
CTIX™ OPERATING SYSTEM MANUAL

Version C
Volume 4

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document
Designer, The Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220,
S/320, S/640, S/1280, Multibus, TeleCluster, Voice/Data Services,

Voice Processor, WGS/Calendar, WGS/Desktop Manager,
WGS/Mail, and X-Bus are trademarks of

Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under license from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator slUser s
Reference Manual and Programmer s Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/320 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02265-01

Copyright © 1989 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 4

How to Use This Manual vii

Permuted Index xi

4. File Formats

intro introduction to file formats
a.out common assembler and link editor output
acct per-process accounting file format
aliases aliases file for sendmail
ar common archive file format
cftime language specific strings
checklist list of file systems processed by fsck and ncheck
core format of core image file
cpio format of cpio archive
cprofile setting up a C shell environment at login time
dir format of directories
dirent file system independent directory entry
errfile error-log file format
exports NFS file systems export configuration file
filehdr file header for common object files
fs format of system volume
fspec format specification in text files
fstab file-system-table
gateways routed configuration file
gettydefs speed and terminal settings used by getty
gps graphical primitive string, format of graphical files
group group file
hosts list of hosts on network
inetd.conf configuration file for inetd (internet "super-server")
inittab script for the init process
inode format of an i-node
issue issue identification file
Id fen common object file access routines
limits file header for implementation-speci fic constants
linenum line number entries in a common object file
loginlog log of failed login attempts
master master device information table
mnttab mounted file system table
netcf Network Configuration File
netrc login file for remote networks
networks names and numbers for the internet
passwd password file
plot graphics interface
profile setting up an environment at login time
protocols list of Internet protocols
queuedefs at/batch/cron queue description file
reloc relocation information for a common object file
resolver resolver configuration file

- iii -

rfmaster Remote File Sharing name server master file
rhosts remote equivalent users
rmtab remotely mounted file system table
rpc Sun ipc program number data base
rtab Remote I/O Processor configuration table
sccsfile format of SCCS file
scnhdr section header for a common object file
scr_dump format of curses screen image file.
services list of Internet services
shadow password file
syms common object file symbol table format
system system description file
tapedrives tape drive specific information used by the /etc/tapeset command.
term • format of compiled term file.
termcap terminal capability data base
term info terminal capability data base
timezone set default system time zone
ttytype list of terminal types by terminal number
unistd file header for symbolic constants
utmp utmp and wtmp entry formats

5. Miscellaneous Facilities

intro .
Devices
Dialers
ascii .
environ
eqnchar
fend .
man .
math
me .
mm . .
mptx
ms . .
mv . .
prof . ,
regexp
stat . .
term .
types .
values ,
varargs

6. Games

intro introduction to games
advent explore Colossal Cave
arithmetic provide drill in number facts
back the game of backgammon
bj the game of black jack
craps the game of craps

introduction to miscellany
configuration file for uucp communications lines

ACU/modem calling protocols
map of ASCH character set

user environment
special character definitions for eqn and neqn

file control options
macros for formatting manual pages

math functions and constants
macros for formatting papers

. . . . the MM macro package for formatting documents
. . . . the macro package for formatting a permuted index

text formatting macros
a troff macro package for typesetting view graphs and slides

profile within a function
regular expression compile and match routines

data returned by stat system call
conventional names for terminals

primitive system data types
machine-dependent values

handle variable argument list

- iv -

fish play "Go Fish"
fortune print a random, hopefully interesting, adage
hangman guess the word
maze generate a maze

guessing game
number convert Arabic numerals to English
quiz test your knowledge
•rk trekkie game
ttt tic-tac-toe
wump the game of hunt-the-wumpus

7. Special Files

intro introduction to special files
arp Address Resolution Protocol
clone open any minor device on a STREAMS driver
console console terminal
disk general disk driver
drivers loadable device drivers
en Ethernet Processor
en error-logging interface
icmp Internet Control Message Protocol
inet Internet protocol family
ip Internet Protocol
ipt interface for Interphase V/TAPE 3200 half-inch tape controller
lo software loopback network interface
log interface to STREAMS error logging and event tracing
lp parallel printer interface
mem system memory interface
null the null file
prf operating system profiler
qic interface for QIC tape
scsi scsi control device
stape SCSI quarter-inch and half-inch tape
streamio STREAMS ioctl commands
sxt STREAMS multiplexor
tcp Internet Transmission Control Protocol
termio general terminal interface
timod Transport Interface cooperating STREAMS module
tiop terminal accelerator interface
tirdwr Transport Interface read/write interface STREAMS module
tp controlling terminal's local RS-232 channels
tty controlling terminal interface
udp Internet User Datagram Protocol
vme VME bus interface
vt virtual terminal
window window management primitives

- v -

I

HOW TO USE THIS MANUAL

This second edition of the CTIX Operating System Manual, Version C, describes the
commands, system calls, libraries, data files, and device interfaces that make up the CTIX
Operating System for S/Series Computer Systems. This manual should always be your
starting point when you need to find the documentation for a CTIX feature with which
you are unfamiliar.

The manual consists of a large number of short entries, sometimes called "the man
pages," after the command that accesses the entries when they are kept online. Each
entry briefly documents some feature of CTIX. Some features require longer
documentation than an entry in this manual; such features have an entry that outlines the
feature and cross-references the manual that documents the feature fully. Entries that do
not refer to other manuals are self-contained and are the final word on the features they
describe.

Organization of the manual. The entries are organized into seven sections in four
volumes:

Volumes 1 and 2:
1. Commands and Application Programs.

Volume 3:
2. System Calls.
3. Subroutines and Libraries.

Volume 4:
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special Files.

Within each section, entries are alphabetical by title, except for an intro entry at the
beginning of each section.

Entry Title Conventions. An entry title looks like this example:

Name is the name of the entry. Section Number indicates the section that contains the
entry. In this case, the entry is in Section 3, which is in Volume 2. Entry Type appears
only on entries that belong to special categories; refer to the section's intro entry for an
explanation. In this case, a reference to intro(3) would tell you that er/(3M) describes
functions from the Math Library, which the C compiler does not load by default.

II
I Entry Type

Section Number

Name

- vn -

Finding the entry you need. To find out which entry you need, refer to the following
guides:

• The Permuted Index. This indexes each significant word in each entry's
description. It is useful when you have only a general notion what you're
looking for. It is also useful when you know the name of the command or
function you are interested in, but there is no entry by that name.

• The Table of Contents. This is a simple list of entries, by section, together with
the entry descriptions. Volumes 1 and 2 have Tables of Contents for Section 1.
Volume 3 has a Table of Contents for Sections 2 and 3. Volume 4 has a Table of
Contents for Sections 4 through 7.

• The Table of Related Entries. For Volume 1 only. A table of entries organized
so that related entries are grouped together.

Section organization. Each section begins with an intro entry, which provides
important general information for that section.

Section 1, Commands and Application Programs, describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside
in /usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Commands that were not transported from UNIX
System V reside in /usr/local/bin; this directory is recommended for locally
implemented programs. Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are logged in as root;
otherwise use the full path name given under SYNOPSIS or change the PATH
environment variable to include the command's directory.

Section 2, System Calls, describes the entries into the CTIX kernel, including the C
language interfaces.

Section 3, Subroutines and Libraries, describes the available library functions or
subroutines. Their binary versions reside in various system libraries in the directories
/lib and /usr/lib. See intro (3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular kinds of files; for example,
the format of the output of the link editor is given in a.out{4). Excluded are files used by
only one command (for example, the assembler's intermediate files). In general, the C
language struct declarations corresponding to these formats can be found in the
directories /usr/include and /usr/include/sys.

Section 5, Miscellaneous Facilities, contains descriptions of character sets, macro
packages, and other such information.

Section 6, Games, describes the games and educational programs that reside in the
directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that actually refer to
input/output devices.

- viii -

Entry organization. All entries are based on a common format, in which some parts are
optional:

NAME The NAME part gives the name(s) of the entry and briefly states its
purpose.

SYNOPSIS The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 1
(Commands and Application Programs):

Bold Boldface strings are literals, and are to be typed just as
they appear.

DESCRIPTION

EXAMPLE(S)

FILES

SEEALSO

DIAGNOSTICS

NOTES

WARNINGS

BUGS

Regular

[]

Regular face strings usually represent substitutable
argument prototypes and program names found
elsewhere in the manual.

Square brackets around an argument prototype indicate
that the argument is optional. When an argument
prototype is given as "name" or "file," it always refers
to a file name.

Ellipses are used to show that the previous argument
prototype can be repeated.

- + = A final convention is used by the commands themselves.
An argument beginning with a minus (-) , plus (+), or
equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that
may be produced. Messages that are intended to be self-explanatory
are not listed.

The NOTES part gives information that might be helpful under the
particular circumstance described.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies.
Occasionally, the suggested fix is also described.

A table of contents is provided at the front of each of the four volumes, along with a
complete permuted index derived from the tables. On each index line, the title of the

- ix -

entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a
particular system call.

- x -

PERMUTED INDEX

This index includes entries for all pages of Volumes 1 through 4. The entries themselves
are based on the one-line descriptions or titles found in the NAME portion of each
manual page; the significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that has three columns. To
use the index, read the center column to look up specific commands by name or by
subject topics. Note that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the entry, and a slash (/)
indicates where the entry has been continued or truncated. The right column gives the
manual page where the command or subject is described.

hpio: Hewlett-Packard 2645A terminal tape file/ hpio(l)
/special functions of DASI 300 and 300s terminals 300(1)

for Interphase V/TAPE 3200 half-inch tape/ /interface ipt(7)
13tol, ltol3: convert between 3-byte integers and long/ 13tol(3C)

comparison. diff3: 3-way differential file difi3(l)
paginator for the Tektronix 4014 terminal. 4014: 4014(1)

special functions of the DASI 450 terminal. 450: handle 450(1)
long integer and base-64/ a641,164a: convert between a641(3C)

abort: generate a SIGABRT. abort(3C)
value, abs: return integer absolute abs(3C)

adb: absolute debugger adb(l)
abs: return integer absolute value abs(3C)

/floor, ceiling, remainder, absolute value functions floor(3M)
tiop: terminal accelerator interface tiop(7)

t_accept: accept a connect request t_accept(3n)
prevent LP requests, accept, reject: allow or accept(lM)

a directory for remote access, adv: advertise adv(lM)
of a file, touch: update access and modification times touch(l)

utime: set file access and modification times utime(2)
accessibility of a file, access: determine access(2)
commands, graphics: access graphical and numerical graphics(lG)

sputl, sgetl: access long integer data in a/ sputl(3X)
fusage: disk access profiler. fusage(lM)

sadp: disk access profiler sadp(lM)
ldfcn: common object file access routines ldfcn(4)

copy file systems for optimal access time, dcopy: dcopy(lM)
locking: exclusive access to regions of a file locking(2)

/setutent, endutent, utmpname: access utmp file entry getut(3C)
access: determine accessibility of a file access(2)

enable or disable process accounting, acct: acct(2)
acctcon2: connect-time accounting, acctconl, acctcon(lM)

acctprcl, acctprc2: process accounting acctprc(lM)
tumacct: shell procedures for accounting, /startup, acctsh(lM)

/accton, acctwtmp: overview of accounting and miscellaneous/ acct(lM)
accounting and miscellaneous accounting commands, /of acct(lM)

diskusg: generate disk accounting data by user ID diskusg(lM)
acct: per-process accounting file format acct(4)

- xi -

search and print process accounting file(s). acctcom: acctcom(l)
acctmerg: merge or add total accounting files acctmerg(lM)

summary from per-process accounting records, /command acctcms(lM)
wtmpfix: manipulate connect accounting records, fwtmp, fwtmp(lM)

runacct: run daily accounting ranacct(lM)
process accounting, acct: enable or disable acct(2)

file format, acct: per-process accounting acct(4)
per-process accounting/ acctcms: command summary from acctcms(lM)

process accounting file(s). acctcom: search and print acctcom(l)
connect-time accounting, acctconl, acctcon2: acctcon(lM)

acctwtmp: overview of/ acctdisk, acctdusg, accton, acct(lM)
accounting files, acctmerg: merge or add total acctmerg(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
orderly release/t_rcvrel: acknowledge receipt of an t_rcvrel(3n)

trig: sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)
killall: kill all active processes killall(lM)

sag: system activity graph sag(lG)
sar: sal, sa2, sadc: system activity report package sar(lM)

sar: system activity reporter. sar(l)
current SCCS file editing activity, sact: print sact(l)

report process data and system activity. Aime a command; timex(l)
Dialers: ACU/modem calling protocols Dialers(5)

random, hopefully interesting, adage, fortune: print a fortune(6)
adb: absolute debugger. adb(l)

acctmerg: merge or add total accounting files acctmerg(lM)
putenv: change or add value to environment putenv(3C)

/inet_netof: Internet address manipulation routines inet(3)
getservaddr: get network address of service host getservad(lM)

control, aip: address resolution display and arp(lM)
aip: Address Resolution Protocol arp(7)

endpoint. t_bind: bind an address to a transport t_bind(3n)
allow synchronization of the/ adjtime: correct the time to adjtime(2)

system, adman: administer a CTIX adman(l)
SCCS files, admin: create and administer admin(l)

network listener service administration, nlsadmin: nlsadmin(lM)
rfadmin: Remote File Sharing administration rfadmin(lM)

uadmin: administrative control uadmin(lM)
uadmin: administrative control. uadmin(2)

swap: swap administrative interface swap(lM)
remote access, adv: advertise a directory for adv(lM)

advent: explore Colossal Cave advent(6)
remote access, adv: advertise a directory for adv(lM)

fumount: forced unmount of an advertised resource fumount(lM)
alarm: set a process alarm clock alarm(2)

clock, alarm: set a process alarm alarm(2)
sendmail. aliases: aliases file for aliases(4)

aliases: aliases file for sendmail aliases(4)
the data base for the mail aliases file, /rebuild newaliases(l)

t_alloc: allocate a library structure t_alloc(3n)
change data segment space allocation, brk, sbrk: brk(2)

realloc, calloc: main memory allocator, malloc, free, malloc(3C)
mallinfo: fast main memory allocator, /calloc, mallopt, malloc(3X)

accept, reject: allow or prevent LP requests accept(lM)
adjtime: correct the time to allow synchronization of the/ adjtime(2)

process by changing/ renice: alter priority of running renice(l)
sort: sort and/or merge files sort(l)

link editor output. a.out: common assembler and a.out(4)
introduction to commands and application programs, intro: intro(l)

- xii -

maintainer for portable/ ar: archive and library ar(l)
format, ar: common archive file ar(4)

number: convert Arabic numerals to English number(6)
language, be: arbitrary-precision arithmetic . bc(l)

for portable archives, ar: archive and library maintainer ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file, /the archive ldahread(3X)
formats, convert: convert archive files to common convert(l)

an archive/ ldahread: read the archive header of a member of ldahread(3X)
2645A terminal tape file archiver. /Hewlett-Packard hpio(l)

tar: tape file archiver tar(l)
maintainer for portable archives, /archive and library ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

formatted output of a varargs argument list, /print vprintf(3S)
command, xargs: construct argument list(s) and execute xargs(l)

getopt: get option letter from argument vector. getopt(3C)
expr: evaluate arguments as an expression expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)

number facts, arithmetic: provide drill in arithmetic(6)
display and control, arp: address resolution arp(lM)

Protocol, aip: Address Resolution arp(7)
ftp: ARPANET file transfer program ftp(l)

expr: evaluate arguments as an expression expr(l)
as: common assembler. as(l)

/attach and detach serial lines as network interfaces slattach(lM)
/locate a terminal to use as the virtual system console conlocate(lM)

characters, asa: interpret ASA carriage control asa(l)
and/ /gmtime, asctime, cftime, ascftime, tzset: convert date ctime(3C)

ascii: map of ASCII character set. ascii(5)
hd: hexadecimal and ascii file dump hd(l)

set ascii: map of ASCII character ascii(S)
long integer and base-64 ASCII string, /convert between a641(3C)

strings: extract the ASCII text strings in a file strings(l)
ctime, localtime, gmtime, asctime, cftime, ascftime,/ ctime(3C)

trig: sin, cos, tan, asin, acos, a tan, atan2:/ trig(3M)
output, a.out: common assembler and link editor a.out(4)

as: common assembler. as(l)
assertion, assert: verily program asseit(3X)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
system commands, assist: assistance using CTIX assist(l)

astgen: generate/modify ASSIST menus and command/ astgen(l)
commands, assist: assistance using CTIX system assist(l)

print the list of blocks associated with an. bcheck: bcheck(lM)
/create device nodes for assorted device types createdev(lM)

menus and command forms, astgen: generate/modify ASSIST astgen(l)
a later time, at, batch: execute commands at at(l)

/sin, cos, tan, asin, acos, atan, atan2: trigonometric/ trig(3M)
cos, tan, asin, acos, atan, atan2: trigonometric/ /sin trig(3M)

description file, queuedefs: at/batch/ cron queue queuedefs(4)
double-precision/ strtod, atof: convert string to strtod(3C)

integer, slrtol, atol, atoi: convert string to strtol(3C)
integer, strtol, atol, atoi: convert string to strtol(3C)

as/ slattach, sldetach: attach and detach serial lines slattach(lM)
resources, rmnttry: attempt to mount remote rmnttry(lM)
log of failed login attempts, /usr/adm/loginlog: loginlog(4)

- xiii -

wait: await completion of process wait(l)
processing language, awk: pattern scanning and awk(l)

ungetc: push character back into input stream ungetc(3S)
back: the game of backgammon back(6)

back: the game of backgammon back(6)
fine: fast incremental backup finc(lM)

ckbupscd: check file system backup schedule ckbupscd(lM)
free: recover files from a backup tape frec(lM)

banner make posters bannerol)
new aliases: rebuild the data base for the mail aliases/ newaliases(l)

Sun rpc program number data base, rpc: fpc(4)
terminal capability data base, term cap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

between long integer and base-64 ASCII string, /convert a641(3C)
(visual) display editor based on ex. /screen-oriented vi(l)

from proto file; set links based on. /out file lists qlist(l)
portions of path names, basename, dirname: deliver basename(l)

later time, at, batch: execute commands at a at(l)
arithmetic language, be: arbitrary-precision bc(l)

blocks associated with an. bcheck: print the list of bcheck(lM)
system initialization/ brc, bcheckrc, drvload, powerfail: brc(lM)
string operations, bcopy, bemp, bzero: bit and byte bstring(3)

byte string operations, bcopy, banp, bzero: bit and bstring(3)
boopy: interactive block copy bcopy(lM)
bdiff: big diff. bdi£f(l)

cb: Cprogram beautifier. cb(l)
about the operating system for beginning users, / i n f o r m a t i o n starter^l)

jO, j l , jn ,yO,y l ,yn : Bessel functions. bessel: bessel(3M)
yn: Bessel functions, bessel: jO, j l , jn , yO, yl , bessel(3M)

bfs: big file scanner bfs(l)
cpset: install object files in binary directories cpset(lM)

fread, fwrite: binary input/output. fread(3S)
bsearch: binary search a sorted table bsearch(3C)

tfind, tdelete, twalk: manage binary search trees, tsearch, tsearch(3C)
bind: land a name to a socket bind(2)

endpoint. t_bind: bind an address to a transport t_bind(3n)
bind: bind a name to a socket bind(2)

nfsd, biod: NFS daemons nfsd(lM)
bcopy, bemp, bzero: bit and byte string/ bstring(3)

bj: the game of black jack bj(6)
bj: the game of black jack bj(6)

bcopy: interactive block copy bcopy(lM)
sum: print checksum and block count of a file sum(l)

sync: update the super block sync(lM)
sync: update super block sync(2)

df: report number of free disk (docks and i-nodes df(lM)
bcheck: print the list of Mocks associated with an bcheck(lM)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
powerfail: system/ brc, bcheckrc, drvload, brc(lM)

space allocation, brk, sbric: change data segment brk(2)
modest-sized programs, bs: a compiler/interpreter for bs(l)

sorted table, bsearch: binary search a bsearch(3C)
stdio: standard buffered input/output package stdio(3S)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
mknod: build special file mknod(lM)

vme: VME bus interface vme(7)
between host and network byte order, /convert values byteorder(3)

bcopy, bemp, bzero: bit and byte string operations bstring(3)

- xiv -

size: print section sizes in bytes of common object files size(l)
swab: swap bytes swab(3C)

operations, bcopy, bcmp, bzero: bit and byte string bstring(3)
cc: C compiler. cc(l)

cflow: generate C flowgraph cflow(l)
cpp: the C language preprocessor. cpp(l)

include/ includes: determine C language preprocessor includes(l)
cb: C program beautifier. cb(l)

lint: a C program checker. lint(l)
cxref: generate C program cross-reference cxref(l)

ctrace: C program debugger ctrace(l)
extract and share strings in C programs, xstr: xstr(l)
time, cprofile: setting up a C shell environment at login cprofile(4)

object file, list: produce C source listing from a common list(l)
cal: print calendar. cal(l)

dc: desk calculator dc(l)
cal: print calendar cal(l)

calendar: reminder service. calendar(l)
cu: call another UNIX system cu(lC)

data returned by stat system call, stat: stat(S)
Dialers: ACU/modem calling protocols Dialers(5)

malloc, free, realloc, calloc: main memory allocator malloc(3C)
fast/ malloc, free, realloc, calloc, mallopt, mallinfo: malloc(3X)

intro: introduction to system calls and error numbers intro(2)
common shared NFS system calls, nfssys: nfssys(2)

request, rumount: cancel queued remote resource rumount(lM)
to an LP line printer, lp, cancel: send/cancel requests lp(l)

termcap: terminal capability data base termcap(4)
temiinfo: terminal capability data base terminfo(4)

description into a terminfo/ captoinfo: convert a termcap captoinfo(lM)
asa: interpret ASA carriage control characters asa(l)

text editor (variant of ex for casual users), edit: edit(l)
\ files, cat: concatenate and print cat(l)

advent: explore Colossal Cave advent(6)
cb: C program beauti fier. cb(l)
cc: C compiler. cc(l)

cc2sw, cc2fp: front-end to the cc command, cclsw cclsw(l)
create a front-end to the cc command, gencc: gencc(lM)

to the cc command, cclsw, cc2sw, cc2fp: front-end cclsw(l)
command, cclsw, cc2sw, cc2fp: front-end to the cc cclsw(l)

cc command, cclsw, cc2sw, cc2fp: front-end to the cclsw(l)
cd: change working directory cd(l)

commentary of an SCCS delta, cdc: change the delta cdc(l)
/ceil, fmod, fabs: floor, ceiling, remainder, absolute/ floor(3M)

cflow: generate C flowgraph cflow(l)
/localtime, gmtime, asctime, cftime, ascftime, tzset:/ ctime(3C)

strings, cftime: language specific cftime(4)
delta: make a delta (change) to an SCCS file delta(l)

priority of running process by changing nice, renice: alter renice(l)
pipe: create an interprocess channel pipe(2)

terminal's local RS-232 channels, tp: controlling tp(7)
stream, ungetc: push character back into input ungetc(3S)

conversion/ chrtM: generate character classification and chrtbl(lM)
and neqn. eqnchar: special character definitions for eqn eqnchar(5)

toupper, setchrclass: character handling. /_tolower, ctype(3C)
user, cuserid: get character login name of the cuserid(3S)

/getchar, fgetc, getw: get character or word from aJ getc(3S)
/putchar, fputc, putw: put character or word on a stream putc(3S)

- XV -

ascii: map of ASCII character set ascii(5)
fgrep: search a file for a character string fgrep(l)

interpret ASA carriage control characters, asa: asa(l)
_tolower, toascii: translate characters. /_toupper, conv(3C)

tr: translate characters tr(l)
lastlogin, monacct, nulladm,/ chargefee, ckpacct, dodisk acctsh(lM)

directory, chdir: change working chdir(2)
fsck, dfsck: check and repair file systems fsck(lM)

schedule, ckbupscd: check file system backup ckbupscd(lM)
permissions file, uucheck: check the uucp directories and uucheck(lM)

constant-width text for /cw, checkcw: prepare cw(l)
text for nroff or/ eqn, neqn, checkeq: format mathematical eqn(l)

lint: a C program checker lint(l)
grpck: password/group file checkers, pwck, pwck(lM)

systems processed by fsck and/ checklist: list of file checklist(4)
formatted with the MM/ mm, checkmm: print/check documents mm(l)

file, sum: print checksum and block count of a sum(l)
chown, chgrp: change owner or group chown(l)

times: get process and child process times times(2)
terminate, wait: wait for child process to stop or wait(2)

libraries tool, chkshlib: compare shared chkshlib(l)
chmod: change mode chmod(l)
chmod: change mode of file chmod(2)

of a file, chown: change owner and group chown(2)
group, chown, chgip: change owner or chown(l)

chroot: change root directory chroot(2)
for a command, chroot: change root directory chroot(lM)

classification and conversion/ chrtbl: generate character chrtbl(lM)
backup schedule, ckbupscd: check file system ckbupscd(lM)

monacct, nulladm,/ chargefee, ckpacct, dodisk, lastlogin, acctsh(lM)
chrtbl: generate character classification and conversion/ chrtbl(lM)

strclean: STREAMS error logger cleanup program strclean(lM)
uucp spool directory clean-up. uucleanup: uucleanup(lM)

clear, clear terminal screen clear(l)
clri: clear i-node clri(lM)

clear: clear terminal screen clear^l)
status/ ferror, feof, clearerr, fileno: stream ferror(3S)

the listener, nlsgetcall: get client's data passed through nlsgetcall(3n)
(command interpreter) with C-like syntax, csh: a shell csh(l)

synchronization of the system clock, /the time to allow adjtime(2)
alarm: set a process alarm clock alarm(2)

cron: clock daemon cron(lM)
clock: report CPU time used clock(3C)

on a STREAMS driver, clone: open any minor device clone(7)
ldclose, ldaclose: close a common object file ldclose(3X)

close: close a file descriptor. close(2)
t_close: close a transport endpoint t_close(3n)

fclose, Slush: close or flush a stream fclose(3S)
telldir, seekdir, rewinddir, closedir: directory/ /readdir, directory(3X)

clri: clear i-node clri(lM)
cmp: compare two files cmp(l)

dis: object code disassembler. dis(l)
line-feeds, col: filter reverse col(l)

advent: explore Colossal Cave. advent(6)
comb: combine SCCS deltas comb(l)

common to two sorted files, comm: select or reject lines comm(l)
nice: run a command at low priority nice(l)

cc2fp: front-end to the cc command, cclsw, cc2sw, cclsw(l)

- xvi -

change root directory for a command, chroot: chroot(lM)
examples, usage: retrieve a command description and usage usage(l)

env: set environment for command execution env(l)
rcmd: remote shell command execution rcmd(l)

uux: UNIX-to-UNIX system command execution uux(lC)
/ASSISTmenus and command forms astgen(l)

create a front-end to the cc command, gencc: gencc(lM)
quits, nohup: run a command immune to hangups and nohup(l)

C-like syntax, csh: a shell (command interpreter) with csh(l)
getopt: parse command options getopt(l)

get opts, getoptcvt: parse command options getopts(l)
locate executable file for command, path: path(l)

/shell, the standard/restricted command programming language sh(l)
returning a stream to a remote command, /routines for rcmd(3)

and system/ timex: time a command; report process data timex(l)
uuxqt: execute remote command requests uuxqt(lM)

return stream to a remote command, rexec: rexec(3)
per-process/ acct cms: command summary from acctcms(lM)

system: issue a shell command. system(3S)
used by the /etc/tapeset command.. /information tapedrives(4)

test: condition evaluation command test(l)
time: time a command. time(l)

locate: identify a CTIX system oommand using keywords locate(l)
argument list(s) and execute command, xargs: construct xargs(l)

and miscellaneous accounting commands, /of accounting acct(lM)
intro: introduction to commands and application/ intro(l)

assistance using CTIX system commands, assist: assist(l)
at, batch: execute commands at a later time at(l)

access graphical and numerical commands, graphics: graphics(lG)
install: install commands install(lM)

mkhosts: make node name commands mkhosts(lM)
multi-user/ rc2, rc3: ran commands performed for rc2(lM)

operating system. rcO: run commands performed to stop the rcO(lM)
network useful with graphical commands, stat: statistical stat(lG)

streamio: STREAMS ioctl commands streamio(7)
manipulate the object file comment section, mcs: mcs(l)

cdc: change the delta commentary of an SCCS delta cdc(l)
ar: common archive file format ar(4)

editor output, a.out: common assembler and link a.out(4)
as: common assembler. as(l)

glossary: definitions of common CTIX system terms and/ glossary(l)
convert archive files to common formats, convert: convert(l)

routines, ldfcn: common object file access ldfcn(4)
conv. common object file converter conv(l)

cprs: compress a common object file cprs(l)
ldopen, ldaopen: open a common object file for/ ldopen(3X)
/line number entries of a common object file function ldlread(3X)
ldclose, ldaclose: close a common object file ldclose(3X)

read the file header of a common object file, ldfhread: ldfhread(3X)
entries of a section of a common object file, /number ldlseek(3X)

the optional file header of a common object file, /seek to ldohseek(3X)
/entries of a section of a common object file ldrseek(3X)

/section header of a common object file ldshread(3X)
an indexed/named section of a common object file, /seek to ldsseek(3X)

of a symbol table entry of a common object file, /the index ldtbindex(3X)
symbol table entry of a common object file, /indexed ldtbread(3X)

seek to the symbol table of a common object file, ldtbseek: ldtbseek(3X)
line number entries in a common object file, linenum: linenum(4)

- xvii -

C source listing from a common object file, ^produce list(l)
ran: print name list of common object file nm(l)

relocation information for a common object file, reloc: reloc(4)
scnhdr: section header for a common object file scnhdr(4)

line number information from a common object file, /and strip(l)
/retrieve symbol name for common object file symbol/ ldgetname(3X)

table format, syms: common object file symbol syms(4)
filehdr: file header for common object files filehdr(4)

Id: link editor for common object files ld(l)
section sizes in bytes of common object files, /print size(l)

calls, nfssys: common shared NFS system nfssys(2)
comm: select or reject lines common to two sorted files comm(l)

ipcs: report inter-process communication facilities/ ipcs(l)
/ftok: standard interprocess communication package stdipc(3C)

talkd: remote user communication server. talkd(lM)
socket: create an endpoint for communication socket(2)

/configuration file for uucp communications lines Devices(5)
diff: differential file comparator. diff(l)

descriptions, infocmp: compare or print out terminfo infocmp(lM)
chkshlib: compare shared libraries tool chkshlib(l)

cmp: compare two files cmp{l)
SCCS file, sccsdiff: compare two versions of an sccsdiff(l)

dif!3: 3-way differential file comparison difB(l)
dircmp: directory comparison dircmp(l)

expression, icgcmp, regex: compile and execute regular regcmp(3X)
regexp: regular expression compile and match routines regexp(5)

regcmp: regular expression compile regcmp(l)
term: format of compiled term file term(4)

cc: C compiler cc(l)
tic: terminfo compiler tic(lM)

yacc: yet another compiler-compiler. yacc(l)
modest-sized programs, bs: a compiler/interpreter for bs(l)

erf, erfc: error function and complementary error function erf(3M)
wait: await completion of process wait(l)

cprs: compress a common object file cprs(l)
pack, peat, unpack: compress and expand files pack(l)

table entry of a/ ldtbindex: compute the index of a symbol ldtbindex(3X)
cat: concatenate and print files cat(l)

test: condition evaluation command test(l)
system, config: configure a CTIX config(lM)

NFS file systems export configuration file, exports: expoits(4)
(internet/ inetd.conf: configuration file for inetd inetd.conf(4)

communications/ Devices: configuration file for uucp Devices(5)
gateways: routed configuration file gateways(4)

netcf: Network Configuration File netcf(4)
resolv.conf: resolver configuration file resolver(4)

STREAMS linker, load socket configuration, /ldsocket: slink(l)
rtab: Remote I/O Processor configuration table rtab(4)

config: configure a CTIX system config(lM)
enpstart: configure Ethernet processor enpstart(lM)

parameters, if con fig: configure network interface ifconfig(lM)
I/O Processor, riopefg: configure system for Remote riopcfg(lM)

system. Ipadmin: configure the LP spooling lpadmin(lM)
system, uconf: configure the operating uconf(lM)

t_rcvconnect: receive the confirmation from a connect/ t_rcvconnect(3)
to use as the virtual system/ conlocate: locate a terminal conlocate(lM)

fwtmp, wtmpfix: manipulate connect accounting records fwtmp(lM)
on a socket, connect: initiate a connection connect(2)

- xviii -

t_accept: accept a connect request l_accept(3n)
t_listen: listen for a connect request. t_listen(3n)

the confirmation from a connect request, /receive t_rcvconnect(3)
getpeemame: get name of connected peer. getpeemame(2)
an out-going terminal line connection, dial: establish dial(3C)

connect: initiate a connection on a socket connect(2)
down part of a full-duplex connection, shutdown: shut shutdown(2)

or expedited data sent over a connection, /receive data t_rcv(3n)
data or expedited data over a connection. t_snd: send t_snd(3n)

t_connect: establish a connection with another/ t_connect(3n)
listen: listen for connections on a socket. listen(2)

acctconl, acctcon2: connect-time accounting acctcon(lM)
to use as the virtual system console, /locate a terminal conlocate(lM)
the kernel debugger system oonsole port, /change dbconsole(lM)

console: console terminal console(7)
for implementation-speci fic constants, /file header limits(4)

math: math functions and constants math(5)
file header for symbolic constants, unistd: unistd(4)

cw, checkcw: prepare constant-width text for troff. cw(l)
mkfs: construct a file system mkfs(lM)

execute command, xargs: construct argument list(s) and xargs(l)
nrofl/troff, tbl, and eqn constructs, deroff: remove deroff(l)

debugging on. Uutry: try to contact a remote system with Uutry(lM)
Is: list contents of directory ls(l)

ttoc, vtoc: graphical table of contents routines, toe: dtoc, toc(lG)
csplit: context split. csplit(l)

address resolution display and control, arp: arp(lM)
asa: interpret ASA carriage control characters asa(l)

ioctl: control device ioctl(2)
scsi: scsi control device scsi(7)

Serial Line Internet Protocol control facility, /switched slipd(lM)
fcntl: file control fcntl(2)

floating pan t environment control, /fpsetsticky: IEEE fpgetround(3)
in it, telinit: process control initialization init(lM)

icmp: Internet Control Message Protocol icmp(7)
msgctl: message control operations msgctl(2)

semctl: semaphore control operations semctl(2)
shmctl: shared memory control operations shmctl(2)

fcntl: file control options fcntl(5)
tcp: Internet Transmission Control Protocol tcp(7)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

uucp status inquiry and job control, uustat: uustat(lC)
vc: version control vc(l)

V/TAPE 3200 half-inch tape controller, /for Interphase ipt(7)
set drive parameters for tape controllers, tapeset: tapeset(lM)

interface, tty: controlling terminal tty(7)
RS-232 channels, tp: controlling terminal's local tp(7)

converter, conv: common object file conv(l)
_toupper, tolower, toascii:/ conv: toupper, tolower, conv(3C)

terminals, term: conventional names for term(S)
units: conversion program units(l)

character classification and conversion tables, /generate chrtbl(lM)
into a teiminfo/captoinfo: convert a termcap description captoinfo(lM)

dd: convert and copy a file dd(lM)
English, number: convert Arabic numerals to number(6)

common formats, convert: convert archive files to convett(l)
integers and/ 13tol, ltol3: convert between 3-byte 13tol(3C)

- xix -

and base-64 ASCII/ a641,164a: convert between long integer a641(3C)
to common formats, convert: convert archive files convert(l)

/cftitne, ascftime, tzset: convert date and time to/ ctime(3C)
to string, ecvt, fcvt, gcvt: convert floating-point number ecvt(3C)

scanf, fscanf, sscanf: convert formatted input scanf(3S)
stitod, atof: convert string to/ stitod(3C)

strtol, atol, atoi: convert string to integer strtol(3C)
htonl, htons, ntohl, ntohs: convert values between host/ byteorder(3)
conv: common object file converter. conv(l)

timod: Transport Interface cooperating STREAMS module timod(7)
dd: convert and copy a file dd(lM)

boopy: interactive block copy bcopy(lM)
cpio: copy file archives in and out cpio(l)

access time, dcopy: copy file systems for optimal dcopy(lM)
cp, In, mv: copy, link, or move files cp(l)

vol copy: make literal copy of file system volcopy(lM)
rep: remote file copy rcp(l)

uuname: UNIX-to-UNIX system copy, uucp, uulog uucp(lC)
UNIX-to-UNIX system file copy, uuto, uupick: public uuto(lC)

core: format of core image file core(4)
synchronization of/ adjtime: correct the time to allow adjtime(2)

atan2:/ trig: sin, cos, tan, asin, acos, a tan trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)

sum: print checksum and block count of a file sum(l)
wc: word count wc(l)

movefiles, cp. In, mv: copy, link, or cp(l)
cpio: format of cpio archive cpio(4)

and out. cpio: copy file archives in cpio(l)
preprocessor, epp: the C language cppO)

environment at login time, cprofile: setting up a C shell cprofile(4)
file, cprs: compress a common object cprs(l)

binary directories, cpset: install object files in cpset(lM)
clock: report CPU time used clock(3C)

craps: the game of craps craps(6)
crash: examine system images crash(lM)

rewrite an existing one. creat: create a new file or creat(2)
command, gencc: create a front-end to the cc gencc(lM)

file, tmpnam, tempnam: create a name for a temporary tmpnam(3S)
an existing one. creat: create a new file or rewrite creat(2)

fork: create a new process fork(2)
mkshlib: create a shared library mkshlib(l)

ctags: create a tags file ctags(l)
tmpfile: create a temporary file tmpfile(3S)

communication, socket: create an endpoint for socket(2)
channel, pipe: create an interprocess pipe(2)

files, admin: create and administer SCCS admin(l)
assorted device/ createdev: create device nodes for createdev(lM)

umask: set and get file creation mask umask(2)
cron: clock daemon cron(lM)

crontab: user cron tab file crontab(l)
cxref: generate C program cross-reference. cxref(l)

pg: file perusal filter for CRTs Pg(l)
crypt: encode/decode crypt(l)

encryption functions, crypt: password and file crypt(3X)
generate hashing encryption, crypt, setkey, encrypt: crypt(3Q

interpreter) with C-like/ csh: a shell (command csh(l)
csplit: context split csplit(l)

terminal, ct: spawn getty to a remote ct(lC)

- xx -

ctags: create a tags file ctags(l)
for terminal, cteimid: generate file name ctermid(3S)

asctime, cftime, ascftime,/ ctime, local time, gmtime, ctime(3C)
ctinstall: install software ctinstall(l)

adman: administer a CTIX system adman(l)
con fig: configure a CTIX system config(lM)

uname: get name of current CTIX system uname(2)
/definitions of common CTIX system terms and/ glossary(l)

ctrace: C program debugger. ctrace(l)
cu: call another UNIX system cu(lC)

ttt, cubic: tic-tac-toe ttt(6)
uname: get name of current CTIX system uname(2)

endpoint. t_look: look at the current event on a transport t_look(3n)
get/set unique identifier of current host, /sethostid: gethostid(2)

sethostname: get/set name of current host, gethostname, gethostname(2)
set or print identifier of current host system, hostid: hostid(l)

uname: print name of current CTIX system uname(l)
activity, sact: print current SCCS file editing sact(l)

t_getstate: get the current state t_getstate(3)
the Internet host name of the current system./set or print hostname(l)

slot in the utmp file of the current user, /find the ttyslot(3C)
getcwd: get path-name of current working directory getcwd(3C)

scr_dump: format of curses screen image file scr_dump(4)
handling and optimization/ curses: terminal screen curses(3X)

spline: interpolate smooth curve spline(lG)
name of the user, cuserid: get character login cuserid(3S)

each line of a file, cut: cut out selected fields of cut(l)
constant-width text for/ cw, checkcw: prepare cw(l)

cross-reference, cxref: generate Cprogram cxref(l)
cron: clock daemon cron(lM)

rfudaemon: Remote File Sharing daemon process rfudaemon(lM)
routed: network routing daemon routed(lM)

strerr: STREAMS error logger daemon strerr(lM)
nfsd, biod: NFS daemons nfsd(lM)

runacct: run daily accounting ranacct(lM)
Protocol server, fqpd: DARPA Internet File Transfer ftpd(lM)

number mapper, portmap: DARPA port to RPC program portmap(lM)
telnetd: DARPA TELNET protocol server. telnetd(lM)

tftp: user interface to the DARPA TFTP protocol tftp(l)
Protocol server, tftpd: DARPA Trivial FUe Transfer tftpd(lM)

/handle special functions of DASI 300 and 300s terminals 300(1)
special functions of the DASI 450 terminal, /handle 450(1)

/time a command; report process data and system activity timex(l)
file, newaliases: rebuild the data base for the mail aliases newaliases(l)

rpc: Sun rpc program number data base rpc(4)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

generate disk accounting data by user ID. diskusg: diskusg(lM)
t_rcvuderr: receive a unit data error indication t_rcvuderr(3)

/sgetl: access long integer data in a machine-independent/ sputl(3X)
plock: lock process, text, or data in memory plock(2)

connection. t_snd: send data or expedited data over a t_snd(3n)
over a/ t_rcv: receive data or expedited data sent t_rcv(3n)

nlsgetcall: get client's data passed through the/ nlsgetcall(3n)
prof: display profile data prof(l)

call, stat: data returned by stat system stat(5)
I/O Processor for online data, riopqry: query Remote riopqry(lM)

brk, sbrk: change data segment space allocation brk(2)

- xxi -

/receive data or expedited data sent over a connection t_rcv(3n)
types: primitive system data types types(5)

t_rcvudata: receive a data unit. t_rcvudata(3)
t_sndudata: send a data unit t_sndudata(3)

changes to the Help Facility database, helpadm: make helpadm(lM)
join: relational database operator. join(l)

using the mkfs(l) proto file database. /and verify software qinstall(l)
delete, firstkey, nextkey: database subroutines, /store dbm(3X)

/dbm_error, dbm_clearerr: database subroutines ndbm(3X)
a terminal or query terminfo database, tput: initialize tput(l)

udp: Internet User Datagram Protocol udp(7)
settimeofday: get/set date and time, gettimeofday gettimeofday(2)

/ascftime, tzset: convert date and time to string ctime(3C)
date: print and set the date date(l)

date: print and set the date date(l)
debugger system console port, dbconsole: change the kernel dbconsole(lM)

/dbm_nextkey, dbm_error, dbm_clearerr: daubase/ ndbm(3X)
dbm_storey dbm_open, dbm_close, dbm_fetch, ndbm(3X)
/dbm_fetch, dhm_store, dbm_delete, dbm_firstkey,/ ndbm(3X)

/dbm_firstkey, dbm_nextkey, dbm_error, dbm_clearerr:/ ndbm(3X)
dbm_open, dbm_close, dbm_fetch, dbm_store,/ ndbm(3X)

/dbm_store, dbm_delete, dbm_ firstkey, dbm_nextkey,/ ndbm(3X)
firstkey, nextkey: daubase/ dbminit, fetch, store, delete dbm(3X)
/dbm_delete, dbm_firstkey, dbm_nextkey, dbm_error,/ ndbm(3X)

dbm_fetch, dbm_store,/ dbm_open, dbm_close, ndbm(3X)
/dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3X)

dc: desk calculator. dc(l)
optimal access time, dcopy: copy file systems for dcopy(lM)

dd: convert and copy a file dd(lM)
adb: absolute debugger. adb(l)

ctrace: C program debugger. ctrace(l)
fsdb: file system debugger. fsdb(lM)

load symbols in kernel debugger, mkdbsym: mkdbsym(lM)
sdb: symbolic debugger. sdb(l)

dbconsole: change the kernel debugger system console port dbconsole(lM)
contact a remote system with debugging on. Uutry: try to Uutry(lM)

timezone: set default system time zone timezone(4)
sysdef: output system definition sysdef(lM)

eqnchar: special character definitions for eqn and neqn eqnchar(5)
system terms and/ glossary: definitions of common CI IX glossary(l)

dbminit, fetch, store, delete, firstkey, nextkey:/ dbm(3X)
names, basename, dimame: deliver portions of path basename(l)

file, tail: deliver the last part of a tail(l)
delta commentary of an SCCS delta, cdc: change the cdc(l)

file, delta: make a delta (change) to an SCCS delta(l)
delta, cdc: change the delta commentary of an SCCS cdc(l)

rmdel: remove a delta from an SCCS file rmdel(l)
to an SCCS file, delta: make a delta (change) delta(l)

comb: combine SCCS deltas comb(l)
errdemon: error-logging demon errdemon(lM)

terminate the error-logging demon, errstop: errstop(lM)
mesg: permit or deny messages mesg(l)

tbl, and eqn constructs, deroff: remove nrofl/troff, deroff(l)
usage: retrieve a command description and usage/ usage(l)
description into a terminfo description, /a termcap captoinfo(lM)

queuedefs: at/batch/cron queue description file queuedefs(4)
system: system description file system(4)

captoinfo: convert a termcap description into a terminfo/ captoinfo(lM)

- xxii -

compare or print out term info
close: close a file

dup: duplicate an open file
dup2: duplicate an open file

getdtablesize: get
dc:

slattach, sldetach: attach and
file, access:

preprocessor/ includes:
identifier, fstyp:

file:
drivers: loadable

lines for finite width output
master, master

ioctl: control
devnm:

device/ createdev: create
clone: open any minor

Aekset, td: graphical
scsi: scsi control

device nodes for assorted
for uucp communications/

scsimap: set mappings for SCSI

blocks and i-nodes.
systems, fsck,

terminal line connection,
ratfor: rational FORTRAN

protocols,
bdiff: big

comparison,
sdiff: side-by-side

diflmk: mark
diff:

difB: 3-way

file, uucheck: check the uucp
install object files in binary

dir: format of
link and unlink files and

mkdir, mkdirs: make
rm, rmdir: remove files or

cd: change working
chdir: change working

chroot: change root
uucleanup: uucp spool

dircmp:
file, getdents: read

file system independent
unlink: remove

chroot: change root
/make a lost+found

adv: advertise a
path-name of current working

Is: list contents of
mkdir: make a
mvdir move a

descriptions, infocmp: infocmp(lM)
descriptor. close(2)
descriptor. dup(2)
descriptor dup2(3C)
descriptor table size getdtablesize(2)
desk calculator. dc(l)
detach serial lines as network/ slattach(lM)
determine accessibility of a access(2)
determine C language includes(l)
determine file system fstyp(lM)
determine file type file(l)
device drivers drivers(7)
device, fold: fold long fold(l)
device information table master<4)
device. ioctl(2)
device name devnm(lM)
device nodes for assorted createdev(lM)
device on a STREAMS driver clone(7)
device routines and filters gdev(lG)
device. scsi(7)
device types, /create createdev(lM)
Devices: configuration file Devices(5)
devices scsimap(lM)
devnm: device name devnm(lM)
df: report number of free disk df(lM)
dfsck: check and repair file fsck(lM)
dial: establish an out-going dial(3C)
dialect. ratfor(l)
Dialers: ACU/modem calling Dialers(5)
diff. bdiff(l)
difD: 3-way differential file difB(l)
difference program sdiff(l)
differences between files diffmk(l)
differential file comparator. diff(l)
differential file comparison diff3(l)
dir: format of directories dir(4)
dircmp: directory comparison dircmp(l)
directories and permissions uucheck(lM)
directories, cpset: cpset(lM)
directories dir(4)
directories, link, unlink: link(lM)
directories. mkdir(l)
directories rm(l)
directory cd(l)
directory chdir(2)
directory chrool(2)
directory clean-up uucleanup(lM)
directory comparison dircmp(l)
directory entries and put in a getdents(2)
directory entry, dirent: dirent(4)
directory entry unlink(2)
directory for a command chroot(lM)
directory for fsck mklostfnd(lM)
directory for remote access adv(lM)
directory, getcwd: get getcwd(3C)
directory ls(l)
directory mkdir(2)
directory mvdir(lM)

- xxiii -

pwd: working directory name pwd(l)
/seekdir, rewinddir, closedir: directory operations directory(3X)
ordinary file, mknod: make a directory, or a special or mknod(2)

rmdir: remove a directory imdir(2)
independent directory entry, dirent: file system dirent(4)

pathnames, basename, dimame: deliver portions of basename(l)
dis: object code disassembler dis(l)

t_unbind: disable a transport endpoint t_unbind(3n)
printers, enable, disable: enable/disable LP enable(l)

acct: enable or disable process accounting acct(2)
dis: object code disassembler. dis(l)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)
t_snddis: send user-initiated disconnect request. t_snddis(3n)

retrieve information from disconnect t_rcvdis: t_rcvdis(3n)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler sadp(lM)
ID. diskusg: generate disk accounting data by user diskusg(lM)

df: report number of free disk blocks and i-nodes df(lM)
disk: general disk driver disk(7)

update: provide disk synchronization update(lM)
du: summarize disk usage du(lM)

accounting data by user ID. diskusg: generate disk diskusg(lM)
arp: address resolution display and control arp(lM)

vi: screen-oriented (visual) display editor based on ex vi(l)
information, rmntstat: display mounted resource rmntstat(lM)

prof: display profile data prof(l)
statistics, serstat: display serial port error serstat(lM)

local network, ruptime: display status of nodes on ruptime(l)
hypot: Euclidean distance function hypot(3M)

/lcong48: generate uniformly distributed pseudo-random/ drand48(3C)
Sharing domain and network/ dname: print Remote File dname(lM)

routines, / ressend, resinit , dncomp, dn_expand: resolver resolver(3)
/res_send, res init, dn comp, dn_expand: resolver routines resolver(3)

MM/ mm, checkmm: print/check documents formatted with the mm(l)
macro package for formatting documents, mm: the MM mm(5)

slides, mmt, mvt: typeset documents, view graphs, and mmt(l)
nulladm,/ chargefee, ckpacct, dodisk, lastlogin, monacct, acctsh(lM)

whodo: who is doing what whodo(lM)
/print Remote File Sharing domain and network names dname(lM)

named: Internet domain name server. named(lM)
/atof: convert string to double-precision number strtod(3C)

gtdl, ptdl: RS-232 terminal download, tdl tdl(l)
nrand48, mrand48, jrand48y drand48, erand48, lrand48 drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts arithmetic(6)

controllers, tapeset: set drive parameters for tape tapeset(lM)
used by the/ tapedrives: tape drive specific information tapedrives(4)

facilitate usage of a tape drive, tsioctl: tsioctl(l)
any minor device on a STREAMS driver, clone: open clone(7)

disk: general disk driver. disk(7)
lddrv: manage loadable drivers lddrv(lM)

drivers, drivers: loadable device drivers(7)
initialization/ brc, bcheckrc, drvload, powerfail: system brc(lM)

table of contents/toe: dtoc, ttoc, vtoc: graphical toc(lG)
du: summarize disk usage du(lM)

and status information from dump, /extract error records errdead(lM)
hd: hexadecimal and ascii file dump hd(l)

- xxiv -

od: octal dump od(l)
object file, dump: dump selected parts of an dump(l)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

echo: echo arguments echo(l)
network/ ping: send ICMP ECHO_REQUESTpackets to ping(lM)

floating-point number to/ ecvt, fcvt, gcvt: convert ecvt(3C)
ed, red: text editor. ed(l)

program, end, etext, edata: last locations in end(3C)
ex for casual users), edit: text editor (variant of edit(l)

sact: print current SCCS file editing activity sact(l)
/(visual) display editor based on ex vi(l)

ed, red: text editor. ed(l)
ex: text editor. ex(l)

files. Id: link editor for common object ld(l)
ged: graphical editor. ged(lG)

common assembler and link editor output, a.out: a.out(4)
sed: stream editor. sed(l)

casual users), edit: text editor (variant of ex for edit(l)
ldeeprom: load EEPROM ldeeprom(lM)

/user, real group, and effective group IDs getuid(2)
and/ /getegid: get real user, effective user, real group, getuid(2)

language, efl: extended FORTRAN efl(l)
split FORTRAN, ratfor, or efl files, fsplit: fsplit(l)
pattern using full regular/ egrep: search a file for a egrep(l)

en: Ethernet Processor en(7)
enable/disable LP printers, enable, disable: enable(l)

accounting, acct: enable or disable process acct(2)
real-time priorities enabled/disabled, rtpenable: rtpenable(lM)

enable, disable: enable/disable LP printers enable(l)
crypt: encode/decode. crypt(l)

encrypt: generate hashing encryption, crypt, setkey, crypt(3C)
crypt: password and file encryption functions crypt(3X)

makekey: generate encryption key makekey(l)
locations in program, end, etext, edata: last end(3C)

/getgrgid, getgmam, setgrent, endgrent, fgetgrent: get group/ getgrent(3C)
/gethostent, sethostent, endhostent: get network host/ gethostbyname(3)

/getnetbyname, setnetent, endnetent: get network entry getnetent(3)
socket: create an endpoint for communication socket(2)

bind an address to a transport endpoint. t_bind: t_bind(3n)
t_close: close a transport endpoint t_close(3n)

current event on a transport endpoint t_look: look at the t_look(3n)
t_open: establish a transport endpoint t_open(3n)

manage options for a transport endpoint t_optmgmt: t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

/getprotobyname, setprotoent, endprotoent: get protocol/ getprotoent(3)
/getpwuid, getpwnam, setpwent, endpwent, fgetpwent: get/ getpwent(3C)

/getservbyname, setservent, endservent: get service entry getservent(3)
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf,/ getspent(3X)

utmp/ /pututline, setutent, endutent, utmpname: access getut(3C)
convert Arabic numerals to English, number number(6)

processor, enpstart: configure Ethernet enpstart(lM)
get dents: read directory entries and put in a file getdents(2)

nlist: get entries from name list nlist(3C)
file, linenum: line number entries in a common object linenum(4)

file/ /manipulate line number entries of a common object ldlread(3X)

- xxv -

/ldnlseek: seek to line number entries of a section of a/ ldlseek(3X)
/ldnrseek: seek to relocation entries of a section of a/ ldrseek(3X)

system independent directory entry, dirent: file dirent(4)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

fgetgrenl: get group file entry, /setgrent, emigrant getgrent(3C)
endhostent: get network host entry, /sethostent gethostbyname(3)

endnetent: get network entry, /setnetent, getnetent(3)
endprotoent: get protocol entry, /setprotoent, getprotoent(3)

fgetpwent: get password file entry, /setpwent, endpwent, getpwent(3C)
getrpcbynumber: get rpc entry, /getrpcbyname getrpcent(3)

endservent: get service entry, /setservent, getservent(3)
utmpname: access utmp file entry, /setutent, endutent, getut(3C)

object file symbol table entry, /symbol name for common ldgetname(3X)
/the index of a symbol table entry of a common object file ldtbindex(3X)

/read an indexed symbol table entry of a common object file ldtbread(3X)
putpwent: write password file entry putpwent(3C)

write shadow password file entry, putspenl: putspent(3X)
unlink: remove directory entry unlink(2)

command execution, env: set environment for env(l)
environ: user environment. environ(5)

cprofile: setting up a C shell environment at login time cprofile(4)
profile: setting up an environment at login time profile(4)
/IEEE floating pan t environment control fpgetround(3)

environ: user environment environ(5)
execution, env: set environment for command env(l)

getenv: return value for environment name getenv(3C)
putenv: change or add value to environment putenv(3C)

performed for multi-user environment /run commands rc2(lM)
stop the Remote File Sharing environment rfstop: rfstop(lM)

interface, and terminal environment, /terminal tset(l)
character definitions for eqn and neqn. /special eqnchar(5)

remove nroB/troff, tbl, and eqn constructs, deroff: deroff(l)
mathematical text for nrofl/ eqn, neqn, checkeq: format eqn(l)

definitions for eqn and neqn. eqnchar: special character eqnchar(5)
rhosts: remote equivalent users rhosts(4)

mrand48, jrand48y drand48, erand48, lrand48, nrand48 drand48(3C)
graphical device/ gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)

complementary error function, erf, erfc: error function and erf(3M)
err: error-logging interface err(7)

and status information from/ errdead: extract error records errdead(lM)
errdemon: error-logging demon errdemon(lM)

format errfile: error-log file errfile(4)
system error/ perror, ermo, sys_eniist, sys_nerr: perror(3C)

function and complementary error function, /erfc: error erf(3M)
receive a unit data error indication. t_rcvuderr: t_rcvuderr(3)

strclean: STREAMS error logger cleanup program strclean(lM)
strerr: STREAMS error logger daemon strerr(lM)

log: interface to STREAMS errorlogging and event/ log(7)
t_error: produce error message t_error(3n)

sys_errlist, sys_nerr: system error messages, /ermo, perror(3C)
to system calls and error numbers, /introduction intro(2)

information/ errdead: extract error records and status errdead(lM)
serstat: display serial port error statistics serstat(lM)

matherr: error-handling function mathetT(3M)
errfile: error-log file format errfile(4)

errdemon: error-logging demon errdemon(lM)
errstop: terminate the error-logging demon errstop(lM)

err: error-logging interface err(7)

- xxvi -

process a report of logged errors, errpt: errpt(lM)
hashcheck: find spelling errors, /hashmake, spellin spell(l)

error-logging demon, errstop: terminate the errstop(lM)
another transport/ t_connect: establish a connection with t_connect(3n)

endpoint. t open: establish a transport t_open(3n)
terminal line/ dial: establish an out-going dial(3C)

setmnt: establish mount table setmnt(lM)
with information from /etc/passwd. //etc/shadow pwconv(lM)
with information from fctc/passwd. //etc/shadow pwunconv(lM)

pwconv: install and update /etc/shadow with information/ pwconv(lM)
pwunconv: install and update /etc/shadow with information/ pwunconv(lM)

/information used by the /etc/tapeset command taped rives (4)
in program, end, etext, edata: last locations end(3C)

en: Ethernet ftocessor. en(7)
enpstart: configure Ethernet processor. enpstart(lM)

hypot: Euclidean distance function hypot(3M)
expression, expr. evaluate arguments as an expr(l)

test: condition evaluation command. test(l)
t_look: look at the current event on a transport endpoint t_look(3n)

to STREAMS error logging and event tracing, log: interface log(7)
notify, unnotify, evwait, evnowait: manage/ notify(2)

notify, unnotify, evwait, evnowait: manage/ notify(2)
edit: text editor (variant of ex for casual users) edit(l)

ex: text editor. ex(l)
display editor based on ex. /screen-oriented (visual) vi(l)

crash: examine system images crash(lM)
a file, locking: exclusive access to regions of locking(2)

execve, execlp, execvp:/ exec: execl, execv, execle, exec(2)
execlp, execvp: execute/ exec: execl, execv, execle, execve, exec(2)

execvp:/ exec: execl, execv, execle, execve, execlp exec(2)
/execl, execv, execle, execve, execlp, execvp: execute a/ exec(2)

path: locate executable file for command path(l)
execve, execlp, execvp: execute a file, /execle, exec(2)

construct argument list(s) and execute command, xargs: xargs(l)
time, at, batch: execute commands at a later at(l)

regcmp, regex: compile and execute regular expression regcmp(3X)
requests, uuxqt: execute remote command uuxqt(lM)

set environment for command execution, env: env(l)
sleep: suspend execution for an interval sleep(l)
sleep: suspend execution for interval sleep(3C)

monitor: prepare execution profile monitor(3C)
rcmd: remote shell command execution rcmd(l)

rexecd: remote execution server. rexecd(lM)
profil: execution time profile profil(2)

UNIX-to-UNIX system command execution, uux: uux(lC)
execvp: execute/ exec: execl, execv, execle, execve, execlp, exec(2)

exec: execl, execv, execle, execve, execlp, execvp:/ exec(2)
/execv, execle, execve, execlp, execvp: execute a file exec(2)

a new file or rewrite an existing one. creat: create creat(2)
exit, _exit: terminate process exit(2)

exponential, logarithm,/ exp, log, log 10, pow, sqrt: exp(3M)
peat, unpack: compress and expand files, pack, pack(l)

to spaces, and vice versa, expand, unexpand: expand tabs expand(l)
t_snd: send data or expedited data over a/ t_snd(3n)

t_rcv: receive data or expedited data sent over a/ t_rcv(3n)
advent: explore Colossal Cave advent(6)

exp, log, log 10, pow, sqrt: exponential, logarithm, power,/ exp(3M)
exports: NFS file systems export configuration file ex ports (4)

- xxvii -

export configuration file, exports: NFS file systems exports(4)
expression, expr: evaluate arguments as an expr(l)

routines, regexp: regular expression compile and match regexp(5)
regcmp: regular expression compile. regcmp(l)

expr: evaluate arguments as an expression expr(l)
compile and execute regular expression, regcmp, regex: regcmp(3X)

a pattern using full regular expressions, /a file for egrep(l)
efl: extended FORTRAN language efl(l)

extproc: turn external processing on or off. extproc(lM)
programs, xstr. extract and share strings in C xstr(l)

status information/ errdead: extract error records and errdead(lM)
in a file, strings: extract the ASCII text strings strings(l)

remainder,/ floor, ceil, fmod, fabs: floor, ceiling floor(3M)
drive, tsioctl: facilitate usage of a tape tsioctl(l)

factors of a number, factor, obtain the prime factorfl)
factor obtain the prime factors of a number. factor^l)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
true, false: provide truth values tnie(l)

data in a machine-independent fashion, /access long integer sputl(3X)
fine: fast incremental backup finc(lM)

/calloc, mallopt, mallinfo: fast main memory allocator malloc(3X)
a stream, fclose, fflush: close or flush fclose(3S)

fcntl: file control fcntl(2)
fcntl: file control options fcntl(S)

floating-point number/ ecvt, fevt, gcvt: convert ecvt(3C)
fopen, freopen, fdopen: open a stream fopen(3S)

status inquiries, ferror, feof, clearerr, fileno: stream ferror(3S)
fileno: stream status/ ferror, feof, clearerr ferror(3S)

firstkey, nextkey:/ dbminit, fetch, store, delete dbm(3X)
for a file system, ff: file names and statistics ff(lM)

stream, fclose, fflush: close or flush a fclose(3S)
word from a/ getc, getchar, fgetc, getw: get character or getc(3S)

/getgmam, setgrent, endgrent, fgetgrent: get group file/ getgrent(3C)
/getpwnam, setpwent, endpwent, fgetpwent: get password file/ getpwent(3C)

stream, gets, fgets: get a string from a gets(3S)
/getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf:/ getspent(3X)

character string, fgrep: search a file for a fgrep(l)
times, utime: set file access and modification utime(2)

ldfcn: common object file access routines ldfcn(4)
determine accessibility of a file, access: access(2)

/2645A terminal tape file archiver. hpio(l)
tar: tape file archiver tar(l)

cpio: copy file archives in and out cpio(l)
pwck, grpek: password/group file checkers pwck(lM)

chmod: change mode of file chmod(2)
change owner and group of a file, chown: chown(2)

mcs: manipulate the object file comment section mcs(l)
diff: differential file comparator. diff(l)

di£D: 3-way differential file comparison difl3(l)
fcntl: file control fcntt(2)
fcntl: file control options fcntl(S)

conv: common object file converter. conv(l)
rep: remote file copy rcp(l)

public UNIX-to-UNIX system file copy, uuto, uupick: uuto(lC)
core: format of core image file core(4)

cprs: compress a common object file cprs(l)
umask: set and get file creation mask umask(2)

crontab: user crontab file crontab(l)

- xxviii -

ctags: create a tags file ctags(l)
fields of each line of a file, cut: cut out selected cut(l)

using the mkfs(l) proto file database, /software qinstall(l)
dd: convert and copy a file dd(lM)

a delta (change) to an SCCS file, delta: make delta(l)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor. dup2(3C)

file: determine file type file(l)
hd: hexadecimal and ascii file dump hd(l)
selected parts of an object file, dump: dump dump(l)

sact: print current SCCS file editing activity sact(l)
ciypt: password and file encryption functions crypt(3X)

endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)
fgetpwent: get password file entry, /endpwent getpwent(3C)
utmpname: access utmp file entry, /endutent, getut(3C)

putpwent: write password file entry putpwent(3C)
write shadow password file entry, putspent: putspent(3X)

execlp, execvp: execute a file, /execv, execle, execve, exec(2)
systems export configuration file, exports: NFS file exports(4)

fgrep: search a file for a character string fgrep(l)
grep: search a file for a pattern grep(l)

regular/ egrep: search a file for a pattern using full egrep(l)
path: locate executable file for command. path(l)

inetd.conf: configuration file for inetd (internet/ inetd.conf(4)
ldaopen: open a common object file for reading, ldopen, ldopen(3X)

netrc: login file for remote networks netrc(4)
aliases: aliases file for sendmail aliases(4)

lines. Devices: configuration file for uucp communications Devices(5)
acct: per-process accounting file format. acct(4)

ar. common archive file format ar(4)
errfile: error-log file format. errfile(4)

intro: introduction to file formats intro(4)
entries of a common object file function, /line number ldlread(3X)

gateways: routed configuration file gateways(4)
get: get a version of an SCCS file get(l)
directory entries and put in a file, get dents: read getdents(2)

group: group file group(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
constants, unistd: file header for symbolic unistd(4)

file, ldfhread: read the file header of a common object ldfhread(3X)
ldohseek: seek to the optional file header of a common object/ ldohseek(3X)

split: split a file into pieces split(l)
issue: issue identification file issue(4)

of a member of an archive file, /read the archive header ldahread(3X)
close a common object file, ldclose, ldaclose: ldclose(3X)

file header of a common object file, ldfhread: read the ldfhread(3X)
a section of a common object file, /line number entries of ldlseek(3X)

file header of a common object file, /seek to the optional ldohseek(3X)
a section of a common object file./relocation entries of ldrseek(3X)

header of a common object file, /indexed/named section ldshread(3X)
section of a common object file, /to an indexed/named ldsseek(3X)

table entry of a common object file, /the index of a symbol ldtbindex(3X)
table entry of a common object file, /read an indexed symbol ldtbread(3X)

table of a common object file, /seek to the symbol ldtbseek(3X)
entries in a common object file, linenum: line number linenum(4)

link: link to a file link(2)

- xxix -

listing from a common object file, list: produce C source list(l)
set links/qlist: print out file lists from proto file; qlist(l)

access to regions of a file, locking: exclusive locking(2)
masterapd: update the master file masterupd(lM)

make an ifile from an object file, mkifile: mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory mknod(2)
ctermid: generate file name for terminal ctermid(3S)

mktemp: make a unique file name mktemp(3C)
for a file system file names and statistics ff(lM)

netcf: Network Configuration File netcf(4)
data base for the mail aliases file, newaliases: rebuild the newaliases(l)

change the format of a text file, newform: newform(l)
name list of common object file, run: print nm(l)

null: the null file null(7)
/find the slot in the utmp file of the current user ttyslot(3C)

/identify processes using a file or file structure fuser(lM)
one. creat: create a new file or rewrite an existing creat(2)

passwd: password file passwd(4)
or subsequent lines of one file, /lines of several files paste(l)

pg: file perusal filter for CRTs pg(l)
/rewind, ftell: reposition a file pointer in a stream fseek(3S)

lseek: move read/write file pointer. lseek(2)
prs: print an SCCS file p « (l)
queue description file, /at/batch/cron queuedefs(4)

read: read from file read(2)
for a common object file, /relocation information reloc(4)

resolver configuration file, resolv.ccnf: resolver(4)
Sharing name server master file, rfmaster: Remote File rfmaster(4)

remove a delta from an SCCS file, rmdel: rmdel(l)
bfs: big file scanner. bfs(l) I

two versions of an SCCS file, sccsdiff: compare sccsdiff(l) V
sccsfile: format of SCCS file sccsfile(4)

header for a common object file, scnhdr: section scnhdr(4)
format of curses screen image file., scr dump: scr_dump(4)

/out file lists from proto file; set links based on qlist(l)
shadow: password file shadow(4)

rfadmin: Remote File Sharing administration rfadmin(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

network/ dname: print Remote File Sharing domain and dname(lM)
rfstop: stop the Remote File Sharing environment. rfstop(lM)

rfpasswd: change Remote File Sharing host password rfpasswd(lM)
master file, rfmaster: Remote File Sharing name server rfmaster(4)

query, nsquery: Remote File Sharing name server nsquery(lM)
shell/ rfuadmin: Remote File Sharing notification rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)

rfstart: sui t Remote Hie Sharing rfstart(lM)
mapping, idload: Remote Hie Sharing user and group idload(lM)

fsize: report file size fsize(l)
stat, fsut: get file sUtus stat(2)

the ASCII text strings in a file, strings: extract strings(l)
from a common object file, /line number information strip(l)

processes using a file or file structure, /identify fuser(lM)
checksum and block count of a file, sum: print sum(l)
swrite: synchronous write on a file swrite(2)

/symbol name for common object file symbol uble entry ldgetname(3X)
syms: common object file symbol uble format. syms(4)

- xxx -

ckbupscd: check file system backup schedule ckbupscd(lM)
fsdb: file system debugger fsdb(lM)

volume, fs: file system: format of system fs(4)
fstyp: determine file system identifier fstyp(lM)

directory entry, dirent: file system independent dirent(4)
statfs, fstatfs: get file system information statfs(2)
mkfs: construct a file system mkfs(lM)

mount: mount a file system mount(2)
/mount, unmount Network File System resources nmountall(lM)

nfsstat: Network File System statistics nfsstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
sysfs: get file system type information sysfs(2)

umount: unmount a file system umount(2)
volcopy: make literal copy of file system volcopy(lM)

system: system description file system(4)
/umount: mount and unmount file systems and remote/ mount(lM)

configuration/ exports: NFS file systems export exports(4)
access time, dcopy: copy file systems for optimal dcopy(lM)

fsck, dfsck: check and repair file systems fsck(lM)
labelit: provide labels for file systems labelit(lM)
mount, unmount multiple file systems, /umountall: mountall(lM)

and/ checklist: list of file systems processed by fsck checklist(4)
deliver the last part of a file, tail: tail(l)

term: format of compiled term file term(4)
tmpfile: create a temporary file tmpfile(3S)

create a name for a temporary file, tmpnam, tempnam: tmpnam(3S)
and modification times of a file, touch: update access touch(l)

ftp: ARPANET file transfer program ftp(l)
ftpd: DARPA Internet File Transfer Protoool server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server. tftpd(lM)
uucp system, uucico: file transport program for the uucico(lM)

ftw: walk a file tree ftw(3C)
file: determine file type. file(l)

undo a previous get of an SCCS file, unget: unget(l)
report repeated lines in a file, uniq: uniq(l)

directories and permissions file, uucheck: check the uucp uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write(2)
umask: set file-creation mode mask umask(l)

common object files, filehdr: file header for filehdr(4)
ferror, feof, clearerr, fileno: stream status/ ferror(3S)

and print process accounting file(s). acct com: search acctcom(l)
merge or add total accounting files, acctmerg: acctmerg(lM)

create and administer SCCS files, admin: admin(l)
link, unlink: link and unlink files and directories link(lM)

cat: concatenate and print files cal(l)
cmp: compare two files cmp(l)

lines common to two sorted files, coram: select or reject comm(l)
In, mv: copy, link, or move files, cp(l)

mark differences between files, diffmk: diffmk(l)
file header for common object files, filehdr: filehdr<4)

find: find files find(l)
free: recover files from a backup tape frec(lM)

format specification in text files, fspec: fspec(4)
FORTRAN, ratfor, or efl files, fsplit: split fsplit(l)

