
c:
RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

FORTRAN (eFT)
REFERENCE MANUAL

SR-0009

Copyright© 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983,
1984 by CRAY RESEARCH, INC. This manual or parts thereof
may not be reproduced in any form without permission of
CRAY RESEARCH, INC.

c.
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0009

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator starting with
01 for the first change packet of each revision level. '

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

A

B

C

C-Ol

C-02

D

D-Ol

SR-0009

Description

July, 1976 - Preliminary distribution, Xerox copies

February, 1977 - First printing. Since changes are very
extensive, they are not noted by change bars.

November, 1977 - Second printing. Since this represents a
complete rewrite, changes are not noted by change bars.

April, 1978 - Updates the manual to be in full agreement with
the April, 1978 release of the CRAY-l FORTRAN Compiler (CFT)
Version 1.01.

July, 1978 - Included in this change packet, which brings the
manual into agreement with the FORTRAN Compiler Version 1.02,
is a new description of listable output, changes to the type
statements, the addition of several utility procedures, and
several new messages.

October, 1978 - This change packet brings the manual into
agreement with the FORTRAN compiler, Version 1.03. It
includes the FLOWTRACE directive, new CFT messages, DO-loop
table list option, and the ABORT subroutine.

January, 1979 - Reprint. This printing brings the manual into
agreement with the FORTRAN compiler, Version 1.04. Major
changes include DO-variable usage; addition of ERR and END to
the control information list; scheduler directives; the TRUNC
parameter on the CFT card; M, R, and W compiler options;
vector and code generation information with intrinsic
functions and utility procedures; new subroutines ERREXIT,
REMARK2, and TRBK; and new CFT messages. 2'

April, 1979 - This change packet brings the manual into
agreement with version 1.05 of the FORTRAN compiler. Major
changes include the alternate return feature, upper and lower
bounds of DIMENSION declarators, and the NAMELIST statement.

ii J

E

E-Ol

E-02

E-03

F

F-Ol

G

G-Ol

SR-0009

April, 1979 - This revision is the same as Revision D with
change packet D-Ol incorporated.

July, 1979 - This change packet brings the manual into
agreement with version 1.06 of the CFT compiler. Major
changes include conditional block statements ELSE IF, block
IF, ELSE, and END IF; a new CFT directive BOUNDS; a new
compiler option, OJ a debugging utility, SYMDEBUG; and new CFT
messages. Minor changes include clarification of Boolean
arithmetic concepts and the introduction of dynamic memory
allocation.

July, 1979 - This change packet corrects a technical error
appearing on page 6-6 of the E-Ol change packet.

It also replaces pages inadvertently deleted by the E-Ol
change packet.

December, 1979 - This change packet brings the manual into
agreement with version 1.07 of the CFT compiler. Major
changes include a symbolic debug package, enabled by the CFT
control statement option Z; utility procedures that permit or
prohibit floating-point interrupts and that determine the
current floating-point interrupt mode; an enhancement to the
editing process that allows D, E, F, G, and 0 format
specifications to edit both real and double-precision list
items; and reprieve processing routines.

December, 1979 - This reprint includes change packets E-Ol,
E-02, and E-03. It contains no other changes.

April, 1980 - This change packet brings the manual into
agreement with version 1.08 of the CFT compiler. Major
changes include lower-case letters in the CFT character set,
character constants, the POINTER statement, full
implementation of reprieve processing, new subprograms REMARKF
and DUMPJOB, new CFT messages, and unblocked I/O.

May, 1980 - This revision is the same as Revision F with
change packet F-Ol incorporated.

October, 1980 - This change packet brings the manual into
agreement with version 1.09 of the CFT compiler. Major
changes include arithmetic constant expressions; the IMPLICIT
NONE statement; the implementation of the PAUSE statement;
sequential, direct, and random access; file identifiers in
input/output statements; the INQUIRE, OPEN, and CLOSE
statements; further clarification on vector operations; page
header lines on listable output; a new flowtrace routine,
FLODUMP; a new CFT parameter, AIDS; and new CFT messages.

iii J

H

H-Ol

I

J

J-Ol

SR-0009

August, 1981 - Rewrite. with this printing, the manual has
been completely reorganized and updated to agree with version
1.10 of the CFT compiler. Major changes include adherence to
ANSI X3.9-l978 (FORTRAN 77), including the character data type
and the generic function feature and adding list-directed
I/O. Other miscellaneous changes were also added. Changes
are not noted by change bars. All previous versions are
obsolete.

August, 1982 - This change packet brings the manual into
agreement with version 1.10 of the CFT compiler. Major
changes include adding to the comment lines description; new
intrinsic function names; new internal file restrictions,
changing the INQUIRE table, the OPEN table, and the CLOSE
table; adding to the CLOSE statement description and the
NAMELIST statement description; moving time functions, Boolean
functions, and vectorization aids from Appendix C to Appendix
B; new CFT messages; and the Hollerith format specification.

November, 1982 - This revision is the same as Revision H with
change packet H-Ol incorporated.

April, 1983 - This reprint with revision brings the manual
into agreement with version 1.11 of the CFT compiler. The
formats of the following have changed: character substring,
CHARACTER type statement, COMMON statement, FORMAT statement,
CALL statement, SUBROUTINE statement, RETURN statement, and
INT24 directive. The following are additions: DATA statement
restrictions; information to program control statements and
input/output statements; user control subroutine; the MAXBLOCK
and INT parameters on the CFT control statement; optimization
options; the INT64 integer control directive; the
multiply/divide directives (FASTMD, SLOWMD); the optimization
directives NO SIDE EFFECTS, ALIGN, NOIFCON, and RESUMEIFCON;
and vectorization and optimization information to Cray FORTRAN
programming. The following items have changes: nonrepeatable
edit descriptors and the format specifications. The calling
sequence information was moved from Appendix F to the Macros
and Opdefs Reference Manual, CRI publication SR-0012. The
console attention handler information was removed from
Appendix I.

July, 1983 - This change packet brings the manual into
agreement with the CFT 1.11 release. Changing the default of
IF optimization from OPT=PARTIALIFCON to OPT=NOIFCON on the
CFT control statement is the only major change. Miscellaneous
technical and editorial changes are also included.

iv J-Ol

J-02

J-03

SR-0009

January, 1984 - This change packet brings the manual into
agreement with the CFT 1.13 release. The CFT release has been
numbered 1.13 in conjunction with the 1.13 COS release. Major
changes include the addition of: reentrancy support, new
instruction scheduler, gather/scatter, dollar sign editing,
the ALLOC, CPU, DEBUG, and SAVEALL control statement
parameters, SAFEDOREP, FULLDOREP, NODOREP, INVMOV, NOINVMOV,
UNSAFEIF, SAFEIF, BL, NOBL, BTREG, and NOBTREG control
statement options, the U compiler option, UNSAFEIF, SAFEIF,
BL, and NOBL scheduler directives, RESUMEDOREP and NODOREP
optimization directives, implementing the ALIGN directive,
DEBUG and NODEBUG directives, dependency information,
population parity count Boolean function, and new CFT
messages. The M and Y compiler options, the SCHED/NOSCH
compiler directives, and several CFT messages have been
removed. Miscellaneous technical and editorial changes are
also included.

December, 1984 - This change packet brings the manual into
agreement with the CFT 1.14 release. Major changes include
the addition of: extended memory common blocks, task common
blocks, the EDN, UNROLL, and ANSI control statement
parameters, the CVL/NOCVL and KEEPTEMP/KILLTEMP control
statement options, CPU control statement parameter
characteristics, table of parameters encountered, ROLL/UNROLL
compiler directives, IVDMO vectorization control directive,
CVL/NOCVL optimization directives, conditional vector loops,
compressed index references, Bidirectional Memory, new CFT
messages, and the FTREF utility. Miscellaneous technical and
editorial changes are also included.

v J-03

PREFACE

The Cray FORTRAN Compiler (CFT) translates FORTRAN language statements
into Cray Assembly Language (CAL) programs that make effective use of the
CRAY-l and CRAY X-MP Computer Systems. This manual describes the Cray
FORTRAN language in its entirety and related Cray Operating System (COS)
characteristics.

This manual is a reference manual for CFT programmers. The programmer is
assumed to have a working knowledge of the FORTRAN programming language.
However, when basic terms and concepts are being defined, they are
italicized.

This publication is divided into three parts as described below.

PART 1 - CFT DESCRIPTION

Sections 1, 2, and 3 describe the CFT language. The presentation
progresses from the identities and forms of basic syntactic elements
through the methods of data representation and the evaluation of
expressions.

Section 4 describes functions and subroutines.

PART 2 - CFT STATEMENTS

Part 2 presents the eFT statements that conform to the ANSI standards and
CFT statements that are an extension of those standards. CFT extensions
give the programmer a broader range of capabilities. Extensions that can
be conveniently replaced with standard statements are described in
Appendix E.

PART 3 - THE CFT COMPILER

Part 3 presents the CFT control statement, directives that control
compilation, and techniques for improving the performance of CFT programs.

SR-0009 vii J-02

CONTENTS

PREFACE V

PART ONE - CPT DESCRIPTION

1. CRAY FORTRAN LANGUAGE • 1-1

THE CRAY FORTRAN COMPILER. 1-1
CONFORMANCE WITH THE ANSI STANDARD 1-1
CONVENTIONS • 1-2
ELEMENTS OF THE CFT LANGUAGE 1-3

Character sets • 1-3
FORTRAN character set • 1-3
Auxiliary character set • 1-4

Uppercase/lowercase conversion • 1-5
Sequences 1-5
Syntactic items 1-5

Constants • 1-5
Symbolic names 1-6
Statement labels 1-6
Keywords 1-7
Operators • • 1-7

Lists and list items • 1-7
FORTRAN statements • 1-8
Lines 1-8

Comment lines • 1-9
Initial lines • • 1-9
Continuation lines 1-9
Terminal lines 1-10
Compiler directive lines 1-10

THE EXECUTABLE PROGRAM 1-10
Program units 1-10

The main program 1-12
The subprogram 1-12

Normal execution sequence 1-12
Order of statements and lines 1-13

2. DATA REPRESENTATION AND STORAGE • 2-1

TYPES OF DATA • 2-1
Data type of an array element 2-2

SR-0009 ix J-02

TYPES OF DATA (continued)
Data type of a function

CONSTANTS •
Integer constants
Real constants •

Basic real constant •
Constant followed by a real exponent
Nonzero real constant range •

Double-precision constants •
Constant followed by a double-precision exponent
Nonzero double-precision constant range •

Complex constants
Nonzero complex constant range

Logical constants
Boolean (octal or hexadecimal) constants •
Character constants

VARIABLES.
ARRAYS

Array declarators
Format of an array declarator •
Kinds of array declarators

Actual array declarators •
Dummy array declarators

Size of an array •
Array element names
Array storage sequence •
Array element order
Subscript values •
Dummy and actual arrays
Adjustable arrays and adjustable dimensions
Use of array names •

CHARACTER SUBSTRINGS
STORAGE AND ASSOCIATION •

Storage sequences
Association of entities
Definition •

Defined entities
Undefined entities

SYMBOLIC NAMES
Scope of symbolic names

Global entities •
Local entities

Classes of symbolic names
Common blocks •
External functions
Subroutines •
The main program
Block data subprograms
Arrays
Variables •
Constants

SR-0009 x

2-2
2-2
2-3
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-8
2-8.1
2-9
2-10
2-10
2-10
2-11
2-11
2-11
2-12
2-12
2-12.1
2-13
2-15
2-15
2-16
2-17
2-18
2-18
2-19
2-19
2-21
2-21
2-22
2-23
2-24
2-24
2-24
2-25
2-25
2-25
2-26
2-26
2-26
2-26
2-27
2-27

J-03

3.

4.

Classes of symbolic names (continued)
Statement functions •
Intrinsic functions •
Dummy procedures
NAMELIST group name •

EXPRESSIONS •

2-28
2-28
2-28
2-29

3-1

ARITHMETIC EXPRESSIONS 3-1
Arithmetic operators. 3-2

Interpretation of arithmetic operators in expressions 3-2
Precedence of arithmetic operators 3-3

Arithmetic operands 3-3
Primaries • 3-4
Factors • 3-4
Terms • 3-5
Arithmetic expressions

Data type of arithmetic expressions
Integer quotients •
Type conversion •

Type integer •
Type real
Type double-precision
Type complex •
Type Boolean •

Evaluation of arithmetic expressions •
CHARACTER EXPRESSIONS •

Character expression evaluation
RELATIONAL EXPRESSIONS

Arithmetic relational expressions
Character relational expressions •

LOGICAL EXPRESSIONS •
Logical operators
Form and interpretation of logical expressions •
Values of logical factors, terms, disjuncts, and
expressions

BOOLEAN (MASKING) EXPRESSIONS •
PRECEDENCE OF ALL OPERATORS •
EVALUATION OF EXPRESSIONS •

Order of evaluation of functions •
PARENTHESES AND EXPRESSIONS •
SUMMARY OF RULES OF INTERPRETATION

SUBROUTINE, FUNCTION, AND SPECIFICATION SUBPROGRAMS

SPECIFICATION SUBPROGRAMS •
Named common blocks

PROCEDURE SUBPROGRAMS •
Subroutine subprograms •

3-5
3-6
3-8
3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-13
3-14
3-14
3-14

3-16
3-17
3-18
3-19
3-19
3-20
3-20

4-1

4-1
4-1
4-2
4-2

SR-0009 xi J-02

PROCEDURE SUBPROGRAMS (continued)
Actual arguments • • • • • • • • • • • • •
Subroutine subprogram restrictions •••••••

Function subprograms • • • • • • • • • • •
Statement functions • • • • • • • • •

Referencing statement functions
Statement function restriction

External functions • • • • • • • •
Referencing external functions •
Execution of external function references
Actual arguments for external functions

Intrinsic functions • • • • • • • • • • • •••
Referencing intrinsic functions ••••••
Intrinsic function restrictions
Utility procedures • • • • • •

Function subprogram restrictions
Execution of function references
Referencing functions •
Non-FORTRAN subprograms • • • • • • • • • • • • • • •

ARGUMENTS •
Dummy arguments • • • • • • • • •
Actual arguments • • • • • • • • • •
Association of dummy and actual arguments • • • •
Variables as dummy arguments • • • •••
Arrays as dummy arguments • • • •
Procedures as dummy arguments
Restrictions on the association of entities

COMMON BLOCKS • • • • • • • • • • • •
Extended memory common blocks
Task common blocks • • • • • • •

· . . .

· . .

FIGURES

1-1
2-1
2-2

Executable program • • • • •
Array storage sequence •••••••••
Array element arrangement and reference •

TABLES

1-1 Special characters · . · · · 1-2 Required order of lines and statements · 2-1 Constant value representation • · 2-2 Logical constant representation · · · 2-3 Subscript evaluation
3-1 Arithmetic operators . . · . 3-2 Interpretation of operators in expressions
3-3 Precedence of arithmetic operators · · ·

·

· · · · · . · · · · · · · · · · · · · · · · ·
· . · · · ·
· · · · · 3-4 Arithmetic operand, expression, and result typing relationships

SR-0009 xii

4-2
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-7
4-8
4-8
4-9
4-9
4-9
4-10
4-10
4-11
4-12
4-12
4-13
4-14
4-15
4-15

1-11
2-13
2-14

1-4
1-14
2-3
2-7
2-16
3-2
3-2
3-3
3-7

J-03

TABLES (continued)

3-5
3-6
3-7
3-8

Type conversion in assignment statements • • • •
Relational operators • • •
Logical operators • • • • • • •
Precedence among all operators •••••• • • • • • • •

PART 'l'IiO - eft STATEMBN'.rS

1.

2.

3.

FORTRAN STATEMENTS

DATA SPECIFICATION

DECLARATION AND INITIALIZATION
PARAMETER statement
DIMENSION statement
POINTER statement (CFT extension)
DATA statement • • • • •

DATA statement restrictions •
TYPE STATEMENTS • • • • • • • •

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL type
statements • • • • • • • • • • • • • •
CHARACTER type statement • •
IMPLICIT statement • • • • • • •
IMPLICIT NONE statement (CFT extension)

ASSOCIATION STATEMENTS •••••••••• • • • • • • • •
EQUIVALENCE statement • • • • •

Equivalence association • • • • • •
Array names and array element names • •
Restrictions on EQUIVALENCE statements

COMMON statement • • • • • •
Oommon block storage sequence
Size of a common block
Common association • • • • •
Differences between named commmon and blank common
Restrictions on COMMON and EQUIVALENCE statements

INTRINSIC STATEMENT • • • • • • •
SAVE STATEMENT

ASSIGNMENT STATEMENTS •
ARITHMETIC ASSIGNMENT STATEMENT • •
LOGICAL ASSIGNMENT STATEMENT
CHARACTER ASSIGNMENT STATEMENT • • • •
ASS IGN STATEMENT • • • • • •

SR-0009 xiii

3-8
3-12
3-14
3-18

1-1

2-1

2-1
2-1
2-2
2-3
2-4
2-6
2-7

2-7
2-8
2-9
2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-14
2-14
2-15
2-15
2-15
2-15
2-16

3-1

3-1
3-2
3-2
3-3

J-03

4.

5.

PROGRAM CONTROL STATEMENTS

UNCONDITIONAL GO TO STATEMENT •
COMPUTED GO TO STATEMENT
ASSIGNED GO TO STATEMENT
ARITHMETIC IF STATEMENT •
LOGICAL IF STATEMENT
CONDITIONAL BLOCK STATEMENTS

IF-block •
Block IF statement •
END IF statement •
ELSE IF-block
ELSE IF statement
ELSE-block •
ELSE statement •
Conditional block statement execution

DO STATEMENT
Terminal statement •
DO variable
Range of a DO-loop •
Active and inactive DO-loops •
Executing a DO statement •
Loop control processing
Execution of the range •
Terminal statement execution •
Incrementation processing
Transfer into the range of a DO-loop •

CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT •
END STATEMENT •

INPUT/OUTPUT STATEMENTS •

INPUT/OUTPUT RECORDS
Formatted records
Unformatted records
End-of-file (ENDFILE) records
End-of-data records

INPUT/OUTPUT FILES
RECORD AND FILE POSITIONS •
DATASETS
INTERNAL RECORDS AND FILES
SEQUENTIAL ACCESS OPERATIONS
DIRECT ACCESS OPERATIONS

Dataset position before data transfer
Sequential access •
Direct access •

UNITS •

SR-0009 xiv

4-1

4-1
4-2
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-10
4-10
4-10
4-11
4-11
4-13
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16

5-1

5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-5
5-5
5-5
5-6

J-03

6.

IDENTIFIERS •
Unit identifiers •
Dataset identifiers
Format identifiers •

READ, WRITE, AND PRINT STATEMENTS •
Control information lists
Input/output lists •

Input list items
output list items •
Implied-DO lists

DATA TRANSFER •
Direction of data transfer •
Identifying a unit •
Establishing a format
Data transfer

Unformatted data transfer •
Formatted data transfer •

Error and end-of-file conditions •
BACKSPACE, ENDFlLE, AND REWIND STATEMENTS •

BACKSPACE statement
ENDFILE statement
REWIND statement •

INQUIRE STATEMENTS
Inquiry by dataset name
Inquiry by unit
INQUIRE statement restrictions •

OPEN STATEMENT
CLOSE STATEMENT •
NAMELIST STATEMENT (CFT EXTENSION)

NAMELIST input •
NAMELIST input variables
NAMELIST input processing •
User control subroutines

NAMELIST output
User control subroutines

BUFFER IN AND BUFFER OUT STATEMENTS (CFT EXTENSIONS)
The UNIT function
The LENGTH function

RESTRICTIONS ON INPUT/OUTPUT STATEMENTS •
I/O ERROR RECOVERY

FORMAT SPECIFICATION

5-6
5-6
5-7
5-7
5-8
5-9
5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-13
5-13
5-14
5-14
5-15
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-20
5-20
5-21
5-23
5-24
5-25
5-26
5-26
5-28
5-28
5-29
5-33
5-34
5-34
5-34

6-1

FORMAT STATEMENTS • 6-1
Format of a format specification • 6-2

EDIT DESCRIPTORS 6-3
Interaction between I/O lists and format specifications 6-6
Positioning by format control 6-7
Internal representation 6-7
Apostrophe and quotation mark editing 6-7

SR-0009 xv J-03

7.

H editing
Positional editing (T, TL, TR, and X)

T, TL, and TR editing •
X editing •

Slash editing
Colon editing
Dollar sign editing (CFT extension)
P editing
Numeric editing (BN, BZ, S, SP, SS, I, F, E, D, and G)

BN and BZ editing •
S, SP, and SS editing •
Integer editing •
F editing •
E editing •
D (double-precision) editing
G editing •

Complex editing
o (octal) editing (CFT extension)
Z (hexadecimal) editing (CFT extension)
L (logical) editing
A (alphanumeric) editing •
R (right-justified) editing (CFT extension)

LIST-DIRECTED I/O •
List-directed input
List-directed output •

PROGRAM UNIT SPECIFICATION

PROGRAM STATEMENT •
FUNCTION SUBPROGRAMS

Function reference •
Function statement •
Statement function definition statement

SUBROUTINE AND CALL STATEMENTS
Subroutine reference •

Execution of a CALL statement •
SUBROUTINE statement •

RETURN STATEMENT
Execution of a RETURN statement
Alternate return •

ENTRY STATEMENT •
Referencing a procedure subprogram entry •
Entry association in function subprograms
ENTRY statement restrictions •

EXTERNAL STATEMENTS •
BLOCK DATA STATEMENTS •

SR-0009 xvi

6-8
6-8
6-9
6-9
6-10
6-10
6-10.1
6-11
6-12
6-13
6-13
6-13
6-14
6-16
6-17
6-17
6-19
6-19
6-20
6-20
6-21
6-23
6-24
6-24
6-26

7-1

7-1
7-2
7-2
7-2
7-3
7-5
7-5
7-5
7-6
7-6
7-7
7-7
7-8
7-9
7-9
7-9
7-10
7-11

J-03

FIGURE

4-1 IF-levels and blocks

TABLES

5-1 Print control characters . . · · · · · · 5-2 Inquiry specifiers and their meanings · · · · . . . · · · · 5-3 OPEN specifiers and their meanings · · · · 5-4 CLOSE specifiers and their meanings · · · · · · · · 6-1 Edit descriptors with data types · · · . . · · · · 6-2 Edit descriptors and data types when SEGLDR and the EQUIV
directive are used · · · ·

PART THREE - THE CPT CC»!PlLER

1. CFT COMPILER I/O ·
THE CFT CONTROL STATEMENT
ERROR MESSAGES DURING PROGRAM EXECUTION
INPUT TO CFT ••••
OUTPUT FROM CFT • • • •

Listable output ••••
Page header lines •
Source statement listings •
BLOCK BEGINS messages • • •

.

Table of statement numbers • • • • • • • • • •
Table of names encountered •••• • • • • •

Address field ••••••••
Name field • • • • •
Type field • • • • •••
Main usage field • • • • •
Block field • • • • • • • · . . .

Table of parameters encountered •
Table of block names and lengths in octal • • • • • •
Table of external names • • • • • •
Table of loops encountered · . . .
Cross-reference information • ·
Messages •••• • • •
Program Unit Page Table • • •

Compiler options • • • •
Using compiler directive lines ·

COMPILER DIRECTIVES • • • • • •
Listable output control directives •

EJECT directive • • • • • •
LIST directive

SR-0009 xvii

4-9

5-15
5-19
5-22
5-23
6-5

6-5

1-1

1-1
1-11
1-11
1-14
1-14
1-14
1-15
1-15
1-15
1-16
1-16
1-16
1-16
1-17
1-17
1-18
1-18
1-19
1';'19
1-19
1-20
1-20
1-20
1-21
1-21
1-22
1-22
1-22

J-03

2.

NOLIST directive
CODE directive
NOCODE directive

Vectorization control directives •
VECTOR directive
NOVECTOR directive
NORECURRENCE directive
IVDEP directive •
IVDMO directive •
VFUNCTION directive •
NEXTSCALAR directive
SHORTLOOP directive •

Integer control directives (INT24, INT64)
Multiply/divide directives (FASTMD, SLOWMD)
Flow trace directives (FLOW/NOFLOW)

Flow trace enable/disable •
FLODUMP utility •
Options •

SETPLIMQ •
ARGPLIMQ •
FLOWLIM

Scheduler directives •
UNSAFE IF/SAFE IF directives
BLjNOBL directives

Dynamic common block directive (DYNAMIC)
Array bounds checking directive (BOUNDS)

BOUNDS options
Optimization directives

BLOCK directive •
NO SIDE EFFECTS directive •
ALIGN directive •
NOIFCON directive •
RESUMEIFCON directive •
RESUMEDOREP directive •
NODOREP directive •
CVL directive •
NOCVL directive •

Debugging directives (DEBUG, NODEBUG)
ROLL/UNROLL directives •

EXTERNAL ROUTINES •

CRAY FORTRAN PROGRAMMING

VECTORIZABLE DO-LOOPS •
Qualifications for vectorization •
Entity categories
Dependencies •
Conditional vector loops •

SR-0009 xviii

1-23
1-23
1-23
1-24
1-24
1-25
1-26
1-27
1-27
1-27
1-28
1-29
1-29
1-30
1-30
1-31
1-31
1-32
1-32
1-32
1-33
1-33
1-33
1-33
1-34
1-34
1-34
1-35
1-36
1-36
1-37
1-37
1-38
1-38
1-38
1-39
1-39
1-39
1-39
1-40

2-1

2-1
2-1
2-2.1
2-4
2-10

J-03

Vectorization with arrays
Using optimized routines •
Use of optimized routines by CFT •

Conditional statements
Compressed index references
General guidelines for vectorization •

BIDIRECTIONAL MEMORY

TABLES

1-1
1-2
1-3
2-1
2-2

Effect of ALLOC, SAVEALL, and BTREG on variable allocation
Compiler options
External routines •
Array A elements in vector and scalar modes •
Dependency information combinations •

APPENDIX SECTION

A. CHARACTER SET •

B. CRAY FORTRAN INTRINSIC FUNCTIONS

C. CRAY FORTRAN UTILITY PROCEDURES •

D. CFT MESSAGES

COMPILE-TIME MESSAGES •
LOGFILE MESSAGES
INFORMATIVE DEPENDENCY MESSAGES •

E. OUTMODED FEATURES •

HOLLERITH CONSTANTS •
HOLLERITH EXPRESSIONS •

Hollerith relational expressions •
HOLLERITH FORMAT SPECIFICATION
TWO-BRANCH ARITHMETIC IF STATEMENTS •
INDIRECT LOGICAL IF STATEMENTS
FORMATTED DATA ASSIGNMENT •

Encode and decode statements •
The ENCODE statement •
The DECODE statement •

EDIT DESCRIPTORS
DOUBLE DECLARATION STATEMENTS •
DATA STATEMENT FEATURES •
PUNCH STATEMENT •
TYPE STATEMENT DATA LENGTH

SR-0009 xix

2-10
2-11
2-12
2-13
2-16
2-16
2-17

1-10
1-12
1-40
2-4.1
2-5

A-I

B-1

C-l

D-l

D-2
D-28
D-30

E-l

E-2
E-4
E-5
E-6
E-6
E-6
E-7
E-7
E-8
E-9
E-9
E-IO
E-IO
E-ll
E-ll

J-03

F.

G.

H.

I.

J.

RANOOM INPUT/OUTPUT OPERATIONS • • • • •
Creating a dataset for random access
Dataset connection • • • • • • •

Positioning while connected for random access
(GETPOS/SETPOS) • • • • • •

READMS/WRITMS routines • • • • •
Modifying a record under random access •
Extended range of a OO-loop • • • • •
Noncharacter arrays for format specification • •
EOF, IEOF, and IOSTAT functions • • ••••

CREATING NON-FORTRAN PROCEDURES

SYMBOLIC DEBUG PACKAGE

UNBLOCKED DATASETS

REPRIEVE PROCESSING .
REPRIEVE INITIATION • •
REPRIEVE TERMINATION

FTREF UTILITY • • • • .
TABLES

B-1
C-l
E-l

INDEX

Generic and specific intrinsic function names •
CFT utility procedures
Data length • • • • • •

SR-0009 xx

E-13
E-13
E-13

E-13
E-14
E-IS
E-IS
E-IS
E-16

F-l

G-l

H-l

I-I

I-I
1-2

J-l

B-7
C-2
E-12

J-03

PART 1

CFT DESCRIPTION

\

eRA Y FORTRAN LANGUAGE

FORTRAN is a system of notation devised for easy and accurate computer
program specification. It is a computer programming language that is
especially useful for solving mathematical problems. Ordered sets of
alphabetic, numeric, and special characters are used to construct FORTRAN
statements which, in turn, are ordered to comprise a computer program.
FORTRAN permits computer program specification with little dependence
upon the characteristics of the computer system to be used.

The Cray FORTRAN (CFT) language i.s a high-level language that employs the
features of the CRAY-l and CRAY X-MP Computer Systems. The language is
an extended version of the American National Standards Institute (ANSI)
77 programming language, FORTRAN, ANSI X3.9-1978, which is often called
FORTRAN 77. The CFT Compiler transforms CFT language statements into
machine-language instruction sequences or programs. The Cray Operating
System (COS) supports CFT and the programs CFT creates by initiating and
monitoring their execution.

The CFT language is described in this section. The fundamentals of its
notation and syntax are introduced, followed by a des9ription of the
elements of an executable program and the CFT method of data
representation.

THE CRAY FORTRAN COMPILER

The CFT compiler converts statements in the FORTRAN language to the
binary machine language of the Cray Computer Systems. During this
conversion, CFT constructs machine-language instruction sequences that
apply the full range of the Cray Computer Systems features and
capabilities during program execution.

CONFORMANCE WITH THE ANSI STANDARD

Specifications for the Cray FORTRAN language are based on standards
established in 1977 by the American National Standards Institute and
documented in the publication ANSI FORTRAN X3.9-1978.

SR-0009
Part 1
1-1 J

1

Extensions to these standards afford the CFT language programmer a broader
range of capabilities. Statement extensions that deviate from the ANSI
standards are identified as CFT extensions (See part 2). Other deviations
from the ANSI standards are flagged with notes throughout the manual.

CONVENTIONS

The conventions used in this publication to describe the syntax of FORTRAN
statement forms consist of ordered sequences of the following elements:

UPPERCASE

Italia8

[] Brackets

{} Braces

••• Ellipsis

Uppercase letters, numbers, and symbols indicate
their actual use

Identify a user-provided item and are also used
when terminology is being defined

Enclose items for optional use

Enclose two or more parameters when only one of
the parameters must be used

Indicate optional use of the preceding item one
or more times in succession

Except where specifically stated that blanks are required, blank
characters are not needed and only enhance readability.

Example:

PRINT f[, ioli8t]

where f is a FORMAT statement identifier, and

ioZi8t is an I/O list

describes the syntactical construct beginning with the letters PRINT,
followed by those symbols identifying a FORMAT statement identifier and,
optionally, a comma and one or more sets of symbols identifying I/O list
items separated by commas.

SR-0009
Part 1
1-2 J

I

I

The FORTRAN language statements

PRINT 88

PRINT l234,A,B,C,X,Y,Z

PRINT6,VALUE

PRINT 0054,ALPHA,BETA,GAMMA,DELTA,ETCETERA

thus comply with this form, provided that the use of FORMAT statement
identifiers and I/O list items is proper.

ELEMENTS OF THE CFT LANGUAGE

The CFT language is composed of numbers and letters and the special
characters identified in the character sets below. Certain sequences of
these are called syntactic items and can be grouped into FORTRAN
statements which, in turn, are ordered into program units.

CHARACTER SETS

Two sets of characters are used in CFT language notation, the FORTRAN
character set and the auxiliary character set. Uppercase and lowercase
letters, digits, and certain special characters belong to the FORTRAN
character set. All other characters representable in the Cray computer
systems belong to the auxiliary character set. Appendix A describes
these characters and their internal codes.

FORTRAN character set

The FORTRAN chapacter set consists of the 26 uppercase letteps, A-Z,
the 26 lowercase letters, a-z, the 10 digits, 0-9, and the 14
special characteps described in table 1-1. An alphanumeric charactep
is any letter or digit.

The 8-bit ASCII internal code for each of these characters is given in
Appendix A. The relative magnitudes of these internal codes establish
their collating sequence. Digits precede letters in this collating
sequence.

I The ANSI FO~ Standard does not specify a collating sequence except
within the letter group (A-Z) and the digit group (0-9).

SR-0009
Part 1
1-3 J

Table 1-1. Special characters

Symbol Name

Blank or space

= Equals

+ Plus

- Minus or hyphen

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

, Comma

· Decimal point

$ Dollar sign/currency symbol
I Apostrophe
.. Quotation mark

· Colon ·

The ANSI FORTRAN Standard does not provide for quotation marks.

Auxiliary character set

Appendix A contains the complete Cray Computer Systems set of characters
and the codes used for the internal representation of each. Those
characters not in the FORTRAN character set are members of the auxiliary
oharaoter set and are nonstandard.

The ANSI FORTRAN Standard does not specify an auxiliary character set.

SR-0009
Part 1

1-4 J

I

UPPERCASE/LOWERCASE CONVERSION

A FORTRAN program and its input data, if any, generally use uppercase and
lowercase letters interchangeably. CFT lists the source program as it is
received. Secondary listings, such as error messages or cross reference
lists, have all lowercase letters converted to uppercase. The only
exception to this is within character or Hollerith constants, where no
case conversion occurs.

The ANSI FORTRAN Standard does not provide for lowercase letters.

SEQUENCES

A sequence is a set of n elements ordered in a one-to-one correspondence
with the ordinals 1,2, ••• ,n. An empty sequence contains no elements.

SYNTACTIC ITEMS

Syntactic items of the FORTRAN language are formed with sequences of
FORTRAN character set elements. They include the following.

• Constants

• Symbolic names

• Statement labels

• Keywords

• Operators

• Special characters

Within syntactic items, uppercase and lowercase letters can be used
interchangeably.

Constants

A constant is a syntactic item representing an unvarying value.
Several types of constants are illustrated below and are more fully
described in part 1, section 2, under the subheading, Constants.

SR-0009
Part 1
~5 J

•

Examples:

Representation

1024
10.El
10.el
1.5
• FALSE.
• TRUE.
72.
'CRAY-l'
75.630-2
(6.1,-3.2)

Symbolic names

Integer
Real
Real
Real
Logical
Logical
Real
Character
Double precision
Complex

value

1024
100.
100.
1.5
false
true
72.
CRAY-l
.7563
6.l+(-3.2)Y-I"

A symboLio name declares or references a program unit, procedure, or
value. It is composed of one to eight alphanumeric characters. The
first character must be a letter. Leading, trailing, and embedded blank
characters are ignored.

The ANSI FORTRAN Standard limits a symbolic name to a maximum of six
characters.

Examples:

DATAONE F293 SIN ALPHA

DATAl U 238 TEST1234

SAM Sam sAM

(The three names on the last line are equivalent).

Statement labels

A statement LabeL uniquely identifies a statement in a program unit to
permit its being referenced by other statements in the same program
unit. A statement label is composed of one to five digits, one of which
must be nonzero. Leading zeros and leading, trailing, and embedded blank
characters do not alter the identity of a statement label. For example,
in the following statement sequence, 22 and 2 2 refer to the statement
label 22.

SR-0009
Part 1
1-6 J

•

IF (X) 22,11,2 2
22 CONTINUE

Keywords

A keywopd is a prespecified sequence of letters having special
significance in FORTRAN language statements. Some examples of keywords
are INTEGER, WRITE, and GO TO. Leading, trailing, and embedded blanks
occurring in a keyword are ignored. Duplication of a keyword as a
symbolic name poses no problem because of the context in which each is
used.

Operators

An opepatop specifies arithmetic, relational, logical, and character
operations within program units. An operator is expressed as one or two
special characters or a combination of special characters and letters.
Leading, trailing or embedded blanks do not affect the identity of an
operator.

Examples:

Representation

+
**
• AND.
.EQ.

II

LISTS AND LIST ITEMS

Arithmetic
Arithmetic
Logical
Relational
Character

Meaning

Addition
Exponentiation
Intersection
Equal to
Concatenation

A list is a sequence of one or more syntactic items separated, if more
than one, by the special character comma. The syntactic items appearing
in a list are called list items. Blank characters preceding, following,
or embedded within list items do not affect their interpretation.

Examples:

A,B,C,D,E

ARRAY1, VALUE2,X,ABC

SR-0009

701,55,100

UNO,2,TRES

Part 1
1-7 J

FORTRAN STATEMENTS

A FORTRAN statement is a sequence of syntactic items that usually
begins with a keyword. As a fundamental component in a FORTRAN program
specification, the FORTRAN statement describes either the form of data
and program elements or the actions to be taken by the program. A
statement label can precede a statement, but is not a part of the
statement itself.

The type of a statement is indicated by the keyword it contains or by its
form. The total number of characters used to express a statement is
limited to 1,320, including blank characters. Aside from this
character-count limitation, leading, trailing, and embedded blank
characters do not affect statement interpretation.

A statement is classified as either executable or non-executable. An
executable statement is one that specifies an action. A non-executable
statement is an inactive descriptor of data or program form. CFT
statements appear in part 2.

LINES

A single row of information is a line. A line can contain up to 96
columns. Columns 73 through 96 are unused by CFT. (A blank position in
the row or an unpunched column of a card represent the special character
blank.) All notation required to describe a FORTRAN program is expressed
as an ordered sequence of the following types of lines.

• Comment

• Initial

• Continuation

• Terminal

• Compiler directive

The ANSI FORTRAN Standard limits line length to 72 characters.

SR-0009
Part 1

1-8 J

Comment lines

A comment line is a descriptive commentary or a blank line that can
have the letter C or an asterisk in column 1, or only blank characters in
columns 1 through 72. (See compiler directive lines.) The contents of
columns 2 through 96 of a comment line have no effect on the FORTRAN
program being created.

Comments can also be embedded in any statement except a FORMAT
statement. When an exclamation point (!) appears outside a quoted
string, the remainder of the line is treated as a comment. The
exclamation point cannot appear in columns 1-5. An exclamation point in
column 6 indicates continuation of the previous statement, not
continuation of an embedded comment on the previous line.

Examples:

10 x=y*z
+SUM

!Compute the product
!and add it to the sum

The ANSI FORTRAN Standard does not provide for embedded comments.

Initial lines

The initial line expresses all or the initial part of a single FORTRAN
statement in columns 7 through 72. This line can have a statement label
of one to five digits and/or blank characters in columns 1 through 5. An
initial line has neither the letter C nor an asterisk in column 1, and
must have either the digit 0 or a blank character in column 6. A
te~inal line is a special form of initial line.

continuation lines

One or more continuation lines can be used to extend an initial line
when expressing a single FORTRAN statement. A continuation line has
neither the letter C nor an asterisk in column 1. It has a character
other than 0 or blank in column 6, and contains a portion of a FORTRAN
statement in columns 7 through 72. Columns 1 through 5 must contain only
blanks. A sequence of one initial line followed by up to 19 continuation
lines can be used for a single FORTRAN statement. This sequence of lines
can have any number of comment lines interspersed. The initial line of
such a sequence must not appear to be a terminal line.

SR-0009
Part 1
1-9 J

Terminal lines

A single tep,minat tine must be used as the last line of every program
unit. A terminal line is a special form of initial line that completely
contains an END statement (that is, the letters E, N, and 0 appearing in
that order anywhere in columns 7 through 72). This line contains no
other characters.

Compiler directive lines

A line having the characters CDIR$ in columns 1 through 5 is a ~ompitep
dipe~tive tine and can contain one or more compiler directives. These
lines and their compiler directives are described in part 3, section 1.

The ANSI FORTRAN Standard does not provide for compiler directives.

THE EXECUTABLE PROGRAM

An exe~utabte ppogpam is an ordered set of FORTRAN statements grouped
into one or more program units. Certain program units can reference
pre-established procedures called subprograms. Computer program
specifications are, therefore, established from the following two sources.

• The FORTRAN statements comprising the executable program

• Subprograms referenced by these FORTRAN statements

Figure 1-1 illustrates these program units, the procedures they
reference, and the overall organization of these entities in the
executable program.

PROGRAM UNITS

A ppogpam unit contains a sequence of statements and optional comment
lines. A set of program units in an executable program must include one
main program and can also include one or more subprograms.

SR-0009
Part 1
1-10 J

I

I Program units I
l

I Subprogr ams I

Specification
Subprograms

Procedure -"- Subprograms -

___ Actual
Specifications

-----Referenced
Spec~fications

Executable
Program

L ____

Main program

Statement
Functions

Intrinsic
Functions

Block Data
Subprograms

Subroutine
Subprograms

Non-FORTRAN
Subroutine
Subprograms

Function
Subprograms

Non-FORTRAN
Function

Subprograms

I
I
I
I
I
I
I
I

------------~ -,

---------------~ 1-'

~ -----

External
Procedures

i
I
I
I

_I

Subroutines

... -----e-____________ ~

I

... ----- External
Functions ---.I

-------~--------~

Figure 1-1. Executable program

SR-0009
Part 1
1-11 J

The main program

A main ppogram is a program unit where a FUNCTION, SUBROUTINE, or BLOCK
I DATA statement does not appear as its first statement. An executable

program must contain only one main program. Program execution begins
with the first executable statement of the main program.

I

I

Optionally, the first statement of a main program can be a PROGRAM
statement. Using the PROGRAM statement is strongly recommended since
several compiler options, such as F and H, depend on the presence of a
PROGRAM statement. The PROGRAM statement must be the first statement of
the main program.

The subprogram

A subprogram is a program unit having a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. A subprogram must not reference a
main program. The main program can reference one, more than one, or no
subprogram during its execution, provided each is defined before main
program execution. (See section 4 for a detailed description of
subprograms).

NORMAL EXECUTION SEQUENCE

Program execution begins with the first executable statement of the main
program. A norma2 exeoution sequenoe is the execution of executable
statements in their order of appearance in a program unit. When a
subprogram is referenced, execution begins with the first executable
statement of that subprogram. When a subprogram entry is referenced (see
the ENTRY statement in part 2, section 7), execution begins with the
first executable statement following the ENTRY statement named in that
reference.

The following statements can alter the normal execution sequence.

• Unconditional, assigned, and computed GO TO

• Arithmetic IF

• RETURN

• PAUSE

• CALL with an alternate return specifier

• STOP

SR-0009
Part 1
1-12 J

I
I

I

• An I/O statement containing an error specifier or an end-of-file
specifier

• Logical IF containing the preceding forms

• 00

• Block IF or ELSEIF

• The terminal statement of a no-loop

• The last statement of an IF-block or ELSE IF-block

• END

Normal execution sequence is not affected by the interspersing of
non-executable statements or comment lines among executable statements.

A procedure subprogram must not be referenced twice without the execution
of a RETURN or END statement in that procedure.

ORDER OF STATEMENTS AND LINES

The FORTRAN language requires that the various types of statements and
lines appear in a specific order. Table 1-2 illustrates the required
order of statements and lines for a program unit. vertical lines delimit
varieties of statements that can be interspersed. For example, FORMAT
statements can be interspersed with PARAMETER, DATA, executable, and
statement function definition statements.

Horizontal lines delimit varieties of statements that must not be
interspersed. For example, statement function definition statements must
not be interspersed among executable statements.

The top-to-bottom order indicates the first-to-last appearance of lines
and statements in a program unit. Note that an END statement must appear
in the last line of a program unit and cannot be followed by a comment
line intended as a part of that same program unit.

SR-0009
Part 1

1-13 J

I
*

Table 1-2. Required order of lines and statements

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement

IMPLICIT
Comment statements *

and ENTRY PARAMETER
compiler and statements*
directive FORMAT Other specification
lines* statements statements

Statement function
definition statements

DATA
statements

Other executable
statements

END statement

Note the restrictions described for the interspersing of IMPLICIT and
PARAMETER statements (see part 2, section 2) and for compiler
directive lines (see part 3, section 1).

SR-0009
Part 1

1-14 J

DATA REPRESENTATION AND STORAGE 2

Data can be specified in a FORTRAN program as a constant, a variable, an
array, or an array element. Data can be created by a function when that
function is referenced. A constant, variable, array element, or function
referenoe occurs when a symbolic name appears in a context where a
value is required. A reference to a variable or array element provides
the value currently contained by that entity without modifying that value.

Reference to a constant provides an invariant value, which cannot be
modified. Reference to a function causes a value to be defined.

TYPES OF DATA

The data type of a constant, a variable, an array, an array element, or a
function can be specified as one of the following.

• Integer - Integral, signed values

• Real - Signed, mixed-value approximations (integral number plus
fraction)

• Double-precision - Signed, mixed-value approximations extended to
approximately twice the precision of real data

• Complex - Values that approximate complex values as pairs of
signed, mixed-value approximations (the first member of a pair for
the real part, the second member for the imaginary part)

• Logical - Values that represent the logical values true and false

• Character - Sequences of characters

• Boolean - Octal values representing the binary contents of Cray
computer words

The ANSI FORTRAN Standard does not provide for Boolean data
specification.

SR-0009
Part 1

2-1 J

I

I

I

Once a symbolic name is identified with a particular type, the type of
that name is implied for all usages of that name.

The data type of a constant, variable, array, external function or
statement function can be specified explicitly in a type statement or
implicitly by the first letter of its symbolic name. If no type is
explicitly specified, a first letter of I, J, K, L, M, or N implies type
integer; any other first letter implies type real. The default implied
typing can be changed or confirmed by an IMPLICIT statement. (See the
IMPLICIT statement and type statements in part 2, section 2.)

DATA TYPE OF AN ARRAY ELEMENT

The data type of an array element is the same as the data type of the
array within which it exists.

DATA TYPE OF A FUNCTION

The data type of a function establishes the type of data provided when
the function is referenced in an expression.

The name of an intrinsic function is prespecified to agree with the
type of data provided. It cannot be explicitly or implicitly retyped.
Intrinsic functions are listed in Appendix B.

The data type of a function subprogram is implied by its name. It can be
retyped by a type statement or an IMPLICIT statement in the function
subprogram. It can also be specified in the FUNCTION statement that
names the subprogram.

CONSTANTS

Within an executable program, all constants expressed in the same form
have the same invariant value. The value zero is neither positive nor
negative. A signed zero has the same value as an unsigned zero.

The form of the character sequence representing a constant specifies both
its value and its data type. A PARAMETER statement allows a constant to
be given a symbolic name. The data type of the symbolic name of a
constant is specified in the subsection, Types of Data, described earlier
in this section).

Except within character constants, blank characters occurring in a
constant do not effect its value.

SR-0009
Part I
2-2 J

•

Integer, real, double-precision, and complex constants are arithmetic
constants. Table 2-1 shows examples of values with their integer, real,
double-precision, and complex representations.

An unsigned constant is an arithmetic constant without a leading sign.
A signed constant has a leading plus or minus. An optionaLLy signed
constant can be either signed or unsigned. Arithmetic constants are
optionally signed except where otherwise specified.

Table 2-1. Constant value representation

,

Integer Real Double-precision Complex
Value Constant Constant Constant Constant

0 0 O. 00 (0. ,0.)

692 692. (692.,0.)
692.0 (692.0,0.)
692EO 69200 (692EO,0.)

692 692.EO 692.00 (692.EO,0.)
692.0EO 692.000 (692.0EO,0.)
6920E-l 69200-1 (692.0E-1,0.)
.692E3 .69203 (.692E3,0.)
6.92E2 6.9202 (6.92E2,0.)

6.128547472 (6.128547472,0.)
6.128547472EO 6.12854747200 (6.128547472EO,0.)

6.128547472 6128547472E-9 61285474720-9 (6128547472E-9,0.)
6128547472.0E-9 6128547472.00-9 (6128547472.0E-9,0.)
.6128547472E1 .612854747201 (.6128547472E1,0.)
612.8547472E-2 612.85474720-2 (612.8547472E-2,0.)

(0.,.875)
(O.,875E-3)

.875·0 (O.,.875EO)
(O.,8.75E-1)
(O.,.0000OO875E6)

(692.,.875)

692+.875.0
(692EO,O.875)
(69.2E1,875E-3)
(.692E3,875.E-3)
(6.92E2,8.75E-1)

INTEGER CONSTANTS

Integer data represents values that are positive, negative, or zero. An
integer data item occupies one storage unit in a storage sequence.

The form of an integep constant is an optional sign followed by a
non-empty sequence of digits specifying a decimal integer value.

SR-0009
Part 1

2-3 J

•

Integer constants are represented in the Cray Computer Systems by
integral binary values (I) in the range

-263<I<263.t

This is approximately the decimal range

(Special reduced ranges of integer constants are discussed in part 3,
section I under Compiler Directives.)

The ANSI FORTRAN Standard does not specify a range of values for integer
constants.

NOTE

The negative of a nonzero constant, exponent value, or
complex portion is formed by preceding its expression
with a minus sign. The use of a plus sign in this
position or the absence of either sign denotes a
positive constant.

REAL CONSTANTS

Real data is an approximation to the value of a real number, assuming a
positive, negative, or zero value. Real data occupies one storage unit
in a storage sequence.

A pea~ constant can be expressed as one of the following.

• Basic real constant

• Basic real constant followed by a real exponent

• Integer constant followed by a real exponent

t Use the value _2 63 with caution since its use with arithmetic and
relational operators often causes an undetected overflow.

SR-0009
Part I

2-4 J

•

Basic real constant

A basic peal constant consists of an optional sign, an integer portion,
a decimal point, and a fractional portion, in that order. Both the
integer portion and the fractional portion are sequences of digits
representing integral and fractional decimal values, respectively.
Either, but not both of these portions, can be omitted. A basic real
constant can be written with more digits than can be used to approximate
its value~ the excess digits are lost by CFT in roundoff.

Constant followed by a real exponent

The form of a peal exponent is the letter E followed by an optionally
signed integer constant. The real exponent represents a power of 10.
The constant is multiplied by the power of 10. The decimal point in a
basic real constant is optional if there is no fractional portion and if
a real exponent is specified.

Nonzero real constant range

Nonzero real constants are represented in the Cray Computer Systems by
normalized floating-point binary values (R) in the following range.

Nonzero real constants have a maximum of 48 significant binary digits of
prec1s10n. Rounding and truncation during computation can cause fewer
than 48 reliable bits to be generated. This approximates to the
following decimal range with approximately 14 decimal digits of precision.

The ANSI FORTRAN Standard does not specify a range of values for real
constants.

DOUBLE-PRECISION CONSTANTS

Double-precision data is an approximation to the value of a real number
with approximately twice the precision of real data. Double-precision
data can be positive, negative, or zero, and it occupies two consecutive
storage units in a storage sequence.

SR-0009
Part 1
2-5 J

•

A doubLe-precision constant can be expressed as one of the following.

• Basic real constant followed by a double-precision exponent

• Integer constant followed by a double-precision exponent

Basic real constants and integer constants are defined in previous
subsections.

Constant followed by a double-precision exponent

The form of a doubLe-precision exponent is the letter D followed by an
optionally signed integer constant. The double-precision exponent
represents a power of 10. The constant is multiplied by the power of
10. The decimal point in a basic real constant is optional if there is
no fractional portion and if a real exponent is specified.

Nonzero double-precision constant range

Nonzero double-precision constants are represented in the Cray Computer
Systems by normalized floating-point binary values (D) in the following
range.

Nonzero double-precision constants have a maximum of 96 significant
binary digits of precision. Rounding and truncation during computation
can cause fewer than 96 reliable bits to be generated. This approximates
to the following decimal range with approximately 29 decimal digits of
precision.

The ANSI FORTRAN Standard does not specify a range of values for
double-precision constants.

COMPLEX CONSTANTS

Complex data approximates the value of a complex number and is
represented by a pair of real data items. The first member of the pair
represents the real portion and the second, the imaginary portion of the
data. Complex data occupies two consecutive storage units in a storage
sequence: the first for the real portion and the second for the
imaginary portion.

SR-0009
Part 1

2-6 J

The form of a complex constant is an ordered pair of optionally signed
real or integer constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the real portion of
the complex constant and the second is the imaginary portion.

Nonzero complex constant range

Nonzero complex constant components (where C=Creal+iCimag) are
represented in the Cray Computer Systems by two normalized,
floating-point binary values (Creal,Cimag) in the following range.

2-8191< I C 11 IC' 1<28191 _ rea , lmag_

Each component contains a maximum of 48 significant binary digits of
precision, approximating to the following decimal range with
approximately 14 decimal digits of accuracy.

1 0-2466<IC 11 IC· 1<102466 rea , lmag

The ANSI FOR'l'RAN Standard does not specify a range of values for complex
constant components.

LOGICAL CONSTANTS

Logical data can assume only the logical values true and false. Logical
data occupies one storage unit in a storage sequence.

The forms, values, and internal representations of a logical constant
are shown in table 2-2.

Table 2-2. Logical constant representation

Form Value Internal representation

.TRUE. or .T. true A negative value

.FALSE. or .F. false A zero or positive value

The ANSI FOR:r.RAN Standard does not provide for the .1'. or .F. form of
the logical constant.

SR-0009
Part 1

2-7 J

I BOOLEAN (OCTAL OR HEXADECIMAL) CONSTANTS

I

I

Boolean data is a set of binary zeros and ones that accounts for the
content of each bit position in a single storage unit (64-bit Cray
computer word).

The ANSI FO~ Standard does not provide for Boolean constants.

A Boolean oonstant can be represented in one of two forms, octal or
hexadecimal. The octal form contains 1 to 22 octal digits (0 through 7)
followed by the letter B. When all 22 octal digits express a Boolean
constant, their binary equivalents correspond with the content of every
bit position in the storage unit (64-bit word). In this case, the
leftmost octal digit can be a 0 or a 1 only, specifying the content of
the leftmost bit position (bit 0). Each successive octal digit specifies
the contents of the next three bit positions until the last octal digit
specifies the contents of the rightmost three bit positions (bits 61, 62,
and 63).

The hexadecimal form of a Boolean constant contains the letter X followed
by a string of 1 to 16 hexadecimal digits (0-9, A-F) enclosed in
apostrophes or quotation marks. The hexadecimal digits may be preceded
by an optional + or - sign. Blanks are insignificant in hexadecimal
constants. When all 16 hexadecimal digits express a Boolean constant,
their binary equivalents correspond with the content of every bit
position in the storage unit (64-bit word).

When the Boolean constant contains less than 22 octal digits or 16
hexadecimal digits, the constant is right-justified with zeros filling
the leftmost bit positions.

Examples:

Boolean constant

l274653312572676ll3745B

OB

l777777777777777777777B

77740B

00776B

X'ABE'

X"2FO"

SR-0009

Internal representation (octal)

1274653312572676113745

0000000000000000000000

1777777777777777777777

0000000000000000077740

0000000000000000000776

0000000000000000005276

0000000000000000001360

Part 1
2-8 J-03

Boolean constant Internal representation (octal)

X"-340" 1777777777777777776300

X'l 2 3' 0000000000000000000443

X'FFFFFFFFFFFFFFFF' 1777777777777777777777

CHARACTER CONSTANTS

A cha~acte~ constant consists of any ASCII characters listed in
Appendix A as being capable of internal representation.

The form of a character constant is an apostrophe followed by a nonempty
string of characters followed by an apostrophe. An optional form of a
character constant is a character string delimited by two quotation marks.

SR-0009
Part 1
2-8.1 J-03

I

The delimiting apostrophes or quotation marks are not part of the data
represented by the constant. Two adjacent apostrophes within a string
bounded by apostrophes or two adjacent quotation marks within a string
bounded by quotation marks are interpreted as a single apostrophe or
quotation mark, respectively, and not as a string delimiter. In a
character constant, blanks embedded between delimiting apostrophes or
quotation marks are significant.

The length of a character constant is the number of characters between
its delimiters. However, each pair of consecutive apostrophes or
quotation marks counts as a single character. The length of a character
constant must be greater than 0 and less than 1317. This limitation is
due to the number of lines allowed in a CFT FORTRAN statement.

The ANSI FORTRAN Standard does not provide for the use of quotation
marks as delimiters.

The ANSI FORT.RAN Standard does not specify a maximum length for a
character constant.

The ANSI FO~ Standard does not specify how character constants are
internally represented.

Example:

Character Internal
constant value Internal representation (octal)

'ABC' ABC 0405022062004010020040

, , , , 0234401002004010020040

"'" 0234401002004010020040

"ABC" ABC 0405022062004010020040

VARIABLES

A vapiable is an entity that has both a name and a type. Variables can
be identified, defined, and referenced.

The type of a variable is optionally specified by the appearance of the
variable name in a type statement or an IMPLICIT statement. If the type
is not so specified, it is implied by the first letter of the variable
name. Variables beginning with the letters I through N are of type
integer. All others are of type real.

SR-0009
Part 1

2-9 J-03

At any given time during program execution, a variable is either defined
or undefined.

ARRAYS

An appay is a sequence of data that occupies consecutive storage
units. Each item in the sequence is an appay element. Ordered groups
of array elements are appay dimen8ions. An arpay name identifies an
array and the type of data it contains. An arpay element name is an
array name suffixed by a subscript that indicates the placement of an
element in the array.

The name of an array implicitly identifies all elements of that array as
being of the same data type as the array. The name of an array and the
names of its elements are local to the program unit where each appears.

ARRAY DECLARATORS

An apray declarator specifies an array's name, the number of dimensions
it contains, and the number of elements in each dimension. The array
declarator specifies, therefore, the size of the array and the amount of
storage space to be allocated for the array. An array can be specified
only once within a given program unit. Array declarators are expressed
as list items in certain non-executable FORTRAN statements.

Format of an array declarator

The format of an array declarator is

where a is the name of the array and

[dl :]d2 is a dimension declarator

where dl is the lower bound of a dimension declarator and

d2 is the upper bound of a dimension declarator.

A dimension declapator specifies the number of array elements in one
dimension of an array. This number is the integer value of the upper
bound minus the lower bound of the dimension declarator, plus 1.

SR-0009
Part 1

2-10 J

The lower and upper bounds of dimension declarators are arithmetic
expressions that can contain constants, symbolic names of constants,
functions, array elements, or variables. If the type of an entity is
real, the entity is truncated to integer. Functions, array elements, and
variables can be used only in adjustable array declarators. (See the
description of kinds of array declarators, later in this section). If
the lower bound is omitted, its value is assumed to be 1. The bound
dl must be less than or equal to d2 •

The ANSI FORTRAN Standard does not permit dimension declarators to be
functions, array elements, or noninteger variables.

The number of dimension declarators specified in an array declarator
indicates the number of dimensions in the array. The minimum number of
dimensions is one and the maximum is seven.

When using FORMAT as an array name, note that CFT treats FORMAT
statements as special cases to allow asterisk edit descriptors. The
example

110 FORMAT(I3*I4)=(I5*I6)

is ambiguous. A statement is identified by CFT as a FORMAT statement if
it has a statement label and begins with the characters FORMAT(.
Therefore, an assignment of an array named FORMAT may not have a
statement label as in the following example.

110 CONTINUE
FORMAT (I3*I4)= (I5*I6)

Kinds of array declarators

An array declarator is either an actual array declarator or a dummy array
declarator.

Actual array declarators - An actuaL array dectarator is a constant
array declarator having an array name that is not a dummy argument. An
actual array declarator is permitted in a DIMENSION, COMMON, or type
statement.

Dummy array declarators - A dummy array decLarator can be a constant or
an adjustable or assumed-size array declarator. An adjustabLe array
decLarator is an array declarator that contains one or more variables.
An assumed-size array decLarator is an array declarator in which the
upper bound of the last dimension declarator is an asterisk.

SR-0009
Part 1

2-11 J-02

•

Dummy array declarators appear only in function or subroutine
subprograms. They are permitted in DIMENSION or type statements, but not
in COMMON statements. An array name used in a dummy array declarator in
a subprogram must also appear as an argument in its FUNCTION, SUBROUTINE,
or ENTRY statement.

SIZE OF AN ARRAY

The size of an array is the number of elements in the array and is equal
to the product of the sizes of all dimensions for that array.

CFT allows a maximum array size of 4,194,304 Cray computer words. The
Cray Computer System being used, the memory required for other than the
executable program and related data storage, and the executable program
size might further restrict the array size.

The ANSI FORTRAN Standard does not specify a maximum for array size.

