resume after the end of the nearest enclosing fnrear.h

' — - - - - - - _ - - - - - - <J J - - ---••

or while. The remaining commands on the current line are executed.
Multi-level breaks are thus possible by writing them all on one line. breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory name. If no argument is
given then change to the home directory of the user.

- 1 2 -

1) CSH(l)

If name is not found as a subdirectory of the current directory (and does
not begin with /, ./, or . . /) , each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but
name is a shell variable whose value begins with /, this is tried to see if it
is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The
remaining commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should come
after all case labels.

dirs Prints the directory stack; the top of the stack is at the left, the first
directory in the stack being the current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output, separated
by spaces, and terminated with a newline unless the -n option is
specified. Note that this differs from /bin/echo.

else
end
endif
endsw

See the description of the foreach, i f , switch, and while statements below,

eval arg...
[As in s/i(l).] The arguments are read as input to the shell and the
resulting command(s) executed in the context of the current shell. Tnis is
usually used to execute commands generated as the result of command or
variable substitution, since parsing occurs before these substitutions. See
tset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form) or
with the value of the specified expr (second form).

- 1 3 -

CSH(I) CSII(l)

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are
executed. (Both foreach and end must appear alone on separate lines.)
The built-in command continue can be used to continue the ioop
prematurely and the built-in command break to terminate it prematurely.
When this command is read from the terminal, the loop is read up once
prompting with ? before any statements in the loop are executed. If you
make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by
null characters in the output. Useful for programs which wish to use the
shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string
of the form 'label'. The shell rewinds its input as much as possible and
searches for a line of the form 'label:' possibly preceded by blanks or
tabs. Execution continues after the specified line.

history
history n
history -r n

Displays the history event list; if n is given only the n most recent events
are printed. The -r option reverses the order of printout to be most recent
first rather than oldest first.

if (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early,
at the same time it does for the rest of the if command. Command must
be a simple command, not a pipeline, a command list, or a parenthesized
command list. Input/output redirection occurs even if expr is false, when
command is not executed (this is a bug).

- 1 4 -

1) CSH(l)

if (expr) then

else if (expr2) then

endif
If the specified expr is true then the commands to the first else are
executed; else if expr2 is true then the commands to the second else are
executed, etc. Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and endif
must appear at the beginning of input lines; the if must appear alone on its
input line or after an else.)

jobs -1
Lists the active jobs; given the -I options lists process id's in addition to
the normal information.

kill %job
kill -sig %job.. .
kill pid
kill -sig pid ...
kill -I

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in lusrlincludelsignal.h, stripped of the prefix "SIG") .
The signal names are listed by kill -1. There is no default, saying just kill
does not send a signal to the current job.

limit
limit resource

Limits the consumption by the current process and each process it creates
to not individually exceed the specified resource. If no resource is given,
then all limitations are given.

Resources controllable currently include filesize (the largest single file
which can be created).

For both resource names and scale factors, unambiguous prefixes of the
names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is
one way to log off, included for compatibility with sA(l).

- 1 5 -

CSH(I) CSII(l)

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form sets the
nice to the given number. The final two forms run command at priority 4
and number respectively. The super-user can specify negative niceness
by using nice -number Command is always executed in a sub-shell,
and the restrictions place on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored
for the remainder of the script. The second form causes the specified
command to be run with hangups ignored. All processes detached with &
are effectively nohup'ed.

notify
notify %job...

Causes the shell to notify the user asynchronously when the status of the
current or specified jobs changes; normally notification is presented
before a prompt. This is automatic if the shell variable notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the
default action of the sheii on interrupts which is to terminate shell scripts
or to return to the terminal command input level. The second form
onintr - causes all interrupts to be ignored. The final form causes the
shell to execute a gotolabel when an interrupt is received or a child
process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts continue to
be ignored by the shell and all invoked commands.

popd
popd +n

Pops the directory stack, returning to the new top directory. With a
argument '+«' discards the n th entry in the stack. The elements of the
directory stack are numbered from 0 starting at the top.

- 1 6 -

CSH(I) CSII(l)

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the
directory stack. Given a name argument, pushd changes to the new
directory (a la cd) and pushes the old current working directory (as in
cwd) onto the directory stack. With a numeric argument, rotates the n th
argument of the directory stack around to be the top element and changes
to i t The members of the directory stack are numbered from the top
starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the
path variable to be recomputed. This is needed if new commands are
added to directories in the path while you are logged in. This should only
be necessary if you add commands to one of your own directories, or if a
systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command which is subject to the same restrictions as the
command in the one line if statement above, is executed count times. I/O
redirections occur exactly once, even if count is 0.

set
set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a
parenthesized word list. The second form sets name to the null string.
The third form sets name to the single word. The fourth form sets the
index th component of name to word; this component must already exist.
The final form sets name to the list of words in wordlist. In all cases the
value is command and filename expanded.

These arguments can be repeated to set multiple values in a single set
command. Note however, that variable expansion happens for all
arguments before any setting occurs.

- 1 7 -

1) CSH(l)

setenv name value
Sets the value of environment variable name to be value, a single string.
The most commonly used environment variables USER, TERM, PATH,
and CDPATH are automatically imported to and exported from the csh
variables user, term, path, and cdpath; there is no need to use setenv for
these.

shift
shift variable

The members of argv are shifted to the left, discarding argv[l]. It is an
error for argv not to be set or to have less than one word as value. The
second form performs the same function on the specified variable.

source name
The shell reads commands from name. Source commands can be nested;
if they are nested too deeply the shell can run out of file descriptors. An
error in a source at any level terminates all nested source commands.

switch (string)
case strl:

breaksw

default:

breaksw
endsw

Each case label is successively matched, against the specified string
which is first command and filename expanded. The file metacharacters

?, and [...] can be used in the case labels, which are variable expanded.
If none of the labels match before a 'default' label is found, then the
execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control can fall
through case labels and default labels as in C. If no label matches and
there is no default, execution continues after the endsw.

time
time command

With no argument, a summary of time used by this shell and its children
is printed. If arguments are given the specified simple command is timed
and a time summary as described under the time variable is printed. If
necessary, an extra shell is created to print the time statistic when the
command completes.

- 1 8 -

1) CSH(l)

ulimit -f n
imposes a size limit of n.
-f imposes a size limit of n blocks on files written by child processes
(files of any size can be read). With no argument, the current limit is
printed.

umask
umask value

The file creation mask is displayed (first form) or set to the specified
value (second form). The mask is given in octal. Common values for the
mask are 002 giving all access to the group and read and execute access
to others or 022 giving all access except no write access for users in the
group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus
all aliases are removed by 'unalias *'. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of executed programs is
disabled.

unset pattern
All variables whose names match the specified pattern are removed.
Thus all variables are removed by 'unset *'; this has noticeably
distasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the
environment. See also the setenv command above and printenv(1).

wait
All background jobs are waited for. If the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names and
job numbers of all jobs known to be outstanding.

while (expr)

end
While the specified expression evaluates non-zero, the commands
between the while and the matching end are evaluated. Break and
continue can be used to terminate or continue the loop prematurely. (The

- 1 9 -

C S H (I) CSII(l)

while and end must appear alone on their input lines.) Prompting occurs
here the first time through the loop as for the foreach statement if the
input is a terminal.

@
@ name = expr
@ namefindex] = expr

The first form prints the values of all the shell variables. The second
form sets the specified name to the value of expr. If the expression
contains <, >, &, or |, then at least this part of the expression must be
placed within () . The third form assigns the value of expr to the index' th
argument of name. Both name and its index th component must already
exist. Beware of conflicts between the kill character and this use of

The operators *=, +=, etc., are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr which would otherwise be
single words.

Special postfix ++ and - - operators increment and decrement name
respectively, that is, @ i++.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd,
home, path, cdpath, prompt, shell and status are always set by the shell. Except
for cwd and status this setting occurs only at initialization; these variables will
not then be modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM
into term, and HOME into home, and copies these back into the environment
whenever the normal shell variables are reset. The environment variable PATH
is likewise handled; it is not necessary to worry about its setting other than in
the file .cshrc as inferior csh processes will import the definition of path from
the environment, and re-export it if you then change it.

argv Set to the arguments to the shell, it is from this variable that
positional parameters are substituted, that is, $1 is replaced
by $argv[l], etc.

cdpath Gives a list of alternate directories searched to find
subdirectories in chdir commands.

cwd The full pathname of the current directory.

echo Set when the -x command line option is given. Causes each
command and its arguments to be echoed just before it is

- 2 0 -

C S H (l) CSH(l)

executed. For non-built-in commands all expansions occur
before echoing. Built-in commands are echoed before
command and filename substitution, since these substitutions
are then done selectively.

histchars Can be given a string value to change the characters used in
history substitution. The first character of its value is used as
the history substitution character, replacing the default
character !. The second character of its value replaces the
character t in quick substitutions.

history Can be given a numeric value to control the size of the
history list. Any command which has been referenced in this
many events will not be discarded. Too large values of
history can run the shell out of memory. The last executed
command is always saved on the history list.

home The home directory of the invoker, initialized from the
environment. The filename expansion of " refers to this
variable.

ignoreeof If set the shell ignores end-of-file from input devices which
are terminals. This prevents shells from accidentally being
killed by code-D's.

mail The files where the shell checks for mail. This is done after
each command completion which will result in a prompt, if a
specified interval has elapsed. The shell says 'You have new
mail.' if the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric it specifies a
different mail checking interval, in seconds, than the default,
which is 10 minutes.

If multiple mail files are specified, then the shell says 'New
mail in name' when there is mail in the file name.

noclobber As described in the section on Input/output, restrictions are
placed on output redirection to insure that files are not
accidentally destroyed, and that » redirections refer to
existing files.

noglob If set, filename expansion is inhibited. This is most useful in
shell scripts which are not dealing with filenames, or after a
list of filenames has been obtained and further expansions
are not desirable.

- 2 1 -

CSH(I) CSII(l)

nonomatch

notify

path

prompt

shell

status

time

If set, it is not an error for a filename expansion to not match
any existing files; rather the primitive pattern is returned. It
is still an error for the primitive pattern to be malformed, that
is, echo [still gives an error.

If set, the shell notifies asynchronously of job completions.
The default is to rather present job completions just before
printing a prompt

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word
specifies the current directory. If there is no path variable
then only full path names will execute. The usual search
path is /bin, and /usr/bin, but this can vary from system to
system. For the super-user the default search path is /etc,
/bin, and /usr/bin. A shell which is given neither the -c nor
the -t option will normally hash the contents of the
directories in the path variable after reading .cshrc, and each
time the path variable is reset. If new commands are added
to these directories while the shell is active, it may be
necessary to give the rehash or the commands may not be
found.

The string which is printed before each command is read
from an interactive terminal input. If a ! appears in the string
it will be replaced by the current event number unless a
preceding \ is given. Default is %, or # for the super-user.

The file in which the shell object code resides. This is used
in forking shells to interpret files which have execute bits set,
but which are not executable by the system. (See the
description of Non-built-in Command Execution below.)
Initialized to the (system-dependent) home of the shell.

The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. Built-in
commands which fail return exit status 1, all other built-in
commands set status 0.

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will
cause a line giving user, system, and real times and a
utilization percentage which is the ratio of user plus system
times to real time to be printed when it terminates.

- 2 2 -

1) CSH(l)

verbose Set by the -v command line option, causes the words of each
command to be printed after history substitution.

Non-built-in command execution

When a command to be executed is found to not be a built-in command, the
shell attempts to execute the command via execv (2). Each word in the variable
path names a directory from which the shell will attempt to execute the
command. If it is given neither a -c nor a -t option, the shell will hash the
names in these directories into an internal table so that it will only try an exec in
a directory if there is a possibility that the command resides there. This greatly
speeds command location when a large number of directories are present in the
search path. If this mechanism has been turned off (via unhash), or if the shell
was given a -c or -t argument, and in any case for each directory component of
path which does not begin with a /, the shell concatenates with the given
command name to form a path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ; pwd) ;
pwd prints the home directory; leaving you where you were (printing this after
the home directory), while cd ; pwd leaves you in the home directory.
Parenthesized commands are most often used to prevent chdir from affecting
the current shell.

If the file has execute permissions but is not an executable binary to the system,
then it is assumed to be a file containing shell commands and a new shell is
spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be
the full path name of the shell (for example, $shell). Note that this is a special,
late occurring, case of alias substitution, and only allows words to be prepended
to the argument list without modification.

Argument list processing

If argument 0 to the shell is - then this is a login shell. The flag arguments are
interpreted as follows:

-c Commands are read from the (single) following argument which must be
present Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields
a non-zero exit status.

-f The shell will start faster, because it will neither search for nor execute
commands from the file .cshrc in the invoker's home directory.

- 2 3 -

1) CSH(l)

-i The shell is interactive and prompts for its top-level input, even if it
appears to not be a terminal. Shells are interactive without this option if
their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This aids in syntactic checking
of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ can be used to escape the
newline at the end of this line and continue onto another line.

•v Causes the verbose variable to be set, with the effect that command input
is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immpHiofpIv lv»fr\rp pyppntinn »«»«»»»V\I HICViVlV V/\VVUMV»<

-V Causes the verbose variable to be set even before .cshrc is executed.

-X Is to -x as -V is to -v.

After processing of flag arguments if arguments remain but none of the -c, -i, -s,
or -t options was given the first argument is taken as the name of a file of
commands to be executed. The shell opens this file, and saves its name for
possible resubstitution by $0. Since many systems use either the standard
version 6 or version 7 shells whose shell scripts are not compatible with this
shell, the shell will execute such a "standard" shell if the first character of a
script is not a #, that is, if the script does not start with a comment. Remaining
arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (by the &
command) are immune to signals generated from the keyboard, including
hangups. Other signals have the values which the shell inherited from its
parent. The shells handling of interrupts and terminate signals in shell scripts
can be controlled by onintr. Login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell's parent. In no
case are interrupts allowed when a login shell is reading the file .logout.

/etc/cprofile Read by the login shell before .cshrc.

7.cshrc Read at beginning of execution by each shell,

"/.login Read by login shell, after .cshrc at login,

"/.logout Read by login shell, at logout.

- 2 4 -

C S H (I) CSII(l)

/bin/sh Standard shell, for shell scripts not starting with a #.

/tmp/sh* Temporary file for « .

/etc/passwd Source of home directories for "name.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists
to 10240 characters. The number of arguments to a command which involves
filename expansion is limited to 1/6'th the number of characters allowed in an
argument list. Command substitutions can substitute no more characters than
are allowed in an argument list. To detect looping, the shell restricts the
number of alias substitutions on a single line to 20.

SEE ALSO
sh(l), shl(l), access(2), fork(2), pipe(2), umask(2), wait(2), a.out(5).

NOTES
The csh interpreter might not be compatible with some shell commands, such as
at(1), newgrp(1), and wm(1).

If the first character in an executable file is #, the file is interpreted as a csh
script. Because # is interpreted as a comment delimiter by sh, it is
recommended that sh scripts begin with a blank line.

BUGS
Alias substitution is most often used to clumsily simulate shell procedures; shell
procedures should be provided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the history list.
csh should parse the control structure rather recognizing built-in commands.
This would allow control commands to be placed anywhere, to be combined
with !, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command
substitutions. All and more than one : modifier should be allowed on $
substitutions.

- 2 5 -

CSPLIT(l) CSPLIT(l)

NAME
csplit - context split

SYNOPSIS

csplit [-s] [-k] [-f prefix] file argl [. . . argn]

DESCRIPTION
The csplit command reads and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in xxOO . . . xxn
(n may not be greater than 99). These sections get the following pieces o(file :
00: From the start o f f i l e up to (but not including) the line referenced

by argl.

01: From the line referenced by argl up to the line referenced by arg2.

n+1:

From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to csplit are:

-s csplit normally prints the character counts for each file created.
If the -s option is present, csplit suppresses the printing of all
character counts.

-k csplit normally removes created files if an error occurs. If the -k
option is present, csplit leaves previously created files intact.

-f prefix If the -f option is used, the created files are named prefix00 . . .
prefixn. The default is xxOO . . . xxn. The arguments (argl . . . argn) to csplit can be a combination of the

following:

/rexpi A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some number of
lines (for example, /Page/-5).

%rexp % This argument is the same as /rexp/, except that no file is created
for the section.

Inno A file is to be created from the current line up to (but not
including) Inno. The current line becomes Inno.

CSPLIT(l) CSPLIT(l)

(num) Repeat argument This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied num more times. If it follows Inno, the file will be split
every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions may not
contain embedded new-lines, csplii does not affect the original file; it is the
users responsibility to remove i t

EXAMPLES
csplit -f cobol file '/procedure division/' /par5./ /par16./

This example creates four files, cobolOO . . . cobol03. After editing the "spl i t"
files, they can be recombined as follows:

cat coboK)[0-3] > file

Note that this example overwrites the original file,

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k
option causes the created files to be retained if there are less than 10,000 lines;
however, an error message would still be printed.

csplit -k prog.c '%main(%' '/*}/+1' {20}

Assuming that prog.c follows the normal C coding convention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(l), sh(l),regexp(5).

DIAGNOSTICS
Self-explanatory except for:

arg - out of range

which means that the given argument did not reference a line between the
current position and the end of the file.

CT(1C) CT(

NAME

ct - spawn getty to a remote terminal

SYNOPSIS

ct [-wn] [-xn] [-h] [-v] [-sspeed] telno ...

DESCRIPTION
ct dials the telephone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. (The set of legal characters for telno is 0 thru 9, -, =, *, and #. The
maximum length telno is 31 characters). If more than one telephone number is
specified, ct will try each in succession until one answers; this is useful for
specifying alternate dialing paths.
ct will try each line listed in the file /usr/lib/uucp/Devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait before it gives up. ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The dialogue may be
overridden by specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of the
program execution on stderr. The debugging level, n, is a single digit; -x9 is
the most useful value.

Normally, ct will hang up the current line, so the line can answer the incoming
call. The -h option will prevent this action. The -h option will also wait for the
termination of the specified ct process before returning control to the user's
terminal. If the -v option is used, ct will send a running narrative to the
standard error output stream.

The data rate may be set with the -s option, where speed is expressed in baud.
The default rate is 1200.

After the user on the destination terminal logs out, there are two things that
could occur depending on what type of getty is on the line (getty or uugetty).
For the first case, ct prompts, Reconnect? If the response begins with the letter
n, the line will be dropped; otherwise, getty will be started again and the login:
prompt will be printed. In the second case, there is already a getty (uugetty) on
the line, so the login: message will appear.

To log out properly, the user must type control D.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

- 1 -

CT(1C) CT(1C)

FILES
/usr/lib/uucp/Devices
/usr/adm/ctlog

SEE ALSO
cu(lC), getty(lM), login(l), uucp(lC), uugetty(lM).
SlSeries CTIX Administrator's Guide.

WARNING
For a shared port, one used for both dial-in and dial-out, the uugetty program
running on the line must have the -r option specified [see uugetty(lM)].

CTAGS(l) CTAGS(l)

NAME
ctags - create a tags file

SYNOPSIS
ctags [-u] [-v] [-w] [-x] name ...

DESCRIPTION
ctags creates a tags file, tags, from the specified C, Pascal, and FORTRAN
sources. The ex (I) tags command uses a tags file to find specified objects,
functions in this case, in a group of files. Each line of the tags file contains the
function name, the file in which it is defined, and a scanning pattern used to
find the function definition, with the fields separated by blanks or tabs.

If a file's name ends with .c or .h, it is searched for C function and macro
definitions. The main function is treated as a special case, so as to permit
multiple programs in one directory: the tag is the name of the file, stripped of
leading directory names and trailing .c, with M prepended.

If a file's name does not end with .c or .h, it is searched for Pascal definitions,
then for FORTRAN definitions, then for C definitions.

These are the options:

-w No warning diagnostics.

-u Update the tags file. (It is usually faster just to rebuild the tags file.)

-a Append new definitions to the end of the tags file.

-x Process a list of function definitions, with line numbers and file names.

FILES
tags output tags file

SEE ALSO
ex(l), vi(l).

WARNING
Recognition of FORTRAN and Pascal objects is done in a very simpleminded
way. No attempt is made to deal with block structure.

k

CTINSTALL(l) CTTNSTALL(1,

NAME
ctinstall - install software

SYNOPSIS

/usr/local/bin/ctinstall [update | install] [groups . . .]

DESCRIPTION
The ctinstall command is used to install software from quarter-inch tape and
diskette media. It should be invoked in single-user mode.
Note: Not all software can be installed with ctinstall; check the software
Release Notice for applicability.

Before executing ctinstall, the user should cd to the directory under which files
will be installed. (Normally this is /.) The user must ensure that all necessary
mounted file systems are mounted.

If no arguments are provided to ctinstall, the user will be prompted for the
required information. The option install is for raw, or first installs; update is for
software updates; silent is the same as update but with fewer questions asked
(silent is recommended); groups is any number of group names specified in the
software product's associated proto file.

EXAMPLE
A sample installation session is illustrated here. User responses are shown in
bold type.

c d /
shutdown
Ok To Stop Or Reset Processor
mount /usr

/usr/local/bin/ctinstall

@(#)ctinstall.sh. 6.31

Positioning the Tape for Product Installation.

Update or new installation of ISAM 5.00 ('update?, 'silent', or 'install')?: install

Please enter your group choices for ISAM separated by blanks.
Your choices are:

ISAM

CTINSTALL(l) CTTNSTALL(1)

If you'd like all of the groups, type 'all': ISAM

This procedure will install the following ISAM 5.00 group(s) on your system:

ISAM

BE SURE YOU BACK UP ANYTHING YOU HAVE CHANGED
BEFORE PROCEEDING.

Type 'yes' to confirm: yes

Starting to Install Group(s) ISAM.
Installing Group ISAM.

Calculating size required for group ISAM.
NNNN 512 byte blocks will be used on /
NNNN inodes will be used on /
NNNN 512 byte blocks will be freed on /usr

Installing required ISAM files.
install/lsamRel
usr/include/isam.h
usr/include/iserc.h
usr/lib/isam/lsamConfig
usr/li b/i sa m/lsa mCrea te
usr/lib/isam/lsamProtect
usr/lib/isam/lsamReorg
usr/lib/lsam/lsamStat
usr/lib/isam/lsamStop
usr/lib/isam/lsamTransfer
usr/lib/isam/lxFilter
usr/lib/isam/lxSpec
usr/lib/isam/isam

Checking permissions, modes and omissions on new ISAM commands.
Completed Installation of Group ISAM.
Rewinding tape.

Installation Complete.

CTINSTALL(l) CTINSTALL(l)

S E E A L S O

qlist(l), qinstall(l).
Appropriate Release Notice for the software product you are installing.

CTRACE (1) CTRACE(l)

N A M E

ctrace - C program debugger

S Y N O P S I S

ctrace [options] [file]

D E S C R I P T I O N

The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell procedure
with the -x option, ctrace reads the C program in file (or from standard input if
you do not specify file), inserts statements to print the text of each executable
statement and the values of all variables referenced or modified, and writes the
modified program to the standard output You must put the output of ctrace
into a temporary file because the cc(l) command does not allow the use of a
pipe. You then compile and execute this file.

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in the
statement, followed by any output from the statement. Loops in the trace output
are detected and tracing is stopped until the loop is exited or a different
sequence of statements within the loop is executed. A warning message is
printed every 1000 times through the loop to help you detect infinite loops. The
trace output goes to the standard output so you can put it into a file for
examination with an editor or the bfs{\) or tail(\) commands.

The options commonly used are:

-f functions Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long and
pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. Double
variables are printed as floating point numbers in scientific notation. You can
request that variables be printed in additional formats, if appropriate, with these
options:

-o Octal
-x Hexadecimal
-u Unsigned
-e Floating point

CTRACE (1) CTRACE(l)

These options are used only in special circumstances:

•1 n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-s Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused by
use of the = operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to
use this option.

-P Run the C preprocessor on the input before tracing i t You can also use
the -D, -I, and -U cpp(l) options.

These options are used to tailor the run-time trace package when the traced
program will run in an environment other than CTIX or other UNIX-compatible
systems:

-b Use only basic functions in the trace code, that is, those in ctype (3Q,
printf{3S), and string (3Q. These are usually available even in cross-
compilers for microprocessors. In particular, this option is needed
when the traced program runs under an operating system that does not
have signal (2), jflush(3S), longjmpQC), or setjmpi3Q.

-p string
Change the trace print function from the default of 'printf('. For
example, 'fprintf(stderr,' would send the trace to the standard error
output

- r / Use file / in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option).

E X A M P L E
If the file lc.c contains this C program:

1 f include <stdio.h>
2 main() /* count lines in input */
3 {
4 intc , nl;
5
6 nl = 0;
7 while ((c = getchar()) l= EOF)
8 if (c = -Vn")

CTRACE(l) CTRACE(l)

9 ++nl;
10 printf("%d\n", nl);
1 1 }

and you enter these commands and test data:

CC Ic.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program will be
the number 2, which is not correct because there is only one line in the test data.
The error in this program is common, but subtle. If you invoke ctrace with
these commands:

ctrace Ic.c >temp.c
cc temp.c
a.out

the output will be:

2 main()
6 nl = 0;

/* nl == 0 */
7 while ((c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as before,
the output will be:

/* c s= 49 or '1' */
8 if (c = ^n')

/« c == 10 or *\n' */
9 ++nl;

/* nl == 1 */
7 while ((c = getchar()) != EOF)

/« c == 10 or '\n' */
8 if (c = "\n")

/* c == 10 or "\n" */
9 ++nl;

I* nl == 2 */
7 while ((c = getchar()) != EOF)

If you now enter an end of file character (cntl-d) the final output will be:

/* c == -1 *l

- 3 -

CTRACE (1) CTRACE(l)

10 printf("%d\n", nl);
/* nl == 2 */2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the trace
output. This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value ' 1 ' in line 7, but in
line 8 it has the value Once your attention is drawn to this if statement,
you will probably realize that you used the assignment operator (=) in place of
the equality operator (==). You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless you
use the -f or -v options to trace specific functions. This does not give you
statement-by-statement control of the tracing, nor does it let you turn the
tracing off and on when executing the traced program.

You can do both of these by adding ctroffQ and ctron 0 function calls to your
program to turn the tracing off and on, respectively, at execution time. Thus,
you can code arbitrarily complex criteria for trace control with if statements,
and you can even conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (c == T &&i>1000)

ctron();
#endif

You can also call these functions from sdb(1) if you compile with the -g option.
For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main :7b ctroff()
main :11b ctron()
r

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and 1,
respectively. This is useful if you are using a debugger that cannot call these
functions directly.

FILES
/usr/lib/ctrace/runtime.c run-time trace package

CTRACE (1) CTRACE(l)

SEE ALSO
bfs(l), tail(l), signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C),
string(3C).

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(l) , since the
traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, ail of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler
"out of tree space; simplify expression" error. Use the -t option to
increase this number.

warmng: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in the
middle of a C statement, or by a semicolon at the end of a #define
preprocessor statement.

'if... else if sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace " ' if . . . else i f sequence too long" message above.

CTRACE(l) CTRACE (1)

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per
statement from the default of 10. Ignore the "ctrace: too many
variables to trace" warnings you will now get.

redeclaration of signal
Either correct this declaration of signal (2), or remove it and #include
<signal.h>.

WARNINGS
You will get a ctrace syntax error if you omit the semicolon at the end of the
last element declaration in a structure or union, just before the right brace (}).
This is optional in some C compilers.

Defining a function with the same name as a system function may cause a
syntax error if the number of arguments is changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and
NULL are #defined constants. Declaring any of these to be variables, for
example, "int EOF;", will cause a syntax error.

BUGS
ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the components of an
aggregate when an assignment is made to the entire aggregate, ctrace may
choose to print the address of an aggregate or use the wrong format (for
example, 3.149050e-311 for a structure with two integer members) when
printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi-file
program. This can result in functions called from a loop still being traced, or
the elimination of trace output from one function in a file until another in the
same file is called.

CU(1C) CU(1C)

NAME
cu - call another UNIX system

SYNOPSIS

cu [-sspeed] [-lline] [-h] [-t] [-d] [-o] [-e] [-n] [-m] telno

cu [-s speed] [-h] [-d] [-o] [-e] [-m] -I line

cu [-h] [-d] [-o] [-e] [-m] systemname

DESCRIPTION
The cu program calls up another computer system or a terminal. It manages an
interactive conversation with possible transfers of ASCII files.

The following options and arguments are valid to cu:

-sspeed Specifies the transmission speed (300, 1200, 2400,
4800, 9600); The default value is Any, which depends
on the order of the lines in the /usr/lib/uucp/Devices
file.

-1 line Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -1 option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu searches the Devices file to check if the requested
speed for the requested line is available. If so, the
connection is made at the requested speed; otherwise
an error message is printed and the call is not made.
The specified device is generally a directly connected
asynchronous line (like /dev/ttyxcx) in which case a
telephone number (telno) is not required. If the
specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno does not give the
desired result (see systemname below).

Note that modem control is ignored if the -1 option is
used.

-h Emulates local echo, supporting calls to other
computer systems that expect terminals to be set to
half-duplex mode.

CU(1C)

Used to dial an ASCII terminal that is set to auto
answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data
sent to the remote system.

Designates a direct line that has modem control.

For added security, prompts the user to provide the
telephone number to be dialed rather than taking it
from the command line.

Designates that even parity is to be generated for data
sent to the remote system.

When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of
4 seconds.

systemname A uucp system name can be used rather than a
telephone number; in this case, cu obtains an
appropriate direct line or telephone number from
/usr/Iib/uucp/Systems. Note that the systemname
option should not be used in conjunction with the -1
and -s options, as cu connects to the first available line
for the system name specified, ignoring the requested
line and speed.

After making the connection, cu runs as two processes: the transmit process
reads data from the standard input and, except for lines beginning with" (tilde),
passes it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with passes it to the standard output.
Normally, an automatic DC3/DC1 protocol is used to control input from the
remote so the buffer is not overrun. Lines beginning with ~ have special
meanings.

The transmit process interprets the following user-initiated commands:

Terminate the conversation.

"! Escape to an interactive shell on the local system.

~\cmd... Run cmd on the local system (through sh -c).

CU(1C)

-t

-d

-o

-m

-n

telno

CU(1C) CU(1C)

"%cmd.

*%cd

"%take from [to]

"%put from [to

" line

"% break

"% debug

"%nostop

Run cmd locally and send its output to the remote
system.

Change the directory on the local system. Note that
"!cd causes the command to be run by a subshell,
probably not the intent.

Copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

Copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used in
both places.

For both ~%take and put commands, as each block of
the file is transferred, consecutive single digits are
printed to the terminal.

Send the line " line to the remote system.

Transmit a BREAK to the remote system (which can
also be specified as "%b).

Toggle the -d debugging option on or off (which can
also be specified as "%d).

Print the values of the termio structure variables for
the user's terminal (useful for debugging).

Print the values of the termio structure variables for
the remote communication line (useful for debugging).

Toggle between DC3/DC1 input control protocol and
no input control. This is useful in case the remote
system is one which does not respond properly to the
DC3 and DC1 characters.

The receive process normally copies data from the remote system to its
standard output. Internally the program accomplishes this by initiating an
output diversion to a file when a line from the remote begins with

CU(1C) CU(1C)

Data from the remote is diverted (or appended, if » is used) to file on the local
system. The trailing "> marks the end of the diversion.

The use of "%put requires stty(\) and car(1) on the remote side, and can be
used only with sh. It also requires that the current erase and kill characters on
the remote system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of "%take requires the existence of echo{\) and cat{\) on the remote
system, and can be used only with sh. Also, tabs mode should be set on the
remote system if tabs are to be copied without expansion to spaces [see stty (1)].

When cu is used on system X to connect to system Y, and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using Executing a tilde command reminds the user of the local system
uname. For example, uname can be executed on Z, X, and Y as follows:

uname
Z
~[X]luname
X
^Y]!uname
Y

In general, " causes the command to be executed on the original machine,
causes the command to be executed on the next machine in the chain.

EXAMPLES
The following command dials a system with telephone number is 9 201 555
1212, using 1200 baud (where a dialtone is expected after the 9):

cu -81200 9=12015551212

If the speed is not specified, "Any" is the default value.

The following command logs in to a system connected by a direct line:

cu -I /dev/ttyXXX

or

cu -I ttyXXX

The following command dials a system with the specific line and a specific
speed:

cu -S1200 -I ttyXXX

CU(1C) CU(1C)

The following command dials a system using a specific line associated with an
auto dialer:

cu -I culXXX 9=12015551212

The following command uses a system name:

cu systemname

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK. .(tty-device)

SEE ALSO
cat(l), ct(lC), echo(l), stty(l), uucp(lC), uname(l).
S/Series CTIX Administrator's Guide.

DIAGNOSTICS
Exit code is zero for normal exit, otherwise, one.

WARNINGS
The cu command does not perform any integrity checking on data it transfers.
Data fields with special cu characters may not be transmitted properly.
Depending on the interconnection hardware, it may be necessary to use a to
terminate the conversion even if stty 0 has been used. Non-printing characters
are not dependably transmitted using either the "%put or "%take commands.
If the remote system is using uugetfy(lM), a carriage-return may be needed to
get a prompt

BUGS
There is an artificial slowing of transmission by cu during the "%put operation
so that loss of data is unlikely.

i

CUT(l) CUT(l)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]

cut -flist [-dchar] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, that is, character positions as on a punched card (-c
option) or the length can vary from line to line and be marked with a field
delimiter character like tab (-f option), cut can be used as a filter; if no files are
given, the standard input is used. In addition, a file name of " - " explicidy
refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges [for example, 1,4,7; 1-3,8; -5,10 (short
for 1-5,10); or 3- (short for third through last field)].

-c list The list following -c (no space) specifies character positions (for
example, -cl-72 would pass the first 72 characters of each line).

-f list The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d) ; for example, - f l ,7 copies the first and
seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

Use grep(1) to make horizontal "cuts" (by context) through a file, or paste (1)
to put files together column-wise (that is, horizontally). To reorder columns in
a table, use cut and paste.

EXAMPLES
To map user IDs to names:

cut -d: -f1,5 /etc/passwd

CUT(l) CUT(l)

To set n a m e to current login name:

names'who am i | cut -fl -d"

SEE ALSO
grep(l), paste(l).

DIAGNOSTICS
ERROR: line too long

A line can have no more than 1023 characters or fields, or there
is no new-line character.

ERROR: bad list for c/f option
Missing -c or -f option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

VBOnD- NR. FIOLSTC IH/ JK-tMD

The list is empty.

ERROR: nodelimeter
Missing char on -d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>
Either filename cannot be read or does not exist. If multiple
filenames are present, processing continues.

CW(1) CW(1)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS

cw [-Ixx] [-rxx] [-fn] [-t] [+1] [-d] [files]

checkcw [-Ixx] [-rxx] files

DESCRIPTION
cw is a preprocessor for troffil) input files that contain text to be typeset in the
constant-width (CW) font.
Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of computer
output in user manuals, programming texts, etc. (An earlier version of this font
was used in typesetting The C Programming Language by B. W. Kemighan and
D. M. Ritchie.) It has been designed to be quite distinctive (but not overly
obtrusive) when used together with the Times Roman font.

Because the CW font contains a "non-standard" set of characters and because
text typeset with it requires different character and inter-word spacing than is
used for "standard" fonts, documents that use the CW font must be
preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$&()"*+@.,/:;=?[]l-_*~"o{}#

plus eight non-ASCII characters represented by four-character troff(\) names (in
some cases attaching these names to "non-standard'' graphics):

Character Symbol Troff Name

"Cents" sign t \ c t
EBCDIC "no t " sign —i Xno

Left arrow <— x<-
Right arrow —> v->
Down arrow i Xda

Vertical single quote ' Xfm
Control-shift indicator t Xdg

C W (1) CW(1)

Visible space indicator • \(sq
Hyphen - \(hy

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of
cw recognize two additional names: \(ua for an up arrow and \(lh for a
diagonal left-up (home) arrow.

cw recognizes five request lines, as well as user-defined delimiters. The request
lines look like troff{\) macro requests, and are copied in their entirety by cw
onto its output; thus, they can be defined by the user as troff(\) macros; in fact,
the .CW and .CN macros should be so defined (see HINTS below). The five
requests are:

.CW Start of text to be set in the CW font; .CW causes a break; it can take
precisely the same options, in precisely the same format, as are
available on the cw command line.

.CN End of text to be set in the CW font; .CN causes a break; it can take the
same options as are available on the cw command line.

.CD Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line.

.CP argl arg2 arg3 ... argn
All the arguments (which are delimited like troff(1) macro arguments)
are concatenated, with the odd-numbered arguments set in the CW font
and the even-numbered ones in the prevailing font.

.PC argl arg2 arg3 ... argn
Same as .CP, except that the even-numbered arguments are set in the
CW font and the odd-numbered ones in the prevailing font.

The ,CW and .CN requests are meant to bracket text (for example, a program
fragment) that is to be typeset in the CW font "as is." Normally, cw operates in
the transparent mode. In that mode, except for the .CD request and the nine
special four-character names listed in the table above, every character between
.CW and .CN request lines stands for itself. In particular, cw arranges for
periods (.) and apostrophes (') at the beginning of lines, and backslashes (\)
everywhere to be "hidden" from trojf(1). The transparent mode can be turned
off (see below), in which case normal troff{ 1) rules apply; in particular, lines
that begin with . and ' are passed through untouched (except if they contain
delimiters-see below). In either case, cw hides the effect of the font changes
generated by the .CW and .CN requests; cw also defeats all ligatures (fi, ff, etc.)
in the CW font.

The only purpose of the .CD request is to allow the changing of various options
other than just at the beginning of a document.

- 2 -

C W (1) CW(1)

The user can also define delimiters. The left and right delimiters perform the
same function as the .CW/.CN requests; they are meant, however, to enclose
CW "words" or "phrases" in running text (see example under BUGS below).
cw treats text between delimiters in the same manner as text enclosed by
.CW/.CN pairs, except that, for aesthetic reasons, spaces and backspaces inside
.CW/.CN pairs have the same width as other CW characters, while spaces and
backspaces between delimiters are half as wide, so they have the same width as
spaces in the prevailing text (but are not adjustable). Font changes due to
delimiters are not hidden.