- xxxi -

string, format of graphical files, /graphical primitive gps(4)
cpset: install object files in binary directories cpset(lM)

language preprocessor include files, includes: determine C includes(l)
intro: introduction to special files intro(7)

link editor for common object files. Id: ld(l)
lockf: record locking on files lockf(3C)

passmgmt: password files management passmgmt(lM)
rm, rmdir: remove files or directories im(l)

/merge same lines of several files or subsequent lines of/ paste(l)
unpack: compress and expand files, pack, peat, pack(l)

pr: print files pKl)
in bytes of common object files, /print section sizes si2e(l)

sort: sort and/or merge files sort(l)
convert: convert archive files to common formats convert(l)

what: identify SCCS files what(l)
fstab: file-system-table fstab(4)

pg: file perusal filter for CRTs pg(l)
greek: select terminal filter. greek(l)

nl: line numbering filter. nl(l)
col: filter reverse line-feeds col(l)

tio: tape io filter. tio(l)
graphical device routines and filters. Aekset, td: gdev(lG)

tplot: graphics filters tplot(lG)
fine: fast incremental backup finc(lM)

find: find files find(l)
hyphen: find hyphenated words hyphen(l)

ttyname, isatty: find name of a terminal ttyname(3C)
object library, lorder: find ordering relation for an lorder(l)

hashmake, spellin, hashcheck: find spelling errors, spell spell(l)
of the current user, ttyslot: find the slot in the utmp file ttyslot(3C)

lookup program, finger, user information finger(l) [
information server, fingerd: remote user fingerd(lM) v

fold: fold long lines for finite width output device fold(l)
dbminit, fetch, store, delete, firstkey, nextkey: daubase/ dbm(3X)

fish: play "Go Fish" fish(6)
tee: pipe fitting tee(l)

/fpgetsticky, fpsetsticky: IEEE floating point environment/ fpgetround(3)
isnand, isnanf: test for floating point NaN/ isnan: isnan(3C)

ecvt, fevt, gcvt: convert floating-point number to/ ecvt(3C)
Anodf: manipulate parts of floating-point numbers frexp(3C)

floor, ceil, fmod, fabs: floor, ceiling, remaindery floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, fflush: close or flush a stream fclose(3S)
remaindery floor, ceil, fmod, fabs: floor, ceiling, floor(3M)

width output device, fold: fold long lines for finite fold(l)
stream, fopen, freopen, fdopen: open a fopen(3S)

advertised resource, fumount: forced unmount of an fumount(lM)
foric: create a new process fork(2)

per-process accounting file format acct: acct(4)
service request/ nlsrequest: format and send listener nlsrequest(3n)

an common archive file format ar(4)
entile: error-log file format enfile(4)

nroff or/eqn, neqn, checkeq: format mathematical text for eqn(l)
newform: change the format of a text file newform(l)

in ode: format of an i-node inode(4)
term: format of compiled term file term(4)
core: format of core image file core(4)
cpio: format of cpio archive cpio(4)

- xxxii -

file.. scr_dump:
dir:

/graphical primitive string,
sees file:

fs: file system:
files, fspec:

object file symbol table
troff. tbl:

nroff:
archive files to common

intro: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert

/vfjprintf, vsprintf: print
fprintf, sprintf: print

/checkmm: print/check documents
mptx: the macro package for

mm: die MM macro package for
ms: text

man: macros for
me: macros for

ASSIST menus and command
ratfor: rational

efl: extended
files, fsplit: split

hopefully interesting, adage,
fpgetround, fpsetround,
fygetmask, fpsetmask,/
/fpgetmask, fpsetmask,

formatted output printf,
/fpsetround, fpgetmask,
fpsetmask,/ fpgetround,

point/ /fpsetmask, fpgetsticky,
word on a/ putc, putchar,

stream, puts,
input/output
backup tape.

t_free:
df: report number of

memory allocator, malloc,
mallopt, mallinfo:/ malloc,

stream, fopen,
parts of floating-point/

free: recover files
list: produce C source listing
/and line number information

/receive the confirmation
reevfrom: receive a message
getw: get character or word

gets, fgets: get a string
mkifile: make an ifile

rmdel: remove a delta
getopt: get option letter

t_rcvdis: retrieve information
records and status information
/etc/shadow with information
/etc/shadow with information

read: read

format of curses screen image scr_dump(4)
format of directories dir(4)
format of graphical files gps(4)
format of SCCS file sccsfile(4)
format of system volume fs(4)
format specification in text fspec(4)
format, syms: common syms(4)
format tables for nroff or tbl(l)
format texL nroff(l)
formats, convert: convert convert(l)
formats intro(4)
formats, utmp utmp(4)
formatted input scanf(3S)
formatted output of a varargs/ vprintf(3S)
formatted output printf, printf(3S)
formatted with the MM macros mm(l)
formatting a permuted index mptx(5)
formatting documents mm(5)
formatting macros ms(S)
formatting manual pages man(5)
formatting papers me(5)
forms, /generate/modify astgen(l)
FORTRAN dialect ratfor(l)
FORTRAN language. efl(l)
FORTRAN, ratfor, or efl fsplit(l)
fortune: print a random, fortune(6)
fpgetmask, fpsetmask/ fpgetround(3)
fpgetround, fpsetround, fpgetround(3)
fpgetsticky, fpsetsticky: IEEE/ fpgetround(3)
fprintf, sprintf: print printf(3S)
fpsetmask, fpgetsticky/ fpgetround(3)
fpsetround, fpgetmask, fpgetround(3)
fpsetsticky: IEEE floating fpgetround(3)
fputc, putw: put character or putc(3S)
fyuts: put a string on a puts(3S)
fread, fwrite: binary fread(3S)
free: recover files from a frec(lM)
free a library structure t_free(3n)
free disk blocks and i-nodes df(lM)
free, realloc, calloc: main malloc(3C)
free, realloc, calloc, malloc(3X)
freopen, fdopen: open a fopen(3S)
frexp, ldexp, modf: manipulate frexp(3C)
from a backup tape frec(lM)
from a common object file list(l)
from a common object file strip(l)
from a connect request t_rcvconnect(3)
from a socket recv, tecv(2)
from a stream, /fgetc, getc(3S)
from a stream gets(3S)
from an object file mkifile(lM)
from an SCCS file rmdel(l)
from argument vector getopt(3C)
from disconnect t_rcvdis(3n)
from dump, /extract error errdead(lM)
from /etc/passwd. /and update pwconv(lM)
from /etc/passwd. /and update pwunconv(lM)
from file read(2)

- xxxiii -

ncheck: generate path names from i-numbers ncheck(lM)
nlist: get entries from name list nlist(3C)

acct cms: command summary from per-process accounting/ acctcms(lM)
qlist: print out file lists from proto file; set links/ qlist(l)

getpw: get name from UID getpw(3C)
cclsw, cc2sw, cc2fp: front-end to the cc command. cclsw(l)

gencc: create a front-end to the cc command gencc(lM)
system volume, fs: file system: forniat of fs(4)

formatted input, scanf, fscanf, sscanf: convert scanf(3S)
of file systems processed by fsck and ncheck. /list checklist(4)

file systems, fsck, dfsck: check and repair fsck(lM)
a lost+found directory for fsck. mklost+found: make mklostfnd(lM)

fsdb: file system debugger. fsdb(lM)
reposition a file pointer in/ fseek, rewind, ftell: fseek(3S)

fsize: report file size fsize(l)
text files, fspec: format specification in fspec(4)

or efl files, fsplit: split FORTRAN, ratfor, fsplit(l)
status, fsstat: report file system fsstat(lM)

fstab: file-system-table fstab(4)
stat, fstat: get file status stat(2)

information, statfs, fstatfs: get file system statfs(2)
identifier, fstyp: determine file system fstyp(lM)

pointer in a/ fseek, rewind, ftell: reposition a file fseek(3S)
communication/ stdipc, ftok: standard interprocess stdipc(3Q

program, ftp: ARPANET file transfer f tp(l)
Transfer Protocol server, ftpd: DARPA Internet File ftpd(lM)

ftw: walk a file tree ftw(3Q
/a file for a pattern using full regular expressions egrep(l)

shutdown: shut down part of a full-duplex connection shutdown(2)
advertised resource, fumount: forced unmount of an fumount(lM)
error/ erf, erfc: error function and complementary erf(3M)
gamma: log gamma function gamma(3M)

hypot: Euclidean distance function hypot(3M)
of a common object file function, /line number entries ldlread(3X)
matherr. error-handling function matherT(3M)

prof: profile within a function prof(5)
math: math functions and constants math(5)

intro: introduction to functions and libraries intro(3)
jO, j l , jn ,yO,y l ,yn : Bessel functions, bessel: bessel(3M)

password and file encryption functions, crypt: crypt(3X)
logarithm, power, square root functions, /sqrt: exponential exp(3M)

remainder, absolute value functions, /floor, ceiling, floor(3M)
ocurse: optimized screen functions ocurse(3X)
300,300s: handle special functions of DASI300 and 300s/ 300(1)

terminals, hp: handle special functions of Hewlett-Packard hp(l)
terminal. 450: handle special functions of the DASI 4S0 450(1)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
a tan, atan2: trigonometric functions. Ann, asin, acos, trig(3M)

fusage: disk access profiler. fusage(lM)
using a file or file/ fusen identify processes fuser(lM)

fread, fwrite: binary input/output. fread(3S)
connect accounting records, fwtmp, wtmpfix: manipulate fwtmp(lM)

moo: guessing game moo(6)
back: the game of backgammon back(6)

bj: the game of black jack bj(6)
craps: the game of craps craps(6)

wump: the game of hunt-the-wumpus wump(6)
trk: trekkie game trk(6)

- xxxiv -

intro: introduction to games intro(6)
gamma: log gamma function gamma(3M)

file, gateways: routed configuration gateways(4)
number to string, ecvt, fcvt, gcvt: convert floating-point ecvt(3C)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy gdev(lG)

ged: graphical editor ged(lG)
the cc command, gencc: create a front-end to gencc(lM)

maze: generate a maze maze(6)
abort: generate a SIGABRT. abort(3C)
cflow: generate C flowgraph cflow(l)

cross-reference, cxref: generate C program cxref(l)
classification and/ chrtbl: generate character chrtbl(lM)

by user ID. diskusg: generate disk accounting data diskusg(lM)
makekey: generate encryption key makekey(l)

terminal, ctermid: generate file name for ctermid(3S)
crypt, setkey, encrypt: generate hashing encryption crypt(3C)

i-numbers. ncheck: generate path names from ncheck(lM)
lexical tasks, lex: generate programs for simple lex(l)

/srand48, seed48, lcong48: generate uniformly distributed/ drand48(3C)
and command forms, astgen: generate/modify ASSIST menus astgen(l)

srand: simple random-number generator, rand, rand(3C)
gets, fgets: get a string from a stream gets(3S)

get: get a version of an SCCS file get(l)
getsockopt, setsockopt: get and set options on/ getsockopt(2)

ulimit: get and set user limits ulimit(2)
the user, cuserid: get character login name of cuserid(3S)

getc, getchar, fgetc, getw: get character or word from a/ getc(3S)
through the/nlsgetcall: get client's data passed nlsgetcall(3n)

getdtablesize: get descriptor table size getdtablesize(2)
nlist: get entries from name list nlist(3C)

umask: set and get file creation mask umask(2)
stat, fstat: get file status stat(2)

statfs, fstatfs: get file system information statfs(2)
ustat: get file system statistics ustat(2)

information, sysfs: get file system type sysfs(2)
file, get: get a version of an SCCS get(l)

/setgrent, endgrent, fgetgrent: get group file entry getgrent(3C)
getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

getpeemame: get name of connected peer. getpeemame(2)
system, uname: get name of current CTIX uname(2)

provider, nlsprovider: get name of transport nlsprovider{3n)
host, getservaddr: get network address of service getservad(lM)

/setnetent, endnetent: get network entry getnetent(3)
/sethostent, endhostent: get network host entry gethostbyname(3)

getmsg: get next message off a stream getmsg(2)
unget: undo a previous get of an SCCS file unget(l)

argument vector, getopt: get option letter from getopt(3C)
/setpwent, endpwent, fgetpwent: get password file entry getpwent(3C)

working directory, getcwd: get path-name of current getcwd(3C)
times, times: get process and child process times(2)

and/ getpid, getpgrp, getppid: get process, process group, getpid(2)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

information. t_getinfo: get protocol-specific service t_getinfo(3n)
/geteuid, getgid, getegid: get real user, effective user/ getuid(2)

getrpcbyname, getrpcbynumber: get rpc entry, getrpcent, getrpcent(3)

- xxxv -

getrpcport: get RPC port number getrpcport(3)
/setservent, endservent: get service entry getservent(3)

semget: get set of semaphores semget(2)
fgetspent, lckpwdf, ulckpwdf: get shadow, /endspent, getspent(3X)

identifier, shmget: get shared memory segment shmget(2)
getsockname: get socket name getsockname(2)

t_getsute: get the current state t_getstate(3)
tty: get the name of the terminal tty(l)

time: get time time(2)
get character or word from a/ getc, getchar, fgetc, getw: getc(3S)
character or word from/ getc, getchar, fgetc, getw: get getc(3S)

current working directory, getcwd: get path-name of getcwd(3C)
entries and put in a file, getdents: read directory getdents(2)

Uble size, getdublesize: get descriptor getdtablesize(2)
getuid, geteuid, getgid, getegid: get real user,/ getuid(2)

environment name, getenv: return value for getenv(3C)
real user, effective/ getuid, geteuid, getgid, getegid: get getuid(2)

user,/ getuid, geteuid, getgid, getegid: get real getuid(2)
setgrent, endgrent J getgrent, getgrgid, getgmam, getgrent(3C)

endgrenty getgrent, getgrgid, getgmam, setgrent getgrent(3C)
getgrent, getgrgid, getgmam, setgrent, endgrent,/ getgrent(3C)

sethostenty gethostbyname, gethostbyaddr, gethostent, gethostbyname(3)
gethostent, sethostenty gethostbyname, gethostbyaddr, gethostbyname(3)

gethostbyname, gethostbyaddr, gethostent, sethostenty gethostbyname(3)
unique identifier of current/ gethostid, sethostid: get/set gethostid(2)

get/set name of current host, gethostname, sethostname: gethostname(2)
getlogin: get login name getlogin(3C)

stream, getmsg: get next message off a getmsg(2)
setnetenty getnetent, getnetbyaddr, getnetbyname, getnetent(3)

getnetent, getnetbyaddr, getnetbyname, setnetenty getnetent(3)
getnetbyname, setnetenty getnetent, getnetbyaddr, getnetent(3)

argument vector, getopt: get option letter from getopt(3C)
getopt: parse command options getopt(l)

options, getopts, getoptcvt; parse command getopts(l)
command options, getopts, getoptcvt: parse getopts(l)

getpass: read a password getpass(3C)
connected peer, getpeemame: get name of getpeemame(2)

process group, and/ getpid, getpgrp, getppid: get process, getpid(2)
process, process group, and/ getpid, getpgrp, getppid: get getpid(2)
group, and/ getpid, getpgrp, getppid: get process, process getpid(2)

getprotoent, getprotobynumber, getprotobyname, setprotoenty getprotoent(3)
getprotobynamey getprotoent, getprotobynumber getprotoent(3)
getprotobyname, setprotoenty getprotoent, getprotobynumber, getprotoent(3)

getpw: get name from UID getpw(3C)
setpwent, endpwenty getpwent, getpwuid, getpwnam, getpwent(3C)
getpwent, getpwuid, getpwnam, setpwent, endpwenty getpwent(3C)

endpwenty getpwent, getpwuid, getpwnam, setpwent, getpwent(3C)
get rpc entry, getrpcent, getrpcbyname, getrpcbynumber: getrpcent(3)

getrpcbynumber: get rpc/ getrpcent, getrpcbyname, getrpcent(3)
number, getrpcport: get RPC port getrpcport(3)

a stream, gets, fgets: get a string from gets(3S)
address of service host, getservaddr: get network getservad(lM)

getservent, getservbyport, getservbyname, setserventy getservent(3)
setservent^ getservent, getservbyport, getservbyname, getservent(3)

getservbyname, setservent^ getservent, getservbyport, getservent(3)
gettimeofday, settimeofday: get/set date and time gettimeofday(2)

gethostname, sethostname: get/set name of current host gethostname(2)
current/ gethostid, sethostid: get/set unique identifier of gethostid(2)

- xxxvi -

getsockname: get socket name getsockname(2)
and set options on sockets, getsockopt, setsockopt: get getsodcopt(2)

endspent, fgetspent, lckpwdf/ getspent, getspnam, setspent getspent(3X)
fgetspent, lckpwdf/ getspent, getspnam, setspent, endspent, getspent(3X)

get/set date and time, gettimeofday, settimeofday: gettimeofday(2)
and terminal settings used by getty. gettydefs: speed gettydefs(4)

modes, speed, and line/ getty: set terminal type, getty(lM)
ct: spawn getty to a remote terminal. ct(lC)

settings used by getty. gettydefs: speed and terminal gettydefs(4)
getegid: get real user/ getuid, geteuid, getgid, getuid(2)

pututline, setutent/ getut: getutent, getutid, getutline getut(3C)
setutent/ getut: getutent, getutid, getutline, pututline, getut(3C)

getut: getutent, getutid, getutline, pututline/ getut(3C)
from a/ getc, getcbar, fgetc, getw: get character or word getc(3S)

common CTIX system terms and/ glossary: definitions of glossary(l)
ascftime/ ctime, localtime, gmtime, asctime, cftime, ctime(3C)

fish: play " G o Fish" fish(6)
setjmp, longjmp: non-local goto setjmp(3C)
string, format of graphical/ gps: graphical primitive gps(4)

graph: draw a graph graph(lG)
sag: system activity graph sag(lG)

commands, graphics: access graphical and numerical graphics(lG)
/network useful with graphical commands stat(lG)

/erase, hardcopy, tekset, td: graphical device routines and/ gdev(lG)
ged: graphical editor. ged(lG)

primitive string, format of graphical files, /graphical gps(4)
toe: dtoc, ttoc, vtoc: graphical table of contents/ toc(lG)

gutil: graphical utilities gutil(lG)
numerical commands, graphics: access graphical and graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
mvt: typeset documents, view graphs, and slides, mmt, mmt(l)
package for typesetting view graphs and slides, /macro mv(5)

greek: select terminal filter. greek(l)
pattern, grep: search a file for a grep(l)

/user, effective user, real group, and effective group/ getuid(2)
/getppid: get process, process group, and parent process IDs getpid(2)

chown, chgrp: change owner or group chown(l)
endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names id(lM)
real group, and effective group IDs. /effective user, getuid(2)

setuid, setgid: set user and group IDs setuid(2)
Remote File Sharing user and group mapping, idload: idload(lM)

newgrp: log in to a new group. newgrp(lM)
chown: change owner and group of a file chown(2)

a signal to a process or a group of processes, /send kill(2)
update, and regenerate groups of programs, /maintain, make(l)

checkers, pwck, grpek: password/group file pwck(lM)
ssignal, gsignal: software signals ssignal(3C)

install or relocate a PT or GT local printer, /mvtpy: mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal tdl(l)

hangman: guess the word hangman(6)
moo: guessing game moo(6)

gutil: graphical utilities gutil(lG)
/for Interphase V/TAPE 3200 half-inch tape controller ipt(7)

- xxxvii -

stape: SCSI quarter-inch and
system state, shutdown,

DASI 300 and 300s/ 300,300s
Hewlett-Packard/ hp

the DASI 450 terminal. 450
varargs

curses: terminal screen
setchrclass: character

nohup: run a command immune to
graphical/ gdev: hpd, erase,

hinv:
hcreate, hdestroy: manage

spell, hashmake, spellin,
setkey, encrypt: generate

find spelling errors, spell,
search tables, hsearch,

dump.
tables, hsearch, hcreate,

file, scnhdr: section
files, filehdr: file

limits: file
unistd: file

file, ldfhread: read the file
/seek to the optional file

/read an indexed/named section
ldahread: read the archive

helpadm: make changes to the
help: CTIX system

Help Facility database,
tape file archiver. hpio:

/handle special functions of
dump, hd:

libdev: manipulate Volume
fortune: print a random,

/ntohs: convert values between
endhostent: get network

unique identifier of current
get/set name of current

get network address of service
/set or print the Internet

change Remote File Sharing
rwhod:

or print identi her of current
identi fier of current host/

Internet host name of the/
packets to network

of Hewlett-Packard terminals,
td: graphical device/ gdev:
terminal tape file archiver.

manage hash search tables,
convert values between host/

values between host/ htonl,
wump: the game of

sinh, cosh, tanh:
hyphen: find

half-inch tape stape(7)
halt: shut down system, change shutdown(lM)
handle special functions of 300(1)
handle special functions of hp(l)
handle special functions of 450(1)
handle variable argument list varargs(5)
handling and optimization/ curses(3X)
handling. /_tolower, _toupper, ctype(3C)
hangman: guess the word hangman(6)
hangups and quits nohup(l)
hardcopy, tekset, td: gdev(lG)
hardware inventory hinv(lM)
hash search tables, hsearch, hsearch(3C)
hashcheck: find spelling/ spell(l)
hashing encryption, crypt, crypt(3C)
hashmake, spellin, hashcheck: spell(l)
hcreate, hdestroy: manage hash hsearch(3C)
hd: hexadecimal and ascii file hd(l)
hdestroy: manage hash search hsearch(3C)
header for a common object scnhdr(4)
header for common object filehdr(4)
header for/ limits(4)
header for symbolic constants unistd(4)
header of a common object ldfhread(3X)
header of a common object/ ldohseek(3X)
header of a common object/ ldshread(3X)
header of a member of an/ ldahread (3X)
Help Facility database helpadm(lM)
Help Facility help(l)
help: CTIX system Help Facility help(l)
helpadm: make changes to the helpadm(lM)
Hewlett-Packard 2645A terminal hpio(l)
Hewlett-Packard terminals hp(l)
hexadecimal and ascii file hd(l)
hinv: hardware inventory hinv(lM)
Home Blocks (VHB) libdev(3X)
hopefully interesting, adage fortune(6)
host and network byte order. byteorder(3)
host entry, /sethostent, gethostbyname(3)
host /sethostid: get/set gethostid(2)
hosL /sethostname: gethostname(2)
hosL getservaddr: getservad(lM)
host name of the current/ hostname(l)
host password, rfpasswd: rfpasswd(lM)
host status server rwhod(lM)
host system, hostid: set hostid(l)
hostid: set or print hostid(l)
hostname: set or print the hostname(l)
hosts, /send ICMP ECHO_REQUEST ping(lM)
hp: handle special functions hp(l)
hpd, erase, hardcopy, tekset, gdev(lG)
hpio: Hewlett-Packard 2645A hpio(l)
hsearch, hcreate, hdestroy: hsearch(3C)
htonl, htons, ntohl, ntohs: byteorder(3)
htons, ntohl, ntohs: convert byteorder(3)
hunt-the-wumpus wump(6)
hyperbolic functions sinh(3M)
hyphenated words hyphen(l)

V

- xxxviii -

function, hypot: Euclidean distance hypot(3M)
network hosts, ping: send ICMP ECHO_REQUESTpackets to ping(lM)

Protocol, icmp: Internet Control Message ianp(7)
disk accounting data by user ID. diskusg: generate diskusg(lM)

semaphore set or shared memory ID./remove a message queue, ipcrm(l)
and names, id: print user and group IDs id(lM)

setpgrp: set process group ID setpgip(2)
issue: issue identification file issue(4)

fstyp: determine file system identifier. fstyp(lM)
/sethostid: get/set unique identi fier of current host gethostid(2)

system, hostid: set or print identifier of current host hostid(l)
get shared memory segment identifier, shmget: shmget(2)

using keywords, locate: identify a C l l X system command locate(l)
file or file/ fuser: identify processes using a fuser^lM)

what: identify SCCS files what(l)
user and group mapping, idload: Remote File Sharing idload(lM)

id: print user and group IDs and names id(lM)
group, and parent process IDs. /get process, process getpid(2)
group, and effective group IDs. /effective user, real getuid(2)
setgid: set user and group IDs. setuid, setuid(2)
/fpgetsticky, fpsetsticky: IEEE floating point/ fpgetround(3)

interface parameters, if con fig: configure network ifconfig(lM)
mkifile: make an ifile from an object file mkifile(lM)

core: format of core image file core(4)
format of curses screen image file.. scr_dump: scr_dump(4)
crash: examine system images crash(lM)
nohup: run a command immune to hangups and quits nohup(l)

limits: file header for implementation-specific/ limits(4)
C language preprocessor include files, /determine includes(l)

fine: fast incremental backup finc(lM)
dirent: file system independent directory entry dirent(4)

Agoto, tputs: terminal independent operations otermcap(3X)
for formatting a permuted index, /the macro package mptx(S)

of a/ ldtbindex: compute the index of a symbol table entry ldtbindex(3X)
ptx: permuted index ptx(l)

a common/ ldtbread: read an indexed symbol table entry of ldtbread(3X)
ldshread, ldnshread: read an indexed/named section header/ ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)
receipt of an orderly release indication, /acknowledge t_rcvrel(3n)

receive a unit data error indication. t_rcvuderr: t_rcvuderr(3)
family, inet: Internet protocol inet(7)

inetntoa, inet_makeaddr,/ inet_addr, inetnetwork inet(3)
"super-server", inetd: internet inetd(lM)

configuration file for inetd (internet/ inetd.conf: inetd.conf(4)
for inetd (internet/ inetd.conf: configuration file inetd.conf(4)

/inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof:/ inet(3)
/inet_network, inet_ntoa, inet_makeaddr, inetjnaof,/ inet(3)

/inet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3)
inet_makeaddr/ inet_addr, inet_network, inet_ntoa, inet(3)

inet_addr, inet_network, inet_ntoa, inet_makeaddr/ inet(3)
terminfo descriptions, infocmp: compare or print out infocmp(lM)

inittab: script for the init process inittab(4)
initialization, init, telinit: process control inil(lM)

init, telinit: process control initialization init(lM)
/drvload, powerfail: system initialization procedures brc(lM)

terminfo database, tput: initialize a terminal or query tput(l)
volume, iv: initialize and maintain iv(l)

socket connect: initiate a connection on a connect(2)

- xxxix -

t_sndrel:
process, popen, pclose:

process,
clri: clear

inode: format of an
number of free disk blocks and

start and stop terminal
sscanf: convert formatted
push character back into

fread, fwrite: binary
poll: STREAMS

stdio: standard buffered
fileno: stream status

uustat: uucp status
with information from/ pwconv:

with information/ pwunconv:
using the mkfs(l)/ qinstall:

install:
directories, cpset:

local printer, mktpy, mvtpy:
ctinstall:

abs: return
/164a: convert between long

sputl, sgetl: access long
atol, atoi: convert string to

3-byte integers and long
bcopy:

system, mailx:
print a random, hopefully

tset: set terminal, terminal
module, timod: Transport

err: error-logging
V/TAPE 3200 half-inch/ ipt:

qic:
lo: software loopback network

lp: parallel printer
mem, kmem: system memory

if con fig: configure network
plot: graphics

STREAMS/ tirdwr: Transport
/Transport Interface read/write

plot: graphics
swap: swap administrative

termio: general terminal
tiop: terminal accelerator

logging and event/ log:
telnet: user

protocol, tftp: user
tty: controlling terminal

vme: VME bus
detach serial lines as network

/inet_lnaof, inet_netof:
Protocol, icmp:

named:
Protocol server, ftpd: DARPA

hostname: set or print the
names and numbers for the
slipd: switched Serial Line

initiate an orderly release t_sndrel(3n)
initiate pipe to/from a popen(3S)
inittab: script for the init inittab(4)
i-node clri(lM)
i-node inode(4)
i-nodes. df: report df(lM)
input and output /manually rsterm(lM)
input, scanf, fscanf, scanf(3S)
input stream, ungetc: ungetc(3S)
input/output fread(3S)
input/output multiplexing poll(2)
input/output package stdio(3S)
inquiries, /feof, clearerr, ferror(3S)
inquiry and job control uustat(lC)
install and update /etc/shadow pwconv(lM)
install and update /etc/shadow pwunconv(lM)
install and verify software qinstall(l)
install commands install(lM)
install object files in binary cpset(lM)
install or relocate a PT or GT mktpy(l)
install software ctinstall(l)
integer absolute value abs(3C)
integer and base-64 ASCII/ a641(3C)
integer data in a/ sputl(3X)
integer, strtd, strtol(3C)
integers, /convert between 13tol(3C)
interactive block copy bcopy(lM)
interactive message processing mailx(l)
interesting, adage, fortune: fortune(6)
interface, and terminal/ tset(l)
Interface cooperating STREAMS timod(7)
interface err(7)
interface for Interphase ipt(7)
interface for QIC tape qic(7)
interface lo(7)
interface lp(7)
interface mem (7)
interface parameters ifconfig(lM)
interface plot(4)
Interface read/write interface tirdwr(7)
interface STREAMS module tirdwr(7)
interface subroutines plot(3X)
interface. swap(lM)
interface termio(7)
interface tiopC7)
interface to STREAMS error log(7)
interface to TELNET protocol. telnet(l)
interface to the DARPA TFTP tftp(l)
interface tty(7)
interface vme(7)
interfaces, /attach and slattach(lM)
Internet address manipulation/ inet(3)
Internet Control Message icmp(7)
Internet domain name server named(lM)
Internet File Transfer ftpd(lM)
Internet host name of the/ hostname(l)
internet, networks: networks(4)
Internet Protocol control/ slipd(lM)

-X l -

function, hypot: Euclidean distance hypot(3M)
network hosts, ping: send ICMP ECHO_REQUESTpackets to ping(lM)

Protocol, icmp: Internet Control Message ianp{7)
disk accounting data by user ID. diskusg: generate diskusg(lM)

semaphore set or shared memory ID./remove a message queue ipcrm(l)
and names, id: print user and group IDs id(lM)

setpgrp: set process group ID setpgip(2)
issue: issue identi fication file issue(4)

fstyp: determine file system identifier. fstyp(lM)
/sethostid: get/set unique identi fier of current host gethostid(2)

system, hostid: set or print identi fier of current host hostid(l)
get shared memory segment identi fier. shmget: shmget(2)

using keywords, locate: identify a CTIX system command locate(l)
file or file/ fuser: identify processes using a fuser^lM)

what: identify SCCS files what(l)
user and group mapping, idload: Remote File Sharing idload(lM)

id: print user and group IDs and names id(lM)
group, and parent process IDs. /get process, process getpid(2)

group, and effective group IDs. /effective user, real getuid(2)
setgid: set user and group IDs. setuid setuid(2)
/fpgetsticky, fpsetsticky: IEEE floating point/ fpgetround(3)

interface parameters, ifconfig: configure network . . . , ifconfig(lM)
mkifile: make an ifile from an object file mkifile(lM)

core: format of core image file core(4)
format of curses screen image file.. scr_dump: scr_dump(4)
crash: examine system images crash(lM)
nohup: run a command immune to hangups and quits nohup(l)

limits: file header for implementation-speci fic/ limits(4)
C language preprocessor include files, /determine includes(l)

fine: fast incremental backup finc(lM)
dirent: file system independent directory entry dirent(4)

Agoto, tputs: terminal independent operations otermcap(3X)
for formatting a permuted index, /the macro package mptx(5)

of a/ ldtbindex: compute the index of a symbol table entry ldtbindex(3X)
ptx: permuted index ptx(l)

a common/ Idtbread: read an indexed symbol table entry of ldtbread(3X)
ldshread, ldnshread: read an indexed/named section header/ ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)
receipt of an orderly release indication, /acknowledge t_rcvrel(3n)

receive a unit data error indication. t_rcvuderr: t_rcvuderr(3)
family, inet: Internet protocol inet(7)

inet_ntoa, inet_makeaddr/ inet_addr, inet network, inet(3)
"super-server", inetd: internet inetd(lM)

configuration file for inetd (internet/ inetd.conf: inetd.conf(4)
for inetd (internet/ inetd.conf: configuration file inetd.conf(4)

/inet ntoa, inet_makeaddr, inet_lnaof, inet_netof:/ inet(3)
Anet_network, inet_ntoa, inet_makeaddr, inetjnaof,/ inet(3)

Anet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3)
inetmakeaddr,/ inet_addr, inet network, inet_ntoa, inet(3)

inet_addr, inet_network, inet_ntoa, inet_makeaddr/ inet(3)
terminfo descriptions, infocmp: compare or print out infocmp(lM)

inittab: script for the init process inittab(4)
initialization, init, telinit: process control init(lM)

init, telinit: process control initialization init(lM)
/drvload, powerfail: system initialization procedures brc(lM)

terminfo database, tput: initialize a terminal or query tput(l)
volume, iv: initialize and maintain iv(l)

socket connect: initiate a connection on a connect(2)

- xxxix -

t_sndrel:
process, popen, pclose:

process,
clri: clear

inode: format of an
number of free disk blocks and

start and stop terminal
sscanf: convert formatted
push character back into

fread, fwrite: binary
poll: STREAMS

stdio: standard buffered
fileno: stream status

uustat: uucp status
with information from/ pwconv:

with information/ pwunconv:
using the mkfs(l)/ qinstall:

install:
directories, cpset:

local printer, mktpy, mvtpy:
ctinsull:

abs: return
/164a: convert between long

sputl, sgetl: access long
atol, atoi: convert string to

3-byte integers and long
bcopy:

system, mailx:
print a random, hopefully

tset: set terminal, terminal
module, timod: Transport

err: error-logging
V/TAPE 3200 half-inch/ ipt:

qic:
lo: software loopback network

lp: parallel printer
mem, kmem: system memory

if con fig: configure network
plot: graphics

STREAMS/ tirdwr: Transport
/Transport Interface read/write

plot: graphics
swap: swap administrative

termio: general terminal
tiop: terminal accelerator

logging and event/ log:
telnet: user

protocol, tftp: user
tty: controlling terminal

vme: VME bus
detach serial lines as network

/inetjnaof, inet_netof:
Protocol, icmp:

named:
Protocol server, ftpd: DARPA

hostname: set or print the
names and numbers for the
slipd: switched Serial Line

initiate an orderly release t_sndrel(3n)
initiate pipe to/from a popen(3S)
inittab: script for the init inittab(4)
i-node clri(lM)
i-node inode(4)
i-nodes. df: report df(lM)
input and output /manually rsterm(lM)
input scanf, fscanf, scanf(3S)
input stream, ungetc: ungetc(3S)
input/output fread(3S)
input/output multiplexing P°U(2)
input/output package stdio(3S)
inquiries, /feof, clearerr, ferror(3S)
inquiry and job control uustat(lC)
install and update /etc/shadow pwconv(lM)
install and update/etc/shadow pwunconv(lM)
install and verify software qinstall(l)
install commands install(lM)
install object files in binary cpset(lM)
install or relocate a PT or GT mktpy(l)
install software ctinstall(l)
integer absolute value abs(3C)
integer and base-64 ASCII/ a641(3C)
integer data in a/ sputl(3X)
integer, strtol, strtol(3C)
integers, /convert between 13tol(3C)
interactive block copy bcopy(lM)
interactive message processing mailx(l)
interesting, adage, fortune: fortune(6)
interface, and terminal/ tset(l)
Interface cooperating STREAMS timod(7)
interface err(7)
interface for Interphase i{*(7)
interface for QIC tape qic(7)
interface lo(7)
interface. lp(7)
interface mem (7)
interface parameters ifconfig(lM)
interface plot(4)
Interface read/write interface tirdwr(7)
interface STREAMS module tirdwrf/)
interface subroutines plot(3X)
interface. swap(lM)
interface termio(7)
interface tiop(7)
interface to STREAMS error log(7)
interface to TELNET protocol telnet(l)
interface to the DARPA TFTP tftp(l)
interface tty (7)
interface vme(7)
interfaces, /attach and slattach(lM)
Internet address manipulation/ inet(3)
Internet Control Message icmp(7)
Internet domain name server named(lM)
Internet File Transfer ftpd(lM)
Internet host name of the/ hostname(l)
internet, networks: netwoiks(4)
Internet Protocol control/ slipd(lM)

-X l -

inet: Internet protocol family inet(7)
ip: Internet Protocol ip(7)

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

inetd: internet "super-server" inetd(lM)
/configuration file for inetd (internet "super-server") inetd.conf(4)

Protocol, tcp: Internet Transmission Control tcp(7)
Protocol, udp: Internet User Datagram udp(7)

half-inch/ ipt: interface for Interphase V/TAPE 3200 ipt(7)
spline: interpolate smooth curve spline(lG)

characters, asa: interpret ASA carriage control asa(l)
sno: SNOBOL interpreter. sno(l)

syntax, csh: a shell (command interpreter) with C-like csh(l)
pipe: create an interprocess channel pipe(2)

facilities/ ipcs: report inter-process communication ipcs(l)
stdipc, ftok: standard interprocess communication/ stdipc(3C)

suspend execution for an interval, sleep: sleep(l)
sleep: suspend execution for interval sleep(3C)
application programs, intro: introduction to commands and intro(l)

intro: introduction to file formats intro(4)
libraries, intro: introduction to functions and intro(3)

intro: introduction to games . , . , . , . . intro(6)
intro: introduction to miscellany intro(5)
intro: introduction to special files intro(7)

and error numbers, intro: introduction to system calls intro(2)
generate path names from i-numbers. ncheck: ncheck(lM)

hinv: hardware inventory hinv(lM)
tio: tape io filter. tio(l)

select: synchronous I/O multiplexing select(2)
table, rtab: Remote I/O Processor configuration rtab(4)

riopqry: query Remote I/O Processor for online data riopqty(lM)
configure system for Remote I/O Processor, riopcfg: riopcfg(lM)

streamio: STREAMS ioctl commands streamio(7)
ioctl: control device ioctl(2)
ip: Internet Protocol ip(7)

semaphore set or shared/ ipcrm: remove a message queue, ipcrm(l)
communication facilities/ ipcs: report inter-process ipcs(l)

V/TAPE 3200 half-inch tape/ ipt: interface for Interphase ipt(7)
A slower, isupper, isalpha, isalnum, isspace, iscntrl/ ctype(3C)
Asxdigit, islower, isupper, isalpha, isalnum, isspace/ ctype(3C)

/ispunct, isprint, isgraph, isascii, tolower, toupper/ ctype(3C)
terminal, ttyname, isatty: find name of a ttyname(3C)

Asalpha, isalnum, isspace, iscntrl, ispunct, isprint/ ctype(3C)
isupper, isalpha, isalnum/ isdigit, isxdigit, islower, ctype(3C)

/iscntrl, ispunct, isprint, isgraph, isascii, tolower/ ctype(3C)
isalnum/ isdigit, isxdigit, islower, isupper, isalpha, ctype(3C)

for floating point NaN/ isnan: isnand, isnanf: test isnan(3C)
floating point NaN/ isnan: isnand, isnanf: test for isnan(3C)
point NaN/isnan: isnand, isnanf: test for floating isnan(3C)

/isspace, iscntrl, ispunct, isprint, isgraph, isascii/ ctype(3C)
/isalnum, isspace, iscntrl, ispunct, isprint, isgraph/ ctype(3C)

A supper, isalpha, isalnum, isspace, iscntrl, ispunct/ ctype(3C)
system: issue a shell command system(3S)

issue: issue identification file issue(4)
isdigit, isxdigit, islower, isupper, isalpha, isalnum/ ctype(3C)

isalpha, isalnum/ isdigit, isxdigit, islower, isupper, ctype(3C)
news: print news items news(l)

volume, iv: initialize and maintain iv(l)

- xli -

functions, bessel: jO, j l , j n ,yO,y l ,yn : Bessel bessel(3M)
functions, bessel: jO, j l . j n , yO, yl , yn: Bessel bessel(3M)
bj: the game of black jack bj(6)

functions, bessel: jO.jl, jn,yO,yl ,yn: Bessel bessel(3M)
operator, join: relational daubase join(l)

Arand48, nrand48, mrand48, jrand48, srand48, seed48,/ drand48(3C)
mkdbsym: load symbols in kernel debugger. mkdbsym(lM)

port, dbconsole: change the kernel debugger system console dbconsole(lM)
makekey: generate encryption key makekey(l)

a CTIX system command using keywords, locate: identify locate(l)
killall: kill all active processes killall(lM)

process or a group of/ kill: send a signal to a kill(2)
kill: terminate a process kill(l)

processes, killall: kill all active killall(lM)
mem, kmem: system memory interface mem(7)

quiz: test your knowledge. quiz(6)
3-byte integers and long/ 13tol, ltol3: convert between 13tol(3C)

integer and base-64/ a641, 164a: convert between long a641(3C)
labelit: provide labels for file systems labelit(lM)

scanning and processing language, awk: pattern awk(l)
arbitrary-precision arithmetic language be: bc(l)

efl: extended FORTRAN language efl(l)
scanning and processing language, nawk: pattern nawk(l)

epp: the C language preprocessor. cpp(l)
files, includes: determine C language preprocessor include includes(l)

command programming language, /standard/restricted sh(l)
cftime: language specific strings cflime(4)

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
shl: shell layer manager. shl(l)

/setspent, endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)
/jrand48, srand48, seed48, lcong48: generate uniformly/ drand48(3C)

object files. Id: link editor for common ld(l)
object file, ldclose, ldaclose: close a common ldclose(3X)

header of a member of an/ ldahread: read the archive ldahread(3X)
file for reading, ldopen, ldaopen: open a common object ldopen(3X)

common object file, ldclose, ldaclose: close a ldclose(3X)
drivers, lddrv: manage loadable lddrv(lM)

ldeeprom: load EEPROM ldeeprom(lM)
of floating-point/ frexp, ldexp, modf: manipulate parts frexp(3C)

access routines, ldfcn: common object file ldfcn(4)
of a common object file, ldfhiead: read the file header ldfhread(3X)

name for common object file/ ldgetname: retrieve symbol ldgetname(3X)
line number entries/ ldlread, ldlinit, ldlitem: manipulate ldlread(3X)

number/ ldlread, ldlinit, ldlitem: manipulate line ldlread(3X)
manipulate line number/ ldlread, ldlinit, ldlitem: ldlread(3X)
line number entries of a/ ldlseek, ldnlseek: seek to ldlseek(3X)

entries of a section/ ldlseek, ldnlseek: seek to line number ldlseek(3X)
entries of a section/ ldrseek, ldnrseek: seek to relocation ldrseek(3X)

indexed/named/ ldshread, ldnshread: read an ldshread(3X)
indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
file header of a common/ ldohseek: seek to the optional ldohseek(3X)

object file for reading, ldopen, ldaopen: open a common ldopen(3X)
relocation entries of a/ ldrseek, ldnrseek: seek to ldrseek(3X)

indexed/named section header/ ldshread, ldnshread: read an ldshread(3X)
socket configuration, slink, ldsocket: STREAMS linker, load slink(l)

indexed/named section of a/ ldsseek, ldnsseek: seek to an ldsseek(3X)
of a symbol uble entry of a/ ldtbindex: compute the index ldtbindex(3X)

symbol Uble entry of a/ ldtbread: read an indexed ldtbread(3X)

- xlii -

table of a common object/ ldtbseek: seek to the symbol ldtbseek(3X)
get opt: get option letter from argument vector getopt(3C)

generate programs for simple lexical tasks, lex: lex(l)
update, lsearch, lfind: linear search and lsearch(3C)

Blocks (VHB). libdev: manipulate Volume Home libdev(3X)
introduction to functions and libraries, intro: intro(3)

chkshlib: compare shared libraries tool chkshlib(l)
relation for an object library, /find ordering lorder(l)

portable/ a r archive and library maintainer for ar(l)
mkshlib: create a shared library mkshlib(l)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

t_sync: synchronize transport library t_sync(3n)
implementation-speci fic/ limits: file header for limits(4)

ulimit: get and set user limits ulimit(2)
an out-going terminal line connection, /establish dial(3C)

type, modes, speed, and line discipline, /set terminal getty(lM) f
type, modes, speed, and line discipline, /set terminal uugetty(lM)

slipd: switched Serial Line Internet Protocol control/ slipd(lM)
line: read one line line(l)

common object file, linenum: line number entries in a linenum(4)
/ldlinit, ldlitem: manipulate line number entries of a/ ldlread(3X)

ldlseek, ldnlseek: seek to line number entries of a/ ldlseek(3X)
strip: strip symbol and line number information from a/ strip(l)

nl: line numbering filter. nl(l)
out selected fields of each line of a file, cut: cut cut(l)

send/cancel requests to an LP line printer. Ip, cancel: lp(l)
lpset: set parallel line printer options lpset(lM)

lpr: line printer spooler. lpr(l)
line: read one line line(l)

lsearch, lfind: linear search and update lsearch(3C)
col: filter reverse line-feeds col(l)

in a common object file, linenum: line number entries linenum(4)
/attach and detach serial lines as network interfaces slattach(lM)

files, comm: select or reject lines common to two sorted comm(l)
file for uucp communications lines. Devices: configuration Devices(5)

device, fold: fold long lines for finite width output fold(l)
head: give first few lines head(l)

uniq: report repeated lines in a file uniq(l)
subsequent/paste: merge same lines of several files or paste(l)

directories, link, unlink: link and unlink files and link(lM)
files. Id: link editor for common object ld(l)

a.out: common assembler and link editor output. a.out(4)
link: link to a file link(2)

cp. In, mv: copy, link, or move files cp(l)
link: link to a file link(2)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
lists from proto file; set links based on. /out file qlist(l)

lint: a C program checker. lint(l)
Is: list contents of directory ls(l)

nlist: get entries from name list nlist(3C)
and statistics for file system list file names fi(lM) :

an. bcheck: print the list of blocks associated with bcheck(lM)
nm: print name list of common object file nm(l) !

by fsck and/ checklist: list of file systems processed checklist(4) |
hosts: list of hosts on network hosts(4)

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

- xliii -

terminal number, ttytype: list of terminal types by ttytype(4)
from a common object file, list: produce C source listing list(l)

handle variable argument list, varargs: varargs(5)
output of a varargs argument list, /print formatted vprintf(3S)

t_listen: listen for a connect request t_listen(3n)
socket, listen: listen for connections on a listen(2)

data passed through the listener./get client's nlsgetcall(3n)
nlsadmin: network listener service/ nlsadmin(lM)

nlsrequest: format and send listener service request/ nlsrequest(3n)
file, list: produce C source listing from a common object list(l)
xargs: construct argument list(s) and execute command xargs(l)
links/ qlist: print out file lists from proto file; set qlist(l)

volcopy: make literal copy of file system volcopy(lM)
files, cp. In, mv: copy, link, or move cp(l)

interface, lo: software loopback network lo(7)
ldeeprom: load EEPROM ldeeprom(lM)

/ldsocket: STREAMS linker, load socket configuration slink(l)
debugger, mkdbsym: load symbols in kernel mkdbsym(lM)

drivers: loadable device drivers drivers(7)
lddrv: manage loadable drivers lddrv(lM)

cftime, ascftimey ctime, localtime, gmtime, asctime ctime(3C)
the virtual system/ conlocate: locate a terminal to use as conlocate(lM)

command, path: locate executable file for path(l)
command using keywords, locate: identify a CTTX system locate(l)

end, etext, edata: last locations in program end(3C)
memory, plock: lock process, text, or data in plock(2)

files, lockf: record locking on lockf(3C)
regions of a file, locking: exclusive access to locking(2)

lockf: record locking on files lockf(3C)
gamma: log gamma function gamma(3M)
newgrp: log in to a new group newgrp(lM)

error logging and event/ log: interface to STREAMS log(7)
exponential, logarithmy exp, log, log 10, pow, sqrt: exp(3M)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
logarithm, powery exp, log, loglO, pow, sqrt: exponential, exp(3M)

/log 10, pow, sqrt: exponential, logarithm, power, square root/ exp(3M)
errpt: process a report of logged errors errpt(lM)

rwho: who is logged in on local network rwho(l)
strclean: STREAMS error logger cleanup program strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
/interface to STREAMS error logging and event tracing log(7)

Aog of failed login attempts loginlog(4)
networks, netrc: login file for remote netrc(4)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(l)
rlogind: remote login server. rlogind(lM)

login: sign on login(l)
up a C shell environment at login time, cprofile: setting cprofile(4)

setting up an environment at login time, profile: profile(4)
logname: get login name logname(l)

user, logname: return login name of logname(3X)
a641,164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
between 3-byte integers and long integers. /ltol3: convert 13tol(3C)

- xliv -

output device, fold: fold
setjmp,

fmger: user information
lo: software

for an object library,
mklost+found: make a

nice: run a command at
send/cancel requests to an

interface,
disable: enable/disable
reject: allow or prevent

/lpshut, Ipmove: start/stop the
lpadmin: configure the

lpstat: print
spooling system,

scheduler/ lpsched, lpshut,

start/stop the LP scheduler/
printer options.

LP scheduler and/ lpsched,
information.

jrand48y drand48, erand48,
directory,

and update,
pointer.

integers and long/ 13tol,

mega, unixpc,.
values:

/access long integer data in a
permuted index, mptx: the
documents, mm: the MM

view graphs and/ mv: a troff
m4:

pages, man:
me:

formatted with the MM
ms: text formatting

/rebuild the data base for the
users or read mail.

sendmail:
processing system,

malloc, free, realloc, calloc:
/mallopt, mallinfo: fast

regenerate groups of/ make:
iv: initialize and

ar: archive and library
SCCS file, delta:

mkdir:
or ordinary file, mknod:
for fsck. mklost+found:

mktemp:
file, mkifile:

Facility database, helpadm:
mkdir, mkdirs:

system, vol copy:
regenerate groups of/

mkhosts:

long lines for finite width fold(l
longjmp: non-local goto setjmp(3C
lookup program finger(l
loopback network interface lo(7
lorder: find ordering relation lorder(l
lost+found directory for fsck mklostfnd(lM
low priority nice(l
LP line printer. Ip, cancel: lp(l
Ip: parallel printer lp(7
LP printers, enable, enable(l
LP requests, accept, accept(lM
LP scheduler and move/ lpsched(lM
LP spooling system lpadmin(lM
LP status information lpstat(l
lpadmin: configure the LP lpadmin(lM
Ipmove: start/stop the LP lpsched(lM
lpr: line printer spooler. lpr(l
lpsched, lpshut, Ipmove: lpsched(lM
lpset: set parallel line lpset(lM
lpshut, Ipmove: start/stop the lpsched(lM
lpstat: print LP status lpstat(l
lrand48, nrand48, mrand48 drand48(3C
is: list contents of ls(l
lsearch, lfind: linear search lsearch(3C
lseek: move read/write file 1 seek(2
ltol3: convert between 3-byte 13tol(3C
m4: macro processor. m4(l
machid: mc68k, miti, mini, machid(l
machine- dependent values values(5
machine-independent fashion sputl(3X
macro package for formatting a mptx(5
macro package for formatting mm(5
macro package for typesetting mv(5
macro processor m4(l
macros for formatting manual man(5
macros for formatting papers me(5
macros, /print/check documents mm(l
macros ms(5
mail aliases file newaliases(l
mail, rmail: send mail to mail(l
mail routing program sendmail(lM
mailx: interactive message mailx(l
main memory allocator. malloc(3C
main memory allocator malloc(3X
maintain, update, and make(l
maintain volume iv(l
maintainer for portable/ ar(l
make a delta (change) to an delta(l
make a directory mkdir(2
make a directory, or a special mknod(2
make a lost+found directory mklostfnd(lM
make a unique file name mktemp(3C
make an ifile from an object mkifile(lM
make changes to the Help helpadm(lM
make directories mkdir(l
make literal copy of file volcopy(lM
make: maintain, update, and make(l
make node name commands mkhosts(lM

- xlv -

banner: make posters banner(l)
session, script: make typescript of terminal script(l)

key. makekey: generate encryption makekey(l)
/realloc, calloc, mallopt, mallinfo: fast main memory/ malloc(3X)
main memory allocator, malloc, free, realloc, calloc: malloc(3C)

mallopt, mallinfo: fast main/ malloc, free, realloc, calloc malloc(3X)
malloc, free, realloc, calloc, mallopt, mallinfo: fast main/ malloc(3X)

manual pages, man: macros for formatting man(5)
A find, tdelete, twalk: manage binary search trees tsearch(3C)

hsearch, hcreate, hdestroy: manage hash search tables hsearch(3C)
lddrv: manage loadable drivers lddrv(lM)

unnotify, evwait, evnowait: manage notifications, notify, notify(2)
endpoint. t_optmgmt: manage options for a transport t_optmgmt(3n)

passmgmt: password files management. passmgmt(lM)
window: window management primitives window(7)

sigignore, sigpause: signal management /sigrelse, sigset(2)
wm: window management wm(l)

shl: shell layer manager. shl(l)
records, fwtmp, wtmpfix: manipulate connect accounting fwtmp(lM)

of/ ldlread, ldlinit, ldlitem: manipulate line number entries ldlread(3X)
frexp, ldexp, modf: manipulate parts of/ frexp(3C)

comment section, mcs: manipulate the object file mcs(l)
route: manually manipulate the routing tables route(lM)
(VHB). libdev: manipulate Volume Home Blocks libdev(3X)

Anet_netof: Internet address manipulation routines inet(3)
man: macros for formatting manual pages man(5)

routing tables, route: manually manipulate the route(lM)
terminal input and/ rsterm: manually start and stop rsterm(lM)

ascii: map of ASCII character set ascii(5)
port to RPC program number mapper, portmap: DARPA portmap(lM)

File Sharing user and group mapping, idload: Remote idload(lM)
scsimap: set mappings for SCSI devices scsimap(lM)

files, diffink: mark differences between diflmk(l)
umask: set file-creation mode mask umask(l)

set and get file creation mask, umask: umask(2)
table, master: master device information master(4)

masterupd: update the master file masterupd(lM)
File Sharing name server master file, rfmaster: Remote rfmaster(4)

information table, master: master device master(4)
file, masterupd: update the master masterupd(lM)

regular expression compile and match routines, regexp: regexp(S)
math: math functions and constants math(5)

constants, math: math functions and math(5)
eqn, neqn, checkeq: format mathematical text for nroff or/ eqn(l)

function, matherr: error-handling matherr(3M)
maze: generate a maze maze(6)
unixpc,. machid: mc68k, miti, mini, mega, machid(l)

file comment section, mcs: manipulate the object mcs(l)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

interface, mem, kmem: system memory mem(7)
memcpy, mem set:/ memory: memccpy, memchr, memcmp, memory(3C)

mem set:/ memory: memccpy, memchr, memcmp, memcpy, memory(3C)
memory: memccpy, memchr, memcmp, memcpy, mem set: memory/ memory(3C)

/memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
free, realloc, calloc: main memory allocator, malloc malloc(3C)

mallopt, mallinfo: fast main memory allocator, /calloc, malloc(3X)
shmctl: shared memory control operations shmctl(2)

queue, semaphore set or shared memory ID. /remove a message ipcrm(l)

- xlvi -

mem, kmem: system memory interface mem(7)
memcmp, memcpy, mem set:/ memory: memccpy, memchr memory(3C)
memcmp, memcpy, memset: memory operations, /memchr memory(3C)

shmop: shared memory operations shmop(2)
lock process, text, or data in memory, plock: plock(2)

shmget: get shared memory segment identifier. shmget(2)
/memchr, memcmp, memcpy, memset: memory operations memory(3C)

astgen: generate/modify ASSIST menus and command forms astgen(l)
sort: sort and/or merge files sort(l)
files, acctmerg: merge or add total accounting acctmerg(lM)

files or subsequent/ paste: merge same lines of several paste(l)
mesg: permit or deny messages mesg(l)

msgctl: message control operations msgctl(2)
recv, recvfrom: receive a message from a socket recv(2)

send listener service request message, /format and nlsrequest(3n)
getmsg: get next message off a stream getmsg(2)

putmsg: send a message on a stream putmsg(2)
msgop: message operations msgop{2)

mailx: interactive message processing system mailx(l)
icmp: Internet Control Message Protocol icmp(7)

msgget: get message queue msgget(2)
or shared/ipcrm: remove a message queue, semaphore set ipcrm(l)

t_error: produce error message t_enor(3n)
send, sendto: send a message to a socket send(2)

mesg: permit or deny messages mesg(l)
sys_nerr system error messages, /errno, sys_errlist, perror(3C)

strace: print STREAMS trace messages strace(lM)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

driver, clone: open any minor device on a STREAMS clone(7)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

kernel debugger, mkdbsym: load symbols in mkdbsym(lM)
mkdir make a directory mkdir(2)

directories, mkdir, mkdirs: make mkdir(l)
mkfs: construct a file system mkfs(lM)

/and verify software using the mkfs(l) ptoto file database qinstall(l)
commands, mkhosts: make node name mkhosts(lM)
object file, mkifile: make an ifile from an mkifile(lM)

lost+found directory for/ mklost+found: make a mklostfnd(lM)
mknod: build special file mknod(lM)

special or ordinary file, mknod: make a directory, or a mknod(2)
library, mkshlib: create a shared mkshlib(l)

name, mktemp: make a unique file mktemp(3C)
relocate a PT or GT local/ mktpy, mvtpy: install or mktpy(l)

documents formatted with the/ mm, checkmm: print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

documents formatted with the MM macros, /print/check mm(l)
formatting documents, mm: the MM macro package for mm(S)

view graphs, and slides, mmt, mvt: typeset documents mmt(l)
table, mnttab: mounted file system mnttab(4)

chmod: change mode. chmod(l)
umask: set file-creation mode mask umask(l)

chmod: change mode of file chmod(2)
getty: set terminal type, modes, speed, and line/ getty(lM)

uugetty: set terminal type, modes, speed, and line/ uugetty(lM)
bs: a compiler/interpreter for modest-sized programs bs(l)
floating-point/ frexp, ldexp, modf: manipulate parts of frexp(3C)

touch: update access and modification times of a file touch(l)
utime: set file access and modification times utime(2)

- xlvii -

Interface cooperating STREAMS module, timod: Transport timod(7)
read/write interface STREAMS module. /Transport Interface tirdwr(7)

/ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
profile, monitor prepare execution monitor(3C)

moo: guessing game moo(6)
more, page: text perusal more(l)

mount: mount a file system mount(2)
and remote/ mount, umount: mount and unmount file systems mount(lM)

rmnttry: attempt to mount remote resources rmnttry(lM)
mountd: NFS mount request server. mountd(lM)

setmnt: establish mount table setmnt(lM)
systems, mountall, umountall: mount, unmount multiple file mountall(lM)

System/ nmountall, numountall: mount, unmount Network File nmountall(lM)
rmountall, rumountall: mount, unmount Remote File/ rmountall(lM)
unmount multiple file/ mountall, umountall: mount, mountall(lM)

server, mountd: NFS mount request mountd(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system uble rmtab(4)
rmntsut: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
showmount: show all remote mounts showmount(lM)

mvdir: move a directory. mvdir^lM)
cp,In,mv: copy,link, or movefiles cp(l)

lseek: move read/write file pointer. lseek(2)
the LP scheduler and move requests, /start/stop lpsched(lM)

formatting a permuted index, mptx: the macro package for mptx(5)
/erand48, lrand48, nrand48, mrand48, jrand48, srand48,/ drand48(3C)

ms: text formatting macros ms(5)
operations, msgctl: message control msgctl(2)

msgget: get message queue msgget(2)
msgop: message operations msgop(2)

/umountall: mount, unmount multiple file systems mountall(lM)
poll: STREAMS input/output multiplexing poll(2)

select: synchronous I/O multiplexing select(2)
sxt: STREAMS multiplexor. sxt(7)

run commands performed for multi-user environment /rc3: rc2(lM)
typesetting view graphs and/ mv: a troff macro package for mv(S)

cp, In, mv: copy, link, or move files cp(l)
mvdir move a directory mvdir(lM)

graphs, and slides, mmt, mvt: typeset documents, view mmt(l)
PT or GT local/mktpy, mvtpy: install or relocate a mktpy(l)

server, named: Internet domain name named(lM)
test for floating point NaN (Not-A-Number). Asnanf: isnan(3C)
processing language, nawk: pattern scanning and nawk(l)

systems processed by fsck and ncheck. /list of file checklist(4)
from i-numbers. ncheck: generate path names ncheck(lM)

mathematical text for/ eqn, neqn, checkeq: format eqn(l)
definitions for eqn and neqn. /special character eqnchar(5)

File, netcf: Network Configuration netcf(4)
networks, netrc: login file for remote netrc(4)

netsut: show network sutus netsut(l)
host, getservaddr. get network address of service getservad(lM)

values between host and network byte order, /convert byteorder(3)
netcf: Network Configuration File netcf(4)

setnetent, endnetent: get network entry, /getnetbyname getnetent(3)
/numountall: mount, unmount Network File System resources nmounull(lM)

statistics, nfssut: Network File System nfssUt(lM)
/sethostent, endhostent: get network host entry gethostbyname(3)

- xlviii -

ICMP ECHO_REQUESTpackets to network hosts, ping: send ping(lM)
hosts: list of hosts on network hosts(4)
lo: software loopback network interface lo(7)

ifconfig: configure network interface parameters ifconfig(lM)
and detach serial lines as network interfaces, /attach slattach(lM)

administration, nlsadmin: network listener service nlsadmin(lM)
Remote File Sharing domain and network names, dname: print dname(lM)

routed: network routing daemon routed(lM)
status of nodes on local network, ruptime: display ruptime(l)

\ who is logged in on local network, rwho: rwho(l)
netstat: show network status netstat(l)

commands, stat: statistical networic useful with graphical stat(lG)
uucpd, ouucpd: network uucp servers uucpd(lM)
for the internet networks: names and numbers networks(4)

netrc: login file for remote networks netrc(4)
base for the mail aliases/ newaliases: rebuild the data newaliases(l)

a text file, newform: change the format of newform(l)
newgrp: log in to a new group newgrp(lM)

news: print news items news(l)
/store, delete, firstkey, nextkey: database subroutines dbm(3X)

nfsd, biod: NFS daemons nfsd(lM)
configuration file, exports: NFS file systems export . , exports(4)

mountd: NFS mount request server. mountd(lM)
nfssys: common shared NFS system calls nfssys(2)

nfsd, biod: NFS daemons nfsd(lM)
statistics, nfsstat: Network File System nfsstat(lM)

system calls, nfssys: common shared NFS nfssys(2)
process, nice: change priority of a . nice(2)

of running process by changing nice, renice: alter priority renice(l)
priority, nice: run a command at low nice(l)

nl: line numbering filter. nl(l)
list, nlist: get entries from name nlist(3C)

service administration, nlsadmin: network listener nlsadmin(lM)
passed through the listener, nlsgetcall: get client's data nlsgetcall(3n)

transport provider, nlsprovider. get name of nlsprovider(3n)
listener service request/ nlsrequest: format and send nlsrequest(3n)

object file, nm: print name list of common nm(l)
unmount Network File System/ nmountall, numountall: mount nmountall(lM)

mkhosts: make node name commands mkhosts(lM)
createdev: create device nodes for assorted device/ createdev(lM)

ruptime: display status of nodes on local network ruptime(l)
hangups and quits, nohup: run a command immune to nohup(l)

setjmp, longjmp: non-local goto. setjmp(3C)
test for floating point NaN (Not-A-Number)./isnanf: isnan(3C)

rfuadmin: Remote File Sharing notification shell script. rfuadmin(lM)
evwait, evnowait: manage notifications, /unnotify, notify(2)

evnowait: manage/ notify, unnotify, evwait, notify(2)
drand48, erand48, lrand48, nrand48, mrand48, jrand48/ drand48(3C)

nroff: format text nroff(l)
format mathematical text for nroff or troff. /checkeq: eqn(l)

tbl: format tables for nroff or troff. tbl(l)
constructs, deroff: remove nrofiCtroff, tbl, and eqn deroff(l)

name server query, nsquery: Remote File Sharing nsquery(lM)
between host/ htonl, htons, ntohl, ntohs: convert values byteorder<3)

host and/ htonl, htons, ntohl, ntohs: convert values between byteorder(3)
null: the null file null(7)

/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily/ acctsh(lM)
nl: line numbering filter. nl(l)

- xlix -

number: convert Arabic numerals to English number(6)
graphics: access graphical and numerical commands graphics(lG)

Network File/ nmountall, numountall: mount, unmount nmountall(lM)
dis: object code disassembler dis(l)

ldfcn: common object file access routines ldfcn(4)
mcs: manipulate the object file comment section mcs(l)

conv: common object file converter conv(l)
cprs: compress a common object file cprs(l)
dump selected parts of an object file, dump: dump(l)

ldopen, ldaopen: open a common object file for reading ldopen(3X)
number entries of a common object file function, /line ldlread(3X)

ldaclose: close a common object file, ldclose, ldclose(3X)
the file header of a common object file, ldfhread: read ldfhread(3X)

of a section of a common object file, /number entries ldlseek(3X)
file header of a common object file. Ao the optional ldohseek(3X)

of a section of a common object file, /entries ldrseek(3X)
section header of a common object file, /indexed/named ldshread(3X)

section of a common object file, /indexed/named ldsseek(3X)
symbol Uble entry of a common object file, /the index of a ldtbindex(3X)
symbol Uble entry of a common object file, /read an indexed ldtbread(3X)

the symbol Uble of a common object file, /seek to ldtbseek(3X)
number entries in a common object file, linenum: line = linenum(4)

C source listing from a common object file, list: produce list(l)
mkifile: make an ifile from an object file mkifile(lM)

nm: print name list of common object file nm(l)
information for a common object file, /relocation reloc(4)

section header for a common object file, scnhdr: scnhdr(4)
information from a common object file, /and line number strip(l)

entry, /symbol name for common object file symbol Uble ldgetname(3X)
format syms: common object file symbol uble syms(4)
file header for common object files, filehdr: filehdr(4) .

directories, cpset: install object files in binary cpset(lM) \
Id: link editor for common object files ld(l)

sizes in bytes of common object files, /print section size(l)
find ordering relation for an object library, lorder: lorder(l)

number, factor: obtain the prime factors of a factor(l)
od: octal dump od(l)

functions, ocurse: optimized screen ocurse(3X)
od: octal dump od(l)

query Remote I/O Processor for online data, riopqry: riopqry(lM)
reading, ldopen, ldaopen: open a common object file for ldopen(3X)

fopen, freopen, fdopen: open a stream fopen(3S)
STREAMS driver, clone: open any minor device on a clone(7)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

open: open for reading or writing open(2)
seekdir,/ directory: opendir, readdir, telldir directory(3X)

starter: information about the operating system for beginning/ starter(l)
prf: operating system profiler prf(7)

/prfdc, prfsnap, prfpr: operating system profiler. profiler(lM)
commands performed to stop the operating system. rcO: run rcO(1M)

uconf: configure the operating system uconf(lM)
bzero: bit and byte string operations, bcopy, bemp, bstring(3)

rewinddir, closedir: directory operations. Aelldir, seekdir, directory(3X)
memcmp, memcpy, memset: memory operations, /memccpy, memchr, memory(3C)

msgctl: message control operations msgctl(2)
msgop: message operations msgop(2)

tputs: terminal independent operations. Agetstr, tgoto otermcap(3X)

- 1 -

semctl: semaphore control operations semctl(2)
semop: semaphore operations semop(2)

shmctl: shared memory control operations shmctl(2)
shmop: shared memory operations shmop(2)

strcspn, strtok: string operations, /strpbrk, strspn, string(3C)
join: relational database operator. join(l)

dcopy: copy file systems for optimal access time dcopy(lM)
terminal screen handling and optimization package, curses: curses(3X)

ocurse: optimized screen functions ocurse(3X)
vector, getopt: get option letter from argument getopt(3C)

common/ ldohseek: seek to the optional file header of a ldohseek(3X)
fcntl: file control options fcntl(5)

stty: set the options for a terminal stty(l)
endpoint. t_optmgmt: manage options for a transport t_optmgmt(3n)

getopt: parse command options getopt(l)
getoptcvt: parse command options, getopts getopts(l)

set parallel line printer options. Ipset: lpset(lM)
/setsockopt: get and set options on sockets getsockopt(2)

object library, lorder: find ordering relation for an lorder(l)
/acknowledge receipt of an orderly release indication. t_rcvrel(3n)

t_sndrel: initiate an orderly release t_sndrel(3n)
a directory, or a special or ordinary file, mknod: make mknod(2)

keywords, locate: identify a CTIX system command using locate(l)
assist: assistance using CTIX system commands assist(l)

help: CTIX system Help Facility help(l)
uname: print name of current CTIX system uname(l)

dial: establish an out-going terminal line/ dial(3C)
assembler and link editor output a.out: common a.out(4)
long lines for finite width output device, fold: fold fold(l)
/vsprintf: print formatted output of a varargs argument/ vprintf(3S)

sprintf: print formatted output printf, fprintf, printf(3S)
and stop terminal input and output /manually start rsterm(lM)

sysdef: output system definition sysdef(lM)
uucpd, ouucpd: network uucp servers uucpd(lM)

/acctdusg, accton, acctwtmp: overview of accounting and/ acct(lM)
chown: change owner and group of a file chown(2)

chown, chgrp: change owner or group chown(l)
and expand files, pack, peat, unpack: compress pack(l)

handling and optimization package. /terminal screen curses(3X)
permuted/mptx: the macro package for formatting a mptx(5)

documents, mm: die MM macro package for formatting mm(5)
graphs and/ mv: a troff macro package for typesetting view mv(5)

sadc: system activity report package, sar. sal, sa2, sar(lM)
standard buffered input/output package, stdio: stdio(3S)

interprocess communication package, /ftok: standard stdipc(3C)
ping: send ICMP ECHO_REQUEST packets to network hosts ping(lM)

more, page: text perusal more(l)
macros for formatting manual pages, man: man(S)

4014 terminal. 4014: paginator for the Tektronix 4014(1)
me: macros for formatting papers me(5)

Ipset: set parallel line printer options lpset(lM)
lp: parallel printer interface lp(7)

tapeset: set drive parameters for tape/ tapeset(lM)
configure network interface parameters, ifconfig: ifconfig(lM)
process, process group, and parent process IDs. /get getpid(2)

getopt: parse command options getopt(l)
getopts, getoptcvt: parse command options getopts(l)

nlsgetcall: get client's data passed through the listener. nlsgetcall(3n)

