
f

* -
Convergent Technologies

ENGINEERING UPDATE
for

CTAM Window and Menu Manager

Copyright c 1988 by Convergent, Inc., San Jose, CA. Printed in USA.

Revised (June 1988) B-09-01409-01-6

All rights reserved. No part of this document may be reproduced, transmitted,
stored in a retrieval system, or translated into any language without the prior
written consent of Convergent Technologies, Inc.

Convergent makes no representations or warranties with respect to the contents
_ hereof and specifically disclaims any implied warranties of merchantability or fit-

ness for any particular purpose. Further, Convergent reserves the right to revise
this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

Convergent, Convergent Technologies and NGEN are registered trademarks
of Convergent, Inc.

Art Designer, AutoBoot, AWS, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager, Context Manager/VM, CTAM, CT-DBMS,

CT-MAIL, CT-Net, CTIX, CTOS, CTOS/VM, CWS, Document Designer, GT,
IMAGE Designer, IWS, MiniFrame, Network PC, PC Emulator, PC Exchange,

Phone Memo Manager, PT, S/50, S/120, S/320, S/640, S/1280, S/Series,
Series/2861, Series/386i, Server PC, Shared Resource Processor,

Solution Designer, SRP, TeleCluster, The Cluster, The Operator,
Voice/Data Services, Voice Processor, WGS/Calendar, WGS/DESKTOP,

WGS/Mail, WGS/Office, WGS/SpreadSheet, WGS/WordProcessor, WorkGroup
Servers, and X-Bus are trademarks of Convergent, Inc.

UNIX and RFS are trademarks of AT&T.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of Califor-
nia.

t

Contents

Using Forms and Menus
Introduction 1
Moving Within Forms and Menus 2

CTAM Installation Guide
Introduction 1

CTAM Window Manager Files 1
/etc/lddrv/wxt.o 1
/etc/master 2
/etc/drvload 2
/dev/window 2
/dev/wxt/w### 2

Language Dependant Files 2
/usr/lib/ctam/english_usa/ctwm.rf 3
/usi7lib/ctam/english_usa/dpl.rf 3

Terminal Description Files 3
/usr/lib/terminfo/?/* 3
/usr/lib/ctam/kbntaps/*.kb 4
/usr/lib/ctam/fonts/*.ft 4
/etc/CTWMtermcap 4
/etc/termcap 5

Example 5

B-09-1409-01 Contents ii

Using Forms and Menus

Introduction

This document is targeted for an end user of the DPL Forms and
Menu system, part of the Convergent Terminal Access Method
(CTAM) package on an S/MT system. This guide describes the keys-
troke sequences available to users of applications displaying forms and
menus. After reading this document, you should be able to perform
tasks such as selecting items from menus, filling in edit fields, and

^ ^ handling minor error situations.

Since DPL applications displaying forms and menus run on many ter-
minal types (and therefore, many different keyboards), this guide
may not describe the keys that exactly match your terminal. Wher-
ever possible, a set of key names from various terminals are
described. The primary keynames given are those on the PT/GT ter-
minal.

Some keystroke sequences make use of control codes. These are nor-
mal keys on your keyboard that are pressed while you hold down the
Control key (or Code key on a PT/GT terminal). For example, on
many terminals, the keystroke sequence used to ask the system for
help is Control-h, that is, the letter 'h' is struck while the control key
is held down; this is documented in this manual as "h. Whenever
you see a preceding caret (") in a keystroke sequence, interpret the
sequence as a control code.

B-09-01409-01-B Using Forms and Menus 1

Moving Within Forms and Menus

A form is a display containing fields of various types. Fields vary in
shape and size, depending on the number and format of the items
inside. Some fields take up the whole screen, others take up enough
space for only a few characters. Depending on the type of field,
items in the field can be selected and edited, or selected but not
edited, or if the field is for viewing only, neither selected nor edited.

A menu differs from a form in that it consists of only one field, and it
may or may not take up the entire screen; a menu is actually a field
of selectable, non-editable items. In other words, you can choose an
item on a menu list, but you cannot change any of the items on the
list. Some menus allow you to make more than one selection; when
this is true, the screen provides instructions on how to make your
choices.

In the example form below, the user is asked to make selections in
three fields: to select an entree, to fill in a wine choice, and to select
a dessert.

Select en entree: * Beef
Chicken
Fish

Enter your wine selection:

Select s dessert: * Pie
Ceke
Fruit

Make your selections and press 'Go' to execute,
or press 'Cancel' to exit the form without executing.

The arrow keys (Up, Down, Forward, and Back) and the Tab and
Return keys are used to move the cursor and make selections on the
screen. Fields with more than one item often contain preselected or
default values that can be changed by moving the cursor to another
item in the field. Currently selected items are represented either by a
highlighted bar or by an asterisk (*) that the system places to the left
of selected items.

2 Using Forms and Menus B-09-01409-01-B

In the example form, you would move the cursor within the entree
field (using Up and Down) to make an entree selection. To move the
cursor to the wine field, you would use the Tab key. You would
then type a wine name and press Return. (As with the Tab key,
Return moves the cursor to the next field.) You would then make
your dessert selection (using Up and Down).