Delimiters have no special meaning inside .CW/.CN pairs.

The options are:

-bcx The one- or two-character string xx becomes the left delimiter, if xx is
omitted, the left delimiter becomes undefined, which it is initially.

-rxx Same for the right delimiter. The left and right delimiters may (but
need not) be different

-fn The CW font is mounted in font position n; acceptable values for n are
1, 2, and 3 (default is 3, replacing the bold font). This option is only
useful at the beginning of a document

-t Turn transparent mode o f f .

+t Turn transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the form of troff(1)
comment lines. This option is meant for debugging.

cw reads the standard input when no files are specified (or when - is specified
as the last argument), so it can be used as a filter. Typical usage is:

cw files I troff ...

checkcw checks that "left and right delimiters, as well as the .CW/.CN pairs, are
properly balanced. It prints out all offending lines.

HINTS
Typical definitions of the .CW and .CN macros meant to be used with the
mm(5) macro package:

.deCW

.DSI

.ps 9

.vs 10.5p

.u 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

- 3 -

C W (1)

.deCN

.ta .5i li 1.5i 2i 2.5i 3i.

.vs

.ps

.DE

CW(1)

At the very least, the .CW mauu should invoke the troffil) no-fill (.111) mode.

When set in running text, the CW font is meant to be set in the same point size
as the rest of the text. In displayed matter, on the other hand, it can often be
profitably set one point smaller than the prevailing point size (the displayed
definitions of .CW and .CN above are one point smaller than the running text on
this page). The CW font is sized so that, when it is set in 9-point, there are 12
characters per inch.

Documents that contain CW text may also contain tables and/or equations. If
this is the case, the order of preprocessing should be: cw, tbl, and eqn.
Usually, the tables contained in such documents will not contain any CW text,
although it is entirely possible to have elements of the table set in the CW font;
of course, care must be taken that tbl(1) format information not be modified by
cw. Attempts to set equations in the CW font are not likely to be either pleasing
or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting <- represent a backspace, d<-<-Xdg yields d. (Because backspaces are
half as wide between delimiters as inside .CW/.CN pairs-see above-two
backspaces are required for each overstrike between delimiters.)

FILES
/usr/lib/font/ftCW CW font-width table

SEE ALSO

eqn(l), mmt(I), tbl(i), troff(i), mm(5), mv(5).

WARNINGS
If text preprocessed by cw is to make any sense, it must be set on a typesetter
equipped with the CW font or on a STARE facility; on the latter, the CW font
appears as bold, but with the proper CW spacing.

BUGS
Periods (.), backslashes (), and double quotes (") do not work well as delimiters
or as arguments to .CP and .PC.
Certain CW characters don't concatenate gracefully with certain Times Roman
characters, for example, a CW ampersand (&) followed by a Times Roman
commaQ; in such cases, judicious use of troffil) half- and quarter-spaces (SI

- 4 -

C W (1) CW(1)

and V) is most salutary. For example, use _&_\\ (rather than _&_,) to obtain &,
(assuming that _ is used for both delimiters).

Using cw with nroff is not worthwhile.

The output of cw is hard to read.

See also BUGS under troff(l).

- 5 -

CXREF(l) CXREF(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION
The cxref command analyzes a collection of C files and attempts to buiia a
cross-reference table, cxref uses a special version of cpp to include #define'd
information in its symbol table. It produces a listing on standard output of all
symbols (auto, static, and global) in each fde separately, or, with the -c option,
in combination. Each symbol contains an asterisk (*) before the declaring
reference.

In addition to the -D, -I and -U options [which are interpreted just as they are by
cc(1) ana cpp(l)], the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w <num>
Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is
less than 51.

-o file Direct output to file.

-s Operate silently; do not print input file names.

-t Format listing for 80-column width.

FILES

LUBDIR usually /usr/lib

LUBD//?/xcpp special version of the C preprocessor.

SEE ALSO
cc(l), cpp(l).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you cannot compile
these files.

BUGS
cxref considers a formal argument in a ttdefine macro definition to be a
declaration of that symbol. For example, a program that #includes ctype.h, will
contain many declarations of the variable c.

DATE(1) DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [+ format]
date [mmddhhmm [[yy] I [ccyy]]]
date [-]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set (only by superuser).

The system has a time-of-day clock that can be used to set the current system
date. The command

date -

sets the system time to that of the time-of-day clock. If arguments are given,
date changes the time on the time-of-day clock as well as the system time.

The first mm is the month number; dd is the day number in the month; hh is the
hour number (24 hour system); the second mm is the minute number; cc is the
century minus one and is optional; yy is the last 2 digits of the year number and
is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. date takes care of the conversion to
and from local standard and daylight time. Only the superuser may change the
date.

If the argument begins with +, the output of date is under the control of the
user. All output fields are of fixed size (zero padded if necessary). Each field
descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % % . All other characters are
copied to the output without change. The string is always terminated with a
new-line character. If the argument contains embedded blanks it must be
quoted (see the EXAMPLE section).

Specifications of native language translations of month and weekday names are
supported. The language used depends on the value of the environment
variable LANGUAGE [see environ (5)]. The month and weekday names used
for a language are taken from strings in the file for that language in the
/lib/cftime directory [see cftime (4)].

DATE(l) DATE(l)

After successfully setting the date and time, date will display the new date
according to the format defined in the environment variable CFTIME [see
environ (5)].

Field Descriptors (must be preceded by a %):
a abbreviated weekday name
A full weekday name
b abbreviated month name
B full month name
d day of month - 01 to 31
D date as mm/dd/yy
e day of month - 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for %b)
H hour - 00 to 23
I hour - 01 to 12
j day of year -001 to 366
m month of yea r -01 to 12
M minute - 00 to 59
n insert a new-line character
p string containing ante-meridiem or post-meridiem indicator (by

default, AM or PM)
r time as hh:mm:ss pp where pp is the ante-meridiem or post-

meridiem indicator (by default, AM or PM)
R time as hh:mm
S second - 00 to 59
t insert a tab character
T time as hh:mm:ss
U week number of year (Sunday as the first day of the week) - 01

to 52
w day of week - Sunday = 0
W week number of year (Monday as the first day of the week) - 01

to 52
x Country-specific date format
X Country-specific time format
y year within century - 00 to 99
Y year as ccyy (4 digits)
Z timezone name

- 2 -

DATE(385) DATE(l)

EXAMPLE
date +DATE: %m/%d/%y%nHME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission

if you are not the super-user and you try to change the date;

bad conversion
if the date set is syntactically incorrect.

SEE ALSO
cftime(4), environ(5).
S/Series CTIX Administrator's Guide.

NOTE
Administrators should note the following: if you attempt to set the current date
to one of the dates that the standard and alternate time zones change (for
example, the date that daylight time is starting or ending), and you attempt to
set the time to a time in the interval between the end of standard time and the
beginning of the alternate time (or the end of the alternate time and the
beginning of standard time), the results are unpredictable.

WARNING
It is a bad practice to change the date while the system is running multi-user.

DBCONSOLE(IM) DBCONSOLE(IM)

NAME
dbconsole - change the kernel debugger system console port

SYNOPSIS

dbconsole [-v] [-s port] [-i flags] [-q flags] [-p dest_op]

DESCRIPTION
The dbconsole command is used to specify the port the kernel debugger uses for
the system console. (By default, the kernel debugger uses /dev/ttyOOO). The
dbconsole command can also be used to enable, disable, and change the
destination of debug prints.
Options to dbconsole are interpreted as follows:

-v Print the current settings of the console port and debug print settings.

-s port Change the port the kernel debugger uses for its console to port, where
port is the number of an RS-232 port (0 for /dev/ttyOOO, 1 for
/dev/tty001, and so forth).

-i flags

-q flags Toggle the debugger <ki> and <kq> flags. Possible flags follow:

a - z
{ I } "

(Where flags have special significance to a shell, they must be
enclosed in quotes or escaped with \.) The meanings of the various
flags are described in the file /usr/include/sys/kprintf.h.

-p dest_op
Disable/enable kernel prints; change the destination of kernel prints.
Legal values for dest_op follow:

0 kernel debugging prints disabled

1 kernel debugging prints enabled(screen)

2 kernel debugging prints enabled(printer)

3 kernel debugging prints enabled(screen+printer)

4 kernel debugging prints enabled(memory log)

12 kernel debugging prints enabled(log->file)

13 kernel debugging prints enabled(log->file+screen)

RETURN VALUE
The dbconsole command returns either 255 (for any error) or the current
debugger console port number.

DBCONSOLE(IM) DBCONSOLE(1M)

EXAMPLES
dbconsole -q "fgh" -p 4

Sends fprintf, gprintf, and hprintf output to the memory log.

dbconsole -s 1

Sets the current console port to /dev/ttyOOl.

FILES
/dev/console

DC(1) DC(1)

NAME
dc - desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. [See fcc(l), a preprocessor for dc that
provides infix notation and a C-like syntax that implements functions. Be also
provides reasonable control structures for programs.] The overall structure of
dc is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following
constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an underscore
(_) to input a negative number. Numbers may contain decimal points.

+ - / • % *

The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/) , remaindered (%), or exponentiated (*). The two entries
are popped off the stack; the result is pushed on the stack in their place.
Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack and
the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the 1 is capitalized,
register x is treated as a stack and its top value is popped onto the main
stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P Interprets the top of the stack as an ASCII string, removes it, and prints
i t

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is popped
by two.

DC(390) DC(1)

Q Exits the program. The top value on the stack is popped and the string
execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it
as a string of dc commands.

X Replaces the number on the top of the stack with its scale factor.

[. . .] Puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square r o o t Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

! Interprets the rest of the line as a CTIX system command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for
further input. I Pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number radix for
further output

O Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be
reasonable if all are changed together.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the terminal) and
executed.

; : are used by be (I) for array operations.

EXAMPLE
This example prints the first ten values of n!:

[Ia1 +dsa*pla10>y]sy
0sa1
lyx

DC(1) DC(1)

S E E A L S O

bc(l).

D I A G N O S T I C S

x is unimplemented
where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 3 -

DCOPY(IM) DCOPY(IM)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS

/etc/dcopy [-sX] [-an] [-d] [-v] [-f fsize[: isize]] inputfs outputfs

DESCRIPTION
The dcopy command copies file system inputfs to outputfs, Inputfs is the device
fde for the existing file system; outputfs is the device fde to hold the
reorganized result. For the most effective optimization inputfs should be the
raw device and outputfs should be the block device. Both inputfs and outputfs
should be unmounted file systems. When using dcopy on the normal root file
system, perform this procedure while booted from the maintenance tape).
With no options, dcopy copies files from inputfs, compressing directories by
removing vacant entries, and spacing consecutive blocks in a file by the optimal
rotational gap. The possible options follow:

-sX Supply device information for creating an optimal organization
of blocks in a file. The forms of X are the same as the -s option
of fsck (IM).

-an Place the files not accessed in n days after the free blocks of the
destination file system (default for n is 7). If no n is specified,
no movement occurs.

-d Leave order of directory entries as is (default is to move
subdirectories to the beginning of directories).

-v Currently reports how many files were processed and how big
the source and destination freelists are.

•tfsize [:isize] Specify the outputfs file system and inode list sizes (in blocks).
If the option (or -.isize) is not given, the values from the inputfs
are used.

The dcopy command catches interrupts and quits, and reports on its progress.
To terminate dcopy send a quit signal, followed by an interrupt or quit.

SEE ALSO
fsck(lM), mkfs(lM), ps(l).

(r

DD(1M) DD(1M)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
The dd command copies the specified input file to the specified output with
possible conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw physical
I/O.

option values

if=file input file name; standard input is default

nf=file output file name: standard output is default

!bs=/i input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done

cbs=/t conversion buffer size

skip=7i skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file before copying

count=n copy only n input blocks

conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input block to ibs
cl , c2 several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair
of numbers may be separated by x to indicate multiplication.

cbs is used only if conv=ascii or conv=ebcdic is specified. In the former case,
cbs characters are placed into the conversion buffer (converted to ASCII).

DD(1M) DD(1M)

Trailing blanks are trimmed and a new-line added before sending the line to the
output. In the latter case, ASCII characters are read into the conversion buffer
(converted to EBCDIC). Blanks are added to make up an output block of size
cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

DIAGNOSTICS
f+p blocks in(out)

numbers of full and partial blocks read(written)

DELTA(l) DELTA(l)

NAME
delta - make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-s] f -n] [-glisti] [-m[mrlist]] [-y[comment]] [-p]
files

DESCRIPTION
The delta command permanently introduces into the named SCCS file changes
made to the file retrieved by get (I) (called the g-file, or generated file).

The delta command makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored. If a name of - is
M I RAN TKA TNMIT I <•» gavwu, mv duuiutuu uipui io i t au rTfuuujruu;, u i u i imv ui uiv duuiudiu
input is taken to be the name of an SCCS file to be processed.

The delta command can issue prompts on the standard output depending upon
certain keyletters specified and flags [see admin (1)] that may be present in the
SCCS file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

•rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only if
two or more outstanding gets for editing (get -e) on the
same SCCS file were done by the same person (login
name). The SID value specified with the -r keyletter
can be either the SID specified on the get command
line or the SID to be made as reported by the get
command [see #et(l)]- A diagnostic results if the
specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

-glist a list [see get(1) for the definition of list] of deltas
which are to be ignored when the file is accessed at
the change level (SID) created by this delta.

DELTA(l) DELTA(l)

-m[mrlist] If the SCCS file has the v flag set [see admin(1)] then a
Modification Request (MR) number must be supplied
as the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character
terminates the MR list.

Note that if the v flag has a value [see adminil)], it is
taken to be the name of a program (or shell procedure)
which will validate the correctness of the MR numbers.
If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

-y[comment] Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the
comment text.

Causes delta to print (on the standard output) the SCCS
file differences before and after the delta is applied in
a diff(1) format

Existed before the execution of delta; removed after completion
of delta.

Existed before the execution of delta; may exist after completion
of delta.

Created during the execution of delta; removed after completion
of delta.

-P

FILES

g-file

p-file

q-file

- 2 -

DELTA(l) DELTA(l)

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta ; removed after completion
of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file and
(he g-file.

SEE ALSO
admin(l), bdiff(l), cdc(l), get(l), help(l), prs(l), rmdel(l), sccsfile(4).
UNIX System VRelease 3.2 Programmer's Guide.

rvr A n w n c n r c u i J » V J x , v y n a. i v , J

Use help (I) for explanations.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in
the SCCS file unless the SOH is escaped. This character has special meaning to
SCCS [see sccsfile(A)} and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these keyletters
causes an error to occur.

Comments are limited to text strings of at most 512 characters.

DEROFF(l) DEROFF(l)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [-w] [files]

DESCRIPTION
The deroff command reads each of \be files in sequence and removes all troffi 1)
requests, macro calls, backslash constructs, eqn(\) constructs (between .EQ and
.EN lines, and between delimiters), and tbl (I) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder of the
file on the standard output deroff follows chains of included fdes (so and .nx
troff commands); if a file has already been included, a so naming that file is
ignored and a .nx naming that fde terminates execution. If no input file is
given, deroff reads the standard input.

The -m option may be followed by an m, s, or 1. The -mm option causes the
macros to be interpreted so that only running text is output (that is, no text from
macro lines.) The -ml option forces the -mm option and also causes deletion of
lists associated with the mm macros.

If the -w option is given, the output is a word list, one " w o r d " per line, with all
other characters deleted. Otherwise, the output follows the original, with the
deletions mentioned above. In text, a "word" is any string that contains at
least two letters and is composed of letters, digits, ampersands (&), and
apostrophes (') ; in a macro call, however, a "word" is a string that begins with
at least two letters and contains a total of at least three letters. Delimiters are
any characters other than letters, digits, apostrophes, and ampersands. Trailing
apostrophes and ampersands are removed from "words."

SEE ALSO
eqn(l), nroff(l), tbl(l), troff(l).

BUGS
deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little output
The -ml option does not handle nested lists correctly.

k

DEVNM(IM) DEVNM(IM)

NAME
devnm - device name

SYNOPSIS
/etc/devnm [names]

DESCRIPTION
The devnm command identifies the special file associated with the mounted file
system where the argument name resides.

This command is most commonly used by /etc/brc (see i rc (lM)) to construct a
mount table entry for the root device.

EXAMPLE
The command:

/eiC/u6VTim /usr

produces:

/dev/dsk/c0d0s3 usr

if /usr is mounted on /dev/dsk/c0d0s3.

FILES
/dev/dsk/*
/etc/mnttab

SEE ALSO
brc(lM).

DF(1M) DF(1M)

NAME
df - report number of free disk blocks and i-nodes

SYNOPSIS
df [-It] [-f] [file-system I directory I
mounted-resource]

DESCRIPTION
The df command prints out the number of free 512-byte blocks and free i-nodes
in mounted file systems, directories, or mounted resources by examining the
counts kept in the super-blocks.

fde-system may be specified either by device name (for example,
/dev/dsk/c0d0s3) or by mount point directory name (for example, /usr).

directory can be a directory name. The report presents information for the
device that contains the directory.

mounted-resource can be a remote resource name. The report presents
information for the remote device that contains the resource.

If no arguments are used, the free space on all locally and remotely mounted
file systems is printed.

The df command uses the following options:

-1 only reports on local file systems.

-t causes the figures for total allocated blocks and i-nodes to be reported
as well as the free blocks and i-nodes.

-f an actual count of the blocks in the free list is made, rather than taking
the figure from the super-block (free i-nodes are not reported). This
option will not print any information about mounted remote resources.

FILES
/dev/dsk/*
/etc/mnttab

SEE ALSO
mount(lM), fs(4), mnttab(4).

NOTE
If multiple remote resources are listed that reside on the same file system on a
remote machine, each listing after the first one will be marked with an asterisk.

DIFFMK(l) DIFFMK(l)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbhB] filel file2

DESCRIPTION
diff tells what lines must be changed in two fdes to bring them into agreement.
If filel (file2) is the standard input is used. If filel (filel) is a directory, then
a file in that directory with the name filel (filel) is used. The normal output
contains lines of these forms:

nl a n3,n4
nl,nl d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into filel. The numbers
after the letters pertain to filel. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert filel into filel. As in ed,
identical pairs, where nl = n2 or n3 = n4, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed,
which will recreate filel from filel. The -f option produces a similar script, not
useful with ed, in the opposite order. In connection with -e, the following shell
program may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-version ed scripts ($2,$3,...) made by diff need be
on hand. A "latest version" appears on the standard output.

(shift; cat $*; echo '1,$p') j ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option -h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

The -B option is similar to the -b option except that it causes a null white space
string to compare equal to a non-null white space string.

DIFFMK(l) DIFFMK(l)

FILES
/tmp/d?????
/usr/lib/diffh for -h

SEE ALSO
bdiff(l), cmp(l), comm(l), ed(l).

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

WARNINGS
Missing newline at end of file X

Indicates that the last line of file X did not have a new-line. If the
lines are different, they will be flagged and output; although the output
will seem to indicate they are the same.

BUGS
Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

DEFF3(1) DIFF3(1)

NAME
diffi - 3-way differential file comparison

SYNOPSIS
difO [-ex3] filel file2 file3

DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

===== all three files differ

====1 filel is different

====2 file2 is different

====3 file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f:nl a Text is to be appended after line number nl in file
/ , where / = 1,2, or 3.

/ : nl ,n2 c Text is to be changed in the range line nl to line
n2. If nl = n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into ftiel all changes between file2 and file3, that is, the changes
that normally would be flagged ===== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script to fdel.

(cat script; echo "1,$p") | ed - filel

FILES
/tmp/d3*
/usr/Iib/diff3prog

SEE ALSO
diff(l).

BUGS
Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes will not work.

I

(r -

DIFFMK(l) DIFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk namel name2 name3

DESCRIPTION
diffmk compares two versions of a file and creates a third file that includes
"change mark" commands for nroff or troffiX). Namel and name2 are the old
and new versions of the file, diffmk generates name3, which contains the lines
of name2 plus inserted formatter "change mark" (.mc) requests. When name3
is formatted, changed or inserted text is shown by | at the right margin of each
line. The position of deleted text is shown by a single *.

If anyone is so inclined, diffmk can be used to produce listings of C (or other)
programs with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr

where the file macs contains:

.pi 1

.11 77

.nf

.eo

.nc -

The .11 request might specify a different line length, depending on the nature of
the program being printed. The .eo and .nc requests are probably needed only
for C programs.

If the characters | and * are inappropriate, a copy of diffmk can be edited to
change them (d i f f m k is a shell procedure).

SEE ALSO
diff(l), nroff(l), troff(l).

BUGS
Aesthetic considerations may dictate manual adjustment of some output File
differences involving only formatting requests may produce undesirable output,
that is, replacing .sp by _sp 2 will produce a "change mark" on the preceding or
following line of output

DIRCMP(l) DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-s] [-wn] [-o] dirl dir2

DESCRIPTION
dircmp examines dirl and dirl and generates various tabulated information
about the contents of the directories. Listings of files that are unique to each
directory are generated for all the options. If no option is entered, a list is
output indicating whether the file names common to both directories have the
same contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(\).

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width
is 72.

-o Ignore time and date stamp differences when comparing the contents
of binary files.

SEE ALSO
cmp(l), diff(l).

k

DIS(l) DIS(l)

NAME
dis - object code disassembler

SYNOPSIS
dis [-o] [-V] [-L] [-s] [-d sec] [-da sec]
[-F function] [-t sec] [-I string] file ...

DESCRIPTION
The dis command produces an assembly language listing of file, which may be
an object file or an archive of object files. The listing includes assembly
statements and an octal or hexadecimal representation of the binary that
produced those statements.

The following options are interpreted by the disassembler and may be specified
in any order.

-o Print numbers in octal. The default is hexadecimal.

-V Print, on standard error, the version number of the disassembler
being executed.

-L Lookup source labels in the symbol table for subsequent
printing. This option works only if the file was compiled with
additional debugging information [for example, the -g option of
cc(1)].

-s Perform symbolic disassembly - that is, specify source symbol
names for operands where possible. Symbolic disassembly
output will appear on the line following the instruction. For
maximal symbolic disassembly to be performed, the file must be
compiled with additional debugging information [for example,
the -g option of cc(l)]. Symbol names will be printed using C
syntax.

-d sec Disassemble the named section as data, printing the offset of the
data from the beginning of the section.

-da sec Disassemble the named section as data, printing the actual
address of the data.

-F funct ion Disassemble only the named function in each object file
specified on the command line. The -F option may be specified
multiple times on the command line.

-t sec Disassemble the named section as text.

DIS(l) DIS(l)

-1 string Disassemble the library file specified by string. For example,
one would issue the command dis -1 x -1 z to disassemble libx.a
and Iibz.a. All libraries are assumed to be in LTBDIR.

If the -d, -da or -t options are specified, only those named sections from each
user-supplied file name will be disassembled. Otherwise, all sections
containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
represents that the break-pointable line number starts with the following
instruction. These line numbers will be printed only if the file was compiled
with additional debugging information [for example, the -g option of cc(l)].
An expression such as <40> in the operand field or in the symbolic
disassembly, following a relative displacement for control transfer instructions,
is the computed address within the section to which control will be transferred.
A function name will appear in the first column, followed by ().

FILES
UBDIR usually /lib.

SEE ALSO
as(l), cc(l), ld(l), a.out(4).

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

DISKUSG(IM) DISKUSG(IM)

NAME
diskusg - generate disk accounting data by user ID

SYNOPSIS
diskusg [options] [files]

DESCRIPTION
The diskusg command generates intermediate disk accounting information from
data in files, or the standard input if omitted, diskusg outputs lines on the
standard output, one per user, in the following format:

uid login #blocks

where:

uid is the numerical user ID of the user,

login is the login name of the user, and

#blocks is the total number of 512-byte disk blocks allocated to this user.

diskusg normally reads only the i-nodes of file systems for disk accounting. In
this case, files are the special filenames of these devices.

diskusg recognizes the following options:

-s the input data is already in diskusg output format, diskusg
combines all lines for a single user into a single line.

-v verbose. Print a list on standard error of all files that are charged
to no one.

-i fnmlist ignore the data on those file systems whose file system name is
in fnmlist. fnmlist is a list of file system names separated by
commas or enclosed within quotes, diskusg compares each name
in this list with the file system name stored in the volume ID [see
labelit(lM)).

-p file use file as the name of the password file to generate login names,
/etc/passwd is used by default.

-u file write records to file of files that are charged to no one. Records
consist of the special file name, the i-node number, and the user
ID.

The output of diskusg is normally the input to acctdisk [see accf(lM)] which
generates total accounting records that can be merged with other accounting
records, diskusg is normally run in dodisk [see accte/i(lM)].

DISKUSG(IM) DISKUSG(IM)

EXAMPLES
The following will generate daily disk accounting information:

for i in «1 s3; do
diskusg /dev/dsk/cOdO$i > dtmp.'basename$i' &

done
wait
diskusg -s dtmp.* | sort +0n +1 | acctdisk > disktacct

FILES
/etc/passwd used for user ED to login name conversions

SEE ALSO
acct(lM), acctsh(lM), acct(4).
S/Series CTIX Administrator's Guide.

DNAME(IM) (RFS Utilitiei) DNAME(IM)

NAME
dname - print Remote File Sharing domain and network names

SYNOPSIS

dname [-D domain] [-N netspec] [-dna]

DESCRIPTION
The dname command prints or defines a host's Remote File Sharing (RFS)
domain name or the network used by RFS as transport provider. When used
with d, n, or a options, dname can be run by any user to print the domain name,
network name or both, respectively. Only a user with root permission can use
the -D domain option to set the domain name for the host or -N netspec to set
the network specification used for RFS. (The value of netspec is the network
device name, relative to the Idev directory. For example, if the transport
provider is TCP, the value for netspec is inet/tcp).
The domain field must consist of no more than 14 characters, in any
combination of letters (upper and lower case), digits, hyphens (-), and
underscores (_)

When dname is used to change a domain name, the host's password is removed.
The administrator is prompted for a new password the next time RFS is started
[rfstart(\Mj]. The RFS domain name is set by /etc/rcO when going multi-user.
The domain name is taken from /etc/rcopts/DOMAIN.

If dname is used with no options, it defaults to dname -d.

ERRORS
You cannot use the -N or -D options while RFS is running.

SEE ALSO
rfstart(lM).

i

DU(1M) DU(1M)

NAME
du - summarize disk usage

SYNOPSIS
du [-sar] [names]

DESCRIPTION
du reports the number of 512-byte blocks contained in all files and (recursively)
directories within each directory and file specified by the names argument The
block count includes the indirect blocks of the file. If names is missing, the
current directory is used.

The optional arguments are as follows:

-s causes only the grand total (for each of the specified names) to be
given.

-a causes an output line to be generated for each file.

If neither -s or -a is specified, an output line is generated for each directory
only.

-r will cause du to generate messages about directories that cannot be be
read, files that cannot be opened, etc., rather than being silent (the
default).

A file with two or more links is only counted once.

BUGS
If the -a option is not used, non-directories given as arguments are not listed.

If there are links between files in different directories where the directories are
on separate branches of the file system hierarchy, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

DUMP(l) DUMP(l)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [options] files

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object fdes. It
processes each file argument according to one or more of the following options:

-a Dump the archive header of each member of each archive file
argument

-g Dump the global symbols in the symbol table of an archive.

-f Dump each file header.

-o Dump each optional header.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

-t Dump symbol table entries.

-z name Dump line number entries for the named function.

-c Dump the string table.

-L Interpret and print the contents of the .lib sections.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number, number, or the range of sections starting
at number and ending at the number specified by +d.

+d number Dump sections in the range either beginning with first section or
beginning with section specified by -d.

-nname Dump information pertaining only to the named entity. This
modifier applies to -h, -s, -r, -1, and -t.

-p Suppress printing of the headers.

DUMP(l) DUMP(l)

-t index Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the
entry specified by the -t option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather than numeric
(for example, C_STATIC instead of 0X02). This modifier can be
used with all the above options except -s and -o options of dump.

-z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be replaced
by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal or decimal
representation as appropriate.

SEE ALSO
a.out(4), ar(4).

ECHO(l) ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage ret urn
\t tab
\v vertical tab
\\ backslash
\0/t where n is the 8-bit character whose ASCII code is the 1-, 2-

or 3-digit octal number representing that character.

echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(l).

CAVEATS
When representing an 8-bit character by using the escape convention \0/i, the n
must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' will print the phrase WARNING:
and sound the ' 'bell ' ' on your terminal. The use of single (or double) quotes (or
two backslashes) is required to protect the that precedes the "07" .

For octal equivalents of each character, see ascii (5).

E D (1) ED(1)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [-C] [file]

red [-s] [-p string] [-x] [-C] [file]

DESCRIPTION
The ed program is the standard text editor. If the file argument is given, ed
simulates an e command (see below) on the named file; that is to say, the file is
read into ed's buffer so that it can be edited. If multiple file arguments are
given, the % argument of the e command becomes useful.
-s Suppresses the printing of character counts by e, r, and w commands,

of diagnostics from e and q commands, and of the ! prompt after a
\shell command. Also, see the WARNING section at the end of this
manual page.

-p Allows the user to specify a prompt string.

-x Encryption option; when used, ed simulates an X command and
prompts the user for a key. This key is used to encrypt and decrypt
text using the algorithm of crypt(1). The X command makes an
educated guess to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a transformed
version of the key typed in for the -x option. See crypt (1). NOTE: the
standard CTIX distribution is the international version, which does not
support encryption. (This is described also in the WARNING section at
the end of this manual page.)

-C Encryption option; the same as the -x option, except that ed simulates a
C command. The C command is like the X command, except that all
text read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy have no
effect on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is only one
buffer.

red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via Ishell command.
Attempts to bypass these restrictions result in an error message (restricted
shell).

Both ed and red support the fspec (4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal

ED(1) ED(1)

in stty-tabs or st tytab3 mode [see swyO)]. the specified tab stops will
automatically be used when scanning file. For example, if the first line of a file
contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed. Note that when you are entering text into the file, this
format is not in effect; instead, because of being in stty -tabs or stty tab3 mode,
tabs are expanded to every eighth column.

Note that commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line, followed immediately by a
carriage return.

ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (for example, s) to
specify portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. * (caret or circumflex), which is special at the beginning of an entire
RE (see 3.1 and 3.2 below), or when it immediately follows the left of
a pair of square brackets ([]) (see 1.4 below).

- 2 -

E D (1) EDO)

c. $ (dollar sign), which is special at the end of an entire RE (see 3.2
below).

d. The character used to bound (that is, delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches any character except new-
line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches any one character in that string. If,
however, the first character of the string is a circumflex (*), the one-
character RE matches any character except new-line and the remaining
characters in the string. The * has this special meaning only if it occurs
first in the string. The minus (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The - loses this special meaning if it occurs first (after an
initial if any) or last in the string. The right square bracket (]) does not
terminate such a string when it is the first character within it (after an
initial if any); for example, []a-f] matches either a right square bracket
(]) or one of the letters a through f inclusive. The four characters listed in
1.2.a above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\] is a RE that
matches a range of occurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \{m,\) matches at least m occurrences; \{m,n\} matches
any number of occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that
matches whatever the unadorned RE matches.

- 3 -

ED(1) ED(1)

2.6 The expression \n matches the same string of characters as was matched
by an expression enclosed between \(and \) earlier in the same RE. Here
n is a digit; the sub-expression specified is that beginning with the w-th
occurrence of \(counting from the left. For example, the expression
~\(.*\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both).

3.1 A circumflex (*) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a
final segment of a line.

The construction *entire RE% constrains the entire RE to match the entire line.

The null RE (for example, //) is equivalent to the last RE encountered. See also
the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the «-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must
be an ASCII lower-case letter (a-z). Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE. If
necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of the

- 4 -

E D (1) ED(1)

buffer and continues up to and including the current line. See also the last
paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (•) followed by a
decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; for example, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of Rule 8,
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character ' in addresses is entirely equivalent to -.) Moreover, trailing +
and - characters have a cumulative effect, so — refers to the current line
less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.) is set
to the first address, and only then is the second address calculated. This feature
can be used to determine the starting line for forward and backward searches
(see Rules 5 and 6, above). The second address of any two-address sequence
must correspond to a line that follows, in the buffer, the line corresponding to
the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. However,
any command (except e , f , r, or w) may be suffixed by 1, n, or p in which case
the current line is either listed, numbered or printed, respectively, as discussed
below under the I, n, andp commands.

- 5 -

ED(1) ED(1)

(.)a
<text>

The append command reads the given text and appends it after the
addressed line;. is left at the last inserted line, or, if there were none, at
the addressed line. Address 0 is legal for this command: it causes the
"appended" text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is
256 per line (including the new-line character).

(.)c
<text>

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

C
Same as the X command, except that ed assumes all text read in for the
e and r commands is encrypted unless a null key is typed in.

(. >•)d
The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

efile
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (see the / command). If % is given in place of a
file name, the next name on the command line argument list is used.
The number of characters read is typed; file is remembered for
possible use as a default file name in subsequent e, r , and w
commands. If file is replaced by !, the rest of the line is taken to be a
shell [sft (1)] command whose output is to be read. Such a shell
command is not remembered as the current file name. See also
DIAGNOSTICS below.

E file
The Edit command is like e, except that the editor does not check to
see if any changes have been made to the buffer since the last w
command.

- 6 -

ED(1) ED(1)

f file
If file is given, the /ile-name command changes the currently-
remembered file name to file-, otherwise, it prints the currently-
remembered file name.

(1, $)gI RE I command list
In the global command, the first step is to mark every line that matches
the given RE. Then, for every such line, the given command list is
executed with . initially set to that line. A single command or the first
of a list of commands appears on the same line as the global command.
All lines of a multi-line list except the last line must be ended with a V,
a, i, and c commands and associated input are permitted. The .
terminating input mode may be omitted if it would be the last line of
the command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the
command list. See also BUGS and the last paragraph before FILES
below.

(1 , $) G IRE/
In the interactive Global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed,. is changed to that line, and any one command (other than one
of the a, c, i, g, G, v, and V commands) may be input and is executed.
After the execution of that command, the next marked line is printed,
and so on; a new-line acts as a null command; an & causes the re-
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H
The //elp command causes ed to enter a mode in which error messages
are printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

- 7 -

ED(1) ED(1)

(•)i
<text>

The insert command inserts the given text before the addressed line; .
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the
placement of the input text Address 0 is not legal for this command.
The maximum number of characters that may be entered from a
terminal is 256 per line (including the new-line character).

The y'oin command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command
does nothing.

(.) k r
The mark command marks the addressed line with name x, which must
be an ASCII lower-case letter (a-z). The address 'x then addresses this
line;. is unchanged.

(•>•)'

The /ist command prints the addressed lines in an unambiguous way:
a few non-printing characters (for example, tab, backspace) are
represented by visually mnemonic overstrikes. All other non-printing
characters are printed in octal, and long lines are folded. An I
command may be appended to any other command other than e,f,r, or
w.

(.,.)m a
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if address
a falls within the range of moved lines;. is left at the last line moved.

The number command prints the addressed lines, preceding each line
by its line number and a tab character; . is left at the last line printed.
The n command may be appended to any other command other than e,
f , r, or w.

The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any other command
other than e , f , r, or w. For example, dp deletes the current line and
prints the new current line.

- 8 -

ED(1) ED(1)

P
The editor will prompt with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

q
The <?uit command causes ed to exit No automatic write of a file is
done; however, see DIAGNOSTICS, below.

Q
The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line. If
no file name is given, the currently-remembered file name, if any, is
used (see e and / commands). The currently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by!, the rest of the line is taken to be a shell [sfr(l)] command
whose output is to be read. For example, "$r !ls" appends current
directory to the end of the file being edited. Such a shell command is
not remembered as the current file name.

(.,.)s/RE/replacement / or
(.,.)slRE /replacement /g or
(.,.)slRElreplacementln n= 1-512

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the replacement
if the global replacement indicator g appears after the command. If the
global indicator does not appear, only the first occurrence of the
matched string is replaced. If a number n appears after the command,
only the n th occurrence of the matched string on each addressed line
is replaced. It is an error for the substitution to fail on all addressed
lines. Any character other than space or new-line may be used instead
of / to delimit the RE and the replacement; . is left at the last line on
which a
substitution occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by V As a more

- 9 -

ED(1) ED(1)

general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized
subexpressions are present, n is determined by counting occurrences of
\(starting from the left. When the character % is the only character in
the replacement, the replacement used in the most recent substitute
command is used as the replacement in the current substitute
command. The % loses its special meaning when it is in a
replacement string of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at
the last line of the copy.

u
The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c,d,g,
i,j, m, r, s, t, v, G, or V command.

(1, $ ~)ylREicommand list
This command is the same as the global command g except that the
command list is executed with . initially set to every line that does not
match the RE.

(1, $ yv/REi
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do not
match the RE.

(l , $) w file
The write command writes the addressed lines into the named file. If
the file does not exist, it is created with mode 666 (readable and
writable by everyone), unless your umask setting [see umask(1)]
dictates otherwise. The currently-remembered file name is not
changed unless file is the very first file name mentioned since ed was
invoked. If no file name is given, the currently-remembered file name,
if any, is used (see e and / commands); . is unchanged. If the
command is successful, the number of characters written is typed. If
file is replaced by !, the rest of the line is taken to be a shell [sh(1)]

- 1 0 -

ED(1) ED(1)

command whose standard input is the addressed lines. Such a shell
command is not remembered as the current file name.

X
A key is prompted for, and it is used in subsequent e, r, and w
commands to decrypt and encrypt text using the crypt(\) algorithm.
An educated guess is made to determine whether text read in for the e
and r commands is encrypted. A null key turns off encryption.
Subsequent e, r, and w commands will use this key to encrypt or
decrypt the text [see crypt (1)]. An explicitly empty key turns off
encryption. Also, see the -x option of ed. Due to export restrictions,
encryption features are not available in the standard CI1X distribution.

($)=
The line number of the addressed line is typed; . is unchanged by this
command.

