

. Burroughs

Reference
Manual

Priced "em
Printed In U.S.A
June1984 •

1168499

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or iriformation complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained :herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

This edition includes the information released under the following:
peN 1168499-001, dated January, 1985.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation-West, Burroughs Corporation, 1300 John Reed
Court, City of Industry, California 91745, U.S.A.

Burroughs m
/

PUBLICATION
CHANGE

NOTICE

peN No.: 1168499-001 Date::;.;Ja::.:nc.:..:u;:.:;a:.:.r...L..y-'I:...;:9'-"8::..::5~ ____ _
Publication Title: B 20 Systems Sort/Merge Reference Manual (June 1984)

Supersedes: __________________________________ _

Description: This peN updates the manual to the 5.0 system software level.

Replace these pages

iii
vii
ix
1-1
3-1 thru 3-5
3-9 thru 3-11
4-1
4-7
5-3
6-1
6-11
1

Add these pages

3

Copyright © 1985, Burroughs Corporation, Detroit, Michigan 48232

Printed in U.S. America
1168499-001

iii

iv

LIST OF EFFECTIVE PAGES

Page

iii
iv
v thru vi
vii
viii
ix
x
1-1
1-2
2-1 thru 2-5
2-6
3-1
3-2 thru 3-3
3-4 thru 3-6
3-7 thru 3-9
3-10
3-11
3-12
4-1
4-2
4-3 thru 4-6
4-7 thru 4-8
5-1 thru 5-2
5-3 thru 5-4
5-5 thru 5-8
6-1
6-2 thru 6-10
6-11 thru 6-12
6-13 thru 6-14
A-1 thru A-6
B-1 thru B-6
C-1 thru C-2
Index-1 thru Index-4

Issue

PCN-001
peN-001
Original
peN-001
Blank
peN-001
Original
Original
peN-001
Original
Blank
peN-001
Original
peN-001
Or' i ginal
peN-001
Original
peN-001
Original
peN-001
Original
peN-001
Or iginal
peN-001
Original
peN-001
Original
PCN-001
Original
Original
Original
Original
PCN-001

Section

2

1168499

TABLE OF CONTENTS

Title

INTRODUCTION • •

CONVENTIONS USED IN THIS MANUAL. •

OVERVIEW • • • . • • • • •
SORT/MERGE FEATURES. • •
SORT AND MERGE UTILITIES
OBJECT MODULE PROCEDURES

CONCEPTS . • • • • • . • •
ORDER OF SORTED RECORDS.
KEY TYPES •••••••

Binary • • • • • • • •
Byte String .••••.••••
Character String • • • • • •
Decimal (Odd)/Decimal (Even) •
Display ••••••••••
Integer •••••••••••
Long/Short/Extended IEEE •
Long/Short Real ••.•••

MULTILEVEL SORT CAPABILITIES •
MERGING •••••••••

SORT UTILITY • • • •. •• • •
INTRODUCTION • • • • • • • •
ACTIVATING SORT ••
FIELD DESCRIPTIONS •.
CuSTOMIZING SORT • • • • • • • •
PROCESSING INPUT RECORDS • •• • • • • • •

SortInStart •••.•• • • • • • ••••
SortIn • • • • • • • • •
SortInDone • • • • • • •

PROCESSING OUTPUT RECORDS. •
SortOutStart • • • • •
SortOut •••••••• •• • •
SortOutDone •••• • • • .). • •

INPUT ERROR HANDLING • • • • • • • • • •
BUILDING A CUSTOMIZED SORT UTILITY • •

MERGE UTILITY ••••
INTRODUCTION • • • •
ACT!VATING MERGE • •
FIELD DESCRIPTIONS
CUSTOMIZING MERGE.

.
.

. . . .

Page

ix

x

1-1
1-1
1-2
1-2

2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-5

3-1
3-1
3-1
3-2
3-7
3-8
3-8
3-8
3-9
3-9
3-9
3-9

3-10
3-10
3-12

4-1
4-1
4-2
4-2
4-4

v

Section

4 (Cont)

5

6

A

vi

TABLE OF CONTENTS (Cont)

Title

PROCESSING OUTPUT RECORDS.
MergeOutStart
MergeOut • • •
MergeOutDone •

ERROR HANDLING • • • • •
SEQUENCE BREAK HANDLING. • • • •
BUILDING A CUSTOMIZED MERGE UTILITY.

OBJECT MODULE PROCEDURES • • • • •
KEY-IN-RECORD SORT PROCEDURES.
DATA TYPES •
KEY TYPES •••••••

Binary • •
Byte • • •
Character •••
Decimal. •
Long/Short Real.
Integer ••••••.•••
IEEE Real.
Short IEEE Real •.
Long IEEE Real •
Display. • • •••.

EXTERNAL-KEY SORT PROCEDURES •
STATUS BLOCK •

OPERATIONS • •
OVERVIEW • • •
ConcludeSort • • • •
DoSort • • • • • • • • • • •
PrepareKeySort • • • • • • • • •
PrepareSort.. •••• • •••
ReleaseRecord ••••••
ReleaseRecordAndKey •••
ReturnRecord • • •
ReturnRecordAndKey •
TerminateSort ••

STATUS CODES • • • • • •
GENERAL. • • • • • • • • • • •
EXT£RNAL-KEY SORT
KEY-IN-RECORD SORT
SORT UTILITY • • • • • • .
MERGE UTILITY •••

Page

4-5
4-5
4-5
4-6
4-6
4-7
4-8

5-1
5-1
5-2
5-5
5-5
5-6
5-6
5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8

6-1
6-1
6-5
6-6
6-7
6-8
6-9

6-10
6-11
6-12
6-13

A-1
A-1
A-2
A-4
A-5
A-6

TABLE OF CONTENTS (Cont)

Section Title Page

B CALLING SORT OBJECT MODULES FROM
PROGRAMMING LANGUAGES · · · · . B-1

GENERAL . · · · · . B-1
BasicPrepareKeySort · · B-1
Basic PrepareSort · · · . . B-4

C GLOSSARY OF TERMS · · · · · . . . C-1

INDEX 1

LIST OF TABLES

Table Title Page

5-1 Format of a Key Component Descriptor •...••. 5-2
5-2 Types of Key Components. • • • . • . .••• 5-3
5-3 Key Types and Programming Language

Representation. • • • . • •••. 5-4
5-4 Status Block Format. 5-8
6-1 Contents of PrepareSortBlock .••...••••• 6-2
6-2 Contents of Key Descriptor •. ••. 6-4

1168499-001 vii

INTRODUCTION

This' manual provides descriptive and operational information for
the Burroughs Sort/Merge utility used in Burroughs B 20 System
applications. The information is presented as follows:

Section 1:
Section 2:
Section 3:
Section 4:
Section 5:
Sect:on 6:
Appendix A:
Appendix B:

Appendix C:

Overview
Concepts
Sort Utility
Merge Utility
Object Module Procedures
Operations
Status Codes
Calling Sort Object Modules from

Programming Languages
Glossary of Terms

The following technical manuals are referenced within this
manual:

B 20 Operating System (BTOS) Reference Manual

B 20 Systems Programmer's Guide, Part I

B 20 Systems BASIC Compiler Reference Manual

B 20 Systems COBOL II Reference Manual

B 20 Systems FORTRAN Reference Manual

B 20 Systems Indexed Sequential Access Method (ISAM)
Reference Manual

B 20 Systems Linker/Librarian Reference Manual

B 20 Systems Pascal Reference Manual

B 20 Systems Standard Software Operations Guide

1168499-001 ix

I

CONVENTIONS USED IN THIS MANUAL

UPPERCASE LETTERS
You must type items in uppercase letters in the order shown. You
can enter them in either uppercase or lowercase. For example:

$END

LOWERCASE LETTERS

Items in lowercase letters are variable information that you
supply. For example:

$LOG 'message'

SQUARE BRACKETS

Items in square brackets are usually optional information. You
do not type the brackets. For example:

$JOB jobname,username[,password][,SysOutfile]

Note, however, that you must type square brackets in full file
specifications (refer to the last example) and in device names.
For example:

[Kbd]

OTHER PUNCTUATION
You type all punctuation (except square brackets around optional
items) as shown. For example:

$JOB jobname,username,password

FILE SPECIFICATIONS
Where indicated, the full file specification for an abbreviated
file specification, such as FileO.Run, is:

{node}[vol]<dir>FileO.Run

x

SECTION 1

OVERVIEW

The Burroughs Sort/Merge facility is a system software product
that sorts and merges data. Sort/Merge arranges a sequence of
data records into a sorted sequence, or merges several sequences
of sorted records into a single sorted sequence.

Sort/Merge consists of:

• an interactive Sort utility

• an interactive Merge utility

• key-in-record sort procedures

• external-key sort procedures

SORT/MERGE F,EATURES

All the components of Sort/Merge support variable-length records
and fixed-length keys. Sort/Merge supports sorts with a
composite sort key put together either by the application program
or by Sort/Merge, using key-in-record sort procedures.

Sort/Merge allows flexible specification of the sort key; it can
be composed of multiple fields of a record with each field
designated ascending or descending.

In addition, the interactive Sort/Merge utilities are distributed
in both Run file and object module format. The latter format
allows you to tailor the utilities through the addition of
special user-written procedures (see sections 3 and 4)'-

Sort/Merge makes efficient use of the B 20 Operating System
(BTOS) capabilities by employing all available workstation memory
as well as auxiliary disk files in its procedures.