To indicate that you are satisfied with your selection and that you
wish it to be processed by the system, you would press the Go key,
also called Do, or Linefeed on other terminals. Some applications ask
you to press the Finish key (also entered as ~d on some terminals)
when you have completed filling out the form. (Recall that ~d means
that you hold the Control key down while you strike the letter 'd' .)

The Cancel key (also entered as "x on some terminals) allows you to
exit a form or menu without executing the currently selected items.

The entree and dessert fields are examples of menu fields, which con-
tain selectable but noneditable items. The wine field is an example of
an edit field, which can be both selected and edited. The prompt line
at the bottom is an example of a text field, which cannot be selected
or edited.

In edit fields, the Backspace key deletes the character to the left of
the cursor. The Forward and the Back keys move the cursor without
deleting existing text. The Delete key deletes the character at the
current cursor position. To insert text in the middle of what you
have already entered, move the cursor to where you wish to insert
and enter the text.

Note that the arrow keys allow you to move the cursor both between
and within fields. For example, the Down key will move the cursor
from "Beef ' to "Chicken" to "Fish", then down to the wine field,
then down to "Pie" to "Cake" to "Fruit", and then it will cycle
through the bottom most field. Similarly, the Up key moves the cur-
sor up through the fields on a form and then cycles through the upper
most field.

To move to another field without changing the selection in a menu
field, move the cursor using Tab or Return.

For more advanced users, a shortcut is available for selecting items in
a menu field. Instead of striking the arrow keys a number of times,
you may enter the first few letters of the choice that you desire, and
the cursor will move to that choice. For the above example, if the
cursor is located in the entree field, entering the letter ' F will move
the cursor to 'Fish'.

B-09-01409-01-B Using Forms and Menus 3

Some fields contain too many items to fit on the screen. In this case,
the system displays a scroll bar to the right of the menu or text field
to indicate that there are more items than those shown. The scroll
bar is a vertical highlighted bar with arrows indicating your relative
position on the list of items. To see items that are off the screen, use
the down arrow key to force the menu to scroll.

Some menu fields allow you to make more than one selection. If you
want to select more than one item, you must use the Mark key
(labelled Select on many other keyboards) to indicate your choices
before pressing Go. Usually when you press Mark, an asterisk
appears next to your choice. To 'unmark' something if you've
changed your mind on a selection, press Mark on that item a second
time.

Due to occasional hardware or software problems, the characters on
the screen may be displayed improperly, such as broken lines around
a menu, or unreadable characters on the screen. The "I control
sequence instructs the system to repaint the screen. If the screen is
still unreadable, you should report the problem to your system
administrator.

On very rare occasions, the entire screen may freeze up, or the system
may appear to ignore your input. For advanced users, the
sequence instructs the system that you would like to exit the applica-
tion that you are running. The system displays a confirmation form
before exiting. Note that this is a potentially dangerous operation
and should be used only as a last resort.

4 Using Forms and Menus B-09-01409-01-B

CTAM Installation Guide

Introduction

This document describes the various components of the CTAM win-
dow system and their places in the CTIX file system. It is intended to
be used by someone adding support for a new terminal or anyone
interested in customizing the operation of CTAM based products.

CTAM Window Manager Files

The CTAM window manager is a CTAM based application program
that works in conjunction with a loadable software device driver
called the wxt driver. In order for the window manager to function
the driver must have been loaded and there must be special files in
/dev that correspond to it. Most systems will want to have the driver
load automatically during boot time and the installation process
causes this to happen by modifying files in /etc.

/etc/lddrv/wxt.o

This is the driver object code. This driver may be loaded and
_ unloaded manually with the lddrv(l) command.

B-09-01409-01-B CTAM Installation Guide 1

/etc/master

The loadable driver must have an entry in /etc/master before it can be
loaded. The installation process will create an entry in this file if
none already exists.

/etc/drvload

During system startup this shell script is executed to load and start
any loadable device drivers used by the system. The installation pro-
cess will append a line to this file to cause the wxt device driver to be
automatically loaded each time the system is re-booted.

/dev/window

/dev/window is a special file that is used to create new windows by
the CTAM library when running under the CTAM window manager.
When a process opens /dev/window the open is re-routed to an
unused window sub-device described below. This special file has the
major number of the wxt driver and minor number zero. Its permis-
sions should allow reading and writing by all users.

/dev/wxt/w###

The window special files are kept in the wxt sub-directory of /dev.
Each file is named by a "w" followed by three decimal digits
representing the device's minor number. Only files named in this way
will work. The installation process automatically creates 255 of these
files, the maximum number.

Language Dependant Files

There are two files that need to be changed when nationalizing
CTAM for use outside the U.S. These files are stored in a sub-
directory of /usr/lib/ctam whose name is controlled by the LANG
environment variable. If the LANG environment variable is not

2 CTAM Installation Guide B-09-01409-01-B

defined, CTAM applications will default to english_usa.

/usrAib/ctam/engIish_usa/ctwm.rf

All of the prompts used by the CTAM window manager are stored in
this file.