I shell command
The remainder of the line after the ! is sent to the CITX system shell
[s/z(l)] to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell command.
Thus, !! will repeat the last shell command. If any expansion is
performed, the expanded line is echoed;. is unchanged.

(,+1)<new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to .+lp; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to
its command level.

Some size limitations: 512 characters per line, 256 characters per global
command list, and 64 characters in the pathname of a file (counting slashes).
The limit on the number of lines depends on the amount of user memory: each
line takes 1 word.

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a new-line character, ed adds one and outputs a
message explaining what it did.

-11 -

ED(1) ED(1)

FILES

If the closing delimiter of a RE or of a replacement string (for example, /) would
be the last character before a new-line, that delimiter may be omitted, in which
case the addressed line is printed. The following pairs of commands are
equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

$TMPDIR if this environmental variable is not null, its value is used in
place of /usr/tmp as the directory name for the temporary
work file.

/usr/tmp default directory for temporary work file,
/tmp if the environmetal variable TMPDIR does not exist or is

null, and if /'usr/imp does not exist, then /trnp is used as the
directory name for the temporary work file,

ed.hup work is saved here if the terminal is hung up.
DIAGNOSTICS

? for command errors.
Ifile for an inaccessible file.

(use the Aelp and //elp commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroy ed's buffer
via the e or q commands. It prints ? and allows one to continue editing. A
second e or q command at this point will take effect. The -s command-line
option inhibits this feature.

SEE ALSO
edit(l), ex(l), grep(l), sed(l), sh(l), stty(l), umaskH), vi(l), fspec(4),
regexp(5).

BUGS
A ! command cannot be subject to a g or a v command.

The / command and the ! escape from the e, r , and w commands cannot be used
if the editor is invoked from a restricted shell [see sft(l)].

The sequence \n in a RE does not match a new-line character.

If the editor input is coming from a command file (for example, ed file < ed-
cmd-file), the editor will exit at the first failure.

WARNINGS
Due to export restrictions, encryption features are not available in the standard
CTIX distribution.

- 1 2 -

ED(1)

The - option, although supported in this release for upward compatibility, will
no longer be supported in the next major release of the system. Convert shell
scripts that use the - option to use the -s option, instead.

- 1 3 -

t

EDIT(l) EDIT(1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] [-x] [-C] name...

DESCRIPTION
The edit facilitv is a variant of the text editor ex recommended for new or
casual users who want to use a command-oriented editor. It operates precisely
as ex(\) with the following options automatically set

novice ON

report ON

showmode ON

magic OFF

These options can be turned on or off via the set command in ex(l).

-r Recover file after an editor or system crash.

-x Encryption option; when used the file will be encrypted as it is being
written and will require an encryption key to be read [see crypt (1)].
NOTE: the standard CTIX distribution is the international version,
which does not support encryption. (This is described also in the
WARNING section at the end of this manual page.)

-C Encryption option; the same as -x except that edit assumes files are
encrypted.

The following brief introduction should help you get started with edit. If you
are using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command "edit
name" to the shell, edit makes a copy of the file which you can then edit and
tells you how many lines and characters are in the file. To create a new file,
you also begin with the command edit with a filename: edit name", the editor
will tell you it is a [New File],

The edit command prompt is the colon (:), which you should see after starting
the editor. If you are editing an existing file, you will have some lines in edit's
buffer (its name for the copy of the file you are editing). When you start
editing, edit makes the last line of the file the current line. Most commands to
edit use the current line if you do not tell them which line to use. Thus if you
say print (which can be abbreviated p) and type carriage return (as you should
after all edit commands), the current line will be printed. If you delete (d) the

EDIT(1) EDIT(l)

current line, edit will print the new current line, which is usually the next line in
the file. If you delete the last line, the new last line becomes the current one.

If you start with an empty file or want to add some new lines, the append (a)
command can be used. After you execute this command (typing a carriage
return after the word append), edit will read lines from your terminal until you
type a line consisting of just a dot (.); it places these lines after the current line.
The last line you type then becomes the current line. The command insert (1) is
like append, but places the lines you type before, rather than after, the current
line.

edit numbers the lines in the buffer, with the first line having number 1. If you
execute the command 1, edit will type the first line of the buffer. If you then
execute the command d, edit will delete the first line, line 2 will become line 1,
and edit will print the current line (the new line 1) so you can see where you
are. In general, the current line will always be the last line affected by a
command.

You can make a change to some text within the current line by using the
substitute (s) command: s/old/new/ where old is the string of characters you
want to replace and new is the string of characters you want to replace old with.

The command file (f) will tell you how many lines there are in the buffer you
are editing and will say [Modified] if you have changed the buffer. After
modifying a file, you can save the contents of the file by executing a write (w)
command. You can leave the editor by issuing a quit (q) command. If you run
edit on a file, but do not change it, it is not necessary (but does no harm) to
write the file back. If you try to quit from edit after modifying the buffer
without writing it out, you will receive the message No write since last change
(:quit! overrides), and edit will wait for another command. If you do not want
to write the buffer out, issue the quit command followed by an exclamation
point (q!). The buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file,
you can make any changes you want. You should learn at least a few more
things, however, if you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you
supply (as in append, you type lines up to a line consisting of only a dot (.).
You can tell change to change more than one line by giving the line numbers of
the lines you want to change, that is, 3,5c. You can print lines this way too:
l,23p prints the first 23 lines of the file.

- 2 -

E D I T (l) EDIT(1)

The undo (u) command reverses the effect of the last command you executed
that changed the buffer. Thus if you execute a substitute command that does
not do what you want, type u and the old contents of the line will be restored.
You can also undo an undo command, edit will give you a warning message
when a command affects more than one line of the buffer. Note that commands
such as write and quit cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number
of lines, type *D (while holding down the control key, press d) rather than
carriage return. This will show you a half-screen of lines on a CRT or 12 lines
on a hardcopy terminal. You can look at nearby text by executing the z
command. The current line will appear in the middle of the text displayed, and
the last line displayed will become the current line; you can get back to the line
where you were before you executed the z command by typing " . The z
command has other options: z- prints a screen of text (or 24 lines) ending
where you are; z+ prints the next screenful. If you want less than a screenful of
lines, type z . l l to display five lines before and five lines after the current line.
(Typing z.n, when n is an odd number, displays a total of n lines, centered about
the current line; when n is an even number, it displays n-1 lines, so that the lines
displayed are centered around the current line.) You can give counts after other
commands; for example, you can delete 5 lines starting with the current line
with the command d5 .

To find things in the file, you can use line numbers if you happen to know them;
since the line numbers change when you insert and delete lines this is somewhat
unreliable. You can search backwards and forwards in the file for strings by
giving commands of the form /text/ to search forward for text or Itextl to
search backward for text. If a search reaches the end of the file without finding
text, it wraps around and continues to search back to the line where you are. A
useful feature here is a search of the form /*text/ which searches for text at the
beginning of a line. Similarly /text$/ searches for text at the end of a line. You
can leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of
lines as in .,$p which prints the current line plus the rest of the lines in the file.
To move to the last line in the file, you can refer to it by its symbolic name $.
Thus the command $d deletes the last line in the file, no matter what the current
line is. Arithmetic with line references is also possible. Thus the line $-5 is the
fifth before the last and .+20 is 20 lines after the current line.

You can find out the current line by typing .=. This is useful if you want to
move or copy a section of text within a file or between files. Find the first and
last line numbers you want to copy or move. To move lines 10 through 20, type
10,20d a to delete these lines from the file and place them in a buffer named a.

- 3 -

EDIT(l) EDIT(l)

edit has 26 such buffers named a through z. To put the contents of buffer a after
the current line, type put a. If you want to move or copy these lines to another
file, execute an edit (e) command after copying the lines; following the e
command with the name of the other file you want to edit, that is, edit
chapter2. To copy lines without deleting them, use yank (y) in place of d. If
the text you want to move or copy is all within one file, it is not necessary to
use named buffers. For example, to move lines 10 through 20 to the end of the
file, type 10,20m $.

SEE ALSO
ed(l) ,ex(l) ,vi(l) .

WARNING
Due to export restrictions, encryption features are not available in the standard
CTIX distribution.

EFL(l) EFL(l)

NAME
efl - extended FORTRAN language

SYNOPSIS
efl [options] [files]

DESCRIPTION
efl compiles a program written in the EFL language into clean FORTRAN on the
standard output. Efl provides the C-like control constructs of ratfor (I):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, FORTRAN do, repeat, and repeat . . . until loops;
multi-level break and next.

EFL has C-like data structures, for example:

struct
{
integer flags(3)
character(8) name
long real coords(2)
} table(lOO)

The language offers generic functions, assignment operators (+=, &=, etc.), and
sequentially evaluated logical operators (&& and | |) . There is a uniform
input/output syntax:

write(6,x,y:f(7,2), do i=l,10 { a(ij),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation;
statement label names (not just numbers).

comments:
this is a comment

translation of relational and logical operators:
>, >=, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

EFL(l) EFL(l)

defines:
define name replacement

includes:
include file

efl understands several option arguments: -w suppresses warning messages, -#
suppresses comments in the generated program, and the default option -C
causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. A set of defaults
for a particular target machine may be selected by one of the choices:
system=unix, system=gcos, or system=cray. The default setting of the system
option is the same as the machine the compiler is running on.

Other specific options determine the style of input/output, error handling,
continuation conventions, the number of characters packed per word, and
default formats.

SEE ALSO
cc(l), ratfor(l).

EGREP(l) EGREP(l)

N A M E

egrep - search a file for a pattern using full regular expressions

S Y N O P S I S

egrep [options] full regular expression [file ...]

D E S C R I P T I O N

The egrep (expression grep) command searches files for a pattern of characters
and prints all lines that contain that pattern, egrep uses full regular expressions
(expressions that have string values that use the full set of alphanumeric and
special characters) to match the patterns. It uses a fast deterministic algorithm
that sometimes needs exponential space.
egrep accepts full regular expressions as in ed(\), except for \(and \), with the
addition of:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences
of the full regular expression.

3. Full regular expressions separated by | or by a new-line that match
strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, *, [, \ | , (,) , and \ in full regular expression,
because they are also meaningful to the shell. It is safest to enclose the entire
full regular expression in single quotes ' . . . ' .

The order of precedence of operators is [], then * ? +, then concatenation, then
j and new-line.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output The fde name is printed before each line
found if there is more than one input file.

Command line options arc:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-i Ignore upper/lower case distinction during comparisons.

EGREP(l) EGREP(l)

-1 Print the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

-n Precede each line by its line number in the file (first line is 1).

-v Print all lines except those that contain the pattern.

-e special expression
Search for a special expression (full regular expression that begins with
a -) -

-ffile Take the list o f fu l l regular expressions from file.

S E E A L S O

ed(l), fgrep(l), grep(l), sed(l), sh(l).

D I A G N O S T I C S

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

B U G S

Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines are
limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h.

ENABLE(l) ENABLE(l)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers

disable [-c] f -r [reason]] printers

DESCRIPTION
The enable command activates the named printers, enabling them to print
requests taken by lp(1). Use lpstat (I) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests
taken by lp(1). By default, any requests that are currently printing on the
designated printers arc reprinted in their entirety either on the same printer or
on another member of the same class. Use lpstat (I) to find the status of
printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r[reason] Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r option. If
the -r option is not present or the -r option is given without a
reason, then a default reason is used. Reason is reported by
lpstat (I).

FILES
/usr/spool/lp/*

SEE ALSO
lp(l),lpstat(l).
S/Series CTIX Administrator s Guide.

ENPSTART (1M) (CTIX Internetworking) ENPSTART(IM)

NAME
enpstart - configure Ethernet processor

SYNOPSIS
/etc/enpstart addrl [addr2 ...]

DESCRIPTION
enpstart loads one or more Ethernet processors with a download image, starts
them running, and sets the network address to be associated with the interface.
If more than one address is specified, each should correspond to one Ethernet
processor: the first address is assigned to unit 0, and so on. Units are ordered
with VME boards first (by slot number), then CT Combo boards (by slot).

Each network address addrN must be included in /etc/hosts, or available via the
name server, or specified in Internet dot notation. If the special name " " is
given for one or more interfaces, they are skipped over in the initialization
process.

FILES
/etc/hosts
/etc/enp/*

SEE ALSO
hosts (A) and inet(l), for Internet dot notation.

REQUIREMENTS
Ethernet processors must be correctly installed on the system.

DIAGNOSTICS
enN doesn't respond to initialization, skipping...
A problem was detected with Ethernet processor unit N.

k

ENV(l) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS

env [-] [name=value] ... [command args]

DESCRIPTION
The env command obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environment.
Arguments of the form name=value are merged into the inherited environment
before the command is executed. The - flag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.
If no command is specified, the resulting environment is printed, one name-
value pair per line.

SEE ALSO
sh(l), exec(2), profile(4), environ(5).

(r

EQN(l) EQN(l)

NAME
eqn, neqn, checkeq - format mathematical text for nroff or troff

SYNOPSIS
eqn [-dxy] [-pn] [-sn] [-fn] [files]

neqn [-dxy] [-pn] [-sn] [-fn] [files]

checkeq [files]

DESCRIPTION
eqn is a troff(\) preprocessor for typesetting mathematical text on a
phototypesetter, while neqn is used for the same purpose with nroff on
typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files j nroff

or equivalent.

If no files are specified (or if - is specified as the last argument), these programs
read the standard input. A line beginning with .EQ marks the start of an
equation; the end of an equation is marked by a line beginning with .EN.
Neither of these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to designate two characters as
delimiters; subsequent text between delimiters is then treated as eqn input.
Delimiters may be set to characters x and y with the command-line argument
-dry or (more commonly) with delim xy between .EQ and .EN. The left and
right delimiters may be the same character; the dollar sign is often used as such
a delimiter. Delimiters are turned off by delim off. All text that is neither
between delimiters nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within eqn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde (~) represents a full
space in the output, circumflex (*) half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus
x sub j makes xr a sub k sup 2 produces a\, while e y is made with
e sup {x sup 2 + y sup 2}.

EQN(l) EQN(l)

Fractions are made with over: a over b yields 7-; sqrt makes square roots:
b

1 over sqrt {ax sup 2+bx+c} results in * .
~^ax2+bx+c

n

The keywords from and to introduce lower and upper limits: lim is made

with
lim from {n -> i r f } sum from 0 to n x sub i. Left and right brackets, braces,
etc., of the right height are made with left and right:

left [x sup 2 + y sup 2 over alpha right] ~=~ 1

produces

x**-1— =1.
a

Legal characters after left and right are braces, brackets, bars, c and f for
ceiling and floor, and " " for nothing at all (useful for a right-side-only bracket).
A left thing need not have a matching right thing.

Vertical piles of things are made with pile, Ipile, cpile, and rpile:

pile {a above b above c)

produces
a
b.
c

Piles may have arbitrary numbers of elements; lpile left-justifies, pile and cpile
center (but with different vertical spacing), and rpile right justifies. Matrices
are made with matrix:

matrix {Icol { x sub i above y sub 2 } ccol {1 above 2 } }

produces

1
y i 2-

In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under: x dot = f(t) bar is x=f (t),

y dotdot bar ~=~ n under is y =n, and x vec ~= - y dyad is =*y*.

EQN(l) EQN(l)

Point sizes and fonts can be changed with size n or size ±n, roman, italic, bold,
and font n. Point sizes and fonts can be changed globally in a document by
gsize n and gfont n, or by the command-line arguments -sn and -fn.

Normally, subscripts and superscripts are reduced by 3 points from the previous
size; this may be changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the desired
lineup point in the first equation; place lineup at the place that is to line up
vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever
it appears thereafter. The % may be any character thai does not occur in
replacement.

Keywords such as sum (£) , int (J), inf (») , and shorthands such as >= (>), !=
and -> (—>) are recognized. Greek letters are spelled out in the desired

case, as in alpha (a), or GAMMA (O- Mathematical words such as sin, cos,
and log are made Roman automatically. Troff(Y) four-character escapes such as
\(dd ($) and \(bs () may be used anywhere. Strings enclosed in double quotes
(" . . . ") are passed through untouched; this permits keywords to be entered as
text, and can be used to communicate with troff (I) when all else fails. Full
details are given in the manual cited below.

SEE ALSO
cw(l), mm(l), mmt(l), nroff(l), tbl(l), troff(l), eqnchar(5), mm(5), mv(5).

BUGS
To embolden digits, parentheses, etc., it is necessary to quote them, as in bold
"12.3".
See also BUGS under troff(1).

\

ERRDEAD(IM) ERRDEAD(IM)

NAME
errdead - extract error records and status information from dump

SYNOPSIS

/etc/errdead [-a [e] [f]] [dumpfile] [namelist]

DESCRIPTION
When hardware errors are detected by the system, an error record containing
information pertinent to the error is generated. If the error-logging demon
errdemon(IM) is not active, or if the system crashes before the record can be
placed in the error file, the error information is held by the system in a local
buffer. The errdead command examines a system dump (or memory), extracts
such error records, and passes them to errpt(IM) for analysis.
The following are options to errdead:

-a Instead of passing extracted records to errpt(IM), append them to
/usr/adm/errfile, provided that the dump corresponds to the namelist
and that the dump is newer than the error file.

-e Valid only if -a is also specified. Invoke errdemon(\M) when
finished. Normally, errdemon(\M) is invoked in the rc2 or rc3 script
through the errlog start procedure [see rc2(lM)].

-f Valid only if -a is also specified. Write extracted records even if the
dump is older than the error file.

dumpfile specifies the file (or memory) to be examined; if dumpfile is not
specified, errdead looks for a dump area by scanning the available disks in the
same order as does the bootstrap ROM.

namelist specifies the system namelist; if the namelist is not specified,
/etc/lddrv/prev.unix.exec is used.

FILES
/etc/lddrv/prev.unix.exec

/usr/bin/errpt

/usr/tmp/errXXXXXX

/usr/adm/errfile

/etc/Iog/confile

DIAGNOSTICS
Diagnostics can come from errdead or errpt. In either case, they are intended
to be self-explanatory.

system namelist

analysis program

temporary file

repository for error records

console file

ERRDEAD(IM)

SEE ALSO
errdemon(lM), errpt(lM).

ERRDEAD(IM)

ERRDEMON (1M) ERRDEMON (1M)

NAME
errdemon - error-logging demon

SYNOPSIS
/usr/lib/errdemon [-n] [-c fde] [fde]

DESCRIPTION
The error logging demon errdemon collects error records from the operating
system by reading the special fde /dev/error and places them in fde. If file is
not specified when the demon is activated, /usr/adm/errfile is used. Note that
file is created if it does not exist; otherwise, error records are appended to i t so
that no previous error data is lost No analysis of the error records is done by
errdemon; that responsibility is left to errpt (IM). errdemon can also extract
console records; the -n option disables this, thus forcing all console reports to
stay in a circular buffer in the kernel. The -c option allows specifying 2 consols
file. The default console file is /etc/log/confile. The error-logging demon is
terminated by sending it a software kill signal [see ldll(1)]. Only the superuser
may start the demon, and only one demon may be active at any time.

FILES
/dev/error source of error records
/usr/adm/errfile repository for error records
/etc/log/confile console records
/dev/console

SEE ALSO
errpt(lM), errstop(lM), kill(l), err(7).

DIAGNOSTICS
The diagnostics produced by errdemon are intended to be self-explanatory.

ERRPT(IM) ERRPT(IM)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [options] [files]

DESCRIPTION
The errpt command processes data collected by the error logging mechanism
errdemon (IM) and generates a report of that data. The default report is a
summary of all errors posted in the files named. Options apply to all files and
are described below. If no files are specified, errpt attempts to use
/usr/adm/errfile as file.

A summary report notes the options that may limit its completeness, records the
time stamped on the earliest and latest errors encountered, and gives the total
number of errors of one or more types. Each device summary contains the total
number of unrecovered errors, recovered errors, errors unabled to be logged, I/O
operations on the device, and miscellaneous activities that occurred on the
device. The number of times errpt has difficulty reading input data is included
as read errors.

Any detailed report contains, in addition to specific error information, all
instances of the error logging process being started and stopped, and any time
changes [through date(\)\ that took place during the interval being processed.
A summary of each error type included in the report is appended to a detailed
report

A report can be limited to certain records in the following ways:

-s date Ignore all records posted earlier than date, where date has the
form mmddhhmmyy, consistent in meaning with the date (I)
command.

-e date Ignore all records posted later than date, whose form is as
described above.

-a Produce a detailed report that includes all error types.

-d devlist A detailed report is limited to data about devices given in devlist,
where devlist can be one of two forms: a list of device identifiers
separated from one another by a comma, or a list of device
identifiers enclosed in double quotes and separated from one
another by a comma and/or more spaces. Errpt is familiar with
the block devices gdO to gdl5. Additional identifiers are int
(stray interrupts), mem (memory parity/ECC errors and ECC
correction), qicO (quarter-inch tape), tapeO (half-inch tape), saO
(SCSI tape), and tty (serial asynchronous terminals).

- 1 -

ERRPT(IM) ERRPT(IM)

-p n Limit the size of a detailed report to n pages.

-f In a detailed report, limit the reporting of block device errors to
unrecovered errors.

Logical blocks in the filesystem are 1024 bytes. Physical sector numbers are
512-byte blocks.

FILES
/usr/adm/errfile default error file

SEE ALSO
date(l), errdead(lM), errdemon(lM), errfile(4).

ERRSTOP(IM) ERRSTOP(IM)

NAME
errstop - terminate the error-logging demon

SYNOPSIS
/etc/errstop [namelist]

DESCRIPTION
The error-logging demon errdemon (\M) is terminated by using errstop. This is
accomplished by executing ps(1) to determine the demon's identity and then
sending the demon a software kill signal [see signal(2)]; /unix is used as the
system namelist if none is specified. Only the super-user can use errstop.

FILES
/unix default system namelist

SEE ALSO
errdemon(lM), ps(l), kill(2). signal(2).

DIAGNOSTICS
The diagnostics produced by errstop are intended to be self-explanatory.

t

EX(1) EX(!)

NAME
ex - text editor

SYNOPSIS
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-x]
[-C] [-c command] fde . . .

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based editing is
the focus of vi.

If you have a CRT terminal, you may want to use a display based editor; in this
case see vi (1), a command which focuses on the display-editing portion of ex.

For ed Users
If you have used ed(1) you will find that, in addition to providing all of the
ed(l) commands, ex has a number of additional features useful on CRT
terminals. Intelligent terminals and high speed terminals are very pleasant to
use with vi. Generally, the ex editor uses far more of the capabilities of
terminals than ed(1) does, and uses the terminal capability data base [see
terminfo (4)] and the type of the terminal you are using from the environmental
variable TERM to determine how to drive your terminal efficiently. The editor
makes use of features such as insert and delete character and line in its visual
command (which can be abbreviated vi) and which is the central mode of
editing when using v/(l).

ex contains a number of features for easily viewing the text of the file. The z
command gives easy access to windows of text. Typing *D (control-d) causes
the editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just typing return. Of course, the screen-oriented visual
mode gives constant access to editing context.

ex gives you help when you make mistakes. The undo (u) command allows
you to reverse any single change which goes astray, ex gives you a lot of
feedback, normally printing changed lines, and indicates when more than a few
lines are affected by a command so that it is easy to detect when a command has
affected more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited
them, so that you do not accidentally overwrite a file other than the one you are
editing. If the system (or editor) crashes, or you accidentally hang up the

EX(468) EX(!)

telephone, you can use the editor recover command (or -r file option) to
retrieve your work. This will get you back to within a few lines of where you
left off.

ex has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or a
pattern as used by the shell to specify a new set of files to be dealt with. In
general, file names in the editor may be formed with full shell metasyntax. The
metacharacter '%' is also available in forming file names and is replaced by the
name of the current file.

The editor has a group of buffers whose names are the ASCII lower-case letters
(a-z). You can place text in these named buffers where it is available to be
inserted elsewhere in the file. The contents of these buffers remain available
when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether each
substitution is desired.

It is possible to ignore the case of letters in searches and substitutions, ex also
allows regular expressions which match words to be constructed. This is
convenient, for example, in searching for the word "ed i t " if your document
also contains the word "editor."

ex has a set of options which you can set to tailor it to your liking. One option
which is very useful is the autoindent option that allows the editor to supply
leading white space to align text automatically. You can then use *D as a
backtab and space or tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that
supplies white space between joined lines automatically, commands " < " and
" > " which shift groups of lines, and the ability to filter portions of the buffer
through commands such as sort(1).

Invocation Options
The following invocation options are interpreted by ex (previously documented
options are discussed in the NOTES section at the end of this manual page):

-s Suppress all interactive-user feedback. This is useful in
processing editor scripts.

-v Invoke vi.

EX(1) EX(1)

-t tag Edit the fde containing the tag and position the editor at its
definition.

-r file Edit file after an editor or system crash. (Recovers the
version of file that was in the buffer when the crash
occurred.)

-L List the names of all files saved as the result of an editor or
system crash.

-R Readonly mode; the readonly flag is set, preventing
accidental overwriting of the file.

-x Encryption option; when used, ex simulates an X command
and prompts the user for a key. This key is used to encrypt
and decrypt text using the algorithm of crypt (1). The X
command makes an educated guess to determine whether
text read in is encrypted or not. The temporary buffer file is
encrypted also, using a transformed version of the key typed
in for the -x option. See crypt (I). NOTE: the standard CTIX
distribution is the international version, which does not
support encryption. (This is described also in the WARNING
section at the end of this manual page.)

-C Encryption option; the same as the -x option, except that ex
simulates a C command. The C command is like the X
command, except that all text read in is assumed to have
been encrypted.

-c command Begin editing by executing the specified editor command
(usually a search or positioning command).

-1 LISP mode; indents appropriately for lisp code, the () {} [[
and]] commands in vi are modified to have meaning for lisp.

The file argument indicates one or more files to be edited,

ex States
Command Normal and initial state. Input prompted for by :. Your line

kill character cancels a partial command.
Insert Entered by a, i, or c. Arbitrary text may be entered. Insert

state normally is terminated by a line having only " . " on it,
or, abnormally, with an interrupt

Visual Entered by typing vi; terminated by typing Q or *\ (contiol-

- 3 -

EX(1) EX(1)

ex Command Names and Abbreviations
abbrev ab map set se
append a mark ma shell sh
args ar move m source so
change c next n substitute s
copy CO number nu unabbrev unab
delete d preserve pre undo u
edit e print P unmap unm
file f put pu version ve
global g quit q visual vi
insert i read r write w
join j recover rec xit x
list 1 rewind rew yank ya

ex tommanas
shell escape ;
forced encryption C
heuristic encryption X
lshift <

print next CR
resubst &
rshift >

scroll *D
window z

ex Command Addresses
n line n /pat next with pat
. current Ipat previous with pat
$ last x-n n before x
+ next x through y
- previous 'x marked with x
+n
%

n forward
1,$

previous context

Initializing options
EXINIT
$HOME/.exrc
./.exrc
set x

place set's here in environment variable
editor initialization file
editor initialization file
enable option x

- 4 -

EX(471) EX(!)

set no*
set x=val
set
set all
set xl

disable option x
give value val to option x
show changed options
show all options
show value of option x

magic
modelines

number
paragraphs
redraw
report

scroll
sections
shiftwidth
showmatch
showmode
slowopen
term

window
wrapmargin
wrapscan

at
aw

Most useful options and their abbreviations
autoindent
autowrite
directory
ignorecase
list

1C

supply indent
write before changing files
pathname of directory for temporary work files
ignore case of letters in scanning
print AI for tab, $ at end
treat. [* special in patterns
first five lines and last five lines executed as vi/ex
commands if they are of the form exicommand: or
w.command:

nu number lines
para macro names that start paragraphs

simulate smart terminal
informs you if the number of lines modified by
the last command is greater than the value of
the report variable
command mode lines

sect macro names that start sections
sw for < >, and input *D
sm to) and} as typed
smd show insert mode in vi
slow stop updates during insert

specifies to vi the type of terminal being used
(the default is the value of the environmental
variable TERM)
visual mode lines

wm automatic line splitting
ws search around end (or beginning) of buffer

EX(472) EX(!)

Scanning pattern formation
beginning of line

$

FILES

\<
\>
[sir]
Vstr]
[x-y]

/usr/lib/exstrings
/usr/lib/exrecover
Aisr/lib/expreserve
/usr/lib/terminfo/*
$HOME/.exrc
./.exrc
/Onp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve//<?gm

end of line
any character
beginning of word
end of word
any character in sir
any character not in str
any character between x and y
any number of preceding characters

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where login is the user's login)

SEE ALSO
awk(l), ed(l), edit(l), grep(l), sed(l), vi(l), curses(3X), term(4), terminfo(4).

NOTES
Several options, although they continue to be supported, have been replaced in
the documentation by options that follow the Command Syntax Standard [see
intro{\)]. The - option has been replaced by -s, a -r option that is not followed
with an option-argument has been replaced by -L, and +command has been
replaced by -c command.

WARNING
Due to export restrictions, encryption features are not available in the standard
CTIX distribution.

BUGS
The z command prints the number of logical rather than physical lines. More
than a screen full of output may result if long lines are present

File input/output errors do not print a name if the command line -s option is
used.

EX(1) EX(1)

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

- 7 -

EXPAND(l) EXPAND(1)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop] [-tabl,tab2,...,tabn] [file ...]
unexpand [-a] [fde ...]

DESCRIPTION
expand processes the named files or the standard input writing the standard
output with tabs changed into blanks. Backspace characters are preserved into
the output and decrement the column count for tab calculations, expand is
useful for pre-processing character files (before sorting, looking at specific
columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart
instead of the default 8. If multiple tabstops are given then the tabs are set at
those specific columns.

unexpand puts tabs back into the data from the standard input or the named files
and writes the result on the standard output By default only leading blanks and
tabs are reconverted to maximal strings of tabs. If the -a option is given, then
tabs are inserted whenever they would compress the resultant file by replacing
two or more characters.

SEE ALSO
newform(l).

t

EXPR(l) EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is Wntten
on the standard output Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note that 0 is returned to
indicate a zero value, rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be
preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s
complement numbers.

The operators and keywords are listed beiow. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \ | expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, -} expr
addition or subtraction of integer-valued arguments.

expr {*,l, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator : compares the first argument with the second
argument which must be a regular expression. Regular expression
syntax is the same as that of ed(1), except that all patterns are
"anchored" (that is, begin with A) and, therefore, A is not a special
character, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the \ (. . .\)
pattern symbols can be used to return a portion of the first argument

EXPR(l) EXPR (1)

EXAMPLES
1.

2.

3.

4.

a=" expr $a + 1'

adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or
just "file"'
expr Sa : '.*/V.*\)' \{ $a

returns the last segment of a path name (that is, file). Watch
out for / alone as an argument: expr will take it as the
division operator (see BUGS below).

A better representation of example 2.
expr //$a : '.*A(.*\)'

The addition of the // characters eliminates any arobi^uitv
about the division operator and simplifies the whole
expression.

expr $VAR : ' .» '

returns the number of characters in $VAR.

SEE ALSO
ed(l), sh(l).

DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values:

0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

syntax error
for operator/operand errors

non-numeric argument
if arithmetic is attempted on such a string

EXPR(l) EXPR (1)

BUGS
After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:

expr $a = '= '

looks like:

expr = = =

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

EXTPROC(IM) EXTPROC(IM)

NAME
extproc - turn external processing on or off

SYNOPSIS
/etc/riop/extproc device [O i l]

DESCRIPTION
Extproc enables or disables external echo and output processing for an
individual port of an RIOP. Device must be an RIOP tty device. If the argument
following device is 1, then external processing is enabled. If this argument is 0
then external processing is disabled. This takes effect for the port during its
next closed-to-open transition. By default, external echo and output processing
is enabled.

SEE ALSO
HVl

- 1 -

(r

FACTOR(1) FACTOR(1)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to give it an integer.
After you give it a positive integer less than or equal to 10 , it factors the
integer, prints its prime factors the proper number of times, and then waits for
another integer. If it encounters a zero or any non-numeric character, factor
exits.

If you invoke factor with an argument, it factors the integer as described above,
and then it exits.

The maximum time to factor an integer is proportional to Vn; factor takes this
time when n is prime or the square of a prime.

DIAGNOSTICS
The error message "Ouch" appears for input out of range or for garbage input.

t

F F (1 M) FF(1M)

NAME
ff - list file names and statistics for a fde system

SYNOPSIS
/etc/ff [options] special

DESCRIPTION
T h e / / command reads the i-list and directories of the special file, assuming it is
a file system. I-node data is saved for files which match the selection criteria.
Output consists of the path name for each saved i-node, plus other file
information requested using the print options below. Output fields are
positional. The output is produced in i-node order; fields are separated by tabs.
The default line produced by / / i s :

path-name i-number

With all options enabled, output fields would be:

path-name i-number size uid

The argument n in the option descriptions that follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less than n,
and n means exactly n. A day is defined as a 24 hour period.

-I Do not print the i-node number after each path name.

-1 Generate a supplementary list of all path names for multiply-
linked files.

-p prefix The specified prefix will be added to each generated path name.
The default i s . (dot).

-s Print the file size, in bytes, after each path name.

-u Print the owner's login name after each path name.

-a n Select if the i-node has been accessed in n days.

-m n Select if the i-node has been modified in n days.

-c n Select if the i-node has been changed in n days.

-n file Select if the i-node has been modified more recently than the
argument file.

-i i-node-list Generate names for only those i-nodes specified in i-node-list.

SEE ALSO
find(l), ncheck(lM).

FF(1M) FF(1M)

BUGS
If the -I option is not specified, only a single path name out of all possible ones
is generated for a multiply-linked i-node. If -1 is specified, all possible names
for every linked file on the file system are included in the output. However, no
selection criteria apply to the names generated.

FGREP(l) FGREP(l)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]

DESCRIPTION
The fgrep (fast grep) command seaches files for a character string and prints all
lines that contain that string, fgrep is different from grep(l) and egrep(l)
because it searches for a string, instead of searching for a pattern that matches
an expression. It uses a fast and compact algorithm.

The characters $, *, [, *, | , (,) , and \ are interpreted literally by fgrep, that is,
fgrep does not recognize full regular expressions as does egrep. Since these
characters have special meaning to the shell, it is safest to enclose the entire
string in single quotes ' . . . ' .

If no files are specified, fgrep assumes standard input. Normally, each line
found is copied to the standard output. The fde name is printed before each line
found if there is more than one input fde.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-i Ignore upper/lower case distinction during comparisons.

-1 Print the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

-n Precede each line by its line number in the file (first line is 1).

•v Print all lines except those that contain the pattern.

-x Print only lines matched entirely.

-e special_string

Search for a special string (string begins with a -).

-f file Take the list of strings from file.

SEE ALSO
ed(l), egrep(l), grep(l), sed(l), sh(l).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

FGREP(l) FGREP(l)

BUGS
Ideally there should be only one grep command, but there is not a single
algorithm that spans a wide enough range of space-time tradeoffs. Lines arc
limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/inc!ude/stdio.h.

F I L E (l) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
file performs a series of tests on each argument in an attempt to classify it. If an
argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file will print the
version stamp, provided it is greater than 0.

-c The -c option causes file to check the magic file for format errors. This
validation is not normally carried out for reasons of efficiency. No file
typing is done under -c.

-f If the -f option is given, the next argument is taken to be a file
containing the names of the files to be examined.

-m The -m option instructs file to use an alternate magic file.

file uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of /etc/magic explains its format.

FILES
/etc/magic

SEE ALSO
filehdr(4).

t

FINC(IM) FINC(IM)

NAME
fine - fast incremental backup

SYNOPSIS

/etc/finc [selection-criteria] file-system raw-tape

DESCRIPTION
The fine command selectively copies the input jiIc-systctn to t!ic output raw-
tape. To be cautious, mount the input file-system read-only to insure an
accurate backup, although acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelit. The selection is
controlled by the selection-criteria, accepting only those i-nodes/files for
whom the conditions are true.
It is recommended that production of a fine tape be preceded by the / /
command, and the ouiput of / / b e saved as an index of the tape's contents. Files
on a fine tape may be recovered with the free command.

The argument n in the selection-criteria which follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less than n,
and n means exactly n. A day is defined as a 24 hours.

-a n True if the file has been accessed in n days.

-m n True if the file has been modified in n days.

-c n True if the i-node has been changed in n days.

-n file True for any fde which has been modified more recently than the
argument file.

EXAMPLES
To write a tape consisting of all files from file-system /usr modified in the last
48 hours:

fine -m -2 /dev/dsk/c0d0s3 /dev/rmt/cOdO

SEE ALSO
cpio(l), ff(lM), frec(lM), labelit(lM).

FIND(l) FIND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
The find command recursively descends the directory hierarchy for each path
name in the path-name-list (that is, one or more path names) seeking files that
match a boolean expression written in the primaries given below. In the
descriptions, the argument n is used as a decimal integer where +n means more
than », -n means less than n and n means exactly n. Valid expressions are:

-name file

[-perm] -onum

-type c

-links n

-user uname

-group gnome

-size n[c]

-atime n

-mtime n

-ctime n

True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [, ?
and *).

True if the file permission flags exactly match the octal
number onum [see chmod (I)]. If onum is prefixed by a
minus sign, only the bits that are set in onum are compared
with the file permission flags, and the expression evaluates
true if they match.

True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, FIFO
(named pipe), or plain file respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

True if the file is n blocks long (512 bytes per block). If n is
followed by a c, the size is in characters.

True if the file has been accessed in n days. The access
time of directories in path-name-list is changed by find
itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

H N D (l) FIND(l)

-exec cmd True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped
semicolon. A command argument {} is replaced by the
current path name.

-ok cmd Like -exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

-print Always true; causes the current path name to be printed.

-cpio device Always true; write the current file on device in cpio (1)
format (5120-byte records).

-newer file True if the current file has been modified more recently
than the argument file.

- inumn True if the current file is inode number n.

-depth Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio(1) to transfer files that are contained in directories
without write permission.

-mount Always true; restricts the search to the file system
containing the directory specified, or if no directory was
specified, the current directory.