ARRAY ELEMENT NAMES

The format of an array element name is

a(8 [, 8} •••)

where a is the array name,

(8[,8} •••)

is a subscript, and

8 is a subscript expression.

The number of subscript expressions should equal the number of dimension
declarators in the array declarator. Fewer subscript expressions cause a
warning message to be issued.

The ANSI FORTRAN Standard does not provide for fewer subscript
expressions than declarators.

SR-0009
Part 1

2-12 J-02

•

A subscript expression must yield an integer value when evaluated and can
contain references to integer or Boolean constants, variables, functions,
and array elements. The evaluation of the subscript expression must not
alter the value of other expressions within the same statement.

CFT uses 24-bit A registers for subscript calculations. Overflow on
intermediate values greater than 223_1 is not detected and using very
large values in subscript expressions can produce unpredictable results.

ARRAY STORAGE SEQUENCE

An array has a storage sequence defined by the storage sequence of its
elements. The number of storage units (words) in an array is the product
of the number of the elements in the array and the number of storage
units required for each element.

SR-0009
Part 1
2-12.1 J-02

•

The number of elements in an array is the product of the number of
elements in each dimension. Examples of array storage sequence appear in
figure 2-1.

ONE DIMENSION TWO DIMENSIONS 3 THREE DIMENSIONS

2
1---------1

3
1--------1

4
1--------1

5 t
~-----I

6

ARRAY DECLARATOR: ARX (6)

DATA TYPE: REAL

DIMENSION 6 ELEMENTS SIZES:

TOTAL ELEMENTS: 6

t ARRAY ELEMENT ARX (5)
REFERENCE:

NUMBER OF WORDS: 6

I- - -f- - -I- - - f- - -

2 I- - -I- - -f- - - - - -

3 - - - - - -f- - - - - -

4 - - - - - -f- - - - - -

5 - - - - - -f- - - - --

6 I- - -- t -I- - - - --

2

3
7 I- - -I- - -f- - - - - - 4

8 I- - -f- - -I- - - - - - 5

9 - - --.1- - -f- - - - - ---1 6

2 3 4 7

ARY (9,4)

DOUBLE PRECISION

9 ELEMENTS AND 4 ELEMENTS

36

ARY (6,2)

72

2

1

Figure 2-1. Array storage sequence

ARRAY ELEMENT ORDER

l I I
I I I

I ! I
I I I

t

2 3

IARZ (],3,3)

INTEGER

7 ELEMENTS,
3 ELEMENTS, AND
3 ELEMENTS

63

IARZ (3,2,1)

63

The subscript portion of an array element name has a value identifying
its placement in that array. An array name designating an entire array
implies the sequential specification of all subscripts and the processing
of all elements in that order.

Array elements are arranged and referenced in terms of dimensions, but
are stored in ordinal sequence in memory. (See figure 2-2).

SR-0009
Part 1
2-13 J

-

-
-
-
-
-

-
-
-
-
-
-

•

ARRAY ARRANGEMENT

2

X(l,1,2) X(l,2,2)

ARRAY DECLARATOR:
X(2,1,2) X(2,2,2)

2

3

4

5

X(5,3,2)

X(l,l,1)

X(2,1,1)

X(3,1,1)

X(4,1,l)

x(5,1,1)

X(3,1,2) X(3,2,2)

X(4,1,2) X(4,2,2)

X(S,1,2) X(5,2,2)

X(l ,2,1) X(l ,3,1)

X(2,2,1) X(2,3,1)

X(3,2,1) X(3,3,1)

X(4,2,1) x(4,3,1)

X(5,2,1) x(5,3,1)

2 3

ARRAY CHARACTERISTICS

ARRAY DECLARATOR:

DIMENSIONALITY:

DIMENSION SIZES:

ARRAY SIZE,:

X(5,3,2)

3

5 ELEMENTS,
3 ELEMENTS, AND
2 ELEMENTS

30 ELEMENTS

SUBSCR I PT VALUE 1

X(l,3,2)

X(2,3,2)

X(3,3,2)

x(4,3,2)

X(5,3,2)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2

2

2

1

2

3

2

2

2

2

2

2

3

4

5

6

7

8

9

0

ARRAY STORAGE
SEQUENCE

X(l,l,1)

X(2,1,1)

X(3,l,l)

X(4,1,1)

X(5,1,1)

X(1,2,1)

X(2,2,1)

X(3,2,1)

X(4,2,1)

X(S,2,1)

X(l ,3,1)

X(2,3,1)

X(3,3,1)

X(4,3,1)

X(5,3,1)

X(l,1,2)

X(2,1,2)

X(3,1,2)

X(4,1,2)

X(5,1,2)

X(1,2,2)

X(2,2,2)

X(3,2,2)

X(4,2,2)

X(S,2,2)

X(1,3,2)

X(2,3,2)

X(3,3,2)

x(4,3,2)

X(5,3,2)

Figure 2-2. Array element arrangement and reference

SR-0009
Part 1

2-14 J

•

SUBSCRIPT VALUES

The subscript portion of an array element name has an integer value
that identifies its placement in that array. Before evaluation, a
subscript expression might not be the same value as its corresponding
placement in the array. Consider the following examples, each of a
subscript referencing the fourth element of an array.

1

2

3

4

5

6

Example A:

X(1:6)

Fourth

-
element

X(4)

-2

-1

o
1

2

3

Example B:

Y(-2:3)

Fourth element
,

..... Y(l)

Table 2-3 illustrates the method for evaluating subscript expressions.

DUMMY AND ACTUAL ARRAYS

A dummy appay is declared by a dummy array declarator. An actuaZ
apnay is declared by an actual array declarator. (See descriptions of
dummy and actual array declarators in the subsection, Kinds of Array
Declarators, earlier in this section). A dummy array is permitted only
in function or subroutine subprograms. Each array in a main program is
an actual array specified by a constant array declarator. Actual arrays
can also be specified in function and subroutine subprograms.

In a reference to a subprogram containing a dummy array, the actual
argument corresponding to the dummy array name must be either an array
name, an array element substring, or an array element name. If it is an
array name, the size of the dummy array must not exceed the size of the
actual array. If the actual argument is an array element name with a
subscript value of e in an array of size n, the size of the dummy
array must not exceed n-e+l. Each dummy array must be associated
through one or more levels of external procedure references with an
actual array or an actual array element.

SR-0009
Part 1

2-15 J

•

Table 2-3. Subscript evaluation

n Dimension declarator Subscript

1 (jl:kl) (sl)

2 (jl:kl,j2: k 2) (sl,s2)

3 (jl:kl,j2: k 2,j3:k 3) (sl,s2,s3)

· · ·
n (jl :k l ,·· ·jn :kn> (sl'·· .sn)

where:

n = Number of dimensions (1<n~7>

j = Lower bound of dimension declarator
k = Upper bound of dimension declarator
s = Subscript expression (ji~si<ki)
d = (ki-ji)+l

ADJUSTABLE ARRAYS AND ADJUSTABLE DIMENSIONS

Subscript value

1+ (sl-jl)

1+ (sl-jl)
+ (S2-j2) *dl

1+ (sl-jl)
+ (S2-j2) *dl
+ (s3-j3) *d2*dl

1+ (sl-jl)
+ (S2-j2) *dl
+ (S3-j3) *d2*dl
+ •••
+(Sn-jrz)*da-l
dn- 2·· • * 1

An adjustab~e appay is declared by an adjustable array declarator (see
description of kinds of array declarators, earlier in this section) in
which dimension declarators can contain variables, array elements, or
functions called adjustab~e dimensions. Array elements, if specified,
must not be elements of the array being declared. The name of an
adjustable array must appear in a dummy argument list of a subprogram. A
variable or array element that is contained in a dimension declarator
must be named in the dummy argument list containing the array name or in
a COMMON statement in the same subprogram.

Each actual argument corresponding to a dummy argument and each variable
in common that is used in a dummy declaration must be defined with a
value before being used. The values of those dummy arguments or

SR-0009
Part 1

2-16 J

I

variables in common and any constants appearing in the dummy array
declarator determine the size of the corresponding adjustable dimension
for that execution of the subprogram.

The sizes of the adjustable dimensions and of any constant dimensions
appearing in an adjustable array declarator determine the number and
order of elements in the array. Each reference to a subprogram can
define different properties (size of dimensions, number of elements,
element ordering) for each adjustable array in that subprogram. These
properties depend on the values of any actual arguments and variables in
common when the subprogram is referenced.

Adjustable array properties of dimension number and array size do not
change during subprogram execution. Variables defining an adjustable
dimension can be redefined or become undefined during execution of the
subprogram with no effect on these properties.

USE OF ARRAY NAMES

In a program unit, each appearance of an array name must be as part of an
array element name except when used in the following.

• List of dummy arguments

• COMMON statement

• Type statement

• Array declarator

• EQUIVALENCE statement

• DATA statement

• List of actual arguments in a reference to an external procedure

• List of an input/output statement if it is not an assumed-size
dummy array

• Unit identifier for an internal file in an input/output statement
if it is not an assumed-size dummy array

• Format identifier in an input/output statement

• NAMELIST statement

• Pointee in a POINTER statement

• SAVE statement

SR-0009
Part 1
2-17 J

I

CHARACTER SUBSTRINGS

A character substping consists of one or more contiguous characters
within a character string. The substring name consists of a variable
name or an array element name, followed by a substping designato~ of
the format:

([ix) : [iy))

where ix

iy

is an integer expression that designates the first
character position of the desired substring and

is an integer expression that designates the last
character position of the desired substring.

The value of ix must be at least one1 the value of iy must not be
greater than the length of the string or less than ix. If ix is
omitted, the substring is assumed to begin at the first position of the
string. If iy is omitted, the substring is assumed to end at the last
position. Omitting both expressions designates the entire string as a
substring. Some examples of substring use follow.

Examples:

STRINGA(6:9) designates the sixth through the ninth positions of
character variable STRINGA.

STRINGB(2,6) (1:3) designates the first through the third positions of
array element STRINGB(2,6) •

STRINGC(5,4) (:7) designates the first through the seventh positions of
array element STRINGC(5,4) •

STRINGD(4:) designates the fourth through the last position of character
variable STRINGD.

STORAGE AND ASSOCIATION

Storage sequences describe association among variables, array elements,
common blocks, and arguments.

SR-0009
Part 1

2-18 J

•

STORAGE SEQUENCES

A stopage sequence is a sequence of storage units. A storage unit
corresponds to the Cray Computer System word of 64 bits. An integer,
real, Boolean, or logical data occupies one storage unit; a
double-precision or complex data occupies two storage units. A data
requiring more than one storage unit in a storage sequence occupies
consecutive locations in memory.

Character data are represented as 8-bit ASCII values, packed eight per
word.

The ANSI FORTRAN Standard does not specify the relationship between
storage units and computer words, or provide for character packing.

A storage sequence corresponds to a contiguously addressed set of memory
locations.

The term storage sequence describes relationships associating variables,
array elements, arrays, and common blocks.

Each array and each common block has a storage sequence. Two storage
sequences are associated if they share at least one storage unit. The
size of a storage sequence is the number of storage units it contains.
A storage unit contains one variable or array element of type integer,
real, or logical.

A double-precision or complex variable or array element has a storage
sequence of two storage units. In a double-precision storage sequence,
the most significant and least significant parts of data are contained in
the first and second storage units, respectively.

In a complex storage sequence, the real and the imaginary parts of data
are contained in the first and second storage units, respectively. The
storage size for character data depends on the length specification of
the data.

ASSOCIATION OF ENTITIES

Association occurs when data can be identified by different symbolic
names or from different program units. Two entities are associated if
their storage sequences are associated. Totatty associated entities
share the same storage sequence. Partiatty associated entities share
part but not all of a storage sequence.

SR-0009
Part 1

2-19 J

•

Partial association can exist between a double-precision or complex
entity and a second entity of type integer, real, logical,
double-precision, or complex~ or between two character entities. Partial
association occurs only by using the COMMON, EQUIVALENCE, or ENTRY
statements. Partial association must not occur through argument
association.

Example:

INTEGER I
REAL R(4)
COMPLEX C(2)
DOUBLE PRECISION D
EQUIVALENCE (C(2), R(2), I), (R,D)

The third storage unit of C, the second storage unit of R and the storage
unit of I are specified as the same. The storage sequences can be
illustrated in the following way.

Storage unit

1 2 3 4 5

Complex C (1) C(2)

Rea 1 I R (1) 1 R (2)1 R (3) [R (4) I
Integer ~

Double precision D I
R(2) and I are totally associated. The following are partially
associated: R(l) and C(l), R(2) and C(2), R(3) and C(2), I and C(2),
R(l) and D, R(2) and D, I and D, C(l) and D, and C(2) and D. Although
C(l) and C(2) are each associated with D, C(l) and C(2) are not
associated with each other.

The definition status and value of an entity affect the definition status
and value of any associated entity or entities. An EQUIVALENCE
statement, a COMMON statement, or argument association in a procedure
reference can cause the association of storage sequences. The
association of data in two different COMMON statements is illegal.

An EQUIVALENCE statement causes association of entities within a program
unit unless one of the entities is also in a common block.

Arguments and COMMON statements cause entities in two or more program
units to become associated.

SR-0009
Part 1

2-20 J

•

DEFINITION

During program execution, the content of a given variable or array
element is either defined or undefined. A defined variable or array
element contains a value. An undefined variable or array element does
not contain a predictable value. Once defined, a variable or array
element contains a specific value until it becomes undefined or is
redefined with a different value.

All variables and array elements are initially undefined and remain so
until action before or during program execution defines them. An
initially defined variable or array element is one defined before
program execution. Constants are always defined and are never
redefined. A function's value is defined only at that point in program
execution where it is required.

Defined entities

Variables and array elements become defined in the following cases.

• Execution of an arithmetic, character, or logical assignment
statement causes the entity to the left of the equal sign to
become defined.

• When an input statement is executed, each entity is assigned a
value and thus becomes defined.

• Execution of a DO statement causes the DO variable to become
defined.

• Beginning execution of.actions specified by an implied-DO list in
an input/output statement causes the implied-DO variable to become
defined.

• A DATA statement causes entities to become initially defined when
execution of a program begins.

• Execution of an ASSIGN statement causes the variable in the
statement to become defined with a statement label value.

• When an entity of a given type becomes defined, all totally
associated entities of the same type become defined. However,
entities totally associated with the variable in an ASSIGN
statement become undefined when the ASSIGN statement is executed.

• A reference to a subprogram causes a dummy argument to become
defined if the corresponding actual argument is defined.

SR-0009
Part 1

2-21 J

•

• Execution of an input/output statement that contains a status
specifier causes the specified integer variable or array element
to become defined.

• During the execution of an INQUIRE statement, any entity that is
assigned a value becomes defined if no error condition exists.

• When a complex entity becomes defined, all partially associated
real entities become defined.

• When both parts of a complex entity become defined as a result of
partially associated real or complex entities becoming defined,
the complex entity becomes defined.

• When all characters of a character entity become defined, the
character entity becomes defined.

Undefined entities

Variables and array elements become undefined in the following cases.

• All entities are undefined at the beginning of program execution
except those entities initially defined by DATA statements.

• When an entity of a given type becomes defined, all totally
associated entities of different type become undefined.

• Execution of an ASSIGN statement causes the variable in the
statement to become undefined as an integer. Entities of type
integer that are associated with the variable are also undefined
as integers.

• When a noncharacter type entity becomes defined, all partially
associated entities become undefined. However, when an entity of
type real is partially associated with an entity of type complex,
the complex entity does not become undefined when the real entity
becomes defined and the real entity does not become undefined when
the complex entity becomes defined. When an entity of type
complex is partially associated with another entity of type
complex, definition of one entity does not cause the other to
become undefined.

• If the value of a function is not needed to determine the value of
the expression in which the function is referenced, the function
argument or the entity in common becomes undefined.

SR-0009
Part 1

2-22 J

•

• The execution of a RETURN or END statement within a subprogram
causes all entities within the subprogram to become undefined,
except for the following.

Entities in blank common

Initially defined entities

Entities specified by SAVE statements

Entities in a named common block appearing in both the
subprogram and another program unit that references the
subprogram

• When an error condition or an end-of-file condition occurs during
execution of an input statement, all items in the input list of
the statement become undefined.

• Execution of a direct access input statement that specifies a
record not previously written causes all input list entities to
become undefined.

• Execution of an INQUIRE statement might cause entities to become
undefined.

• When any character of a character entity becomes undefined, the
character entity becomes undefined.

• When an entity becomes undefined as a result of conditions
described in the five preceding items, all totally associated
entities become undefined and all partially associated entities
except those of type character become undefined.

SYMBOLIC NAMES

A symbolic name is the name of a constant, a variable, an array, a common
block, a main program, a subprogram, an intrinsic function, a statement
function, a block data subprogram, or a procedure. A symbolic name
consists of from one to eight alphanumeric characters, the first of which
must be a letter. Some sequences of characters, such as format edit
descriptors and keywords that uniquely identify certain statements (GO
TO, READ, FORMAT, etc.) are not symbolic names, nor do they form the
first characters of symbolic names in such occurrences.

The ANSI FORTRAN Standard provides for symbolic names of up to six
alphanumeric characters.

SR-0009
Part I

2-23 J

•

SCOPE OF SYMBOLIC NAMES

The scope of a symbolic name is an executable program, a program unit, or
a statement function statement.

The name of the main program and the names of block data subprograms,
external functions, subroutines, and common blocks have a scope of an
executable program and are global to that program.

The names of variables, arrays, constants, statement functions, and
intrinsic functions have the scope of a program unit.

The names of variables that appear as dummy arguments in a statement
function statement have a scope of that statement.

Global entities

The main program, common blocks, subprograms, and external procedures are
global entities of an executable program. A symbolic name that
identifies a global entity must not be used to identify any other global
entity in the same executable program.

A global entity is identified by a symbolic name appearing in one of the
following classes.

• Common block

• External function

• Subroutine

• Main program

• Block data subprogram

Local entities

The scope of a symbolic name of a local entity is a single program unit.
A symbolic name that identifies a member in one class of entities local
to a program unit must not also identify a member in another class of
entities local to that same program unit. However, a symbolic name that
identifies a local entity can, in a different program unit, identify an
entity of any class that is either local to that program unit or is
global to the executable program. A symbolic name that identifies a
global entity in a program unit must not also identify a local entity in
that program unit except as noted for common block and external function
names in the subsection, Classes of Symbolic Names, later in this section.

SR-0009
Part I

2-24 J

A local entity is identified by a symbolic name appearing in one of the
following classes.

• Array

• Variable

• Constant

• Statement function

• Intrinsic function

A symbolic name used as a dummy argument in a procedure identifies a
variable, an array, or another procedure. This specification and usage
must not violate the respective class rules.

CLASSES OF SYMBOLIC NAMES

In a program unit, a symbolic name must not correspond to more than one
class except as noted in the following paragraphs. All restrictions on
the appearances of the same symbolic name in different program units of
an executable program are also noted here.

Cornmon blocks

A symbolic name is the name of a cornmon block if it appears as a block
name in a COMMON statement. A common block name is global to the
executable program.

A common block name in a program unit can also be the name of a local
entity other than a constant, intrinsic function, or a local variable
that is also an external function in a function subprogram. If a name is
used for both a cornmon block and a local entity, the appearance of that
name in any context other than as a common block name in a COMMON or SAVE
statement only identifies the local entity.

External functions

A symbolic name is the name of an external function if one of the
following conditions exists.

• The name appears immediately following the keyword FUNCTION or
ENTRY in a FUNCTION or ENTRY statement.

SR-0009
Part 1
2-25 J

•

• The name is not an array name, statement function name, intrinsic
function name, subroutine name, or dummy argument and every
appearance is followed by a left parenthesis except in a type
statement, in an EXTERNAL statement, or as an actual argument.

The name of a function subprogram that appears immediately after the
keyword FUNCTION or ENTRY in a FUNCTION or ENTRY statement must be the
name of a variable in that subprogram. An external function name is
global to the executable program.

Subroutines

A symbolic name is the name of a subroutine if one of the following
conditions exists.

• The name appears immediately following the keyword SUBROUTINE or
ENTRY in a SUBROUTINE or ENTRY statement.

• The name appears immediately following the keyword CALL in a CALL
statement and is not a dummy argument.

A subroutine name is global to the executable program.

The main program

A symbolic name is the main program name if it appears in a PROGRAM
statement in the main program. A main program name is global to the
executable program.

Block data subprograms

A symbolic name is the name of a block data subprogram if it appears in a
BLOCK DATA statement. A block data subprogram name is global to the
executable program.

Arrays

A symbolic name is the name of an array if it appears as the array name
in an array declarator in a DIMENSION, COMMON, or type statement. An
array name is local to a program unit and can be the same as a common
block name.

SR-0009
Part 1
2-26 J

I

Variables

A symbolic name is the name of a variable if it meets all of the
following conditions.

• The name does not appear in a PARAMETER, INTRINSIC, or EXTERNAL
statement.

• The name is not the name of one of the following.

An array
A subroutine
A main program
A block data subprogram

• The name appears as a name other than one of the following.

An external function in a FUNCTION statement
A common block
An entry name in an ENTRY statement in an external function

• The name is not immediately followed by a left parenthesis unless
one of the following conditions exists.

It is immediately preceded by the word FUNCTION in a FUNCTION
statement.
It is immediately preceded by the word ENTRY in an ENTRY
statement.
It is at the beginning of a character substring name.

A variable name can be a parameter enclosed in parentheses in a FUNCTION
statement. (See the FUNCTION statement in part 2, section 7.)

A variable name is local to a program unit. A variable name in the dummy
argument list of a statement function statement is local to the statement
function statement where it occurs.

A statement function dummy argument name can also be the name of a
variable or common block in the same program unit. The appearance of the
name in any context other than as a dummy argument of the statement
function identifies a local variable or common block. The statement
function dummy argument name and local variable name have the same type.
If the type is character, they also have the same length. A variable can
have the same name as a common block.

Constants

A symbolic name is the name of a constant if it appears as a symbolic
name in a PARAMETER statement. A constant name is local to a program
unit. A constant can have the same name as a common block.

SR-0009
Part 1

2-27 J

•

Statement functions

A symbolic name is the name of a statement function if it is not an array
name and if a statement function statement specifies that symbolic name.
A statement function name is local to a program unit. A statement
function name can be the same as a common block name.

Intrinsic functions

A symbolic name is the name of an intrinsic function if the following
conditions exist.

• The name is not an array name, statement function name, subroutine
name, or dummy argument name.

• Every appearance of the symbolic name, except in a type statement,
an INTRINSIC statement, or as an actual argument, is immediately
followed by an actual argument list enclosed in parentheses.

An intrinsic function name is local to a program unit. (See Appendix B
for intrinsic function list.)

Dummy procedures

A symbolic name is the name of a dummy procedure if the name appears in
the dummy argument list of a FUNCTION, SUBROUTINE, or ENTRY statement and
meets one or more of the following conditions.

• It appears in an EXTERNAL statement.

• It appears as the name of the called subroutine in a CALL
statement.

• It is not an array name or character variable name and it is
immediately followed by a left parenthesis, except in the
following cases.

In a type statement
In an EXTERNAL statement
In a CALL statement
As a dummy argument
As an actual argument
As a common block name in a COMMON or SAVE statement

A dummy procedure name is local to a program unit.

SR-0009
Part I

2-28 J

•

NAMELIST group name

A NAMELIST group name names the list that follows the group name. The
group name must be unique within the program unit. It can be used in
Place of the FORMAT statement in the following I/O statements only.

READ
WRITE
READ
PRINT
PUNCH

SR-0009

(uni t ,group [, ERR=sn ,END=sn])
(unit,group [,ERR=sn])
group
group
group

Part 1
2-29 J

EXPRESSIONS

An expression calls for the evaluation of one or more operands.
Expressions can include operators and parentheses to specify the manner
and order of their evaluation in yielding a single value. Operands can
be constants, symbolic names of constants, variables, array elements,
substrings, and function references. Operators specify the arithmetic,
character, relational, or logical operations to be performed on these
operands.

Expressions are one of the following types.

• Arithmetic

• Character

• Relational

• Logical

• Boolean

The ANSI FORTRAN Standard does not provide for Boolean expressions.

ARITHMETIC EXPRESSIONS

An arithmetic constant expression is an arithmetic expression that
contains as operands any combination of arithmetic constants, symbolic
names of arithmetic constants, or arithmetic constant expressions. Only
exponents of type integer are permitted. References to variables, array
elements, or functions are not permitted.

An arithmetic expression specifies a numeric computation. Its
evaluation produces a single numeric value.

3

The simplest form of an arithmetic expression is an unsigned constant or
the symbolic name of a constant, variable, array element, or function.
More complicated arithmetic expressions are formed by using one or more
arithmetic operands with arithmetic operators and parentheses. Arithmetic
operands are of type integer, real, double precision, or complex.

SR-0009
Part 1
3-1 J

ARITHMETIC OPERATORS

The arithmetic operators are given in table 3-1.

Table 3-1. Arithmetic operators

Operator Operation

** Exponentiation

/ Division

* Multiplication

- Subtraction or negation

+ Addition or identity

Each arithmetic operator operates on a pair of operands and appears
between them. In addition, either of the operators + and - can operate
on a single operand when it precedes that operand.

Interpretation of arithmetic operators in expressions

The interpretation of expressions formed with each arithmetic operator is
shown in table 3-2. (X and Yare operands.)

SR-0009

Table 3-2. Interpretation of operators in expressions

Use of operator

X**y

X/Y

X*y

X-Y

-Y

X+Y

+Y

Interpretation

Exponentiate X

Divide X by Y

Multiply X by Y

Subtract Y from

Negate Y

Add X

(Same

to Y

as Y)

Part 1
3-2

to the power Y

X

J

•

The interpretation of a division operation might depend on the data types
of the operands as described in part 1, section 2.

Precedence of arithmetic operators

Quantities enclosed in parentheses are evaluated first. If parentheses
are within parentheses, the innermost quantity is evaluated first. Then
the operations are evaluated according to the precedence shown in table
3-3.

Table 3-3. Precedence of arithmetic operators

Operator Precedence

** First

* and / Second

+ and - Third

For example, in the expression

-A**2

the exponentiation operator (**) has precedence over the negation
operator (-). Therefore, the operands of the exponentiation operator are
combined and then used as the operand of the negation operator. Thus,
the interpretation of the above expression is the same as the
mathematical interpretation of the expression

-(A**2).

When an expression involves two or more operations on the same precedence
level, their position within the expression determines the order of their
evaluation.

ARITHMETIC OPERANDS

Arithmetio opePands are:

• Primaries,

• Factors,

SR-0009
Part 1
3-3 J

•

• Terms, and

• Arithmetic expressions.

The following subsections describe the forms of combining operands and
operators in arithmetic expressions.

Primaries

Primaries are:

• Unsigned arithmetic constants,

• Symbolic names of arithmetic constants,

• Variable references,

• Array element references,

• Function references, and

• Arithmetic expressions enclosed in parentheses.

Examples:

Primary Description

23D9 Unsigned double-precision constant

KVALUE Integer constant name if named in a PARAMETER statement

COUNTERS Real variable name

IMAG(3,52,75) Complex array element name if declared in a COMPLEX
statement

EVAL(A,B,C) Real function name if declared in a FUNCTION or
statement function statement

(A/B**2) Parenthesized arithmetic expression

Factors

The forms of a factor follow.

• Primary

• Primary ** factor

SR-0009
Part 1
3-4 J

•

Thus, a factor is a sequence of one or more primaries with its elements
separated by the exponentiation operator. The second form indicates that
in interpreting a factor containing two or more exponentiation operators,
the primaries must be combined from right to left. For example, the
factor

2**3**2

has the same interpretation as the factor

2**{3**2).

Terms

The forms of a term follow.

• Factor

• Term / factor

• Term * factor

Thus a term is a factor or a sequence of factors with its elements
separated by a multiplication or a division operator. The last two forms
indicate that the factors are combined from left to right in interpreting
a term containing two or more multiplication or division operators.

Arithmetic expressions

The forms of an arithmetio expression follow.

• Term

• + term

• - term

• Arithmetic expression + term

• Arithmetic expression - term

Thus, an arithmetic expression is a term or a sequence of terms with its
elements separated by an addition (+) or a subtraction (-) operator. The
first term in an arithmetic expression can be preceded by an identity (+)
or negation (-) operator. The last two forms imply that terms are
combined from left to right in interpreting an arithmetic expression
containing two or more addition or subtraction operators.

SR-0009
Part 1
3-5 J

•

These formation rules do not permit expressions containing two
consecutive arithmetic operators such as A**-B or A+-B. However,
expressions such as A**(-B) and A+(-B) are permitted.

DATA TYPE OF ARITHMETIC EXPRESSIONS

The form of a constant determines its data type. The data type of a
named constant, variable, array element, or function reference is
determined by its name. The data type of an arithmetic expression
containing one or more arithmetic operators is determined from the data
types of the operandsu

Integer expressions, real expressions, double-precision expressions,
complex expressions, and Boolean expressions are arithmetic expressions
that have values of type integer, real, double precision, complex, and
Boolean, respectively.

When a + or - operates on a single operand, the data type of the
resulting expression is th~ same as the data type of the operand.

The data types of arithmetic expressions are given in table 3-4. In this
table, each letter designates the type of operand or result as integer
(I), real ~R), double precision (D), complex (C), logical (L), or Boolean
(B) •

To use the table, locate the types of the first and second operands in
the first and second columns, respectively. The third column contains
the type of the expression formed when these operands are processed by an
arithmetic operator or when the expression contains only one operand. In
an expression, the type of the operand with parentheses indicates the
type of the result. For example, in the expression

D(1,2,3) * I

the integer variable I with the double-precision array element D(1,2,3)
yields a result of type double-precision. As shown in table 3-4, if two
operands are of different types, the one differing in type from the
result type is first converted to the type of the result, then the
operation is performed.

SR-0009
Part 1

3-6 J

Table 3-4. Arithmetic operand, expression, and result typing
relationships

x @ y~z x @ y~z x @ y~z x @ y~z x @ y~z x @ y~z

I I I R (I) R D (I) D C (I) c L I t B I

(I) R R R R R D (R) D C (R) C L R t B R

(I) D D (R) D D D D D C (D) c L D t (B) D

(I) C C (R) C C (D) C C C C C L C t (B) C

I L t R L t D L t C L t L L L* B L

I B I R B R D (B) D C (B) c L B L* B B

Legend:

x,y Arithmetic operands
@ Arithmetic operator
x @ y Arithmetic expression or single arithmetic operand
z Arithmetic result
() Conversion required before computation
t Prohibited
* @ must be a logical operator (for example, .AND.)
** Arithmetic is done as if the operands were integer

Conversion is always upward; that is, type hierarchy determines which
operand is converted. The following example shows type hierarchy.

Boolean/Double

I Boolean/Log ical

I

R

D

C

L*

B**

In the preceding example, type Boolean appears on all levels and needs no
conversion. The exception is at the highest level, Boolean must be
converted because it must be extended for double precision, and the
imaginary portion must be established for type complex.

SR-0009
Part 1

3-7 J

•

The lowest level is not upward convertible because arithmetic operations
with logical operands are prohibited. All other levels can be converted
to any higher level.

Table 3-5 shows the conversion that takes place when the equal sign is
processed in assignment statements.

Table 3-5. Type conversion in assignment statements

~ I R D C L B CH

I n/c (R) (D) (C) * n/c *

R (I) n/c (D) (C) * n/c *

D (I) (R) n/c (R)t * (B) *
C (I) (R) (R)t n/c * (B) *
L * * * * n/c n/c *
CH * * * * * * n/c

Legend:
x=y Assignment statement
() Conversion required before assignment to result
* Prohibited
n/c No conversion necessary

In an expression operating on either a single operand or a pair of
operands, the type and interpretation are independent of the context
where the expression appears. In particular, the type and interpretation
of such an expression are independent of the type of any other operand of
any larger expression where it appears.

Integer quotients

An integer quotient is the integer portion of a mathematical quotient
having an integer divisor and dividend. For example, the expression -5/2
yields an integer quotient of -2.

t When C=D, D is converted to REAL and assigned to the real part of
C; the imaginary part of C=O.O. When D=C, the real part of C is
converted to double precision; the imaginary part of C is not used in
the conversion.

SR-0009
Part I
3-8 J

•

Type conversion

Type conversion of operands can occur during an expression's evaluation
or when the results of an expression's evaluation are stored into a
variable or array element. Type conversion is based on the following two
operations.

(a) Integer-to-real conversion creates a real value from an integer
value. The maximum absolute value of the integer must be less
than 2**46. No warning is issued if the value exceeds this range.

(b) Real-to-integer conversion creates a 64-bit integer value from a
real value. The maximum absolute value of the number being
converted must be less than 2**46. The fractional part is
truncated. No warning is issued if the value exceeds the range.

Type integer - Type integer conversion to:

• Type real occurs as described in (a) above.

• Type double-precision occurs as described in (a) above and with
zeros established as the extended portion of the value.

• Type complex occurs as described in (a) above. The result becomes
the real portion of the complex value and zero is established as
the imaginary portion.

Type real - Type real conversion to:

• Type integer occurs as described in (b) above.

• Type double-precision is accomplished by extending the precision
of the real value through the addition of zeros as the least
significant portion.

• Type complex is accomplished by establishing the real value as the
real portion of the complex value and by establishing zero in the
imaginary portion.

Type double-precision - Type double-precision conversion to:

• Type integer occurs by connecting the most significant portion by
(b) above.

• Type real is accomplished by establishing the most significant
portion as the real value. No rounding occurs.

• Type complex is accomplished by establishing the most significant
portion as the real portion of the complex value, and establishing
zero as the imaginary portion of the complex value. No rounding
occurs.

SR-0009
Part 1
3-9 J

•

The ANSI FORTRAN Standard does not provide for double-precision to
complex conversion.

Type complex - Type complex conversion to:

• Type integer is accomplished by converting the real portion of the
complex value as described for the real value in (b) above.

• Type real is accomplished by establishing the real portion of the
complex value as the real value.

• Type double-precision is accomplished by extending the precision
of the real portion of the complex value as for real.

Type Boolean - Type Boolean conversion to:

• Types integer, real and logical is accomplished with no change in
its bit pattern.

• Type double-precision extends the precision by establishing zero
as the least significant portion.

• Type complex uses zeros for the imaginary portion and establishes
the real portion as the bit pattern of the Boolean value.

EVALUATION OF ARITHMETIC EXPRESSIONS

Two arithmetic expressions are mathematically equivalent if, for all
possible values of their primaries, their mathematical values are equal.
However, because of finite approximation to real numbers and round-off
errors, mathematically equivalent arithmetic expressions can produce
results that differ computationally.

The difference between the values of the expressions 5/2 and 5./2. is
mathematical and is not a computational difference. The difference
between 5./10. and 5.*.1 is a computational difference.

In addition to parentheses required for the desired interpretation, other
parentheses can be included to control the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.
For example, in the expression

A+(B-C}

the term (B-C) is evaluated and then added to A. Including parentheses
could change the computational value.

SR-0009
Part 1
3-10 J

For example, the two expressions

A*I/J

A*(I/J)

might have different computational values if I and J are integer factors.

CHARACTER EXPRESSIONS

A ~hara~ter primary is a character constant, a symbolic name of a
character constant, or a variable, an array element, a substring, or a
function reference. A ~hara~ter expression is a sequence of one or
more character primaries. If more than one character primary comprises
the expression, the primaries are concatenated by the character operator,
the double slash.

CHARACTER EXPRESSION EVALUATION

The result of character expression evaluation is always of type
character. Primaries are combined from left to right.

Example:

The sequence

CHARACTER*3 VAR1,VAR2
VAR1='CRA'
VAR2='Y-l'

PRINT *,VAR1//VAR2

produces the printed result

CRAY-l

When used in an arithmetic or noncharacter relational expression, a
character constant of length less than or equal to 8 is considered to be
type Boolean. A length greater than 8 is illegal in an arithmetic or
noncharacter relational expression.

SR-0009
Part 1
3-11 J

•

RELATIONAL EXPRESSIONS

A relational expression compares the values of two arithmetic or
character expressions, producing a type logical value of true or false.

Two relational expressions are relationally equivalent if their logical
valUes are equal for all possible values of their primaries.

Relational expressions can appear within logical expressions.

Relational operators are shown in table 3-6.

Table 3-6. Relational operators

Operator Operation (comparison)

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to

.GT. Greater than

Relational operators have no precedence within this group because the use
of more than one operator in the same relational expression is illegal.

ARITHMETIC RELATIONAL EXPRESSIONS

The form of an arithmetie relational expression is

where el and e2 are each integer, real, double preclslon,
Boolean, or complex expressions and

relop is a relational operator.

A complex expression is permitted only when the relational operator is
.EQ. or .NE.

SR-0009
Part 1
3-12 J

•

An arithmetic relational expression is interpreted as logical value true
if the values of the expressions satisfy the relation specified by the
operator; false if they do not.

If the two arithmetic expressions are of different types (see table 3-4),
the types of the operands are converted as if the expression were

Examples:

INDEX .EQ. ENDVALU

J(1,6,6)*COS(ALPHA/10.) .GT. Z

A .LE. B

3.1415927 .LT. (22./7.)

CMPLXM .NE. COMPLXN

CHARACTER RELATIONAL EXPRESSIONS

The form of a character relational expression is

where el and e2 are character expressions and

relop is a relational operator. (See table 3-6 for a list
of relational operators.)

The result is interpreted as the logical value true if the values of the
operands satisfy the relation specified by the operator. Otherwise, the
result is interpreted as the logical value false.

The character expression that comes first in the collating sequence (see
Appendix A) is the one considered to be of less value. If the operands
are of unequal length, the shorter operand is extended on the right with
blanks to the length of the longer operand.

SR-0009
Part 1
3-13 J

•

LOGICAL EXPRESSIONS

A logical expression expresses a logical computation. Evaluation of a
logical expression produces a result of type logical with a value of
either true or false.

Two logical expressions are logically equivalent if their values are
equal for all possible values of their primaries.

LOGICAL OPERATORS

Table 3-7 presents the togieat operators and their order of precedence.
The logical operators .XOR., .X., and .NEQV. perform the same logical
operation.

Table 3-7. Logical operators

Operator Operation Precedence

.NOT. or .N. Logical negation First

.AND. or .A. Logical conjunction Second

• OR. or .0 • Logical inclusive disjunction Third

.XOR. or • X. or .NEQV • Logical exclusive disjunction
or logical non-equivalence Fourth

----------------------- ---------------------------------
.EQV. Logical equivalence

FORM AND INTERPRETATION OF LOGICAL EXPRESSIONS

For logical expressions that contain two or more logical operators, the
precedence determines the order in which they are to be combined (unless
changed by the use of parentheses). For example, in the expression

A .OR. B .AND. C

SR-0009
Part 1
3-14 J

•

the .AND. operator has higher precedence than the .OR. operator.
Therefore, the interpretation is the same as the interpretation of

A .OR. (B .AND. C).

The ANSI FORTRAN Standard does not provide for the .XOR. operator or for
.N., .A., .0., or .X. as abbreviations.

Logical operands include the following.

• Logical primaries

• Logical factors

• Logical terms

• Logical disjuncts

• Logical expressions

The following paragraphs describe the forms of combining operands and
operators in logical expressions.

Logical primaries include the following.

• Logical constants

• Symbolic names of logical constants

• Logical variable or array element references

• Logical function references

• Relational expressions

• Logical expressions enclosed in parentheses

The following is the form of a logical factor.

• [.NOT.] logical primary

The following is the form of a logical term.

• [logical term .AND.] logical factor

Thus, a logical term is a sequence of logical factors separated by an
.AND. operator. If a logical term contains two or more • AND. operators,
the logical factors are combined from left to right.

SR-0009
Part 1
3-15 J

•

The following is the form of a togicat disjunct.

• [logical disjunct .OR.] logical term

A logical disjunct is, therefore, a sequence of logical terms separated
by an .OR. operator. If a logical disjunct contains two or more .OR.
operators, the logical terms are combined from left to right.

The following forms are togicat expressions.

• [logical expression .XOR.] logical disjunct

• [logical expression .EQV.] logical disjunct

• [logical expression .NEQV.] logical disjunct

A logical expression is, therefore, a sequence of logical disjuncts
separated by .XOR., .EQV., or .NEQV. operators. If a logical expression
contains two or more .XOR., .EQV., and/or .NEQV. operators, the logical
disjuncts are combined from left to right.

These forms allow the logical operator .NOT. to immediately follow any
other logical operator. For example, the logical term

LOGICALX .AND. .NOT. LOGICALY

is permitted.

VALUES OF LOGICAL FACTORS, TERMS, DISJUNCTS, AND EXPRESSIONS

The value of a logical factor involving .NOT. or .N. is shown below •

X

true
false

SR-0009

• NOT. X

Part 1
3-16

false
true

J

I

Logical values involving .AND., .OR., .XOR., .NEQV., and .EQV. are shown
below.

Xl X2 Xl·AND.X2 Xl·OR.X2 Xl·XOR.X2 Xl·EQV.X2
Xl·NEQV.X2

true true true true false true
true false false true true false
false true false true true false
false false false false false true

BOOLEAN (MASKING) EXPRESSIONS

A Boolean expression is evaluated to yield a string of 64 binary digits
representing bit positions in a storage unit (64-bit Cray computer
word). The forms of Boolean expressions appear below.

• Boolean constant

• Name of a function providing a Boolean data when referenced

• Boolean expression of the form Bl lop B2 where lop is one
of the logical operators in table 3-7 and Bl and B2 are not
complex, double-precision, or logical expressions

• Boolean expression enclosed in parentheses

The ANSI FORTRAN Standard does not provide for Boolean expressions.

Boolean expressions can be combined with expressions of Boolean or other
types by using arithmetic, relational, and logical (masking) operators.
Boolean data is never converted to a different type. Evaluation of an
arithmetic or relational operator processes a Boolean expression with no
type conversion. If both operands of an arithmetic or relational
operator are Boolean, they are processed as if they were integer and the
result is of type Boolean or logical, respectively. Two Boolean
expressions are equivalent if their values are equal for all possible
values of their primaries.

SR-0009
Part 1

3-17 J-03

A logical (masking) operator processing a Boolean expression performs a
bit-by-bit logical (masking) operation. The result of the operation is
of type Boolean. The interpretation of Boolean factors, terms, and
expressions is the same as described in the subsection Logical
Expressions, earlier in this section. The results of binary one and zero
correspond to the logical results of true and false, respectively, in
each of 64 bit positions. These values are summarized in the following
chart.

Xl X2 .NOT.Xl Xl·AND.X2 Xl·OR.X2 Xl·XOR.X2 Xl·EQV.X2
Xl·NEQV.X2

1100 1010 0011 1000 1110 0110 1001

PRECEDENCE OF ALL OPERATORS

Precedence among all types of operators is presented in table 3-8.

Table 3-8. Precedence among all operators

Operator Precedence

Arithmetic First
Character Second
Relational Third
Logical Fourth

An expression can contain more than one kind of operator. For example,
the logical expression

L .OR. A + B .GE. C

where A, B, and C are type real and L is type logical, contains an
arithmetic operator, a relational operator, and a logical operator. This
expression would be interpreted the same as the expression

L .OR. «A + B) .GE. C).

SR-0009
Part 1
3-18 J

•

EVALUATION OF EXPRESSIONS

A variable, array element, or function referenced as an operand in an
expression must be defined at the time the reference is executed. Names
of constants must be established in a PARAMETER statement preceding the
statement of first reference.

An arithmetic operation with a result that cannot be mathematically
defined produces unpredictable results in an executable program. Each
term of an expression is evaluated even if some terms are not needed to
determine the result. For example, the logical expression

(A.EQ.O).OR.(B/A.GT.IO)

causes a divide fault if A=O. Expressions that raise 0 to a 0 or
negative power or that raise a negative value to a non-integer power also
cause run-time faults.

The execution of a function reference in a statement must not alter the
value of any other entity within the same statement. Nor may it alter
the value of any entity in common that affects the value of any other
function reference in that same statement. If a function reference in a
statement causes definition of an actual argument of the function, that
argument or any associated entities must not appear elsewhere in the same
statement. For example, the statements

A(I)=F(I) and

Y=G(X)+X

where F and G are functions, produce unpredictable results when the
reference to F defines I or the reference to G defines X.

The data type of an expression in which a function reference appears
neither affects nor is affected by the evaluation of the actual arguments
of the function.

The data type of an expression in which an array element is referenced
neither affects nor is affected by the evaluation of the subscript.

ORDER OF EVALUATION OF FUNCTIONS

The order of evaluation of mUltiple function references within a single
statement is fixed only within a direct logical IF statement and within
nested function references.

SR-0009
Part 1

3-19 J

•

Examples:

• In the statement IF(F(Y»A=F(Y) where F is a function name, the
function reference in the conditional statement A=F(Y) is
evaluated last.

• In the statement A=F(G(X» where F and G are functions, G is
evaluated first.

In other statements that contain more than one function reference, the
value provided by each function reference must not be affected by the
order in which the other function references are evaluated.

PARENTHESES AND EXPRESSIONS

A parenthesized expression is treated as an entity. For example, in
evaluating the expression A*(B*C), the product of Band C is evaluated
and then multiplied by A. Parenthesized expressions can contain one or
more parenthesized expressions, each of which can contain one or more
parenthesized expressions, etc. This nesting of parenthesized
expressions can be specified to 63 levels.

The ANSI FORTRAN Standard does not limit the number of levels of nested
parentheses.

SUMMARY OF RULES OF INTERPRETATION

The order in which primaries are combined using operators is determined
by the following conditions.

• Use of parentheses

• Precedence of operators

• Right-to-left interpretation of exponentiations in a factor

• Left-to-right interpretation of multiplications and divisions in a
term

• Left-to-right interpretation of additions and subtractions in an
arithmetic expression

SR-0009
Part 1
3-20 J

•

• Left-to-right interpretation of concatenations in a character
expression

• Left-to-right interpretation of conjunctions in a logical or
Boolean term

• Left-to-right interpretation of inclusive disjunctions in a
logical or Boolean disjunct

• Left-to-right interpretation of exclusive disjunctions,
equivalences and non-equivalences in a logical or Boolean
expression

SR-0009
Part 1
3-21 J

SUBROUTINE, FUNCTION, AND
SPECIFICATION SUBPROGRAMS

Subppogpams are procedures, either predefined or supplied with the main
program. Usually a subprogram contains a sequence of steps needed more
than once in a main program or needed by many programs. Subprograms can
also provide a means of modularizing a program; that is, a program can
consist of a series of subprograms.

The two types of subprograms are specification and procedure.
Specification subprograms are non-executable: with the exception of
statement functions, procedure subprograms are executable.

SPECIFICATION SUBPROGRAMS

The only form of a specification subppogpam is the block data
subprogram. Block data subppogpams provide initial values for

4

variables and array elements in named common blocks. The block data
subprogram must begin with a BLOCK DATA statement and end with an END
statement. The only other statements that can appear in a block data
subprogram are IMPLICIT, PARAMETER, DIMENSION, COMMON, EQUIVALENCE, SAVE,
DATA, and type statements. (See part 2, section 2 for format of the
above mentioned statements.)

NAMED COMMON BLOCKS

A named common block can be specified in more than one block data
subprogram in an executable program.

If a named common block initializes an entity, all entities having
storage units in the common block storage sequence must be specified even
if they are not all initialized. More than one named common block can
have entities initialized in a single block data subprogram. Entities
not in a named common block must neither be initialized nor appear in a
DIMENSION, EQUIVALENCE, or type statement in a block data subprogram.

SR-0009
Part 1

4-1 J

PROCEDURE SUBPROGRAMS

Ppocedure subppogpams are of two types: subroutine subprograms and
function subprograms. Both types are executable, but differ in the
manner in which they are defined and referenced.

SUBROUTINE SUBPROGRAMS

A subroutine subppogram is a sequence of executable code referenced
from a main program or a procedure subprogram. A subroutine must not
reference itself, directly or indirectly. The first statement must be a
SUBROUTINE statement: the last line must contain an END statement. A
subroutine subprogram can contain one or more ENTRY statements.

A subroutine subprogram must be referenced with a CALL statement in the
referencing program unit. When the CALL statement is executed, the
referenced subroutine must be one of the subroutines in the executable
program.

One or more dummy arguments of a subroutine subprogram can become defined
or redefined to return results. Entities specified in a COMMON statement
in the subroutine can also be defined for this purpose.

Actual arguments

The actual arguments in a subroutine reference must agree in order,
number, and type with the corresponding dummy arguments in the dummy
argument list of the referenced subroutine. The use of a subroutine name
or an alternate return specifier as an actual argument is permitted.
This use is an exception to the rule requiring agreement of type since
there is no type associated with either a subroutine name or an alternate
return specifier.

An actual argument in a subroutine reference must be one of the following.

• An expression, except a character expression involving
concatenation of an operand with a length specification of (*),
unless the operand is the symbolic name of a constant

• An array name

• An array element name

• A character substring name

• An intrinsic function name

SR-0009
Part 1
4-2 J

I

• An external procedure name

• An alternate return specifier

An actual argument in a subroutine reference can be a dummy argument
appearing in a dummy argument list within the subprogram containing the
reference.

Subroutine subprogram restrictions

A subroutine subprogram can contain any statement except a BLOCK DATA,
FUNCTION, PROGRAM, or a second SUBROUTINE statement.

The symbolic name of a subroutine or a subroutine entry is a global name
and must not be the same as another global name or local name in the
referencing program unit. The referencing program unit cannot use a
subroutine or subroutine entry name as an external function or external
function entry name.

In a subroutine subprogram, the symbolic name of a dummy argument is
local and cannot appear in an EQUIVALENCE, PARAMETER, DATA, or COMMON
statement. The symbolic name of a dummy argument can be the same as a
common block name. A character dummy argument with a length
specification of (*) must not appear as an operand for concatenation,
except in a character assignment statement.

FUNCTION SUBPROGRAMS

A function subprogram is a sequence of executable code which can be
referenced from a main program or a procedure subprogram. A function
subprogram, unlike a subroutine subprogram, is referenced by the
appearance of its identifier in certain types of statements. Function
subprograms can be statement functions, external functions, or intrinsic
functions.

Statement functions

A statement function is specified by a single statement similar in form
to an arithmetic, logical, or character assignment statement. This
statement function definition statement can only appear after the
specification statements and before the first executable statement of the
program unit in which it is referenced. Since it is not a part of the
normal execution sequence, a statement function definition statement is
classified as a nonexecutable statement.

SR-0009
Part 1
4-3 J-02

•

Statement functions can be specified within a main program, a function
subprogram, or a subroutine subprogram. A statement function can only be
referenced from a statement within the same program unit containing its
specification. (See part 2, section 7 for the format of a statement
function definition statement.)

Referencing statement functions - A statement function is referenced by
usin9 its function reference as a primary in an expression.

Execution of a statement function reference results in the following
actions.

• Evaluation of actual arguments that are expressions

• Association of actual arguments with corresponding dummy arguments

• Evaluation of the statement function expression

The resulting value is used in the expression containing the function
reference.

The actual arguments must agree in order, number, and type with the
corresponding dummy arguments. An actual argument can be any expression
except a character expression involving concatenation of an operand with
a length specification of (*), unless the operand is the symbolic name of
a constant.

Statement function restrictions - A statement function can be referenced
only in the program unit with the statement function definition statement.

A statement function definition statement can reference another statement
function preceding the reference. The symbolic name identifying a
statement function cannot appear as a symbolic name in any specification
statement except a type statement (to specify the type of the function)
or as a common block name in the same program unit.

An external function reference (see next subsection, External functions)
in the expression of a statement function definition statement must not
cause a dummy argument of the statement function to become undefined or
redefined.

The symbolic name of a statement function is a local name and cannot be
the same as another entity name in the program unit except a common block
name. The symbolic name of a statement function cannot be an actual
argument and cannot appear in an EXTERNAL statement.

A statement function definition statement in a function subprogram cannot
reference that function subprogram.

SR-0009
Part 1

4-4 J-02

External functions

An external function is a procedure specified by a function subprogram
or some other means. An external function is specified external to the
program unit that references it. An external function can be specified
by an EXTERNAL statement or can be implied by its usage. It can also
contain one or more ENTRY statements.

Referencing external functions - An external function is referenced by
using its name as a primary in an expression. A reference to an entry in
a function can be similarly used.

Execution of external function references - Execution of an external
function reference or a reference to an external function entry results
in the following actions.

• Evaluation of actual arguments that are expressions

• Association of actual arguments with the corresponding dummy
arguments

• Actions specified by the referenced function

The type of the function or function entry name in the reference must be
the same as the type of the function or entry name in the referenced
function. The length of the character function in a character function
reference must be the same as the length of the character function in the
referenced function.

Actual arguments for external functions - The actual arguments in an
external function reference must agree in order, number, and type with
the corresponding dummy arguments in the referenced function or function
entry. The use of a subroutine name as an actual argument is an
exception to the rule requiring agreement of type because subroutine
names do not have a type. The subroutine name must be declared external.

An actual argument in an external function reference must be one of the
following.

• An expression, except a character expression involving
concatenation of an operand with a length specification of (*),
unless the operand is the symbolic name of a constant

• An array name

• An array element name

• An intrinsic function name

• An external procedure name

SR-0009
Part 1

4-5 J

•

Intrinsic functions

Intpinsic functions are commonly-used operations having prespecified
identities and functions. An intrinsic function can be referenced by a
main program or a procedure subprogram. The entire set of operations
specified in the ANSI FORTRAN Standard is included, as well as a set of
Cray FORTRAN extensions. Their specific names, generic names, function
definitions, and types of arguments and results appear in Appendix B.
Cray FORTRAN also provides for a set of utility procedures. These
procedures, which are referenced like intrinsic functions, are described
in the following sUbsection and in Appendix C. They perform utility
operations not specified in the ANSI Standard.

Referencing intrinsic functions - An intrinsic function is referenced by
using its name as a primary in an expression. The resulting value is
available to the expression containing the function reference.

Many intrinsic functions accept arguments of more than one type and
return a result type depending on the argument type. Generic names have
been assigned to families of intrinsic functions performing similar
operations but requiring different types of arguments and results.
Generic names simplify the referencing of intrinsic functions because the
same function name can be used with more than one type of argument.
Generic names, however, cannot be used when an intrinsic function is an
actual argument.

The actual arguments constituting the argument list must agree in type,
number, and order with those described in Appendix B and can be any
expression of the specified type. An actual argument cannot be a
character expression involving concatenation of an operand with a length
specified as (*) unless the operand is the symbolic name of a constant.

Intrinsic function restrictions - The result of the function becomes
undefined with arguments that cause undefinable results or when the
result exceeds the maximum numeric representation permitted.

Examples:

(If A>28l9l and B<-2-8l9l) :
AMEDIAN=(AMINl(A,B,C,D)+AMAXl(A,B,C,D»/2.0

T = TAN(THETA)

Utility procedures - The Cray FORTRAN programmer can reference a number
of predefined functions, subroutines, and other procedures that are
described in Appendix C. These utitity ppocedupes extend program
control capabilities in the following areas.

• Cray Operating System (COS) features

• Input/output operations

SR-0009
Part 1

4-6 J

I

Function subprogram restrictions

A function subprogram can contain any statement except a BLOCK DATA,
SUBROUTINE, PROGRAM, or a second FUNCTION statement.

The symbolic name of an external function or external function entry is a
global name and cannot be the same as another global name. In a
referencing program unit, an external function or external function entry
name cannot be used as the subroutine name in a CALL statement.

The symbolic name of a function specified by a FUNCTION statement cannot
appear in another nonexecutable statement except for a type statement and
must only appear as a variable in executable statements.

If the type of a function is specified in a FUNCTION statement, the
function name cannot appear in a type statement. (Redundant type
specifications are not allowed.)

In a function subprogram, the symbolic name of a dummy argument is local
and cannot appear in an EQUIVALENCE, PARAMETER, SAVE, DATA, or COMMON
statement except as a common block name.

A function specified by a subprogram can be referenced within another
procedure subprogram or the main program of the executable program. A
function subprogram cannot directly or indirectly reference itself.

The symbolic name of a function subprogram must appear as a variable name
in the function subprogram. During every execution of the subprogram,
this variable must become defined and, once defined, can be referenced or
become redefined. The value of the function is the value of this
variable when a RETURN or END statement is executed in the subprogram.
The type of this value is implicit to the function name unless INTEGER,
REAL, DOUBLE PRECISION, COMPLEX, CHARACTER, or LOGICAL is specified to
cause it to be overridden.

A function subprogram can define one or more of its dummy arguments to
return values in addition to the value of the function. However, this
redefinition must not affect any entities referenced on the line
referencing the function.

An actual argument in a function reference can be a dummy argument
appearing in a dummy argument list within the subprogram containing the
reference.

The result type of a statement function or an external function reference
is the same as the function name type and is specified the same as
variables and arrays. The result type of each intrinsic function is
specified in Appendix B. Each argument type and the number of actual
arguments specified in a function reference must agree with the (dummy)
arguments defined in the specification of the referenced function.

SR-0009
Part 1
4-7 J-02

If a function subprogram name is of type character, each entry name in
the function subprogram must be of type character. If the function
subprogram name or any entry in the subprogram has a length of (*)
declared, all such entities must have a length of (*) declared;
otherwise, all such entities must have a length specification of the same
integer value.

A character dummy argument with a length specification of (*) cannot
appear as an operand for concatenation, except in a character assignment
statement.

Execution of function references

A function reference appears only as a primary in an arithmetic,
character, or logical expression. Execution of a function reference in
an expression causes the evaluation of the function identified by the
symbolic name of the function subprogram.

Return of control from a referenced function completes execution of the
function reference. The value of the function is then available to the
expression containing the reference and being evaluated.

Referencing functions

A function is referenced in an expression and supplies a value to the
expression. This value is the value of the function at the time the
expression containing its reference is evaluated.

An intrinsic function can be referenced in the main program or in any
procedure subprogram of an executable program.

A statement function can be referenced only in the program unit in which
the statement function statement appears.

An external function can be referenced by function or entry name within
another procedure subprogram or the main program of the executable
program. A subprogram must not reference itself, either directly or
indirectly.

Using the ENTRY statement, a procedure subprogram can be entered at any
executable statement not within a DO-loop or block IF range. A procedure
subprogram can contain one or more ENTRY statements following its
FUNCTION or SUBROUTINE statement. (See part 2, section 7 for the format
of the ENTRY statement.)

If a character function is referenced in a program unit, the function
length specified in the program unit must be an integer constant
expression.

SR-0009
Part I

4-8 J

Non-FORTRAN subprograms

A non-FORTRAN subppogram is a set of executable code that functions the
same as a subroutine or a function subprogram. It is prepared by some
means other than FORTRAN. Typically, the non-FORTRAN subprogram is
written in Cray assembly language (CAL), in a high-level language other
than FORTRAN, or in a version of FORTRAN not compatible with the one in
use. They are separately compiled or assembled and are available in
binary form upon reference during program execution.

I The Macros and Opdefs Reference Manual, CRI publication SR-OOl2 describes
the creation of non-FORTRAN subroutine subprograms using CAL and the
method for programming non-FORTRAN function and subroutine subprograms
using CAL.

ARGUMENTS

Arguments provide a means of communication between a referencing program
unit and a referenced procedure.

Data can be communicated to a statement or intrinsic function by an
argument list. Data can be communicated to and from an external
procedure by an argument list or by common blocks. (See subsection,
COMMON BLOCKS, later in this section.) Procedure names can be
communicated to an external procedure only by an argument list.

A dummy argument appears in the argument list of a procedure. An actual
argument appears in the argument list of a procedure reference.

The number, type, and order of actual arguments must be the same as the
number, type, and order of dummy arguments in the procedure referenced.

DUMMY ARGUMENTS

Statement functions, function subprograms, and subroutine subprograms use
dummy apguments to indicate the types of actual arguments and whether
each is a single value, an array of values, or a procedure. Statement
function dummy arguments are limited to single values.

Each dummy argument is classified as a variable, array, or procedure. A
dummy argument name can appear wherever an actual name of the same class
and type can appear, except where explicitly prohibited.

SR-0009
Part 1

4-9 J

•

Dummy argument names of type integer can appear as adjustable dimension
declarators in dummy array declarators. A dummy argument name cannot
appear in an EQUIVALENCE, DATA, SAVE, INTRINSIC, or PARAMETER statement,
as a pointee in a POINTER statement, or in a COMMON statement, except as
common block names. A dummy argument name must not be the same as the
procedure name appearing in a FUNCTION, SUBROUTINE, or statement function
statement in the sa~e program unit.

