
CONVERGENT TECHNOLOGIES

D O C U M E N T A T I O N U P D A T E
for

CTIX O P E R A T I N G SYSTEM M A N U A L A S S E M B L I E S
Version C, Second Edition, Volumes 1 thru 4

(SAC- 20Bx, SAC- 2014x, SAC- 20Cx, SAC- 20Fx)

Revised Augus t 15, 1990

Trademark Notice

Convergent Technologies, NGEN, MegaFrame and
MightyFrame are registered trademarks of Convergent
Technologies, Inc.

WGS/Office, WGS/Desktop Manager, WGS/Word Processor,
WGS/Spreadsheet , WGS/Mai l , WGS/Calendar, Workgroup
Solutions, P C Exchange, S /640 , S /320 , S /222 , S /221 , S /220 ,
S /120 , MiniFrame, AWS, IWS, Server PC, PT, GT, CTIX,
CTTX/380 and CTOS are trademarks of Convergent
Technologies, Inc.

C I I X and CT1X/386 are derived from U N I X System V
software, under license from AT&T. U N I X is a trademark of
AT&T.

B-09-01977-01-F

TABLE OF CONTENTS

SECTION TITLE P A G E

1. G eneral Description of the Documentat ion
Update 1

B-09-01977-01-F

1. General Description of the Documentation Update

This Documenta t ion Update is for the CTTX Operating System
Manua l , Version C, Second Edit ion. I t contains manual pages
for utilities provided on 6.2-2 CTIX releases (with n u m b e r of
pages for each) .

The pages to be included in the CTIX Operating System Manual,
Volume 1, are:

1. c r a s h (l M) - examine system images (l i p)

2. h i n v (l M) - hardware inventory (2p)

3. i o p d u m p (l M) - upload a Front^end I / O Processor ' s R A M
(IP)

The pages to be included in the CTIX Operating System Manual,
Volume 2, are:

1. s e r s t a t (l M) - display serial port error statistics (2p)

iopdumpf 1M) is a new utility, so this is the first version of a
man page.

The pages to be included in the CTIX Operating System Manual,
Volume S, are:

1. get t imeofday(2) - ge t / se t date and time (2p)

2. not i fy(2) - manage notifications (5p)

3. moni tor (3C) - prepare execution profile (2p)

4. s leep(3C) - suspend execution for interval (l p)

B-09-01977-01-F
Page 1 of 1

CRASH(IM) CRASH(IM)

NAME
crash - examine system images

SYNOPSIS

/etc/crash [-d dumpfile] [-n namelist] [-w outputfile]

DESCRIPTION
The crash command is used to examine the system memory image of a live or a
crashed system by formatting and printing control structures, tables, and other
information. Command line arguments to crash are dumpfile, namelist, and
outputfile.
Dumpfile is the file containing the system memory image. The default dumpfile
is /dev/kmem. The system image can also be slice zero of the raw disk that
contains the dump area (for example, /dev/rdsk/cOdOsO); or it can be the
pathname of a file produced using dd to copy slice zero or just the dump area;
or in the case of a tape dump, the second file on the tape.
The unstripped executable file namelist contains the symbol table information
needed for symbolic access to the system memory image to be examined. The
default namelist is /etc/Iddrv/unix.exec if examining a running system or
/etc/lddrv/prev.unix.exec if examining a dump. If neither of these files exists,
the default is /unix. If a system image from another machine is to be examined,
the corresponding prev.unix.exec must be copied from that machine. The
prev.unix.exec is preferred to /unix because it also contains the namelist for all
the loaded drivers at the correct addresses.

When the crash command is invoked, a session is initiated. The output from a
crash session is directed to outputfile. The default outputfile is the standard
output.

Input during a crash session is of the form:

function [argument...]

where function is one of the crash functions described in the FUNCTIONS
section of this manual page, and arguments are qualifying data that indicate
which items of the system image are to be printed.

The default for process-related items is the current process for a running system
and the process that was running at the time of the crash for a crashed system.
If the contents of a table are being dumped, the default is all active table entries.

The following function options are available to crash functions wherever they
are semantically valid:

CRASH(IM) CRASH(IM)

-e Display every entry in a table,

-f Display the full structure.

-p Interpret all address arguments in the command line as physical
addresses.