1168499-001 1-1

I

SORT AND MERGE UTILITIES
The interactive Sort and Merge utilities sort or merge records
contained in Standard Access Method (STAM) files. Direct Access
Method (DAM) and Indexed Sequential Access Method (ISAM) use STAM
files for fixed length records, and Record Sequential Access
Method (RSAM) for variable length records.

The B 20 Operating System (BTOS) Reference Manual descr i bes these
file access methods. Also see the B 20 Systems Standard
Standard Software Operations Guide.

The Sort utility accepts several files of unsorted records and
sorts and merges the records to create a single output file.

The Merge utility accepts several files of sorted data records
and merges them into a single sorted output file.

You activate the Sort and Merge utilities from the Executive as
described in sections 3 and 4.

OBJECT MODULE PROCEDURES
The Sort/Merge object module procedures consist of
sort procedures and external-key sort procedures.
them into an application system and call them from
programming languages, such as BASIC, COBOL (which
Sort verb), FORTRAN, and Pascal.

key-in-record
You can link
many
uses the COBOL

When you use key-in-record sort procedures, the application
program presents a single formula for extracting the sort key
from each data record. The application program releases only
data records, since the associated keys are extracted from the
records automatically.

When you use external-key sort procedures, the application
program must specify the sort key for each record as it is
released to the sort.

1-2

SECTION 2
CONCEPTS

ORDER OF SORTED RECORDS
You decide the order in which you want records to be sorted and
enter this parameter into the Sort/Merge facility.

Consider the records:

City

Brigham
Logan
Murray
Ogden
Price
Provo
Salt Lake City
South Salt Lake
Tooele

Population

5,641
11,868
5,740

43,688
5,214

18,071
149,934

5,701
5,001

As shown, the records are properly sorted in ascending
alphabetical order by city. They could also be sorted in
descending alphabetical order, and in ascending or descending
numerical order by population.

All records have values that the system compares to determine
their proper order. These values are called sort keys.

In the preceding example, the sort keys are Brigham, Logan,
Murray, etc. If the same records were sorted in descending
numerical order by population, the sort keys would be 149,934,
43,688, 18,071, etc., and the sorted records would be:

City

Salt Lake City
Ogden
Provo
Logan
Murray
South Salt Lake
Brigham
Price
Tooele

1168499

Population

149,934
43,688
18,071
11,868
5,740
5,701
5,641
5,214
5,001

2-1

KEVTVPES
To allow most data representations specified in each programming
language to be used as keys, Sort/Merge supports 12 types of
keys.

A brief description of each key type follows. For more
information on the relationships between key types and
programming language representations, see table 5-3.

Binary

A binary key is an unsigned 1- to 8-byte integer. The high­
address byte of a binary key is the most significant for
determining sort order. For COBOL CaMP fields, the low-address
byte is the most significant.

Byte String

A byte string key is an un interpreted fixed-length string of 1 to
64 binary bytes. The low-address bytes of the string are the
most significant for determining sorting order. A distinction is
made betwe~n uppercase and lowercase ASCII characters. Byte
strings have the same representat"ion in all programming
languages.

Character String

A character string key is a fixed-length string of 1 to 64 binary
bytes. Like a byte string, a character string is sorted with the
low-address byte as the,most significant. However, unlike a byte
string, character string keys are sorted with no distinction
between uppercase and lowercase ASCII characters. Character
strings have the same representation in all programming
languages.

Decimal (Odd)/Decimal (Even)

A decimal key contains two decimal digits in each byte, except
for the last (high-address) byte, where the rightmost four bits
are reserved for a sign. This format is the same as COBOL
COMP-3.

2-2

Decimal (even) is used for values that have an even number of
digits; decimal (odd) is used for values that have an odd number
of digits. The number of digits before the number is packed·
determines whether the (even) or (odd) decimal type is used.

A decimal key can contain 1 to 18 decimal digits. ~ecimal fields
have the same representation in all programming languages. For
more information about this type of field, see the B 20 Systems
COBOL II Reference Manual.

Display

A display key is used in COBOL applications for USAGE IS DISPLAY
numeric fields. All COBOL sign options are supported. Display
keys can be 1 to 19 bytes long and contain 1 to 18 decimal
digits. For more information about the range of values and
representations for display keys, see the B 20 Systems COBOL II
Reference Manual.

Integer

An integer key is a signed 1- to 8-byte integer. The high­
address byte of an integer key is the most significant for
determining sort order. However, for COBOL COMP fields, the low­
address byte is the most significant.

Long/Short/Extended IEEE

Long IEEE, short IEEE, and extended IEEE keys are used for real
numbers in Pascal or FORTRAN applications. The high-address byte
is the most significant byte for determining ~ort order.

A long IEEE key is 8 bytes long, a short IEEE key is 4 bytes
long, and an extended IEEE key is 10 bytes long.

Long/Short Real

Long real and short real keys are used in BASIC applications. A
long real key is an 8-byte real number; a short real key is a
4-byte real number.

For information regarding the number of bits of prec1s1on and
range of val ues for these keys, see the B 20 Systems BASIC
Compiler Reference Manual.

]168499 2-3

MULTILEVEL SORT CAPABILITIES
You can form a sort key by combining several parts of the record.
Sort/Merge does multilevel sorts and keeps track of which
components of the composite key are sorted in ascending order and
which are sorted in descending order. For example, consider the
records:

Part Number

98-374
97-392
93-495
94-592

Backlog

100
200
206
100

Suppose you want to sort these in descending order by backlog
and, for records with the same backlog, in ascending order by
part number. The results of this sort example are:

Part Number

93-495
97;..392
94-592
98-374

Backlog

200
200
100
100

The external-key object module procedures do not support
composite keys. The application system provides a single key
with each record.

2-4

MERGING
The Merge utility merges copies of several existing files and
writes the merged records into a new Standard Access Method
(STAM) file. The original files are untouched. For example, if
one file contains the records:

City

Salt Lake City
Provo
Logan
South Salt Lake
Brigham

Population

149,934
18,071
11,868

5,701
5,641

and another file contains the records:

Cit
ogd~n
Murray
Price
Tooele

po~u1ation
4 ,688

5,740
5,214
5,001

the results of merging these files in descending order by
population are:

City

Salt Lake City
Ogden
Provo
Logan
Murray
South Salt Lake
Brigham
Price
Tooele

1168499

Population

149,934
43,688
18,071
11,868

5,740
5,701
5,641
5,214
5,001

2-5

INTRODUCTION

SECTION 3
SORT UTILITY

The interactive Sort utility is a part of the Sort/Merge facility
that you activate directly from the Executive. It sorts
preexisting files of data records according to sort keys embedded I
within those records.

The files can be any STAM files. You can create files with RSAM
or DAM, or they can be the data store file of an ISAM data set.
In ISAM, the result of the sort is a file that is accessible with
RSAM or DAM, but is not a new ISAM data set. If you wish to
create a new ISAM data set, consul t the B 20 Systems Indexed
Sequential Access Method (ISAM) Reference Manual.

Sort has special features to deal with input files that might
contain malformed records. These features are described later in
this section.

ACTIVATING SORT
To activate Sort from the Executive, you type Sort in the command
field of the Executive command form and then press RETURN. The
following form is displayed:

Sort
Input files
Output file
Keys
[Stable sort?]
[Work file 1]
[Work file 2]
[Log file]
[Suppress confirmation?]

You must fill in the first three fields. The remaInIng five
fields are optional. Specify the default in an optional field by
leaving it blank. After you have. filled in the appropriate
fields, press GO.

1168499-001 3-1

FIELD DESCRIPTIONS
Following are descriptions of each field that appear when you
activate Sort:

Input files

Output file

Keys

3-2

specifies a list of the names of one or more
files to be sorted. Separate the names with
spaces, not commas. Each file must be a STAM
file. All valid records in these files are
sorted; deleted records are skipped. When Sort
detects a malformed record, it activates the

'error handling facilities described later in this
section.

specifies the name of the file to which Sort
writes the sorted output. The output file is
written with RSAM. However, if all of the input
records have the same size, the output file is
accessible with either DAM or RSAM.

specifies how sort keys are embedded within each
data record. Although the input records can be
of varying lengths, all must have a prefix of
common fixed length containing the sort keys.

If you want a multilevel sort, you must enter
several specifications in the Keys field. Each
specification represents one component of the
sort key. Separate the specifications with
spaces, not commas. If there is more than one
specification, the ones that appear first are
more significant in determining sort order than
the ones that appear later.

Each key component specification has the form:

TypeName:Length.Offset.AorD.WorM

where

TypeName
specifies the internal representation of the
key component .. It is one of the following
strings: Binary, Byte, Character, Decimal,
Integer, LongReal, ShortReal, LongIEEE,
ShortIEEE, ExtendedIEEE real, and Display.
Capitalization is not significant (for
example, shortreal and SHORTreal are
equivalent) ..

1168499-001

Also, you can use any unique abbreviation
instead of a fully spelled TypeName (for
example, C or Char for Character). The
meanings of these key types are:

•

•

•

•

•

•

•

Binary: the key component is a 1- to
8-byte unsigned number. The colon and
length following the TypeName are
optional. The default is 2.