-local True if the file physically resides on the local system.

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

1. The negation of a primary (! is the unary not operator).

2. Concatenation of primaries (the and operation is implied by the
juxtaposition of two primaries).

3. Alternation of primaries (-o is the or operator).

EXAMPLE
To remove all files named a.out or *M that have not been accessed for a week:

FILES

find / V -name a.out -o -name '».o' \) -atime +7 -exec rm {} \;

/etc/passwd, /etc/group

- 2 -

P ^ 1) FIND(l)

SEE ALSO
chmod(l), cpio(l), sh(l), test(l), stat(2), umask(2), fs(4).

I

FINGER (1) FINGER (1)

NAME
finger - user information lookup program

SYNOPSIS
finger [options] [name ...]

DESCRIPTION
The finger program displays information about users on local and remote
machines. Without arguments, finger lists the login name, full name (as
specified in the fifth field of /etc/passwd), terminal name and write status (as a
'* ' before the terminal name if write permission is denied), idle time, login
time, and office location and phone number (if they are known) for each logged
in user on the local system. (Idle time is minutes if it is a single integer, hours
and minutes if a ' : ' is present, or days and hours if a ' d ' is present)

The finger program generates a longer, more detailed format of user
information if at least one of the following arguments is supplied:

1. A user name or a list of user names. A user name can be a login name
(first field of /etc/passwd) or a first or last name (fifth field of
/etc/passwd).

2. The -1 option.

The longer format is multi-line, and includes all the information described
above, as well as the user's home directory and login shell, any plan specified in
the user's $HOME/.plan, and any project specified in the user's
$HOME/.project.

To use finger to lookup users on a remote machine, specify the user as
user@host. A list of users on the same remote host can be enclosed in double
quotes; for example,

finger "userl user2 user3"@host

If no user names are supplied (argument to finger is @host), standard, rather
than long, format listing is provided.

The following options are recognized by finger:

-m Match arguments only on login name.

-1 Force long (rather than standard) output format.

-p Suppress printing of the .plan files.

-s Force standard (rather than long) output format.

FINGER(l) FENGER(l)

F I L E S
/etc/utmp who file
/etc/passwd for users names, offices,...
Aisr/adm/lastlog last login times
$HOME/.plan plans
$HOME/.project projects

S E E A L S O

who(l)

B U G S
Only the first line of the .project file is printed.

There is no way to pass arguments to the remote machine as finger uses an
internet standard port

FINGERD(IM) (CTIX Internetworking) FINGERD(IM)

NAME
fingerd - remote user information server

SYNOPSIS
/etc/fingerd

DESCRIPTION
The fingerd server provides a network interface to foe finger (\) program (or, on
some other systems, the name program). This interface allows finger to display
information about remote users.

The fingerd server listens for TCP connections on the finger port [see
services (4)]. For each connection, fingerd reads a single input line (terminated
by a <CRLF>), passes the line to finger, and copies the output of finger to the
user on the client machine.

The fingerd service is started by the "super-server" inetd, and therefore must
have an entry in inetd's configuration file, /etc/inetd.conf [see inetd (IM) and
inetd.conf (4)].

SEE ALSO
finger(l), inetd(lM), inetd.conf(4), services(4).
RFC 742.

WARNING
Connecting to fingerd using TELNET [see telnet (I)] can have unpredictable
consequences and is not recommended.

(r

FOLD(l) FOLD(l)

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-columns] [file ...]

DESCRIPTION
fold produces a folded version of its input, inserting newlines so that none of its
output lines is wider than columns. If columns is omitted, folding is done at 80
columns.

If tabs are present in the input, columns should be a multiple of eight

SEE ALSO
expand(l).

WARNING
Overstriking can be spoiled by folding.

F R E C (I M) FREC(IM)

NAME
free - recover files from a backup tape

SYNOPSIS

/etc/frec [-p path] [-f reqfile] raw_tape i_number : name . . .

DESCRIPTION
The free command recovers files from the specified raw Jape backup tape
written by volcopy(\M) or finc(IM), given their inumbers. The data for each
recovery request will be written into the file given by name.
The -p option allows you to specify a default prefixing path different from your
current working directory. This will be prefixed to any names that are not fully
qualified, that is, that do not begin with / or ./. If any directories are missing in
the paths of recovery names they will be created.

-p path Specifies a prefixing path to be used to fully qualify any names
that do not start with / o r . / .

-f reqfile Specifies a file which contains recovery requests. The format is
i_number:newname, one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a file named junk in your
current working directory:

free /dev/rmt/cOdO 1216:junk

To recover files with i_numbers 14156, 1232, and 3141 into files
/usr/sre/emd/a, /usr/sre/emd/b and /usr/joe/a.c:

free -p /usr/src/cmd /dev/rmt/cOdO 14156:a 1232:b
3141:/usr/joe/a.c

SEE ALSO
cpio(l), ff(lM), finc(lM), labelit(lM).

BUGS
While paving a path (that is, creating the intermediate directories contained in a
pathname) free can only recover inode fields for those directories contained on
the tape and requested for recovery.

k

FSCK(IM) FSCK(IM)

NAME
fsck, dfsck - check and repair fde systems

SYNOPSIS
/etc/fsck [-y] [-n] [-sc:s] [-s] [-Sc:s] [-S] [-I fde] [-q] [-D]
[-f 1 [-P] [-bB] [-O] [-M] [file-systems]
/etc/dfsck [options 1 1 fdsysl . . . - [options! l filsys2 . . .

DESCRIPTION
Fsck

The fsck command audits and interactively repairs inconsistent conditions for
CTIX file systems. If the file system is consistent, the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent, the operator is prompted for concurrence before each correction is
attempted. It should be noted that some corrective actions result in some loss of
data. The amount and severity of data lost can be determined from the
diagnostic output The default action for each consistency correction is to wait
for the operator to respond yes or no. If the operator does not have write
permission, fsck defaults to an -n action. Upon completion, fsck reports the
number of used and free 512-byte blocks and the number of files in the file
system.

Modifying a mounted (root) file system requires special precautions by fsck,
because a single sync (2) undoes all of fsck's repair work. To prevent this, fsck
performs a uadmin(A_REMOUNT,0,0) [see uadmin(2)]. The system call forces
Ci tX to reread the super-block from the disk. If there is extensive damage to
the mounted file system, fsck reboots CTIX.

The following options are interpreted by fsck:

-y Assume a yes response to all fsck prompts.

-n Assume a no response to all questions asked by /rakprompts; do not
open the file system for writing.

-sets
-s Ignore the actual free list or bit map and (unconditionally) reconstruct a

new one by rewriting the super-block of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent

If c:s is given on a standard file system, the free list is organized with c
blocks-per-cylinder and s blocks skipped. If c:s is omitted, the values
originally specified to mkfs are used. If these values were not specified,
the value 400:7 is used.

FSCK(IM)

-Sc:*
-S

-t

-D

-f

FSCK(IM)

Conditionally reconstruct the free list or bit map. This option is like -s,
described above, except that the free list or bit map is rebuilt only if no
discrepancies are discovered in the file system. Using -S forces a no
response t o p r o m p t s . This option is useful for forcing free list or bit
map reorganization on uncontaminated file systems.

I f f s c k cannot obtain enough memory to keep its tables, it uses a scratch
file. If the -t option is specified, the file named in the next argument is
used as the scratch file, if needed. Without the -t flag, fsck prompts for
the name of the scratch file. The file chosen should not be on the file
system being checked, and if it is not a special file or did not already
exist, it is removed when fsck completes.

Quiet fsck. Do not print size-check messages in Phase 1. Unreferenced
FIFOs are silently removed. If fsck requires it, counts in the super-block
are automatically fixed and the free list or bit map is salvaged.

Directories are checked for consistency. This is useful after system
crashes. The following inconsistencies are sought:

• Entries with null names but nonzero i-numbers.
• Entries that are not padded to full size with nulls.
• Invalid. a n d . . entries.
• Names that contain a slash (/).
• Final blocks that are not cleared past end-of-file.

Fast check. Check block and sizes (Phase 1) and check the free list or
bit map (Phase 5). The free list or bit map is reconstructed (Phase 6) if it
is necessary.

Preen file systems only; intended for autoboot. The fsck program does
not prompt for operator input; instead, it applies standard fixes
whenever the fix doesn't involve loss of data. Only the following
problems are subject to this kind of fix:

• Unreferenced i-nodes.
• Link counts in i-nodes too large.
• Missing blocks in the free list.
• Blocks in the free list also in files.
• Counts in the super-block wrong.

Any problem not of this type causes fsck to terminate with an error
status. The startup script that runs fsck (normally /etc/bcheckrc) can
specify the -p option to fsck and make a normal boot contingent upon a
normal fsck return status.

- 2 -

FSCK(IM) FSCK(IM)

-b or -B
If the file system being checked is the root file system and
modifications have been made, resync the file system, or reboot if
necessary.

-M Convert file system to new bit map free list format.

-O Convert file system to old free list format.

Both -M and -O imply -s.

If no file-systems are specified,/yc£ reads a list of default file systems from the
file /etc/checklist.

Inconsistencies are checked as follows:

1. Blocks claimed by more than one i-node or the free list.
2. Blocks claimed by ar. i-node or the free list outside ihe range of the file

system.
3. Incorrect link counts.
4. Size checks:

• Incorrect number of blocks.
• Directory size not 16-byte aligned.

5. Bad i-node formaL
6. Blocks not accounted for anywhere.
7. Directory checks:

• File pointing to unallocated i-node.
• I-node number out of range.

8. Super-block checks:
• More than 65536 i-nodes.
• More blocks for i-nodes than exist in the file system.

9. Bad free block list format
10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+found
directory, if the files are nonempty. The user is notified if the file or directory
is empty or not If it is empty, fsck silently removes them. The fsck program
forces the reconnection of nonempty directories. The name assigned is the i-
node number. The only restriction is that the directory lost+found must
preexist in the root of the file system being checked and must have empty slots
in which entries can be made. The lost+found directory is normally created by
running mklost+found (IM) just after the file system is created with mJtfs(IM).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

FSCK(IM) FSCK(IM)

Dfsck
The dfsck program allows two file system checks on two different drives
simultaneously, optionsl and options! are used to pass options to fsck for the
two sets of file systems. A dash (-) is the separator between the file system
groups.

The dfsck program permits an operator to interact with two /sc/fc(lM) programs
at once. To aid in this, dfsck prints the file system name for each message to the
operator. When answering a question from dfsck, the operator must prefix the
response with a 1 or a 2 (indicating that the answer refers to the first or second
file system group).

Do not use dfsck to check the root file system.

FILES
/etc/checklist default list of file systems to check

/etc/checkall optimizing dfsck shell file

SEE ALSO
clri(lM), init(lM), mklost+found(lM), uadmin(2), ncheck(lM), checklist(4),
fs(4).

S/Series CTIX Administrator's Guide.

DIAGNOSTICS

The diagnostics produced by fsck are intended to be self-explanatory.

If -p was specified and preening was inadequate, a nonzero status is returned.

NOTES
Always unmount file systems before running fsck except in the case of the root
file system.
The block device must be used with mounted file systems; thus, the root file
system must always be specified as the block device.
The maintenance tape can be used to check the normal root file system as a raw
device, unmounted. (In this case, the root file system is on the RAM disk.)
The fsck program determines the file system type (IK or 4K) on its own.

BUGS

I-node numbers fo r . a n d . . in each directory should be checked for validity.

The fsck program does not know how to create a lost+found directory.

FSDB(IM) FSDB(IM)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-]

DESCRIPTION
fsdb can be used to patch up a damaged file system after a crash. It has
conversions to translate block and i-numbers into their corresponding disk
addresses. Also included are mnemonic offsets to access different parts of an
i-node. These greatly simplify the process of correcting control block entries or
descending the file system tree.

fsdb contains several error-checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional - argument or by the use of the O symbol, (fsdb reads the i-size and f-
size entries from the superblock of the file system as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. During any assignment operation, numbers are checked for a
possible truncation error due to a size mismatch between source and
destination.

fsdb reads a block at a time and will therefore work with raw as well as block
I/O. A buffer management routine is used to retain commonly used blocks of
data in order to reduce the number of read system calls. All assignment
operations result in an immediate write-through of the corresponding block.

The symbols recognized by fsdb are:
absolute address
i convert from i-number to i-node address
b convert to byte address
d directory slot offset
+,-,*; address arithmetic
q quit

save, restore an address
= numerical assignment
= + incremental assignment
= - decremental assignment
_n character string assignment
O error checking flip flop
p general print facilities
f file print facility
F buffer status

FSDB(IM) FSDB(IM)

B
W
D

X hexadecimal or octal address flip-flop (default is
hexadecimal)
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The current
address is normalized to an appropriate boundary before printing begins. It
advances with the printing and is left at the address of the last item printed. The
output can be terminated at any time by typing the delete character. If a
number follows the p symbol, that many entries are printed. A check is made to
detect block boundary overflows since logically sequential blocks are generally
not physically sequential. If a count of zero is used, all entries to the end of the
current block are printed.

The print options available are:
i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes
s or S print as superblock
x print as hexadecimal words
h print as hexadecimal bytes

The f symbol is used to print data blocks associated with the current i-node. If
followed by a number, that block of the file is printed. (Blocks are numbered
from zero.) The desired print option letter follows the block number, if present,
or the f symbol. This print facility works for small as well as large files. It
checks for special devices and that the block pointers used to find the data are
not zero.

Dots, tabs, and spaces may be used as function delimiters but are not necessary.
A line with just a new-line character will increment the current address by the
size of the data type last printed. That is, the address is set to the next byte,
word, double word, directory entry or i-node, allowing the user to step through
a region of a file system. Information is printed in a format appropriate to the
data type. Bytes, words and double words are displayed with the octal address
followed by the value in octal and decimal. A .B or .D is appended to the
address for byte and double word values, respectively. Directories are printed
as a directory slot offset followed by the decimal i-number and the character

FSDB(IM) FSDB(IM)

representation of the entry name. I-nodes are printed with labeled fields
describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

md mode
In link count
uid user ID number
gid group ID number
sz file size
a# data block numbers (0 - 12)
at access time
mt modification time
maj major device number
min minor device number
si #inodes field in superblock
sf #blks field in superblock
sdO s_dinfo[0] in superblock
sdl s_dinfo[l] in superblock
=BS set a blank superblock with file system type IK and a

magic number

EXAMPLES
386i prints i-number 386 in an i-node format. This now becomes

the current working i-node.

ln=4 changes the link count for the working i-node to 4.

ln=+l increments the link count by 1.

fc prints, in ASCII, block zero of the file associated with the
working i-node.

2i.fd prints the first 32 directory entries for the root i-node of this
file system.

d5i.fc changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the above
command. The first logical block of the file is then printed
in ASCII.

512B.p0o prints the superblock of this file system in octal.

2i.a0b.d7=3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

FSDB(IM)

d7.nm="name"

a2b.p0d

512.ps

FSDB(IM)

changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

prints the third block of the current i-node as directory
entries.

prints the superblock

SEE ALSO
fsck(lM), dir(4), fs(4).

FSIZE(1) FSIZE(I)

NAME
fsize - report file size

SYNOPSIS
/usr/local/bin/fsize

/usr/local/bin/fsize -s

/usr/local/bin/fsize -m [-i] [-c j [-q] [-v] [-b#] [-f#] [-u]

DESCRIPTION
The fsize command has three uses, which correspond to the three forms of the
command:

1. Read the standard input to obtain a list of path names and report the
total size of the combined named fdes (size is always reported in 512-
byte blocks). If the files are nonexistent, fsize reports 0. This form of
the command takes no arguments.

2. Read the standard input to obtain a list of path names and report the
size of each file individually, one per line (size is always reported in
512-byte blocks). This form of the command takes -s as a single
required argument.

3. Read the standard input to obtain a list of path names and size
requirements for each named file (for example, the output of fsize -s)
and report statistics on a per-file system basis. This form of the
command takes -m as a required argument and the following
additional options:

-i Report number of i-nodes needed.

-c Adjust space requirements if there is an existing file with the
same name as a file included in the standard input.

-q If file system is not large enough to contain the named files,
print a message and exit with a non-zero status.

-v Print statistics on each fde system.

-b# Fudge factor for # of blocks.

-f# Fudge factor for # of i-nodes.

-u Print usage requirements on a per file system basis.

F - S I Z E (l) FSIZE(l)

EXAMPLES
The following command reports the number of blocks used by the files and
directories in the current working directory:

Is | fsize

The following command reports the number of blocks used by the files in a file
list:

cat filelist | fsize

The following comamnd reports the number of blocks used by all the files and
directories in the entire subtree of the current working directory and prints
information for each file individually, one per line:

find . -print | fsize -s

The following command calculates whether there is enough space for the group
whose files are in filelist, adjusts for existing files, prints messages
corresponding to various specified options, and so forth [this is an actual
example from ctinsiall(1)]:

cat filelist | fsize-mqclu-b100-f20

SEE ALSO
du(l).

BUGS
Remotely mounted file systems are not properly recognized, and are treated as
part of the nearest locally mounted file system, as demonstrated by the
following form of the command: fsize -mu.

FSPLIT(l) FSPLIT(l)

NAME
fsplit - split FORTRAN, ratfor, or efl files

SYNOPSIS
fsplit [options] [files]

DESCRIPTION
fsplit splits the named file(s) into separate files, with one procedure per file. A
procedure includes blockdata, function, main, program, and subroutine program
segments. Procedure X is put in file X.T, X.r, or X.e depending on the language
option chosen, with the following exceptions: main is put in the file MAfN.[tfr]
and unnamed blockdata segments in the files blockdataN .[efr] where N is a
unique integer value for each file.

The following options pertain:

-f (default) Input files are FORTRAN.

-r Input files are ratfor.

-e Input files are efl.

-s Strip FORTRAN input lines to 72 or fewer characters with trailing
blanks removed.

SEE ALSO
csplit(l), split(l).

(-

FSSTAT(IM) FSSTAT(iM)

NAME
fsstat - report file system status

SYNOPSIS
/etc/fsstat special_file

DESCRIPTION
The fsstat comand reports on the status of the file system on specialJile.
During startup, this command is used to determine if the file system needs
checking before it is mounted. The fsstat command succeeds if the file system
is unmounted and appears okay. For the root file system, fsstat succeeds if the
file system is active and not marked bad.

SEE ALSO
fs(4).

DIAGNOSTICS
The command has the following exit codes:

0 The file system is not mounted and appears okay, (except for root
where 0 means mounted and okay).

1 The file system is not mounted and needs to be checked.

2 The file system is mounted.

3 The command failed.

FSTYP(IM) FSTYP(iM)

NAME
fstyp - determine fde system identifier

SYNOPSIS
fstyp special

DESCRIPTION
The fstyp command ailows the user to determine the file system identifier of
mounted or unmounted file systems using heuristic programs. The file system
type is required by mount(2) and sometimes by mount(\M) to mount file
systems of different types.

The directory /etc/fstyp.d contains a program for each file system type to be
checked; each program applies some appropriate heuristic to determine whether
the supplied special file is of the type for which it checks. If it is. the program
prints on standard output the usual file-system identifier for that type and exits
with a return code of 0; otherwise it prints error messages on standard error and
exits with a non-zero return code. The fstyp command runs the programs in
/etc/fstyp.d in alphabetical order, passing special as an argument; if any
program succeeds, its file-system type identifier is printed and fstyp exits
immediately. If no program succeeds, fstyp prints "Unknown_fstyp" to
indicate failure.

WARNING
The use of heuristics implies that the result of fstyp is not guaranteed to be
accurate.

SEE ALSO
mount(lM), mount(2), sysfs(2).

e -

F T P (l) (CTIX Internetworking) FTP(l)

NAME
ftp - ARPANET file transfer program

SYNOPSIS
ftp [-V] [-d] [-i] [-11] [-g] [host]

DESCRIPTION
ftp is the user interface to the ARPANET standard File Transfer Protocol. The
program copies files to and from a remote node. It is more general than rep (I).
because a File Transfer Protocol server is available under a wider range of
operating systems.

The client node with which ftp is to communicate can be specified on the
command line. If this is done, ftp immediately attempts to establish a
connection to an FTP server on that host; otherwise, ftp enters its command
interpreter and awaits instructions from the user. When ftp is awaiting
commands from the user, the prompt " f t p > " is displayed.

(In the discussions below, commands in all capital letters, such as PASV, are
internal, rather than user, FTP commands.)

OPTIONS
The following options can be specified at the command line, or to the command
interpreter:

-v Force ftp to show all responses from the remote server, as well as
report on data transfer statistics.

-n Restrain ftp from attempting "auto-login" upon initial connection. If
auto-login is enabled, ftp checks the .netrc file in the user's home
directory for an entry describing an account on the remote machine
(see "The .netrc File" below). If no entry exists, ftp prompts for the
remote machine login name (default is the user identity on the local
machine), and, if necessary, prompt for a password and an account
with which to login.

-i Disable interactive prompting during multiple file transfers.

-d Enable debugging.

-g Disable "globbing" (file name expansion using wildcard characters).

COMMANDS
The following commands are recognized by ftp. Optional command arguments
can be specified on the command line; otherwise, ftp enters its command
interpreter and prompts for arguments. Note that each machine session
normally begins with an open command and ends with a close or a bye
command.

F T P (L) (C T T X I n t e r n e t w o r k i n g) FTP(l)

! [command [args]]
Invoke an interactive shell on the local machine. If there are
arguments, the first is taken to be a command to execute directly, with
the rest of the arguments as its arguments.

$ macro-name f args]
Execute the macro macro-name that was defined with the macdef
command. Arguments are passed to the macro "unglobbed."

account [string]
Send the ACCT command to the remote system with the given string as
an argument If no argument is specified, the user is prompted in non-
echoing mode. The interpretation of this command is dependent on the
remote system: it is sometimes used for a required second password.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is
left unspecified, the local file name is used in naming the remote file
after being altered by any ntrans or nmap setting. File transfer uses
the current settings for type, format, mode, and structure.

Set the file transfer type to network ASCII. This is the default type.
(Refer to "File Transfer Parameters" below.)

Arrange for a bell to be sounded after each file transfer command is
completed.

Set the file transfer type to support binary image transfer.

Terminate the FTP session with the remote server and exit ftp. An end
of file also terminates the session and exits.

Toggle remote computer file name case mapping during mget
commands. When case is on (default is off), remote computer file
names with all letters in upper case are written in the local directory
with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-
directory.

cdup Change the remote machine working directory to the parent of the
current remote machine working directory.

close Terminate the FTP session with the remote server, and return to the
command interpreter. Any defined macros are erased.

ascii

hell

binary

bye

case

- 2 -

F T P (l) (C T I X I n t e r n e t w o r k i n g) FTP(1)

cr Toggle carriage return stripping during ASCII type file retrieval.
Records are denoted by a carriage return/linefeed sequence during
ASCH type file transfer. When cr is on (the default), carriage returns
are stripped from this sequence to conform with the UNIX and CTIX
single linefeed record delimiter. Records on remote systems that are
not running UNIX or CTIX can contain single linefeeds; when an ASCH
type transfer is made, these linefeeds can be distinguished from a
record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is
used to set the debugging level. When debugging is on, ftp prints each
command sent to the remote machine, preceded by the suing "--> ' ' .

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-
directory, and, optionally, placing the output in local-file. If no
directory is specified, the current working directory on the remote
machine is used. If no local file is specified, or local-file is -, output
comes to the terminal.

disconnect
A synonym for close.

form format
Set the file transfer form to format. The default format is file, (ftp
supports only the default value for format.)

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local
file name is not specified, it is given the same name it has on the
remote machine, subject to alteration by the current case, ntrans, and
nmap settings. The current settings for type, form, mode, and
structure are used while transferring the file.

glob Toggle filename expansion ("globbing") for mdelete, mget and
mput. If globbing is turned off with glob, the file name arguments are
taken literally and not expanded. Globbing for mput is done as in
csh(l). For mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not merged.
Expansion of a directory name is likely to be different from expansion
of the name of an ordinary file: the exact result depends on the foreign

- 3 -

F T P (l) (CTTX Internetworking) FTP(l)

operating system and ftp server, and can be previewed by doing
"mis remote-files - " . Note: mget and mput are not meant to transfer
entire directory subtrees of files. That can be done by transferring an
archive [created with a copy program such as t a r (l) or cpio(l)] of the
subtree (in binary mode).

hash Toggle hash-sign (" # ") printing for each data block transferred. The
size of a data block is 1024 bytes.

help [command]
Print an informative message about the meaning of command. If no
argument is given, ftp prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no directory is
specified, the user's home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote
machine. If remote-directory is left unspecified, the current working
directory is used. If no local file is specified, or if local-file is -, the
output is sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-
name; a null line (consecutive newline characters in a file or carriage
returns from the terminal) terminates macro input mode. There is a
limit of 16 macros and 4096 total characters in all defined macros.
Macros remain defined until a close command is executed. The macro
processor interprets $ and \ as special characters. A $ followed by a
number (or numbers) is replaced by the corresponding argument on the
macro invocation command line. A $ followed by an i signals the
macro processor that the executing macro is to be looped. On the first
pass $i is replaced by the first argument on the macro invocation
command line, on the second pass it is replaced by the second
argument, and so on. A \ followed by any character is replaced by that
character. Use the \ to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files can be specified. If interactive
prompting is enabled, ftp prompts the user to verify that the last
argument is indeed the target local file for receiving mdir output.

- 4 -

F T P (l) (C T T X I n t e r n e t w o r k i n g) FTP(l)

mget remote-files
Expand the remote-files on the remote machine and do a get for each
fde name thus produced. See glob for details on the filename
expansion. Resulting file names are then processed according to case,
ntrans, and nmap settings. Files are transferred into the local working
directory, which can be changed with "led directory"; new local
directories can be created with " ! mkdir directory

mkdir directory-name
Make a directory on the remote machine.

mis remote-files local-file
Like Is, except multiple remote fdes can be specified. If interactive
prompting is on, ftp prompts the user to verify that the last argument is
indeed the target local file for receiving mis output

mode f mode-name]
Set the file transfer mode to mode-name. The default mode is stream
mode, (ftp supports only the default value for mode.)

mput local-files
Expand wild cards in the list of local files given as arguments and do a
put for each file in the resulting list. See glob for details of filename
expansion. Resulting file names are then processed according to
ntrans and nmap settings.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are
specified, the filename mapping mechanism is unset. If arguments are
specified, remote filenames are mapped during mput commands and
put commands issued without a specified remote target filename. If
arguments are specified, local filenames are mapped during mget
commands and get commands issued without a specified local target
filename. This command is useful when connecting to a remote
computer with different file naming conventions or practices (for
example, a computer running an operating system different from CTIX
and UNIX). The mapping follows the pattern set by inpattern and
outpattern. Inpattern is a template for incoming filenames (which
may have already been processed according to the ntrans and case
settings). Variable templating is accomplished by including the
sequences $1, $2, ..., $9 in inpattern. Use \ to prevent this special
treatment of the $ character. All other characters are treated literally,
and are used to determine the nmap inpattern variable values. For
exmaple, given inpattern $1.$2 and the remote file name

- 5 -

F T P (l) (C T I X I n t e r n e t w o r k i n g) FTP(1)

mydata.data, $1 would have the value mydata, and $2 would have
the value data. The outpattern determines the resulting mapped
filename. The sequences $1, $2, ..., $9 are replaced by any value
resulting from the inpattern template. The sequence $0 is replaced by
the original filename. Additionally, the sequence [seql ,seq2] is
replaced by seql if seql is not a null string; otherwise it is replaced by
seql. For example, the command

nmap $1.$2.$3 [$1,$2].[$2,file]

would yield the output filename myfile.data for input filenames
myfile.data and myfile.data.old, myfile.file for the input filename
myfile, and myfile.myfile for the input filename .myfile. Spaces can
be included in outpattern, as in the example:

| _ _ _l ft_ / iniiapi^i j »ou 9t * 41

Use the \ character to prevent special treatment of the $, [,], and ,
characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no
arguments are specified, the filename character translation mechanism
is unset. If arguments are specified, characters in remote filenames are
translated during input commands and put commands issued without a
specified remote target filename. If arguments are specified,
characters in local filenames are translated during mget commands
and get commands issued without a specified local target filename.
This command is useful when connecting to a remote computer with
different file naming conventions or practices (for example, a
computer running an operating system different from CTIX and UNIX).
Characters in a filename matching a character in inchars are replaced
with the corresponding character in outchars. If the character's
position in inchars is longer than the length of outchars, the character
is deleted from the file name.

open host [port]
Establish a connection to the specified host FTP server. An optional
port number can be supplied, in which case, ftp attempts to contact an
FTP server at that port If the auto-login option is enabled (default), ftp
also attempts to automatically log the user in to the FTP server (see
description of -n option above). A connection to a second host can be
established using the proxy open command.

- 6 -

F T P (l) (C T I X I n t e r n e t w o r k i n g) FTP(1)

prompt Toggle interactive prompting. Interactive prompting occurs during
multiple file transfers to allow the user to selectively retrieve or store
files. If prompting is turned off (default is on), any mget or mput
transfers all files, and any mdelete deletes all files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This
command allows simultaneous connection to two remote FTP servers
for transferring files between the two servers. The first proxy
command should be an open, to establish the secondary control
connection. Enter the command proxy ? to see what ftp commands are
executable on the secondary connection. The following commands
behave differendy when prefaced by proxy: open does not define new
macros during the auto-login process, close does not erase existing
macro definitions, get and mget transfer fdes from the host on the
primary control connection to the host on the secondary control
connection, and put, mput, and append transfer files from the host on
the secondary control connection to the host on the primary control
connection. Third party file transfers depend upon support of the FTP
protocol PASV command by the server on the secondary control
connection.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left
unspecified, the local file name is used after processing according to
any ntrans or nmap settings in naming the remote file. File transfer
uses the current settings for type, format, mode, and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is
specified, it is supplied to the server as well.

rename [from] [to]
Rename the file from on the remote machine, to the file to.

- 7 -

F T P (l) (CTIX Internetworking) FTP(1)

reset Clear reply queue. This command re-synchronizes command/reply
sequencing with the remote FTP server. Resynchronization may be
necessary following a violation of the FTP protocol by the remote
server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a
file already exists with a name equal to the target local filename for a
get or mget command, a .1 is appended to the name. If the resulting
name matches another existing file, a .2 is appended to the original
name. If this process continues up to .99, an error message is printed,
and the transfer does not take place. The generated unique filename is
reported. Note that runique does not affect local files generated from
a shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp attempts to use a
PORT command when establishing a connection for each data transfer.
The use of PORT commands can prevent delays when performing
multiple file transfers. If the PORT command fails, ftp uses the default
data port. When the use of PORT commands is disabled, no attempt is
made to use PORT commands for each data transfer. This is useful for
certain FTP implementations that do ignore PORT commands but,
incorrectly, indicate that they have been accepted.

status Show the current status of ftp.

struct [struct-name]
Set the file transfer structure to struct-name. By default stream
structure is used, (ftp supports only the default value for struct.)

sunique
Toggle storing of files on remote machine under unique file names.
Remote FTP server must support FTP protocol STOU command for
successful completion. The remote server reports unique name.
Default value is off.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

- 8 -

F T P (l) (C T I X I n t e r n e t w o r k i n g) F T P (l)

type [type-name]
Set the file transfer type to type-name. If no type is specified, the
current type is printed. The default type is network ASCII.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not
specified and the server requires it, ftp prompts the user for it (after
disabling local echo). If an account field is not specified, and the FTP
server requires it, the user is prompted for it. If an account field is
specified, an account command is relayed to the remote server after the
login sequence is completed if the remote server did not require it for
logging in. Unless ftp is invoked with "auto-login" disabled, this
process is done automatically on initial connection to the FTP server.

verbose Toggle verbose mode. In verbose mode, all responses from the FTP
server are displayed to the user. In addition, if verbose is on, when a
file transfer completes, statistics regarding the efficiency of the
transfer are reported. By default, verbose is on.

? [command]
A synonym for help.

Command arguments that have embedded spaces can be quoted with quotation
marks (" ") .

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually Control-C).
Sending transfers are immediately halted. Receiving transfers are halted by
sending an FTP protocol ABOR command to the remote server, and discarding
any further data received. The speed at which this is accomplished depends
upon the remote server's support for ABOR processing. If the remote server
does not support the ABOR command, an " f tp>" prompt does not appear until
the remote server has completed sending the requested file.

The terminal interrupt key sequence is ignored when ftp has completed any
local processing and is awaiting a reply from the remote server. A long delay in
this mode can result from the ABOR processing described above, or from
unexpected behavior by the remote server, including violations of the FTP
protocol. If the delay results from unexpected remote server behavior, the local
ftp program must be killed by hand.

F T P (l) (C T T X I n t e r n e t w o r k i n g) FTP(l)

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the
following rules:

1. If the file name - is specified, the standard input (for reading) or the
standard output (for writing) is used.

2. If the first character of the file name is |, the remainder of the argument
is interpreted as a shell command, ftp then forks a shell, using
popen(3) with the argument supplied, and reads (writes) from the
stdout (stdin). If the shell command includes spaces, the argument
must be quoted; for example, " | Is -It". A particularly useful example
of this mechanism is dir . | more.

3. Failing the above checks, if "globbing" is enabled, local file names
are expanded according to the rules used in the CJ«(1) (refer also to the
discussion of the glob command). If the ftp command expects a single
local file (for example, put), only the first filename generated by the
"globbing" operation is used.

4. For mget commands and get commands with unspecified local file
names, the local filename is the remote filename, which can be altered
by a case, ntrans, or nmap setting. The resulting filename can then be
altered if runique is on.

5. For mput commands and put commands with unspecified remote file
names, the remote filename is the local filename, which can be altered
by a ntrans or nmap setting. The resulting filename can then be
altered by the remote server if sunique is on.

FILE TRANSFER PARAMETERS
The FTP specification describes a number of parameters that can affect a file
transfer. The type can be one of ascii, image(binary), ebcdic, and local byte
size (for PDP-10's and PDP-20's mostly), ftp supports the ascii and image types
of file transfer, plus local 8-bit byte size for tenex mode transfers.

ftp supports only the default values for the remaining file transfer parameters:
mode,form, and struct.

THE .netrc FILE
The .netrc file contains login and initialization information used by the auto-
login process [see netrc (4)]. It resides in the user's home directory. The
following tokens are recognized; they can be separated by spaces, tabs, or new-
lines:

- 1 0 -

FTP(l) (C T I X I n t e r n e t w o r k i n g) FTP(l)

machine name
Identify a remote machine name. The auto-login process searches the
•netrc file for a machine token that matches the remote machine
specified on the ftp command line or as an open command argument.
Once a match is made, the subsequent .netrc tokens are processed
until the end of fde is reached or another machine token is
encountered.

login name
Identify a user on the remote machine. If this token is present, the
auto-login process initiates a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process
supplies the specified string if the remote server requires a password as
part of the login process. Note that if this token is present in the .netrc
file, ftp aborts the auto-login process if the .netrc is readable by
anyone besides the user. This is to discourage publically readable
passwords and is an important security feature.

account string
Supply an additional account password. If this token is present, the
auto-login process supplies the specified string if the remote server
requires an additional account password, or the auto-login process
initiates an ACCT command if the remote machine does not actively
request the account password.

macdef name
Define a macro. This token functions like the ftp macdef command
functions. A macro is defined with the specified name; its contents
begin with the next .netrc line and continue until a null line
(consecutive new-line characters) is encountered. If a macro named
init is defined, it is automatically executed as the last step in the auto-
login process.

SEE ALSO
ftpd(lM), netrc(4).
CTIX Network Administrator's Guide.

BUGS
Correct execution of many commands depends upon proper behavior by the
remote server.

- 1 1 -

FTP (1) (CTTX Internetwork ing) FTP (1)

An error in the treatment of carriage returns in previous releases of CTTX
(4.2BSD UNIX) ASCII-mode transfer code has been corrected. This correction
can result in incorrect transfers of binary files to and from 4.2BSD servers using
the ASCH type. Avoid this problem by using the binary image type.

- 1 2 -

FTPD(IM) (C T I X I n t e r n e t w o r k i n g) FTPD(IM)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
/etc/ftpd [-d] [-1] t -ttimeout]

DESCRIPTION
The ftpd program is the DARPA Internet File Transfer Prototocol server process.
The server uses the TCP protocol and listens at the port specified in the ftp
service specification; see services (4).

The ftpd server is started by the "super-server" inetd, and therefore must have
an entry in inetd's configuration file, /etc/inetd.conf [see inetd(IM) and
inetd.conf(4)].

If the -d option is specified, debugging information is written to the syslog.

If the -1 option is specified, each FTP session is logged in the syslog.

The FTP server times out an inactive session after 15 minutes. If the -t option is
specified, the inactivity timeout period is set to timeout.

The FTP server currently supports the following FTP requests; case is not
distinguished.

Request Description
ABOR abort previous command
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CDUP change to parent of current working directory
CWD change working directory
DELE delete a file
HELP give help information
LIST give list files in a directory (Is -lg)
MKD make a directory
MODE specify data transfer mode
NLST give name list of files in directory ("Is")
NOOP do nothing
PASS specify password
PASV prepare for server-to-server transfer
PORT specify data connection port

FTPD(IM) (C T T X I n t e r n e t w o r k i n g) FTPD(IM)

PWD print the current working directory
QUIT terminate session
RETR retrieve a file
RMD remove a directory
RNFR specify rename-from file name
RNTO specify rename-to file name
STOR store a file
STOU store a file with a unique name
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory

The remaining FTP requests specified in RFC 959 are recognized, but not
implemented.

The FTP server aborts an active file transfer only when the ABOR command is
preceded by a Telnet "Interrupt Process" (IP) signal and a Telnet "Synch"
signal in the command Telnet stream, as described in RFC 959.

The ftpd server interprets file names according to the "globbing" (file name
expansion) conventions used by CJ/I(1), allowing users to specify the
metacharacters " * ? [] { } " " .

The ftpd server authenticates users according to the following rules:

1. The user name must be in the password data base, /etc/passwd, and not
have a null password. In this case a password must be provided by the
client before any file operations may be performed.