- l i -

management, passmgmt: password files passmgmt(lM)
passwd: change login password passwd(l)
passwd: password file passwd(4)

functions, crypt: password and file encryption crypt(3X)
/endpwent, fgetpwent: get password file entry getpwent(3C)

putpwent: write password file entry putpwent(3C)
putspent: write shadow password file entry putspent(3X)

passwd: password file passwd(4)
shadow: password file shadow(4)

passmgmt: password files management passmgmt(lM)
getpass: read a password getpass(3C)

passwd: change login password passwd(l)
Remote File Sharing host password, if passwd: change rfpasswd(lM)

pwck, grpck: password/group file checkers pwck(lM)
several files or subsequent/ paste: merge same lines of paste(l)

for command, path: locate executable file path(l)
dirname: deliver portions of path names, basename, basename(l)

ncheck: generate path names from i-numbers ncheck(lM)
directory, getcwd: get path-name of current working getcwd(3C)
grep: search a file for a pattern grep(l)

processing language, awk: pattern scanning and awk(l)
processing language, nawk: pattern scanning and nawk(l)

egrep: search a file for a pattern using full regular/ egrep(l)
signal, pause: suspend process until pause(2)

expand files, pack, peat, unpack: compress and pack(l)
a process, popen, pclose: initiate pipe to/from popen(3S)

get name of connected peer, getpeemame: getpeername(2)
rc2, rc3: run commands performed for multi-user/ rc2(lM)

operating/ rcO: run commands performed to stop the rcO(lM)
check the uucp directories and permissions file, uucheck: uucheck(lM)

mesg: permit or deny messages mesg(l)
macro package for formatting a permuted index, mptx: the mptx(5)

ptx: permuted index ptx(l)
format acct: per-process accounting file acct(4)

acctcms: command summary from per-process accounting/ acctcms(lM)
sys_nerr: system error/ perror, ermo, sys_enlist, perror(3C)

pg: file perusal filter for CRTs pg(l)
more, page: text perusal more(l)

CRTs, pg: file perusal filter for pg(l)
split: split a file into pieces split(l)

packets to network hosts, ping: send ICMP ECHO_REQUEST ping(lM)
channel, pipe: create an interprocess pipe(2)

tee: pipe fitting tee(l)
popen, pclose: initiate pipe to/from a process popen(3S)

fish: play "Go Fish" fish(6)
data in memory, plock: lock process, text, or plock(2)

plot: graphics interface plot(4)
subroutines, plot: graphics interface plot(3X)

ftell: reposition a file pointer in a stream, /rewind, fseek(3S)
lseek: move read/write file pointer. lseek(2)

multiplexing, poll: STREAMS input/output poll(2)
to/from a process, popen, pclose: initiate pipe popen(3S)

kernel debugger system console port, dbconsole: change the dbconsole(lM)
serstat: display serial port error statistics serstat(lM)
getrpcport: get RPC port number. getrpcport(3)

mapper, portmap: DARPA port to RPC program number portmap(lM)
and library maintainer for portable archives, /archive ar(l)

basename, dimame: deliver portions of path names basename(l)

- lii -

program number mapper, portmap: DARPA port to RPC portmap(lM)
banner make posters banner(l)

logarithm/ exp, log, loglO, pow, sqrt: exponential exp(3M)
/sqrt: exponential, logarithm, power, square root functions exp(3M)

brc, bcheckrc, drvload, powerfail: system/ bre(lM)
p r print files pr(l)

/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct/ acctsh(lM)
/monacct, nulladm, prctmp, prdaily, prtacct, runacct/ acctsh(lM)

for troff. cw, checkcw: prepare constant-width text cw(l)
monitor: prepare execution profile monitor(3C)

cpp: the C language preprocessor. cpp(l)
includes: determine C language preprocessor include files includes(l)

accept, reject: allow or prevent LP requests accept(lM)
unget. undoa previous get of an SCCS file unget(l)

profiler, pif: operating system prf(7)
profiler prfld, prfstat, prfdc, prfsnap, prfpr:/ profiler(lM)

prfsnap, prfpr:/ profiler prfld, prfstat, prfdc, profiler(lM)
/prfstat, prfdc, prfsnap, prfpr operating system/ profiler(1M)

system//prfld, prfstat, prfdc, prfsnap, prfpr: operating profiler^ 1M)
prfpr:/ profiler prfld, prfstat, prfdc, prfsnap, profiler(lM)

factor: obtain the prime factors of a number. factor(l)
graphical/ gps: graphical primitive string, format of gps(4)

types: primitive system data types types(S)
window: window management primitives window(7)

interesting, adage, fortune: print a random, hopefully fortune(6)
prs: print an SCCS file prs(l)

date: print and set the date date(l)
cal: print calendar. cal(l)

of a file, sum: print checksum and block count sum(l)
editing activity, sact: print current SCCS file sact(l)
cat: concatenate and print files cat(l)

pr: print files pr(l)
vprintf, vfprintf, vsprintf: print formatted output of a/ vprintf(3S)

printf, fprintf, sprintf: print formatted output printf(3S)
host system, hostid: set or print identifier of current hostid(l)

lpstat: print LP status information lpstat(l)
object file, nm: print name list of common nm(l)
system, uname: print name of current CTIX uname(l)

news: print news items news(l)
proto file; set links/ qlist: print out file lists from qlist(l)

infocmp: compare or print out terminfo/ infocmp(lM)
file(s). acct com: search and print process accounting acctcom(l)

domain and network/ dname: print Remote File Sharing dname(lM)
of common object files, size: print section sizes in bytes size(l)

strace: print STREAMS trace messages strace(lM)
of the/hostname: set or print the Internet host name hostname(l)

associated with an. bcheck: print the list of blocks bcheck(lM)
names, id: print user and group IDs and id(lM)

formatted with/ mm, checkmm: print/check documents mm(l)
Ip: parallel printer interface lp(7)

requests to an LP line printer./cancel: send/cancel lp(l)
or relocate a PT or GT local printer, /mvtpy: install mktpy(l)

Ipset: set parallel line printer options lpset(lM)
lpr: line printer spooler. lpr(l)

disable: enable/disable LP printers, enable, enable(l)
print formatted output printf, fprintf, sprintf: printf(3S)

rtpenable: real-time priorities enabled/disabled rtpenable(lM)
nice: run a command at low priority nice(l)

- l i i i -

nice: change priority of a process nice(2)
changing nice, renice: alter priority of running process by renice(l)

errors, errpt: process a report of logged ertpt(lM)
acct: enable or disable process accounting acct(2)

acctprcl, acctprc2: process accounting acctprc(lM)
acctcom: search and print process accounting file(s) acctcom(l)

alarm: set a process alarm clock alarm(2)
times, times: get process and child process times(2)

/alter priority of running process by changing nice renice(l)
init, telinit: process control/ init(lM)

timex: time a command; report process data and system/ timex(l)
exit, _exit: terminate process exit(2)

fork: create a new process fork(2)
/getpgrp, getppid: get process, process group, and parent/ getpid(2)

setpgrp: set process group ID setpgrp(2)
process group, and parent process IDs. /get process getpid(2)
inittab: script for the init process inittab(4)

kill: terminate a process kill(l)
nice: change priority of a process nice(2)

kill: send a signal to a process or a group of/ kill(2)
initiate pipe to/from a process, popen, pclose: popen(3S)

getpid, getpgrp, getppid: get process, process group, and/ getpid(2)
Remote File Sharing daemon process, rfudaemon: rfudaemon('M)

ps: report process status ps(l)
memory, plock: lock process, text, or data in plock(2)

times: get process and child process times times(2)
wait: wait for child process to stop or terminate wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

wait: await completion of process wait(l)
/list of file systems processed by fsck and ncheck checklist(4)

to a process or a group of processes, /send a signal kill(2)
killall: kill all active processes killall(lM)

structure, fusen identify processes using a file or file fuser(lM)
awk: pattern scanning and processing language awk(l)

nawk: pattern scanning and processing language. nawk(l)
extproc: turn external processing on or off. extproc(lM)

mailx: interactive message processing system mailx(l)
rtab: Remote I/O Processor configuration uble rtab(4)

en: Ethernet Processor en(7)
enpsUrt: configure Ethernet processor. enpstart(lM)
riopqry: query Remote I/O Processor for online data riopqiy(lM)

m4: macro processor. m4(l)
system for Remote I/O Processor, riopcfg: configure riopcfg(lM)

a common object file, list: produce C source listing from list(l)
t_error: produce error message t_error(3n)

prof: display profile dau prof(l)
function, prof: profile within a prof(5)

profile, profil: execution time profil(2)
prof: display profile data prof(l)

monitor: prepare execution profile monitor(3C)
profil: execution time profile profil(2)

environment at login time, profile: setting up an profile(4)
prof: profile within a function prof(5)

fusage: disk access profiler. fusage(lM)
prf: operating system profiler. prf(7)
prfdc, prfsnap, prfpr:/ profiler: prfld, prf stat, profiler(lM)

prfpn operating system profiler, /prfdc, prfsnap profilerflM)

- l i v -

sadp: disk access profiler sadp(lM)
standard/restricted command programming language, /the sh(l)

software using the mkfs(l) proto file database, /verify qinstall(l)
on. Sprint out file lists from proto file; set links based qlist(l)

arp: Address Resolution Protocol arp(7)
/switched Serial Line Internet Protocol control facility slipd(lM)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

inet: Internet protocol family inet(7)
icmp: Internet Control Message Protocol icmp(7)

ip: Internet Protocol ip(7)
DARPA Internet File Transfer Protocol server, ftpd: ftpd(lM)

telnetd: DARPA TELNET protocol server. telnetd(lM)
DARPA Trivial File Transfer Protocol server, tftpd: tftpd(lM)

Internet Transmission Control Protocol, tcp: tcp(7)
user interface to TELNET protocol, telnet: telnet(l)

interface to the DARPA TFTP protocol, tftp: user tftp(l)
udp: Internet User Datagram ProtocoL udp(7)

Dialers: ACU/modem calling protocols Dialers(S)
protocols, protocols: list of Internet protocols(4)

information. t_getinfo: get protocol-specific service t_getinfo(3n)
update: provide disk synchronization update(lM)

arithmetic: provide drill in number facts arithmetic(6)
systems, labelit: provide labels for file labelit(lM)

true, false: provide truth values true(l)
get name of transport provider, nlsprovider: nlsprovider{3n)

prs: print an SCCS file prs(l)
/nulladm, prctmp, prdaily, prtacct, runacct, shutacct,/ acctsh(lM)

ps: report process status ps(l)
/generate uniformly distributed pseudo-random numbers drand48(3C)

/mvtpy: install or relocate a FT or GT local printer. mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal tdl(l)

ptrace: process trace ptrace(2)
ptx: permuted index ptx(l)

stream, ungetc: push character back into input ungelc(3S)
put character or word on a/ putc, putchar, fputc, putw: putc(3S)

character or word on a/ putc, putchar, fputc, putw: put putc(3S)
environment, putenv: change or add value to putenv(3Q

stream, putmsg: send a message on a putmsg(2)
entry, putpwent: write password file putpwent(3C)

stream, puts, fputs: put a string on a puts(3S)
password file entry, putspent: write shadow putspent(3X)

/getutent, getutid, getutline, pututline, setutent, endutent,/ getut(3C)
a/ putc, putchar, fputc, putw: put character or word on putc(3S)

file checkers, pwck, grpck: password/group pwck(lM)
/etc/shadow with information/ pwconv: install and update pwconv(lM)

pwd: working directory name pwd(l)
/etc/shadow with information/ pwunconv: install and update pwunconv(lM)

qic: interface for QIC tape qic(7)
software using the mkfs(l)/ qinstall: install and verify qinstall(l)

from proto file; set links/ qlist: print out file lists qlist(l)
qsoft: quicker sort. qsort(3C)

tape, stape: SCSI quarter-inch and half-inch stape(7)
File Sharing name server query, nsquery: Remote nsquery(lM)

online data, riopqry: query Remote I/O Processor for riopqry(lM)
tput: initialize a terminal or query terminfo database tput(l)

queuedefs: at/batch/cron queue description file queuedefs(4)
msgget: get message queue msgget(2)

rmount: queue remote resource mounts rmount(lM)

- I v -

ipcrm: remove a message queue, semaphore set or shared/ ipcrm(l)
request rumount: cancel queued remote resource ramount(lM)

description file, queuedefs: at/batch/cron queue queuedefs(4)
qsort: quicker sort qsort(3C)

command immune to hangups and quits, nohup: run a nohup(l)
quiz: test your knowledge quiz(6)

random-number generator, rand, srand: simple rand(3C)
adage, fortune: print a random, hopefully interesting, fortune(6)

rand, srand: simple random-number generator. rand(3C)
fsplit: split FORTRAN, ratfor,or efl files fsplit(l)

dialect, ratfor: rational FORTRAN ratfor(l)
ratfor: rational FORTRAN dialect ratfor(l)

stop the operating system. rcO: run commands performed to rcO(lM)
performed for multi-user/ rc2, rc3: run commands rc2(lM)

for multi-user/rc2, rc3: run commands performed rc2(lM)
execution, rcmd: remote shell command rcmd(l)

routines for returning a/ rcmd, rresvport, raserok: rcmd(3)
rep: remote file copy rcp(l)

getpass: read a password getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table ldtbread(3X)
header/ ldshread, ldnshread: read an indexed/named section ldshread(3X)

in a file, get dents: read directory entries and put getdents(2)
read: read from file read(2)

rmail: send mail to users or read mail, mail, mail(l)
line: read one line line(l)

read: read from file read(2)
member of an/ ldahread: read the archive header of a ldahread(3X)

common object file, ldfhread: read the file header of a ldfhread(3X)
directory: opendir, readdir, telldir, seekdir,/ directory(3X)

open a common object file for reading, ldopen, ldaopen: ldopen(3X)
open: open for reading or writing open(2)

lseek: move read/write file pointer. lseek(2)
tirdwr: Transport Interface read/write interface STREAMS/ tirdwr(7)

allocator, malloc, free, realloc, calloc: main memory malIoc(3C)
mallinfo: fast/ malloc, free, realloc, calloc, mallopt, malloc(3X)

enabled/disabled, rtpenable: real-time priorities rtpenable(lM)
reboot: reboot the system reboot(lM)

mail aliases/ newaliases: rebuild the data base for the newaliases(l)
specify what to do upon receipt of a signal, signal: signal(2)

t rcvrel: acknowledge receipt of an orderly release/ t_rcvrel(3n)
t_rcvudata: receive a data unit t_rcvudata(3)

socket, recv, reevfrom: receive a message from a recv(2)
indication. t_rcvuderr: receive a unit data error t_rcvuden{3)

sent over a/ t rcv: receive data or expedited data t_rcv(3n)
a connect/ t rcvconnect: receive the confirmation from t_rcvconnect(3)

lockf: record locking on files lockf(3C)
from per-process accounting records, /command summary acctcms(lM)
from/ errdead: extract error records and status information errdead(lM)

manipulate connect accounting records, fwtmp, wtmpfix: fwtmp(lM)
tape, free: recover files from a backup frec(lM)

message from a socket recv, reevfrom: receive a recv(2)
from a socket recv, reevfrom: receive a message recv(2)

ed, red: text editor. ed(l)
execute regular expression, regcmp, tegex: compile and regcmp(3X)

compile, regcmp: regular expression regcmp(l)
make: maintain, update, and regenerate groups of programs make(l)
regular expression, regcmp, regex: compile and execute regcmp(3X)
compile and match routines, regexp: regular expression regexp(S)

- lvi -

locking: exclusive access to regions of a file locking(2)
match routines, regexp: regular expression compile and regexp(S)

regcmp: regular expression compile. regcmp(l)
regex: compile and execute regular expression, regcmp, regcmp(3X)

file for a pattern using full regular expressions, /search a egrep(l)
requests, accept, reject: allow or prevent LP accept(lM)

sorted files, coram: select or reject lines common to two comm(l)
lorder: find ordering relation for an object/ lorder^l)

join: relational database operator join(l)
/receipt of an orderly release indication. t_rcvrel(3n)

t_sndrel: initiate an orderly release t_sndrel(3n)
for a common object file, reloc: relocation information reloc(4)
mktpy, mvtpy: install or relocate a PT or GT local/ mktpy(l)

ldrseek, ldnrseek: seek to relocation entries of a/ ldrseek(3X)
common object file, reloc: relocation information for a reloc(4)
/fmod, fabs: floor, ceiling, remainder, absolute value/ floor{3M)

calendar reminder service. calendar(l)
adv: advertise a directory for remote access adv(lM)

for returning a stream to a remote command, /routines rcmd(3)
uuxqt: execute remote command requests uuxqt(lM)

rexec: return stream to a remote command. rcxec(3)
•hosts: remote equivalent users rhosts(4)

rexecd: remote execution server. rexecd(lM)
rep: remote file copy rcp(l)

administration, rfadmin: Remote File Sharing rfadmin(lM)
process, rfudaemon: Remote File Sharing daemon rfudaemon(lM)

network names, dname: print Remote File Sharing domain and dname(lM)
environment rfstop: stop the Remote File Sharing rfstop(lM)
password, rfpasswd: change Remote File Sharing host rfpasswd(lM)
server master file, rfmaster: Remote File Sharing name rfmaster(4)

server query, nsquery: Remote File Sharing name nsquery(lM)
notification shell/ rfuadmin: Remote File Sharing rfuadtnin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/rumountall: mount, unmount Remote File Sharing (RFS)/ rmountall(lM)

rfstart: start Remote File Sharing rfstart(lM)
group mapping, idload: Remote File Sharing user and idload(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
online data, riopqry: query Remote I/O Processor for riopqry(lM)

riopefg: configure system for Remote I/O Processor. riopcfg(lM)
rlogin: remote login rlogin(l)

rlogind: remote login server. rlogind(lM)
showmount: show all remote mounts showmount(lM)

netrc: login file for remote networks netrc(4)
rmount: queue remote resource mounts rmount(lM)

rumount: cancel queued remote resource request rumount(lM)
and unmount file systems and remote resources, /mount mount(lM)

rmnttiy: attempt to mount remote resources rmnttry(lM)
execution, remd: remote shell command rcmd(l)

rshd: remote shell server. rshd(lM)
on. Uutry: try to contact a remote system with debugging Uutry(lM)

ct: spawn getty to a remote terminal ct(lC)
server, talkd: remote user communication talkd(lM)

server, fingerd: remote user information fingerd(lM)
table, rmtab: remotely mounted file system rmtab(4)

file, rmdel: remove a delta from an SCCS rmdel(l)
rmdir: remove a directory. rmdir(2)

semaphore set or/ ipcrm: remove a message queue ipcrm(l)
unlink: remove directory entry. unlink(2)

- lvii -

tm, nmdir: remove files or directories mi(l)
eqn constructs, deroff: remove nrofi/troff, tbl, and deroff(l)

running process by changing/ renice: alter priority of renice(l)
fsck, dfsck: check and repair file systems fsck(lM)

uniq: report repeated lines in a file uniq(l)
clock: report CPU time used clock(3C)
fsize: report file size fsize(l)

fsstat: report file system status fsstat(lM)
communication/ ipcs: report inter-process ipcs(l)

blocks and i-nodes. df: report number of free disk df(lM)
errpt: process a report of logged errors enpt(lM)

sa2, sadc: system activity report package, sar: sal sar(lM)
timex: time a command; report process data and system/ timex(l)

ps: report process status ps(l)
file, uniq: report repeated lines in a uniq(l)

rpcinfo: report RPC information rpcinfo(lM)
sar system activity reporter. s»Kl)

stream, fseek, rewind, ftell: reposition a file pointer in a fseek(3S)
and send listener service request message, /format nlsrequest(3n)

cancel queued remote resource request rumount: rumount(lM)
mountd: NFS mount request server. mountd(lM)

t accept: acccpt s connect request • • • • • • t_accept(3n)
t_listen: listen for a connect request t_listen(3n)
confirmation from a connect request /receive the t_rcvconnect(3)

send user-initiated disconnect request t_snddis: t_snddis(3n)
reject: allow or prevent LP requests, accept accept(lM)
the LP scheduler and move requests. Apmove: start/stop lpsched(lM)

syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ lp(l)

uuxqt: execute remote command requests uuxqt(lM)
res_mkquety, res_send, res_init, dn_comp, dn_expand:/ resolver(3)

resjnit, dn_comp, dn_expand:/ res_mkquery, res_send, resolver(3)
control, arp: address resolution display and arp(lM)

arp: Address Resolution Protocol arp(7)
configuration file, resolv.conf: resolver resolver(4)

resolv.conf: resolver configuration file resolver(4)
res_init, dn_comp, dn_expand: resolver routines. /res_send, resolver(3)

unmount of an advertised resource, fumount: forced fumount(lM)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
rumount: cancel queued remote resource request rumount(lM)

a Remote File Sharing resource, unadv: unadvertise unadv(lM)
file systems and remote resources, /mount and unmount mount(lM)

unmount Network File System resources, /numountall: mount, nmountall(lM)
attempt to mount remote resources, rmnttry: rmnttry(lM)

Remote File Sharing (RFS) resources, /mount, unmount rmountall(lM)
dn_expand:/ res_mkqueiy, res_send, res_init, dn_comp, resolver(3)

and usage examples, usage: retrieve a command description usage(l)
disconnect. t_rcvdis: retrieve information from t_rcvdis(3n)

common object file/ ldgetname: retrieve symbol name for ldgemame(3X)
abs: return integer absolute value abs(3C)

logname: return login name of user logname(3X)
command, rexec: return stream to a remote rexec(3)

name, getenv: return value for environment getenv(3C)
stat: dau returned by stat system call stat(5)

/ruserok: routines for returning a stream to a remote/ rcmd(3)
c<d: filter reverse line-feeds col(l)

file pointer in a/ fseek, rewind, ftell: reposition a fseek(3S)

- lviii -

/readdir, telidir, seekdir, rewinddir, closedir: directory/ directory(3X)
creat: create a new file or rewrite an existing one creat(2)

remote command rexec: return stream to a rexec(3)
server, rexecd: remote execution rexecd(lM)

administration, rfadmin: Remote File Sharing rfadmin(lM)
name server master file, rfmaster: Remote File Sharing rfmaster(4)
Sharing host password, rfpasswd: change Remote File rfpasswd(lM)

unmount Remote File Sharing (RFS) resources, /mount, rmountall(lM)
Sharing, rfstart: start Remote File rfstart(lM)

Sharing environment, rfstop: stop the Remote File rfstop(lM)
notification shell script rfuadmin: Remote File Sharing rfuadmin(lM)

daemon process, rfudaemon: Remote File Sharing rfudaemon(lM)
users, ihosts: remote equivalent rhosts(4)

Remote I/O Processor, riopcfg: configure system for riopcfg(lM)
Processor for online data, riopqry: query Remote I/O riopqry(lM)

riogin: remote login rlogin(l)
rlogind: remote login server rlogind(lM)

directories, rm, rmdir: remove files or rm(l)
read mail, mail, rmail: send mail to users or mail(l)

SCCS file, rmdel: remove a delta from an rmdel(l)
rmdir: remove a directory rmdir(2)

directories, rm, rmdir: remove files or rm(l)
resource information, rmntstat: display mounted rmntstat(lM)

remote resources, rmnttry : attempt to mount rmnttry(lM)
mounts, rmount: queue remote resource rmount(lM)

unmount Remote File Sharing/ rmountall, rumountall: mount rmountall(lM)
system table, rmtab: remotely mounted file rmtab(4)

chroot: change root directory chroot(2)
chroot: change root directory for a command chroot(lM)

logarithm, power, square root functions, /exponential exp(3M)
routing tables, route: manually manipulate the route(lM)

gateways: routed configuration file gateways(4)
daemon, routed: network routing iouted(lM)

Aekset, td: graphical device routines and filters gdev(lG)
rcmd, rresvport, ruserok: routines for returning a/ rcmd(3)

Internet address manipulation routines. /inet_netof: inet(3)
common object file access routines, ldfcn: ldfcn(4)

expression compile and match routines, regexp: regular regexp(5)
dn_comp, dn_expand: resolver routines. /res_send, res init, resolver(3)

graphical table of contents routines, /dtoc, ttoc, vtoc: toc(lG)
routed: network routing daemon routed(lM)
sendmail: mail routing program sendmail(lM)

route: manually manipulate the routing tables route(lM)
getrpcbynumben get rpc entry, /getrpcbyname getrpcent(3)

rpcinfo: report RPC information ipcinfo(lM)
getrpcport: get RPC pott number. getrpcport(3)

rpc: Sun rpc program number data base >pc(4)
portmap: DARPA port to RPC program number mapper portmap(lM)

data base, rpc: Sun rpc program number rpc(4)
information, rpcinfo: report RPC rpcinfo(lM)

for returning a stream/ rcmd, rresvport, ruserok: routines rcmd(3)
controlling terminal's local RS-232 channels, tp: tp(7)

tdl, gtdl, ptdl: RS-232 terminal download tdl(l)
standard/restricted/ sh, rsh: shell, the sh(l)

rshd: remote shell server. rshd(lM)
stop terminal input and/ rsiernv. manually start and rsterm(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
priorities enabled/disabled, rtpenable: real-time rtpenable(lM)

- l i x -

resource request, rumount: cancel queued remote rumount(lM)
Remote File/ rmounlall, rumountall: mount, unmount rmountall(lM)

nice: run a command at low priority nice(l)
hangups and quits, nohup: run a command immune to nohup(l)

multi-user/ rc2, rc3: run commands performed for rc2(lM)
the operating system. rcO: run commands performed to stop rcO(lM)

runacct: run daily accounting runacct(lM)
runacct: tun daily accounting runacct(lM)

/prctmp, prdaily, prtacct, runacct, shutacct, startup,/ acctsh(lM)
renice: alter priority of running process by changing/ renice(l)

nodes on local network, ruptime: display status of ruptime(l)
returning a/ rcmd, rresvport, ruserok: routines for rcmd(3)

local network, rwho: who is logged in on rwho(l)
rwhod: host status server. rwhod(lM)

activity report package, sar: sal, sa2, sadc: system sar(lM)
report package, sar: sal, sa2, sadc: system activity sar(lM)

editing activity, sact: print current SCCS file sact(l)
package, san sal, sa2, sadc: system activity report sar(lM)

sadp: disk access profiler sadp(lM)
sag: system activity graph sag(lG)

activity report package, sar: sal, sa2, sadc: system sar(lM)
sar: system activity reporter. sar(l)

space allocation, brk, sbrk: change data segment brie(2)
formatted input, scanf, fscanf, sscanf: convert scanf(3S)

bfs: big file scanner bfs(l)
language, awk: pattern scanning and processing awk(l)

language, nawk: pattern scanning and processing nawk(l)
the delta commentary of an SCCS delta, cdc: change cdc(l)

comb: combine SCCS deltas comb(l)
make a delta (change) to an SCCS file, delta: delta(l)

sact: print current SCCS file editing activity sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
rmdel: remove a delta from an SCCS file rmdel(l)

compare two versions of an SCCS file, sccsdiff: sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

undo a previous get of an SCCS file, unget: unget(l)
val: validate SCCSfile val(l)

admin: create and administer SCCS files admin(l)
what: identify SCCS files what(l)

of an SCCS file, sccsdiff: compare two versions sccsdiif(l)
sccsfile: format of SCCS file sccsfile(4)

check file system backup schedule, ckbupscd: ckbupscd(lM)
Apmove: start/stop the LP scheduler and move requests lpsched(lM)

uusched: the scheduler for the UUCP system uusched(lM)
common object file, senhdr section header for a scnhdr(4)

screen image file.. scr_dump: format of curses scr_dump(4)
clear: clear terminal screen clear(l)

ocurse: optimized screen functions ocurse(3X)
optimization/ curses: terminal screen handling and curses(3X)

scr_dump: format of curses screen image file scr_dump(4)
display editor based on/v i : screen-oriented (visual) vi(l)

inittab: script for the init process inittab(4)
terminal session, script: make typescript of script(l)

Sharing notification shell script rfiiadmin: Remote File rfuadmin(lM)
scsi: scsi control device scsi(7)

scsimap: set mappings for SCSI devices scsimap(lM)
half-inch tape, stape: SCSI quarter-inch and stape(7)

- l x -

devices.

program,
string, fgrep:

grep:
using full regular/ egrep:

bsearch: binary
accounting file(s). acct com:

lsearch, lfind: linear
hcreate, hdestroy: manage hash

tdelete, twalk: manage binary
object file, scnhdr:

object/ /read an indexed/named
the object file comment

Ao line number entries of a
Ao relocation entries of a

/seek to an indexed/named
common object/ size: print

/mrand48, jrand48, srand48,
section of/ Idsseek, idnsseek:

a section/ ldlseek, ldnlseek:
a section/ ldrseek, ldnrseek:

header of a common/ ldohseek:
common object file, ldtbseek:

/opendir, readdir, tell dir,
shmget: get shared memory

bik, sbrk: change data
to two sorted files, ccmm:

multiplexing,
greek:

of a file, cut: cut out
file, dump: dump

semctl:
semop:

ipcrm: remove a message queue,
semget: get set of

operations.

tsndudata:
putmsg:

send,send to:
a group of processes, kill:
over a connection. t_snd:

to network hosts, ping:
nlsrequest: format and

mail, mail, rmail:
to a socket,

request tsnddis:
line printer. Ip, cancel:
aliases: aliases file for

program,
socket, send,

/receive data or expedited data
control/ slipd: switched

/sldetach: attach and detach

scsi: scsi control device scsi(7)
scsimap: set mappings for SCSI scsimap(lM)
sdb: symbolic debugger. sdb(l)
sdiff: side-by-side difference sdiff(l)
search a file for a character fgrep(l)
search a file for a pattern grep(l)
search a file for a pattern egrep(l)
search a sorted table bsearch(3C)
search and print process acctcom(l)
search and update lsearch(3C)
search tables, hsearch, hsearch(3C)
search trees, tsearch, tfind, tsearch(3C)
section header for a common scnhdr(4)
section header of a common ldshread(3X)
section, mcs: manipulate mcs(l)
section of a common object/ ldlseek(3X)
section of a common object/ ldrseek(3X)
section of a common object/ ldsseek(3X)
section sizes in bytes of size(l)
sed: stream editor. sed(l)
jeed48, lcong48: generate/ drand48(3C)
seek to an indcxed/naned ldsseek(3X)
seek to line number entries of ldlseek(3X)
seek to relocation entries of ldrseek(3X)
seek to the optional file ldohseek (3 X)
seek to the symbol table of a ldtbseek(3X)
seekdir, tewinddir, closedir:/ directory(3X)
segment identifier. shmget(2)
segment space allocation brk(2)
select or reject lines common comm(l)
select: synchronous I/O select(2)
select terminal filter. greek(l)
selected fields of each line cut(l)
selected parts of an object dump(l)
semaphore control operations semctl(2)
semaphore operations semop(2)
semaphore set or shared memory/ ipcrm(l)
semaphores semget(2)
semctl: semaphore control semctl(2)
semget: get set of semaphores semget(2)
semop: semaphore operations semop(2)
send a data unit. t_sndudata(3)
send a message on a stream putmsg(2)
send a message to a socket. send(2)
send a signal to a process or kill(2)
said data or expedited data t_snd(3n)
send ICMPECHO_REQUEST packets ping(lM)
send listener service request/ nlsrequest(3n)
send mail to users or read mail(l)
send, send to: send a message send(2)
send user-initiated disconnect t_snddis(3n)
send/cancel requests to an LP lp(l)
sendmail aliases(4)
sendmail: mail routing sendmail(lM)
sendto: send a message to a send(2)
sent over a connection t_rcv(3n)
Serial Line Internet Protocol slipd(lM)
serial lines as network/ slattach(lM)

- lxi -

serstat: display serial port error statistics serstat(lM)
error statistics, serstat: display serial port serstat(lM)

remote user information server, fingerd: fingerd(lM)
File Transfer Protocol server, ftpd: DARPA Internet ftpd(lM)

Remote File Sharing name server master file, rfmaster: rfmaster(4)
mountd: NFS mount request server. mountd(lM)

named: Internet domain name server named(lM)
Remote File Sharing name server query, nsquery: nsquery(lM)

rexecd: remote execution server rexecd(lM)
rlogind: remote login server rlogind(lM)

rshd: remote shell server. rshd(lM)
rwhod: host status server. rwhod(lM)

remote user communication server, talkd: talkd(lM)
telnetd: DARPA TELNET protocol server telnetd(lM)

Trivial File Transfer Protocol server, tftpd: DARPA tftpd(lM)
uucpd, ouucpd: network uucp servers uucpd(lM)

make typescript of terminal session, script: script(l)
buffering to a stream, setbuf, setvbuf: assign setbuf(3S)

Aoascci, _tolower, _toupper, setchrclass: character/ ctype(3C)
IDs. setuid, setgid: set user and group setuid(2)

getgrent, getgrgid, getgmam, setgrent, endgrent, fgetgrent:/ getgrent(3C)
/gethostbyaddr, gethostent, seihostent, enahostent: get/ gethostbyname(3)

identifier of/gethostid, sethostid: get/set unique gethostid(2)
current host, gethostname, sethostname: get/set name of gethostname(2)

goto, setjmp, longjmp: non-local setjmp(3C)
hashing encryption, crypt, setkey, encrypt: generate crypt(3C)

setmnt: establish mount table setmnt(lM)
/getnetbyaddr, getnetbyname, setnetent, endnetent: get/ getnetent(3)

setpgrp: set process group ID setpgrp(2)
protocol/ /getprotobyname, setprotoent, endprotoent: get getprotoent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent:/ getpwent(3C)
/getservbyport, getservbyname, setservent, endservent: get/ getservent(3)

options on/ getsockopt, setsockopt: get and set getsockopt(2)
lckpwdfy getspent, getspnam, setspent, endspent, fgetspent, getspent(3X)

time, gettimeofday, settimeofday: get/set date and gettimeofday(2)
environment at/ cprofile: setting up a C shell cprofile(4)

login time, profile: setting up an environment at profile(4)
gettydefs: speed and terminal settings used by getty gettydefs(4)

group IDs. setuid, setgid: set user and setuid(2)
setuname: set name of system setuname(lM)

/getutid, getutline, pututline, setutent, endutent, utmpname:/ getut(3C)
stream, setbuf, setvbuf: assign buffering to a setbuf(3S)

data in a/ sputl, sgetl: access long integer sputl(3X)
standard/restricted command/ sh, rsh: shell, the sh(l)

lckpwdf, ulckpwdf: get shadow, /endspent, fgetspent, getspent(3X)
putspent: write shadow password file entry putspent(3X)

shadow: password file shadow(4)
xstr: extract and share strings in C programs xstr(l)

chkshlib: compare shared libraries tool chkshlib(l)
mkshlib: create a shared library mkshlib(l)

operations, shmctl: shared memory control shmctl(2)
queue, semaphore set or shared memory ID./a message ipcrm(l)

shmop: shared memory operations shmop(2)
identifier, shmget: get shared memory segment shmget(2)

nfssys: common shared NFS system calls nfssys(2)
rfadmin: Remote File Sharing administration rfadmin(lM)

rfudaemon: Remote File Sharing daemon process rfudaeroon(lM)
dname: print Remote File Sharing domain and network/ dname(lM)

- lxii -

rfstop: stop the Remote File Sharing environment. rfstop(lM)
rfpasswd: change Remote File Sharing host password rfpasswd(lM)

file, rfmaster: Remote File Sharing name server master rfmaster(4)
nsquery: Remote File Sharing name server query nsquery(lM)

script, rfuadmin: Remote File Sharing notification shell rfuadmin(lM)
unadvettise a Remote File Sharing resource, unadv: unadv(lM)

/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)
rfstart: start Remote File Sharing rfstart(lM)

mapping, idload: Remote File Sharing user and group idload(lM)
rcmd: remote shell command execution rcmd(l)

with C-like syntax, csh: a shell (command interpreter) csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment at login/ cprofile(4)
shl: shell layer manager shl(l)

shutacct, startup, tumacct: shell procedures for/ /runacct, acctsh(lM)
File Sharing notification shell script. /Remote rfuadmin(lM)

rshd: remote shell server. rshd(lM)
command programming/ sh, rsh: shell, the standard/restricted sh(l)

shl: shell layer manager. shl(l)
operations, shmctl: shared memory control shmctl(2)

segment identifier, shmget: get shared memory shmget(2)
operations, shmop: shared memory shmop{2)

mounts, showmount: show all remote showmount(lM)
/prdaily, prtacct, runacct, shutacct, startup, tumacct:/ acctsh(lM)

system, change system state, shutdown, halt: shut down shutdown(lM)
full-duplex connection, shutdown: shut down part of a shutdown(2)

program, sdiff: side-by-side difference sdiff(l)
abort: generate a SIGABRT. abort(3C)

sigpause: signal/ sigset, sighold, sigrelse, sigignore sigset(2)
sigset sighold, sigrelse, sigignore, sigpause: signal/ sigset(2)

login: sign on login(l)
sigrelse, sigignore, sigpause: signal management /sighold sigset(2)
pause: suspend process until signal pause(2)
what to do upon receipt of a signal, signal: specify signal(2)

of processes, kill: send a signal to a process or a group kill(2)
ssignal, gsignal: software signals ssignal(3Q

/sighold, sigrelse, sigignore, sigpause: signal management sigset(2)
signal/ sigset, sighold, sigrelse, sigignore, sigpause: sigset(2)

sigignore, sigpause: signal/ sigset, sighold, sigrelse, sigset(2)
lex: generate programs for simple lexical tasks lex(l)

generator, rand, srand: simple random-number rand(3C)
atan, atan2:/ trig: sin, cos, tan, asin, acos trig(3M)

functions, sinh, cosh, tanh: hyperbolic sinh(3M)
fsize: report file size fsize(l)

get descriptor table size, getdtablesize: getdtablesize(2)
object/size: print section sizes in bytes of common size(l)

detach serial lines as/ slattach, sldetach: attach and slattach(lM)
serial lines as/ slattach, sldetach: attach and detach slattach(lM)

an interval, sleep: suspend execution for sleep(l)
interval, sleep: suspend execution for sleep(3C)

documents, view graphs, and slides, mmt, mvt: typeset mmt(l)
typesetting view graphs and slides, /macro package for mv(5)

linker, load socket/ slink, ldsocket: STREAMS slink(l)
Internet Protocol control/ slipd: switched Serial Line slipd(lM)

current/ ttyslot: find the slot in the utmp file of the ttyslot(3C)
spline: interpolate smooth curve spline(lG)

sno: SNOBOL interpreter. sno(l)
bind: bind a name to a socket bind(2)

- lxviii -

ldsocket: STREAMS linker, load socket configuration, slink, slink(l)
initiate a connection on a socket, connect: connect(2)

communication, socket: create an endpoint for socket(2)
listen for connections on a socket listen: listen(2)

getsockname: get socket name getsockname(2)
receive a message from a socket recv, reevfrom: recv(2)

send to: send a message to a socket, send send(2)
get and set options on sockets, /setsockopt: getsockopt(2)

ctinstall: install software ctinstall(l)
interface, lo: software loopback network Io(7)

ssignal, gsignal: software signals ssignal(3C)
qinstall: install and verify software using the mkfs(l)/ qinstall(l)

sort: sort and/or merge files sort(l)
qsort: quicker sort qsort(3C)

sort: sort and/or merge files sort(l)
tsort: topological sort. tsort(l)

or reject lines common to two sorted files, comm: select comm(l)
bsearch: binary search a sorted table bseardi(3C)

object file, list: produce C source listing from a common list(l)
brk, sbrk: change data segment space allocation brk(2)

/unexpand: expand tabs to spaces, and vice versa expand(l)
terminal, ct: spawn getty to a remote ct(lC)

the/ tapedrives: tape drive specific information used by tapcdnvcs(4)
cftime: language specific strings cftime(4)

fspec: format specification in text files fspec(4)
receipt of a signal, signal: specify what to do upon signal(2)
/set terminal type, modes, speed, and line discipline getty(lM)
/set terminal type, modes, speed, and line discipline uugetty(lM)
used by getty. gettydefs: speed and terminal settings gettydefs(4)

spelling/ spell, hashmake, spellin, hashcheck: find spell(l)
spellin, hashcheck: find spelling errors, /hashmake, spell(l)

curve, spline: interpolate smooth spline(lG)
split: split a file into pieces split(l)

csplit: context split csplit(l)
efl files, fsplit: split FORTRAN, ratfor, or fsplit(l)

uucleanup: uucp spool directory clean-up uucleanup(lM)
lpr: line printer spooler. lpr(l)

lpadmin: configure the LP spooling system lpadmin(lM)
output printf, fprintf, sprintf: print formatted printf(3S)

integer data in a/ sputl, sgetl: access long sputl(3X)
power,/ exp, log, log 10, pow, sqrt: exponential, logarithm, exp(3M)

exponential, logarithm, power, square root functions, /sqrt: exp(3M)
generator, rand, srand: simple random-number rand(3C)

Mrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3C)
input, scanf, fscanf, sscanf: convert formatted scanf(3S)

signals, ssignal, gsignal: software ssignal(3C)
package, stdio: standard buffered input/output stdio(3S)

communication/ stdipc, ftok: standard interprocess stdipc(3C)
sh, rsh: shell, the standard/restricted command/ sh(l)

half-inch tape, stape: SCSI quarter-inch and stape(7)
and output rsterm: manually start and stop terminal input rsterm(lM)

rfstart: start Remote File Sharing rfstart(lM)
operating system for/ starter information about the starter^ 1)

and/Ipsched, lpshut, lpmove: start/stop the LP scheduler lpsched(lM)
/prucct, runacct, shutacct, startup, tumacct: shell/ acctsh(lM)

stat, fstat: get file status stat(2)
useful with graphical/ stat: statistical network stat(lG)
stat: data returned by stat system call stat(5)

- lxiv -

system information, statfs, fstatfs: get file stalfs(2)
with graphical/ stat: statistical network useful stat(lG)

ff: file name and statistics for a file system ff(lM)
nfsstat: Network File System statistics nfsstat(lM)

display serial port error statistics, serstat: serstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
/extract error records and status information from dump errdead(lM)

lpstat: print LP status information Ipstat(l)
feof, clearer!", fileno: stream status inquiries, ferror, ferror(3S)

control, uustat: uucp status inquiry and job uustat(lC)
communication facilities status, /report inter-process ipcs(l)

netstat: show network status netstat(l)
network, ruptime: display status of nodes on local ruptime(l)

ps: report process status ps(l)
rwhod: host status server. rwhod(lM)

stat, fstat: get file status stat(2)
input/output package, stdio: standard buffered stdio(3S)

interprocess communication/ stdipc, ftok: standard stdipc(3C)
stime: set time stime(2)

wait for child process to stop or terminate, wait: wait(2)
rsterm: manually start and stop terminal input and/ rsterm(lM)

rcu: run commands performed to stop the operating system rcO(lM)
environment rfstop: stop the Remote File Sharing rfstop(lM)

nextkey:/ dbminit, fetch, store, delete, firstkey dbm(3X)
messages, strace: print STREAMS trace strace(lM)

strcmp, stmcmp/ string: strcat, strdup, stmcat, string(3C)
/strcpy, stmcpy, strlen, strchr, strrchr, strpbrk/ string(3C)

cleanup program, strclean: STREAMS error logger strclean(lM)
/strcat, strdup, stmcat strcmp, stmcmp, strcpy/ string(3C)

/stmcat, strcmp, stmcmp, strcpy, stmcpy, strlen/ string(3C)
/strrchr, strpbrk, strspn, strcspn, s tit ok: string/ string(3C)
stmcmp/ string: strcat, strdup, stmcat, strcmp string(3C)

sed: stream editor sed(l)
fRush: close or flush a stream, fclose, fclose(3S)

fopen, freopen, fdopen: open a stream fopen(3S)
reposition a file pointer in a stream, fseek, rewind, ftell: fseek(3S)

get character or word from a stream, /getchar, fgetc, getw: getc(3S)
getmsg: get next message off a stream getmsg(2)

fgets: get a string from a stream, gets gets(3S)
put character or word on a stream, /putchar, fputc, putw: putc(3S)

putmsg: send a message on a stream putmsg(2)
puts, fjputs: put a string on a stream puts(3S)

setvbuf: assign buffering to a stream, setbuf, setbuf(3S)
/feof, clearerr, fileno: stream status inquiries ferror(3S)

/routines for returning a stream to a remote command rcmd(3)
rexec: return stream to a remote command rexec(3)

push character back into input stream, ungetc: ungetc(3S)
commands, streamio: STREAMS ioctl streamio(7)

open any minor device on a STREAMS driver, clone: clone(7)
program, strclean: STREAMS error logger cleanup strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
event/log: interface to STREAMS error logging and log(7)

multiplexing, poll: STREAMS input/output poll(2)
streamio: STREAMS ioctl commands streamio(7)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
Interface cooperating STREAMS module. /Transport timod(7)

Interface read/write interface STREAMS module. /Transport tirdwr(7)

- lxv -

sxt: STREAMS multiplexor sxt(7)
strace: print STREAMS trace messages strace(lM)

daemon, strerr: STREAMS error logger strerr<lM)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

convert date and time to string, /ascftime, tzset: ctime(3C)
floating-point number to string, /fcvt, gcvt: convert ecvt(3C)

search a file for a character string, fgrep: fgrep(l)
gps: graphical primitive string, format of graphical/ gps(4)

gets, fgets: get a string from a stream gets(3S)
puts, fputs: put a string on a stream puts(3S)

bemp, bzero: bit and byte string operations, bcopy bstring(3)
strspn, strcspn, strtok: string operations, /strpbrk, string(3C)

number, strtod, atof: convert string to double-precision strtod(3C)
strtol, atol, atoi: convert string to integer strtol(3C)

cftime: language specific strings cftime(4)
text strings in a file, strings: extract the ASCII strings(l)

extract the ASCII text strings in a file, strings: strings(l)
xstr: extract and share strings in C programs xstr(l)

number information from a/ strip: strip symbol and line strip(l)
information from a/ strip: strip symbol and line number strip(l)
/strncmp, strcpy, stmcpy, strlen, strchr, strrchr,/ string(3C)

string: streat, strdup, stmcat, strcmp, strncmp,/ string(3C)
/strdup, stmcat, strcmp, strncmp, strcpy, stmcpy,/ string(3C)

/strcmp, strncmp, strcpy, stmcpy, strlen, strchr,/ string(3C)
/strlen, strchr, strrchr, strpbrk, strspn, strcspn,/ string(3C)

/stmcpy, strlen, strchr, strrchr, strpbrk, strspn/ string(3C)
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/ string(3C)

to double-precision number, strtod, atof: convert string strtod(3C)
/strpbrk, strspn, strcspn, strtok: string operations string(3C)

string to integer, strtol, atol, atoi: convert strtol(3C)
processes using a file or file structure, fuser: identify fuser(lM)

t_alloc: allocate a library structure. t_alloc(3n)
t_free: free a library structure t_free(3n)

terminal, stty: set the options for a stty(l)
another user, su: become super-user or su(lM)

firstkey, nextkey: database subroutines, /store, delete, dbm(3X)
dbm_clearerr: database subroutines. /dbm_error, ndbm(3X)
plot: graphics interface subroutines plot(3X)

/same lines of several files or subsequent lines of one file paste(l)
count of a file, sum: print checksum and block sum(l)

du: summarize disk usage du(lM)
accounting/ acct cms: command summary from per-process acctcms(lM)

base, rpc: Sun rpc program number data rpc(4)
sync: update the super block sync(lM)

sync: update super block sync(2)
inetd: internet "super-server". . . inetd(lM)

/file for inetd (internet "super-server") inetd.conf(4)
su: become super-user or another user su(lM)

interval, sleep: suspend execution for an sleep(l)
interval, sleep: suspend execution for sleep(3C)

pause: suspend process until signal pause(2)
swab: swap bytes swab(3C)

swap: swap administrative interface swap(lM)
swab: swap bytes swab(3C)

interface, swap: swap administrative swap(lM)
Protocol control/ slipd: switched Serial Line Internet slipd(lM)

file, swrite: synchronous write on a swrite(2)
sxt: STREAMS multiplexor sxt(7)

- lxvi -

information from/ strip: strip
file/ ldgetname: retrieve

name for common object file
object/ /compute the index of a

ldtbread: read an indexed
syms: common object file

object/ ldtbseek: seek to the
unistd: file header for

sdb:
common CTIX system terms and

mkdbsym: load
symbol table format

/correct the time to allow
update: provide disk

t_sync:
select:
swrite:

interpreter) with C-like
definition,

error/ perror, ermo,
information,

requests,
perror, ermo, sys_errlist,

shutdown, halt: shut down
binary search a sorted

for common object file symbol
/compute the index of a symbol

file, /read an indexed symbol
common object file symbol
master device information

mnttab: mounted file system
ldtbseek: seek to the symbol

/dtoc, ttoc, vtoc: graphical
remotely mounted file system

I/O Processor configuration
setmnt: establish mount

getdtablesize: get descriptor
classification and conversion

tbl: format
hdestroy: manage hash search

manipulate the routing
tabs: set

expand, unexpand: expand
requesL

ctags: create a
a file,
talk:

communication server.
structure.

trigonometric/ trig: sin, cos,
sinh, cosh,

V/TAPE 3200 half-inch
set drive parameters for

information used/ tapedrives:
tsioctl: facilitate usage of a

Hewlett-Packard 2645A terminal

symbol and line number strip(l)
symbol name for common object ldgetname(3X)
symbol table entry, /symbol ldgetname(3X)
symbol table entry of a common ldtbindex(3X)
symbol table entry of a common/ ldtbread(3X)
symbol table format syms(4)
symbol table of a common ldtbseek(3X)
symbolic constants unistd(4)
symbolic debugger. sdb(l)
symbols, /definitions of glossary(l)
symbols in kernel debugger mkdbsym(lM)
syms: common object file syms(4)
sync: update super block sync(2)
sync: update the super block sync(lM)
synchronization of the system/ adjtime(2)
synchronization update(lM)
synchronize transport library t_sync(3n)
synchronous I/O multiplexing select(2)
synchronous write on a file swrite(2)
syntax, csh: a shell (command csh(l)
sysdef: output system sysdef(lM)
sys_errlist, sys_nerr system perror(3C)
sysfs: get file system type sysfs(2)
syslocal: special system syslocal(2)
sys_nerr: system error/ perror(3C)
system, change system state shutdown(lM)
table, bsearch: bsearch(3C)
table entry, /symbol name ldgetname(3X)
table entry of a common object/ ldtbindex(3X)
table entry of a common object ldtbread(3X)
table format syms: syms(4)
table, master master(4)
table. mnttab(4)
table of a common object file ldtbseek(3X)
table of contents routines toc(lG)
table, rmtab: rmtab(4)
table, rtab: Remote rtab(4)
table setmnt(lM)
table size getdtablesize(2)
tables, /generate character chrtbl(lM)
tables for nroff or troff. tbl(l)
tables, hsearch, hcreate, hsearch(3C)
tables, route: manually route(lM)
tabs on a terminal ubs (l)
tabs to spaces, and vice/ expand(l)
t_accept: accept a connect t_accept(3n)
tags file ctags(l)
tail: deliver the last part of tail(l)
talk to another user talk(l)
talkd: remote user talkd(lM)
t_alloc: allocate a library t_alloc(3n)
tan, asin, acos, atan, atan2: trig(3M)
tanh: hyperbolic functions sinh(3M)
tape controller. /Interphase ipt(7)
tape controllers, tape set: tapeset(lM)
tape drive specific tapedrives(4)
tape drive. tsioctl(l)
tape file archiver. hpio: hpio(l)

- lxvii -

tar: tape file archiver t»Kl)
recover files from a backup tape, free: frec(lM)

tio: Upe io filter tio(l)
qic: interface for QIC tape qic(7)

quarter-inch and half-inch tape, stape: SCSI stape(7)
specific information used by/ tapedrives: Upe drive tapedrives(4)

for Upe controllers. Upeset: set drive parameters tapeset(lM)
tar: tape file archiver. tar(l)

programs for simple lexical Usks. lex: generate lex(l)
transport endpoint. t_bind: bind an address to a t_bind(3n)

deroff: remove nroflAroff, tbl, and eqn constructs deroff(l)
ortroff. tM: format Ubles for nroff tbl(l)

endpoint. t_close: close a transport t_close(3n)
connection with another/ t_connect: establish a t_connect(3n)

Control Protocol, tcp: Internet Transmission tcp(7)
/hpd, erase, hardcopy, tekset, td: graphical device routines/ gdev(lG)

search trees, tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

tee: pipe fitting tee(l)
gdev: hpd, erase, hardcopy, tekset, td: graphical device/ gdev(lG)

4014: paginator for the Tektronix 4014 terminal 4014(1)
initialization, init, telinit: process control init(lM)

directory: opendir, readdir, telldir, seekdir, rewinddir,/ directory(3X)
telnetd: DARPA TELNET protocol server telnetd(lM)

telnet: user interface to TELNET protocol. telnet(l)
TELNET protocol, telnet: user interface to telnet(l)

server, telnetd: DARPA TELNET protocol telnetd(lM)
temporary file, tmpnam, tempnam: create a name for a tmpnam(3S)

tmpfile: create a temporary file tmpfile(3S)
tempnam: create a name for a temporary file, tmpnam, tmpnam(3S)

terminals, term: conventional names for term(5)
term: format of compiled term file term(4)

terminfo/ captoinfo: convert a termcap description into a captoinfo(lM)
data base, termcap: terminal capability termcap(4)

for the Tektronix 4014 terminal. 4014: paginator 4014(1)
functions of the DASI 450 terminal. 450: handle special 450(1)

interface, tiop: terminal accelerator tiop(7)
termcap: terminal capability data base termcap<4)
terminfo: terminal capability data base terminfo(4)

console: console terminal console(7)
ct: spawn getty to a remote terminal ct(lC)

generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download tdl(l)

Aerminal interface, and terminal environment. tset(l)
greek: select terminal filter. greek(l)

Agetstr, tgoto, tputs: terminal independent/ otermcap(3X)
/manually suit and stop terminal input and output. rsterm(lM)

terminal/ tset: set terminal, terminal interface, and tset(l)
termio: general terminal interface termio(7)
tty: controlling terminal interface tty(7)

dial: esublish an out-going terminal line connection dial(3C)
list of terminal types by terminal number, ttytype: ttytype(4)

database, tput: initialize a terminal or query terminfo tput(l)
clean clear terminal screen clear(l)

optimization package, curses: terminal screen handling and curses(3X)
script: make typescript of terminal session script(l)

getty. gettydefs: speed and terminal settings used by gettydefs(4)
stty: set the options for a terminal stty(l)

- lxviii -

labs: set labs on a terminal. tabs(l)
hpio: Hewlett-Packard 2645A terminal tape file archiver. hpio(l)

and terminal/ tset: set terminal, terminal interface tset(l)
system/ conlocate: locate a terminal to use as the virtual conlocate(lM)

tty: get the name of the terminal tty(l)
isatty: find name of a terminal, ttyname, ttyname(3C)

and line/ getty: set terminal type, modes, speed, getty(lM)
and line/ uugetty: set terminal type, modes, speed, uugetty(lM)

number, ttytype: list of terminal types by terminal ttytype(4)
vt: virtual terminal vt(7)

functions of DASI 300 and 300s terminals, /handle special 300(1)
functions of Hewlett-Packard terminals, hp: handle special hp(l)

channels, tp: controlling terminal's local RS-232 tp(7)
term: conventional names for terminals term(S)

kill: terminate a process kill(l)
exit, exit: terminate process exit(2)

demon, errs top: terminate the error-logging errstop(lM)
for child process to stop or terminate, wait: wait wait(2)

tic: terminfo compiler. tic(lM)
initialize a terminal or query terminfo database, tput: tput(l)
a termcap description into a terminfo description, /convert captoinfo(lM)

infocmp: compare or print out terminfo descriptions infocmp(lM)
data base, terminfo: terminal capability terminfo(4)
interface, termio: general terminal termio(7)

/of common CTIX system terms and symbols glossary(l)
message. t_error: produce error t_enor<3n)

command, test: condition evaluation test(l)
isnan: isnand, isnanf: test for floating point NaN/ isnan(3C)

quiz: test your knowledge quiz(6)
ed, red: text editor. ed(l)

ex: text editor. ex(l)
casual users), edit: text editor (variant of ex for edit(l)

change the format of a text file, newfoim: newform(l)
fspec: format specification in text files fspec(4)

/checkeq: format mathematical text for nroff or troff. eqn(l)
prepare constant-width text for troff. cw, checkcw: cw(l)

ms: text formatting macros ms(5)
nroff: format text. nroff(l)

plock: lock process, text, or data in memory plock(2)
more, page: text perusal more(l)

strings: extract the ASCII text strings in a file strings(l)
troff: typeset text troff(l)

binary search trees, tsearch, tfind, tdelete, twalk: manage tsearch(3C)
structure, t free: free a library t_free(3n)

user interface to the DARPA TFTPprotocol. tftp: tftp(l)
DARPA TFTP protocol, tftp: user interface to the tftp(l)
Transfer Protocol server, tfipd: DARPA Trivial File tftpd(lM)

tgetstr, tgoto, tputs:/ tgetent, tgetnum, tgetflag, otermcap(3X)
tputs:/ tgetent, tgetnum, tgetflag, tgetstr, tgoto, otermcap(3X)

protocol-sped fic service/ t__getinfo: get t_getinfo(3n)
tgoto, tputs:/ tgetent, tgetnum, tgetflag, tgetstr, otermcap(3X)

state. t_getstate: get the current t_getstate(3)
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:/ otermcap(3X)
/tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal/ otermcap(3X)

tic: terminfo compiler. tic(lM)
at, cubic: tic-Uc-toe ttt(6)

data and system/ timex: time a command; report process timex(l)
time: time a command time(l)

- lxix -

execute commands at a later
a C shell environment at login

systems for optimal access

settimeofday: get/set date and
profil: execution

up an environment at login
stime: set
time: get

of the/ adjtime: correct the
tzset: convert date and

clock: report CPU
timezone: set default system

process times,
update access and modification

get process and child process
file access and modification

process data and system/
time zone.

cooperating STREAMS module.

interface.
read/write interface STREAMS/

request,
event on a transport/

file.
for a temporary file,

/isascii, tolower, toupper,
/tolower, toupper, tolower,

graphical table of contents/
popen, pclose: initiate pipe

/toupper, tolower, _toupper,
tolower, toupper, toascci,

toascii:/ conv: toupper,
compare shared libraries

endpoint.
tsort:

a transport endpoint.
acctmerg: merge or add

modification times of a file.
Aoupper, toascci, tolower,

conv: toupper, tolower,
local RS-232 channels.

query terminfo database.
Agetflag, tgetstr, tgoto,

strace: print STREAMS
ptrace: process

error logging and event
ftp: ARPANET file

ftpd: DARPA Internet File
tftpd: DARPA Trivial File

/ toupper, _tolower, toascii:
tr:

tcp: Internet
t bind: bind an address to a

t_close: close a

time, at, batch: at(l)
time, cprofile: setting up cprofile(4)
time, dcopy: copy file dcopy(lM)
time: get time time(2)
time, gettimeofday gettimeofday(2)
time profile profil(2)
time, profile: setting profile(4)
time stime(2)
time time(2)
time to allow synchronization adjtime(2)
time to string, /ascftime, ctime(3C)
time used clock(3C)
time zone timezone(4)
times: get process and child times(2)
times of a file, touch: touch(l)
times, times: times(2)
times, utime: set utime(2)
timex: time a command; report timex(l)
timezone: set default system timezone(4)
timod: Transport Interface timod(7)
tio: Upe io filter tio(l)
tiop: terminal accelerator tiop(7)
tirdwr: Transport Interface tirdwr(7)
t_listen: listen for a connect t_listen(3n)
t_look: look at the current t_look(3n)
tmpfile: create a temporary tmpfile(3S)
tmpnam, tempnam: create a name tmpnam(3S)
toascci, _tolower, _toupper,/ ctype(3C)
toascii: translate characters conv(3C)
toe: dtoc, ttoc, vtoc: toc(lG)
to/from a process popen(3S)
_tolower, toascii: translate/ conv(3C)
_tolower, _touppery /isascii, ctype(3C)
tolower, _toupper, _tolower, conv(3C)
tool, chkshlib: chkshlib(l)
t_open: establish a transport t_open(3n)
topological sort. tsort(l)
t_optmgmt: manage options for t_optmgmt(3n)
total accounting files acctmerg(lM)
touch: update access and touch(l)
_toupper, setchrclass:/ ctype(3C)

toupper, _tolower, toascii:/ conv(3C)
tp: controlling teiminal's tp(7)
tplot: graphics filters tplot(lG)
tput: initialize a terminal or tput(l)
tputs: terminal independent/ otermcap(3X)
tr: translate characters tr(l)
trace messages strace(lM)
trace ptrace(2)
tracing, /interface to STREAMS log(7)
transfer program ftp(l)
Transfer Protocol server. ftpd(lM)
Transfer Protocol server. tftpd(lM)
translate characters conv(3C)
translate characters tr(l)
Transmission Control Protocol tcp(7)
transport endpoint t_bind(3n)
transport endpoint t_close(3n)

- lxx -

lo t* at the current event on a transport endpoint. t look: t_look(3n)
t_open: establish a transport endpoint t_open(3n)

/manage options for a transport endpoint t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

cooperating STREAMS/ timod: Transport Interface timod(7)
interface STREAMS/ tirdwr: Transport Interface read/write tirdwr(7)

t sync : synchronize transport library t_sync(3n)
system, uucico: file transport program for the uucp uucico(lM)

nlsproviden get name of transport provider. nlsprovider(3n)
a connection with another transport user, /establish t_connect(3n)

expedited data sent over a/ t_rcv: receive data or t_rcv(3n)
confirmation from a connect/ t_rcvconnect: receive the t_rcvconnect(3)

from disconnect. t_rcvdis: retrieve information t_rcvdis(3n)
of an orderly release/ t_rcvrel: acknowledge receipt t_rcvrel(3n)

unit t_rcvudata: receive a data t_rcvudata(3)
data error indication. t_rcvuderr: receive a unit t_rcvuderr(3)

ftw: walk a file tree ftw(3C)
twalk: manage binary search trees. Afind, tdelete tsearch(3C)

trie: trekkie game trk(6)
tan, asin, acos, atan, atan2: trigonometric functions, /cos, trig(3M)

server, tftpd: DARPA Trivial File Transfer Protocol tftpd(lM)
trk: trekkie game trk(6)

constant-width text for Iron. cw, cneckcw: prepare cw(l)
mathematical text for nroff or troff. /neqn, checkeq: format eqn(l)

typesetting view graphs/mv: a troff macro package for mv(5)
format tables for nroff or troff. tbl: tbl(l)

troff: typeset text. troff(l)
true, false: provide truth values true(l)

with debugging on. Uutry: try to contact a remote system Uutry(lM)
twalk: manage binary search/ tsearch, tfind, tdelete, tseatch(3C)

interface, and terminal/ tset: set terminal, terminal tset(l)
tape drive, tsioctl: facilitate usage of a tsioctl(l)

data over a connection. t_snd: send data or expedited t_snd(3n)
disconnect request t_snddis: send user-initiated t_snddis(3n)

release. t_sndrel: initiate an orderly t_sndrel(3n)
t_sndudata: send a data unit t_sndudata(3)
tsort: topological sort tsort(l)

library. t_sync: synchronize transport t_sync(3n)
contents routines, toe: dtoc, ttoc, vtoc: graphical table of toc(lG)

ttt, cubic: tic-tac-toe ttt(6)
interface, tty: controlling terminal tty(7)
terminal, tty: get the name of the tty(l)

a terminal, ttyname, isatty: find name of ttyname(3C)
utmp file of the current/ ttyslot: find the slot in the ttyslot(3C)

types by terminal number, ttytype: list of terminal ttytype(4)
endpoint. t_unbind: disable a transport t_unbind(3n)

/runacct, shutacct, startup, tumacct: shell procedures forI acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary search/ tsearch(3C)

file: determine file type. file(l)
sysfs: get file system type information sysfs(2)

getty: set terminal type, modes, speed, and line/ getty(lM)
uugetty: set terminal type, modes, speed, and line/ uugetty(lM)

ttytype: list of terminal types by terminal number. ttytype(4)
nodes for assorted device types, /create device createdev(lM)

types, types: primitive system data types(5)
types: primitive system data types types(5)

session, script: make typescript of terminal script(l)
graphs, and slides, mmt, mvt: typeset documents, view mmt(l)

- l x i i -

troff: typeset text. troff(l)
mv: a troff macro package for typesetting view graphs and/ mv(5)
to/ /asctime, cftime, ascftime, tzset: convert date and time ctime(3C)

control, uadmin: administrative uadmin(lM)
control, uadmin: administrative uadmin(2)
system, uconf: configure the operating uconf(lM)

Protocol, udp: Internet User Datagram udp(7)
getpw: get name from UID getpw(3C)

ul: do underlining ul(l)
/endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)

limits, ulimit: get and set user ulimit(2)
creation mask, umask: set and get file umask(2)

mask, umask: set file-creation mode umask(l)
systems and remote/ mount, umount: mount and unmount file mount(lM)

umount: unmount a file system umount(2)
multiple file/ mountall, umountall: mount, unmount mountall(lM)

File Sharing resource, unadv: unadvertise a Remote unadv(lM)
Sharing resource, unadv: unadvertise a Remote File unadv(lM)

CTIX system, uname: get name of current uname(2)
CTIX system, uname: print name of current uname(l)

ul: do underlining ul(l)
file, unget: undo a previous get of an SCCS unget(l)

spaces, and vice/ expand, unexpand: expand tabs to cApand(l)
an SCCS file, unget: undo a previous get of unget(l)

into input stream, ungetc: push character back ungetc(3S)
/seed48, lcong48: generate uniformly distributed/ drand48(3C)

a file, uniq: report repeated lines in uniq(l)
mktemp: make a unique file name mktemp(3C)

gethostid, sethostid: get/set unique identifier of current/ gethostid(2)
symbolic constants, unistd: file header for unistd(4)

t_rcvuderr: receive a unit data error indication t_rcvuderr(3)
t_rcvudata: receive a data unit. t_rcvudata(3)

t.sndudata: send a data unit t_sndudata(3)
units: conversion program units(l)

mc68k, miti, mini, mega, unixpc,. machid: machid(l)
execution, uux: UNIX-to-UNIX system command uux(lC)

uucp, uulog, uuname: UNIX-to-UNIX system copy uucp(lC)
uuto, uupick: public UNIX-to-UNIX system file copy uuto(lC)

link, unlink: link and unlink files and directories link(lM)
entry, unlink: remove directory unlink(2)

umount: unmount a file system umount(2)
mount, umount: mount and unmount file systems and/ mount(lM)

mountall, umountall: mount, unmount multiple file systems mountall(lM)
nmountall, numountall: mount, unmount Network File System/ nmountall(lM)

resource, fumount: forced unmount of an advertised fumount(lM)
rmountall, rumountall: mount, unmount Remote File Sharing/ rmountall(lM)

manage notifications, notify, urmotify, evwait, evnowait: notify(2)
files, pack, peat, unpack: compress and expand pack(l)

times of a file, touch: update access and modification touch(l)
of programs, make: maintain, update, and regenerate groups make(l)

pwconv: install and update /etc/shadow with/ pwconv(lM)
pwunconv: install and update /etc/shadow with/ pwunconv(lM)

lfind: linear search and update, lsearch, lsearch(3C)
synchronization, update: provide disk update(lM)

sync: update super block sync(2)
masterupd: update the master file masterupd(lM)

sync: update the super block sync(lM)
du: summarize disk usage du(lM)

- lxxii -

a command description and usage examples, /retrieve usage(l)
tsioctl: facilitate usage of a tape drive. tsioctl(l)

description and usage/ usage: retrieve a command usage(l)
stat: statistical network useful with graphical/ stat(lG)

id: print user and group IDs and names id(lM)
setuid, setgid: set user and group IDs seuiid(2)

idload: Remote File Sharing user and group mapping idload(lM)
talkd: remote user communication server. talkd(lM)

crontab: user crontab file crontab(l)
character login name of the user, cuserid: get cuserid(3S)

udp: Internet User Datagram Protocol udp(7)
/getgid, getegid: get real user, effective user, real/ getuid(2)

environ: user environment envinon(5)
disk accounting data by user ID. diskusg: generate diskusg(lM)

program, finger: user information lookup finger(l)
fingerd: remote user information server. fingerd(lM)

protocol, telnet: userinterfacetoTEL.NET telnet(l)
TFTP protocol, tftp: user interface to the DARPA tftp(l)

ulimit: get and set user limits ulimit(2)
logname: return login name of user. logname(3X)

/get real user, effective user, real group, and/ getuid(2)
become super-user or another user, su: su(lM)

talk: talk to another user. talk(l)
with another transport user, /establish a connection t_connect(3n)

the utmp file of the current user, /find the slot in ttyslot(3C)
write: write to another user. write(l)

request. t_snddis: send user-initiated disconnect t_snddis(3n)
(variant of ex for casual users), edit: text editor edit(l)

mail, rmail: send mail to users or read mail mail(l)
rhosts: remote equivalent users rhosts(4)

operating system for beginning users, /information about the starter(l)
wall: write to all users wall(l)

fusen identify processes using a file or file/ fuser(lM)
search a file for a pattern using full regular/ egrep: egrep(l)

identify a CTDC system command using keywords, locate: locate(l)
assist: assistance using CTIX system commands assist(l)

/install and verify software using the mkfs(l) proto file/ qinstall(l)
failed login attempts, /usr/adm/loginlog: log of loginlog(4)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

modification times, utime: set file access and utime(2)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

endutent, utmpname: access utmp file entry, /setutent getut(3C)
ttyslot: find the slot in the utmp file of the current user ttyslot(3C)

/pututline, setutent, endutent, utmpname: access utmp file/ getut(3C)
directories and permissions/ uucheck: check the uucp uucheck(lM)

for the uucp system, uucico: file transport program uucico(lM)
directory clean-up. uucleanup: uucp spool uucleanup(lM)

/configuration file for uucp communications lines Devices(5)
uucheck: check the uucp directories and/ uucheck(lM)

uucpd, ouucpd: network uucp servers uucpd(lM)
uucleanup: uucp spool directory clean-up uucleanup(lM)

control, uustat: uucp status inquiry and job uustal(lC)
file transport program for the uucp system, uucico: uucico(lM)

uusched: the scheduler for the UUCP system uusched(lM)
UNIX-to-UNIX system copy, uucp, uulog, uuname: uucp(lC)

servers, uucpd, ouucpd: network uucp uucpd(lM)
modes, speed, and line/ uugetty: set terminal type, uugetty(lM)

lxxiii -

system copy, uucp, uulog, uuname: UNIX-to-UNIX uucp(lC)
copy, uucp, uulog, uuname: UNIX-to-UNIX system uucp(lC)

system file copy, uuto, uupick: public UNIX-to-UNIX uuto(lC)
UUCP system, uusched: the scheduler for the uusched(lM)

and job control, uustat: uucp status inquiry uustat(lC)
UNIX-to-UNIX system file/ uuto, uupick: public uuto(lC)
system with debugging on. Uutry: try to contact a remote Uutry(lM)

command execution, uux: UNIX-to-UNIX system uux(lC)
requests, uuxqt: execute remote command uuxqt(lM)

val: validate SCCS file val(l)
abs: return integer absolute value abs(3C)

getenv: return value for environment name getenv(3C)
ceiling, remainder, absolute value functions, /fabs: floor floor(3M)

putenv: change or add value to environment putenv(3C)
/htons, ntohl, ntohs: convert values between host and/ byteorder(3)

values, values: machine- dependent values(S)
true, false: provide truth values true(l)

values: machine-dependent values values(5)
/print formatted output of a varargs argument list vprintf(3S)

argument list, varargs: handle variable varargs(5)
varargs: handle variable argument list varargs(5)

users), edit: text editor (variant of ex for casual edit(l)
vc: version control vc(l)

option letter from argument vector, getopt: get getopt(3C)
assert: verify program assertion asseit(3X)

mkfs(l)/ qinstall: install and verify software using the qinstall(l)
tabs to spaces, and vice versa, /unexpand: expand expand(l)

vc: version control vc(l)
get: get a version of an SCCS file get(l)

sccsdiff: compare two versions of an SCCS file sccsdiff(l)
formatted output of/ vprintf, vfprintf, vsprintf: print vprintf(3S)

manipulate Volume Home Blocks (VHB). libdev: libdev(3X)
display editor based on ex. vi: screen-oriented (visual) vi(l)
expand tabs to spaces, and vice versa, expand, unexpand: expand(l)

mmt, mvt: typeset documents, view graphs, and slides mmt(l)
macro package for typesetting view graphs and slides. Aroff mv(5)

/a terminal to use as the virtual system console conlocate(lM)
vt: virtual terminal vt(7)

on ex. vi: screen-oriented (visual) display editor based vi(l)
vme: VME bus interface vme(7)

file system, volcopy: make literal copy of volcopy(lM)
file system: format of system volume, fs: fs(4)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
iv: initialize and maintain volume iv(l)

print formatted output of a/ vprintf, vfprintf, vsprintf: vprintf(3S)
vt: virtual terminal vt(7)

ipt: interface for Interphase V/TAPE 3200 half-inch upe/ ipt(7)
contents/ toe: dtoc, ttoc, vtoc: graphical Uble of toc(lG)

process, wait: await completion of wait(l)
or terminate, wait: wait for child process to stop wait(2)

ftw: walk a file tree ftw(3C)
wall: write to all users wall(l)
wc: word count wc(l)
what: identify SCCS files what(l)

signal, signal: specify what to do upon receipt of a signal(2)
whodo: who is doing what whodo(lM)

network, rwho: who is logged in on local rwho(l)
who: who is on the system who(l)

- lxxiv -

whodo: who is doing what. whodo(lM)
fold long lines for finite width output device, fold: fold(l)

window: window management primitives window(7)
wm: window management wm(l)

primitives, window: window management window(7)
wm: window management wm(l)

cd: change working directory cd(l)
chdir: change working directory chdir(2)

get path-name of current working directory, getcwd: getcwd(3C)
pwd: working directory name pwd(l)

swrite: synchronous write on a file swrite(2)
write: write on a file write(2)

putpwent: write password file entry putpwent(3C)
entry, putspent: write shadow password file putspent(3X)

wall: write to all users wall(l)
write: write to another user write(l)

write: write on a file write(2)
open: open for reading or writing open(2)

utmp, wtmp: utmp and wtmp entry formats ulmp(4)
accounting records, fwtmp, wtmpfix: manipulate connect fwtmp(lM)

hunt-the-wumpus. wump: the game of wump(6)
list(s) and execute command, xargs: construct argument xsrgs(l)

strings in C programs, xstr: extract and share xstr(l)
bessel: jO, j l , jn, yO, yl , yn: Bessel functions bessel(3M)

bessel: jO, j l , jn, yO, y l , yn: Bessel functions bessel(3M)
compiler-compiler, yacc: yet another yacc(l)

bessel: jO, j l , jn ,yO,yl , yn: Bessel functions bessel(3M)
set default system time zone, timezone: timezone(4)

- lxxv -

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C structure declarations
for the file formats are given where applicable. Usually, the header files
containing these structure declarations can be found in the directories
/usr/include or /usr/include/sys. For inclusion in C language programs,
however, the syntax #include <filename.h> or #include <sys/filename.h>
should be used.