Byte:. the key component is a sequence of
binary bytes of length specified by
Length. The first byte is the most
significant.

Character: the key component is a
sequence of text characters of length
specified by Length. For purposes of
sorting, lowercase alphabetic characters
(61h through 7Ah) are mapped to the
corresponding uppercase alphabetic
characters (4lh through SAh). Thus, a is
equivalent to the letter A. The first
byte is the most significant.

Decimal: the key component is a packed
decimal number in the format used by
COBOL COMP-3 numeric data items. The
number of digits in the packed decimal
number is specified by length and must be
in the range 1 through 18.

LongReal: the key component is an 8-byte
real number used by BASIC. You must omit
the colon and Length following this
TypeName.

ShortReal: the key component is a 4-byte
real number used by BASIC. You must omit
the colon and Length following this
TypeName.

Integer: the key component is a 1- to
8-byte signed number. The colon and
length following the TypeName are
optional. The default is 2.

3-3

3-4

• Display: the key component can be 1 to
19 bytes long and is used in COBOL
applications for USAGE IS DISPLAY numeric
fields. For the range of values and
representations for display keys, see the
B 20 Systems COBOL II Reference Manual.

• Long IEEE: the key component is an
8-byte real number used by all pro~
gramming languages except BASIC.
(However, Long, Short, and Extended IEEE
numbers do not work with COBOL, which has
no real numbers.)

• ShortIEEE: the key component is a 4-byte
real number used by all programming
languages except BASIC.

• ExtendedIEEE: the key component is a
IO-byte real number used by all
programming languages except BASIC.

Length
specifies the length of the key component as
a positive decimal number. This number is
interpreted according to the TypeName it
modifies, as described earlier.

Offset

AorD

specifies a decimal number representing the
relative byte position of the key component
within a data record. For example, an offset
of 0 means that the key component starts at
the beginning of the record.

specifies the order in which you want merged
records arranged. A specifies that the
records be arranged so that this key compo­
nent is in ascending order. D specifies that
the records be arranged so that this key com­
ponent is in descending order.

1168499-001

Sort order is determined according to the
type of key component. Thus, negative real
numbers are understood to be smaller than
positive real numbers; negative packed
decimal numbers are understood to be smaller
than positive packed decimal numbers.

As an example, suppose the records to be
sorted have the form:

Offset Field Lensth ~

0 Name 18 bytes Character
18 Address 80 bytes Character
98 Category 2 bytes Binary

100 Identifi- 8 digits Decimal
cation
Number

To sort these records in ascending order by
Name, and descending order by Identification
Number, enter the following in the Keys
field:

Character : lB. O. A
Decimal : B. 100. D

To sort these records in descending order by
Identification Number, ascending order by
Category, and ascending order by Name, enter
the following in the Keys field:

Decimal : B. 100. D
Binary : 2. 98. A
Character : 18. O. A

WorM
specifies computer language application
programs. Enter W for programs written
to run in BASIC, FORTRAN, and Pascal.
Enter M for programs written in COBOL.
The default is w.

3-5

I

[Stable sort?] specifies whether you want a stable sort. The
default is No.

[Work file 1]
[Work file 2]

[Log file]

3-6

Enter ~s for stable sort. A sort is said to be
stable if input records whose sort keys are equal
always appear in the output in the same order as
they appear in the input.

You should specify a stable sort only if one is
necessary, since a stable sort takes longer to
complete.

specify the names of two files Sort will use as
work files. Sort requires a pair of work files,
each approximately the same size as the input
data. If you specify files that already exist,
Sort uses these files and returns them at the end
of the sort. If you specify files that do not
exist, Sort creates them and deletes them at the
end of the sort.

If you do not specify work file names (the
default), the work files are placed on the
logged-in volume and directory and named
SortWorkfilel.Dat and SortWorkfile2.Dat.

For an efficient sort, you should make these work
files physically contiguous and place them on
different physical volumes. To make a file
physically contiguous, you either create it when
the disk is not very full or, after the file
exists and has its maximum length, you use the
Backup Volume, IVolume, and Restore commands to
mak~ all files physically contiguous. For a
description of these commands, see the B 20
Systems Standard Software Operations Guide.

specifies the name you choose for the file to
which the status report and sort statistics are
to be written.

Sort computes the following statistics and writes
them to the log file: number of records, number
of bytes of data, number of merge passes, and
elapsed time.

If you do not specify a log file (the default),
Sort will not produce one. However, all sort
statistics and status codes display when the sort
is complete.

[Suppress confirmation?]
Specifies your desire to monitor the handling of
malformed records by Sort. When Sort encounters
malformed records in the input file, it displays
a descriptive status code and writes it to the
log file (if you have specified one).

If you enter Yes, Sort automatically skips the
malformed input and searches forward in the input
data for the next well-formed record.

If you enter No. Sort automatically skips the
malformed input and displays a message that asks
you whether you want the sort to continue or to
terminate.

However, you have an alternative to this method
of error handling. Sort is supplied not only as
a Run file but also as a library of object
modules. You can tailor error handling to the
requirements of your application by entering
user-written procedures in place of the error
handling module, as described later in this
section.

CUSTOMIZING SORT
The Sort utility is designed to call certain procedures in such a
way that the applic'ation programm~r can customize Sort by
replacing these procedures with user-written code.

User-written code is code that you activate to preprocess all
input records, postprocess all output records, and provide
special error handling.

The library of Sort object modules, SortMerge.Lib, includes
standard definitions for the following replaceable procedures:

1168499

SortInStart
Sortln
SortlnDone
SortOutStart
SortOut
SortOutDone
SortError

3-7

Sort controls the flow of the Sort operation by calling:

1. SortlnStart once at the beginning of the sort
2. Sortln for each input record in the order read. (If

malformed records are found, SortError is called instead
of Sortln.)

3. SortlnDone once after Sortln has been called for all the
input records

4. SortOutStart once after the actual sort is complete
5. SortOut for each output record in sorted order
6. SortOutDone once after SortOut has been called for all

the output records

PROCESSING INPUT RECORDS

SortinStart

The SortlnStart procedure is called once at the beginning of the
sort. It has the interface:

SortInStart: ErcType

This procedure has no parameters. The standard SortInStart is
null; it does no work and returns immediately. However, you can
substitute a custom version for the standard version to add
initialization logic.

Sortln

The Sortln procedure is called for each input record in the order
read.

The standard Sortln procedure included in SortMerge.Lib calls
ReleaseRecord (described in section 6) on its input record, thus
passing the input record into the standard Sort utility. To
include user-written code for preprocessing input records, you
build Sort with your own SortIn procedure that has the interface:

Sortln (pRecord, sRecord, iFile): ErcType

where

pRecord
sRecord

iFile

3-8

describe the input record to be sorted.

specifies the index of the input file within the
specified list of input files (counted from zero
for the first file).

The Sort;n procedure can modify, delete, or insert input records.
You modify input records by passing to ReleaseRecord a record
different from the one with which it was called (see section 6
for a description of ReleaseRecord). Delete input records by
returning to the calling procedure without calling ReleaseRecord
for selected records. Insert input records by calling
ReleaseRecord more than once on the basis of some computation.

SortlnDone

The SortInDone procedure is called once after SortIn has been
called for all the input records. It has the interface:

SortInDone: ErcType

This procedure has no parameters. The standard SortInDone is
null. You can substitute a custom version of the standard
version to add termination logic.

PROCESSING OUTPUT RECORDS

SortOutStart

When the sort is complete and records are ready to be written to
the output file, the SortOutStart procedure is called once to
initialize the processing of output records. It has the
interface:

SortOutStart: ErcType

This procedure has no parameters. The standard SortOutStart is
null. You can substitute a custom version for the standard
version by adding initialization logic.

SortOut

The SortOut procedure is called for each output record in turn.
The standard SortOut (which is included in SortMerge.Lib) calls
OutputRecord (described in section 6) on each record.

1168499-001 3-9

I

To include user-written code for postprocessing output records,
you build Sort with your own SortOut procedure that has the
interface:

SortOut (pRecord, sRecord, iFile): ErcType

where

pRe cord
sRecord

iFile

describe the output record to be released.

designates the index of the output file within the
specified list of output files (counted from zero
for the first file).

The SortOut procedure can modify, delete, or insert output
records. You modify output records by passing to OutputRecord a
record that is different from the one with which it was called
(perhaps reversing a transformation done by a custom SortIn
procedure). Delete output records by returning to the calling
procedure without calling OutputRecord for selected records.
Insert output records by calling OutputRecord more than once on
the basis of some computation.

SortOutDone

The SortOutDone procedure is called once after SortOut has been
cal~ed for all the output records. It has the interface:

SortOutDone: ErcType

This procedure has no parameters. The standard SortOutDone is
null. You can substitute a custom version for the standard
version to add termination logic.

INPUT ERROR HANDLING
Whenevei"Sort detects ~ malformed input record during the input
phase of the sort, it scans forward in the input file for a well­
formed record and· calls the SortError procedure. (You can
replace the standard SortError with a customized version.) The
interface is:

SortError (iFile,lfaRecord, cbBadData, fConfirm): ErcType

where

iFile

1faRecord

3-10

specifies the number of the input file containing
the malformed record (counted from 0).

specifies the 32-bit loglcal file address of the
record within the input file.

cbBadData

fConfirm

specifies the number of bytes of data before a well­
formed record. A value of 0 means that there are no
more records in this input file; a value of -1 means
that there are more than 50 sectors of bad data
preceding the next well-formed input record.

specifies whether you want the opportunity to confirm
or deny continuation of the sort operation after Sort
detects a malformed input record. Enter FALSE (0) if
you specified Yes in the [Suppress Confirmation?]
field. Otherwise, fConfirm is TRUE (OFFH).