/usr/Iib/ctam/english_usa/dpl.rf

This file contains messages and labels common to all DPL based appli-
cations.

Terminal Description Files

The CTAM windowing system has been designed to be extensible to
work with terminals not directly supported in the released product.
Providing support for a new terminal involves adding a number of
files to the system that describe various aspects of the terminal for
various applications. There are two basic ways in which terminal
descriptions are used, the first is by CTAM itself, and the second is by
applications running within CTAM windows.

CTAM applications are written to operate a virtual ANSI X3.64 style
terminal. All output from an application running within a CTAM
window is scanned for escape sequences and other controls that are
converted to whatever is needed to get the actual terminal's screen
updated. However, input from the actual terminal's keyboard is
passed to the application un-touched.

/usr/lib/terminfo/?/*

Two different terminfo files need to be added for every terminal used
with CTAM. First, the terminal must have a standard terminfo
description (see terminfo(4) for a description of terminfo files).
Second, a description of the terminal with the name "ctam"
appended to it must be added. The purpose of this second file is to
enable non-CTAM applications to work within windows. The second

B-09-01409-01-B CTAM Installation Guide 3

description consists of the keyboard definitions of the standard ter-
minfo description and the output sequences of the ctam description.

/usr/lib/ctam/kbmaps/*.kb

Each terminal used with CTAM should have a keyboard description
file. The keyboard description file is an ASCII file consisting of
three columns. The first column contains the name of a CTAM
"meta-key". A complete list of meta-key names is contained in the
file /usr/include/kcodes.h. The second column specifies what the ter-
minal is going to send when the key is pressed. Control characters
can be specified using the same kinds of textual equivalents as in ter-
minfo .ti files. The third column is optional and contains the name
the key will be referred to in prompts to the user by some applica-
tions. Not all keys need be defined, only those which have an obvi-
ous counterpart on the new terminal's keyboard. Meta-keys that are
not defined will have a default multi-key

/usr/lib/ctam/fonts/*.ft

Terminals with additional fonts beyond standard ASCII should have
a font description file. The font description file is similar in format
to a terminfo .ti file. A keyword is followed by an equals sign " = "
which is in turn followed by a definition string and finally terminated
by a comma or end-of-file.

/etc/CTWMtermcap

This file is used by non-CTAM, termcap-based applications running
inside a CTAM window. The file contains a description for the gen-
eric CTAM virtual terminal and keyboard descriptions for several
popular terminals.

w

4 CTAM Installation Guide B-09-01409-01-B

/etc/termcap

All terminals used on a system should have an entry in /etc/termcap
although CTAM applications will not actually use /etc/termcap. The
reason for this is so that tset(l) will correctly set the TERM environ-
ment variable when the user logs in.

Example

In this example, a new terminal will be added to the system. The ter-
minal will be a MicroTerm Act-IVA.

1. Create a terminfo entry for the terminal. In this example, there
happens to already be a description for the terminal called
"act4". The compiled entry for this terminal resides in
lusrlliblterminfolalact4.

2. Check operation of the window manager. Once the terminfo
entry is in place, the CTAM Window Manager should work.
A simple test is to type:

TERM=act4 export TERM
ctwm

The window manager should recognize the terminal and bring
up a default window running a shell. Check to see just how
well everything works. Are the window borders solid or broken
lines? Do any of the arrow keys or function keys work? If the
screen gets wrecked then the terminfo description needs work, if
the borders or function keys don't work but the screen is other-
wise ok, then further steps need to be taken.

3. Create a keyboard description file for the terminal. Make a
new file in lusrlliblctamlkbmaps for the terminal and name it
act4.kb (i.e. name of terminal followed by " .kb"). At a
minimum, put entries for the terminal's arrow keys and func-
tion keys in the file. Check the success of the new keyboard
description file by re-running the window manager.

4. Create a font description file for the terminal. If the terminal
has a graphics font or is somehow capable of drawing solid
lines, then a font description file should be added. In this
example, it would be called lusrlliblctamlfontslact4 .ft. The most
useful font to add is the decgraph entry. Again, check the

B-09-01409-01-B CTAM Installation Guide 5

success of the new font description file by re-running the win-
dow manager.

5. At this point, all CTAM applications (this includes WGS)
should be fully functional. If non-CTAM applications are to be
used under the window manager, then continue.

6. For terminfo based applications to properly .recognize a
terminal's function and arrow keys under the window manager,
a second terminfo description must be added. The second
description contains the keyboard entries of the primary ter-
minfo description and the output entries of the "ctam" terminfo
description. The ctam description is in the file
lusrlliblterminfolclctam. The new file should be called
lusrlliblterminfolalact4ctam.

7. For termcap based applications to properly recognize a
terminal's function and arrow keys under the window manager,
an entry must be made in letclCTWMtermcap. This is consider-
ably easier than adding the second terminfo description since
the termcap file is an editable ASCII file. Append to the file
an entry named act4ctam that describes the terminal's function
and arrow keys followed with a "tc=ctam" entry that will cause
the rest of the entry to be the same as the "ctam" termcap
entry.