ACTUAL ARGUMENTS

Actual arguments specify the entities that are to be associated with the
dummy arguments of a referenced subroutine or function. An actual
argument must not be the name of a statement function in the referencing
program unit. Actual arguments can be constants and expressions
involving operators if the associated dummy argument is a variable that
is not defined during execution of the referenced external procedure.

The type of each actual argument must agree with the type of its
associated dummy argument except when the actual argument is a subprogram
name or alternate return.

ASSOCIATION OF DUMMY AND ACTUAL ARGUMENTS

Upon execution of a function or subroutine reference, an association is
established between the corresponding actual and dummy arguments. The
first actual argument becomes associated with the first dummy argument,
the second actual argument becomes associated with the second dummy
argument, etc.

All appearances of a dummy argument within a function or subroutine
become associated with the corresponding actual argument when a reference
to that function or subroutine is executed.

A valid association occurs only if the type of the actual argument is the
same as the type of the corresponding dummy argument. A subroutine name
has no type and must be associated with a procedure.

If an actual argument is an expression, it is evaluated just before the
association of arguments takes place.

If an actual argument is an array element name, its subscript is
evaluated just before the association of arguments takes place. The
subscript value remains constant as long as that association of arguments
persists, even if the subscript contains variables that are redefined
during the association.

SR-0009
Part 1

4-10 J

•

If an actual argument is a character substring name, its substring
expressions are evaluated immediately preceding argument association.
Substring expression values remain constant as long as argument
association continues.

If an actual argument is an external procedure name, the procedure must
be available at the time a reference to it is executed.

If an actual argument becomes associated with a dummy argument that
appears in an adjustable dimension declarator, the actual argument must
be defined with an integer value at the time the procedure is referenced.

A dummy argument is undefined if it is not currently associated with an
actual argument. An adjustable array is undefined if the dummy argument
array is not currently associated with an actual argument array or if any
variable appearing in the adjustable array declarator is not currently
associated with an actual argument or is not in a common block.

Argument association can be carried through more than one level of
procedure reference. A valid association exists at the last level only
if a valid association exists at all intermediate levels.

If a dummy argument is of type character, the associated actual argument
must be of type character and the length of the dummy argument must be
less than or equal to the length of the actual argument. If the length
len of a dummy argument of type character is less than the length of an
associated actual argument, the leftmost len characters of the actual
argument are associated with the dummy argument.

If a dummy argument of type character is an array name, the restriction
on length is for the entire array and not for each array element. The
length of an array element in the dummy argument array can be different
from the length of an array element in an associated actual argument
array, array element, or array element substring, but the dummy argument
array must not extend beyond the end of the associated actual argument
array.

If an actual argument is a character substring, the length of the actual
argument is the length of the substring. If an actual argument is the
concatenation of two or more operands, the actual argument length is the
sum of the lengths of the operands.

VARIABLES AS DUMMY ARGUMENTS

A dummy argument that is a variable can be associated with an actual
argument that is a variable, array element, substring, or expression.

SR-0009
Part 1
4-11 J

•

If the actual argument is a variable name, array element name, or
substring name, the associated dummy argument can be defined or redefined
within the subprogram. A dummy argument must not be redefined within the
subprogram if the associated actual argument is one of the following
items.

• A constant

• The symbolic name of a constant

• A function reference

• An expression involving operators

• An expression enclosed in parentheses

ARRAYS AS DUMMY ARGUMENTS

Within a program unit, the array declarator given for an array provides
all array declarator information required for execution of the program
unit. The number and size of dimensions in an actual array declarator
can be different from the number and size of the dimensions in an
associated dummy array declarator.

A dummy argument that is an array name can be associated with an actual
argument that is either an array name, an array element name, or an array
element substring.

If the actual argument is a noncharacter array name, the size of the
dummy argument array must not exceed the size of the actual argument
array. Furthermore, actual argument array elements and dummy argument
array elements become associated when their subscript values match.

If the actual argument is a noncharacter array element name, the size of
the dummy argument array must not exceed the size of the actual argument
array plus one minus the subscript value of the array element. When an
actual argument is an array element name with a subscript value of p,
the dummy argument array element with a subscript value of q becomes
associated with the actual argument array element that has a subscript
value of p+q-l.

PROCEDURES AS DUMMY ARGUMENTS

A dummy argument that is a procedure can be associated only with an
actual argument that is a procedure.

SR-0009
Part 1

4-12 J

•

If a dummy argument is used as a function, the associated actual argument
must be an intrinsic function or an external function. A dummy argument
that becomes associated with an intrinsic function never has automatic
typing property, even if the dummy argument name is the same as the
intrinsic function name. Therefore, the type of the dummy argument must
agree with the type of the result of all specific actual arguments that
become associated with the dummy argument. If a dummy argument name is
used as an external function and that name also appears as an intrinsic
function name, the intrinsic function is not available for referencing
within the subprogram.

A dummy argument that is used as a procedure name in a function reference
and is associated with an intrinsic function must have arguments that
agree in number and type with those specified for the intrinsic
function. (See the intrinsic functions in Appendix B.)

If a dummy argument appears in a type statement and an EXTERNAL
statement, the actual argument must be the name of a function.

If the dummy argument is referenced as a subroutine, the actual argument
must be the name of a subroutine and must not appear in a type statement
or be referenced as a fUnction.

RESTRICTIONS ON THE ASSOCIATION OF ENTITIES

If a subprogram reference causes a dummy argument in the referenced
subprogram to become associated with another dummy argument in the
referenced subprogram, neither dummy argument can become defined during
execution of that subprogram. For example, if a subroutine is headed by

SUBROUTINE XYZ (A,B)

and is referenced with

CALL XYZ (C,C)

then the dummy arguments A and B each become associated with the same
actual argument C and, therefore, with each other. This rule prohibits
both A and B from becoming defined during this execution of subroutine
XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become associated
with an entity in a common block in the referenced subprogram, neither
the dummy argument nor the entity in the common block can become defined
within the subprogram. For example, if a subroutine containing statements

SUBROUTINE XYZ (A)

COMMON C

SR-0009
Part 1

4-13 J

•

is referenced by a program unit that contains the statements

COMMON B

CALL XYZ (B)

the dummy argument A becomes associated with the actual argument B. B
and C are associated in a common block. Neither A nor C can become
defined during the execution of subroutine XYZ or by any procedures it
references.

COMMON BLOCKS

A common block provides a means of communication between external
procedures or between a main program and an external procedure. The
variables and arrays in a common block can be defined and referenced in
all subprograms that contain a declaration of that common block.

Because association is by storage sequence instead of by name, the names
and types of variables and arrays can be different in different
subprograms. A reference to data in a common block is proper if the data
is defined and the same type as the type of the name used to reference
the data. However, an integer variable assigned an executable statement
label must not be referenced in any program unit other than the one where
it was assigned.

The only difference in data type permitted between that defined and that
referenced is that either part of a complex data can be referenced as a
real data.

In a subprogram that has declared a named or blank common block, the
entities in the block remain defined after the execution of a RETURN or
END statement.

Common blocks can also reduce the total number of storage units required
for an executable program by causing two or more subprograms to share
some of the same storage units. This sharing of storage is permitted if
the rules for defining the referencing data are not violated. However,
if any entity in a common block is of type character, all entities in the
block must be of type character. Furthermore, if a common block
definition in one subprogram is of type character, the common block
definition in all subprograms must be of type character.

SR-0009
Part 1
4-14 J

I

EXTENDED MEMORY COMMON BLOCKS

CFT allows common blocks to contain more than 4 million words of memory
by using the extended memory addressing (EMA) characteristic (see the CPU
parameter on the CFT control statement in part 3, section 1). When the
EMA characteristic is specified, all variables declared in named and
blank common blocks are addressed as though they are allocated beyond 4
million words of memory. The variables declared in an extended memory
common block can be used like variables declared in a regular common
block.

When a subprogram is compiled, a fatal error message is issued if very
large local arrays cause the code and data storage area to exceed 4
million words. A fatal error message is also issued if any common block
has more than 4 million words declared in it. Fatal error messages are
not issued when all very large arrays are moved into common blocks and
the EMA characteristic is used.

TASK COMMON BLOCKS

When multitasking is used, some common blocks may need to be local to a
task. CFT allows common blocks to be declared local to a task by using
the task common block extension. All variables declared in a task common
block are considered local to a task. If multiple tasks execute code
containing the same task common block, each task will have a separate
copy of the block.

The keyword TASK must precede the keyword COMMON when a named common
block is declared. A task common block is allocated at task invocation.

The format of a task common block is

TASK COMMON/name/list

where name is the task common block name, and

list is the variable list declared.

The variables in list cannot be saved, preset with data, or used in the
NAMELIST I/O statement. with these exceptions, the variables can be used
like the other variables declared in COMMON.

SR-0009
Part 1

4-15 J-03

I

Stack allocation must be used with task common blocks (see the eFT
control statement in part 3, section 1). If static allocation is used,
all task common blocks are treated as regular common blocks.

The ANSI PO~ Standard does not provide for task common blocks.

SR-0009
Part 1
4-16 J-03

PART 2

eFT STATEMENTS

FORTRAN STATEMENTS

A FORTRAN statement is a sequence of syntactic items beginning, in many
cases, with a keyword. The FORTRAN statement describes either the form
of data and program elements or the actions to be taken by the program.
A statement label can precede a statement, but is not a part of the
statement itself.

The type of a statement is indicated by its keyword or by its form. The
total number of characters expressing a statement is limited to 1,320,
including blank characters. Aside from character-count limitation,
leading, trailing, and, except within character constants, embedded blank
characters do not affect statement interpretation.

This section describes ANSI FORTRAN statements and some CFT extensions to
these statements, as well as some additional CFT statements. These

I extensions enhance the capability of the Cray FORTRAN language.

Appendix E describes several non-standard, outmoded statements and
features which, although supported by CFT, can be conveniently replaced
with standard features.

SR-0009
Part 2

1-1 J

1

DATA SPECIFICATION 2

Data specification statements are statements supplying characteristics
and values of data used in the execution of a program. Data
specification statements are not executable: that is, they form no
execution sequence. Therefore, statement labels associated with them
cannot be referenced to control the execution sequence. Data
specification statements usually appear (and some must appear) before any
executable statements in a program.

Types of data specification statements are as follows.

• Declaration and initialization

• Type

• Association

DECLARATION AND INITIALIZATION

Declaration and initialization statements provide values and locations
and establish arrays.

PARAMETER STATEMENT

A PARAMETER statement assigns a symbolic name to a constant.

The format of a PARAMETER statement is

PARAMETER (p=e[,p=e] •••)

where p

e

SR-0009

is a symbolic name, and

is an expression containing constants and symbolic
names of other constants.

Part 2
2-1 J

I

The type of a symbolic name in a PARAMETER statement is specified by its
appearance in a previous type statement, by a previous IMPLICIT statement
specifying its first letter, or by default. A symbolic name p of type
integer, real, double precision, or complex is followed only by an
arithmetic expression e containing arithmetic constants or the names of
arithmetic constants previously defined in the same or an earlier
PARAMETER statement.

The length of a character constant must be specified in a type statement
or an IMPLICIT statement before the first appearance of its name.
Otherwise, a default length of one is assumed. The length cannot be
changed by subsequent statements. If the length of (*) is specified, the
parameter length is the length of the actual character string.

The evaluation of arithmetic expressions in a PARAMETER statement
provides results agreeing in type with the corresponding symbolic names.
A symbolic name p of type logical is followed only by a logical
constant expression. Similarly, a symbolic name p of type character is
followed only by a character constant expression. A symbolic name of a
constant is assigned a value only once in a program unit. Constants
named in a PARAMETER statement can be referenced in a subsequent
statement in the same program unit except in a FORMAT statement. A
symbolic name of a constant cannot be used in a format specification or
to form part of another constant.

Examples:

IMPLICIT LOGICAL(A-B)

PARAMETER (PI=3.l4lS926, C=l.86ES)

PARAMETER (JOULE=lOOOOOOO,KELVIN=-273)

PARAMETER (BOOLEAN=.TRUE.,ABOOLEAN=.FALSE.,TWOPI=2*PI)

DIMENSION STATEMENT

The DIMENSION statement specifies the symbolic names and dimension
specifications of arrays.

The format of a DIMENSION statement is

DIMENSION a (d) [,a (d) 1 •••

where

SR-0009

each a(d) is an array declarator.

Part 2
2-2 J

Each symbolic name a appearing in a DIMENSION statement declares a to
be an array in that program unit. An array name can appear only once as
an array declarator in a program unit. Array declarators can also appear
in COMMON statements, type statements, and in POINTER statements. The
declaration for a variable used in adjustable dimensions must precede the
adjustable dimension declaration.

Examples:

DIMENSION ARRAY (34,0:24,1:34), VECTOR (64), Z7l44X (5:10,-2:20)

DIMENSION MATRIX (ROWS,COLUMNS), Y(2*N+l)

DIMENSION TABLE (3,IVAL, MATRIX,2,2), TAB(6:IVALX,MAT:10)

In the last two examples, the use of variables defines adjustable
dimensions and is permitted only in procedure subprograms.

POINTER STATEMENT (CFT EXTENSION)

The POINTER statement provides a base address for a corresponding
variable or array.

The format of a POINTER statement is

POINTER (p,a) [,(p,a)] •••

where p is a pointer to the corresponding a. p contains
the word address of the location of a.

No storage is assigned for a: a reference to a is performed by using
the contents of p as a base address for a.

a can be dimensioned in a separate type or DIMENSION statement or
dimensioned in the pointer list itself, as in the following example.

POINTER (IX,X(N,O:M»

I In a subroutine or function, the a dimension expression can contain
references to variables in common or to dummy arguments.

I a cannot be a dummy argument or type character or appear in a COMMON,
EQUIVALENCE, or DATA statement.

SR-0009
Part 2

2-3 J

I The pointer, p, has an implied type of integer and must be a simple
variable. It can appear in a common list or be a dummy argument in a
subprogram. A maximum of 312 pointers can be defined in any program

I unit. p can be set with an LOC function reference or as an absolute
address, as in the following example.

I

I

COMMON POOL (100000)
INTEGER JCB (128)
REAL A (1),B(1),C(1)
POINTER (PJCB,JCB),(IA,A),(IB,B),(IC,C),(ADDRESS,WORD64)
DATA ADDRESS/64/
PJCB = 0
IA = LOC(POOL)
IB = IA + 1000
IC = IB + N

In effect, WORD64 refers to the contents of absolute address 64; JCB is
an array occupying the first 128 words of memory; A is an array of length
1000 located in blank common; B follows A and is of length N; C follows
B. A, B, and C are equivalenced to POOL and possibly to each other,
depending on the subscript usage. Similarly, WORD64 is the same as
JCB(64). However, CFT makes no checks for possible equivalence overlap.
Each a is assumed to be a distinct entity.

Any change to the value of a p causes all subsequent references to the
corresponding a to refer to the new location.

Besides providing a limited form of dynamic storage allocation, the
POINTER statement can manipulate linked lists, as in the following
example.

SUBROUTINE FINDSAM (SAMSSPOT)
POINTER (SAMSSPOT, RECORD (N»
COMMON N
INTEGER RECORD

10 IF (RECORD (4) .EQ.'SAM') RETURN
SAMSSPOT = RECORD (25)
IF (SAMSSPOT .NE.O) GO TO 10
PRINT 20

20 FORMAT ("SAM'S NOT HERE")
STOP
END

DATA STATEMENT

A DATA statement provides initial values for variables, arrays, and array
elements. A DATA statement can appear in a program unit following a
specification statement. Only those entities named in DATA statements
become defined before executable program execution. All other entities
are undefined at this time.

SR-0009
Part 2

2-4 J

I

I

Entities appearing in DATA statements are assigned to static storage.

The ANSI FORTRAN Standard does not specify storage allocation methods.

The format of a DATA statement is

DATA nList/eList/[[,]nList/eList/] •••

where nList

elist

where

is a list of variable names, array names, array
element names, substring names, and implied-DO lists
separated by commas, and

is a list of the form

[pk]e[,[pIr]e] •••

is a constant or the symbolic name of a constant, and

is a nonzero, unsigned, integer constant or the
symbolic name of such a constant.

The p*e form is interpreted to provide p successive values of the
constant e.

The ith entity in nList becomes defined with the ith value from
eList.

An implied-DO list in a DATA statement has the format

where

SR-0009

dList is a list of array element names and implied-DO lists
separated by commas,

i is the name of an integer variable called the
impLied-DO variabLe, and

el' e2' and e3
are integer expressions containing integer constants,
the names of integer constants, and implied-DO
variables of other implied-DO lists containing the
implied-DO list within their ranges. If omitted,
e3 is assumed specified as 1.

Part 2
2-5 J-02

•

The range of an implied-DO list is the list dList. The iteration count
and values of the implied-DO variable i are established the same as a
DO-loop except the iteration count must be greater than zero.
Interpretation of an implied-DO list in a DATA statement causes each item
in the list dList to be specified once for each iteration, and for
appropriate values to be substituted where implied-DO variables are
referenced.

Each subscript expression in the list dList must be an integer constant
expression, except the expression may contain implied-DO variables of
implied-DO lists having the subscript expressions in their ranges.

In the following example, the first ten values of array A are set to 1.

DIMENSION A(25)
DATA (A(I),I=l,lO)/lO*l/

DATA statement restrictions

Names of constants, dummy arguments, functions, and entities in blank
common (including entities associated with an entity in blank common)
must not appear in nList. Names of entities in a named common block
can appear in nList.

The same number of items must be specified by each nList and its
corresponding eList. The initial values of the entities are defined by
this correspondence.

When the nList entity is of type integer, real, or double-precision,
the corresponding eList constant is converted, if necessary, to the
type of the nList entity according to the rules for arithmetic
conversion. An nList entity of type logical must correspond to a
eList constant of the same type. A eList entity of type logical must
correspond to an nList entity of type logical.

An nList entity corresponding to a character constant must be of type
character. If the character entity length in the list nList is greater
than its corresponding character constant length, the additional
rightmost characters in the entity are initially defined with blank
characters. If the character entity length in the list nList is less
than its corresponding character constant length, the additional
rightmost characters in the constant are ignored.

Any variable or array element can be initially defined except for the
following.

• An entity that is a dummy argument

• An entity in blank common, which includes an entity associated
with an entity in blank common

SR-0009
Part 2

2-6 J-02

I

• A variable in a function subprogram whose name is also the name of
the function subprogram

Subscript expressions in the list nList must be integer constant
expressions except for implied-DO variables. Substring expressions in
the list nList must also be integer constant expressions.

Any declaratives affecting the variable or array names in ntist must
precede the DATA statement.

SR-0009
Part 2
2-6.1 J-03

The ANSI PO~ Standard does not permit a DATA statement to initialize
entities in named common blocks except in block data subprograms.

Examples:

DIMENSION GRID (2,3),KBUF(10,200,2)

PARAMETER (XCON=6.0)

DATA GRID /ll.0,2l.0,12.0,22.0,13.0,23.0/,KBUF/4000*XCON/

DATA I/l/K/0/K/2000/

PARAMETER (NEG=-6)

INTEGER NB (10)

DATA NB/-3,7*-4,2*NEG/

TYPE STATEMENTS

A type statement either overrides or confirms implicit typing and can
specify dimension information.

The appearance of the symbolic name of a constant, variable, array, or
function in a type statement specifies the data type for all appearances
of that name in the program unit. Within a program unit, a name must not
have its type explicitly specified more than once.

Subroutine names, main program names, and block data subprogram names
must not appear in a type statement.

If a specific intrinsic function name appearing in a type statement
conflicts with that function's type as specified in Appendix B, the.
conflicting type statement is ignored but a warning message is issued.

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, AND LOGICAL TYPE STATEMENTS

The format of type statements is

type v[,V] •••

SR-0009
Part 2

2-7 J

I

where type

v

specifies type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL, and

is the symbolic name of a constant, variable name,
array name, function name, dummy procedure name, or
array declarator.

The space between DOUBLE and PRECISION is optional.

(A special form of integer typing is discussed in part 3, section 1,
Compiler Directives.)

Examples:

INTEGER NPAK(60,230),RTEST,XREF(20,2),ARRAY

DOUBLE PRECISION ANG(1014,8),KLIM,PTEST(lO)

COMPLEX IMAG,COMARR(30,3),ZREF,KITEMS(64)

LOGICAL KEY2,BOOLSET(64,64),TTABLEB(2,20,lS)

See Appendix E for extensions of the type declaration statements.

CHARACTER TYPE STATEMENT

The format of a CHARACTER type statement is

CHARACTER [*len[,]]nam[*len] [,nam[*len]] •••

where len is the length specification (number of characters) for
an entity and

nam is a symbolic name of a constant, variable name,
function name, dummy procedure name, array name, or
array declarator.

The length specification following the word CHARACTER refers to each
entity without a length specification. If the CHARACTER type statement
does not include a length specification, the length is assumed to be one.

The length specification, len, can be an unsigned, nonzero integer
constant or a positive, nonzero integer constant expression enclosed in
parentheses. The value of len must be less than 16,384. If the entity
is an external function, a dummy argument, or a character constant, len
can also be specified as an asterisk enclosed in parentheses (for
example, CHARACTER*(*».

SR-0009
Part 2

2-8 J-03

I

If the entity is an external function and the value of len is specified
as (*), the function name must appear in a FUNCTION or an ENTRY statement
in the same subprogram. The value of len is the length specified in
the referencing program unit.

If the entity is a dummy argument and the value of len is specified as
(*), the dummy argument assumes the length of the associated actual
argument.

The ANSI PO~ Standard does not specify a maximum character length.

If the entity is a character constant with a symbolic name and the value
of len is specified as (*), the constant assumes the length of its
corresponding constant expression defined in a PARAMETER statement.

IMPLICIT STATEMENT

An IMPLICIT statement changes or confirms the data typing of constants,
variables, arrays, and functions according to the first letter of their
symbolic names.

The format of an IMPLICIT statement is

where type

a

len

SR-0009

is INTEGER, REAL, OOUBLE PRECISION, COMPLEX,
CHARACTER[*len], or LOGICAL to specify the desired
data type,

is a single letter or is a range of single letters
denoted by the first and last letter of the range
separated by a hyphen. Writing a range of letters
(aI-an) has the same effect as writing a list
of the single letters (al,a2, ••• an) where
al precedes an in this alphabetically ordered
sequence, and

is the length of the character entities. len can be
an unsigned, nonzero, positive integer constant or
expression with a value less than 16,384.

Part 2
2-9 J-03

An IMPLICIT statement specifies a type for all constant, variable, array,
and function (except intrinsic function) names beginning with any letter
appearing singly or within a range in the specification. IMPLICIT
statements do not change the types of intrinsic functions. An IMPLICIT
statement applies only to the program unit containing it.

The appearance of a constant, variable, array, or function name in a type
statement overrides or confirms type specification by an IMPLICIT
statement. An explicit type specification in a FUNCTION statement
overrides IMPLICIT statement typing for the name of that function
subprogram.

Within the specification statements of a program unit, IMPLICIT
statements must precede all specification statements other than PARAMETER
statements. A PARAMETER statement must follow an IMPLICIT statement to
affect the typing of constants named in the PARAMETER statement.

A letter can be specified (or implied within a range of letters) only
once in all of the IMPLICIT statements in a program unit.

Examples:

IMPLICIT INTEGER (A,B,F-K) ,REAL (M-W, Z)

IMPLICIT LOGICAL(L)

IMPLICIT DOUBLE PRECISION (X,Y) ,COMPLEX (C)

IMPLICIT NONE STATEMENT (CFT EXTENSION)

The IMPLICIT NONE statement prevents the use of implicit typing by
requiring all constant, variable, array, dummy argument, statement
function, and function (except intrinsic function) names to appear in an
explicit type statement. It also requires all nonintrinsic subroutine
and function names to appear in an EXTERNAL statement.

The format of an IMPLICIT NONE statement is

IMPLICIT NONE

The IMPLICIT NONE statement applies only to the program unit containing
it and must be the first of the specification statements.

Failure to provide type or EXTERNAL declarations is a fatal error when
IMPLICIT NONE is specified, except in the following cases.

SR-0009
Part 2

2-10 J

• Intrinsic subroutine and function names need not appear in
explicit type statements and must not be declared EXTERNAL.

• Pointers appearing in a POINTER statement are always assumed to be
of type integer and, therefore, need not be explicitly typed as
such.

ASSOCIATION STATEMENTS

Association statements specify the relationship of entities to storage
units within the same program or among two or more programs.

EQUIVALENCE STATEMENT

An EQUIVALENCE statement specifies the sharing of one or more storage
units by two or more entities in a single program unit. This causes the
association of those entities.

If associated entities are of different data types, the EQUIVALENCE
statement does not cause type conversion or imply mathematical
equivalence. If a variable and an array are associated, the variable
does not assume the properties of an array and the array does not assume
the properties of a variable.

Associated entities are assigned to the same type of storage, static or
stack storage. Associated entities are assigned to static storage unless
the ALLOC=STACK option is specified on the CFT control statement (see
part 3, section 1) and the entities have not been previously assigned to
static storage (for example, with a DATA statement).

The ANSI FORTRAN Standard does not specify storage allocation methods.

The format of an EQUIVALENCE statement is

EQUIVALENCE (nlist) [, (nlist)] •••

where nlist is a list of two or more variable names, array element
names, character substring names, and array names,
separated by commas.

Names of dummy arguments of a subprogram cannot appear in nlist. A
variable name that is also a function name cannot appear in nlist.

SR-0009
Part 2

2-11 J-02

•

Each subscript expression or substring expression in nList must be an
integer constant expression.

Equivalence association

An EQUIVALENCE statement specifies that the storage sequence of each
entity in a list nList shares the same first storage unit. This causes
the association of all entities in the list and can also cause indirect
association of other entities.

Array names and array element names

If an array element name appears in an EQUIVALENCE statement, the number
of subscript expressions must equal the number of dimensions in the array
declarator for the array.

The use of an array name in an EQUIVALENCE statement has the same effect
as using the name of the first array element.

Restrictions on EQUIVALENCE statements

An EQUIVALENCE statement must not specify the same storage unit to occur
more than once in a storage sequence. For example,

DIMENSION A(2)

EQUIVALENCE (A(l) ,B) , (A(2) ,B)

is prohibited because it would specify the same storage unit for A(l) and
A (2) •

An EQUIVALENCE statement must not specify consecutive storage units to be
nonconsecutive. For example, the following is prohibited.

REAL A(2)

DOUBLE PRECISION D(2)

EQUIVALENCE (A(1),D(1»,(A(2) ,D(2»

An EQUIVALENCE statement must not associate the storage sequences of two
different common blocks in the same program unit.

SR-0009
Part 2

2-12 J-02

•

Example:

COMMON/A/X

COMMON/B/Y

EQUIVALENCE (X,Y)

EQUIVA~ENCE statement association must not cause extending of a common
block storage sequence by adding storage units preceding the first
storage unit of the first entity specified in a COMMON statement for the
common block. For example,

SR-0009
Part 2
2-12.1 J-02

COMMON /X/A

REAL B(2)

EQUIVALENCE (A,B(2»

is not permitted since it would associate an array element B(l) with a
storage unit preceding A in common block X.

An entity of type character can be equivalenced only with other entities
of type character. Lengths are not required to be the same.

Partial overlapping between character entities can occur through
equivalence association.

Example:

The appearance of

CHARACTER A*4,B*4,C(2)*3

EQUIVALENCE (A,C(1»,(B,C(2»

in a program unit associates A with C(2) as shown in the following
illustration.

Character number:

COMMON STATEMENT

1011021031041051061071
1---- A ----I

1---- B ----I
1--C(1)--I--C(2)--1

The COMMON statement associates entities in different program units.
This allows different program units to share storage units and define and
reference the same data.

The format of a COMMON statement is

where

COMMON [/[ab]/]nlist[[,]/[ab]/nlist] •••

ab

nlist

is a common block name, and

is a list of variable names, array names, and array
declarators separated by commas. Names of dummy
arguments of a subprogram cannot appear in the list.

SR-0009
Part 2

2-13 J

•

In each COMMON statement, the entities occurring in ntist following a
block name cb are declared to be in common block cb. The blank
(unnamed) common block is specified when a cb does not appear between
slashes. If the first cb is omitted, its enclosing slashes are
optional and all entities in ntist are specified to be in blank common.

A cb (or an omitted cb for blank common) can occur more than once in
one or more COMMON statements in a program unit. The ntist following
each successive appearance of the same common block name continues the
preceding list for that common block name.

If an entity in a common block is a character variable or character
array, all entities in that common block must be of type character. If
the common block is defined in another procedure, the entities in that
procedure must be character entities.

Common block storage seguence

For each common block, a common btock storage sequence is formed as
follows.

• A storage sequence is formed, consisting of the storage sequences
of all entities in ntist for the common block. The order of the
storage sequence is determined by the order of the appearance of
ntist in the program unit.

• The storage sequence is extended to include all storage units of
any storage sequence associated with it by EQUIVALENCE statement
association. The sequence can be extended only by adding storage
units beyond the last storage unit. Entities associated with an
entity in a common block are considered to be in that common block.

Size of a common block

The size of a common block is the size of its common block storage
sequence, including any extensions of the sequence resulting from
EQUIVALENCE statement association.

In an executable program, the size of a named common block is established
during compilation of the first program unit specifying its name. The
size cannot be exceeded in specifying the same named common block in
subsequent program units, but can be the same or less. Blank common
blocks in an executable program are not required to be the same size and
can increase, decrease or remain the same as each program unit is
compiled.

SR-0009
Part 2
2-14 J

The ANSI FORTRAN Standard does not provide for variable size for named
common blocks.

Common association

In an executable program, common block storage sequences of all common
blocks with the same name share the same first storage unit. The same is
true of all blank common blocks. This associates entities with different
program units.

Differences between named common and blank common

A blank common block has the same properties as a named common block
except entities in blank common blocks cannot be initially defined by
DATA statements.

Restrictions on COMMON and EQUIVALENCE statements

An EQUIVALENCE statement must not associate the storage sequences of two
different common blocks in the same program unit. EQUIVALENCE statement
association must not extend a common block storage sequence by adding
storage units preceding the first storage unit of the first entity
specified in a COMMON statement for the common block.

INTRINSIC STATEMENT

An INTRINSIC statement identifies a symbolic name as an intrinsic
function. It permits use of a specific intrinsic function name as an
actual argument.

The format of an INTRINSIC statement is

INTRINSIC fun[,fun] •••

where fun is an intrinsic function name.

The appearance of a name in an INTRINSIC statement declares the name is
an intrinsic function name. If an intrinsic function name is an actual
argument in a program unit, it must appear in an INTRINSIC statement in
the program unit.

SR-0009
Part 2
2-15 J

I

I

The following intrinsic function names must not appear as actual
arguments.

AMAXO CHAR DMINI IFIX LLE MAXI SNGL
AMAXI CMPLX FLOAT INT LLT MIN REAL
AMINO DBLE I CHAR LGE MAX MINO
AMINI DMAXI IDINT LGT MAX 0 MINI

The appearance of a generic function name in an INTRINSIC statement does
not cause loss of the name's generic property.

A given symbolic name must not appear in both an EXTERNAL and an
INTRINSIC statement. In addition, it can appear only once in all of the
INTRINSIC statements of a program unit. Appendix B lists the intrinsic
functions.

SAVE STATEMENT

A SAVE statement retains the definition status of an entity after the
execution of a RETURN or END statement in a subprogram. The entity
remains defined in the current program unit only. The SAVE statement
must appear before any executable statement in a program unit. All
entities specified in a SAVE statement are assigned to static storage.

The ANSI FORTRAN Standard does not specify storage a11ocation methods.

The format of a SAVE statement is

SAVE [a [, a] •••]

where a is a named common block name preceded and followed by
a slash; a variable name; or an array name.

The names of dummy arguments, pointers, or procedures must not be
specified in a SAVE statement. Variables and arrays in a common block
must not be specified except by specifying the entire block. A common
block specified in a SAVE statement must also be specified in every
subprogram where the common block appears~

If a is omitted, all common blocks, variables, and arrays are assumed
specified.

SR-0009
Part 2

2-16 J-02

I

A name cannot appear more than once in the SAVE statements of a program
unit.

A SAVE statement is optional in the main program and has no effect on the
main program.

See the eFT control statement option BTREG in part 3, section 1 for more
information on SAVE statement allocation.

SR-0009
Part 2

2-17 J-02

I

ASSIGNMENT STATEMENTS

Assignment statements define variables and array elements during program
execution. Categories of assignment statements are as follows.

• Arithmetic
• Logical
• Character
• ASSIGN (statement label)

ARITHMETIC ASSIGNMENT STATEMENT

The format of an arithmetic assignment statement is

where v is the name of a variable or array element of type
integer, real, double-precision, or complex, and

e is an arithmetic expression.

Execution of an arithmetic assignment statement causes the evaluation of
the expression e, conversion of e to the type of v (if required) ,
and definition of v with the resulting value. Table 3-4 in part 1,
section 3 relates such conversions to the data types of arithmetic
operands, expressions, and evaluations.

Examples:

The statement

L = 12
C = (0.8,16.5) - (16.32,-6.1)
X = -B + (B**2-4*A*C) **0.5
A= B + L
ROOT = SQRT(65536.0)
ARRAY(6,2,1)=0
MATRIX (I,J,K) =MATRIX(I,J,K) +1

Assigns to v •••

Integer variable
Complex variable
Real variable
Real variable
Real variable
Real array element
Integer array element

3

SR-0009
Part 2

3-1 J-02

I

I

LOGICAL ASSIGNMENT STATEMENT

The format of a logical as~ignment statement is

where v is the name of a logical variable or array element, and

e is a logical expression.

Execution of a logical assignment statement causes the evaluation of the
expression e and the definition of v with the value of e.

Examples:

All variable and array element names are assumed to be of type logical
except for E and F, which are type real •

T = • FALSE.
A = B
C = (A .AND. B) • OR. (C .AND •
T = .NOT. T
TRUTAB(I,J,K,L) = .T.
T = E.GE.F .OR. ElF .LT •• 4
T = A .EQV. B

CHARACTER ASSIGNMENT STATEMENT

D)

The format of a character assignment statement is

where v

e

is the name of a variable, array element, or substring
of type character, and

is a character expression.

Execution of a character assignment statement causes the evaluation of
the expression e and the definition of v with the value of e. e is
either truncated or padded with blanks on the right, as necessary, to
match the length of v. No character positions defined in v can be
referenced in e.

SR-0009
Part 2
3-2 J-02

Example:

The following sequence

CHARACTER DATE*12, MONTH*9, DAY*2, YEAR*4
MONTH = 'OCTOBER'
DAY = '3'
YEAR = '1982'
DATE = MONTH(l:3)//' '//DAY//', '//YEAR
PRINT *,DATE

produces the printed result

OCT 3 , 1982.

ASSIGN STATEMENT

The format of an ASSIGN statement is

ASSIGN s TO i

where s is a statement label, and

i is a integer variable name.

An ASSIGN statement assigns the statement label s to the integer
variable i. s must be the label of an executable statement or a FORMAT
statement in the same program unit as the ASSIGN statement.

Execution of an ASSIGN statement is the only way to define a variable
with a statement label.

A variable defined with an executable statement label can be referenced
only in an assigned GO TO statement. A variable defined with a FORMAT
statement label can be referenced as a format identifier in an I/O
statement. While so defined, the variable i cannot be referenced for
any other purpose. However, the variable i can be redefined with
another statement label or an integer value. In the latter case, it can
be used anywhere an integer variable is used.

Example:

ASSIGN 910 TO JUMPTO

SR-0009
Part 2

3-3 J

PROGRAM CONTROL STATEMENTS

Program control statements are used when two or more alternative
sequences of statements exist and a decision is required, or when a
statement sequence is to be repeated, interrupted, or terminated.

The following statements control an execution sequence.

• Unconditional GO TO

• Computed GO TO

• Assigned GO TO

• Arithmetic IF

• Logical IF

• Conditional block statements

• DO

• CONTINUE

• STOP

• PAUSE

• END

• CALL (Described in section 7)

• RETURN (Described in section 7)

UNCONDITIONAL GO TO STATEMENT

The format of an unconditional GO TO statement is

EJ
SR-0009

Part 2
4-1

4

J

•

where s is the statement label of an executable statement in
the same program unit.

The space between GO and TO is optional.

Execution of an unconditional GO TO statement causes a transfer of
control to the statement identified by the statement label.

Example:

GO TO 910

COMPUTED GO TO STATEMENT

The format of a computed GO TO statement is

GO TO (s[,s] •••) [,]e

where e is an integer expression, and

s is the statement label of an executable statement that
appears in the same program unit as the computed GO TO
statement. A given statement label can appear more
than once in a computed GO TO statement.

The space between GO and TO is optional.

Execution
evaluated
statement
statement
execution
executed.
result,

Examples:

of a computed GO TO statement causes the expression e to be
for an integer result, i. A transfer of control to the
identified by the ith statement label in the list of n
labels is then executed if l<i<n. If i<l or i>n, the
sequence proceeds as though a CONTINUE statement were
If the evaluation of e for i produces a non-integer

is converted to integer as if i=e had been executed.

GO TO (2,4,8,16)A (The value of A is truncated, if necessary, to
produce an integer value.)

GO TO (0031,59,728)IX

SR-0009
Part 2
4-2 J

GO TO (003l,59,728)MSIZE/2

GO TO (6,3,6,6,7,2,7),NBRANCH

ASSIGNED GO TO STATEMENT

The format of an assigned GO TO statement is

GO TO i[[,] (a[,a] •••)]

where i is an integer variable name, and

a is the statement label of an executable statement that
appears in the same program unit as the assigned GO TO
statement. A given statement label can appear more
than once in this statement.

The space between GO and TO is optional.

At the time of execution of an assigned GO TO statement, the variable i
must be defined with the value of a statement label appearing in the same
program unit. The variable can be defined with a statement label value
by an ASSIGN statement in the same program unit as the assigned GO TO
statement. Execution of the assigned GO TO statement causes a transfer
of control to the statement identified by that statement label.

CFT does not use the optional statement list.

The ANSI FORTRAN Standard specifies that if the optional list is
present, i must have been assigned a statement label from the list.

Examples:

ASSIGN 76 TO LAB

GO TO LAB

ASSIGN 999 TO KFIN

GO TO KFIN (997,997,999)

SR-0009
Part 2

4-3 J

•

ASSIGN 1 TO JAIL

GO TO JAIL, (1,2,3,4,5)

ARITHMETIC IF STATEMENT

The format of the arithmetic IF statement is

where e is an integer, real, or double-precision expression,
and

81,8 2, and 83
are statement labels of executable statements that
appear in the same program unit as the arithmetic IF
statement. The same statement label can appear more
than once in this statement.

Executing an arithmetic IF statement evaluates the expression e.
Control is transferred to one of the statements identified by 81' 82' or
83 if the value of e is less than zero, equal to zero, or greater than
zero, respectively.

Examples:

IF (VTEST) 20,21,20

IF (B**2-4*A*C) 70,80,90

LOGICAL IF STATEMENT

The format of a logical IF statement is

SR-0009
Part 2
4-4 J

I

where e

st

is a logical expression, and

is any executable statement other than a DO, END,
block IF, ELSE IF, ELSE, END IF, or another logical IF
statement.

Executing a logical IF statement evaluates the expression e. If the
value of e is true, statement st is executed. If the value of e is
false, statement st is not executed and the execution sequence proceeds
as if a CONTINUE statement were executed. The execution of a function

I reference in the expression e may affect entities in the statement st.

Examples:

IF(K) K=.NOT.K

IF (A.EQ.B) GO TO 100

CONDITIONAL BLOCK STATEMENTS

I Conditional block statements delimit groups of executable statements
called blocks. They control the execution sequence of the statements in
a block. Fbllowing is a list of the conditional block statements.

• Block IF

• END IF

• ELSE IF

• ELSE

The IF-level of a given statement is the number of block IF statements
from the beginning of the program unit to that statement minus the number
of END IF statements from the beginning of the program unit up to but not
including that statement. The IF-level must always be 0 or positive: the
IF-level of the END statement of each program unit must always be zero.

IF-BLOCK

An IF-block is a group of executable statements preceded by a block IF
statement and followed by another conditional block statement (END IF,
ELSE IF, or ELSE) of the same IF-level. An IF-block can be empty.

SR-0009
Part 2

4-5 J

BLOCK I F STATEMENT

The format of the block IF statement is

IF (e) THEN

where e is a logical expression.

Executing the block IF statement evaluates the expression e. If the
value of e is true, normal execution sequence continues with the first
statement in the IF-block. If the value of e is false, control is
transferred to the next END IF, ELSE IF, or ELSE statement of the same
IF-level. The block IF statement must always have a corresponding END IF
statement of the same IF-level.

If a block IF statement appears within the range of a no-loop, the entire
block must appear within the range.

I Control cannot be transferred into an IF-block from outside the IF-block.

END IF STATEMENT

The format of the END IF statement follows.

I END IF I
The END IF statement indicates the end of an IF-level and must always
have a corresponding block IF statement of the same IF-level.

I The space between END and IF is optional.

ELSE IF-BLOCK

An ELSE IF-block is a group of executable statements with an ELSE IF
statement preceding the group and a conditional block statement (END IF,
ELSE IF, or ELSE) of the same IF-level following the group. An ELSE
IF-block can be empty. The IF-level of the ELSE IF-block must be greater
than or equal to 1.

SR-0009
Part 2
4-6 J

I

ELSE IF STATEMENT

The format of the ELSE IF statement is

ELSE IF (e) THEN

where e is a logical expression.

The ELSE IF statement is executed if none of the preceding blocks have
been executed. Execution of the ELSE IF statement causes evaluation of
the expression e. If the value of e is true, normal execution sequence
continues with the first statement of the ELSE IF-block. If the value of
e is false, control is transferred to the next ELSE IF, ELSE, or END IF
statement that has the same IF-level as the ELSE IF statement. Statement
labels on ELSE IF statements are ignored.

The space between ELSE and IF is optional.

Control cannot be transferred into an ELSE IF-block from outside the ELSE
IF-block.

ELSE-BLOCK

An ELSE-block is a group of executable statements with an ELSE statement
preceding the group and an END IF statement of the same IF-level
following the group. No other conditional block statement at the same
level can appear after the ELSE statement or before the END IF
statement. ELSE-blocks can be empty. The IF-level of the ELSE-block
must be greater than or equal to 1. Statements in the ELSE-block are
executed if none of the preceding blocks were executed.

ELSE STATEMENT

The format of the ELSE statement follows.

The ELSE statement introduces an ELSE-block. Statement labels on ELSE
statements are ignored.

SR-0009
Part 2
4-7 J

•

CONDITIONAL BLOCK STATEMENT EXECUTION

A group of blocks must begin with a block IF statement and end with an
END IF statement. No more than one block is executed within each level
of blocks. This execution depends on the sequential evaluation of the
conditional block statements.

The ELSE IF and ELSE statements are not required to accompany block IF
statements. A block begins with a block IF, an ELSE IF, or an ELSE
statement and continues until an END IF or the beginning of the next
block is encountered. Control must not be transferred to a location
within a block from outside that block.

Each statement in a block has an IF-level number assigned to it. (See
figure 4-1 for an illustration of blocks and levels.) The first block IF
encountered is assigned IF-level 1. All following statements retain that
IF-level number until either another block IF or an END IF statement is
encountered.

If another block IF is encountered, the IF-level number of that statement
is incremented by one. The following statements reflect that IF-level
number until another block IF or END IF statement is encountered.

If an END IF statement is encountered, the IF-level is decremented by 1
and all following statements retain that IF-level number until a block IF
or END IF is encountered.

DO STATEMENT

A DO statement specifies necessary information to control the repeated
execution of a set of statements. A DO-loop consists of a DO
statement, the set of statements to be executed repeatedly, including a
labeled terminal statement.

The format of a DO statement is

where 8

i

SR-0009

is the statement label of an executable statement,
called the terminal statement;

is the name of an integer, real, or double-precision
variable, called the DO variable; and

Part 2
4-8 J

•

IF-level
o .,

IF-level
l~

IF (e) THEIIJ

e
lF' (e) THEN

IF-level • ~ ~F-blo9k
2 --. .-.-----l

END IF

IF-block
0(

ELSE IF (e) THEN

~ELSE IF-block ---.J ..
ELSE IF (e) THEN

______________ ~IE~SE IF-block

END IF

IF-level
0-----------.,.

IF-level 1

SR-0009

IF-block
IF (X.GT.O) THEN~ ______________________________ ~

x = SQRT(X)

IF (I.NE.J) THEN~ ________________ ~

A(I,J) = O.

IF-level

[F

(LOGIC) THEN IF-block
2~

= 1 J IF-bloc k

l1li(

IF-level
3~ A(I, J)

l1li(

END IF
END IF

ELSE IF (X.GT.-l.OE-13) THEN
---~

:~:_'J_) ____ 2_._0 ____________________ -J1 !LSE

IF-block

ELSE~ _________________________ ~

CALL_A_B_OR_T __________________ ~I !LSE-blOCk

'--- END IF

Figure 4-1. IF-levels and blocks

Part 2
4-9 J

I

el' e2' and e3
are integer, real, or double-precision expressions
specifying the initial value, limit value, and
increment value, respectively, of the DO variable. If
e 3 is omitted, a value of 1 is assumed.

TERMINAL STATEMENT

The terminal statement is an executable statement ending the DO-loop.
The terminal statement of a DO-loop must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, conditional block, RETURN, STOP, END, or
another DO statement. If the terminal statement of a DO-loop is a
logical IF statement, it can contain any executable statement except a
DO, conditional block, END, or another logical IF statement.

DO VARIABLE

The DO variable is an index which, during the execution of the DO-loop,
is set to an initial value and incremented (or decremented) until its
value reaches or exceeds the limit value. The DO variable can be used in
subscript or nonsubscript calculations within the DO-loop. The absolute
value of an integer DO variable must not exceed 223 -1.

The ANSI FORTRAN Standard does not limit the value of a DO variable.

RANGE OF A DO-LOOP

The range of a DO-loop consists of all executable statements, beginning
with the first executable statement following the DO statement and ending
with the terminal statement of the DO-loop.

A DO-loop can appear within a DO-loop and must be entirely contained
within the outer DO-loop range. More than one DO-loop can have the same
terminal statement. However, no more than 15 DO-loops can terminate on
the same terminal statement.

The ANSI FORTRAN Standard does not specify a limit to the number of
DO-loops that can terminate on the same terminal statement.

SR-0009
Part 2

4-10 J

A DO-loop can appear within a conditional block but it must be entirely
contained within that block. If a block-IF statement appears within the
range of a DO-loop, the corresponding ENDIF statement must also appear
within the range of that DO-loop.

The following example contains constructs classified by the ANSI FORTRAN
standard as illegally jumping into the range of a DO-loop. This type of
construct should be avoided.

Example:

DO 10 1=1,20
A(I)=O.
IF(I.GT.lO)GO TO 10
DO 10 J=l,lOO
B(J,I)=O.

10 CONTINUE

ACTIVE AND INACTIVE DO-LOOPS

A DO-loop is either active or inactive. A DO-loop is initially inactive
and becomes active only when its DO statement is executed.

An active DO-loop becomes inactive under any of the following conditions.

• Its iteration count is tested and determined to be zero.

• A RETURN or STOP statement is executed in the same program unit •.

• It is in the range of another DO-loop that becomes inactive.

• It is in the range of another DO-loop having an executed DO
statement.

When a DO-loop becomes inactive, the DO variable retains its last defined
value unless it became undefined due to earlier action.

EXECUTING A DO STATEMENT

Executing a DO statement initiates the following sequence of steps.

1. The initial, limit, and increment value expressions (el' e2' and
e3) are evaluated, producing the initial parameter ml' the
terminal parametep m2, and the incrementation parameter m3• If
necessary, types are converted to the type of the DO variable,

SR-0009
Part 2

4-11 J

I

according to the rules for arithmetic conversion. If e3 has been
omitted from the DO statement, m3 is assigned a value of 1. m3
can be positive or negative but must not be O. If the DO variable
is of type integer, then ml' m2' m3 and (m2-ml+m3) must all be
less than 223_1 (8,388,607) in absolute value or undetected
bad code may be produced.

The ANSI PORT.RAN Standard does not limit the values of m or of the
quanti ty (m2-m1 +m3) •

2. The DO variable i becomes defined with the value of the initial
parameter mI.

3. The itepation aount is established as an integer value equal to
the integer portion of the expression

or as 0 in the event that

ml >m2, and m3>0 or
ml<m2' and m3<0.

m3=0 is not explicitly detected, but results in a floating-point
error when the iteration count is evaluated at run time.

The iteration count must be less than 223 (8,388,608). Once the
iteration count is established, the DO variable and entities named in the
initial, limit, and incrementation value expressions el' e2' and e3
can be redefined with no effect on loop control processing. The DO
variable cannot be redefined by a subsequent nested DO statement.

At completion of DO statement execution, loop control processing begins.

The ANSI PORT.RAN Standard does not permit the DO variable to be
redefined during execution of the DO-loop range.

The ANSI PORT.RAN Standard does not specify a maximum iteration count.

SR-0009
Part 2

4-12 J-03

I

LOOP CONTROL PROCESSING

Loop control processing determines if execution in the range of the
DO-loop is required. If the iteration count is not 0, control transfers
to the first statement in the range of the DO-loop. If the iteration
count is 0, the DO-loop becomes inactive. However, specifying ON=J in
the CFT control statement overrides this feature and causes execution of
all DO-loops at least once. If, as a result, all DO-loops sharing the
terminal statement of this DO-loop are inactive, control is transferred
to the first executable statement after the terminal statement. However,
if any DO-loops sharing the terminal statement are active, execution
resumes with incrementation processing, described below.

EXECUTION OF THE RANGE

Statements in the range of a DO-loop are executed until the terminal
statement is reached.

TERMINAL STATEMENT EXECUTION

Execution of the terminal statement occurs during a normal execution
sequence or through transfer of control. If execution of the terminal
statement does not cause a transfer of control, execution continues with
incrementation processing, as described below.

INCREMENTATION PROCESSING

Incrementation processing has the effect of performing the following
steps in sequence.

1. The value of the DO variable is incremented by the value of m3.

2. The iteration count is decremented by 1.

3. Execution continues with loop control processing of the same
DO-loop whose iteration count was decremented.

A DO variable can increase or decrease in value during incrementation
processing.

The value of the DO variable at termination is not defined if the DO
variable was redefined in the range of the DO loop.

SR-0009
Part 2
4-13 J

•

TRANSFER INTO THE RANGE OF A DO-LOOP

Control must not transfer into the range of an inactive DO-loop.

Examples:

PARAMETER (N=SO)
DIMENSION TABLE (N)
DO 2 I=l,N
IF(TABLE(I»2,2,1

1 TABLE (I) =-TABLE(I)
2 TABLE(I)=-TABLE(I+l)

100

M=O
DO 100
J=I
DO 100
L=K
M=M+l

PARAMETER (I=2,J=200)
DIMENSION GRID(I,J), PGRID(I,J)

DO 22 L=J,l,-l
PGRID(K,L) = GRID(K,L)
IF(PGRID(K,L»21,22,22

21 PGRID(K,L) = -PGRID(K,L)
22 GRID(K,L) = 0

1=1,10

K=l,S

In the last example, 1=11, J=lO, K=6, L=S, and M=SO after the last
statement is executed for the last time.

CONTINUE STATEMENT

The format of a CONTINUE statement follows.

I CONTINUE I
Execution of a CONTINUE statement has no effect.

A CONTINUE statement is commonly used as the terminal statement of a
DO-loop. As with any statement so used, the next statement executed
depends on the result of DO-loop incrementation processing. This action
is the result of DO-loop processing and not of CONTINUE statement
execution.

SR-0009
Part 2
4-14 J

I

Examples:

DIMENSION ARRAY6(16)
00 22,1=16,1,-1
IF (ARRAY6 (I) .NE.O) ARRAY6(I)=1.O/ARRAY6(I)

22 CONTINUE

STOP STATEMENT

The format of a STOP statement is

where id is an unsigned integer constant of up to eight digits,
a character constant of up to eight characters, or the
name of a character variable, array element, or
function containing (or providing) eight characters.

The ANSI FORTRAN Standard limits noncharacter id to five digits, sets
no limit on the length of character constants, and does not permit id

I to be the name of a variable, an array element, or a function.

A STOP statement terminates execution of a main program, subroutine
subprogram, or function subprogram.

Specification or nonspecification of id has no effect on the executable
program. The characters specified by id appear in a logfile message to
identify the STOP statement encountered during program execution.

PAUSE STATEMENT

The format of a PAUSE statement is

PAUSE rid]

SR-0009
Part 2

4-15 J

I

where id is an unsigned integer constant of up to eight digits,
a character constant of up to eight characters
enclosed in parentheses, or the name of a character
variable, array element, or function containing or
providing eight characters.

The ANSI FORTRAN Standard limits noncharacter id to five digits, sets
no limit on the length of character constants, and does not permit id

• to be the name of a variable, an array element, or a function.

A PAUSE statement suspends or terminates a main program, subroutine
subprogram, or function subprogram. An installation parameter determines
whether the execution can be resumed or is unconditionally terminated.

Specification or nonspecification of id has no effect on the executable
program. The characters specified by id appear in a logfile message to
identify the PAUSE statement encountered during program execution.

The ANSI FORTRAN Standard does not provide for the option of resuming or
terminating execution.

END STATEMENT

The format of an END statement follows.

An END statement is required at the physical end of the sequence of
statements and lines of every program unit. When executed in a
subprogram, it has the effect of a RETURN statement. When executed in a
main program, it has the effect of a STOP statement.

No other statement in a program unit can be expressed with an initial
line containing an END statement. Embedded comments can be included on
an END statement when preceded by an exclamation point.

The last line of every program unit must be an initial line containing a
complete END statement. This special form of initial line is called a
terminal line. A single END statement can appear with one or more STOP
statements or with one or more RETURN statements in the same program unit.

SR-0009
Part 2

4-16 J

I

I

INPUT jOUTPUT STATEMENTS

Input statements transfer data from datasets to the memory section of
the cpu. This process is called reading. Output statements transfer
data from memory to datasets. This process is called writing. Editing
of the data can be performed by using format identifiers.

This section describes input/output operations to cos blocked datasets.
Limited input/output operations provided for unblocked datasets are
described in Appendix H. Nonstandard random access input/output
operations are described in Appendix E.

INPUT/OUTPUT RECORDS

A record is a sequence of values or characters. For example, a punched
card is usually considered a record. A record mayor may not correspond
to a physical entity.

Records can be of the following types.

• Formatted

• Unformatted

• End-of-file or endfile

• End-of-data

The ANSI FORTRAN Standard does not provide for end-of-data records.

FORMATTED RECORDS

A formatted record consists of a sequence of characters. Its length,
I measured in characters or 8-bit bytes, depends primarily on the number of

characters transferred when written. The length also depends on the
peripheral device characteristics (for example, line printer or card
reader) serving as the origin or ultimate destination of the data.
Formatted records can be read or written by formatted input/output
statements, or prepared by means other than FORTRAN.

SR-0009
Part 2

5-1 J

5

I

Unformatted and buffered input/output statements can also read and write
formatted records, but in a manner ignoring their formatted
characteristics. Because of record blocking, reading formatted records
with unformatted I/O statements may not be practical.

The ANSI FORTRAN Standard allows reading and writing of formatted
records only by formatted I/O.

UNFORMATTED RECORDS

An unformatted record consists of a sequence of character and/or
noncharacter data. The length of an unformatted record is measured in
storage units (words) unless the record contains character data items.

I In that case, each character entity takes «ten-l)/8)+l words.

I

Unformatted records can be read or written by unformatted and buffered
input/output statements.

The ANSI FORTRAN Standard does not allow reading and writing of
unformatted records with formatted I/O.

END-OF-FILE (ENDFILE) RECORDS

An endfile record is written by an ENDFILE statement, must occur only as
the last record of a file, and has no length property.

END-OF-DATA RECORDS

An end-of-data (EOD) occurs on the last record of a dataset. It cannot
be explicitly written by a FORTRAN program.

INPUT/OUTPUT FILES

I A fite is a sequence of records. A file exists for an executable
program when the file is identified and/or referenced by a name. A file
can be present and not exist for an executable program at a specific
time. A file can also exist with no records.

SR-0009
Part 2

5-2 J

I

I

Creating a file brings a file into existence. Deleting a file
terminates its existence.

RECORD AND FILE POSITIONS

Because records and files exist as elements in sequences, the position of
a record or a file can be described by its position in a sequence.
Certain circumstances can cause this position to become indeterminate.

In a sequence, the initial point is the position just before the first
element. The terminal point is the position just after the last
element.

If a sequence is positioned at a point within an element, that element is
the current element; otherwise, no current element exists.

A preceding element is that element preceding the current element or
terminal point. No preceding element exists for the initial point of a
sequence or for the terminal point if the sequence is empty.

The next element of a sequence immediately follows the current element.
No next element exists for the terminal point of a sequence or for the
initial point if the sequence is empty.

A file can contain formatted and unformatted records and is terminated
with an endfile record.

The ANSI FORTRAN Standard does not provide for the mixing of formatted
and unformatted records in a file.

DATASETS

A dataset is a sequence of all files associated with a particular unit
during program execution. Association of a dataset with a particular
unit is under control of the executable program. However, data sets and
units can be preassociated before program execution. Datasets are
described in the CRAY-OS Version 1 Reference Manual, publication SR-OOll.

The ANSI FORTRAN Standard does not provide for datasets or other
multiple file entities.

SR-0009
Part 2

5-3 J

I

INTERNAL RECORDS AND FILES

Internal records and internal files are analogous to records and
files except an internal file identifier is used in place of an external
unit identifier. Internal files provide a way to transfer and convert
data within internal storage.

An internal file is a character variable, character array element,
character array, or character substring. A record of an internal file is
a character variable, character array element, or character substring.

If the internal file is a character variable, character array element, or
character substring, it consists of a single record with the same length
as the variable, array element, or substring, respectively. If the
internal file is a character array, it is treated as a sequence of
character array elements. Each array element is a record of the internal
file. The ordering of the/file records is the same as the ordering of
the array elements in the array. Every record of the file has the same
length, the length of an array element in the array.

The contents of a record of the internal file, that is, the variable,
array element, or substring, is defined by writing the record. If the
number of characters written in a record is less than the length of the
record, the remaining portion of the record is filled with blanks.

The internal file record can be defined or undefined by using statements
other than an output statement, such as a character assignment statement.

An internal file is always positioned at the beg~nning of the first
record before data transfer.

An internal file has the following restrictions.

• Reading and writing records is done only by sequential access
formatted input/output statements not specifying list-directed
formatting.

• An auxiliary input/output statement must not specify an internal
file.

SEQUENTIAL ACCESS OPERATIONS

Sequential access operations are based on the sequential storage of
records within files and files within datasets. The order of the records
is the order in which they are written. If direct access is also
allowed, the order of the records can be in any order. The first record
accessed by sequential access is the record numbered 1 for direct
access. The second record accessed by sequential access is the record
numbered 2 for direct access, and so on.

SR-0009
Part 2
5-4 J

I

The last record of a file must be an endfile record. The records of a
file must not be read or written by direct access input/output statements
while the dataset is connected for sequential access.

DIRECT ACCESS OPERATIONS

In direct access operations, records can be read or written in any
order. The order of record numbers specifies the order of the records.

All records of the dataset have the same length and each record of a
dataset has a unique record number. The record number is a positive
integer specified when the record is written. Once established, the
record number cannot be changed. A record can be overwritten but not
deleted.

Records must not be read or written with list-directed or NAMELIST
formatting. Direct access input/output statements must be used for
reading and writing while the dataset is connected for direct access.

Multifile direct access datasets are not allowed.

See Appendix E for random access extensions.

DATASET POSITION BEFORE DATA TRANSFER

Dataset position depends on the method of access, sequential access or
direct access.

Sequential access

When an input operation is performed on a dataset, the dataset is
positioned at the beginning of the next record, becoming the current
record. When an output operation is performed on a dataset, a new record
is created, becoming the last record of the dataset.