Prior to calling SortError, Sort displays a status code and writes
it to the log file if you specified one.

If SortError returns the status code 0 (Ok), Sort skips the
unreadable input records and continues. If SortError returns a
status code other than 0, the sort terminates.

If fConfirm is FALSE (0), the standard version of SortError
returns a status code of O. If fConfirm is TRUE (OFFH), the
standard version of SortError asks you whether to continue the
sort and returns a status code or 0 or nonzero accordingly.

To customize the treatment of errors, you must build the Sort
utility with an alternative version of SortError.

1168499-001 3-11

I

BUILDING A CUSTOMIZED SORT UTILITY
You use the Linker to build a customized Sort utility from the
library of Sort object modules, SortMerge.Lib. To activate the
Linker, type Link in the command field of the Executive command
form and press RETURN. The following form is displayed:

Link
Object modules
Run file
[List file?]
[Publics?]
[Line Numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation]
[Symbol file]

Enter [Sys}<Sys>SortMerge.Lib(SortUtility) in the object modules field
and Sort.Run in the Run file field. Include in the object
modules field any modules containing replacements for the
replaceable procedures. Fill in the [Libraries] field with
[Sys} <Sys>SortMerge. Lib. Finally, press GO to execute the 1 ink.

See the B 20 Systems Linker/Librarian Reference Manual for more
information about the Linker.

3-12

INTRODUCTION

SECTION 4

MERGE UTILITY

The interactive Merge utility is part of the Sort/Merge package
which you activate from the Executive. It merges several
preexisting files of sorted data records according to sort keys
embedded within those data records.

The files can be any sorted STAM files that you have created with
RSAM, DAM, or ISAM. Since the input files must be sorted before
they are merged, they usually are the output of either the Sort
utility or a prior execution of the Merge utility.

Merge has special features that deal with input files containing
malformed records. These are discussed later in this section.

Merge may encounter a record that is out of order in the input.
Such a record is called a sequence break. When Merge encounters
a sequence break record, Merge writes it to the output file,
producing a sequence break in the output. It displays a
descriptive status message and writes it to a log file if you
have specified one. As with malformed input records, you can
customize treatment of sequence breaks during input. Customizing
instructions are given later in this section.

In contrast to the other Sort/Merge components (the Sort utility
and the Sort object module procedures), Merge does not require
temporary disk storage. Because its inp'ut is sorted, Merge
simply merges all its input files into a merged output file.
However, You may need to use temporary files or intermediate
Merge operations to merge input files which exceed memory
capacity.

While stability is an option in Sort, Merge is always stable; in
Merge, two records with equal keys appear in the output in the
same order as they appear in the input.

1168499-001 4-1

I

ACTIVATING MERGE
To acti va te the Merge uti 1 i ty f rom the Execu ti ve , type Merge in
the command field of the Executive command form and press RETURN
(for further information, see the B 20 Systems Standard Software
Operations Guide). The following form displays:

Merge
Input files
Output file
Keys
[Log file]
[Suppress confirmation?]

You must fill in the first three fields. The remalnlng two
fields are optional. You can specify the default in an optional
field by leaving it blank. After you have filled in the
appropriate fields, press GO.

If you wish to check whether or not a single file is sorted,
activate Merge, specify the file as input, and enter /NulJ as
output.

FIELD DESCRIPTIONS
Input files

Output file

Keys

4-2

specifies a list of the names of one or more sorted
files you want to merge. Separate the names with
spaces, not commas. Each file must be a STAM file.
All valid records in these files are merged;
deleted records are skipped. If Merge detects a
malformed input record, it activates the error
handling .facilities described later in this
section.

specifies the name of the file to which you want
the output written. The output file is written
with RSAM. However, if all of the input records
have the same size, the output file is accessible
with either DAM or RSAM.

specifies how sort keys are embedded within each
data record. Although the input records can have
varying lengths, the records must all have a prefix
of common fixed length contajnjng the sort key~s~--____ _

[Log file]

If you want a multilevel merge, you must enter
several specifications in the Keys field. Each
specification represents one component of the sort
key. Separate the specifications with spaces, not
commas. If there is more than one specification,
Merge reads the ones that appear first as more
significant than the ones that appear later when it
determines merge order.

Each key component specification has the form:

TypeName:Length.Offset.AorD.WorM

See the description of these fields in section 3.

specifies the name for the file to which the status
report and merge statistics are to be written.

Merge computes and writes the following statistics
to the log file: number of records, number of
bytes of data, number of sequence breaks, and
elapsed time of merge.

If you do not specify a log file (the default), no
log file is produced. However, all merge
statistics and status codes display when the merge
is complete.

[Suppress confirmation?]

1168499

specifies your desire to monitor error handling.

If Merge encounters malformed records or sequence
breaks in the input file, it displays a descriptive
status message and writes it to the log file if you
have specified one. .

For malformed records, if you enter Yes, Merge
automatically skips any malformed input it finds
and searches forward in the input data for the next
well-formed record.

If you enter No, Merge automatically skips the
malformed input and displays a message that asks
you whether you want to continue the merge or to
terminate.

4-3

For sequence breaks, if you enter Yes. Merge
displays a message that tells you of the sequence
break, and the merge automatically continues. (The
message does not require'any input from you.)

If you enter No. Merge stops when it encounters a
sequence break. Merge displays a message that asks
you whether or not you want the merge to proceed.

However, you have an alternative to this method of
error handling. Because Merge is supplied not only
as a Run file but also as a library of object
modules, you can tailor error handling to your
requirements by replacing the error handling
module. More information on error handling is
provided later in this section.

CUSTOMIZING MERGE
The Merge utility is designed to call certain procedures in such
a way that the application programmer can customize Merge by
replacing these procedures with user-written code.

User-written code is special code that you activate to process
all records and provide special sequence break and error
handling.

-I

The library of Merge object modules, SortMerge.Lib, includes
standard definitions for the following replaceable procedures:

MergeOutStart
MergeOut
MergeOutDone
MergeSequenceBreak
MergeError

Merge controls the flow of the merge operation by calling:

4-4

1. MergeOutStart once at the beginning of the merge
2. MergeOut for each record in merged order. (For sequence

break records, MergeSequenceBreak is called in place of
MergeOut. For malformed records, MergeError is called.)

3. MergeOutDone once when Merge is complete

PROCESSING OUTPUT RECORDS
MergeOutStart

MergeOutStart is called once at the beginning of the merge. It
has the interface:

MergeOutStart: ErcType

This procedure has no parameters. The standard MergeOutStart is
null; it does no work and returns immediately. However, you can
substitute a custom version for the standard version to perform
initializing or concluding computation.

MergeOut

MergeOut is called for each record in merged order. The standard
MergeOut procedure included in SortMerge.Lib calls OutputRecord
(whose interface is the same as MergeOut) on its parameter, thus
placing the record into the merge output buffer.

To include user-written code for processing output records, you
build Merge with your own MergeOut procedure that has the
interface:

MergeOut (pRecord, sRecord, iFile): ErcType

where

pRecord
sRecord

iFile

describe the input record to be output.

specifies the index of the input file within the
designated list of input files (counted from 0).

The MergeOut procedure can modify, delete, or insert output
records. You modify output records by passing to OutputRecord a
record that is different from the one with which it was called.
You can delete output records by returning to the calling
procedure without calling OutputRecord for selected records. You
can insert output records by calling OutputRecord more than once
on the basis of some computation.

Here is an example of a typical custom MergeOut procedure.
Suppose the records have fields named Part Number and Quantity
Ordered and are merging according to Part Number. A MergeOut
Procedure can group sequences of records with the same Part
Number and write only a single record for each such group to the
OlltPUt file. The single output record would have the common Part
Number and the sum of Quantity Ordered values from the input.

1168499 4-5

MergeOutDone

MergeOutDone is called once when Merge is complete. It has the
interface:

MergeOutDone: ErcType

This procedure has no parameters. The standard MergeOutDone is
null. You can substitute a custom version for the standard
version to add termination logic.

ERROR HANDLING
Whenever Merge detects a malformed input record during the input
phase of the merge, it scans forward in the input file for a
well-formed record and calls the MergeError procedure. The
interface is:

MergeError (iFile, IfaRecord, cbBadData, fConfirm): ErcType

where

iFile

1faRecord

cbBadData

fConfirm

specifies the number of the input file containing
the malformed record (counting from 0).

specifies the 32-bit logical file address of that
record within the input file.

specifies the number of bytes of data before a well­
formed record. A value of 0 means that there are no
more records in this input file; a value of -1 means
that there may be up to SO sectors of bad data
preceding the next well-formed input record.

specifies whether you want the opportunity to
confirm or deny continuation of the merge operation
after Merge detects a malformed input record. Enter
FALSE (0) if you entered Yes in the [Suppress
confirmation?] field. Otherwise, fConfirm is TRUE
(OFFH).

Prior to calling MergeError, Merge displays a status message and
writes it to the log file if you specified one.