-s process Specify a process slot other than the default,

-w file Redirect the output of a function to file.

Note that if the -p option is used, all address and symbol arguments explicitly
entered on the command line will be interpreted as physical addresses. If they
are not physical addresses, results will be inconsistent.

The functions mode, defproc, and redirect correspond to the function options
-p, -s, and -w. The mode function may be used to set the address translation
mode to physical or virtual for all subsequently entered functions; defproc sets
the value of the process slot argument for subsequent functions; and redirect
redirects all subsequent output.

Output from crash functions may be piped to another program in the following
way:

function [argument...]! shell_command

For example,

mount I grep rw

will write all mount table entries with an rw flag to the standard output. The
redirection option (-w) cannot be used with this feature.

Depending on the context of the function, numeric arguments will be assumed
to be in a specific radix. Counts are assumed to be decimal. Addresses are.
always hexadecimal. Table address arguments larger than the size of the
function table will be interpreted as hexadecimal addresses; those smaller will
be assumed to be decimal slots in the table. Default bases on all arguments may
be overridden. The C conventions for designating the bases of numbers are
recognized. A number that is usually interpreted as decimal will be interpreted
as hexadecimal if it is preceded by Ox and as octal if it is preceded by 0.
Decimal override is designated by Od, and binary by Ob.

Aliases for functions may be any uniquely identifiable initial substring of the
function name. Traditional aliases of one letter, such as p for proc, remain
valid.

Many functions accept different forms of entry for the same argument.
Requests for table information will accept a table entry number, a physical

C R A S H (I M) C R A S H (I M)

address, a virtual address, a symbol, a range, or an expression. A range of slot
numbers may be specified in the form a-b where a and b are decimal numbers.
An expression consists of two operands and an operator. An operand may be an
address, a symbol, or a number; the operator may be +, -, *, /, &, or I. An
operand which is a number should be preceded by a radix prefix if it is not a
decimal number (0 for octal, Ox for hexidecimal, Ob for binary). The expression
must be enclosed in parentheses (). Other functions will accept any of these
argument forms that are meaningful.

Two abbreviated arguments to crash functions are used throughout. Both
accept data entered in several forms. They may be expanded into the following:

table_entry = table entry I address I symbol I range I expression

start_addr = address I symbol I expression

FUNCTIONS
? [-w file] List available functions.

!cmd Escape to the shell to execute a command.

adv [-e] [-w file] [[-p] table_entry ...]
Print the advertise table.

base [-w file] number ...
Print number in binary, octal, decimal, and hexadecimal. A number in
a radix other then decimal should be preceded by a prefix that
indicates its radix as follows: Ox, hexidecimal; 0, octal; and Ob, binary.

buffer [-w file] [-format] bufferslot

or

buffer [-w file] [-format] f -p] start_addr
Alias: b.
Print the contents of a buffer in the designated format. The following
format designations are recognized: -b, byte: -c, character; -d,
decimal; -x, hexadecimal; -o, octal; -r, directory; and -i, inode. If no
format is given, the previous format is used. The default format at the
beginning of a crash session is hexadecimal.

bufhdr [-f] [-w file] [[-p] table_entry ...]
Alias: buf.
Print system buffer headers.
The -f option produces different output depending on whether the
buffer is local or remote (contains RFS data).

CRASH(IM) CRASH(1M)

callout [-w file]
Alias: c.
Print the callout table.

cblk [-e] [-p] [-w file] [-t type] [table_entry ...]
Display contents of cblocks.

clist [-e] [-p] [-w file] [-t type] [table_entry ...]
Display usage of clists.

conbuf [-w file]
Display console buffer.

dballoc [-w file] [class ...]
Print the dballoc table. If a class is entered, only data block allocation
information for that class will be printed.

dbfree [- w f i l e] [class...]
Print free streams data block headers. If a class is entered, only data
block headers for the class specified will be printed.

dblock [-e] [-w file] [-c class...]

or

dblock [-e] [-w file] [[-p] table_entry ...]
Print allocated streams data block headers. If the class option (-c) is
used, only data block headers for the class specified will be printed.

defproc [-w file] [-c]

or

defproc [-w file] [slot]
Set the value of the process slot argument. The process slot argument
may be set to the current slot number (-c) or the slot number may be
specified. If no argument is entered, the value of the previously set
slot number is printed. At the start of a crash session, the process slot
is set to the current process.

dis [-w file] [-a] start_addr [count]
Disassemble from the start address for count instructions. The default
count is 1. The absolute option (-a) specifies a non-symbolic
disassembly.

disk [-w file]
Display disk information.

drvtable [-w file]
Display loadable driver table information.