2. The user name must not appear in the file /etc/ftpusers.

3. The user must have a standard shell.

4. If the user name is anonymous or ftp an anonymous ftp account must
be present in the password file (user ftp). In this case the user is
allowed to log in by specifying any password (by convention this is
given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access
privileges. The server performs a chroot (2) command to the home directory of
the ftp user. To ensure that system security is not breached, the ftp subtree
should be constructed with care; the following rules are recommended:

- 2 -

FTPD(IM) (C T I X I n t e r n e t w o r k i n g) FTPD(IM)

$HOME Make the home directory owned by " f t p " and unwritable by
anyone.

$HOME/bin Make this directory owned by the superuser and unwritable by
anyone. The program ls(l) must be present to support the list
commands. This program should have mode 111.

$HOME/etc Make this directory owned by the superuser and unwritable by
anyone. The files passwd(4) and group(A) must be present for
the Is command to work properly. These files should be mode
444.

$HOME/pub Make this directory mode 111 and owned by ftp.Users should
then place fdes which are to be accessible via the anonymous
account in this directory.

$HOME/shlib Make this directory owned by the super-user and unwritable by
anyone. The file libc2sw_s (copied from /shlib) must be
present for the Is command to work.

SEE ALSO
ftp(l), inetd(lM), inetd.conf(4), services(4).

BUGS
The anonymous account is inherently dangerous and should avoided when
possible.

The server must run as the super-user to create sockets with privileged port
numbers. It maintains an effective user-ID of the logged-in user, reverting to
the super-user only when binding addresses to sockets. The possible security
holes have been extensively scrutinized, but are possibly incomplete.

ftp://ftp.Users

FUMOUNT(IM) (RFS Utilitief) FUMOUNT (1M)

NAME
fumount - forced unmount of an advertised resource

SYNOPSIS
fumount [-w sec] resource

DESCRIPTION
fumount unadvertises resource and disconnects remote access to the resource.
The -w sec causes a delay of sec seconds prior to the execution of the
disconnect

When the forced unmount occurs, an administrative shell script is started on
each remote computer that has the resource mounted (/usr/bin/rfuadmin). If a
grace period of seconds is specified, rfuadmin is started with the fuwarn option.
When the actual forced unmount is ready to occur, rfuadmin is started with the
fumount option. See rfuadmin(iM) for information on the action taken in
response to the forced unmount

This command is restricted to the super-user.

ERRORS
If resource (1) does not physically reside on the local machine, (2) is an invalid
resource name, (3) is not currently advertised and is not remotely mounted, or
(4) the command is not run with super-user privileges, an error message will be
sent to standard error.

SEE ALSO
adv(lM), mount(lM), rfuadmin(lM), rfudaemon(lM), rmount(lM),
unadv(lM).

FUSAGE(IM) FUSAGE(IM)

NAME
fusage - disk access profder

SYNOPSIS
fusage [[mount_point] I [resource] I
[block_special_device] [. . .]]

DESCRIPTION
When used with no options, fusage reports block I/O transfers, in kilobytes, to
and from all locally mounted fde systems and remote resources (RFS or NFS)
on a per-client basis. The count data are cumulative since the time of the
mount When used with an option, fusage reports on the named fde system,
remote resource, or block special device.

The report includes one section for each fde system and remote resource, and
has one entry for each machine that has the directory remotely mounted,
ordered by decreasing usage. Sections are ordered by device name; resources
that are not complete fde systems immediately follow the sections for the fde
systems they are in.

SEE ALSO
adv(lM), mount(lM), df(lM), crash(lM).

k

FUSAGE(IM) FUSAGE(IM)

NAME
fuser - identify processes using a fde or file structure

SYNOPSIS
/etc/fuser [-ku] files I resources [-] [[-ku]
files I resources]

DESCRIPTION
The fuser command displays the process IDs of the processes using Hoe, files or
remote resources specified as arguments. Each process ID is followed by a
letter code, interpreted as follows:

1. If the process is using the file as its current directory, the code is c.

2. If the process is using the file as the parent of its current directory
(only when the file is being used by the system), the code is p.

3. If the process is using the file as its root directory, the code is r .

For a regular type of file (text file, executable, directory, and so on), fuser
reports only about the processes using that file. For block special devices with
mounted file systems, fuser reports about all processes using any file on that
device. If resources is used (meaning any remotely-mounted NFS or RFS
resource), you must use the resource name, not the mount point of the resource.
When you use the resource name, fuser reports about all processes using any
file associated with that remote resource. (If you use the mount point of the
resource, fuser reports only about those processes using that specific file.)

The following options can be used with fuser:

-u The user login name appears, in parentheses, following the process ID.

-k The SIGKILL signal is sent to each process. Since this option spawns
kills for each process, the kill messages might not show up
immediately [see ft//(2)].

If more than one group of files are specified, the options can be respecified for
each additional group of files. A lone dash (-) cancels the options currently in
force; the new set of options applies to the next group of files.

The process IDs are printed as a single line on the standard output, separated by
spaces and terminated with a single new line. All other output is written on
standard error.

Note that you cannot list processes using a particular file from a remote
resource mounted on your machine; you must use the resource name as an
argument.

FUSAGE(IM) FUSAGE(IM)

Any user with permission to read /dev/kmem and /dev/mem can use fuser.
Only the super-user can terminate another user's process.

FILES
/unix for system namelist
/dev/kmem for system image
/dev/mem also for system image

SEE ALSO
mount(lM), ps(l), kill(2), signal(2).

FWTMP(IM) FWTMP(IM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]
/usr/lib/acct/wtmpfix [files]

DESCRIPTION
fwtmp

fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formatted ASCII
records. The ASCH version is useful to enable editing, via ed(1), bad records or
general purpose maintenance of the fde.

The argument -ic is used to denote that input is in ASCII form, and output is to
he written in binary form.

wtmpfix
wtmpfix examines the standard input or named fdes in wtmp format, corrects
the time/date stamps to make the entries consistent, and writes to the standard
output A - can be used in place of files to indicate the standard input. If
time/date corrections are not performed, acctcon(l) will fault when it
encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /etc/wtmp.
The first record is the old date denoted by the string old time placed in the line
field and the flag OLD TIME placed in the type field of the <utmp.h>
structure. The second record specifies the new date and is denoted by the string
new time placed in the line field and the flag NEWTIME placed in the type
field, wtmpfix uses these records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of
the name field to ensure that it consists solely of alphanumeric characters or
spaces. If it encounters a name that is considered invalid, it will change the
login name to INVALID and write a diagnostic to the standard error. In this
way, wtmpfix reduces the chance that acctcon(V) will fail when processing
connect accounting records.

FILES
/etc/wtmp
/usr/include/utmp.h

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), ed(l), runacct(lM), acct(2), acct(4), utmp(4).

k

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

NAME
gdev: hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [- options] [GPS file . . .]
erase
hardcopy
tekset

td [-ernn] [GPS file . . .]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf [see
graphic s(1G)].
hpd hpd translates a GPS [graphical primitive string; see to

instructions for the Hewlett-Packard 7221A Graphics Plotter. A
viewing window is computed from the maximum and minimum
points in file unless the -u or -r option is provided. If no file is
given, the standard input is assumed, options are:

cn Select character set n, n between 0 and 5 (see the HP7221A
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n
inches.

xvn Set width of viewport to n inches.

yd/i Set y displacement of the viewport's lower left corner to n
inches.

yvn Set height of viewport to n inches.

erase Erase sends characters to a Tektronix 4010 series storage terminal
to erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit,
hardcopy generates a screen copy on the unit.

tekset tekset sends characters to a Tektronix terminal to clear the display
screen, set the display mode to alpha, and set characters to the
smallest font

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

td td translates a GPS to scope code for a Tektronix 4010 series
storage terminal. A viewing window is computed from the
maximum and minimum points in file unless the -u or -r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display,

r/i Display GPS region n, n between 1 and 25 inclusive,

u Display the entire GPS universe.

SEE ALSO
ged(lG), graphics(lG), gps(4).

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

NAME
ged - graphical editor

SYNOPSIS

/usr/bin/graf/ged [-euRrn] [GPS file . . .]

DESCRIPTION
The ged editor is an interactive graphical editor used to display, construct, and
edit GPS files on Tektronix 4010 series display terminals. If GPS fde(s) are
given, ged reads them into an internal display buffer and displays the buffer.
The GPS in the buffer can then be edited. If - is given as a file name, ged reads
a GPS from the standard input.

The ged editor accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of ! .
A GPS file is composed of instances of three graphical objects: lines, arc, and
text. Arc and lines objects have a start point, or object-handle, followed by zero
or more points, or point-handles. Text has only an object-handle. The objects
are positioned within a Cartesian plane, or universe, having 64K (-32K to
+32K) points, or universe-units, on each axis. The universe is divided into 25
equal sized areas called regions. Regions are arranged in five rows of five
squares each, numbered 1 to 25 from the lower left of the universe to the upper
right.

The ged editor maps rectangular areas, called windows, from the universe onto
the display screen. Windows allow the user to view pictures from different
locations and at different magnifications. The universe-window is the window
with minimum magnification: the window that views the entire universe. The
home-window is the window that completely displays the contents of the
display buffer.

COMMANDS
The ged commands are entered in stages; Typically each stage ends with a
<cr> (Return). Prior to the final <cr> the command can be aborted by typing
rubout. The input of a stage can be edited during the stage using the erase and
kill characters of the calling shell. The prompt * indicates that ged is waiting at
stage 1.

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

Each command consists of a subset of the following stages:

1. Command line A command line consists of a command name followed
by arguments) followed by a <cr>. A command name is
a single character. Command arguments are either
option(s) or a file-name. Options are indicated by a
leading -.

2. Text Text is a sequence of characters terminated by an
unescaped <cr> (120 lines of text maximum).

3. Points Points is a sequence of one or more screen locations
(maximum of 30) indicated either by the terminal
crosshairs or by name. The prompt for entering points is
the appearance of the crosshairs. When the crosshairs are
visible, you can type any of the following:

sp (space_ enters the current location as a point, which is identified with a
number.

$n enters the previous point numbered n.

>x labels the last point entered with the upper case letter x.

$x enters the point labeled x.

establishes the previous points as the current points. At the start of a
command the previous points are those locations given with the previous
command.

= echoes the current points.

$ JI enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

4. Pivot The pivot is a single location, entered by typing <cr> or
by using the $ operator, and indicated with a

5. Destination The destination is a single location entered by typing
<cr> or by using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command
stages are printed in italics. Arguments surrounded by brackets " [] " are
optional. Parentheses " () " surrounding arguments separated by " o r " means
that exactly one of the arguments must be given.

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

Construct commands:
Arc f-echo,style,weight] points

Box [-echo^tyle,weight] points

Circle [-echo,style,weight] points

Hardware [-echo] text points

Lines [-echo.style,weight] points
Text [-angle,echo,height,mid-point,right-point,text,weight] text

points

Edit commands:
Delete (- (universe or view) or points)

Edit [-angle,echo,height,style,weight] (- (universe or view) or
points)

Kopy [-echo,points,x] points pivot destination

Move [-echo,points,x] points pivot destination

Rotate [-angle,echo,kopy ,x] points pivot destination

Scale [-echo,factor,kopy,x] points pivot destination

View commands:

coordinates points

erase

new-display

object-handles (- (universe or view) or points)

point-handles (- (labelled-points or universe or view) or points)
view (- (home or universe or region) or [-x] pivot

destination)

x [-view] points

zoom [-out] points

Other commands:
quit or Quit

read [-angle,echo,height,mid-point,right-point,text, weight
file-name [destination]

set [-angle,echo,factor,height,kopy,mid-point,points,
right-point^tyle,text, weighty]

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

write file-name

I command
j

Options:
Options specify parameters used to construct, edit, and view graphical objects.
If a parameter used by a command is not specifed as an option, the default value
for the parameter will be used (see set below). The format of command options
follows:

-option [,option]

where option is keyletter[value]. Rags take on the values of true or false
indicated by + and - respectively. If no value is given with a flag, true is
assumed.

Object options:

anglen

echo

factorn

height/i

kopy

mid-point

points

right-point

sty\etype

text

weight/ype
n narrow
m medium
b bold

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0<n< 1280).

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points; otherwise operate on
objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

When false, text strings are outlined rather than drawn.

Sets line weight to one of following types:

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

Area options:

home

out

region/t

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

universe

view

x

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are point-
handles. Lines connect the handles in numerical order. Arc fits a curve
to the handles (currently a maximum of 3 points will be fit with a circular
arc; splines will be added in a later version).

Box and Circle
are special cases of Lines and Arc, respectively. Box generates a
rectangle with sides parallel to the universe axes. A diagonal of the
rectangle would connect the first point entered with the last point. The
first point is the object-handle. Point-handles are created at each of the
vertices. Circle generates a circular arc centered about the point
numbered zero and passing through the last point. The circle's object-
handle coincides with the last point. A point-handle is generated 180
degrees around the circle from the object-handle.

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <cr>. Multiple lines of text
may be entered by preceding a cr with a backslash (that is, \cr). The Text
command creates software-generated characters. Each line of software
text is treated as a separate text object. The first point entered is the
object-handle for the first line of text. The Hardware command sends the
characters in text uninterpreted to the terminal.

Edit commands:
Edit commands operate on portions of the display buffer called defined areas.
A defined area is referenced either with an area option or interactively. If an
area option is not given, the perimeter of the defined area is indicated by points.
If no point is entered, a small defined area is built around the location of the

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

<cr>. This is useful to reference a single point. If only one point is entered, the
location of the <cr> is taken in conjunction with the point to indicate a
diagonal of a rectangle. A defined area referenced by points will be outlined
with dotted lines.

Delete
removes all objects whose object-handle lies within a defined area. The
universe option removes all objects and erases the screen.

Edit modifies the parameters of the objects within a defined area. Parameters
that can be edited are:

angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined area by
the displacement from the pivot to the destination.

Rotate
rotates objects within a defined area around the pivot. If the kopy flag is
true then the objects are copied rather than moved.

Scale For objects whose object handles are within a defined area, point
displacements from the pivot are scaled by factor percent. If the kopy
flag is true then the objects are copied rather than moved.

View commands:
coordinates

prints the location of point(s) in universe- and screen-units,

erase clears the screen (but not the display buffer),

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lie within the defined
area with O (or P). Point-handles identifies labeled points when the
labelled-points flag is true.

view moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination. Options
for home, universe, and region display particular windows in the
universe.

GDEV(IG) (C a t e g o r y 2 S u p p o r t) GDEV(IG)

x indicates the center of a defined area. Option view indicates the center of
the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing
window based on the defined area. For increased magnification, the
window is set to circumscribe the defined area. For a decrease in
magnification the current window is inscribed within the defined area.

Other commands:
quit or Quit

exit from ged. Quit responds with ? if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read directly.
If the file contains text it is converted into text object(s). The first line of
a text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write outputs the contents of the display buffer to a file.

! escapes ged to execute a CTIX system command.

? lists ged commands.

SEE ALSO
gdev(lG), graphics(lG), sh(l), gps(4).

WARNING
See Appendix A of the Tektronix 4014 Computer Display Terminal User's
Manual for a discussion of the appropriate terminal strap options.

GENCC(IM) GENCC(IM)

NAME
gencc - create a front-end to the cc command

SYNOPSIS
gencc

DESCRIPTION
The gencc command is an interactive command designed to aid in the creation
of a front-end to the cc command. Since hard-coded pathnames have been
eliminated from the C Compilation System (CCS), it is possible to move pieces
of the CCS to new locations without recompiling the CCS. The new locations
of moved pieces can be specified through the -Y option to the cc command.
However, it is inconvenient to supply the proper -Y options with every
invocation of the cc command. Further, if a system administrator moves pieces
of the CCS, such movement should be invisible to users.

The front-end to the cc command which gencc generates is a one-line shell
script which calls the cc command with the proper -Y options specified. The
front-end to the cc command will also pass all user supplied options to the cc
command.

(Note that cclsw(1), cc2sw, and cc2fp are also available as front-ends to the cc
command. These programs were themselves generated with gencc.)

gencc prompts for the location of each tool and directory which can be
respecified by a -Y option to the cc command. If no location is specified, it
assumes that that piece of the CCS has not been relocated. After all the
locations have been prompted for, gencc will create the front-end to the cc
command.

gencc creates the front-end to the cc command in the current working directory
and gives the file the same name as the cc command. Thus, gencc can not be
run in the same directory containing the actual cc command. Further, if a
system administrator has redistributed the CCS, the actual cc command should
be placed somewhere which is not typically in a user's PATH (for example,
/lib). This will prevent users from accidentally invoking the cc command
without using the front-end.

CAVEATS
gencc does not produce any warnings if a tool or directory does not exist at the
specified location. Also, gencc does not actually move any files to new
locations.

FILES
./cc front-end to cc

GENCC(IM) GENCC(IM)

SEE ALSO
cc(l), cclsw(l).

GET(l) GET(l)

NAME
get - get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no.] [-k]
[-e] [-l[p] [-p] [-m] [-n] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
The get command generates an ASCII text file from each named SCCS file
according to the specifications given by its keyletter arguments, which begin
with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named SCCS files. If a directory is named, get behaves
as though each file in the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an SCCS file to
be processed. Again, non-SCCS files and unreadable files are silendy ignored.

The generated text is normally written into a file called the g-file whose name is
derived from the SCCS file name by simply removing the leading s.; (see also
FILES, below).

Each of the keyletter arguments is explained below as though only one SCCS
file is to be processed, but the effects of any keyletter argument applies
independently to each named file.

- rSID The 5CCS /Dentification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most useful
cases, what version of an SCCS file is retrieved (as well as the SID of
the version to be eventually created by delta (1) if the -e keyletter is
also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file which were created after the
specified cutoff date-time are included in the generated ASCH text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -C750228235959.
Any number of non-numeric characters may separate the various 2-
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "-c77/2/2 9:22:25". Note that this
implies that one may use the %E% and %U% identification

GET(l) GET(l)

keywords (see below) for nested gets within, say the input to a
send(\C) command:

~!get "-c%E% %U%" s.flle

-ilist A list of deltas to be included (forced to be applied) in the creation of
the generated file. The list has the following syntax:

<list> ::=<range> ! <list> ,<range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in any form shown in
the "SID Specified'' column of Table 1.

-xlist A list of deltas to be excluded in the creation of the generated file.
See the -i keyletter for the list format.

-e Indicates that the get is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of delta{\). The -e
keyletter used in a get for a particular version (SID) of the SCCS file
prevents further gets for editing on the same SID until delta is
executed or the j (joint edit) flag is set in the SCCS file [see
admin (1)]. Concurrent use of get -e for different SIDs is always
allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the get command with the -k keyletter in place of the -e
keyletter.

SCCS file protection specified via the ceiling, floor, and authorized
user list stored in the SCCS file [see admin (1)] are enforced when the
-e keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should have
an SID in a new branch as shown in Table 1. This keyletter is ignored
if the b flag is not present in the file [see admin (1)] or if the retrieved
delta is not a leaf delta. (A leaf delta is one that has no successors
on the SCCS file tree.)
Note that a branch delta may always be created from a non-leaf
delta. Partial SIDs are interpreted as shown in the "SID Retrieved"
column of Table 1.

-k Suppresses replacement of identification keywords (see below) in the
retrieved text by their value. The -k keyletter is implied by the -e
keyletter.

- 2 -

GET(l) GET(l)

-l[p] Causes a delta summary to be written into an l-file. If -Ip is used
then an l-file is not created; the delta summary is written on the
standard output instead. See FILES for the format of the l-file.

-p Causes the text retrieved from the SCCS file to be written on the
standard output No g-file is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless
the -s keyletter is used, in which case it disappears.

-s Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor 2)
remain unaffected.

-m Causes each text line retrieved from the SCCS file to be preceded by
the SID of the delta that inserted the text line in the SCCS file. The
format is: SID, followed by a horizontal tab, followed by the text
line.

-n Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line. When
both the -m and -n keyletters are used, the format is: %M% value,
followed by a horizontal tab, followed by the -m keyletter generated
format.

-g Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an l-file, or to verify the existence of a
particular SID.

-t Used to access the most recently created delta in a given release (for
example, -rl), or release and level (for example, -rl.2).

-w string Substitute string for all occurrences of %W% when getting the file.

-aseq-no. The delta sequence number of the SCCS file delta (version) to be
retrieved [see sccsfile(4)]. This keyletter is used by the comb (I)
command; it is not a generally useful keyletter. If both the -r and -a
keyletters are specified, only the -a keyletter is used. Care should be
taken when using the -a keyletter in conjunction with the -e keyletter,
as the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the -a and -e keyletters to control
the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

- 3 -

GET(l) GET(l)

If the -e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the -i keyletter is used
included deltas are listed following the notation "Included"; if the -x keyletter
is used, excluded deltas are listed following the notation "Excluded' ' .

TABLE 1. Determination of SCCS Identification String

SID* -b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

nonet no R defaults to mR mR.mL mR.(mL+l)

nonet yes R defaults to mR mR.mL mR.mL.(mB+l).l

t> no R > m R mR.mL R.1***

R no R = mR mR.mL mR.(mL+l)

R yes R > m R mR.mL mR.mL.(mB+t).l

R yes R = mR mR.mL mR.mL.(mB+t).l

R -

R < mR and
R does not exist

hR.mL** hR.mL.(mB+l).l

Trunk succ.#
R - in release > R

and R exists
R.mL R.mL.(mB+l).l

R.L no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+l).l

R.L -

Trunk succ.
in release > R

R.L R.L.(mB+l).l

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+l)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+l).l

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+l).l

R.L.B.S - Branch succ. R.L.B.S R.L.(mB+l).t

- 4 -

GET(l) GET(l)

* "R" , "L", "B" , and " S " are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means
"maximum". Thus, for example, "R.mL" means "the maximum level
number within release R"; "R.L.(mB+l).l" means "the first sequence
number on the new branch (that is, maximum branch number plus one) of
level L within release R". Note that if the SID specified is of the form
"R.L", "R.L.B", or "R.L.B.S", each of the specified components must
exist.

** " h R " is the highest existing release that is lower than the specified,
nonexistent, release R.

* * *

This is used to force creation of the first delta in a new release.

Successor.

t The -b keyletter is effective only if the b flag [see admin (1)] is present in
the file. An entry of - means "irrelevant''.

$ This case applies if the d (default SID) flag is not present in the file. If the
d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the file [see
admin (1)], or if absent, the name of the SCCS file with the leading s.
removed.

%I% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the retrieved
text.

%R% Release.

%L% Level.

%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

GET(l) GET(l)

% H % Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

%Y% Module type: value of the t flag in the SCCS file [see admin (I)].

%¥% SCCS file name.

%P% Fully qualified SCCS file name.

% Q % The value of the q flag in the file [see admin (1)].

%C% Current line number. This keyword is intended for identifying
messages output by the program such as "this should not have
happened'' type errors. It is not intended to be used on every line to
provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what (I).

%W% A shorthand notation for constructing what (I) strings for CTIX
system program files. %W% = %Z%%M%<horizontal-tab>%I%

%A% Another shorthand notation for constructing what (I) strings for
non-CTIX system program files.
%A% = %Z%%Y% %M% %!%%Z%

Several auxiliary files may be created by get. These files are known
genetically as the g-file, l-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name: the
last component of all SCCS file names must be of the form s.module-name, the
auxiliary files are named by replacing the leading s with the tag. The g-file is
an exception to this scheme: the g-file is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary file names would be xyz.c, I.xyz.c, p.xyz.c, and
zjcyzx, respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the -p keyletter is used). A g-file is created in all cases, whether or not
any lines of text were generated by the get. It is owned by the real user. If the
-k keyletter is used or implied its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The l-file contains a table showing which deltas were applied in generating the
retrieved text The l-file is created in the current directory if the -I keyletter is

- 6 -

GET(l) GET(l)

used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

Lines in the l-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the aeiia was applied or was not applied
and ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or
was not applied:

" I " : Included.
" X " : Excluded.
" C " : Cut off (by a -c keyletter).

d. Blank.

e. SCCS iden t i f i ca t ion (SID).

f. Tab character.

g. Date and time (in the form YY/MM/DD HH:MM:SS) of
creation.

h. Blank.

i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint edit
flag, j , [see admin(1)] is set in the SCCS file. The p-file is created in the
directory containing the SCCS file and the effective user must have write
permission in that directory. Its mode is 644 and it is owned by the effective
user. The format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by a blank,
followed by the login name of the real user, followed by a blank, followed by
the date-time the get was executed, followed by a blank and the -i keyletter
argument if it was present, followed by a blank and the -x keyletter argument if
it was present, followed by a new-line. There can be an arbitrary number of
lines in the p-file at any time; no two lines can have the same new delta SID.

- 7 -

GET(l) GET(l)

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (that is, get) that
created i t The z-file is created in the directory containing the SCCS file for the
duration of get. The same protection restrictions as those for the p-file apply
for the z-file. The z-file is created mode 444.

FILES
g-file Existed before the execution of delta; removed after completion

of delta.

p-file Existed before the execution of delta; may exist after completion
of delta.

q-file Created during the execution of delta; removed after completion
of delta.

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after completion
of delta.

/usr/bin/bdiff Program to compute differences between the "got ten" file and
the g-file.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l).
UNIX System V Release 3.2 Programmer's Guide.

DIAGNOSTICS
Use help (I) for explanations.

BUGS
If the effective user has write permission (either explicitly or implicitly) in the
directory containing the SCCS files, but the real user does not, then only one file
may be named when the -e keyletter is used.

GETOPTS(1) GETOPTS (1)

N A M E
getopt - parse command options

S Y N O P S I S
set -- vgetopt optstring $*v

DESCRIPTION
WARNING: Start using the new command getopts (I) in place of getopt (1).
getopt (1) will not be supported in the next major release. For more
information, see the WARNINGS section, below.

getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options, optstring is a string of recognized
option letters [see getopt(3C)]; if a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated from it by
white space. The special option - - is used to delimit the end of the options. If it
is used explicitly, getopt will recognize it; otherwise, getopt will generate it; in
either case, getopt will place it at the end of the options. The positional
parameters ($1 $2 . . .) of the shell are reset so that each option is preceded by a
- and is in its own positional parameter; each option argument is also parsed
into its own positional parameter.

E X A M P L E
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option o, which
requires an argument:

»et - - ' getopt abo: $*'
if [$? != 0]
then

echo SUSAGE
exit 2

fi
for i in $*
do

c a s e $ i in
-a | -b)
-o)

e s a c
done

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

GETOPTS(1) GETOPTS (1)

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg He file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
getopts(l), sh(l), getopt(3C).

DIAGNOSTICS
getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

WARNINGS
getopt (\) does not support the part of Rule 8 of the command syntax standard
[see intro(1)] that permits groups of option-arguments following an option to be
separated by white space and quoted. For example,

cmd -a -b -o "xxx z y y file

is not handled correctly). To correct this deficiency, use the new command
getopts (1) in place of getopt (1).

getopt (1) will not be supported in the next major release. For this release a
conversion tool has been provided, getoptcvt. For more information about
getopts and getoptcvt, see the getopts (1) manual page.

If an option that takes an option-argument is followed by a value that is the
same as one of the options listed in optstring (referring to the earlier EXAMPLE
section, but using the following command line: getopt will always treat -a as an
option-argument to -o; it will never recognize -a as an option. For this case, the
for loop in the example will shift past the file argument.

GETOPTS(1) GETOPTS (1)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg . . .]

/usr/lib/getoptcvt f-b] file

DESCRIPTION
getopts is used by shell procedures to parse positional parameters and to check
for legal options. It supports all applicable rules of the command syntax
standard [see Rules 3-10, intro (1)]. It should be used in place of the getopt(1)
command. (See the WARNING, below.)

optstring must contain the option letters the command using getopts will
recognize; if a letter is followed by a colon, the option is expected to have an
argument, or group of arguments, which must be separated from it by white
space.

Each time it is invoked, getopts will place the next option in the shell variable
name and the index of the next argument to be processed in the shell variable
OPTIND. Whenever the shell or a shell procedure is invoked, OPTIND is
initialized to 1.

When an option requires an option-argument, getopts places it in the shell
variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option " - - " may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments (arg
. . .) are given on the getopts command line, getopts will parse them instead.

/usrIlib/getoptcvt reads the shell script in file, converts it to use getopts(1)
instead of getopt (1), and writes the results on the standard output

-b the results of running /usr/lib/getoptcvt will be portable to earlier
releases of the CTIX system, /usr/lib/getoptcvt modifies the shell
script in file so that when the resulting shell script is executed, it
determines at run time whether to invoke getopts (I) or getopt (I).

So all new commands will adhere to the command syntax standard described in
intro (1), they should use getopts (I) or getopt (3Q to parse positional
parameters and check for options that are legal for that command (see
WARNINGS, below).

GETOPTS(1) GETOPTS (1)

EXAMPLE
The following fragment of a shell program shows how one might process the
arguments for a command that can take the options a or b, as well as the option
o, which requires an option-argument:

while getopts abo: c
do

case $c in
a | b)

o)
\?)

esac
done
shiri expr SGFTiND - i

This code will accept any of the following as equivalent:

cmd -a -b -o "xxx z yy" file
cmd -a -b -o "xxx z y V •• file
cmd -ab -o xxx,z,yy file
cmd -ab -o "xxx z y y file
cmd -o xxx,z,yy -b -a file

SEE ALSO
intro(l), sh(l), getopts(3C).

WARNING
Although the following command syntax rule [see intro(1)] relaxations are
permitted under the current implementation, they should not be used because
they may not be supported in future releases of the system. As in the
EXAMPLE section above, a and b are options, and the option o requires an
option-argument:

cmd -aboxxx file
(Rule 5 violation: options with option-arguments must not be
grouped with other options)

cmd -ab -oxxx file
(Rule 6 violation: there must be white space after an option
that takes an option-argument)

Changing the value of the shell variable OPTIND or parsing different sets of
arguments may lead to unexpected results.

FLAG=$c;;
OARG=$OPTARG;;
echo SUSAGE
exit 2;;

GETOPTS(1) GETOPTS (1)

DIAGNOSTICS
getopts prints an error message on the standard error when it encounters an
option letter not included in optstring.

GETSGRVADDR(IM) GETS ERVADDR(IM)

NAME
getservaddr - get network address of service host

SYNOPSIS
getservaddr host service

DESCRIPTION
getservaddr writes to standard output the network address of the specified host
and service. It gets the address from the /etc/hosts file [or the name server
named{IM)] and the /etc/services fde. The address is written as hexadecimal
ASCII, preceded by \x.

The intended use of getservaddr is to provide network addresses for Remote
File Sharing (RFS). For example, if the node Convgt has the internet address of
3.180.0.7, the execution of the following command:

getservaddr Convgt nlsgen

will produce the following to standard output:

\x0002040103b40007

FILES
/etc/hosts
/etc/services

SEE ALSO
hosts(4), services(4).

e

GETTY (IM) GETTY(IM)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS

/etc/getty [-h] [-t timeout] line [speed [type [linedisc]]]

/etc/getty -c file

DESCRIPTION
getty is a program that is invoked by init(IM). It is the second process in the
series, (init-getty-login-shell) that ultimately connects a user with the CTIX
system. It can only be executed by the super-user; that is, a process with the
user-ID of root. Initially getty generates a system identification message from
the values returned by the uname (2) system call. Then, if /etc/issue exists, it
outputs this to the user's terminal, followed finally by the login message field
for the entry it is using from /'eic/'gettydefs. getty reads the user's login name
and invokes the login(l) command with the user's name as argument While
reading the name, getty attempts to adapt the system to the speed and type of
terminal being used. It does this by using the options and arguments specified.
Line is the name of a tty line in /dev to which getty is to attach itself, getty uses
this string as the name of a file in the /dev directory to open for reading and
writing. Unless getty is invoked with the -h flag, getty will force a hangup on
the line by setting the speed to zero before setting the speed to the default or
specified speed. The -t flag plus timeout (in seconds), specifies that getty
should exit if the open on the line succeeds and no one types anything in the
specified number of seconds.

Speed, the optional second argument, is a label to a speed and tty definition in
the file /etc/gettydefs. This definition tells getty at what speed to initially run,
what the login message should look like, what the initial tty settings are, and
what speed to try next should the user indicate that the speed is inappropriate
(by typing a <break> character). The default speed is 9600 baud.

Type, the optional third argument, is a character string describing to getty what
type of terminal is connected to the line in question, getty recognizes the
following types:

none default
ds40-l Dataspeed40/1
tektronix,tek Tektronix
vt61 DEC vt61
vtlOO DEC vtlOO

GETTY (IM) GETTY(IM)

hp45
clOO

Hewlett-Packard 45
Concept 100

The default terminal is none; that is, any crt or normal terminal unknown to the
system. Also, for terminal type to have any meaning, the virtual terminal
handlers must be compiled into the operating system. They are available, but
not compiled in the default condition.

Linedisc, the optional fourth argument, is a character string describing which
line discipline to use in communicating with the terminal. Again the hooks for
line disciplines are available in the operating system but there is only one
presently available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface to 9600
baud, specifies that raw mode is to be used (awaken on every character), that
echo is to be suppressed, either parity allowed, new-line characters will be
converted to carriage return-line feed, and tab expansion performed on the
standard output It types the login message before reading the user's name a
character at a time. If a null character (or framing error) is received, it is
assumed to be the result of the user pushing the "break" key. This will cause
getty to attempt the next speed in the series. The series that getty tries is
determined by what it finds in /etc/gettydefs.

After the user's name has been typed in, it is terminated by a new-line or
carriage-return character. The latter results in the system being set to treat
carriage returns appropriately [see ioctl (2)].

The user's name is scanned to see if it contains any lower-case alphabetic
characters; if not, and if the name is non-empty, the system is told to map any
future upper-case characters into the corresponding lower-case characters.

In addition to the standard UNIX system erase and kill characters (# and @),
getty also understands \b and *U. If the user uses a \b as an erase, or code-U as
a kill character, getty sets the standard erase character and/or kill character to
match.

getty also understands the "standard" ESS (AT&T hardware-specific Electronic
Switching System) protocols for erasing, killing and aborting a line, and
terminating a line. If getty sees the ESS erase character, _, or kill character, $,
or abort character, &, or the ESS line terminators, / or !, it arranges for this set
of characters to be used for these functions.

Finally, login is exec 'd with the user's name as an argument. Additional
arguments may be typed after the login name. These are passed to login, which
will place them in the environment [see login(\)].

GETTY (IM) GETTY(IM)

A check option is provided. When getty is invoked with the -c option and file,
it scans the file as if it were scanning /etc/gettydefs and prints out the results to
the standard output If there are any unrecognized modes or improperly
constructed entries, it reports these. If the entries are correct, it prints out the
values of the various flags. See ioctl (2) to interpret the values. Note that some
values are added to the flags automatically.

FILES
/etc/gettydefs
/etc/issue

SEE ALSO
ct(lC), init(lM), login(l), iocd(2), gettydefs(4), inittab(4), tty(7).

BUGS
While getty understands simple single character quoting conventions, it is not
possible to quote certain special control characters used by getty. Thus, you
cannot login via getty and type a #, / , ! , _, backspace, *U, AD, or & as part of
your login name or arguments, getty uses them to determine when the end of
the line has been reached, which protocol is being used, and what the erase
character is. They will always be interpreted as having their special meaning.

k

GLOSSARY(l) (C a t e g o r y 2 S u p p o r t) GLOSSARY(l)

NAME
glossary - definitions of common CITXT system terms and symbols

SYNOPSIS
[help] glossary [term]

DESCRIPTION
The CTIX system Help Facility command glossary provides definitions of
common technical terms and symbols.

Without an argument, glossary displays a menu screen listing the terms and
symbols that are currently included in glossary. A user can choose one of the
terms or can exit to the shell by typing q (for quit). When a term is selected, its
definition is retrieved and displayed. By selecting the appropriate menu choice,
the list of terms and symbols can be redisplayed.

A term's definition can also be requested directly from shell level (as shown
above), causing a definition to be retrieved and the list of terms and symbols not
to be displayed. Some of the symbols must be escaped if requested at shell
level in order for the facility to understand the symbol. The following table
lists the symbols and their escape sequences.

From any screen in the Help Facility, a user can execute a command from the
shell [iA(l)] by typing a ! and the command to be executed. The screen is
redrawn if the command that was executed was entered at a first level prompt
If entered at any other prompt level, only the prompt is redrawn.

SYMBOL ESCAPE SEQUENCE

Y\"

W

&

\

\M\\]

YY
Vf

\ &

*
WW
\l

GLOSSARY(l) (Category 2 Support) G L O S S A R Y (l)

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (nonscrolling), the shell
variable SCROLL must be set to no and exported so it becomes part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
help(l), helpadm(lM), locate(l), sh(l), starter(l), usage(l), term(5).

W i D U I U / l C n j u u i u i u t i
If the shell variable TERM [see j/i(1)] is not set in the user's .profile file,
TERM defaults to the terminal value type 450 (a hard-copy terminal). For a list
of valid terminal types, refer to term (5).

GRAPH(IG) (C a t e g o r y 2 S u p p o r t) GRAPH(IG)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by straight
lines. The graph is encoded on the standard output for display by the tplot(1G)
filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with
quotes ", in which case they may be empty or contain blanks and numbers;
labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by -x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each
point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnected,
1 connected (default). Some devices give distinguishable line
styles for other small integers (for example, the Tektronix 4014:
2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, do not erase before plotting.

-x [1] If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are
lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities are determined
automatically.

- y [l] Similarly fory .

-h Next argument is fraction of space for height

GRAPH(1G) (Category 2 Support) G R A P H (I G)

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting,

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -x now applies to
the vertical axis.)

A legend indicating grid range is produced with a grid unless the -s option is
present. If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
graphics(lG), spline(lG), tplot(lG).

BUGS

graph stores all points internally and drops those for which there is no room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes cannot be reversed.