If MergeError returns the status code 0 (Ok), Merge skips the
unreadable input records and continues. If MergeError returns a
status code other than 0, the merge terminates.

If fConfirm is FALSE (0), the standard version of MergeError
returns a status code of O. If fConfirm is TRUE (OFFH), the
standard version of MergeError asks you whether or not you want
to continue the merge and returns 0 or nonzero accordingly.

To customize the treatment of errors, you must build the Merge
utility with an alternative version of MergeError.

4-6

SEQUENCE BREAK HANDLING

Whenever Merge detects a sequence-break record, it calls the
MergeSequenceBreak procedure in ~lace of MergeOut. The interface
is:

MergeSequenceBreak (pRecord, sRecord, iFile,
fConfirm): ErcType

where

pRecord
sRecord

iFile

fConfirm

describe the sequence-break record.

specifies the index, within the specified list of
input files, of the input file containing the
sequence-break record (counting from 0).

specifies whether you want the opportunity to confirm
or deny continuation of the merge operation after
Merge detects a sequence-break record. If you
entered Yes in the [Suppress confirmation?] field,
specify FALSE (0). Otherwise, fConfirm is TRUE
(OFFH).

Prior to calling MergeSequenceBreak, Merge displays a status code
and writes it to the log file if you specified one.

If MergeSequenceBreak returns the status code 0 (Ok), the out-of­
sequence record is placed in the output and the merge continues. I
If MergeSequenceBreak returns a status code other than 0, the
merge terminates.

The standard version of MergeSequenceBreak returns a status code
of 0, if fConfirm is FALSE (0). If fConfirm is TRUE (OFFH), the
standard version of MergeSequenceBreak asks you whether or not to
continue the merge and returns 0 or nonzero accordingly.

To customize the treatment of sequence breaks, you must build the
Merge utility with an alternative version of MergeSequenceBreak.

1168499-001 4-7

I

BUILDING A CUSTOMIZED MERGE UTILITY
You use the Linker to build a customized Merge utility from the
library of Merge object modules, SortMerge.Lib. To activate the
Linker, you type Link in the command field of the Executive
command form and press RETURN. The following form is displayed:

Link
Object modules
Run file
[List file?]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

Enter [Sys] <Sys>SortMerge . Lib (Merge Utility) in the object modules field,
and Merge.Run in the run file field. Include in the object
modules field any modules containing replacements for the
replaceable procedures. Fill in the [Libraries] field with
/SysI<1lys>SortMerge.Lib. Finally, press GO to execute the 1 ink.

See the B 20 Systems Linker/Librarian Reference Manual for more
information about the Linker.

4-8

SECTION 5
OBJECT MODULE PROCEDURES

Sort/Merge has two types of object module procedures: key-in­
record sort procedures and external-key sort procedures. You can
link these procedures with an application program and call them
from programming languages such as BASIC, FORTRAN, and Pascal.
COBOL calls Sort/Merge with the COBOL Sort verb.

KEY-IN- RECORD SORT PROCEDURES
In the key-in-record sort object module procedure, records and
their associated keys are released to the Sort utility one at a
time. When all records are released, the Sort utility does a
sort using specified auxiliary disk storage. It then returns the
sorted records and associated keys to the application one' at a
time.

The procedures comprising the key-in-record sort facility are:

PrepareKeySort
ReleaseRecord
DoSort
ReturnRecord
ConcludeSort
TerminateSort

In an application program, you must not mix calls to the key-in­
record sort procedures and the external-key sort procedures
during the same sort.

Sort controls the flow of the key-in-record sort facility by
calling:

1. PrepareKeySort to initialize the Sort/Merge facility.
(This specification includes the names of work files and
the memory to be used as a sort work area.)

2. ReleaseRecord once for each record to be sorted
3. DoSort to do the actual sort when all records are

released
4. ReturnRecord once for each record to retrieve the record

and its associated keys in sorted order
5. Conclude Sort to close files and release resources

In the event of an error during the sort, the sort may be
prematurely ended and resources released by a call to
TerminateSort ..

1168499 5-1

DATA TYPES
The system organizes byte and character data with the most
significant byte at the lowest memory address, and binary data
with the most significant byte at the highest memory address.
Real and packed decimal data are different from each other and
from the preceding data, since the sign of the data is stored
differently in each case. Therefore, when you use the key-in­
record sort, you must properly specify the data types of the
sort fields. Once you do this, the extraction of a key and
correct comparison of keys is automatic.

PrepareKeySort includes the formula for extracting a sort key
from a record. This formula makes possible multilevel sorting
by allowing you to specify that a sort key be built by combining
several fields of a record.

Each field of a record that comprises its sort key is defined by
a ,key component descriptor whose format is shown in table 5-1.

5-2

Table 5-1. Format of a Key Component Descriptor

Size
Offset Field (bytes)

o rbKey 2

2 cbKey 2

4 type 2

6 fAscending 2

Description

the offset of the key
component within the
record

the size of the key
component in bytes

one of the values 0 to 11
(20 to 31 COBOL), used to
represent a key type as
described in table 5-2

TRUE (OFFH) if the sorted
records are to have
ascending values in this
field, or FALSE (OR) if
they are to have
descending values

The fields type and cbKey together specify the type and size of
the key component, as shown in table 5-2.

Table 5-2. Types of Key Components

Type Name of Type

o Binary

1 Byte

2 Character

3 Decimal
(odd)

4 Long Real

5 Short Real

6 Decimal
(even)

Note

cbKey contains the length of the key
in bytes. 1 to 8 are valid values.

cbKey contains the length of the key
in bytes. 1 to 64 are valid values.

cbKey contains the length of the key
in bytes. 1 to 64 are valid values.

cbKey contains (d + 2)/2, where d is
the number of decimal digits in the
key. d must not exceed 18.

cbKey must contain 8.

cbKey must contain 4.

See Decimal (odd) for the value of
cbKey. This type is used for keys
that have an even number of decimal
keys.

7 Integer cbKey contains the length of the key
in bytes. 1 to 8 are valid values.

8 Long IEEE cbKey must contain 8.

9 Short IEEE cbKey must contain 4.

10 Extended IEEE cbKey must contain 10.

11 Display cbKey contains the length of the key
in bytes. 1 to 19 are valid

1168499-001

values.

NOTE

COBOL applications use the values 20 to
31 for the corresponding key types
listed in this table.

5-3

I

I

Key types and programming language representations are shown in
table 5-3.

5-4

Table 5-3. Key Types and Programming Language
Representations

Index Spec.
Language and Key Type cbIndexField wType

BASIC Interpreter

Integer (%) 2 7

ShortReal (I) 4 5

Long Real UI) 8 4

BASIC Compiler

Integer (%) 2 7

ShortReal (I) 4 5

LongReal UI) 8 4

COBOL

USAGE is DISPLAY (n-byte) n 31
(numeric types)

USAGE is CaMP (n-byte) n 27
(signed)

USAGE is CaMP (n-byte) n 20
(unsigned)

USAGE is COMP-3 (n-digit) (n+2)/2 26
(n even)

USAGE is COMP-3 (n-digit) (n+1)/2 23
(n odd)

NOTE

COBOL uses the types 20 to 31.

Table 5-3. Key Types and Programming Language
Representation (Cont)

Language and Key Type

FORTRAN (Microsoft)

INTEGER*2

INTEGER*4

REAL*4

REAL*8

DOUBLE PRECISION

Pasca~ (Microsoft)

Byte

Integer

Real

SInt

Word

KEVTVPES

Index Spec.
cbIndexField

2

4

4

8

8

1

2

4

1

2

wType

7

7

9

8

8

o

7

9

7

o

Components of sort keys can have any of these types: binary,
byte, character, decimal, long real, short real, integer, IEEE
real (short,long, and extended), and display.

Binary

A binary key is a 1- to 8-byte unsigned integer. The high­
address byte of a binary key is the most significant for
determining sort order. For COBOL CaMP fields, the low-address
byte is the most significant.

1168499 5-5

Byte

A byte key is a string of 8-bit bytes. The low-address bytes of
the string are the most significant for determining sorting
order.

Character

A character key is a string of 8-bit bytes. Character keys are
identical to byte keys, except that alphabetic ASCII characters
are sorted without regard to their case.

Decimal

A decimal key is a packed decimal number in COBOL COMP-3 format.
Each byte contains two decimal digits (four bits per digit) with
the digits (0-9) encoded as BCD numbers (0000-1001)'. The last
byte of the key contains the sign and the units digit with the
sign in the least significant four bits. The preceding byte
contains the tens digit in the least significant four bits, etc.

Decimal fields have the same representation in all programming
languages. For more information about this type of field, see
the B 20 Systems COBOL lJ Reference Manual.

Long/~hort Real

Long real and short real keys are used in BASIC applications. A
long real key is an 8-byte real number and a short real key is a
4-byte real number.

For information regarding the number of bits of preCISIon and
range of values for these keys, see the B 20 Systems BASIC
Compiler Reference Manual.

Integer

The integer key is a signed 1- to 8-byte integer. The high­
address byte of an integer key is the most significant for
determining sort order. For COBOL COMP fields, the low-address
byte is the most significant.

IEEE Real

Long, short, and extended IEEE keys are used for real numbers in
Pascal or FORTRAN applications. The high-address byte is the
most significant byte for determining sort order.