6 CTAM Installation Guide B-09-01409-01-B

CTWM(IW) (CTAM) CTWM(IW)

NAME

ctwm - C T A M Window Manager
SYNOPSIS

• s e e CIWH [-r visible rows] [-c visible columns] [-x start column] [-y start row]
[-h height] [-w width] [-e switch key] [-1 command file] [-b] [-1] [-g] [-o] [-p] [-
s] [-t] [initial shell]
wexec l-r visible rows] (-c visible columns] l-x start column] [-y start row] [-h
height] [-w width] [-b] [-f] [-g] [-p] [command]

weoafig [-u max. user windows] [-s max. super user windows]

DESCRIPTION
Ctwm is the CTAM window manager which enables multiple applications to run
simultaneously on a terminal in multiple windows transparent to the application.
With ctwm the output of several programs is coordinated for display on the user's
terminal such that each application is confined to a particular rectangular region or
"window" on the screen. Each window functions as an entire virtuafdisplay screen
distinct from the other windows. Output sent to the screen by an application
program is clipped by the windowing manager to fit in its window's viewport. The
viewport size is defined by the number o f rows and columns visible to the user
between the window borders when the window is un-obscured by other windows.
The size and placement of windows on the screen is arbitrary and completely under
user control.
Application programs are often written to take advantage of an entire screen. CTAM
supports full screen pads, where a pad is the screen area into which the viewport
allows the user to see. Commands are available to scroll the pad, or change the
viewport size to afford a full view of the contents of the pad. Full screen pads are
stored by CTAM for every screen. As a result, programs that are written to use a
whole screen work correctly unchanged under the windowing system. The CTAM
windowing system uses the terminfo(4) database to determine individual terminal
characteristics, as well as the appropriate file under die directories /usr/lib/ctam/fonts
and /usr/lib/ctam/kbmaps. (See FONTS (4w) and KBMAPS (4w).)
The window manager supports features to manipulate windows. By pressing
Control-Z (Code-Z on a Convergent PT or C T terminal), the user enters a mode in
which all of his or her commands are directed to the window manager. The user can
change Control-Z to any other character by setting the switch key option. In most
cases, it is necessary to enter Control-D (Finish on a Convergent FT or GT) to exit
the window manager and return control to the application running in the topmost
window. When in window manager mode, the user's function keys are labeled to
support the following features:

z^^S. CREATE Create a window. By selecting this function key, the windowing
system will create a new window with the user defined window size.
The shell defined by Initial shell is spawned into that window.

SWITCH Switch topmost window. By selecting this function key, the user enters
a mode where the arrow keys on the terminal are used to select the
window to become the new topmost window. It is this window that
will receive input from the keyboard. Down arrow goes forward

Page 1 B-09-01409-01-B 5/25/88

CTWM(IW) (CTAM) CTWM(IW)

through the existing windows and Up arrow goes backward the
existing windows in order, selecting in turn, each window as the new
topmost window. When the user has selected the window that he or
she requires for the new topmost window, be enters Control-D, or
return, to return control to the application program running in that
window. The user can also specify a particular window by either
entering the window number (i.e. 0-9 where 0 is window #10) or tbe
t in t letter of the window label. Control is automatically returned to
the application program running in that window. If two or more
windows have tbe same first letter, the window with the lowest window
number will be activated.

M O V E Moves a window. By selecting this function key, the user enters a
mode where the arrow keys on the terminal are used to move the
current topmost window. The arrow keys can be preceded by a
number to move the window more than one slot at a time. When the
user has placed the window in the desired location, be or she enters
Control-D, or Return, to return control to the application program
running in that window. To move the window more than one space at
a time, a number followed by an arrow key may be used.

G R O W Grows a window. By selecting this function key, the user enters a
mode where the arrow keys on the terminal are used to make the
topmost window grow. Each arrow key grows the corresponding
window border in that direction. Arrow keys may be preceded by a
number to grow the window more than one slot at a time. When the
user has the window the size be or she wants it, he enters Control-D,
or return, to return control to tbe application program running in that
window.

S H R I N K Shrinks a window. By selecting this function key, tbe user enters a
mode where the arrow keys on the terminal are used to make the
topmost window shrink in size. Each know key shrinks the
corresponding window border in that direction. The arrow key may
be preceded with a number to shrink the window more than one slot at
a time. When the user has the window the size he or she wants it, he
enters Control-D, or return, to return control to the application
program running in that window.

S C R O L L Scrolls the pad. By selecting this function key, the user enters a mode
where the arrow keys on the terminal are used to scroll the display in
tbe viewport. The user enters Control-D, or return, to return control
to the application program running in that window. To scroll tbe pad
more than one space at a time, a number followed by an arrow key
may be used.

MAX/PRE Size the window to the maximum or previous size. By selecting this
function key, the user enters a mode where the window size is changed
to the maximum or tbe previous size. Tbe user enters Control-D, or
return, to return control to the application program running in that
window.