Entries suffixed by (4) describe the configuration files used with the CTIX
networking packages. These files can be manipulated directly (by using a text
editor) or by using adman(1).

NOTES
CTIX Internetworking manual pages frequently cite appropriate Requests for
Comments (RFCs). RFCs can be obtained from the DDN Network Information
Center, SRI International, Menlo Park, CA 94025.

SEE ALSO
CTIX Network Administrator's Guide.

A.OUT(81) A.OUT (4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
The file name a.out is the default output file name from the link editor ld(1).
The link editor will make a.out executable if there were no errors in linking.
The output file of the assembler os(l) , also follows the common object file
format of the a.out file although the default file name is different

A common object file consists of a file header, a CTIX system header (if the file
is link editor output), a table of section headers, relocation information,
(optional) line numbers, a symbol table, and a string table. The order is given
below.

File header.
CTIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and string
table) may be missing if the program was linked with the -s option of ld(l) or if
they were removed by strip(1). Also note that the relocation information will
be absent after linking unless the -r option of ld(l) was used. The string table
exists only if the symbol table contains symbols with names longer than eight
characters.

The sizes of each section (contained in the header, discussed below) are in
bytes.

A.OUT(82) A.OUT (4)

When an a.out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O's), and a stack. For
files created with the -N or the -z option to Id (these are files with magic
number 0407 and 0413, respectively), the text segment begins at location
0x80000 in the core image. For files created with the -F option to Id (these are
files with magic number 0413), the text segment begins at 0x80000 plus an
offset equal to the size of the headers: thus, the location of the text segment
varies with the number of section headers in the a.out file. When the -F option
is used to create an a.out file that has three sections (.text, .data, and .bss), the
first address is at 0x800a8. The header is never loaded, except in the case of
files with magic number 0413 created with the -F option to Id.

If the magic number is 0407, the text segment is not to be write-protected or
shared; the data segment is contiguous with the text segment. If the magic
number is 0413, the text segment permits demand paging and the text is not
writable by the program.

Both the -z and -F options of the loader ld{ 1) create a.out files with magic
numbers 0413. If the -z option is used, both the text and data sections of the file
are on 1024-byte boundaries. If the -F option is used, the text and data sections
of the file are contiguous. Loading a single 4096-byte page into memory
requires 4 transfers of 1024 bytes each for -z, and typically one transfer of 4096
bytes for -F. Thus a.out files created with -F can load faster and require less
disk space.

The stack begins at the end of memory and grows towards lower addresses. The
stack is automatically extended as required. The data segment is extended only
as requested by the brk(2) system call.

For relocatable files the value of a word in the text or data portions that is not a
reference to an undefined external symbol is exactly the value that will appear
in memory when the file is executed. If a word in the text involves a reference
to an undefined external symbol, there will be a relocation entry for the word,
the storage class of the symbol-table entry for the symbol will be marked as an
"external symbol", and the value and section number of the symbol-table entry
will be undefined. When the file is processed by the link editor and the external
symbol becomes defined, the value of the symbol will be added to the word in
the file.

A.OUT(4) A.OUT(4)

File Header
The format of the filehdr header is

struct filehdr
{

unsigned short fmagic; /* magic number */
unsigned short f_nscns; /* number of sections •/
long Mimdat; /» time and date stamp */
long fsymptr; /* file ptr to symtab */
long f_nsyms; /» # symtab entries */
unsigned short fopthdr; /* sizeof(opt hdr) */
unsigned short f j lags; /» flags */

};
CTIX System Header

The format of the CTIX system header is

typedef struct aouthdr
{

short magic;
short vstamp;
long tsize;
long
long
long
long
long

} AOUTHDR;

dsize;
bsize;
entry;
text_start;
data_start;

/* magic number */
I* version stamp */
/* text size in bytes, padded */
I* initialized data (.data) */
/* uninitialized data (.bss) */
/* entry point */
/• base of text used for this file */
/* base of data used for this file */

- 3 -

A.OUT(4) A.OUT (4)

Section Header
The format of the section header is

struct scnhdr
{

char s_name[SYMNM LEN]; /* section name */
long s_paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size */
long sscnptr; /* file ptr to raw data */
long s_relptr; /* file ptr to relocation */
long sjnnoptr; /• file ptr to line numbers */
unsigned short snreloc; 1* # reloc entries */
unsigned short snlnno; /* # line number entries */
long sflags; /'* flags */'

};
Relocation

Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format:

struct reloc

{
long r_vaddr; /* (virtual) address of reference */
long r_symndx; /* Index into symbol table */
unsigned short r_type; /* relocation type */

};
The start of the relocation information is srelptr from the section header. If
there is no relocation information, s relptr is 0.

A.OUT(85) A.OUT (4)

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#deflne FiLNMLEN 14
#define DIMNUM 4

struct syment
{

union
{

char
struct
{

iong
long

}_n_n;
char

}_n;
long
short
unsigned short
char
char

};

I* get a symbol name */

_n_name{SYMNMLEN]; /* name of symbol •/

_n_zeroes; /* == OL If In string table */
n offset; /* location in string table */

_n_nptr[2]; / allows overlaying */

n_value; /* value of symbol */
n scnum; /« section number */
n_type; /* type and derived type */
n sclass; /* storage class */
n numaux; /• number of aux entries */

#define n name _n._n_name
#define n_zeroes n. n n. n zeroes
#define n offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[1]

Some symbols require more information than a single entry; they are followed
by auxiliary entries that are the same size as a symbol entry. The format
follows.

A.OUT(4) A.OUT(4)

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short xjnno;
unsigned short x_size;

} x lnsz;
long x_fsize;

} x_misc;
union {

struct {
long xjnnoptr;
!or>n * endndx;

} x_fcn;
struct {

unsigned short x_dimen[DlMNUM];

}
} x_fcnary;
unsigned short x_tvndx;

} x sym;

struct {
char x_fname[FILNMLEN];

} x_file;

struct {
long xscnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} *Jv;
};

- 6 -

A.OUT(87) A.OUT (4)

Indexes of symbol table entries begin at zero. The start of the symbol table is
f_symptr (from the file header) bytes from the beginning of the file. If the
symbol table is stripped ,f_symptr is 0. The string table (if one exists) begins at
fjymptr + (f nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(l), cc(l), ld(l), brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), scnhdr(4),
syms(4).

ALIASES(4) (CTIX Internetworking) ALIASES(4)

NAME
aliases - aliases file for sendmail

SYNOPSIS
/usr/lib/aliases

DESCRIPTION
This file describes user id aliases used by the sendmail (1M) program. Entries
are of three possible forms:

• A series of names of the form

name: name_1, name2, name_3,...

where name is the name to alias, and the namen are the aliases for
that name.

• A name with an include file specification of the form

name: :include:fllename

where name is the name to alias, and filename is the full pathname of a
file containing a list of aliases.

• A name with a pipe command specification of the form

name: | command

where name is the name to alias, and command is a shell command to
be executed with the message as standard input.

All three forms can be combined in one entry.

If there are spaces within a name or command, it must be enclosed in double
quotes.

Lines beginning with white space are continuation lines. Lines beginning with
are comments.

Aliasing occurs only on local names. Loops can not occur, since no message
will be sent to any person more than once.

After aliasing has been done, local and valid recipients who have a list of users
defined in that file.

/usr/lib/aliases is only the raw data file; the actual aliasing information is
placed into a binary format in the files /usrAib/aliases.dir and
/usr/lib/aliases.pag using the program newaliases [see sendmail(IM)]. A
newaliases command should be executed each time the aliases file is changed
for the change to take effect.

ALIASES (4) (CTIX Internetworking) ALIASES(4)

SEE ALSO
sendmail(lM), dbm(3X).

BUGS
Because of restrictions in dbm(3X), a single alias cannot contain more than
about 1000 bytes of information. You can get longer aliases by "chaining;"
that is, make the last name in the alias be a dummy name which is a
continuation alias.

AR(4) AR(4)

NAME
ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar{ 1) is used to combine several files into one. Archives
are used mainly as libraries to be searched by the link editor ld(1).

Each archive begins with the archive magic string.

#define ARMAG "f<arch>\rf' /* magic string */
#define SARMAG 8 /* length of magic string */

Each archive which contains common object files [see a.out(4)] includes an
archive symbol table. This symbol table is used by the link editor ld{ 1) to
determine which archive members must be loaded during the link edit process.
The archive symbol table (if it exists) is always the first file in the archive (but
is never listed) and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following format:

#define ARFMAG " \n" /* header trailer string */

struct ar_hdr /* file member header */
{

char ar_name[16]; /* Y terminated file member name */
char ar_date[12]; /» file member date */
char ar_uid[6]; /* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar_mode[8]; /* file member mode (octal) •/
char ar_size[10]; /* file member size */
char ar_fmag[2]; /* header trailer string */

1;

All information in the file member headers is in printable ASCII. The numeric
information contained in the headers is stored as decimal numbers (except for
ar mode which is in octal). Thus, if the archive contains printable files, the
archive itself is printable.

The ar name field is blank-padded and slash (J) terminated. The ar date field
is the modification date of the file at the time of its insertion into the archive.
Common format archives can be moved from system to system as long as the
portable archive command ar (l) is used. Conversion tools such as convert(l)
exist to aid in the transportation of non-common format archives to this format.

- 1 -

AR(4) AR(4)

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length
name (that is, ar_name[0] == '/'). The contents of this file are as follows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes * "the
number of symbols".

• The name string table. Length: ar size - (4 bytes * ("the number of
symbols" + 1)).

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with
the corresponding name from the string table (in order). The names in the string
table are all the defined global symbols found in the common object files in the
archive. Each offset is the location of the archive header for the associated
symbol.

SEE ALSO
ar(l), ld(l), strip(l), sputl(3X), a.out(4).

WARNINGS
Strip(\) will remove all archive symbol entries from the header. The archive
symbol entries must be restored via the ts option of the ar(l) command before
the archive can be used with the link editor M(l).

CFTTME(4) CFTIME(4)

NAME
cftime - language specific strings

DESCRIPTION
The programmer can create one printable file per language. These files must be
kept in a special directory /lib/cftime. If this directory does not exist, the
programmer should create it. The contents of these files are:

• abbreviated month names (in order)

• month names (in order)

• abbreviated weekday names (in order)

• weekday names (in order)

• default strings that specify formats for local time (%x) and local date
/ ftr v \

• default format for cftime, if the argument for cftime is zero or null.

• AM (ante meridian) string

• PM (post meridian) string

Each string is on a line by itself. All white space is significant. The order of the
strings in the above list is the same order in which the strings appear in the file
shown below.

EXAMPLE
/lib/cftime/usa_english

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:%M:%S
%m/%d/%y
%a %b %d %T %Z %Y

CFTIME(4) CFTIME(4)

AM
PM

FILES
/lib/cftime - directory that contains the language specific printable files (create
it if it does not exist)

SEE ALSO
ctime(3C).

CHECKLISTS) CHECKLISTS)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION
checklist resides in directory /etc and contains a list of , at most, 15 special file
names. Each special file name is contained on a separate line and corresponds
to a file system. Each file system will then be automatically processed by the
/sc£(lM) command.

FILES
/etc/checklist

SEE ALSO
fsck(lM), ncheck(lM).

I

CORE (4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
CTIX writes out a core image of a terminated process when any of various
errors occur. See signal (2) for the list of reasons; the most common errors that
cause core files to be written are memory protection violations, illegal
instructions, exceptions, and user-generated quit signals. The core image is
called core and is written in the process's working directory (provided it can be;
normal access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for the
process, including the registers as they were at the time of the fault. The size of
this section depends on the parameter USIZE, which is defined in
/usr/include/sys/page.h. The remainder represents the actual contents of the
user's core area when the core image was written. If the text segment is read-
only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user
structure of the system, defined in /usr/include/sys/user.h. The important stuff
not detailed therein is the locations of the registers, which are outlined in
/asr/include/sys/reg.h.

SEE ALSO
crash(lM), sdb(l), setuid(2), signal(2).

I

CPIO (4) CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION

The header structure, when the -c option of cpio{ 1) is not used, is:

•truct {
short h_magic,

h_dev;
ushort h ino,

hmode,
h_uid,
h_gld;

short hnlink,
h_rdev,
h_mtime{2],
hnamesize,
h_fllesize[2];

char h_name[h_namesize rounded to word];
} Hdr;

When the -c option is used, the header information is described by:

sscanf(Chdr,
"%6o%6o%6o%6o%6o%6o%6o%6o%11 lo%6o%11 lo%rf',
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino,
&Hdr.h_mode, &Hdr.h_uid, &Hdr.h_gid,
&Hdr.h_nllnk, &Hdr.h_rdev, (Longtime,
&Hdr.h_namesize,&Longfile,Hdr.h_name);

longtime and longfile are equivalent to hdr.h mtime and hdr.hJilesize,
respectively. The contents of each file are recorded in an element of the array
of varying length structures, archive, together with other items describing the
file. Every instance of hjnagic contains the constant 070707 (octal). The
items h_dev through h mtime have meanings explained in stat(2). The length
of the null-terminated path name h name, including the null byte, is given by
hjiamesize.

The last record of the archive always contains the name TRAILER!!!. Special
fdes, directories, and the trailer are recorded with h Jilesize equal to zero.

SEE ALSO
cpio(l), find(l), stat(2).

I

CPROFILE(4) CPROFILE(4)

NAME
cprofile - setting up a C shell environment at login time

DESCRIPTION
cprofile is for use with cj/i(1). For every user of csh the system file
/etc/cprofile is executed immediately upon login. If the user's login directory
contains a file named .cshrc, that file will then be executed, followed by
commands from the .login file.

The following example is typical for a user's .cshrc fde:

•etenv PATH 4PATH:$H0ME/bin
setenv MAIL /usr/mail/myname
setenv TERM pt

The system file /etc/cprofile allows the system administrator to perform
services for the entire community of csh users. These services include: the
announcement of system news, user mail, the setting of default environmental
variables, and setting the umask [see umask(l)]. In addition, /etc/cprofile
executes special actions for the root login.

/etc/cprofile can be customized via four files in the /etc/rcopts directory:

TSETX The presence of this file overrrides the default tset command, and
instead queries the user for terminal type with the command

setenv TERM 'tset - ?dumb"

(The default sets TERM to the value specified in /etc/ttytype.)

TPUT The presence of this file causes the execution of

tput init

which initializes the user's terminal according to the value for the
TERM environment variable.

LOCCPRF
If this file exists, it is sourced by /etc/cprofile; if there are any
customization to the system cprofile file, they should be put in
LOCCPRF.

AUTOWM
The presence of this file causes wm (window manager for
Programmable Terminals and Graphics Terminals) to be execed after
.cshrc and .login.

For further information about setting variables, see csh(l) and sh(l).

CPROFILE(4) CPROFILE(4)

NOTE
Although /etc/cprofile is an ASCII commands text file, it is not meant to be
"configurable". Configurability is provided at the level of an "rcopt" , or, in
the case of individual users, in .login and .cshrc files.

FILES
$HOME/.login
$HOME/.cshrc
$HOME/.logout
/etc/cprofile
/etc/rcopts/TSETX
/etc/rcopts/TPUT
/etc/rcopts/LOCCPRF
/etc/rcopts/AUTOWM

SEE ALSO
csh(l), env(l), login(l), mail(l), sh(l), stty(l), su(l), tset(l), wm(l) , profile(4),
ttytype(4), environ(5), term(5).
S/Series CTIX Administrator's Guide.

DIR (4) DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write
into a directory. The fact that a file is a directory is indicated by a bit in the flag
word of its i-node entry [see/s(4)]. The structure of a directory entry as given
in the include file is:

ttfndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ushort dino;
char d_name[DIRSIZ];

};
By convention, the first two entries in each directory are f o r . and. . . The first is
an entry for the directory itself. The second is for the parent directory. The
meaning o f . . is modified for the root directory of the master file system; there
is no parent, s o . . has the same meaning as ..

SEE ALSO
dirent(4), fs(4).

DIRENT(4) DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <sys/dirent.h>
#include <sys/types.h>

DESCRIPTION
Different file system types may have different directory entries. The dirent
structure defines a file system independent directory entry, which contains
information common to directory entries in different file system types. A set of
these structures is returned by the getdents(2) system call.

The dirent structure is defined below.

struct dirent {
long
o f f j
unsigned short
char
};

The d ino is a number which is unique for each file in the file system. The
field d off is the offset of that directory entry in the actual file system directory.
The field d name is the beginning of the character array giving the name of the
directory entry. This name is null terminated and may have at most
MAXNAMLEN characters. This results in file system independent directory
entries being variable length entities. The value of dreclen is the record
length of this entry. This length is defined to be the number of bytes between
the current entry and the next one, so that it will always result in the next entry
being on a long boundary.

FILES
/usr/include/sys/dirent.h

SEE ALSO
getdents(2).

d_ino;
d_off;
dreclen;
d_name[1];

{

ERRFILE(4) ERRFILE (4)

NAME
enfile - error-log file format

SYNOPSIS
#include <sys/erec.h>

DESCRIPTION
When the system detects a hardware error, an error record is generated and
passed to the error-logging daemon for recording in the error log for later
analysis. The default error log is /usr/adm/errfile.

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following format:

struct errhdr {
short e_type; /* record type */
short e_len; /* bytes in record (inc hdr) */
time t e_time; /* time of day »/

1;

Valid record types follow:

#define E_GOTS 010 /* start */
#define E_STOP 012 /* stop */
#deflne E_TCHG 013 /* time change */
#define E_CCHG 014 /* configuration change */
#define E_BLK 020 /* block device error */
#define E_STRAY 030 /» stray interrupt */
#define E_PRTY 031 /* memory parity *l
#define E_BUSFLT 032 /* bus fault */
#define E_CONS 040 /* console string */
#define E_CONR 041 1* console record */
#define E_CONO 042 /* console overflow */
#define E SERIAL 043 /* serial device driver error */

Some records in the error file are of an administrative nature. These include the
startup record entered into the file when logging is activated, the stop record
written if the daemon is terminated "gracefully", and the time-change record
used to account for changes in the system's time-of-day. These records have the
following formats:

ERRFILE(4) ERRFILE (4)

struct estart {
short e_cpu; /* CPU type */
struct utsname e name; /* system names */
short e_mmr3; /* boot reason from CDT */
long esyssize; /* system memory size */
int e_fhole; /* 64K chunks of memory*/

/* omitted */
short e_bconf; /* block dev configuration */
char e_panic; /* if reboot from panic,

/* what was it */

};

#define eend errhdr /* record header */

struct etimchg {
time t e_ntime; /* new time */

};
Stray interrupts cause a record with the following format to be logged:

struct estray {
physadr e saddr;/* stray loc or device addr */
short e_sbacty; /* active block devices */

};
A memory subsystem error generates the following record:

struct eparity {
uint e gsr; /* general status register */

};

ERRFILE(4) ERRFILE (4)

Error records for block devices have the following format:

struct eblock {
dev_t e_dev;
physadr eregloc;
short e_bacty;
struct iostat {

long io_ops;
long io_misc;
ushort io unlog;

I* "truef major + minor dev no */
/* controller address »/
/* other block I/O activity */

I* number read/writes */
/* number "other" operations */
/* number unlogged errors */

} e_stats;
short ebflags; /* read/write, error, etc */
short etrkoff; /* logical dev start trk */
daddrt e_bnum; /* logical block number */
u n U n . l
U S I I U I | ®_bytes; I* number byies io transfer */'
paddrt e m em add; /* buffer memory address */
ushort e_rtry; /* number retries *l
short e_nreg; 1* number device registers */
short e_trks 1* number of heads */
short esecs /* number of physical sectors per track */
short

I:
e_ctlr /* controller type */

The following values are used in the ebflags word:

#define E_WBtTE 0 /* write operation */
#define E_READ 1 /* read operation */
#define E_NOIO 02 /* no I/O pending */
#define E_PHYS 04 /* physical I/O */
#define E_MAP 010 /* Unibus map in use */
#define E_ERROR 020 /* I/O failed */

The error types CONS and CONO are flagged by errdemon{ 1M) and err dead and
written to the console log /etc/log/confile.

ERRFILE(4) ERRFILE(4)

A bus fault generates the following record,

struct ebusflt {
short e_type; /* kind of fault */
caddrt e_vaddr /* virtual address of fault */
uint ebsr; /* combined bsrO and bsr1 */
ushort e_pte; /* page frame of fault */
ushort e_pld; 1* pid */
uint e_pc; /* PC at time of fault */
uint e_rps; /* RPS at time of fault */
uint e_regs[16]; /• all the registers */

};
A serial driver error generates the following reports:

struct eserial {
ushort e_type/* type of error */
ushort e_dev/* which physical port */

};
The following types exist for e_type:

#define ECHLOS
#define ERXORUN
#define ENOCLIST
#define ENORBUF

SEE ALSO
errdemon(lM).

0x1 /* character lost in input FIFO */
0x2 /* receiver overrun */
0x4 /* no new clist available */
0x8 /» no receive buffer available */

- 4 -

EXPORTS (4) (NFS Utilities) EXPORTS (4)

NAME
exports - NFS file systems export configuration file

SYNOPSIS
/etc/exports

DESCRIPTION
The file letclexports describes the file systems which are being exported to NFS
clients. It is created by the system administrator using a text editor and
processed by the mount request daemon mountd(lM) each time a mount request
is received.

The file consists of a list of file systems and the machine names allowed to
remote mount each file system. The file system names are left justified and
followed by a list of names separated by white space. The names will be looked
up in I etc I hosts. Prior to granting mount requests, lite hostnames of all eligible
clients are expanded to include all their aliases as specified in I etc! hosts. A file
system name with no name list following means export to everyone. A " # "
anywhere in the file indicates a comment extending to the end of the line it
appears on. Lines beginning with white space are continuation lines.

Although the file system name can be a directory within the file system, the
complete file system is actually what is exported. An NFS client can choose to
mount the complete exported file system or any subdirectory within it.

EXAMPLE
/usr mktg.Mysite.COM # export to hostname
/usr/local # export to the world
/usr2 mktg engnode # export to only list

FILES
/etc/exports

BUGS
The identification of the remote system is dependent on the local network
transport mechanism employed.

SEE ALSO
mountd(lM)

FILEHDR (4) FILEHDR (4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The following C
struct declaration is used:

•truct filehdr

f symptr is the byte offset into the file at which the symbol table can be found.
Its value can be used as the offset in fseek{3S) to position an I/O stream to the
symbol table. The operating system optional header is always 36 bytes. The
valid magic numbers are given below.

{
unsigned short f_magic;
unsigned short f_nscns;
long ftimdat;

/* magic number */
/* number of sections */
/* time & date stamp */
h file pir to symtab */
/* # symtab entries •/
/* sizeof(opt hdr) */
/* flags */

long f symnlr;
long f_nsyms;
unsigned short f_opthdr;
unsigned short f flags;

Mefine MC68KWRMAGIC 0520
Mefine MC68KROMAGIC 0521
#define MC68KPGMAGIC 0522

/* writeable text segments */
/* readonly shareable text segments •/
/* demand paged text segments */

The value in ftimdat is obtained from the time (2) system call.

Flag bits currently defined are:

#define F_RELFLG 0000001
#define F_EXEC 0000002
«define F LNNO 0000004
«define F LSYMS 0000010
fdefine F MINMAL 0000020
«deflne F_UPDATE 0000040
#define F SWABD 0000100
#define F AR32W 0001000

/* relocation entries stripped */
I* file is executable */
/* line numbers stripped */
/• local symbols stripped */
/* minimal object file */
I* update file, ogen produced */
/* file is "pre-swabbed" */
/* non-DEC host, including Convergent

Mefine F PATCH 0002000
/• Technologies systems */
/* "patcIT list in opt hdr */

FILEHDR(4) FILEHDR(4)

The CPU type is encoded in bits 04000 and 010000. The FPU (floating-point
unit) type is encoded in bits 0100000,040000, and 020000. Macros are defined
to set and extract the CPU and FPU values as follows:

SETFPU(flag, value)
SETCPU(flag, value)
GETFPU(flag)
GETCPU(flag)

Valid values for CPU are:

Meflne F_M68010 0
#define F_M68020 1

Valid values for FPU are:

Mefine F_NOFPU 0
«deflne F SOFT 1
#define F M68881 2
«define F SKY 4

SEE ALSO
time(2), fseek(3S), a.out(4).

FS(4) FS(4)

NAME
fs: file system - format of system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/filsys.h>
#include <sys/filbitmap.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-byte
long sectors. Sector 0 is unused.

Sector 1 is the super-block. The format of a super-block follows:

/*
* Structure of the super-block.
*/

struct fllsys
t

ushort sjsize; /* size In blocks of i-list */
daddrt sfsize; /* size In blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr t s_free[NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in sjnode */
ushort s_inode[NICINOD]; /* free i-node list */
char s_flock; /* lock during free list manipulation */
char sjlock; f lock during i-list manipulation */
char s fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s time; /* last super block update */
short s_dinfo[4]; /* device information */
daddr_t s_tfree; /* total free blocks*/
ushort s_tinode; /* total free inodes */
char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */
long s fill[5]; /• ADJUST to make slzeof filsys be 512 */
struct filbitmap 's fllbitmap; /* in core pointer to free list bitmap */
short s_bfree; /* Number of blocks free in s_filbftmap */
short sjbucnum; /* Bucket currently in use V
daddrj s_bitaddress[4]; I* Disk addresses of buckets and bitmap */

#define SBUCKETO 0
#define S BUCKET1 1

- 1 -

FS(4) FS(4)

#define S_BITMAPO 2
#define SBITMAP1 3

char s_fsbitmap; /* if set then file system has a valid bitmap */
char s_fsok; /* fsok flag is no longer used */

/* The following three shorts used to be used by PILF.
* We now use them for the bitmapped free list (in core only).
*/
short s_singlep; /* in core index for single block allocations */
short s_doublep; /* in core index for double block allocations */
short s_quadp; /* in core index for quad block allocations */

long s_magic; /* magic number to indicate new file system */
long s type; /* type of new file system */
long s_state; /* file system state */
long s bsize; /* file system block size */

#define FsMAGIC 0xfd187e20/* smagic */

#define Fs1b 1
#define Fs2b 2
#define Fs4b 4
#define FsPILF 0x10000

/* 512 byte block*/
/* 1024 byte block */
r 4096 byte block */
/* PILF file system */

#define FsOKAY 0x7c269d38/* s_state: clean */
#define Fs ACTIVE 0x5e72d81 a/* sstate: active */
#define FsBAD 0xcb096f43/* s state: bad root */
#define FsBADBLK Oxbadbcl 4b/* s_state: bad block corrupted it */

#define getfs(mp) ((struct filsys *)&mp->m_bufp->b un.b addr[SUPERBOFF])

The value of s type indicates the file system type. Currently, two file system
types are supported: the 1024-byte logical block and the 4096-byte logical
block. In the following description, a block is then determined by the type. For
the original 512-byte oriented file system, a block is 512-bytes; for the 1024-
byte oriented file system, a block is 1024-bytes or two sectors, for the 4096-
byte oriented file system, a block is 4096-bytes or eight sectors. The operating
system takes care of all conversions from logical block numbers to physical
sector numbers.

- 2 -

FS(4) FS(4)

If the value of sjype is Fs4b, the value of sbsize determines the logical block
size of the system.

The value of sstate indicates the state of the file system. A cleanly
unmounted, undamaged file system is indicated by the FsOKAY state. After a
file system has been mounted for update, the state changes to FsACTIVE. A
special case is used for the root file system. If the root file system appears to
be damaged at boot time, it is mounted but marked FsBAD. Lastly, after a file
system has been unmounted, the state reverts to FsOKAY.

The value of sjsize is the address of the first logical block after the i-list; the
i-list starts just after the super-block, namely in logical block 2 (sector 4); thus
the i-list is sjsize-2 logical blocks long. The value of sjsize is the first block
not potentially available for allocation to a file. The system uses the values of
s isize and sJsize to check for invalid block numbers; if an "impossible"
block number is allocated from the free list or is freed, a diagnostic is written on
the on-line console. Moreover, the free array is cleared, so as to prevent further
allocation from a presumably corrupted free list.

The free list is provided on non-bitmapped file systems and is maintained as
follows: the sJree array contains, in sJree [1], . . . , sjree [sjifree-1], up to 49
numbers of free blocks; sjree [0] is the block number of the head of a chain of
blocks constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the
chain. To allocate a block: decrement snfree, and the new block is
sjree[s_nfree]. If the new block number is 0, there are no blocks left, so give
an error. If s nfree became 0, read in the block named by the new block
number, replace s nfree by its first word, and copy the block numbers in the
next 50 longs into the sJree array. To free a block, check if sjifree is 50; if so,
copy s nfree and the s Jree array into it, write it out, and set s nfree to 0. In
any event, set sJree[s_nfree] to the freed block's number and increment
snfree.

The value of sjfree is the number of total free blocks available in the file
system.

The value of sninode is the number of free i-numbers in the sjnode array. To
allocate an i-node: if s ninode is greater than 0, decrement it and return
s jnode [s ninode J. If s ninode was 0, read the i-list and place the numbers of
all free i-nodes (up to 100) into the s inode array, then try again. To free an i-
node, provided s ninode is less than 100, place its number into
sjnode [sninode] and increment sninode. If sninode is already 100, do not

- 3 -

FS(4) FS(4)

bother to enter the freed i-node into any table. This list of i-nodes is used only
to speed up the allocation process; the information as to whether the i-node is
really free or not is maintained in the i-node itself.

The value of stinode is the number of total free i-nodes available in the file
system.

The sJlock and silock fields are flags maintained in the core copy of the file
system while it is mounted; their values on disk are immaterial. The value of
s Jmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

The sronly field is a read-only flag to indicate write-protection (in-core only).

The value of stime specifies the last time the super-block of the file system
was changed and the number of seconds that have elapsed since 00:00 Jan. 1,
1970 (GMT). During a reboot, the s time of the super-block for the root file
system is used to set the system's idea of the time.

The value of s Jname is the name of the file system, and s Jpack is the name of
the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-
nodes are 64 bytes long. I-node 1 is reserved for future use; i-node 2 is reserved
for the root directory of the file system, but no other i-number has a built-in
meaning. Each i-node represents one file. For the format of an i-node and its
flags, see inode (4).

The s Jsbitmap flag indicates that the file system has a valid bitmap describing
a number of blocks that are omitted from the free list; these blocks are placed
on the bitmap (filbitmap.h). If this flag is set, CTIX uses the bitmap; otherwise
the free list is used.

The values of s bitaddresses are the disk addresses of the filbitmap structure.
For a IK file system, each address is for a 1024-byte logical block; for a 4K file
system, each address is for a 4096-byte logical block.

All allocations of blocks are made from the bitmap. If a block being
deallocated is in the section of the disk represented by s_bucknum, the
deallocated block is put in the bitmap; if the block is not in the area represented
by the bitmap, it is put on the free list.

The format of the file system bitmap and bucket list follows:

#define BFLBLOCKS 16384
/* The number of bits in the bitmap */

#define BFLBUCKETS 1024

- 4 -

FS(4) FS(4)

r The number of buckets in the bucket list */
#deflne BFLCHARS (BFLBLOCKS/8)

/* The number of chars in the bitmap */
struct filbitmap {

ushort fb_buckets[BFLBUCKETS];
f list of buckets describing the free list */

unchar fb_bitmap[BFLCHARS];
/* Bitmap describing free blocks not on the free list */

};
SEE ALSO

fsck(lM), fsdb(lM), mkfs(lM), mount(2), inode(4).

- 5 -

I
i

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on CTIX with non-standard
tabs, (that is, tabs which are not set at every eighth column). Such files must
generally be converted to a standard format, frequently by replacing all tabs
with the appropriate number of spaces, before they can be processed by CTIX
commands. A format specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :>. Each parameter consists of a
keyletter, possibly followed immediately by a value. The following parameters
are recognized:

ttabs The t parameter specifies the tab settings for the file. The value
of tabs must be one of the following:

1. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs at
intervals of n columns;

3. a - followed by the name of a ' 'canned' ' tab specification.

Standard tabs are specified by t-8, or equivalently, 11,9,17,25,etc.
The canned tabs which are recognized are defined by the tabs(1)
command.

The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have
been expanded, but before the margin is prepended.

The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mO.
If the s parameter is not specified, no size checking is performed. If the first

ssize

m margin

FSPEC(4) FSPEC(4)

line of a file does not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a line containing a
format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

SEE ALSO
ed(l), newform(l), tabs(l).

FSTAB(4) FSTAB(4)

NAME
fstab - file-system-table

DESCRIPTION
The /etc/fstab file contains information about file systems for use by
mount(XM) and mountall(IM). Each entry in /etc/fstab has the following
format:

column 1 block special file name of file system or advertised
remote resource

column 2 mount-point directory

column 3 -r if to be mounted read-only; -d[r] if remote

column 4 (optional) file system type string

column 5+ ignored

White-space separates columns. Lines beginning with # are comments. Empty
lines are ignored.

A file-system-table might read as follows:

/dev/dsk/c0d0s3 /usr S51K
/dev/dsk/c0d1s2 usr/src -r
advresource /tnnt -d
bertha:/usr/jerry /mnt NFS

FILES
/etc/fstab

SEE ALSO
mount(lM), mountall(lM), rmountall(lM).

GATEWAYS(4) (CTIX Internetworking) GATEWAYS (4)

NAME
gateways - routed configuration file

DESCRIPTION
The letclgateways is comprised of a series of lines, each in the following

format:

< net | host > namel gateways name2 metric value < type >

The net or host keyword indicates if the route is to a network or specific host.
Namel is the name of the destination network or host This may be a symbolic

name located in letc/networks or /etc/hosts [or, if started after
named(lM), known to the name server], or an Internet address
specified in " d o t " notation; see hosts(4) and inet(J).

Name2 is the name or address of the gateways to which messages should be
forwarded.

Value is a metric indicating the hop count to the destination host or network.

The following gateway types are defined:

Active gateways are treated equally to network interfaces. Routing
information is distributed to the gateways and if no routing
information is received for a period of time, the associated route
is deleted.

Passive gateways are not expected to exchange routing information.
They are maintained in the routing tables forever, and
information regarding their existence is included in any routing
information transmitted.

External gateways are also passive, but are not placed in the kernel
routing table nor are they included in routing updates. The
function of external entries is to inform routed that another
routing process will install such a route, and that alternate routes
to that destination should not be installed. Such entries are only
required when both routers may learn of routes to the same
destination.

SEE ALSO
routed(lM)

I
I

GETTYDEFS (4) GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty (1M) to set up the
speed and terminal settings for a line. It supplies information on what the
login(1) prompt should look like. It also supplies the speed to try next if the
user indicates the current speed is not correct by typing a <break> character.

NOTE: Customers who need to support terminals that pass 8 bits to the system
(as is typical outside the U.S.A.) must modify the entries in /etc/gettydefs as
described in the WARNINGS section.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted
characters of the form \b, \n, \c, etc., as well as Win, where nnn is the octal
value of the desired character. The various fields are:

label This is the string against which getty tries to match its second
argument. It is often the speed, such as 1200, at which the
terminal is supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioctl (2) settings to which the terminal
is to be set if a terminal type is not specified to getty. The flags
getty understands are the same as the ones listed in
/usr/include/sys/termio.h [see termio(7)]. Normally only the
speed flag is required in the initial-flags. Getty automatically
sets the terminal to raw input mode and takes care of most of the
other flags. The initial-flag settings remain in effect until getty
executes login (I).

final-flags These flags take the same values as the initial-flags and are set
just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and terminal
are communicating in a rational fashion. The other two
commonly specified final-flags are TAB3, so that tabs are sent to
the terminal as spaces, and HUPCL, so that the line is hung up on
the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above
fields where white space is ignored (a space, tab, or new-line),
they are included in the login-prompt field.

GETTYDEFS (4) GETT YDEFS (4)

next-label If this entry does not specify the desired speed, indicated by the
user typing a <break> character, then getty will search for the
entry with next-label as its label field and set up the terminal for
those settings. Usually, a series of speeds is linked together in
this fashion, into a closed set; for instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the default
entry. It is also used if getty can not find the specified label. If /etc/gettydefs
itself is missing, there is one entry built into the command which will bring up a
terminal at 9600 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be
run through getty with the check option to be sure there 3re no errors.

FILES
/etc/gettydefs

SEE ALSO
getty(lM), login(l), ioctl(2), termio(7).

WARNINGS
To support terminals that pass 8 bits to the system (also, see the BUGS section),
modify the entries in the /etc/gettydefs file for those terminals as follows: add
CS8 to initial-flags.

This change will permit terminals to pass 8 bits to the system so long as the
system is in MULTI-USER state. When the system changes to SINGLE-USER
state, the getty (1M) is killed and the terminal attributes are lost. So to permit a
terminal to pass 8 bits to the system in SINGLE-USER state, after you are in
SINGLE-USER state, type [see sffy(l)]:

stty -istrip cs8

BUGS
8-bit with parity mode is not supported.

G P S (4) (Category 2 Support) GPS (4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher level
graphics programs such as plot [in sfa/(lG)] and vtoc [in toc(1G)] produce GPS
format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from which

zero or more connected line segments are produced. The first point
given produces a move to that location. (A move is a relocation of
the graphic cursor without drawing.) Successive points produce
line segments from the previous point. Parameters are available to
set color, weight, and style (see below).

arc The arc primitive has a variable number of points to which a curve
is fit. The first point produces a move to that point. If only two
points are included, a line connecting the points will result; if three
points a circular arc through the points is drawn; and if more than
three, lines connect the points. (In the future, a spline will be fit to
the points if they number greater than three.) Parameters are
available to set color, weight, and style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn.
Parameters are color, font, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the
beginning location of the hardware string.

comment A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a
comment of zero length.

GPS PARAMETERS
color color is an integer value set for arc, lines, and text primitives.

weight weight is an integer value set for arc and lines primitives to
indicate line thickness. The value 0 is narrow weight, 1 is bold,
and 2 is medium weight

GPS(4) (Category 2 Support) GPS(4)

style is an integer value set for lines and arc primitives to give one
of the five different line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

0 solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

An integer value set for text primitives to designate the text font to
be used in drawing a character string. (Currently font is expressed
as a four-bit weight value followed by a four-bit style value.)

textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the height of
characters in absolute universe-units and is stored at one-fifth this
value in the size-orientation (TO) word (see below).

textangle textangle is a signed integer value used in text primitives to express
rotation of the character string around the beginning point.
textangle is expressed in degrees from the positive x-axis and can
be a positive or negative value. It is stored in the size-orientation
(so) word as a value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines cw points sw
arc cw points sw
text cw point sw so [string]
hardware cw point [string]
comment cw [string]

cw cw is the control word and begins all primitives. It consists of four
bits that contain a primitive-type code and twelve bits that contain
the word-count for that primitive.

point(s) point(s) is one or more pairs of integer coordinates, text and
hardware primitives only require a single point. point{s) are
values within a Cartesian plane or universe having 64K (-32K to
+32K) points on each axis.

sw sw is the style-word and is used in lines, arc, and text primitives.
For all three, eight bits contain color information. In arc and lines
eight bits are divided as four bits weight and four bits style. In the
text primitive eight bits of sw contain the font.

style

font

textsize

- 2 -

GPS(4) (Category 2 Support) GPS (4)

so So is the size-orientation word used in text primitives. Eight bits
contain text size and eight bits contain text rotation.

string string is a null-terminated character string. If the string does not
end on a word boundary, an additional null is added to the GPS file
to insure word-boundary alignment.

SEE ALSO
graphics(lG), stat(lG), toc(lG).

(

GROUP(4) GROUP (4)

NAME
group - group file

DESCRIPTION
group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical group ID's to names.

FILES
/etc/group

SEE ALSO
newgrp(lM), passwd(l), passwd(4).

c

HOSTS (4) (CTIX Internetworking) HOSTS (4)

NAME
hosts - list of hosts on network

DESCRIPTION
The file /etc/hosts is a list of hosts that share the network, including the local
host. It is referred to by programs that need to translate between host names
and DARPA Internet addresses when the name server [see named(1M)] is not
being used. Each line in the file describes a single host on the network and
consists of three fields separated by any number of blanks or tabs:

address name aliases ...

where

address is the DARPA Internet address. Unless another type of
address is required by some host on the network, address
should be a Class A address, which takes the form
net.node, where net is the network number from
/etc/networks [see networks{4)], which must be between
0 and 127; and node is a value which must be unique for
each host and be between 0 and 16777215.

name is the official name of the host. If the host is a computer
system running CTIX, it must claim this host name by
executing hostname (1M) when it is initializing itself.

aliases... is a list of alternate names for the host. Aliases can be
used in network commands in place of the official name.

It is suggested that you specify the hostname and the node name [see
hostname (I) and setuname (1M)] as aliases of one another for each machine
listed in the /etc/hosts file.

The routines which search this file ignore comments (portions of lines
beginning with #) and blank lines.

Internet addresses can actually take one of four forms:

A A is a simple 32-bit integer.

A . B A is an eight-bit quantity occupying the high-order byte
and B is a 24-bit quantity occupying the remaining bytes.
This form is suitable for a Class A address of the form
netjiode.

HOSTS (4) (CTIX Internetworking) HOSTS (4)

A.B. C A is an eight-bit quantity occupying the high-order byte; B
is an eight-bit quantity occupying the next byte; and C is a
16-bit quantity occupying the remaining bytes. This form
is suitable for a Class B address of the form 128.net.node.

A.B. C .D The four parts each occupy a byte in the address.

EXAMPLE
Engineering network

1.12 src.MySite.COM src
1.10 test.MySite.COM test
1.16 mifa.MySite.COM mifa
1.17 mifb.MySite.COM mifb

FILES
/etc/hosts
/etc/rcopts/INET-DOMAIN
/etc/rcopts/NODE

NOTE
The host lookup will be accomplished more efficiently if there is an
letclresolv.conf file whose contents is simply the keyword usefile. [See
resolver(4)].

SEE ALSO
hostname(lM), setuname(lM), networks(4), inet(7).
CTIX Network Administrator's Guide.
For a discussion of network addresses, see RFC 796.

net3 # Network Source Machine
net2 # Network Test Machine

Software Development
Hardware Development

INETD.CONF (4) (CTIX Internetworking) INETD.CONF (4)

NAME
inetd.conf - configuration file for inetd (internet "super-server")

DESCRIPTION
inetd.conf is the configuration file for the inetdCTIX Internetworking
"super-server".

The file consists of a series of single-line entries, each entry corresponding to a
service to be invoked by inetd. These services are connection-based, datagram,
or "internal".

Internal services are those supported by the inetd program: these services are
"echo", "discard", "chargen" (character generator), "daytime" (human
readable time), and " t ime" (machine readable time, in the form of the number
of seconds since midnight, January 1,1900). All of these services are tcp based.
(For details of these services, consult the appropriate RFC from the DDN
Network Information Center.)

Each service, including internal services, must have a valid entry in
/etc/services(4). In the case of an internal service, its name must correspond to
the official name of the service: that is, the first entry in /etc/services.

Each entry has a series of space- or tab-separated fields. (No field, except for
the last one, may be omitted.) The fields are as follows:

service name
Name of a valid service in /etc/services, as described above.

socket type
One of "stream", "dgram", or "raw", depending on whether the
socket type is stream, datagram, or raw [see socket (2)].

protocol
Name of a valid protocol (for example, " tcp") specified in
/etc/protocols(4).

waitlnowait
Specifies whether the socket can be made available for new
connections while there is still data waiting on the socket The value is
always "nowai t" unless it is a datagram socket If it is a datagram
socket, the value is usually "wai t" , although "nowai t" is possible in
some cases. (Note that tftpd is an exception in that it must have
"wa i t " specified, and yet the socket can continue to process messages
on the port)

INETD.CONF (4) (CTIX Internetworking) INETD.CONF (4)

user Name of the user as whom the server should run. This allows servers
to be run with less permission than root.

server program
Except in the case of internal services, full pathname of the server
program to be invoked by inetd when a request is waiting on a socket.
For an internal service, the value is "internal" '.

server program arguments
Arguments to the server program, starting with argv[0], which is the
name of the program. For an internal service, the value is "internal' ' .

Comments are denoted by a # at the beginning of a line.

The distribution inetd.conf file contains prototype entries; refer to these entries
when editing the file.

EXAMPLE

ftp stream top nowait root /etc/ftpd ftpd
telnet stream top nowait root /etc/teinetd telnetd
login stream top nowait root /etc/logind logind
exec stream top nowait root /etc/execd execd
uucpd stream top nowait root /etc/uucpd uucpd
ouucpd stream top nowait root /etc/ouucpd ouucpd
finger stream top nowait root /etc/fingerd fingerd
talk dgram udp wait root /etc/talkd talkd
echo stream top nowait root internal
discard stream top nowait root internal
chargen stream top nowait root internal
daytime stream top nowait root internal
time stream top nowait root internal
echo dgram udp wait root internal
discard dgram udp wait root internal
chargen dgram udp wait root internal
daytime dgram udp wait root internal
time dgram udp wait root internal

INETD.CONF (4) (CTIX Internetworking) INETD.CONF (4)

SEE ALSO
fingerd(lM), ftpd(lNM, inetd(lM), rexecd(lM), rlogind(lM), rshd(lM),
talkd(lM), telnetd(lM), tftpd(lM), uucpd(lM), protocols(4), services(4).
CTIX Network Administrator's Guide.

(

IN1TTAB(4) I N I T T A B (4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher.
The process that constitutes the majority of init's process dispatching activities
is the line process /etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a newline; however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per entry
are permitted. Comments can be inserted in the process field by using the sh(l)
convention for comments. Comments for lines that spawn getty s are displayed
by the who(\) command; they are expected to contain some information about
the line, such as the location. There are no limits (other than maximum entry
size) imposed on the number of entries within the inittab file. The entry fields
follow:

id One or two characters used to uniquely identify an entry.

rstate Defines the run-level in which this entry is to be processed. Run-levels
effectively correspond to a configuration of processes in the system:
each process spawned by init is assigned a run-level or run-levels in
which it is allowed to exist. The run-levels are represented by a
number ranging from 0 through 6. As an example, if the system is in
run-level 1, only those entries having a 1 in the rstate field are
processed. When init is requested to change run-level, all processes
that do not have an entry in the rstate field for the target run-level are
sent the warning signal (SIGTERM) and allowed a 20-second grace
period before being forcibly terminated by a kill signal (SIGKILL).
The rstate field can define multiple run-levels for a process by
selecting more than one run-level in any combination from 0 to 6. If
no run-level is specified, the process is assumed to be valid at all run-
levels 0 through 6. Three other values, a, b, and c, can appear in the
rstate field, even though they are not true run-levels. Entries with
these characters in the rstate field are processed only when the telinit
[see //uf(lM)] process requests them to be run (regardless of the
system's current run-level). Note that init can never enter run-level a,
b or c. Also, a request for the execution of any of these processes does
not change the current run-level. Furthermore, a process started by an

- 1 -

IN ITTAB (4) INITTAB(4)

a, b or c command is not killed when init changes levels. Such
processes are killed only if their line in /etc/inittab is marked off in
the action field, their line is deleted entirely from /etc/inittab, or init
goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn If the process does not exist, start the process; do not wait
for its termination (continue scanning the inittab file),
and when it dies restart the process. If the process
currently exists, do nothing and continue scanning the
inittab file.

wait Upon init's entering the run-level that matches the entry's
rstate, start the process and wait for its termination. All
subsequent reads of the inittab file while init is in the
same run-level cause init to ignore this entry.

once Upon init's entering a run-level that matches the entry's
rstate, start the process; do not wait for its termination.
When the process dies, do not restart the process. If upon
entering a new run-level, where the process is still
running from a previous run-level change, the program is
not restarted.

The entry is to be processed only at init's boot-time read
of the inittab file. Init is to start the process, not wait for
its termination; when the process dies, init does not
restart the process. In order for this instruction to be
meaningful, the rstate should be the default or it must
match init's run-level at boot time. This action is useful
for an initialization function following a hardware reboot
of the system.

The entry is to be processed the first time init goes from
single-user to multi-user state after the system is booted.
(If initdefault is set to 2, the process runs right after the
boot.) Init starts the process, waits for its termination
and, when it dies, does not restart the process.

Execute the process associated with this entry only when
init receives a power fail signal [SIGPWR; see signal(2)].

boot

bootwait

powerfail

- 2 -

INITTAB (4) INITTAB (4)

powerwait Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR) and wait until
it terminates before continuing any processing of inittab.

off If the process associated with this entry is currently
running, send the warning signal (SIGTERM) and wait 20
seconds before forcibly terminating the process by using
the kill signal (SIGKILL). If the process is nonexistent,
ignore the entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is
given a different keyword in order to divorce its
association with run-levels. This is used only with the a,
b or c values described in the rstate field.

initdefault An entry with this action is scanned only when init is
initially invoked. If this entry exists, init uses it to
determine which run-level to enter initially; init uses the
highest run-level specified in the rstate field as its initial
state. If the rstate field is empty, this is interpreted as
0123456, so init enters run-level 6. Additionally, if init
does not find an initdefault entry in /etc/inittab, it
requests an initial run-level from the user at reboot time.

sysinit Entries of this type are executed before init tries to access
the console. It is expected that this entry will be used only
to initialize devices on which init might try to ask the
run-level question. These entries are executed and waited
for before continuing.

process A sh command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh -c 'exec command'. For this
reason, any legal sh syntax can appear in the process field. Comments
can be inserted with the ; #comment syntax.

FILES
/etc/inittab

SEE ALSO
getty(lM), init(lM), sh(l), who(l), exec(2), open(2), signal(2).
S/Series CTIX Administrator's Guide.

I

I

INODE(4) INODE(4)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following
structure defined by <sys/ino.h>.

/* Inode structure as it appears on a disk block. */

struct dinode
{

ushort di_mode; /• mode and type of file */
short dinlink; /* number of links to file */
ushort di_uid; /* owner's user id */
ushort di_gld; /» owner's group id */
o f f j di_size; 1* number of bytes in file */
char dl_addr[39]; /* disk block addresses */
char di_gen; 1* file generation number */
time_t diatime; / * time last accessed */
time_t di_mtime; /* time last modified */
time_t dl_ctime; 1* time created */

};
/* The 39 address bytes: 13 addresses of 3 bytes.
* The 40th byte is used as a generation count
* to detect the disk inode being reused. */

For the meaning of the defined types o f f t and time t see types (5).

SEE ALSO
stat(2), fs(4), types(5).

ISSUE(4) ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a
login prompt This is an ASCII file which is read by program getty and then
written to any terminal spawned or respawned from the /etc/inittab file.

FILES
/etc/issue

SEE ALSO
login(l).

I

I

LDFCN(4) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

DESCRIPTION
The common object file access routines are a collection of functions for reading
common object files and archives containing common object files. Although
the calling program must know the detailed structure of the parts of the object
file that it processes, the routines effectively insulate the calling program from
knowledge of the overall structure of the object file.

The interface between the calling program and the object file acccss routines is
based on the defined type LDFILE, defined as struct Idfile, declared in the
header file ldfcn.h. The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfcn.h and contain the following information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number used to distinguish between
archive members and simple object files.

IOPTR(ldptr) The file pointer returned by fopen and used by the
standard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an
archive file.

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided into four categories:

(1) functions that open or close an object file

ldopen{3X) and Idaopen [see ldopen(3X)]
open a common object file

Idclose (3X) and Idaclose [see ldclose(3X)]
close a common object file

LDFCN(4) LDFCN(4)

(2) functions that read header or symbol table information

ldahread (3X)
read the archive header of a member of an archive Hie

ldfhread(3X)
read the file header of a common object file

IdshreadQX) and ldnshread [see ldshread{3X)]
read a section header of a common object file

ldtbread(3X)
read a symbol table entry of a common object file

Idgetname (3X)
retrieve a symbol name from a symbol table entry or from the
string tabie

(3) functions that position an object file at (seek to) the start of the section,
relocation, or line number information for a particular section.

IdohseekQX)
seek to the optional file header of a common object file

IdsseekQX) and ldnsseek [see ldsseek{3X)]
seek to a section of a common object file

ldrseek{3X) and ldnrseek [see ldrseek(3X)]
seek to the relocation information for a section of a common
object file

ldlseek (3X) and ldnlseek [see ldlseek (3X)]
seek to the line number information for a section of a common
object file

ldtbseek{ 3X)
seek to the symbol table of a common object file

(4) the function ldtbindex{3X), which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except ldopen{3X), Idgetname(3X), ldtbindex(3X) return
either SUCCESS or FAILURE, both constants defined in Idfcn.h. LdopenQX)
and ldaopen [(see ldopen(3X)] both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of macros defined
in Idfcn.h. These macros parallel the standard input/output file reading and

LDFCN(4) LDFCN(4)

manipulating functions, translating a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FELENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table. See the
manual entries for the corresponding standard input/output library functions for
details on the use of the rest of the macros.

The program must be loaded with the object file access routine library libido.

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldfhread(3X), ldgetname(3X),
ldlread(3X), ldlseek(3X), ldohseek(3X), ldopen(3X), ldrseek(3X),
ldshread(3X), ldtbindex(3X), ldtbread(3X), ldtbseek(3X), stdio(3S), intro(5).

WARNING
The macro FSEEK defined in the header file ldfcn.h translates into a call to the
standard input/output function fseek(3S). FSEEK should not be used to seek
from the end of an archive file since the end of an archive file may not be the
same as the end of one of its object file members!

t

LIMITS (4) LIMITS (4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include d i m its.h>

DESCRIPTION
The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified in
decimal.

#deflne
Mefine
Mefine
Mefine
i U . l l . > iruoiiire
#deflne
Mefine
Mefine

ARG_MAX
CHAR_BIT
CHAR_MAX
CHARMIN
aui i n IIIW vniLU^MMA
CLK_TCK
DBL_DIG
DBL MAX

10240
8
127
-128
25
60
16

Mefine DBL_MIN

Mefine FCHRJUIAX
Mefine FLT_DtG
Mefine FLT_MAX

Mefine FLTJMIN

Mefine HUGE VAL

Mefine INT_MAX 2147483647
Mefine INT_MIN -2147483648
Mefine UNK_MAX 1000
Mefine LONGMAX 2147483647
Mefine LONGJUIN -2147483648
Mefine NAMEJUAX 14
Mefine OPENMAX 20

Mefine PASSMAX 8
Mefine PATH_MAX 256
Mefine PID_MAX 30000
Mefine PIPE BUF 9216

/* max length of arguments to exec 7
/* * of bits In a "char" 7
I* max integer value of a "char" 7
I* min integer value of a "char" 7
r max # of processes per user id v

of clock ticks per second 7
/* digits of precision of a "doublef 7

1.79769313486231470e+308 /* max decimal value of
a "double!' 7

4.94065645841246544e-324 /* min decimal value of
a "doublcT 7

1048576 /* max size of a file in bytes 7
7 /* digits of precision of a "float" 7
3.4028234663852886004-38 /* max decimal value of

a "float" 7
1.40129846432481707e-45 /* min decimal value of

a "float" 7
3.40282346638528860e+38 /"error value returned

by Math Iib7
/* max decimal value of an "int" 7
/* min decimal value of an "int" 7
r max # of links to a single file 7
/* max decimal value of a "long" 7
/* min decimal value of a "long" 7
f max # of characters in a file name 7
/* max # of files a process can have
open 7
I* max # of characters in a password 7
I* max # of characters in a path name 7
/* max value for a process ID 7
/* max # bytes atomic in write to a
pipe 7

LIMITS (4) LIMTTS(4)

#define PIPE_MAX 9216

#define SHRT MAX 32767
#define SHRT MIN -32767
#define STD_BLK 1024
#defir>e SYS NMLN 9

#define UID_MAX 30000
#define US)_MAX 4294967296

#define WORD BIT 32

/* max # bytes written to a pipe in a
write */
r max decimal value of a "short" */
/* min decimal value of a "short" */
I* # bytes In a physical I/O block 7
/* # of chars in uname-returned
strings V
/* max value for a user or group ID 7
I* max decimal value of an
"unsigned" */
/* # of bite in a "word" or "int" */

WARNING
Three of these parameters are tuneable: CfflLDMAX, F C H R MAX, and
OPEN_MAX. Their values can be changed either by reconfiguring the kernel
or by running uconf(1M).

LINENUM (4) LINENUM (4)

N A M E
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
The cc command generates an entry in the object file for each C source line on
which a breakpoint is possible [when invoked with the -g option; see cc(l)].
Users can then refer to line numbers when using the appropriate software test
system [see «#>(1)]. The structure of these line number entries appears below.

struct lineno
{

union
i i

long l_symndx;
long l_paddr;

} l addr;
unsigned short IJnno;

};
Numbering starts with one for each function. The initial line number entry for a
function has llnno equal to zero, and the symbol table index of the function's
entry is in I symndx. Otherwise, llnno is non-zero, and I_paddr is the physical
address of the code for the referenced line. Thus, the overall structure is the
following:

l_addr IJnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cc(l), sdb(l), a.out(4).

LOGJNLOG(4) LOGINLOG (4)

NAME
/usr/adm/loginlog - log of failed login attempts

DESCRIPTION
After five unsuccessful login attempts, all the attempts are logged in the
loginlog file. This file contains one record for each failed attempt. Each record
contains the following information:

login name
tty specification
time

This is an ASCII file. Each field within each entry is separated from the next by
a colon. Each entry is separated from the next by a newline.

By default, loginlog does not exist, so no logging is done. To enable logging,
the log file must be created with read and write permission for owner only.
Owner must be root and group must be sys.

FILES
/usr/adm/loginlog

SEE ALSO
login(l), passwd(l), passwd(l).

MASTER (4) MASTER (4)

NAME
master - master device information table

DESCRIPTION
The I etc I master file is used by the config(VM) program to obtain device
information to generate the configuration files. Do not modify the master file
unless you fully understand its construction. The file consists of four parts, each
separated by a line with a dollar sign ($) in column 1. Part 1 contains device
information; part 2 contains loadable module dependencies; part 3 contains
names of devices that have aliases; part 4 contains tunable parameter
information. Any line with an asterisk (•) in column 1 is treated as a comment

Part 1 contains one-line entries of 7 or 10 fields, with the fields delimited by
tabs and/or blanks:

Field 1: Device name (8 chars, maximum).

Field 2: Device mask. This can be specified in octal or as a string of
uppercase characters; the character corresponding to the octal
value of each flag is shown in parentheses after the octal value.
Each " o n " bit indicates that the handler exists:

001000 (E) has release handler for downloadable drivers
000200 (T) tty header exists
000100 (N) initialization handler
000040 (P) power-failure handler
000020 (O) open handler
000010 (C) close handler
000004 (R) read handler
000002 (W) write handler
000001 (I) ioctl handler.

For a file system type, field 2 is an octal mask of the
presence/absence of the 32 entries in the file system switch for this
particular file system type.

Field 3: Device type indicator. This can be specified in octal or as a string
of lowercase characters; the character corresponding to the octal
value of each flag is shown in parentheses after the octal value:

0100000 (q) Module depends on another module.
0400000 (z) Supply major/minor to driver, else just minor.
0200000 (d) Line discipline.
0100000 (0 Framework/stream type device.
0040000 (m) Framework/stream module.

MASTER (4) MASTER (4)

0020000 (a) Generate xx_addr array entry.
0010000 (s) Software module.
0004000 (x) Not a driver, configurable module.
0002000 (j) File system type.
0001000 (u) Cluster device.
0000400 (v) VME device - obsolete, do not use.
0000200 (o) Allow only one of these devices.
0000100 (n) Suppress device count field.
0000040 (p) Suppress interrupt vector.
0000020 (r) Required device.
0000010 (b) Block device.
0000004 (c) Character device.
0000002 (1) Boating vector.
0000001 (i) Fixed vector.

Field 4: Handler prefix (four characters maximum).

Field 5: Major device number for block-type device.

Field 6: Major device number for character-type device.

Field 7: Maximum number of devices on system.

Field 8: Device vector size.

Field 9: Device address type (VME modifier).

Field 10: Device interrupt level.

Part 2 of the master file contains any dependency specifications. If a module
has the dependency flag set (in field 3 of part 1 of the master file), the
dependency must be defined here. A dependency entry is one line, consisting
of the dependent driver's name, an equal sign (=), and the name of the driver on
which the driver depends:

dependent_driver=driver

Part 3 of the master file contains one-line entries with two fields each:

Field 1: Alias name of the device (eight characters maximum).

Field 2: Reference name of device (eight characters maximum; specified
in part 1).

Part 3 contains one-line entries with two or three fields each:

Field 1: Parameter name (as it appears in description file); 20 characters
maximum.

MASTER (4) MASTER (4)

Field 2: Parameter name (as it appears in the conf.c file); 20 characters
maximum.

Field 3: Default parameter value (20 characters maximum); parameter
specification is required if this field is omitted. Some parameters,
if specified as zero, are dynamically sized by the kernel at boot
time.

FILES
/etc/master

SEE ALSO
config(lM), uconf(lM).

i

MNTTAB(4) MNTTAB (4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESCRIPTION
The mnttab file resides in directory /etc and contains a table of devices,
mounted by the mount(1M) command, in the following structure as defined by
<mnttab.h>:

Mefine MNTNM 32
Mefine MNTTYP 16
Mefine MNTOPTS 64
struct mnttab {

char nti_dev[MriTNMj,
mt_filsys[MNTNM];

short mt_ro_fig;
time t mt_time;
char mt_fstyp[MNTTYP];
char mt_mntopts[MNTOPTS];

};
Each entry is 150 bytes in length; the first 32 bytes are the null-padded name of
the directory where the special file is mounted; the next 32 bytes represent the
null-padded root name of the mounted special file; the next 6 bytes contain the
mounted special file's read/write permissions and the date on which it was
mounted; the following 16 bytes are the null-padded name of the file system
type; and the remaining 64 bytes are the null-padded string of mount options.
Both file system type and mount options can be null strings. The mount options
are used only in the case of an NFS file system.

The maximum number of entries in mnttab is based on the system parameter
NMOUNT located in /etc/master, which defines the number of mounted special
files.

SEE ALSO
mount(lM), setmnt(lM).

NETCF(4) (CTIX Internetworking) NETCF(4)

NAME
netcf - Network Configuration File

DESCRIPTION
/etc/netcf describes the structure of the available networking protocols and
interfaces. It currently supports three levels of interface: Transport (TLI), Link
(LLC1), and Sockets using the BSD compatibility module. The file is typically
used at boot time to configure the streams drivers used for networking into the
linked configuration used while running, and to initialize the BSD
compatability module (socket stream head).
/etc/netcf consists of several sections describing different elements of the
network configuration. These sections are meant to be modifiable by automatic
installation and update programs. Each section begins with the appropriate
keyword prefixed by an ! (for example, \section-name) at the start of a line. An
asterisk indicates that the rest of the line is a comment and should be ignored.

The TRANSPORT section describes the possible transport providers and the
support protocols they need above link level. If a protocol only runs over a
subset of the interfaces, that should be noted with an only keyword statement.

The format of each line is

Provider [support...] [only: i f , if...]

For example:

1TRANSPORT
tcp ip * Transmission Control Protocol
udp ip * User Datagram Protocol
arp only: enet * Address Resolution Protocol (not TLI!)

The INTERFACE section describes the link level interfaces available to the
networking system. Each consists of a interface driver, a name, a device that
supports it, convergence modules required to connect various higher level
protocols, and flags. Each interface is assumed to support arbitrary higher level
protocols with the LLI interface unless the only keyword is used in place of a
protocol in the convergence specification.

The flags are:

S Single unit only.

M Multiple units, select with minor device number.

NETCF(4) (CTIX Internetworking) NETCF(4)

U Multiple units, use UNIT_SELECT ioctl{2) to select. (Necessary for
multi-protocol, multi-unit devices.)

D Dynamic: not linked in at boot time. (Used for switched serial links.)

The format of each line is

Interface Name Device (proto: convergence) flags

For example:

INTERFACE
enet en /dev/enet (ip: arpproc) U
llcloop lo /dev/llcloop S
slip si /dev/slip UD

The DEVICES section creates a mapping between the driver name and the
device name in the file system. If the stream entity is a stream module instead
of a stream driver, the keyword module is used instead of the file name.

The format of each line is

Driver Filename

For example:

iDEVICES
tc /dev/inet/tcp
ip /dev/inet/ip
arp /dev/inet/arp
arpproc module

The SUBDRIVER section describes which drivers should be loaded together.
Typically these drivers are all in the same object module.

The format of each line is

Primary [Secondary...]

For example:

SSUBDRIVER
ip icmp
arp arpproc

The SOCKET section describes protocols that are to be accessed via the sockets
compatibilty driver. It describes the family, type, and protocol number of the

NETCF(4) (CTIX Internetworking) NETCF(4)

protocol to use and also has a set of flags describing the behavior of the
protocol. Families and types can be specified using mnemonics. The currently
defined set includes:

Families: INET (internetwork: UDP, TCP, etc.), UNSPEC (unspecified)

Types: STREAM (stream socket), DGRAM (datagram socket), RAW (raw-
protocol)

The following flags are defined:

M This protocol supports atomic messages only.

C Connections are required.

A Messages contain addresses.

R Rights can be passed with this protocol.

The format of each line is:

Family Type ProtoNum Flags Protocol

For example:

SSOCKET
INET STREAM 6 C tcp
INET DGRAM 17 AM udp
INET RAW AM icmp

FILES
/etc/netcf

SEE ALSO
slink(l), intro(7), ioctl(2).
CTIX Network Administrator's Guide.

t

I

NETCF(4) (CTIX Internetworking) NETCF(4)

NAME
netrc - login file for remote networks

DESCRIPTION
If the .netrc file exists, it will be used by ftp (I) for automatic login on the
remote host. For each remote host, the file contains a one-line entry that
describes the login data for the user on that host

An entry may consist of up to three blank-separated fields introduced by
keywords. The keyword is followed by the literal data needed for login. The
following keywords are available:

machine The hostname of the machine.

login The user login name for that host

password (Optional) The user's password on that host NOTE: The
literal password must be given in clear text; it is not
encrypted.

If the .netrc file includes the password feature, permissions on the file must be
set to prohibit reading by group and others; the file will not otherwise take
effect.

EXAMPLE
The following example entry allows automatic login on the
mynode.Mysite.COM host by a user named myname whose password is
kebs#l.

machine mynode.Mysite.COM login myname passwd kebs#1

FILES
$HOME/.netrc

SEE ALSO
ftp(l).
CTIX Network Administrator's Guide.

WARNING
For security reasons, use of the password feature is not recommended.

NETWORKS (4) (CTIX Internetworking) NETWORKS (4)

NAME
networks - names and numbers for the internet

DESCRIPTION
The file /etc/networks lists networks on the internet. Each line describes a
single network and consists of the following blank separated fields:

name number aliases ...

where

name is the official name of the network. All hosts on the
internet should use the same official name for a given
network.

number is the network number, which serves as part of the
DARPA Internet address for each host on the internet. AH
hosts on the internet must use the same number for a
given network.

aliases... is a blank-separated list of local aliases for the network.

The routines that search this file ignore comments
(portions of lines beginning with #) and blank lines.

EXAMPLE
Building 11nternet
Engineering 1 #R&D
Production 2 #Administration, etc.

SEE ALSO
hosts(4).
CTIX Network Administrator's Guide.

FILES
/etc/networks

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION
The /etc/passwd file contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
user name
initial working directory
program to use as shell

This is an ASCII file. Each field within each user entry is separated from the
next by a colon. Each user entry is separated from the next by a newline. If the
password field is null, no password is demanded; if the shell field is null,
/bin/sh is used.

The file contains user login information; it has general read permission and can
be used, for example, to map numerical user IDs to names.