- 4 -

CRASH (1M) CRASH(IM)

ds [-w file] virtual_address ...
Print the data symbol whose address is closest to, but not greater than,
the address entered.

fcallout [-w file]
Alias: fc.
Print the fast callout table.

file [-e] [-w file] [[-p) table_entry ...]
Alias: f.
Print the file table.

findaddr [-w file] table slot
Print the address of slot in table. Only tables available to the size
function are available to findaddr.

findslot [-w file] virtual_address ...
Print the table, entry slot number, and offset for the address entered.
Only tables available to the size function are available to findslot.

fs [-w file] [[-p] table_entry ...]
Print the file system information table.

gdp[-e] [- f] [-wf i le] [t-p] table_entry ...]
Print the gift descriptor protocol table.

gt Equivalent to

tty -t gt

(See tty function below.)

help [-w file] function ...
Print a description of the named function, including syntax and aliases.

inode [-e] [-f] [-w file] [[-p] table_entry ...]
Alias: i.

Print the inode table, including file system switch information.

iopl6 Equivalent to

tty -t iopl6

(See tty function below.)

kfp [-w file] [-s process] [-r]

or
kfp [-w file] [-s process] [value]

Print the frame pointer for the start of a kernel stack trace. The kfp

CRASH(IM) CRASH(IM)

value can be set using the value argument or the reset option (-r),
which sets the kfp from the saved kfp in a dump. If no argument is
entered, the current value of the kfp is printed.

lck [-e] [-wf i le] [[-p] table_entry ...]
Alias: 1.
Print record locking information. If the -e option is used or table
address arguments are given, the record lock list is printed. If no
argument is entered, information on locks relative to inodes is printed.

linkblk [- e] [-wf i l e] [[-p] table_entry ...]
Print the linkblk table.

major [-w file] [entry ...]
Print the MAJOR table.

map [-w file] mapname ...
Print the map structure of the given mapname.

mbfree [-wf i l e]
Print free streams message block headers.

mblock [-e] [-w filename] [[-p] table_entry ...]
Print allocated streams message block headers.

mode [-w file] [mode]
Set address translation of arguments to virtual (v) or physical (p)
mode. If no mode argument is given, the current mode is printed. At
the start of a crash session, the mode is virtual.

mount [-e] [-w file] [[-p] table_entry ...]
Alias: m.
Print the mount table.

msg [-e] [-f] [-p] [-w file] [-s process]
[table_entry ...]

Display IPC message queue headers.

msginfo [-p] [-w file]
Display IPC message information.

msgtext [-e] [-p] [-w file] [-s process]
[table_entry...]

Display IPC message data.

nm [-w file] symbol...
Print value and type for the given symbol.

CRASH(IM) CRASH(IM)

notify [-e] [-p] [-w file] symbols

od [-p] [-w file] [-format] [-mode] [-s process]
start_addr [count]

Alias: rd.
Print count values starting at the start address in one of the following
formats: character (-c), decimal (-d), hexadecimal (-x), octal (-o),
ASCn (-a), or hexadecimal/character (-h), and one of the following
modes: long (-1), short (-t), or byte (-b). The default mode for
character and ASCII formats is byte; the default mode for decimal,
hexadecimal, and octal formats is long. The format -h prints both
hexadecimal and character representations of the addresses dumped;
no mode needs to be specified. When format or mode is omitted, the
previous value is used. At the start of a crash session, the format is
hexadecimal and the mode is long. If no count is entered, 1 is
assumed.

pdt [-e] [-w file] [-s process] section segment

or

pdt [-e] [-w file] [-s process] [-p] start_addr [count]
S/640 Only:
The page descriptor table of the designated memory section and
segment is printed. Alternatively, the page descriptor table starting at
the start address for count entries is printed. If no count is entered, 1 is
assumed.

pfdat [-e] [-w file] [[-p] table_entry ...]
Print the pfdata table.