5-6

Short IEEE Real

The 4-byte IEEE format short real number is used for REAL*4 in
FORTRAN, and for REAL in Pascal.

Long IEEE Real

The 8-byte IEEE format long real number is used for REAL*8 and
DOUBLE PRECISION in FORTRAN.

Display

A display key is used in COBOL applications for the USAGE IS
DISPLAY field. All COBOL sign options are supported. Display
keys can be 1 to 19 bytes long. For more information about the
range of values and representations for display keys, see the
B 20 Systems COBOL II Reference Manual.

EXTERNAL-KEY SORT PROCEDURES
The external-key-sort facility is a component of the Sort/Merge
facility that consists of object module procedures. Records and
their associated keys are released to the sort package one at a
time. When all records are released, the sort package does a
sort using specified auxiliary disk storage. It then returns
the sorted records and associated keys to the application one at
a time. The procedures comprising the external-key sort
facility are:

PrepareSort
ReleaseRecordAndKey
DoSort
ReturnRecordAndKey
ConcludeSort
TerminateSort

In an application program, you must not mix calls to the
external-key sort procedures and the key-in~record sort
procedures during the same sort.

Sort controls the flow of the external-key sort facility by
calling:

1. PrepareSort to initialize the Sort/Merge facility. (This
specification includes the name of work files and the
memory to be used as a sort work area.)

2. ReleaseRecordAndKey once for each record to be sorted
3. DoSort to do the actual sort when all records are

released
4. ReturnRecordAndKey once for each record to retrieve the

record and its associated keys in sorted order
5. ConcludeSort to close files and release resources

1168499 5-7

In the event of an error during the sort, the sort may be
prematurely ended and resources released by a call to
Terminat~Sort.

Note that the external~key sort procedures interpret the bytes of
a key at higher memory addresses as more significant than the
bytes at lower memory addresses. In other words, in comparing
two keys, the bytes at lower memory addresses are considered only
when the bytes at higher memory addresses are equal.

STATUS BLOCK
Many of the sort procedures take a parameter, which is the memory
address of the status block. The sort procedures set this block
to report errors to the application program. The format of the
4-byte status block is shown in table 5-4.

erc
ercDetail

Table 5-4. Status Block Format

2 bytes
2 bytes

Sort/Merge status code
Detail status code

The status block contains two status codes, erc and ercDetail.
The first status code is either 0 (Ok) or one of the Sort/Merge
status codes listed in appendix A.

The second status code is nonzero only if erc is nonzero. This
status code gives additional information about the error. For
example, if a device error occurs while you are trying to open a
work file, erc returns the message Can't open work file and
ercDetail returns the message I/O error.

5-8

OVERVIEW

SECTION 6
OPERATIONS

Sort/Merge has the following nine operations:

ConcludeSort releases resources after a successful sort.

DoSort performs the actual sort of released records.

PrepareKeySort initializes a key-in-record sort.

PrepareSort initializes an external-key sort.

ReleaseRecord releases a record for a key-in-record sort.

ReleaseRecordAndKey

ReturnRecord

releases a record for an external-key sort.

returns a sorted record following a key-in­
record sort.

ReturnRecordAndKey

TerminateSort

returns a sorted record following an external­
key sort.

releases resources following an unsuccessful
sort.

Tables 6-1 and 6-2 show the contents of the procedures
PrepareSortBlock and KeyDescriptor. Both procedural interfaces I
are discussed later in this section.

1168499-001 6-1

Table 6-1. Contents of PrepareSortBlock

Size
Offset Field (bytes) Description

0 filespecWorkfilel 92 the file
specification of
the first work
file. Starting at
the second byte of
the field, it is a
character string of
the form [volname]-
<dirname>filename.
The first byte is
the length of that
string.

92 passwordWorkfile1 13 the file password
for the first work
file. Starting at
the second byte of
the array, its
length is in the
first byte of the
array.

105 filespecWorkfile2 92 similar to
filespecWorkfile1,
except that it
describes the
second work file

197 passwordWorkfile2 13 similar to
passwordWorkfile1,
except that it
describes the
second work file

210 qsSortWorkfileCreate 4 the size at which
to create the work
files

6-2

Table 6-1. Contents of PrepareSortBlock (Cont)

Offset Field

214 sWorkfilelncrement

216 qsSortWorkArea

220 sRecordMax

222 fStableSort

1168499

Size
(bytes) Description

2 the increment to
extend the work
files when necessary

4 the size of an
already existing
work area; or, if 0,
it requests' that the
system allocate all
available memory for
the work area

2 the maximum size of
a record in bytes

2 TRUE if a stable
sort is desired, and
FALSE otherwise. A
sort is stable if
input records whose
sort keys are equal
always appear in the
output in the same
order as they appear
in the input.

6-3

Table 6-2. Contents of Key Descriptor

Offset Field

o cKeyComponents

2 rgKeyComponent

6-4

Size
(bytes) Description

2 the number of key
components in each
record

8 the array of
KeyComponent­
Descriptor '. one
entry for each key
component (see
table 5-1)

ConcludeSort

The ConcludeSort procedure deletes temporary files and closes the
work file (deleting them if you created them during PrepareSort)
if all the sorted records were retrieved (by ReturnRecord or
ReturnRecordAndKey). Otherwise, the status code More records
available is returned.

The procedural interface is:

ConcludeSort (pStatusBlockRet): ErcType

where

pStatusBlockRet

1168499

is the memory address of a Status Block (see
section 5).

6-5

DoSort

The DoSort procedure does the actual sort of all records that
were released by ReleaseRecord or ReleaseRecordAndKey.

The procedural interface is:

DoSort (pStatusBlockRet): ErcType

where

pStatusBlockRet

6-6

is the memory address of a Status Block (see
sect ion .s) .

PrepareKeySort

The PrepareKeySort procedure initializes the Sort/Merge facility
for a key-in-record sort. If more than one key is specified, the
earlier keys are more significant than the later ones in
determining sort order.

If the two work files specified in the PrepareSortBlock (shown in
table 6-1) do not already exist, they are created. Their size is
set initially to the value of the field qsSortWorkfileCreate in
the PrepareSortBlock. If these work files are created, they are
deleted at the end of the sort when ConcludeSort is called (or if
TerminateSort is called at any time). If their size is
insufficient for the amount of data actually sort~d, they are
extended as required in specified increments.

A sort work ar~a, which includes the space for file buffers and
internal sorting, must be created or specified. If an existing
sort work area is used, its address and size have been specified;
if the size is specified as 0, PrepareKeySort allocates all
unallocated workstation memory for the sort work area.

The procedural interface is:

PrepareKeySort (pPrepareSortBlock,
pKeyDescriptor, pSortWorkArea,
pStatusBlockRet): ErcType

where

pPrepareSortBlock is the memory address of a PrepareSortBlock
(see table 6-1).

pKeyDescriptor is the memory address
table 6-2).

of a key descriptor (see

pSortWorkArea is the memory address of a work area that may
already exist.

pStatusBlockRet is the memory address of a Status Block (see
section 5).

This procedure is used by application programs written in BASIC,
and FORTRAN. For more information, see appendix B.

1168499

PrepareSort

The PrepareSort procedure initializes the Sort-Merge facility for
an external-key sort. If the two work files in the
PrepareSortBlock (shown in table 6-1) do not already exist, they
are created. Their size is set initially to the value of the
field qsSortWorkfileCreate in the PrepareSortBlock.

If these work files are created, they are deleted at the end of
the sort when ConcludeSort is called (or if TerminateSort is
called at ~ny time). If their size is insufficient for the
amount of data actually sorted, they are extended as required in
specified increments.

A sort work area, which includes the space for file buffers and
internal sorting, must be created or specified. If an existing
work area is used, its address and size have been specified; if
the size is specified as 0, PrepareSort allocates all unallocated
workstation memory for the sort work area.

The procedUioal interface is:

PrepareSort (pPrepareSortBlock,

where

psKey, pSortWorkArea,
pStatusBlockRet): ErcType

pPrepareSortBlock is the memory address of a PrepareSortBlock
(see table 6-1).

psKey is the memory address of a word containing the
size of the key in bytes.

pSortWorkArea is the·memory address of a work area that may
already exist.

pStatusBlockRet is the memory address of a Status Block (see
section 5).

This procedure is used by application programs written in BASIC,
and FORTRAN. For more information, see appendix B.

6-8

ReleaseRecord

The ReleaseRecord procedure releases a record to the Sort
facility for a key-in-record sort.

The procedural interface is:

ReleaseRecord

where

(psRecord, pRecord,
pStatusBlockRet): ErcType

psRecord is the memory address of a word containing the
size of the record in bytes. This size must not
be greater than the size specified in the call
to PrepareKeySort.

pRecord is the memory address of the beginning of the
record.

pStatusBlockRet is the memory address of a Status Block (see
section 5).

1168499 6-9

ReleaseRecordAndKey

The ReleaseRecordAndKey procedure releases a record to the Sort
facility for an external-key sort.

The procedural interface is:

ReleaseRecordAndKey (psRecord, pRecord,
psKey,pKey,
PStatusBlockRet): ErcType

where

psRecord

pRecord

psKey

pKey

pStatusBlockRet

6-10

is the memory address of a word containing the
size of the record in bytes. This size must
not be greater than the size specified in the
call to PrepareSort.

is the memory address of the beginning of the
record.

is the memory address of a word containing the
size of the key in bytes. This size must be
the same as the size specified in the call to
PrepareSort.

is the memory address of the key.

is the memory address of a Status Block (see
section 5).