MENU Displays a menu of all the existing window labels. The user selects the
desired window and press return to return control to the application

Page 1 B-09-01409-01-B 5/25/88

CTWM(IW) (CTAM) CTWM(IW)

program running in that window.
T O P W I N Switch to top controlling window. This function replaces the

C R E A T E Junction if the -t option is present. This is useful in the
case where the user is only allowed to start new activities through a
particular controlling window. This feature works well with the -s
option (see below) in hiding the operating system from the naive user.

To refresh the screen's current contents, press Control-L (or Code-L). Control-C
(or Code-C) pops up a menu of things to do on the screen.
To enter a shell command, press ! followed by the command and press return. The
command will be echoed on the command line and the command will be executed in
a new window. After the command is finished, the user is prompt to acknowledge
this. Control is returned to the next active window. This feature is disabled if the -s
option is present.

S tar tup Opt ions
The initial shell is the name of the shell that the user would like started up in all new
windows created with the " C R E A T E " key. Vrows and vcols tell the windowing
system how large to make new windows. Start column and start row describe the
initial column and row position of the upper left comer of the first window. The
upper left corner of the screen is at position (0,0).
If no sizing information is provided, ctwm defaults the window size to 22 rows by 78
columns, not counting the border characters. If vrows and/or vcols are set, but not
the Initial positions, when the windowing system creates a new window, it looks for a
free area on the screen.

The -b option, if present, makes all windows borderless windows.

The -/option, if present, makes all windows fixed-size windows.

The -o option, if present, disallows the user from creating windows.

The -s option, if present, disallows the user from entering a shell command on the
command line.

The -(option, if present, makes the resulting window from the corresponding shell
command the top controlling window.

The -p option makes the pad and the viewport the same size.

The -g option prevents the window from scrolling to track the cursor.
If an application requires that the pad be a size other than that of the physical
screen, the height and width options can be used to set the default. "Hie wtty
command can be used to change this from the shell. Programmatically, this can be
changed by means of the WSetArgs CTAM call.
The user can specify a list of commands to be executed in different windows when
the windowing system first starts up by specifying the command list file name with
the command file option. The format of the command list is:

I" #1 t-c #1 [h #1 #11* #1 l-y #1

Page 1 B-09-01409-01-B 5/25/88

CTWM(IW) (C T A M) CTWM(IW)

[-pi (-to] l-f] [-1] shall command (optional

All the options correspond to the C M options. For example,
•f 4 -c 10 data; pwd; I I K (SHELL
(SHELL

will create a 4 by 10 window executing a shell and a full size window executing
another shell.
The windowing system supports a user-configurable background character to occupy
the parts of the screen that do not contain a window. Trial character is defined by
the optional environment variables CTWMJIG and CTWM_ATTR. For example,
the following shell commands set tbe character as the background character, and
run the window manager, starting the C-sbell in a 10 by 20 window:

If the CTWM.BG environment variable is not set, the background character defaults
to blank. The environment variable CTWM_ATTK controls tbe attribute witb which
the background is displayed. The attribute is defined by giving the parameters to the
SGR escape sequence (see escapeHW)) to be used with CTAM_BG. For instance,
setting CTWM_ATTR equal to " 7 would cause the background to be displayed in
reverse video.
Tbe windowing system also supports a user-configurable forms and menu file. Hie
default file is lusrlUblctamltnglishjusolctwm.rf. The user can specify a customized
file by setting the environment variable CTWMLFORM.
It is required that you start ctwm by using the shell's txec function (see example).
When the window manager is run, the users TERM variable must be correctly set to
the terminal on which the windowing system will run. Note that when the initial shell
is spawned by the windowing system, the TERM variable is changed to reflect the
requirements of ctwm. For example, the TERM variable pt is changed to ptctam.
This must remain set in this way lor correct operation of the windowing system. In
addition, ctwm sets the TERMCAP variable to C T W M t e m a p .

Window Signal
If an application running under the window manager wishes to know when any of its
windows is selected or re-sized by the user via the window manager, it should include
a signal catching routine for SIGWIND (signal number 20). This signal will be sent
whenever a window becomes active (selected) or is re-sized by the window manager.
If a program has multiple windows open it should call WGetSelect to see which, if
any, of lis windows is the active window. If the program has windows that can be
re-sized by the user (windows without the F I X E D S t Z E flag set in their window
status structure), then the program should call WGetArgs on each window to see what
actually happened.

wtty(lW), terminfo(4), fonts(4W), kbmaps(4W).
WARNINGS

Ctwm is designed to be run from the host machine. Applications to be run over a
network are supported in windows.

S CTWM.BQ- . ; npor i CTWM.BO
t w t c ctwm -h 10 -w 20 cah

SEE ALSO

Page 1 B-09-01409-01-B 5/25/88

«

DPLRUN(L) (D P L) DPLRUN(L)

NAME
dplrun - Interpret a resource file

SYNOPSIS
dplran [.« Start lngForn] f l le .rf [. . . n i e2 . r f . . .] [-c opts . . .]

DESCRIPTION
dplrun interprets a retoarce file, executing the menu and form information in the
file, file.tf is the name of the resource file. The -» option provides the interpreter
with the name of the starting form to display. If not used, the interpreter loolcs for
the form named • a iBform.
The -e option allows the user to set the values of SI, $2, $3, etc., to be used by the
starting form.