pfree [-e] [-p] [-w file] table_entry ...
Display free list entries.

phash [-e] [-p] [-w file]
Display page hash table.

proc [-e] [-f] [-w file] [[-p] table_entry ... #procid ...]

or
proc [-f] [-w file] [- r]

Alias: p.
Print the process table. Process table information may be specified in
two ways. First, any mixture of table entries and process ids may be
entered. Each process id must be preceded by a #. Alternatively,
process table information for runnable processes may be specified with

CRASH(IM) CRASH(IM)

the runnable option (-r).

pt Equivalent to

tty -t pt

(See tty function below.)

qrun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-p] table_entry ...]
Print streams queues.

quit Alias: q.
Terminate the crash session.

rcvd [-e] [-f] [-w file] [[-p] table_entry ...]
Print the receive descriptor table.

redirect [-w file] [-c]

or

redirect [-w file] [file]
Used with a file name, redirects output of a crash session to the named
file. If no argument is given, the file name to which output is being
redirected is printed. Alternatively, the close option (-c) closes the
previously set file and redirects output to the standard output.

region [-e] [-f] [-w file] [[-p] table_entry ...]
Print the region table.

scsi [-w file]
Display SCSI tables.

scsirqb [-f] [-w file] [tbl_entry I start_addr]
Display SCSI request blocks.

sdt [-e] [-w file] [-s process] section

or

sdt [-e] [-w file] [-s process] [-p] start_addr [count]
S/640 Only:
The segment descriptor table for the named memory section is printed.
Alternatively, the segment descriptor table starting at start address for
count entries is printed. If no count is given, a count of 1 is assumed.

CRASH(IM) CRASH(IM)

search [-p] [-w file] [-m mask] [-s process] pattern
start_addr length

Print the words in memory that match pattern, beginning at the start
address for length words. The mask is anded (&) with each memory
word and the result compared against the pattern. The mask defaults
to Oxffffffff.

ser Equivalent to

tty -t ser

(See tty function below.)

shm [-e] [-f] [-p] [-w file] table_entry ...
Display IPC shared memory headers.

shminfo [-p] [-w file]
Display system IPC shared memory information.

size [-w file] [-x] [structure_name ...]
Print the size of the designated structure. The (-x) option prints the
size in hexadecimal. If no argument is given, a list of the structure
names for which sizes are available is printed.

sndd [-e] [- f] [-wf i le] [[-p] table_entry ...]
Print the send descriptor table.

sptb [-e] [-p] [-w file] [start_addr]
Display sptballoc maps.

srmount [-e] [-w file] [[-p] table_entry ...]
Print the server mount table.

stack [-w file] [-u] [process]

or

stack [-w file] f -k] [process]

or

stack [-w file] [[-p] -i start_addr]
Alias: s.
Dump stack. The (-u) option prints the user stack. The (-k) option
prints the kernel stack. The (-i) option prints the interrupt stack
starting at the start address. If no arguments are entered, the kernel
stack for the current process is printed. The interrupt stack and the
stack for the current process are not available on a running system.

CRASH(IM) CRASH(IM)

stat [-w file]
Print system statistics.

stream [-e] [-f] [-w file] [[-p] table_entry ...]
Print the streams table.

strstat [-w file]
Print streams statistics.

swap Display swap map statistics.

swapinfo

Display swap statistics.

trace [-w file] [-r] [process]

or
trace [-w file] [[-p] -i start_addr]

Alias: t.
Print stack trace. The kfp value is used with the -r option. The
interrupt option prints a trace of the interrupt stack beginning at the
start address. The interrupt stack trace and the stack trace for the
current process are not available on a running system.

ts [-w file] virtual_address ...
Print closest text symbol to the designated address.

tty [-e] [- f] [-wf i le] [-t type [[-p] table_entry ...]]

or

tty [-e] [- f] [-wf i le] [[-p]start_addr]
Valid types: ser, pt, gt, vt, wxt, iopl6.
Print the tty table. If no arguments are given, the tty table for all tty
types is printed. If the -t option is used, the table for the single tty type
specified is printed. If no argument follows the type option, all entries
in the table are printed. A single tty entry may be specified from the
start address.

unnotify [-e] [-p] [-w file] [-s process] symbols
Display queued notifications for process.

user [-f] [-w file] [process]
Alias: u.
Print the ublock for the designated process.

var [-w file]
Alias: v.
Print the tunable system parameters.