ReturnRecord

The ReturnRecord procedure returns a sorted record in a key-in­
record sort. ReturnRecord should be called repeatedly until it
returns the status code No more records. The actual freeing of
resources and closing of files does not occur until the call to
ConcludeSort or TerminateSort.

The procedural interface is:

ReturnRecord

where

psRecordRet

pRecordRet

(psRecordRet, pRecordRet,
pStatusBlockRet): ErcType

is the memory address of a word set to the size
of the returned record.

is the memory address to which the record is
copied. The maximum possible record size is
specified at the time of PrepareSortKey.

pStatusBlockRet is the memory address of a Status Block (see
section 5).

1168499-001 6-11

I

I

ReturnRecordandKey

The ReturnRecordAndKey procedure returns a sorted record in an
external-key sort. ReturnRecordAndKey should be called
repeatedly until it returns the status code No more records. The
actual freeing of resources and closing of files does not occur
until the call to ConcludeSort or TerminateSort.

The procedural interface is:

ReturnRecordAndKey (psRecordRet, pRecordRet,
psKeyRet, pKeyRet,
pStatusBlockRet): ErcType

where

psRecordRet

pRecordRet

is the memory address of a word set to the size
of the returned record.

is the memory address to which the record is
copied. The maximum possible record size is
specified at the time of PrepareKeySort.

psKeyRet is the memory address of a word set to the size
of the returned key.

pKeyRet is the memory address to which the key is
copied. The maximum possible key size is
specified at the time of PrepareSort.

pStatusBlockRet is the memory address of a Status Block (see
section 5).

6-12

TerminateSort

The TerminateSort procedure deletes temporary files and closes
(or deletes) the work files. It should be called if the sort is
to be terminated (for example, if an error is detected) prior to
the time when all records are retrieved.

The procedural interface is:

TerminateSort (pStatusBlockRet): ErcType

where

pStatusBlockRet is the memory address of a Status Block (see
section 5).

1168499 6-13

GENERAL
Decimal

Value

3200

Meaning

APPENDIX A

STATUS CODES

Invalid key type.

The type field of a key specification for
Sort/Merge is invalid.

3201 Incorrect key length.

The cbKey field of a key specification for a
Sort/Merge operation does not correspond to the
type field of the key specification. (For
example, for binary keys, cbKey must be 2.)

3202 Invalid key.

1168499

A key contained in a record for Sort/Merge is not
of the correct type. (For example, each digit of
a BCD key must be between 0 and 9.)

A-l

EXTERNAL-KEY SORT

A-2

Decimal
Value

3400

Meaning

Cannot open work file.

Unable to open one of the work files during
PrepareSort.

3401 Work area invalid.

3402

Unable to allocate work area during PrepareSort.

Invalid key size.

A key passed to ReleaseRecordAndKey is a different
length from the length specified in PrepareSort.

3403 File error during sort.

A file error occurred during the sort phase of the
program.

3404 No more records.

ReturnRecordAndKey was called after all records
were retrieved.

3405 Error returning record.

An error occurred in ReturnRecordAndKey.

3406 Error during conclude.

An error occurred in ConcludeSort or
TerminateSort.

3407 More records available.

ConcludeSort was called before all records were
retrieved. To end a sort prematurely, call
TerminateSort.

EXTERNAL- KEY SORT (Cont)
Decimal

Value

3408

Meaning

Record too large.

The size of a record is larger than the maximum
key size specified in PrepareSort, or the sort
area is not large enough.

3409 Error during sort.

An error occurred during DoSort.

3410 Insufficient memory.

Not enough memory was allocated for the sort work
area.

3411 No records to sort.

3412-
3499

1168499.

DoSort was called before any records were
released.

Reserved.

A-3

KEY-IN-RECORD SORT

A-4

Decimal
Value

3500

Meaning

Sort pending.

PrepareKeySort was called while a sort was already
active.

3501 No sort pending.

A sort procedure other than PrepareKeySort was
called before PrepareKeySort.

3502 Invalid sort key.

The key provided is inconsistent with its
specifications.

3503 Sort key not in record.

A key could not be synthesized from this record,
given the initial specifications of keys within
records.

3504 Invalid key specification.

3505-
3529

The key specification in PrepareKeySort is
incorrect. It conflicts with the maximum record

- size provided. .

Reserved.

SORT UTILITY
Decimal

Value

3530

Meaning

Invalid key specification.

The key specification passed to Sort is invalid.

3531 Non-numeric key length.

The length field of the key specification is non­
numeric.

3532 Record too large.

A record found in the file to be sorted is too
large.

3533 Malformed record.

3534-
3559

1168499

A record found in the file to be sorted is
malformed.

Reserved.

A-S

MERGE UTILITY

A-6

Decimal
Value

3560

Meaning

Invalid key specification.

The key specification passed to Merge is invalid.

3561 Non-numeric key length.

The length field of the key specification is non­
numeric.

3562 Record too large.

A record found in a file to be merged is too
large.

3563 Insufficient memory.

There is not enough memory available to perform
this merge.

3564 Sequence break.

A sequence break has occurred in one or more of
the files being merged. A sort of that file must
be performed first.

3565 Malformed record.

3566-
3599

A record found in a file to be merged is
malformed.

Reserved.

GENERAL

APPENDIX B

CALLING SORT OBJECT MODULES FROM

PROGRAMMING LANGUAGES

Use the procedures BasicPrepareKeySort and BasicPrepareSort
(described in this appendix) in place of PrepareKeySort and
PrepareSort to call Sort object modules from BASIC and FORTRAN.
The former procedural interfaces give easier access to Sort
object modules.

COBOL calls Sort by using the COBOL SORT verb (see B.20 Systems
COBOL 1I Reference Manual for more information).

BasicPrepareKeySort
Description

The Bas icPre.pareKeySort procedure has the same effect as
PrepareKeySort, but provides a more useful interface to BASIC and
other languages.

The BasicPrepareKeySort procedure initializes the Sort/Merge
facility for a key-in-record sort.

If the two work files specified in the PrepareSortBlock (shown in
table 6-1) do not already exist, they are created. Their size is
set initially to the value of the field qsSortWorkfileCreate in
the PrepareSortBlock. If these files are created, they are
deleted at the end of the sort when ConcludeSort is called (if
TerminateSort is called at any time).

If the size of the work files is insufficient for the amount of
data actually sorted, it is extended as required in specified
increments. A sort work area, which includes the space for file
buffers and internal sorting, must be created or specified. If
an existing sort work area is used, its address and size have
already been specified; if the size is specified as 0,
BasicPrepareKeySort allocates all unallocated workstation memory
for the sort work area.

1168499 B-1

Procedural Interface

BasicPrepareKeySort

where

pPrepareSortBlock

pbFileSpecWorkfile1
cbFileSpecWorkfile1

pbPasswordWorkfile1
cbPasswordWorkfile1

'pbFileSpecWorkfile2
cbFileSpecWorkfile2

pbPasswordWorkfile2
cbPasswordWorkfile2

qsWorkfileCreate

sWorkfileIncrement

qsSortWorkArea

B-2

(pPrepareSortBlock,
pbFileSpecWorkfilel,
cbFileSpecWorkfilel,
pbPasswordWorkfilel,
cbPasswordWorkfilel,
pbFileSpecWorkfile2,
cbFileSpecWorkfile2,
pbPasswordWorkfile2,
cbPasswordWorkfile2,
qsWorkfileCreate,
sWorkfilelncrement,
qsSortWorkArea, sRecordMax,
fStableSort, pKeyDescriptor,
pSortWorkArea,
pStatusBlockRet): ErcType

is the memory address of a space allocated
for the PrepareSortB10ck shown in table 6-1.
PrepareSortBlock is filled in by the
BasicPrepareKeySort procedure from the other
parameters. The allocated space must be at
least 224 bytes.

describe the file specification of the first
work file.

describe the file password for the first
work file.

describe the file specification of the
second work file.

describe the file password for the second
work file.

is the size at which to create the work
files.

is the increment to extend the work files
when they need to be extended.

is the size of an already existing work area
or, if 0, it requests that the system
allocate all free memory for the work area.

sRecordMax

fStableSort

pKeyDescriptor

pSortWorkArea

pStatusBlockRet

1168499

is the maximum size of a record in bytes.

is TRUE (OFFH) if a stable sort is desired,
and FALSE (OH) otherwise. A sort is stable
if input records whose sort keys are equal
always appear in the output in the same
order as they appear in the input.

is the memory address of a key descriptor
(see table 6-2).

is the memory address of a work area that
may already exist (ignored if qsSortWorkArea
equals zero).

is the memory address of the status block
into which the status codes from the
operation are returned (see section 5).

B-3

BasicPrepareSort
Description

The BBsicPrepBreSort procedure initializes the Sort/Merge
facility for an external-key sort.

The procedure has the same effect as PrepareSort, but provides a
more useful interface to BASIC and other languages.

If the two work files specified in the PrepareSortBlock (shown in
table 6-1) do not already exist, they are created. Their size is
set initially to the value of the field qsSortWorkfileCreate in
the PrepareSortBlock. If these work files are created, they are
deleted at the end of the sort when ConcludeSort is called (or if
TerminateSort is called at any time).