GRAPHICS(IG) (C a t e g o r y 2 S u p p o r t) GRAPHICS (1G)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r]

DESCRIPTION
graphics prefixes the path name /usr/bin/graf to the current $PATH value,
changes the primary shell prompt to *, and executes a new shell. The directory
/usr/bin/graf contains all of the Graphics subsystem commands. If the -r
option is given, access to the graphical commands is created in a restricted
environment; that is, $PATH is set to

:/usr/bin/graf:/rbin:/usr/rbin

and the restricted shell, rsh, is invoked. To restore the environment that existed
prior to issuing the graphics command, type EOT (control-d on most terminals).
To logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name
followed by arguments). An argument may be a fde name or an option string.
A file name is the name of any CTIX system file except those beginning with -.
The file name - is the name for the standard input. An option string consists of -
followed by one or more option(s). An option consists of a keyletter possibly
followed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat(1G).

Commands that generate tables of contents; see wc(lG).

Commands that interact with graphical devices; see gdev(1G) and
ged(1G).

A collection of graphical utility commands; see gutil(1G).

A list of the graphics commands can be generated by typing whatis in the
graphics environment.

SEE ALSO
gdev(lG), ged(lG), gutil(lG), stat(lG), toc(lG), gps(4).

GREEK(l) GREEK(l)

NAME
greek - select terminal filter

SYNOPSIS
greek [-Tterminal]

DESCRIPTION
greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character Teletype Model 37 terminal
for certain other terminals. Special characters are simulated by overstriking, if
necessary and possible. If the argument is omitted, greek attempts to use the
environment variable $TERM [see environ(5)]. Currently, the following
terminals are recognized:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621,2640, and 2645.
2640 Hewlett-Packard 2621,2640, and 2645.
2645 Hewlett-Packard 2621,2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621,2640, and 2645.
tek Tektronix 4014.

FILES
/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), eqn(l), hp(l), ram(l), nroff(l), tplot(lG), environ(5),
term(5).

GREP(l) GREP(1)

NAME
grep - search a file for a pattern

SYNOPSIS

grep [options] limited regular expression [file ...]

DESCRIPTION
The grep command searches files for a pattern and prints all lines that contain
that pattern, grep uses limited regular expressions (expressions that have string
values that use a subset of the possible alphanumeric and special characters)
like those used with ed (1) to match the patterns. It uses a compact non-
deterministic algorithm.
Be careful using the characters $, *, [, \ | , (,), and \ in the limited regular
expression because they are also meaningful to the shell. It is safest to enclose
the entire limited regular expression in single quotes " . . . " .

If no files are specified, grep assumes standard input. Normally, each line
found is copied to standard output. The file name is printed before each line
found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can
be useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-i Ignore upper/lower case distinction during comparisons.

-1 Print the names of files with matching lines once, separated by new-
lines. Does not repeat the names of files when the pattern is found more
than once.

-n Precede each line by its line number in the file (first line is 1).

-s Suppress error messages about nonexistent or unreadable files

-v Print all lines except those that contain the pattern.

SEE ALSO
ed(l), egrep(l), fgrep(l), sed(l), sh(l).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

GREP(l) GREP(l)

BUGS
Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSE is
defined in /usr/inciude/stdio.h. If there is a line with embedded nulls, grep will
only match up to the first null; if it matches, it will print the entire line.

G R A P H (I G) (C a t e g o r y 2 S u p p o r t) G R A P H (I G)

NAME
gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device-independent utility commands found in
/usr/bin/graf. If no files are given, input is from the standard input. All output
is to the standard output. Graphical data is stored in GPS format; see gps(4).

bel Send bel character to terminal

cvrtopt [= sstring fstring istring tstring] [args] - options converter
Cvrtopt reformats args (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures.
An arg is either a file name (a string not beginning with a -, or a -
by itself) or an option string (a string of options beginning with a -).
Output is of the form:

-option -option .. .file name(s)
All options appear singularly and preceding any file names.
Options that take values (for example, - r l . l) or are two letters long
must be described through options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the first
line of a shell procedure:

set - vcvrtopt =[options] $@N

Options to cvrtopt are:

sstring String accepts string values.

tstring String accepts floating point numbers as values.

istring String accepts integers as values.

tstring String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

gd [GPS files] -GPS dump
Gd prints a human readable listing of GPS.

gtop [-rn u] [GVSfdes] - GPS to plot {A) filter
Gtop transforms a GPS into plot (A) commands
filters. GPS objects are translated if they fall
that circumscribes the first file unless an option

displayable by plot
within the window
is given.

GUTIL(IG) (Category 2 Support) GUTTL(1G)

pd

ptog

quit

remcom

whatis

yoo

Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

[plot(5)files] -plot(4) dump
Pd prints a human readable listing of plot {A) format graphical
commands.
[plot (5) files] -plot(4) to GPS filter
Ptog transforms plot(4) commands into a GPS.

Terminate session

[files] - remove comments
Remcom copies its input to its output with comments removed.
Comments are as denned in C (thai is, /'* comment */).

[-o] [names] - brief on-line documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. The
command whatis * prints out every description.

Option:

o just print command options

file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into
a file used in the pipeline. Note that, without yoo, this is not
usually successful as it causes a read and write on the same file
simultaneously.

SEE ALSO
graphics(lG), gps(4), plot(4).

HD(1) HD(1)

NAME
hd - hexadecimal and ascii fde dump

SYNOPSIS
/usr/local/bin/hd file

DESCRIPTION
hd prints a hexadecimal listing o f f i l e , side by side with an ASCII listing.

SEE ALSO
od(l).

HEAD(l) HEAD(l)

NAME
head - give first few lines

SYNOPSIS
/usr/Iocal/bin/head [-count] [file ...]

DESCRIPTION
head gives the first count lines of each of the specified files. If no files are
specified, head reads the standard input. If you omit count, head prints the first
10 lines.

SEE ALSO
tail(l).

HELP(l) (C a t e g o r y 2 S u p p o r t) HELP(l)

NAME
help - CTIX system Help Facility

SYNOPSIS
help

t help] starter

[help] usage [-d] [-e] [-o] [commandjiame]

[help] locate [keywordl [keyword2] ...]

[help] glossary [term]

help arg ...

DESCRIPTION
The CTIX system Help Facility provides on-line assistance for CTIX system
users, whether they desire general information or specific assistance for use of
the Source Code Control System (SCCS) commands.

Without arguments, help prints a menu of available on-line assistance
commands with a short description of their functions. The commands and
descriptions follow:

starter information about the CTIX system for the beginning user

locate locate CTIX system commands using function-related keywords

usage CTIX system command usage information

glossary definitions of CTIX system technical terms

The user can choose one of the above commands by entering its corresponding
letter (given in the menu) or exit to the shell by typing q (for "qui t") .

With arguments, help directly invokes the named on-line assistance command,
bypassing the initial help menu. The commands starter, locate, usage, and
glossary, optionally preceded by the word help, can also be specified at shell
level. When executing glossary from shell level some of the symbols listed in
the glossary must be escaped (preceded by one or more backslashes " \ ") to be
understood by the Help Facility. For a list of symbols and the number of
backslashes to use for each, refer to glossary^ 1).

From any screen in the Help Facility, a user can execute a command through
shell [.?/z(l)] by typing a ! and the command to be executed. The screen is
redrawn if the command that was executed was entered at a first level prompt
If entered at any other prompt level, only the prompt is redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell

HELP(l) (C a t e g o r y 2 S u p p o r t) HELP(l)

variable SCROLL must be set to no and exported so it becomes part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on the respective manual pages.

The Help Facility can be tailored to a customer's needs by use of the
helpadm(\M) command.

If the first argument to help is different from starter, usage, locate, or glossary,
help assumes information is being requested about the SCCS Facility. The
arguments can be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

typel Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines that
produced the message (for example, ge3 for message 3 from the get
command).

type2 Does not contain numerics (as a command, such as get).

type3 Is all numeric (for example, 212).

SEE ALSO
admin(l), cdc(l), comb(l), delta(l), get(l), glossary(l), helpadm(lM),
locate(l), prs(l), rmdel(l), sact(l), sccsdiff(l), sh(l), starter(l), unget(l),
usage(l), val(l), vc(l), what(l), profile(4), sccsfile(4), term(5).

WARNINGS
If the shell variable TERM [see sh(l)] is not set in the user's .profile file,
TERM defaults to the terminal value type 450 (a hard-copy terminal). For a list
of valid terminal types, refer to term (5).

HELPADM(IM) (Category 2 Support) HELPADM(IM)

NAME
helpadm - make changes to the Help Facility database

SYNOPSIS
/etc/helpadm

DESCRIPTION
The CTIX system Help Facility Administration command, helpadm, allows
CTIX system administrators and command developers to define the content of
the Help Facility database for specific commands and to monitor use of the
Help Facility. The helpadm command can only be executed by login root, login
bin, or a login that is a member of group bin.

The helpadm command prints a menu of 3 types of Help Facility data which can
be modified, and 2 choices relating to monitoring use of the Help Facility. The
five choices are:

• modify startup data

• add, modify, or delete a glossary term

• add, modify, or delete command data (description, options, examples, and
keywords)

• prevent monitoring use of the Help Facility (login root and login bin only)

• permit monitoring use of the Help Facility (login root and login bin only)

The user may make one of the above choices by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

If one of the first three choices is chosen, then the user is prompted for
additional information; specifically, which startup screen, glossary term
definition, or command description is to be modified. The. user may also be
prompted for information to identify whether the changes to the database are
additions, modifications, or deletions. If the user is modifying existing data or
adding new data, then they are prompted to make the appropriate
modifications/additions. If the user is deleting a glossary term or a command
from the database, then they must respond affirmatively to the next query in
order for the deletion to be done. In any case, before the user's changes are
final, they must respond affirmatively when asked whether they are sure they
want their requested database changes to be done.

By default, helpadm will put the user into ed(1) to make
additions/modifications to database information. If the user wishes to be put
into a different editor, then they should set the environment variable EDITOR in
their environment to the desired editor, and then export EDITOR.

- 1 -

HELPADM(IM) (Category 2 Suppor t) HELP ADM (1M)

If the user chooses to monitor/prevent monitoring use of the Help Facility, the
choice made is acted on with no further interaction by the user.

SEE ALSO
ed(l), glossary(l), help(l), locate(l), starter(l), usage(l).

WARNINGS
When the CTIX system is delivered to a customer, /etc/profile exports the
environment variable LOGNAME. If /etc/profile has been changed so that
LOGNAME is not exported, then the options to monitor/prevent monitoring use
of the Help Facility may not work properly.

FILES
HELPLOG
helpclean

/usr/lib/help/HELPLOG
Aisr/lib/help/helpclean

HINV(IM) HINV(IM)

NAME
hinv - hardware inventory

SYNOPSIS
/etc/hinv option

/etc/hinv hardware-item

DESCRIPTION
The hinv command provides hardware configuration information. There are
two forms of the command: in the first form, an option is given and the result is
printed on stdout; in the second form, a particular hardware item is specified,
and hinv exits with 1 if it exists, or with 0 otherwise.

Option is one of the following:

-p Print hardware configuration. Items are printed one per line,

-c Print CPU type,

-f Print FPU type,

-s Print system type.

-u Returns a meaningless value of 128; included for compatibility
only.

-m Print total physical memory in bytes.

Hardware-item is one of the following:

68881 68881 floating-point processor.

iop Terminal accelerator board.

422 Any RS-422 cluster board.

422-2 Two-channel RS-422 cluster board.

422-4 Four-channel RS-422 cluster board.

vme VME interface board.

sn RS-232 board n.

scsi A SCSI interface is present

SO On-board SCSI is present

Sn SCSI Combo board n.

ipt Interphase tape controller is in EEPROM.

smd Interphase SMD controller is in EEPROM.

HINV(IM) HINV(IM)

BUGS

mpcc Multiprotocol Communications Controller is in EEPROM.

serial Gives number of serial ports present

disks Gives number of disks present

eeprom VME EEPROM valid for UNIX.

enet Ethernet Combo Board is present or a CMC Ethernet board is in
EEPROM.

cmcenp CMC Ethernet board is in EEPROM.

En Ethernet Combo board n.

The hinv command does not know about VME cards.

HOSTTD(l) (CTIX Internetwork in g) HOSTDD(l)

NAME
hostid - set or print identifier of current host system

SYNOPSIS
hostid [identifier]

DESCRIPTION
The hostid command prints the identifier of the current host in hexadecimal.
This numeric value is expected to be unique across all hosts and is commonly
set to the host's Internet address. The super-user can set the hostid by giving a
hexadecimal argument or the hostname; to do this automatically when the
system is rebooted, add the command to /etc/rcopts/NETWORK.

SEE ALSO
gethostid(2), sethostid(2).

HOSTNAME(l) (CTIX Internet working) HOSTNAME(l)

NAME
hostname - set or print the Internet host name of the current system

SYNOPSIS
hostname [nameofhost]

DESCRIPTION
Without arguments, the hostname command prints the name of the current host
When executed by the superuser, hostname sets the hostname to the value of the
argument nameofhost.

hostname is normally used for setting the hostname to the full Internet name, as
in

jack-src.MyCompany.COM

Systems running CTIX Internetworking should, in fact, set the hostname to what
they consider to be the full Internet name.

CTIX understands the hostname, when set to the full Internet name, as
consisting of two components: the left-most qualifier, and everything to the
right of the " . " following the first component (In the example above, "jack-
sre" is the first component and "MyCompany.COM" the second component)
This division into two components makes possible an important interaction
between the hostname command and the set uname and uname commands:
hostname resets the system node name to the value of the left-most qualifier,
and correspondingly, setuname resets the first component of the hostname.
Thus, the node name and first component of the hostname are always identical.

The left-most qualifier can not be greater than eight characters; the rest of the
hostname can not be greater than 53 characters (excluding the left-most " . ") .

When the system is rebooted, if there is a non-zero length file
/etc/rcopts/NODE and a non-zero length file /etc/rcopts/INET-DOMAIN, it
does a hostname command using the name specified in the NODE file for the
left-most qualifier and concatenating to it a " . " and the value specified in the
INET-DOMAIN file. If there is only a NODE file, it does a hostname command
using the NODE file value. If neither file exists, it sets the hostname to the
value returned by uname -n. (To build the hostname contained in the example
above, /etc/rcopts/NODE would specify jack-src, and /etc/rcopts/INET-
DOMAIN would specify MyCompany.COM.)

FILES
/etc/rcopts/NODE
/etc/rcopts/INET-DOMAIN
/etc/rc2

HOSTNAME(l) (CTIX Internet working) HOSTNAME(l)

SEE ALSO
uname(l), setuname(lM), gethostname(2), sethostname(2).

HP(1) HP(1)

NAME
hp - handle special functions of Hewlett-Packard terminals

SYNOPSIS
h p [-e] [- m]

DESCRIPTION
The hp command supports special functions of the Hewlett-Packard 2640 series
of terminals, with the primary purpose of producing accurate representations of
most nroff output A typical use is shown below:

nroff -h file* . . . | hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal supports the
"display enhancements" feature, subscripts and superscripts can be indicated
in distinct ways. If it supports the "mathematical-symbol'' feature, Greek and
other special characters can be displayed.

The flags to hp are as follows:

-e The terminal is assumed to support the "display enhancements"
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the underline mode.
Superscripts are shown in half-bright mode, and subscripts in half-
bright underlined mode. If the -e flag is omitted, hp assumes that your
terminal lacks the "display enhancements" feature: all overstruck
characters, subscripts, and superscripts are displayed in reverse video
mode (that is, dark-on-light, rather than the usual light-on-dark).

-m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; that is, any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
provided by 300(1), except that "no t " is approximated by a right arrow, and
only the top half of the integral sign is shown.

DIAGNOSTICS
line too long

The representation of a line exceeds 1024 characters.

The hp command returns a 0 exit code for normal termination, a 2 for all errors.

SEE ALSO
300(1), col(l), eqn(l), greek(l), nroff(l), tbl(l).

- 1 -

HP(1) HP(1)

BUGS
An "overstriking sequence" is defined as a printing character, followed by a
backspace, followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in reverse video; otherwise, only the first printing character is
shown (again, underlined or in reverse video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (for example, reverse line-feeds, backspaces) can make text
disappear; in particular, tables generated by tbl(\) that contain vertical lines are
often missing the lines of text that contain the " foo t" of a vertical line, unless
the input to hp is piped through co/(l).

Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

HPIO(l) HPIO(l)

NAME
hpio - Hewlett-Packard 2645A terminal tape file archiver

SYNOPSIS
hpio -o[rc] file . . .

hpio -ifrta] [-n count]

DESCRIPTION
The hpio command is designed to take advantage of the tape drives on
Hewlett-Packard 2645A terminals. Up to 255 CTIX system files can be
archived onto a tape cartridge for off-line storage or for transfer to another
UNIX or CTIX system. The actual number of files depends on the sizes of the
files. One file of about 115,000 bytes will almost fill a tape cartridge. Almost
300 1-byte files will fit on a tape, but the terminal will not be able to retrieve
files after the first 255. This manual page is not intended to be a guide for using
tapes on Hewlett-Packard 2645A terminals, but tries to give enough information
to be able to create and read tape archives and to position a tape for access to a
desired file in an archive.

hpio -o (copy out) copies the specified file(s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tape mark). The left
tape drive is used by default. Each file is written to a separate tape file and
terminated with a tape mark. When hpio finishes, the tape is positioned
following the last tape mark written.

hpio -i (copy in) extracts a file(s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a hpio -o).
The default action extracts the next file from the left tape drive.

hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off. To
rewind a tape depress the green function button, then function key 5, and then
select the appropriate tape drive by depressing either function key 5 for the left
tape drive or function key 6 for the right. If several files have been archived
onto a tape, the tape may be positioned at the beginning of a specific file by
depressing the green function button, then function key 8, followed by typing
the desired file number (1-255) with no RETURN, and finally function key 5 for
the left tape or function key 6 for the right. The desired file number may also
be specified by a signed number relative to the current file number.

HPIO(l) HPIO(l)

The meanings of the available options are:

r Use the right tape drive.

c Include a checksum at the end of each file. The checksum is always
checked by hpio -i for each file written with this option by hpio -o.

n count The number of input files to be extracted is set to count. If this option
is not given, count defaults to 1. An arbitrarily large count may be
specified to extract all files from the tape, hpio will stop at the end of
data mark on the tape.

t Print a table of contents only. No files are created. Printed
information gives the file size in bytes, the file name, the file access
modes, and whether or not a checksum is included for the file.

a Ask before creating a file, hpio -i normally prints the file size and
name, creates and reads in the file, and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name are printed followed by a ?. Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

FILES
/dev/tty ? ? ? to block messages while accessing a tape

SEE ALSO
cu(lC).

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.

Can't create 'file'.
File system access permissions did not allow file to be created.

Can't get tty options on stdout.:
hpio was unable to get the input-output control settings associated with
the terminal.

Can't open 'file'.
File could not be accessed to copy it to tape.

HPIO(l) HPIO(l)

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present

'file' not a regular file.
File is a directory or other special file. Only regular fdes will be
copied to tape.

Readcnt = rc, termcnt = tc.
hpio expected to read rc bytes from the next block on the tape, but the
block contained tc bytes. This is caused by having the tape improperly
positioned or by a tape block being mangled by interference from
other terminal I/O.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

WARNINGS
Tape I/O operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running, hpio turns off
write permissions for other users while it is running, but processes started
asynchronously from your terminal can still interfere. The most common
indication of this problem, while a tape is being written, is the appearance of
characters on the display screen that should have been copied to tape.

The keyboard, including the terminal BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

hpio must have complete control of the attributes of the terminal to
communicate with the tape drives. Interaction with commands such as cu(IC)
may interfere and prevent successful operation.

BUGS
Some binary files contain sequences that will confuse the terminal.

An hpio -i that encounters the end of data mark on the tape (for example,
scanning the entire tape with hpio -itn 300), leaves the tape positioned after the
end of data mark. If a subsequent hpio -o is done at this point, the data will not

HPIO(l) HPIO(l)

be retrievable. The tape must be repositioned manually using the terminal FIND
FILE -1 operation (depress the green function button, function key 8, and then
function key 5 for the left tape or function key 6 for the right tape) before the
hpio -o is started.

If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal's RESET
TERMINAL key will unlock the keyboard.

- 4 -

HYPHEN(l) HYPHEN(1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files]

DESCRIPTION
The hyphen command finds all the hyphenated words ending lines in files and
prints them on the standard output If no arguments are given, the standard
input is used; thus, hyphen can be used as a filter.

EXAMPLE
The following command allows the proofreading of nroff hyphenation in
textfile:

mm textfile | hyphen

SEE ALSO
mm(l), nroff(l).

BUGS
The hyphen command does not deal well with hyphenated italic (that is,
underlined) words; it often misses them completely or garbles them.

The hyphen command gets confused occasionally, but with no ill effects other
than spurious extra output

!

ID(1M) ID(1M)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION
id outputs the user and group IDs and the corresponding names of the invoking
process. If the effective and real IDs are different, both are printed.

SEE ALSO
logname(l), getuid(2).

IDLOAD(IM) (R F S U t i l i t i e s) IDLOAD(IM)

NAME
idload - Remote File Sharing user and group mapping

SYNOPSIS
idload [-n] [-g g_rules] [-u u_rules]
[directory]
idload -k

DESCRIPTION
The idload command is used on Remote File Sharing (RFS) server machines to
build translation tables for user and group IDs. It uses the /etc/passwd and
/etc/group files to produce translation tables for user and group IDs firom
remote machines, according to the rules set down in the u_rules and g_rules
files. If you are mapping by user and group name, you need copies of remote
/etc/passwd and /etc/group files. If no rules files are specified, remote user and
group IDs are mapped to MAXUID (an ID number one higher than the highest
number you could assign on your system.)

By default, the remote password and group files are assumed to reside in
/usr/nserve/auth.info/ domain/nodename/[passvfd\ group]. The directory
argument indicates that some directory structure other than
/usr/nserve/auth.info contains the domain/nodename passwd and group files.
[nodename is the name of the computer the files are from and domain is the RFS
domain the computer is a member of; see uname(1) and dname(IM),
respectively.]

You must run idload to put the mapping into place. Global mapping takes
effect immediately for machines that have one of your resources currently
mounted. Mapping for other specific machines takes effect when each machine
mounts one of your resources.

-n This is used to do a trial run of the ID mapping. No translation
table is produced; however, a display of the mapping is output
to the terminal (stdout).

-k This is used to print the ID mapping currently in use. (Specific
mapping for remote machines is not shown until that machine
mounts one of your resources.)

-u u_rules The u rules file contains the rules for user ID translation. The
default rules file is /usr/nserve/auth.info/uid.ru!es.

-gg rules The g rules file contains the rules for group ID translation.
The default rules file is /usr/nserve/auth.info/gid.ru!es.

This command is restricted to the super-user.

IDLOAD(IM) (R F S U t i l i t i e s) IDLOAD(IM)

Rules
The rules files have two types of sections (both optional): global and host.
There can be only one global section, though there can be one host section for
each computer you want to map.

The global section describes the default conditions for translation for any
machines that are not explicitly referenced in a host section. If the global
section is missing, the default action is to map all remote user and group IDs
from undefined computers to MAXUID+1. The syntax of the first line of the
global section follows:

global

A host section is used for each machine or group of machines that you want to
map differently from the global definitions. The syntax of the first line of each
host scction follows:

host name ...

where name is replaced by the full name of a computer (domain.nodename).

The format of a rules file is described below. (All lines are optional, but must
appear in the order shown.)

global
default local / transparent
exclude remote id-remote id I remote id
map remote _id:local

host domain.nodename [domain.nodename...]
default local / transparent
exclude remote id-remote id I remote id I remote name
map remote .local I remote I all

Each of these instruction types is described below.

The line:

default local / transparent

defines the mode of mapping for remote users that are not specifically mapped
in instructions in other lines, transparent means that all remote user and group
IDs have the same numeric value locally unless they appear in the exclude
instruction. Note that local can be replaced by a local user name or ID to map
all users into a particular local name or ID number. If the default line is
omitted, all users that arc not specifically mapped are mapped into a "special
guest" login ID.

IDLOAD(IM) (R F S U t i l i t i e s) IDLOAD(IM)

The line:

exclude remote Jd-remote_id I remote Jd I remote jtame

defines remote IDs to be excluded from the default mapping. The exclude
instruction must precede any map instructions in a block. You can use a range
of ID numbers, a single ID number, or a single name, (remote name cannot be
used in a global block.)

The line

map remote.local I remote I all

defines the local IDs and names that remote IDs and names are mapped into.
remote is either a remote ID number or remote name; local is either a local ID
number or local name. Placing a colon between a remote and a local gives the
value on the left the permissions of the value on the right. A single remote
name or ID assigns the user or group permissions of the same local name or ID.
all is a predefined alias for the set of all user and group IDs found in the local
/etc/passwd and /etc/group files. (You cannot map by remote name in global
blocks.)

DIAGNOSTICS
On successful completion, idload translation tables and returns a successful
exit status. If idload fails, the command returns an exit status of zero and does
not produce a translation table.

If (1) either rules file cannot be found or opened; (2) there are syntax errors in
the rules file; (3) there are semantic errors in the rules file; (4) host password or
group information could not be found; or (5) the command is not run with
super-user privileges, an error message is sent to standard error. Partial failures
cause a warning message to appear, although the process continues.

FILES
/etc/passwd
/etc/group
/usr/nserve/auth.info/domain/nodename/[user I group]
/usr/nserve/auth.info/uid.rules
/usr/nserve/auth.info/gid.rules

SEE ALSO
mount(lM).
S/Series CTIX Administrator's Guide.

NOTES
The idload command always outputs warning messages for map all, since
password files always contain multiple administrative user names with the same

IDLOAD(IM) (R F S U t i l i t i e s) IDLOAD(IM)

ID number. The first mapping attempt on the ID number succeeds, and each
subsequent attempt produces a warning.

Remote File Sharing doesn't need to be running to use idload.

IFCONFIG (IM) (C T I X I n t e r n e t w o r k i n g) IFCONFIG (1M)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
/etc/ifconfig interface address_family [address [dest_address]]
[parameters] /etc/ifconfig interface [protocol_famiIy]

DESCRIPTION
The ifconfig command is used to assign an address to a network interface and/or
configure network interface parameters. The command is normally used at boot
time to define the network address of each interface present on a machine;
ifconfig can also be used after boot to redefine an interface's address or other
operating parameters. The interface parameter is a string of the form nameunit:
for example enO.

Since an interface can receive transmissions in differing protocols, each of
which might require separate naming schemes, you must specify the
addressJamily, which can change the interpretation of the remaining
parameters. The only address family currently supported is " inet" .

For the DARPA Internet family, the address is a host name present in the host
name data base, hosts {AN), or a DARPA Internet address expressed in the
Internet standard "dot notation."

The following parameters can be set by using ifconfig:

up Marie an interface up. This enables an interface that is
disabled by using ifconfig down. The ifconfig up is
automatic when the first address on an interface is set If the
interface is reset when marked down, the hardware is
reinitialized.

down Mark an interface down. When an interface is marked down,
the system does not attempt to transmit messages through
that interface. If possible, the interface is reset to disable
reception as well. This action does not automatically disable
routes using the interface.

trailers Request the use of a trailer link level encapsulation when
sending (default). If a network interface supports trailers,
the system, when possible, encapsulates outgoing messages
in a manner which minimizes the number of memory to
memory copy operations performed by the receiver. On
networks that support the Address Resolution Protocol
(currently, only 10 Mb/s Ethernet), this flag indicates that the
system should request that other systems use trailers when

I F C O N F 1 G (1 M) (CTTX Internetworking) IFCONFIG (1M)

sending to this host Similarly, trailer encapsulations are sent
to other hosts that have made such requests. Currently used
by Internet protocols only.

-trailers Disable the use of a "trailer" link level encapsulation.

arp Enable the use of the Address Resolution Protocol in
mapping between network level addresses and link level
addresses (default). This is currently implemented for
mapping between DARPA Internet addresses and lOMb/s
Ethernet addresses.

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default 0. The
routing metric is used by the routing protocol. Higher
metrics have the effect of making a route less favorable;
metrics are counted as addition hops to the destination
network or host

debug Enable driver dependent debugging code; usually, this turns
on extra console error logging.

-debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for
subdividing networks into sub-networks. The mask includes
the network part of the local address and the subnet part,
which is taken from the host field of the address. The mask
can be specified as a single hexadecimal number with a
leading Ox, with a dot-notation Internet address, or with a
pseudo-network name listed in the network table
networks{4). The mask contains l ' s for the bit positions in
the 32-bit address which are to be used for the network and
subnet parts, and 0's for the host part. The mask should
contain at least the standard network portion, and the subnet
field should be contiguous with the network portion.

dstaddr Specify the address of the correspondent on the other end of
a point to point link.

broadcast (Inet only) Specify the address to use to represent broadcasts
to the network. The default broadcast address is the address
with a host part of all l ' s .

- 2 -

IFCONFIG (IM) (C T I X I n t e r n e t w o r k i n g) I F C O N F I G (1 M)

ifconfig displays the current configuration for a network interface when no
optional parameters are supplied. If a protocol family is specified, ifconfig
reports only the details specific to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address
is unknown, or the user is not privileged and tried to alter an interface's
configuration.

SEE ALSO
netstat(l), intro(4).

i

i

INCLUDES (1) INCLUDES (1)

N A M E

includes - determine C language preprocessor include files

S Y N O P S I S

includes [option ...] file ...

D E S C R I P T I O N

The includes command determines the #include files necessary to compile a C
language source file using the C language preprocessor cpp (I); the command is
based on cpp (I) and takes the same options. Multiple source files can be
named on the command line. However, instead of producing preprocessed
code, includes produces on standard output a list of the i n c l u d e file
dependencies (directly or nested) of the named source files.

The output format is suitable for direct use in a makefile to be used by the
make (I) command. For each named source file, the #include files are listed,
one per line, preceded by the name of the source file (with the last letter of its
name changed to the letter o). The two names are separated by a colon and a
space : . For example, if source file pgm.c depends only on the #include file
incl.h, the output of includes for the source file pgm.c would be:

pgm.o: incl.h

The following options to includes are recognized:

-Uname Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. The
current list of possibly-reserved symbols includes the following:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdp l l , u370, u3b, vax, mc68k,

mc68000, mc68010, mc68020
system variants: RES, RT

-D name
-Dname=def Define name with value def as if by a #define. If no =def is

given, name is defined with value 1. The -D option has lower
precedence than the -U option. That is, if the same name is used
in both a -U option and a -D option, the name is undefined,
regardless of the order of the options.

-T The -T option forces includes to use only the first eight
characters to distinguish preprocessor symbols and is included
for backward compatibility.

-Idir Change the algorithm for searching for ^include files whose
names do not begin with / to look in dir before looking in the

INCLUDES (1) INCLUDES (1)

directories on the standard list. Thus, #include files with names
enclosed in double quotation marks (" ") are searched for first
in the directory of the file with the #include line, then in
directories named in -I options, and last in directories on a
standard list. For #include files with names enclosed in angle
brackets (< >f l) the directory of the file with the #include line
is not searched. By default, includes searches for the name
enclosed in angle brackets in /usr/include; however, if the shell
variable INCROOT is set, includes prepends the value of
INCROOT to the standard list; this is particularly useful for
cross-compilation.

•Ydir Use directory dir in place of the standard list of directories when
searching for #include files. Use of the -Y option overrides the
value for INCROOT if it is set

-H Print, one per line on standard error, the path names of included
files.

Two special names are understood by includes: __LINE is defined as the
current line number (as a decimal integer) as known by includes, and

FILE__ is defined as the current file name (as a C string) as known by
includes. The special names can be used anywhere (including in macros), just
as any other defined name.

All cpp directives understood by includes start with lines begun by #. The
directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name{ arg,arg) token-string
Notice that there can be no space between name and the (.
Replace subsequent instances of name followed by a (, a list of
comma separated tokens, and a) by token-string where each
occurrence of an arg in the token-string is replaced by the
corresponding token in the comma separated list. When a macro
with arguments is expanded, the arguments are placed into the
expanded token-string unchanged. After the entire token-string
has been expanded, includes re-starts its scan for names to
expand at the beginning of the newly created token-string.

#ident "string"
This directive has no effect.

INCLUDES (1) INCLUDES (1)

#undef name Cause the definition of name (if any) to be forgotten from now
on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which is then run
through includes). When the <filename> notation is used,
filename is searched for only in the standard places; see the
descriptions for the -I and -Y options for more detail.

#line integer-constant "filename"
This directive has no effect.

#endif Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name The lines following is processed if and only if name has been the
subject of a previous #define without being the subject of an
intervening #undef.

#ifndef name The lines following is not processed if and only if name has been
the subject of a previous #define without being the subject of an
intervening #undef.

#if constant-expression
Lines following is processed if and only if the constant-
expression evaluates to non-zero. All binary non-assignment C
operators, the ?: operator, the unary - , ! , and " operators are all
legal in constant-expression. The precedence of the operators is
the same as defined by the C language. There is also a unary
operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This
allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known
by includes should be used in constant-expression. In particular,
the sizeof operator is not available.

#elif constant-expression
An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The
lines following the #elif directive will appear in the output if and
only if the preceding test directive evaluates to zero, all
intervening #elif directives evaluate to zero, and the constant-
expression evaluates to non-zero. If constant-expression
evaluates to non-zero, all succeeding #elif and #else directives

INCLUDES (1) INCLUDES (1)

will be ignored. Any constant-expression allowed in a #if
directive is allowed in a #elif directive.

#else The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening
#elif directives evaluate to zero.

The test directives and the possible #else directives can be nested.

FILES
INCDIR standard directory list for #include files, usually

/usr/include

UBDIR usually /lib

SEE ALSO
cc(l), cpp(l), m4(l).

DIAGNOSTICS
The error messages produced by includes are intended to be self-explanatory.
The line number and filename where the error occurred are printed along with
the diagnostic.

INETD(IM) (C T I X I n t e r n e t w o r k i n g) INETD(IM)

NAME
inetd - internet "super-server"

SYNOPSIS
/etc/inetd [-d] [configuration file]

DESCRIPTION
inetd listens on multiple ports for incoming connection requests. When it
receives a request, it spawns the appropriate server. The use of a "super-
server" allows other servers to be spawned only when needed and to terminate
when they have satisfied a particular request

The mechanism is as follows: At boot time inetd is started if
/ete/rcopts/KINET is present To obtain information about the servers it needs
to spawn, inetd reads its configuration file [by default, this is letc/inetd.conf(4)]
and issues a call to getservbyname [see getservent(3)]. (Note that /etc/services
and /etc/protocols must be properly configured.) inetd then creates a socket for
each server and binds each socket to the port for that server. It does a listen(2)
on all connection-based sockets (that is, stream rather than datagram), and
waits, using select (2), for a connection or datagram.

• When a connection request is received on a listening (stream) socket,
inetd does an accept (2), thereby creating a new socket (inetd
continues to listen on the original socket for new requests), inetd
forks, dups, and execs the appropriate server, passing it any server
program arguments specified in inetd's configuration file. The
invoked server has IAD to stdin, stdout, and stderr done to the new
socket; this connects the server to the client process. (Some "built-
in," internal services are performed via function calls rather than child
processes.)

• When there is data waiting on a datagram socket, inetd forks, dups, and
execs the appropriate server, passing it any server program arguments;
unlike a connection-based server, a datagram server has I/O to stdin,
stdout, and stderr done to the original socket If the datagram socket is
marked as "wa i t " (this corresponds to an entry in inetd's
configuration file), the invoked server must process the message
before inetd considers the socket available for new connections. If the
datagram socket is marked as " n o w a i t " inetd continues to process
incoming messages on that port tftpd is an exceptional case: although
its entry in inetd's configuration file must be " w a i t " (this is to avoid
contention for the port), inetd is able to continue processing new
messages on the port

INETD(IM) (CTIX Intcrnelworfcimg) INETD(IM)

The following servers may be started by inetd: fingerd,ftpd, ouucpd, rexecd,
rlogind, rshd, talkd, telnetd, tftpd, and uucpd. inet must also start several
internal services: these are described in inetd.conf(4). Do not arrange for inetd
to start named, routed, rwhod, sendmail, slipd, listen (RFS listening server), or
any NFS server.

inetd rereads its configuration file when it receives a hangup signal, SIGHUP.
Services may be added, deleted or modified when the configuration file is
reread.

The -d option turns on socket-level debugging and prints debugging
information to stdout.

FILES
/etc/inetd.conf
/etc/protocols
/etc/services

SEE ALSO
fingerd(lM), ftpd(lM), rexecd(lM), rlogind(lM), rshd(lM), talkd(lM),
telnetd(lM), tftpd(lM), uucpd(lM), inetd.conf(4), protocols(4), services(4).
CTIX Network Administrator's Guide.

I N F O C M P (I M) INFOCMP(IM)

NAME
infocmp - compare or print out terminfo descriptions

SYNOPSIS
infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u] [-s d i [-v]
[-V] [-1] [-w width] [-A directory] [-B directory] [termname . . .]

DESCRIPTION
The infocmp command can be used to compare a binary terminfo (4) entry with
other terminfo entries, rewrite a terminfo (4) description to take advantage of
the use= terminfo field, or print out a terminfo (4) description from the binary
file [term(4)] in a variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one termname is specified, the -d option
will be assumed.

Comparison Options [-d] [-c] [-n]
infocmp compares the terminfo (4) description of the first terminal termname
with each of the descriptions given by the entries for the other terminal's
termnames. If a capability is defined for only one of the terminals, the value
returned will depend on the type of the capability: F for boolean variables, -1
for integer variables, and NULL for string variables.

-d produce a list of each capability that is different In this manner, if one
has two entries for the same terminal or similar terminals, using
infocmp will show what is different between the two entries. This is
sometimes necessary when more than one person produces an entry for
the same terminal and one wants to see what is different between the
two.

-c produce a list of each capability that is common between the two
entries. Capabilities that are not set are ignored. This option can be
used as a quick check to see if the -u option is worth using.

-n produce a list of each capability that is in neither entry. If no
termnames are given, the environment variable TERM will be used for
both of the termnames. This can be used as a quick check to see if
anything was left out of the description.

I N F O C M P (I M) INFOCMP(IM)

Source Listing Options [-1] [-L] [-C] [-r]
The -I, -L, and -C options will produce a source listing for each terminal
named.