- 10-

CRASH(IM) CRASH(IM)

vt Equivalent to

tty -t vt

(See tty function above.)

vtop [-w file] t -s process] start_addr...
Print the physical address translation of the virtual start address.

wxt Equivalent to

tty -t wxt

(See tty function below.)

FILES
/dev/kmem system image of currently running system

/dev/rdsk/c?d?sO used to access system image on disk

-11 -

HINV(IM) HINV(IM)

NAME
hinv - hardware inventory

SYNOPSIS
/etc/hinv option

/etc/hinv hardware-item

DESCRIPTION
The hinv command provides hardware configuration information. There are
two forms of the command: in the first form, an option is given and the result is
printed on stdout; in the second form, a particular hardware item is specified,
and hinv exits with 0 if it exists, or with 1 otherwise.

Option is one of the following:

-p Print hardware configuration. Items are printed one per line,

-c Print CPU type,

•f Print FPU type,

-s Print system type.

-u Returns a meaningless value of 128; included for compatibility
only.

-m Print total physical memory in bytes.

Hardware-item is one of the following:

68881 68881 floating-point processor.

iop Tferminal accelerator board.

422 Any RS-422 cluster board.

422-2 Two-channel RS-422 cluster board.

422-4 Four-channel RS-422 cluster board.

vme VME interface board.

s n RS-232 board n.

scsi A SCSI interface is present.

SO On-board SCSI is present.

S n SCSI Combo board n.

ipt Interphase tape controller is in EEPROM.

smd Interphase SMD controller is in EEPROM.

HINV(IM) HINV(IM)

BUGS

mpcc Multiprotocol Communications Controller is in EEPROM.

serial Gives number of serial ports present,

disks Gives number of disks present,

eeprom VME EEPROM valid for UNIX.

enet Ethernet Combo Board is present or a CMC Ethernet board is in
EEPROM.

cmcenp CMC Ethernet board is in EEPROM.

En Ethernet Combo board n.

In IOP16 board n is present (n = 1.. 4).

The him command does not know about VME cards.

IOPDUMP(IM) IOPDUMP(IM)

NAME
iopdump - upload a Front-end I/O Processor's RAM

SYOPNSIS

/usr/local/bin/iopdump t-p] [-i iopl6number] address length

DESCRIPTION
Iopdump uploads and displays length number of memory data bytes beginning
at address from a Front-end I/O Processor.
The address argument is a hexadecimal value.

The length argument is a decimal value.

The default Front-end processor is an 10P.

The -i option specifies that the type of Front-end I/O Processor is an IOP16. For
the -i option, the number iopnumber must be a decimal number in the range 0
to 3. There is no default number.

The -p option causes the retrieved data to be printed as an ascii hexadecimal
dump to the standard output. Without this option the binary data is sent to the
standard output.

BUGS
For the IOP16, iopdump obtains only the data from the first board.

SERSTAT(IM) SERSTAT(IM)

NAME
serstat - display serial port error statistics

SYOPNSIS
serstat

DESCRIPTION
The serstat command reports error status information about groups of serial tty
ports. The command supports IOP16 ports. The command does not currently
support IOP and RIOP ports. When first invoked, serstat finds the four ports
with the largest number of total errors logged and displays the logged errors.

The command then runs in "automatic" mode, in which it scans all serial ports
for any change of status. As port status changes, serstat updates the display to
ensure that the four ports with the largest number of errors logged are displayed
at all times. Ports with fewer errors logged are replaced as other ports with
more errors logged are displayed. A message at the bottom of the screen
indicates which port has most recently changed.

The serstat program can also be run in "scan" mode and "continuous" mode.
In scan mode, serstat scans sequential groups of ports every three seconds and
displays the errors. In continuous mode, serstat continues to scan and update
the currently-displayed ports only.

To exit serstat, generate a keyboard interrupt.

Once serstat is running, use any of the following one-character commands:

r Redraw the screen. No mode change,

a Redraw the screen. Start automatic mode.

m Redraw the screen with ports having the most errors. Start automatic
mode.

s Redraw the screen Start scan mode,

c Redraw the screen Start continuous mode.