If the work area size is insufficient for the amount of data
actually worked, it is extended as required in specified
increments. A sort work area, which includes the space for file
buffers and internal sorting, must be created or specified. If
an existing sort work area is used, its address and size have
already been, specified; if the size is specified as 0,
BasicPrepareSort allocates all unallocated workstation memory for
the sort work area.

Procedural Interface

BasicPrepareKeySort (pPrepareSortBlock,
pbFileSpecWorkfile1,
cbFileSpecWorkfile1,
pbPasswordWorkfile1,
cbPasswordWorkfile1,
pbFileSpecWorkfile2,
cbFileSpecWorkfile2,
pbPasswordWorkfile2,
cbPasswordWorkfile2,
qsWorkfileCreate,
sWorkfileIncrement,
qsSortWorkArea, sRecordMax,
psKey, pSortWorkArea,
pStatusBlockRet): ErcType

B-4

where

pPrepareSortBlock is the memory address of a space allocated
for the PrepareSortBlock shown in table 6-1.
PrepareSortBlock is filled in by the
BasicPrepareKeySort procedure from the other
parameters. The allocated space must be at
least 224 bytes.

pbFileSpecWorkfile1 describe the file specification. of the ~irst
cbFileSpecWorkfile1 work file.

pbPasswordWorkfile1 describe the file password for the first
cbPasswordWorkfile1 work file.

pbFileSpecWorkfile2 describe the file specification of the
cbFileSpecWorkfile2 second work file.

pbPasswordWorkfile2 describe the file password for the second
cbPasswordWorkfile2 work file.

qsWorkfileCreate is the size at which to create the work
files.

sWorkfilelncrement is the increment to extend the work files
when they need to be extended.

qsSortWorkArea is the size of an already existing work area
or, if 0, it requests that the system
allocate all free memory for the work area.

sRecordMax is the maximum size of a record in bytes.

psKey is the memory address of a word containing
the size of the key in bytes.

pSortWorkArea is the memory address of a work area that
may already exist (ignored if qsSortWorkArea
equals zero).

pStatusBlockRet is the memory address of the status block
into which the status codes from the
operation are returned (see section 5).

1168499 B-5

DAM

APPENDIX C

GLOSSARY OF TERMS

See Direct Access Method.

Direct Access Method
The Direct Access Method (DAM) provides random access to disk
file records identified by record number. Also see Indexed
Sequential Access Method.

External-key Sort Procedure
The external-key sort procedure requires the application program
to specify the sort key for each record as it is released to the
sort.

Field
A field is a group of bytes within a record that represent a
single unit. Also see Record.

File
A file is a set of related records that are treated as a unit.
Also see Rec~rd.

Indexed Sequential Access Method
The Indexed Sequential Access Method (ISAM) provides random
access to fixed-length records identified by multiple keys stored
in disk files. See the B 20 Systems Illdexed Sequelltial Access Methud (JSAM)
Referellce Manual. Also see Direct Access Method and Sequential Access
Method.

I SAM
See Indexed Sequential Access Method.

ley
A key is a data value in a field that Sort/Merge uses to locate a
particular record.

Key-in-record Sort Procedure
The key-in-record sort procedure causes the application program
to use a single formula for extracting the sort key from each
record.

Linker
The Linker links one or more object files into a task image
sorted in a Run file. See the B 20 Systems Linker/Librarian
R to' j'ercllceManual.

1168499 C-l

Procedural Interface
A pro~edural interface is a convenient way to access system
services and is compatible with BASIC, FORTRAN, and Pascal.

Record
A record is a group of related data treated as a unit. Also see
Field and File.

SAM
See Sequential Access Method.

Sequential Access Method
The Sequential Access Method provides device-independent access
to devices (such as the printer, screen, keyboard, and files) by
emulating a sequential character-oriented device known as a byte
stream.

Sort Key
See Key.

STAM
See Standard Access Method.

Standard Access Method
The Standard Access Method refers to RSAM, DAM, and ISAM files,
or any file that uses the RSAM/DAM file format (one sector header
and standard record headers and trailers).

Status Block
The status block is a 4-byte memory area that is used to report
status codes to the application program.

User-written Code
User-written code is special code that can replace existing code
to customize a Sort/Merge operation.

C-2

INDEX

BASIC
calling Sort object modules from, B-1

BasicPrepareKeySort
description of, B-1
procedural interface for, B-2

BasicPrepareSort
description of, B-4
procedural interface for, B-4

COBOL
calling Sort object modules from, B-1

Composite key, 2-4
ConcludeSort, 6-5
Data types, 5-2
Direct Access Method (DAM), 1-2
DoSort, 6-6
Error handling

of merge utility, 4-6, 4-7
of sort utility, 3-10

External-key sort procedures, 5-7, A-2
FORTRAN

calling Sort object modules from, B-1
Indexed Sequential Access Method (ISAM), 1-2
Input records

processing of merge, 4-4
processing of sort, 3-8

Key components, 5-3
Key Descriptor, 6-4
Key-in-Record sort procedures, 5-1, A-4
Key types, 2-2, 5-4, 5-6
[Log file]

of merge utility, 4-3
of sort utility, 3-6

Merge utility, 1-1, 4-1
activating the, 4-2
customizing of, 4-4, 4-8
definition of, 4-1
error handling, 4-6
field descriptions

input files, 4-2
keys, 4-2
[log file], 4-3
output files, 4-2,
[suppress confirmation?], 4-3

processing input, 4-4
processing output, 4-5
sequence break handling, 4-7
status codes, A-6

Object module procedure, 1-2, 5-1
called from programming languages, B-1
external-key sort, 1-2, 5-7, A-2
key-in-record sort, 1-2, 5-1, 5-4, A-4

1168499-001 1

INDEX (CO NT)

Output records, processing of
with merge utility, 4-5
with sort utility, 3-9

PrepareKeySort, 6-7
PrepareSort, 6-6
PrepareSortBlock, 6-2
Programming languages

calling Sort object modules from, B-1
Record, definition of, 2-1
Record Sequential Access Method (RSAM) files, 1-2
ReleaseRecord, 6-9
ReleaseRecordAndKey, 6-10
Replaceable merge procedures

MergeError, 4-6
MergeOut, 4-5
MergeOutDone, 4-6
MergeOutStart, 4-5
MergeSequenceBreak, 4-7

Replaceable sort procedures
SortIn, 3-8
SortInDone, 3-9
SortInStart, 3-8
SortOut, 3-10
SortOutDone, 3-10
SortOutStart, 3-9

ReturnRecord, 6-11
ReturnRecordAndKey, 6-12
Sequence break handling, 4-7
Sort keys

2

construction of, 2-1
merging, 2-5
multilevel capability, 2-4
types of, 2-2, 5-3

binary, 2~2, 5-5
byte, 2-2, 5-6
character, 2~2, 5-6
decimal, 2-2, 5-6
display, 2-3, 5-7
extended IEEE real, 2-3
IEEE real, 5-6
integer, 2-3, 5-6
long IEEE real, 2-3, 5-7
long/short real, 2-3, 5-6
short IEEE real, 5-7

Sort/merge facility
features of, 1-2

INDEX (CO NT)

operations, summary of procedures, 6-1
Conc1udeSort, 6-5
DoSort, 6-6
PrepareKeySort, 6-7
PrepareSort, 6-8
Re1easeRecord, 6-9
Re1easeRecordAndKey, 6-10
ReturnRecord, 6-11
ReturnRecordAndKey, 6-12
TerminateSort, 6-13

Sort status block, 5-8
Sort utility, 1-1, 3-1 through 3-10

activating the, 3-1
customizing of, 3-7, 3-12
definition of, 3-1
error handling, 3-10
field descriptions, 3-2 through 3-7

AorD, 3-4
input files, 3-2
keys, 3-2
length, 3-4
[log file], 3-6
offset, 3-4
output files, 3-2
[stable sort?], 3-6
[suppress confirmation?], 3-7
[Work file 1], 3-6
[Work file 2], 3-6
WorM, 3-5

processing input records, 3-8
processing output records, 3-9
status codes, A-5

Sorted records
order of, 2-1
merged, 2-5
multilevel, 2-4

[Stable sort?], 3-6
Standard Access Method (STAM) files, 1-2
Status block, 5-8
Status codes, A-1
[Suppress confirmation?]

of merge utility, 4-3
of sort utility, 3-7

TerminateSort, 6-13

1168499-001 3

INDEX (CONT)

User-written code
of merge utility, 4-4, 4-8
of sort utility, 3-7, 3-12

[Work file 1J, 3-6
[Work file 2J, 3-6

4

Title:

Documentation Evaluation Form

B 20 Systems Sort/Merge Referenc~.M~alc:..=lu::::a~l __ _ Form No: _-.;1;..;;1...;;6..;;,.8....;,.49-9 ____ _

Date: ___ J_u_ne_19_8_4 ____ _

Burroughs Corporation is interested in receiving your comments
and suggestions, regarding this manual. Commcnts will hc util­
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

o Addition o Deletion o Revision o Error

Comments:

From:
Narne ___ __

Title
COlnpany __ __

Address

Phone Number ____________________ _

Remove form and mail to:

Burroughs Corporation
Corporate Ducumenlatiun - West

1300 John Reed Court
City of Industry, CA 91745

U.s.A.

Date ______________ _