The position of an internal file is always at the beginning of the
character variable, array, array element, or substring referenced by the
I/O operation.

Direct access

The dataset is positioned at the beginning of the record specified by the
record specifier, becoming the current record.

SR-0009
Part 2
5-5 J

UNITS

A unit is a means of referring to a dataset. At any given time, a set
of units exists for an executable program. All input/output statements
can refer to existing units.

IDENTIFIERS

I Identifiers assign names to units, internal files, datasets, and formats.

I

I
I

UNIT IDENTIFIERS

The format of a unit identifier is

where u is an external unit identifier (type integer) or an
internal file identifier (type character).

An external unit identifier is used to refer to an external dataset and
is an integer constant or expression in the range 0 through 102, or the
character *. The values 100, 101, and 102 refer to datasets $IN, $OUT,
and $PUNCH, respectively. These assignments cannot be changed. The
character * can only specify a unit preconnected for formatted,
sequential acceSS1 it can appear only in a READ or WRITE statement. In a
READ statement, * refers to $IN, in a WRITE statement, it refers to
$OUT. The default for units 5 and 6 are $IN and $OUT, respectively.
These assignments can be changed. (See the CRAY-OS Version 1 Reference
Manual, publication SR-OOll for details on dataset definition and
control.)

The ANSI FORTRAN Standard does not specify a maximum value for the
external unit identifier.

An internal file identifiep is used to refer to an internal file and is
the name of a character variable, character array, character array
element, or character substring.

If the optional characters UNIT= are omitted from the unit specifier, the
unit specifier must be the first item in a list of specifiers.

SR-0009
Part 2
5-6 J

I

The ANSI FORTRAN Standard does not provide for the definition of unit
identifiers 100, 101, or 102 or for the preconnection of units 5 and 6.

DATASET IDENTIFIERS

The format of a dataset identifiep follows.

A dataset identifier is a character constant, an integer variable, or an
integer array element containing Hollerith data of not more than seven
characters whose name identifies the dataset.

External dataset identifiers of type character can only be used in OPEN
and INQUIRE statements. Using character type variables as unit
specifiers in READ/WRITE statements implies I/O operations on internal
files.

The ANSI FORTRAN Standard does not provide for dataset identifiers.

FORMAT IDENTIFIERS

The format of a format identifiep follows.

A format identifier must be one of the following.

• A FORMAT statement label appearing in the same program unit as the
format identifier

• An integer variable name with the following restrictions

SR-0009

The integer variable name cannot also appear as a dummy
argument in the same program unit.

An ASSIGN statement must assign the format label.

Part 2
5-7 J

I
• A character array name

• A character expression not involving concatenation of an operand
with an asterisk length specification unless the operand is the
symbolic name of a constant

• An asterisk, specifying list-directed formatting

READ, WRITE, AND PRINT STATEMENTS

The READ statement is the data transfer input statement. WRITE and PRIN~
statements are data transfer output statements. These statements have
the following formats.

READ (citist) [iotist]

READ f [,iotist]

WRITE (citist) [iotist]

WRITE f [,iotist]

PRINT f [,iotist]

The ANSI FORTRAN Standard does not provide for the WRITE f [,iotist]
format.

where citist

f

iotist

SR-0009

is a control information list that includes a
reference to the source or destination of the data to
be transferred and an optional format identifier for
editing processes,

is a format identifier, and

is an input/output list specifying the data to be
transferred.

Part 2
5-8 J

CONTROL INFORMATION LISTS

The format of a control infor.mation list (cilist) is

[UNIT=] {~in} [, [FMT=] fl [,END= sn] [,REC=pn] [,ERR= s] [, IOSTAT=ios]

where [UNIT=]u is the unit specifier and [UNIT=]din is the dataset
specifier. The control information list must contain
a unit specifier or a dataset specifier, but not
both. If the UNIT= keyword is omitted, u and din
are positional parameters and must appear first.

The ANSI FORTRAN Standard does not provide for the [UNIT=] din form.

SR-0009

[FMT=]f is the format specifier. This parameter must be
present for formatted input/output statements. If f
is an asterisk, the statement is list-directed and a
record specifier cannot be present. If the optional
UNIT= keyword is specified with the unit or dataset
identifier, the FMT= keyword must be specified with
the format identifier. If both the UNIT= and the FMT=
keywords are omitted, f must follow u or din.

END=sn indicates an end-of-file specifier. sn is the
number of the statement where execution continues
after an EOF on a READ statement has been

REC=pn

ERR=S

encountered. An end-of-file specifier must not appear
in a WRITE statement or in the same control
information list as a record specifier.

indicates a record specifier. rn must be a positive
integer expression with a positive value. A record
specifier appears only in direct-access input/output
statements. A statement containing a record specifier
cannot contain an end-of-file specifier.

indicates an error specifier. s is the statement
label of the statement where control continues after
encountering a recoverable error.

Part 2
5-9 J

I

IOSTAT=ios
is a status specifier that becomes defined when an
input/output statement is executed. ios must be an
integer variable or an integer array element.
Following are the specifier values and their meanings.

ios value

=0

>0

<0

Examples:

READ(98,12345,ERR=42,END=75) •••
READ (lO,REC=J) •••
READ(J,ARRAYF,ERR=10,END=25) •••
READ *,JOE •••
PRINT 22
READ(*,*)JOE
READ (IO,*)JOE
READ(98,' (6E1I.4) ',END=75)

INPUT/OUTPUT LISTS

Meaning

Transfer is complete; no error or
end-of-file condition exists.

Error message number; see coded
$IOLIB messages in CRAY-OS Message
Manual, publication SR-0039.

End of file was encountered; no
error condition exists.

WRITE(17,25) •••
READ(K+l) •••
READ(98,ERR=37) •••
READ (END=100,FMT=20,UNIT=5) •••
READ (10, IOSTAT=JOE)
READ (10, IOSTAT=JOE,ERR=100,END=200)

An input/output list (iolist), specifies entities whose values are
transferred by input/output statements. This list is composed of one or
more input/output list items separated by commas. Optionally, one or
more implied-DO lists can be included in the list.

An array name appearing as an input/output list item is treated as if all
elements of the array were specified in the order given by array element
ordering.

Input list items

Only input list items can appear in an input statement. An input list
item must be one of the following.

• Variable name

• Array element name

SR-0009
Part 2

5-10 J-02

I

I

• Array name

• Character substring name

Output list ,items

An output ~ist item must be one of the following.

• Variable name

• Array element name

• Array name

• Character substring name

• Expression other than a character expression with concatenation of
an operand with a length specification of (*), unless the operand
is the symbolic name of a constant

Example:

CHARACTER*lO C,D

DIMENSION A(lO),FARRAY(3)

READ(23)X,y

READ(23,1066)A(1),A(4),X(l),X(2)

READ(K)C,A,D(2:3)

WRITE (7) A+B

Implied-DO lists

The format of an implied-DO list is

where

SR-0009

d~i8t is an input/output list, and

i, el' e2' and e3
are as specified for the DO statement.

Part 2
5-11 J

I

I

The range of an implied-DO list is the list dlist. dlist can itself
contain one or more implied-DO lists. The iteration count and the value
of the DO variable i are established from el' e2, and e3 exactly as for a
DO-loop. Once the values of i and of the iteration count are
established, i, el , e2 , and e3 can be redefined with no effect on the loop
control process. The DO variable i can be specified as a subscript to
array elements named in dlist for both input and output list items.
When an implied-DO list appears in an input/output list, it is treated as
if dlist were specified once for each iteration of the implied-DO
list. If a premature exit from an implied-DO occurs due to an I/O error
or end-of-file, the loop indices become undefined.

Examples:

PRINT 311, (VECTOR(I),I=l,lOO)

READ (12,345) «(XREF(M,N),M=1,N),N=1,3)

WRITE(6,350) (M,(N,XREF(M,N),N=1,3),M=2,1,-1)

READ (5,1,END=50,ERR=60) (BUFF(I),I=l,lOOO)

READ(5,1,END=50,ERR=60) «BUFFER(I,J),I=1,20),J=1,lOOO)

DATA TRANSFER

When a data transfer input/output statement is executed, the following
operations are performed in the order specified.

1. Determine the direction of data transfer.

2. Identify the unit.

3. Establish the format (if specified).

4. Transfer data between the dataset or the internal file and the
entities specified by the input/output list (if any).

5. The status specifier is defined (if specified).

DIRECTION OF DATA TRANSFER

Execution of a READ statement causes values to be transferred from a
I dataset or internal file to the entities specified by the input list, if

present.

SR-0009
Part 2
5-12 J

Execution of a WRITE or PRINT statement causes values to be transferred
• to a dataset or internal file from the entities specified by the output

list and format specification (if any). The WRITE and PRINT statements
are treated identically in this regard. Execution of a WRITE or PRINT

• statement for a non-existent dataset creates that dataset.

I
IDENTIFYING A UNIT

A READ statement without a unit or dataset specifier specifies the
predetermined unit, preconnected to identifier 100 corresponding to the
dataset $IN. PRINT statements similarly specify the preconnected
identifier 101 corresponding to the dataset $OUT. Unit preconnection for
PRINT statements and READ statements without a unit specifier is not
under the control of the executable program.

If the dataset specified by the output statement does not exist, a
dataset is created and the write proceeds normally. If the dataset
specified by an input statement does not exist, an empty dataset is
created and the input statement reads the end-of-data (EOD).

I The ANSI FORTRAN Standard does not provide for reading or writing a
non-existent file (dataset).

I

ESTABLISHING A FORMAT

A format identifier in a control information list identifies a format
specification.

DATA TRANSFER

Data is transferred between records and entities specified by the
input/output list. List items are processed in the order of their
left-to-right appearance in the input/output list.

All values needed to determine entities specified by an input/output list
item are determined at the beginning of the processing of that item. In
the example,

N(l) = 3

READ (8) N(N(l»

a value reads into N(3). The array element item is a single input/output
list item.

SR-0009
Part 2

5-13 J

I

I

All values are transmitted to or from the entities specified by a list
item before the processing of any succeeding list item. In the example,

READ (3) N, A(N)

the first value read is assigned to N, and the second is assigned to
A(N), where the new value of N is used as the subscript.

A DO variable in an implied-DO list becomes defined at the beginning of
processing the implied-DO list as an input/output list item.

An input list item, or any entity associated with it, must not affect any
portion of the established format specification.

Unformatted data transfer

During unformatted data transfer, data is transferred without editing
between the current record and the entities specified by the input/output
list. Exactly one record is read or written.

On input, the dataset should be positioned so the record read is an
unformatted record or an endfile record. t The number of values
required by the input list must be less than or equal to the number of
values in the record and must not require more values than the record
contains.

Formatted data transfer

During formatted data transfer, data is transferred with editing between
I the entities specified by the input/output list and the dataset. The

current record and possibly additional records are read or written.

I

On input, the record read should be a formatted or endfile record. t

The input/output list and format specification must not specify more than
152 characters. Some formats larger than 133 characters generate warning
errors. If the input record length is less than the input list requires,
the additional characters are defined as blanks.

t eFT allows formatted and unformatted records on the same file or
dataset (non-ANSI).

SR-0009
Part 2

5-14 J

The ANSI FORT.RAN Standard does not provide for a maximum number of
characters per record, nor for blank padding if the record is less than
that required for the input list.

The transfer of formatted record information to certain devices is termed
printing. The first character of a formatted record is not printed.
The remaining characters of the record, if any, are printed in one line
beginning at the left margin.

The first character of such a record determines the vertical spacing to
occur before printing. The character codes specifying vertical spacing
(carriage) control are shown in table 5-1.

Table 5-1. Print control characters

Character Vertical spacing before printing

Blank Advance one line

0 Advance two lines

1 Advance to first line of next page

+ No advance

All other Advance one line

If the record contains no characters, an advance of one line occurs and
nothing is printed in that line. A PRINT statement does not necessarily
result in a printing operation.

I ERROR AND END-OF-FILE CONDITIONS

I

If an error condition exists, the position of the dataset is
indeterminate.

If an end-of-file (EOF) condition exists as a result of reading an
endfile record, the dataset is positioned after the endfile record.

If no error condition or EOF condition exists, the dataset is positioned
after the last record read or written.

If an error condition or EOF condition is encountered during a read
operation, the read terminates and the entities specified in the I/O list
become undefined.

SR-0009
Part 2

5-15 J-03

BACKSPACE, ENDFILE, AND REWIND STATEMENTS

The formats of the BACKSPACE, ENDFILE, and REWIND statements are

BACKSPACE { U • }
dl,n
(alist)

ENDFILE

{
u } din
(alist)

REWIND

{
u } din
(alist)

where U is an external unit identifier,

din is a dataset identifier whose value specifies the name
of an external dataset, and

alist is the following set of specifiers.

[UNIT =] U or din
IOSTAT = ios
ERR = s

alist must contain a Single external unit specifier or dataset
specifier and can contain, at most, one of each of the other specifiers.
See the UNIT, IOSTAT, and ERR specifiers described for the OPEN and CLOSE
statement in table 5-3 and 5-4, respectively.

The external unit or dataset specified by a BACKSPACE or ENDFILE
statement must not be connected for direct access. If the external unit
or dataset specified by a BACKSPACE, ENDFILE, or REWIND statement is not
connected, it becomes connected and the dataset is created.

BACKSPACE, ENDFILE, and REWIND operations on internal files are not
allowed.

The ANSI ~ Standard does not provide for positioning of an
unconnected dataset.

The ANSI FORrRAR Standard does not provide for the di.n parameter on
BACKSPACE, ENDPILB, or REWIND statements.

SR-0009
Part 2

5-16 J

BACKSPACE STATEMENT

A BACKSPACE statement causes the dataset related to the specified unit to
be positioned at the beginning of the preceding record. If no preceding
record exists, the position of the dataset is unchanged. If the preceding
record is an endfile record, the dataset is positioned before it.

The ANSI FORTRAN Standard does not provide for backspacing a dataset
that is not connected, a dataset that is connected but does not exist,
or one that has been written with list-directed format.

ENDFILE STATEMENT

An ENDFILE statement writes an endfile record as the next record of the
dataset. The dataset is then positioned after the endfile record.

After the execution of an ENDFILE statement, a BACKSPACE or REWIND
statement must reposition the dataset before execution of an input
statement. An output statement creates another file on the same
dataset. Execution of an ENDFILE statement for a dataset that is
connected but does not exist creates the dataset.

The ANSI FORTRAN Standard does not provide for the writing of an
endfile on a dataset that is not connected.

REWIND STATEMENT

A REWIND statement causes the specified dataset to be positioned at its
initial point. If the dataset is already positioned at its initial
point, execution of the statement has no effect on the dataset position.

The ANSI FORTRAN Standard does not provide for the rewinding of an
unconnected dataset or a dataset connected for direct access, and it does
not provide for the creation of a connected dataset that did not exist.

INQUIRE STATEMENTS

An INQUIRE statement determines the current status of an external
dataset's attribute. Inquiry can be made by dataset or by unit.

SR-0009
Part 2

5-17 J

INQUIRY BY DATASET NAME

The format of the INQUIRE by dataset name statement is

where

INQUIRE (idList)

idList is a list of inquiry specifiers that must contain
exactly one dataset specifier and can contain, at
most, one of each of the inquiry specifiers described
in table 5-2.

I The format of the dataset specifier is

I
where fin

INQUIRY BY UNIT

is a character expression whose value specifies the
name of the dataset. The named dataset need not exist
or be connected to a unit. fin is limited to seven
characters, not counting trailing blanks. If fin
does contain trailing blanks, they are discarded.

The format of the INQUIRE by unit statement is

INQUIRE (iuList)

where iuList is a list of inquiry specifiers that must contain
exactly one external unit specifier and can contain,
at most, one of each of the inquiry specifiers
described in table 5-2.

The format of the external unit specifier is

where u

SR-0009

is an external unit identifier. (See unit identifiers
described earlier in this section.) The unit
specified need not exist or be connected to a
dataset. If it is connected to a dataset, however,
the inquiry includes the connected dataset.

Part 2
5-18 J-02

I

I

I t

Specifier

IOSTAT=ios

ERR=s

EXIST=ex

OPENED=od

NUMBER=num

NAMED=nmd

RECL=rcl

NEXTREC=nl"

NAME=fn

ACCESS=aee

SEQUENTIAL=
seq

DlRECT=di1"

FORM=fmt

FORMATTED=
fmtt

UNFORMATTED=
unft

BLANK =
blnkt

Table 5-2.

Data Type

Integer variable
or array element

Statement label

Logical variable
or array element

Logical variable
or array element

Integer variable
or array element

Logical variable
or array element

Integer variable
or array element

Integer variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Character variable
or array element

Inquiry specifiers and their meanings

Meaning

Error status specifier

Statement label
where control is
transferred if error
condition exists

Existence specifier

Input (I) or Return value (RV)

(RV)
o if no error condition exists; error
message number if error condition exists

(I)
FORTRAN statement label

(RV)
• TRUE. if unit or file exists; else, • FALSE.

Connection specifier (RV)

External unit specifier

Unit name specifier

Record length of unit
or file connected for
direct access

Next record

File name

Access specifier

Sequential as possible
access method

Direct as possible
access method

Format specifier

Formatted as a possible
allowed form

Unformatted as a
possible allowed form

Blank control specifier

• TRUE. if unit and dataset are connected;
else, • FALSE.

(RV)
Unit currently connected; if no unit,
num is undefined

(RV)
.TRUE. if unit has a name; else, .FALSE.

(RV)
Record length in characters. (For unformatted
I/O, the record length is a positive integer
multiple of eight.) If not connected for
direct access, rel is undefined.

(RV)
The record number that follows the last
record read or written for direct access.
If none have been written, nr=l. If access
is not direct, nl' is undefined.

(RV)
File name if file has a name; else,
fn is undefined.

(RV)
'SEQUENTIAL' is access method; 'DIRECT'
is access method.

(RV)
'YES' if sequential is allowed; 'NO' if
sequential is not allowed; 'UNKNOWN' if
unable to determine.

(RV)
'YES' if direct is allowed;
'NO' if direct is not allowed;
'UNKNOWN if unable to determine.

(RV)
'FORMATTED' if file is connected for
formatted I/O; 'UNFORMATTED' if
file is connected for unformatted I/O.

(RV)
'YES' if formatted is allowed;
'NO' if formatted is not allowed;
'UNKNOWN' if unable to determine.

(RV)
'YES' if unformatted is allowed;
'NO' if unformatted is not allowed;
'UNKNOWN' if unable to determine.

(RV)
'NULL' if null blank control is in effect;
'ZERO' if zero blank control is in effect.
Blank control applies only to formatted
records.

eFT allows formatted and unformatted records in the same dataset
(non-ANSI).

SR-0009
Part 2

5-19 J

INQUIRE STATEMENT RESTRICTIONS

A variable or array element that becomes defined or undefined as a result
of its use as a specifier must not be referenced by any other specifier
in the same INQUIRE statement.

I Execution of an INQUIRE by dataset name statement causes nmd, fn, seq,
dir, fmt, and unf (see table 5-2) to be assigned a value only if the

I value of fin is acceptable as a dataset name and if a dataset by that name
exists. Otherwise, these specifiers become undefined. If od becomes
defined with the value .TRUE., then num, rct,acc, fm, btnk, and nr become
defined.

Execution of an INQUIRE by unit statement causes num, nmd, rct, fn, acc,
seq, dir, fm, fmt, unf, btnk, and nr to be assigned values only if the

I specified unit exists and if a dataset is connected to the unit.

I

I

I

I

I

Otherwise, these specifiers become undefined.

If an error condition occurs during execution of an INQUIRE statement,
all of the inquiry specifiers except ios become undefined. ex and
od always become defined unless an error condition occurs.

OPEN STATEMENT

An OPEN statement connects an existing dataset to a unit, creates a
dataset that is preconnected, creates a dataset and connects it to a
unit, or changes certain specifiers of a connection between a dataset and
a unit.

The format of the OPEN statement is

OPEN (otist)

where otist consists of an external unit specifier and, at most,
one of each of the other specifiers described in table
5-3.

If a unit is connected to an existing dataset, execution of an OPEN
statement for that unit is permitted. If the FILE= specifier is not
included in the OPEN statement, the dataset to be connected to the unit
is the same as the dataset where the unit is connected.

If the dataset to be connected to the unit does not exist but is the same
as the dataset where the unit is preconnected, the specifications in the
OPEN statement become a part of the connection.

SR-0009
Part 2

5-20 J

If the dataset to be connected to the unit is not the same as the dataset
where the unit is connected, the effect is as if a CLOSE statement
without a STATUS= specifier had been executed for the unit immediately
before the execution of the OPEN statement.

If the dataset to be connected to the unit is the same as the dataset
where the unit is connected, only the BLANK= specifier can have a value
that is different from the current value. Execution of the OPEN
statement causes the new value of the BLANK= specifier to be in effect.
The dataset position is unaffected.

If a dataset is connected to a unit, execution of an OPEN statement on
that dataset and a different unit is not permitted.

CLOSE STATEMENT

A CLOSE statement terminates the connection of a particular dataset to a
unit and rewinds the dataset. The format of a CLOSE statement is

CLOSE (eLList)

where eLList consists of an external unit specifier and, at most,
one of each of the other specifiers described in table
5-4.

Execution of a CLOSE statement can occur in any executable program and
need not occur in the same program unit as an OPEN statement.

A disconnected dataset or unit can be reconnected within the same
executable program either to the same dataset or unit, or to a different
dataset or unit, provided the dataset still exists. If the dataset is
memory resident, CLOSE deletes the dataset regardless of the STATUS
specifier.

The ANSI FORTRAN Standard provides an implicit CLOSE for all datasets
upon normal program termination. CPT programs do not perform implicit
CLOSEs, datasets do not rewind.

The ANSI FORTRAN Standard does not allow memory resident datasets
which are automatically deleted regardless of the STATUS specifier.

SR-0009
Part 2

5-21 J

I

I

Table 5-3. OPEN specifiers and their meanings

Specifier Data Type Meaning

UNIT=ut Integer External unit specifier

IOSTAT=ios Integer var iable Error status specifier
or array element

ERR=s Statement label Statement label where
control is transferred
if error condition exists

FlLE=fintt Character expression File specifier

STATUS=sta Character expression Disposition specifier
(Default, 'UNKNOWN')

ACCESS=aee Character expression Access specifier
(Default, 'SEQUENTIAL')

FORM=fmttt Character expression Form specifier (Default,
'UNFORMATTED' if access
is direct; 'FORMATTED'
if access is sequential.)

RECL=l'L Positive integer Record length for direct
expression access method (omitted

for sequential access)

BLANK=bLnk Character
expression

Blank spec if ier
(Default, 'NULL')

Input (I) or Return value (RV)

(I)

Unit number

(RV)
o if no error condition exists;
error message number if error
condition exists.

(I)

FORTRAN statement label

(I)

Name of dataset to be connected

(I)

'OLD', dataset must exist and
FILE= must be specified.
'NEW', dataset is created,
status becomes 'OLD', FILE=
must be specified.
'SCRATCH', dataset is deleted
when CLOSE statement is
executed or when program is
terminated. Dataset must not
be named.
'UNKNOWN', the status is
'SCRATCH' if no file specifier
is supplied and the unit is not
connected; otherwise, the status
becomes 'OLD'.

(I)

'SEQUENTIAL' is access method;
'DIRECT' is access method.

(I)
'FORMATTED', formatted I/O;
'UNFORMATTED', unformatted I/O

(I)

For formatted I/O, number of
characters per record;
For unformatted I/O, 8 times the
number of words

(I)
'NULL' if numeric input blanks
are ignored; 'ZERO' if all
nonleading blanks are treated as
zeros. This specifier permitted
on datasets opened for formatted
I/O only.

t UNIT= does not need to be included in the unit specification
if u is the first item in olist.

tt fin is limited to seven characters, not counting trailing
blanks.

ttt eFT allows formatted and unformatted records in the same
dataset (non-ANSI).

SR-0009
Part 2

5-22 J-02

Table 5-4. CLOSE specifiers and their meanings

Specifier Data Type

UNIT=Ut Integer

IOSTAT=ios Integer variable
or array element

Meaning

External unit specifier

Error status specifier

ERR=s Statement label Statement label where
control is transferred
if error condition exists

STATUS=sta Character expression Disposition specifier
(Default, 'KEEP' if OPEN
status is 'OLD', 'NEW',
or 'UNKNOWN'. Default,
'DELETE; if OPEN status
is 'SCRATCH' or dataset
is memory resident.)

Input (I) or Return value (RV)

(I)
Unit number

(RV)
o if no error condition exists;
error message number if error
condition exists

(I)

FORTRAN statement label

(I)

'KEEP', the dataset continues to
exist after CLOSE statement
execution. Do not specify 'KEEP'
for a dataset with 'SCRATCH'
status on an OPEN statement.
'DELETE', the dataset does not
exist after execution of the
CLOSE statement.

t UNIT= does not need to be included in the unit specification
if u is the first item in ettist.

NAMELIST STATEMENT (CFT EXTENSION)

A NAMELIST statement provides a format-free method of specifying
input/output lists.

The format of the NAMELIST statement is

NAMELIST/ group/v [, v] ••• [[,] / group/v [, v] •••] •••

where group

v

is the group name for the following list, and

is a variable name or an array name. v cannot be a
dummy argument or a pointee variable.

The group name must be used only as a NAMELIST group name within the
program unit. It can be used in place of the FORMAT statement in the
following I/O statements only. Every occurrence of a group name in
NAMELIST statements after the first occurrence is treated as a
continuation of the first occurrence. Lists with the same group name are
treated as a single group.

SR-0009

READ
WRITE
READ
PRINT
PUNCH

(unit,group [,ERR=sn,END=sn])
(unit, group [,ERR=sn])
group
group
group

Part 2
5-23 J

Variable or array names are separated by commas in the NAMELIST
statement. These names can be members of more than one NAMELIST group.

The NAMELIST statement must follow all declaratives affecting the
variable or array names and must precede the first use of the group name
in any I/O statement.

NAMELIST INPUT

An input NAMELIST group record consists of one or more physical records.
Column 1 is ignored, except for a possible echo flag. The first nonblank
character following column 1 must contain a NAMELIST delimiter ($ or &),
immediately followed by the group name and one or more blanks. The
remaining portion of an input record contains as many variables desired
with assigned values, separated by commas, in any order in one of the
following forms.

where

variable=value

array=value[,value,] •••

array(subscripts)=value[,value,] •••

subscript must be an integer constant; multiple array values
are assigned in storage order.

Any value can be repeated by

I n*value I
where n is the repetition count.

I An input NAMELIST physical record can contain up to 160 characters.
Blanks can be used for readability but must not be embedded in names or
values. Names or values cannot be continued from one physical record to
another. A delimiter $ or & terminates a group record. The next group
record begins with the next delimiter.

SR-0009
Part 2

5-24 J-02

An optional comment can appear between input NAMELIST group records. It
can also appear within an input NAMELIST group record. A comment within
the record must be preceded by a colon or semicolon. A comment, if
included, is the last item in a physical record. An input NAMELIST group
record can contain only comments, or can be entirely blank.

NAMELIST input variables

NAMELIST input variables can be of type integer, integer*2, real, double
precision, complex or logical. If a type mismatch occurs across the
equal sign, the value is converted to the declared type of the variable,
following the rules of v=e in part 2, section 3, except that conversions
between complex and double precision, or logical and any other type are
not allowed. Octal and hexadecimal constants are considered to be

I Boolean. Character constants can be assigned to noncharacter variables,
where they are treated as Boolean. Character constants cannot be
assigned to a complex or double-precision variable.

I

Integer, real, and double-precision values are specified in the normal
FORTRAN manner. Octal constants are specified as dddd ••• dB or as
olddd ••• d['], where each d is a digit between 0 and 7. Hexadecimal
constants are specified as zlhhh",h[I], where each h is a hexadecimal
character between 0 and 9, or between A and F. Up to 22 d's or 16 his can
be specified. If fewer than 22 or 16 are specified, the values are
right-justified in the input word.

Logical values are specified as

where stping

.T[stping], or
• F [stping], or
T [stping], or
F [stping]

is an optional string of characters that does not
contain the following characters.

Replacement (=)

Delimiter ($ or &)

Separator (,)

Comment (: or :)

Array name indicator ({)

stping is generally added for clarity. For example, T or .T can
specify a logically true value, or, for clarity, .TRUE can be used.

SR-0009
Part 2

5-25 J-02

Complex constants are represented as

(real" imag)

real, and imag can be integer or floating-point constants.

NAMELIST input processing

The NAMELIST processor scans forward from the current position on the
input dataset until it encounters a delimiter ($ or &) as the first
nonblank character immediately followed by the group name.

If end-of-file or end-of-data is encountered before the group name is
located, the job either aborts or branches to the END= address.

If the processor finds a NAMELIST record other than the one it is looking
for, that record is skipped with an informative message to the logfile.

If the processor encounters an echo flag (E) in column I of any record,
I that record and all subsequent records processed by the current read are

echoed to $OUT.

I

The job aborts or the ERR= branch is taken if one or more of the
following conditions exists.

• The record contains a variable name that is not in a NAMELIST
group.

• Punctuation is missing.

• The format of a constant is illegal.

User control subroutines

The following routines provide for control of the NAMELIST input
defaults. The mode setting indicates the action to be taken.

CALL RNLSKIP(mode) Determines action taken if NAMELIST sees a
group name that is not the one being sought

mode > 0

mode = 0

mode < 0

CALL RNLTYPE(mode)

SR-0009

Skips the record and issues a logfile
message. (Default)

Skips the record

Aborts the job or goes to the optional ERR=
branch

Determines action taken if a type mismatch
occurs across the equal sign

Part 2
5-26 J-02

I

I

m~e=O

CALL RNLECHO{unit)

unit < 0

unit > 0

Converts the constant to the type of the
variable. (Default)

Aborts the job or goes to the optional ERR=
branch

Specifies output unit for error message and
echo lines

Specifies that error messages go to $OUT.
Lines echoed because of an E in column 1 go
to $OUT. (Default)

Specifies that error messages go to unit.
All input lines are echoed on unit,
regardless of any echo flags present.
(unit=6 or 101 imply $OUT.)

In the following user control subroutine argument lists, char is a
character specified as lLx or lRX, and mode is a value which, if
nonzero, adds the character to the set and which, if zero, removes the
character from the set.

No checks are made to determine the reasonableness, usefulness, or
consistency of the changes.

CALL RNLFLAG{char,mode) Adds or removes char from the set of
characters that, if found in column 1,
initiates echoing of the input lines onto
$OUT. (char default is E.)

CALL RNLDELM{char,mode) Adds or removes char from the set of
characters that precede the NAMELIST group
name and signal end of input. (char
default is $ or &.)

CALL RNLSEP{char,mode) Adds or removes char from the set of
characters that must follow each constant to
act as a separator. (char default is ,.)

CALL RNLREP{char,mode) Adds or removes char from the set of
characters that occurs between the variable
name and the value. (char default is =.)

CALL RNLCOMM{char,mode) Adds or removes char from the set of
characters that initiates trailing comments
on a line. (char default is : or ;.)

SR-0009
Part 2

5-27 J-02

NAMELIST OUTPUT

An output NAMELIST group record is written in the following general form.

& group name variabLe name = vaLue, ••• ,
array name = vaLue, ••• ,vaLue, ••• ,&END

where group name, variabLe name, and array name
are the names corresponding to the names in the
NAMELIST statement.

For arrays, the values are listed in storage order and repeated values
are listed as n*vaLue.

Example:

&OUTPUT ARRAYX=3,7,4*5,2,&END

Logical values are listed as .T. or .F.

Example:

&OUTPUT LQGVAL=.T.,&END

Complex values are listed with real and imaginary portions, respectively.

Example:

&OUTPUT COMVAL=(2.5,3.) ,&END

An output NAMELIST group record can extend any number of lines (physical
records). The first position of each line is normally blank. The first
line contains the delimiter & in column 2, followed by the group name.
The last line ends with the character string &END.

Default line width is 133 characters unless the unit is 102 ($PUNCH), in
which case the default line width is 80 characters. NAMELIST output is
readable as NAMELIST input.

User control subroutines

The following routines provide the user control of the output format.

SR-0009
Part 2

5-28 J

I

In the following subroutines, char can be any ASCII character specified
by lLx, or lRx. No checks are made to determine if char is
reasonable, useful, or consistent with other characters. If the default
characters are changed, use of the output line as NAMELIST input might
not be possible.

CALL WNLLONG(length)

CALL WNLDELM(char)

CALL WNLSEP(char)

CALL WNLREP(char)

CALL WNLFLAG(char)

CALL WNLLINE(Value)

Sets the output line length to length.
length must be greater than 8 and less than
161. If length is too short for an actual
output line, the job aborts. Setting
length to -1 restores the default line
length (80 for $PUNCH; otherwise, 133).

Changes the character preceding the group
name and END from & to char.

Changes the separator character immediately
following each value from , to char.

Changes the replacement operator that comes
between name and value, from = to char.

Changes the character written in column 1 of
the first line from blank to char.
Typically, char is used for carriage
control if the output is to be listed, or
for forcing echoing if the output is to be
used as input for NAMELIST reads.

Allows each namelist variable to begin on a
new line.

value = 0, no new line
value = 1, new line for each variable

BUFFER IN AND BUFFER OUT STATEMENTS (CFT EXTENSIONS)

Buffered input/output operations initiate a transfer of data and allow
the subsequent execution sequence to proceed concurrently with the actual
transfer. Either the UNIT or LENGTH utility function must be referenced
to cause a delay in an execution sequence, pending completion of a
buffered input/output operation. These functions can also determine
certain characteristics of that operation upon its termination. The
amount of data to be transferred is specified in terms of Cray computer
words with no consideration given to the type or format of information
contained.

SR-0009
Part 2

5-29 J-02

The following example is a sample program, an input listing, and an
output listing, showing the use of the NAMELIST statement.

PROGRAM

PROGRAM EXAMPLE (TYPICAL NAMELIST I/O USAGE)
LOGICAL ALL DONE
REAL LENGTH
DATA DENSITY.LENGTH,WIDTH,HEIGHT,ALLDONE /4*1.0 .. FALSE./
NAMELIST /INPUT/ LENGTH,WIDTH,HEIGHT,ALLDONE .DENSITY
NAMELIST /OUTPUT/ WEIGHT,LENGTH.WIDTH,HEIGHT.DENSITY

10 READ INPUT
IF (ALLDONE) STOP
WEIGHT = DENSITY*LENGTH*WIDTH*HEIGHT
PRINT OUTPUT
GO TO 10
END

INPUT LISTING

INPUT DATA FOR PROGRAM EXAMPLE
NOTE THAT COMt~ENT CARDS t~A,(BE I t·nERSPERSED BETlJEEN COtr1PLETE GROUPS

$INPUT $ USE DEFAULT VALUES
$INPUT LENGTH = 3.O, A LONG WIDE CASE

WIDTH = 3. $
& I t--lPUT DENS I TY = . 5 &END

&INPUT ALLDONE = TRUE &
IEOF

OUTPUT LISTING

&OUTPUT WEIGHT = 1 ..
&.OUTPUT lJE I GHT = 9.,
&OUTPUT WEIGHT = ~.5,

SR-0009

LENGTH = 1.,
LENGTI1 = 3 ..

LENGTH = 3 ..

WIDTH = 1.,
WIDTH = 3. ,

WIDTH = 3. I

Part 2
5-30

HEIGHT = 1 ..
HEIGHT = 1 ..

HEIGHT = 1. I

DENSITY = 1 .. &END
DENS I TY = 1.. &Et--lD

DENSITY = 0.5, &END

J

I

I

I

I

I

I

I

I

The formats of the BUFFER IN and the BUFFER OUT statements are

where

BUFFER IN <{ U. } ,m) <b7,oe, e7,oe)
d1.,n

U

din

m

b7,oe

eloe

is a unit identifier expressed as an integer or as a
Hollerith expression of up to seven characters;

is a dataset name expressed as a character string or a
character or integer variable containing a character
string of up to seven characters;

is a mode identifier expressed as an integer
expression indicating full record processing if 0 or
greater and partial record processing if less than 0;

is the symbolic name of that variable or array element
marking the beginning location of the buffered I/O
transfer; and

is the symbolic name of that variable or array element
marking the ending location of the buffered I/O
transfer.

BUFFER IN causes information to be read; BUFFER OUT causes information to
be written. Execution of either statement initiates the transfer of data
between the current record at unit U or dataset din and the
contiguous memory locations beginning with bloe and concluding with
e7,oe. If unit u or dataset din is completing a buffered
input/output operation initiated earlier, a BUFFER IN or BUFFER OUT
specification suspends the execution sequence until that earlier
operation terminates. Upon termination, execution of the BUFFER IN or
BUFFER OUT statement completes as though no delay occurred.

BUFFER IN and BUFFER OUT operations can proceed simultaneously on several
• units or datasets.

In determining the number of computer words to be transferred,
consideration must be given to the data types of the symbolic names used

I for b7,oc and e7,oe. If e7,oc is of type double-precision or complex,
the location of the second word in its 2-word form of representation
marks the ending location of the data transfer.

SR-0009
Part 2

5-31 J

Both etoc and btoo must be either elements of a single array (or
equivalenced to an array) or must be members of the same common block.
Otherwise, the results are undefined. Except for terminating a partial
record, btoc following etoc in a storage sequence causes a run-time
error. Neither e20c nor btoc can be character entities.

The mode specifier, m, controls the position of the record at unit u
after the data transfer has taken place. Full record processing is
indicated if the value of m is greater than or equal to O. The record
position following this mode of transfer is always between the current
record (the record to or from which the transfer occurred) and the next
record. For a value of m less than 0, partial record processing occurs.

In a BUFFER IN statement, m less than 0 specifies that the record be
positioned ready to transfer its (n+l)th word if the nth word was the
last transferred. In a BUFFER OUT statement, m less than 0 indicates
the record is left positioned to receive additional words. A BUFFER OUT
concludes a series of partial record buffered output transfers if m is
greater than or equal to O. A BUFFER OUT statement containing btoc
equal to etoc+l to produce a zero-word transfer also concludes the
record being created.

Dataset and record positioning for buffered input/output operations are
as described for non-buffered input/output operations. Buffered
operations are allowed on all COS datasets except BUFFER OUT on COS
blocked, random datasets. Buffered data transfers on COS unblocked
datasets must be performed in multiples of 512 words. BUFFER IN and
BUFFER OUT can be used with asynchronous SETPOS. See Appendix E and the
Library Reference Manual, CRI publication SR-0014.

Example:

A BUFFER IN statement initiates the transfer of 1000 words from unit 32.
Computation then proceeds on data not related to that transfer. A second
BUFFER IN statement is encountered upon completion of this computation,
causing a delay in the execution sequence until the last of the 1000
words is received. A transfer of another 500 words is initiated from
unit 32. While these words are transferring, the execution sequence
proceeds. A BUFFER OUT statement initiates the transfer of the first
1000 words to unit 22. The value of the mode specifier is 0 in all
cases, indicating full record processing.

PROGRAM XFR
PARAMETER (INUNIT=32)
DIMENSION A(lOOO), B(2,10,100), C(500)
BUFFER IN(INUNIT,O) (A(l) ,A(lOOO»
DO 10 1=1,100

10 B(l,l,I)=B(l,l,I) + B(2,1,I)
BUFFER IN (INUNIT, 0) (C (1) ,C (500))

SR-0009
Part 2
5-32 J

•

BUFFER OUT(22,0) (A(l),A(lOOO»

END

THE UNIT FUNCTION (CFT EXTENSION)

After a BUFFER IN or BUFFER OUT statement has been executed, the normal
execution sequence continues concurrent with the actual transfer of
data. If the utility function UNIT is referenced in this execution
sequence, continuation of the sequence is delayed pending completion of
the transfer. After the BUFFER IN operation, a call to utility function
UNIT or LENGTH is recommended before using storage locations where the
information is placed.

Upon completion of the transfer, the UNIT function provides one of the
following real data type values to the expression where it is referenced:

• -2.0 to indicate successful completion of a partial record read
operation (BUFFER IN with m<O) without encountering the end of
the current record,

• -1.0 to indicate successful completion of all other transfers,

• 0.0 to indicate reading of an end-of-fiie,

• 1.0 to indicate occurrence of a disk parity error during reading,
or

• 2.0 to indicate other disk malfunctions during reading or writing.

Example:

PROGRAM TESTUNIT
DIMENSION M(200,5)

10 BUFFER IN (32,0) (M(1,1),M(200,5»
IF (UNIT(32»11,13,13

11 0012 J=1,5
0012 1=1,200

12 M(I,J)=M(I,J)*2
BUFFER OUT (22,0) (M(1,1),M(200,5»
IF (UNIT(22»10,13,13

13 END

SR-0009
Part 2
5-33 J

•

THE LENGTH FUNCTION (CFT EXTENSION)

If the utility function LENGTH is referenced while a buffered
input/output operation is in progress, the execution sequence is delayed
until the transfer is complete. LENGTH then provides to the expression
in which it is referenced, an integer value reflecting the number of Cray
computer words successfully transferred. This value is 0 if an
end-of-file was read.

Example:

PROGRAM PGM
DIMENSION V(16384)

10 BUFFER IN (32,-1) (V(1),V(16384»
X= UNIT(32)
K= LENGTH(32)
IF(X)11,14,14

11 DO 12 I=l,K,l
12 IF(V(I).EQ.'KEY') GO TO 13

IF(X.EQ.-2.0) GO TO 10
STOP

13

14 END

RESTRICTIONS ON INPUT/OUTPUT STATEMENTS

A function must not be referenced in an input/output statement if it
causes an input/output statement to be executed.

An input/output statement must not reference a unit or file not having
all the properties required for its execution.

I/O ERROR RECOVERY

If an irrecoverable error occurs during the execution of an I/O
statement, the operating system aborts the current job step. The current
job step is aborted even if an error specifier (ERR=sn) appears in the
I/O statement's control information list. Generally, error conditions
detected by code in $FTLIB are recoverable and return control to the
statement indicated by the error specifierJ error conditions detected by
the operating system are irrecoverable and abort the current job step.

SR-0009
Part 2
5-34 J

•

The ANSI FORTRAN Standard does not distinguish between recoverable and
irrecoverable errors.

SR-0009
Part 2
5-35 J

-I

FORMAT SPECIFICATION

A format specification provides explicit editing information to direct
the editing of data between its internal representation and the
corresponding character strings required. Format specifications can be
given in FORMAT statements, or as values of character arrays, character
variables, or other character expressions.

A format identifier that is a statement label must be the label of a
FORMAT statement in the same program unit. The format specification
contained in that FORMAT statement is applied when the formatted
input/output or assignment statement is executed.

A format specification begins with a left parenthesis and ends with a
right parenthesis. A complete format specification can contain another
complete format specification. Nesting of this type can be carried to
nine levels. Character data following the right parenthesis of a
complete format specification is ignored only when the specification is
contained in an array.

The ANSI FORTRAN Standard does not limit nesting of format
specifications.

FORMAT STATEMENTS

The format of a FORMAT statement is

I I FORMAT fs I
I where fs is a format specification.

FORMAT statements must always be labeled.

SR-0009
Part 2

6-1 J

6

I

FORMAT OF A FORMAT SPECIFICATION

The format of a format specification is

([f'List])

where f'List is a list in which each list item has one of the forms:

where ned

ed

ned
[pled

[1"] (f'List)

is a nonrepeatable edit descriptor,

is a repeatable edit descriptor,

is a nonzero, unsigned integer constant called a
repeat specification. If not specified, a value of 1
is assumed.

f'List is a format specification with a non-empty list.

Commas can separate list items in f'List but are required only under the
following conditions.

• Between two adjacent digits where each belongs to different list
items

• Between two adjacent apostrophe or quotation mark delimiters of
separate edit descriptors

• After a 0, E, or G specification that precedes an E specification

The ANSI FORTRAN Standard does not provide for the optional use of
commas except before and after the slash or the colon edit descriptor or
between a P edit descriptor and an immediately following F, E, 0, or G
edit descriptor.

Examples:

1999 FORMAT ('F',5X,6F6.2)

1234 FORMAT ('ABC123',2X,"=",015.5,2X,I6)

SR-0009

READ (lO,FMT=' (F10.O) ')X

Part 2
6-2 J

EDIT DESCRIPTORS

Edit deseriptors specify the form of a record and direct the editing
between characters in a record and their corresponding internal
representation.

An edit descriptor is either a repeatable edit descriptor, ed, or a
nonrepeatable edit descriptor, ned.

The formats of repeatabte edit deseriptors are

[r] IW[.m]

[r]Fw.d
[r] EW. d[E e]
[r]Dw.d
[r]Dw.dEe (eFT EXTENSION)
[r] Gw. d[E e]
[r]Ow (eFT EXTENSION)
[r] zw (eFT EXTENSION)
[r]Lw
[r]A [w]
[r]Rw (CFT EXTENSION)

where I, F, E, 0, G, 0, Z, L, A, and R
indicate the manner of editing,

w, r, and e
are nonzero, unsigned integer constants, and

d and m
are unsigned integer constants.

The repeat speeifieation, r, optionally precedes any repeatable edit
descriptor.

Examples:

E20.5E3
023 Z6
29G5.0

SR-0009

3E20.5E3
L7 AS

6023 2Z10

13
R6

7L7

FS.5 E19.12 DS.l G13.3
A 519 2F6.0 12E7.2 3010.0

3A5 4R4 3A

Part 2
6-3 J

I

I

The formats of nonrepeatable edit descriptors are

'hI h2 • • • hn'
II hl h2 ••• hn

ll

nHhl h2 • • • hn
Te
TLe
TRe
nX

(apostrophe)
(quotation mark)

X (CFT EXTENSION)
/ (slash)
n/ (slash) (CFT EXTENSION)

(colon)

(CFT EXTENSION)

$ (dollar sign) (CFT EXTENSION)
kJ?
BN
BZ
S
SP
SS

where apostrophe, quotation mark, H, T, TL, TR, X, slash, colon, P,
BN, BZ, S, SP, and SS indicate the manner of editing:

h is any ASCII character listed in Appendix A as capable
of internal representation:

Examples:

e and n are positive, nonzero, unsigned integer constants;
and

k is an optionally signed integer constant.

'AN APOSTROPHE EDIT DESCRIPTOR'
"A QUOTATION-MARK EDIT DESCRIPTOR"
Tl12
55X

/
6/

$
3P
TL3
TR6
BZ
SS

SR-0009
Part 2

6-4 J-02

Table 6-1 describes the correct usage of the CFT edit descriptors with
data types. An * indicates legal usage for input and output. A +
indicates legal usage for output. A - indicates illegal usage.

Table 6-1. Edit descriptors with data types

Data types Edit descriptors

I F E D G L A 0 Z R

Character - - - - - - * - - -
Complex - * * * * - * * * *
Double-precision - * * * * - - + - -
Integer * - - - - - * * * *
Logical - - - - - * * * * -

Real - * * * * - * * * *

Format restrictions for integer, logical, and real variables can be
lifted using SEGLDR and its EQUIV directive. To change the limitations
for read and write operations, specify EQUIV=$RNOCHK($RCHK) or
EQUIV=$WNOCHK($WCHK), respectively. Both of these EQUIV statements must
be specified if changes are desired. Table 6-2 describes the edit
descriptors and data types when SEGLDR and the EQUIV directive is used.
An * indicates legal usage for input and output. A - indicates illegal
usage.

Table 6-2. Edit descriptors and data types when SEGLDR and the
EQUIV directive are used

Data types

I

Integer *
Logical *
Real *

SR-0009

F E

* *

* *

* *

Part 2
6-5

Edit

D

-

-

*

descriptors

G L A 0 Z R

* * * * * *

* * * * * *

* * * * * *

J-03

•

INTERACTION BETWEEN I/O LISTS AND FORMAT SPECIFICATIONS

The beginning of execution of a formatted input/output statement
initiates format control. Each action of format control depends on
information from

• The next edit descriptor provided by the format specification, and

• The next item in the input/output list, if one exists.

If a statement has an input/output list, at least one repeatable edit
descriptor must exist in the format specification.

An empty format specification of the form () can be used unless
contained within another format specification. An empty format
specification causes one input or internal record to be skipped or one
output or internal record containing no characters to be written. No
input/output list items can correspond to an empty format specification.
Except for repeated edit descriptors and embedded format specifications,
a format specification is interpreted from left to right.

An embedded format specification or edit descriptor preceded by an r is
processed as a list of r format specifications or edit descriptors. An
omitted repeat specification is treated the same as a repeat
specification with a value of 1.

Each repeatable edit descriptor interpreted in a format specification
corresponds to one item specified by the input/output list, except that
an item of type complex requires the interpretation of two F, E, D, G, A,
or R edit descriptors. An input/output list contains no items
corresponding to nonrepeatable edit descriptors.

When format control encounters a repeatable edit descriptor, it
determines whether the input/output list has specified a corresponding
item. If it has, format control transmits appropriately edited
information between the item and the record, then proceeds. If no
corresponding item exists, format control terminates.

When a colon edit descriptor is encountered and no more input/output list
items remain to be processed, format control is terminated. Otherwise,
the colon edit descriptor is ignored.

Format control also terminates if it encounters the rightmost parenthesis
of a complete format specification and if no additional input/output list
items are specified. If another list item is specified, the file is
positioned to the next record and format control reverts to the beginning
of that format specification terminated by the next-to-last right
parenthesis. If there is none, format control reverts to the first left
parenthesis of the complete format specification. If reversion occurs,
the reused portion of the format specification must contain at least one
repeatable edit descriptor. If format control reverts to a parenthesis

SR-0009
Part 2

6-6 J-03

•

that is immediately preceded by a repeat specification, the repeat
specification is reused. Reversion of format control, of itself, has no
effect on the scale factor (see P editing) or on S, SP, SS, BN, or BZ.

Examples:

In the following examples, the + indicates the reversion point if list
items remain when format control encounters the closing parenthesis.

1 FORMATJl OFlO.3,lPE20.6)

2 FORMAT (lOFlO.3, (1PE20.6»
t

3 FORMAT(I10,3(I5,2(I5,I7),3(L1,L2),I7»
+

4 FORMAT(I5,2(I4,I6),3(Il,I2»
t

SR-0009
Part 2

6-6.1 J-03

POSITIONING BY FORMAT CONTROL

If a T or X edit descriptor is the first edit descriptor encountered
after format control is initiated, the action of the descriptor causes
the next record to become the current record.

After the processing of each repeatable edit descriptor or an H,
apostrophe, or quotation mark edit descriptor, the file is positioned
after the last character read or written in the current record.

After a T, TL, TR, X, slash, or colon edit descriptor is processed, the
file is positioned as separately described for each.

If format control reverts, the file is positioned in the same manner as
when a slash edit descriptor is processed.

After a read operation, any unprocessed characters of the record read are
skipped.

When format control terminates, the file is positioned after the current
record.

INTERNAL REPRESENTATION

A field is a part of a record that is read or ~]ritten when format control
processes a single repeatable edit descriptor or an H, apostrophe, or
quotation mark edit descriptor. Field width is the size of the field
in characters.

Internal representation of data corresponds to the internal
representation of a constant of similar type.

APOSTROPHE AND QUOTATION MARK EDITING

An apostrophe or quotation mark edit descriptor has the form of a
character constant and causes characters to be written from the delimited
characters (including blanks) of the edit descriptor itself. These edit
descriptors apply only to output. The width of the field is the number
of characters contained between (but not including) the delimiting
quotation marks or apostrophes. Within the field, two adjacent
apostrophes or quotation marks are counted as one and not as members of a
delimiting apostrophe or quotation mark character pair, respectively.

I The ANSI FORTRAN Standard does not provide for quotation mark editing.

SR-0009
Part 2

6-7 J

•

Example:

Execution of -

WRITE (6,13)
13 FORMAT(' ISN'IT "*" BETTER'," THAN ""H""", lIS')

results in the printing of -

ISN'T "*" BETTER THAN "H" IS

H EDITING

The nH edit descriptor causes character information to be written from
the n characters (including blanks) following the H of the edit
descriptor. An H edit descriptor can be used only for output.

Examples:

PRINT 22

22 FORMAT (27H ABCDEFGHIJKLMNOPQRSTUVWXYZ,lOH1234567890)

WRITE (41, 16)

16 FORMAT (I LABEL', 5H UNIT, I 41')

POSITIONAL EDITING (T, TL, TR, AND X)

The T, TL, TR, and X descriptors specify the position where the next
character will be transmitted to or from the record.

An X edit descriptor specifies a position relative to the current
position.

T edit descriptors can specify a character position in either direction
from the current position. This allows portions of a record to be read
more than once, possibly with different editing.

T or X edit descriptors can replace a character that is already in the
record. During transmission to the record, undefined positions are
filled with blanks. The result is as if the entire record were initially
filled with blank characters. On output, an X descriptor that specifies
a move to position a causes the length of the record to be at least
a-I characters. T edit descriptors by themselves do not affect the

SR-0009
Part 2

6-8 J

I
I

length of an output record. Positions beyond the last character of the
record can be specified if no characters are to be transmitted from such
positions.

T, TL, and TR editing

The Tc edit descriptor indicates the transmission of the next character
to or from a record is to occur at the cth character position.

The TLC edit descriptor indicates the transmission of the next
character is to occur at the character position c characters backward
from the current position. If the current position is less than or equal
to position c, the transmission of the next character occurs at
position 1 of the current record.

The TRc edit descriptor indicates the transmission of the next
character is to occur at the character position c characters forward
from the current position.

X editing

During transmission from a record, the nx edit descriptor causes the
skipping of n character positions following and including the current
character position. During transmission to a record, blank characters
are placed into n character positions beginning with the current
character position. In both cases, the record becomes positioned to the
first character following the last character processed.

Example:

Execution of -

PRINT 12345
12345 FORMAT(lX,'ONE',16X,'FIVE',T6,'TWO',7X,4HFOUR,TIO,'T','HR','E',lHE)

Results in the printing of -

Position:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Content:
ONE TWO T H R E E F 0 U R F I V E

The first output character controls vertical spacing. Although this
character is not printed, it must be included in the edit descriptor
character count. For example, (T6) in the above example represents the
position of the fifth character to be printed.

SR-0009
Part 2

6-9 J

SLASH EDITING

The slash edit descriptor indicates the end of a record. During
transmission from a file, the remaining portion of any current record is

I skipped and the file is positioned at the beginning of the next record.
If no current record exists, the file is positioned after the next
record. During transmission to a file, an empty record is written as the
last record of the file. Thus, an empty record can be written on output
and an entire record can be skipped on input.

Slash edit descriptor processing of adjacent records can be specified by
the appearance of as many consecutive slashes (optionally separated by

I commas) or by preceding a single slash with a n value equal to the
number of records to be processed.

The ANSI FORTRAN Standard does not provide for a repeat count for slash
editing.

Examples:

PRINT 39

39 FORMAT('lLINE 1',/,' LINE 2'/' LINE 3'///7H LINE 6)

READ(99,42) RECORD3

42 FORMAT(2/, •••)

COLON EDITING

The colon prevents the printing of some or all text information by a
format that is used with a varying number of list items. When
encountered in a format specification, a colon edit descriptor terminates
the formatted transfer of data if no input/output list items remain to be
processed. If unprocessed input/output list items remain, the colon edit
descriptor has no effect on format control. Termination of format
control by a colon edit descriptor causes the record being processed to
become the preceding record.

Example:

Execution of

PRINT lO,X
10 FORMAT(' X= 'F10.S,' Y= 'F10.S)

SR-0009
Part 2

6-10 J

I

results in the printing of

X= 1234.56789 Y=.

Whereas execution of

PRINT 20,X
20 FORMAT(' X= 'F10.5,:' Y= 'F10.5}

results in the printing of

X= 1234.56789.

DOLLAR SIGN EDITING (eFT EXTENSION)

The dollar sign character ($) in a format specification modifies the
carriage control specified by the first character of the record. In an
output statement, the $ descriptor suppresses the carriage return/line
feed. In an input statement, the $ descriptor is ignored. The $
descriptor is intended primarily for interactive I/O; it leaves the
terminal print position at the end of the text (instead of returning it
to the left margin), so a typed response follows the output on the same
line.

SR-0009
Part 2
6-10.1 J-03

Example:

Execution of

WRITE (6,100)
100 FORMAT ('WHAT IS YOUR NAME?' ,$)

READ (5,105)
105 FORMAT (4A8)

Results in the printing of

WHAT IS YOUR NAME?

The response (in this example, HARRY) can go on the same line

WHAT IS YOUR NAME? HARRY

P EDITING

A scale factor is specified by a P edit descriptor of the form kP,
where k is an optionally signed integer constant called the seale
factor. kP represents 10k as a multiplier.

The scale factor is 0 at the beginning of each input/output statement.
It applies to all subsequently interpreted F, E, 0, and G edit
descriptors until another scale factor is encountered and established.
Note that reversion of format control does not affect the established
scale factor.

The scale factor, k, affects editing in the following manner.

• with F, E, 0, and G input editing (provided that no exponent
exists in the field) and with F output editing, the scale
factor causes the externally represented number to correspond
to the internally represented number multiplied by 10 to the
kth power.

• On input with F, E, 0, and G editing, the scale factor has no
effect if there is an exponent in the field.

• On output with E and D editing, the basic real constant part of
the quantity to be produced is multiplied by the kth power of
10 and the exponent is reduced by k.

• On output with G editing, the effect of the scale factor is
suspended unless the magnitude of the data to be edited
requires the use of E editing. In this case, the scale factor
has the same effect as with E output editing.

SR-0009
Part 2

6-11 J-02

Examples:

Input
field 9876.54 98.7654E2 9876.54 987.654 .8647860-4 86.4786E2

FORMAT
statement FORMAT (2PF8.3, -2PE9.4, F9.4, OPG9.4, 09.4, -2PE9.4)

Internal
representation 98.7654 9876.54 987654. 987.654 .0000864786 8647.86

Internal
representation 9.87654 9876.54 9876.54 987.654 864.786 8647.86

FORMAT
statement FORMAT (2PF12.2, -2PE12.4, F12.4, lPG12.2, 012.4, -2PE12.4)

Output
field 987.65 • 0099E+06 98.7654 • 9.88E+02 8.64790+02 .0086E+06

The scale factor k controls decimal normalization. If -d<k<o, there
are Ikl leading zeros and d-Ikl significant digits after the decimal
point. If O<k«d+2) , there are k significant digits to the left of
the decimal point and d-k+l significant digits to the right of the
decimal point. Other values of k are not permitted.

NUMERIC EDITING (BN, BZ, S, SP, SS, I, F, E, D, AND G)

Numeric editing specifies input/output editing of integer, real,
double-precision, and complex data. The following general rules apply.

• On input, leading blanks are not significant. Plus signs can be
omitted. A field of all blanks has the value O.

• On input with F, E, D, and G editing, a decimal point appearing in
the input field overrides that portion of an edit descriptor
specifying the decimal point location. The input field can have
more digits than are used in approximating the value of the data.
The excess digits are used to round to the approximation but are
otherwise discarded.

• On output, a positive or zero internal value in the field is
prefixed with blank characters except as described below for S, SP,
and SS editing. A negative internal value in the field is prefixed
with blank characters followed by a minus sign.

• On output, the representation is right-justified in the field.

SR-0009

If the number of characters produced by the editing is smaller than
the field width, leading blanks are inserted in the field.

Part 2
6-12 J

I

• On output, if the number of characters exceeds the field width,
the entire field is filled with asterisks.

BN and BZ editing

The BN and BZ edit descriptors specify the interpretation of blanks other
than leading blanks. BN and BZ affect input fields only.

The BN edit descriptor causes blanks to be ignored. Ignoring blanks has
the effect of removing blanks, right-justifying the remalnlng portion of
the field, and replacing the removed blanks as leading blanks. A field
of all blanks has the value o.

The BZ edit descriptor causes all blank characters to be treated as
zeros. The initial interpretation of blanks in numeric input fields
depends on the value of the BLANK= specifier when the unit was opened.
NULL (BN) is the default.

S, SP, and SS editing

The S, SP, and SS edit descriptors control plus signs in numeric output
fields. Normally, the compiler suppresses plus signs. The SP edit
descriptor causes plus signs to be produced on numeric output fields
until either an S or an SS edit descriptor is encountered. The SS edit
descriptor specifies suppression of plus signs1 the S edit descriptor
restores the normal compiler option, which, in this case, is also the
suppression of plus signs.