EXAMPLES
dplrun Sterling Form MyFlto.rf

dplrun MyFlto.fi -C H«llo World

Page 1 B-09-01409-01-B 5/25/88

WTTY(IW) (CTAM) WTTY(IW)

NAME
wtty - set window configuration for ctwm

SYNOPSIS
wily [-height height] [-width width 1 [-vrows vrows 1 [-vcols vcols] [-begx begx
] [-oegy begy] [-border] [-fixedsize] [-padwin] [-track]

DESCRIPTION
This command should be run from the shell inside a CTAM window. It is used to
provide information about the window in which it is run or to alter the parameters
for the window.
If given no parameters, wtty reports the beginning X and Y coordinates of the left
hand comer of the window (begx, begy), the number of rows and columns in tbe
viewport (vrows. vcols), the height ana width of the pad (height, width), whether the
window has borders, and whether tbe pad and the viewport are the same size. See
the description of ctwm for a discussion on pads and viewports.
Height and width affect the size of the pad. Vrows and vcols affect the size of the
viewport. Begx and begy affect the beginning coordinates: the upper left corner of
the window. The -border flag causes the window to be displayed without borders
surrounding it. Tbe -padwin flag causes the pad and viewport to be "locked"
together and always be equal. The -fixedsize flag prohibits the user from changing
the window size with the window manager. The -track flag enables scrolling of the
window to track the cursor.

SEE ALSO
ctwm(lW), WGetArgs(3W).

Page 1 B-09-01409-01-B 5/25/88

FONTS(4W) (CTAM) FONTS(4W)

NAME

fonts - CTAM Font mapping files
SYNOPSIS

/usr/lib/ctam/fonts/*. ft
DESCRIPTION

CTAM employs a font description database in order to map the virtual font set
available to an application to the actual fonts available on the terminal. If no fonts
beyond ASCII are available in the terminal then no font description file is needed.
However, if the terminal is capable of displaying different fonts then these fonts need
to be described with a font description file.
It is assumed that the terminal has one or more alternate fonts that may be selected
and de-selected by use of multi-character sequences. These character sets are
referred to as "alternate character sets". CTAM allows up to three different
alternate character sets to be used to describe fonts. In order to correctly map
CTAM'i idea of what characters are going to appear on the screen it is necessary to
establish a mapping between CTAM'i virtual fonts and the terminal's real fonts.
First, the sequences to switch between the terminal's alternate character sets must be
specified. For example, if the terminal has a special graphics font that is selected by
the sequence (lBh, 65h) and de-selected by the sequence (lBh, 66h) then the font
file would contain the following:

•maea2«Et, tmac«2-EB,

The font mapping for each CTAM virtual character set is specified by a string
containing sequences of three tuples. The first character in each tuple gives tbe
position in the CTAM virtual character set by the equivalent ASCII character. The
second character civet the position in the terminafs font of the desired physical
character also by u e equivalent ASCII character. The third character specifies the
alternate character set number to be used when display the character or a " ' to
indicate just that tbe high order bit should be set when displaying the character.
Alternatively, if tbe terminal has a font that exactly matches a [articular CTAM
virtual font then that may be specified by the name of the virtual font, followed by
an equals, followed by a single character representing the alternate character set that
must be used to display that font.
Names of virtual fonts include: usascii, ukascii, decmulti, dec graph, ct graph, ctline,
userl, user2, and user3. Alternate character set 1 should be specified in the
terminal's terminfo description file using the smacs and rmacs capabilities. Two
additional alternate character sequences may be defined in the font map file using
smacs2, rmacs2, smacs3, and rmacs3.

EXAMPLE
The Fortune terminal has an alternate character set containing many of the same
symbols as the CTAM C T Graphics character set. In the following example, nine of

' these special characters are mapped from the Fortune Systems Graphics Character
Set onto tbe C T Graphics virtual font:

•imea-"tt, rmaes-'O,
ctgraph*X81 >>1 <01 Ml 151 »11 l<1 771 ~V1.

Tbe mapping string is made up of nine three-tuples each specifying a single
character. White space in the mapping string is ignored. The first three-tuple states

Page 1 B-09-01409-01-B 5/25/88

FONTS(4W) (CTAM) FONTS(4W)

that the 'X' position of tbe CT Graphics Character Set (58 hex) is displayed by
outputting an '8' (38 hex) when tbe terminal is in alternate character set 1.

FILES
/usrflib/ctam/fonts/Vft - Terminal font description database

SEE ALSO
terminfo(4).
For descriptions of the decgraph, and decna l t i character sets refer to the VT-220
Programmer's Reference Manual EK-VT220-RM or equivalent. For descriptions of
etgraph, and d l i a e character sets refer to the Convergent Programmable Terminal
Programmer's Guide, figures A-3, and A-2.