Note that if an /etc/shadow file exists, encrypted passwords are stored in the
/etc/shadow file, not in /etc/passwd. The password field remains in
/etc/passwd for compatibility reasons only when /etc/shadow exists. If the
password field in /etc/passwd contains an x, the encrypted password for that
login is stored in the /etc/shadow file. If the login does not have a password,
the password field in /etc/passwd is empty.

If /etc/shadow does not exist and the login has a password, the password field
in /etc/passwd contains the encrypted password.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (., /, 0-9, A-Z, a-z), except when the password is null, in which case
the encrypted password is also null. Password aging is in effect for a user if the
encrypted password is followed by a comma and a non-null string of characters
from the above alphabet (Such a string must be introduced in the first instance
by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks
for which a password is valid. A user who attempts to log in after the password
has expired is forced to supply a new one. The next character, m say, denotes
the minimum period in weeks which must expire before the password can be
changed. The remaining characters define the week (counted from the
beginning of 1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the range 0-63 that

PASSWD(4) PASSWD(4)

correspond to the 64-character alphabet shown above (for example, / = 1 week;
z = 63 weeks). If m = M = 0 (derived from the string . or . .), the user must
change the password at the next login (and the "age" disappears from the
password file entry). If m > M (signified by the string . /) , only the super-user
can change the password.

FILES
/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
login(l), passwd(l), passmgmt(lM), a641(3C), getpwent(3C), getspent(3X),
group(4), shadow(4).

PLOT (4) (Category 2 Support) PLOT (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and are
interpreted for various devices by commands described in tplot(\G). A
graphics file is a stream of plotting instructions. Each instruction consists of an
ASCII letter usually followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer. The last designated point in an 1,
m, n, or p instruction becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the corresponding
routine in plot(3X).

in move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next
four bytes [see tplot(1G)].

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t label: Place the following ASCII string so that its first character falls
on the current point. The string is terminated by a newline.

e erase: Start another frame of output

f linemod: Take the following string, up to a newline, as the style for
drawing further lines. The styles are "dotted", "sol id",
"longdashed", "shortdashed", and "dotdashed". Effective only for
the -T4014 and -Tver options of tplot(1G) (TEKTRONIX 4014
terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting
area; the following four give the upper right corner. The plot will be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of tplot(1G). The upper limit is just outside
the plotting area. In every case the plotting area is taken to be square; points
outside may be displayable on devices whose face is not square.

DASI 300
DASI 300s

space(0, 0,4096,4096);
space(0,0,4096,4096);

PLOT(4) (Category 2 Support) PLOT(4)

DASI 450 space(0, 0,4096,4096);
TEKTRONIX 4014 space(0,0,3120, 3120);
Versatec plotter space(0,0,2048,2048);

SEE ALSO
graph(lG), tplot(lG), plot(3X), gps(4), term(5).

WARNING
The plotting library plotQX) and the curses library curses(3X) both use the
names eraseQ and move(). The curses versions are macros. If you need both
libraries, put the plot(3X) code in a different source file than the curses(3X)
code, and/or #undef move() and erase() in the plot(3X) code.

PROFILE (4) PROFILE (4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/.profile

DESCRIPTION
All users who have the shell, sh(1), as their login command have the commands
in these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire
user community. These services include: the announcement of system news,
user mail, the setting of default environmental variables, setting the umask [see
umask(l)], and the execution of /etc/TIMEZONE [see timezone(4)]. In
addition, /etc/profile executes spccial actions for the root login.

The system file /etc/profile can be customized via four files in the /etc/rcopts
directory:

TSETX The presence of this file overrides the default tset command, and
instead queries the user for terminal type with the command

TERM = 'tset - ?dumb
export TERM

(The default sets TERM to the value specified in /etc/ttytype.)

TPUT The presence of this file causes the execution of

tput init

which initializes the user's terminal according to the value for the
TERM environment variable.

LOCPRF
If this file exists, it is executed by /etc/profile; if there are any
customizations to the system profile file, they should be put in
LOCPRF.

AUTOWM
The presence of this file causes wm (window manager for
Programmable Terminals and Graphics Terminals) to be exec 'ed after
.profile.

The file $HOME/.profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical for a user's
.profile file:

PROFILE (4) PROFILE (4)

PATH=:$PATH:$HOME/bin
MAIL=/usr/mall/myname
TERM=pt
export PATH MAIL TERM

FILES
/etc/TIMEZONE timezone environment

$HOME/.profile user-specific environment

/etc/profile system-wide environment

SEE ALSO
env(l), login(l), mail(l), sh(l), stty(l), su(l), tput(l), cprofile(4), terminfo(4),
timezone(4), environ(5), term(5).
S/Series CTIX Administrator's Guide.

NOTES
Although /etc/profile is an ASCII commands text file, it is not meant to be
"configurable". Configurability is provided at the level of "rcopts", or, in the
case of individual users, in .profile files.

PROTOCOLS (4) (CTIX Internetworking) PROTOCOLS (4)

NAME
protocols - list of Internet protocols

DESCRIPTION
The file /etc/protocols lists known DARPA Internet protocols. Each line
describes a single protocol and consists of the following blank separated fields:

name number aliases...

where

name is the official name of the protocol.

number is the protocol number.

aliases... is a blank-separated list of local aliases for the protocol.

The routines that search this file ignore comments (portions of lines beginning
with #) and blank lines.

Protocol names and numbers are specified by the DDN Network Information
Center. Do not change this file.

FILES
/etc/protocols

SEE ALSO
CTIX Network Administrator's Guide.

QUEUEDEFS(4) QUEUEDEFS (4)

NAME
queuedefs - at/batch/cron queue description file

SYNOPSIS
/usr/Iib/cron/queuedefs

DESCRIPTION
The queuedefs file describes the characteristics of the queues managed by
cron(lM). Each non-comment line in this file describes one queue, in the
following format:

q.[njob\~\ [ween] [nwaitv/]

where

q Is the name of the queue, a is the default queue for jobs
started by at (I): b is the default queue for jobs started by
batch(1); c is the default queue for jobs run from a crontab
file.

njob The maximum number of jobs that can be run simultaneously
in that queue; if more than njob jobs are ready to run, only the
first njob jobs are run, and any others are run as jobs
terminate. The default value is 100.

nice The nice (I) value to give to all jobs in that queue that are not
run with a user ID of super-user. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that
was deferred because more than njob jobs were running in
that job's queue, or because more than 25 jobs were running
in all the queues. The default value is 60.

Lines beginning with # are comments, and are ignored.

EXAMPLE
a.4jln
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to four jobs running
simultaneously; those jobs will be run with a nice value of 1. As no nwait
value was given, if a job cannot be run because too many other jobs are
running, cron waits 60 seconds before trying again to run i t The b queue, for
batch jobs, can have up to two jobs running simultaneously; those jobs are run
with a nice value of 2. If a job cannot be run because too many other jobs are
running, cron waits 90 seconds before trying again to run it. All other queues

QUEUEDEFS(4) QUEUEDEFS (4)

can have up to 100 jobs running simultaneously; they are run with a nice value
of 2, and if a job cannot be run because too many other jobs are running, cron
waits 60 seconds before trying again to run i t

FILES
/usr/lib/cron/queuedefs

SEE ALSO
cron(lM), at(l).

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format.

struct reloc
{

long r_vaddr; /• (virtual) address of reference */
long r_symndx; /* index into symbol table */
ushort r type ; /« relocation type */

};
#define R ABS 0

/*

'Motorola Processors 68000,68010, and 68020 *

*
*/

#define R_RELBYTE 017
#define R_RELWORD 020
#define R RELLONG 021
#define R_PCRBYTE 022
#deflne R_PCRWORD 023
#define R_PCRLONG 024

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the input
section are treated.

R_ABS The reference is absolute and no relocation is necessary. The
entry will be ignored.

R_RELBYTE A direct 8-bit reference to the symbol's virtual address.

R_RELWORD A direct 16-bit reference to the symbol's virtual address.

R_RELLONG A direct 32-bit reference to the symbol's virtual address.

R_PCRBYTE A "PC-relative" 8-bit reference to the symbol's virtual address.
The actual address is calculated by adding a constant to the PC
value.

RELOC(4) RELOC (4)

R_PCRWORD A "PC-relative" 16-bit reference to the symbol's virtual
address. The actual address is calculated by adding a constant to
the PC value.

R_PCRLONG A "PC-relative" 32-bit reference to the symbol's virtual
address. The actual address is calculated by adding a constant to
the PC value.

More relocation types exist for other processors. Equivalent relocation types on
different processors have equal values and meanings. New relocation types will
be defined (with new values) as they are needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for both
preserving and removing the relocation entries from object files.

SEE ALSO
as(l), ld(l), a.out(4), syms(4).

RESOLVER (4) (CTIX Internetworking) RESOLVER(4)

NAME
resolv.conf - resolver configuration file

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver configuration file contains information that is read by the resolver
routines the first time they are invoked by a process. The file contains a list of
name-value pairs that provides various types of resolver information.

This file is necessary only on a machine that will run networking programs that
use the Internet Domain name server, but will not actually run the name server
locally [see named(\M)].

The different configuration options are:

nameserver
followed by the Internet address (in dot notation) of a name server that
the resolver should query. At least one name server should be listed.
Up to MAXNS (currently 3) name servers may be listed; if more than
one name server is specified, the resolver library queries each one in
the order listed. If no nameserver entries are present, the default is to
use the name server on the local machine. The algorithm used is to try
a name server, and if the query times out, try the next, until out of
name servers; then repeat trying all the name servers until a maximum
number of retries are made. (It is recommended that this file not be
present on a machine running the name server.)

domain followed by an Internet domain name, that is the default domain to
append to names that do not have a dot in them. If no domain entries
are present, the domain returned by gethostname (2) is used
(everything after the first '.'). Finally, if the host name does not
contain a domain part, the root domain is assumed. [See resolver(3)
for information regarding the search scheme used by resolver
routines.]

usefile If this option is present, no attempt is made to contact a name server,
and the /etc/hosts file is used.

The name value pair must appear on a single line, and the keyword (for
example, nameserver) must start the line. The value follows the keyword,
separated by white space.

RESOLVER (4) (CTIX Internetworking) RESOLVER (4)

EXAMPLE
domain MySite.COM
nameserver 3.0.0.18
nameserver 3.0.0.14

FILES
/etc/resolv.conf

SEE ALSO
named(lM), gethostbyname(3), resolver(3), hosts(4), inet(7).

RFMASTER(4) (RFS Utilities) RFMASTER(4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION
The rfmaster file is an ASCII file that identifies the nodes that are responsible
for providing primary and secondary domain name service for Remote File
Sharing domains. This file contains a series of records, each terminated by a
newline; a record may be extended over more than one line by escaping the
newline character with a backslash (\) . The fields in each record are separated
by one or more tabs or spaces. Each record has three fields:

name type data

The type field, which defines the meaning of the name and data fields, has three
possible values:

p The p type defines the primary domain name server. For this type, name
is the domain name and data is the full node name of the machine that is
the primary name server. The full node name is specified as
domain.nodename. There can be only one primary name server per
domain.

s The s type defines a secondary name server for a domain. Name and
data are the same as for the p type. The order of the s entries in the
rfmaster file determines the order in which secondary name servers
take over when the current domain name server fails.

a The a type defines a network address through which the previously
mentioned name servers can be reached. Name is the full domain name
for the machine and data is the network address of the "listener" service
on that machine [see nlsadmin (1M)].

There are at least two lines in the rfmaster file per domain name server: one p
and one a line, to define the primary and its network address. There should also
be at least one secondary name server in each domain.

This file is created and maintained on the primary domain name server. When a
machine other than the primary tries to start Remote File Sharing, this file is
read to determine the address of the primary. If rfmaster is missing, the -p
option of rfstart must be used to identify the primary. After that, a copy of the
primary's rfmaster file is placed on the machine automatically.

Domains not served by the primary can also be listed in the rfmaster file. By
adding primary, secondary, and address information for other domains on a
network, machines served by the primary will be able to share resources with
machines in other domains.

RFMASTER(4) (RFS Utilities) RFMASTER(4)

A primary name server may be a primary for more than one domain. However,
the secondaries must then also be the same for each domain served by the
primary.

NOTE: It is highly recommended that adman (1M) be used to maintain/update
the rfmaster file.

EXAMPLE
An example of an rfmaster file for domain du over an Internet transport
provider is shown below. In this example, the node engnode has an internet
address of 3.180.0.7 and the node mktnode has an internet address of 3.180.0.5.

du p du.engnode
du s du.mktnode
du.engnode a \x0002040103b40007
du.mktnode a \x0002040i03640005

NOTE: If a line in the rfmaster file begins with a # character, the entire line
will be treated as a comment.

FILES
/usr/nserve/rfmaster

SEE ALSO
rfstart(lM), getservaddr(lM), nlsadmin(lM), hosts(4), services(4).
S/Series CTIX Administrator's Guide.

R H O S T S (4) (CTIX Internetworking) R H O S T S (4)

N A M E
rhosts - remote equivalent users

DESCRIPT ION
These files grant permission for remote users to use local user names without
knowing the corresponding user passwords. This is known as making the
remote user "equivalent" to the local user and is convenient, for example,
when one person owns user names on more than one host.
If a user's home directory contains a file named .rhosts, remote users specified
in the file are equivalent to the local user. Each user specification in the file
consists of the remote user host name and user name, separated by a space. (If
an asterisk is substituted for either name, any name will match.) For security
reasons, .rhosts must belong to the user granting the equivalence or to root.

The file /etc/hosts.equiv is a list of remote hosts with matching-name
equivalence. The file lists remote hosts one per line. On each host listed in
/etc/hosts.equiv, a remote user with the same name as a local user is equivalent
to the local user. In effect, the users are the same if the names are the same.

FILES
$HOME/.rhosts
/etc/hosts.equiv

SEE ALSO
rcmd(l), rcp(l), rlogin(l).
CTIX Network Administrator's Guide.

W A R N I N G S
When a system is listed in /etc/hosts.equiv, its security must be as good as local
security. One insecure system mentioned in /etc/hosts.equiv can compromise
the security of an entire network.

tr

RMTAB(4) (NFS Utilities) RMTAB (4)

NAME
rmtab - remotely mounted file system table

DESCRIPTION
Rmtab resides in directory letc on the server and contains a record of all clients
that have done remote mounts of file systems from this server. Whenever a
remote mount is done from the client, an entry is made in the rmtab file of the
host serving up that file system. Umount from the client removes NFS remote
mount entries from the table. If the client crashes, all entries for client will be
removed by showmount -r when the client reboots. The table is a series of lines
of the form

hostname:directory

This table is used only to preserve information between crashes, and is read
only by mountd(1M) when it starts up. Morntd keeps an in-core table, which it
uses to handle requests from programs like showmount (I).

FILES
/etc/rmtab

SEE ALSO
showmount(l), mountd(lM), mount(lM), umount(lM).

BUGS
Although the rmtab table is close to the truth, it is not 100% accurate.

k

\

RPC(4) (CTIX Internetworking) RPC(4)

N A M E
rpc - Sun rpc program number database

SYNOPSIS
/etc/rpc

DESCRIPTION
The rpc file contains user readable names of rpc (Remote Procedure Call)
services that can be used in place of rpc program numbers. It is used by
programs such as rpcinfo (1M).

Each line is of the following format:

rpc_program_server_name rpc_program_number aliases...

Items are separated by any number of blanks and/or tab characters. A #
character indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file.

FILES
/etc/rpc

SEE ALSO
getrpcent(3).
CTIX Network Programmer's Primer.

RTAB(4) RTAB(4)

NAME
rtab - Remote I/O Processor configuration table

DESCRIPTION
The RIOP table file, rtab, defines which RIOPs are known to the system. This
file resides in the directory /etc/riop. Each entry in this table consists of one
line with three ASCII fields separated by a colon (:) and gives information about
one RIOP in the system.
The first field is the unique identification number which is coded into an ID
prom on the RIOP. In the RIOP, this is a 4 byte number; the most significant
byte is the product code, which is always 0x20 for an RIOP. The rtab field
should only contain the lower 3 significant bytes of this number and be
expressed in hexadecimal.

The second field is the decimal ordinal number for the RIOP. This field is used
to order each RIOP from 0 to 31 such that RIOP #0 is related to the first group of
16 virtual ttys, RIOP #1 is related to the second group of 16 virtual ttys, and so
on. The numbers of this field in different lines of the file do not have to be
sequentially ordered, although this is recommended for ease of administration.

The third field is the version number suffix string which is appended to the
string "/etc/riop/riop" by the RIOP daemon to form the full path name of the
executable object file to be downloaded into the RIOP. For the first release, this
field contains "1.00". This mechanism allows for the simultaneous use of
multiple RIOPs operating at different download image release levels.

An optional fourth comment field may be added to each line by appending a
colon (:) immediately after the version string, followed by text up to the
newline.

FILES
/etc/riop/rtab

SEE ALSO
riopcfg(lM), riopqry(lM).

t

SCCSFILE(4) SCCSFILE(4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS (Source Code Control System) file is an ASCII file. It consists of six
logical parts: the checksum, the delta table (contains information about each
delta), user names (contains login names and/or numerical group IDs of users
who may add deltas), flags (contains definitions of internal keywords),
comments (contains arbitrary descriptive information about the file), and the
body (contains the actual text lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start
of heading) character (octal 001). This character is hereafter referred to as the
control character and will be represented graphically as @. Any line
described below which is not depicted as beginning with the control character is
prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum

The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD
The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se

<pgmr> DDDDD DDDDD
@i DDDDD ...
@x DDDDD...
@g DDDDD ...
@m <MR number>

@ C <comments> ..

SCCSFILE(4) SCCSFILE(4)

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed: R),
the SCCS ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
nntinnal

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by newlines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the succeeding group or user
from making deltas.

Flags
Keywords used internally. [See admin (I) for more information on
their use.] Each flag line takes the form:

@f <flag> coptional text>

The following flags are defined:
@ f t ctype of program>
@ f v <program name>
@ f i <keyword string>
@ f b
(ffifm <module name>
@ f f <floor>
@ f c <ceiling>
@ f d <default-sid>
@ f n
@ f j

- 2 -

SCCSFILE(4) SCCSFILE(4)

@f 1 <lock-releases>
@f q <user defined>
@f z creserved for use in interfaces>

The t flag defines the replacement for the %Y% identification
keyword. The v flag controls prompting for MR numbers in addition
to comments; if the optional text is present it defines an MR number
validity checking program. The i flag controls the waming/error
aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present, this
message will cause a " fa ta l " error (the file will not be gotten, or the
delta will not be made). When the b flag is present the -b keyletter
may be used on the get command to cause a branch in the delta tree.
The m flag defines the first choice for the replacement text of the
%M% identification keyword. The f flag defines the "f loor" release;
the release below which no deltas may be added. The c flag defines
the "ceil ing" release; the release above which no deltas may be
added. The d flag defines the default SID to be used when none is
specified on a get command. The n flag causes delta to insert a
"nu l l " delta (a delta that applies no changes) in those releases that are
skipped when a delta is made in a new release (for example, when
delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be completely empty.
The j flag causes get to allow concurrent edits of the same base SID.
The 1 flag defines a list of releases that are locked against editing
[get(1) with the -e keyletter]. The q flag defines the replacement for
the %Q% identification keyword. The z flag is used in certain
specialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's
purpose.

Body
The body consists of text lines and control lines. Text lines do not
begin with the control character; control lines do. There are three

SCCSFILE(4) SCCSFILE(4)

kinds of control lines: insert, delete, and end, represented by the
following in respective order:

@IDDDDD
@D DDDDD
@E DDDDD

The digit string is the serial number corresponding to the delta for the
control line.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

SCNHDR(4) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the layout of
the data within the file. Each section within an object file has its own header.
The C structure appears below.

struct scnhdr
{

char s_name{8]; /* section name */
long s_paddr; /» physical address */
•ong _ i _ j _ _

• _ * « U U I , /* virtual address */'
long s_size; 1* section size */
long s_scnptr; 1* file ptr to raw data *l
long srelptr; 1* file ptr to relocation */
long slnnoptr; 1* file ptr to line numbers */
unsigned short s_nreloc; 1* # reloc entries */
unsigned short s_nlnno; 1* # line number entries */
long sttags; i* flags */

};
File pointers are byte offsets into the file; they can be used as the offset in a call
to FSEEK [see Idfcn (4)]. If a section is initialized, the file contains the actual
bytes. An uninitialized section is somewhat different. It has a size, symbols
defined in it, and symbols that refer to i t But it can have no relocation entries,
line numbers, or data. Consequently, an uninitialized section has no raw data in
the object file, and the values for s_scnptr, s_relptr, slnnoptr, sjtreloc, and
s nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a.out(4).

I

SCR_DUMP(4) SCR_DUMP(4)

NAME
scr_dump - format of curses screen image file.

SYNOPSIS
scr_dump(file)

DESCRIPTION
The cursesQX) function scr dumpQ will copy the contents of the screen into a
fde. The format of the screen image is as described below.

The name of the tty is 20 characters long and the modification time (the mtime
of the tty that this is an image of) is of the type time t. All other numbers and
characters are stored as chtype (see <curses.h>). No newlines are stored
between fields.

cmagic number: octal 0433>
cname of tty>
<mod time of tty>
<columns> <lines>
cline length> cchars in l i n o for each line on the screen
cline length> <chars in l i n o

<labels?> 1, if soft screen labels are
present

<cursor row> ccursor column>

Only as many characters as are in a line will be listed. For example, if the <line
length> is 0, there will be no characters following <line length>. If <labels?>
is TRUE, following it will be

cnumber of labels>
clabel width>
cchars in label 1>
cchars in label 2>

SEE ALSO
curses(3X).

j

SERVICES(4) (CTIX Internetworking) S E R V I C E S (4)

N A M E
services - list of Internet services

DESCRIPT ION
The file /etc/services lists known DARPA Internet services. Each line describes
a single service and consists of the following blank separated fields:

name number I protocol aliases ...

where

name is the official name of the service.

number is the service number.
protocol is the name of the protocol (see protocols (4)) used by the

service.

aliases ... is a blank-separated list of local aliases for the service.

The routines that search this fde ignore comments (portions of lines beginning
with #) and blank lines.

Service names and numbers are specified by the DDN Network Information
Center. Do not change this file unless you are familiar with DARPA Internet
internals.

FILES
/etc/services.

SEE A L S O
CTIX Network Administrator's Guide.

SHADOW(4) SHADOW(4)

N A M E
shadow - shadow password file

DESCRIPT ION
The shadow file contains the following information for each user

• login name
• encrypted password
• aging information

The aging information includes three integer fields:

lastchange The number of days from the epoch (midnight, 1/1/70) to the last
time the password was changed.

mindays The minimum number of days between password changes,
defined as MCnWEEKS in /etc/'defauit/passwd.

maxdays The number of days the password is valid, defined as
MAXWEEKS in /etc/default/passwd.

If mindays and maxdays equal 0, the user must change the
password at the next login. If mindays is greater than maxdays,
only the super-user can change the password.

This is an ASCII file. Each field within each user's entry is separated from the
next by a colon. The file resides in the /etc directory and can be read only by
the super-user.

FILES
/etc/passwd
/etc/opasswd
/etc/oshadow

SEE ALSO
login(l), passwd(l), pwconv(l), getpwent(3X) getspent(3X), passwd(4).

I

SYMS(4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION
Common object files contain information to support symbolic software testing
[see sdfe(l)]. Line number entries, linenum(4), and extensive symbolic
information permit testing at the C source level. Every object fde's symbol
table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the structure
hold the name (null padded), its value, and other information. The C structure
is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

union /* all ways to get symbol name */
{

SYMS(4) SYMS(4)

char

struct
{

long
long

}_n_n;
char

}_n;
long
short
unsigned short
char
char

};
#define nname
#define nzeroes
#define noffset
#define n_nptr

_n_name[SYMNMLEN];
/* old COFF version */

n zeroes; /*new == 0 */
_n_offset; /* offset into string table */

_n_nptr[2]; / allows overlaying */

n value; /* value of symbol */
n scnum; /* section number */
n_'ype; I* type and derived type */
n_sclass; /* storage class */
n mimmiv I* niimlw nf i

n.nname
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptr[1]

Meaningful values and explanations for them are given in both syms.h and
Common Object File Format. Anyone who needs to interpret the entries should
seek more information in these sources. Some symbols require more
information than a single entry; they are followed by auxiliary entries that are
the same size as a symbol entry. The format follows.

union auxent
{

struct
{

long
union
{

xtagndx;

struct
{

unsigned short xjnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x misc;
union
{

- 2 -

SYMS(4) SYMS(4)

struct
{

long xjnnoptr;
long x_endndx;

} xfcn;
struct
{

unsigned short x_dimen[DIMNUM];
} *_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_sym;
struct
{

char x_fname[FILNMLEN];
} x_flle;

struct
{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct
{

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;

};
Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l), a.out(4), linenum(4).
UNIX System V Release 3.2 Programmer s Guide.

WARNINGS
CTIX C longs are equivalent to ints and are converted to ints in the compiler to
minimize the complexity of the compiler code generator. Thus the information
about which symbols are declared as longs and which, as ints, does not show up
in the symbol table.

SYSTEM(4) SYSTEM (4)

NAME
system - system description file

DESCRIPTION
The system description describes tunable variables and hardware configuration
of the CTIX system.

The file is formatted in sections. Each section begins with a section header (an
! followed by a single word). Each section varies in format, depending on the
format required by the program that uses the data provided by that section.

Note that with respect to the JTUNEABLES section, changes made to this
section do not take effect until the uconf(1M) program is run.

In the example file below, the !TUNEABLES section describes a cluster
terminal configuration where only two cluster lines are used and there are six
ttys associated with each line: Cluster line 0 has tty256-261 and Cluster line 1
has tty262-267. (Note that uconf must be run in order for this configuration to
take effect.)

The iVMESLOTS section of the same example file describes the VME boards
for the EEPROM. The slot field is the slot position in the VME bus. The type
field is the board type, any of the following:

1 CMC Ethernet board

2 Interphase SMD disk controller board

4 Interphase half-inch tape controller board

5 Multiprotocol Communications Controller board

The address field is the location of the board. The length field is the address
space size of the board. The optional initialization function name is an
initialization function called by the PROM at boot time.

The iVMECODE section consists of a list of files that describe the executable
code to be loaded into the EEPROM. This section is required only if a bootable
initialization function is specified.

The '.SCSIMAP section consists of several one-line (up to 64 characters) entries,
each specifying a logical-to-physical mapping for a SCSI device. The disk
controller number must always be cO.

SYSTEM (4) SYSTEM (4)

The range of drive numbers in the JSCSIMAP follows:

Drive Type Drive Number Range

disk dO.. d9 and da. . df

tape dO.. d7

The range of target numbers for each bus is 0 through 6. Target number 7 is
reserved for the host ID.

The range of bus numbers for each type of system follows:

System Type Bus SCSI Controller

S/80, S/280 0 onboard SCSI

S/120. S/22r, S/320 1 .. 4 four SCSI RS-232 boards

S/480, S/640 0 . . 4 onboard SCSI and four SCSI RS-232 boards

EXAMPLE
(FILENAMES
PROM_IFILE=/etc/lddrv/EEPROM.Ifile
EEPROMFILE=/dev/vme/eeprom
ITUNEABLES
cl_defllnes=2
cl_defdrops=6
IVMESLOTS
* The following section describes the VME boards

'slot type address length [Initialization
function name]

0 2 C1000000 512
1 2 C1000200 512
'one CMC Ethernet controller)
2 1 CODEOOOO 131072

loadvs32

IVMECODE
/etc/I ddrv/DISKVS32.o
ISCSIMAP
disk-cOdO bus=0 target =6 lun=0 parity reselect
disk-c0d1 bus=0 target =5 lun=0 parity reselect
tape-dO bus=0 target=1 lun=0 parity reselect
tape-d1 bus=0 target=2 lun=0 parity reselect halfinch
disk-c0d2 bus=1 target =6 lun=0 parity reselect

- 2 -

SYSTEM(4) SYSTEM (4)

disk-cOd3 bus=1 target =5 lun=0 parity reselect
dlak-o0d4 bus=1 target=4 lun=0 parity reselect
tape-d2 bus=2 target =0 lun=0 parity reselect ha If inch

FILES
/etc/system

SEE ALSO
lddrv(lM), ldeeprom(lM), scsimap(lM), uconf(lM), vme(7).
SISeries CTIX Administrator's Guide.

NOTE
On an S/80, S/280, or S/480: on bus 0, disk-cOdO is the rootdev. On an S/80, on
bus 0, target 0 is reserved for the Ethernet LANCE chip [see scsimap (1M)]. In
both cases, the ISCSIMAP entries should not be changed.

T APEDRIVES (4) T APEDRIVES (4)

NAME
tapedrives - tape drive specific information used by the /etc/tapeset command.

DESCRIPTION
The /etc/tapedrives file contains tape drive- and controller-specific information
that the tapeset(1M) command uses to configure drives with controllers.

Each entry in the /etc/tapedrives file is a line of the following form:

drive name Ctrl type maxblocksize CtrlJlags

where

drive name Corresponds to the drive name used in the -t option of
tapeset (1M).

ctrl type Specifies the controller type: i for the Interphase V/Tape
controller or s for a SCSI controller.

max blocksize Specifies the decimal value of the maximum size block the
drive can accept

ctrlJlags Are controller-specific flags, the format of which depends
on the value of ctrl type.

VME Controller-Based Drive Flags

Flags for the Interphase V/Tape controller follow:

densityJlags speedJlags gapJlags

Any of the densityJlags, speedJlags, or gapJlags can be omitted, and the

flags can be specified in any order.

The /usr/include/sys/iptioctl.h header file describes each flag.

The format for the density, speed, and gap flags follows:

flag [\flag ...][,»»...]

where

flag Can be any of the following:
DSBOK, DSB, DSBL, DSBFLGS, SSBOK, SSB, SPD, SPDL,
SPDFLGS, GSBOK, GSB, LGAP, LGAPL, GAPFLGS

nn Can be two or three hexadecimal numbers that correspond to the
formatter commands used to change density (high, med, low), speed
(high, low), or gap (default, extended) if the other flags specify that the
controller expects formatter commands.

TAPEDRIVES(4) TAPEDRIVES(4)

SCSI Controller-Based Drive Flags
In the case of SCSI controller-based tape drives, the flags are used to set drive
parameters. The SCSI drive controller is first interrogated for the existing
mode-sense data. The flags follow:

data length mode sense data mode select data

where

datalength

mode sense data

mode select data

If data length is a non-zero decimal value, tnen mode sense aata ana
mode select data must contain the correct number of hexadecimal digits with
no spaces.

EXAMPLES
* Dumb half-inch tape drive
dumb i 131072

dumb-64 i 65536

* Cipher M990 GCR CacheTape Drive
* Manual Reference: M990 GCR CacheTape Unit
* Maintenance Manual Fourth Edition
* Note: Must have VME Eprom version 004.
* Interphase tape controller
* 64K max block size
* Sets density via formatter command

(low=16,med=17,high=09)
* Speed can be set via J1-36
* M990 is low speed, M990-hs is high speed

M990 i 65536 DSBOK | DSB,16,17,09 SSBOK
M990-hs i 65536 DSBOK | DSB,16,17,09 SSBOK | SPD
*

* Cipher F880 Microstreamer Tape Drive.
* Manual Reference: F880 Series Microstreamer Tape
* Drive Product Description

Is the size of the mode-sense data block in bytes

Is the mask that is ORed with the mode-sense data block
read from the drive

Is the mask that is ANDed with the result of the ORed
mode sense data mask and the mode-sense data block;
the two-step result is used to reconfigure the drive.

TAPEDRIVES(4) TAPEDRIVES (4)

* Interphase tape controller
* 64K max block size
* Sets speed via J2-50
* F880 is low speed, F880-hs is high speed

F880 i 131072 SSBOK | SPDL
F880-hs I 131072 SSBOK | SPDL | SPO

Dumb SCSI tape drive

(Since all SCSI drives can run with blocksize of 128K -
they break it up into many 512 byte blocks • the field
is set to 12SK, but it will be ignored by the tapeset
command.)

dumb s 131072

Archive 5945S (archive + emulex controller) SCSI tape drive
Use mode select to turn off auto load (bit 2, byte 13).

Cipher F880S and M990S (F880 and M990 with SCSI Adapter)

5945S-noauto s 13107213 (
5945S-auto s 131072 13 (
F880S s 13107212 C)0000000000000000000000000007ffffffffw00000000
M990S s 13107212 00000000000000000000000000007fffftfWf«XX)00000

SEE ALSO
tapeset(lM), ipt(7), qic(7).

(r -

TERM (4) TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
/usr/lib/terminfo/? /*

DESCRIPTION
Compiled terminfo{4) descriptions are placed under the directory
/usrllib/terminfo. In order to avoid a linear search of a huge CTIX system
directory, a two-level scheme is used: lusrlliblterminfolc/name where name is
the name of the terminal, and c is the first character of name. Thus, act4 can be
found in the file lusrlliblterminfolalact4. Synonyms for the same terminal are
implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An
8-bit byte is assumed, bui no assumptions about byte ordering or sign extension
are made. Thus, these binary terminfo{4) files can be transported to other
hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant
8 bits. (Thus, the value represented is 256* second+first.) The value -1 is
represented by 0377,0377, and the value -2 is represented by 0376,0377; other
negative values are illegal. The -1 generally means that a capability is missing
from this terminal. The -2 means that the capability has been cancelled in the
terminfo (4) source and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals
[see the -I option of infocmp(1M)] by using the terminfo (4) compiler, ric(lM),
and read by the routine setuptermQ. [See curses(3X).] The file is divided into
six parts: the header, terminal names, boolean flags, numbers, strings, and
string table.

The header section begins the file. This section contains six short integers in
the format described below. These integers are (1) the magic number (octal
0432); (2) the size, in bytes, of the names section; (3) the number of bytes in the
boolean section; (4) the number of short integers in the numbers section; (5) the
number of offsets (short integers) in the strings section; (6) the size, in bytes, of
the string table.

The terminal names section comes next. It contains the first line of the
terminfo (4) description, listing the various names for the terminal, separated by
the bar (I) character [see term(5)]. The section is terminated with an ASCII
NUL character.

TERM (4) TERM (4)

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the
flag is present or absent The value of 2 means that the flag has been cancelled.
The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an even byte.
All short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value represented is -1
or -2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer,
in the format above. A value of -1 or -2 means the capability is missing.
Otherwise, the value is taken as an offset from the beginning of the string table.
Special characters in "X or V; noiaiion are stored in their interpreted form, not
the printing representation. Padding information ($<nn>) and parameter
information (%x) are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm() to expect a different set of capabilities
than are actually present in the file. Either the database may have been updated
since setupterm() has been recompiled (resulting in extra unrecognized entries
in the file) or the program may have been recompiled more recently than the
database was updated (resulting in missing entries). The routine setupterm()
must be prepared for both possibilities - this is why the numbers and sizes are
included. Also, new capabilities must always be added at the end of the lists of
boolean, number, and string capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is
included:

mlcroterm|act4|mlcroterm act iv,
cr=*M, cud1="J, ind="J, bel="G, am, cub1="H,
ed="_, el=", clear=*L, cup="T%p1 %c%p2%c,
cols#80, lines#24, cuf1='X, cuu1=~Z, homes'],

TERM (4) TERM (4)

000 032 001 V0 025 \0 \b \0 212 \0 " \0 m i c r
020 o t * r m | a e t 4 | m i e r o
040 t e r m a c t I v \0 \0 001 \0 \0
060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377

120 377377 377377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0
160 377 377 377377034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0
560 024 % p 1 % c % p 2 % e \ 0 \ n \0 035 \0
600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 40% bytes; all entries in
the name field cannot exceed 128 bytes.

FILES
/usr/lib/terminfo/?/* compiled terminal description database

/usr/include/term.h terminfo(4) header file

SEE ALSO
infocmp(lM), curses(3X), terminfo(4), term(5).
UNIX System VRelease 3.2 Programmer's Guide.

I

I

TERMINFO (4) TERMINFO (4)

NAME
termcap - terminal capability database

SYNOPSIS
/etc/termcap

DESCRIPTION
This entry describes terminal-independent programming conventions that
originate at UC Berkeley. UNIX System V initially borrowed termcap but has
since changed to the terminfo (A) convention. CTIX continues to support
termcap so as to be compatible with the Berkeley version of the UNIX system.
But use terminfo in new programs.

termcap programs work from information supplied through the TERM and
TERMCAP environment variables. The location of the description depends on
tha ..aliin n f T D m i r i n . uiC Valuo ui i .

• If TERMCAP is not set or is empty, TERM is the name of a description
in /etc/termcap.

• If TERMCAP has a value that begins with a /, TERM is the name of a
description in the file named by TERMCAP.

• If TERMCAP begins with any character except /, TERMCAP contains
the description.

A description begins with a list of its names separated by vertical bars. The rest
of the description is a list of capabilities separated by colons. If you use more
than one line, precede each newline except the last with :\ Here's a simple
example.

d5|vt50|dec vt50:\
:bs :cd=\EJ :ce=\EK :ct=\EH\E J :co#80 :li#12:\
:nd=\EC:pt:up=\EA:

There are three kinds of capabilities:

• Boolean. These indicate the presence or absence of a terminal feature
by their presence or absence. Boolean capabilities consist of two
characters (the capability name).

• Numeric. These indicate some numeric value for the terminal, such as
screen size or delay required by a standard character. Numeric
capabilities consist of two characters (the capability name), followed
by a #, followed by a decimal number.

TERMINFO (4) TERMINFO (4)

• String. These indicate a sequence that performs some operation on the
terminal. String capabilities consist of two characters (the capability
name), optionally followed by a delay, followed by a string.

The delay is the number of milliseconds the program must wait after
using the sequence; specify no more than one decimal place. If the
delay is proportional to the number of lines affected, end it with a *.

The string is a sequence of characters. The following sequences are
specially interpreted.

\E Escape Character
"x Control-*
\n Newline
Sr Return
\t Tab
Nb Backspace
\f Formfeed

\cxx Octal value of xxx
\072 : in string
\200 null COOO doesn't work)

Octal numbers must be three digits long.

Some strings are interpreted further, such as cm.

You can follow any capability name with an to indicate that the terminal
lacks the capability. This is only useful in conjunction with the tc capability;
see "Similar Terminals," below.

Here is a list of standard capabilities. (P) indicates a string that might require
padding; (P*) indicates a string that might require proportional padding.

Name Type Pad? Description
ae str (P) Ends alternate character set
al str (P*) Adds new blank line.
am bool Terminal has automatic margins.
as str (P) Starts alternate character set.
be str Backspace if not Control-h.
bs bool Terminal can backspace with Control-h.
bt str (P) Back tab.
bw bool Backspace wraps from column 0 to last column.
CC str Command character in prototype if terminal settable.
cd str CP*) Clears to end of display.

TERMINFO(4) TERMINFO (4)

ce str (P) Clears to end of line.
ch str CP) Moves cursor horizontally to specified column.
cl str (P*) Clears screen.
cm str CP) Moves cursor to specified row and column.
CO num Number of columns in a line.
cr str CP*) Carriage return if not Control-m.
cs str CP) Change scrolling region.
cv str CP) Moves cursor vertically to specified row.
da bool Display can be retained above.
dB num Delay after backspace, in milliseconds.
db bool Display can be retained below.
dC num Delay after carriage return, in milliseconds.
dc str (P*) Delete character.
dF num Delav after form feed, in milliseconds.
dl str CP*) Deletes line.
dm str Enters delete mode.
dN num Delay after newline, in milliseconds.
do str Goes down one line.
dT num Delay after tab, in milliseconds.
ed str Ends delete mode.
ei str Ends insert mode; give an empty string if you''

eo str
I t .
Can erase overstrikes with a blank.

ff str CP*) Hardcopy terminal page eject if not form feed.
he bool Hardcopy terminal.
hd str Half-line down (forward 1/2 linefeed).
ho str Move cursor to upper left corner (home).
hu str Half-line up (reverse 1/2 linefeed).
hz str Hazeltine or other terminal that can't print ~'s.
ic str CP) Insert character.
if str Name of file containing terminal initialization.
im bool Starts insert mode; give an empty string

defined ic.
in bool Insert mode distinguishes nulls on display.
ip str CP*) Pad after insertion.
is str Terminal initialization.
k0-k9 str Sent by special (usually numeric) function

programmable, set with is, if, vs, or ti.
kb str Sent by backspace key.
kd str Sent by terminal down arrow key.

- 3 -

TERMINFO(4) TERMINFO (4)

ke str Ends keypad transmit mode,
kh str Sent by home key.
kl str Sent by terminal left arrow key.
kn num Number of special function keys,
ko str Terminal capabilities that have keys,
kr str Sent by terminal right arrow key.
ks str Begin keypad transmit mode,
ku str Sent by terminal up arrow key.
10-19 str Labels on special function keys,
li num Number of lines on screen or page.
11 str Last line, first column.
ma str Command key map; used by ex version 2 (Convergent

uses version 3).
mi boo! Safe to move while in insert mode,
ml str Memory lock on above cursor,
ms bool Safe to move while in standout and underline mode,
mu str Memory unlock (turn off memory lock),
nc bool No correctly working carriage return (DM2500,H2000).
nd str Non-destructive space (cursor right),
nl str (P*) Begin a new line if not newline.
ns bool A video terminal that doesn't scroll!
os bool Terminal overstrikes.
pc str Pad character if not null.
pt bool Has hardware tabs; if they need to be set put sequence in

is or if.
se str Ends stand out mode.
sf str (P) Scrolls forwards.
sg num Number of blank chars left by so or se.
so str Begins stand out mode.
sr str (P) Scroll reverse (backwards).
ta str (P) Tab if not Control-i or with padding.
tc str Name of terminal that has some of the same capabilities;

tc must be the last capability,
te str Ends programs that do cursor motion,
ti str Initializes programs that do cursor motion,
uc str Underscores and moves past one character,
ue str Ends underscore mode.
ug num Number of blank spaces that surround underscore mode,
ul bool Terminal underlines automatically even though it can't

overstrike

- 4 -

TERMINFO (4) TERMINFO (4)

up su-
us sS"
vb str
ve str
vs str
xb bool
xn bool
xr bool

xs bool

xt bool

Upline (cursor up).
Start underscore mode.
Visible bell (must not move cursor).
Ends open and visual modes.
Initializes open and visual modes.
Beehive (fl=escape, f2=ctrl C).
Terminal ignores newline after wrap (Concept).
Return clears to end of line and goes to beginning of
next line (Delta Data).
Writing on standout mode text produces standout mode
text (HP 264?).
Destructive tabs, magic standout character (Teleray
1061).

Pointers on Preparing Descriptions
• You may want to copy the description of a similar terminal.

• Build up a description gradually, checking partial descriptions with ex.

• Be aware that an unusual terminal may expose bugs in ex. limitations
in the termcap convention.

Basic Capabil i t ies
The following capabilities are common to most terminals. The co capability
gives the number of columns per line. The li gives the number of lines on a
video terminal. The am capability indicates that writing off the right edge takes
the cursor to the beginning of the next screen. The cl capability tells how the
terminal clears its screen. The bs indicates that the terminal can backspace; but
if the terminal doesn't use Control-h, specify be instead of bs. The os capability
indicates that printing a character at an occupied position doesn't destroy the
existing character.

A couple of notes on moving off the edge. Programs that use this convention
never move the cursor off the top or the left edge of the screen. On the other
hand, they assume that moving off the bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very dumb terminals. For
example, the Teletype Model 33 has this description.

t31331 tty33:co#72:os

This is LSI ADM3 (without the cursor addressing option),

cl | adm3|3|lsi adm3:am:bs:cl="Z:ll#24:co#80

TERMINFO (4) TERMINFO (4)

Cursor Addresses and Other Variables
If a string capability includes a variable value, use a % escape to indicate the
value. By default, programs take these values to be zero origin (that is, the first
possible value is 0) and that the cm capability specifies two values: row, then
column. Use the %r or %i capability if either assumption is incorrect.

These are the valid % escapes.

%d print the values as a decimal number
%2 print the values as a two-digit decimal number
%3 print the values as a three-digit decimal number
%. print the value in binary (but see below)
%+x add ASCII value of x to value, then print in binary
%>xy if the next value is greater than the ASCII value of x, add the ASCII

value of y before using the value's % escape
%r row is the first value in this cm
%i values are 1-origin
%% print a %
%n in this capability, exclusive or the values with 01400 before using the

values' % escapes (DM2500)
%B change the next value to binary coded decimal ((16*(x/10)) + (x%10)

where x is the value) before interpreting it
%D The next value is reverse-coded (x-2*(x%\6) where x is the value;

Delta Data)

A program should avoid using a cm sequence that includes a tab, newline,
Control-d, or carriage return, because the terminal interface may misinterpret
these characters. If possible, use the cm sequence to move to the row or column
after the destination, then use local motion to get to the destination.

Here are some examples of cm definitions. To position the cursor of an HP2645
on row 3, column 12, you must send the terminal " \E&al2c03Y", followed by
a 6 millisecond delay; the HP2645 description includes
:cm=6\E&%r%2c%2Y:. To position the cursor of an ACT-IV, you send it a
Control-t, followed by the row and column in binary; the ACT-IV description
includes :cm=T%.%.: The LSI ADM3a uses the set of printable ASCII
characters to represent row and column values; its description includes
:cm \E=%+%+:.

Local and General Cursor Motions
Most terminals have short strings that trigger commonly-used cursor motions.
A non-destructive space (BR nd) moves the cursor one position right. An
upline sequence (up) moves the cursor one position up. A home sequence (ho)

TERMINFO (4) TERMINFO (4)

moves the cursor to the upper left hand corner. A lower-left (II) goes to the
other lefthand corner. The 11 capability may be a sequence that moves the
cursor home, then up; but otherwise programs never do this.

Area Clears
Some terminals have short sequences that clear all or part of a display. Clear
(cl) clears the screen and homes the cursor; if clearing the screen does not
restore the terminal's normal modes, cl should include the strings that do. Clear
to end of line (ce) clears from the current cursor position to the right. Clear to
end of display (cd) clears from the current cursor position to the bottom of the
display; programs always move the cursor to the beginning of the line before
using cd.

Insert/Delete Line
Many terminals have strings that shift text starting at the current cursor
position. Programs always move the cursor to the beginning of the line before
using these strings. Add line (al) shifts the current line and all below it down a
position leaving the cursor on the newly-blanked line. Delete line (deletes the
line the cursor is on without moving the cursor. If a terminal description has an
al capability, you do not really need to specify sb.

If deleting a line might produce a non-blank line at the bottom of the screen,
specify db. If scrolling backwards might produce a non-blank line at the top of
the screen, specify da.

Insert/Delete Character
The termcap convention recognizes two kinds of terminal insert/delete string.

• The first convention is by far more common. Using insert or delete
modes only affect characters on the current line. Inserting a single
character shifts all characters, including all blanks, to the right; the
character on the right edge of the screen is lost. No special capability
is required to describe this kind of terminal.

• The second convention is more rare and complicated. The terminal
distinguishes between blank spaces created by output tabs (Oil) or
spaces (040) from all other blanks; other blanks are known as nulls.
Inserting a character eliminates the first null to the right of the cursor;
deleting a character doubles the first null. If there are no nulls on the
current line inserting a character inserts the line's rightmost character
at the beginning of the next line. Use the in capability to describe this
kind of terminal.

Notable among the second type are the Concept 100 and the Perkin Elmer Owl.

TERMCAP(4) TERMCAP(4)

A simple experiment shows what type you have. Set the terminal to its " local ' '
mode. Clear the screen, then type a short sequence of text Move the cursor to
the right several spaces without using the space or tab characters. Type a
second short sequence of text Move the cursor back to the beginning of the
first text Start the terminal's insert mode and begin tapping the Spacebar. If
you have the first kind of terminal, both sequences of text will move at once, at
whatever character is at the right edge of the screen will be lost. If you have the
second kind of terminal, at first only the first sequence of text will move; when
the first sequence hits the second sequence, it will push the second onto the next
line.

A terminal can have either an insert mode or the ability to insert a single
character. Specify insert mode with im and ei. To specify that the terminal can
insert a single character, specify ic and specify empty strings for im and ei. If
you must delay or output more control text after inserting a single character,
specify ip.

If a terminal has both an insert mode and the ability to insert a single character,
it is usually best not to specify ic.

Some programs operate more quickly if they are allowed to move the cursor
around randomly while in insert mode. For example, vi has to delete a character
when you insert a character before a tab. If your terminal permits this, specify
move on insert mi. Beware of terminals that foul up in subtle ways when you
do this (the Datamedia, for example).

Delete mode (dm), end delete mode (ed), and delete character (dc) work like
im, ei, and ic.

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with so se. Half intensity is
usually not a good choice unless the terminal is normally in reverse video.

The convention provides for underline mode and for single character
underlining. Specify underline mode with us and ue. Specify a way to
underline and move past a character with uc; if your terminal can underline a
single character but doesn't automatically move on, add a nondestructive space
to the uc string.

Some terminals can't overstrike but still correctly underline text without special
help from the host computer. If yours is one, specify ul.

If your terminal spaces before and after entering standout and underline mode,
specify ug.

Programs leave standout and underline mode before moving the cursor or
printing a newline.

- 8 -

TERMINFO (4) TERMINFO (4)

If the terminal can flash the screen without moving the cursor, specify vb
(visual bell).

If the terminal needs to change working modes before entering the open and
visual modes of ex and vi, specify vs and ve. respectively. These can be used
to change, for example, from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program that
addresses the cursor, specify ti and te. This may be important if a terminal has
more than one page of memory. If the terminal has memory-relative cursor
addressing but not screen relative cursor addressing, use ti to fix a screen-sized
window into the terminal.

If a terminal can overstrike, programs assume that printable spaces don't
destroy anything, unless you specify eo.

Keypad
Some terminals have keypads that transmit special codes. If the keypad can be
turned on and off, specify ks and ke; if you don't, programs assume that the
keypad is always on. Specify the codes sent by cursor motion keys with kl, kr,
ku, kd, and kh. If there are function keys specify the codes they send with f l ,
f2, f3, f4, f5, f6, f7, f8, and 19. If these keys have labels other than the usual ' 'AO
through" " f 9 " , specify the labels 11,12,13,14,15,16,17,18, and 19. If there arc
other keys that transmit the same code that the terminal expects for a function,
such as clear screen, mention the affected capabilities in the ko capability. For
example, ":ko=cl,ll,sf,sb:" says that the terminal has clear, home down, scroll
down, and scroll up keys that transmit the same thing as the cl, 11, sf, and sb
capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example, specify a short string
with is or a file containing initialization strings with if. Other capabilities
include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. If both are given, is is printed before if. If
the terminal has tab stops, these strings should first clear all stops, then set new
stops at the 9 column and every 8 columns thereafter.

Similar Terminals
If a new terminal strongly resembles an existing terminal, you can write a
description of the new terminal that only mentions the old terminal and the
capabilities that differ. The tc capability describes the old terminal; it must be
the last capability in the description. If the old terminal has capabilities that the
new one lacks, specify an @ after the capability name.

TERMINFO(4) TERMINFO (4)

The different entries you create with tc need not represent terminals that are
actually different. They can represent different uses for a single terminal, or
user preferences as to which terminal features are desirable.

The following example defines a describes a variant of the 2621 that never
turns on the keypad.

hn 12621nl:ks@:ke@:tc=2621:

FILES

/etc/termcap standard database

SEE A L S O
ex(l), more(l), tset(l), ul(l), vi(l), ocurse(3X), otermcap(3X), terminfo(4).

B U G S
ex allows only 256 characters for string capabilities, and the routines in
otermcap(3X) do not check for overflow of this buffer.

The total length of a single description (excluding only escaped newlines) may
not exceed 1024 characters. If you use tc, the combined description may not
exceed 1024 characters.

The vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by
any program.

The ma capability is obsolete and serves no function in our database; Berkeley
includes it for the benefit of systems that cannot run version 3 of vi.

- 1 0 -

TERMINFO (4) TERMINFO (4)

N A M E

terminfo - terminal capability database

S Y N O P S I S
/usr/lib/terminfo/?/*

D E S C R I P T I O N
terminfo is a compiled database [see h'c(IM)] describing the capabilities of
terminals. Terminals are described in terminfo source descriptions by giving a
set of capabilities which they have, by describing how operations are
performed, by describing padding requirements, and by specifying initialization
sequences. This database is used by applications programs, such as vi(l) and
cwsesQX), so they can work with a variety of terminals without changes to the
programs. To obtain the source description for a terminal, use the -I option of
infocmp (IM).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. The first line of each terminal
description in the terminfo database gives the name by which terminfo knows
the terminal, separated by bar (I) characters. The first name given is the most
common abbreviation for the terminal [this is the one to use to set the
environment variable TERM in $HOMEI.profile-, see profile(4)]; the last name
given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should
contain no blanks and must be unique in the first 14 characters; the last name
can contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att4425. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode. See
term{5) for examples and more information on choosing names and synonyms.

C A P A B I L I T I E S
In the table below, the Variable is the name by which the C programmer (at the
terminfo level) accesses the capability. The Capname is the short name for this
variable used in the text of the database. It is used by a person updating the
database and by the tput(1) command when asking what the value of the
capability is for a particular terminal. The Termcap Code is a two-letter code
that corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short. Whenever possible, names are
chosen to be the same as or similar to the ANSI X3.64-1979 standard.

TERMINFO (4) TERMINFO (4)

Semantics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the Strings
section in the table below, have names beginning with key_. The following
indicators may appear at the end of the Description for a variable.

(G) indicates that the string is passed through tparm() with parameters
(parms) as given (#p.

(*) indicates that padding may be based on the number of lines affected.

(#p indicates the i^1 parameter.

Termcap
Variable Capname Code Description

Boc!8£ns!
auto_left_margin bw bw cubl wraps from column 0 to last

column
auto_right_margin am am Terminal has automatic margins
no_esc_ctlc xsb xb Beehive (fl=escape, f2=Control-

C)
ceol_standout_glitch xhp xs Standout not erased by

overwriting (hp)
eat_newline_glitch xenl xn Newline ignored after 80 cols

(Concept, vtlOO)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (for example,

dialup, switch)
hard_copy he he Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity

bit)
has_status_line hs hs Has extra "status line"
insert_null_glitch in in Insert mode distinguishes nulls
memory_above da da Display may be retained above the

screen
memory_below db db Display may be retained below the

screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes

TERMINFO(4)

needs_xon_xoff nxon

non_rev_rmcup nrrmc
no_pad_char npc
over_strike os

prtr_silent mc5i
status_line_esc_ok eslok

dest_tabs_magic_smso xt

tilde_glitch hz
transparent_underline ul
xon_xcff xcn

Variable Capname

Numbers:
columns cols
init_tabs it
label_height lh
label_width lw
line_attribute ldatt
lines lines
lines_of_memory lm

magic_cookie_glitch xmc

numjabels nlab

padding_baud_rate pb

virtual_terminal vt

width_status_line wsl

TERMINFO (4)

nx Padding won't work, xon/xoff
required

NR smcup does not reverse rmcup
NP Pad character doesn't exist
os Terminal overstrikes on hard-copy

terminal
5i Printer won't echo on screen
es Escape can be used on the status

line
xt Destructive tabs, magic smso char

(tl061)
hz Hazeltine; can't print tildes(~)
ul Underline character overstrikes
xo Terminal uses xon/xoff

handshaking

Termcap
Code Description

co Number of columns in a line
it Tabs initially every # spaces
lh Number of rows in each label
lw Number of cols in each label
LA Line drawing character attribute f
li Number of lines on screen or page
lm Lines of memory if > lines; 0

means varies
sg Number blank chars left by smso

or rmso
Nl Number of labels on screen (start

at l)
pb Lowest baud rate where padding

needed
vt Virtual terminal number (not used

by CTIX)

ws Number of columns in status line

- 3 -

TERMINFO (4)

Variable Capname

Strings:
acs_chars acsc

back_tab cbt
bell bel
carriage_retum cr
change_scroll_region csr

char_padding rmp
clear_all_tabs tbc
clear_margins mgc
ciear_screen clear
clr_bol ell

clr_eol el
clr_eos ed
column_address hpa
command_character cmdch

cursor_address cup

cursor_down cudl
cursor_home home
cursor_invisible civis
cursor_left cubl
cursor_mem_addrcss mrcup

cursor_normal cnorm

cursor_right cufl

cursor_to_ll 11
cursor_up cuul
cursor_visible cwis
deletecharacter dchl

TERMINFO (4)

Termcap
Code Description

ac Graphic charset pairs aAbBcC -
default is vtlOO+

bt Back tab
bl Audible signal (bell)
cr Carriage return (*)
cs Change to lines #1 thru #2 (vtlOO)

(G)
rP Like ip but when in replace mode
ct Clear all tab stops
MC Clear left and right soft margins
cl Clear screen and home cursor (*)
cb Clear to beginning of line,

inclusive
ce Clear to end of line
cd Clear to end of display (*)
ch Horizontal position absolute (G)
CC Term, settable cmd char in

prototype
cm Cursor motion to row #1 col #2

(G)
do Down one line
ho Home cursor (if no cup)
vi Make cursor invisible
le Move cursor left one space
CM Memory relative cursor addressing

(G)
ve Make cursor appear normal (undo

vs/vi)
nd Non-destructive space (cursor

right)
11 Last line, first column (if no cup)
up Upline (cursor up)
vs Make cursor very visible
dc Delete character (*)

TERMINFO (4) TERMINFO (4)

deletejine dll dl
dis_status_line dsl ds
down_half_line hd hd

ena_acs enacs eA
enter_alt_charset_mode smacs as
enter am mode smam SA

Delete line (*)
Disable status line
Half- line down (forward
linefeed)
Enable alternate char set
Start alternate character set
Turn on automatic margins

1/2

Termcap
Variable Capname Code Description

enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use

enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half- bright mode
enter_insert_mode smir im Insert mode (enter)
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_secure_mode invis mk Turn on blank mode (chars

invisible)
enter_standout_mode smso so Begin standout mode
enter_underline_mode smul us Start underscore mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters (G)
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode imam RA Turn off automatic margins
exit_attribute_mode sgrO me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_insert_mode rmir ei End insert mode
exit_standout_mode rmso se End standout mode
exit_underline_mode rmul ue End underscore mode
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject (*)
from_status_line fsl fs Return from status line
init_l string isl il Terminal initialization string
init_2string is2 is Terminal initialization string
init_3 string is3 i3 Terminal initialization string

TERMINFO (4) TERMINFO (4)

Termcap
Variable Capname Code Description

init_file if if Name of initialization file containing is
init_prog iprog iP Path name of program for init
insert_character ichl ic Insert character
insert_line Ul al Add new blank line (*)
insert_padding ip ip Insert pad after character inserted (*)
key_al kal Ki KEY_A1, 0534, Upper left of keypad
key_a3 ka3 K3 KEY_A3, 0535, Upper right of keypad
key_b2 kb2 K2 KEY_B2, 0536, Center of keypad
key_backspace kbs kb KEY_BACKSPACE, 0407, Sent by

backspace key
key_beg kbeg @1 KEY_BEG, 0542, Sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab key
key_cl kcl K4 KEY_C1, 0537, Lower left of keypad
key_c3 kc3 K5 KEY_C3, 0540, Lower right of keypad
key_cancel kcan @2 KEY_CANCEL, 0543, Sent by cancel key
key_catab ktbc ka KEY_CATAB, 0526, Sent by clear-all-key_catab

tabs key
key_clear kcli kC KEY_CLEAR, 0515, Sent by clear-screen

or erase key
key_close kclo @3 KEY_CLOSE, 0544, Sent by close key
key_command kcmd @4 KEY_COMMAND, 0545, Sent by cmd

(command) key
key_copy kcpy @5 KEY_COPY, 0546, Sent by copy key
key_create kcrt @6 KEY_CREATE, 0547, Sent by create key
key_ctab kctab kt KEY_CTAB, 0525, Sent by clear-tab key
key_dc kdchl kD KEY_DC, 0512, Sent by delete-character

key
key_dl kdll kL KEY_DL, 0510, Sent by delete-line key
key_down kcudl kd KEY_DOWN, 0402, Sent by terminal

down- arrow key
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or smir in

insert mode
key_end kend @7 KEY_END, 0550, Sent by end key

TERMINFO(4)

Termcap
Variable Capname Code

key_enler kent @8

key_eol kel kE

key_eos ked kS

key_exit kext @9
key_fO kfO kO
key_fl kfl kl
key_f2 kf2 k2
key_f3 kO k3
key_f4 kf4 k4
key_f5 kf5 k5
key_f6 kf6 k6
key_f7 kf7 k7
key_f8 kf8 k8
keyJ9 kf9 k9
key_fl0 kflO k;
key_f 11 kfl 1 Fl
key_fl2 kfl 2 F2
key_fl3 kfl 3 F3
key_fl4 kfl 4 F4
key_fl5 kfl 5 F5
key_fl6 kfl 6 F6
key_fl7 kfl 7 F7
key_fl8 kfl 8 F8
key_fl9 kfl 9 F9
key f20 kf20 FA
key_f21 k£21 FB
key_£22 kf22 FC
key_f23 k£23 FD
key_f24 kf24 FE
key_£25 k£25 FF
key_f26 kf26 FG
key_f27 kf27 FH
key_f28 k£28 Fl
key_f29 k£29 FJ
key_B0 kf30 FK

TERMINFO (4)

Description

KEY_ENTER, 0527, Sent by enter/send
key
KEY_EOL, 0517, Sent by clear-to-end-
of-line key
KEY_EOS, 0516, Sent by clear- to- end-of-
screen key
KEY_EXTT, 0551, Sent by exit key
KEY_F(0), 0410, Sent by function key fO
KEY_F(1), 0411, Sent by function key f l
KEY_F(2), 0412, Sent by function key f2
KEY_F(3), 0413, Sent by function key G
KEY_F(4), 0414, Sent by function key f4
KEY_F(5), 0415, Sent by function key f5
KEY_F(6), 0416, Sent by function key f6
KEY_F(7), 0417, Sent by function key f7
KEY_F(8), 0420, Sent by function key f8
KEY_F(9), 0421, Sent by function key ©
KEY_F(10), 0422, Sent by function key flO
KEY_F(11), 0423, Sent by function key f l l
KEY_F(12), 0424, Sent by function key f l 2
KEY_F(13), 0425, Sent by function key f l3
KEY_F(14), 0426, Sent by function key f l 4
KEY_F(15), 0427, Sent by function key f l5
KEY_F(16), 0430, Sent by function key f l6
KEY_F(17), 0431, Sent by function key f l7
KEY_F(18), 0432, Sent by function key f l8
KEY_F(19), 0433, Sent by function key f l9
KEY_F(20), 0434, Sent by function key £20
KEY_F(21), 0435, Sent by function key f21
KEY_F(22), 0436, Sent by function key £22
KEY_F(23), 0437, Sent by function key f23
KEY_F(24), 0440, Sent by function key f24
KEY_F(25), 0441, Sent by function key f25
KEY_F(26), 0442, Sent by function key f26
KEY_F(27), 0443, Sent by function key f27
KEY_F(28), 0444, Sent by function key £28
KEY_F(29), 0445, Sent by function key £29
KEY_F(30), 0446, Sent by function key B0

- 7 -

TERMINFO (4)

Termcap
Variable Capname Code

key_f31 kOl FL
key_G2 kf32 FM
key_f33 kf33 FN
key_fJ4 kf34 FO
key_f35 kf35 FP
key_G6 kf36 FQ
key_f37 kf37 FR
key_f38 kf38 FS
key_B9 kf39 FT
key_f40 kf40 FU
key_f41 kf41 FV
key_f42 kf42 FW
key f43 kf43 FX
key_f44 kf44 FY
key_f45 kf45 FZ
key_f46 kf46 Fa
key_f47 kf47 Fb
key_f48 kf48 Fc
key_f49 kf49 Fd
key_f50 kf50 Fe
key_f51 kf51 Ff
key_f52 kf52 Fg
key_f53 kf53 Fh
key_f54 kf54 Fi
key_f55 kf55 Fj
key_f56 kf56 Fk
key_f57 kf57 Fl
key_f58 kf58 Fm
key_f59 kf59 Fn
key_f60 kf60 Fo
key_f61 kf61 Fp
key_f62 kf62 Fq
key_f63 kf63 Fr
key_fmd kfnd @o
key_help khlp
key_home khome kh
key_ic kichl kl

TERMINFO (4)

Description

KEY_F(31), 0447, Sent by function key £31
KEY_F(32), 0450, Sent by function key f32
KEY_F(13), 0451, Sent by function key f l3
KEY_F(34), 0452, Sent by function key f34
KEY_F(35), 0453, Sent by function key f35
KEY_F(36), 0454, Sent by Junction key £36
KEY_F(37), 0455, Sent by function key f37
KEY_F(38), 0456, Sent by function key f38
KEY_F(39), 0457, Sent by fimction key f39
KEY_F(40), 0460, Sent by fimction key f40
KEY_F(41), 0461, Sent by fimction key f41
KEY_F(42), 0462, Sent by function key f42
KEY_F(43), 0463, Sent by function key f43
KEY_F(44), 0464, Sent by function key f44
KEY_F(45), 0465, Sent by function key f45
KEY_F(46), 0466, Sent by function key f46
KEY_F(47), 0467, Sent by function key f47
KEY_F(48), 0470, Sent by function key f48
KEY_F(49), 0471, Sent by function key f49
KEY_F(50), 0472, Sent by function key f50
KEY_F(51), 0473, Sent by function key f51
KEY_F(52), 0474, Sent by function key f52
KEY_F(53), 0475, Sent by function key f53
KEY_F(54), 0476, Sent by function key f54
KEY_F(55), 0477, Sent by function key f55
KEY_F(56), 0500, Sent by function key f56
KEY_F(57), 0501, Sent by function key f57
KEY_F(58), 0502, Sent by function key f58
KEY_F(59), 0503, Sent by function key f59
KEY_F(60), 0504, Sent by function key f60
KEY_F(61), 0505, Sent by function key f61
KEY_F(62), 0506, Sent by function key f62
KEY_F(63), 0507, Sent by function key f63
KEY_FIND, 0552, Sent by find key
1
KEY_HOME, 0406, Sent by home key
KEY_IC, 0513, Sent by ins-char/enter ins-
mode key

- 8 -

TERMINFO (4) TERMINFO (4)

Termcap
Variable Capname Code Description

key_il kill kA KEYJL, 0511, Sent by insert-line key
keyjeft kcubl kl KEY_LEFT, 0404, Sent by terminal left-

arrow key
key_ll kll kH KEY_LL, 0533, Sent by home-down key
key_mark kmrk %2 KEY_MARK, 0554, Sent by mark key
key_message kmsg %3 KEY_MESSAGE, 0555, Sent by message

key
key_move kmov %4 KEY_MOVE, 0556, Sent by move key
key_next knxt %5 KEY_NEXT, 0557, Sent by next-object

key
key_npage knp kN KEY_NPAGE, 0522, Sent by next-page

key
key_open kopn %6 KEY_OPEN, 0560, Sent by open key
key_options kopt %7 KEY_OPTIONS, 0561, Sent by options

key
key_ppage kpp kP KEY_PPAGE, 0523, Sent by previous-

page key
key_previous kprv %8 KE Y_PRE VlOU S, 0562, Sent by

previous- object key
key_print kprt %9 KEY_PRINT, 0532, Sent by print or copy

key
key_redo krdo %0 KEY_REDO, 0563, Sent by redo key
key_reference kref &1 KEY_REFERENCE, 0564, Sent by

reference) key
key_refresh krfr &2 KEY_REFRESH, 0565, Sent by refresh

key
key_replace krpl &3 KEY_REPLACE, 0566, Sent by replace

key
key_restart krst &4 KEY_RESTART, 0567, Sent by restart

key
key_resume kres &5 KEY_RESUME, 0570, Sent by resume

key
key_right kcufl kr KEY_RIGHT, 0405, Sent by terminal

right- arrow key
key_save ksav &6 KEY_SAVE, 0571, Sent by save key

TERMINFO(4) TERMINFO(4)

Termcap
Variable Capname Code Description

key_sbeg kBEG &9 KEY_SBEG, 0572, Sent by shifted
beginning key

key_scancel kCAN &0 KEY_SCANCEL, 0573, Sent by shifted
cancel key

key_scommand kCMD *1 KEY_SCOMM AND, 0574, Sent by shifted
command key

key_scopy kCPY *2 KEY_SCOPY, 0575, Sent by shifted copy
key

key_screate kCRT +3 KEY_SCREATE, 0576, Sent by shifted
create key

key_sdc kDC *4 KEY_SDC, 0577, Sent by shifted delete-
char key

key_sdl kDL *5 KEY_SDL, 0600, Sent by shifted delete-
line key

key_select kslt *6 KEY_SELECT, 0601, Sent by select key
key_send kEND *7 KEY_SEND, 0602, Sent by shifted end

key
key_seol kEOL *8 KEY_SEOL, 0603, Sent by shifted clear-

line key
key_sexit kEXT *9 KEY_SEXIT, 0604, Sent by shifted exit

key
key_sf kind kF KEY_SF, 0520, Sent by scroll-

forward/down key
key_sfind kFND *0 KEY_SFIND, 0605, Sent by shifted find

key
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted help

key
key_shome kHOM #2 KEY_SHOME, 0607, Sent by shifted home

key
key_sic kIC #3 KEY_SIC, 0610, Sent by shifted input key
key_sleft kLFT #4 KEY_SLEFT, 0611, Sent by shifted left-

arrow key
key_smessage kMSG %a KEY_SMESSAGE, 0612, Sent by shifted

message key
key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted move

key

- 10-

TERMINFO(4) TERMINFO(4)

Termcap
Variable Capname Code Description

key_snext kNXT %c KEYJSNEXT, 0614, Sent by shifted
next key

key_soptions kOPT %d KE Y_SOPITONS, 0615, Sent by
shifted options key

key_sprevious kPRV %c KEY_SPREVIOUS, 0616, Sent by
shifted prev key

key_sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted
print key

key_sr kri kR KEY_SR, 0521, Sent by scroll-
backward/up key

key_sredo kRDO %g KEY_SREDO, 0620, Sent by shifted
redo key

key_sreplace kRPL %h KEY_SREPLACE, 0621, Sent by
shifted replace key

key_sright kRIT %i KEY_SRIGHT, 0622, Sent by shifted
right- arrow key

key_srsume kRES %j KEY_SRSUME, 0623, Sent by
shifted resume key

key_ssave kSAV !1 KEY_SSAVE, 0624, Sent by shifted
save key

key_ssuspend kSPD !2 KEY_SSUSPEND, 0625, Sent by
shifted suspend key

key_stab khts kT KEY_STAB, 0524, Sent by set-tab
key

key_sundo kUND !3 KEY_SUNDO, 0626, Sent by shifted
undo key

key_suspend kspd &7 KEY_SUSPEND, 0627, Sent by
suspend key

key_undo kund &8 KEY_UNDO, 0630, Sent by undo key
key_up kcuul ku KEY_UP, 0403, Sent by terminal up-

arrow key
keypad_local rmkx ke Out of "keypad- transmit'' mode
keypad_xmit smkx ks Put terminal in ' 'keypad- transmit''

mode
labJQ lfO 10 Labels on function key fO if not fO
lab_fl lfl 11 Labels on function key fl if not f 1

- 11 -

TERMINFO(4) TERMINFO (4)

Termcap
Variable Capname Code Description

lab_f2 lf2 12 Labels on function key f2 if not f2
lab_f3 lf3 13 Labels on function key G if not G
lab_f4 lf4 14 Labels on function key f4 if not f4
lab_f5 lf5 15 Labels on function key f5 if not f5
lab_f6 lf6 16 Labels on function key f6 if not f6
lab_f7 i n 17 Labels on function key f7 if not f7
lab_f8 lf8 18 Labels on function key f8 if not f8
lab_» lf9 19 Labels on function key f9 if not f9
lab_flO lflO la Labels on function key flO if not flO
labeLoff rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
ld_upleft ldul TL Upper left corner box character t
ld_unright Idur TR Upper right corner box character "j"
ld_botleft ldul BL Bottom left comer box character t
ld_botright ldbl BR Bottom right corner box character t
ld_vertleft ldvl VL Left-hand side box character f
ld_vertright ldvr VR Right-hand side box character t
ld_hortop ldht TH Top side box character f
ld_horbot ldhb BH Bottom horizontal box character f
meta_off rmm mo Turn off ' 'meta mode''
meta_on smm mm Tum on "meta mode" (8th bit)
newline nel nw Newline (behaves like cr followed

by If)
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars (G*)
parm_delete_line dl DL Delete #1 lines (G*)
parm_down_cursor cud DO Move cursor down #1 lines (G*)
parm_ich ich IC Insert #1 blank chars (G*)

t These CTIX line drawing and video attribute functions are retained from the
previous release of CTIX for backward compatibility. AT&T has provided a
group of equivalent line drawing functions called acsc, documented in the
section Line Graphics in this manual page, ctsgr is provided for backward
compatibility: AT&T provides a group of equivalent video attribute
functions called sgr. The AT&T functions are recommended except when
backward compatibility is required.