The program displays data from the following status structure maintained by the
serial driver in the kernel:

struct MTMTVtat {
ulnt •»_ttyhog; r tty Input hog statu* achieved (ttln) */
ulnt se l f lushed; r hog* Input queuee discarded (ttln) */
ulnt **_ldr«pp*d; r Input char(a) dropped (ttln, serrlnt) */
ulnt M_norbuf; /* no receive buffer available (aerrlnt) •/
ulnt se_othrottle; r output throttled, low citato (T HIWATER) */
ulnt seoflushed; /* hogs output queue discarded (ttxput) */

SERSTAT(IM) SERSTAT(IM)

uint ee_odropped; 1* output char(a) dropped (MraMnd, aeraend) */
ulnt se_notbuf; r no transmit buffer available (ttout) '/
ulnt ae_rxorun; 1* receiver overrun (aerrlnt) */
ulnt seexatat; 1* external status change (aertlnt) */
ulnt aa_pa; r parity errors (aarrlnt) */
ulnt ae_frame; /* CRCftramlng error (aarrlnt) */

};
All fie ds are incremented once per event occurrence except se_idropped and
se_odropped. These two fields try to keep track of the number of characters
dropped for that particular error event instead of the number of times that error
event occurred Note that 256 characters or more can be lost when the input
queue is flushed, but the only record of this event is a single increment to the
seif lushed field

The field se_exstat counts the number of external status changes occurring on a
port. A break condition or change in the Carrier Detect or Clear To Send lines
increments this number. These are not normally error conditions, but may be of
interest.

SEE ALSO
termio(7).

NOTE
This utility is intended for diagnostic use by qualified system administrators; it
is not a basic user command

BUGS
Scan mode displays ports which might not be present in the system.

If run on a system without an IOP or IOP16, serstat reports a read error and
terminates.

GBTTIMEOFD A Y (2) GET TMEOFDAY(2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#in elude <sys/time.h>

int gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

int settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is
obtained with the gettimeofday call, and set with the settimeofday call. The
time is expressed in seconds and microseconds since midnight (0 hour), January
1, 1970 (GMT). The resolution of the system clock is hardware dependent, and
the time may be updated continuously or in "ticks." If tzp is a NULL pointer,
the time zone information will not be returned or set.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_Mc; /* second* alnc* Jan. 1,1970 */
long IV UMC; /* and mlcroaaconda*/

};

atruct thnazona {
Int tz_mlnut*ewe*t; /* of Greenwich */
Int tz_dattlme; /* typ* of dat correction to apply */

);
The timezone structure indicates the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that
Daylight Savings Time applies locally during the appropriate part of the year.

(M y the super-user can set the time of day or time zone.

Note that you must link the sockets library to your program. Use -lsocket in the
compile command line.

SEE ALSO
date(l), adjtime(2), ctime(3C).

RETURN VALUE
A 0 return value indicates that the call succeeded. A -1 return value indicates

GBTTIMEOFD/ Y(2) GETTIMBOFD A Y (2)

an eirc occurred, and in this case an error code is stored into the global
variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

NOTIFY (2) NOTIFY(2)

NAME
notify, unnotify, evwait, evnowait - manage notifications

SYNOPSIS
^include <notify.h>

int notify(type, arg, tag)
ushort type;
char *arg;
char *tag;

int unnotify) type, arg)
ushort type;
char *arg;

ushort evwait(tag, datum)
char **tag;
char **datum;

ushort evnowait(tag, datum)
char ••tag:
char ••datum;

DESCRIPTION
The notify system call interface allows a user process to record a number of
events that it is interested in, and then waits for any one of them. Like select (2),
it does synchronous I/O multiplexing, but notify waits for a wider range of
events and thus has greater functionality than select.

The notify call requests a notification or set of notifications.

The unnotify call retracts an earlier request (or set of requests) for notification.

The evwait call waits for a notification to be posted to the calling process.

The evnowait call returns the first notification if one exists, returning
immediately otherwise.

Notifications are posted FIFO (first-in, first-out) in the user process, each evwait
returning the first notification or blocking until one is posted. When a notify call
is given the user must supply the type of notification, a tag, and an argument.
The tag is an arbitrary number the size of a (char *), which is returned by any
evwait call triggered by that notification request Tbe argument is type specific
and is described below.