Page 1 B-09-01409-01-B 5/25/88

KBMAPS(4W) (CTAM) KBMAPS(4W)

NAME

kbmaps - C T A M keyboard mapping files
SYNOPSIS /usr/lib/ctam/kbmaps/*. kb
DESCRIPTION

CTAM programs access files in the directory lusrlliblclamlkbmaps (or a directory
named by the KBMAF environment variable) to determine information about a
terminal's keyboard beyond what is described by terminfo(4). The information in
tbe terminal's keyboard description file supersedes whatever information is specified
in terminfo. The files in lusrlliblctamlkbmaps consist of lines of three fields each.
Tbe first field specifies the internal name of a key. A complete list of valid internal
names is contained in lusrlincludelkcodes.h. The second field specifies what tbe
terminal sends when that key is pressed. The third field is optional and if present
gives the keycap label for the key.

Key Semantics
Tbe semantics of CTAM metakeys varies from one application to another. However,
since the internal names of some metakeys do not accurately reflect their common
usages, a list of basic keys and tbeir meaning is presented here:

RollUp Scroll down
RoIIDn Scroll up
Page Next page
s_Page Previous page
Forward Right arrow or character right
Back Left arrow or character left
U p U p arrow or line up
Down Down arrow or line down
Home Beginning of page
s_Home End of page
Beg Beginning of document
End End of document
Next Shift right arrow, next word
Prev Shift left arrow, previous word
s_Forward Control right arrow, full scroll right
s_Back Control left arrow, full scroll left
ClearLine Erase field
DleteChar Character delete
InputMode Toggle insert/replace mode

EXAMPLE
Tbe following example is from a keyboard mapping file for a Fortune terminal.

Fortune keyboard description fll«

F1 'Aa'MFI
F2 AbMF2
F3 *Ac*MF3
F4 VUTMF4
FS 'A»"MF5
FS AIMF6

Page 1 B-09-01409-01-B 5/25/88

K B M A P S (4 W) (CTAM) KJBMAPS (4W)

F7
Ft
FO
F10
Halp
•.Pag*
Bag
Pag*
End
Horn*
• Horn*
N*xt
Prav
Entar
bipulMod*
DlateChar

"AoMFT
"AhMF8
"AIMF9
AkMFlO
"A@rMH.lp
"A»~MPr»vScm
"ASMt-Pr»vScrn
"Au 'MNolScm
'AU'Ma-NaxIScni
'AX'Ma-Up
'AY-Ma-Oown
"AZ-Ma-RIgM
-AWMs-laN
-Aq 'MElKllta
"ArMlnierl
AIMDttot*

W A R N I N G S
It is important to avoid ambiguities in keyboard definitions. If one key sequence is a
sub-set of another key sequence, the shorter of the two will always prevail. A
system integrator adding support for a new terminal should watcn out for this
potential problem as CTAM does not check.

SEE ALSO
fonts(4W), terminfo(4).

Page 1 B-09-01409-01-B 5/25/88

mailto:A@rMH.lp

ESCAPE(7W) (CTAM) ESCAPE(TW)

NAME

escape - window escape codes
DESCRIPTION

CTAM windows emulate an extended ANSI X3.64 style terminal where special
sequences of characters embedded in the output stream control certain aspects of the
window. These aspects include character display attributes like reverse video and
underlining as well as scrolling and erasing. Sequences of special characters written
to the window via wprintf (3W), wputc (3W), and wpuls (3W) are interpreted by
CTAM along with normal text.
There are three broad categories of control sequences: CO controls, CI controls, and
multiple character. CO control sequences are the familiar ASCII controls such as
ODh (carriage return) and OAh (linefeed). CI control sequences may be sent in two
ways, as a single eight-bit value or as the ASCII escape code lBh followed by a
second character. Multiple character sequences all begin with tbe CI control called
the Control Sequence Introducer. The CSI control code may expressed as the single
eight bit value 9Bh, or as the two character sequence lBh SBb (Escape [). This type
ofcontrol sequence is used for more complex operations.

CO Controls
Name Seqaeace Deacrlptloa
NUL OOh HuM (Ignored)
BEL 07h Sound Ben
BS 08h Bacfctpacellcof > 1
HT OOh Horizontal tab
LF OAh Linefeed; tcrol up St bottom ot toon region.
VT OBh Vertical tab; down one or tcrofl up at bottom

01 toon region.
FF OCh Form Feed; tame n VT
CR OOh Cerrltge Return; cursor moves to column 1
SO OEh Shift out; telecta 0 1 character eel for GL
SI OFh Shift In; selects 00 character set lor GL

CI Controls
Name Sequence Deacrlptloa
MO 84h or Esc 0 Index (tame t t linefeed)
HTS •Bh or EM H Horizontal tab set
ni 6Dh or Etc M Reverse Index; tcn>l down In row 1
SS2 0BiorEscN Single thlft 02 Into GL tor the next character
SS3 BFh or Etc 0 Single shift G3 Into GL for the next character
NEL B5h or Etc E New Line; move to column 1 of next line
CSI 8Bh or Esc (Control Sequence Introducer; see below

SC Etc 7 Save cursor potltan and cursor attributes
RC Esc 8 Restore cursor position and attributes.
LS fR E sc " Lock shift Gt Into GO
LS2 Eac n Lock shift G2 Into 0 1
LS2R Etc) Lock shift 02 Into OR
LS3 Esc o Lock thin G3 Into GL
LS3R Etc I Lock thlfl G3 mio GR