Integer editing

The Iw and Iw.m edit descriptors indicate that the field to be edited
occupies W positions. The specified input/output list item must be of
type integer. On input, the specified list item becomes defined with an
integer datum. On output, the specified list item must be defined with
an integer datum.

In the input field, the character string must be in the form of an
optionally signed integer constant. Leading blanks in the input field
are ignored. The IW.m edit descriptor is treated identically to the
IW edit descriptor.

The output field for the IW edit descriptor consists of zero or more
leading blanks followed by a minus if the value of the internal datum is
negative, followed by the magnitude of the internal value in the form of
an unsigned integer constant without leading zeros. If the value (plus
the possible minus sign) exceeds W digits, the field is filled with
asterisks.

SR-0009
Part 2

6-13 J

•

If the IW.m edit descriptor is used on output, the unsigned, integer
constant consists of at least m digits and, if necessary, has
leading zeros. The value of m must not exceed the value of w. If
m is 0 and the value of the internal datum is 0, the output field
consists of only blank characters.

Example:

Execution of -

READ 20,I,J,K
20 FORMAT(I2,I5,I3)

with an input line of -

15bb-10bb

followed by -

PRINT 10,I,J,K
10 FORMAT(I5,I3,I4)

yields -

bbb15-10bbbO.

Where b indicates a blank character.

F editing

The FW.d edit descriptor indicates that the field occupies w
positions, the fractional part of which consists of d digits.

The input field consists of an optional sign followed by a string of
digits optionally containing a decimal point. This basic form can be
followed by an exponent of 10 having one of the following forms.

• Signed integer constant

• E followed by an optionally signed integer constant

• 0 followed by an optionally signed integer constant

An exponent containing a 0 is processed identically to an exponent
containing an E.

The output field consists of blanks, if necessary, followed by a minus
sign if the internal value is negative, followed by a string of digits
that contains a decimal point. This string of digits represents the

SR-0009
Part 2

6-14 J

•

magnitude of the internal value. This representation is modified by
the established scale factor and is rounded to d fractional digits.
If the output field value is less than 1, a single 0 is written
immediately to the left of the decimal point, space permitting. If
the output field value is 0 and d is 0, a single 0 is written. In
no other cases are leading zeros written. If the value is too large
to print in the specified field, the field is filled with asterisks.
If the value is an out-of-range floating-point value, a single R is
printed, right-justified in the field.

Examples:

Input field positions F edit Internal
1 2 3 4 5 6 7 8 9 10 descriptor representation

1 7 7 6 1 9 7 6 F9.4 1776.1976

1 7 7 6 1 9 7 6 FIO.4 -1776.1976

1 7 7 6 1 9 7 6 F9.4 -1776.197

1 9 7 7 F4.0 1977.

1 9 7 7 F4.4 .1977

1 9 7 7 F2.0 19.

1 4 9 2 E 3 F8.0 -1.492

6 0 2 3 D 2 3 F8.3 602300000000000000000000.

The ANSI FORTRAN Standard does not specify output editing for values too
large to be printed in the specified field.

Internal F edit Output field positions
representation descriptor 1 2 3 4 5 6 7 8 9 10

3.1415926 F10.S 3 1 4 1 5 9

-3.1415926 F7.4 3 1 4 1 6

747 F4.0 7 4 7

0 F8.6 0 0 0 0 0 0 0

0 F8.5 0 0 0 0 0 0

0 F7.6 0 0 0 0 0 0

Part 2
SR-0009 6-15 J

I

E editing

The EW.d and ~.dEe edit descriptors indicate that the external
field occupies W positions. The fractional portion consists of d
digits unless the scale factor is greater than 1. The exponent portion
consists of e digits. e has no effect on input. If the value is an
out-of-range floating-point value, a single R is printed, right-justified
in the field.

The format of the input field is the same as for F editing.

The format of the output field for a scale factor of 0 is

where xl x2 ••• xd
are the d most significant digits of the rounded
data, and

exp is a decimal exponent of one of the following forms.

Edit Absolute value Output form
descriptor of exponent of exponent

Ew.d exp = 0 E+OO

FJJ.d 0< lexpl~99 E'±Y1Y2

&u.d 100~1 exp 1~999 '!:111Y2Y3

&u.d 1000~1 exp 1~2466 '!:11lY 2Y 3Y 4

EW.dEe lexpl~(lO**e) -It E.:!:Y1Y2Y3· • ·Ye

t If e is greater than the number of digits
necessary to express exp, leading zeros are
inserted.

An lexpl~lOOO value causes the entire field to be shifted left one
position to provide for Y4. If space has not been provided, the entire
field is replaced with asterisks.

I The value of W must be greater than d+5 for output.

SR-0009
Part 2

6-16 J

•

Examples:

Input field positions E edit Internal
1 2 3 4 5 6 7 8 9 10 11 12 descriptor representation

+ 1 0 4 8 5 7 5 7 5 Ell.2 1048575.75

1 0 4 8 5 7 5 7 5 Ell.O -1048575.75

3 8 Ell.ll .00000000038

1 5 9 2 E 3 E12.3 1592.

6 5 5 3 6 E 5 E8.3 .00065536

6 5 5 3 6 E 5 E9.3 .65536

3 2 7 6 8 D 0 4 EIO.3 -327680.

Internal E edit Output field positions
representation descriptor 1 2 3 4 5 6 7 8 9 10 11

365.26 EIO.2 0 3 7 E + 0 3

-365.26 Ell.5 3 6 5 2 6 E + 0 3

.000000099 Ell.3 0 9 9 0 E 0 7

100. Ell.2El 1 0 E + 3

100. Ell.2E4 1 0 E + 0 0 0 3

D (double-precision) editing

D editing is identical to E editing.

G editing

The Gw.d and GW.dEe edit descriptors indicate that the field occupies
w positions with d significant digits, and contains an exponent of e
digits.

G input editing is the same as F input editing.

Representation in the output field depends on the magnitude of the data
being edited. If N is the magnitude of the internal data, its value
determines the editing as follows.

SR-0009
Part 2

6-17 J

Magnitude of data Equivalent edit descriptors

O.l<N<l F(zv-4).d,4X -
1<N<10 F (zv-4) • (d-1) ,4X

· · · · · ·
1cP- 2<N<10d-1 F{lJ-4).1,4X

1cP-l <N<lcP F(W-4).0,4X

N<O.l or N>10d kp,&J.d

where k is the scale factor in effect. The scale factor is
effective only if the magnitude of the data exceeds the range for
effective F editing.

I The value of lJ must be greater than d+s for output.

Examples:

Input
1 2 3 4

6 2 9

6 2

+ 8 7 8

4 7 2 1

7 2 D 1

SR-0009

field positions
5 6 7 8 9

9 0 0 0 0

4 9 2 1

0 E 2

0

10 11 12

Part 2
6-18

G edit
descriptor

GS.1

G10.2

G9.4

G12.1

GS.O

Internal
representat io n

6290.

-.629

878.4921

47.21

720000000000.

J

Internal G edit Output field positions
representation descriptor 1 2 3 4 5 6 7 8 9 10 11 12

-324.876 G12.6 3 2 4 8 7 6

.487295343397 GlO.5 4 8 7 3 0

-72.59 GlO.3 7 2 6

.000000000019 G12.2 1 9 E 1 0

.000000000019 G9.l 2 E 1 0

10000. G12.2 1 0 E + 0 5

10000.01 G12.2 1 0 E + 0 5

10000. G12.2El 1 0 E + 5

10000. G12.2E4 1 0 E + 0 0 0 5

COMPLEX EDITING

Complex data consists of a pair of separate real data. Data editing must
be specified by two successively interpreted A, D, E, F, G, 0, R, or Z
edit descriptors. The first of the edit descriptors specifies editing
for the real part: the second for the imaginary part. The two edit
descriptors can differ. Nonrepeatable edit descriptors can appear
between two successive A, D, E, F, G, 0, R, or Z edit descriptors.

o (OCTAL) EDITING (CFT EXTENSION)

The Ow edit descriptor indicates the processing of an input list item
of type integer, real, complex, Boolean, or logical and a field width of
W positions. A double-precision list item can be used with an Ow
descriptor for output only.

On input, the field contains a string of from 0 to 22 octal digits or
blanks, representing a binary value to be stored into the list item.
This value is right-justified in the list item if fewer than 22 octal
digits are contained in the field. Unspecified bit positions are cleared
to O. A blank field is considered to be a field containing all zeros.
If the first nonblank character in the field is a minus, the ones
complement of the value is stored.

On output, the internal representation of the list item is converted to
octal and the rightmost w octal digits are right-justified in the field.

SR-0009
Part 2

6-19 J

I

If the list item is not of type double-precision and the field is larger
than 22 positions, the output contains leading blank characters. If the
list item is of type double-precision and W is greater than 45, the
output contains leading blank characters. If W is greater than 22, a
blank character occupies position (w-22) in the output field. This
character indicates the beginning of the double-precision portion. To
completely output a double-precision value, the value of W must be at
least 45.

Z (HEXADECIMAL) EDITING (CFT EXTENSION)

The ZW edit descriptor indicates processing of a list item of type
integer, real, complex, Boolean, or logical and a field width of W
positions.

On input, the field contains a string of from 0 to 16 hexadecimal
characters representing a zero or positive integral value (in the base-16
number system) to be stored into the list item. This value is
right-justified in the list item if fewer than 16 hexadecimal characters
are contained in the field; leading zeros are assumed. A blank field is
assumed to be a field of all zeros. If the first nonblank character in
the field is a minus, the ones complement of the value is stored.

On output, the internal representation of the list item is converted to a
zero or positive hexadecimal value and the rightmost W digits are
right-justified in the field. If the field is larger than 16 positions,
leading blank characters are output.

L (LOGICAL) EDITING

The LW edit descriptor indicates processing of a logical list item and
an input or output field width of W positions. The specified
input/output list item must be of type logical. On input, the list item
becomes defined with logical data. On output, the list item must be
defined with logical data.

The input field consists of a T for true or an F for false, optionally
followed by additional characters. The field can contain a leading
period or leading blanks.

The output field consists of w-l blanks followed by a T or F, depending
on the value of the internal data.

SR-0009
Part 2

6-20 J-02

Examples:

Input field positions L edit Internal
1 2 3 4 5 6 7 8 9 10 11 12 descriptor representation

T Ll (true)

T R U E L4 (true)

F L3 (false)

F A L S E L12 (false)

T 1 2 3 L7 (true)

F A B C L9 (false)

T L12 (true)

F LI2 (false)

Internal L edit Output field positions
representation descriptor 1 2 3 4 5 6 7 8 9 10 11 12

(true) L6 T

(false) L12 F

(true) LIO T

(false) Ll F

(true) Ll T

(false) L3 F

A (ALPHANUMERIC) EDITING

The A[W] edit descriptor is used with an input/output list item of type
character, logical, integer, real, or complex. W specifies the field
width. If W is not specified, the input/output list item must be of type
character, in which case the number of characters in the field is the
length of the character input/output list item. On input, the input list
item becomes defined with character data. On output, the output list item
must be defined with character data. Integer, real, and logical
input/output list items can contain up to eight characters~ complex, up to
16. W specifies a field of one to eight characters for list items not of

I type character.

SR-0009
Part 2

6-21 J

•
I
I

I

len is the length of the character list item. If the specified field
width for A input is greater than or equal to eight for noncharacter
variables or greater than or equal to len for character list items, the
rightmost eight or len characters of the input field form the internal
representation. If the specified field width is less than eight or less
than len in the case of character list items, the characters from the
input field are left-justified with 8-W or len-w trailing blank
characters added to form the internal representation.

If the specified field width for A output is greater than eight for
noncharacter variables or greater than len for character list items,
the output field consists of w-8 or w-len blanks followed by the
characters from the internal representation. If the specified field
width is less than or equal to eight (or less than or equal to len for
type character), the output field consists of the leftmost w characters
from the internal representation.

Input/output list items of type complex can contain up to 16 characters
in two storage units (computer words). Two A edit descriptors are
required to store a complex variable. In this case, each is applied to a
single input/output list item; the first to the first storage unit, the
second to the second storage unit.

The ANSI FORTRAN Standard does not provide for the use of A with
noncharacter list items.

Examples:

Input field
1 2 3 4 5 6 7

A B C D E F G

I N D E X

R T C

A B C D E F G

SR-0009

positions
8 9 10 11

H I J K

6

H I

Item
12 type

L Integer

Complex

Integer

Character*6

Part 2
6-22

A edit
descriptor(s)

A8

A8,A3

A3

A

Internal
representation

'ABCDEFGH'

·INDEX ••••• 6·

'RTC

'ABCDEF

J

•

Internal Item A edit Output field positions
representation type descriptor 1 2 3 4 5 6 7 8 9

8HABCDEFGH Integer A8 A B C D E F G H

8HABCDEFGH Real A9 A B C D E F G H

aHA-FORMAT Integer A3 A F

'ABC' Character A A B C

'ABC' Character Al A

'ABC' Character A4 A B C

R (RIGHT-JUSTIFIED) EDITING (CFT EXTENSION)

The RW edit descriptor is used with an input/output list item of type
logical, integer, real, or complex. On input, the input list item
becomes defined with W characters of character data. On output, the
output list item must be defined with w characters. RW edit
descriptor actions are identical to those of the AW edit descriptor
with the following two exceptions.

• Characters in an incompletely filled input list item are
right-justified with the remainder of that list item containing
binary zeros.

• Partial output of an output list item is from its rightmost
character positions.

Examples:

Input field positions R edit Internal
1 2 3 4 5 6 7 a 9 10 11 12

Item
type descriptor representation

ABC D E F G H I J K L Integer R8 'ABCDEFGH'

R T C

SR-0009

Integer R3 'iiiiiRTC'
(Where i is a null (0) character)

Part 2
6-23 J

I

Internal Item R edit Output field positions
representation type descriptor 1 2 3 4 5 6 7 8 9

'ABCDEFGH' Integer R8 A B C D E F G H

'ABCDEFGH' Real R9 A B C D E F G H

'A-FORMAT' Integer R6 F 0 R M A T

LIST-DIRECTED I/O

List-directed I/O allows data editing to be performed according to the
type of the list item instead of by a format specifier. List-directed
records consist of values and value separators. Each value is either a
constant, a null value, or one of the following forms.

where is an unsigned, nonzero, integer constant.

The p*o form is equivalent to P successive appearances of the
constant o. The p* form is equivalent to P successive null
values. Neither of these forms can contain embedded blanks, except where
permitted within the constant o.

Value separators can be in one of the following forms.

• A comma optionally preceded and followed by one or more contiguous
blanks

• A slash optionally preceded and followed by one or more contiguous
blanks

• One or more contiguous blanks between two constants or following
the last constant

LIST-DIRECTED INPUT

The form of a list-directed input value must be acceptable for the type
of the input list item. Blanks cannot be used as zeros. Embedded blanks

I are permitted only in complex constants and character constants.

SR-0009
Part 2

6-24 J

Type real or double-precision list items must be numeric and suitable for
F editing.

A type complex list item consists of an ordered pair of numeric fields
separated by a comma and enclosed in parentheses. The first numeric
field is the real portion of the complex constant; the second numeric
field is the imaginary portion. The end of a record can occur between
the real portion and the comma or between the comma and the imaginary
portion. Each numeric field can be preceded or followed by blanks.

A list item of type logical must not include either slashes or commas
among the optional characters permitted for L editing.

A type character list item has an input form with a nonempty string of
characters enclosed in apostrophes. Each apostrophe in a character
constant must be represented by two consecutive apostrophes without a
blank or end-of-record. Character constants can be continued from the
end of one record to the beginning of the next record. The end of the
record does not cause a blank or any other character to become part of
the constant. The constant can be continued on to as many records as
needed. A blank, comma, and slash can appear in character constants.

For example, if Len is the list item length, W is the character
constant length and Len is less than or equal to w, the leftmost
Len characters of the constant are transmitted to the list item. If
Len is greater than w, the constant is transmitted to the leftmost
W characters of the list item and the remaining Len-w characters of
the list item are filled with blanks. The effect is as if the constant
were assigned to the list item in a character assignment statement.

A null value has no characters before or between value separators. A
null value has no effect on the definition status of the corresponding
input list item. A single null value can represent an entire complex
constant but it cannot be used as either the imaginary or the real
portion alone. The end of a record following any other separator, with
or without separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a
list-directed input statement terminates execution of that input
statement after the assignment of the previous value. If additional
items are present in the input list, the effect is as if null values had
been supplied for them.

All blanks in a list-directed input record are considered to be part of
some value separator except for the following.

• Embedded blanks surrounding the real or imaginary portion of a
complex constant

• Leading blanks in the first record read, unless immediately
followed by a slash or comma

SR-0009
Part 2

6-25 J

LIST-DIRECTED OUTPUT

The form of the values produced is the same as that required for input,
except as noted otherwise. The values are separated by one of the
following.

• One or more blanks

• A comma optionally preceded and followed by one or more blanks

I New records begin as necessary but, except for complex and character
constants, the end of a record does not occur within a constant and
blanks do not appear within a constant.

Logical output constants are T for the value true and F for the value
false.

Integer output constants are produced with the effect of an IW edit
descriptor, for some value of W.

Real and double-precision constants are produced with the effect of
either an F edit descriptor or an E edit descriptor, depending on the
magnitude x of the value and a range lO**-2466<x<lO**2466 If
the magnitude x is within this range, the constant is produced with
OPFw.d; otherwise, lPEw.dEe is used. Reasonable values of w,
d, and e are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating
the real and imaginary portions. If two or more successive values in an
output record have identical values, a repeated constant of the form
r*e is produced instead of the sequence of identical values.

Character constants are not delimited by apostrophes and are not preceded
or followed by a value separator. Each internal apostrophe in a
character constant is represented externally by-one apostrophe.
Character constants have a blank character inserted by the processor for
carriage control at the beginning of any record that begins with the
continuation of a character constant from the preceding record.

Slashes as value separators and null values are not produced by
list-directed formatting.

Each output record begins with a blank character for carriage control
when the record is printed.

SR-0009
Part 2

6-26 J-02

PROGRAM UNIT SPECIFICATION 7

A program unit is a specific collection of FORTRAN statements and comment
lines. A program unit is either a main program or a subprogram.

A main program is a program unit that does not contain a FUNCTION,
I SUBROUTINE, ENTRY, RETURN, or BLOCK DATA statement. An optional PROGRAM

statement can be the first statement of a main program. An executable
program must contain one main program. Program execution begins with the
first executable statement of the main program. A main program must not
be referenced from a subprogram or from itself.

A subprogram is a program unit that can be referenced from a main
program or another subprogram. A subprogram begins with either a
FUNCTION, SUBROUTINE, or BLOCK DATA statement.

PROGRAM STATEMENT

Although the PROGRAM statement is optional, its use is strongly
recommended since several compiler options (for example, F, H) depend on
the presence of a PROGRAM statement. When used, it must be the first
statement of the main program.

The format of a PROGRAM statement is

PROGRAM pgm [(h)]

where pgm

h

is the symbolic name of the main program where the
PROGRAM statement appears, and

is a sequence of any allowable FORTRAN characters
except $.

The ANSI FORTRAN Standard does not provide for the h field in the
PROGRAM statement.

SR-0009
Part 2

7-1 J

I

The symbolic name pgm is global and must not be the same as the name of
an external procedure, block data subprogram, or common block in the same
executable program. The name pgm must not be the same as any local
name in the main program. It can be followed by a parenthesized
character string that has no effect on the executable program.

Examples:

PROGRAM A1B2C3D4

PROGRAM X (INPUT, OUTPUT)

FUNCTION SUBPROGRAMS

FUNCTION statements identify and reference function subprograms. See
part 1, section 4 for a description of function subprograms.

FUNCTION REFERENCE

A function reference references an intrinsic function, statement
function, or external function. The format of a function reference is

fun ([a [, a] •••])

where fun is the symbolic name of a function or dummy procedure,
and

a is an actual argument.

FUNCTION STATEMENT

The format of a FUNCTION statement is

[type] FUNCTION fun([d[,d] •••])

SR-0009
Part 2

7-2 J

I

where type can be INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER[*len],

fun is the symbolic name of the function subprogram where
the FUNCTION statement appears,

d

len

is a dummy argument representing a variable, array, or
dummy procedure name, and

is the length of the result of a character function.
len can be an unsigned, nonzero, positive integer
constant or positive integer constant expression
enclosed in parentheses (expression cannot include the
symbolic name of a constant), or an asterisk enclosed
in parentheses, (*).

The symbolic name of a function subprogram or an associated entry name of
the same type must appear as a variable name in the function subprogram

I and must be defined during execution of the procedure. If this variable
is a character variable with a length specification of (*), it must not
appear as an operand for concatenation except in a character assignment
statement.

STATEMENT FUNCTION DEFINITION STATEMENT

The format of a statement function definition statement is

fun ([d[,d] •••]) = e

where is the symbolic name of the statement function,

d is a statement function dummy argument, and

e is an expression.

The relationship between fun and e must conform to the assignment
rules in table 3-4, part 1, section 3. The type of the expression e
can be different from the type of the statement function name fun.

Each d is a variable name called a statement function dummy apgument.
The names of variables that appear as dummy arguments of a statement
function have a scope of that statement only. A given symbolic name can
appear only once in a single dummy argument list.

Statement function dummy arguments serve only to indicate the order,
number, and type of arguments for a single statement function. The same
symbolic names can be used to identify dummy arguments of the same type

SR-0009
Part 2

7-3 J

I

I

I

in a different statement function definition statement and to identify
variables (including dummy arguments of a subprogram) of the same type
appearing elsewhere in the program unit. They must not identify any
other entity in the program unit except a common block.

Each primary of the expression e must be one of the following.

• A constant

• The symbolic name of a constant

• A statement function dummy argument referenced as a variable

• A reference to a variable used elsewhere in the same program unit

• An array element reference

• An intrinsic function reference

• A reference to a statement function for which the statement
function definition statement appears in preceding lines of the
program unit

• An external function reference

• A dummy procedure reference

• An expression enclosed in parentheses

If a statement function dummy argument name is the same as the name of
another entity, the appearance of that name in the expression portion of
a statement function definition statement is a reference to the statement
function dummy argument. A dummy argument that appears in a FUNCTION or
SUBROUTINE statement can be referenced in the expression of a statement
function statement within that subprogram.

Examples:

DISCRIM(X,Y,Z)=Y**2-4.*X*Z

ROOT (A,B,C,SIGN) =(-B+SIGN*SQRT)/(2.*A)

CIRCUM(R)=6.283l852*R

VOL ()=4.l88790l*R**3
(where R appears elsewhere in the same program unit)

The length specification of a character statement function or statement
function dummy argument of type character must be an integer constant
expression.

SR-0009
Part 2

7-4 J

I

SUBROUTINE AND CALL STATEMENTS

SUBROUTINE statements identify subroutine subprograms. CALL statements
reference subroutine subprograms. See part 1, section 4 for a
description of subroutine subprograms.

SUBROUTINE REFERENCE

A subroutine is referenced by a CALL statement. The format of a CALL
statement is

where

CALL sub [([a [,a] •••])]

sub is the symbolic name of a subroutine or dummy
procedure, and

a is an actual argument or an alternate return specifier.

Execution of a CALL statement

Execution of a CALL statement results in the following.

• The evaluation of actual arguments that are expressions

• The association of actual arguments with the corresponding dummy
arguments

• The actions specified by the referenced subroutine

Control can be returned to the first executable statement following the
CALL statement or to a statement indicated by the alternate return
specifier argument. The format of an alternate return specifier is

where s is the statement label of the executable statement
located in the same program unit where CALL appears to
which control can be returned.

Return of control to the referencing program unit completes the execution
of the CALL statement.

SR-0009
Part 2

7-5 J-03

Examples:

CALL SAM

CALL GEORGE(X,-l)

CALL TOM(*lO,X,*20,Y)

SUBROUTINE STATEMENT

The format of a SUBROUTINE statement is

SUBROUTINE sub [([d[,d] •••])]

where sub is the symbolic name of the subroutine, and

d is a dummy argument representing a variable name, an
array name, a dummy procedure name, or an asterisk
associated with an alternate return specifier (See the
RETURN statement).

Examples:

SUBROUTINE SAM

SUBROUTINE GEORGE(A,B)

SUBROUTINE TOM(*,X,*,Y)

RETURN STATEMENT

A RETURN statement causes control to return to the referencing program
unit. The RETURN statement can appear only in a function or
subroutine subprogram.

The format of a RETURN statement in a function subprogram follows.

SR-0009
Part 2

7-6 J

I The format of a RETURN statement in a subroutine subprogram is

I

I RETURN tel I
where e is an integer expression indicating an alternate

return.

EXECUTION OF A RETURN STATEMENT

Execution of a RETURN statement terminates a reference to a function
or subroutine subprogram. Such subprograms can contain more than one
RETURN statement. A subprogram need not contain a RETURN statement
since execution of an END statement in a function or subroutine
subprogram has the same effect as executing a RETURN statement.
During program execution, a function or subroutine subprogram must not
be referenced twice without an intervening RETURN or END statement.

The value of a function must be defined before the execution of its
RETURN or END statement. Execution of a RETURN or END statement in a
procedure subprogram causes return of control to its referencing
program unit.

Return of control to the referencing program unit completes execution
of the CALL statement.

If a named common block appears in the main program, the entities in
the named common block do not become undefined upon execution of any
RETURN or END statement in the executable program.

ALTERNATE RETURN

The alternate return option permits control to be returned to the
statement identified by the alternate return specifier in the
corresponding CALL statement. The value of e references the eth
asterisk in the dummy argument list of a SUBROUTINE or ENTRY statement.

Asterisks in these dummy argument lists are associated with the
alternate return specifiers in the CALL statement. If e is less
than one or greater than the number of asterisKs specified, RETURN e
is treated as RETURN.

In the following example, execution of statement 10 returns control to
statement 5, and execution of statement 11 returns control to
statement 6.

SR-0009
Part 2

7-7 J

Example:

CALL SUB (*5,A,B,*6)

5 statement

6 statement

SUBROUTINE SUB (*,A,B,*)

10 RETURN 1
11 RETURN 2

ENTRY STATEMENT

The ENTRY statement appears only in a procedure subprogram to permit
its being entered at any executable statement not within a DO-loop or
IF-block range. A procedure subprogram can contain one or more ENTRY
statements following its FUNCTION or SUBROUTINE statement.

I The format of an ENTRY statement for a function or subroutine subprogram
is

I

I

ENTRY en [([d [,d] •••])]

where en

d

SR-0009

is a function or subroutine name that is an entry in
the procedure subprogram, and

is a dummy argument representing a variable name,
array name, dummy procedure name, or an asterisk
associated with an alternate return specifier.

Part 2
7-8 J

I An alternate return asterisk can only be used in a subroutine ENTRY
statement.

REFERENCING A PROCEDURE SUBPROGRAM ENTRY

Referencing an en in a function or subroutine subprogram is the same as
referencing the function or subroutine subprogram name. Execution begins
with the first executable statement following that ENTRY statement.

The order, number, and types of names appearing as dummy arguments in an
ENTRY statement must agree with the actual arguments in any reference to
that ENTRY statement. These names need not agree with those specified in
a FUNCTION, SUBROUTINE, or other ENTRY statement in the same subprogram.
Agreement of type is not required where a dummy argument corresponds to an
actual argument specifying a subroutine name or an alternate return
specifier since no type is associated with either a subroutine name or an
alternate return specifier.

ENTRY ASSOCIATION IN FUNCTION SUBPROGRAMS

The function name en specified in an ENTRY statement in a function
subprogram is associated with all variables associated with the function
name appearing in the FUNCTION statement. When anyone of these variables
becomes defined, all associated variables and function names of the same
type also become definedJ those not of the same type become undefined. A
function name appearing in a FUNCTION statement can differ in type from
function names appearing in ENTRY statements in the same subprogram.

ENTRY STATEMENT RESTRICTIONS

A function or subroutine name specified in an ENTRY statement cannot be
the same as any name specified in PROGRAM, BLOCK DATA, FUNCTION,
SUBROUTINE, or ENTRY statements in the same executable program.

The function name specified in an ENTRY statement must not appear as a
variable in any statement preceding that ENTRY statement except for a type
statement.

A name appearing as a dummy argument in an ENTRY statement cannot appear
in an executable statement preceding that ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement preceding the
executable statement.

SR-0009
Part 2

7-9 J

I

An asterisk is permitted as a dummy argument only in subroutine
subprograms. In a subprogram, a dummy argument specified in an ENTRY
statement cannot be referenced in a statement function statement unless
it also appears as a dummy argument in the statement function statement
Or in a preceding FUNCTION, SUBROUTINE, or ENTRY statement.

If a dummy argument name is referenced in an executable statement, it
must also be specified in that FUNCTION, SUBROUTINE, or ENTRY statement
referenced before execution of the executable statement.

EXTERNAL STATEMENTS

An EXTERNAL statement identifies a symbolic name as representing an
external procedure and permits its use as an actual argument.

The format of an EXTERNAL statement is

EXTERNAL pPO~ [,pPO~] •••

where pPO~ is the name of an external procedure, dummy procedure,
or block data subprogram.

The appearance of a name in an EXTERNAL statement declares that name to
be an external procedure name. If an external procedure name is to be an
actual argument in a program unit, it must appear in an EXTERNAL
statement in that program unit. A statement function name must not
appear in an EXTERNAL statement.

If an intrinsic function or utility procedure name appears in an EXTERNAL
statement, that name becomes the name of some external procedure. The
intrinsic function or utility procedure of the same name is not available I for reference in that program unit.

A given symbolic name can appear only once in all of the EXTERNAL
statements of a program unit.

Example:

MAIN is the main program of an executable program that includes the
functions STAT, STDEV, and MEAN. Considering just the main program, the
syntax in which the symbolic name STAT appears defines it as the name of
a function. The names STDEV and MEAN, however, appear in a syntax
incapable of defining them as function names. This definition is
established by the EXTERNAL STDEV, MEAN statement in the second line.

SR-0009
Part 2

7-10 J

•

PROGRAM MAIN FUNCTION STDEV(S)

EXTERNAL STDEV,MEAN

STDEV = RMDS

X = STAT(STDEV,SIGMA) END

Y = STAT(MEAN,SIGMA) REAL FUNCTION MEAN(S)

END MEAN = AVG

FUNCTION STAT(OP,VALU) END

STAT = OP(VALU)

END

BLOCK DATA STATEMENTS

Block data subprograms provide initial values for variables and array
elements in named common blocks.

The format of a BLOCK DATA statement is

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in
which the BLOCK DATA statement appears.

The optional name sub is a global name and must not be the same as the
name of an external procedure, main program, or other block data
subprogram in the same executable program. The name sub must not be
the same as any local name in the subprogram.

During one invocation of CFT, 26 un-named block data subprograms can be
encountered. CFT assigns the name LOCKDATA to the first un-named block
data subprogram, LOCKDATB to the second, LOCKDATC to the third, etc. Use
care with un-named block data routines since the loader does not load
multiple routines with the same name, as is caused by separate
compilations of two different un-named block data routines. Any number
of differently named block data subprograms can be specified in an
executable program.

SR-0009
Part 2

7-11 J

•

The ANSI FORTRAN Standard allows only one un-named block data subprogram.

Example:

BLOCK DATA BDl

COMMON/NAME1/TABLEA,TABLEB,TEST1,TEST2

DIMENSION TABLEA(lO,lO),TABLEB(6,2,2)

DATA TABLEA/100*123./,TABLEB/12*O.,12*1./

DATA TEST1/72.35E-20/

END

SR-0009
Part 2

7-12 J

PART 3

THE CFT COMPILER

CFT COMPILER I/O

The Cray FORTRAN Compiler (CFT) transforms a Cray FORTRAN language
program into an executable program in relocatable binary that can be
loaded and executed on the CRAY-l or CRAY X-MP Computer System.

When a CFT control statement is executed, the Cray Operating System (COS)
calls upon the system loader to load CFT from the mass storage
subsystem. The compiler responds to information in a COS job deck to
locate and compile the FORTRAN program. Both binary and symbolic
information are output from the compiler.

In this section, CFT is described in terms of its input and output
characteristics.

THE CFT CONTROL STATEMENT

The CFT compiler is loaded and executed when a CFT control statement is
I encountered in the control statement stream.

The format of the CFT control statement is

I CFT,I=idn,L=ldn,B=bdn,c=odn,E=n,EDN=edn,ON=string,oFF=string,

TRUNC=nn,AIDS=aids,OPT=option,MAXBLOCK~b,INT=il,

I ALLOc=allocation,cpu=cputype:characteristics,UNROLL=r,DEBUG,

I SA VEALL, ANS I.

1

SR-0009
Part 3
1-1 J-03

Options can be in any order. If a keyword and option are omitted from
the statement, the compiler uses a default value. A left parenthesis can
be used in place of the first comma. A right parenthesis can be used in
place of the period. If all options are omitted, a period can be used in

I place of empty parentheses. Dataset names are limited to 7 characters.

I

I

I
I

I

I

I

The compiler does not reposition datasets before or after compilation.

I=idn

L=ldn

B=bdn

c=cdn

E=n

SR-0009

Name of dataset containing source input: default is $IN.

Name of dataset to receive list output: default is $OUT.
L=O suppresses all list output except for error messages
written on $OUT. If L=O is specified, individual list
options (see table 1-2) specified by the ON= specification
are overridden.

Name of dataset on which compiler writes binary load
modules: default is $BLD. If B=O, no binary load files are
written. An end of file is not written.

Name of pseudo Cray Assembly Language (CAL) dataset:
default is no dataset. This option provides for the
generation of a text file that contains acceptable input to
the CAL assembler with minor manual corrections. DATA
statements are not supported with this option. It is
intended to be used for hand coding of inner loops for
enhanced efficiency.

Level of severity of CFT-produced messages to be listed.
The following levels are available. (Also see the ANSI
parameter.)

Message
level

1

2

3

4

Severity
type

COMMENT

NOTE

CAUTION

WARNING

Description

Comments on programming
inefficiencies (vectorization
messages are controlled by the
AIDS parameter)

May cause problems with other
compilers (Example: non-ANSI 66)

Possible user error (Example: no
path to a statement)

Probable user error (Example:
using an array with too few
subscripts)

Part 3
1-2 J-03

EDN=edn

Message
level

5

n

Severity
type

ERROR

Description

Fatal error

The highest message levels to be
suppressed. For example, E=2
allows CAUTION, WARNING, and ERROR
messages to appear. Fatal errors
are never suppressed. Default is
E=3. If E=O is specified, no
suppression takes place. (Also
see the ANSI parameter.)

Name of dataset rece~v~ng an alternate error listing,
default is no dataset. Error messages with a higher severity
type than E=n type are printed on dataset edn. Error
messages printed to Zdn are not affected by EDN.

oN=stping Enables compile options (see table 1-2, list of up to 15
characters representing options to be enabled)

OFF=stping
Disables list or compile options (see table 1-2, list of up
to 15 characters representing options to be disabled)

TRUNC=nn Number of bits to be truncated. Range is 0<nn~47.
Default is nn=O. Specifies truncation for all
floating-point results. Does not truncate double-precision
results, function results, or constants. Truncated bits
are set to o.

AIDS=aids Controls number of vectorization inhibition messages to
be listed. aids can be one of the following.

aids

LOOPNONE

LOOPPART

LOOPALL

Description

No messages issued

Maximum of 3 messages per inner DO-loop up
to a total of 100 messages per compilation
(default option)

All messages issued

OPT=option

SR-0009

Specifies optimization options. When selecting multiple
options, separate values by colons. Option values are:

Part 3
1-3 J-03

• SR-0009

option Description

NOZEROINC Assumes constant increment integers are not
incremented by variables with the value 0
(default option)

ZEROINC Assumes constant increment integers (CII)
can be incremented by variables with the
value O. This option inhibits the
vectorization of any DO-loop in which there
are Clls of the form CII=CII+VARIABLE.

NO I FCON Disables optimization of conditional
replacement statements of the form
IF(logi~al exp)var=expreaaion except
where CFT replaces these statements with
MAX/MIN intrinsic functions (default option)

PARTIALIFCON Allows CFT to optimize conditional
replacement statements of the form
IF(logi~al exp)var=expreaaion if
Var is of type integer, real, or logical,
and expression does not involve division
or an external function reference. The
optimization causes CFT to generate code
similar to var=CVMGx(expresaion,var,~ondition).
If the optimization is performed, the IF
statement will not inhibit vectorization or
break an optimization block. See CDIR$
NOIFCON and CDIR$ RESUMEIFCON.

FULLIFCON Allows CFT to optimize conditional
replacement statements as described for
PARTIALIFCON, except conditional
replacement statements involving division
and external functions are also optimized.

FASTMD Causes CFT to use the fast integer multiply
and divide algorithms. Operands and
results are limited to 46 bits; there is no
overflow protection.

SLOWMD

SAFEDOREP

causes CFT to generate the full 64-bit
integer multiply and divide (default option)

Enables replacement of I-line DO-loops with
a call to a $SCILIB routine performing the
same operation more efficiently (default
option). Replacement does not occur when a
I-line DO-loop contains potential
dependencies or equivalenced variables.

Part 3
1-4 J-03

• SR-0009

option

SAFEDOREP
(continued)

FULLDOREP

NODOREP

INVMOV

NO I NVMOV

UNSAFE IF

SAFEIF

BL

NOBL

Description

See part 3, section 2 for examples on the
use of SAFEDOREP. DO-loop replacement can
be disabled and re-enabled within a program
unit by specifying CDIR$ NODOREP and
RESUMEDOREP, respectively.

Enables replacement of I-line DO-loops' with
a call to a $SCILIB routine performing the
same operation more efficiently. Potential
dependencies and equivalences are ignored.
DO-loop replacement can be disabled and
re-enabled within a program unit by
specifying CDIR$ NODOREP and RESUMEDOREP,
respectively.

Disables replacement of I-line DO-loops
with a call to a $SCILIB routine. NODOREP
has no effect on vectorization of loops in
the program. When OPT=NODOREP is
specified, CDIR$ RESUMEDOREP is ignored.

Enables movement of invariant code from a
DO-loop body into the loop preamble
(default option)

Disables movement of any invariant code
from the DO-loop body into the loop preamble

Enables instructions to move over a branch
instruction by the instruction scheduler

Disables instructions moving over a branch
instruction. Prevents movement of a
floating-point operation or subscripted
reference before the branch of an IF
statement put in to protect the operation
(default option).

Enables scalar loops to be bottom loaded,
operand prefetched over the branch of the
loop (default option) •

Disables scalar loops to be bottom loaded,
intended to obtain correct code where the
subscript for a load would be out of range
if executed.

Part 3
1-5 J-03

option

BTREG

I
I

I

I
NOBTREG

I

SR-0009

Description

causes CFT to allocate specific scalar
variables in a program unit to T registers
during the program unit existence. Some
variables, such as dummy arguments, arrays,
and variables named in SAVE, DATA, COMMON,
or NAMELIST statements and variables named
in I/O control information lists are
allocated to memory.

The maximum number of T registers available
for variable allocation is 24. If there
are fewer than 24 local integer (including
INT24), real, logical, and compiler-generated
variables, the remaining T registers are
used as scratch registers during expression
evaluation. If there are more than 24
variables in a program unit, the first 24
variables in the source code are allocated
to the T registers and the remaining
variables are allocated to memory.
Specific variables can be forced into T
registers by declaring them part of the
first 24 variables at the beginning of a
program unit. Variables can be excluded
from T registers by specifying their names
in a SAVE statement.

Variables allocated to T registers are not
initialized upon routine entry and become
undefined when a RETURN or END is
executed. Subprograms depending on local
variables retaining their values across
calls, which violates the ANSI FORTRAN
standard, do not work properly unless the
SAVE statement is used. (See the SAVEALL
control statement option and table 1-1 in
this section.)

Multitasked programs can use the BTREG
option1 however, all variables passed as
arguments to a task, through TSKSTART, must
be excluded from T registers (for example,
named in a COMMON or SAVE statement).

Causes CFT to allocate all user variables
to memory. NOBTREG does not affect the
allocation of compiler-generated variables
to B or T registers or the use of B or T
registers temporarily holding values during
expression evaluation. Default is NOBTREG.

Part 3
1-6 J-03

I

CVL

NOCVL

KEEPTEMP

KILLTEMP

Allows CFT to compile loops with specific
ambiguous dependencies in vector and scalar
versions. A run-time test will determine
which version is used. Default is OPT=CVL.

Prevents CFT from compiling loops with
ambiguous dependencies in vector and scalar
versions. A run-time test will determine
which version is used.

Variables used as scalar temporaries will
have the correct updated values when the
vector DO-loops execute (default option)

Variables used as scalar temporaries in
vector DO-loops (see part 3, section 2) do
not have their values updated when the
DO-loops execute. The values of the scalar
temporaries will be undefined when the
DO-loops terminate.

MAXBLOCK=mb

INT=il

Allows CFT to optimize or vectorize a block of code with a
length up to mb words. Default is 2310 words of inter.nal
intermediate text. Values larger than 2310 may increase
optimization but there may also be internal compiler errors
(the errors may be undetected by CFT). MAXBLOCK=l
eliminates optimization or vectorization.

Length of integers. il values are as follows.

il Description

64 Full 64-bit integers (default option)

24 Short 24-bit integers

ALLOc=allocation

SR-0009

Specifies memory allocation scheme for entities in memory.
allooation can be one of the following.

allooation

STATIC

Description

All memory is statically allocated; a
stack is not used (default option). (See
the SAVEALL parameter, BTREG control
statement option, and table 1-1.)

Part 3
1-7 J-03

I

allocation

STACK

HEAP

Description

Read-only constants and entities in a DATA
statement, SAVE statement, or a common
block are statically allocated. All other
entities are allocated on the stack.

Deferred implementation

cpu=cputype:characteristics

SR-0009

Specifies mainframe type and optional mainframe
characteristics running the generated code1 default is the
machine running CFT.

cputype Description

CRAY-IA Generates code for CRAY-I A Computer Systems
CRAY-IB Generates code for CRAY-I B Computer Systems
CRAY-IM Generates code for CRAY-I M Computer Systems
CRAY-IS Generates code for CRAY-I S Computer Systems
CRAY-XM!? Generates code for CRAY X-MP Computer Systems

characteristics Description

EMA:NOEMA

Cl:NOCI

GS:NOGS

VPOP: NOVPOP

Target machine does/does not have
extended memory addressing
Target machine does/does not have
compressed index hardware
Target machine does/does not have
gather/scatter hardware
Target machine does/does not have a
vector population count functional
unit

Characteristic specification is optional, but it requires a
cputype. The cputype assumes the minimum characteristics
for that mainframe. For example, specifying CPU=CRAY-IA
does not assume the VPOP characteristic. If the target
machine has a vector population count functional unit
upgrade, the CFT control statement requires the
CPU=CRAY-lA:VPOP specification to use the vector population
count hardware.

Unspecified characteristics are assumed to be disabled.
For example, if CPU=CRAY-XMP:NOEMA is specified, NOGS and
NOCl are assumed to be the minimum set of characteristics
for a CRAY X-MP Computer System.

Part 3
1-8 J-03

UNROLL=r Specifies that inner DO-loops with constant limits
iterating r times or less may use DO-loop unrolling. The
maximum value of r is 9, and the default value is 3.
DO-loop unrolling makes n copies of the DO-loop body,
where n is the trip count, and replaces all occurrences

DEBUG

of the DO control variable with constants. The DO control
variable is set to the same value it would have had if the
DO-loop did not unroll. A DO-loop is not unrolled if it
has labels, references to labels, external calls, or
modifications to the DO control variable. A DO-loop must
also be small enough to make unrolling practical. UNROLL=O
turns DO-loop unrolling.off.

Writes sequence number labels at each executable FORTRAN
statement to the Debug Symbol Table, allowing breakpoints
to be set with SID at statement sequence numbers. DEBUG
forces ON=IZ and sets MAXBLOCK=l. DEBUG on the control
statement enables recognition of CDIR$ DEBUG and CDIR$
NODEBUG.

If DEBUG is not specified on the control statement
(default), CDIR$ DEBUG and CDIR$ NODEBUG are ignored and
debugging is turned off for the compilation.

SAVEALL Compilation occurs as if a SAVE statement with an empty
list was in each program unit. All user variables in a
program unit are allocated to static storage.
Compiler-generated variables are allocated to B or T
registers.

ANSI

SR-0009

SAVEALL overrides OPT=BTREG. SAVEALL can be specified with
ALLOC= S TACK , that is, CFT uses the stack only for
compiler-generated variables, argument lists, etc. (See
the BTREG option, the ALLOe parameter, and table 1-1.)

Enables non-ANSI messages to be printed at compile time.
Some of these messages have a NOTE, CAUTION, or WARNING
severity type when ANSI is not selected as an option.
Specifying ANSI on the eFT control statement causes CFT to
further analyze the compiled code and detect more
occurrences of nonstandard FORTRAN. When ANSI is
specified, messages indicating nonstandard code are issued
with the prefix NON-ANSI instead of NOTE, CAUTION, or
WARNING. A count of the non-ANSI messages is placed in the
logfile. When ANSI is used, non-ANSI messages are issued
regardless of the severity type of eFT messages selected
with the E parameter. ANSI is disabled by default.

Part 3
1-9 J-03

I

I

Table 1-1. Effect of ALLOC, SAVEALL, and BTREG on
variable allocation

Variable appears in:

SAVE, Array Other
DATA, or declaratives: user
COMMON CHARACTER variableJ't
statement! COMPLEX

DOUBLE
EQUIVALENC E

When options are: NAMELIST

ALLOC= SAVEALL BTREG or
specified NOBTREG

STATIC no NOBTREG static static static
(default) (default) (default)

STATIC no BTREG static static register
(default) (default) or static

STATIC yes either static static static
(default)

STACK no NOBTREG static stack stack
(default) (default)

STACK no BTREG static stack register
(default) or stack

STACK yes either static static static

Compiler-
generated
var iableittt

register
or static

register
or static

register
or static

register
or stack

register
or stack

register
or stack

t An ent1ty appear1ng 1n (or equ1valenced to an ent1ty appear1ng 1n) a SAVE, DATA, or
COMMON statement is allocated to static memory: otherwise, refer to the array
declaratives or other user variable entries in table 1-1.

tt A user variable is allocated to a T register if it appears in table 1-1 and the variable
is one of the first 24 variables in the program unit. Local scalar variables not
appearing in EQUIVALENCE, DATA, or NAMELIST declaratives are also allocated to T
registers.

ttt Compiler-generated variables include DO-loop trip counts, dummy argument addresses,
temporaries used in expression evaluation, argument lists, and variables storing
adjustable dimension bounds at entries. A compiler-generated variable is allocated to a
register or memory depending on how the variable is used.

SR-0009
Part 3

1-10 J-03

•

where

register Value allocated to the T register or value or address
allocated to the B register (memory is not allocated) ;
values terminated when a END or RETURN is executed.

static Value allocated to Permanent Static Memory maintained as
long as the job step exists.

stack Value allocated to Local Stack Memory; values terminated
when an END or RETURN is executed.

ERROR MESSAGES DURING PROGRAM EXECUTION

While under control of COS, the executable program calls on system
routines to accomplish its mathematical, input/output, and utility
operations. These operations are required during compilation of the
program. They are loaded from the system or user libraries and linked to
the program by the system loader (LOR). When used, the routines respond
to programming and/or equipment discrepancies by placing messages in the
jobfile and in the $OUT dataset. These discrepancies also cause the job
to abort. The COS error messages and descriptions appear in the CRAY-OS
Message Manual, publication SR-0039.

INPUT TO CFT

CFT, when initiated, seeks two types of information: the program to be
compiled and instructions on controlling the compilation.

A FORTRAN program to be compiled by CFT must be specified in a form using
the ASCII character codes listed in Appendix A and the formats specified
in part 2. The result is soupoe oode.

Other information required by CFT to complete its operations is provided
by COS and compiler directives specified in the program being compiled.
(See a description of compiler directives later in this section.) This
information includes identification of the input dataset containing the
source and identification of datasets receiving binary and listable
output from CFT during compilation. The CFT options to use are specified
in the CFT control statement. (See the subsection on the CFT control
statement described earlier in this section.)

SR-0009
Part 3
1-11 J-03

•

Option

A

B

C

D

E

F

G

H

I

J

L

N

Table 1-2. Compiler options

Description

Aborts job after compilation if any program
unit contains a fatal error

Lists beginning sequence number of each code
generation block (G implies B)

Lists common block names and lengths listed on
ldn after each program unit

Lists DO-Loop Table

Enables recognition of compiler directive lines

Enables FLOWTRACE option. (Also see FLOW/NOFLOW
directives.)

Lists generated code for each program unit. t

(See CODE/NOCODE directives)

causes listing of the first statement of each
program unit and error messages. All other list
options are ignored or disabled.

Enters compiler-generated statement labels in the
Symbol Table

Causes all DO-loops to be executed at least once

Enables recognition of output listing control
directives

Enters null symbols in the Symbol Table (defined
but not referenced)

Default

OFF

OFF

ON

OFF

ON

OFF

OFF

OFF

OFF

OFF

ON

OFF

t The G option lists the skeleton for the code generated for ENTRY and
RETURN sequences. The actual number of Band T registers saved and the
address where they are saved are not indicated. If no T registers are
to be saved, the instruction to save T registers is replaced by a pass
instruction.

SR-0009
Part 3
1-12 J-03

•

option

o

P

Q

R

S

T

U

v

W

x

z

Table 1-2. Compiler options (continued)

Description Default

Prints a message identifying any array references OFF
with out-of-bounds subscripts found during
executiont • Enables the BOUNDS compiler
directives.

Allows double precision. Setting OFF=P causes ON
at compile time:
1. All double-precision declaratives to be

treated as real,
2. Double-precision functions to be changed to

the corresponding single-precision functions,
3. Double-precision constants to be converted as

double-precision and truncated to real,
4. D's in FORMAT statement to be changed to E.

Aborts compilation when 100 fatal error messages ON
counted

Rounds results on multiply operation ON

Lists FORTRAN source code ON

Lists the Symbol Table after each program unit ON

Enables recognition of INTEGER*2 declaration. ON
OFF=U processes variables declared INTEGER*2
as 64-bit integers.

Vectorizes inner DO-loops ON

Compiles all floating-point operations as return OFF
jumps to user-supplied external routines. tt
(See table 1-3.)

Lists the Symbol Table with cross references after OFF
each program unit (X overrides T)

Writes the Debug Symbol Table on $BLD OFF

t Bounds checking inhibits many optimizations eFT normally performs.
tt The W option has no effect on complex or double-precision arithmetic,

intrinsic functions, or expressions in a DATA or PARAMETER statement.

SR-0009
Part 3
1-13 J-03

I

OUTPUT FROM CFT

Relocatable binary output is written on the B-dataset in a format suitable
for input by the system loader, LDR, one record per program unit. When
requested, LDR loads and links this file plus routines required from the
system or user libraries.

LISTABLE OUTPUT

CFT optionally produces a dataset containing the following.

• A source statement listing

• Error messages and their severity

• Tables of statement numbers, names encountered, parameters
encountered, block names and their octal lengths, external names,
and loops encountered

The CFT control statement and compiler directives allow the user to
control this output and specify the receiving dataset. Listable output
is divided into pages. The number of lines per page is controlled by the
LPP parameter on the OPTION control statement (see the CRAY-OS Version 1
Reference Manual, publication SR-OOll).

Page header lines

Each page of listable output contains a header line with the following
information.

• The name of the program unit (except for the first page for each
program unit)

• The current page number within the program unit

• The truncation count, if nonzero (see the TRONC parameter on the
CFT control statement, earlier in this section)

• A list of compiler options currently turned on (see table 1-2)

• The date and time compilation began

• The CFT revision level and assembly date

• The global page number

SR-0009
Part 3

1-14 J-03

•

Source statement listings

The source statement listing is generated when the S list option is
selected. The listing is a record of all FORTRAN statements comprising
the program as they are sequentially read and interpreted from the source
input dataset. A sequence number is listed for each statement identifying
its position in the program. A line number for each line is listed to
the left of the sequence number. Continuation lines and comments are
separate lines but not separate statements. Errors encountered during a
statement compilation are flagged by lines subsequent to that statement
or recorded at the end of the source statement listing.

BLOCK BEGINS messages

CFT divides program units into smaller units called blocks. These blocks
are the basic units optimized by CFT. Specifying ON=B or ON=G in the CFT
control statement produces a BLOCK BEGINS message for each block, listing
the sequence number and relative program address of the beginning of each
block. If ON=B or ON=S is selected, the message VECTOR LOOP BEGINS is
listed for blocks with a vector loop.

A vector block can begin several lines before a vectorized DO-loop.
(Only an innermost loop is a candidate for vectorization.) Results
calculated in this loop preamble are used by the optimizer in the loop.
Debugging instructions should be inserted between blocks to avoid
altering the generated code of the block being tested.

Table of statement numbers

The table of statement numbers can be in a short form, excluding cross
reference information (T option) or in a long form, including cross
reference information (X option). In either case, the table lists all
statement numbers used in the program unit, followed by a suffix
indicating whether the number is inactive (SN), a FORMAT statement, or
undefined (UNDEF*). For active statements, the relative address of the
beginning of the statement is given.

Statement numbers are internally generated for logical IF statements,
implied-DO statements, and ENTRY statements. A 5-digit number in
sequence starting with 00001 is generated with leading zeros present and
significant.

For DO-loops, two internally generated statement labels are created, one
at the top of the loop (the reloop point) and one after loop termination
control (the zero trip point). These labels are generated by suffixing
the loop terminal number with letters A, B, etc., taken in pairs.

By default, internally generated numbers are not listed in this table.
Specifying ON=I lists them.

SR-0009
Part 3
1-15 J-03

•

Table of names encountered

This table has a short form, excluding cross reference information (T
option) and a long form, including cross reference information (X
option). In either case, the following fields of information are
presented.

• Address

• Name

• Type

• Main usage

• Block

Address field - Values in this f.ield are in octal and are either
addresses relative to the beginning of the program, the local stack area,
or a named common block; or a B or T register number.

Name field - The name field contains an alphabetized list of all symbolic
names specified in the program unit. If the PROGRAM statement is omitted
from the executable program, CFT identifies the main program with the
name $MAIN.

Type field - The type field gives the type of array, variable, or program
unit and can contain the following.

Significance

C Complex

D Double precision (prefix to other types, if they are double)

I Integer (64 bits)

II Integer (24 bits)

L Logical

R Real

CH Character

none Typeless function or subroutine

If the item is defined or declared but not used, the type code is
preceded by *.

SR-0009
Part 3
1-16 J-03

I

I

I

Main usage field - An entry in this field describes the use of the
corresponding symbolic name and can contain the following.

nD. EQ. ARRAY

nDIM ARRAY

ENTRY

EQUIVALENCE

EXTERNAL

INTRINSIC

PARAMETER

ST. FUNCTION

UNDEF EQUIV

UNDEFINED * **
VARIABLE

iT-REG

Significance

n-dimensional array in EQUIVALENCE

Array with n dimensions (1<n<7)

Entry

Variable or array in EQUIVALENCE

External function or subroutine

Intrinsic function

Symbol appears in PARAMETER statement

Arithmetic statement function

Variable or array appears in EQUIVALENCE, but
does not appear on the left side of an assignment
operator or in a DATA statement

Variable or array never defined

Simple variable

Simple variable assigned to a T register instead
of memory

Block field - The block field identifies the common block containing a
variable or array. If no common block name appears, the variable or
array is local to the program unit. If the name 1ST appears, the
variable or array is assigned to stack storage. If the name iT-REG or
iB-REG appears, the variable is permanently assigned to a register.

If the common block name is preceded by a i, the common block is declared
a task common block. All variables declared in a task common block are
assigned to the task common block heap. For more information, see task
common blocks in part 1, section 4.

If the symbol is a dummy argument to the subroutine or function, the
field contains the characters DUM.ARG. and the address field contains the
dummy argument number.

If the symbol is a pointee, the field contains the characters POINTEE and
the address field contains the pointee number.

SR-0009
Part 3
1-17 J-03

I
Table of parameters encountered

This table contains the names and values of the symbolic constants and is
generated only when cross-reference information (X or T option) is
requested.

Table of block names and lengths in octal

This table lists the name of each block referenced in the program unit
preceded by its word length in octal. The C list option controls this
table.

The program block is the first block listed and it has the same name as
the program unit being compiled. Pound blocks follow the program block
and their names begin with a i sign. The program block and pound blocks
are created by the compiler and contain code and static data to execute
the compiled program unit.

The Static Space Table and Stack Space Table follow the Block Name and
Length Table and describe space usage of the compiled program units. The
C list option controls printing of the Static and Stack Space Tables.

The Static Space Table describes how space is used in program and pound
blocks. The Static Space Table has the following entries.

B SAVE

T SAVE

CONSTANTS

VARIABLES

Number of words reserved to hold values in B registers1 one
number greater than the number of B registers used by the
generated code.

Number of words reserved to hold values in T registers1
equal to the number of T registers used by the generated
code.

Number of words reserved to hold read-only constants.

Number of words reserved for local variables, including
variables declared by the user and variables created by the
compiler.

TEMPORARIES

CODE

SR-0009

Number of words reserved to hold temporary variables.
Temporary variables are compiler-generated variables and
are usually reused from code block to code block.

Number of words occupied by generated code.

Part 3
1-18 J-03

•

TOTAL Number of static words required to execute the compiled
program unit, equal to the sum of the preceding items and
also the sum of the lengths of program and pound blocks.

If stack mode is requested (see the subsection on the CFT control
statement for a description of the ALLOC parameter), the table describing
stack space usage in the program units is printed. The Stack Space Table
has the same format as the Static Space Table and contains the number of
words of stack space required for the B-register save area, T-register
save area, stack-based variables, and stack-based temporaries. The
amount of stack space needed by the program unit is also printed.

Table of external names

This table is generated only when cross reference information (X option)
is requested and contains external names and source program references.

Table of loops encountered

This table presents the following fields of information relevant for
program loops when the D list option is selected.

Label

Index

From

To

Address

Length

Statement number ending the loop

DO-loop index

Beginning source line number

Ending source line number

Parcel address of loop start (blank if no loop is generated)

Octal number of words of code generated for the loop body.
When a loop is not generated for a DO-loop, such as a short
vector loop, the word INLINE appears in place of the length.

Cross-reference information

Cross-reference information is optionally included in the list output
with the selection of the X list option. When requested, the table o£
statement numbers, the table of names encountered, and the table of
external names include the source program references. These references
are keyed to the source listing line numbers. The following codes are
used in these references.

SR-0009
Part 3
1-19 J-03

I

A
D
E
I
J
L
N
P
R
S
U
W
?

Messages

Significance

Used in FORTRAN ASSIGN statement
Defined in declarative statement
Statement number ending a DO-loop
Index of a DO or implied DO-loop
Statement number used in transfer
Source line of a statement number
Name used as a DO-loop parameter
Used in CALL/FUNC call or array reference
Format used in READ statement
Stored so contents can be changed
Name used in executable statement
Format used in WRITE statement
Ten or more references to symbol

Up to six levels of messages are produced by CFT, depending on the E and
ANSI parameters on the CFT control statement. (See Appendix D for
details of messages.)

Program Unit Page Table

If more than one program unit is compiled, CFT prints a sorted table of
the names of the units compiled, listing the beginning global page number
of each program unit. This table appears at the end of CFT's output.

COMPILER OPTIONS

Compiler options expressed by the user in the CFT control statement (see
description of the CFT control statement earlier in this section)
establish particular methods for application throughout the compilation
of all related FORTRAN program units. Compiler dire~tive8 encountered
in the program units being compiled can change or reinstate this set of
methods. Certain other compiler actions are enabled and disabled only by
compiler directives.

The CFT control statement E (enable compiler directives) option must be
specified ON for compiler options to be recognized by CFT. Otherwise,
the lines containing compiler options are treated as comment lines.

SR-0009
Part 3

1-20 J-03

•

USING COMPILER DIRECTIVE LINES

A oompiler direotive line contains the characters CDIR$ in columns 1
through 5. Column 6 of the initial line must be blank or contain the
character O. Columns 7 through 72 of the initial line contain zero or
more compiler directives separated by commas. If the compiler directive
has a list associated with it, no other compiler directive can appear on
the same card. Spaces can precede, follow, or be embedded within a
compiler directive. Columns 73 through 96 can be used for any purpose.
Continuation of compiler directive information beyond a single line can
be accomplished by one of the following methods.