-I use the terminfo(4) names

-L use the long C variable name listed in <term.h>

-C use the termcap names

-r when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for the
terminal name.

The source produced by the -C option may be used directly as a termcap entry,
but not all of the parameterized strings may be changed to the termcap format
infocmp will attempt to convert most of the parameterized information, but that
which it doesn't will be plainly marked in the output and commented ou t
These should be edited by hand.

All padding information for strings will be collected together and placed at the
beginning of the string where termcap expects it. Mandatory padding (padding
information with a trailing '/ ') will become optional.

All termcap variables no longer supported by terminfo(4), but which are
derivable from other terminfo{4) variables, will be output Not all terminfo(4)
capabilities will be translated; only those variables which were part of termcap
will normally be output Specifying the -r option will take off this restriction,
allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability, not all
capabilities are output, mandatary padding is not supported, and termcap strings
were not as flexible, it is not always possible to convert a terminfo(4) string
capability into an equivalent termcap format. Not all of these strings will be
able to be converted. A subsequent conversion of the termcap file back into
terminfo(4) format will not necessarily reproduce the original terminfo(4)
source.

INFOCMP (IM) INFOCMP(IM)

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

Terminfo Termcap Representative
Terminals

%pl%c %. adm

%pl%d %d hp, vtlOO,

ANSI standard

%pl%'x'%+%c %+x concept

%i %i ANSI standard,
vtlOO

%pl%?%'x'%>%t%pl%'y'%+%; %>xy concept

%p2 is printed before %pl %r hp

Use= Option [-u]
-u produce a terminfo (4) source description of the first terminal

termname which is relative to the sum of the descriptions given by the
entries for the other terminals termnames. It does this by analyzing
the differences between the first termname and the other termnames
and producing a description with use= fields for the other terminals.
In this manner, it is possible to retrofit generic terminfo entries into a
terminal's description. Or, if two similar terminals exist, but were
coded at different times or by different people so that each
description is a full description, using infocmp will show what can be
done to change one description to be relative to the other.

A capability will get printed with an at-sign (@) if it no longer exists in the first
termname, but one of the other termname entries contains a value for i t A
capability's value gets printed if the value in the first termname is not found in
any of the other termname entries, or if the first of the other termname entries
that has this capability gives a different value for the capability than that in the
first termname.

The order of the other termname entries is significant. Since the terminfo
compiler n'c(lM) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will produce
different results depending on the order that the entries are given in. infocmp
will flag any such inconsistencies between the other termname entries as they
are found.

INFOCMP (IM) INFOCMP(IM)

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp to
recreate a description can be a useful check to make sure that everything was
specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow down
the compilation time, is specifying extra use= fields that are superfluous.
infocmp will flag any other termname use= fields that were not needed.

Other Options [-s dl i l l lc] [-v] [-V] [-1] [-w width]
-s sort the fields within each type according to the argument below:

d leave fields in the order that they are stored in the terminfo
database.

i sort by terminfo name.

I sort by the long C variable name.

c sort by the termcap name.

If no -s option is given, the fields printed out will be sorted
alphabetically by the terminfo name within each type, except in the
case of the -C or the -L options, which cause the sorting to be done by
the termcap name or the long C variable name, respectively.

-v print out tracing information on standard error as the program runs.

-V print out the version of the program in use on standard error and exit

-1 cause the fields to printed out one to a line. Otherwise, the fields will
be printed several to a line to a maximum width of 60 characters.

-w change the output to width characters.

Changing Databases [-A directory] [-B directory]
The location of the compiled terminfo(4) database is taken from the
environment variable TERMINFO. If the variable is not defined, or the terminal
is not found in that location, the system terminfo{4) database, usually in
lusrlliblterminfo, will be used. The options -A and -B may be used to override
this location. The -A option will set TERMINFO for the first termname and the
-B option will set TERMINFO for the other termnames. With this, it is possible
to compare descriptions for a terminal with the same name located in two
different databases. This is useful for comparing descriptions for the same
terminal created by different people. Otherwise the terminals would have to be
named differently in the terminfo(4) database for a comparison to be made.

INFOCMP (IM) INFOCMP(IM)

FILES
/usr/lib/terminfo/?/* compiled terminal description database

DIAGNOSTICS
malloc is out of space!

There was not enough memory available to process all the terminal
descriptions requested. Run infocmp several times, each time
including a subset of the desired termnames.

use= order dependency found:
A value specified in one relative terminal specification was different
from that in another relative terminal specification.

'use=term did not add anything to the description.
A relative terminal name did not contribute anything to the final
description.

must have at least two terminal names for a comparison
to be done.

The -u, -d and -c options require at least two terminal names.

SEE ALSO
captoinfo(lM), tic(lM), curses(3X), term(4), terminfo(4).
UNIX System VRelease 3.2 Programmer's Guide.

NOTE
The termcap database (from earlier CTIX releases) may not be supplied in
future releases.

INTT(IM) INIT(IM)

NAME
init, telinit - process control initialization

SYNOPSIS
/etc/init [0123456SsQq]

/bin/telinit [0123456sSQqabc]

DESCRIPTION
Init

init is a general process spawner. Its primary role is to create processes from
information stored in the fde /etc/inittab [see inittab (4)]. This fde usually has
init spawn getty's on each line that a user may log in on. It also controls
autonomous processes required by any particular system. On S/MT systems,
the kernel runs init as the last step in the boot procedure.

init considers the system to be in a run-level at any given time. A run-level can
be viewed as a software configuration of the system where each configuration
allows only a selected group of processes to exist. The processes spawned by
init for each of these run-levels is defined in the inittab file, init can be in one
of eight run-levels, 0-6 and S or s. The run-level is changed by having a
privileged user run /etc/init. This user-spawned init sends appropriate signals
to the original init spawned by the operating system when the system was
rebooted, telling it which run-level to change to.

init is invoked inside the CTIX system as the last step in the boot procedure.
First init looks in /etc/inittab for the initdefault entry [see inittab (4)]. If there
is one, init uses the run-level specified in that entry as the initial run-level to
enter. If this entry is not in letclinittab, init requests that the user enter a run-
level from the virtual system console. If an S or an s is entered, init goes into
the SINGLE USER state. This is the only run-level that doesn't require the
existence of a properly formatted letclinittab file. If it doesn't exist, then by
default the only legal run-level that init can enter is the SINGLE USER state. In
the SINGLE USER state the virtual console terminal /dev/syscon is opened for
reading and writing and the command /bin/su is invoked immediately. To exit
from the SINGLE USER run-level one of two options can be elected. First, if the
shell is terminated (via an end-of-file), init will reprompt for a new run-level.
Second, the init or telinit command can signal init and force it to change the
run-level of the system, init always trys to relink Idevlsyscon to a reasonable
terminal before opening i t It invokes conlocate (IM) to do this.

When init prompts for the new run-level, the operator may enter only one of the
digits 0 through 6 or the letters S or s. If S or s is entered, init operates as
previously described in the SINGLE USER state with the additional result that

INIT(IM) INIT(IM)

/dev/syscon is linked to the user's terminal line, thus making it the virtual
system console. A message is generated on the previous system console, saying
where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SINGLE USER
state to normal run states, it sets the ioctl(2) states of the virtual console,
/dev/syscon, to those modes saved in the file /etc/ioctl^yscon. This file is
written by init whenever the SINGLE USER state is entered.

If a 0 through 6 is entered init enters the corresponding run-level. Any other
input will be rejected and the user will be re-prompted. Note that the run-levels
0 ,1 ,4 , 5, and 6 are reserved single-user states (6 has a very special purpose, as
described below); the run-levels 2 and 3 are reserved multi-user states.

If this is the first time init has entered a run-level other than SINGLE USER, init
first scans inittab for special entries of the type boot and bootwait. These
entries are performed, providing the run-level entered matches that of the entry
before any normal processing of inittab takes place. In this way any special
initialization of the operating system, such as mounting file systems, can take
place before users are allowed onto the system. The
inittab file is scanned to find all entries that are to be processed for that run-
level.

Run-level 2 is defined to contain all of the terminal processes and daemons that
are spawned in the multi-user environment. Hence, it is commonly referred to
as the MULTI-USER state. Run-level 2 also stops remote file sharing. Run-level
3 is defined to start up remote file sharing processes and daemons as well as
mounting and advertising remote resources. So, run-level 3 extends multi-user
mode and is known as the Remote File Sharing state.

In a MULTI-USER environment, the inittab file is set up so that init will create a
process for each terminal on the system that the administrator sets up to
respawn.

For terminal processes, ultimately the shell will terminate because of an end-
of-file either typed explicitly or generated as the result of hanging up. When
init receives a signal telling it that a process it spawned has died, it records the
fact and the reason it died in /etc/utmp and /etc/wtmp if it exists [see who(1)].
A history of the processes spawned is kept in /etc/wtmp.

To spawn each process in the inittab file, init reads each entry and for each
entry that should be respawned, it forks a child process. After it has spawned
all of the processes specified by the inittab file, init waits for one of its
descendant processes to die, a powerfail signal, or until init is signaled by init or
telinit to change the system's run-level. When one of these conditions occurs,

INIT(IM) TNTT(IM)

init re-examines the inittab file. New entries can be added to the inittab file at
any time; however, init still waits for one of the above three conditions to occur.
To get around this, init Q or init q command wakes init to re-examine the
inittab file immediately.

If init receives a powerfail signal (S1GPWR) it scans inittab for special entries of
the type powerfail and powerwait. These entries are invoked (if the run-levels
permit) before any further processing takes place. In this way init can perform
various cleanup and recording functions during the powerdown of the operating
system.

When init is requested to change run-levels (via telinit), init sends the warning
signal (SIGTERM) to all processes that are undefined in the target run-level,
init waits 5 seconds before forcibly terminating these processes via the kill
signal (SIGKILL).

Telinit
Telinit, which is linked to /etc/init, is used to direct the actions of init. It takes a
one-character argument and signals init via the kill system call to perform the
appropriate action. The following arguments serve as directives to init.

0-6 tells init to place the system in one of the run-levels 0-6.

a,b,c tells init to process only those /etc/inittab file entries
having the a, b or c run-level set These are pseudo-states,
which may be defined to run certain commands, but which
do not cause the current run-level to change. (Note that the
correct action field value in this case is ondemand, rather
than respawn. [See inittab (4).])

Q,q tells init to re-examine the /etc/inittab file.

s,S tells init to enter the single user environment. When this
level change is effected, the virtual system terminal,
/dev/syscon, is changed to the terminal from which the
command was executed. Note that running the halt or
shutdown(lM) program is the preferred way of bringing the
system to single user state.

A directive to change to run-level 6 receives special priority.
Ordinarily, a run-level change received while init is re-examining
inittab does not take effect until the re-examination is complete. But a
directive to change to run-level 6 received while init is waiting on a
bootwait entry is effected as soon as the command in the bootwait
entry finishes. This special case permits a bootwait command to use

INIT(IM) iNrr(iM)

telinit to stop the system initialization process before users get access
to the system. Run-level 6 then handles the transition to single-user
state: see /etc/profile.

FILES
/etc/bcheckrc
/etc/inittab
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon
/etc/profile

SEE ALSO
conlocate(lM), getty(lM), login(l), sh(l), who(l), kill(2), inittab(4), profile(4),
utmp(4).

S/Series CTIX Administrator s Guide.

DIAGNOSTICS
If init finds that it is respawning an entry from /etc/inittab more than 10 times
in 2 minutes, it will assume that there is an error in the command string in the
entry, and generate an error message on the system console. It will then refuse
to respawn this entry until either 5 minutes has elapsed or it receives a signal
from a user-spawned init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab file or a
program is removed that is referenced in the inittab.

WARNINGS
Telinit can be run only by someone who is super-user or a member of group sys.

INSTALL(IM) INSTALL(IM)

NAME
install - install commands

SYNOPSIS
/etc/install [-c dira] [-f dirb] [-i] [-n dire] [-m mode] [-u user]
[-g group] [-o] [-s] fde [dirx . . .]

DESCRIPTION
The install command is most commonly used in "makefi les" [See make (I)] to
install a file (updated target file) in a specific place within a fde system. Each
file is installed by copying it into the appropriate directory, thereby retaining
the mode and owner of the original command. The program prints messages
telling the user exactly what files it is replacing or creating and where they are
going.

If no options or directories (dirx . . .) are given, install will search a set of
default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file
with the same name as file. When the first occurrence is found, install issues a
message saying that it is overwriting that file with file, and proceeds to do so.
If the file is not found, the program states this and exits without further action.

If one or more directories (dirx . . .) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory specified by dira,
only if it is not found. If it is found, install issues a message
saying that the file already exists, and exits without overwriting
it. May be used alone or with the -s option.

-f dirb Forces file to be installed in given directory, whether or not one
already exists. If the file being installed does not already exist,
the mode and owner of the new file will be set to 755 and bin,
respectively. If the file already exists, the mode and owner will
be that of the already existing file. May be used alone or with
the -o or -s options.

-i Ignores default directory list, searching only through the given
directories (dirx . . .). May be used alone or with any other
options except -c and -f.

-n dire If file is not found in any of the searched directories, it is put in
the directory specified in dire. The mode and owner of the new
file will be set to 755 and bin, respectively. May be used alone
or with any other options except -c and -f.

INSTALL(IM) INSTALL(IM)

-m mode The mode of the new file is set to mode. Only available to the
superuser.

-u user The owner of the new file is set to user. Only available to the
superuser.

-g group The group ID of the new file is set to group. Only available to
the superuser.

-o If file is found, this option saves the " found" file by copying it
to QLDfile in the directory in which it was found. This option is
useful when installing a frequently used file such as Ibin/sh or
letclgetty, where the existing file cannot be removed. May be
used alone or with any other options except -c.

-s Suppresses printing of messages other than error messages. May
be used alone or with any other options.

SEE ALSO
make(l).

IPCRM(l) IPCRM(l)

NAME
ipcrm - remove a message queue, semaphore set or shared memory ID

SYNOPSIS
ipcrm [options]

DESCRIPTION
ipcrm will remove one or more specified messages, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with it
are destroyed after the last detach.

-ssemid removes the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated with
i t

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data
structure associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with i t

The details of the removes are described in msgctl(2), shmctl(2), and semctl(2).
The identifiers and keys may be found by using ipcs(l).

SEE ALSO
ipcs(l), msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2),
shmctl(2), shmget(2), shmop(2).

t

I P C S (l) n » c s (i)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
The ipcs command prints information about active inter-process
communication facilities. Without options, information is printed in short
format for message queues, shared memory, and semaphores that are currently
active in the system. Otherwise, the information display is controlled by the
following options:

-q Print information about active message queues,

-m Print information about active shared memory segments,

-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only those
indicated are printed. If none of these three are specified, information about all
three are printed subject to these options:

-b Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-o Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory
segments.)

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on
message queues and process ID of creating process and process ID of
last process to attach or detach on shared memory segments) See
below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrcv on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphores.) See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -o, -p,
and -t.)

IPCS(l) IPCS(l)

-C corefile

Use the file corefile in place of /dev/kmem.

-N namelist
The argument is taken as the name of an alternate namelist (/unix is
the default).

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities are listed.

T (all) Type of the facility:

q message queue;
m shared memory segment;
s semaphore.

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to
the segment detach it.)

MODE (all) The facility access modes and flags: The mode consists of
11 characters that are interpreted as follows:

The first two characters are:

R if a process is waiting on a msgrcv;

S if a process is waiting on a msgsnd;

D if the associated shared memory segment has been
removed. It disappears when the last process attached
to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;

if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each. The first
set refers to the owner's permissions; the next to permissions of others in the
user-group of the facility entry; and the last to all others. Within each set, the

- 2 -

J P C S (l) IPCS(l)

first character indicates permission to read, the second character indicates
permission to write or alter the facility entry, and the last character is currently
unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

OWNER (all) The login name of the owner of the facility entry.

GROUP (all) The group name of the group of the owner of the facility
entry.

CREATOR (a,c) The login name of the creator of the facility entry.

CGROUP (a,c) The group name of the group of the creator of the facility
entry.

CBYTES (a,o) The number of bytes in messages currently outstanding on
the associated message queue.

QNUM (a,o) The number of messages currently outstanding on the
associated message queue.

QBYTES (a,b) The maximum number of bytes allowed in messages
outstanding on the associated message queue.

LSPID (a,p) The process ID of the last process to send a message to the
associated queue.

LRPID (a,p) The process ID of the last process to receive a message from
the associated queue.

STIME (a,t) The time the last message was sent to the associated queue.

RTIME (a,t) The time the last message was received from the associated
queue.

CTIME (a,t) The time when the associated entry was created or changed.

NATTCH (a,o) The number of processes attached to the associated shared
memory segment.

SEGSZ (a,b) The size of the associated shared memory segment.

CPID (a,p) The process ID of the creator of the shared memory entry.

LPID (a,p) The process ID of the last process to attach or detach the
shared memory segment.

- 3 -

IPCS(l) IPCS(l)

ATIME (a,t) The time the last attach was completed to the associated
shared memory segment.

DTIME (a,t) The time the last detach was completed on the associated
shared memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the
semaphore entry.

OTIME (a,t) The time the last semaphore operation was completed on
the set associated with the semaphore entry.

FILES
/unix system namelist

/dev/kmem memory

/etc/passwd user names

/etc/group group names

SEE ALSO
msgop(2), semop(2), shmop(2).

WARNING
If the user specifies either the -C or -N flag, the real and effective UID/GID is set
to the real UID/GID of the user invoking ipcs.

BUGS
Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

r v (i) IV(1)

NAME
iv - initialize and maintain volume

SYNOPSIS
iv -iuostdwlvq special [descriptionfile]

DESCRIPTION
The iv command initializes and maintains a disk volume. Special and
descriptionfile, described below, specify the disk and a description file for the
disk volume. The iv command performs one of five operations, specified by the
following options:

-i Completely initialize a volume. This consists of five phases:

1. Initialize iv's internal Volume Home Block, based on
descriptionfile and the disk type. If the disk can support bad
block handling, create an internal Bad Block Table. Put bad
block data from descriptionfile and volume's existing Bad
Block Table (if any) in internal Bad Block Table.

2. Format medium.

3. Perform a surface check. If the disk can support bad block
handling, add bad blocks to the Bad Block Table. If the disk
cannot support bad block handling, the first bad spot causes
the disk to be rejected.

4. Write out the Volume Home Block. This has the effect of
dividing the volume into slices (partitions).

5. Allocate and write out the files that share the Reserved Area
(slice 0) with the Volume Home Block. If the disk can
support bad block handling, one of these files is the Bad
Block Table. Other files are specified in descriptionfile.

-u Update the Volume Home Block. This is the same as -i, except that the
second and third phases (medium formatting and surface check) are
skipped.

-o Output a Volume Home Block and partition 0 to any file; requires a
descriptionfile. The following command produces a dump tape:

iv o /dev/rmtO /usr/lib/iv/desc.tdump

-s Surface test. Any bad blocks discovered are added to the Bad Block
Table.

IV(1) IV(1)

-t Tell volume description. Display volume home block in human-
readable form. No description file is needed. The volume's contents
are not affected.

-d Description file display. A description file that describes the current
state of the volume is written to the standard output If the Reserved
Area contains a loader, the loader keyword's value is written as
/usr/lib/iv/loader. If the Reserved Area contains a down load image
area, the Down Load Area Description lists files whose names are of
the following form:

/usr/lib/iv/wsjocc .yyy

where xxx is the numeric device identification; yyy is 422 if xxx is
even, 232 if xxx is odd.

The -f option, equivalent to -u, is provided for compatibility with older versions
of iv. It should not be used, as it may disappear in future releases.

In addition to the single operation option (-i, -u, -s, -t, or -d) you can specify
any or all of the following options:

-v Verbose display output If the display includes the Volume Home
Block, also include the Bad Block Table.

-1 A normal surface test consists of a single pass over the disk; -1
specifies ten passes.

-w A normal surface test pass consists of a read pass; -w specifies a write
pass before each read pass.

-q Print the size of the disk (in megabytes).

File Parameters
Special is the character special file for slice zero on the drive. This name takes
the form /dev/rdsk/cndfsO, where n is the controller number and t is the drive
number.

Descriptionfile is a text file that describes the volume. It is required by the -i
and -u options. The description file consists of five parts:

• General Description
• Reserved Area Description
• Bad Blocks Description
• Partition Table Description
• Down Load Area Description

IV(1) IV(1)

Each description is separated from the next by a line that contains only
a single dollar sign ($). Specifics for each of the five descriptions are
given under separate headings below.

General Description
Each line in the General Description begins with a keyword. Some keywords
are followed by values; the value is separated from the keyword by spaces or
tabs. For example:

• c c
cylinders 1024

Each keyword is used only once; valid keywords follow:

type Mandatory, unless the volume is already initialized in the
appropriate formaL Value is disk type: HD for onboard ST506
hard disk; RD for RAM disk; V3200 for SMD controller; SCSI for
SCSI disk; and FD for floppy disk.

name Mandatory, unless the volume is already initialized in the
appropriate formaL Value is the volume name. Any characters
except spaces or tabs are permitted in the volume name; the
serial number of the disk is the recommended volume name.
The actual name in the Volume Home Block is always exactly
six characters; iv right truncates names that are too long and
right pads with nulls names that are too short

cylinders Mandatory (for all disks except SCSI), unless the volume is
already initialized in the appropriate format. Value is the
number of cylinders on the disk.

heads Mandatory (for all disks except SCSI), unless the volume is
already initialized in the appropriate format. Value is the
number of heads on the disk.

sectors Mandatory (for all disks except SCSI), unless the volume is
already initialized in the appropriate format. Value is the
number of physical sectors per track.

Isectors The number of logical 512-byte sectors on a SCSI disk. If this
value is not supplied, the total number of available logical
sectors on the device is used

formatextra The SMD drive is formatted with an extra sector on each track.
(This sector is ignored by CTIX but is required for some disk
drives, notably the Eagle-XP.)

IV(1) IV(1)

steprate Mandatory for ST506, unless the volume is already initialized in
the appropriate format Value is a number that is passed to the
disk controller. The normal steprate for ST506 drives is 14; 0
can be used for slower drives. See the disk manufacturer's
documentation for further information.

exchangeable If this keyword is present, the disk can be removed from its
drive.

hitech (ST506 drives only) If this keyword is present, the reduced write
current line to the disk is used for head-select bit 3 to allow
more than eight heads.

precomp (ST506 drives only) The value is c/16, where c is the cylinder at
which precompensation should start. See the disk
manufacturer's documentation for further information.

ecc The disk has been prepared to function in ECC mode,
gapl
gap2 Gap size for SMD drives. See the disk manufacturer's

documentation for further information.

unformattedbytes
The number of unformatted bytes per sector. This value is
required if the "cyl head offset" format is used for the bad
block table entries.

Reserved Area Description
The Reserved Area Description describes the files that share slice zero with the
volume home block. Each line in the Reserved Area Description consists of a
keyword followed by one or more parameters; one or more tabs or spaces
separates keywords and parameters from each other. Here are the valid
keywords and their meanings. (A logical block is 1024 bytes long.)

loader Describes the loader area. The first, mandatory, parameter is the
full pathname of an a.out file to put in the loader area. The
second, optional, parameter is the size of the loader area in
logical blocks. If the second parameter is missing, the size of
the a.out file is used.

badblocktable Describes the Bad Block Table. The first, mandatory,
parameter is the size of the Bad Block Table in logical blocks.
The second, optional, parameter is only used when an existing
Bad Block Table contains errors; this parameter is empty to
clear the Bad Block Table, missing otherwise.

IV(1) IV(1)

dump Describes area to contain dump after crash. The only,
mandatory, parameter, specifies the size of the dump area in
logical blocks.

downloadarea Describes area to contain system images for downloading. The
only, mandatory, parameter, specifies the size of the download
area in logical blocks. (The files actually put in this area are
described separately. See the Down Load Area Description
heading, below.)

All lines valid for the Reserved Area Description are optional. However, the
Bad Block Table is mandatory on a volume which supports bad block handling
(other than SCSI); the loader area is mandatory on a volume which is to hold an
operating system; and a dump area is recommended on a volume which is to
hold an operating system.

Bad Block Description
The Bad Block Description explicitly specifies up to 889 bad blocks to be
added to the Bad Block Table. The iv command merges specified bad block
information with information already in the Bad Block Table (if there already is
one) and bad block information discovered through the surface test.

Each bad block entry is a single line. There are three forms:

sector

where sector is a physical sector number;

cylinder head offset

where cylinder is a cylinder number, head is a head number, and offset is the
byte offset of the bad spot;

cylinder head sector

where cylinder is a cylinder number, head is a head number, and sector is a
physical sector number of the bad spot The third form is selected by placing
the keyword sector on the line preceding the first entry of this type in the bad
block description. Entries using the third form must come last in the list of bad
blocks. All three forms condemn a single sector, the second form condemns the
sector that contains the specified byte.

The last sector on each track serves as a bad block alternate, iv chooses the
alternates in a way that minimizes extra seeking for alternate blocks.

Partition Table Description
The Partition Table Description specifies where the slices (partitions) on the
disk are to begin and end. Each line in the Description specifies the starting

IV(1) IV(1)

logical block of a slice. Start blocks must be on track boundaries, except in the
case of SCSI drives, where start blocks need only be on a logical block
boundary.

Except for overlapping partitions, slices must be listed in ascending numeric
order, and the beginning of a slice defines the end of the previous slice.

It is possible to specify overlapping partitions, although care must be taken in
doing so. A $ following any block number indicates that the slice extends to
the end of the disk, beyond the next boundary number. Any slice with a starting
block number that is larger than its successor must extend to the end of the disk
(and must therefore be followed by the $ parameter).

For example, the following description specifies five slices; the fifth slice
extends from the second slice to the end of the disk:

0
16
20016
40016 $
16 $

The following example is also possible, although of doubtful utility:
o
16
20016 $
40016 $
16
30016 $

In this example six slices are specified. The third, fourth, and sixth slices
extend to the end of the disk. The fifth slice, however, starts at 16 and ends at
30015 (inclusive); it includes all the second slice, but only part of the third
slice.

The first logical block boundary number in the Description must always be 0.
The last slice in the Description always extends to the end of the disk ($ is
optional).

There can be at most 16 slices on a disk.

It is a fatal error to specify a slice 1 that does not leave enough room in slice 0
for the Volume Home Block and the slice 0 files.

Down Load Area Description
The Down Load Area Description specifies system images to be included in the
Down Load Area. Each line in the Description consists of a numeric device

- 6 -

IV(1) IV(1)

identification and the full path name of the file to be copied into the down load
area; the two parts of the line are separated by one or more spaces or tabs.

EXAMPLES
The following example shows a disk description file for a nonbootable disk
(bad blocks expressed in "cylinder/head/sector" format):

MAXTOR 85 MB disk
type HD
name Serno
cylinders 1024
heads 8
sectors 17
step rate 14
hitech
ecc
$
badblocktable 1
$
sector
15 5 4
$
0
8
$
$

The following file describes a bootable SMD (bad blocks expressed in
"cylinder/head/offset" format):

type V3200
name Serno
cylinders 1489
heads 11
sectors 33
ecc
gapl 16
gap2 16
unformattedbytes 620
$

badblocktable 3
dump 1024

IV(1) IV(1)

downloadarea
loader
$

12
187
692
66
985
$

0
1456
17360
25360
45360
85360
125360
165360
$

100
200
$

300
/usr/lib/iv/loader

405
1010
5228
657
3398

128

/usr/lib/lv/w«100.422
/usr/llb/lv/ws200.422

The following file describes a bootable Hitachi drive, (bad blocks expressed as
physical sector numbers):

type HD
name Serno
cylinders 823
heads 10
sectors 17
steprate 14
hltech
ecc
$

badblocktable 1
dump 1024
downloadarea 300
loader /usr/lib/iv/loader 128
$
1048
2441

- 8 -

IV(1) IV(1)

5064
15119
15678
23533
23534
42091
43918
60466
60467
$

0
1456
17730
25922
46402 $
$

100 /usr/lib/iv/ws100.422
200 /usr/lib/iv/ws200.422
$

The following file describes a drive without a dump area (no bad blocks
specified):

type HD
name Serno
cylinders 645
heads 7
sectors 17
steprate 14
precomp 80
hitech
ecc
$

badblocktable 1
downloadarea 300
loader /usr/lib/iv/loader 128
$
$
0
432
12328

- 9 -

IV(1) IV(1)

18328 $
$

100 /u*r/lib/iv/w«100.422
200 /u»r/lib/lv/w»200.422
$

SEE ALSO
disk(7).
S/Series CTIX Administrator's Guide.
"WD2010-05 Winchester Disk Controller" in Storage Management Products
Handbook. Irvine, Calif.: Western Digital Corp., 1984.

NOTES
Any device in physical mode (for example, while surface testing or formatting
is being done) is an exclusive open device: use the maintenance tape to
reformat or run surface tests on the boot device.

A typical disk has fewer bad spots than the total number of megabytes (a 40
megabyte drive should have fewer than 40 bad spots, and so forth).

WARNINGS
The -i, -u, and -s operations are dangerous or fatal to existing volume data.
Always precede these operations with a backup.

When a new bad block is itself an alternate block, iv may produce messages
that appear spurious but are actually correct. If the bad block is already in use
as an alternate, the message can appear twice for one block.

Do not run mkfs(IM) on an overlapping partition.

Do not use Partition Table Descriptions from pre-5.0 versions of CTIX that
specify partitions by track numbers, rather than by logical block boundaries.

FILES
/dev/rdsk/*

/usr/lib/iv/desc.:

disk character special files

prototype description files

- 1 0 -

JOIN (1) JOIN(l)

NAME
join - relational database operator

SYNOPSIS
join [options] filel file2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by the
lines of filel and file2. I f f i l e l is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCH collating sequence on the
fields on which they are to be joined, normally the first in each line [see
wtt(l)] .

There is one line in the output for each pair of lines in filel and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from filel, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case,
multiple separators count as one field separator, and leading separators are
ignored. The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or
a 2 referring to either filel or file2, respectively. The following options are
recognized:

-an In addition to the normal output, produce a line for each unpairable line
in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each
file. Fields are numbered starting with 1.

-o list Each output line comprises the fields specified in list, each element of
which has the form njn, where n is a file number and m is a field
number. The common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in
a line is significant. The character c is used as the field separator for
both input and output

JOIN(l) JOIN(l)

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

Join -j1 4 -|2 3 -o 1.1 2.1 1.6 -t: /etc/paMwd /etc/group

SEE ALSO
awk(l), comm(l), sort(l), uniq(l).

BUGS
With default field separation, the collating sequence is that of sort -b; with -t,
the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and aw£(l) are wildly incongruous.

Filenames that are numeric may cause conflict when the -o option is used right
before listing filenames.

KILL(l) KILL(l)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID ...

DESCRIPTION
The kill command sends signal 15 (terminate) to the specified processes. This
normally kills processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the shell
(unless more than one process is started in a pipeline, in which case the number
of the last process in the pipeline is reported). Process numbers can also be
found by using /w(l).

The details of the kill are described in kill (2). For example, if process number 0
is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate [see signal(2)] In particular "kill -9 . . . " is an almost sure
kill.

SEE ALSO
ps(l), sh(l), kill(2), signal(2).

KILLALL(IM) KILLALL(IM)

NAME
killall - kill all active processes

SYNOPSIS
/etc/killall [signal]

DESCRIPTION
The killall command is used by /etc/shutdown to kill all active processes not
direcuy related to the shutdown procedure. It terminates all processes with
open files so that the mounted file systems are unbusied and can be unmounted.

The killall command sends signal [see kill(\)} to all processes not belonging to
the above group of exclusions. If no signal is specified, a default of 9 is used.

FILES
/etc/shutdown

SEE ALSO

fuser(lM), kill(l), ps(l), shutdown(lM), signal(2).

WARNINGS
The killall command can be run only by the super-user.

i

LABELIT(IM) LABELIT(IM)

NAME
labelit - provide labels for file systems

SYNOPSIS

/etc/labelit special [fsname volume [-n] [-t]]

DESCRIPTION
labelit can be used to provide labels for unmounted disk fde systems or fde
systems being copied to tape. The -n option provides for initial labeling only
(this destroys previous contents). The -t option tells labelit to treat the device
as a tape (put tape headers on the media).
With the optional arguments omitted, labelit prints current label values.

The special name should be the physical disk section (for example,
/dev/dsk/c0d0s6), or the cartridge tape (for example, /dev/rmt/cOdO). The
device may not be on a remote machine.

The fsname argument represents the mounted name (for example, root, u l , etc.)
of the file system.

Volume may be used to equate an internal name to a volume name applied
externally to the disk pack, diskette or tape.

For file systems on disk, fsname and volume are recorded in the superblock.

SEE ALSO
mkfs(lM), sh(l), fs(4).

LD(1) LD(1)

NAME
Id - link editor for common object files

SYNOPSIS
Id [options] filename

DESCRIPTION
The Id command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and Id combines the objects, producing an object module that can either
be executed or, if the -r option is specified, used as input for a subsequent Id
run. The output of Id is left in a.out. By default this file is executable if no
errors occurred during the load. If any input file, filename, is not an object file,
Id assumes it is either an archive library or a text file containing link editor
directives. [See Link Editor Directives in the UNIX System V Programmer's
Guide for a discussion of input directives.]

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. The library may be either a relocatable
archive library or a shared library. [See Shared Libraries in the UNIX System V
Programmer's Guide for a discussion of shared libraries.] Only those routines
defining an unresolved external reference are loaded. The library (archive)
symbol table [see ar(4)] is searched sequentially with as many passes as are
necessary to resolve external references which can be satisfied by library
members. Thus, the ordering of library members is functionally unimportant,
unless there exist multiple library members defining the same external symbol.

The following options are recognized by Id:

-e epsym
Set the default entry point address for the output file to be that of the
symbol epsym.

-ffill Set the default fill pattern for "holes" within an output section as well
as initialized bss sections. The argument fill is a two-byte constant.

-be Search a library libx.a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -I is
significant. By default, libraries are located in LIBDIR or LUBDIR.
However, if the shell variable LIBROOT is set, the value of LIBROOT is
prepended to LIBDIR and LLIBDIR before searching the libraries.

-m Produce a map or listing of the input/output sections on the standard
output

LD(1) LD(1)

-o outfile
Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a
subsequent Id run. The link editor will not complain about unresolved
references, and the output file will not be executable.

-s Strip line number entries and symbol table information from the output
object file.

-t Turn off the warning about multiply-defined symbols that are not the
same size.

-u symname
Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. The placement of this option on the Id line
is significant; it must be placed before the library which will define the
symbol.

-x Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This option saves some space in the
output file.

-Z Do not bind anything to address zero. This option will allow runtime
detection of null pointers.

-L dir Change the algorithm of searching for libx.a to look in dir before
looking in LIBDIR and LLIBDIR. This option is effective only if it
precedes the -1 option on the command line.

-M Output a message for each multiply-defined external definition.

-V Output a message giving information about the version of Id being
used.

-VS num
Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

•Y[LU],dir
Change the default directory used for finding libraries. If L is specified
the first default directory which Id searches, LIBDIR, is replaced by
dir. If U is specified and Id has been built with a second default
directory, LLIBDIR, then that directory is replaced by dir. If Id was

- 2 -

LD(1) LD(1)

built with only one default directory and U is specified a warning is
printed and the option is ignored.

-N Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately
following text in the ewe image. The result is a plain executable file,
indicated by magic number 0407 in the operating system header.

-z Put the data section at the next segment boundary following the text
section. The result is a shared text file that permits demand paged
execution. This type of file is indicated by magic number 0413 in the
operating system header. This option is obsolete.

-F Like -z but takes less disk space and can page faster into memory.
This type is also indicated by magic number 0413 in the operating
system header. It is distinguished by having virtual text and data
starting addresses that are equal to the file offsets of the text and data
sections, modulo 4096. The -F option is on by default. Note that
-F,-N, and -z are mutually exclusive.

-G Change the symbol name look-up algorithm as follows: if two names
do not initially match, then if one of them is exactly eight characters,
then a match is attempted only on the first eight characters. The
purpose of this is to allow compatibility between object modules that
have been created with the old C compiler and with the new C
compiler, which allows variable names more than eight characters
long. A warning message is issued in such cases.

-w If -G is used, do not print warnings about symbols that partially
matched.

FILES
UBDIRllibar.a
LLIBDIRflibx.a

libraries
libraries
output file
usually /lib
usually /usr/lib
default -N directive file
default -z directive file
default -F directive file
default -r -N directive file
default -r -z directive file
default -r -F directive file

a.out
UBDIR
LUBDIR
UBDIRfimemOl
LIBDIRfifile.0413
LIBDIR/ifile.0413-F
ZJB£>//?/ifile.r0407
L/£ZWifile.r0413
L/BD//?/ifile.r0413-F

- 3 -

LD(668) LD(1)

SEE ALSO
as(l), cc(l), mkshlib(l), exit(2), end(3C), a.out(4), ar(4).
UNIX System VRelease 3.2 Programmer's Guide.

CAVEATS
Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume some
added responsibilities. Input directives and options should insure the following
properties for programs:

• C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program's address space.

• When the link editor is called through cc(l) , a startup routine is linked
with the user's program. This routine calls exit() [see «J»'f(2)] after
execution of the main program. If the user calls the link editor directly,
then the user must insure that the program always calls exit() rather than
falling through the end of the entry routine.

The symbols etext, edata, and end [see end(3C)] are reserved and are defined by
the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an archive
file, it will assume that it contains link editor directives and will attempt to
parse i t This will occasionally produce an error message complaining about
"syntax errors."

Arithmetic expressions may only have one forward referenced symbol per
expression.

LDDRV(IM) LDDRV (IM)

NAME
lddrv - manage loadable drivers

SYNOPSIS

/etc/lddrv/lddrv -a [ve] [-m master] [-o sfde] devname [subdev . . .]

/etc/lddrv/lddrv -A [ve] [-m master] [-o sfde] devname [subdev . . .]

/etc/lddrv/lddrv -d [ve] [-m master] devname

/etc/lddrv/lddrv -b [ve] [-m master] devname [subdev . . .]