The return values of evwait and evnowait are the type of the notification.

It is an error for notify to be called with a type and arg matching a currently
active notification.

NOTIFY (2) NOTIFY(2)

The notify calls support the following type s:

NFDREAD
Queue a notification if the file descriptor arg is readable at the time of
the notify call, and subsequently whenever there is data to be read. A
notification is also queued at end-of-file or when the number of writers
on a pipe goes to zero. The datum returned from an evwait is a count of
the number of bytes available to be read. At EOF the datum is -1, and
the request is deleted. This type is implemented for sockets, pipes,
ttys, and streams.

N_FD WRITE
Queue a notification if the file descriptor arg is writable at the time of
the notify call, and subsequently when the file goes from a non-
writable to a writable state (that is, output is not blocked). Datum is
the number of characters writable. This type is implemented for
sockets, pipes, and streams.

NJSIGNAL
Queue a notification on receipt of a signal. This is used in conjunction
with regular signal catching [see signal(2)]. When signal notification is
in effect, all caught signals queue notifications instead of causing
pseudo-interrupts. If multiple instances of a caught signal occur
before the process has received the notification, the returned type is
N_LOSTSIG rather than NJSIGNAL. Ignored or defaulted signals are
handled normally. Signals are not reset upon notification.

Note that only one call to notify

notify (N_SIGNAL,ignored,tag)

is required to enable notification of all signals that have a signal
catching function (use a null function). Evwait and evnowait return the
tag and datum. Datum is a bitwise OR of all queued signals: that is,
low-numbered signals are represented as low-order bits (signal n sets
2n_1).

NUMSGREAD, NUMSG WRITE
Queue a notification if the message queue described by arg is or
becomes readable or writable, respectively. The datum returned is the
number of messages received or the number of characters that can be
sent, respectively. When the message queue is removed, datum is -1,
and the request is deleted.

N1NDIR
If type is N_1NDIR, arg is acually a pointer to an array of the following

NOTIFY (2) NOTIFY(2)

structure (defined in /usr/include/notify.h):

struct n_rsqusst {
ushort type;
chsr *arg;
char Mag;

}

The array should be terminated with an entry having type N_liVDIR. The entire
set of notifications is either placed or removed. N_INDIR is never returned by
evwait or evnowait.

NQUERY
Type N_QUERY is valid only as an argument to the notify call, arg is a
pointer to an array of struct nindir , and tag is a pointer to an int
containing the number of elements in the array.

On return, the array contains the current active notifications in a form
suitable for passing to notify or unnotify (that is, terminated by
NJCN'DIR), and the int pointed to by tag contains the number of active
notifications (even if there was not enough space to copy them all
back).

NSEMOP
Queue a notification if the semaphore described by the struct
n_semop (below) pointed to by arg would not block, is released, or is
removed. Datum is semval unless the semaphore has been removed, in
which case it is -1.

struct n_s*mop {
Int ssmld;
short ssm
short ssm

}

SEE ALSO
fcnd(2), msgop(2), pipe(2), read(2), select(2), signal(2), socket(2), wait(2),
termio(7).

f ssmaphor* ID */
num; /* ssmaphor* number */
op; r semaphore operation */

NOTIFY (2) NOTIFY(2)

DIAGNOSTICS
All calls return -1 on error, setting errno to one of the following:

[EINVAL] Invalid type was given

[EINVAL] Caller never did a notify (unnotify, evwait, evnowait)

[EINVAL] File is not of a valid type (N FDREAD, N_FD WRITE).