• Enter any character except a blank or zero in column 6 of up to 19
subsequent lines.

• Enter the characters CDIR$ in columns 1 through 5 of all lines in
the sequence.

Comment or blank lines cannot occur within a continued CDIR$ sequence.
The first non-CDIR$ line terminates the CDIR$ continuation sequence.

The character C in column 1 identifies lines as comment lines to all but
the Cray FORTRAN Compiler. This feature maintains the transportability
of programs using compiler directives.

Compiler directive lines are listed in the source statement listing.

COMPILER DIRECTIVES

CFT provides the following categories of compiler directives.

• Listable output control

• Vectorization control

• Integer control

• Multiply/divide control

• Flow trace

• Scheduler

• Dynamic common block

• Array bounds checking

• Optimization

SR-0009
Part 3
1-21 J-03

I

• Debugging

• Roll/unroll

LISTABLE OUTPUT CONTROL DIRECTIVES

Following are the listable output control directives.

• EJECT

• LIST

• NOLIST

• CODE

• NOCODE

The CFT control statement options L (listable output control directives)
and E (error messages) must be on to cause recognition of this set of
compiler directives.

EJECT directive

A compiler directive line containing an EJECT directive is printed as the
last line of the current page of source statement listing. If the EJECT
directive is contained in a continuation set of compiler directive lines,
the last of these becomes the last line of the page. In either case, a
new page begins. The EJECT directive has no effect if production of the
source statement listing has been suppressed.

The form of the EJECT directive follows.

LIST directive

The LIST directive causes the production of a source statement listing or
is ignored if one is already being produced. The LIST directive also
restores the other list options specified on the CFT control statement.

SR-0009
Part 3
1-22 J-03

•

The form of the LIST directive follows.

NOLIST directive

The NOLIST directive suppresses the production of all listable output.
If no listable output is being produced, the NOLIST directive is ignored.

The form of the NOLIST directive follows.

CODE directive

The CODE directive produces CFT-generated code listings if previously
suppressed by a listing directive or by the CFT control statement OFF=G
or OFF=L list option. Code is listed for the optimization block where
the CODE directive occurs. The listing continues until a NOCODE
directive is encountered or until superseded by another LIST directive.

The form of the CODE directive follows.

NOCODE directive

The NOCODE directive suppresses the production of a CFT-generated code
listing. The NOCODE directive takes effect at the beginning of the next
optimization block and no generated code is produced until a CODE
directive is encountered. If no CFT-generated code listings are being
produced, the NOCODE directive is ignored.

The form of the NOCODE directive follows.

SR-0009
Part 3
1-23 J-03

I

NOTE

The CODE and NOCODE directives apply on an optimization
block basis instead of a program unit basis.

VECTORIZATION CONTROL DIRECTIVES

The vectorization control directives require the ON=V CFT statement
option. Following are the vectorization control directives.

• VECTOR

• NOVECTOR

• NORECURRENCE

• IVDEP

• IVDMO

• VFUNCTION

• NEXTSCALAR

• SHORTLOOP

VECTOR directive

The VECTOR directive causes the compiler to resume its attempts to
vectorize inner DO-loops if such attempts were suppressed or modified by
another vectorization directive. After a VECTOR directive is specified,
DO-loops with a known iteration count of one are executed in scalar mode~
those with an iteration count of two or more or with an unknown iteration
count are executed in vector mode.

DO-loops containing recurrences are affected only by the NORECURRENCE
directive. (See NOVECTOR and NORECURRENCE directives.)

The VECTOR directive takes effect at the next DO-loop and applies to the
rest of the compilation unless it is superceded by another vectorization
directive.

The form of the VECTOR directive follows.

I VEcroR I

SR-0009
Part 3
1-24 J-03

•

NOVECTOR directive

The NOVECTOR directive suppresses the compiler's attempts to vectorize
inner DO-loops. The NOVECTOR directive takes effect at the next DO-loop
and applies to the rest of the compilation unit unless it is superceded
by another vectorization directive.

The form of the NOVECTOR directive is

I NOVECTOR [=n]

where n is an integer constant or a previously defined integer
parameter in the range 0 to 64.

Generally, vector loops are faster than scalar loops, but because more
preparation time is needed for vector registers than for scalar
registers, DO-loops executed a few times may be executed faster in scalar
mode than in vector mode.

If the NOVECTOR directive is not in effect, the compiler causes
vectorizable loops to execute in scalar mode if the DO-loop iteration
count is less than 2.

If the NOVECTOR directive is in effect and n is not specified, DO-loops
are executed in scalar mode. If n is specified, DO-loops with an
iteration count greater than n are executed in vector mode, if
possible. Those with an iteration count of n or less are executed in
scalar mode.

The determination of scalar versus vector mode is made during
compilation. If the value of any of the DO parameters cannot be
determined during compilation (that is, if an expression contains
anything other than constants or parameters), the loop is executed in
vector mode unless vectorization is inhibited for some other reason.

If attempted vectorization of inner DO-loops is not specified by CFT
control statement option, the NOVECTOR directive is ignored.

SR-0009

NOTE

Both VECTOR and NOVECTOR directives can be specified in
a single program unit.

Part 3
1-25 J-03

•

NORECURRENCE directive

The NORECURRENCE directive causes DO-loops containing recurrences to be
executed in scalar or vector mode. The NORECURRENCE directive takes
effect at the next DO-loop and applies to the rest of the compilation
unit unless it is superseded by another vectorization directive.

The form of the NORECURRENCE directive is

I NORECURRENCE [=nj I

where n is an integer constant or a previously defined integer
parameter in the range 0 to 64.

An assignment statement is a recurrence relation if the right side
involves a variable just computed. The CFT compiler can vectorize
DO-loops containing most recurrence relations of scalar variables. The
following recurrence relations can be vectorized.

S=s+e

S=S*e

where S is a scalar variable, and

e is any expression not inhibiting vectorization.

Because more preparation time is needed for vector registers than for
scalar registers, DO-loops executed only a few times are executed faster
in scalar mode than in vector mode.

If n is not specified, DO-loops containing recurrences are executed in
scalar mode. If n is specified, DO-loops with a known iteration count
greater than n are executed in vector mode, those with a known
iteration count of n or less are executed in scalar mode. DO-loop
execution occurs only if the current iteration count for any vector loop
is set, by default or a vector directive, less than or equal to n. The
default value of n is 14.

The determination of scalar versus vector mode is made during
compilation. If the value of any of the DO parameters cannot be
determined during compilation (that is, if an expression contains
anything other than constants or parameters), the loop is executed in
vector mode unless vectorization is inhibited for some other reason.

If the NORECURRENCE directive is omitted, the CFT compiler executes
vectorizable loops with recurrences in vector mode if the iteration count
is known to be 15 or greater. Generally, vector mode is faster than

SR-0009
Part 3
1-26 J-03

I

scalar mode for DO-loops with recurrences. If attempted vectorization of
inner DO-loops is not specified by a CFT control statement option, the
NORECURRENCE directive is ignored.

IVDEP directive

The IVDEP directive is specified before a DO statement causing the
compiler's attempts to vectorize the corresponding DO-loop to ignore any
vector dependencies, but any dependencies must be processed in source
text order. The IVDEP directive affects only the single innermost
DO-loop it directly precedes. Conditions other than vector dependencies
can inhibit vectorization whether or not an IVDEP directive is

I specified. See part 3, section 2 for information on Bidirectional Memory.

The form of the IVDEP directive follows.

IVDMO directive

The IVDMO directive is specified before a DO statement causing the
compiler's attempts to vectorize the corresponding DO-loop to ignore any
vector dependencies and memory overlaps. Conditions other than vector
dependencies and Bidirectional Memory hazards can inhibit vectorization
whether or not an IVDMO directive is specified. See part 3, section 2
for information on Bidirectional Memory.

The form of the IVDMO directive follows.

VFUNCTION directive

The VFUNCTION directive declares that a vector version of an external
function exists.

The form of the VFUNCTION directive is

VFUNCTION f[,f] •••

where f

SR-0009

is the symbolic name of a vector external function.

Part 3
1-27 J-03

The function f must be written in CAL and must use the call-by-value
sequence. Because CFT prefixes and suffixes the name with % as part of
the calling sequence, f must be limited to six characters. (See the
Macros and Opdefs Reference Manual, CRI publication SR-0012 for details

I on CFT linkage macros.) f must not be the name of a dummy procedure.

VFUNCTION arguments must be either vectorizable expressions or scalar
expressions. If the argument list contains both scalar and vector
arguments in a vector loop, the scalar arguments are broadcast into the
appropriate vector registers. If all arguments are scalar or the
reference is not in a vector loop, the function f% is called with all
arguments passed in S registers. Functions named in a VFUNCTION list
must not have side effects. (CDIR$ VFUNCTION implies NO SIDE EFFECTS;
the names of functions appearing in the VFUNCTION directive need not
appear in a CDIR$ NO SIDE EFFECTS list.) Registers are used for argument
transmission and, therefore, no more than seven single-word items or
three double-word items can be passed by a call. One register passes
each single-word argument and two registers pass each double-word
argument; these can be mixed in any order with a maximum of seven
required registers.

The VFUNCTION directive must precede any statement function definitions
or executable statements in a program. If the names of functions in a
VFUNCTION directive also appear in an EXTERNAL declaration, the EXTERNAL
declaration must precede the VFUNCTION directive.

A VFUNCTION function should receive inputs from its argument list. The
VFUNCTION function should not change the value of its arguments or
variables in common blocks and should not reference variables in common
blocks which are also used by a program unit in the calling chain.

NEXTSCALAR directive

The NEXTSCALAR directive, specified in advance of a DO statement, causes
only that DO-loop to be executed in scalar mode. Vectorization is
inhibited.

The form of the NEXTSCALAR directive follows.

I NEXTSCAIAR I

SR-0009
Part 3
1-28 J-03

I

SHORTLOOP directive

The SHORTLOOP directive, specified in advance of a DO statement, states
that the succeeding DO-loop will be executed at least once and at most 64
times, allowing CFT to generate special code for the succeeding DO-loop.
This directive may decrease execution time because it eliminates the run
time tests that determine if a vectorized DO-loop has been completed.
Using this directive before a zero-iteration DO-loop or a DO-loop that
should be executed more than 64 times produces indeterminate results.

The form of the SHORTLOOP directive follows.

I SHORTLOOP I

INTEGER CONTROL DIRECTIVES (INT24, INT64)

The specification of INT24 or INT64 in a program unit causes all
variables and arrays named in its argument list to be identified as
entities of type integer. When INT24 is specified, the integers provide
24-bit (instead of the usual 64-bit) values when referenced. The INT24
directive is not a Cray FORTRAN language statement. It must, however, be
specified in a program unit according to the rules for specifying type
statements.

The form of the integer control directives are

where

INT24 v [, v • ••]
INT64 v [,v •••]

INT24

INT64

v

specifies a 24-bit integer data type,

specifies a 64-bit integer data type, and

is the symbolic name of a variable or array. If v
is omitted, the INT24 or INT64 directive implicitly
type all variables beginning with the letters I-N as
short or long integers.

Use caution with INT24 variables. The INT24 directive is intended to
allow the programmer to force CFT to use the fast 24-bit registers for
performing some arithmetic operations. When a 24-bit variable is used as
an argument to a function or subroutine, the 24-bit variable is sign
extended and treated as a 64-bit variable. Overflow on values greater
than 223_1 is never detected. The INT64 directive overrides a default
specification of INT24.

SR-0009
Part 3
1-29 J-03

•

MULTIPLY/DIVIDE DIRECTIVES (FASTMD, SLOWMD)

The two multiply/divide directives are FASTMD and SLOWMD. When the
FASTMD directive is specified, the fast 46-bit integer multiply and
divide algorithms are used in the current block. When the SLOWMD
directive is specified, the normal 64-bit integer arithmetic is used in
the current block. When the 46-bit integer arithmetic is used, the
integer multiply or divide result has only 46 bits of accuracy and there
is no overflow protection for operands or results greater than 46 bits.

FLOW TRACE DIRECTIVES (FLOW/NOFLOW)

Flow trace directives print a summary on dataset SOUT, listing the
following information about each subroutine in a program.

• The time spent in the subroutine

• The percent of the total time spent in the subroutine

• The number of times the subroutine was called

• The average time per call spent in the subroutine

• A list of the first 14 routines called by the subroutine

• A list of the first 14 routines that call the subroutine

• Subroutine linkage overhead, which consists of the following
information .

SR-0009

Total number of subroutine calls

Total amount of Band T register usage and argument passage
for the entire job

Minimum, maximum, and average number of Band T registers
used and arguments passed for each routine traced. (Averages
are weighted by calling frequency.)

Time spent saving and restoring the Band T registers

Time spent in the calling sequence and the approximate time
spent in the flow trace routine. (The time is listed in
number of clock cycles, number of seconds, and percent of
total job time.)

Part 3
1-30 J-03

•

Flow trace enable/disable

Flow trace is enabled by using ON=F on the CFT statement or by using a
CDIR$ FLOW directive in the source deck. A matching CDIR$ NOFLOW
disables flow trace. To be useful, the CDIR$ FLOW or NOFLOW directives
must come after an END statement and before the next PROGRAM, SUBROUTINE,
or FUNCTION statement. It is often wise to disable flow tracing for
small, frequently called routines because the flow trace overhead time
can be much greater than the actual subroutine execution time. As
currently implemented, the main program where flow trace is enabled must
contain a PROGRAM statement.

When flow trace is enabled, a flow trace summary is listed either after
the END statement in the main program is executed or after a STOP
statement in the routine being traced is executed. Programs that
terminate with CALL EXIT, CALL ABORT, etc., must be modified to use flow
trace.

Time spent in a lower level called routine for which flow trace is
enabled is not counted as time spent in the calling routine. Time spent
in library routines (SIN, PRINT, CFFT, etc.) or in any routine for which
flow trace is not enabled is counted as time spent in the calling
routine. However, such routines are not listed in the summary.

FLODUMP utility

FLODUMP provides, upon request, a dump of the flow trace tables when a
program aborts with flow trace active. FLODUMP dumps the tables in flow
trace format. FLODUMP is invoked by specifying ON=F in the CFT control
statement and by including the FLODUMP control statement.

The FLODUMP control statement follows the EXIT and DUMPJOB control
statements.

Example:

JOB, ••••
CFT,ON=F.
LDR.
EXIT.
DUMPJOB.
FLODUMP.

See the CRAY-OS Version 1 Reference Manual, publication SR-OOll for
details of the FLODUMP control statement.

SR-0009
Part 3
1-31 J-03

•

Options

As an additional option, the user can select one or more of the following.

• SETPLIMQ

• ARGPLIMQ

• FLOWLIM

SETPLIMQ - This option enables the flow trace routine to print a line on
$OUT for every CALL or RETURN statement executed, listing the following
information.

• Routine name

• Calling routine name

• Job time

• Time the routine is entered

• Time spent in the routine

• Time the routine returns

Because this option can generate a large volume of output, it must be
explicitly requested at runtime as follows.

CALL SETPLIMQ(KOUNT)

The value of KOUNT specifies the number of trace lines printed. Since
one line is produced for each CALL and each RETURN, KOUNT should be set
to twice the number of CALL statements for which flow trace is desired.

In effect, each CALL and each RETURN statement is given a sequence number
at run time. Each subsequent CALL or RETURN statement whose sequence
number is less than ABS(KOUNT) causes a printout. CALL or RETURN
statements executed before the CALL SETPLIMQ(KOUNT) count toward the line
limit but do not generate any output. In general, CALL SETPLIMQ(KOUNT)
is one of the first executable statements in a program.

ARGPLIMQ - ARGPLIMQ enables the flow trace routine to list the subroutine
arguments for the next ABS(KOUNT) calls. This option must be explicitly
requested at run time as follows.

CALL ARGPLIMQ(KOUNT)

This option can be called only once in a program.

SR-0009
Part 3

1-32 J-03

•

FLOWLIM - FLOWLIM enables the flow trace routine to limit the number of
traced subroutines to the next ABS(KOUNT) subroutines. After this limit
is reached, the flow trace summary is printed. Further calls to FLOWENTR
and FLOWEXIT result in a return to the user's calling subroutine, thus
reducing overhead time. In effect, the call to FLOWLIM turns off the
flow trace option after the limit is reached.

The FLOWLIM option must appear before any subroutine calls and it must be
explicitly requested at run time as follows.

CALL FLOWLIM(KOUNT)

KOUNT=O traces all subroutines.

SCHEDULER DIRECTIVES

The list of scheduler directives follows.

• UNSAFEIF

• SAFEIF

• BL

• NOBL

UNSAFEIF!SAFEIF directives

The UNSAFEIF and SAFEIF directives enable or disable movement of code
past the branch of an IF statement for a block of code, respectively. If
UNSAFEIF is enabled, the code scheduler attempts to move any operation
except a store or divide over a branch instruction. A branch instruction
may have been inserted to protect the operation. UNSAFEIF allows code
movement for a block of code. SAFEIF prevents code movement over an IF
statement for a block of code. UNSAFEIF and SAFEIF apply to one block at
a time and the last directive appearing in a block is the directive
used. The CDIR$ directives override the default or CFT control card
option for one block of code.

BLjNOBL directives

The BL and NOBL directives enable or disable the prefetch of operands
over a loop branch, respectively. The code scheduler usually attempts to
prefetch operations in eligible short scalar loops. Subscripts for the
iteration after the last one may be out of range to cause an operand
range error. BL allows prefetch of code. NOBL prevents prefetch of an
operand for the next block of code. The CDIR$ directives override the

SR-0009
Part 3
1-33 J-03

•

default or CFT control card options. The CDIR$ directives apply to one
block at a time and the last directive appearing in a block is the
directive used.

DYNAMIC COMMON BLOCK DIRECTIVE (DYNAMIC)

The DYNAMIC directive declares dynamic common blocks for users with
dynamic common block capability. The COS loader does not support the
dynamic common block capability.

The form of the DYNAMIC directive is

DYNAMIC b[,b] •••

where b is the name of a previously encountered common block.

ARRAY BOUNDS CHECRING DIRECTIVE (BOUNDS)

The BOUNDS directive checks most array references for out-of-bounds
subscripts. The BOUNDS directive is enabled when the ON=O parameter is
specified on the CFT control statement and can be controlled by a CDIR$
BOUNDS directive. If ON=O is not specified, all CDIR$ BOUNDS directives
are ignored.

The ON=O option is global to all program units in the compilation. The
BOUNDS directives are local to the progam unit where they appear.

Bounds checking typically increases program run time by a factor of 10
and inhibits vectorization of any DO-loop that references a checked array.

Bounds checking is not applied to arrays of type character or array
references that appear in argument lists or in input/output statements.
If an array has a last dimension of * or 1, bounds checking is not
performed on the last dimension. Dependency messages issued with bounds
checking turned on may not appear when bounds checking is turned off,
because bounds checking is performed by passing an array argument to a
nonvectorizable procedure or function. If a DO-loop contains an array
being checked, a dependency message may be issued.

BOUNDS options

The BOUNDS directive can be specified with three different argument
options.

SR-0009
Part 3
1-34 J-03

I

• The BOUNDS directive with no arguments

BOUNDS

This option enables bounds checking for all arrays. It remains in
effect until another BOUNDS directive or the end of the
compilation unit is encountered.

• The BOUNDS directive with an empty argument list

BOUNDS ()

This option disables bounds checking for all arrays. It remains
in effect until another BOUNDS directive or the end of the
compilation unit is encountered.

• The BOUNDS directive with an argument list

BOUNDS (a,b,o)

This option enables bounds checking only for the arrays named in
the argument list and remains in effect only for the current
routine, or until another BOUNDS directive is encountered. Bounds
checking can be enabled and disabled many times in a specific
compilation unit. Bounds checking for all arrays is performed in
subsequent program units until another BOUNDS directive is
encountered.

OPTIMIZATION DIRECTIVES

The following directives are optimization directives.

• BLOCK

• NO SIDE EFFECTS

• ALIGN

• NOIFCON

• RESUMEIFCON

• RESUMEDOREP

• NOOOREP

• CVL

• NOCVL

SR-0009
Part 3
1-35 J-03

•

BLOCK directive

The CFT compiler divides source code into sections called blocks. The
BLOCK directive, specified in advance of a FORTRAN statement, causes a
block to begin with the succeeding FORTRAN statement.

Blocks are used as the basis for optimization and vectorization by the
compiler. This directive is useful for machine-timing tests and for
certain unusual program debugging applications.

NO SIDE EFFECTS directive

The NO SIDE EFFECTS directive declares that an external subprogram has no
side effects. A NO SIDE EFFECTS external subprogram does not redefine
the value of a variable local to the calling program, passed as an
argument to the subprogram, or declared in a common block. Using the NO
SIDE EFFECTS directive allows CFT to keep information in registers across
subprogram invocations without reloading the information from memory
after returning from the subprogram. Intrinsic functions are assumed to
have no side effects.

The form of the NO SIDE EFFECTS directive is

NO SIDE EFFECTS f[,f] .••

where f is the symbolic name of an external subprogram the
user guarantees to have no side effects. f must not
be the name of a dummy procedure.

A NO SIDE EFFECTS subprogram should receive inputs from its arguments.
The subprogram should not reference or define variables in a common block
shared by a program unit in the calling chain, or redefine the value of
its arguments. If these conditions are not met, results can be
unpredictable.

The NO SIDE EFFECTS directive must precede arithmetic statement functions
or executable statements in a program. If the name of a subprogram
appears in a NO SIDE EFFECTS directive and an EXTERNAL declaration, the
EXTERNAL declaration must precede the NO SIDE EFFECTS directive.

CFT may move invocations of a NO SIDE EFFECTS subprogram from the body of
a DO-loop to the loop introduction if the arguments to that function are
invariant in the loop. This may affect the results of the program,
particularly if the NO SIDE EFFECTS subprogram calls functions like the
random number generator or the real-time clock.

SR-0009
Part 3

1-36 J-03

I

ALIGN directive

The ALIGN directive causes the next referenced statement label, the first
instruction of the next DO-loop body, or the next ENTRY point to align on
an instruction buffer boundary. The beginning of a DO-loop, a referenced
statement label, or an ENTRY point will be aligned. The ALIGN directive
must appear immediately before the aligned statement.

If the ALIGN directive does not immediately precede a SUBROUTINE
statement, PROGRAM statement, FUNCTION statement, ENTRY statement, DO
statement, or a statement with a referenced statement label, a warning
message is issued and the directive is ignored.

CFT does not generate a loop construct for short vector loops, therefore,
these loops are not aligned. If an ALIGN directive appears before a
short vector loop, a warning message is issued and the directive is
ignored.

The ALIGN directive is useful for fitting loops and short subprograms
into instruction buffers, so the buffer will not need frequent reloading.

An ALIGN directive preceding a DO statement with a referenced label on
the statement causes the body of the DO-loop, not the preamble, to be
aligned.

The form of the ALIGN directive follows.

NOIFCON directive

The NOIFCON directive disables optimization of conditional replacement
statements of the form IF(logical exp)var=expression, except when
the statement can be converted to a MAX/MIN function. Conditional
replacement statements appearing before a NOIFCON directive can be
optimized at the level specified on the CFT control card. Optimization
is disabled only for conditional replacement statements appearing after
the NOIFCON directive. The NOIFCON directive is ignored if the
optimization level is NOIFCON.

The form of the NOIFCON directive follows.

SR-0009
Part 3
1-37 J-03

•

RESUMEIFCON directive

The RESUMEIFCON directive enables optimization of conditional replacement
statements at the level specified by the OPT=option on the CFT control
card. When this optimization is enabled, CFT attempts to optimize
statements of the form IF(logical exp)vap=exppession by producing
code similar to that for var=CVMGx(exppession,vap,condition). If
NOIFCON is specified on the control card either by default or with an
OPT=NOIFCON parameter or if the optimization has not been disabled by a
CDIR$ NOIFCON directive, the RESUMEIFCON directive is ignored.

The form of the RESUMEIFCON directive follows.

I RESUMEIEroN I

RESUMEDOREP directive

The RESUMEDOREP directive, specified before a DO statement, enables
replacement of successive I-line DO-loops by calling a $SCILIB routine at
the level specified by the OPT parameter on the CFT control statement.
If OPT=NODOREP, CDIR$ RESUMEDOREP is ignored. Part 3, section 2 has
examples on the use of this directive. OPT=SAFEDOREP is the default
option.

The form of the RESUMEDOREP directive follows.

RESUMEDOREP

NODOREP directive

The NODOREP directive disables replacement of I-line DO-loops with a call
to a $SCILIB routine until a RESUMEDOREP directive is used. Specifying
NODOREP has no effect on vectorization of successive DO-loops.

The form of the NODOREP directive follows.

SR-0009
Part 3
1-38 J-03

CVL directive

CVL compiles the next DO-loop containing potential unvectorizable
dependencies into a vector and a scalar version of the loop. The version
which will be used is determined by a run-time test. CVL overrides the
OPT=NOCVL compiler option.

NOCVL directive

NOCVL prevents CFT from compiling the next DO-loop in the conditional
vector and scalar version of the loop. NOVCL overrides the OPT=CVL
compiler option and can be used to save space for loops with known
dependencies.

DEBUGGING DIRECTIVES (DEBUG, NODEBUG)

DEBUG and NODEBUG are debugging directives enabling or disabling the
generation of sequence number labels, respectively. The DEBUG and
NODEBUG directives are recognized only when the DEBUG parameter is
specified on the CFT control statement. See the Symbolic Interactive
Debugger (SID) User's Guide, CRI publication SG-0056 for a detailed
description on the debugging directives.

DEBUG writes sequence number labels for executable FORTRAN statements to
the Debug Symbol Table, allowing breakpoints to be set with the Symbolic
Interactive Debugger (SID) at statement sequence numbers. DEBUG disables
vectorization and scheduling.

NODEBUG disables sequence number label generation and restores
vectorization and scheduling.

ROLL/UNROLL DIRECTIVES

The ROLL and UNROLL directives control DO-loop unrolling. ROLL and
UNROLL have no effect if UNROLL=O is specified on the CFT control
statement.

ROLL specifies that all DO-loops remain rolled until an UNROLL directive
is encountered.

UNROLL specifies that inner DO-loops with constant limits are candidates
for DO-loop unrolling.

SR-0009
Part 3
1-39 J-03

•

EXTERNAL ROUTINES

The external routines shown in table 1-3 are called with the
call-by-value sequence. Normally the first operand is in Sl or VI, the
second is in S2 or V2, and results are returned in Sl or VI. An
exception is the divide routines, where the reciprocal approximation to
S2 or V2 is returned in Sl or VI.

SR-0009

Table 1-3. External routines

Operation

s + s
s - s
s * s
1 1 s
s + v
s - v
s * v
1 1 v
v + v
v - v
v * v
v - s

v = vector
s = scalar

External routine

RASS%
RSSS%
RMSS%
RDSS%
RASV%
RSSV%
RMSV%
RDSV%
RAVV%
RSVV%
RMVV%
RSVS%

NOTE

The following operations are changed as indicated before the
external routine is called.

v + s~s + v
v * S--'s * v
v 1 s--.(l/s) * v

vI 1 v2~(1/v2) * vI

Part 3
1-40

s 1 v~(l/v) * s
-s ~O - s
-v ~O - v

J-03

CRAY FORTRAN PROGRAMMING 2

The Cray FORTRAN Compiler (CFT) produces Cray machine language
instructions from FORTRAN language statements with run-time efficiency as
a prime objective. Its operations include the following.

• Providing the most effective instruction sequence for each FORTRAN
statement compiled

• Making full use of all Cray Computer System capabilities and
techniques, enhancing execution speed

CFT is particularly effective in compiling statements describing vector
processing. When properly applied, vector processing affords dramatic
decreases in computation time over equivalent scalar processing methods.
The Cray FORTRAN programming techniques are described in this section
with emphasis on vector processing.

VECTORIZABLE DO-LOOPS

CFT analyzes the innermost DO-loops of the FORTRAN programs it compiles
to determine whether vector processing methods can be applied to improve
overall program efficiency. If such efficiency can be improved, CFT
produces a sequence of code containing vector instructions to drive the
high-speed vector and floating-point functional units and the eight
vector registers in their specified operation. This feature of CFT is
automatically activated through compiler analysis of statements contained
in certain DO-loops without special notation on the part of the
programmer. No special provisions are required that would encumber the
programmer or affect the transportability of the programs. However, CFT
does provide utility procedures that can enhance vectorization. (See the
vectorization utilities in Appendix C.)

QUALIFICATIONS FOR VECTORIZATION

Not all DO-loops are vectorizable. In determining the qualifications of
a loop for vectorization, CFT examines each statement and its
relationship to others in that DO-loop range. The Cray FORTRAN
programmer can enhance program performance by avoiding certain constructs
inhibiting DO-loop vectorization.

SR-0009
Part 3

2-1 J

I

To be vectorized, a DO-loop must manipulate or perform calculations on
the contents of one or more arrays and not have certain constructions
that inhibit vectorization. Conditions inhibiting vectorization are:

• CALL statements
• I/O statements
• Branches to statements not in the loop
• Inner DO-loops
• Backward branches within the loop
• Statement numbers with references from outside the loop
• References to character variables, arrays, or functions
• IF statements which may not execute due to the effects of previous

IF statements
• ELSEIF statements
• External function references not declared on a CDIR$ VFUNCTION

directive
• RETURN, STOP, and PAUSE statements
• NOVECTOR and BLOCK compiler directives
• Bounds checking on any array referenced in the loop
• Specifying the DEBUG option
• Loop size exceeds the optimized MAXBLOCK size
• Loop has been unrolled or replaced by a $SCILIB routine

IF statements of the form

IF(Vapiabtel .pop. eXPI) vapiabtel = eXPI
IF(exP2 .pop. vapiabte2) vapiabte2 = eXP2

where vapiabtel and vapiabte2 are variables, exPI and
eXP2 are expressions of the same type, and .pop. is .GT., .GE.,
.LT., or .LE. are compiled as if written as

vapiabte = {MAX} (vapiabte, exp), or
vapiabte = MIN (vapiabte, exp).

See part 3, section I for the conditions under which IF statements of the
form

IF(togi~at exp)vap=exppession

are compiled as conditional vector merges.

An IF statement referencing a statement number defined outside the
DO-loop or a statement number preceding an IF statement inhibits
vectorization.

Blocks executed conditionally on the outcome of an IF statement are
vectorized with a compressed index (see the description of compressed
index references in this section).

SR-0009
Part 3

2-2 J-03

I

ENTITY CATEGORIES

Loop analysis is performed to determine if all defined or referenced
entities in the DO-loop range are in one of the following categories.

• Invariant - Constant or variable referenced but not redefined in
the course of a DO-loop

• Invariant expression - Arithmetic expression only with invariants

• Invariant array element - An array element where all subscript
expressions are invariant expressions

• Constant increment integer (CII) - An integer variable incremented
or decremented once during each pass through a DO-loop by an
invariant expression. The CII definition must be in a statement
which is executed during every DO-loop iteration. The expression
defining a CII can reference itself or another CII. The
expression must not use operators other than plus or minus or
involve expressions containing parentheses. For example,

SR-0009

CII=CII±(INVARIANT EXPRESSION)

Part 3
2-2.1 J-03

I

• vector array reference - An array element where one subscript
expression contains one CII reference and where any other
subscript expression is an invariant expression. The subscript
expression containing the CII must be a linear expression
algebraically reducible to the following form

[±invariant expressionl*]CII[±invariant expression2]

where the only operators, if any, in invariant expressionl are
multiply operators. Using parentheses in the ell subscript may
prevent vectorization. Some of the more common forms of array
references with nested parentheses are converted to vector array
references. For example, the array reference A(3*(I-2» is
converted to the vector array reference A(I*3-6). The following
format is generally used

[~ ~nteger variable +] (~nteger variable [+ ~nteger variable])
~nteger constant * ~nteger constant * ~nteger constant

- -

where at least one term inside the parentheses is a variable and
only one variable is a CII.

The following examples show array references that are converted to
vector array references:

Array references

A((1+2»
A (3- (1+2»
A(J*(I+K»
A((1-2)+3)
A(K+(I*3»

vector array references

A(I+2)
A(l-I)

A(J*I+J*K)
A(I+l)

A(K+I*3)

The following examples show array references that are not
converted to vector array references:

Array references

A((I+(3-(J»)
A(I*(3-2»

A(2*(I+K+2»
A(2*I+(K+2»

Reasons

Parentheses are nested too deeply
One inner term must be a variable
Too many inner terms
Too many outer terms

• Scalar temporary - A variable set equal to a vectorizable
expression during each pass through a DO-loop. A scalar temporary
cannot be defined before or used after a statement number
reference in a vector loop.

SR-0009
Part 3

2-3 J-03

• Variable or invariant array element used in a reduction array
operation. The item must appear on both the left and the right
sides of the equal sign. On the right, it must be a summand,
multiplicand, dividend, or minuend. For example,

x = X+A(I)*B
X = X-A(I)*B

Y = Y*(A(I)+4)
Y = Y/(A(I)+4).

The type of reduction variable must be INTEGER or REAL. Real
operations between the reduction variable and the remaining
expression are limited to addition, subtraction, multiplication,
and division. Integer operations are limited to addition and
subtraction. No other operations are allowed between the
reduction variable and the remaining expression.

• Pseudo vector - An array reference which does not meet the
previous requirements, but has a subscript expression that
vectorizes and no dependencies will pseudo v~ctorize. The array
reference is treated as a scalar subloop inside the vector loop,
and the subscript expression is computed as a vector expression.
A single instruction can be compiled instead of the scalar subloop
on a Cray Computer System with the appropriate hardware. The
subscript portion of a subscript reference is a vectorizable
expression and partially vectorizes1 that is, CFT generates a
separate scalar loop to handle the subscript reference and
vectorize the remaining loop.

In the following example, I, J, and K are CIIs1 A, B, and C are vector
array references1 KDELTA, 107, 3, 2, 7, M, L, and X are invariants1

I D(L,M) is an invariant array element1 and E is a pseudo vector.

I
10

DO 10 I = 3,101,2
K = K - KDELTA
J = 107 - I
A(3,I-2) = COS(B(J» **C(M-2*K+L*M/7,L,M/L)*X*D(L,M)
E(I,J) = 0
CONTINUE

DEPENDENCIES

CFT inhibits vectorization of DO-loops with dependencies. The following
example of a DO-loop shows a dependency within CFT. In this example, the
first seven elements of array A are 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and
7.0, respectively.

SR-0009
Part 3

2-4 J-03

I

DO 10 I = 2,7
A(I) = A(I-l)

10 CONTINUE

The results of array A differ, depending on the mode type the loop is
executing, vector mode or scalar mode. Table 2-1 shows the first seven
elements of array A in vector and scalar modes.

Table 2-1. Array A elements in vector and scalar modes

Array A elements 1 2 3 4 5 6 7

Vector mode 1.0 1.0 2.0 3.0 4.0 5.0 6.0

Scalar mode 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The scalar results are correct by default. CFT detects that the vector
results may be different from the scalar results for the DO-loop and
inhibits vectorization. A dependency exists if the following two
conditions are met.

• An array is referenced and defined in the DO-loop

• An array element defined in a previous pass of the DO-loop is
referenced

CFT can internally change the order of the definition and reference,
eliminating an apparent dependency, if the reference and definition are
not conditionally executed.

In the previous example, A(I) is the definition and A(I-l) is the
reference. A definition is on the left side of the = operator. The
dependency detected is called a previous minus with an incrementing
subscript.

The term previous means a reference in a statement occurs before the
definition statement, or a reference is on the right side of the =
operator. The term subsequent means a reference in a statement occurs
after the definition statement. The following diagram describes the
terms previous and subsequent.

SR-0009
Part 3

2-4.1 J-03

I

Previous

A(I) =

Subsequent

The following example also has a previous reference because the
reference, A(I-l), is in a statement before the definition A(I).

00 20 I = 2,M
B (I) = A (1-1)

A(I) = C(I)
20 CONTINUE

The term minus means the subscr~pt of the reference (1-1) is less than
the subscript of the definition (I). In this example, subscript I is
incrementing_ Both of the examples have a previous minus with an
incrementing subscript dependency.

The following information is required to determine if there is a
dependency.

• Previous or subsequent reference
• Plus or minus subscript difference
• Incrementing or decrementing subscript

Table 2-2 shows dependency information combinations and results.

Table 2-2. Dependency information combinations

Dependency information combinations

Previous minus with an incrementing subscript
Previous minus with a decrementing subscript
Previous plus with an incrementing subscript
Previous plus with a decrementing subscript
Subsequent minus with an incrementing subscript
Subsequent minus with a decrementing subscript
Subsequent plus with an incrementing subscript
Subsequent plus with a decrementing subscript

SR-0009
Part 3

2-5

Results

Dependency
Vector
Vector
Dependency
Vector
Vector
Vector
Vector

J-02

I

The following two DO-loops have previous plus with decrementing subscript
dependencies.

DO 30 I = 99,1,-1
A(I) = A(I+l)

30 CONTINUE

DO 40 I = 99,N,-1
B(I) = A(I+l)
A(I) = C(I)

40 CONTINUE

The following two DO-loops also have dependencies.

DO 50 I = 1,99
A(I) = B(I)
A(I+l) = C(I)

50 CONTINUE

DO 60 I = 99,1,-1
A(I) = B(I)
A (I-I) = C (I)

60 CONTINUE

In these two examples, A never appears on the right side of the =
operator, therefore, assigning the reference and definition labels is
ambiguous. In this case, it is assumed the last statement has the
definition. The definitions for the first and second examples are A(I+l)
and A(I-l), respectively. This means the first example has a previous
minus with an incrementing subscript dependency and the second example
has a previous plus with a decrementing subscript dependency.

This example is a previous plus with a decrementing subscript dependency.

DO 10 I = 1,10
A(ll-I) = A(12-I)

10 CONTINUE

The DO control variable is an incrementing I and the subscripts (II-I)
and (12-1) are decrementing. Therefore, this DO-loop would cause CFT to
detect a previous plus with a decrementing subscript dependency.

The following DO-loops do not have dependencies.

Previous minus with a decrementing subscript

DO 10 I = 100,2,-1
A (I) = A (I-I)

10 CONTINUE

SR-0009
Part 3

2-6 J-02

I

Previous plus with an incrementing subscript

DO 20 I = 1,99
B(I) = A(I+l)
A(I) = 3.0

20 CONTINUE

Subsequent minus with an incrementing subscript

DO 30 I = 2,100
A(I) = B(I)
C(I) = A(I-l)

30 CONTINUE

Subsequent minus with a decrementing subscript

DO 40 I = 100,2,-1
A(I+l) = B(I)
C(I) = A(I)

40 CONTINUE

Subsequent plus with an incrementing subscript

DO 50 I = 1,100
A (I) = B (I)
C(I) = A(I+l)

50 CONTINUE

Subsequent plus with a decrementing subscript

DO 60 I = 2,100
A (1-1) = B (I)
C(I) = A(I)

60 CONTINUE

Two types of dependency messages are issued by CFT.

AT SEQUENCE NUMBER - m
PRNAME name COMMENT - DEPENDENCY INVOLVING ARRAY "name"

is issued when the definition and reference appear in the same statement
with sequence number m.

AT SEQUENCE NUMBER - m
PRNAME name COMMENT - DEPENDENCY INVOLVING ARRAY "name" IN
SEQUENCE NUMBER n

is issued when the definition appears in a statement with sequence number
m and the reference appears in a statement with sequence number n.
When a dependency message is issued, an informative dependency message
also appears, explaining why the dependency exists. See Appendix D for a
description of these messages.

SR-0009
Part 3

2-7 J-02

I

All the previous examples had a subscript incremented or decremented by
1. The following three examples have DO-loops with an increment and
decrement other than 1.

DO 10 I = 10,20,2
A(I) = A(I-l)

10 CONTINUE

The first example has a previous minus with an incrementing CII
dependency. Because the increment is 2, A(I) and A(I-1) never access the
same array elements. A(I) accesses elements 10, 12, 14, 16, 18, and 20.
A(I-1) accesses elements 9, 11, 13, 15, 17, and 19. This type of DO-loop
vectorizes.

DO 20 I = 20,10,-2
A(I) = A(I+3)

20 CONTINUE

This example also has a dependency but A(I) and A(I+3) access different
array elements. This DO-loop also vectorizes.

DO 30 I = 10,20,2
A(I) = A(I-4)

30 CONTINUE

In this example, A(I) and A(I-4) access some of the same array elements.
A(I) accesses elements 10, 12, 14, 16, 18, and 20. A(I-4) accesses 6, 8,
10, 12, 14, and 16. In this case, a dependency message is issued.

CFT cannot always determine if the subscript is incrementing or
decrementing as shown in the following example.

DO 40 I = M,N,J
A(I) = A(I+2)

40 CONTINUE

If J is positive, the subscript is incrementing and there is no
dependency. If J is negative, the subscript is decrementing and a
previous plus with a decrementing subscript dependency exists. This
increment is ambiguous and causes a dependency message to be issued.

eFT cannot always determine if the subscript difference is minus or plus.

DO 50 I = 1,100
A(I) = B(I)
C(I) = A(I+J)

50 CONTINUE

If J is positive, the subscript difference is plus. If J is negative,
the subscript difference is minus. This example also causes a dependency
message to be issued.

SR-0009
Part 3

2-8 J-02

I If the value of J is known not to cause a dependency, an IVDEP or IVDMO
compiler directive can be used, allowing CFT to generate vector code for
a DO-loop with dependencies (see part 3, section 1 for the format of
compiler directives).

Equivalenced arrays can introduce different dependency problems related
to the storage overlap, as in the following example.

DIMENSION A(6),B(6),X(6)
EQUIVALENCE (B,A(3»
DO 5 I = 2,5
A(I) = •••
X(I) = B(I)

5 CONTINUE

This sequence causes the multiple-statement dependency message to be
printed. The message refers to the dependency between A(I) and B(I) •
The message uses only one array name rather than both names. In general,
messages concerned with equivalenced arrays print only the first name
encountered in processing the declarative statement.

The inhibiting of vectorization because of such dependencies can be
relaxed in the case of multiply-dimensioned array processing. CFT must
be able to determine that the specified array elements are in different
vectors (that is, rows, columns, planes, etc.) of the array. For
example, the loop

DO 10 I = 2,100
10 A(I,J) = A(I-l,J-l)

is vectorizable, while the similar loop

DO 20 I = 2,100
20 A(I,J) = A(I-l,JMINUS1)

I is conditionally vectorized with a run-time test to determine whether J
and JMINUSl are equal.

The compiler directive IVDEP can be placed in advance of an inner DO-loop
DO statement to cause vector dependencies to be ignored in determining
whether or not to vectorize that loop. (See part 3, section 1 for a
description of IVDEP and other compiler directives.)

SR-0009
Part 3

2-9 J-03

CONDITIONAL VECTOR LOOPS

If CFT cannot determine at compile time that a loop can be correctly
vectorized, a run-time test is performed to ensure correct
vectorization. CFT generates scalar and vector versions of the loop with
a run-time test to select which version will execute. CFT conditionally
vectorizes loops with ambiguous dependencies from zero CII increments,
unequal invariant subscripts, and mismatched Clls in subscript
expressions.

For example, when OPT=ZEROINC is specified a loop such as

DO 1 I = 1,N
J = J+JINC

1 A(J) = A(J)+B(I)

will be conditionally vectorized with a test for JINC=O. The loop

DO 2 I = 1,N
2 A(I,J) = A(I,JMINUS1)

will be conditionally vectorized with a test for J=JMINUS1. The loop

DO 2 I = 1,N
J = J+l

2 A (J) = A (I)

will be conditionally vectorized with a test for J<l or J>N.

VECTORIZATION WITH ARRAYS

Because CFT allows only one subscript in an array reference to be
variant, loops that reference the diagonal of an array are not fully
vectorized. A loop such as

DIMENSION A(N,N)
DO 10 I = 1,N

10 A(I,I) =

can be rewritten as

DIMENSION A(N,N)
J = 1
DO 10 I = l,N
A(J)= •••

10 J = J+N+l

SR-0009
Part 3

2-10 J-03

•

or as

DIMENSION A(N,N),B(N*N)
EQUIVALENCE (A,B)
J = -N
DO 10 I = 1,N
J = J+N+l

10 B(J) =

The first case is allowed by CFT but the use of one subscript rather than
two causes a warning level diagnostic. Since array operations typically
execute in times proportional to N2 and diagonal operations execute in
times proportional to N, vectorizing the diagonal operations might not
have a significant effect on overall program execution time.

CFT allows variables and array elements to be defined within a vectorized
loop as Clls, scalar temporaries, or as recursively defined terms. (Clls
are discussed earlier in this section.) A scalar temporary is a variable
set equal to a vectorizable expression. Recursively defined terms must
be defined by integer addition or subtraction or real addition,
subtraction or multiplication.

The following loop is vectorizable.

REAL A(lOO),B(lOO,lOO),C(lOO)
INTEGER 11(100)
DO 10 I = 1,100
T = B(7,I) + A(I)*B(I,7)
C(7) = C(7) + T*SQRT(T)
T = B(I,7)*B(11,I)
PROD = PROD*(T + A(lOl-I»
11(1) = 11(1) + 1

10 ISOM = ISOM + 11(1)

SR-0009
Part 3
2-10.1 J-03

I

The following example describes pseudo vectorization. I, J, and K are
Clls and A, B, C, II, and JJ are arrays without dependencies.

A(II(I» = B(JJ(I»
K = C(I/J)
Y = A(INT(SIN(B(I»*X»

USING OPTIMIZED ROUTINES

The efficiency of the vectorization depends on the number of iterations
of the loop and the complexity of the loop. In many cases, a loop with a
large number of iterations and simple calculations producing a single
scalar result (for example, a dot product or a sum) should be replaced
with a call to an optimized routine in the $SCILIB library. The vector
sum

SUM = 0.0
DO 10 I = 1,100
SUM = SUM + A(I)

is better written as

SUM = SSUM(lOO,A(l) ,1).

Nested DO-loops producing a vector result should also be replaced with a
call to an optimized routine in the $SCILIB library. For example, the
following matrix multiply

DO 10 I = 1,N
DO 10 J = I,M
A(I,J) = 0.0
DO 10 L = 1,K
A(I,J) = A(I,J) + B(I,L) * C(L,J)

is better written as

CALL MXM(B,N,C,K,A,M) •

For more examples on optimized routines in $SCILIB library see the
Library Reference Manual, CRI publication SR-0014.

SR-0009
Part 3

2-11 J-02

I

USE OF OPTIMIZED ROUTINES BY CFT

Several I-line DO-loops are recognized by CFT and automatically replaced
by a call to the proper library routine. Vector sums and vector dot
products are replaced by calls to library routines SSUM and SOOT,
respectively. The vector sum

DO 10 I = 1,N
10 S = S + A(I)

is automatically replaced by

S = S + SSUM(N,A(l) ,I}

and the vector dot product

DO 10 I = 1,N
10 C(J,K} = C(J,K} + A(I,K} * B(I,K}

is automatically replaced by

C(J,K) = C(J,K} + SDOT(N,A(1,K} ,1,B(1,K} ,I}.

For more information on SSUM and SOOT, see the Library Reference Manual,
CRI publication SR-0014.

I-line DO-loops calculating a single vector result (for example, first
order linear recurrences) are recognized and automatically replaced by a
call to the $SCILIB library FOLR, FOLR2, FOLRP, and FOLR2P. The example,

DO 10 I = 2,N
10 B(I} = B(I} - A(I} * B(I-l}

is automatically replaced by

CALL FOLR(N,A(l) ,1,B(1) ,1).

Similarly

DO 10 I = 3,500,2
10 C(I) = B(I) - A(I) * C(I-2)

is automatically replaced by

CALL FOLR2(500,A(1) ,2,B(1) ,2,C(1),2).

Routines FOLRP and FOLR2P are called when the DO-loop statement's
additive operation is addition instead of subtraction. For more
information on first-order linear recurrences, see the Library Reference
Manual, CRI publication SR-0014.

SR-0009
Part 3

2-12 J-02

Follow these guidelines for writing I-line DO-loops that will be
optimized by replacement with library calls.

• The DO-loop body must be one and only one FORTRAN statement long.
The terminating statement number can be on the same line or on the
following line with a CONTINUE statement.

• The I-line DO-loop body must be a vector sum, vector dot product,
or a first order linear recurrence.

• All terms must be single-precision real and not equivalenced.

• Keep array subscripts simple; that is, of the form A(invariant
* vapiable + invariant). Other loops that vectorize are less
restrictive with subscript complexity than I-line DO-loop
replacement.

• The DO-loop increment (m3) must be a positive constant value.

Conditional statements

On some machines, code generated for vectorizable IF statements is
inefficient. The instruction functions CVMGT, CVMGP, CVMGM, CVMGZ,
CVMGN, MAX, and MIN can often be used to replace the IF statement with
more efficient statements.

CFT automatically replaces some IF statements. IF statements of the form
IF(Var.op.expression)var=expression can be optimized to produce
code similar to var-=funation(vap,expression) where funation is a
version of the MAX/MIN functions. For this form of optimization to
occur, .op. must be one of the relational operators .GT., .GE., .LT.,
or .LE.; vap and expression must be the Sqme type, either REAL,
INTEGER, or DOUBLE PRECISION. Examples of IF statements optimized by CFT
in this way are

IF(A(I).GT.B(I»A(I)=B(I)
IF(Il·LE.I2)I2=Il
IF«I+3)*Rl·GT.R2)R2=(I+3)*Rl·

A more general form of conditional replacement statements can also be
optimized by CFT. Statements of the form IF(logieal exp)var=expression
can be optimized to produce code similar to that for
var=cVMGx(expression,var,aondition) where CVMGx is a vector merge function,
var is type INTEGER, REAL, or LOGICAL, and eondition is a logical
expression. Examples of IF statements which CFT can optimize in this
manner are

IF(CONDl·OR.COND2)B(I)=C(I)
IF«B(I).GT.C(I».OR.(B(I).LT.A(I»B(I)=ABS{A(I)*C(I»
IF(I.GT.R)I=R (the types are mismatched so a MAX/MIN optimization
will not occur).

SR-0009
Part 3

2-13 J-03

Conditional replacement statements of the form

IF(Cond)vap=vap Op exp

where op is the operator +, - *, or 17 and

IF(Cond)vap=exp op vap

where op is the operator + or * may be restructured as if written as

vap=vap opCVMGx(exp,ident,cond)

where ident is 0 when op is + or - and ident is 1 when op is * or
I. This form of restructuring occurs only if exp does not contain
unparenthesized operators of lower priority than Ope If op is - or
I, exp cannot contain unparenthesized operators of the same priority as
op. This form of the IF conversion allows a vector reduction loop to
be generated if VaP is a scalar reference and the statement appears in
a loop that otherwise would be vectorizable.

There are two possible drawbacks to performing this type of optimization
in all cases. An illegal operation may occur. For example,
IF(X.NE.O.O)R=R/X. If optimization occurred, an error would occur if X
were equal to zero. Another example is, IF(X.GE.O.O)R=SQRT(X). An error
would occur if X is negative.

The second drawback occurs when the IF statement appears in a DO-loop and
the logical expression is usually false. For example,

DO 10, I = 1,100
A(I) = B(I)*C(I)
IF(A(I).GT.RMAX)A(I) = MAX(B(I),C(I»

30 CONTINUE

In this example, if A(I) were less than RMAX and the IF statement was not
optimized, MAX(B(I),C(I» would never be evaluated. If the IF statement
were optimized, MAX(B(I),C(I» would always be evaluated.

Because of these drawbacks, the user can control vector merge
optimizations. By specifying OPT=NOIFCON on the CFT control card, this
form of optimization is disabled (the default level of optimization) •
OPT=PARTIALIFCON allows the optimization to occur when the replacement
expression does not involve division or an external function reference.
OPT=FULLIFCON enables the optimization for all cases, including those
involving division or external functions. The compiler directives CDIR$
NOIFCON and CDIR$ RESUMEIFCON may be used to turn the optimization off
and on around unsafe cases (such as, division by zero if OPT=FULLIFCON)
or when the logical expression of the IF statement is usually false. The
following examples may be helpful in performing optimizations.

SR-0009
Part 3

2-14 J-02

I

The simple case

DO 10 I = N,M
XCI) = C(I)
IF(B(I).GT.C(I»X(I) = B(I)

10 CONTINUE

could be rewritten as

DO 10 I = N,M
XCI) = CVMGT(B(I),C(I),B(I).GT.C(I»

10 CONTINUE

or as

DO 10 I = N,M
XCI) = AMAX1(B(I),C(I»

10 CONTINUE

to produce vectorizable loops.

Similarly,

DO 10 I = N,M
IF(X(I).GE.IO.)X(I) = XCI) + 1.0

10 CONTINUE

could be rewritten as

DO 10 I = N,M
XCI) = CVMGP(X(I) + 1.0,X(I),X(I)-10.)

10 CONTINUE.

The library routines SENSEFI, SETFI, and CLEARFI, or the EFI and DFI CAL
instructions can be used to control floating-point interrupts on a
loop-by-loop basis and MAX or MIN functions can be used to protect
function references.

Example:

SR-0009

CALL SENSEFI (MODE)
CALL CLEARF I
DO 10 I = 1,100
XCI) = CVMGN(l./X(I),X(I),X(I»
Y(I) = CVMGP(SQRT(AMAX1(Y(I),0.0»),Y(I),Y(I»

10 CONTINUE
IF (MODE.NE.O) CALL SETFI

Part 3
2-15 J-03

I

COMPRESSED INDEX REFERENCES

Memory references are in blocks of code which mayor may not be executed
depending on the outcome of an IF statement, and are compiled as
compressed index references. The variable values for the loop iterations
executed by the IF statement are collected as vector values, and the
subscripts are computed as vector expressions which generate a pseudo
vector memory reference. For example,

DO 1 I = 1,N
IF(MOD(I,2).EQ.O)THEN
A(I) = B(I)
ENDIF

1 CONTINUE

When I is even, the elements of B are moved to the corresponding elements
of A.

If there are no appropriate vector instructions to compress an index, the
instructions are simulated with a compiler-generated instruction sequence.

GENERAL GUIDELINES FOR VECTORIZATION

Follow the general guidelines given below to promote vectorization of
DO-loop operations.

• Keep subscripts simple and explicit~ do not use parentheses in
subscripts.

• Do not use GO TO or CALL statements.

• Use the Cray FORTRAN intrinsic functions where appropriate.

• Make judicious use of the Cray FORTRAN intrinsic functions CVMGT,
CVMGP, CVMGM, CVMGZ, CVMGN, and the MAX and MIN functions instead
of IF statements. For more information, see the subsection on
using optimized routines described earlier in this section.

• Rewrite large loops containing a few unvectorizable statements as
two or more loops, one or more of which will vectorize.

SR-0009
Part 3

2-16 J-03

I

BIDIRECTIONAL MEMORY

Bidirectional Memory is memory which can be read from and written to
simultaneously. The CRAY X-MP Computer Systems have Bidirectional Memory
(multiple ports' to memory) and CFT uses it to enhance the performance of

FORTRAN programs. This section describes how CFT uses Bidirectional
Memory, beginning with CFT version 1.11.

eFT attempts to use Bidirectional Memory in all vectorizable loops. In
loops where Bidirectional Memory may cause incorrect results, CFT inserts
instructions forcing sequential, instead of bidirectional, accesses to
memory. Using Bidirectional Memory is only a concern when using vector
loops, since scalar memory operations are always sequential.

Bidirectional Memory can always be used if there are no overlaps between
the arrays in memory. For example,

PROGRAM EXAMPLEI
COMMON B(lO),C(lO)
DIMENSION D(lO),E(lO)

The values of B, C, 0, and E occupy different areas in memory and
therefore, have no Bidirectional Memory errors.

CFT assumes that subscripts are within bounds, dummy arguments are
independent, and arrays referenced by pointer variables are independent.
In the following example,

SUBROUTINE EXAMPLE2(B,C)
REAL B(lOO),C(lOO)
COMMON D(lOO),E(lOO)
POINTER (IF,F(lOO»,(IG,G(lOO»

statements such as

or

or

CALL EXAMPLE2 (X(1),X(2»

IG = IF + 1

DO 10 I = 1,50
10 0(1+99) = E(25-I)

do not follow the CFT assumptions and produce unpredictable results. The
errors are not Bidirectional Memory errors but programming errors caused
by the incorrect use of FORTRAN.

SR-0009
Part 3

2-17 J-03

I

Chaining operation results will always be correct when Bidirectional
Memory is used. In the loop:

DO 10 I = 1,100
10 A(I) = A(I) + 1.0

the first A(I) will be loaded before the second A(I) is stored.

Multiple stores into the same array will always be correct, since there
is only one write port to memory. For example, the loop:

DO 10 I = 1,N
A (K*I+J) =

10 A (J*I+M) = •••

will be correct when Bidirectional Memory is used.

When CFT generates code, it ensures that previous dependent load and
store operations are complete before subsequent operations begin. This
may be ensured by the nature of the code (as in the previous examples);
if it is not, CFT generates protective code that guarantees completion of
previous dependent operations.

CFT considers two types of dependencies when looking for Bidirectional
Memory dependencies.

• A store operation preceded by a load operation. The two load
operations most recently compiled are examined (because there are
two read ports to memory). If either load operation has an order
dependency and does not chain into the store operation, protective
code is generated.

• A load operation preceded by a store operation. The store
operation most recently compiled is examined (because there is one
write port to memory). If the store operation has an order
dependency on the load operation, protective code is generated.

CFT also considers two special cases when looking for Bidirectional
Memory dependencies: loop wrap-around dependencies and loop-to-loop
dependencies. In a loop such as

CDIR$ IVDEP
DO 10 I = l,N

= A(I)

10 A(I+J) =

the store operation at the end of one iteration must be completed before
the load at the beginning of the next iteration begins. CFT 1.11
unconditionally inserts a CMR instruction (complete memory references) as

SR-0009
Part 3

2-18 J-03

I

the first instruction of a loop preceded by an IVDEP directive (CFT does
not normally vectorize a loop with a wrap-around dependency). CFT 1.13
and 1.14 perform a load/store analysis on the first two load operations
and the last store operation. If a potential dependency is found,
protective code is generated.

In the two adjacent loops

DO 10 I = 1,64
10 A(I) = ••.

DO 20 I = 63,64
20 B(I) = A(I)

the store operation in line 10 may not be completed before the load
operation in line 20 begins.

Before each vector loop, CFT generates a CMR instruction as the last
instruction in the loop preamble. Therefore, no vector memory operations
are in progress when a loop begins processing.

In a loop such as

CDIR$ IVDEP
DO 10 I = 1,10
..• = A(I+M)

10 A(I) =

where M>lO, CFT adds unnecessary and undesirable protective code. The
IVDMO directive can be used to prevent CFT from adding this code (see
part 3, section 1).

SR-0009
Part 3

2-19 J-03

APPENDIX SECTION

CHARACTER SET A

The ASCII character set contains 128 control and graphic characters shown
in the following table. Numbers, letters, and special characters that
form the Cray FORTRAN character set are identified by the appearance of
the letter C in the fourth column. All other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set.

The letters that appear in parentheses following the descriptions in the
fifth column indicate the following control character usage.