- 1 2 -

TERMINFO(4) TERMINFO (4)

Termcap
Variable Capname Code Description

parm_index indn SF Scroll forward #1 lines (G)
parm_insert_line il AL Add #1 new blank lines (C.*)
parm_left_cursor cub LE Move cursor left #1 spaces (G)
parm_right_cursor cuf RI Move cursor right #1 spaces (G*)
parm_rindex rin SR Scroll backward #1 lines (G)
parm_up_cursor cuu UP Move cursor up #1 lines (G*)
pkey_key pfkey pk Prog funct key #1 to type string #2 (G)
pkey_local pfloc Pi Prog funct key #1 to execute string #2

(G)
pkey_xmit pfx px Prog funct key #1 to xmit string #2 (G)
plab_norm pin pn Prog label #1 to show string #2 (G)
nrinf cm>«i i- —— * mcO ps Print contents of ihe screen
prtr_non mc5p pO Turn on the printer for #1 bytes (G)
prtr_off mc4 Pf Turn off the printer
prtr_on mc5 po Turn on the printer
repeat_char rep JP Repeat char #1 #2 times (G*)
req_for_input rfi RF Send next input char (for ptys)
reset_lstring rsl rl Reset terminal completely to sane

modes
reset_2string rs2 r2 Reset terminal completely to sane

modes
reset_3string rs3 r3 Reset terminal completely to sane

modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
set_attributes sgr sa Define the video attributes #l-#9 (G)
ctset_attributes ctsgr cs Define the video attributes #l-#7 (G) t
set_left_margin smgl ML Set soft left margin
set_right_margin smgr MR Set soft right margin
set_tab hts St Set a tab in all rows, current column
set_window wind wi Current window is lines #l-#2 cols

#3-#4 (G)

- 1 3 -

TERMINFO(4) TERMINFO (4)

Variable
Termcap

Capname Code Description

to_status_line
underline_char
up_half_line
xoff_character
xon_character

tab

hu
xoffc
xonc

ht
tsl
uc

ta
ts
uc
hu
XF
XN

Tab to next 8 space hardware tab stop
Go to status line, col #1 (G)
Underscore one char and move past it
Half-line up (reverse 1/2 linefeed)
X-off character
X-on character

SAMPLE ENTRY
The following entry, which describes the Concept-100 terminal, is among the
more complex entries in the terminfo file as of this writing.

concept100|c100| concept|c104| c100-4p|concept 100,
am, db, eo, in, mir, ul, xenl,
cols#80, lines#24, pb#9600, vt#8,
bel='G, biank=\EH, blink=\EC, clear='L$<2*>,
cnorm=\Ew, cr="M$<9>, cub1="H, cud1="J,
cuf1 =\E=, cup=\Ea%p1%' ,%+%c%p2%' '%+%c,
cuu1=\E;, cwis=\EW, dch1=\E"A$<16*>, dim=\EE,
dl1=\E"B$<3*>, ed=\E"C$<16»>, el=\E"U$<16>,
flash =\Ek$<20>\EK, ht=\t$<8>, il1=\E"R$<3*>,
ind="J, .ind=~J$<9>, ip=$<16*>,
is2=\EU\Ef\E7\E5\E8\EI\ENH\EK\E\0\Eo&\0\Eo\47\E,
kbs="h, kcub1=\E>, kcud1=\E<, kcuf1=\E=,
kcuu1=\E;, kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?,
prot=\EI, rep=\Er%p1 %c%p2%' '%+%c$«.2*>,
rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,
rmir=\E\0, rmkx=\Ex, rmso=\Ed\Ee, rmul=\Eg,
rmul=\Eg, sgr0=\EN\0, smcup=\EU\Ev\s\s8p\Ep\r,
smir=\E"P, smkx=\EX, smso=\EE\ED, smui=\EG,

Entries can continue onto multiple lines by placing white space at the beginning
of each line except the first. Lines beginning with " # " are taken as comment
lines. Capabilities in terminfo are of three types: boolean capabilities which
indicate that the terminal has some particular feature, numeric capabilities
giving the size of the terminal or particular features, and string capabilities,
which give a sequence which can be used to perform particular terminal
operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has
automatic margins (that is, an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence, the description of the

- 1 4 -

TERMINFO (4) TERMINFO (4)

Concept includes am. Numeric capabilities are followed by the character # and
then the value. Thus, cols, which indicates the number of columns the terminal
has, gives the value 80 for the Concept. The value can be specified in decimal,
octal, or hexadecimal using normal C conventions.

Finally, string-valued capabilities, such as el (clear to end of line sequence) are
given by the two- to five-character capname, an =, and then a string ending at
the next following comma. A delay in milliseconds may appear anywhere in
such a capability, enclosed in $<..> brackets, as in el=\EK$<3>, and padding
characters are supplied by tputs() (see curses(3X)) to provide this delay. The
delay can be either a number, for example, 20, or a number followed by an *
(that is, 3*), a '/ ' (that is, 5/), or both (that is, 10*/). A '* ' indicates that the
padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-unit padding required. (In
the case of insert character, the factor is still the number of lines affected. This
is always one unless the terminal has in and the software uses it.) When a is
specified, it is sometimes useful to give a delay of the form 3.5 to specify a
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)
A / indicates that the padding is mandatory. Otherwise, if the terminal has xon
defined, the padding information is advisory and will only be used for cost
estimates or when the terminal is in raw mode. Mandatory padding will be
transmitted regardless of the setting of xon.

A number of escape sequences are provided in the string valued capabilities for
easy encoding of characters there. Both \E and \e map to an ESCAPE character,
'x maps to a Control-* for any appropriate x, and the sequences \n, \1, \r , \t, \b,
\f, and \s give a newline, linefeed, return, tab, backspace, formfeed, and space,
respectively. Other escapes include: for caret Q ; \\ for backslash (\); \, for
comma (,); \: for colon (:); and \0 for null. (\0 will actually produce \200, which
does not terminate a string but behaves as a null character on most terminals.)
Finally, characters can be given as three octal digits after a backslash (for
example, \123).

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order and,
therefore, a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with vi(l) to check that they are correct.
Be aware that a very unusual terminal may expose deficiencies in the ability of
the terminfo file to describe it or the inability of vi(l) to work with that

- 1 5 -

TERMINFO (4) TERMINFO (4)

terminal. To test a new terminal description, set the environment variable
TERMINFO to a pathname of a directory containing the compiled description
you are working on and programs will look there rather than in
/usr/lib/terminfo. To get the padding for insert-line correct (if the terminal
manufacturer did not document it) a severe test is to comment out xon, edit a
large file at 9600 baud with vi(l), delete 16 or so lines from the middle of the
screen, then hit the u key several times quickly. If the display is corrupted,
more padding is usually needed. A similar test can be used for insert-character.

Basic Capabilities
The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal has a screen, then the number of lines on the
screen is given by the lines capability. If the terminal wraps around to the
beginning of the next line when it reaches the right margin, then it should have
the am capability. If the terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string capability. If the terminal
overstrikes (rather than clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a printing terminal, with no
soft copy unit, give it both he and os. (os applies to storage scope terminals,
such as Tektronix 4010 series, as well as hard-copy and APL terminals.) If there
is a code to move the cursor to the left edge of the current row, give this as cr.
(Normally this will be carriage return, Control-m.) If there is a code to produce
an audible signal (bell, beep, etc) give this as bel. If the terminal uses the xon-
xoff flow-control protocol, like most terminals, specify xon.

If there is a code to move the cursor one position to the left (such as backspace)
that capability should be given as cubl. Similarly, codes to move to the right,
up, and down should be given as cufl, cuul, and cudl. These local cursor
motions should not alter the text they pass over; for example, you would not
normally use "cufl=\s" because the space would erase the character moved
over.

A very important point here is that the local cursor motions encoded in terminfo
are undefined at the left and top edges of a screen terminal. Programs should
never attempt to backspace around the left edge, unless bw is given, and should
never attempt to go up locally off the top. In order to scroll text up, a program
will go to the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined when
not on their respective corners of the screen.

TERMINFO (4) TERMINFO (4)

Parameterized versions of the scrolling sequences are indn and rin which have
the same semantics as ind and ri except that they take one parameter, and scroll
that many lines. They are also undefined except at the appropriate edge of the
screen.

The am capability tells whether the cursor sticks at the right edge of the screen
when text is output, but this does not necessarily apply to a cufl from the last
column. The only local motion which is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right edge of the previous
row. If bw is not given, the effect is undefined. This is useful for drawing a
box around the edge of the screen, for example. If the terminal has switch
selectable automatic margins, the terminfo file usually assumes that this is on;
that is, am. If the terminal has a command which moves to the first column of
the next line, that command can be given as nel (newline). It does not matter if
the command clears the remainder of the current line, so if the terminal has no
cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and screen terminals. Thus, the
model 33 teletype is described as:

331 tty331 tty | model 33 teletype,
bel="G, cols#72, cr="M, cud1="J, he, ind="J, os,

while the Lear Siegler ADM-3 is described as

adm3|lsi adm3,
am, bel=~G, clear=~Z, cols#80, cr=~M,
cub1="H, cud1=~J, ind="J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with printf(3S)-like escapes
(%x) in it. For example, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to. (Rows and columns
are numbered from zero and refer to the physical screen visible to the user, not
to any unseen memory.) If the terminal has memory relative cursor addressing,
that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it in
the manner of a Reverse Polish Notation (postfix) calculator. Typically, a
sequence will push one of the parameters onto the stack and then print it in
some format. Often more complex operations are necessary. Binary operations
are in postfix form with the operands in the usual order. That is, to get x-5 one
would use % gx % {5} % -.

- 1 7 -

TERMINFO (4) TERMINFO (4)

The % encodings have the following meanings:

%% outputs '%'
%[[:]flags] [widthlprecision]] [doxXs]

as in printf, flags are [- + #]
and space

%c print pop() gives %c

%p[l-9] push ith parm
%P[a- z] set variable [a- z] to pop()
%g[a-z] get variable [a-z] and push it
%'c' push char constant c
% [nn] push decimal constant nn
Vol push strlen(pop())

%+ %- %* %/ %m arithmetic (%m is mod):
push(pop() op pop())

% & % ! % ' bit operations: push(pop() op pop())
%= %> %< logical operations: push(pop()

oppop())
%A %0 logical operations: and, or
%! unary operations: push(op pop())
%i (for ANSI terminals)

add 1 to first parm, if one parm
present, or first two parms, if
more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else- if s are possible ala Algol 68:
%? Cj %t b j %e c 2 %t b 2 %e c 3

%t b 3 %e c 4 %t b 4 %e b5%;
c. are conditions, b. are bodies.

i i

If the " - " flag is used with "%[doxXs]", then a colon (:) must be placed
between the " % " and the " - " to differentiate the flag from the binary " % - "
operator, .e.g "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&al2c03Y padded for 6 milliseconds. Note that the order of
the rows and columns is inverted here, and that the row and column are zero-
padded as two digits. Thus, its cup capability is
"cup=\E&a%p2%2.2dc%pl%2.2d Y$<6>".

- 1 8 -

TERMINFO (4) TERMINFO (4)

The Micro-Term ACT- IV needs the current row and column sent preceded by a
AT, with the row and column simply encoded in binary,
"cup=*T%pl%c%p2%c". Terminals which use " % c " need to be able to
backspace the cursor (cubl), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n, *D, and \r,
as the system may change or discard them. (The library routines dealing with
terminfo set tty modes so that tabs are never expanded, so \t is safe to send.
This turns out to be essential for the Ann Arbor 4080.)

A Final example is the LSI ADM-3a, which uses row and column offset by a
blank character: "cup=\E=%pl%V%+%c%p2%"\s '%+%c". After sending
"SE=", this pushes the first parameter, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values),
and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the
lower left-hand corner can be given as 11; this may involve going up with cuu l
from the home position, but a program should never do this itself (unless II
does) because it can make no assumption about the effect of moving up from
the home position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on Hewlett-Packard terminals cannot be used for home without losing
some of the other features on the terminal.)

If the terminal has row or column absolute-cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute) and
vpa (vertical position absolute). Sometimes these are shorter than the more
general two-parameter sequence (as with the Hewlett-Packard 2645) and can be
used in preference to cup. If there are parameterized local motions (for
example, move n spaces to the right) these can be given as cud, cub, cuf, and
cuu with a single parameter indicating how many spaces to move. These are
primarily useful if the terminal does not have cup, such as the Tektronix 4025.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving
the cursor where it is, this should be given as el. If the terminal can clear from
the beginning of the line to the current position inclusive, leaving the cursor
where it is, this should be given as ell . If the terminal can clear from the
current position to the end of the display, then this should be given as ed. ed is
only defined from the first column of a line. (Thus, it can be simulated by a
request to delete a large number of lines, if a true ed is not available.)

- 1 9 -

TERMINFO (4) TERMINFO (4)

Insert/delete line
If the terminal can open a new blank line before the line where the cursor is,
this should be given as ill; this is done only from the first position of a line.
The cursor must then appear on the newly blank line. If the terminal can delete
the line which the cursor is on, then this should be given as dl l ; this is done
only from the first position on the line to be deleted. Versions of i ll and dl l
which take a single parameter and insert or delete that many lines can be given
as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes two
parameters: the top and bottom lines of the scrolling region. The cursor
position is, alas, undefined after using this command. It is possible to get the
effect of insert or delete line using this command—the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of
the screen can also be done using ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cursor to
the top line of the scrolling region, and do a reverse index (ri) followed by a
delete line (dll) or index (ind). If the data that was originally on the bottom
line of the scrolling region was restored into the scrolling region by the dl l or
ind, then the terminal has non-destructive scrolling regions. Otherwise, it has
destructive scrolling regions. Do not specify csr if the terminal has non-
destructive scrolling regions, unless ind, ri, indn, rin, dl, and d l l all simulate
destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should
be given; if display memory can be retained below, then db should be given.
These indicate that deleting a line or scrolling a full screen may bring non-
blank lines up from below or that scrolling back with ri may bring down non-
blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line

TERMINFO (4) TERMINFO (4)

and shift characters off the end of the line rigidly. Other terminals, such as the
Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can determine the kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type "abc def"
using local cursor motions (not spaces) between the abc and the def. Then
position the cursor before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters to fall off the
end, then your terminal does not distinguish between blanks and untyped
positions. If the abc shifts over to the def which then move together around the
end of the current line and onto the next as you insert, you have the second type
of terminal, and should give the capability in, which stands for "insert null".
While these are two logically separate attributes (one line versus multiline
insert mode, and special treatment of untyped spaces) we have seen no
terminals whose insert mode cannot be described with the single attribute.

terminfo can describe both terminals which have an insert mode and terminals
which send a simple sequence to open a blank position on the current line.
Give as smir the sequence to get into insert mode. Give as rmir the sequence
to leave insert mode. Now give as ichl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert
mode will not give ichl; terminals which send a sequence to open a screen
position should give it here. (If your terminal has both, insert mode is usually
preferable to ichl. Do not give both unless the terminal actually requires both
to be used in combination.) If post-insert padding is needed, give this as a
number of milliseconds padding in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be
given in ip. If your terminal needs both to be placed into an 'insert mode' and a
special code to precede each inserted character, then both smir/rmir and ichl
can be given, and both will be used. The ich capability, with one parameter, n,
will repeat the effects of ichl n times.

If padding is necessary between characters typed while not in insert mode, give
this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (for example, if there is a tab after the insertion
position). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect only
speed. Some terminals (notably Datamedia's) must not have mir because of the
way their insert mode works.

TERMINFO (4) TERMINFO (4)

Finally, you can specify dchl to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and rmdc
to enter and exit delete mode (any mode the terminal needs to be placed in for
dchl to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display form
as standout mode (see curses(3X)), representing a good, high contrast, easy-on-
the-eyes, format for highlighting error messages and other attention getters. (If
you have a choice, reverse-video plus half-bright is good, or reverse-video
alone; however, different users have different preferences on different
terminals.) The sequences to enter and exit standout mode are given as smso
and rmso, respectively. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, as the TVI 912 and Teleray
1061 do, then xmc should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul
respectively. If the terminal has a code to underline the current character and
move the cursor one space to the right, such as the Micro-Term MIME, this can
be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking),
bold (bold or extra-bright), dim (dim or half-bright), invis (blanking or
invisible text), prot (protected), rev (reverse-video), sgrO (turn off all attribute
modes), smacs (enter alternate-character-set mode), and rmacs (exit alternate-
character-set mode). Turning on any of these modes singly may or may not turn
off other modes. If a command is necessary before alternate character set mode
is entered, give the sequence in enacs (enable alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking nine parameters. Each parameter is either 0
or non-zero, as the corresponding attribute is on or off. The nine parameters
are, in order: standout, underline, reverse, blink, dim, bold, blank, protect,
alternate character set. Not all modes need be supported by sgr, only those for
which corresponding separate attribute commands exist. (See the example at
the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algorithm
rather than having extra bits for each character. Some terminals, such as the
Hewlett-Packard 2621, automatically leave standout mode when they move to a

- 2 2 -

TERMINFO (4) TERMINFO (4)

new line or the cursor is addressed. Programs using standout mode should exit
standout mode before moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout mode, is present

If the terminal has a way of flashing the screen to indicate an error quietly (a
bell replacement), then this can be given as flash; it must not move the cursor.
A good flash can be done by changing the screen into reverse video, pad for 200
ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the
bottom line (to make, for example, a non-blinking underline into an easier to
find block or blinking underline) give this sequence as cvvis. The boolean chts
should also be given. If there is a way to make the cursor completely invisible,
give that as civis. The capability cnorm should be given which undoes the
effects of either of these modes.

If the terminal needs to be in a special mode when running a program that uses
these capabilities, the codes to enter and exit this mode can be given as smcup
and rmcup. This arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.
This is also used for the Tektronix 4025, where smcup sets the command
character to be the one used by terminfo. If the smcup sequence will not
restore the screen after an rmcup sequence is output (to the state prior to
outputting rmcup), specify nrrmc.

If your terminal generates underlined characters by using the underline
character (with no special codes needed) even though it does not otherwise
overstrike characters, then you should give the capability ul. For terminals
where a character overstriking another leaves both characters on the screen,
give the capability os. If overstrikes are erasable with a blank, then this should
be indicated by giving eo.

Example of highlighting: assume that the terminal under question needs the
following escape sequences to turn on various modes.

- 2 3 -

TERMINFO (4) TERMINFO (4)

tparm
parameter attribute escape sequence

P i
p2
P3
p4
p5
p6
P7
p8
p9

blink
dim
bold
invis

none
standout
underline
reverse

\E[Om
\E[0;4;7m
\E[0;3m
\E[0;4m
\E[0;5m
\E[0;7m
\E[0;3;4m
\E[0;8m

protect
altcharset

not available
"O (off) 'N(on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is set up
to be the combination of reverse and dim. Also, since this terminal has no bold
mode, bold is set up as the combination of reverse and underline. In addition,
to allow combinations, such as underline+blink, the sequence to use would be
\E[0;3;5m. The terminal doesn't have protect mode, either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is different in that
it is either *0 or "N depending on whether it is off or on. If all modes were to
be turned on, the sequence would be \E[0;3;4;5;7;8m N.

Now look at when different sequences are output. For example, ;3 is output
when either p2 or p6 is true, that is, if either underline or bold modes are turned
on. Writing out the above sequences, along with their dependencies, gives the
following:

"N or ~0 if p9 "N, else ' O %?%p9%t"N%e'0%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%|%t;4%;
%?%p5%t ;5% ;%?%p1 %p5%| %t ;7% ;%?%p7%t ;8%;
m%?%p9%t"N%e"0%;,

sequence when to output terminfo translation

\E[0 always
;3 if p2 or p6
;4 if p i or p3 or p6
;5 if p4
;7 if p i or p5
;8 if p7
m always

\E[0
%?%p2%p6%l%t;3%;
%?%pl%p3%l%p6%l%t;4%;
%?%p4%t;5%;
%?%pl%p5%l%t;7%;
%?%p7%t;8%;
m

- 2 4 -

TERMINFO (4) TERMINFO (4)

Keypad and Function Keys
If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Note that it is not possible to handle terminals where
the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not
transmit, give these codes as smkx and rmkx. Otherwise the keypad is
assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kcubl, kcufl, kcuul, kcudl, and khome respectively. If
there are function keys such as fO, f l , . . . , f63, the codes they send can be given
as kfO, kf l , kf63. If the first 11 keys have labels other than the default fO
through flO, the labels can be given as IfO, I f l , l f l O . The codes transmitted
by certain other special keys can be given: kll (home down), kbs (backspace),
ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen
or erase key), kdchl (delete character), kdll (delete line), krmir (exit insert
mode), kel (clear to end of line), ked (clear to end of screen), kichl (insert
character or enter insert mode), kill (insert line), knp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts (set
a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys
including the four arrow keys, the other five keys can be given as kal , ka3,
kb2, kcl, and kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed. Further keys are defined above in the capabilities
list.

Strings to program function keys can be given as pfkey, pfloc, and pfx. A
string to program their soft-screen labels can be given as pin. Each of these
strings takes two parameters: the function key number to program and the string
to program it with. The difference between the capabilities is that pfkey causes
pressing the given key to be the same as the user typing the given string; pfloc
causes the string to be executed by the terminal in local mode; and pfx causes
the string to be transmitted to the computer. The capabilities nlab, lw and lh
define how many soft labels there are and their width and height. If there are
commands to turn the labels on and off, give them in smln and rmln. smln is
normally output after one or more pin sequences to make sure that the change
becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next tab stop
can be given as ht (usually Control-i). A "backtab" command which moves
leftward to the next tab stop can be given as cbt. By convention, if the teletype
modes indicate that tabs are being expanded by the computer rather than being
sent to the terminal, programs should not use ht or cbt even if they are present,

TERMINFO (4) TERMINFO (4)

since the user may not have the tab stops properly set If the terminal has
hardware tabs which are initially set every n spaces when the terminal is
powered up, the numeric parameter it is given, showing the number of spaces
the tabs are set to. This is normally used by tput init (see tput{\)) to determine
whether to set the mode for hardware tab expansion and whether to set the tab
stops. If the terminal has tab stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly set. If there are
commands to set and clear tab stops, they can be given as tbc (clear all tab
stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: isl, is2, and is3, initialization strings for the
terminal; iprog, the path name of a program to be run to initialize the terminal;
and if, the name of a file containing long initialization strings. These strings are
expected to set the terminal into modes consistent with the rest of the terminfo
description. They must be sent to the terminal each time the user iogs in ana be
output in the following order: run the program iprog; output isl; output is2; set
the margins using mgc, smgl and smgr; set the tabs using tbc and hts; print the
file if; and finally output is3. This is usually done using the init option of
tput{\)\ see profile (4).

Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and special
cases in isl and is3. Sequences that do a harder reset from a totally unknown
state can be given as rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The
method using files, if and rf, is used for a few terminals, from /usrllib/tabset/*;
however, the recommended method is to use the initialization and reset strings.)
These strings are output by tput reset, which is used when the terminal gets
into a wedged state. Commands are normally placed in rsl , rs2, rs3, and rf
only if they produce annoying effects on the screen and are not necessary when
logging in. For example, the command to set a terminal into 80-column mode
would normally be part of is2, but on some terminals it causes an annoying
glitch on the screen and is not normally needed since the terminal is usually
already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by
using tbc and hts, the sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mgc (clear
all margins), smgl (set left margin), and smgr (set right margin).

Delays
Certain capabilities control padding in the tty driver [see termio(l)}. These are
primarily needed by hard-copy terminals, and are used by tput init to set tty
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, ff, and

TERMINFO (4) TERMINFO (4)

tab can be used to set the appropriate delay bits to be set in the tty driver. If pb
(padding baud rate) is given, these values can be ignored at baud rates below
the value of pb.

Status Lines
If the terminal has an extra "status line" that is not normally used by software,
this fact can be indicated. If the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally (such as the Heathkit
h l9 ' s 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling
region), the capability hs should be given. Special strings that go to a given
column of the status line and return from the status line can be given as tsl and
fsl. (fsl must leave the cursor position in the same place it was before tsl. If
necessary, the sc and rc strings can be included in tsl and fsl to get this effect.)
The capability tsl takes one parameter, which is the column number of the
status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line
(or otherwise erases its contents) should be given as dsl. If the terminal has
commands to save and restore the position of the cursor, give them as sc and rc.
The status line is normally assumed to be the same width as the rest of the
screen, for example, cols. If the status line is a different width (possibly
because the terminal does not allow an entire line to be loaded) the width, in
columns, can be indicated with the numeric parameter wsl.

Line Graphics
If the terminal has a line drawing alternate character set, the mapping of glyph
to character would be given in acsc. The definition of this string is based on the
alternate character set used in the DEC VT100 terminal, extended slightly with
some characters from the AT&T4410vl terminal.

TERMINFO (4) TERMINFO (4)

glyph name vtlOO+
character

arrow pointing right +
arrow pointing left »

arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up -

diamond (

checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
iower right corner j
upper right corner k
upper left corner 1
lower left corner m
plus n
scan line 1 0
horizontal line q
scan line 9 s
left tee (|-) t
right tee (- |) u
bottom tee (|) V
top tee (J) w
vertical line X
bullet -

The best way to describe a new terminal's line graphics set is to add a third
column to the above table with the characters for the new terminal that produce
the appropriate glyph when the terminal is in the alternate character set mode.

- 2 8 -

TERMINFO (4) TERMINFO (4)

For example,

glyph name vtl00+ new tty
char char

upper left corner 1 R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q »

vertical line X

Now write down the characters left to right, as in "acsc=lRmFkTjGq\x.".

The AT&T functions above are recommended for present and future
development; the following CTIX functional equivalents are retained for
backward compatibility. Both sets of functions are supported by this release of
CTIX.

Eight single-line drawing characters can be given. The eight eight characters
that can be specified represent the top left corner, top right corner, bottom left
corner, bottom right corner left side, right side, top side, and bottom side of a
solid line box. The four corner are specified with Idul, ldur, Idbl, and ldbr.
The four sides can be specified with ldvl, Idvr, ldht, and ldhb. If the terminal
must be in a special mode to draw the line characters, specify the necessary
sequences to enter and exit the mode as one of the six highlight modes
(alternate character set is usually a good choice); then give the mode number as
a numeric value to ldatt. The correspondence of highlight modes and numeric
values is as follows:

attribute mode
1 underline
2 reverse
3 blink
4 dim
5 bold
6 alternate character set
7 standout

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can
be given as pad. Only the first character of the pad string is used. If the
terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts

- 2 9 -

TERMINFO (4) TERMINFO (4)

and subscripts on hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as ff (usually Control-1).

If there is a command to repeat a given character a given number of times (to
save time transmitting a large number of identical characters) this can be
indicated with the parameterized string rep. The first parameter is the character
to be repeated and the second is the number of times to repeat it. Thus,
tparm(repeat_char, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025,
this can be indicated with cmdch. A prototype command character is chosen
which is used in all capabilities. This character is given in the cmdch
capability to identify i t

Terminal descriptions that do not represent a specific kind of known terminal,
such as switch, dialup, patch, and network, should include the gn (generic)
capability so that programs can complain that they do not know how to talk to
the terminal. (This capability does not apply to virtual terminal descriptions
for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions
about costs, but actual pad characters will not be transmitted. Sequences to turn
on and off xon/xoff handshaking can be given in smxon and rmxon. If the
characters used for handshaking are not *S and *Q, they can be specified with
xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of
any character transmitted, this fact can be indicated with km. Otherwise,
software will assume that the 8th bit is parity and it will usually be cleared. If
strings exist to turn this "meta mode" on and off, they can be given as smm
and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with Im. A value of lm#0
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the terminal
can be given as mcO: print the contents of the screen, mc4: turn off the printer,
and mc5: turn on the printer. When the printer is on, all text sent to the
terminal will be sent to the printer. A variation, mc5p, takes one parameter,
and leaves the printer on for as many characters as the value of the parameter,
then turns the printer off. The parameter should not exceed 255. If the text is
not displayed on the terminal screen when the printer is on, specify mc5i (silent

TERMINFO (4) TERMINFO (4)

printer). All text, including mc4, is transparendy passed to the printer while an
mc5p is in effect.

Special Cases
The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring special
support by terminfo. These are not meant to be construed as deficiencies in the
terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all the
features of the terminfo model implemented.

Terminals which can not display tilde (") characters, such as certain Hazeltine
terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the
Concept 100, should indicate xeni. Those terminals whose cursor remains on
the right-most column until another character has been received, rather than
wrapping immediately upon receiving the right-most character, such as the
VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of
it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that
it is not possible to position the cursor on top of a "magic cookie" therefore, to
erase standout mode, it is instead necessary to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or
Control-C characters, should specify xsb, indicating that the f l key is to be used
for escape and the f2 key for Control-C.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the
name of the similar terminal. The capabilities given before use override those
in the terminal type invoked by use. A capability can be canceled by placing
xx@ to the left of the capability definition, where xx is the capability. For
example, the entry:

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul

- 3 1 -

TERMINFO (4) TERMINFO (4)

capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use
capability can be given.

FILES
/usr/lib/terminfo/?/* compiled terminal description database

/usr/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal (escape
sequences that set margins and tabs)

S E E A L S O

captoinfo(lM), infocmp(lM), tic(lM), tput(l), curses(3X), printf(3S), term(5),
termio(7).

UNIX System VRelease 3.2 Programmer's Guide.

W A R N I N G

As described in the "Tabs and Initialization" section above, a terminal's
initialization strings, isl , is2, and is3, if defined, must be output before a
curses(3X) program is run. An available mechanism for outputting such strings
is tput init [see tput{\) and profile(4)].

- 3 2 -

TTYTYPE(4) TTYTYPE (4)

NAME
ttytype - list of terminal types by terminal number

DESCRIPTION
/etc/ttytype is a text file that contains, for each terminal configured, the
terminal type as described in termcap(4). It is used by tset(l) when that
program sets the TERM environment variable.
A line in ttytype consists of a terminal name (one of the abbreviations from the
first field of the termcap entry), followed by a space, followed by the special
file name of the terminal without the initial /dev/.

EXAMPLES
pt ttyOOO

FILES
/etc/ttytype

SEE ALSO
tset(l), termcap(4).
S/Series CTIX Administrator s Guide.

t

UNISTD(4) UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The header fde <unistd.h> lists the symbolic constants and structures not
already defined or declared in some other header file.

/* Symbolic constants for the "accesrf' routine: */

Mefine R OK 4 /* Test for Read permission */
#define W_OK 2 /* Test for Write permission */
Mefine X OK 1 /* Test for eXecute permission */
#deiine F_OK 0 I* Test for existence of File »/

Mefine F_ULOCK 0 /* Unlock a previously locked region *l
Mefine F LOCK 1 /* Lock a region for exclusive use */
Mefine F_TLOCK 2 /» Test and lock a region for exclusive use */
Mefine F_TEST 3 /* Test a region for other processes locks */

/* Symbolic constants for the "iseelf' routine: */

Mefine SEEK_SETO /* Set file pointer to "offset" */
Mefine SEEK_CUR 1/* Set file pointer to current plus "offset" */
Mefine SEEK_END 21* Set file pointer to EOF plus "offset" */

/* Pathnames*/

Mefine GF PATH /etc/group /'Pathname of the group file */
Mefine PF_PATH /etc/passwd /* Pathname of the passwd file */

(i

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as
who{ 1), write (I) and login(1), have the following structure as defined by
<utmp.h>:

Mefine UTMP FILE "/etc/utmp"
Mefine WTMP_FILE "/etc/wtmp"
Mefine ut_name utuser

struct utmp {
char ut_user[8]; /* User login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry »/
struct exit_status{

short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

} ut exit; /» The exit status of a process marked as DEAD_PROCESS.
time t ut_time; I* time entry was made */

};

/* Definitions for ut_type »/ r
Mefine EMPTY 0
Mefine RUN_LVL 1
Mefine BOOT_TlME 2
Mefine OLDTIME 3
Mefine NEW_TIME 4
Mefine INIT_PROCESS 5 /* Process spawned by "init" */
Mefine LOGIN_PROCESS 6 /* A "getty* process waiting for login */
Mefine USERPROCESS 7 /* A user process */
Mefine DEAD_PROCESS 8
Mefine ACCOUNTING 9
Mefine UTMAXTYPE ACCOUNTING

/» Largest legal value of ut type */

UTMP(4) UTMP (4)

FILES

/* Special airings or formats used in the "ut llnrf' field */
/* when accounting for something other than a process */
/* No string for the utjine field can be more than 11*/
/* chars + a NULL in length »/
#deflne RUNLVL MSG "run-level %c"
#define BOOT_MSG "system boot"
«define OT1ME MSG "old time"
«define NTIME MSG "new timer

/ete/utmp
/etc/wtmp

SEE ALSO
login(l), who(l), write(l), getut(3C).

- 2 -

INTRO(5) INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

I

DEVICES (5) DEVICES (5)

NAME
Devices - configuration file for uucp communications lines

SYNOPSIS
/usr/lib/uucp/Devices

DESCRIPTION
The /usr/lib/uucp/Devices text file contains configuration specifications for
communications devices, such as modems or direct lines. Each line in the file
describes a single device and how it communicates with a remote system.
Comment lines begin with a pound sign (#). The UUCP system uses the
/usr/lib/uucp/Devices file in conjunction with the /usr/Iib/uucp/Dialers file to
place a call.

Each line containes five or more fields delimited by spaces. The first field is
the line type as specified in the /usr/Iib/uucp/Sysiems file; for dircct lines, the
first field is the name of the remote system.

The remaining fields give the device name; the calling device indicator (such as
for 801 calling units), if used; the speed, which may be specified as ANY; and
the name of the caller as specified in the /usr/lib/uucp/Dialers file. The last
field, the name of the caller, can be followed by a token format (containing \D
or \T); pairs of these dialer name/token format fields can be repeated if more
than one dialer must be used in succession to make the connection. If no token
format is specified, a \D is used for a dialer name that references the
/usr/lib/uucp/Dialers file; a \T is used for internal dialer types such as 801.
Unused fields are replaced by a hyphen (-).

EXAMPLE
The following entry configures a 1200-baud intelligent modem on device
contty for use with UUCP:

ACU contty -1200 penril

FILES
/usr/lib/uucp/Devices
/usr/lib/uucp/Dialers
/usr/lib/uucp/Systems

SEE ALSO
uucp(lC), dial(3C), Dialers(5).
SISeries CTIX Administrator's Guide.

I

DIALERS (5) DIALERS (5)

NAME
Dialers - ACU/modem calling protocols

SYNOPSIS
/usr/lib/uucp/Dialers

DESCRIPTION
Dialers describes the call-placing protocols for intelligent modems, ACUs
(automatic calling units), and other serial switched devices such as data
switches. When a connection is requested via the UUCP system, CTIX looks for
a description of the called system in the /usr/lib/uucp/Systems fde, where the
type of line is specified for connection to that system. CTIX then checks the
/usr/lib/uucp/Devices file for a description of the line, its speed and its Dialers
name. The Dialers name given in the Devices file corresponds to the first field
of the Dialers file.

Dialers is a text file that contains the dialing script for the modems that are
configured in the Devices file. Each description begins on a new line and has
three or more fields, delimited by spaces.

The first field of the description is the name of the modem or device as
specified in the Devices file.

The second field specifies the codes used by that particular modem for
secondary dial tone (=) and pause (-); this field enables CTIX to translate from
the standard 801 codes (= and -) to the special characters used by that particular
device.

The remaining fields make up the chat script necessary to establish
communication with the modem.

The modem chat script is composed of command strings to the modem and
response strings expected in return from the modem. The strings consist of
ASCII and control characters recognized by the individual modem or device.
Spaces delimit the end of a send or receive sequence. The first string is an
expect string.

Several modems and switches are already provided in the Dialers file.
Additional devices can be configured by studying the manufacturers' manuals
to determine the appropriate send/receive sequences for other modems.

In the string sequences of the send/receive fields the following escape
sequences represent control codes:

\ddd Octal number.

\c Suppress new line (valid only after \r or at the end of a field).

DIALERS (5) DIALERS (5)

\d Delay (two seconds).

\D Substitute the telephone number (from the /usr/lib/uucp/Systems file
or ch(1Q) , without character translation.

\e Turn off echo checking.

\E Turn on echo checking (for slow devices).

\K Insert a BREAK.

\n New-line.

\p Pause (a slight delay of one-quarter to one-half second).

\r Carriage return.

\T Substitute the telephone number (from the /usr/lib/uucp/Systems file
or cu(lC)), with character translation. Character translation interprets
the 801 codes in the second field and expands any symbols found in
the /usr/lib/uucp/Dialcodes file.

Comments delimited by a pound sign (#), spaces, or tabs are ignored. Any line
terminated by a backslash (\) continues to the next line.

EXAMPLE
The following example establishes communication with a Ventel modem:

ventel =&-% "" \r\p\r\c $ <K\T%%\r>\c ONUNE!

The first field, "ventel," is the name of the modem that corresponds to a
"ventel*' caller type in the fifth or subsequent field of a Devices file entry. The
second field describes the modem's convention for the secondary dial tone (&)
and a pause (%) command. The remaining fields consist of five strings
separated by spaces. The five strings are interpreted as follows:

1. The first expect string ("") is null.

2. Send to the modem a series of carriage returns to elicit a prompt.

3. The modem should respond with a dollar sign ($).

4. Send the telephone number (\T) to the modem.

5. Upon connection the modem should respond with the string 'ONLINE!'.

DIALERS (5) DIALERS (5)

NAME
Dialers - ACU/modem calling protocols

SYNOPSIS
/usr/lib/uucp/Dialers

DESCRIPTION
Dialers describes the call-placing protocols for intelligent modems, ACUs
(automatic calling units), and other serial switched devices such as data
switches. When a connection is requested via the UUCP system, CTIX looks for
a description of the called system in the /usrAib/uucp/Systems file, where the
type of line is specified for connection to that system. CTIX then checks the
/usr/lib/uucp/Devices file for a description of the line, its speed and its Dialers
name. The Dialers name given in the Devices file corresponds to the first field
of the Dialers file.

Dialers is a text file that contains the dialing script for the modems that are
configured in the Devices file. Each description begins on a new line and has
three or more fields, delimited by spaces.

The first field of the description is the name of the modem or device as
specified in the Devices file.

The second field specifies the codes used by that particular modem for
secondary dial tone (=) and pause (-); this field enables CTIX to translate from
the standard 801 codes (= and -) to the special characters used by that particular
device.

The remaining fields make up the chat script necessary to establish
communication with the modem.

The modem chat script is composed of command strings to the modem and
response strings expected in return from the modem. The strings consist of
ASCH and control characters recognized by the individual modem or device.
Spaces delimit the end of a send or receive sequence. The first string is an
expect string.

Several modems and switches are already provided in the Dialers file.
Additional devices can be configured by studying the manufacturers' manuals
to determine the appropriate send/receive sequences for other modems.

In the string sequences of the send/receive fields the following escape
sequences represent control codes:

\ddd Octal number.

\c Suppress new line (valid only after \r or at the end of a field).

DIALERS (5) DIALERS (5)

\d Delay (two seconds).

\D Substitute the telephone number (from the /usr/lib/uucp/Systems file
or cu(lC)), without character translation.

\e Turn off echo checking.

\E Turn on echo checking (for slow devices).

\K Insert a BREAK.

\n New-line.

\p Pause (a slight delay of one-quarter to one-half second).

\r Carriage return.

\T Substitute the telephone number (from the /usr/lib/uucp/Systems file
or c u (l Q) , with character translation. Character translation interprets
the 801 codes in the second field and expands any symbols found in
the /usr/lib/uucp/Dialcodes file.

Comments delimited by a pound sign (#), spaces, or tabs are ignored. Any line
terminated by a backslash (\) continues to the next line.

EXAMPLE
The following example establishes communication with a Ventel modem:

ventel =&-% "" \r\p\r\c $ <K\T%%\r>\c ONUNE!

The first field, "ventel," is the name of the modem that corresponds to a
"ventel ' ' caller type in the fifth or subsequent field of a Devices file entry. The
second field describes the modem's convention for the secondary dial tone (&)
and a pause (%) command. The remaining fields consist of five strings
separated by spaces. The five strings are interpreted as follows:

1. The first expect string ("") is null.

2. Send to the modem a series of carriage returns to elicit a prompt.

3. The modem should respond with a dollar sign ($).

4. Send the telephone number (\T) to the modem.

5. Upon connection the modem should respond with the string 'ONLINE!'.

DIALERS(S) DIALERS (5)

FILES
/usr/lib/uucp/Devices
/usr/lih/uucp/Dialcodes
/usr/lib/uucp/Systems

SEE ALSO
uucp(lC), dial(3C), Devices(5).
S/Series CTIX Administrator's Guide.

- 3 -

Ic

ASCH(5) ASCn(5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. Entering the command
shown in the SYNOPSIS writes the display shown below to the standard output:

1000 n u l 1 0 0 1 soh 1002 s t x 1 0 0 3 e t x 1004 e o t 1005 enq 006 a c k 1 0 0 7 b e l 1
1010 bs 1011 ht 1012 n l 1013 vt 1014 np 1015 c r 016 so 1017 s i 1
1020 d i e 1021 d e l 1022 dc21023 d c 3 1 0 2 4 d c 4 1 0 2 5 nak 026 syn 1027 e t b l
1030 can 1031 em 1032 sub 1033 e s c 1034 f s 1035 gs 036 r s 1037 us 1
i r\Af\ 1 w»u Sp i r\A i 1 Ut 1 i i n i l t v/*t*. i r i i i I V** J 1L n 1 Ai J 1 \ J f t * i n A e 1 UtJ H TV t\A£ WHO tx i 047 !
1050 (1051) 1052 * I 053 + 1054 1055 - 056 . 1057 / 1
1060 0 1061 1 1062 2 1063 3 1064 4 1065 5 066 6 1067 7 1
1070 8 1071 9 1072 1073 \ 1074 < 1075 = 076 > 1077 7 1
1100 @ 1101 A 1102 B 1103 C 1 104 D 1105 E 106 F 1107 G 1
1 n o H 1111 I 1112 J 1113 K 1 114 L 1115 M 116 N 1117 O 1
1120 P 1121 Q 1122 R 1 123 S 1124 T 1125 U 126 V 1127 W 1
1130 X 1131 Y 1132 Z 1 133 [1134 \ 1135 1 136 • 1137 1
1140 1141 a 1142 b 1 143 c 1144 d 1145 e 146 f 1147 g 1
1150 h 1151 i 1 152 j 1 153 k 1154 1 1155 m 156 n 1157 o 1
1160 P 1161 q 1162 r 1 163 s 1164 t 1165 u 166 v 1167 w 1
1170 X 1171 y 1172 z 1173 { 1174 1 1175) 176 - 1177 d e l l

1 00 nu l 1 01 soh 1 02 s tx 1 03 e t x 1 04 eot 1 05 enq 06 ack 1 07 b e l 1
! 08 bs ! 09 h t ! 0a n l ! 0b v t ! 0c np ! Od c r Oe so ! Of s i !
1 10 d l e l 11 d e l 1 12 dc2 1 13 dc3 1 14 dc4 1 15 nak 16 syn 1 17 e t b l
1 18 can 1 19 em 1 l a sub 1 l b e s c 1 l c f s 1 Id gs l e rs 1 If us 1
1 20 sp 1 21 I 1 22 1 23 # 1 24 $ 1 25 % 26 & 1 27 1

1 28 (1 29) 1 2a * 1 2b + 1 2c 1 2d - 2e 1 2f / 1
1 30 0 1 31 1 1 32 2 1 33 3 1 34 4 1 35 5 36 6 1 37 7 1
1 38 8 1 39 9 1 3a 1 3b ; 1 3c < 1 3d = 3e > 1 3f ? 1
1 40 @ 1 41 A 1 42 B 1 43 c 1 44 D 1 45 E 46 F 1 47 G 1
1 48 H 1 49 I 1 4a J 1 4b K 1 4c L 1 4d M 4e N 1 4f O 1
1 50 P 1 51 Q 1 52 R 1 53 S 1 54 T 1 55 U 56 V 1 57 W 1

1 58 X 1 59 Y 1 5a Z 1 5b [1 5c \ 1 5d] 5e - 1 5f 1

1 60
V

1 61 a 1 62 b 1 63 c 1 64 d 1 65 e 66 f 1 67 g 1

1

ASCI1(5)

I 68 h I 69 i
I 70 p I 71 q
I 78 x I 79 y

FILES
/usr/pub/ascii

I 6a j I 6b k
I 72 r I 73 s
I 7a z I 7b {

I 6c 1 I 6 d m
I 74 t I 75 u
I 7c I I 7d }

ASCII(5)

I 6e n I 6f o I
I 76 v I 77 w I
I 7e " I 7f d e l I

ENVIRON(5) ENVIRON(5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec (2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

CFTIME The default format string to be used by the date (I) command and
the ascftime() and cftimeQ routines [see crime (3C)]. If
CFTIME is not set or is null, the default format string specified
in the /lib/cftimt/LANGUAGE file (if it exists) is used in its place
[see cftime (4)].

CHRCLASS A value that corresponds to a file in /Iib/chrclass containing
character classification and conversion information. This
information is used
by commands [such as cat(1), ed{ 1), sort(1), etc.] to classify
characters as alphabetic, printable, uppercase, etc. and to convert
characters to uppercase or lowercase.

When a program or command begins execution, the tables
containing this information are initialized based on the value of
CHRCLASS. If CHRCLASS is non-existent, null, set to a value
for which no file exists in /lib/chrclass, or errors occur while
reading the file, the ASCII character set is used. During
execution, a program or command can change the values in these
tables by calling the setchrclass() routine. For more detail, see
ctype (3C).

These tables are created using the r.hrthlH M) command.

HOME The name of the user's login directory, set by login (I) from the
password file [see passwd(4)].

LANGUAGE A language for which a printable file by that name exists in
/lib/cftime. This information is used by commands [such as
date (I), Is (I), sort(1), etc.] to print date and time information in
the language specified.

If LANGUAGE is non-existent, null, set to a value for which no
file exists in /lib/cftime, or errors occur while reading the file,
the last language requested will be used. (If no language has
been requested, the language usa_english is assumed.) For a
description of the content of files in /lib/cftime, see cftime {A).

ENVIRON(5) ENVIRON(5)

PATH The sequence of directory prefixes that sh(1), time{ 1), nice{ 1),
nohup{\), etc., apply in searching for a file known by an
incomplete path name. The prefixes are separated by colons (:).
login (I) sets PATH=:/bin:/usr/bin. [For more detail, see the
"Execution" section of the sh(l) manual page.]

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm(1) or vi(l), which
may exploit special capabilities of that terminal.

TZ Time zone information. The simplest format is xxxnzzz where
xxx is the standard local time zone abbreviation, n is the
difference in hours from GMT (Greenwich Mean Time), and zzz
is the abbreviation for an alternate time zone (usually the
daylight-saving local time zone), if any; for example,

TZ="EST8EDT"

The most complex format allows you to specify the difference in
hours of the alternate time zone from GMT and the starting day
and time and ending day and time for using this alternate time
zone. For example, in 1985 the complex format corresponding
to the above simple example is:

TZ="EST5:00:OOEDT4:00:00;118/2:00:00^00/2:00:00"

When the above complex format is used, it must be surrounded
by double quotes. For more details, see ctime (3C) and
timezone (A).

Further names may be placed in the environment by the export command and
"name=value" arguments in sh(1), or by exec (2). It is unwise to conflict with
certain shell variables that are frequently exported by .profile files: MAIL, PS1,
PS2.IFS [see profile (4)].

SEE ALSO
cat(l), cftime(4), chrtbl(lM), ctime(3C), ctype(3C), date(l), ed(l), env(l),
exec(2), login(l), ls(l), mm(l), nice(l), nohup(l), passwd(4), profile(4), sh(l),
sort(l) time(l), timezone(4), vi(l).

NOTES
References to the cftime(4), ctime (3C), and ctype(3C) manual pages refer to
programming capabilities available beginning with CTIX release 6.1.

Administrators should note the following: if you attempt to set the current date
to one of the dates that the standard and alternate time zones change (for
example, the date that daylight time is starting or ending), and you attempt to

ENVIRON(5) ENVIRON(5)

example, the date that daylight time is starting or ending), and you attempt to
set the time to a time in the interval between the end of standard time and the
beginning of the alternate time (or the end of the alternate time and the
beginning of standard time), the results are unpredictable.

{

EQNCHAR(5) EQNCHAR(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS

eqn /usr/pub/eqnchar [files] | troff [options]

neqn /usr/pub/eqnchar [files] | nroff [options]

DESCRIPTION
The eqnchar contains troff (I) and nroff character definitions for constructing
characters that are not available on the Wang Laboratories, Inc. C/A/T
phototypesetter. These definitions are primarily intended for use with eqn(\)
and neqn; eqnchar contains definitions for the following characters:

ciplus © II II square •
ci times ® / /ih nl *» lU/lj frO / \ circle <u
wig - rangle > blot m
-wig = hbar n bullet •

>wig > ppd ± prop oc

<wig < <-> empty 0
=wig = < = > member €
star * / < nomem <t
bigstar * / > + cup U

=dot = ang z cap n

orsign V rang L incl e

andsign A 3dot subset cz

=del A
i f f supset

oppA V quarter !subset r ~

oppE 3 3quarter y . ! supset 3

angstrom A degree o scrL /
= = < < = = > >

FILES
/usr/pub/eqnchar

SEE ALSO
eqn(l), nroff(l), troff(l).

FCNTL(5) FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The fcntl (2) function provides for control over open files. This include file
describes requests and arguments to fcntl and open(T).

I* Flag values accessible to open(2) and fcntl(2) */
I* (The first three can only be set by open) */

#define O.RDONLY 0
#define O.WRONLY 1
#define 0_RDWR 2
#define 0_N DELAY 04 I* Non-blocking I/O •/
#define 0_APPEND 010 /* append (writes guaranteed at the end) */
#define 0_SYNC 020 /* synchronous write option */
#define 0_DIRECT 0200001* Perform direct I/O */
fdeflne 0_N0DIRECT 040000/* NO direct I/O */

/* Flag values accessible only to open(2) */
#define 0_CREAT 00400 I* open with file create (uses third open arg)*/
#define 0_TRUNC 01000 /* open with truncation */
#define 0_EXCL 02000 /* exclusive open */

/* fcntl(2) requests */
#define F_DUPFD 0 /* Duplicate fildes */
#define F_GETFD 1 /* Get fildes flags */
#define F SETFD 2 I* Set fildes flags */
#define F_GETFL 3 /* Get file flags */
#define F_SETFL 4 I* Set file flags */
#define F GETLK 5 /* Get file lock •/
#define F_SETLK 6 I* Set file lock */
#deflne F_SETLKW 7 I* Set file lock and wait */
#define F CHKFL 8 /* Check legality of file flag changes */

/* file segment locking control structure */
struct flock {

short l_type;
short l_whence;
long l_start;
long Men; /* if 0 then until EOF */
short I pid; /* returned with F_GETLK»/

FCNTL(5) FCNTL(5)

short Isysid; /* returned with F_GETLK*/
}
/• Hie segment locking types •/
#define F_RDLCK 01 /* Read lock */
#define F_WRLCK 02 /* Write lock */
#define F_UNLCK 03 I* Remove locks */

SEE ALSO
fcntl(2), open(2).

- 2 -

MAN(5) MAN(5)

NAME
man - macros for formatting manual pages

SYNOPSIS
nroff -man files

DESCRIPTION
The man macros are provided to format troff (I) files to look like the entries in
this manual.

Any text argument listed below can be one to six "words". Double quotation
marks (" ") can be used to include blanks in a "word . " If text is empty, the
special treatment is applied to the next line that contains text to be printed. For
example, J can be used to italicize a whole line, or ,SM followed by .B to make
small bold text By default, hyphenation is enabled for troff.

Type font and size are reset to default values before each paragraph and after
processing font- and size-setting macros, for example, J , .RB, .SM. Tab stops
are neither used nor set by any macro except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous indent is
used. This remembered indent is set to its default value (7.2 ens in troff, 5 ens
in nroff—this corresponds to 0 .5" in the default page size) by .TH, .P, and .RS,
and restored by .RE.

.TH tscn Set the title and entry heading: t is the title; s is the section number;
c is extra commentary, for example " local ; ' ' n is new manual name.
Invokes .DT (see below).

.SH text Place subhead text, for example, SYNOPSIS, here.

.SS text Place sub-subhead text, for example, Options, here.

.B text Make text bold.
1 text Make text italic.
.SM text Make text 1 point smaller than default point size.
.RI a b Concatenate roman a with italic b, and alternate these two fonts for

up to six arguments. Similar macros alternate between any two of
roman, italic, and bold:

JR .RB .BR I B .BI

.P Begin a paragraph with normal font, point size, and indent .PP is a
synonym for .P.

.HP in Begin paragraph with hanging indent

.TP in Begin indented paragraph with hanging tag. The next line that
contains text to be printed is taken as the tag. If the tag does not fit,
it is printed on a separate line.

MAN(5) MAN(5)

JP t in Same as .TP in with tag t; often used to get an indented paragraph
without a tag.

.RS in Increase relative indent (initially zero). Indent all output an extra in
units from the current left margin.

.RE/fc Return to the £th relative indent level (initially, k=\; k=0 is
equivalent to ik=l); if k is omitted, return to the most recent lower
indent level.

.PM m Produces proprietary markings, where m can be P for PRIVATE; N
for NOTICE; BP for BELL LABORATORIES PROPRIETARY; or
BR for BELL LABORATORIES RESTRICTED.

.DT Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff).

.PD v Set the interparagraph distance to v vertical spaces. If v is omitted,
set the interparagraph distance to the default value (0.4v in troff, lv
in nroff).

The following strings are defined:

*R ® in troff, (Reg.) in nroff.
*S Change to default type size.
*(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2 ens in troff, 5
ens in nroff).

LL Line length including IN.
PD Current interparagraph distance.

FILES
/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp.[nt].[dt].an
/usr/lib/macros/ucmp.[nt].an

SEE ALSO
nroff(l).

CAVEATS
In addition to the macros, strings, and number registers mentioned above, there
are defined a number of internal macros, strings, and number registers. Except
for names predefined by troff and number registers d, m, and y, all such internal
names are of the form XA, where X is one o f) ,], and }, and A stands for any
alphanumeric character.

If a manual entry needs to be preprocessed by cw(l), eqn(l) [or neqn], and/or
tbl(l), it must begin with a special line [described in man(1)], causing the man
command to invoke the appropriate preprocessor(s).

MAN(5) MAN(5)

The programs that prepare the Table of Contents and the Permuted Index for
this Manual assume the NAME section of each entry consists of a single line of
input that has the following format:

name[, name, name . . .] V explanatory text

The macro package increases the interword spaces (to eliminate ambiguity) in
the SYNOPSIS section of each entry.

The macro package itself uses only the roman font so that one can replace, for
example, the bold font by the constant-width font [see cw(1)]. Of course, if the
input text of an entry contains requests for other fonts (such as J, .RB, \fl), the
corresponding fonts must be mounted.

WARNING
If the argument to .TH contains any blanks, make sure it is enclosed by double
quotation marks (" ").

I

MATH(5) MATH(5)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr (3M) error-handling
mechanisms, including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-
point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOG 10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI 7t, the ratio of the circumference of a circle to its
diameter.

M_PI_2 n/2.

M_PI_4 jr/4.

M_1_PI l/7t.

M_2_PI 2/jt.

M_2_SQRTPI 2/Vjt.

M_SQRT2 The positive square root of 2.

M_SQRT1_2 The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see the
description of the <values.h> header file.

FILES
/usr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

I

ME(5) ME(5)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [options] file ...
troff -me [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a formatting facility
for technical papers in various formats. When producing two-column output on
a terminal, filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe
in conjunction with this package. These requests can be used after the first .pp,
however.

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n=l single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl (I) preprocessors for equations and tables
is acceptable as input.

FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/*

SEE ALSO
eqn(l), troff(l), refer(l), tbl(l).
The -me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using -me

REQUESTS
In the following list, "initialization" refers to the first .pp, .Ip, .ip, .np, .sh, or
.uh macro. This list is incomplete; see The -me Reference Manual for a more
detailed description.

ME(5) ME(5)

Request Initial Cause
Value Break

.(c - yes

.(d - no

.(f - no

.(1 - yes
•(q - yes
.(x x - no
.(z - no
.)c - yes
.)d - yes
.)f - yes
.)1 - yes
•)q - yes
.)x - yes
.)z - yes
.++mH - no

.+c T - yes

.lc 1 yes

.2c 1 yes

.EN - yes

.EQ xy - yes

.GE - yes

.GS - yes

Explanation

Begin centered block.
Begin delayed text
Begin footnote.
Begin list.
Begin major quote.
Begin indexed item in index x.
Begin floating keep.
End centered block.
End delayed text
End footnote.
End list.
End major quote.
End index item.
End floating keep.
Define paper section, m defines the part
of the paper and can be C (chapter), A
(appendix), P (preliminary; for example,
abstract, table of contents, etc.), B
(bibliography), RC (chapters renumbered
from page one each chapter), or RA
(appendix renumbered from page one).
Begin chapter (or appendix, etc., as set by
. + +). T is the chapter title.
One column format on a new page.
Two column format.
Space after equation produced by eqn or
neqn.
Precede equation; break out and add
space. Equation number is y. The
optional argument x may be / to indent
equation (default), L to left-adjust the
equation, or C to center the equation.
End gremlin picture.
Begin gremlin picture.

- 2 -

ME(5) ME(5)

.PE

.PS

.TE

.TH

.TS x

.acAN

.bx

.ba +n

.be

.bi x

.bu

.bx x

.ef 'x'y'z'

.eh 'x'y'z'

.fo 'x'y'z'

.hx
i _ / / / / .he x y z
.hi
.i x
i P - t) '

•lp
. lo

.np

.of 'x'y'z'

.oh 'x'y'z'

.pd
•PP

no

no
no

no

no
no

yes

no

yes
yes
yes
yes
yes

no

no

yes

yes
no
yes
no
no
no
no
no
no
yes
no
yes

yes
no

yes
no
no
yes
yes

End pic picture.
Begin pic picture.
End table.
End heading section of table.
Begin table; if x is H table has repeated
heading.
Set up for ACM style output A is the
Author's name(s), N is the total number of
pages. Must be given before the first
initialization.
Print x in boldface; if no argument switch
to boldface.
Augments the base indent by n. This
indent is used to set the indent on regular
text (like paragraphs).
Begin new column.
Print x in bold italics (nofill only).
Begin bulleted paragraph.
Print x in a box (nofill only).
Set even footer to x y z.
Set even header to x y z.
Set footer to x y z.
Suppress headers and footers on next page.
Set header to x y z.
Draw a horizontal line.
Italicize r , if x missing, italic text follows.
Start indented paragraph, with hanging tag
x. Indention is y ens (default 5).
Start left-blocked paragraph.
Read in a file of local macros of the form
.* x. Must be given before initialization.
Start numbered paragraph.
Set odd footer to x y z.
Set odd header to x y z.
Print delayed text
Begin paragraph. First line indented.

- 3 -

ME(5)

.r yes no

.re - no

.sc no no

.sh n x - yes

.sk no no

.sm x - no

.sz +n lOp no
sth no no

.tp no yes

.u x - no

.uh - yes

.xp x - no

Roman text follows.
Reset tabs to default values.
Read in a file of special characters and
diacritical marks. Must be given before
initialization.
Section head follows, font automatically
bold, n is level of section, x is title of
section.
Leave the next page blank. Only one page
is remembered ahead.
Set x in a smaller pointsize.
Augment the point size by n points.
Prn r lu rp thp. nnnp.r in thp.sis f o r m a t M u c t — ,—,— — — — —
be given before initialization.
Begin title page.
Underline argument (even in troff).
(Nofill only).
Like .sh but unnumbered.
Print index x.

MM(5) MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [files]

nroff -cm [options] [files]

DESCRIPTION
This package provides a formatting capability for a very wide variety of
documents. The manner in which a document is typed in and edited is
essentially independent of whether the document is to be eventually formatted
at a terminal or is to be phototypeset. See the references below for further
details.

The -mm option causes nroff and troff (I) to use the non-compacted version of
the macro package, while the -cm option results in the use of the compacted
version, thus speeding up the process of loading the macro package.

FILES
/usr/lib/tmac/tmac.

Aisr/lib/macros/mm [nt]
/usr/lib/macros/cmp.[nt] .[dt] .m
/usr/lib/macros/ucmp.[nt].m

SEE ALSO
mra(l), mmt(l), nroff(l).
Programmer s Guide: CTIX Supplement.

pointer to the non-compacted version of the
package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of the
package

t

MPTX(5) MPTX(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS

nroff -mptx [options] [files] [options] [files]

DESCRIPTION
This package provides a definition for the jcx macro used for formatting a
permuted index as produced by ptx(1). This package does not provide any
other formatting capabilities such as headers and footers. If these or other
capabilities are required, the mptx macro package may be used in conjuction
with the MM macro package. In this case, the -mptx option must be invoked
after the -mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

FILES
/usr/lib/tmac/tmac.ptx pointer to the non-compacted version of the package
/usr/lib/macros/ptx non-compacted version of the package

SEE ALSO
mm(l), nroff(l), ptx(l), mm(5).

t

MS(5) MS(5)

NAME
ms - text formatting macros

SYNOPSIS
nroff -ms [options] file ...
troff -ms [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a formatting facility
for various styles of articles, theses, and books. When producing 2-column
output on a terminal or lineprinter, or when reverse line motions are needed,
filter the output through col. All external -ms macros are defined below. Many
nroff and troff requests are unsafe in conjunction with this package. However,
the first four requests below may be used with impunity after initialization, and
the last two may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.Is n line spacing: n=l single, n=2 double space

.na no alignment of right margin
Font and point size changes with \f and \s are also allowed; for example,
\fIword\fR italicizes word. Output of the tbl and eqn preprocessors for
equations and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.x
/usr/lib/ms/x.???

SEE ALSO
eqn(l), tbl(l), troff(l).

REQUESTS
Macro Initial Break? Explanation
Name Value Reset?
.AB x - y begin abstract; if x=no don't label abstract
.AE - y end abstract
.Al y author's institution
.AM - n better accent mark definitions
.AU - y author's name
.Bx - n embolden x; if no x, switch to boldface
.Bl y begin text to be enclosed in a box
,B2 y end boxed text and print it
.BT date n bottom title, printed at foot of page

- 1 -

MS(5) MS(5)

BXx - n print word * in a box
.CM i f t n cut mark between pages
.CT - y.y chapter title: page number moved to CF (TM only)
.DA* i f n n force date * at bottom of page; today if no *
.DE - y end display (unfilled text) of any kind
.DS*y I y begin display with keep; x =I,L,C,B; y =indent
.ID y 8n,.5i y indented display with no keep; y =indent
.LD - y left display with no keep
.CD - y centered display with no keep
.BD - y block display; center entire block
.EFx - n even page footer * (3 part as for .tl)
JEHx - n even page header * (3 part as for .tl)
.EN - y end displayed equation produced by eqn
r r \ _ j^v y - y break out equation; L,I,C; y=equation number
.FE - n end footnote to be placed at bottom of page
.FP - n numbered footnote paragraph; may be redefined
.FS* - n start footnote; x is optional footnote label
.HD undef n optional page header below header margin
.1X - n italicize x; if no * , switch to italics
.IPxy - y.y indented paragraph, with hanging tag x; y =indent
.IX xy - y index words x y and so on (up to 5 levels)
.KE - n end keep of any kind
.KF - n begin floating keep; text fills remainder of page
.KS - y begin keep; unit kept together on a single page
.LG - n larger; increase point size by 2
.LP - y.y left (block) paragraph.
.MC* - y.y multiple columns; *=column width
.ND* i f t n no date in page footer; * is date on cover
.NH*y - y.y numbered header; x =level, x =0 resets, * =S sets to y
.NL lOp n set point size back to normal
.OF* - n odd page footer * (3 part as for .tl)
.OH* - n odd page header * (3 part as for .tl)
.PI if TM n print header on 1st page
.PP - y.y paragraph with first line indented
P T n page title, printed at head of page
.PXx - y print index (table of contents); * =no suppresses title
•QP - y.y quote paragraph (indented and shorter)
.R on n return to Roman font
.RE 5n y.y retreat: end level of relative indentation
.RP* - n released paper format; *=no stops title on 1st page
.RS 5n y.y right shift: start level of relative indentation

- 2 -

MS(5) MS(5)

.SH - y.y section header, in boldface

.SM - n smaller; decrease point size by 2

.TA 8n,5n n set tabs to 8n 16n ... (nroff) 5n lOn ... (troff)

.TCx - y print table of contents at end; *=no suppresses title

.TE - y end of table processed by tbl

.TH - y end multi-page header of table

.TL - y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TS x - y.y begin table; if x=H table has multi-page header

.UL* - n underline x, even in troff

.UXx - n UNIX; trademark message first time; x appended

.XA xy - y another index entry; x =page or no for none; y =indent

.XE - y end index entry (or series of .IX entries)
XP - V V

J V paragraph with first line exdented, others indented
. X S j c y - y begin index entry; ;c=page or no for none; y =indent
AC on y.y one column format, on a new page
,2C - y.y begin two column format
•[0 - n end of unclassifiable type of reference
. [N - n N= l:journal-article, 2:book, 3:book-article, 4:report

R E G I S T E R S

Formatting distances can be controlled in -ms by means of built-in number
registers. For example, this sets the line length to 6.5 inches:

.nr LL 6.51
Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default
PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph lv(i fn) , ,3v (if t)
DD display distance displays lv (if n), .5v (i f t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FT footnote indent next .FS 2n
PO page offset next page 0 (if n), ~li (if t)
HM header margin next page li
FM footer margin next page li
FF footnote format next .FS 0 (1 ,2 ,3 available)

MS(5) MS(5)

When resetting these values, make sure to specify the appropriate units. Setting
the line length to 7, for example, results in output with one character per line.
Setting FF to 1 suppresses footnote superscripting; setting it to 2 also suppresses
indentation of the first line; and setting it to 3 produces a .IP-like footnote
paragraph.

Here is a list of string registers available in -ms; they can be used anywhere in
the text:

Name String's Function

V Q quote (" in nroff, " in t r o f f)
*U unquote (" in nroff, " in t r o f f)
V- dash (-- in nroff, — in t r o f f)
*(MO month (month of the year)
*(DY day (current date)

automatically numbered footnote
V acute accent (before letter)

grave accent (before letter)
V- circumflex (before letter)
V, cedilla (before letter)
V: umlaut (before letter)
V . tilde (before letter)

When using the extended accent mark definitions available with .AM, these
strings should come after, rather than before, the letter to be accented.

BUGS
Floating keeps and regular keeps are diverted to the same space, so they cannot
be mixed together with predictable results.

MV(5) MV(5)

NAME
mv - a troff macro package for typesetting view graphs and slides

SYNOPSIS
mvt [-a] [options] [files]

troff [-a] [-rXl] -mv [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and projection slides in a
variety of sizes. A few macros (briefly described below) accomplish most of
the formatting tasks needed in making transparencies. All of the facilities of
troff(1), cw(l), eqn(1), and tbl(l) are available for more difficult tasks.
The output can be previewed on most terminals, and, in particular, on the
Tektronix 4014, as well as on the Versatec printer. For these two devices,
specify the - rXl option (this option is automatically specified by the mvt
command-q.v.-when that command is invoked with the -T4014 or -Tvp
options). To preview output on other terminals, specify the -a option.

The available macros are:

•VS [n] [/] [d\ Foil-start macro; foil size is to be 7 " x 7 " ; n is the foil
number, i is the foil identification, d is the date; the foil-
start macro resets all parameters (indent, point size, etc.)
to initial default values, except for the values of i and d
arguments inherited from a previous foil-start macro; it
also invokes the A macro (see below).

The naming convention for this and the following eight
macros is that the first character of the name (V or S)
distinguishes between view graphs and slides,
respectively, while the second character indicates
whether the foil is square (S), small wide (w), small high
(h), big wide (W), or big high (H). Slides are "skinnier''
than the corresponding view graphs: the ratio of the
longer dimension to the shorter one is larger for slides
than for view graphs. As a result, slide foils can be used
for view graphs, but not vice versa; on the other hand,
view graphs can accommodate a bit more text.

.Vw [n] [i] [d] Same as .VS, except that foil size is 7 " wide x 5 " high.

.Vh [/i] [/] [d] Same as .VS, except that foil size is 5 " x 7 " .

.VW [n] [/] [d] Same as .VS, except that foil size is 7"x5.4" .

.VH [n] [i] [d] Same as .VS, except that foil size is 7 " x 9 " .

MV(5) MV(5)

.Sw [n] [i] [d] Same as .VS, except that foil size is 7 " x 5 " .

.Sh [n] W [d\ Same as .VS, except that foil size is 5 " x 7 " .

.SW [n] [i] [d] Same as .VS, except that foil size is 7 "x5 .4" .

.SH [n] [i] [d\ Same as .VS, except that foil size is 7 " x 9 " .

.A [x] Place text that follows at the first indentation level (left
margin); the presence of x suppresses the XA line spacing
from the preceding text

.B [m [s]] Place text that follows at the second indentation level;
text is preceded by a mark; m is the mark (default is a
large bullet); s is the increment or decrement to the point
size of the mark with respect to the prevailing point size
(default is 0); if s is 100, it causes the point size of the
mark to be the same as that of the default mark.