/etc/lddrv/lddrv -u [ve] [-m master] devname

/etc/lddrv/lddrv -q [v] [-m master] devname

/etc/lddrv/lddrv -s [v] [-m master]

/etcAddrv/lddrv -e [v] [-m master]

DESCRIPTION
lddrv allocates/deallocates space for a specified driver, loads/unloads a
specified driver, and returns the status of specified driver(s).
In the discussion below, "driver" refers to a character device driver, a block
device driver, a software module, a streams module, a streams driver, or a file
system type.

Devname specifies the name of the driver it must must correspond to the first
field in the master file (see discussion of -m below). Note that the relocatable
driver code must be in a file named devname.o. A subdev is the name of a
driver, whose code is also in devname.o, that is to be loaded (bound) or to have
space allocated with the driver devname. Up to four entries, one devname and
three subdev entries, can be loaded (bound) or have space allocated with a
single invocation of lddrv. This is normally done with drivers that are
interrelated. For example, /etc/lddrv/cluster.o contains all relocatable driver
code for the cluster, tsp, tsy, and tst drivers; and all four drivers are loaded
with a single invocation of lddrv.)

Options are interpreted as follows:

-v Print verbose information on the screen; when used with -s,
information about other drivers, already loaded, is displayed.

-m master
Use file specified by master rather than the default /etc/master.

-o sfile Put driver's executable code (containing the symbol table for that
driver) in file specified by sfile rather than in file with the name
devname, which is the default.

LDDRV(IM) LDDRV (IM)

-a Allocate space for and load (bind) the driver.

-A Allocate space for the driver,

-d Unload the driver and deallocate its space,

-b Load (bind) the driver,

-u Unload the driver.

-q Return the status of a particular driver. True if driver successfully
loads, or if driver was already loaded; else false.

-s Return the status of all loadable drivers.

-e Create namelist (/etc/lddrv/unix.exec) from the current ifile unix^ym.

If the specified driver was already loaded, the -a, -A, and -b options fails.

Iddrv maintains two ifiles: unix_sym and unix.lnk. In the case of unix^ym,
lddrv -a adds to this file all symbols from the driver that is being loaded and
lddrv -d removes from this file all symbols from the driver that is being
unloaded. In the case of unix.lnk, lddrv -a adds to this file only the exported
symbols from the driver being loaded and lddrv -d removes from this file only
the exported symbols from the driver that is being unloaded. The exported
symbols are specified in the file dev.export, if it exists; if the export file does
not exist, the only symbols exported are the driver entry points. The export file
consists of one-line entries containing, one per line, the external symbols to
export

EXAMPLES
A status report for all drivers could look like this:

DEVNAME ID BLK CHAR SIZE ADDR FLAGS
lipc 1 - 0x5000 0x3dd000 ALLOC BOUND
pip 2 - 6 0x1000 0x3e2000 ALLOC BOUND

FILES
/etc/master

/etc/drvtbl

/etc/lddrv

/etc/lddrv/unix.sym

/etc/lddrv/unix.lnk

default master file

loadable driver table

contains lddrv and loadable drivers

ifile for running system

ifile containing only exported symbols of
running system

LDDRV(IM) LDDRV (IM)

/etc/Iddrv/devname.o

/etc/lddrv/devname

/etc/lddrv/devname.export

/etc/Iddrv/unix.exec

SEE ALSO

unlinked driver

linked driver

list of symbols to export from devname

namelist of running system after lddrv -e has
been executed

syslocal(2), master(4), drivers(7).

LDEEPROM (1M) LDEEPROM(IM)

NAME
ldeeprom - load EEPROM

SYNOPSIS
ldeeprom [-s system_file]

DESCRIPTION
When called by /ete/drv!oad» ldeeprom loads the electrically erasable,
programmable read-only memory on the VME interface card.

The ldeeprom command reads the SFILENAMES, iVMESLOTS, and
IVMECODE sections of the /etc/system file and generates binary data that can
be written to the EEPROM. ldeeprom command reads two variables in the
!FILENAMES section:

PROM_IFILE the file that provides ld(1) with relocation information
for the JVMECODE section.

EEPROM_FILE the file to which to output the EEPROM binary data. If
the file name is /dev/vme/eeprom, the contents of this
special file are written directly to the EEPROM; if any
other file name is given, the contents are written to that
file instead.

The ldeeprom command reads the !VMESLOTS section of /etc/system for
descriptions of the VME boards.

The ldeeprom command reads the IVMECODE section of /etc/system for the
names of object code files. These object files are to be loaded into the EEPROM
to provide the boot code for a device where an initialization function name is
specified.

The -s option can be used to specify a file to use instead of the /etc/system file.

FILES
/dev/vme/eeprom default EEPROM file
/ete/drvload
/etc/system

SEE ALSO
system(4), vme(7).
S/Series CTIX Administrator's Guide.

LEX(l) LEX(l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] ...

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis of
text

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array.

Matching is done in order of the strings in the file. The strings may contain
square brackets to indicate character classes, as in [abx-z] to indicate a, b, x, y,
and z; and the operators *, +, and ? mean respectively any non-negative
number of, any positive number of, and either zero or one occurrence of, the
previous character or character class. The character . is the class of all ASCH
characters except new-line. Parentheses for grouping and vertical bar for
alternation are also supported.

The notation r{d#} in a rule indicates between d and e instances of regular
expression r. It has higher precedence than / , but lower than *, ?, + , and
concatenation. Thus [a-zA-Z]+ matches a string of letters. The character A at
the beginning of an expression permits a successful match only immediately
after a new-line, and the character $ at the end of an expression requires a
trailing new-line. The character / in an expression indicates trailing context;
only the part of the expression up to the slash is returned in yytext, but the
remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within " symbols or
preceded by \.

Three subroutines defined as macros are expected: input() to read a character;
unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls i t The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed; the
function yymore() accumulates additional characters into the same yytext; and
the function yyless(p) pushes back the portion of the string matched beginning

LEX(l) LEX(l)

at p, which should be between yytext and yytext+yyleng. The macros input and
output use files yyin and yyout to read from and write to, defaulted to stdin and
stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the external definition area of the
lex.yy.c file. All rules should follow a % %, as in YACC. Lines preceding % %
which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with {}. Note
that curly brackets do not imply parentheses; only string substitution is done.

EXAMPLE
D [0-9]
%%
if prlntfflF statement^');
[a-z]+ printfCtag, value %s\n",yytexl);
0{D}+ printf("octal number %s\n",yytext);
{D}+ prlntff'declmal number %»\n",yytext);

prlntf("unary op\n");
V printff'binary op\n");
" / » " skipcommnts();
%%
skipcommntsQ

{
for (;;)
{

while (lnput() 1='»')
«

if (input() 1= '/')
unput(yytext[yyleng-1]);

else
return;

}
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RATFOR actions,
-c indicates C actions and is the default, -t causes the lex.yy.c program to be
written instead to standard output, -v provides a one-line summary of statistics,

will not print out the -v summary. Multiple files are treated as a single file.
If no files are specified, standard input is used.

LEX(l) LEX(l)

Certain table sizes for the resulting Finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)

%on size of output array is n (3000)

The use of one or more of the above automatically implies the -v option, unless
the -n option is used.

SEE ALSO
yacc(l).
UNIX System VRelease 3.2 Programmer's Guide.

BUGS
The -r option is not yet fully operational.

LINE(l) LINE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION
line copies one line (up to a new-line) from the standard input and writes it on
the standard output It returns an exit code of 1 on EOF and always prints at
least a new-line. It is often used within shell fdes to read from the user's
terminal.

SEE ALSO
sh(l),read(2).

LINK(IM) LINK(IM)

NAME
link, unlink - link and unlink fdes and directories

SYNOPSIS
/etc/link fdel fde2

/etc/unlink fde

DESCRIPTION
The link command is used to create a fde name that points to another file.
Linked files and directories can be removed by the unlink command; however,
it is strongly recommended that the rm(l) and rmdir(1) commands be used
instead of the unlink command.

The only difference between ln(1) and link/unlink is that the latter do exactly
what they are told to do, abandoning all error checking. This is because they
direcdy invoke the link (2) and unlink (2) system calls.

SEE ALSO
rm(l), link(2), unlink(2).

WARNINGS
These commands can be run only by the super-user.

LINE(l) LINE(l)

NAME
lint - a C program checker

SYNOPSIS
lint [option] ... file ...

DESCRIPTION
The lint command attempts to detect features of the C program files that are
likely to be bugs, non-portable, or wasteful. It also checks type usage more
strictly than the compilers. Among the things that are currently detected are
unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant.
Moreover, the usage of functions is checked to find functions that return values
in some places and not in others, functions called with varying numbers or types
of arguments, and functions whose values are not used or whose values are used
but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .In are taken to be the result of an earlier invocation of
lint with either the -c or the -o option used. The .In files are analogous to .o
(object) files that are produced by the cc (l) command when given a .c file as
input. Files with other suffixes are warned about and ignored.

lint will take all the .c, .In, and llib-lx.ln (specified by -Ic) files and process
them in their command line order. By default, lint appends the standard C lint
library (llib-lc.ln) to the end of the list of files. However, if the -p option is
used, the portable C lint library (llib-port.ln) is appended instead. When the -c
option is not used, the second pass of lint checks this list of files for mutual
compatibility. When the -c option is used, the .In and the llib-Lc.In files are
ignored.

Any number of lint options may be used, in any order, intermixed with file-
name arguments. The following options are used to suppress certain kinds of
complaints:

-a Suppress complaints about assignments of long values to variables that
are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in many such
complaints).

-h Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

LINT(l) LINT(l)

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for
running lint on a subset of files of a larger program).

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never
used.

The following arguments alter lint's behavior:

-Lt Include additional lint library llib-Lc.ln. For example, you can include
a lint version of the math library llib-lm.ln by inserting -1m on the
command line. This argument does not suppress the default use of
llib-lc.ln. These lint libraries must be in the assumed directory. This
option can be used to reference local lint libraries and is useful in the
development of multi-file projects.

-n Do not check compatibility against either the standard or the portable
lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external names
to be truncated to eight characters and all external names to be
truncated to six characters and one case.

-c Cause lint to produce a .In file for every .c file on the command line.
These .In files are the product of lint's first pass only, and are not
checked for inter-function compatibility.

-o lib Cause lint to create a lint library with the name llib-l/(7> .In. The -c
option nullifies any use of the -o option. The lint library produced is
the input that is given to lint's second pass. The -o option simply
causes this file to be saved in the named lint library. To produce a
llib-W&.ln without extraneous messages, use of the -x option is
suggested. The -v option is useful if the source file(s) for the lint
library are just external interfaces (for example, the way the file llib-lc
is written). These option settings are also available through the use of
"lint comments" (see below).

The -D, -U, and -I options of cpp(1) and the -g and -O options of cc(l) are also
recognized as separate arguments. The -g and -O options are ignored, but, by
recognizing these options, lint's behavior is closer to that of the cc(l)
command. Other options are warned about and ignored. The pre-processor
symbol " l in t " is defined to allow certain questionable code to be altered or
removed for lint. Therefore, the symbol " l in t " should be thought of as a
reserved word for all code that is planned to be checked by lint.

- 2 -

LINE(l) LINE(l)

Certain conventional comments in the C source will change the behavior of
lint:

/+NOTREACHED*/
at appropriate points stops comments about unreachable code.
[This comment is typically placed just after calls to functions
like exit (2)].

/•VARARGS/!*/
suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be 0.

/•ARGSUSED*/
turns on the -v option for the next function.

/•LINTLIBRARY*/
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been
processed. Finally, if the -c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is not
clear whether a complaint stems from a given source file or from one of its
included files, the source file name will be printed followed by a question mark.

The behavior of the -c and the -o options allows for incremental use of lint on a
set of C source files. Generally, one invokes lint once for each source file with
the -c option. Each of these invocations produces a .In file which corresponds
to the .c file, and prints all messages that are about just that source file. After
all the source files have been separately run through lint, it is invoked once
more (without the -c option), listing all the .In files with the needed -Lc options.
This will print all the inter-file inconsistencies. This scheme works well with
make(\); it allows make to be used to lint only the source files that have been
modified since the last time the set of source files were linted.

FILES
LUBDIR

LLIBDIR/lint[12]

LL/flDffi/llib-lc.ln

- 3 -

the directory where the lint libraries specified by the -Lt
option must exist, usually /usr/lib

first and second passes

declarations for C Library functions (binary format;
source is in LUBDIR/llib-lc)

LINE(l) LINE(l)

LUBDfR/l\ib-pori.\n declarations for portable functions (binary format;
source is in LL/flD//?/llib-port)

LLIBDIR/llib-lm.ln declarations for Math Library functions (binary format;
source is in UJBDIRIMAm)

TMPDIR/*lint* temporaries

TMPDIR usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnamQ in
tmpnam(3S)].

SEE ALSO
cc(l), cpp(l), make(l).

BUGS
exit (2), setjmp(3C), and other functions that do not return are not understood;
this causes various lies.

L I S T (l) LIST(l)

NAME
list - produce C source listing from a common object fde

SYNOPSIS

list [-V] [-h] [-F function] source-file . . . [object-file]

DESCRIPTION
The list command produces a C source listing with line number information
attached. If multiple C source fdes were used to create the object file, list
accepts multiple file names. The object file is taken to be the last non-C source
file argument. If no object file is specified, the default object file, a.out, is
used.
Line numbers are printed for each line marked as breakpoint inserted by the
compiler (generally, each executable C statement that begins a new line of
source). Line numbering begins anew for each function. Line number 1 is
always the line containing the left curly brace ({) that begins the function body.
Line numbers are also supplied for inner block redeclarations of local variables
so that they can be distinguished by the symbolic debugger.

The following options are interpreted by list and may be given in any order:

-V Print, on standard error, the version number of the list command
executing.

-h Suppress heading output.

-Ffunction List only the named function. The -F option may be specified
multiple times on the command line.

SEE ALSO
as(l), cc(l), ld(l).

CAVEATS
Object files given to list must have been compiled with the -g option of cc(1).

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

LIST(l) LIST(l)

DIAGNOSTICS
list produces the error message "list: name: cannot open" if name cannot be
read. If the source file names do not end in .c , the message is "list: name:
invalid C source name". An invalid object file causes the message "list: name:
bad magic" to be produced. If some or all of the symbolic debugging
information is missing, one of the following messages is printed: "list: name:
symbols have been stripped, cannot proceed", "list: name: cannot read line
numbers", and "list: name: not in symbol table". The following messages are
produced when list has become confused by #ifdef s in the source file: "list:
name: cannot find function in symbol table", "list: name: out of sync: too many
}", and "list: name: unexpected end-of-file". The error message "list: name:
missing or inappropriate line numbers" means that either symbol debugging
information is missing, or list has been confused by C preprocessor statements.

LOCATE(l) (C a t e g o r y 2 S u p p o r t) LOCATE(l)

NAME
locate - identify a CTIX system command using keywords

SYNOPSIS
[help] locate
[help] locate [keywordl [keyword2] ...]

DESCRIPTION
The locate command is part of the CTIX system Help Facility, and provides on-
line assistance with identifying CTIX system commands.
Without arguments, the initial locate screen is displayed from which the user
may enter keywords functionally related to the action of the desired CTIX
system commands they wish to have identified. A user may enter keywords and
receive a list of CTIX system commands whose functional attributes match
those in the keyword list, or may exit to the shell by typing q (for "quit") . For
example, if you wish to print the contents of a fde, enter the keywords "pr in t"
and "file". The locate command would then print the names of all commands
related to these keywords.

Keywords may also be entered directly from the shell, as shown above. In this
case, the initial screen is not displayed, and the resulting command list is
printed.

More detailed information on a command in the list produced by locate can be
obtained by accessing the usage module of the CTIX system Help Facility.
Access is made by entering the appropriate menu choice after the command list
is displayed.

From any screen in the Help Facility, a user may execute a command via the
shell [s/i(l)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

LOCATE(l) (C a t e g o r y 2 S u p p o r t) LOCATE(l)

SEE ALSO
glossary(l), help(l), sh(l), starter(l), usage(l), term(5).

WARNINGS
If the shell variable TERM [see sA(l)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term(5).

- 2 -

LOGIN (1) LOGIN(I)

NAME
login - sign on

SYNOPSIS
login [name [env-var . . .]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It can be invoked as a command
or by the system when a connection is first established. Also, login is invoked
by the system when a previous user terminates the initial shell by pressing
cntrl-d to indicate an "end-of-file." (See How to Get Started at the beginning
of this volume for instructions on logging in initially.)

If login is invoked as a command it must replace the initial command
interpreter. This is accomplished by using the following command from the
initial shell:

exec login

The login command prompts for a user name (if not supplied as an argument)
and, if appropriate, a password. Echoing is disabled (where possible) as the
user enters a password, so the password does not appear on the written record of
the session.

At some installations, an option can be invoked that requires a second "dialup"
password for dialup connections.

If the login attempt is incorrect, a message informs the user that the login is
incorrect, and a new login prompt appears. After five incorrect login attempts,
all five are logged in /usr/adm/Ioginlog (if it exists) and the line is dropped.

If the login is not successful within a certain period of time (for example, one
minute), the login attempt can be silendy disconnected.

After a successful login, the user ID, the group ID, the working directory, and
the command interpreter [usually s/i(l)] are initialized. If the shell /bin/sh is
running, accounting files are updated, the procedure /etc/profile is performed,
the message-of-the-day (if any) is printed, and the file .profile in the working
directory is executed, if it exists. If the shell /bin/csh is running, the .login and
.cshrc files in the working directory are executed, if they exist. These
specifications are found in the /etc/passwd file entry for the user. The name of
the command interpreter is - followed by the last component of the interpreter's
path name (for example, -sh). If this field in the password file is empty, the
default command interpreter, /bin/sh is used. If this field is an asterisk (*), the
named directory becomes the root directory, the starting point for path searches

LOGIN(l) LOGIN (1)

for path names beginning with a slash (J). At that point, login is re-executed at
the new level, which must have its own root structure, including /bin/login and
/etc/passwd.

The basic environment is initialized as follows:

HOME=your-login-directory
PATH=:./bin:/usr/bin
SHELL=last-field-of-passwd-entry
MA\\j=/asr/ma\\Jyour-login-name
TZ=timezone-specification

The environment can be expanded or modified by supplying additional
arguments to login, either at execution time or when login requests a login
name. The environment arguments can take the form xxx or xxx=yyy.
Arguments without an equal sign (=) are named as follows as they are placed in
the environment:

where n is a number starting at 0, and incremented for each new variable.
Arguments that contain an equal sign are placed into the environment as
specified. If a variable already appears in the environment, the new value
replaces the older value. There are exceptions: the variables PATH, SHELL,
HOME, LOGNAME, CDPATH, IFS cannot be changed. This prevents users
logging into restricted shell environments from spawning secondary shells that
are not restricted. Both login and getty understand simple single-character
quoting conventions. Typing a backslash in front of a character quotes it and
allows the inclusion of such things as spaces and tabs.

Ln=xxx

FILES
/ete/utmp accounting

/etc/wtmp accounting

/usr/mail/your-name mailbox for user your-name

/usr/adm/loginlog

/etc/motd

record of failed login attempts

message-of-the-day

password file

system profile (/bin/sh only)

system profile (/usr/local/bin/csh only)

user's login profile (/bin/sh only)

/etc/passwd

/etc/profile

/etc/cprofile

.profile

LOGIN (1) LOGIN (1)

.cshrc

.login

user startup file (/usr/local/bin/csh only)

user login initialization file (/usr/local/bin/csh only)

SEE ALSO
csh(l), mail(l), newgrp(lM), passwd(l), sh(l), su(lM), loginlog(4), passwd(4),
profile(4), environ(5).

login incorrect
The user name or the password cannot be matched.

no shell, cannot open password file, or no directory
Consult your system administrator.

No utmp entry. You must exec "login" from the lowest level "shl'
You attempted to execute login as a command without using the shell's
exec internal command or from other than the initial shell.

DIAGNOSTICS

LOGNAME(l) LOGNAME(l)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
logname returns the contents of the environment variable $LOGXAME, which
is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(l), login(l), logname(3X), environ(5).

I

LORDER(l) LORDER(l)

NAME
lewder - find ordering relation for an object library

SYNOPSIS
(order fde ...

DESCRIPTION
The input is one or more object or library archive files [sec ar(1)]. The
standard output is a list of pairs of object fde or archive member names,
meaning that the first file of the pair refers to external identifiers defined in the
second. The output may be processed by tsort(1) to find an ordering of a
library suitable for one-pass access by ld(1). Note that the link editor ld(1) is
capable of multiple passes over an archive in the portable archive format [see
ar(4)] and does not require that lorder(1) be used when building an archive.
The usage of the lorder(1) command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

The following example buUds a new library from existing .o files.

ar -cr library * lorder *.o | taort*

FILES

7"A/fW/?/*symreftemporary files

TMPDIR/*symde,f temporary files
TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in fmpnam(3S)].

SEE ALSO
ar(l), ld(l), tsort(l), ar(4).

CAVEAT
lorder will accept as input any object or archive file, regardless of its suffix,
provided there is more than one input file. If there is but a single input file, its
suffix must be .o.

LP(1) LP(1)

N A M E

lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS

lp [-c] [-d dest] [-m] [-n number] [-o option] [-s] [-t title] [-w]
files

cancel [ids] [printers]

D E S C R I P T I O N

The lp command arranges for the named fdes and associated information
(collectively called a request) to be printed by a line printer. If no fde names
are mentioned, the standard input is assumed. The file name - stands for the
standard input and may be supplied on the command line in conjunction with
named files. The order in which files appear is the same order in which they are
printed.

lp associates a unique id with each request and prints it on the standard output
This id can be used later to cancel (see the description of cancel, later in this
page) or find the status [see lpstat(\)] of the request.

The following options to lp can appear in any order and can be intermixed with
file names:

-c Make copies of the files to be printed immediately when lp is
invoked. Normally, files are not copied, but they are linked
whenever possible. If the -c option is not given, then the user should
be careful not to remove any of the files before the request has been
printed in its entirety. It should also be noted that in the absence of
the -c option, any changes made to the named files after the request
is made but before it is printed are reflected in the printed output

-ddest Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, the request is printed only on that
specific printer. If dest is a class of printers, the request is printed on
the first available printer that is a member of the class. Under
certain conditions (printer unavailability, file space limitation, and
the like), requests for specific destinations may not be accepted [see
accept (IM) and lpstat (I)]. By default, dest is taken from the
environment variable LPDEST (if it is set). Otherwise, a default
destination (if one exists) for the computer system is used.
Destination names vary between systems [see lpstat (I)].

- m Send mai l [see mail (1)] after the fi les have been printed. By default,

no mai l is sent upon normal completion of the print requesL

LP(1) LP(1)

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several such
options may be collected by specifying the -o keyletter more than
once. For more information about what is valid for options, see
Models in lpadmin(\M).

-s Suppress messages from lp(1) such as request id is

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, mail is sent instead.

Cancel cancels line printer requests made by the lp(1) command. The
command line arguments may be either request ids [as returned by /p(l)] or
printer names [for a complete list, use Ipstat(l)]. Specifying a request id
cancels the associated request even if it is currently printing. Specifying a
printer cancels the request currently printing on that printer. In either case, the
cancellation of a request currently printing frees the printer to print its next
available request.

FILES

/usr/spool/lp/*

SEE ALSO
accept(lM), enable(l), lpadmin(lM), lpsched(lM), lpstat(l), mail(l).
S/Series CTIX Administrator's Guide.
CTIX Administration Tools Manual.

LPADMIN(IM) LPADMIN(IM)

NAME
lpadmin - configure the LP spooling system

SYNOPSIS
/usr/lib/lpadmin -pprinter [options]

/usr/lib/lpadmin -xdest

/usr/lib/lpadmin -d[dest]

DESCRIPTION
lpadmin configures line printer (LP) spooling systems to describe printers,
classes and devices. It is used to add and remove destinations, change
membership in classes, change devices for printers, change printer interface
programs and to change the system default destination, lpadmin may not be
used when the LP scheduler, lpsched(\M), is running, except where noted
below.

Exactly one of the -p, -d or -x options must be present for every legal
invocation of lpadmin.

-^printer names a printer to which all of the options below refer. If printer
does not exist then it will be created.

•xdest removes destination dest from the LP system. If dest is a printer
and is the only member of a class, then the class will be deleted,
too. No other options are allowed with -x.

-d[dest] makes dest, an existing destination, the new system default
destination. If dest is not supplied, then there is no system default
destination. This option may be used when lpsched(IM) is
running. No other options are allowed with -d.

The following options are only useful with -p and may appear in any order. For
ease of discussion, the printer will be referred to as P below.

-cclass inserts printer P into the specified class. Class will be created if it
does not already exist.

•sprinter copies an existing printer's interface program to be the new
interface program for P.

-h indicates that the device associated with P is hardwired. This
option is assumed when adding a new printer unless the -I option is
supplied.

-iinterface establishes a new interface program for P. Interface is the path
name of the new program.

LPADMIN(IM) LPADMIN(IM)

-1 indicates that the device associated with P is a login terminal. The
LP scheduler, Ipsched, disables all login terminals automatically
each time it is started. Before re-enabling P, its current device
should be established using Ipadmin.

-mmodel selects a model interface program for P . Model is one of the model
interface names supplied with the LP Spooling Utilities (see
Models below).

-rclass removes printer P from the specified class. If P is the last member
of the class, then the class will be removed.

•\device associates a new device with printer P. Device is the pathname of
a file that is writable by Ip. Note that the same device can be
associated with more than one printer. If only the -p and -v
options are supplied, then Ipadmin may be used while the
scheduler is running.

Restrictions.
When creating a new printer, the -v option and one of the -e, -i or -m options
must be supplied. Only one of the -e, -i or -m options may be supplied. The -h
and -1 keyletters are mutually exclusive. Printer and class names may be no
longer than 14 characters and must consist entirely of the characters A-Z, a-z,
0-9 and _ (underscore).

Models.
Model printer interface programs are supplied with the LP Spooling Utilities.
They are shell procedures which interface between Ipsched and devices. All
models reside in the directory /usr/spool/lp/model and may be used as is with
Ipadmin -m. Copies of model interface programs may also be modified and
then associated with printers using Ipadmin -i. The following describes the
models which may be given on the Ip command line using the -o keyletter:

dumb interface for a line printer without special functions and protocol. Form
feeds are assumed. This is a good model to copy and modify for
printers which do not have models.

1640 DIABLO 1640 terminal running at 1200 baud, using XON/XOFF
protocol. Options:

-12 12-pitch (10-pitch is the default)
-f do not use the 450(1) filter. The output has been pre-

processed by either 450(1) or the nroff(1) 450 driving table.

LPADMIN(IM) LPADMIN(IM)

hp Hewlett-Packard 2631A line printer at 2400 baud. Options:

-c compressed print
-e expanded print

prx Printronix P300 or P600 printer using XON/XOFF protocol at 1200
baud.

EXAMPLES
1. Assuming there is an existing Hewlett-Packard 2631A line printer named

hp2, it will use the hp model interface after the command:

/usr/lib/lpadmin -php2 -mhp

2. To obtain compressed print on hp2, use the command:

Ip -dhp2 -o-c files

3. A DIABLO 1640 printer called stl can be added to the LP configuration
with the command:

/usr/lib/lpadmin -pst1 -v/dev/t«y002 -m1640

4. An nroff(1) document may be printed on lp in any of the following ways:

nroff -T450 files | Ip-dst1 -of
nroff-T450-12 files | Ip-dst1 -of
nroff -T37 files | col | Ip -dst1

5. The following command prints the password file on stl in 12-pitch:

lp -dstl -o12 /etc/passwd

NOTE: the -12 option to the 1640 model should never be used in
conjunction with nroff(1).

FILES

/usr/spool/lp/*

SEE ALSO
accept(lM), enable(l), lp(l), lpsched(lM), lpstat(l).
S/Series CTIX Administrator's Guide.
CTIX Administration Tools Manual.

f i

LPR(l) LPR(l)

NAME
lpr - line printer spooler

SYNOPSIS
lpr [option ...] [name ...]

DESCRIPTION
The lpr command causes the named files to be queued for printing on a line
printer. If no names appear, the standard input is assumed; thus lpr may be
used as a filter.

Note that lpr is a simple alternative to the lp(1) system; one system should not
use both.

The lpr command uses a CTIX demon to manage spooling.

The following options can be given (each as a separate argument and in any
order) before any file name arguments:

-c Makes a copy of the file to be sent before returning to the user,

-r Removes the file after sending i t

FILES
/etc/passwd user's identification and accounting data
/usr/lib/lpd line printer daemon
/usr/spool/lpd/* spool area
/etc/init.d/lp initialization for lp or lpr spooling system
/etc/rcopts/LPR presence of this zero-length file is required to start lpr when

the system is booted.
SEE ALSO

S/Series CTIX Administrator's Guide.

LPSCHED(IM) LPSCHED (IM)

NAME
lpsched, Ipshut, lpmove - start/stop the LP scheduler and move requests

SYNOPSIS
/usr/lib/lpsched

/usr/lib/lpshut

/usr/lib/lpmove requests dest

/usr/Iib/lpmove destl dest2

DESCRIPTION
lpsched schedules requests taken by lp(1) for printing on line printers (LP's).

Lpshut shuts down the line printer scheduler. All printers that are printing at
the time Ipshut is invoked will stop printing. Requests that were printing at the
time a printer was shut down will be reprinted in their entirety after lpsched is
started again.

Lpmove moves requests that were queued by lp(1) between LP destinations.
This command may be used only when lpsched is not running.

The first form of the command moves the named requests to the LP destination,
dest. Requests are request ids as returned by lp(1). The second form moves all
requests for destination destl to destination destl. As a side effect, lp (1) will
reject requests for destl.

Note that lpmove never checks the acceptance status [see accept (IM)] for the
new destination when moving requests.

FILES
/usr/spool/lp/* spool area

/etc/init.d/lp initialization for lp or lpr spooling system (calls lpsched).

/ete/rcopts/LP presence of this zero-length fde is required to start lpsched
when the system is booted.

SEE ALSO
accept(lM), enable (1), lp(l), lpadmin(lM), lpstat(l).
S/Series CTIX Administrator's Guide.
CTIX Administration Tools Manual.

LPSET(IM) LPSET(IM)

NAME
lpset - set parallel line printer options

SYNOPSIS
lpset [control options] [mode options]

DESCRIPTION
The lpset command sets the translation options for the parallel printer interface.
The following control options can be used; the interpretation of these options
by the interface is described under lp(7).

•in Set the indent to n.

-cn Set the number of columns to n.

•In Set the number of lines-per-page to n.

-pprinter id Print on the specified printer; printer id can be 0 or 1. If
printer id is not specified, /dev/lpO is used.

The following mode option choices can also be selected:

bs | nobs Backspace/No backspace

raw | canon Raw output mode/Canonical mode

cap | allcase Translate lowercase to capitals/Both upper- and lowercase

cr | nocr Carriage return/No carriage return

ft | noff Formfeed/No formfeed

nl | nonl New-line/No new-line

With no options, lpset reports the current values of device /dev/lpO. Initially,
the values are as follows: an indent of 4, 132 columns, 66 lines per page. If -c
is set to 0, the control values and modes are be set to their default values.

EXAMPLE
The following command specifies an indent of 4, 80 columns across the page,
and no automatic formfeeds for line printer /dev/lpO.

Ipttt -14 -c80 -10 -p0 noff

FILES
/dev/lp
/dev/plp
/dev/plpl

SEE ALSO
Ipfl).

LPSTAT(l) LPSTAT(l)

NAME
lpstat - print LP status information

SYNOPSIS
lpstat [options]

DESCRIPTION
The lpstat command prints information about the current status of the LP
spooling system.

If no options are given, lpstat prints the status of all requests made to lp(1) by
the user. Any arguments that are not options are assumed to be request ids (as
returned by lp). lpstat prints the status of such requests. Options may appear in
any order and may be repeated and intermixed with other arguments. Some of
the keyletters below may be followed by an optional list that can be in one of
two forms: a list of items separated from one another by a comma, or a list of
items enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-tf'userl, user2, user3"

The omission of a list following such keyletters causes all information relevant
to the keyletter to be printed, for example:

lpstat -o

prints the status of all output requests.

-a[list] Print acceptance status (with respect to lp) of destinations for
requests. List is a list of intermixed printer names and class names.

-c[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for lp.

•of list] Print the status of output requests. List is a list of intermixed printer
names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the system default destination, a list
of class names and their members, and a list of printers and their
associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login names.

LPSTAT(l) LPSTAT(l)

-v[list] Print the names of printers and the path names of the devices
associated with them. List is a list of printer names.

FILES
/usr/spool/lp/*

SEE ALSO
enable(l), lp(l).

- 2 -

LS(1) LS(1)

NAME
Is - list contents of directory

SYNOPSIS
Is [-RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each file
argument, Is repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments appear before directories and their
contents.

There are four listing formats:

Multicolumn format This is the default when the standard output is a terminal.
By default this format sorts names down the page; the -x
option controls this. Choice of multicolumn format is
controlled manually by the -C option.

Simple format (one entry/line)
This is the default when the standard output is not a
terminal. Each line consists of a file name together with
whatever additional information is requested by options.

Long format See the description of the -1 option.

Stream format. See the description of the -m option.

The number of columns used in multicolumn and Stream format is taken from
an environment variable COLUMNS. If this variable is not set the terminfo (A)
database is used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns are
assumed.

The Is command has the following options:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are
normally not listed.

-d If an argument is a directory, list only its name (not its contents); often
used with -1 to get the status of a directory.

-C If the output device is a terminal, simple (one entry per line) format If
the output device is not a terminal, multi-column output with entries
sorted down the columns.

LS(1) LS(1)

-x Multi-column output with entries sorted across rather than down the
page.

-m Stream output format; files are listed across the page, separated by
commas.

-1 List in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below). If the
file is a special file, the size field will instead contain the major and
minor device numbers rather than a size.

-n The same as -1, except that the owner's UID and group's GID numbers
are printed, rather than the associated character strings.

-o The same as -1, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp (latest first) instead of by name. The default is the
last modification time. (See -n and -c.)

-u Use time of last access instead of last modification for sorting (with
the -t option) or printing (with the -1 option).

-c Use time of last modification of the i-node (file created, mode
changed, etc.) for sorting (-t) or printing (-1).

-p Put a slash (/) after each filename if that file is a directory.

-F Put a slash (/) after each filename if that file is a directory and put an
asterisk (*) after each filename if that file is executable.

-b Force printing of non-printable characters to be in the octal \ddd
notation.

-q Force printing of non-printable characters in file names as the
character question mark (?).

-i For each file, print the i-number in the first column of the report.

-s Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot This option turns off -1, -t, -s, and -r, and turns on
-a; the order is the order in which entries appear in the directory.

The mode printed under the -1 option consists of ten characters. The first
character can be one of the following:

- 2 -

LS(1) LS(1)

d The entry is a directory,
b The entry is a block special file,
c The entry is a character special file,
p The entry is a FIFO (named pipe) special file.

The entry is an ordinary file.

The next nine characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions of
others in the user-group of the file; and the last to all others. Within each
set, the three characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a directory, "execute"
permission is interpreted to mean permission to search the directory for a
specified file.

Is -I (the long list) prints its output as shown below:

-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2

This horizontal configuration provides a good deal of information. Reading
from right to left, notice that

• The current directory holds one file, named part2.
• The last time that file's contents were modified was 9:42 A.M. on May

16.
• The file is moderately sized, containing 10,876 characters, or bytes.

• The owner of the file, or the user, belongs to the group dev, and the
user's login name is smith.

• The number, in this case 1, indicates the number of links to the file
part2.

• The row of dash and letters indicate that user, group, and others have
permissions to read, write, and execute part2.

The permissions are indicated as follows:

r The file is readable,
w The file is writable,
x The file is executable.

The indicated permission is not granted.
1 Mandatory locking occurs during access (the set-group-ID bit is on and

the group execution bit is off),
s The set-user-ID or set-group-ID bit is on, and the corresponding user or

group execution bit is also on.
S Undefined bit-state (the set-user-ID bit is on and the user execution bit

is off).

- 3 -

LS(1) LS(1)

t The 1000 (octal) bit, or sticky bit, is on [see chmod(l)], and execution
is on.

T The 1000 bit is turned on, and execution is off (undefined bit-state).

The ability to assume the same ID as the user during execution is, for example,
used during login when you begin as root but need to assume the identity of the
user stated at login.

Mandatory record locking describes a file's ability to allow other files to iock
its reading or writing permissions during access.

EXAMPLES
An example of a file's permissions is shown below:

-rwxr—r—

This describes a file that is readable, writable, and executable by the user and
readable by the group and others.

Another example of a file's permissions follows:

-rww-xr-x

The second example describes a file that is readable, writable, and executable
by the user, readable and executable by the group and others, and allows its
user-ID to be assumed, during execution, by the user presently executing i t

Another example of a file's permissions follows:

- r w - r w l —

This example describes a file that is readable and writable only by the user and
the group and can be locked during access.

The following use of the Is command displays the names of all files in the
current directory, including those that begin with a dot (.), which are not
normally included in the Is report:

I * - a

The following use of the Is command displays an informative report that
includes all files, even non-printing ones (a); the i-number—the memory
address of the i-node associated with the file—printed in the left column (i); the

- 4 -

LS(717) LS(1)

size (in blocks) of the files, printed in the column right of the i-numbers (s); The
report is displayed in the numeric version of the long list, printing the UID
(instead of user name) and GID (instead of group name) numbers associated
with the files.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES

SEE ALSO
chmod(l), find(l).

NOTES
In a Remote File Sharing environment, you may not have the permissions that
the output of the Is -1 command leads you to believe. For more information see
the section on mapping remote users in the S/Series CTIX Administrator's
Guide.

Is -alsn

/etc/passwd
/etc/group
/usr/lib/terminfo/? /*

user IDs for Is -1 and Is -o
group IDs for Is -1 and Is -g
terminal information database

BUGS
Unprintable characters in file names may confuse the columnar output options.