• Cc - Communication control

• FE - Format effector

• IS - Information separator

SR-0009 A-I J

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

NUL 000 12-0-9-8-1 Null

SOH 001 12-9-1 Start of heading (CC)

STX 002 12-9-2 Start of text (CC)

ETX 003 12-9-3 End of text (CC)

EOT 004 9-7 End of transmission (CC)

ENQ 005 0-9-8-5 Enquiry (CC)

ACK 006 0-9-8-6 Acknowledge (CC)

BEL 007 0-9-8-7 Bell (audible or attention
signal)

BS 010 11-9-6 Backspace (FE)

HT 011 12-9-5 Horizontal tabulation (FE)

LF 012 0-9-5 Line feed: (FE)

VT 013 12-9-8-3 Vertical tabulation (FE)

FF 014 12-9-8-4 Form feed (FE)

CR 015 12-9-8-5 Carriage return (FE)

SO 016 12-9-8-6 Shift out

81 017 12-9-8-7 Shift in

DLE 020 12-11-9-8-1 Data link escape (CC)

DCl 021 11-9-1 Device control 1

DC2 022 11-9-2 Device control 2

DC3 023 11-9-3 Device control 3

DC4 024 9-8-4 Device control 4 (stop)

NAK 025 9-8-5 Negative acknowledge (CC)

SYN 026 9-2 Synchronous idle (CC)

ETB 027 0-9-6 End of transmission block (CC)

CAN 030 11-9-8 Cancel

EM 031 11-9-8-1 End of medium

SUB 032 9-8~7 Substitute

ESC 033 0-9-7 Escape

SR-0009 A-2 J

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

FS 034 11-9-8-4 File separator (IS)

GS 035 11-9-8-5 Group separator (IS)

RS 036 11-9-8-6 Record separator (IS)

US 037 11-9-8-7 Unit separator (IS)

(Space) 040 (None) A,C Space (blank)
I 041 12-8-7 Exclamation mark .
" 042 8-7 C Quotation marks (diaeresis)

* 043 8-3 Number sign

$ 044 11-8-3 A,C Dollar sign (currency symbol)

% 045 0-8-4 Percent

& 046 12 Ampersand
I 047 8-5 A,C Apostrophe (single close

quotation)

(050 12-8-5 A,C Opening (left) parenthesis

) 051 11-8-5 A,C Closing (right) parenthesis

* 052 11-8~4 A,C Asterisk

+ 053 12-8-6 A,C Plus

, 054 0-8-3 A,C Comma (cedilla)

- 055 11 A,C Minus (hyphen)

. 056 12-8-3 A,C Period (decimal point)

/ 057 0-1 A,C Slant (slash, virgule)

0 060 0 A,C Zero

1 061 1 A,C One

2 062 2 A,C Two

3 063 3 A,C Three

4 064 4 A,C Four

5 065 5 A,C Five

6 066 6 A,C Six

7 067 7 A,C Seven

SR-0009 A-3 J

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

8 070 8 A,C Eight

9 071 9 A,C Nine
. 072 8-2 A,C Colon .
; 073 11-8-6 Semicolon

< 074 12-8-4 Less than

= 075 8-6 A,C Equal

> 076 0-8-6 Greater than

? 077 0-8-7 Question mark

@ 100 8-4 Commercial at-sign

A 101 12-1 A,C Uppercase letter

B 102 12-2 A,C Uppercase letter

C 103 12-3 A,C Uppercase letter

D 104 12-4 A,C Uppercase letter

E 105 12-5 A,C Uppercase letter

F 106 12-6 A,C Uppercase letter

G 107 12-7 A,C Uppercase letter

H 110 12-8 A,e Uppercase letter

I 111 12-9 A,C Uppercase letter

J 112 11-1 A,C Uppercase letter

K 113 11-2 A,C Uppercase letter

L 114 11-3 A,C Uppercase letter

M 115 11-4 A,C Uppercase letter

N 116 11-5 A,C Uppercase letter

0 117 11-6 A,C Uppercase letter

P 120 11-7 A,C Uppercase letter

Q 121 11-8 A,C Uppercase letter

R 122 11-9 A,C Uppercase letter

S 123 0-2 A,C Uppercase letter

SR-0009 A-4 J

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

T 124 0-3 A,C Uppercase letter

U 125 0-4 A,C Uppercase letter

V 126 0-5 A,C Uppercase letter

W 127 0-6 A,C Uppercase letter

X 130 0-7 A,C Uppercase letter

Y 131 0-8 A,C Uppercase letter

Z 132 0-9 A,C Uppercase letter

[133 12-8-2 Opening (left) bracket

\ 134 0-8-2 Reverse slant (backs1ash)

1 135 11-8-2 Closing (r ight) bracket

A 136 11-8-7 Circumflex

- 137 0-8-5 Underline
I 140 8-1 Grave accent (single open

quotation)

a 141 12-0-1 C Lowercase letter

b 142 12-0-2 C Lowercase letter

c 143 12-0-3 C Lowercase letter

d 144 12-0-4 C Lowercase letter

e 145 12-0-5 C Lowercase letter

f 146 12-0-6 C Lowercase letter

g 147 12-0-7 C Lowercase letter

h 150 12-0-8 C Lowercase letter

i 151 12-0-9 C Lowercase letter

j 152 12-11-1 C Lowercase letter

k 153 12-11-2 C Lowercase letter

1 154 12-11-3 C Lowercase letter

m 155 12-11-4 C Lowercase letter

n 156 12-11-5 C Lowercase letter

0 157 12-11-6 C Lowercase letter

SR-0009 A-5 J

ASCII ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CODE CODE (C=CRAY)

p 160 12-11-7 C Lowercase letter

q 161 12-11-8 C Lowercase letter

r 162 12-11-9 C Lowercase letter

s 163 11-0-2 C Lowercase letter

t 164 11-0-3 C Lowercase letter

u 165 11-0-4 C Lowercase letter

v 166 11-0-5 C Lowercase letter

w 167 11-0-6 C Lowercase letter

x 170 11-0-7 C Lowercase letter

y 171 11-0-8 C Lowercase letter

z 172 11-0-9 C Lowercase letter

{ 173 12-0 Opening (left) brace
I 174 12-11 Vertical line I

} 175 11-0 Closing (right) brace

'" 176 11-0-1 Over1ine (tilde, general
accent)

DEL 177 12-9-7 Delete

SR-0009 A-6 J

CRA Y FORTRAN INTRINSIC FUNCTIONS B

The eray FORTRAN intrinsic functions described in this appendix have been
grouped according to general purpose (that is, trigonometric,
exponential, etc.). This grouping is for convenience and is not provided
for in the ANSI FORTRAN Standard. These intrinsic functions include all
Basic External Functions as described separately in ANSI FORTRAN and eray
FORTRAN extensions.

Entity types in this table are abbreviated: integer (I), real (R),
double precision (D), complex (e), logical (L), Boolean (B),t
character (eH) , and Hollerith (H). Unless noted, 24-bit integer
variables can be used as arguments to a function accepting integer
arguments. 24-bit variables are sign extended and treated as 64-bit
variables.

Notations Full, Pseudo, and None indicate the vector status of
subprogram. Full indicates the routine uses vector hardware.
indicates the routine uses only scalar hardware but simulates
vectorization to gain efficiency for the DO-loop where such a
appears. None indicates only a scalar version exists.

each
Pseudo

routine

Table B-1 lists generic names and their corresponding specific names.
See the Library Reference Manual, eRI publication SR-OOI4, for additional
information on the use of the external routines.

t Boolean functions must be used with caution. If two Boolean results
are combined, they are treated as integers.

SR-0009 B-1 J-02

Definition (x)

GENERAL ARITHMETIC FUNCTIONS

• Truncation y=[x] Function lost 1 no ANSI AINT R 1 R Ixl<246 Full Inline
rounding DINT D 1 D Ixl<295 Full External

Nearest y=[x+.5] if x>O ANSI ANINT R 1 R Ixl <246 Full Inline
whole y=[x-.5] if x<O DNINT 0 1 0 Ix 1<295 Full External
number •
Nearest y=[x+.5] if x>O ANSI NINT I 1 R Ixl<2 46 Full Inline
integer y=[x-.5] if x<O IDNINT I 1 0 Full External •
Absolute y=lxl ANSI lABS I I Ixl < 00 Full Inline
value ABS R R

DABS 0 1 D
CABS t C C Ixrl,lxil<oo External

Divide for y=xl-x2[xl/x2] ANSI MOD I 2 I IXll<263,
remainder 0< IX21<263 , r 63 < I xl/x2 1 < 263 Pseudo External
of xl/x2 AMOO R 2 R IXll <247

0< IX21<247 ,r47< IXl/x21< 247 Full Inline
DMOO 0 2 0 I xli <295

0< I x2 1 <295 ,2-95< I xl/x2 1 < 295 Full External •
Transfer yE IXll if x~O ISIGN I I Ixll, IX21 <00 Full Inline
sign or ANSI SIGN R 2 R

y= -ixli if x2<0 DSIGN 0 0

Positive y=xl-x2 if xl>x2 IDIM 1 I IXll, IX21<oo Full Inline
difference yeO if x~x2 ANSI DIM R 2 R

DOIM 0 0 Full External •
Double- y=xl*x2 ANSI DPROO 0
precision

2 R IXl,lx21<oo Full Inline

product

Imaginary y=xi ANSI AIMAGt R 1 C IXr I, IXi I <00 Full Inline
portion of
complex
value

Conjugate y=xr-i ·xi ANSI CONJGt C 1 C IXr I, IXi I <00 Full Inline
of complex
value

Obtain y='lhe first or next in a CRI RANF R 0 Full External
random series of random numbers
number (O<y<l)

Obtain 'lhe currently used random CRI RANGET I 1 I Ixl<oo None External
random seed number seed

Establish y=x CRl RANSET R 1 B Ixl<oo None External
random
number seed

-

I

SR-0009 B-2 J-03

ANSI/ Function Argument(s) Code

Function Definition CRI (y) (x) Vector Generated

,,,,rpn,,;nn J,i";mp T~ Nn Tvn<> Rana"

EXPONEm'IAL FUNCTIONS

1

I Square root y=x2 ANSI SQRT R R O~x..:. 00 Full External
DSQRT D 1 D Full
CSQRTt C C xr'::'O, xi<oo

Exponent y=ex ANSI EXP R R I x 1<2130 1n2 Full External
DEXP D 1 D Full I
CEXpt C C I xr I <2130 1n2

IXil<224

LOGARITHMIC FUNCTIONS

ALOG R R Full External

I Natural ANSI DLOG D 1 D O<x<oo Full
logarithm y=ln(x) CLOGt C C

CDmmon ANSI ALOGlO R 1 R Full External
logarithm y=log(x) DLOGIO D D O<x<oo Full I

TRIGONOMETRIC FUNCTIONS (Angles are in radians)

SIN R R I xl <224
Sine y=sin (x) ANSI DSIN D 1 D I xl <2 48

CSINt C C (IXr I <224,
In2j

Full External
I xi I <213 °

COS R R I xl <224
Cosine y=cos(X) DCOS D 1 D Ixl <248

CCOs t C C (I xr 1<224 ,
In2j

Full External
I xi 1<213 °

Tangent y=tan(x) ANSI TAN R 1 R Ixl<224 Full External
DTAN D D

Cotangent y=cot(X) CRI COT R 1 R Ixl <224 Full External
DCOT D 1 D

Arcsine y=arcsin (X) ANSI ASIN R 1 R Ixl~l Full External

DASIN D 1 D

Arccosine y=arccos (x) ANSI ACOS R 1 R Ixl~l Full External
DACOS D 1 D

Arctangent y=arctan (X) ATAN R 1 R
ANSI DATAN D D Ixl<oo

y=arctan (xl/x2) ATAN2 R 2 R I xII, I x21 < 00 Full External
DATAN2 D D IX11, IX21~O

Hyperbolic y=sinh (x) ANSI SINH R 1 R Ixl <213 ° In2 Full External

sine DSINH D D

Hyperbolic y=cosh(x) ANSI COSH R 1 R Ixl <213 ° In2 Full External

cosine DCOSH D 1 D

Hyperbolic y=tanh(x) ANSI TANH R 1 R Ixl <213 ° In2 Full External

tangent DTANH D 1 D

-

SR-0009 B-3 J-03

•

Select
maximum
value

Select
minimum
value

Lexically
greater
than or
equal

Lexically
greater
than

Lexically
less than
or equal

Lexically
less than

Length of
character
entity

Index of a
substring

Conversion
to integer

Conversion
to real

Conversion
to double
precision

Definition

y='I1le largest of all x

y=The smallest of all x

truncation
toward zero
(fraction lost)

y-x accuracy may be lost

y.x~ aecur aey may be
extended

y2X accuracy may be
extended

Conversion y-xl + i·x2
to complex or

y-xl + i-O

Character y-x
to integer

In tege r to y-x
character

64-bit
integer to
24-bit
integer

24-bit
integer to
64-bit
integer

24-bit integer
x=xr + i-Xi

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

ANSI

eRI

eRI

MAXIMUM/MINIMUM FUNCTIONS

MAXO
AMAXl
DMAXl
AMAXO
MAXl

MINO

AMINl
DMINl
AMINO
MINl

CHARACTER FUNCTIONS

LGE CH

LGT CH

LLE CH

LLT CH

LEN CH

INDEX CH

TYPE CONVERSION

INT

IFIX
IDINT

REAL

FLOAT
SNGL

DBLE

CMPLX

ICHARttt I

c
I"
I

C
1*
I

C
I"

1 or 2 I
ett

CH

Argument (s)

(x)

Ixl<oo

Any legal character atl ing

Any legal character str ing

Any legal character str ing

Any legal character str ing

Any legal character string

Any legal character string

IXr l<246
Ixl <223
Ixl<263
Ixl<246

Ixl<263

Ixl <2 46

i~f ~;~~6
Ixl <246
Ixl<oo
Ixl <246
Ixl<OD

Ixl<oo
IXll, IX21<223
IXll, IX21<246

any legal character

CHARS CH I 0-255
CH ett

INT24 I"
B*

LINT I"

Full Inline

Full Inline

None External

None External

None External

None External

None Inline

None External

Full Inline

Full Inline

Full Inline

Full Inline

None External

None Inline

Full Inline

Full Inline

tt Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipulating the bit patterns they represent
ttt ICHAR converts a character to an integer based on the character position in the collating sequence

CHAR(i} returns the i th character in the collating sequence

SR-0009 B-4 J-03

Code

Definition Vector Generated

TIME AND DATE

Real-time Low order 46 bits of clock CRI RTC R None Inline
clock register expressed as

floating point integer

Current clock register IRTC
content

Time Current time in ASCII code CRI B None External
(hh:mm: 88)

Julian date Current Julian data in CRI B None External
ASCII code (yyddd)

Date Current date in ASCII code CRI B None External
(mm/dd/yy)

BOOLEAN FUNCTIONS

Logical Bit-by-bit logical product CRI AND B B,I, Full Inline
product (AND) of Xl and x2 R,L

Logical sum Bit-by-bit logical sum CRI OR B B,l, Full Inline
(OR) of Xl and x2 R,L

Logical Bit-by-bit logical CRI XOR B B,I, Full Inline
difference difference (XOR) R,L

of Xl and x2

Equivalence Bit-by-bit equivalence CRI EQV B B,I, Full Inline
(XOR) of Xl and x2 R,L

Not Bit-by-bit logical CRI NEQV B B,I, Full Inline
equivalent difference (XOR) R,L

of Xl and x2

Complement Bit-by-bit logical CRI COMPL B B,I, Full Inline
complement of Xl R,L

• Mask Xl =nurnber of one-bits to CRI MASK B Full Inline
be left-justified if
O~x~63.
(128-xl) =number of one-bits
to be right-justified
if 64~xl~128

• Circular Xl shifts left x2 CRI SHIFT B Xl: O~2<64 Fulltt Inline
shift positions; leftmost B,I,

positions replace vacated R,L
positions x2:

I

I t These procedures can be called as subroutines also. An integer or real argument is passed to return the result. However, these
procedures cannot be called as both subroutines and functions within a single program unit.

tt The subprogram vectorizes if the second argument is invariant (that is, x2 is not a vector)

SR-0009 B-5 J-02

I

Definition

Logical xl shifts left x2
shift positions; leftmost

positions lost; rightmost
positions set to zero

xl shifts right x2
positions; rightmost
positions lost; leftmost
positions set to zero

Leading Tallies number of leading
zeros zeros in x

Population Tallies number of ones
count in x

Population 0, if x has an even number
parity count of ones

1, if x has an odd number
of ones

Merge Bit-by-bit selective merge
(Xl()X3)V(x2 0ix3) t

Vectorization xl returned if x3 ~ 0
x2 returned if x3 < 0

xl returned if x3 < 0
x2 returned if x3 ~ 0

xl returned if x3 = 0
x2 returned if x3 'I 0

xl returned if x3 'I 0
x2 returned if x3 = 0

xl returned if x3
is true
x2 returned if x3
is false

CRI

CRI

CRI

CRI

CRI

CRI

Location Returns memory address of CRI

Tallies
number of
arguments
used to call
subprogram

specified variable or array

y=X CRI

Argument(s)

(xj

BOOLEAN FUNCTIONS (cont.)

SHIFTL B xl: O,::,x2<64

SHIFTR

LEADZ

POPCNT

POPPAR

CSMG

CVMGP

CVMGM

CVMGZ

CVMGN

CVMGT

B,I,
R,L
x2: 1

B

B,I,
R,L

B,I,
R,L

B,l,
R,L

B B,I,
R,L

VECTORIZATION AIDS

B B,I,
R,L

Xl,X2:
B,I,
R,L
x3: L

MISCELLANEOUS FUNCTIONS

LOC

NUMARG

B,I,R,
L,C,D

Fulltt

Full

Full

Full

FullS

None

None

The logical symbol n represents AND, the logical symbol U represents OR, and the logical symbol f\ i represents AND NOT.
tt The subprogram vectorizes if the second argument is invariant (that is, x2 is not a vector).
ttt The CRAY-l A and CRAY-l B Computer Systems will be external without population parity hardware.
S The function cannot be passed as an argument.

SR-0009 B-6

Inline

Inline

Inlinettt

Inlinettt

Inline

Inline

Inline

Inline

J-02

Table B-1. Generic and specific intrinsic function names

SR-0009

Generic name

INT
REAL
DBLE
CMPLX
t
t
AINT
ANINT
NINT
ABS
MOD
SIGN
DIM
t
MAX
t
MIN
t
t
t
t
t
SQRT
EXP
LOG
LOGIO
SIN
COS
COTtt
TAN
ASIN
ACOS
ATAN
ATAN2
SINH
COSH
TANH
t

Specific names

INT, IFIX, IDINT
REAL, FLOAT, SNGL
t
t
ICHAR
CHAR
AINT, DINT
ANINT, DNINT
NINT, IDNINT
lABS, ABS, DABS, CABS
MOD, AMOD, DMOD
ISIGN, SIGN DSIGN
IDIM, DIM DDIM
DPROD
MAXO, AMAXl, DMAXI
AMAXO, MAXI
MINO, AMINI, DMINI
AMINO, MINI
LEN
INDEX
AI MAG
CONJG
SQRT, DSQRT, CSQRT
EXP, DEXP, CEXP
ALOG, DLOG, CLOG
ALOGlO, DLOGIO
SIN, DSIN, CSIN
COS, DCOS, CCOS
COT, neOT
TAN, DTAN
ASIN, DASIN
ACOS, DACOS
ATAN, DATAN
ATAN2, DATAN2
SINH, DSINH
COSH, DCOSH
TANH, DTANH
LGE, LGT, LLE, LLT

t No generic name or no specific name
tt A function not specified by the ANSI

standard

B-7 J

CRAY FORTRAN UTILITY PROCEDURES

The Cray FORTRAN Compiler (CFT) includes a set of utility procedures
which, like intrinsic functions, is predefined by name and function.
Unlike intrinsic functions, however, utility procedures are not provided
for by the ANSI FORTRAN Standard. They include subroutines as well as
functions~ some have arguments of mixed type~ and some modify these
arguments I contents.

C

Table C-I describes currently available utility procedures. Entities in
this table are abbreviated, integer (I), real (R), double precision (D),
complex (C), logical (L), Boolean (B), and Hollerith (H). Unless noted,
24-bit integer variables can be used as arguments to a function accepting
integer arguments. 24-bit variables are sign extended and treated as
64-bit variables.

Notations Full, Pseudo, and None indicate the vector status of each
subprogram. Full indicates the routine uses vector hardware. Pseudo
indicates the routine uses only scalar hardware but simUlates
vectorization to gain efficiency for the DO-loop where such a routine
appears. None indicates only a scalar version exists.

SR-0009

NOTE

Although correct argument types are specified, it is
the userls responsibility to ensure that actual
arguments are of the correct type. No type conversion
occurs automatically.

C-I J

I

Category

TIME

SYSTEM

Subroutine
or

Function
Name

TlMEF

tSECOND

SYSTEM

EXIT

SSWITCH

ABORT

ERREXIT

TRBK

REMARK

REMARK 2

REMARKF

SENSEFI

CLEARFI

SETFI

CLEARFIS

SETFIS

INPUT/OUTPUT EODW

lEaF

Func.
Type

R

R

Table C-l. CFT utility procedures

Description

Returns current clock register content in milli
seconds

xl = Cumulative CPU time for job in seconds.

Selects a COS fUnction. See Exchange Processor,
CRI publication SM-0040.

Terminates job step. Job continues at next control
statement.

x2 = I if sense switch xl is ON.
x2 = 2 if sense switch xl is OFF, if xl < 1, or
if xl > 6.

Terminates job step after program detects error.
Gives error exit to COS. Job continues at next
EXIT statement. Prints traceback in logfile.
Argument xl is optional. If xl is present,
it is written to the logfile before the traceback.
Argument xl is subject to the same restrictions
as the argument in REMARK2.

Terminates job step after program detects error.
Gives error exit to COS. Job continues at next
EXIT control statement. Prints no traceback.

writes a traceback through subroutine calls to
file xl' If xl is '$LOG' or is missing, the
traceback is written to the logfile.

writes an ASCII message to both the user logfile
and system logfile. The R descriptor is prohibited.
For a variable or array name of type I, R, C, or D
(not 24-bit integer), the caller must signal the end
of the message by a null character (zero). xl = 8
words maximum.

Same as REMARK except that xl may have a maximum
of 9 words. The first 5 characters are a code
identifying the message for machine processing.

Enters a message in the logfile. A format and up to
12 variables can be passed, each occupying only one
word. The first argument is the format label.

Determines current interrupt mode.
Mode=l, interrupts permitted1
Mode=O, interrupts prohibited.

Temporarily prohibits floating-point interrupts

Temporarily permits floating-point interrupts

Permanently prohibits floating-point interrupts

Permanently permits floating-point interrupts

writes eod and, as required, eo! and eor record(s)
on unit xl

Returns -1 if eod processed at unit x11
+1 if eo! read at unit xl1
0, otherwise.

ArQument TVl e (s)

R

B,I,
D,C,L

B,I,
D,C,L

B,I,
D,C,T~

I,C

x2

I,R,
L,B

Vector

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

I t These procedures can be used either as functions or as subroutines, but not both within the same program unit.
tt xl can be a unit number or a Hollerith unit name. If no argument is specified for DUMPJOB, $DUMP is used.

Code
Generated

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

SR-0009 C-2 J-02

I

Table C-l. CFT utility procedures (continued)

Subroutine Argument Type (s)
Category or Func. Descr iption Vector

Function Type Xl ~ ~
Name

INPUT/OUTPUT EOF R Returns -1.0 if eod processed at unit xl; it None
(continued) +1.0 if eo! read at unit xl;

0.0, otherwise.

UNIT R Returns -2.0 if record at unit xl partly read; it None
-1.0 if unit xl transfer successful;

0.0 if eo! or eod read at unit xl;
+1.0 if disk parity error while reading

unit xV
+2.0 if unit xl error indicated.

(Applies only to buffered input/output operations)

LENGTH I Returns number of Cray words transferred to or from it None
unit xl. Returns 0 if eo! or eod read from
~;;:a:t~ns)(APPlieS only to buffered input/output

GETPOS B Returns standing address of current record in dataset it None
associated with unit xl

SETPOS Sets starting address of current record in dataset it I None
associated with unit xl to beginning address of
dataset if x2 = 0, to ending address if x2 = -1,
or to word address x2.

DEBUGGING ENDRPV Resumes error exit processing suspended by SETRPV None
AIDS

SETRPV Transfers control to a specified routine upon H I,R,L I,B None
encountering a user-selected system error.
xl = Name of subroutine to which control is passed.
x2 = Array to receive the Exchange Package and
abort conditions.
x3 = Mask defining the error class from which
reprieve is desired.

SYMDEBUG Dumps the contents of specified program variables. H None
The character str ing argument is identical to the
parameters for the DEBUG control statement. See the
CRAY-OS Version 1 Reference Manual, publication
SR-OOll.

DUMPJOB Creates an unblocked dataset containing the user it None
job area image (including register states) suitable
as input to the DUMP programs

These procedures can be used either as functions or as subroutines, but not both within the same program unit.
tt xl can be a unit number or a Hollerith unit name. If no argument is specified for DUMPJOB, 'DUMP is used.

SR-0009 C-3

Code
Generated

External

External

External

External

External

External

External

External

External

J-03

eFT MESSAGES

I The Cray FORTRAN compiler (eFT) produces six types of compile-time
messages. From least severe to most severe, they are

COMMENT Message reports a programming inefficiency.

NOTE This usage may cause problems with other compilers.

CAUTION Message reports a possible user error.

WARNING Message reports a probable user error.

D

NON-ANSI Message reports when the ANSI parameter is specified
on the eFT control statement. Specifying ANSI issues
nonstandard code messages as NON-ANSI instead of NOTE,
CAUTION, or WARNING. When ANSI is not specified on
the CFT control statement (the default), the message
is issued as a NOTE, CAUTION, or WARNING.

ERROR Message reports a fatal error.

CFT produces these messages in the following general format.

severity type message location number

(Location number is the internal CFT location where the message was
generated.)

If a message in this appendix is preceded by S, the print position at
which the error occurred is specified by the following.

NEAR » «

Error messages can occur under the following conditions.

• After the first nondeclarative statement - An error message
occurring after the first nondeclarative statement usually
indicates contradictions between declarative statements.

• After an END statement - An error message occurring after an END
statement usually refers to missing statement or format numbers.

SR-0009 D-l J-03

•

• After any other statement - An error message occurring after any
other statement usually refers to a syntax error in that
statement. If no source list is being generated, the first line
of the statement is listed. Continuation lines, if any, are not
listed but are indicated by four plus signs appended to the first
line of the statement.

Logfile messages follow the compile-time messages in this appendix.

COMPILE-TIME MESSAGES

Itname" ALREADY SAVED AT SEQUENCE NUMBER n
"name" is in a SAVE statement list and the preceding SAVE statement
list at sequence number n.

"name" APPEARS TWICE IN DUMMY ARGUMENT LIST
A symbolic name appears twice in the dummy argument list of a
FUNCTION or SUBROUTINE statement.

"name" CANNOT BE DECLARED EXTERNAL
"name" has appeared in both an EXTERNAL statement and in an array
declarator, DATA, COMMON, or PARAMETER statement.

"name" CANNOT BE DECLARED INTRINSIC
The symbolic name was used in the program unit, giving the name a
type, for example, a dummy argument.

"name" DOUBLY ASSOCIATED IN EQUIVALENCE AT SEQUENCE "numbep"
EQUIVALENCE statements using "name" are incorrect and specify an
illegal storage sequence. To correct the error, the following two
situations must be true. The same storage unit cannot occur more
than once in a storage sequence. The example

REAL A(2)
EQUIVALENCE (X,A(l», (X,A(2»

is incorrect because A(l) and A(2) have the same storage unit.
Consecutive storage units cannot be specified as nonconsecutive. The
example

REAL A(2)
DOUBLE D(2)
EQUIVALENCE (A(I),D(I», (A(2),D(2»

is incorrect because A(l) and A(2) are nonconsecutive.

SR-0009 D-2 J-03

"name" IS STATICALLY ALLOCATED
CFT assigns "name" to static storagel otherwise, the name can be
removed from SAVE and DATA statements.

"name" NO LONGER INTRINSIC
An intrinsic function name appeared in a compiler directive, g1v1ng
external subprograms special attributes (for example, VFUNCTION and
NO SIDE EFFECTS). The intrinsic function loses its intrinsic
properties. The intrinsic function should appear in an EXTERNAL
statement before the compiler directive declarations.

"name" NOT AN INTRINSIC FUNCTION
A symbolic name in the list of an INTRINSIC statement is not an
intrinsic function.

"name" NOT LOCAL OR COMMON BLOCK VARIABLE
List may contain only local or common block variables.

"name" STATEMENT IS A NONSTANDARD STATEMENT
The statement type indicated is a CFT extension to the FORTRAN
language specified by the ANSI FORTRAN Standard.

Silname" UNEXPECTED CHARACTER IN FORMAT
When a format specifier list was parsed, an unknown edit descriptor
or premature end of an edit descriptor was found. CFT attempts to
recover at the next character following a comma or at the next
parenthesis or string delimiter.

"name" USED AS SYMBOLIC CONSTANT AND AS COMMON BLOCK NAME
The same identifier was used for a common block name and a symbolic
constant name. The ANSI FORTRAN Standard prohibits this duplicate
usage within the same program unit.

SABBREVIATION OF "name" IS NONSTANDARD
The logical operator or constant indicated by "name" was abbreviated.
The ANSI FORTRAN Standard prohibits the abbreviation of logical
constants or operators.

ADJUSTABLE DIMENSION ILLEGAL IN MAIN PROGRAM
Arrays in main program must have constant subscripts.

AMBIGUOUS CHARACTER EXPRESSION
A character expression of the form v=e is illegal if the same
character position is referenced by v and e. A character
expression is ambiguous if subscripts or substrings are defined with
variables. For example, A(I:J)=A(K:L) is ambiguous to the compiler.
The expression must be legal or unexpected results may occur.

SR-0009 D-3 J-03

I

I

ARGUMENTS IGNORED FOR ZERO ARGUMENT INTRINSIC
An intrinsic function defined to have zero arguments was referenced
with one or more arguments. Reference zero argument intrinsics with
a null argument list.

ARITHMETIC EXPRESSION WITH DOUBLE PRECISION AND COMPLEX IS NONSTANDARD
An arithmetic or relational expression was used with a complex and
double-precision operand. CFT will convert the double-precision
operand to a complex operand. The ANSI FORTRAN Standard prohibits
these conversions.

ARRAY NAMED FORMAT IS POTENTIALLY AMBIGUOUS
An array with the symbolic name 'FORMAT' was declared using the
DIMENSION, COMMON, INTEGER, REAL, DOUBLE, or COMPLEX statement.

ASSUMED SIZE DIMENSION ILLEGAL IN MAIN PROGRAM
Arrays in main program must have constant subscripts.

AT SEQUENCE NUMBER n: "name" CANNOT BE SAVED
"name" is in a SAVE statement listiat sequence number n, but
"name" cannot appear in a SAVE statement list.

§BAD CONSTANT LIST IN DATA STATEMENT
A DATA statement is missing a constant list or contains an illegal
constant or separator character.

BAD HEXADECIMAL CONSTANT
Illegal separator between hexadecimal digits or the length of the
constant is greater than 16 characters.

BAD REPETITION FIELD
The repetition count in a DATA constant list must be an integer
greater than o.

§BAD STATEMENT FUNCTION PARAMETER LIST
The formal parameter list in an arithmetic statement function
definition statement contains an illegal element.

BAD SUBSCRIPT IN DATA STATEMENT
A subscript must be an integer constant or constant name in a DATA
statement.

BAD TRIP COUNT IN IMPLIED DO
Incrementation parameter m3 has been assigned a value of 0 or
(m2 - ml+m3)/m3 is negative or o.

BLOCK IF STATEMENTS NESTED TOO DEEPLY
The nesting of block IF statements exceeds 511. CFT does not allow
more than 511 nested block IF statements.

SR-0009 0-4 J-03

I

I

BRANCH INTO IF, ELSE, OR ELSE IF BLOCK, LABEL "7,"
A branch into an IF-block, ELSE-block, or ELSE IF-block to label
"7," from outside the block has been detected. The ANSI FORTRAN
Standard prohibits the transfer of control into an IF-block,
ELSE-block, or ELSE IF-block.

BUFFERED IO IS NONSTANDARD
A BUFFER IN or BUFFER OUT statement was used. Buffered input and
output are CFT extensions to the ANSI FORTRAN Standard.

CALL OF NON EXTERNAL FUNCTION "name"
called external procedure does not exist or a name has been used for
both a variable and an external procedure.

SCHARACTER COUNT TOO LARGE
An R-form Hollerith constant is specified with more than eight
characters or an H- or L-form Hollerith constant is specified with
more than eight characters in other than a DATA statement or an
actual argument list.

CHARACTER LENGTH MUST BE >ZERO and <16384
A character entity must be assigned a length greater than 0 and less
than 16,384.

COMMA EXPECTED
A required comma has not been specified.

COMMA EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required comma has been omitted in an EQUIVALENCE statement.

I SCOMMA OR RIGHT PARENTHESIS EXPECTED
A required comma or right parenthesis was omitted.

COMMA OR RIGHT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required comma or right parenthesis was omitted in an EQUIVALENCE
statement.

SCOMMA REQUIRED BY STANDARD BETWEEN FORMAT FIELDS
The ANSI FORTRAN Standard requires a comma between most format edit
descriptor fields, while most commas in CFT format specifier lists
are optional.

COMMON BLOCK "name" IS VERY LARGE, USE EXTENDED MEMORY ADDRESSING
A named or blank common block was declared with more than 4 million
words of storage.

COMMON BLOCK NAME "name" MORE THAN 6 CHARACTERS
The common block name has seven or eight characters. ANSI FORTRAN
Standard common block names cannot have more than six characters.

SR-0009 D-5 J-03

COMPILER ERROR
The CFT compiler detected an error in its internal tables, please
show your listing to a Cray Research systems analyst.

COMP ILER ERROR - INTERNAL TABLE OVERFLOW, RECOMPILE WITH SMALLER BLOCK
SIZE

A CFT internal table has overflowed when compiling. The optimization
block where the error occurs must be reduced in size by inserting a
CDIR$ BLOCK compiler directive in the block or reducing the maximum
block size with the MAXBLOCK control statement parameter.

CONFLICTING TYPE FOR INTRINSIC FUNCTION "name" IGNORED
A type statement cannot change the type of an intrinsic function.
The function must be declared EXTERNAL before its type can be changed.

CONFLICTING USE OF INTRINSIC FUNCTION "name"
An intrinsic function name has been used to reference the function in
another way within the program unit.

CONSTANT DIMENSION TOO LARGE
All dimensions must be less than 222.

CONSTANT LIST LONGER THAN VARIABLE LIST
Constants and variables in a DATA statement must have a one-to-one
correspondence.

§CONSTANT SUBSCRIPT TOO LARGE
Statement contains a subscript which, when evaluated, yields a result
greater than the size of the named array.

CONTROL LIST MUST INCLUDE ONE FILE OR UNIT OPTION
INQUIRE statement must specify either a file or a unit.

CONTROL LIST MUST INCLUDE ONE UNIT OPTION
The I/O statement must specify a unit.

§DATA ENTRY IN BLANK COMMON ILLEGAL
The DATA statement cannot be used to initialize blank common.

DATA INITIALIZATION OF COMMON VARIABLE "name" NOT IN BLOCK DATA SUBPROGRAM
"name" appeared in a common block and was initialized in a DATA
statement in an executable subprogram. The ANSI FORTRAN Standard
allows data initialization of common block entities only in a block
data subprogram.

DATA STATEMENT PRECEDES SPECIFICATION STATEMENT
The ANSI FORTRAN Standard specifies an order for nonexecutable
statements. A DATA statement must appear after every specification
statement. CFT detected a DATA statement preceding a specification
statement.

SR-0009 0-6 J-03

•

DECLARATOR "name" MUST BE DUMMY ARGUMENT OR IN COMMON
The dimension declarator "name" in an adjustable array declarator
was not a dummy argument or a variable in cornmon.

DEPENDENCY INVOLVING ARRAY "name"
A dependency exists involving two array references in the same
statement. This dependency inhibits DO-loop vectorization.

DEPENDENCY INVOLVING ARRAY "name" IN SEQUENCE NUMBER nnnnnnnn
A dependency exists involving an array reference in sequence number
nnnnnnnn and an array reference in the AT SEQUENCE NUMBER n line
preceding this message. This dependency inhibits DO-loop
vectorization.

DIMENSION COUNT > SEVEN
More than seven dimensions appear in an array declarator.

DIMENSION EXCEEDED
A subscript in a DATA statement element exceeds the corresponding
array declaration.

DIRECTIVE NO LONGER SUPPORTED
The SCHED and NOSCH directives are no longer supported. The
directives have no effect if used.

DIVIDE BY ZERO
Dividing by the constant 0 is illegal.

DO ILLEGAL ON CONDITIONAL STATEMENT
This type of statement is not allowed as the conditional statement of
a direct logical IF statement.

DO INDEX ACTIVE
The loop control variable is already active from a previous loop.

DO INDEX IN INPUT LIST
Attempt to read data into a DO variable.

DO LOOP MAY NOT CROSS BLOCK BOUNDARY
A DO-loop that begins within an IF-block, ELSE-block or ELSE IF-block
must be totally contained within that block. A block that begins
within a DO-loop must be totally contained within the loop.

DO TERMINATOR ILLEGAL IN CONDITIONAL BLOCK STATEMENT
DO-loop must not terminate on an IF (e) THEN, ELSE, ELSE IF, or
ENDIF statement.

DO TERMINATOR PRECEDES DO STATEMENT
The statement label that terminates a DO-loop precedes the
corresponding DO statement.

SR-0009 D-7 J-03

I
§DOUBLE PRECISION CONSTANT IN COMPLEX CONSTANT IS NONSTANDARD

A double-precision constant is used to form a complex constant. CFT
allows this when double precision is disabled (OFF=P option in the
CFT control statement), but it is prohibited by the ANSI FORTRAN
Standard.

DOUBLY DEFINED FUNCTION OR MISSING DIMENSION
An arithmetic statement function is defined more than once or an
array was not dimensioned.

DOUBLY DEFINED STATEMENT NUMBER
Statement labels cannot be defined more than once in a program unit.

DUMMY ARGUMENT IN EXECUTABLE STATEMENT PREVIOUS TO ENTRY
A dummy argument name in an executable statement must also be
specified in the FUNCTION, SUBROUTINE, or ENTRY statement referenced
before the executable statement.

DUPLICATE COMMON DEFINITION "name"
Variable or array appears in common more than once.

DUPLICATE CONTROL OPTION IN LIST
An option is specified more than once in an I/O statement control list.

DUPLICATE DIMENSION "name"
Dimensions cannot be declared more than once.

DUPLICATE TYPE DEFINITION "name"
Variables cannot be given more than one type. This message is issued
when a type statement redefines the variable type with a type
established by a DATA, POINTER, or previous type statement.

DYNAMIC BLOCK "name" NOT IN PREVIOUS COMMON
Dynamic name must be declared as a common block previous to its
appearance in a DYNAMIC compiler directive.

§EBCDIC NOT IMPLEMENTED
The current version of CFT allows only ASCII characters.

EMBEDDED COMMENTS ARE NONSTANDARD
A comment is embedded in a line of source code following an
exclamation point. Embedded comments are a CFT extension to the ANSI
FORTRAN Standard.

§EMPTY PARENTHESES ILLEGAL IN FORMAT
CFT found an empty set of parentheses nested in a format specifier
list. Only the outermost set of parentheses can be empty.

SR-0009 0-8 J-03

I

I

ENCODE/DECODE MAY NOT BE LIST DIRECTED
The format identifier in an ENCODE or DECODE statement must not
specify list-directed I/O, it cannot be an *.

ENTRY NAME ILLEGAL
ENTRY name not a function or subroutine name.

ENTRY "name" USED AS DUMMY ARGUMENT
"name" is an entry point (that is, "name" appeared in a FUNCTION,
SUBROUTINE, ENTRY, or BLOCK DATA statement) and appears as a dummy
argument.

ENTRY STATEMENT ILLEGAL IN DO LOOP OR BLOCK IF
The ENTRY statement must not be used in a DO-loop or a block IF.

ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM
The ENTRY statement must not be used in a main program. It is used
only in a subroutine or function.

§EQUIVALENCE EXTENDS COMMON BLOCK BASE
Common block storage is illegally extended by adding storage units
preceding the first storage unit specified in the COMMON statement.

EQUIVALENCE OF "name" IN DIFFERENT COMMON BLOCKS
An EQUIVALENCE statement must not associate the storage sequences of
two different common blocks in the same program unit.

ERROR IN CONSTANT
Illegal characters in constant, or constant out of range

EXECUTABLE CODE IN BLOCK DATA SUBPROGRAM
Executable statements appear in a block data subprogram. This is
prohibited by the ANSI FORTRAN Standard.

§EXPRESSION ILLEGAL IN INPUT LIST
Input list item is not a variable name, array element name, or array
name.

EXPRESSION TYPE MUST BE INTEGER
Expressions in alternate RETURN statement must be type integer.

EXTENDED RANGE DO-LOOP IS NONSTANDARD
CFT detects a branch into the range of a DO-loop or a possible branch
using an ASSIGN, END=, or ERR= branch to a label defined in the range
of a DO-loop. Extended range DO-loops are a CFT extension to the
ANSI FORTRAN Standard.

§EXTRA CHARACTERS AFTER END OF STATEMENT
Characters are specified after the syntactic end of a statement.

SR-0009 D-9 J-03

§EXTRA CHARACTERS AFTER END OF STATEMENT IN EQUIVALENCE AT SEQUENCE
"number"

Characters are specified after the syntactic end of an EQUIVALENCE
statement.

§EXTRA COMMA OR MISSING PARAMETER
Either the statement contains an extra comma or a parameter or list
item has been omitted.

I §FEWER SUBSCRIPTS USED THAN DECLARED
A reference to an actual array element has fewer subscript
expressions in its subscript than dimension declarators in the
corresponding array declarator. The missing subscript expressions
are assumed rightmost in the subscript and are each assigned the
value I by the compiler.

§FEWER SUBSCRIPTS USED THAN DECLARED IN EQUIVALENCE AT SEQUENCE "number"
A reference to an actual array element in an EQUIVALENCE statement
has fewer subscript expressions in its subscript than dimension
declarators in the corresponding array declarator. The missing
subscript expressions are assumed rightmost in the subscript and are
each assigned the value 1 by the compiler.

§FIELD WIDTH MUST NOT BE ZERO
The field width following a format edit descriptor is zero, for
example, FO.2 or G20.8EO.

§FIELD WIDTH VALUE TOO SMALL
The field width value of a format edit descriptor is too small to
print as specified, for example, F3.5.

FORMAT MUST BE CHARACTER EXPRESSION
A FORMAT specifier can be an expression only if the expression is a
character expression.

FUNCTION "name" ALREADY DECLARED EXTERNAL
The symbolic name appearing in an INTRINSIC statement has already
appeared in an EXTERNAL statement.

FUNCTION "name" ALREADY DECLARED INTRINSIC
The symbolic name appearing in an INTRINSIC statement has already
appeared in an INTRINSIC statement.

FUNCTION "name" MORE THAN 6 CHARACTERS
An attempt was made to declare a function with a name greater than
six characters as having a vector call-by-value version (CDIR$
VFUNCTION). Rename the function with a shorter name.

SR-0009 D-10 J-03

I

FUNCTION "name" MUST BE DECLARED IN INTRINSIC OR EXTERNAL STATEMENT
A function passed to another subprogram as an actual argument must be
declared in an INTRINSIC statement (intrinsic functions) or an
EXTERNAL statement (user-supplied functions).

FUNCTION "name" NOT DECLARED
One of the following conditions exists with IMPLICIT NONE or IMPLICIT
SKOL specified.

1. Function "name" has not appeared in an EXTERNAL statement.
2. "name" was intended to be an array but did not appear in an

array declarator.

FUNCTION OR CALL "name" REFERENCES ITSELF
A reference to the function or subroutine su~program being compiled
is encountered with that subprogram.

§FUNCTION USED WITH INCORRECT NUMBER OF ARGUMENTS
The number of arguments in the function reference does not agree with
the number of arguments in the function definition.

GROUP NAME DEFINED PREVIOUS TO NAMELIST
A group name may be defined only in NAMELIST.

§H,L,R COUNT < OR = ZERO
In an nH, nL, or nR specification of a Hollerith value, n is
less than or equal to o.

§H,L,R COUNT PAST END OF STATEMENT
In an nH, nL, or nR specification of a Hollerith value, n
specifies more characters than are provided, or an apostrophe
terminating a Hollerith string is missing.

HEXADECIMAL CONSTANT IS NONSTANDARD
The ANSI FORTRAN Standard does not provide for hexadecimal constants.

§HOLLERITH CONSTANT > EIGHT CHARACTERS
A Hollerith constant of more than eight characters is specified in
other than H- or L-form and in other than an actual argument list or
a DATA statement constant.

§HOLLERITH CONSTANTS ARE NONSTANDARD
A Hollerith constant was used in a statement other than a FORMAT
statement. The ANSI FORTRAN Standard only allows Hollerith constants
in FORMAT statements.

IDENTIFIER "name" MORE THAN 6 CHARACTERS
The identifier contains seven or eight characters. The ANSI FORTRAN
Standard provides for a maximum of six characters in identifier names.

SR-0009 D-ll J-03

IF BLOCK LEVEL NOT = ZERO AT END STATEMENT
An ENDIF statement is missing.

ILLEGAL ARGUMENT TO TSKSTART
One or more arguments being passed to TSKSTART is inconsistent with
the expected arguments. Check the arguments to ensure that the first
argument is an integer array with a minimum length of 2. The second
argument must be a declared external. The remaining arguments must
be local variables or variables declared in common. See the
Multitasking User's Guide, CRI publication SN-0222 for more
information.

ILLEGAL ARITHMETIC EXPRESSION
An operand in an arithmetic expression is of type logical. This is
prohibited by the ANSI FORTRAN Standard.

ILLEGAL BY VALUE CALL
A by-value function call requires more than seven S or V registers to
pass its arguments. A by-value call cannot use more than seven
registers. Reduce the register number to a number less than eight or
pass the arguments by address instead of by value.

§ILLEGAL CHARACTER
A nonstandard FORTRAN character, misplaced character, or syntax error
has been encountered.

ILLEGAL CHARACTER EXPRESSION
A character assignment expression (for example, v=e) is illegal
because v is used in expression e.

§ILLEGAL CHARACTER OR MISSING DIMENSION
Either the statement contains an illegal character or an array
element has not been defined by a DIMENSION statement.

§ILLEGAL CHARACTERS IN NAME FIELD
Illegal characters are in a field that must contain a symbolic name.

§ I LLEGAL CHARACTERS IN NAME FIELD IN EQUIVALENCE AT SEQUENCE "numbep"
Illegal characters are in an EQUIVALENCE field that must contain a
symbolic name.

§ILLEGAL CHARACTERS IN STATEMENT NUMBER FIELD
Non-numeric characters appear in what should be a numeric field.

§ILLEGAL COMMON BLOCK NAME
The specification of a common block name does not conform to the
rules for constructing symbolic names.

SR-0009 D-12 J-03

I

SILLEGAL COMPILER DIRECTIVE
CDIR$ omitted or misspelled in columns 1 through 5, 6 not blank or
zero, compiler directive not in columns 7 through 72.

ILLEGAL CONDITIONAL STATEMENT
The conditional statement go logical IF must not be a logical IF
statement or a block statement IF.

ILLEGAL CONTINUATION
More than 19 consecutive continuation cards encountered or the first
card of a program unit is a continuation card.

I SILLEGAL CONTROL OPTION
An option in the control list of an I/O statement is incorrect.

ILLEGAL CONVERSION IN DATA STATEMENT
The types of a variable and an associated constant in a DATA
statement differ. The type conversion required is illegal or
undefined.

S I LLEGAL DO INDEX
DO-variable is not an integer, real, or double-precision variable.

S I LLEGAL DO TERMINATOR
DO-loops must not terminate on unconditional transfer statements.

ILLEGAL DO VARIABLE OR PARAMETER TYPE
The DO-loop variable or parameter is not type integer, real,
double-precision, or Boolean.

S I LLEGAL FORMAT NAME
A format identifier cannot be recognized as a statement label or the
name of an array.

§ILLEGALIMPLICIT STATEMENT ARGUMENTS
IMPLICIT statement argument is not an alphabetic character or the
range of characters specified is illegal.

ILLEGAL LOGICAL EXPRESSION
An operand in a logical expression is not of type logical. This is
prohibited by the ANSI FORTRAN Standard.

ILLEGAL MASKING OR BOOLEAN EXPRESSION
One or both operands in a masking or Boolean expression is of type
double precision or complex. Masking and Boolean expression operands
must be single word entities.

SR-0009 D-13 J-03

I

ILLEGAL MIX OF CHARACTER AND NONCHARACTER IN COMMON BLOCK "name"
It is illegal to mix character and noncharacter entities in the same
conunon block.

ILLEGAL MIX OF CHARACTER AND NONCHARACTER IN EQUIVALENCE AT SEQUENCE
"number"

It is illegal to mix character and noncharacter entities in the same
EQUIVALENCE statement.

ILLEGAL MIXED MODE OR CONVERSION
The types of two operands in an expression are incompatible or the
type of array element or variable being defined is incompatible with
the type of expression being evaluated.

§ILLEGAL NUMBER IN NAME FIELD
A symbolic name must not begin with a number.

§ILLEGAL OR DUPLICATE PARAMETER DEFINITION
Symbolic name of type integer, real, double precision, or complex not
followed by an arithmetic expression. Symbolic name of type logical
not followed by a logical expression. A symbolic name has been
assigned more than once in the same program unit.

ILLEGAL PLACEMENT OF ALIGN, DIRECTIVE IGNORED
The ALIGN compiler directive was not placed inunediately before a DO
statement, a statement with a referenced statement label, a PROGRAM
statement, a SUBROUTINE statement, a FUNCTION statement, or an ENTRY
statement. The directive will be ignored.

ILLEGAL POINTEE "name"
A pointee cannot be a dununy argument or a pointer. It cannot be
equivalenced or be specified in a conunon block statement.

ILLEGAL POINTER VARIABLE "name"
A pointer must be a simple variable. It cannot appear in an
EQUIVALENCE statement. If defined in a PARAMETER or DATA statement,
the definition must not precede its definition as a pointer.

ILLEGAL RELATIONAL EXPRESS ION
One or both of the operands in a relational expression is an illegal
type for a relational expression. The most conunon error is comparing
logical values with .EQ. or .NE. The logical operators .EQV. or
.NEQV. should be used in these cases.

ILLEGAL STATEMENT LABEL IN 10 CONTROL LIST
A 1- to 5-digit statement number is missing after END= or ERR=.

SR-0009 D-14 J-03

I

ILLEGAL STATEMENT SEQUENCE
An improper sequence of statement types has been encountered (for
example, a GO TO statement followed by a DIMENSION statement).

ILLEGAL STATEMENT TYPE
A statement keyword is misspelled (for example, DIMENSOIN) or is
otherwise unidentifiable.

ILLEGAL STATEMENT TYPE IN BLOCK DATA SUBPROGRAM
A statement appears in a block data subprogram which is not provided
for by the ANSI FORTRAN Standard, that is, an INTRINSIC or EXTERNAL
statement.

ILLEGAL SUBSCRIPT TYPE "name"
A subscript expression is not of type integer or contains a constant
that exceeds 224_1.

ILLEGAL SUBSTRING
A substring for a character item is incorrectly formed or an attempt
is made to use a substring with an entity which can not have a
substring (such as a character constant).

ILLEGAL SYNTAX IN NAMELIST
Illegal element found in NAMELIST statement.

ILLEGAL TYPE FOR ASSIGNED VARIABLE
A variable reference in an ASSIGN statement is not of type integer.

§ILLEGAL TYPE LENGTH
Length specified is not allowed for this data type.

ILLEGAL UNIT SPECIFIER
The unit specifier for INQUIRE must be an integer expression.

§ILLEGAL USE OF ** IN CONSTANT EXPRESSION
A constant expression specifies exponentiation to a non-integer power.

ILLEGAL USE OF ASSUMED CHARACTER LENGTH
A character entity with a length of * must be a dummy argument, the
symbolic name of a constant, or an external function whose name
appears in a FUNCTION or ENTRY statement within the same program unit.

I LLEGAL USE OF ASSUMED SIZE ARRAY "name II
An array with an asterisk for the last dimension cannot be used
without subscripts in an I/O statement.

ILLEGAL USE OF COLON
A colon can only be used in a FORMAT statement or to separate the
lower and upper dimensions in a declarative.

SR-0009 D-1S J-03

ILLEGAL USE OF DUMMY ARGUMENT "name"
A dummy argument in a procedure subprogram cannot be named the same
as a local variable or another dummy argument.

ILLEGAL USE OF DUMMY ARGUMENT "name" IN EQUIVALENCE AT SEQUENCE
"number"

Dummy arguments may not appear in an EQUIVALENCE statement.

ILLEGAL USE OF FUNCTION "name"
A function name cannot be used as an array name.

ILLEGAL USE OF FUNCTION "name" IN EQUIVALENCE AT SEQUENCE "number"
A function name cannot be used as an array name in an EQUIVALENCE
statement.

ILLEGAL USE OF "name" IN I/O LIST
External, function, or program name not permitted in an I/O list.

ILLEGAL USE OF "name"
Group name referenced previous to its definition in a NAMELIST
statement.

ILLEGAL USE OF NAMELIST GROUP "name"
A namelist group "name" can be used only as a group name in a
NAMELIST read or write.

ILLEGAL USE OF TASK COMMON
The named common block was declared as both a task common block and a
regular common block in the same subprogram.

ILLEGAL USE OF TASK COMMON VARIABLE
A task common variable was used illegally in a DATA, NAMELIST I/O, or
SAVE statement.

ILLEGAL VALUE IN CONSTANT EXPRESSION
The evaluation of a constant expression yields a result that is out
of range.

IMPLICIT NONE MUST BE ONLY IMPLICIT STATEMENT
IMPLICIT NONE or IMPLICIT SKOL appear in the same program unit as
another IMPLICIT statement.

IMPROPERLY NESTED DO LOOP
Inner DO-loop is not contained entirely within the outer DO-loop
range.

INCORRECT ARGUMENT TYPE
Actual argument is of the wrong type in a function reference.

SR-0009 0-16 J-03

I

INPUT FILE EMPTY
An end-of-file record was encountered as the first record of the
source input dataset.

INTEGER*2=24 BIT INTEGER
INTEGER*2 is implemented as a 24-bit integer by CFT.

§INTEGER CONSTANT EXPECTED WHERE "chap" OCCURS
When a format edit descriptor field is parsed, "char" appears where
an integer constant is expected.

INTEGER CONSTANT EXPRESSION REQUIRED
The subscript or substring expression is not an integer constant
expression.

INTRINSIC FUNCTION "name" CANNOT BE ACTUAL ARGUMENT
Certain intrinsic functions cannot be passed to subprograms as actual
arguments.

INTRINSIC FUNCTION "name" IS NONSTANDARD
The specified intrinsic function is a CFT intrinsic function and is
not provided for in the ANSI FORTRAN Standard. CFT uses the
intrinsic version unless the function is declared external. This
message is NON-ANSI if ANSI is specified on the CFT control statement
and "name" is confirmed as an intrinsic function in an INTRINSIC
statement.

INTRINSIC FUNCTION USED WITH ILLEGAL ARGUMENT TYPE
The actual argument(s) to the intrinsic function is an improper type.

10 CONTROL LIST SPECIFIER MUST BE CHARACTER EXPRESSION
The I/O control list specifier must be evaluated to a character value.

10 CONTROL LIST SPECIFIER MUST BE CHARACTER VARIABLE OR ARRAY ELEMENT
The I/O control list specifier can be a character variable or an
array element.

10 CONTROL LIST SPECIFIER MUST BE INTEGER EXPRESSION
The I/O control list specifier must be evaluated to an integer value.

10 CONTROL LIST SPECIFIER MUST BE INTEGER VARIABLE OR ARRAY ELEMENT
The I/O control list specifier can be an integer variable or an array
element.

10 CONTROL LIST SPECIFIER MUST BE LOGICAL VARIABLE OR ARRAY ELEMENT
The I/O control list specifier can be a logical variable or an array
element.

SR-0009 D-l7 J-03

I LAST ARRAY ONLY PARTIALLY INITIALIZED
The last element in a DATA statement variable list is an
unsubscripted array and not enough constants are specified to
completely fill the array. Remaining elements of the array are not
initialized.

I §LEFT PARENTHESIS EXPECTED
A required opening parenthesis was omitted.

LEFT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required opening parenthesis was omitted in an EQUIVALENCE
statement.

LINE LENGTH > 133 CHARACTERS
One or more lines exceeds 133 characters during FORMAT statement
editing.

LIST DIRECTED 10 ILLEGAL FOR INTERNAL FILE
List-directed reads and writes all illegal operations on internal
files. Internal file 10 must be formatted.

LOGICAL OPERATOR MUST END IN PERIOD
A period does not follow an otherwise correct logical operator.

LOSS OF PRECISION IN TYPE CONVERSION
The type of a variable and the type of the associated constant in a
DATA statement differ. The constant is converted to the type of the
variable and precision is lost.

LOWERCASE CHARACTERS IN KEYWORDS OR IDENTIFIERS ARE NONSTANDARD
At least one lowercase alphabetic character which is not part of a
character constant or comment appears in a program unit. This
lowercase alphabetic character may be a keyword, identifier, or
control character such as a Hollerith character constant descriptor.
Lowercase characters are not provided for in the ANSI FORTRAN
Standard. This message is issued only once in a program unit that
contains lowercase characters.

LOWERCASE CHARACTERS USED AS EDIT DESCRIPTORS ARE NONSTANDARD
When a format specifier list was parsed, CFT encountered at least one
lowercase character used as an edit descriptor. The ANSI FORTRAN
Standard character set does not include lowercase characters.

MAIN PROGRAM MUST BE NAMED FOR FLOW TRACE
The main program must be named if flow trace is enabled by using the
ON=F control statement option or by using a CDIR$ FLOW directive in
the source program.

SR-0009 0-18 J-03

I
MASKING OR BOOLEAN EXPRESSION IS NONSTANDARD

A masking or Boolean expression was detected by CFT. These
expressions are not provided for in the ANSI FORTRAN Standard.

MAXIMUM LEGAL ITERATION COUNT EXCEEDED
A DO-loop trip count is larger than the allowable maximum of 223_1.

MINIMUM ONE PASS DO-LOOPS ARE NONSTANDARD
The control statement option ON=J was selected, causing all DO-loops
to execute at least once. This is a CFT extension not provided for
in the ANSI FORTRAN Standard. This message is issued for all
DO-loops in a program compiled with ON=J.

§MISSING =
An equal sign is missing in a PARAMETER or statement function
definition statement.

MISSING = IN CONTROL LIST
There is no equal sign after an option in an I/O statement control
list.

MISSING COLON
A required colon has been omitted in a substring expression.

MISSING END STATEMENT
The last or only program unit being compiled lacks an END statement
in its last line.

MISSING OR ILLEGAL CONSTANT LIST
A PARAMETER or DATA statement has not specified a constant list, or a
list has a missing separator.

§MISSING OR ILLEGAL STATEMENT NUMBER IN DO
The statement number is missing or it contains illegal characters in
a DO statement.

§MISSING OR ZERO COUNT FOR HOLLERITH STRING
The count field for a Hollerith edit descriptor is missing or zero in
a format specifier list.

MISSING RIGHT PARENTHESIS OR UNEXPECTED END OF FORMAT
When a format specifier list was parsed, CFT unexpectedly reached the
end of the format statement. This can occur when the parentheses are
unmatched or when a Hollerith string count is too large and contains
the closing parenthesis at the end of a FORMAT statement.

MISSING STATEMENT NUMBER IN ASSIGN
An ASSIGN statement lacks a statement label reference.

SR-0009 D-19 J-03

I

I

I

I

MISSING TO IN ASSIGN STATEMENT
An ASSIGN statement requires the keyword extension TO.

MODIFICATION OF DO CONTROL VARIABLE WITHIN LOOP IS NONSTANDARD
CFT has detected the modification of the DO-loop control variable
inside the DO-loop. This is allowed by CFT but not allowed by the
ANSI FORTRAN Standard.

MORE THAN 312 DUMMY ARGUMENTS IN PROGRAM UNIT
CFT does not accept more than 312 dummy arguments in a subroutine or
function subprogram. Each argument for an entry point in a program
unit represents a separate argument when computing the number of
arguments used in a program unit.

MORE THAN 511 DISTINCT CHARACTER LENGTHS DECLARED IN THIS PROGRAM UNIT
There cannot be more than 511 distinct character lengths declared in
a program unit. These lengths include character variables, character
constants, and character temporaries.

MORE THAN ONE ELSE STATEMENT AT THIS IF LEVEL
Only one ELSE statement is permitted per IF-level.