.C [m [s]] Same as .B, but for the third indentation level; default
mark is a dash.

.D [m [s]] Same as .B, but for the fourth indentation level; default
mark is a small bullet.

.T string String is printed as an over-size, centered title.
J [in] [a [jc]] Change the current text indent (does not affect titles); in

is the indent (in inches unless dimensioned, default is 0);
if in is signed, it is an increment or decrement; the
presence of a invokes the .A macro (see below) and
passes x (if any) to i t

.S [p] [/] Set the point size and line length; p is the point size
(default is "previous"); if p is 100, the point size reverts
to the initial default for the current foil-start macro; if p
is signed, it is an increment or decrement (default is 18
for .VS, .VH, and .SH, and 14 for the other foil-start
macros); I is the line length (in inches unless
dimensioned; default is 4 .2" for .Vh, 3 .8" for .Sh, 5 " for
.SH, and 6 " for the other foil-start macros).

.DF n f [n / . . .] Define font positions; may not appear within a foil's
input text (i.e., it may only appear after all the input text
for a foil, but before the next foil-start macro); n is the
position of font / ; up to four "n / " pairs may be
specified; the first font named becomes the prevailing
font; the initial setting is (H is a synonym for G):

.DF 1 H 2 I 3 B 4 S

t -

- 2 -

MV(5) MV(5)

.DV [a] [b] [c] [d] Alter the vertical spacing between indentation levels; a is
the spacing for .A, b is for .B, c is for .C, and d is for .D;
all non-null arguments must be dimensioned; null
arguments leave the corresponding spacing unaffected;
initial setting is:

.DV .5v .5v .5v Ov
•U strl [str2] Underline strl and concatenate strl (if any) to i t

The last four macros in the above list do not cause a break; the J macro causes
a break only if it is invoked with more than one argument; all the other macros
cause a break.

The macro package also recognizes the following upper-case synonyms for the
corresponding lower-case troff requests:

.AD .BR .CE J l .HY JsfA .NF .NH .NX .SO .SP .TA .TI

The Tm string produces the trademark symbol.

The input tilde (") character is translated into a blank on output

See the user's manual cited below for further details.

FILES
/usr/lib/tmac/tmac.v
/usr/lib/macros/vmca

SEE ALSO
cw(l), eqn(l), mmt(l), tbl(l), troff(l).
A Macro Package for View Graphs and Slides by T. A. Dolotta and
D. W. Smith.

BUGS
The .VW and .SW foils are meant to be 9 " wide by 7 " high, but because the
typesetter paper is generally only 8 " wide, they are printed 7 " wide by 5.4"
high and have to be enlarged by a factor of 9/7 before use as view graphs; this
makes them less than totally useful.

PROF(5) PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that mark,
and program-counter time spent will be accounted to the immediately
preceding mark or to the function if there are no preceding marks within the
active function.

Name may be any combination of numbers or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the header
file <prof.h> is included. This may be defined by a preprocessor directive as in
the synopsis, or by a command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MAflAT(name) statements may be left in the source
files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARK defined on the command
line, the marks are ignored.

#lnclude <prof.h>
»oo()
{

int i, j;

MARK(loopl);
for (i = 0; I < 2000; i++) {
}

MARK(loop2);

PROF(5) PROF(5)

for 0=0; j< 2000; j++) {
}

}
SEE ALSO

prof(l), profil(2), monitor(3C).

t -

- 2 -

REGEXP(5) REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) creturn code>
#define ERROR(val) <error code>

#include <regexp.h>

char 'compile (instring, expbuf, endbuf, eof)
char * instring, * expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

extern char *locl, *Ioc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines in
the form of ed(1), defined in <regexp.h>. Programs such as ed(1), sed(1),
grep(1), bs{ 1), expr{ 1), etc., which perform regular expression matching use
this source file. In this way, only this fde need be changed to maintain regular
expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this
file must have the following five macros declared before the
"#include <regexp.h>" statement. These macros are used by the compile
routine.

GETC() Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should
return successive characters of the regular expression.

PEEKC() Return the next character in the regular expression.
Successive calls to PEEKCQ should return the same
character [which should also be the next character
returned by GETC()].

UNGETC(c) Cause the argument c to be returned by the next call to
GETC() [and PEEKC()]. No more than one character
of pushback is ever needed and this character is

REGEXP(5) REGEXP(5)

guaranteed to be the last character read by GETC().
The value of the macro UNGETC(c) is always ignored.

RETURN(poMter) This macro is used on normal exit of the compile
routine. The value of the argument pointer is a pointer
to the character after the last character of the compiled
regular expression. This is useful to programs that
have memory allocation to manage.

ERROR(va/) This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

ERROR MEANING

11 Range endpoint too large.
16 Bad number.
25 " \digi t" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in

\{\}.
45 } expected after \.
46 First number exceeds second in

\ { \ > .
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(zn.sfri>ig, expbuf^n^6u/,eol)
The first parameter instring is never used explicitly by the compile routine but
is useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs that call
functions to input characters or have characters in an external array can pass
down a value of [(char *) 0] for this parameter.

The next parameter expbuf is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR(50) is made.

REGEXP(5) REGEXP(5)

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(1), this character is usually a /.

Each program that includes this file must have a #define statement for INIT.
This definition will be placed right after the declaration for the function
compile and the opening curly brace (0- It is used for dependent declarations
and initializations. Most often it is used to set a register variable to point the
beginning of the regular expression so that this register variable can be used in
the declarations for GETC(), PEEKCQ and UNGETCQ. Otherwise it can be
used to declare external variables that might be used by GETCQ, PEEKCQ and
UNGETC(). See the example below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression
matching, one of which is the function step. The call to step is as follows:

stpn/c/riM o " x a b u f ! r i " o>—» i " " " /

The first parameter to step is a pointer to a string of characters to be checked for
a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two
external character pointers are set as a side effect to the call to step. The
variable set in step is loci. This is a pointer to the first character that matched
the regular expression. The variable loc2, which is set by the function advance,
points to the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire line, loci will
point to the first character of string and loc2 will point to the null at the end of
string.

Step uses the external variable circf which is set by compile if the regular
expression begins with \ If this is set then step will try to match the regular
expression to the beginning of the string only. If more than one regular
expression is to be compiled before the first is executed the value of circf
should be saved for each compiled expression and circf should be set to that
saved value before each call to step.

The function advance is called from step with the same arguments as step. The
purpose of step is to step through the string argument and call advance until
advance returns non-zero indicating a match or until the end of string is
reached. If one wants to constrain string to the beginning of the line in all
cases, step need not be called; simply call advance.

REGEXP(5) REGEXP(5)

When advance encounters a * or \{ \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will
recursively call itself trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance will back up along
the string until it finds a match or reaches the point in the string that initially
matched the * or \{ \}. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer Iocs is
equal to the point in the string at some time during the backing-up process,
advance will break out of the loop that backs up and will return zero. This is
used by ed{\) and sed{\) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like s/y*//g do not
loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls
look from grep(1):

#define INIT register char *sp = instring;
#defineGETC() (*sp++)
#define PEEKC() (*sp)
Meflne UNGETC(c) (--sp)
fdefine RETURN(c) return;
#define ERROR(c) regerrQ

#include <regexp.h>

(void) compiie(*argv, expbuf, &expbuf[ESIZE], AO);

if (step(linebuf, expbuf))
succeed();

FILES
Aisr/include/regexp.h

SEE ALSO
ed(l), expr(l), grep(l), sed(l).

STAT(5) STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION
The system calls stat and fstat return data whose structure is defined by this
include file. The encoding of the field st mode is defined in this file also.

/* Structure of the result of stat */

struct stat
{

dev_t st_dev:
ushort st jno;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid;
dev_t strdev;
off_t stsize;
time_t st atime;
time t st_mtime;
time t stctime;

};
#define S. JFMT 0170000 /* type of file */
#define S. JFDIR 0040000 /* directory */
#deflne S. JFCHR 0020000 i* character special •/
#define S. IFBLK 0060000 /* block special */
#define S. JFREG 0100000 /* regular */
#define S. IFIFO 0010000 /* fifo »/
#define S_ JSUIO 04000 /* set user id on execution */
#define S. ISGID 02000 /* set group id on execution */
#define S. JSVTX 01000 /* save swapped text even after use */
#define S. IREAD 00400 /• read permission, owner */
#define S IWRITE 00200 /* write permission, owner */
#define S_ IEXEC 00100 /* execute/search permission, owner */
#deflne S. ENFMT SJSGID 1* record locking enforcement flag */
define S_ JRWXU 00700 / read,write, execute: owner */
#define S. JRUSR 00400 /* read permission: owner */
«define S IWUSR 00200 /* write permission: owner «/

STAT(5)

#define SJXUSR 00100
#define SJRWXG 00070
#define SJRGRP 00040
#define SJWGRP 00020
#define SJXGRP 00010
#define S_IRWXO 00007
#define SJROTH 00004
idefine SJWOTH 00002
«define SJXOTH 00001

SEE ALSO
stat(2), types(5).

STAT(5)

/* execute permission: owner */
/• read, write, execute: group »/
/* read permission: group */
/* write permission: group */
/* execute permission: group */
/* read, write, execute: other */
/* read permission: other */
/* write permission: other */
/* execute permission: other */

- 2 -

TERM(5) TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands [for example, man(l), tabs(1),
tput (I), vz'(l) and curses(3X)] and are maintained as part of the shell
environment in the environment variable TERM [see sh(l), profiled), and
environ (5)].

Entries in terminfo (4) source fdes consist of a number of comma-separated
fields. [To get the source description for a terminal, use the -I option of
infocmp(IM).] White space after each comma is ignored. The first line of each
terminal description in the terminfo (4) database gives the names by which
terminfo (4) knows the terminal, separated by bar (I) characters. The first name
given is the most common abbreviation for the terminal (this is the one to use to
set the environment variable TERMINFO in $HOMEI.profile; see profile^4)), the
last name given should be a long name fully identifying the terminal, and all
others are understood as synonyms for the terminal name. All names but the
last should contain no blanks and must be unique in the first 14 characters; the
last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att4425. This name should not contain hyphens, except that
synonyms may be chosen that do not conflict with other names. Up to eight
characters, chosen from [a-zO-9], make up a basic terminal name. Names
should generally be based on original vendors, rather than local distributors. A
terminal acquired from one vendor should not have more than one distinct basic
name. Terminal sub-models, operational modes that the hardware can be in, or
user preferences, should be indicated by appending a hyphen and an indicator
of the mode. Thus, an AT&T 4425 terminal in 132 column mode would be
att4425-w. The following suffixes should be used where possible:

Suffix Meaning Example

att4425-w
vtlOO-am
vtlOO-nam
aaa-60 -n

-w
-am
-nam

Wide mode (more than 80 columns)
With auto, margins (usually default)
Without automatic margins
Number of lines on the screen

TERM(5) TERM (5)

-na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory c l00-4p
- rv Reverse video att4415-rv

To avoid conflicts with the naming conventions used in describing the different
modes of a terminal (for example, -w), it is recommended that a terminal's root
name not contain hyphens. Further, it is good practice to make all terminal
names used in the terminfo(4) database unique. Terminal entries that are
present only for inclusion in other entries via the use= facilities should have a +
in their name, as in 4415+nl.

Some of the known terminal names may include the following (for a complete
list, type: Is-C/usr/lib/terminfo/?):

pt Convergent Technologies Programmable Terminal

gt Convergent Technologies Graphics Terminal

ct300 Convergent Technologies TO-300 (Link) Terminal

[hp]2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer

2631-c Hewlett-Packard 2631 line printer - compressed
mode

2631-e Hewlett-Packard 2631 line printer - expanded mode

[hp]2640 Hewlett-Packard 2640 series
[hp]2645 Hewlett-Packard 2645 series
3270 IBM Model 3270
33,tty33 AT&T Teletype Model 33 KSR
35,tty35 AT&T Teletype Model 35 KSR
37,tty37 AT&T Teletype Model 37 KSR
4000a Trendata 4000a
4014,tek4014 TEKTRONIX 4014
40,tty40 AT&T Teletype Dataspeed 40/2
43,tty43 AT&T Teletype Model 43 KSR
4410,5410 AT&T 4410/5410 terminal in 80-column mode -

version 2

TERM(5) TERM(5)

4410-nfk,5410-nfk

4410-nsl,5410-nsl

4410-W.5410-W

4410vl,5410vl

4410vl-w,5410vl-w

4415,5420

4415-nl,5420-nl

4415-rv,5420-rv

4415-rv-nl,5420-rv-nl

4415-w,5420-w

4415- w- nl,5420- w- nl

4415-w-rv,5420-w-rv

4415-w-rv-nl

5420-w-rv-nl

4418,5418
4418-w,5418-w

4420

4424

4424-2

4425,5425
4425-fk,5425-fk

4425-nl,5425-nl

AT&T 4410/5410 without function keys - version 1

AT&T 4410/5410 without pin defined

AT&T 4410/5410 in 132-column mode

AT&T 4410/5410 terminal in 80-column mode -

version 1

AT&T 4410/5410 terminal in 132-column mode -
version 1

AT&T 4415/5420 in 80-column mode
AT&T 4415/5420 without changing labels
AT&T 4415/5420 80 columns in reverse video
AT&T 4415/5420 reverse video without changing
labels

AT&T 4415/5420 in 132-column mode

AT&T 4415/5420 in 132-column mode without
changing labels

AT&T 4415/5420 132 columns in reverse video

AT&T 4415/5420 132 columns reverse video without

changing labels

AT&T 5420 132 columns reverse video without
changing labels

AT&T 5418 in 80-column mode
AT&T 5418 in 132-column mode

AT&T Teletype Model 4420

AT&T Teletype Model 4424

AT&T Teletype Model 4424 in display function
group ii

AT&T 4425/5425
AT&T 4425/5425 without function keys

AT&T 4425/5425 without changing labels in 80-
column mode

TERM(5) TERM(5)

4425-w,5425-w

4425- w-fk,5425- w-fk

4425- nl- w.5425- nl- w

4426
450
450-12
500,att500
510,510a

513bcUtt513
5320
5420_2

5420_2-w

5620,dmd
5620-24,dmd-24

5620-34,dmd-34

610,610bct

610-w,610bct-w

[pc]7300,unix_pc
735,ti
745
dumb

hp
lp
pt505

pt505-24

sync

AT&T 4425/5425 in 132-column mode

AT&T 4425/5425 without function keys in 132-
column mode

AT&T 4425/5425 without changing labels in 132-
column mode

AT&T Teletype Model 4426S
DASI 450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 terminal
AT&T 510/510a in 80-column mode

AT&T 513 bet terminal
AT&T 5320 hardcopy terminal
AT&T 5420 model 2 in 80-column mode

AT&T 5420 model 2 in 132-column mode

AT&T 5620 terminal 88 columns
AT&T Teletype Model DMD 5620 in a 24x80 layer

AT&T Teletype Model DMD 5620 in a 34x80 layer

AT&T 610 bet terminal in 80-column mode

AT&T610 bet terminal in 132-column mode

AT&T UNIX PC Model 7300
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse line-
feed and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
AT&T Personal Terminal 505 (22 lines)
AT&T Personal Terminal 505 (24-line mode)
generic name for synchronous Teletype Model
4540- compatible terminals

Commands whose behavior depends on the type of terminal should accept
arguments of the form -Tterm where term is one of the names given above; if
no such argument is present, such commands should obtain the terminal type
from the environment variable TERM, which, in turn, should contain term.

- 4 -

TERM(5) TERM(5)

FILES
/usr/lib/terminfo/?/* compiled terminal description database

SEE ALSO
man(l), sh(l), stty(l), tabs(l), tput(l), tplot(lG), vi(l) infocmp(lM),
curses(3X), profile(4), terminfo(4), environ(5).
UNIX System VRelease 3.2 Programmer's Guide.

NOTES
Not all programs follow the above naming conventions.

TYPES(5) TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some
data of these types are accessible to user code:

typedef struct {int r[1];} *physadr;
typedef long daddrt;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
iypeder unsigned in! uint;
typedef unsigned long ulong;
typedef ushort ino_t;
typedef short cntt;
typedef long timej;
typedef int label_t[10];
typedef short dev j ;
typedef long o f f j ;
typedef long paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysidt;
typedef short indext;
typedef short lockt;
typedef unsigned int sizei,

The form daddr t is used for disk addresses except in an i-node on disk, see
fs(4). Times are encoded in seconds since 00:00:00 GMT, January 1,1970. The
major and minor parts of a device code specify kind and unit number of a
device. Offsets are measured in bytes from the beginning of a file. The labelj
variables are used to save the processor state while another process is running.

SEE ALSO
fs(4).

I -

VALUES (5) VALUES (5)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for
particular processor architectures.

The model assumed for integers is binary representation (one's or two's
complement), where the sign is represented by the value of the high-order bit.

B I T S ^ e) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit set (in
most implementations, 0x8000).

HIBITL The value of a long integer with only the high-order bit set (in
most implementations, 0x80000000).

HIBITI The value of a regular integer with only the high-order bit set
(usually the same as HIBITS or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most
implementations, 0x7FFF s 32767).

MAXLONG The maximum value of a signed long integer (in most
implementations, 0x7FFFFFFF s 2147483647).

MAXINT The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXLONG).

MAXFLOAT, LNMAXFLOAT
The maximum value of a single-precision floating-point number,
and its natural logarithm.

MAXDOUBLE, LNMAXDOUBLE
The maximum value of a double-precision floating-point
number, and its natural logarithm.

MINFLOAT, LNMINFLOAT
The minimum positive value of a single-precision floating-point
number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE
The minimum positive value of a double-precision floating-
point number, and its natural logarithm.

VALUES (5) VALUES (5)

FSIGNIF

DSIGNIF

The number of significant bits in the mantissa of a single-
precision floating-point number.

The number of significant bits in the mantissa of a double-
precision floating-point number.

FILES
/usr/include/values.h

SEE ALSO
intro(3), math(5).

VARARGS (5) VARARGS (5)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
vajist pvar;

type va_arg(pvar, type)
vajist pvar;

void va_end(pvar)
va_iist pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists [such as
printf(3S)] but do not use varargs are inherently nonportable, as different
machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for vaalist. No semicolon should follow vadcl.

vajist is a type defined for the variable used to traverse the list.

va start is called to initialize pvar to the beginning of the list.

va arg returns the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, as it cannot be determined
at runtime.

va ertd is used to clean up.

Multiple traversals, each bracketed by va_start... va end, are possible.

EXAMPLE
The following example shows a possible implementation of execl [see exec (2)].

finclude <varargs.h>
#define MAXARGS100

/* execl I* called by
execl(file, arg1, arg2,..., (char *)0);

VARARGS (5)

S E E A L S O
exec(2), printf(3S), vprintf(3S).

N O T E S

It is up to the calling routine to specify how many arguments there are, since it
is not always possible to determine this from the stack frame. For example,
exeel is passed a zero pointer to signal the end of the list, printf can tell how
many arguments are there by the format
It is non-portable to specify a second argument of char, short, or float to
va arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float arguments
to double before passing them to a function.

VARARGS (5)

execl(va_alist)
va_dcl
{

val ist ap;
char *fil«;
char *args[MAXARGS];
int argno = 0;

va_start(ap);
file = va_arg(ap, char •);
while ((args[argno++] = vaarg(ap, char *)) !=

(char *)0);
va_end(ap);
return execv(file, args);

}

INTRO(6) INTRO(6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs found in the
directory /usr/games. The availability of these programs may vary from system
to system.

ADVENT(6) (Category 2 Suppor t) ADVENT(6)

NAME
advent - explore Colossal Cave

SYNOPSIS
/usr/games/advent

DESCRIPTION
The advent game is Adventure, the original computer-moderated role-playing
game. It accepts commands of one or two English words and responds by
describing situations and how your commands affect them. The object of the
game is to retrieve the treasures from Colossal Cave, placing them in the Well
House.

Part of the game is figuring out the useful commands, but the following are
worth knowing in advance:

help Basic hints.

quit End the game and give final score.

suspend Save the game's current state in a file called $HOME/adv.susp. The
next time you play the game, you automatically start from where you
left off instead of from the beginning.

FILES
/usr/games/advfiles/*
$HOME/adv.susp

WARNINGS
Kibitzing this sort of game properly is a fine art. People who tell you about the
shortcuts can spoil the game, especially in the early stages.

Some movement verbs, such as follow, work only well enough to get you lost.
Compass points are more (but not completely) reliable.

Only the first five characters of an input word are significant.

The command vocabulary and control of objects is limited. But discovering
limitations has become part of the game.

I

ARITHMETIC (6) (Category 2 Support) ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION
The arithmetic game types out simple arithmetic problems, and waits for an
answer to be typed in. If the answer is correct, it types back "Right!", and a
new problem. If the answer is wrong, it replies "What?" , and waits for another
answer. Every twenty problems, it publishes statistics on correctness and the
time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +,
-, x, and / respectively cause addition, subtraction, multiplication, and division
problems to be generated. One or more characters can be given; if more than
one is given, the different types of problems are mixed in random order; the
default is +-.

range is a decimal number; all addends, subtrahends, differences,
multiplicands, divisors, and quotients are less than or equal to the value of
range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear.
If the respondent makes a mistake, the numbers in the missed problem become
more likely to reappear.

As a matter of educational philosophy, the program does not give correct
answers since the learner should, in principle, be able to calculate them. Thus
the program is intended to provide drill for someone just past the first learning
stage, not to teach number facts de novo. For almost all users, the relevant
statistic should be time per problem, not percent correct.

BACK(6) (Category 2 Support) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/games/back

DESCRIPTION
The back game is a program that provides a partner for the game of
backgammon. It is designed to play at three different levels of skill, one of
which you must select. In addition to selecting the opponent's level, you may
also indicate that you would like to roll your own dice during your turns (for the
superstitious players). You are also given the opportunity to move first The
practice of each player rolling one die for the first move is not incorporated.

The points are numbered 1-24, with 1 being white's extreme inner table, 24
being brown's inner table, 0 being ihe bar for removed white pieces and 25 the
bar for brown. For details on how moves are expressed, type y when back asks,
"Instructions?" at the beginning of the game. When back first asks,
"Move?", type ? to see a list of move options other than entering your
numerical move.

When the game is finished, back asks if you want the log. If you respond with
y, back attempts to append to or create a file backJog in the current directory.

FILES
/usr/games/lib/backrules rules file

/tmp/b* log temp file

back.log log file

WARNINGS
The only level really worth playing is "expert," and it plays only the forward
game.

The back game complains loudly if you attempt to make too many moves in a
turn, but it becomes very silent if you make too few.

BUGS
Doubling is not implemented.

The back game occasionally disallows a legal move when you have a man on
the bar.

i

B J (6) (Category 2 Support) B J (6)

NAME
bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
The bj game is a serious attempt at simulating the dealer in the game of black
jack (or twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2. Both
dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance"
bet against the chance of a dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side bet where the player
wins $2 if the dealer has a natural and loses $1 if the dealer does not

If the player is dealt two cards of the same value, he is allowed to
"double". He is allowed to play two hands, each with one of these cards.
(The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may "double
down". He may double the bet ($2 to $4) and receive exactly one more
card on that hand.

Under normal play, the player may "h i t " (draw a card) as long as his
total is not over twenty-one. If the player "busts" (goes over twenty-
one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he
attains a total of seventeen or more. If the dealer busts, the player wins
the bet.

If both player and dealer stand, the one with the largest total wins. A tie
is a push.

The machine deals and keeps score. The following prompts appear appropriate
times. Each question is answered by y followed by a new-line for "yes", or
just new-line for "no".

? (means,' 'do you want a hit?' ')
Insurance?
Double down?

BJ(6) (Category 2 Support) BJ(6)

Every time the deck is shuffled, the dealer so states and the "ac t ion" (total bet)
and "standing" (total won or lost) is printed. To exit, press the interrupt key
(DEL) and the action and standing is printed.

- 2 -

CRAPS (6) (Category 2 Support) CRAPS (6)

NAME
craps - the game of craps

SYNOPSIS
/usr/games/craps

DESCRIPTION
The craps game is a form of the game of craps that is played in Las Vegas. The
program simulates the roller, while the user (the player) places bets. The
player may choose, at any time, to bet with the roller or with the House. A bet
of a negative amount is taken as a bet with the House, any other bet is a bet with
the roller.

The player starts off with a "bankroll ' ' of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total
bankroll is rejected and the program prompts with bet? until a proper bet is
made.

Once the bet is accepted, the roller throws the dice. The following rules apply
(the player wins or loses depending on whether the bet is placed with the roller
or with the House; the odds are even). The first roll is the roll immediately
following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2 ,3 , or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House offers to lend the player an
additional $2,000. The program prompts:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet is
placed, how many markers are outstanding.

CRAPS (6) (Category 2 Support) CRAPS (6)

If, at any time, the bankroll of a player who has outstanding markers exceeds
$2,000, the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If only
1 marker is outstanding, it is immediately repaid. However, if more than 1
marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or just
a carriage return), an appropriate message is printed and the program prompts
with How many? until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed $50,000,
the total amount of money borrowed is automatically repaid to the House.

Any player who accumulates $100,000 or more breaks the bank. The program
then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of bet? or
How many?). To exit, send an interrupt (break), DEL, or control-D. The
program indicates whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from the
time of day. Depending on system usage, these numbers, at times, may seem
strange but occurrences of this type in a real dice situation are not uncommon.

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
fish-play "GoFi sh"

SYNOPSIS
/usr/games/fish

DESCRIPTION
The fish game plays the game of "Go Fish", a children's card game. The
Object is to accumulate 'bodes' of 4 cards with the same face value. The
players alternate turns; each turn begins with one player selecting a card from
his hand, and asking the other player for all cards of that face value. If the other
player has one or more cards of that face value in his hand, he gives them to the
first player, and the first player makes another request Eventually, the first
player asks for a card that is not in the second player's hand: he replies 'GO
FISH!' The first player then draws a card from the 'pool' of undealt cards. If
this is the card he had last requested, he draws again. When a bode is made,
either through drawing or requesting, the cards are laid down and no further
action takes place with that face value.

To play the computer, simply make guesses by typing one of the following
when asked: 2, 3, 4, 5, 6, 7, 8, 9, 10, j , q, k, or a. Pressing return gives you
information about the size of my hand and the pool, and tells you about my
books. Saying 'p' as a first guess puts you into 'pro' level; the default is pretty
dumb.

I

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
/usr/games/fortune [-] [-wslao]

DESCRIPTION
The fortune command with no arguments prints out a random adage. The flags
mean:

-w Waits before termination for an amount of time calculated from the
number of characters in the message. This is useful if it is executed as
part of the logout procedure to guarantee that the message can be read
before the screen is cleared.

-s Short messages only.

-1 Long messages only.

-o Choose from an alternate list of adages, often used for potentially
offensive ones.

-a Choose from either list of adages.

FILES
/usr/games/lib/fortunes.dat

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
hangman - guess the word

SYNOPSIS
/usr/games/hangman [arg]

DESCRIPTION
The hangman game chooses a word at least seven letters long from a dictionary.
The user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
/usr/lib/w2006

BUGS
Hvnhenated comnounds are run together.

t - :

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
maze - generate a maze

SYNOPSIS
/usr/games/maze [seed [d] [n] [b]]

DESCRIPTION
The maze game prints a maze. It uses the system clock as the random number
seed. If seed is specified, maze uses it as the seed and shows the solution. An n
suppresses the solution, a b shows backouts, and a d provides debugging
information.

BUGS
Some mazes (especially small ones) have no solutions.

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
The moo game is a guessing game imported from England. The computer picks
a number consisting of four distinct decimal digits. The player guesses four
distinct digits being scored on each guess. A " c o w " is a correct digit in an
incorrect position. A "bu l l " is a correct digit in a correct position. The game
continues until the player guesses the number (a score of four bulls).

w

F O R T U N E (6) (Category 2 Support) F O R T U N E (6)

NAME
number - convert Arabic numerals to English

SYNOPSIS
/usr/games/number

DESCRIPTION
The number game copies the standard input to the standard output, changing
each decimal number to a fully spelled out version.

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
quiz - test your knowledge

SYNOPSIS

/usr/games/quiz [-i fde] [-t] [categoryl category2]

DESCRIPTION
The quiz game gives associative knowledge tests on various subjects. It asks
items chosen from categoryl and expects answers from category2, or vice
versa. If no categories are specified, quiz gives instructions and lists the
available categories.
The quiz game tells a correct answer whenever you type a bare new-line. At
the end of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

The -t flag specifies "tutorial" mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index file. The
lines of these files have the syntax:

line = category new-line I category : line
category = alternate I category | alternate
alternate = empty I alternate primary
primary = character I [category] I option
option = { category }

The first category on each line of an index file names an information file. The
remaining categories specify the order and contents of the data in each line of
the information file. Information files have the same syntax. Backslash (\) is
used as with sh(1) to quote syntactically significant characters or to insert
transparent new-lines into a line. When either a question or its answer is empty,
quiz refrains from asking i t

FILES
/usr/games/lib/quiz/index
/usr/games/lib/quiz/*

BUGS
The construct " a | ab" does not work in an information file. Use "a{b)" .

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
trie - trekkie game

SYNOPSIS
/usr/games/trk [[-a] file]

DESCRIPTION
The trk game is a game of space glory and war. Below is a summary of
commands. For complete documentation, see Trek by Eric Allman.

If a filename is given, a log of the game is written onto that file. If the -a flag is
given before the filename, that file is appended to, not truncated.

The game asks you what length game you would like. Valid responses are
"short", "medium", and "long". You may also type "restart", which restarts
a previously saved game. You are then prompted for the skill, to which you
must respond "novice", " fa i r" , "good" , "exper t" , "commadore", or
"impossible". You should normally start out as a novice and work up.

In general, throughout the game, if you forget what is appropriate, the game
tells you what it expects if you just type in a question mark.

COMMAND SUMMARY
abandon
capture
cloak up/down
computer request;...
damages
destruct
dock
help
impulse course distance
Irscan

phasers manual amtl course 1 spread 1 ...
torpedo course [yes] angle/no
ram course distance
rest time
shell
shields up/down
srscan [yes/no]
status
terminate [yes/no]
undock

move course distance visual course
phasers automatic amount warp warp_factor

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt
/usr/games/cubic

DESCRIPTION
The ttt game is the X and O game popular in the first grade. This is a learning
program that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely
know the game.

cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1-4.

FILES
/usr/games/ttt.k learning file

w

FORTUNE(6) (Category 2 Support) FORTUNE(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
The wump program plays the game of "Hunt the Wumpus." A Wumpus is a
creature that lives in a cave with several rooms connected by tunnels. You
wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and falling into Bottomless
Pits. There are also Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per line; it gives a
more detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2
(November 1973).

BUGS
It will never replace Adventure.

INTRO(6) INTRO(6)

NAME
intro - introduction to special files

SYNOPSIS
#include <sys/socket.h>
#include <netinet/ip_str.h>

DESCRIPTION
This section describes various special files that refer to specific hardware
peripherals and CTIX System device drivers, including networking protocol
drivers. Features common to a set of protocols are documented as a protocol
family.

HARDWARE ENTRIES
The names of these entries are generally derived from names for the hardware,
as opposed to the names of the special files themselves. Characteristics of both
the hardware device and the corresponding CTIX system device driver are
discussed where applicable.

PROTOCOL FAMILY ENTRIES
A protocol family provides basic services to the protocol implementation to
allow it to function within a specific network environment. These services may
include packet fragmentation and reassembly, routing, addressing, and basic
transport A protocol family can support multiple methods of addressing,
though the current protocol implementations do not A protocol family is
normally comprised of a number of protocols, one per socket (2) type. It is not
required that a protocol family support all socket types. A protocol family can
contain multiple protocols supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A
specific protocol can be accessed by creating a socket of the appropriate type
and protocol family, by requesting the protocol explicitly when creating a
socket by executing the appropriate TLI primitives, or by opening the
associated STREAMS device.

PROTOCOL ENTRIES
The system currently supports the DARPA Internet protocols. Raw socket
interfaces are provided to the IP protocol layer of the DARPA Internet and to
ICMP protocol. Consult the appropriate manual pages in this section for more
information.

ROUTING IOCTLS
The network facilities provide limited packet routing. A simple set of data
structures comprise a "routing table" used in selecting the appropriate network
interface when transmitting packets. This table contains a single entry for each

INTRO(6) INTRO(6)

route to a specific network or host A user process, the routing daemon,
maintains this data base with the aid of two socket-specific ioctl (2) commands,
SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion
of a single routing table entry, respectively. Only the super-user can carry out
routing table manipulations.

A routing table entry has the following form, as defined in <nettroute.h>:

struct rtentry {
ulong rt_hash;
struct sockaddr rtdst;
struct sockaddr rtgateway;
short rtjlags;
short rt_refcnt;
ulong rtuse;
struct ifnet *rt_lfp;

where rt Jlags is defined as follows:

#define RTF_UP 0x1 /* route usable 7
#define RTF_GATEWAY 0x2 /* destination is a gateway 7
#deflne RTF HOST 0x4 /* host entry (net otherwise) 7
#define RTF_DYNAMIC 0x10 /* created dynamically

(by redirect) 7

Routing table entries are of three general types: those for a specific host, those
for all hosts on a specific network, and those for any destination not matched by
entries of the first two types (a wildcard route). When the system is booted and
addresses are assigned to the network interfaces, each protocol family installs a
routing table entry for each interface when it is ready for traffic. Normally the
protocol specifies the route through each interface as a "d i rec t" connection to
the destination host or network. If the route is direct, the transport layer of a
protocol family usually requests the packet be sent to the same host specified in
the packet. Otherwise, the interface is requested to address the packet to the
gateway listed in the routing entry (that is, the packet is forwarded). Some
routing entries specify a connection requiring some form of dialing; see
slipd(IM).

Routing table entries installed by a user process cannot specify the hash,
reference count, use, or interface fields; these are filled in by the routing
routines. If a route is in use when it is deleted (rt refcnt is non-zero), the
routing entry is marked down and removed from the routing table, but the
resources associated with it are be reclaimed until all references to it are

INTRO(6) INTRO(6)

released. The routing code returns EEXIST if requested to duplicate an existing
entry, ESRCH if requested to delete a non-existent entry, or ENOSR if
insufficient resources were available to install a new route. User processes read
the routing tables through the Idevlkmem device. The rt use field contains the
number of packets sent along the route.

When routing a packet, the kernel first attempts to find a route to the destination
host Failing that a search is made for a route to the network of the destination.
Finally, any route to a default ("wildcard") gateway is chosen. If multiple
routes are present in the table, the first route found is used. If no entry is found,
the destination is declared to be unreachable.

A wildcard routing entry is specified with a zero destination address value.
Wildcard routes are used only when the system fails to find a route to the
destination host and network. The combination of wildcard routes and routing
redirects can provide an economical mechanism for routing traffic.

I N T E R F A C E I O C T L S

Each network interface in a system corresponds to a path through which
messages can be sent and received. A network interface usually has a hardware
device associated with i t although certain interfaces such as the loopback
interface, lo(J), do no t

The following ioctl calls can be used to manipulate network interfaces. The
ioctl is made on a socket (typically of type SOCK_DGRAM) in the desired
"communications domain" [see protocols^4)]. Unless specified otherwise, the
request takes an ifrequest structure as its parameter. This structure has the
following form:

struct ifreq {

char ifr_name[16]; /* name of interface (e.g. ecO) */
union {

struct sockaddr i f ruaddr ;
struct sockaddr ifru_dstaddr;
struct sockaddr i f rubroadaddr;
short ifru_flags;
int ifru_metric;

} I f r j f r u ;
#define ifr addr ifr_ifru.ifru_addr / *address* /
#define ifr_dstaddr i f r j f r u .ifru_dstaddr

/* other end of p-to-p link */
#deflne i f rbroadaddr ifr ifru.lfru_broadaddr

r broadcast address */
#define i frJlags i f r j f ru . i f ruJlags /* flags*/

INTRO(6) INTRO(6)

#deflne Ifrmetric ifr_ifru.lfru_metric /* routing metric 7

};
SIOCSIFADDR

Set interface address for protocol family. Following the address
assignment, the "initialization" routine for the interface is called.

SIOCGIFADDR
Get interface address for protocol family.

SIO CSIFDSTADDR
Set point-to-point address for protocol family and interface.

SIOCGIFDSTADDR
Get point-to-point address for protocol family and interface.

SIOCSIFBRDADDR
Set broadcast address for protocol family and interface.

SIOCGIFBRDADDR
Get broadcast address for protocol family and interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are notified;
some interfaces can be reset so that incoming packets are no longer
received. When marked up again, the interface is reinitialized.

SIOCGIFFLAGS
Get interface flags.

SIO CSIFMETRIC
Set interface routing metric. The metric is used only by user-level
routers.

SIOCGIFMETRIC
Get interface metric.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure
(see below) as a value-result parameter. The ifcjen field should be
initially set to the size of the buffer pointed to by ifc buf. On return it
contains the length, in bytes, of the configuration list.

r Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible). 7

INTRO(6) INTRO(6)

struct ifconf {
int ifcjen; f size of associated buffer */
union {

caddr t ifcu buf;
struct ifreq *lfcu_req;

} Ifcjfcu;
#define ifc_buf ifcjfcu.ifcu_buf f buffer address */
#define ifc req ifc_ifcu.ifcu_req

t* array of structures returned */
};

STREAMS IOCTL INTERFACE
Socket ioctl calls can also be issued using STREAMS file descriptors. The
standard strioctl structure is used, with the ic cmd field containing the socket
ioctl code (from <sys/sockei.h>) and the ic db field pointing to the data
structure appropriate for that ioctl.

Options management is performed by using the TLI primitives and the
following structure, which contains the arguments to the "sockopts " calls:

struct optdesc {
int level; /* Protocol Level Affected */
int optname; I* option name to modify */
int value; I* value set or retrieved */

};
SEE ALSO

routed(lM), iocU(2), socket(2).
CTIX Network Administrator's Guide.
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

NOTE
CTIX Internetworking manual pages frequently cite appropriate RFCs
(Requests for Comments). RFCs can be obtained from the DDN Network
Information Center, SRI International, Menlo Park, CA 94025.

c

ARP(7) (CTTX Internetworking) ARP(7)

NAME
arp - Address Resolution Protocol

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and
lOMb/s Ethernet addresses. It is used by all the lOMb/s Ethernet interface
drivers running the Internet protocols.

ARP caches Internet-Ethernet address mappings. When an interface requests a
mapping for an address not in the cache, ARP queues the message which
requires the mapping and broadcasts a message on the associated network
requesting the address mapping. If a response is provided, the new mapping is
cached and any pending message is transmitted. ARP queues at most one packet
while waiting for a mapping request to be responded to; only the most recently
"transmitted'' packet is kept. The ARP protocol is implemented hy a STREAMS
driver to do the protocol negotiation, and a separate STREAMS module to do the
address translation.

To facilitate communications with systems which do not use ARP, ioctl s are
provided to enter and delete entries in the Intemet-to-Ethernet tables. Usage:

#include <sys/ioctl.h>
#include <sys/socket.h>
^include <net/if.h>
struct arpreq arpreq;

ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr t)&arpreq);

Each ioctl takes the same structure as an argument SIOCSARP sets an ARP
entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry.
These ioctls can be applied to any socket descriptor s, but only by the super-
user. The arpreq structure is as follows:

/* ARP ioctl request 7
struct arpreq {

struct sockaddr
struct sockaddr
int

arp_pa; /* protocol address */
arp ha; /* hardware address */
arp flags; /* flags 7

};
/* arp_flags field values */

#define ATF COM 0x02 /* completed entry 7
/* (arp_ha valid) 7
/* permanent entry 7 #define ATF PERM 0x04

- 1 -

ARP(7) (CTIX Internetworking) ARP(7)

#define ATF PUBL 0x08 /* publish 7
/* (respond for other host) 7
r send trailer packets to 7
/* host 7

#define ATF USETRAILERS 0x10

The address family for the arpj>a sockaddr must be AFJNET; for the arpjia
sockaddr it must be AF_UNSPEC. The only flag bits which may be written are
ATF_PERM, ATF_PUBL and ATF_USETRAILERS. ATF_PERM causes the entry to
be permanent if the ioctl call succeeds. The peculiar nature of the ARP tables
may cause the ioctl to fail if more than 8 (permanent) Internet host addresses
hash to the same slot ATF_PUBL specifies that the ARP code should respond to
ARP requests for the indicated host coming from other machines. This allows a
host to act as an ' 'ARP server," which may be useful in convincing an ARP-only
machine to talk to a non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an
alternate encapsulation used to allow efficient packet alignment for large
packets despite variable-sized headers. Hosts which wish to receive trailer
encapsulations so indicate by sending gratuitous ARP translation replies along
with replies to IP requests; they are also sent in reply to IP translation replies.
The negotiation is thus fully symmetrical, in that either or both hosts may
request trailers. The ATF_USETRAILERS flag is used to record the receipt of
such a reply, and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host that
responds to an ARP mapping request for the local host's address).

duplicate IP address!! sent from ethernet address:
%x:%x:%x:%x:%x:%x. ARP has discovered another host on the local
network which responds to mapping requests for its own Internet address.

SEE ALSO
arp(lM), ifconfig(lM), en(7), inet(7).
RFC 826, RFC 893.

DIAGNOSTICS

CLONE(7) (Networking Support Uulitiei) CLONE(7)

NAME

clone - open any minor device on a STREAMS driver
DESCRIPTION

The clone driver is a STREAMS software driver that finds and opens an unused
minor device on another STREAMS driver. The minor device passed to clone
during the open is interpreted as the major device number of another STREAMS
driver for which an unused minor device is to be obtained. Each such open
results in a separate stream to a previously unused minor device.
The clone driver consists solely of an open function. This open function
performs all of the necessary work so that subsequent system calls [including
close (2)] require no further involvement of clone.
The clone generates an ENXIO error, without opening the device, if the minor
device number provided does not correspond to a valid major device, or if the
driver indicated is not a STREAMS driver.

SEE ALSO
log(7).
UNIX System V Release 3.2 Streams Programmer's Guide.

CAVEATS
The clone interface cannot perform multiple opens of one minor device.
Executing stat (2) on the file system node for a cloned device yields a different
result from executing fstat (2) using a file descriptor obtained from opening the
node.

CONSOLE* 7) CONSOLE(7)

NAME
console - console terminal

DESCRIPTION
The special file /dev/console designates a standard destination for system
diagnostics. The kernel writes its diagnostics to this file, as does any user
process with messages of systemwide importance. If console is associated with
a physical terminal (configured with the kernel debugger), console messages
appear on that terminal.
Note that inittab (A) does not normally post a getty on console; console might
become associated with a terminal that already is a login terminal.
Console messages are saved in a circular buffer. Reading console retrieves the
messages and removes them from the buffer. Unless CTIX is configured with
the kernel debugger, console is not associated with a terminal; console
messages are written to /etc/log/confile.
If CTIX is configured with the kernel debugger [see dbconsole(1M), ucon/(1M),
system(4), and the /etc/drvload file], the terminal associated with the console
(by default, ttyOOO) receives console messages, and a Control-B on that
terminal starts the kernel debugger.

The size of the console circular buffer is configured by using the config (1M)
parameter cbufsz. The default is 40% bytes.
The following ioctl (2) commands are accepted:
iocd(fd, CONERR);

fd must be open to console. All console output is to be duplicated in
the error message queue. See err(J).

ioctl(fd, CONBUF);
fd must be open to console. No console output is to be duplicated in
the error message queue. This is the initial condition.

iocd(fd, CON_SET, port)
fd must be open to console, port is the minor device number of the RS-
232 line that will be the new debugger console; port must be a valid
RS-232 channel. The function returns the number of the new debugger
console port.

iocU(fd, CON.LOC)
fd must be open to console. The function returns the number of the
current debugger console port

CONSOLE(7) CONSOLE(7)

FILES
/dev/console
/etc/log/confile

SEE ALSO
conlocate(lM), syslocal(2).

WARNING
Normal system processing is suspended while the kernel debugger is active.

DISK(7) DISK(7)

N A M E

disk - general disk driver

S Y N O P S I S

#include <sys/types.h>
#include <sys/gdisk.h>
#include <sys/gdioctl.h>

D E S C R I P T I O N

The CTIX special fdes /dev/rdsk/cOdOsO through /dev/rdsk/cxdxsx and
/dev/dsk/cOdOsO through /dev/dsk/cxdxsx refer to CTIX device names and
slices, where ex is the controller number, dx is the drive number, sx is the slice
number, and x is a hexadecimal digit An r in the name indicates the
character (raw) interface.

A disk is formatted with 512-byte physical sectors. Logical block zero contains
the Volume Home Block (VHB), which describes the disk. The VHB is
structured to use two physical sectors as one logical block (1024 bytes).

The following structure defines the Volume Home Block:

struct vhbd {
uint magic; /* S/MT disk format coda 7
int chksum; I* adjustment so 32-bit sum starting

from magic for 1K bytes sums to -1 7
struct gdswprt dsk; I* specific description of this disk 7
struct partit partab[MAXSLICE]; /* partition table 7
struct resdes { I* reserved area special files 7

daddr t blkstart; /* start logical block # 7
ushort nblocks; I* length in logical blocks

(zero Implies not present) 7
} resmap[8];
/* resmap consists of the following entries:
* loader area
* bad block table
* dump area
* down load Image file
* Bootable program,
* size determined by a.out format. nblocks=1.
7

char fpulled; /* dismounted last time? 7
long time; C time last came on line 7
struct gdswprt2 dsk2; /* Drive specific parameters 7
char miniies[38]; /* for future mlnl/mlti frame enhancements 7

DISK(7) DISK(7)

char sysres[292]; /* custom system area 7
struct mntnam mntnamefMAXSUCE];

/* names for auto mounting; null
* string means no auto mount
* not used in mltiframe 7

char userres[256]; I* user area 7

};
struct gdswprt {

char name[6]; /*

ushort cyls; /*

ushort heads; r
ushort psectrk; r
ushort pseccyl; r

i»

char flags; /*

char step; r
ushort sectorsz; f

MI ruljnHar */

};
struct gdswprt2 {

short wpccyl;
ushort

I* value to program for RWC/WPC • ST506 only 7
e net add r [3];/* Ethernet station address •

* MiniFrame only 7
gapl; /* Gap size on SMD drives 7
gap2;
filler[28];

unchar
unchar
char

};
#define sparesec gapl /* spare sectors per track 7
#define sparecyl gap2 /* spare tracks per cylinder 7
#define sdnterleave wpccyl I* interleave factor 7

struct partit{
union {

uint strk;/* start track number (new style) 7
struct {

ushort strk;/* start track # 7
ushort nsecs;/* # logical blocks available to user 7

} old;
}«;

};

- 2 -

DISK(7) DISK(7)

If a VHB is valid, magic is equal to VHBMAGIC and the 32-bit sum of the VHB's
bytes is OxFFFFFFFF (-1); chksum is the adjustment that makes the sum come
out right.

The dsk structure describes the peculiarities of the disk, including deliberate
deviations from the system standard. The dsk flags field is the bitwise OR of
zero or more of the following constants:

HITECH (ST506 only) If on, head select bit 3 is valid; if off, reduced
write current is valid.

NEWPARTTAB If off, the old style slice (partition) table is in use; if on, the
new style slice table is in use.

RWCPWC (ST506 only) If on, set reduced write current/write
precompensation.

HITECH selects write precompensation.

FORMATEXTRA If on, the SMD drive is formatted with an extra sector on each
track. (This sector is ignored by CTIX but is required for
some disk drives, notably the Eagle-XP.)

The dsk.step field specifies a stepper motor rate for the ST506; use 14 in this
field.

The partab structure divides the disk into slices (partitions).

The fpulled field indicates whether an exchangeable disk was properly removed
from the drive. The system sets this field to 1 when the disk is inserted in the
drive. To clear fpulled , run dismount(\M).

The mntname, minires, and userres arrays are reserved for future use.

The resmap array describes the files that share Slice 0 with the Volume Home
Block. Provision is made for eight such files, but only five have been assigned
slots in resmap. Each resmap entry gives the starting location (logical block
number) and length (logical blocks). A length of zero indicates that the file is
not provided. The first five entries in resmap describe the following:

1. The loader. When the system is reset or turned on, the boot prom loads
the loader into the loader address and jumps execution to i t The
function of the loader is to search for and load a program that will boot
the system.

DISK(7) DISK(7)

On the S/640 and S/480, the loader searches the onboard tape, onboard
(ST506) disks 0 ,1 , and 2, the VME, and the SCSI disks, in that order.

On each disk, the loader checks for a CTIX kernel, which must be a
CTIX executable object file called /unix in the file system in slice 1.
When the loader locates an appropriate program, it preserves the crash
dump table, loads the program it found at the address it was linked at
(0x0 if unknown) and executes i t If no disk contains an appropriate
file, the loader continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at logical block 1 of the
disk. Each logical block in the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The checksum is a value
that makes the 32-bit sum of the logical block be OxFFFFFFFF (-1). A
bad block cell is defined by the following structure,
struct bbcell {

ushort cyt; /* the cylinder of the bad block */
ushort badblk; r the physical sector address of the

bad block within the cylinder cyl */
ushort altblk; /* track number of alternate */
ushort nxtlnd; /* index Into the cell array for next

bad block cell for this cylinder */
};
A single sequence of numbers, starting from zero, identifies the
checksums and cells. For non-SCSI disks, in each cell in use, cyl
identifies a cylinder that contains the bad block; badblk is the physical
block offset within the cylinder of the bad block; altblk identifies the
track that contains the alternate block; nextind (not used in S/MT)
identifies the next cell for a bad block on the same cylinder or, if this is
the last bad block, is zero.

SCSI disks perform their own bad block housekeeping. The bad block
table contains only blocks that CTIX cannot read. At the next attempt
to write to the bad block, CTIX issues a reassign block command to the
SCSI drive. The drive then performs the bad block mapping for that
sector, and the sector number is removed from the bad block table.

- 4 -

DISK(7) DISK(7)

3. The dump area. After a reset or system crash, the boot prom dumps
processor registers, the memory map, a crash dump block, and the
contents of physical memory, until it runs out of room in the dump
area.

4. The download image area. The download images are described by a
table at the beginning of the area. The area is described by the
following array:

struct dldent{
short d_strt; /* block displacement from download Index 7
short d_sz; I* # of blocks for this entry 7

};
The image number is the index for dldent. The dstrt field is the offset
in bytes of the image from the beginning of the download image area;
d_sz is the size in bytes of the image.

Slice 0 is called the Reserved Area. Only the Volume Home Block and the files
described by resmap can be in the Reserved Area. A formatted disk used by a
working system certainly has at least one more slice.

The ioctl system calls use the following structure:

struct gd ioctl {
ushort status; /* status 7
struct gdswprt params; /* description of the disk 7
struct gdswprt2 params2; I* more description of the disk 7
short ctrltyp; /* the type of disk controller 7
short driveno;

};
where status Is the bitwise OR of the following constants:

VALID_VHB A valid Volume Header Block has been read.

DRV READY The disk is on line.

PULLED Last removal of disk from drive was not preceded by proper
dismount

params is a gdswprt structure, the same type used in the volume header block.

DISK(7) DISK(7)

dsktype is equal to one of the following:

GD_WD1010 for Western Digital 1010 ST506 Controller

GD_WD2010 for Western Digital 2010 ST506 Controller

GD.RAMDISK for RAM Disk Emulator

GD_SMD3200 for Interphase SMD3200 disk controller

GD_SCSI for SCSI disk controller

CTIX understands the following disk ioctl calls:

ioctl(fd, GDIOCTYPE, 0)
Returns GDIOC i f fd is a file descriptor for a disk special file.

ioctl(fd, GDGETA, gdctl_ptr)
g u c i i a s a jAiiiicu iu a jtuvkii aui^iiuw. k / l u ixxio uiv
structure with information about the disk.

ioctl(fd, GDSETA, gdctl_ptr)
gdctl_ptr is a pointer to a gdioctl structure, ioctl passes the
description of the disk to the disk driver. This is primarily
meant for reading disks created by other kinds of computers.

ioctl(fd, GDFORMAT, ptr)
ptr points to formatting information. The disk driver formats
a track.

ioctl(fd, GDDISMNT)
ioctl informs the driver that the user intends to remove the
disk from the drive. When this system call successfully
returns, the driver has flushed all data in the buffer cache and
waited for all queued transfers to complete. The last transfer
is to write out the Volume Home Block with the fpulled flag
cleared. Once this call returns, the drive is inaccessible until a
new disk is inserted.

ioctl(fd, GDPASSTHRU, arg)
arg points to a disk driver-specific command block; gd passes
the command to the specific disk driver untouched, and the
disk driver performs the specific command.

SEE ALSO
iv(l), mknod(lM), ioctl(2).
S/Series CTIX Administrator"s Guide.

DRIVERS (7) DRIVERS (7)

N A M E
drivers - loadable device drivers

DESCRIPTION
A loadable driver is equivalent to a fixed, linked-in device driver. It has access
to all kernel subroutines and global data. After it is loaded, it is effectively part
of the running kernel.

Differences between loadable and ordinary drivers involve their driver ID, init
routine, release routine, and interrupt processing.

Driver ID
All drivers have a driver ID. Preloaded drivers have a driver ID of 0. Loaded
drivers are given an ID when they allocate virtual space. The driver ID is
automatically set when the driver is linked. The ID should never be modified
by the driver itself; the ID is used to identify the driver to the system when
making certain requests.

Init Routine
Loadable drivers may have an init routine that is executed when the driver is
bound, and a release routine that is executed when the driver is unbound [see
lddrv(1M) for a description of driver allocation and bind operations]. Init
routines check for the existence of hardware, initialize the hardware, put the
interrupt service routine for the hardware into the interrupt chain, and do other
similar tasks.

Release Routine
Release routines make sure the device or driver is idle, turn off the device, take
the interrupt service routine out of the interrupt chain, and similar tasks. A
typical action for a release routine to take when the device is not idle is to set an
error code in u.u error and return.

Interupt Processing
For details about CITX interrupt processing, refer to the Writing MightyFrame
Device Drivers manual.

EXAMPLE
/* init, release, Interrupt service
/* for loadable device xyzzy 7

#include <sys/drv.h>

#defineXYZVECNO 0x60
#define XYZ_BUSY 1
#defineXYZOPEN 2
int xyzzint();

extern int DFLTJD;

- 1 -

routines 7

I* interrupt vector number 7
/* flags 7

r interrupt service routine 7

DRIVERS (7) DRIVERS (7)

static int Drvjd = &DFLTJD; /* set drive ID */
int xy_base;
int xyflags;

x y j n i t o
{

if (set_vec(Drv_id, XYZ_VECNO, xyzzyint) < 0)
{

u.uerror = EBUSY;
return;

}

<do hardware initialization*

}
xy_release()
{

if (xy_flags & (XY_BUSY | XY OPEN))
{

u.u_error = EBUSY;
return;

}

cturn off device>

reset vec (Drvjd, XYZ_VECNO);
}
xyzzyint()
{

<clear interrupt*

cprocess interrupt*

}
FILES

/etc/master

DRIVERS (7) DRIVERS (7)

SEE ALSO
lddrv(lM), master(4).
Writing MightyFrame Device Drivers.

c

EN(7) (CTIX Internetworking) EN(7)

NAME
en - Ethernet Processor

DESCRIPTION
The en interface provides access to a 10 Mb/s Ethernet network through a CMC
ENP-10 Ethernet Processor or a Convergent Technologies Ethernet/RS-232
Combo or SCSI/LAN Board.
Each of the host's network addresses is specified at boot time with an
SIOCSIFADDR ioctl. An en interface usually uses the address resolution
protocol described in arp(J) to dynamically map between Internet and Ethernet
addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize
copying data on input and output The use of trailers is negotiated with ARP.
This negotiation may be disabled, on a per-interface basis, by setting the
IFF_NOTRAILERS flag with an SIOCSIFFLAGS ioctl.

Two special ioctls have been defined for retrieving information about Ethernet
interfaces. These ioctls can be executed by using either a socket file descriptor
[returned by socket (2)], or a file descriptor [returned by open (2) or t_open {3)].
When using a socket file descriptor, the Ethernet device unit number is
determined by the interface name passed in the ifreq structure; for example, unit
zero is enO. For TLI calls, the clonable device /dev/enet is opened and the
IF_UNITSEL ioctl is used to specify the unit number. The data argument to the
ioctl call is an int containing the desired unit number. The I_STR ioctl is then
used for the main call.

The SIOCGENADDR ioctl returns the six byte hardware Ethernet address being
used by an interface. Using a socket file descriptor, the address is returned in
the ifr enaddr element of ifreq structure. Using a TLI file descriptor, the icjib
field of the strioctl structure should point directly to six bytes of storage, which
contains the address on return.

The SIOCGENPSTATS ioctl returns various statistics about the interface. The
data returned is 22 longs (88 bytes) long, consisting of an enp_stats structure
followed by three longs as described below. Using a socket file descriptor, the
data pointer argument to the ioctl call should point to an ifreq structure, whose
ifr data element points to the storage. Using a TLI file descriptor, the ic dp
pointer in the strioctl structure should point directly to the storage.

struct enp_stats {
uint es_transmit; /* number of good transmits 7
uint es_retry_many; I* # multiple retries reported 7
uint es_retry_one; /* # single retries reported 7

EN(7) (CTIX Internetworking) EN(7)

uint ea_retry_fail; /* # failed retries */
uint esdefer; /* # deferrals reported */
uint es_tbuf_err; /* # of transmit BUF errors V
uint es_urun; 1* # SILO underruns 7
uint esjatecoll; r # late collisions 7
uint es_carr_loss; r # carrier losses 7
uint es_babl; f # babbling tranmitter errors 7
uint e»_coll; 1* # collision errors 7
uint esmem; r # memory errors on transmit 7
uint ea_receive; r # good packets received 7
uint e* miss; /* # missed packets reported 7
uint ea_crc; 1* # CRC errors reported 7
uint esfram; /* # framing errors reported 7
uint •> rKiif arr<

« " • »
/* { larajya gl_IP afrnn •/

uint es_orun; /• # SILO overruns 7
uint esrmem; /* # memory errors on receive 7

extra[0] = MemoryErrors; /* receive mblock not available
extra[1] = TXAvailErrors; 1* LANCE transmit buffer/*

/* not available */
extra[2] = RingPutErrors; /* receive queue full */

SEE ALSO
intro(7), inet(7), arp(7).

DIAGNOSTICS
Couldn't get interrupt vector for en%d

The system interrupt vector table was full.

en%d doesn't respond to initialization
The onboard software does not respond to its initialization interrupt.

ERR(7) ERR(7)

NAME
err - error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between a process and the
system's error-record collection routines. The driver can be opened only for
reading by a single process with super-user permissions. Each read causes an
entire error record to be retrieved and removed; the record is truncated if the
read request is for less than the record's length.

An appropriate command to the console sends console information to the error
record queue. See console (7).

FILES
/dev/error special fde

SEE ALSO
errdemon(lM), console(7).

I

ICMP(7) (CTIX Internetworking) ICMP(7)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF INET, SOCK_RAW, proto);

DESCRIPTION
ICMP is the error and control message (or device) protocol used by IP and the
Internet protocol family. It may be accessed through a "raw socket" for
network monitoring and diagnostic functions. The proto parameter to the
socket call to create an ICMP socket is obtained from getprotobyname [See
getprotoent(3).] ICMP sockets are connectionless, and are normally used with
the sendto and recvfrom calls; the connect (2) call may also be used to fix the
destination for future packets [in which case the read{2) or recv(2) and write (2)
or send(2) system calls may be used].

Outgoing packets automatically have an IP header prepended to them (based on
the destination address). Incoming packets are received with the IP header and
options intact.

FILES
/dev/inet/icmp

SEE ALSO
send(2), recv(2), intro(7), inet(7), ip(7).

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which
already has one, or when trying to send a datagram with the
destination address specified and the socket is already
connected;

when trying to send a datagram, but no destination address is
specified, and the socket hasn't been connected;

when the system runs out of memory for an internal data
structure;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network
address for which no network interface exists.

[ENOTCONN]

[ENOSR]

I

INET(7) (CTIX Internetworking) INET(7)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <sys/in.h>

DESCRIPTION
The Internet protocol family is a set of protocols using the Internet Protocol (IP)
network layer and the Internet address format. The Internet family provides
protocol support for the SOCK_STREAM, SOCK.DGRAM, and SOCK_RAW
socket types; the SOCK_RAW interface provides access to the IP protocol.

ADDRESSING
Internet addresses are four-byte quantities, stored in network standard format
The include file <sys/in.h> defines this address as a discriminated union.

Sockets bound to the Internet protocol family use the following addressing
structure:

struct sockaddrjn {
short sin_family;
u_short sln_port;
struct in_addr sin_addr;
char sln_zero[8];

};

Sockets may be created with the local address INADDR_ANY to affect wildcard
matching on incoming messages. The address in a connect {2) or sendto [see
send(2)] call may be given as INADDR_ANY to mean "this host" The
distinguished address IN ADDR_B RO ADC AST is allowed as a shorthand for the
broadcast address on the primary network if the first network configured
supports broadcast.

PROTOCOLS
The Internet protocol family is comprised of the IP transport protocol, Internet
Control Message Protocol (ICMP), Transmission Control Protocol (TCP), and
User Datagram Protocol (UDP). TCP is used to support the SOCK_STREAM
abstraction; UDP is used to support the SOCK_DGRAM abstraction. A raw
interface to IP is available by creating an Internet socket of type SOCK_RAW.
The ICMP message protocol is accessible from a raw socket

The 32-bit Internet address contains both network and host parts. It is
frequency-encoded; the most-significant bit is clear in Class A addresses, in
which the high-order 8 bits are the network number. Class B addresses use the

INET(7) (CTIX Internet wofkiag) INET(7)

high-order 16 bits as the network field, and Class C addresses have a 24-bit
network part. Sites with a cluster of local networks and a connection to the
DARPA Internet may chose to use a single network number for the cluster; this
is done by using subnet addressing. The local (host) portion of the address is
further subdivided into subnet and host parts. Within a subnet, each subnet
appears to be an individual network; externally, the entire cluster appears to be
a single, uniform network requiring only a single routing entry. Subnet
addressing is enabled and examined by the following ioctl (2) commands on a
datagram socket in the Internet "communications domain"; they have the same
form as the SIOCIFADDR command [see intro (1)].

SIOCSIFNETMASK
Set interface network mask. The network mask defines the
network part of the address; if it contains more of the address
than the address type would indicate, then subnets are in use.

SIOCGIFNETMASK
Get interface network mask.

SEE ALSO
ioctl(2), socket(2), intro(7), icmp(7), ip(7), tcp(7), udp(7).
CTIX Network Administrator's Guide.

CAVEAT
The Internet protocol support is subject to change as the Internet protocols
develop. Users should not depend on details of the current implementation, but
rather the services exported.

IP(7) (CTIX Internet working) IP(7)

NAME
ip - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK RAW, proto);

DESCRIPTION
IP is the network layer protocol used by the Internet protocol family. Options
may be set at the IP level when using higher-level protocols that are based on IP
(such as TCP and UDP). It may also be accessed through a "raw socket" or
device when developing new protocols or special purpose applications.

A single generic option is supported at the ff level, IP_OPTIONS, that may be
used to provide IP options to be transmitted in the IP header of each outgoing
packet. Options are set with setsockopt and examined with getsockopt [see
getsockopt (2)]. The format of IP options to be sent is that specified by the IP
protocol specification, with one exception: the list of addresses for Source
Route options must include the first-hop gateway at the beginning of the list of
gateways. The first-hop gateway address will be extracted from the option list
and the size adjusted accordingly before use. IP options may be used with any
socket type in the Internet family.

Raw IP sockets are connectionless, and are normally used with the sendto and
reevfrom calls; the connect (2) call may also be used to fix the destination for
future packets (in which case the read(2) or recv(2) and write (2) or send(2)
system calls may be used).

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing packets,
and only incoming packets destined for that protocol are received. If proto is
non-zero, that protocol number will be used on outgoing packets and to filter
incoming packets.

Outgoing packets automatically have an IP header prepended to them (based on
the destination address given and the protocol number the socket is created
with). Incoming packets are received with IP header and options intact.

SEE ALSO
getsockopt(2), send(2), recv(2), intro(7), icmp(7), inet(7).
CTIX Network Administrator's Guide.

IP(7) (CTIX Internetworking) IP(7)

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which
already has one, or when trying to send a datagram with the
destination address specified and the socket is already
connected

[ENOTCONN] when trying to send a datagram, but no destination address is
specified, and the socket has not been connected

[ENOSR] when the system runs out of memory for an internal data
structure

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network
address for which no network interface exists

The following errors specific to IP may occur when setting or getting IP options:

[EINVAL] An unknown socket option name was given.

[EINVAL] The IP option field was improperly formed; an option field
was shorter than the minimum value or longer than the
option buffer provided.

IPT(7) IPT(7)

NAME
ipt - interface for Interphase V/TAPE 3200 half-inch tape controller

DESCRIPTION
The ipt interface provides access to up to eight Interphase half-inch tape drives
per tape controller; Note that there can be only one Interphase tape controller.

By default, the major device number is 19. Bits 4 through 7 of the minor device
number specifies the tape density, rewind option, and whether it is ioctl only, as
follows (where "not 4" indicates that bit 4 is not set, and "4" indicates that bit
4 is set, and so on for each bit):

not 4 and not 5 medium density

4 and not 5 low density

not 4 and 5 high density

4 and 5 use last density

6 rewind on close

7 iocti only

A standard naming convention for tape devices has been adopted:
/dev/rmt/cld#[de«j][n], where

d# Indicates the drive number on that controller

dens Indicates the density (h, m, or 1 h (high) specifies 6250 bpi; m
(medium) specifies 1600 bpi; and 1 (low) is normally 800 bpi.

Using a tape device name that does not include a density specification
(h, m, or 1) implies that no special density, gap, or speed command
should be issued by the driver. [See tapeset (IM) and tapedrives(4).]
If a drive uses formatter commands for changing density, gap or speed,
the device without density specification does not generally change the
current setting. If a drive uses the J connector lines to select density,
gap, or speed, the drive is usually switched to low density, default gap,
and slow speed. The ipt device is generally most useful with the dumb
tapedrive type (in /etc/tapedrives), when the characteristics of the
drive are not known.

n Indicates no rewind on close.

The special file name /dev/rmt/cld#c can be used to set drive parameters with
the tapeset (1M) command.

IPT(7) IPT(7)

Tape files are separated by file marks. Closing a file open for writing writes
two tape marks; if the device is no-rewind, the tape is left positioned between
the two tape marks.

Each read or write reads or writes the next physical record. The size of a write
determines the size of the next record. A read need not match the size of the
record. If a read requests more bytes than available, the read returns the
number of bytes in the record. If a read requests fewer bytes than available, the
read returns the requested number of bytes, and the remainder of the record is
skipped. Seeks are ignored. Reading a file mark produces a zero-length read
and leaves the tape positioned before the mark. The program must, therefore,
issue an ioctl call to skip the file mark (alternatively, the program can close and
re-open the no-rewind device). Attempting to read a bad record leaves the tape
positioned after the faulty record.

As shown below, ioctl (2) supports the following commands for half-inch tape:

#include <sys/iptioctl.h>
ioctl(fildes, cmd, arg)

where cmd is one of the following:

IPTIOCTYPE Always return IPTIOC

IPTGETA

IPTSETA

IPTCMD

IPTFMTCMD

Read the controller's current operational parameters into
an iptinfo structure pointed to by arg.

Initialize the controller with the operational parameters
specified in the iptinfo structure pointed to by arg.

Specify a command to the tape controller as specified in
arg. Legal values of arg follow:

REWIND Issue a rewind command.

WFM Issue a write file mark command.

RFM Issue a read file mark command.

ERASE Issue an erase command.

CLERR Clear software error state.

Issue a command directly to a tape formatter. The
command byte pointed to by arg is sent to the specified
drive.

- 3 -

IPT(7) IPT(7)

In the following commands, arg must be a pointer to an iptinfo structure defined
as follows:

struct iptinfo {
uint maxblksize;
uint parmsO;
uint parmsl;
uint parms2;

/* max block size 7
r not used 7
/* not used 7
/* used, bits defined as: 7

#define DSBOK 0x01 /* Can set density 7
#define DSB 0x02 /* 0: lines, 1: fmt cmd 7
Mefine DSBL 0x04 /* 0: J1_36,1: J2_50 7
#define DSBFLGS (DSBOK | DSB | DSBL)

Mefine SSBOK 0x08 /* Can set speed 7
Mefine SSB 0x10 1*0: lines, 1: fmt cmd 7
Mefine SPD 0x20 /*0:low, 1: high 7
Mefine SPDL 0x40 /* 0: J1_36,1: J2_50 7
Mefine SPDFLGS (SSBOK | SSB | SPD | SPDL)

Mefine GSBOK 0x80 /* Can set gap 7
Mefine GSB 0x100 /* 0: lines, 1: fmt cmd 7
Mefine LGAP 0x200 /* 0: normal,1: extended 7
Mefine LGAPL 0x400 /* 0: J1_36,1: J1_44 7
Mefine GAPFLGS (GSBOK | GSB | LGAP | LGAPL)

unchar hspeed; /* high speed code 7
unchar Ispeed; I* low speed code 7

unchar dgap; /* default gap code 7
unchar xgap; I* extended gap code 7

unchar denslow; /* low density code 7
unchar densmed; /* medium density code 7
unchar denshigh; /* high density code 7

ushort status; f drive status 7
unchar ctlr; /* controller number 7
unchar unit; /* unit number 7

- 3 -

IPT(7) IPT(7)

FILES
/dev/rmt/cld[0-7]

/dev/rmt/c ld[0-7]c

/dev/rmt/c 1 d [0-7]l

/dev/rmt/cld[0-7]m

/dev/rml/cld[0-7]h

/dev/rmt/cld[0-7]ln

/dev/rmt/c 1 d[0-7]mn

/dev/rmt/c ld[0-7]hn

SEE ALSO

don't issue density, gap, or speed command device

ioctl-only device

low-density device

medium-density device

high-density device

low-density device (no rewind)

medium-density device (no rewind)

high-density device (no rewind)

uif»e»ti^iivi/, IUUI v^uvi;, sysitiiivtj, qicv,/),
stape(7), vme(7).
MightyFrame VME Half-Inch Tape Controller Card Manual.

LO(7) (CTIX Internetworking) LO(7)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop interface is a software loopback mechanism that can be used for
performance analysis, software testing, and/or local communication. As with
other network interfaces, the loopback interface must have network addresses
assigned for each address family with which it is to be used. These addresses
can be set or changed by using the SIOCSIFADDR ioctl. The loopback interface
should be the last interface configured, as some protocols use the order of
configuration as an indication of priority. The loopback should never be
configured first unless no hardware interfaces exist.

SEE ALSO
inet(7).