Page 1 B-09-01409-01-B 5/25/88

E S C A P E (7 W) (CTAM) E S C A P E (7 W)

Multiple Character Sequences
Name Sequence Description
CUP CSl Psl ; Ps2 H Move cursor to column Ps1, tow Ps2
c u u CSl Pn A Move cursor up Pn Unas
CUD CSl Pn B Move cursor down Pn Nnes
CUF CSl Pn C Move cursor forward Pn columns
CUB CSl Pn D Move cursor back Pn columns
CNL CSl E Move cursor to column 1 of next line
CPL CSl F Move cursor to column 1 of previous Una

SU CSl Pn S ScroH up Pn Hnes
SD CSl Pn T Scroll down Pn Hnes

DCH CSl Pn P Delete Pn positions
ICH CSl Pn <3 Insert Pn positions
ECH CSl Pn X Erase (change to space) next Pn positions

DL CSl Pn M Delate Pn lines
IL CSl Pn L Insert Pn lines

ELO CSIO K Erase cursor to end of line
EL1 CSl 1 K Erase beginning of tine to cursor
EL2 CSl 2 K Erase entire line

EDO CSIO J Erase cursor to end of display
EDI CSl 1 J Erase beginning of display to cursor
ED2 CSl 2 J Erase entire display

SGRO CSl 0 m Set ell attributes to normal
SGR1 CSl 1 m Select bold
SGR2 CSl 2 m Select dim
SGR4 CS I4 m Select underline
SGR7 CSl 7 m Select reverse
SGR9 CSl 9 m Select struck out
SGR21 CSl 21 m Turn off bold
SGR22 CSl 22 m Turn off dim
SGR24 CSl 24 m Turn off underlining
SGR27 CSl 27 m Turn off reverse
SGR29 CSl 28 m Turn off struck out

TBCO CSIO 0 Remove horizontal tab slop
at current position

TBC3 CSl 3 g Remove all horizontal tab stops

CSR CSl Pst :Ps2 r Set scroll region

Page 1 B-09-01409-01-B 5/25/88

E S C A P E (7 W) (CTAM)

Dsn CSI n Device status report

CTSLPO CSI - 0;Ps2 @ Move to prompt Una, column P*2 (see CTSLN)
CTSLP1 CSI - 1;Ps2 @ Move to tag Una, column Ps2 (see CTSLN)
CTSLP2 CSI - 2:Ps2@ Move to SLK hie. column Pa2 (see CTSLN)
CTSLP3 CSI - 3;Ps2@ Move la command Ina. column Ps2 (see CTSLN)
CTSLN CSI - Pst q Set tie number of acVve noise Ines

(Before any apedel <ne positions (CTSLPO-3)
can be used, CTSLN must be used.)

CTVISO CSI - OC Make cursor vtsble
CTVIS1 CSI - 1 C Mske cursor Invisible
CTMF CSI - Ps1;.. R Map fonts Ps1... to GO...
CTSU CSI - Psl ;Ps2;Pn (i Scrol Ines Ps1 tfi rough Ps2 up Pn Ikies
CTSD CSI - PBl;Ps2;Pn T Scrol Ines Ps1 through Ps2 down Pn Unas
CTWN CSI - W Write window number
CTDSR CSI - b Device status report
CTSGR CSI -Ps1;Ps2m Select Pel - on meek; P*2 - off mask
CTSM2 CSI - 2 h Clear and enable window label
CTSM7 CSI - 7 h Save cursor (same as SC)
c r m o N CSI • 3 h Enable cursor tracking
CTTROFF CSI - 31 Disable cursor tracking
CTRM2 CSI - 21 Disable window lebel
CTRM7 CSI - 71 Restore cursor (same aa RC)
CTRESET CSI - P Reset window to Initial modes
CTSD CSI - Ow Disable ecfoMng
CTSE CSI - 1 w Enable scroling

E S C A P E (7 W)

DECCOLM CSI 7 3 h
DECOM CSI 7 S h
DECAWM CSI 7 7 h
DECTCEM CSI 7 25 h
DECRM3
DECRMB
DECRM7

CSI 7 3 I
CSI 7 0 I
CSI 7 7 I

DECRM25 CSI 7 25 I
DECDSR CSI 7 n

Sat window width to 132 ookjmns
Set origin (1.1) to be top of sen* region
Enable autowrap at column BO
Same aa CTVISO
Set window width to 80 column*
Set origin to be lop of screen
Disable autowrap
Same a* CTVIS1
Device status report

DSOO Eac (F
DSG1 Esc) F
DSG2 Esc * F
DSG3 Etc* F

Designate character aet GO, 01,02, or G3 as lont F where F Is:
'A' tor UK ASCII, *B' for US ASCII, t>' tor DEC special graphics, '< ' lor
DEC muWnallonal,for PT special graphlce. '2' tor user font 1,
"3* for user font 2. or '4' for user lont 3.

FILES
Anr/include/ctam.b

Page 1 B-09-01409-01-B 5/25/88