[EBADF] File is not open (N FDREAD, N_FDWRITE)

[EBADF] Invalid message queue descriptor (N_UMSG)

[ENOSPC] No space available to allocate notification queue header

[ENOSPC] No space available to allocate table entry for this notification

[ENOSPC] Too many active notification requests for given space
(N_QUERY)

[EFAULT] An address fault was generated by a user-supplied pointer

EXAMPLE
flnciud* "aya/typaa.lf
tfnckida <*yatootlfy.h>
#fc>clude <atdlo.h>
IHnclud* <algnal.h>

bit «lg_catchO;

m«ln()
{

Int tag, datum, I;
char buf[BUFSIZ];
uahort rv, evwah();

aatbuf̂ atdout, NULL);
K (notHy(N_FDREAD, 0, T) < 0)

parrorOiotlty for N_FDREAD of atdln failed"), axH(1);

If (notHy(N_SIGNAL, 2, V) < 0)
perrorfhotlfy fallad"), exlt(1);

for (bO; U20; I++)
algnal<l, alg_catch);

NOTIFY (2) NOTIFY(2)

r Walt for an event */
rv s •vwalt(&tag, &datum);

r Tall tha uaar about It 7
prlntffOv: %d tag: %d datum: %d0, rv, tag, datum);

>
•witch (tag) {
caaa'a':

break;
caaa't':

r Read tha Input */
gete(buf);
prlntf("read '̂ a'O, buf);
If ("buf =r= 'q")
•*«(0);
break;

}
}

}
alg_catch()
{

}
WARNING

The notify system call interface is not portable, has little likelihood of becoming
so, and may disappear in future releases of CTIX. It is therefore recommended
that you use the poll{2) system call, and that existing software using notify be
changed to use poll.

MONITOR (3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*Iowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc -p automatically i ncludes calls for
monitor with default parameters; monitor need not be called e plicitly.

monitor is an interface to profit (2). lowpc and highpc are tht addresses of two
functions; buffer is the address of a (user supplied) array c * bufsize WORDs
(defined in the <mon.h> header file), monitor arranges to r ;ord a histogram
of periodically sampled values of the program counter, and oi counts of calls of
certain functions, in the buffer. The lowest address samplec is that of lowpc
and the highest is just below highpc. lowpc may not equal 0 for this use of
monitor. At most nfunc call counts can be kept; only calls of functions
compiled with the profiling option -p of cc(1) are recorded.

prof (I) can then be used to examine the results.

The name of the file written by monitor is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, mon.out is created in the current
directory. If PROFDIR exists but has no value, monitor does not do any
profiling and creates no output file. Otherwise, the value of PROFDIR is used as
the name of the directory in which to create the output file. If PROFDIR is
dirname, then the file written is dirname/pid.mon.out, where pid is the
program's process ID. (When monitor is called automatically by compiling via
cc -p, the file created is dirname I pid.progname, where progname is the name of
the program.)

The following discussion is a sketch of monitor usage.

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no less than one half of the range of
locations sampled.

To profile the entire program, put the following at the start of main():

extern etext;

monitor ((int (»)())2, &etext, buf, bufsize, nfunc);

MONITOR (3C) MONITOR (3C)

etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results, put the following at the end
of main():

monitor ((int (*)())0, 0, 0, 0, 0);

Do not compile with the -p option. Run the program and use prof(l) to view
the results in the output file mon.out.

FILES
mon.out

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

BUGS
The "dirname/pid. mon.out" form does not work; the
"dirname/pid.progname" form (automatically called via cc -p) does work.

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: (1) Because scheduled wakeups occur at fixed one-
second intervals, (on the second, according to an internal clock, and (2) because
any caught signal terminates the sleep following execution of that signal's
catching routine. Also, the suspension time may be longer thar. requested by an
arbitrary amount due to the scheduling of other activity in uie system. The
value returned by sleep will be the "unslept" amount (the requested time
minus the time actually slept) in case the caller had an alarm se to go off earlier
than the end of the requested sleep time, or premature arousi! due to another
caught signal.

The routine is implemented by setting an alarm signal and pa sing until it (or
some other signal) occurs. The previous state of the alarm sif lal is saved and
restored. The calling program may have set up an alarm sign .1 before calling
sleep. If the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred. Ths caller's alarm
catch routine is executed just before the sleep routine returns. But if the sleep
time is less than the time till such alarm, the prior alarm time is reset to go off at
the same time it would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

WARNING
Sleep uses signal(2) , not sigset(2) , to reset the caller's SIGALRM handler
routine. Therefore the signal action is reset to its default action on execution of
the SIGALRM handler. This is probably not what the programmer intended if
sigset(2) had originally been used to set the signal action.

Sleep uses a longjmp which returns to the sleep context when the alarm(2)
signal handler routine is executed. This may cause premature preemption and
loss of context from other nested signal handler routines.