LOG (7) (Networking Support Utilitiei) LOG(7)

NAME
log - interface to STREAMS error logging and event tracing

DESCRIPTION
The log driver is a STREAMS software device driver that provides an interface
for the STREAMS error logging and event tracing processes [strerr(\M),
strace(1M)]. The log driver presents two separate interfaces: a function call
interface in the kernel through which STREAMS drivers and modules submit log
messages; and a subset of ioctl(2) system calls and STREAMS messages for
interaction with a user level error logger, a trace logger, or processes that need
to submit their own log messages.

Kernel Interface
The log driver's messages are generated within the kernel by calls to the
function strlog:

strlog(mid, sid, level, flags, fmt, aigl,...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned arg1;

Required definitions are contained in <sys/str!og.h> and <sys/Iog.h>. mid is
the STREAMS module id number for the module or driver submitting the log
message, sid is an internal sub-id number usually used to identify a particular
minor device of a driver, level is a tracing level that allows for selective
screening out of low priority messages from the tracer, flags are any
combination of SL_ERROR (the message is for the error logger), SL.TRACE (the
message is for the tracer), SL_FATAL (advisory notification of a fatal error), and
SL_NOTEFY (request that a copy of the message be mailed to the system
administrator), fmt is a printf(3S) style format string, except that %s, %e, %E,
%g, and %G conversion specifications are not handled. Up to NLOGARGS
(currently 3) numeric or character arguments can be provided.

User Interface
The log driver is opened through the clone interface, /dev/log. Each open of
/dev/log obtains a separate stream to log. In order to receive log messages, a
process must first notify log whether it is an error logger or trace logger through
a STREAMS I_STR ioctl call (see below). For the error logger, the I_STR ioctl
has an iccmd field of I_ERRLOG, with no accompanying data. For the trace
logger, the ioctl has an ic cmd field of I_TRCLOG, and must be accompanied by
a data buffer containing an array of one or more struct trace ids elements.
Each trace ids structure specifies an mid, sid, and level from which message are

LOG (7) (Networking Support Utilitiei) LOG(7)

accepted, strlog accepts messages whose mid and sid exactly match those in
the trace ids structure, and whose level is less than or equal to the level given
in the trace ids structure. A value of -1 in any of the fields of the trace ids
structure indicates that any value is accepted for that field.

At most one trace logger and one error logger can be active at a time. Once the
logger process has identified itself through the ioctl call, log begins sending up
messages subject to the restrictions noted above. These messages are obtained
through the getmsg(2) system call. The control part of this message contains a
logctl structure, which specifies the mid, sid, level, flags, time in ticks since
boot that the message was submitted, the corresponding time in seconds since
Jan. 1, 1970, and a sequence number. The time in seconds since 1970 is
provided so that the date and time of the message can be easily computed, and
the time in ticks since boot is provided so that the relative timing of log
messages can be determined.

Different sequence numbers are maintained for the error and trace logging
streams, and are provided so that gaps in the sequence of messages can be
determined (during times of high message traffic some messages may not be
delivered by the logger to avoid hogging system resources). The data part of
the message contains the unexpanded text of the format string (null terminated),
followed by NLOGARGS words for the arguments to the format string, aligned
on the first word boundary following the format string.

A process may also send a message of the same structure to log, even if it is not
an error or trace logger. The only fields of the log ctl structure in the control
part of the message that are accepted are the level and flags fields; all other
fields are filled in by log before being forwarded to the appropriate logger. The
data portion must contain a null terminated format string, and any arguments
(up to NLOGARGS) must be packed one word each, on the next word boundary
following the end of the format string.

Attempting to issue an I_TRCLOG or I_ERRLOG when a logging process of the
given type already exists results in the error ENXIO being returned. Similarly,
ENXIO is returned for I_TRCLOG ioctls without any tracejds structures, or for
any unrecognized I_STR ioctl calls. Incorrectly formatted log messages sent to
the driver by a user process are silently ignored (no error results).

EXAMPLES
Example of I_ERRLOG notification.

struct strloctl ioc;

loc.ic_cmd = l_ERRLOG;
ioc.ic_timout r 0; /* default timeout (15 sees.) */

LOG (7) (Networking Support Utilitici) LOG(7)

ioc.iclen = 0;
ioc.lcdp = NULL;

loctl(log, l_STR, &loc);

Example of I_TRCLOG notification.

struct traceJds tid[2];

tld[0].tl_mld = 2;
tid[0].ti_sid = 0;
tld[0].tiJevet = 1;

tid[1].ti_mid s 1002;
tld[1].tl_sid =-1; r any sub-Id Is allowed */
tid[1].tl_level = -1; /* any level Is allowed */

ioc.lccmd = l_TRCLOG;
ioc.ictimout = 0;
ioc.icjen = 2 * slzeof(struct trace Jds);
loc.lc_dp = (char *)tld;

loctl(log, l_STR, &loc);

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;
struct log_ctl Ic;
char 'message = "Don't forget to pick up some milk on the

way homef;

ctl.len = ctl.maxlen = sizeof(lc);
ctl.buf = (char *)&lc;

dat.len = dat.maxlen = strlen(message);
dat.buf = message;

Ic.level = 0;

ic.flags = SL_ERROR|SL_NOTIFY;

putmsg(log, &ctl, &dat, 0);
FILES

/dev/log
<sys/log.h>
<sys/strlog.h>

- 3 -

LOG (7) (Networking Support Utilitiei) LOG(7)

SEE ALSO
strace(lM), strerr(lM), clone(7), intro(2), getmsg(2), putmsg(2).
UNIX System V Release 3.2 Streams Programmer's Guide.

LP(7) LP(7)

NAME
lp - parallel printer interface

DESCRIPTION
The lp driver provides an interface to the parallel printer channel. Bytes written
are sent to the printer. Opening and closing produce page ejects. Unlike the
serial interfaces [termio(7)], the lp driver never prepends a carriage return to a
newline (line feed). The lp driver does have options to filter output for the
benefit of printers with special requirements. The driver also controls page
format. Page format and filter options are controlled with ioctl (2):

#include <sys/lprio.h>
ioctl(fildes, command, arg)

where command is one of the following constants:

LPRGET Get the current page format and put it in the lprio structure
pointed to by arg.

LPRSET Set the current page format from the location pointed to by
arg\ this location is a structure of type lprio, declared in the
header file:

struct lprio {
short ind;
short col;
short line;

};
arg should be declared as follows:

struct lprio *arg;

ind is the page indent in columns, initially 4. col is the
number of columns in a line, initially 132, line is the number
of lines on a page, initially 66. A newline that extends over
the end of a page is output as a formfeed. Lines longer than
the line length minus the indent are truncated.

LP(7) LP(7)

LPRSOPTS Set the filter options from arg, which must be of type int.
Arg should be the logical or of one or more of the following
constants, defined in the header file:

Constant

LPNOBS

LPRAW

LPCAP

LPNOCR

LPNOFF

Value Meaning

16

32

64

No back space. Set this bit if the
printer cannot properly interpret
backspace characters. The driver
uses carriage return to produce
equivalent overstriking.

Raw output Set this bit if the
driver must not edit output in any
way. The driver ignores all other
option bits.

Capitals. This
printers with
character
translated
following
translated:

option supports
a ' 'half-ASCII''

set Lowercase is
to uppercase. The

special characters are
{to } to); * to -; I to

No Carriage Return. This option
supports printers that do not
respond to a carriage return
(character OD hexadecimal).
Carriage returns are changed to
newlines. If No Newline is also
set, carriage returns are changed to
form feeds.

No Form Feed. This option
supports printers that do not
respond to a form feed (character
OC hexadecimal). Form Feeds are
changed to newlines. If No
Newline is also set, form feeds are
changed to carriage returns.

- 2 -

LP(7) LP(7)

LPNONL 128 No Newline. This option supports
printers that do not respond to a
newline (character OA
hexadecimal). Newlines are
changed to carriage returns. If No
Carriage Return is also set,
newlines are changed to form
feeds.

Setting all three (No Carriage Return, No New Line, and No
Form Feed) has the same effect as setting none of them.

LPRGOPTS Return the current state of the filter options.

Note that once set, options remain intact through a close.

FILES
/dev/lp?

SEE ALSO
lpr(l),lpset(l).

MEM(7) MEM (7)

NAME
mem, kmem - system memory interface

DESCRIPTION
The mem special file is an image of the core memory of the CTIX-based
processor board. It can be used, for example, to examine, and even to patch the
system.

Byte addresses in mem are interpreted as memory addresses. References to
nonexistent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present

The file kmem is the same as mem, except that kernel virtual memory rather
than physical memory is accessed.

Accessing 0 to 24 megabytes allows a process to read its own space.
0x7F800000 to 0x80000000 allows a process to read the kernel. Invalid pages
cause errors to be returned.

FILES
/dev/mem
/dev/kmem

SEE ALSO
vme(7).

NULL(7) NULL(7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file, Idevlnull, is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

i
i

PRF(7) PRF(7)

NAME
prf - operating system profiler

DESCRIPTION
The special file I dev I prf provides access to activity information in the operating
system. Writing the file loads the measurement facility with text addresses to
be monitored. Reading the file returns these addresses and a set of counters
indicative of activity between adjacent text addresses.
The recording mechanism is driven by the system clock and samples the
program counter at line frequency. Samples that catch the operating system are
matched against the stored text addresses and increment corresponding counters
for later processing.

The file Idevlprf is a pseudo-device with no associated hardware.

FILES
/dev/prf

SEE ALSO
config(lM), profder(lM).

I

QIC(7) QIC(7)

NAME
qic - interface for QIC tape

DESCRIPTION
This interface provides access to quarter-inch cartridge (QIC) streaming tape.
QIC tape drives are supported only as character devices. There can be only one
onboard quarter-inch tape drive (qic), assigned major device number 18 by
default. The minor number specifies whether the tape device is rewind on
close, no rewind on close, or iocU commands only, as follows:
Starting from bit 0, if bit 2 is not set, the device is rewind on close
(/dev/rmt/cOdO); if bit 2 is set, the device is no rewind on close
(/dev/rmt/cOdOn); if bit 3 is set, the device allows only ioctl commands
(/dev/rmt/cOdOc). (Note that on an S/640, QIC drives can be numbered dO to
d7.)

Tape files are separated by tape marks, also known as EOFs. Closing a file open
for writing writes one tape mark; if the device was no-rewind, the tape is left
positioned just after the single QIC tape mark. It is not possible to overwrite a
tape mark. Writing must begin either at the beginning of the tape or after any
previously recorded data.

Each read or write reads or writes the next physical blocks. Read/write sizes
must be a multiple of 512. Read/write buffers must begin on an even address;
this is the same alignment as short. Seeks are ignored. Reading a tape mark
produces a zero-length read and leaves the tape positioned before the mark.

The following commands are supported for QIC tape through ioctl (2):

#include <sys/tsioctl.h>
#include <sys/scsitape.h>
ioctl (fildes, cmd, arg)

where cmd is one of the following:

TPIOCTYPE The return is always TPIOC

TPTYPE The return is always q

TPGETA Get the current status of the tape controller. Arg must be a
pointer to a tpio structure defined as follows:

struct tpio {
unsigned status;
short retries;
short under;

QIC(7) QIC(7)

TPS ETA Set tpio structure.

TPCMD Specify a command to the tape controller as specified in arg.
The following are legal values of arg:

SENSE Perform a read tape status. The result can be
read through TPGETA.

TRESET Reset the tape controller.

TSELECT Determine whether the unit is selectable.

WFM Write file mark.

RFM Read file mark.

TCLRERR Clear any outstanding errors.

REWIND Issue a rewind command.

ERASE Issue an erase tape command.

RETEN Issue a retension tape command.

FILES
/dev/rmt/cOdO

/dev/rml/cOdOn

/dev/rmt/cOdOc

/dev/rmt/c0d[0-7]

/dev/rmt/c0d[0-7]n

/dev/rmt/c0d[0-7]c

/dev/rmtO

/dev/rmt4

rewind on close device

no rewind on close device

ioctl-only device

S/640 rewind on close SCSI device

S/640 no rewind on close SCSI device

S/640 ioctl-only SCSI device

linked to /dev/rmt/cOdO

linked to /dev/rmt/cOdOn

SEE ALSO
config(lM), scsimap(lM), tapeset(lM), tsioctl(l), system(4), ipt(7), scsi(7),
stape(7).

Use the uconf(IM) command to set tpiocype_old if old ioctl calls are required
(for backward compatibility).
Not all drivers support all TPCMDs.

NOTES

QIC(7) QIC(7)

WARNING
A nondata error cannot be recovered from except by closing the device.

A QIC tape has no special mark for end of tape, as opposed to end of fde.

SCSI(7) SCSI(7)

NAME
scsi - scsi control device

SYNOPSIS
#include <sys/scsi.h>
#include <sys/scsiioctl.h>

DESCRIPTION
The special file /dev/scsi is an interface to the low-level SCSI driver. This low-
level driver is used by all high-level SCSI devices, such as SCSI tape and SCSI
disk. This means that there is only one SCSI driver, so all SCSI disk /dev/dsk
nodes use the same controller number and all SCSI tape /dev/rmt nodes use the
same controller number, even though the disk drives and the tape drives are
liable to be on various busses.
The low-level SCSI driver performs such functions as SCSI bus protocol, SCSI
device mapping (logical-to-physical), and SCSI target options (parity, reselect).
All /dev/scsi operations are accessed through ioctl calls.

/*

* Ioctl control packets
7

r This structure defines all gd<->scsi and tape<->scsi
* mappings 7
struct scsiioctl_map {

unchar type; I* SCSI_GDTYPE or SCSI_SATYPE 7
unchar dev; /* slot number for gd or tape mapping 7
unchar flag; /* 1 = valid entry, 0 = invalid entry 7

unchar bus: /* target scsi bus 7
unchar lun; /* target lun 7
unchar target; /* target controller id 7
unchar config; /* configuration bits (parity, disconnect) 7

/* The following is a template - many map entries should actually
* be supplied 7
/* Calling GETMAP with a size of zero is useful for getting the
* "total" value 7

SCSI(7) SCSI(7)

struct scsiioctlmaps {
ushort size; I* The number of maps in the "maps" array 7
ushort total; /* The number of maps that the kernel has 7
struct scsiioctl_map maps[1];

#define SCSIJOCTYPE OxffOO /* same as TTY IOCTYPE;
identifies type as SCSI;
returns SCSIJOC 7

#define SCSIJOC ('s'«8)
#define SCSI_GETMAP (SCSI_IOC|3)/* get all valid map entries 7
#define SCSI_SETMAP (SCSI_IOC|4)/* set map 7

f* Note; these device types do not correspond to the SCSI device
* types: the intention here Is to indicate which device driver
* should be used as the handler, not the actual device type.
7

#define SCSI_GDTYPE 0x11 /* General disk devices 7
#define SCSI_SATYPE 0x12 /* sequential access devices 7

SEE ALSO
scsimap (IM).

STAPE(7) STAPE(7)

NAME
stape - SCSI quarter-inch and half-inch tape

DESCRIPTION
The stape tape interface provides access to quarter- and half-inch tape drives.
By default, the major number for both SCSI tape drives is 65. The interface is
the same for both tapes; you specify quarter-inch or half-inch as an option in the
1SCSIMAP section of the /etc/system (system description) file; see system^4).
See tapeset{ 1M) for half-inch SCSI tape drive initialization information.

Bits 0 through 7 of the minor device number specify the tape density, rewind
option, and whether it is ioctl only, as follows (where "not 4 " indicates that bit
4 is not set, and "4" indicates that bit 4 is set, and so on for each bit):

0 - 2 drive number

3 unused

not 4 and not 5 medium density

4 and not 5 low density

not 4 and 5 high density

4 and 5 use last density

6 rewind on close

7 iocd only

The following commands are supported for SCSI tape through ioctl (2):

#include <sys/tsioctl.h>
#include <sys/scsitape.h>
ioctl (Hides, cmd, arg)

where cmd is one of the following:

TPIOCTYPE The return is always TPIOC; arg should be 0.

TPTYPE The return is always s; arg should be 0.

STAPE(7) STAPE(7)

TPPASSTHRU Arg must be a pointer to the sajoctl structure, defined as
follows:

struct sajoctl {
uint command;
caddr j address;
uint length;

};

where the command field in the structure is either
SAMODSENSE or SA_MODSELECT.

TPCMD Send a command (arg) to the tape controller; arg can be one
of the following:
nrxTor T", r „ ,1 • „....—„ TL_ 1 • l— J
j u w l ronunii a. icau uipc auuus. 1110 irauu wail uc icau

through TPGETA.

TRESET Reset the tape controller.

TSELECT Determine whether the unit is selectable.

WFM Write file mark.

RFM Read file mark.

REWIND Issue a rewind command.

ERASE Issue an erase tape command.

RETENT Issue a retension tape command.

TCLRERR Clear any outstanding errors.

FILES

/dev/rmt/cjcdc[0-7] rewind-on-close device

/dev/rmt/cttLt[0-7]n no-rewind-on-close device

/dev/rmt/cxdx[0-7]c ioctl-only device

SEE ALSO
config(lM), scsimap(lM), tapeset(lM), tsioctl(l), system(4), ipt(7), qic(7),
scsi(7).

STREAMIO(7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#include <stropts.h>
int ioctl (fildes, command, arg)
int fildes, command;

STREAMIO(7)

DESCRIPTION
STREAMS [see intro(2)] ioctl commands are a subset of ioctl(2) system calls
that perform a variety of control functions on streams. The arguments
command and arg are passed to the file designated by fildes, and are interpreted
by the stream head. Certain combinations of these arguments can be passed to
a module or driver in the stream.

The fildes argument is an open file descriptor that refers to a stream. The
command argument determines the control function to be performed as
described below. The arg argument represents additional information needed
by this command. The type of arg depends on the command, but it is generally
an integer or a pointer to a command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are subject to the
errors described there. In addition to those errors, the call fails with errno set to
EINVAL, without processing a control function, if the stream referenced by
fildes is linked below a multiplexor or if command is not a valid value for a
stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head
containing an error value. This causes subsequent system calls to fail with
errno set to this value.

COMMAND FUNCTIONS
The following ioctl commands, with error values indicated, are applicable to all
STREAMS files:

I_PUSH Pushes the module whose name is pointed to by arg onto the top
of the current stream, just below the stream head. It then calls
the open routine of the newly-pushed module. On failure, errno
is set to one of the following values:

[EINVAL] Invalid module name.

[EFAULT] The arg argument points outside the allocated
address space.

STREAMIO(7) STRE AMIO (7)

I POP

I LOOK

I_FLUSH

I SETSIG

[ENXIO] Open routine of new module failed.

[ENXIO] Hangup received on fildes.

Removes the module just below the stream head of the stream
pointed to by fildes. In an I_POP request, arg should be 0. On
failure, errno is set to one of the following values:

[EINVAL] No module present in the stream.

[ENXIO] Hangup received on fildes.

Retrieves the name of the module just below the stream head of
the stream pointed to by fildes, and places it in a null terminated
character string pointed at by arg. The buffer pointed to by arg
should be at least FMNAMESZ+1 bytes long. An "#include
<sys/confh>" declaration is required. On failure, errno is set to
one of the following values:

[EFAULT] The arg argument points outside the allocated
address space.

[EINVAL] No module present in stream.

This request flushes all input and/or output queues, depending on
the value of arg. Valid arg values are:

FLUSHR Flush read queues.

FLUSHW Hush write queues.

FLUSHRW Hush read and write queues.

On failure, errno is set to one of the following values:

[ENOSR] Unable to allocate buffers for flush message due
to insufficient STREAMS memory resources.

[EINVAL] Invalid arg value.

[ENXIO] Hangup received on fildes.

Informs the stream head that the user wants the kernel to issue
the SIGPOLL signal [see signal(2) and sigset(2)] when a
particular event has occurred on the stream associated with
fildes. I_SETSIG supports an asynchronous processing capability
in STREAMS. The value of arg is a bitmask that specifies the
events for which the user should be signaled. It is the bitwise-
OR of any combination of the following constants:

I

- 2 -

STREAMIO(7) STRE AMIO (7)

S_INPUT A non-priority message has arrived on a stream
head read queue, and no other messages existed
on that queue before this message was placed
there. This is set even if the message is of zero
length.

S_HIPRI A priority message is present on the stream head
read queue. This is set even if the message is of
zero length.

S_OUTPUT The write queue just below the stream head is no
longer full. This notifies the user that there is
room on the queue for sending (or writing) data
downstream.

S_MSG A STREAMS signal message that contains the
SIGPOLL signal has reached the front of the
stream head read queue.

A user process can choose to be signaled only of priority
messages by setting the arg bitmask to the value S_HIPRI.
Processes that should receive SIGPOLL signals must explicitly
register to receive them using I_SETSIG. If several processes
register to receive this signal for the same event on the same
stream, each process is signaled when the event occurs.
If the value of arg is zero, the calling process is unregistered and
does not receive further SIGPOLL signals. On failure, errno is
set to one of the following values:
[EINVAL] The value of arg is invalid or zero, and the

process is not registered to receive the SIGPOLL
signal.

[EAGAIN] Allocation of a data structure to store the signal
request failed.

I_GETSIG Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are returned
as a bitmask pointed to by arg, where the events are those
specified in the description of I_SETSIG above. On failure, errno
is set to one of the following values:

- 3 -

STREAMIO(7) STREAMIO (7)

[EINVAL] Process not registered to receive the SIGPOLL
signal.

[EFAULT] arg points outside the allocated address space.

I_FIND Compares the names of all modules currently present in the
stream to the name pointed to by arg, and returns 1 if the named
module is present in the stream. It returns 0 if the named module
is not present On failure, errno is set to one of the following
values:

[EFAULT] arg points outside the allocated address space.

[EINVAL] arg does not contain a valid module name.

I_PEEK Allows a user to retrieve the information in the first message on
the stream head read queue without taking the message off the
queue, arg points to a strpeek structure which contains the
following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures [see
getmsg(2)] must be set to the number of bytes of control
information and/or data information, respectively, to retrieve. If
the user sets flags to RS_HIPRI, I_PEEK only looks for a priority
message on the stream head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no
message was found on the stream head read queue, or if the
RS_HIPRI flag was set in flags and a priority message was not
present on the stream head read queue. It does not wait for a
message to arrive. On return, ctlbuf specifies information in the
control buffer, databuf specifies information in the data buffer,
and flags contains the value 0 or RS_HIPRI. On failure, errno is
set to the following value:

[EFAULT] arg points, or the buffer area specified in ctlbuf
or databuf is, outside the allocated address
space.

[EBADMSG] Queued message to be read is not valid for
I_PEEK

I_SRDOPT Sets the read mode using the value of the argument arg. Legal
arg values are:

- 4 -

STREAMIO(7) STRE AMIO (7)

RNORM Byte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN Message-nondiscard mode.

Read modes are described in read(2). On failure, errno is set to
the following value:

[EINVAL] arg is not one of the above legal values.

I_GRDOPT Returns the current read mode setting in an int pointed to by the
argument arg. Read modes are described in read(2). On failure,
errno is set to the following value:

[EFAULT] arg points outside the allocated address space.

I_NREAD Counts the number of data bytes in data blocks in the first
message on the stream head read queue, and places this value in
the location pointed to by arg. The return value for the
command is the number of messages on the stream head read
queue. For example, if zero is returned in arg, but the ioctl
return value is greater than zero, this indicates that a zero-length
message is next on the queue. On failure, errno is set to the
following value:

[EFAULT] arg points outside the allocated address space.

I_FDINSERT Creates a message from user specified buffer(s), adds
information about another stream and sends the message
downstream. The message contains a control part and an
optional data part. The data and control parts to be sent are
distinguished by placement in separate buffers, as described
below.

arg points to a strfdinsert structure which contains the following
members:

struct strbuf
struct strbuf
long
Int
int

ctlbuf;
databuf;
flags;
fildes;
offset;

The ten field in the ctlbuf strbuf structure [see putmsg{2)] must
be set to the size of a pointer plus the number of bytes of control
information to be sent with the message, fildes in the strfdinsert
structure specifies the file descriptor of the other stream. The

- 5 -

STREAMIO(7) STRE AMIO (7)

fildes argument specifies the file descriptor of the other stream;
offset, which must be word-aligned, specifies the number of
bytes beyond the beginning of the control buffer where
I_FDINSERT stores a pointer. This pointer is the address of the
read queue structure of the driver for the stream corresponding to
fildes in the strfdinsert structure. The len field in the databuf
strbuf structure must be set to the number of bytes of data
information to be sent with the message or zero if no data part is
to be sent

flags specifies the type of message to be created. A non-priority
message is created if flags is set to 0, and a priority message is
created if flags is set to RS_HIPRI. For non-priority messages,
I_FDINSERT blocks if the stream write queue is full due to
iniernal flow control conditions. For priority messages,
I_FDINSERT does not block on this condition. For non-priority
messages, I_FDINSERT does not block when the write queue is
full and 0_NDELAY is set. Instead, it fails and sets errno to
EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the
stream, regardless of priority or whether 0_NDELAY has been
specified. No partial message is sent On failure, errno is set to
one of the following values:

[EAGAIN] A non-priority message was specified, the
0_NDELAY flag is set, and the stream write
queue is full due to internal flow control
conditions.

[ENOSR] Buffers could not be allocated for the message
that was to be created due to insufficient
STREAMS memory resources.

[EFAULT] arg points, or the buffer area specified in ctlbuf
or databuf is, outside the allocated address
space.

[EINVAL] One of the following: fildes in the strfdinsert
structure is not a valid, open stream file
descriptor; the size of a pointer plus offset is
greater than the len field for the buffer specified

- 6 -

STREAMIO(7) STRE AMIO (7)

through ctlptr; offset does not specify a
properly-aligned location in the data buffer; an
undefined value is stored in flags.

[ENXIO] Hangup received on fildes of the ioctl call or
fildes in the strfdinsert structure.

[ERANGE] The len field for the buffer specified through
databuf does not fall within the range specified
by the maximum and minimum packet sizes of
the topmost stream module, or the len field for
the buffer specified through databuf is larger
than the maximum configured size of the data
part of a message, or the len field for the buffer
specified through r.tlhuf is ianrpr than the t - - 'V — © — —
maximum configured size of the control part of
a message.

I_FDINSERT can also fail if an error message was received by
the stream head of the stream corresponding to fildes in the
strfdinsert structure. In this case, errno is set to the value in the
message.

I_STR Constructs an internal STREAMS ioctl message from the data
pointed to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to
downstream modules and drivers. It allows information to be
sent with the ioctl, and returns to the user any information sent
upstream by the downstream recipient. I_STR blocks until the
system responds with either a positive or negative
acknowledgement message, or until the request "times out"
after some period of time. If the request times out, it fails with
errno set to ETIME.

At most, one I_STR can be active on a stream. Further I_STR
calls block until the active I_STR completes at the stream head.
The default timeout interval for these requests is 15 seconds.
The 0_NDELAY [see open(2)] flag has no effect on this call.

To send requests downstream, arg must point to a strioctl
structure which contains the following members:

int ic_cmd; f downstream command 7
int icjimout; t* ACK/NAK timeout 7

- 7 -

STREAMIO(7) STRE AMIO (7)

int icjen; /* length of data arg 7
char *ic_dp; /* ptr to data arg */

iccmd is the internal ioctl command intended for a downstream
module or driver and ictimout is the number of seconds (-1 =
infinite, 0 = use default, >0 = as specified) an I_STR request
waits for acknowledgement before timing out. iclen is the
number of bytes in the data argument and icdp is a pointer to
the data argument The ic len field has two uses: on input, it
contains the length of the data argument passed in, and on return
from the command, it contains the number of bytes being
returned to the user (the buffer pointed to by ic dp should be
large enough to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head converts the information pointed to by the
strioctl structure to an internal ioctl command message and
sends it downstream. On failure, errno is set to one of the
following values:

[ENOSR] Unable to allocate buffers for the ioctl message
due to insufficient STREAMS memory resources.

[EFAULT] arg points, or the buffer area specified by ic dp
and ic len (separately for data sent and data
returned) is, outside the allocated address space.

[EINVAL] icjen is less than 0 or icjen is larger than the
maximum configured size of the data part of a
message or ic timout is less than -1.

[ENXIO] Hangup received on fildes.

[ETIME] Downstream ioctl timed out before
acknowledgement was received.

An I_STR can also fail while waiting for an acknowledgement if
a message indicating an error or a hangup is received at the
stream head. In addition, an error code can be returned in the
positive or negative acknowledgement message, in the event the
ioctl command sent downstream fails. For these cases, I_STR
fails with errno set to the value in the message.

I_SENDFD Requests the stream associated with fildes to send a message,
containing a file pointer, to the stream head at the other end of a
stream pipe. The file pointer corresponds to arg, which must be
an integer file descriptor.

- 8 -

STREAMIO(7) STRE AMIO (7)

I_SENDFD converts arg into the corresponding system file
pointer. It allocates a message block and inserts the file pointer
in the block. The user id and group id associated with the
sending process are also inserted. This message is placed
direcdy on the read queue [see intro(2)] of the stream head at the
other end of the stream pipe to which it is connected. On failure,
errno is set to one of the following values:

[EAGAIN] The sending stream is unable to allocate a
message block to contain the file pointer.

[EAGAIN] The read queue of the receiving stream head is
full and cannot accept the message sent by
I.SENDFD.

[EBADFj arg is not a valid, open file descriptor.

[EINVAL] fildes is not connected to a stream pipe.

[ENXIO] Hangup received on fildes.

I_RECVFD Retrieves the file descriptor associated with the message sent by
an I_SENDFD ioctl over a stream pipe. The arg argument is a
pointer to a data buffer large enough to hold an strrecvfd data
structure containing the following members:

int fd;
unsigned short uid;
unsigned short gid;
char flii[8];

fd is an integer fde descriptor, uid and gid are the user id and
group id, respectively, of the sending stream.

If 0_NDELAY is not set [see open(2)], I_RECVFD blocks until a
message is present at the stream head. If 0_NDELAY is set,
I_RECVFD fails with errno set to EAGAIN if no message is
present at the stream head.

If the message at the stream head is a message sent by an
I_SENDFD, a new user file descriptor is allocated for the file
pointer contained in the message. The new file descriptor is
placed in the fd field of the strrecvfd structure. The structure is
copied into the user data buffer pointed to by arg. On failure,
errno is set to one of the following values:

[EAGAIN] A message was not present at the stream head
read queue, and the 0_NDELAY flag is set.

- 9 -

STREAMIO(7) STRE AMIO (7)

[EBADMSG] The message at the stream head read queue was
not a message containing a passed file
descriptor.

[EFAULT] arg points outside the allocated address space.

[EMFILE] NOFILES file descriptors are currently open.

[ENXIO] Hangup received on fildes.

The following two commands are used for connecting and disconnecting
multiplexed STREAMS configurations.

I_LINK Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of
the stream connected to another driver. The stream designated by arg
gets connected below the multiplexing driver. I_LINK requires the
multiplexing driver to send an acknowledgement message to the
stream head regarding the linking operation. This call returns a
multiplexor ID number (an identifier used to disconnect the
multiplexor, see I_UNLINK) on success, and a -1 on failure. On failure,
errno is set to one of the following values:

[ENXIO] Hangup received on fildes.

[ETTME] Time out before acknowledgement message was
received at stream head.

[EAGAIN] Temporarily unable to allocate storage to perform the
I_LINK.

[ENOSR] Unable to allocate storage to perform the I_LINK due
to insufficient STREAMS memory resources.

[EBADF] arg is not a valid, open file descriptor.

[EINVAL] fildes stream does not support multiplexing.

[EINVAL] arg is not a stream, or is already linked under a
multiplexor.

[EINVAL] The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given stream
head is linked into a multiplexing configuration in
more than one place.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error

- 1 0 -

STREAMIO(7) STREAMIO (7)

code can be returned in the positive or negative acknowledgement
message. For these cases, I_LINK fails with errno set to the value in
the message.

I_UNLINK Disconnects the two streams specified by fildes and arg. fildes is
the file descriptor of the stream connected to the multiplexing
driver. The fildes argument must correspond to the stream on
which the ioctl I_LINK command was issued to link the stream
below the multiplexing driver, arg is the multiplexor ID number
that was returned by the I_LINK If arg is -1, then all Streams
which were linked to fildes are disconnected. As in I_LINK, this
command requires the multiplexing driver to acknowledge the
unlink. On failure, errno is set to one of the following values:

[ENXIQJ Hangup received on fildes.

[ETIME] Time out before acknowledgement message was
received at stream head.

[ENOSR] Unable to allocate storage to perform the
I_UNLINK due to insufficient STREAMS memory
resources.

[EINVAL] The arg argument is an invalid multiplexor ID
number or fildes is not the stream on which the
IJLINK that returned arg was performed.

An I_UNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request, if a message indicating
an error or a hangup is received at the stream head of fildes. In
addition, an error code can be returned in the positive or
negative acknowledgement message. For these cases, I_UNLINK
fails with errno set to the value in the message.

SEE ALSO
close(2), fcntl(2), getmsg(2), intro(2), ioctl(2), open(2), poll(2), putmsg(2),
read(2), signal(2), sigset(2), write(2).
UNIX System VRelease 3.2 Streams Programmer's Guide.
UNIX System V Release 3.2 Streams Primer.

DIAGNOSTICS
Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

- 1 1 -

I

SXT(7) SXT(7)

NAME
sxt - STREAMS multiplexor

DESCRIPTION
The special file /dev/sxt is a streams multiplexor that can be used to multiplex
groups of processes over any lower streams. Typically, it is used by the shell
layer program [shl(l)] to multiplex terminal I/O.

Sxt devices are named by inodes in the directory /dev/sxt, and are allocated in
groups of eight To allocate a group, the user process should try to open a file
with a name of the form /dev/sxt/??0, with the FEXCL flag set in the open
system call until the open returns successfully. The last three bits of the minor
device number determine the channel number of the sxt device. Initially,
channel 0 is the control device, until it is switched. Bits 3 to 15 ate used as the
group number.

Once the sxt device is opened, it should be linked with a lower stream, for
example, a tty device with a line discipline, to initiate the multiplexing. For
example:

tty = open("/dev/tty",2);
sxt = open(7dev/sxt000",2);
ioctl(sxt,l_UNK,tty);

Channel 0 is always the controlling device, and only the controlling device can
issue SXTIOCSWTCH, SXTIOCBLK, SXTIOCUBLK, and SXTIOCSTAT ioctl
commands. However, any channel can become the active channel, which is the
only channel that can receive messages from lower streams; other channels
attempting to read are blocked. Initially, channel 0 is the active channel.

The sxt driver supports the following iocd commands:

I_LINK Link the lower streams to the sxt device.

I_UNLINK

Unlink the multiplexor. This is done automtically on close.

SXTIOCSWTCH

Switch to the channel specified by the argument in the ioctl call.

SXTIOCWF
Wait until the device becomes active. The controlling channel
becomes active on receipt of a line switch message from lower
streams. In the current implementation, the line switch message is of
the type M_CTL with the first character in the data block equal to Z.
The default line discipline generates this message on receipt of the line
switch character (default Control-z) from the keyboard.

SXT(7) SXT(7)

SXTIOCBLK
Block output for the channel.

SXTTOCUBLK
Unblock pending output for the channel.

SXTIOCSTAT
Get the status (blocked on input or output) of each channel and store in
the sxtblock structure referenced by the argument

Any other ioctl commands that are not understood by the sxt driver are passed
downstream.

When the controlling channel is closed, all other channels are closed, and a
hangup control message is sent to the queue heads.

Refer to streamio'J) for possible return values from I_LINK and I_UNLINK.
Return values for the other commands follow:

EPERM Command not executed from channel 0.

EINVAL Argument is out of range.

ENXIO The channel to switch to has not been opened.

EAGAIN No streams buffers to process the request

FILES

/dev/sxt/???

SEE ALSO
shl(l), stty(l), ioctl(2), open(2), streamio(7), termio(7).
CTIX Network Programmer's Primer.
UNIX System V Release 3.2 Network Programmer's Guide.
UNIX System V Release 3.2 Streams Programmer s Guide.
UNIX System V Release 3.2 Streams Primer.

BUGS
The /dev/sxt driver works only with STREAMS devices.

TCP(7) (CTIX Internetworking) TCP(7)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include <sys/socket.h>
#include <sys/in.h>

s = socket(AF_INET, SOCK STREAM, 0);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of
data. It is a byte-stream protocol used to support the SOCK_STREAM
abstraction. TCP uses the standard Internet address format and, in addition,
provides a per-host collection of "port addresses." Thus, each address is
composed of an Internet address specifying the host and network, with a
specific TCP port on the host identifying the peer entity.

Sockets using the tcp protocol are either "active" or "passive." Active
sockets initiate connections to passive sockets. By default TCP sockets are
created active; to create a passive socket the listen (2) system call must be used
after binding the socket with the bind(2) system call. Only passive sockets can
use the accept (2) call to accept incoming connections. Only active sockets can
use the connect (2) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming
connection requests from multiple networks. This technique, called "wildcard
addressing," allows a single server to provide service to clients on multiple
networks. To create a socket that listens on all networks, the Internet address
INADDR_ANY must be bound. The TCP port can still be specified at this time;
if the port is not specified the system will assign one. Once a connection has
been established the socket's address is fixed by the peer entity's location. The
address assigned the socket is the address associated with the network interface
through which packets are being transmitted and received. Normally this
address corresponds to the peer entity's network.

TCP supports one socket option which is set with setsockopt and tested with
getsockopt [see getsockopt (2)]. Under most circumstances, TCP sends data
when it is presented; when outstanding data has not yet been acknowledged, it
gathers small amounts of output to be sent in a single packet once an
acknowledgment is received. For a small number of clients, such as window
systems that send a stream of mouse events which receive no replies, this
packetization may cause significant delays. Therefore, TCP provides a boolean
option, TCP_NODELAY (from <netinet/tcp.h>, to defeat this algorithm. The
option level for the setsockopt call is the protocol number for TCP, available
from getprotobyname [see getprotoentQ)].

TCP(7) (CTIX Interact woikiag) TCP(7)

FILES

Options at the IP transport level can be used with TCP; see ip(7). Incoming
connection requests that are source-routed are noted, and the reverse source
route is used in responding.

TCP is also available as a TLI connection-oriented protocol via the special Hies
/dev/inet/tcpord and /dev/int/tcpdis. The tcpord device supports Orderly
Release. If the tcpdis device is used, any remote disconnect will be interpreted
as a Disconnect Request TCP options are supported via the TLI options
mechanism.

/dev/inet/tcpord, /dev/inet/tcpdis

SEE ALSO
getsockopt(2), socket(2), intro(7), inet(7), ip(7).

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOSR]

[ETIMEDOUT]

[ECONNRESET]

[ECONNREFUSED]

[EADDRINUSE]

[EADDRNOTAVAIL]

when trying to establish a connection on a socket
which already has one

when the system runs out of memory for an internal
data structure

when a connection was dropped due to excessive
retransmissions

when the remote peer forces the connection to be
closed

when the remote peer actively refuses connection
establishment (usually because no process is listening
to the port)

when an attempt is made to create a socket with a port
which has already been allocated

when an attempt is made to create a socket with a
network address for which no network interface exists

TERMIO(7) TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
CTIX systems use a single interface convention for all RS-232 and cluster (RS-
422) terminals, although cluster terminals do not use all the features of the
convention. The convention is almost completely taken from the UNIX System
V interface for asynchronous terminals.
Two kinds of terminals use this convention:

• RS-232 terminals connected to channels on the computer itself.

• Cluster terminals. Generally a cluster channel supports more than one
terminal and some terminals are indirecdy connected through other
(daisy-chained) terminals. Cluster terminals use the same interface as
directly connected RS-232 terminals, except that hardware control
operations are meaningless on cluster terminals. (Note that "cluster
terminal'' refers to the way the terminal is used, not to the terminal
itself; a Convergent Technologies PT (or GT) terminal can serve as an
RS-232 terminal or as a cluster terminal.)

A single naming convention applies to regular RS-232 and cluster terminals. A
direct RS-232 or cluster terminal has a name of the form /dev/ttyxxx, where xxx
is the terminal's number expressed in three digits.

When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, users' programs seldom open terminal
files; they are opened by getty and become a user's standard input, output, and
error files. The very first terminal file opened by the process group leader of a
terminal file not already associated with a process group becomes the control
terminal for that process group. The control terminal plays a special role in
handling quit and interrupt signals, as discussed below. The control terminal is
inherited by a child process during a fork{2). A process can break this
association by changing its process group using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters can be typed at any time, even while output is occurring, and
are lost only when the system's character input buffers become completely full,
which is rare, or when the user has accumulated the maximum allowed number
of input characters that have not yet been read by some program. Currently,
this limit is 256 characters. When the input limit is reached, the buffer is
flushed and all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-

TERMIO(7) TERMIO(7)

of-line character. This means that a program attempting to read is suspended
until an entire line has been typed. Also, no matter how many characters are
requested in the read call, at most one line is returned. However, it is not
necessary to read a whole line at once; any number of characters can be
requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, Control-H
(ASCII BS) erases the last character typed, except that it does not erase beyond
the beginning of the line. By default, the character @ kills (deletes) the entire
input line, and optionally outputs a newline character. Both characters operate
on a keystroke basis, independent of any backspacing or tabbing that may have
been done. Both the erase and kill characters can be entered literally by
preceding them with the escape character (\) , In this case, the escape character
is not read. The erase and kill characters can be changed.

Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

INTR (Rubout or ASCII DEL) Generates an interrupt signal, which is sent to
all processes with the associated control terminal. Normally, each
such process is forced to terminate, but arrangements can be made to
ignore the signal or to receive a trap to an agreed-upon location; see
signal (2).

QUIT (Control- | or ASCII FS) Generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiving process
has made other arrangements, it is not only terminated, but a core
image file (called core) is created in the current working directory.

SWTCH (Control-Z or ASCII SUB) Used by the job control facility, shl, to
change the current layer to the control layer.

ERASE (Control-H or ASCII BS) Erases the preceding character. It does not
erase beyond the start of a line, as delimited by an NL, EOF, or EOL
character.

KILL (@) Deletes the entire line, as delimited by an NL, EOF, or EOL
character.

EOF (Control-D or ASCII EOT) Can be used to generate an end-of-file from
a terminal. When received, all characters waiting to be read are
immediately passed to the program, without waiting for a newline, and
the EOF is discarded. Thus, if there are no characters waiting, which is
to say the EOF occurred at the beginning of a line, zero characters are
passed back, which is the standard end-of-file indication.

TERMIO(7) TERMIO(7)

NL (ASCH LF) The normal line delimiter. It can not be changed or
escaped.

EOL (ASCII NUL) An additional line delimiter, like NL. It is not normally
used.

EOL2 Another additional line delimiter.

STOP (Control-S or ASCI DC3) Can be used to temporarily suspend output.
It is useful with CRT terminals to prevent output from disappearing
before it can be read. While output is suspended, STOP characters are
ignored and not read.

START (Control-Q or ASCII DC1) Used to resume output which has been
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The start/stop characters
can not be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL can
be changed to suit individual tastes. The ERASE, KILL, and EOF characters may
be escaped by a preceding \ character, in which case no special function is
done.

When the carrier signal from the data-set drops, a hang-up signal is sent to all
processes that have this terminal as the control terminal. Unless other
arrangements have been made, this signal causes the processes to terminate. If
the hang-up signal is ignored, any subsequent read returns with an end-of-fde
indication. Thus, programs that read a terminal and test for end-of-fde can
terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as
soon as previously-written characters have finished typing. Input characters are
echoed by putting them in the output queue as they arrive. If a process
produces characters more rapidly than they can be typed, it is suspended when
its output queue exceeds some limit. When the queue has drained down to
some threshold, the program is resumed.

Several ioctl (2) system calls apply to terminal files. The primary calls use the
following structure, defined in <termio.h>:

#define NCC 8
struct termio {

unsigned short cjf iag; /* input modes */
unsigned short c_oflag; I* output modes */
unsigned short c_cflag; /* control modes */
unsigned short cjfiag; /* local modes«/
char c_line; /* line discipline */

- 3 -

TERMIO(7) TERMIO(7)

unsigned char c_cc[NCC];/* control chars */

};
The special control characters are defined by the array c_cc. The relative
positions and initial values for each function are as follows:

0 VINTR DEL
1 VQUTT FS
2 VERASE BS
3 VKILL @
4 VEOF EOT
5 VEOL NUL
6 reserved NUL
7 VSWTCH NUL

The c iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.

BRKINT 0000002 Signal interrupt on break.

IGNPAR 0000004 Ignore characters with parity errors.

PARMRK 0000010 Mark parity errors.

INPCK 0000020 Enable input parity check.

ISTRIP 0000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL 0000400 Map CR to NL on input.

IUCLC 0001000 Map upper-case to lower-case on input.

IXON 0002000 Enable start/stop output control.

IX ANY 0004000 Enable any character to restart output.

IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all
zeros) is ignored, that is, not put on the input queue and therefore not read by
any process. Otherwise, if BRKINT is set, the break condition generates an
interrupt signal and flush both the input and output queues. If IGNPAR is set,
characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not
ignored is read as the three-character sequence: 0377,0, X, where X is the data
of the character received in error. To avoid ambiguity in this case, if ISTRIP is

TERMIO(7) TERMIO(7)

not set, a valid character of 0377 is read as 0377,0377. If PARMRK is not set, a
framing or parity error which is not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without input
parity errors.

If ISTRIP is set, valid input characters are first stripped to seven bits; otherwise,
all eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise, if
ICRNL is set, a received CR character is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the
corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output All start/stop
characters are ignored and not read. If EX ANY is se t any input character
restarts output which has been suspended.

If IXOFF is set, the system transmits START/STOP characters when the input
queue is nearly empty/full.

The initial input control value is BRKINT, IGNPAR, ISTRIP, ICRNL, IXOFF,
IXON.

The coflag field specifies the system treatment of output

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output
ONLCR 0000004 Map NL to CR-NL on output
OCRNL 0000010 Map CR to NL on output
ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select newline delays:
NLO 0
NL1 0000400
CRDLY 0003000 Select carriage return delays:
CRO 0
CR1 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:

- 5 -

TERMIO(7) TERMIO(7)

TABO 0
TAB1 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BS1 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VT1 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters arc post-proccsscd as indicated by the
remaining flags; otherwise, characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the
corresponding upper-case character. This function is often used in conjunction
with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If
OCRNL is set, the CR character is transmitted as the NL character. If ONOCR is
set, no CR character is transmitted when at column 0 (first position). If ONLRET
is set, the NL character is assumed to do the carriage return function; the
column pointer is set to 0 and the delays specified for CR is used. Otherwise,
the NL character is assumed to do just the line-feed function; the column pointer
remains unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all cases, a
value of 0 indicates no delay. If OFILL is set, fill characters are transmitted for
delay instead of a timed delay. This is useful for high baud rate terminals which
need only a minimal delay. If OFDEL is set, the fill character is DEL; otherwise,
NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage return
delays are used instead of the newline delays. If OFILL is set, two fill
characters are transmitted.

TERMIO(7) TERMIO(7)

Carriage return delay type 1 is dependent on the current column position, type 2
is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay
type 1 transmits two fill characters, and type 2, four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type
2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded into
spaces. If OFILL is set, two fill characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is
transmitted.

The actual delays depend on line speed and system load.

The initial output control value is OPOST, ONLCR.

The c cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:
B0 0 Hang up

B110 0000003 110 baud
B134 0000004 134 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
EXTA 0000016 External A
B38400 0000017 38400 baud
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.

B50
B75

0000001 50 baud
0000002 75 baud

- 7 -

TERMIO(7) TERMIO(7)

HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.
LOBLK 0010000 Block layer output
CTSCD 0020000 Use hardware flow control.

The CBAUD bits specify the baud rate. The zero baud rate, B0, is used to hang
up the connection. If B0 is specified, the data-terminal-ready signal is not
asserted. Normally, this disconnects the line. For any particular hardware,
impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPB is set,
two stop bits are used; otherwise, one stop bit. For example, at 110 baud, two
stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit is
added to each character. If parity is enabled, the PARODD flag specifies odd
parity if set; otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters axe received.

If HUPCL is set, the line is disconnected when the last process with the line
open closes it or terminates. That is, the data-terminal-ready signal is not
asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no
modem control. Otherwise, modem control is assumed.

If LOBLK is set, the output of a job control layer is blocked when it is not the
current layer. Otherwise, the output generated by that layer is multiplexed onto
the current layer.

If CTSCD is set, flow control is performed using hardware signals. No data is
sent in the absence of CTS (Clear to Send) signal. Outgoing data is suspended if
CTS is lowered; transmission is resumed after CTS is raised.

The initial hardware control value after open is B9600, CS8, CREAD, HUPCL.

The c lflag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill processing).

XCASE 0000004 Canonical upper/lower presentation.

ECHO 0000010 Enable echo.

TERMIO(7) TERMIO(7)

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control
characters INTR, SWTCH, and QUIT. If an input character matches one of these
control characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus, these special input functions are
possible only if ISIG is set These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible value
(for example, 0377).

If ICANON is set, canonical processing is enabled. For a STREAMS tty driver
(the default for all RS-232 ports), when ICANON is set, a read returns all
characters on the buffer, up to the first delimiter (such as newline). The
STREAMS tty driver allocates 256 bytes for canonical processing: if more than
256 characters are read before a delimiter occurs, the rest are truncated.

For STREAMS and non-STREAMS tty drivers, setting ICANON enables the erase
and kill edit functions, and the assembly of input characters into lines delimited
by NL, EOF, and EOL. If ICANON is not set, read requests are satisfied direcdy
from the input queue. A read is not satisfied until at least MIN characters have
been received or the timeout value TIME has expired between characters. This
allows fast bursts of input to be read efficiently while still allowing single
character input. The MIN and TIME values are stored in the position for the EOF
and EOL characters, respectively. The time value represents tenths of seconds.
The values of VMIN and VTTME control how many and when characters are
returned. If both are 0, reads come back immediately if no characters are
present If VMIN is greater than 0 and VTTME is equal to 0, the read waits until
at least VMIN characters have been received. If VMIN is equal to 0 and VTIME
is greater than 0, the read returns after VTIME tenths of a second, regardless of
whether any characters have been received. Note that in this case a read may
return 0, which is indistinguishable from end-of-file. If VMIN is greater than 0
and VTIME is greater than 0, the timeout period starts after the first character
has been received; thus, a read always returns greater than or equal to 1.

If XCASE is set and if ICANON is set, an upper-case letter is accepted on input
by preceding it with a \ character, and is output preceded by a \ character. In
this mode, the following escape sequences are generated on output and
accepted on input:

TERMIO(7) TERMIO(7)

for: use:
V

I \ !

{ \(
} \)
\ \ \

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.
When ICANON is set, the following echo functions are possible. If ECHO and
ECHOE are set, the erase character is echoed as ASCII BS SP BS, which clears
the last character from a CRT screen. If ECHOE is set and ECHO is not set, the
erase character is echoed as ASCII SP BS. If ECHOK is set, the NL character is
echoed after the kill character to emphasize that the line is deleted. Note that
an escape character preceding the erase or kill character removes any special
function. If ECHONL is set, the NL character is echoed even if ECHO is not set.
This is useful for terminals set to local echo (so-called half duplex). Unless
escaped, the EOF character is not echoed. Because EOT is the default EOF
character, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated
with the quit, switch, and interrupt characters is not performed.

The initial local modes are as follows: ISIG, ICANON, ECHO, ECHOK.

The initial line-discipline is 0.

The primary ioctl (2) system calls have the following form:

iocd (fildes, command, arg)
struct termio *arg;

The commands using this form are as follows:

TCGETA Get the parameters associated with the terminal and store in the
termio structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the structure
referenced by arg. The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters.
This form should be used when changing parameters that affect
output.

TCSETAF Wait for the output to drain, then flush the input queue and set the
new parameters.

- 1 0 -

TERMIO(7) TERMIO(7)

Additional ioctl (2) calls have the following form:

iocd (fildes, command, arg)
int arg;

The commands using this form are as follows:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits
for 0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart suspended
output; if 2, transmit XOFF; if 3, transmit XON.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output queue; if 2,
flush both the input and output queues.

TCGEXT Get the parameters associated with the terminal. The parameters are
passed "back as the return value from the ioctl (2) function. The
return value is defined as follows (see /usr/include/sys/tty.h):

#deflna CDBIT 0x04 /* TCGEXT: CD is present */
Mefine CTSBIT 0x08 /* TCGEXT: CTS Is present 7

#defina DSRBIT 0x10 r TCGEXT: DSR is prasant 7
Matins MBIT 0x20 f TCGEXT: Rl is prasant */

TCSEXT Set the parameters associated with the terminal from arg. The bits in
arg are defined as follows:

Mefina RTSBIT 0x08 /* TCSEXT: sat/claar RTS */
Mefine DTRBIT 0x10 /* TCSEXT: set/clear DTR 7

Mefina SETEXT 0x80 /* TCSEXT: 1 s set, 0 s clear 7

TCSEXTW
Wait for the output to drain before setting the new parameters as in
TCSEXT.

The TCGEXT command provides the status of CD, CTS, DSR, and RI. The
TCSEXT and TCSEXTW commands allow setting or clearing of the RTS and DTR
signals. If the SETEXT bit is set, the RTS and/or DTR lines can be turned on. If
the SETEXT bit is cleared, either or both of these lines can be turned off.

FILES
/dev/tty*
/dev/tp*

- 1 1 -

TERMIO(7) TERMIO(7)

SEE ALSO

stty(l), fork(2), ioctl(2), setpgrp(2), signal(2), tp(7), tty(7).

WARNING The default value for ERASE is backspace rather than the historical #.

- 1 2 -

TIRDWR(7) (Networking Support Utilitiei) TIRDWR(7)

NAME
timod - Transport Interface cooperating STREAMS module

DESCRIPTION
timod is a STREAMS module for use with the Transport Interface (n) functions
of the Network Services library. The timod module converts a set of ioctl{2)
calls into STREAMS messages that can be consumed by a transport protocol
provider that supports the Transport Interface. This allows a user to initiate
certain TI functions as atomic operations.

The timod module must be pushed (see the UNIX System V Release 3.2 Streams
Primer) onto only a stream terminated by a transport protocol provider that
supports the TI.

All STREAMS messages, with the exception of the message types generated
from the ioctl commands described beiow, wiii be transparently passed to the
neighboring STREAMS module or driver. The messages generated from the
following ioctl commands are recognized and processed by the timod module.
The format of the ioctl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_cmd = cmd;
strioctl.ic_timeout = INFTIM;
strioctl.icjen = size;
strioctl.ic_dp = (char *)buf

ioctl(fildes, l_STR, &strioctl);

Where, on issuance, size is the size of the appropriate TT message to be sent to
the transport provider and on return size is the size of the appropriate n
message from the transport provider in response to the issued TI message, buf is
a pointer to a buffer large enough to hold the contents of the appropriate TI
messages. The TI message types are defined in <sys/tihdr.h>. The possible
values for the cmd field are:

TI_BIND Bind an address to the underlying transport protocol
provider. The message issued to the n_BIND ioctl is
equivalent to the TI message type T_BIND_REQ and the
message returned by the successful completion of the ioctl is
equivalent to the TI message type T_BIND_ACK.

TIRDWR(7) (Networking Support Utilitiei) TIRDWR(7)

TI_UNBIND Unbind an address from the underlying transport protocol
provider. The message issued to the TI_UNBIND ioctl is
equivalent to the TI message type T_UNBIND_REQ and the
message returned by the successful completion of the ioctl is
equivalent to the n message type T_OK_ACK.

TI_GETINFO Get the TI protocol specific information from the transport
protocol provider. The message issued to the TI_GETINFO
ioctl is equivalent to the TI message type T_INFO_REQ and
the message returned by the successful completion of the
ioctl is equivalent to the TI message type T_INFO_ACK.

TI_OPTMGMT Get, set or negotiate protocol specific options with the
transport protocol provider. The message issued to the
TI OPTMGMT ioctl is eauivalent tn the TT message tvne. — - - - - - - - 4- - . u - -jr~
T_OPTMGMT_REQ and the message returned by the
successful completion of the ioctl is equivalent to the TI
message type T_OPTMGMT_ACK.

FILES
<sys/timod.h>
<sys/tiuser.h>
<sys/tihdr.h>
<sys/errno.h>

SEE ALSO
tirdwr(7).
UNIX System V Release 3.2 Streams Programmer s Guide.
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

DIAGNOSTICS
If the ioctl system call returns with a value greater than 0, the lower 8 bits of the
return value will be one of the TI error codes as defined in <sys/tiuser.h>. If
the TI error is of type TSYSERR, then the next 8 bits of the return value will
contain an error as defined in <sys/errno.h> [see intro(2)}.

TIOP(7) TIOP(7)

NAME
tiop - terminal accelerator interface

SYNOPSIS
#include <sys/tiop.h>

DESCRIPTION
The tiop driver provides loading and unloading functions for the terminal
accelerator. The open of device /dev/tiop fails if a terminal accelerator board is
not present or if the board is already loaded. The only valid function after
opening the tiop device is an ioctl call to download the accelerator. The
following command is supported through ioctl:

IOPATTACH Download the IOP; Note that arg must point to an area in the
caller's space where the first four bytes are a count of the
number of bytes to be loaded into the accelerator. The actual
data must follow the count field immediately. The count
bytes are copied into the accelerator starting at memory
location 0. After loading, the accelerator is reset and begins
execution at 0 in its memory. After a successful
IOPATTACH, all but two onboard RS-232 ports are controlled
by the accelerator.

TIRDWR(7) (Networking Support Utilitiei) TIRDWR(7)

NAME
tirdwr - Transport Interface read/write interface STREAMS module

DESCRIPTION
tirdwr is a STREAMS module that provides an alternate interface to a transport
provider (such as TCP) which supports the Transport Interface (TI) functions of
the Network Services library. This alternate interface allows a user to
communicate with the transport protocol provider using the read(2) and
write(2) system calls. The putmsgi2) and getmsg(2) system calls can also be
used. However, putmsg and getmsg can only transfer data messages between
user and stream.
The tirdwr module must only be pushed [see I_PUSH in streamio(l)] onto a
stream terminated by a transport protocol provider which supports the IT. After
the tirdwr module has been pushed onto a stream, none of the Transport
Interface functions can be used. Subsequent calls to TI functions will cause an
error on the stream. Once the error is detected, subsequent system calls on the
stream will return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the
stream, popped [see I_POP in streamioil)] off the stream, or when data passes
through i t

push - When the module is pushed onto a stream, it will check any existing
data destined for the user to ensure that only regular data messages are
present It will ignore any messages on the stream that relate to
process management, such as messages that generate signals to the user
processes associated with the stream. If any other messages are
present the I_PUSH will return an error with errno set to EPROTO.

write - The module will take the following actions on data that originated
from a write system call:

• All messages with the exception of messages that contain control
portions (see the putmsg and getmsg system calls) will be
transparently passed onto the module's downstream neighbor.

• Any zero length data messages will be freed by the module and
they will not be passed onto the module's downstream neighbor.

• Any messages with control portions will generate an error, and any
further system calls associated with the stream will fail with errno
set to EPROTO.

read- The module will take the following actions on data that originated
from the transport protocol provider:

TIRDWR(7) (Networking Support Utilitiei) TIRDWR(7)

• All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) will be
transparently passed onto the module's upstream neighbor.

• The action taken on messages with control portions will be as
follows:

- Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail with
errno set to EPROTO.

- Any data messages with control portions will have the control
portions removed from the message prior to passing the
message on to the upstream neighbor.

- Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself will be freed by the
module.

- Messages that represent an abortive disconnect indication from
the transport provider will cause all further write and putmsg
system calls to fail with errno set to ENXIO. All further read
and getmsg system calls will return zero length data (indicating
end of file) once all previous data has been read.

- With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with errno set to
EPROTO.

• Any zero length data messages will be freed by the module and
they will not be passed onto the module's upstream neighbor.

pop - When the module is popped off the stream or the stream is closed, the
module will take the following action:

• If an orderly release indication has been previously received, then
an orderly release request will be sent to the remote side of the
transport connection.

SEE ALSO
intro(2), getmsg(2), putmsg(2), read(2), write(2), intro(3), streamio(7), timod(7).
UNIX System V Release 3.2 Streams Programmer's Guide.
UNIX System V Release 3.2 Streams Primer.
UNIX System V Release 3.2 Network Programmer's Guide.

TP(7) TP(7)

NAME
tp - controlling terminal's local RS-232 channels

DESCRIPTION
The tp device accesses the RS-232 channels on the controlling terminal. The
terminal must be a cluster terminal configured to permit use of the local RS-232
channels [see termio (7)]. Just as /dev/tty permits a process to conveniently
access its process group's controlling terminal [(see tty(7)], /dev/tpa and
/dev/tpb access the controlling terminal's RS-232 channels without reference to
the terminal number. This is convenient for accessing the user's local
hardware, such as a telephone with an RS-232 interface.

SEE ALSO
tty(7).

I

TTY(7) TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file Idevltty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for
programs or shell sequences that should be sure of writing messages on the
terminal no matter how output has been redirected. It can also be used for
programs that demand the name of a file for output, when typed output is
desired and it is tiresome to find out what terminal is currently in use.

If the terminal is under window management, a process group is controlled by a
specific window and I/O on Idevltty is directed to that window.

A terminal can control one process group in each window. See window (7).

All RS-232 ports are controlled by the STREAMS tty driver, which handles
buffering as follows: the line discipline module allocates a 4-byte STREAMS
buffer to perform echoing, a 256-byte STREAMS buffer for input processing,
and a variable-size (from 4 to 512 bytes) STREAMS buffer for output
processing.

FILES
/dev/tty
/dev/tty*

SEE ALSO
termio(7), tp(7), window(7).

UDP(7) (CTIX Internetworking) UDP(7)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF INET, SOCKDGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol that is used to support the
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets are
connectionless and are normally used with the sendto and reevfrom calls; the
connect (2) call can also be used to fix the destination for future packets (in
which case the recv(2) or read(2) and send(2) or write(2) system calls can be
used). In audition, UDP is available as TLI connectionless transport via the
special file /dev/inet/udp.

UDP address formats are identical to those used by TCP. In particular, UDP
provides a port identifier in addition to the normal Internet address format
Note that the UDP port space is separate from the TCP port space (that is, a UDP
port cannot be ' 'connected'' to a TCP port). In addition, broadcast packets can
be sent (assuming the underlying network supports this) by using a reserved
broadcast address; this address is network interface dependent

Options at the IP transport level can be used with UDP; see ip(7).

FILES
/dev/inet/udp

SEE ALSO
getsockopt(2), recv(2), send(2), socket(2). intro(7), inet(7), ip(7).
CTIX Network Administrator's Guide.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket that
already has one, or when trying to send a datagram with the
destination address specified and the socket is already
connected

[ENOTCONN] when trying to send a datagram, but no destination address is
specified, and the socket hasn't been connected

[ENOSR] when the system runs out of memory for an internal data
structure

UDP(7) (CTIX Internetworking) UDP(7)

[EADDRINUSE] when an attempt is made to create a socket with a port that
has already been allocated

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network
address for which no network interface exists

- 2 -

VME(7) VME(7)

N A M E
vme - VME bus interface

DESCRIPTION
vme files are a set of special files that are images of the VME bus. They can be
used, for example, to examine and modify memory and registers on the VME
bus.
Byte addresses in vme are interpreted as memory addresses. For a read,
references to nonexistent locations cause errors to be returned; for a write,
nothing is written and no error is returned.

Examining and patching device registers is likely to cause unexpected results
when read-only or write-only bits are present

The structure for ioctl calls follows:

Mefine VMGETREG (V+0)
Mefine VMSETREG (V+1)

struct vmeioctl {
unchar vmmreg;
unchar mvpreg;
unchar vmjreg;

1;

The standard VME interface EEPROM contents follow:

Mefine VME_SLOTS
struct vmeeprom {

16

int checksum;
int flags;
ushort codeoffset;

/* Make the entire prom checksum to -1 7
r EEPROM flags (dlag/unix) 7
/* Offset into EEPROM from the start of code 7

char unused[2]; !* unused, reserved 7
struct {

char type; /* Board Identification for this slot 7
char unused[7]; I* reserved for future use 7
uint address; I* Address of the board; in S/MT I/O space 7
uint length; /* Amount of address space taken up by the board 7
Int (*inltfp)(); /* Pointer to an optional initialization function 7

} slots[VM E_SLOTS];
char drivers[7860]; /* Reserve the rest for controller code 7

1;

Mefine VME E D I AG 0 /* Diag has cleared/set EEPROM 7
Mefine VMEE LOADED 1 /* unix has loaded driver Information 7

VME(7) VME(7)

Meflne VMET_CMC
Meflne VMETV3200
#define VMET_VTAPE
Meflne VMET MPCC

FILES

1 /* CMC Ethernet controller */
2 /* Interphase SMO controller */
4 /* Interphase tape controller */
5 /* MPCC */

/dev/vme/al6

/dev/vme/a24

/dev/vme/a321

/dev/vme/a32h

/dev/vme/eeprom

SEE ALSO
ldeeprom(lM), system(4), mem(7).

64K bytes of short address space

32M bytes of standard address space

low 2 gigabytes of extended address space

high 2 gigabytes of extended address space

8K VME interface EEPROM

S/MT Series VME Expansion Technical Reference

- 2 -

VT(7) VT(7)

NAME
vt - virtual terminal

DESCRIPTION
A virtual terminal provides a terminal-like communication channel between
two processes. Each virtual terminal consists of two devices: a slave device,
whose name is of the form /dev/ttypxc, where xx is the virtual terminal number;
and a master device, whose name is of the form /dev/vfcct, where xt is the
virtual terminal number. The slave device responds to system calls just like a
real terminal [see termio (7)] so that it can control interactive programs such as
vi. But instead of doing actual input/output, reads and writes on the slave device
are written and read on the corresponding master device by another process. A
typical use of a virtual terminal is to put a network server on the master device
and login program on the slave.
The master virtual terminal driver is listed as ptc in the /etc/master file; the
slave virtual terminal driver is listed as pts.

The number of virtual terminals must be configured; see config(1M) for details.

The process on the master device can exercise flow control on the slave device,
much as a real terminal would use XON/XOFF to exercise flow control on a
terminal device. The parameterless ioctl (?) TIOCSTOP stops output to the
slave device as if with an XOFF character; the parameterless ioctl (2)
TIOCSTART restarts output, as if with an XON character.

FILES
/dev/ttyp?? slave devices

/dev/vt?? master devices

/etc/master
SEE ALSO

config(lM), ttyname(3C), termio(7).

i

I

WINDOW(7) WINDOW (7)

NAME
window - window management primitives

SYNOPSIS
#include <sys/window.h>

DESCRIPTION
Window management [ww(l)] provides a superset of windowless terminal
features on a Convergent Technologies Programmable Terminal or Graphics
Terminal using an RS-422 connection. This entry describes terminal file
features special to window management. Window management features are
designed not to interfere with programs that do not know about window
management. Such design includes simple extensions to the UNIX system's
standard concepts of fde descriptor and control terminal.

• Each terminal file descriptor has an associated window number, a
small positive integer that identifies a window. A window number is
the most primitive way to refer to a window and should not be
confused with the window ID used by window management
subroutines. A new window gets the smallest window number not
already in use. Closing a window frees its number for possible
assignment to a later window. Output and control calls on the file
descriptor apply only to the descriptor's window; input calls succeed
only when the window is active. trIP A file descriptor created by a
dup(2) or inherited across a fork(2) inherits the original descriptor's
window number. All the file descriptors in such a chain of inheritance,
provided they belong to processes in the same process group, are
affected when ioctl changes the window number of any of them.

• When a process group's control terminal is under window managment,
the process group is actually controlled by a particular window. Such
can have more than one process group, each controlled by a different
window. Keyboard-generated signals (interrupt and quit) go to the
process group controlled by the active window.

When the user creates a new window by using the SPLIT key, the window
manager forks a process for that window. The new process inherits file
descriptors for standard input (0), standard output (1), and standard error (2)
that are associated with the new window. The new process is leader of a
process group controlled by the new window. The new process also inherits the
environment of the parent process, which is the window manager itself.

WINDOW(7) WINDOW (7)

Programs that create and use windows use window management ioctl (2) calls.
Such calls take the form

ioctl (fildes, command, arg)
struct wioctl *arg;

fildes is a file descriptor for terminal and window affected, command is a
window management command (see below) arg is a pointer to the following
structure, declared in <sys/window.h>:

Meflne NWCC 2

struct wioctl {
wndw_t widfltwndw;
wndwt wlwndw;
slot t w!_>*nycpuslct;
slott widestcpuslot;
portt wibport;
char wi_dummy;
unsigned char wi_cc[NWCC];

};
Window management ioctl calls get (WIOCGET) and set (WIOCSET and
WIOCSETP) terminal attributes described in the wioctl structure:

wi_dfltwndw 283u
The window number for the process's default window. If the process
does an open on /dev/tty, the new file descriptor is associated with the
default window.

wi_wndw
The window number for the window that fildes (ioctl's first parameter)
is associated with.

wi_mycpuslot
(This field is required for historical reasons; it is not meaningful to the
hostprocessor.)

wi_destcpuslot
(This field is required for historical reasons; it is not meaningful to the
host processor.)

wi_bport
(This field is required for historical reasons; it is not meaningful to the
host processor.)

WINDOW(7) WINDOW (7)

wi_cc (This field is required for historical reasons; it is not meaningful to the
host processor.) Not used by the CTIX kernel. A value supplied by a
WIOCSET or WIOCSETP is stored in a place associated with window
wp wndw. A subsequent WIOCGET on the same window retrieves the
information.

The window management ioctl commands follow:

WIOCGET 35 lu
Get information on calling process and file descriptor fildes. Fill in
arg.

WIOCSET
Set values for calling process and file descriptor fildes from
information in arg. Has no effect on process group-control terminal
iwiauuiomp.

WIOCSETP
Set values for calling process and file descriptor fildes from
information in arg. The window specified in arg->wi_wndw becomes
the process's group's controlling terminal provided the following:

• The calling process is the process group leader.

• The process group is not currently controlled by another window on
this or any other terminal.

• The specified window is not already a control window.

WIOCLRP
Valid only when executed by process group leader. The process group
ceases to have a control terminal or window and the control
terminal/window ceases to control any process group. The process
group is free to find another control terminal/window, and the old
control terminal/window is free to become the control
terminal/window for another process group.

WIOCCLUSTER
ioctl returns l if and only if the terminal is a cluster terminal.

WIOCDIRECT
Enable direct sending of terminal IPC requests.

WIOCUNDIRECT
Disable direct sending of terminal IPC requests.

WINDOW(7) WINDOW (7)

An open on a terminal special file other than /dev/tty (for example,
/dev/tty256) produces a file descriptor for the lowest-numbered open window.
ioctl can move this file descriptor to any window.

An open can also obtain a controlling terminal/window. The requirements are
the same as for WIOCSETP.

FILES
/dev/tty - control terminal
/dev/tty??? - terminals

SEE ALSO
stty(l), wm(l), dup(2), fork(2), ioctl(2), open(2), wmgetid(3X), wmlayout(3X),
wmop(3X), wmsetid(3X), termio(7), tty(7).

WARNINGS
WIOCDIRECT and wlOCUNDIRECT are required by the operating system.
Their use by user programs is not recommended.