MORE THAN ONE UNNAMED BLOCK DATA SUBPROGRAM IS NONSTANDARD
More than one unnamed block data subprogram appears in a
compilation. CFT allows a maximum of 26 unnamed block data
subprograms per compilation, but the ANSI FORTRAN Standard allows
only one unnamed block data subprogram per compilation.

§NAME LONGER THAN EIGHT CHARACTERS
A symbolic name must not contain more than eight characters.

NO BLOCK IF ASSOCIATED WITH ELSE STATEMENT
An ELSE statement must follow a block IF statement and precede an END
IF statement of the same level.

NO BLOCK IF ASSOCIATED WITH END IF STATEMENT
An END IF must be uniquely associated with an IF(e)THEN statement
of the same IF-level.

NO PATH TO THIS STATEMENT
The previous statement is an unconditional transfer and this
statement has no statement number.

NONSTANDARD "name" SPECIFIER
A CFT extended form of a unit or format specifier appears in an I/O
control list. This form is not allowed in the ANSI FORTRAN Standard.

SR-0009 D-20 J-03

I

SNONSTANDARD "name" STATEMENT SYNTAX
An extended form of an ANSI FORTRAN Standard statement type indicated
by "name" was used in a program.

NONSTANDARD ARITHMETIC EXPRESSION
An arithmetic or relational expression is formed with operand types
not provided for in the ANSI FORTRAN Standard. An example is adding
an integer variable to a Hollerith constant, which is a CFT extension.

NONSTANDARD BLOCK DATA STATEMENT SYNTAX
Parameters appear on a BLOCK DATA statement. These are CFT
extensions to the ANSI FORTRAN Standard.

§NONSTANDARD DIMENSION DECLARATOR
A dimension declarator expression contains noninteger constants or
variables, or function references. The ANSI FORTRAN Standard
specifies that only integer variables and constants can be used in a
dimension declarator expression.

§NONSTANDARD EDIT DESCRIPTOR FIELD
An edit descriptor not provided for in the ANSI FORTRAN Standard or
an extended form of a standard edit descriptor was used in a format
specifier list.

§NONSTANDARD OPERATOR "name"
An operator not provided for in the ANSI FORTRAN Standard, such as
the .XOR. or .X. operator, was used. .XOR. and .X. are CFT
extensions to the ANSI FORTRAN Standard.

NONSTANDARD RELATIONAL EXPRESSION
A relational expression compares a pair of operands in a way not
provided for in the ANSI FORTRAN Standard. An example is comparing a
character constant to an integer variable, which is a CFT extension.
Some nonstandard relational expressions may receive the message
nNONSTANDARD ARITHMETIC EXPRESSION" because of operator conversion
during compilation.

§NONSTANDARD STRING DELIMITER
CFT allows string constants to be delimiters by using quotation marks
in place of apostrophes. Asterisks can also be used in format
specifier lists. Quotation marks and asterisks are not provided for
in the ANSI FORTRAN Standard.

§NONSTANDARD TYPE DECLARATION
A TYPE * BYTE COUNT type declaration or nonstandard IMPLICIT
statement, such as an IMPLICIT NONE statement, appears in a program
unit, or a double declaration type statement is used in place of a
DOUBLE PRECISION type statement. These are CFT extensions to the
ANSI FORTRAN Standard.

SR-0009 D-2l J-03

I

NOT ENOUGH DO PARAMETERS
Fewer than two arguments have been encountered after the equal sign
in a DO statement.

NOT ENOUGH MEMORY TO COMPILE
The program unit is too long to compile in the available memory.

§OCTAL CONSTANT IS NONSTANDARD
Octal constants were used, and they are not provided for in the ANSI
FORTRAN Standard. These are CFT extensions to the ANSI FORTRAN
Standard.

OPTIMIZATION BLOCK BROKEN AT THIS POINT
The code size forced CFT to terminate an optimization block at this
point. A new optimization block begins with the next statement.

PARAMETER USED TWICE IN STATEMENT FUNCTION PARAMETER LIST
A given symbolic name can appear only once in a single dummy argument
list.

§PARENTHESES NESTED TOO DEEPLY
The number of nested parentheses allowed by CFT in a format specifier
list exceeded the maximum limit of nine nested parentheses.

PASS TWO SKIPPED BECAUSE OF FATAL PASS ONE ERRORS
Pass two of CFT's compilation is skipped for this program unit due to
fatal pass one errors.

§PERIOD EXPECTED WHERE "chap" OCCURS
When a format edit descriptor field is parsed, "chap" appears where
a period is expected.

PLEASE RERUN WITH SMALLER VALUE FOR MAXBLOCK
This message follows a compiler error or an internal compiler error
message if the value for the MAXBLOCK control statement parameter is
greater than the system default value.

POINTER MUST BE TYPE INTEGER
A pointer variable must not be assigned a type other than integer.

POSSIBLE BRANCH INTO BLOCK IF VIA ASSIGN OR END=/ERR= WITH LABEL "lll
Label "l" is a FORTRAN statement number defined in an IF-block,
ELSE IF-block, or ELSE-block and appears in an ASSIGN statement or in
an END= or ERR= branch of an I/O statement. Branches into IF-blocks,
ELSE IF-blocks, or ELSE-blocks are not provided for in the ANSI
FORTRAN Standard.

POSSIBLE BRANCH INTO INACTIVE DO LOOP; STATEMENT LABEL "nnn"
CFT detected a branch to a labeled statement inside the range of a
DO-loop from a branch statement outside the range of the DO-loop.

SR-0009 D-22 J-03

I

I

POSSIBLE BRANCH INTO INACTIVE DO LOOP VIA ASSIGN OR END=/ERR= WITH LABEL
lin II

"n" is a statement label defined within the range of a DO-loop. It
has appeared in an ASSIGN statement or in the END= or ERR= branch of
an I/O statement in the program unit. Verify that the branches to
the statement label occur only within the innermost DO-loop where the
label is defined.

§PREVIOUS IMPLICIT REFERENCES THIS CHARACTER
Only one IMPLICIT reference is permitted per character.

PREVIOUS REFERENCES TO "name"
An ENTRY name has been used before its declaration as an ENTRY.

PROGRAM UNIT TOO LARGE TO COMPILE
One of CFT's internal tables has overflowed because there is too much
code in a program unit.

REAL*8 = SINGLE PRECISION
REAL*8 is implemented as single-precision by CFT.

RECURSIVE SUBROUTINE OR FUNCTION REFERENCE OF "name"
The function, subroutine, or entry name was referenced within the
same program unit that defined it.

RECURSIVE SUBROUTINE REFERENCE "name" USED AS AN ARGUMENT
The main subroutine name was used as an argument to another function
or subroutine call.

REFERENCES TO ARRAY "name" WITH NO SUBSCRIPTS
The array named was referenced without subscripts in a statement that
required them.

RELATIONAL EXPRESSION WITH DOUBLE PRECISION AND COMPLEX IS NONSTANDARD
A relational expression was detected with a complex and
double-precision operand. CFT converts the double-precision operand
to a complex operand. The ANSI FORTRAN Standard does not provide for
these conversions. Some nonstandard relational expressions with
double-precision and complex operands may receive the message
ARITHMETIC EXPRESSION WI~H DOUBLE PRECISION AND COMPLEX IS
NONSTANDARD because of operator conversion during compilation.

§REPETITION COUNT ILLEGAL FOR "name"
A repetition count appears before the nonrepeatable edit descriptor
"name" in a format specifier list.

§REPETITION COUNT MUST BE > ZERO
The repetition count before a repeatable edit descriptor in a format
specifier list is zero.

SR-0009 D-23 J-03

I §REPETITION COUNT TOO LARGE
The value of n in the nX edit descriptor field moves the next
character position to the left of the first position.

RETURN ILLEGAL IN MAIN PROGRAM
A RETURN statement is encountered in a main program unit.

I §RIGHT PARENTHESIS EXPECTED

I

A required closing parenthesis was omitted.

RIGHT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required closing parenthesis was omitted in an EQUIVALENCE
statement.

SCALAR DUMMY ARGUMENT "name" USED AS FORMAT IDENTIFIER
The integer variable named appears both as a format identifier and as
an entry in a dummy argument list in this program unit. The cause
might be a missing DIMENSION statement.

SCAN STOPPED, TOO MANY ERRORS IN FORMAT
CFT attempts recovery of up to three errors before abandoning the
FORMAT statement.

SPECIFIER RECL LEGAL IF AND ONLY IF ACCESS IS DIRECT
In an OPEN statement, the RECL control list option is supported only
if direct access is specified.

STATEMENT FUNCTION "name" IN COMMON OR ARGUMENT LIST
Statement function must not appear as a variable in a common block or
an argument list.

STATEMENT FUNCTION "name" REFERENCES ITSELF
A statement function definition statement cannot be recursive.

§STATEMENT FUNCTION PARAMETER MUST NOT BE ARRAY
The names of variables appearing as dummy arguments of a statement
function have a scope of that statement only.

STATEMENT LABEL IGNORED
Statement label is ignored because transfer to this statement is
prohibited.

STATEMENT LENGTH EXCEEDED
The statement, when arithmetic statement functions have been
expanded, exceeds CFT's limit on size of statements.

STATEMENT NUMBER ILLEGAL ON DECLARATIVE
CFT does not allow a statement number on ENTRY statements.

STATEMENT NUMBER ON BLANK CARD IGNORED
Blank lines cannot contain statement labels.

SR-0009 D-24 J-03

SUBROUTINE "name n NOT DECLARED
IMPLICIT NONE or IMPLICIT SKOL has been specified but "name" did
not appear in an EXTERNAL statement.

SUBSCRIPT OUT OF DIMENSION BOUNDS IN EQUIVALENCE AT SEQUENCE nnumbepn
Subscript exceeds the value given in the dimensions.

SUBSTRING EXPRESSION OUT OF BOUNDS
In a substring expression n(CI:C2)", the relations 1 ~ Cl ~ C2
< LEN do not all hold (where LEN is the declared length of the
character entity).

SYNTAX ERROR
Illegal element, name where number required, or extra or missing
punctuation.

SYNTAX ERROR IN ENCODE OR DECODE STATEMENT
Illegal element in ENCODE or DECODE statement.

SSYNTAX ERROR IN IMPLIED DO
An implied-DO list specified in a DATA statement is of improper
syntactical form, references a variable that is not an implied-DO
variable, or references an array element that does not specify the
implied-DO variable for this implied-DO list in its subscript.

SYNTAX ERROR IN 10 CONTROL LIST
Illegal element in I/O control list.

STAB COUNT MUST NOT BE ZERO
A tab edit descriptor (T, TL, or TR) appears in a format specifier
list followed by a tab count of O.

TASK COMMON BLOCK nname n IS STATICALLY ALLOCATED
A task common block was declared when the allocation specification
was defined as STATIC.

TASK COMMON IS NONSTANDARD
A task'common block is not provided for in the ANSI FORTRAN Standard.

STASK COMMON MUST BE NAMED
A blank common block was declared with the CFT extension task common
block.

TEST EXPRESSION MUST BE LOGICAL
Expression type in a logical IF must be logical or Boolean.

SR-0009 D-25 J-03

TEST EXPRESSION MUST NOT BE CHARACTER
Cannot have character expression type in a logical or arithmetic IF
statement.

TEST EXPRESSION MUST NOT BE LOGICAL
Expression type in an arithmetic IF must not be type logical.

TOO MANY COMMON BLOCKS DECLARED
More than 120 distinct common blocks were declared in a single
program unit.

TOO MANY DO PARAMETERS
More than three arguments have been encountered after the equal sign
in a DO statement.

TOO MANY DOS ON STATEMENT
More than 15 DO-loops ended on the same statement.

TOO MANY POINTERS DECLARED
More than 312 pointers were declared in a single program unit.

TOO MANY SUBSCRIPTS
An array reference contains more subscripts than the subscripts
declared.

TOO MANY SUBSCRIPTS IN EQUIVALENCE AT SEQUENCE "number"
An array reference in an EQUIVALENCE statement has more subscripts
than were declared.

TOO MANY UNNAMED BLOCK DATA SUBPROGRAMS
The ANSI FORTRAN Standard allows only one unnamed block data
subprogram to be used in a program. CFT allows a maximum of 26
unnamed block data subprograms. More than 26 block data subprograms
appeared during the compilation.

TWO BRANCH IF STATEMENT IS A NONSTANDARD STATEMENT
A 2-branch arithmetic or logical IF statement appears in a program.
These statements are CFT extensions to the ANSI FORTRAN Standard.

TYPE CONVERSION IN DEFINITION
A constant in a PARAMETER statement was not converted to the type of
the corresponding symbolic name.

TYPE OF "name" NOT DEC~~D
"name" was declared in an EXTERNAL statement, but did not appear in
an explicit type statement.

TYPE STATEMENT IGNORED FOR INTRINSIC FUNCTION "name"
Type statements do not change the type of an intrinsic function and
are ignored.

SR-0009 0-26 J-03

I

I

UNBALANCED PARENTHESIS
Opening and closing parentheses do not match; required parenthesis
not present.

UNDEFINED ITEM IN CONSTANT EXPRESSION
A constant expression in a PARAMETER or DATA statement is specified
with other than constants or the symbolic names of constants. A
constant expression in a DATA statement is specified with other than
constants, the symbolic names of constants, or the names of
implied-DO variables.

UNDEFINED STATEMENT NUMBER nnumbepn
A referenced statement label is not defined.

UNDEFINED SUBSCRIPT
An equivalence subscript must be constant.

UNEXPECTED END OF STATEMENT
A statement encountered is syntactically incomplete.

UNIT=* ILLEGAL FOR DIRECT ACCESS
[UNIT=]* appeared in a direct access READ or WRITE statement.

UNIT=* ILLEGAL FOR UNFORMATTED 10
[UNIT=]* appeared without 'a format identifier in a READ or WRITE
statement.

UNIT=* LEGAL ONLY IN READ OR WRITE
[UNIT=]* appeared in an auxiliary I/O statement.

UNKNOWN LOGICAL OPERATOR
The characters following a period do not represent a logical operator.

UNRECOGNIZED COMPILER DIRECTIVE
The compiler directive is misspelled or does not exist for CFT.

UPPER DIMENSION < LOWER DIMENSION
The lower dimension must be less than or equal to the upper dimension.

USE OF END ILLEGAL IN WRITE CONTROL LIST
END= may not be specified in a WRITE statement.

VALUE NOT ASSIGNED TO FUNCTION NAME
Function subprogram is missing value assignment for the function.

VARIABLE DIMENSION ARRAY "name n MUST BE DUMMY ARG~NT
A variably dimensioned array must appear as a dummy argument at some
entry point.

SR-0009 0-27 J-03

VARIABLE DIMENSION ILLEGAL FOR ARRAY IN COMMON
An attempt was made to put a variably dimensioned array into COMMON.

VARIABLE LIST LONGER THAN CONSTANT LIST
COnstants and variables must correspond one-to-one in a DATA
statement.

VARIABLE "name" USED AS ARRAY OR FUNCTION
A simple variable is referenced with either subscripts or an argument
list.

VERY LARGE LOCAL DATA BLOCK; USE EXTENDED MEMORY COMMON BLOCK
Very large local arrays were declared, causing the generated code to
end at more than 4 million words of memory.

VERY LARGE OFFSET ENCOUNTERED; USE EXTENDED MEMORY ADDRESSING
A calculated offset greater than 4 million words was detected with a
nonextended memory variable. An extended memory variable must be
declared in a common block.

ZERO SUBSCRIPT INCREMENT
A CII subscript must have a nonzero increment.

ZERO TO NEGATIVE POWER
Raising zero to a zero or negative power produces unpredictable
results in an executable program.

LOGFlLE MESSAGES

The following messages appear in the logfile following the CFT statement
if the indicated condition occurs. Some of the conditions cause compiler
execution to terminate after processing the CFT statement. Control
statement processing resumes with an EXIT statement if there is one in
the control statement file; otherwise, the job terminates.

CF007 - BAD PARAMETER TO KEYWORD keywopd = papametep
The parameter for the keyword is out of range or undefined.

CF008 - NULL INPUT FILE ILLEGAL
I=O is an illegal input.

CF009 - B=O and ON=Z INCOMPATIBLE OPTIONS
B must specify a file if the Z option is on.

CFOlO - ON = chapactep PARAMETER NOT ALPHA
CFOlO - OFF = chaPactep PARAMETER NOT ALPHA

All characters in the strings for ON and OFF must be alphab~tic.

SR-0009 D-28 J-03

I

CFOll - tetter OPTION NOT IMPLEMENTED
No existing ON/OFF option is associated with the letter.

CF012 - nn CFT CONTROL CARD ERRORS
Gives count of control card errors.

CF013 - WARNING: string WILL BE SET TO OFF
Options listed in string appear in both the ON= and OFF= keyword
parameter lists.

CF014 - DOUBLY DEFINED OPTION FOR OPT= KEYWORD
An option set by an OPT= keyword parameter was defined two times or
redefined in the parameter list.

CFOIS - HEAP BASED ALLOCATION NOT YET IMPLEMENTED
ALLOC=HEAP was specified on the CFT control statement. Heap Memory
management is not implemented by CFT.

CF016 - CPU TYPE UNKNOWN - MAY EFFECT GENERATED CODE
The CPU type from the Job Communication Block is unknown to CFT and
optimizations may be effected.

CF017 - 1 WARNING
CF017 - n WARNINGS

Warning errors were encountered during compilation.

CF018 - WARNING: MAXBLOCK WILL BE SET TO 1
When compiling with DEBUG on the CFT control card, MAXBLOCK is set to
1.

CF019 - WARNING: Z WILL BE SET TO ON
When compiling with DEBUG on the CFT control card, Z is forced on.

CF020 - WARNING: I WILL BE SET TO ON
When compiling with DEBUG on the CFT control card, I is forced on.

CF023 - 1 NON-ANSI MESSAGE ISSUED
CF023 - n NON-ANSI MESSAGES ISSUED

Nonstandard FORTRAN was detected when compiling with ANSI specified
on the CFT control statement.

SR-0009 D-29 J-03

•

INFORMATIVE DEPENDENCY MESSAGES

When a dependency message is issued, another message also appears
explaining why the dependency exists. The following list contains all
the informative messages with examples of DO-loops causing the message to
be issued. Examples of the first two messages can be found in part 3,
section 2.

PREVIOUS PLUS WITH A DECREMENTING SUBSCRIPT

PREVIOUS MINUS WITH AN INCREMENTING SUBSCRIPT

POTENTIAL PROBLEM WITH EQUIVALENCED ARRAYS

DIMENSION E(100),D(50)
EQUIVALENCE (E,D)

DO 10 I = M,N
E(I+l) = 2.0
D(I) = 3.0

10 CONTINUE

If E and D are dimensioned to 100 elements, no dependency is detected.

DIMENSION A(lOO),B(lOO)
EQUIVALENCE (A(50),B)

DO 15 I = 1,100
A(I) = X
B(I) = Y

15 CONTINUE

REFERENCE MADE TO AN ARRAY THAT IS NOT SUBSCRIPTED

DO 20 I = 2,N
A(I) = SASUM(N-I,A,l)

20 CONTINUE

ARRAY USED AS AN ARGUMENT TO A SUBROUTINE/FUNCTION

DO 40 I = M,N
A(I) = 2.0
CALL SB (A(I))

40 CONTINUE

SR-0009 D-30 J-03

•

DEFINITION AND REFERENCE HAVE A DIFFERENT NUMBER OF SUBSCRIPTS

DO 50 I = M,50
A(I,K) = A(I)

50 CONTINUE

DO 30 I = 1,100
B(I) = A(2,I)
A(I) = 2.0

30 CONTINUE

AMBIGUOUS OR CONFLICTING SUBSCRIPTS

DO 55 I = 1,100
B(I) = A(3)
A(I) = 3.0

55 CONTINUE

DO 60 I = 1,100
B(I) = A(I+N)
A(I) = 3.0

60 CONTINUE

DO 70 I = 50,1,-1
B(I) = A(I,I)
A(I,3) = 2.0

70 CONTINUE

DO 80 I = 1,N,2
B(I) = A(3*I-1)
A(2*I) = 2.0

80 CONTINUE

NULL DEPENDENCY WITH CII MODIFIED BETWEEN DEFINITION AND REFERENCE

DO 10 I = 1,N
B(I) = A(J)
J = J+l
A(J) = 1.0

10 CONTINUE

DO 5 I = 1,N
A(J) = 3.0
J = J-2
A(J) = B(I)

5 CONTINUE

Null means the difference between the subscripts is zero. If the
subscript difference is not equal to zero, vectorization is possible.

SR-0009 D-31 J-03

•

AMBIGUOUS INCREMENT OF CII

DO 20 I = M,N,K
A(I) = A(I+l)

20 CONTINUE

DO 30 I = 1,100
A(J) = 1.0
B (J) = A (J-l)
J = J-K

30 CONTINUE

DEPENDENCY POSSIBLE WITH ZERO INCREMENT

DO 90 I = I,M
A(J) = A(J)+B(I)
J = J+N

90 CONTINUE

This message is only issued if OPT=ZEROINC is specified on the CFT
control statement.

NO CII WAS FOUND IN ARRAY REFERENCE

DO 55 I = 1,N
A(I) = 1.0
B(J) = B(K)

55 CONTINUE

SR-0009 D-32 J-03

OUTMODED FEATURES

This appendix describes non-ANSI features eFT supports but have generally
been outmoded by alternatives meeting the standard and enhancing the
portability of CFT programs. These outmoded features and their preferred
alternatives are as follows.

Obsolete feature

Hollerith data

Two-branch arithmetic IF

Indirect logical IF

ENCODE and DECODE

Asterisk editing

[-b]x editing

DOUBLE declaration type statement

DOUBLE declaration FUNCTION statement

DATA statement nlist/clist
logical/Hollerith correspondence

PUNCH statement

Type statements with *n

Random I/O operations

DATA statement with declaratives

EOF, IEOF, and IOSTAT functions

SR-0009 E-l

Preferred alternative

Character data

Arithmetic IF or block IF

Logical IF

Internal files

Quotation mark editing

TL editing

DOUBLE PRECISION declaration
type statement

DOUBLE PRECISION declaration
FUNCTION statement

nlist/clist correspondence
both logical or both character

WRITE statement

Standard type statements

Direct access RECL parameter
in I/O list of OPEN and REC
parameter in READ or WRITE

DATA statement after other
declaratives

End-of-file specifier (END=)
or status specifier (IOSTAT=)

J

E

HOLLERITH CONSTANTS

Hollerith data is a sequence of any characters capable of internal
representation as specified in Appendix A. Its length is the number of
characters in the sequence, including blank characters. Each character
occupies a position within the storage sequence identified by one of the
numbers 1, 2, 3, ••• indicating its placement from the left (position
1). Hollerith data must contain at least one character.

A Hollepith aonstant is expressed in one of three forms. The first of
these is specified as a nonzero integer constant followed by the letter H
and as many characters as equal the value of the integer constant. The
second form of Hollerith constant specification delimits the character
sequence between a pair of apostrophes followed by the letter H.

The third form is like the second, except quotation marks replace
apostrophes.

Example:

CHARACTER SEQUENCE Form 1 Form 2 Form 3

ABC 12 6HABC 12 'ABC l2'H "ABC l2"H

Two adjacent apostrophes or quotation marks appearing within the bounds
of two delimiting apostrophes or quotation marks are interpreted and
counted as a single apostrophe within the sequence. The character
sequence, OON'T USE "*" would be specified with the apostrophe delimiters
as lOON' 'T USE "*'''H, and with the quotation mark delimiters as "DON'T
USE II "*" II "H.

Each character of a Hollerith constant character sequence is represented
internally by its unique 8-bit code (see Appendix A) with up to eight
such codes contained in a single 64-bit Cray computer word. The codes
corresponding to character positions 1 through 8 of a Hollerith constant
are sequentially represented from left to right in a Cray computer word.
Successive groups of eight codes are similarly represented in as many
successive Cray computer words. When the last position of a sequence is
not an even multiple of 8, the unused portion of the computer word it
occupies is to its right and contains up to seven blank character codes
(0408) •

When the number of characters in a character sequence is fewer than
eight, the single Cray computer word used can contain up to seven null
character codes (000). The null character codes can be produced by
substituting the letter L for the letter H in the Hollerith forms
described above.

SR-0009 E-2 J

When fewer than eight characters appear in a Hollerith constant, the
unused portion of a single Cray computer word can contain up to seven
null character codes (000) to the left of the one or more codes
representing the character sequence. The null character codes can be
produced by substituting the letter R for the letter H in the first form
of Hollerith constant expression or by suffixing the second apostrophe or
quotation mark delimiter with the letter R in the second form.

All of the following Hollerith constant expressions yield the same
Hollerith constant and differ only in specifying the content and
placement of the unused portion of the single Cray computer word
containing the constant.

Hollerith
constant Internal reEresentation (64-bit Cra;t comEuter word

(bit position) (0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63)

6HCRAY-l C R A Y 1 (0408) (0408)

'CRAY-l'H C R A Y 1 (0408) (0408)

"CRAY-l"H C R A Y 1 (040 8) (040 8)

6 LCRAY-l C R A Y 1 (000) (000)

'CRAY-l'L C R A Y 1 (000) (000)

"CRAY-l"L C R A Y 1 (000) (000)

6 RCRAY-l (000) (000) C R A Y 1

'CRAY-l'R (000) (000) C R A Y 1

"CRAY-l"R (000) (000) C R A Y 1

A Hollerith constant is limited to a maximum of eight characters
except when specified in a CALL statement, a function argument list,
or a DATA statement. All Hollerith constants with R suffixes are
limited to a maximum of eight characters. An all-zero computer word
follows the last word containing a Hollerith constant specified as an
actual argument in an argument list.

The forms E'stping' and E"stping" are reserved for future EBCDIC
constants.

SR-0009 E-3 J

)

NAMELIST Hollerith constants are specified by the following forms.

nH

nL •••

nR. •••

· {n
" ... " {~}

If the R form is used, the string must contain eight or less
characters. Within the • or II delimited format, a • or II is specified
as •• or II ", respectively.

HOLLERITH EXPRESSIONS

Hollepith exppessions contain no operators and only a single
operand. A Hollerith expression is evaluated to yield a sequence of
characters. Its value is that sequence. The forms of a Hollerith
expression appear below.

• A Hollerith constant

• Name of a variable containing Hollerith data

• Name of an array element containing Hollerith data

• Name of a function providing Hollerith data when referenced

A Hollerith constant comprising a Hollerith expression is limited to
eight characters.

The data type of the name referencing a variable or array element
containing Hollerith data can affect its evaluation during program
execution. A variable or array element of type integer or real contains
eight Hollerith characters. A variable or array element of type complex
contains eight characters in its first storage unit (computer word) and
can contain the value zero or an additional eight characters in its
second. A variable or array element of type logical cannot contain
Hollerith characters except when it has been initialized in a DATA
statement.

SR-0009 E-4 J

•

Hollerith data provided when a function is referenced contains as many
characters as a variable or array element of corresponding type.

When used in arithmetic or relational expressions, Hollerith expressions
are considered to be type Boolean.

HOLLERITH RELATIONAL EXPRESSIONS

The form of a Hollerith relational expression is

where el and e2 are Hollerith expressions, and

retop is a relational operator.

A Hollerith relational expression is interpreted as the logical value
true if the values of the operands satisfy the relation specified by the
operator; false if they do not.

The Hollerith expression el is considered less than e2 if its
value precedes the value of e(2) in the collating sequence or is
considered greater if its value follows the value of e2 in the
collating sequence.

Examples:

The following are evaluated as true if the integer variable LOCK contains
the Hollerith characters K, E, and Y in that order and left-justified
with five trailing blank character codes.

3HKEY.EQ.LOCK
'KEY'.EQ.LOCK
LOCK.EQ.LOCK
'KEYl'.GT.LOCK
'KEYO'H.GT.LOCK

Two Hollerith expressions are equivalent if their values are equal for
all possible values of their specification.

SR-0009 E-S J

•

HOLLERITH FORMAT SPECIFICATION

A format specification can be an array name of type integer, real, or
logical.

The leftmost characters of the specified entity must contain Hollerith
data constituting a format specification when the statement is executed.

The format specification must begin with a left parenthesis and end with
a right parenthesis. Data can follow the right parenthesis ending the
format specification and have no effect. Blank characters can precede
the format specification.

TWO-BRANCH ARITHMETIC IF STATEMENTS

The form of a 2-branch arithmetic IF statement is

where e is an integer, real, or double-precision expression,
and

are statement labels of executable statements
appearing in the same program unit as the two-branch
arithmetic IF statement.

Execution of a 2-branch arithmetic IF statement causes evaluation of the
expression e. Control is transferred to the statement identified by
8 1 if e is nonzero or to the statement identified by 82 if e
is. zero.

Example:

IF (I+J*K) 100,101

INDIRECT LOGICAL IF STATEMENTS

The form of an indirect logical IF statement is

SR-0009 E-6 J

•

where e is a logical expression, and

are statement labels of executable statements
appearing in the same program unit as the indirect
logical IF statement.

Execution of an indirect logical IF statement causes evaluation of the
expression e for a logical value followed by a transfer of control. If
the value of e is true, the statement identified with statement label
sl is executed next. If the value of e is false, the statement
identified with statement label s2 is executed next.

Example:

IF(X.GE.Y)148,9999

FORMATTED DATA ASSIGNMENT

Formatted data assignment operations define entities by transferring data
between input/output list items and internal records. Like other
assignment statements, formatted data assignment statements only perform
internal data transfers. Like formatted input/output statements,
formatted data assignment statements specify an input/output list and
invoke format control during their operations.

The two formatted data assignment statements are ENCODE and DECODE.

ENCODE AND DECODE STATEMENTS

The forms of the ENCODE and DECODE statements are

ENCODE (n,f,dent) [el.ist]

DECODE (n,f ,sent) [dl.ist]

where n is the number of characters to be processed, specified
by a nonzero integer expression not to exceed 1521

f

dent

SR-0009

is a FORMAT identifier, except for an asterisk;

is the symbolic name of a destination variable, array
element, or array where the n characters of el.ist
are packed (eight per word) by ENCODE1

E-7 J

•

sent is the symbolic name of the source variable, array
element, or array where characters are unpacked and
stored into dlist by DECODE~ and

elist and dlist
are lists specified the same as for formatted
input/output statements. elist is the list of items
written to the destination entity~ dlist is the list
of items receiving the source entity.

The ENCODE statement

The ENCODE statement produces a sequence of n characters (packed eight
per word) from values contained in the input list items specified in
elist under control of the format specification identified by f. The
character sequence is stored into a variable, array element or array
identified by dent.

If n is not an integer multiple of eight, the last word in each record
is padded with spaces to a word boundary. In effect, n is rounded up
to be a multiple of eight.

Example:

elist: array ZD(5): ZD (1)
ZD (2)
ZD (3)
ZD (4)
ZD (5)

f: FORMAT (5A4)

n: 20

dent: array ZE (3)

The sequence

ENCODE (20,1,ZE)ZD
1 FORMAT (5A4)

produces

dent =

SR-0009

ZE(l) = 'THISMUST'
ZE(2) = 'HAVEFOUR'
ZE(3) = 'CHARbbbb'

E-8

= 'THISbbbb'
= 'MUSTbbbb'
= 'HAVEbbbb'
= 'FOURbbbb'
= 'CHARbbbb'

J

•

The DECODE statement

The DECODE statement processes a sequence of n characters (packed eight
per word) contained in the variable, array element, or array identified
by sent under control of the format specification identified by f.
The resulting values define the input list items specified in dtist.

If n is not an integer multiple of eight and the DECODE format calls
for more than one DECODE record, the second and all subsequent DECODE
records begin on a word boundary. In effect, n is rounded up to be a
multiple of eight.

Example:

sent:

n: =

f:

The sequence

ZE:

20

FORMAT (SAS)

ZE(l) = 'WHILETHI'
ZE(2) = 'SbHASbbF'
ZE(3) = 'IVEbbbbb'

DECODE (20,2,ZE)ZD
2 FORMAT (4AS)

produces

dtist =

EDIT DESCRIPTORS

ZD(l) = 'WHILEbbb'
ZD(2) = 'THISbbbb'
ZD(3) = 'HASbbbbb'
ZD(4) = 'FlVEbbbb'

The formats of obsolete edit descriptors are

SR-0009 E-9 J

•

where the asterisk and the X indicate the manner of editing,

b

Examples:

is any ASCII character listed in Appendix A as
capable of internal representation, and

is any nonzero, unsigned integer constant.

AN ASTERISK EDIT DESCRIPTOR

-55X (moves current position 55 spaces to left)

DOUBLE DECLARATION STATEMENTS

The form of the double declaration type statement is

DOUBLE V[,v] •••

where DOUBLE

v

specifies the desired data type, and

is a constant, variable, array, function, or dummy
procedure name, or is an array declarator.

The form of the double declaration FUNCTION statement is

DOUBLE FUNCTION fun[([d[,d] •••])

where fun

d

is the symbolic name of the function subprogram in
which the FUNCTION statement appears, and

is a dummy argument representing a variable, array,
or external procedure name.

DATA STATEMENT FEATURES

An ntist entity of type logical can correspond to a etist constant
of type Hollerith.

SR-0009 E-lO J

I

One constant must exist for each element of an array whose name
appears in the list without subscripting unless named as the last item
of an nlist. In this case, the values in clist can specify any
number of consecutive array element values, beginning with the first.

A character constant can be specified to correspond to entities of any
type except logical.

If a variable, an array element, or an entity associated with either
is defined by a DATA statement more than once in an executable
program, the one nearest the end of the program is the only definition
to apply.

PUNCH STATEMENT

The PUNCH statement is a data transfer output statement. The format is

PUNCH f [,iolist]

where f is a format identifier, and

iolist is an input/output list specifying the data to be
transferred.

TYPE STATEMENT DATA LENGTH

The forms of the type statements with data length included are

where

type [*n] v[,V] •••

IMPLICIT type [*nl (al [-anl [,al [-an]]' ••) [, type [*nl (al [-anl f

type

/

specifies type INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL;

SR-0009 E-ll J-03

I

*n

v

a

data~ type n

INTEGER

REAL

COMPLEX

LOGICAL

specifies the data length as shown in table E-l
(INTEGER*2 should be used with caution since it
implies 24-bit integers),

is a constant, variable, array, function, or dummy
procedure name, or is an array declarator, and

is a single letter or is a range of single letters
denoted by the first and last letter of the range
separated by a hyphen. Writing a range of letters
(al-an) has the same effect as writing a list of
the single letters (al,a2, ••• an) and where al precedes
an in this alphabetically ordered sequence.

Table E-l. Data length

1 2 4 8 16

24-bit 64-bit integer
integer

64-bit real l28-bit real
single precision d'ble prec.

64-bit complex
single precision

64-bit logical

DOUBLE PRECISION l28-bit real
d'ble prec.

Any other data length gives a fatal error.

SR-0009 E-l2 J-03

RANDOM INPUT/OUTPUT OPERATIONS

FORTRAN-77 defines two access methods for unit/dataset connection:
sequential and direct. CFT, in addition, supports random connection.
Random connection is intended to meet the need for non-sequential
input/output operations on a dataset with records of various lengths.

CREATING A DATASET FOR RANDOM ACCESS

The techniques for creating a dataset to be randomly accessed are as
follows.

• The dataset can be created while the dataset is connected for
sequential access.

• The WRITEDS control statement can create the dataset if the
dataset is already connected for random access but no input/output
to the dataset has yet occurred. The WRITEDS control statement is
described in the CRAY-OS Version 1 Reference Manual, publication
SR-OOll.

DATASET CONNECTION

A dataset is connected for random access through the ASSIGN control
statement described in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll. CFT supports two methods of reading or writing on

I random access datasets: GETPOS/SETPOS and READMS/WRITMS.

Positioning while connected for random access (GETPOS/SETPOS)

The responsibility for positioning a random access dataset rests with the
user. The user can position the dataset on a record boundary only. In
addition, the user must maintain a log of record locations. The utility
procedures provided for positioning are GETPOS and SETPOS (see Appendixes
B and C). SETPOS asynchronously positions a dataset to a record
boundary. Similar to BUFFER IN and BUFFER OUT, SETPOS initiates a
dataset position request and allows the subsequent execution sequence to
proceed concurrently. An input/output request or dataset status request
subsequent to a SETPOS call on the same unit waits until the SETPOS
request is completed before processing. For more information on GETPOS
and SETPOS see the Library Reference Manual, CRI publication SR-OOl4.

SR-0009 E-l3 J

I

I

Example:

In the main program below, up to 100 records containing from zero to 10
words each are written into a dataset associated with input/output unit
1. A final record of up to 201 words is added and contains length and
location information for each preceding record plus a count of their
number. The dataset is rewound. At a later point in the program, a
subroutine is called, causing all records to be read in reverse order and
all but the last record stored into 10-word vectors of a 100-vector
array. Information in the last record directs this process. The
subroutine then returns control to the main program.

The following are assumed preset.

• NRECS to the number of records to be processed (l<NRECS<lOO)

• RLENGTH(i) to the number of words in the ith record written
(O<RLENGTH (i) ~10)

• RECORD(j) to the jth word to be written in each non-empty
record (l~<RLENGTH(i»

PROGRAM RANDOMIO
INTEGER RLENGTH(lOO) ,ADDRESS (100) ,RECORD (10) ,NRECS , LRA,RESULT
COMMON RESULT(lOO,lO)

DO 20 I=l,NRECS
ADDRESS (I) =GETPOS (1)

20 WRITE (1) (RECORD(J),J=l,RLENGTH(I»
LRA=GETPOS(l)
WRITE (l)NRECS, (RLENGTH(I) ,ADDRESS (I) ,I=lNRECS)
REWIND (1)

CALL READIN(LRA,l)

END

READMS/WRITMS routines

The READMS/WRITMS routines provide a means to create, change, and extend
random access datasets. The READMS/WRITMS routines automatically
maintain an index and allow records to be rewritten with a different
length. It is the user's responsibility to provide the READMS/WRITMS

SR-0009 E-14 J

package with an array to use as an index workspace. Any number of
records can be on the dataset but the length of the index array must be
sufficient to accommodate all of the records.

Two types of indexing are available: numbered and named. With a
numbered index, each record is identified by an integer ordinal. The
length of the index array must be at least as large as the maximum number

I of records. For named indexes, each record is identified by a 64-bit
value, typically an ASCII character string. The length of the index

I array must be at least twice the maximum number of records.

I

I

Use of the READMS and WRITMS routines must begin with a call to OPENMS to
initialize the index and end with a call to CLOSMS to write the index on
the dataset.

See the Library Reference Manual, CRI publication SR-OOI4 for more
information on using the random access dataset management routines
CLOSMS, FINDMS, OPENMS, READMS, STINDX, and WRITMS.

MODIFYING A RECORD UNDER RANDOM ACCESS

Sequential read/write statements are used under random access. Formatted
input/output is prohibited under random access. BUFFER IN and BUFFER OUT
on COS random datasets is allowed except BUFFER OUT on COS blocked random
datasets. When a record is being replaced, the length of the record
being written must equal the length of the replaced record. COS blocked
datasets cannot be extended while connected for random access.

EXTENDED RANGE OF A DO-LOOP

Transfer of control out of the range of a DO-loop does not inactivate the
DO-loop. However, the DO-loop becomes inactive if the DO variable
becomes undefined or is redefined while outside the range. If the
DO-loop remains active, control can be transferred to any statement in
the loop.

NONCHARACTER ARRAYS FOR FORMAT SPECIFICATION

No FORMAT statement is required if the format identifier in a formatted
input/output or formatted assignment statement is a noncharacter array
name. The initial and following elements of that array must be defined
with character data that constitute a format specification when the
input/output statement is executed. The opening parenthesis must be in
the first or ninth character position (the first character in the first
or second word). If in the ninth character position, the content of the
first word has no effect on program execution.

SR-0009 E-15 J

•

EOF, IEOF, AND IOSTAT FUNCTIONS

If an end-of-file condition occurs during a READ statement not containing
a end-of-file specifier (END=) or an I/O status specifier (IOSTAT=),
execution of the program continues. A reference to the EOF, IEOF, or
IOSTAT function must occur before the next attempted read from that
dataset.

The ANSI FORTRAN Standard does not provide continued execution of a
program following an end-of-file encountered during a READ statement not
containing an end-of-file specifier or an I/O status specifier.

SR-0009 E-16 J

I

CREATING NON-FORTRAN PROCEDURES

Function and subroutine subprograms written in the Cray Assembly Language
(CAL) can be used with FORTRAN programs if proper linkage conventions are
followed. Conventional practices linking CAL routines with FORTRAN
programs are defined in the following areas.

• Argument transmission

• Band T register use

• Entry block design

• Argument retrieval

• Local temporary variable reference

• Error traceback

• A, S, V, VL, and VM register use

• Function values

Specific macros are available to aid CAL programmers in writing routines
following CFT conventions. These macros maintain compatibility with
different CFT versions. CFT version 1.11 introduces a new calling
sequence. Both new and old calling sequences are available with CFT
version 1.11. with CFT version 1.12, only the new calling sequence will
be available. The CFT linkage macros are described in the Macros and
Opdefs Reference Manual, CRI publication SR-0012.

SR-0009 F-l J

F

SYMBOLIC DEBUG PACKAGE G

The symbolic debug package provides, upon request, a symbolic memory
dump. This dump gives variable names and values in a format appropriate
to the variable type. It is invoked by specifying the CFT Z option,
ON=Z, in the CFT control statement and by including the DEBUG control
statement or by calling the library routine SYMDEBUG.

The DEBUG control statement is conventionally used after EXIT and DUMPJOB
control statements as an aid in determining the cause of a job abort.

Example:

JOB ••••
CFT,ON=Z.
LDR.
EXIT.
DUMPJOB.
DEBUG.

The library routine SYMDEBUG is callable from a running program and
provides a debug printout of the job's memory. SYMDEBUG has one
argument, a Hollerith string, which can contain any of the parameters
that DEBUG accepts. For example:

CALL SYMDEBUG('O=OUT,PAGES=17.')

The string must terminate with a period.

See the CRAY-OS Version 1 Reference Manual, publication SR-OOll for
details of the optional DEBUG parameters.

SR-0009 G-l J

UNBLOCKED DATASETS H

Unblocked datasets do not conform to standard Cray Operating System (COS)
dataset format. An unblocked dataset must be explicitly declared with
the U parameter on a COS ASSIGN statement.

Formatted input/output is prohibited on an unblocked dataset. For
unformatted I/O, an implied DO-loop in the input/output list (iolist)
is not permitted. For synchronous I/O, each item in the iolist must be
an array name without subscripts. In addition, each array dimension must
be a multiple of 512.

ENDFILE and BACKSPACE requests are illegal for an unblocked dataset. All
other auxiliary I/O operations are permitted on an unblocked dataset.

See the CRAY-OS Version 1 Reference Manual, publication SR-OOll for
detailed descriptions of the ASSIGN control statement, unblocked and
blocked dataset structures, and logical I/O for both structures.

SR-0009 H-l J

I

I

REPRIEVE PROCESSING

Reprieve processing suspends normal system error processing and allows
the user to attempt to recover from what normally would be an abort
condition. The user selects the conditions under which recovery occurs.
(See the CRAY-OS Version I Reference Manual, Appendix F, for a complete
list of reprievable abort conditions and selection codes.) Reprieve
processing allows recovery from a time limit, for example, and can save
important data on disk before the job aborts.

REPRIEVE INITIATION

Reprieve processing is set up by a call to the library routine SETRPV.
This call can appear anywhere and any number of times in a program but
must be executed before the abort condition occurs. The call typically
appears at the beginning of a main program. The format is

CALL SETRPV(recname,xpsave,class)

where recname

xpsave

class

is the name of the external subroutine to be called if
a reprievable error occurs. recname must be
declared in an EXTERNAL statement.

is an array with dimensions of at least 40. On entry
to recname, xpsave contains a copy of the Exchange
Package at the time of the abort and information about
the type of the abort. (See the CRAY-OS Version 1
Reference Manual for a description of xpsave.)
xpsave must be in a common block in the routine that
calls SETRPV and in recname.

is a mask that defines recoverable errors. Valid mask
values are listed in Appendix F of the CRAY-OS Version
I Reference Manual, publication SR-OOll.

Within recname, any FORTRAN statements except RETURN or END can be
executed.

SR-0009 1-1 J

I

REPRIEVE TERMINATION

The normal FORTRAN method of terminating reprieve processing is to call
I the subroutine ENDRPV from the external subroutine set up by SETRPV. The

format follows.

I

CALL ENDRPV

The execution of this call ends the job step. Job processing resumes at
the next EXIT control statement or it terminates if no EXIT is present.

A STOP or CALL EXIT can terminate the job step and resume execution at
the next job control statement. Using END or RETURN to terminate the job
step gives unpredictable results.

SR-0009 1-2 J

I

FTREF UTILITY J

The FTREF utility generates a report about common block variable usage in
the subroutines of a user application on a global basis. FTREF also
provides tabular information, which includes entry names, calling
routines, and the called routines for each subroutine. FTREF displays
this information as a static calling tree. If the user program is
multi tasked, FTREF states whether a common variable is locked or unlocked
when it is referenced or redefined.

FTREF is invoked by specifying ON=XS in the CFT control statement and by
including the FTREF control statement. The input file to FTREF should
contain as many modules used by the application as possible for the best
results.

Example:

JOB, ••••
ACCOUNT, ••••
CFT,ON=XS,L=OUT.
CFT,ON=XS,L=OUT.
CFT,ON=XS,L=OUT.
FTREF,I=OUT,CB=FULL,TREE=FULL.

See the CRAY-OS Version 1 Reference Manual, publication SR-OOll, for
details of the FTREF control statement.

SR-0009 J-l J-03

INDEX

INDEX

A edit descriptor, (2)6-21
A (alphanumeric) editing, (2)6-21
Access

direct
dataset position, (2)5-5
operations, (2)5-5

random
dataset creation for, E-13
modifying a record under, E-15
positioning while connected for, E-13

sequential
dataset position, (2)5-5
operations, (2)5-4

Active DO-loop, (2)4-11
Actual

arguments
association, (1)4-10
character substring, (1)4-11
description, (1)4-9, (1)4-10
external functions, (1)4-5
subroutine reference, (1)4-2

array
declarator, (1)2-11, (1)2-15
description, (1)2-15

Address field, (3)1-16
Addressing, extended memory (EMA), (1)4-15
Adjustable

array
declarator, (1)2-11
description, (1)2-16

dimensions, (1)2-16
Aids, vectorization, B-6
ALIGN directive

description, (3) 1-37
format, (3) 1-37

. Allocation, memory, (3) 1-7
Alphanumeric

character, (1)1-3
editing, (2)6-21

Alternate return, (2)7-7
American National Standards Institute,

(ANSI), (1) 1-1
ANSI

character set, A-I
FORTRAN

character set, A-I
conformance to standard, (1)1-1

standards, deviations from, (1)1-2
X3.9-1978, (1)1-1

Apostrophe and quotation mark editing,
(2) 6-7

ARGPLIMQ flow trace routine option, (3)1-32

SR-0009 Index-l

Argument
actual

description, (1)4-9, (1)4-10
external functions, (1)4-5
in a subroutine reference, (1)4-2
is a character substring, (1)4-11

association of dummy and actual
arguments, (1)4-10

description, (1)4-9
dummy

array, (1) 4-12
description, (1)4-9
procedures, (1)4-12
statement function, (2)7-3
type character, (1)4-11
undefined, (1)4-11
variable, (1)4-11

retrieval, F-1
transmission, F-1

Arithmetic
assignment statement

execution, (2)3-1
format, (2)3-1

constant
description, (1)2-3
expression, (1)3-1

expression
data type, (1)3-6
description, (1)3-1
evaluation, (1)3-10
forms, (1) 3-5

functions, general, B-2
IF statement

execution, (2)4-4
format, (2) 4-4
two-branch, format, E-6

operands, (1)3-3
operators

description, (1)3-2
interpretation in expressions, (1)3-2
precedence, (1)3-3

relational expression, (1)3-12
Arrangement and reference, array element

(1)2-14
Array

actual, (1) 2-15
adjustable, (1)2-16
bounds checking directive (BOUNDS),

(3) 1-34
aec1arator

actual, (1)2-11, (1)2-15
adjustable, (1)2-11

J-03

Array (continued)
assumed-size, (1)2-11
description, (1)2-10
dummy, (1)2-11, (1)2-15
format, (1) 2-10
types, (1) 2-11

description, (1)2-10
dimensions, (1)2-10
dummy, (1) 2-15
dummy argument, (1)4-12
element

arrangement and reference, (1)2-14
data type, (1)2-2
defined, (1)2-21
description, (1)2-10
initially defined, (1)2-21
invariant, description, (3)2-2.1
invariant, used in a reduction array

operation, (3)2-4
undefined, (1)2-21

e1emen t name
description, (1)2-10, (1)2-12
format, (1) 2-12
in an EQUIVALENCE statement, (2)2-12

element order, (1)2-13
equivalenced, (3)2-9
name

description, (1)2-10
in an EQUIVALENCE statement, (2)2-12
use of, (1) 2-17

noncharacter, for format specification,
E-15

referenc~, vector, (3)2-3
size, (1)2-12
storage sequence, (1)2-12.1, (1)2-13
symbolic name, (1)2-26
vectorization with, (3)2-10

ASCII
character set, A-1
internal code, (1)1-3

ASSIGN statement
execution, (2)3-3
format, (2) 3-3

Assigned GO TO statement
execution, (2)4-3
format, (2) 4-3

Assignment statements
arithmetic

execution, (2)3-1
format, (2) 3-1

ASSIGN, (2) 3-3
character

execution, (2)3-2
format, (2) 3-2

description, (2)3-1
formatted data, E-7
logical

execution, (2)3-2
format,' (2) 3-2

type conversion, (1)3-8
Associated

entities
partially, (1)2-19
totally, (1)2-19

storage sequences, (1)2-19

SR-0009 Index-2

Association
actual arguments, (1)4-10
common, (2) 2-15
description, (1)2-19
dummy arguments, (1)4-10
entities

description, (1)2-19
restrictions, (1)4-13

entry, in function subprograms, (2)7-9
equivalence, (2)2-12
statements, (2)2-11

Assumed-size array declarator, (1)2-11
A, S, V, VL, and VM registers, F-1
Auxiliary character set, (1)1-4, A-1

BACKSPACE statement
description, (2)5-17
format, (2) 5-16

Band T register use, F-1
Basic real constant, (1)2-5
Bidirectional memory, (3)2-17
BL directive, (3)1-33
Blank common block, (2)2-15
BLOCK BEGINS messages, (3)1-15
Block

common
blank, (2) 2-15
description, (1)4-14
directive, dynamic (DYNAMIC), (3)1-34
extended memory, (1)4-15
name, (1) 2-25
named, (1) 4-1, (2) 2-15
size, (2) 2-14
storage sequence, (2)2-14
symbolic name, (1)2-25
task, (1) 4-15

data
subprogram, (1) 2-26, (1) 4-1, (2) 7-11
symbolic name, subprogram, (1)2-26

design, entry, F-1
field, (3) 1-17
names and lengths in octal, table of,

(3) 1-18
statement, conditional

description, (2)4-5
execution, (2)4-8

BLOCK DATA statement, (1)4~1, (2)7-11
BLOCK directive, (3)1-36
Block IF statement

execution, (2)4-6
format, (2) 4-6

BN and BZ
edit descriptors, (2)6-13
editing, (2)6-13

Boolean (octal or hexadecimal) constant,
(1)2-8

Boolean (masking) expression, (1)3-17
Boolean

constant, (1)2-8
data, (1) 2-8
expression, (1)3-6
functions, B-5
type conversion, (1)3-10

J-03

Bounds, array
checking directive (BOUNDS), (3)1-34

BOUNDS
directive, (3)1-34
options, (3)1-34

BUFFER IN statement (CFT extension)
description, (2)5-29
format, (2) 5-31

BUFFER OUT statement (CFT extension)
description, (2)5-29
format, (2) 5-31

CAL instructions, EFI and DFI, (3)2-15
CALL ENDRPV format, 1-2
CALL SETRPV format, I-I
CALL statement

execution, (2)7-5
format, (2)7-5

Categories, entity, (3)2-2.1
CFT

compiler, (1)1-1, (3)1-1, (3)2-1, D-1
control statement, format, (3)1-1
extensions

BUFFER IN statement, (2)5-29
BUFFER OUT statement, (2)5-29
dollar sign editing, (2)6-10.1
hexadecimal (Z) editing, (2)6-20
IMPLICIT NONE statement, (2)2-10
LENGTH function, (2)5-34
NAMELIST statement, (2)5-23
o (octal) editing, (2)6-19
octal (0) editing, (2)6-19
POINTER statement, (2)2-3
R (right-justified) editing, (2)6-23
UNIT function, (2)5-33
Z (hexadecimal) editing, (2)6-20

input, (3) 1-11
language

character set, (1)1-3
definition, (1)1-1
elements, (1)1-3

messages, D-1
output, (3) 1-14
use of optimized routines by, (3)2-12
Z option, G-1

Chaining operation, (3)2-18
Character

alphanumeric, (1)1-3
assignment statement

execution, (2)3-2
format, (2) 3-2

constant
description, (1)2-8.1
length, (1) 2-9

expression evaluation, (1)3-11
expressions, (1)3-11
functions, B-4
primary, (1)3-11
print control, (2)5-15
relational expression, (1)3-13
set

ANSI FORTRAN, A-I
ASCII, A-I

SR-0009 Index-3

Character (continued)
auxiliary, (1) 1-4, A-I
Cray FORTRAN, A-I
description, (1)1-3
FORTRAN, (1)1-3, A-I

special, (1) 1-4
substring

actual argument, (1)4-11
description, (1)2-18

type, dummy argument, (1)4-11
CHARACTER type statement

description, (2)2-8
format, (2) 2-8

Characteristics, mainframe (3)1-8
Checking, array bounds, directive (BOUNDS),

(3)1-34
CII (constant increment integer), (3)2-2.1
ciList (control information list),

format, (2)5-9
Classes of symbolic names, (1)2-25
CLEARFI library routine, (3)2-15
CLOSE

specifiers and their meanings, (2)5-23
statement

execution, (2)5-21
format, (2) 5-21

CMR (complete memory references)
instruction, (3) 2-18, (3) 2-19

Code
internal, ASCII, (1)1-3
source, (3) 1-11

CODE directive
descr iption, (3) 1-23
format, (3)1-23

Collating sequence, (1)1-3
Colon

description, (2)6-10
editing, (2)6-10

Comment line, (1)1-9
Common

association, (2)2-15
block

blank, (2) 2-15
description, (1)2-25, (1)4-14
directive, dynamic (DYNAMIC),

(3) 1-34
extended memory, (1)4-15
name, (1) 2-25
named, (1)4-1, (2)2-15
size, (2) 2-14
storage sequence, (2)2-14
symbolic name, (1)2-25
task, (1) 4-15

COMMON statement
blank common, (2)2-15
common association, (2)2-15
description, (2)2-13
format, (2) 2-13
restrictions, (2)2-15
size, (2) 2-14
storage sequence, (2)2-14

J-03

Compiler
definition, (1)1-1, (3)1-1, (3)2-1, D-l
directive line, (1) 1-10, (3) 1-21
directives, (3) 1-20, (3) 1-21
options, (3) 1-12, (3) 1-20

Compile-time messages, D-2
Complete memory references (CMR)

instruction, (3)2-18, (3)2-19
Complex

constant
description, (1) 2-7
range, nonzero, (1)2-7

data, (1) 2-6, (2)6-19
editing, (2) 6-19
expression, (1)3-6
type conversion, (1)3-10

COMPLEX type statement, (2)2-7
Compressed index references, (3)2-16
Computed GO TO statement

execution, (2)4-2
format, (2)4-2

Computer system
CRAY-l, (1) 1-1
CRAY X-MP, (1) 1-1, (3) 2-17

Conditional
block statemen t

description, (4)4-5
execution, (2)4-8

replacement statement, (3)2-13
statements, (3)2-13
vector loops, (3)2-10

Conditions
error and end-of-file, (2)5-15
inhibiting vectorization, (3)2-2

Conformance with the ANSI standard, (1)1-1
Connection, dataset, E-13
Constant

arithmetic, (1)2-3
basic real, (1)2-5
Boolean (octal or hexadecimal), (1)2-8
character

description, (1)2-8.1
length, (1) 2-9

complex, (1) 2-7
description, (1)1-5, (1)2-2
double-precision, (1)2-6
expression, arithmetic, (1)3-1
followed by a

double-precision exponent, (1)2-6
real exponent, (1)2-5

Hollerith, E-2
increment integer (CII), (3)2-2.1
integer, (1)2-3, (1)2-4
logical

description, (1)2-7
representation, (1)2-7

nonzero
complex, (1) 2-7
double-precision, (1)2-6
real, (1)2-5

optionally signed, (1)2-3
range

nonzero complex, (1)2-7
nonzero double-precision, (1)2-6
nonzero real, (1)2-5

SR-0009 Index-4

Constant (continued)
real, (1) 2-4
signed, (1) 2-3
symbolic name, (1)2-27
unsigned, (1)2-3

Continuation line, (1)1-9
CONTINUE statement

execution, (2)4-14
format, (2) 4-14

Control
character, print, (2)5-15
directives

integer (INT24, INT64), (3)1-29
listable output, (3)1-22
vectorization, (3)1-24

format, positioning, (2)6-7
information list (cilist) , format

(2)5-9
processing, loop, (2)4-13
statement

CFT, format, (3)1-1
program, (2) 4-1

subroutines, user, (2)5-26, (2)5-28
Conventions, (1)1-2
Conversion

integer length, B-4
type

Boolean, (1)3-10
complex, (1)3-10
description, (1)3-9
double-precision, (1)3-9
functions, B-4
in assignment statements, (1)3-8
integer, (1)3-9
real, (1) 3- 9

uppercase/lowercase, (1)1-5
COS (Cray Operating System), (1)1-1
Count, iteration, (2)4-12
CRAY-l Computer System, (1)1-1
Cray FORTRAN (CFT)

character set, A-I
compiler, (1)1-1, (3)1-1, (3)2-1
intrinsic functions, B-1
language, (1)1-1
programming, (3)2-1
utility procedures, C-1

Cray Operating System (COS), (1)1-1
CRAY X-MP Computer System, (1)1-1, (3)2-17
Creating

a dataset for random access, E-13
a file, (2)5-3
non-FORTRAN procedures, F-l

Cross-reference information, (3)1-19
CVL directive, (3)1-39

D editing, (2)6-17
Data

assignment, formatted, E-7
block, subprogram, (1)2-26, (1)4-1,

(2)7-11
Boolean, (1) 2-8
complex, (1)2-6, (2)6-19
description, (1)2-1

J-03

Data (continued)
double-precision, (1)2-5
editing, (2)6-19
integer, (1) 2-3
item, integer, (1)2-3
length

type statement, format, E-ll
with data types, E-12

logical, (1) 2-7
real, (1) 2-4
specification, (2)2-1

association, (2) 2-1
declaration, (2)2-1
initialization, (2)2-1
statements, (2)2-1
type, (2) 2-1, (2) 2-7

transfer, (2)5-11
dataset position before, (2)5-5
description, (2)5-12, (2)5-13
direction of, (2)5-12
execution, (2)5-12
formatted, (2)5-14
unformatted, (2)5-14

type, (1) 2-1
and edit descriptors when SEGLDR and

the EQUIV directive are used,
(2) 6-5

arithmetic expressions, (1)3-6
array element, (1)2-2
edit descriptors with, (2)6-5
function, (1)2-2
function subprogram, (1)2-2

DATA statement
definition, (2)2-4
features, E-I0
format, (2)2-5
implied-DO list in a, (2)2-5
restrictions, (2)2-6

Dataset
connection, E-13
creation for random access, E-13
description, (2)5-3
identifier, format, (2)5-7
position, before data transfer, (2)5-5
unblocked, H-l

Date functions, B-5
DEBUG directive, (3)1-39
Debug package, symbolic, G-l
Debugging

aids, utility procedures, C-3
directives (DEBUG, NODEBUG), (3)1-39

Declaration statements
description, (2)2-1
double

description, E-I0
FUNCTION, format, E-I0
type, format, E-I0

Declarator
array

actual, (1)2-11, (1)2-15
adjustable, (1)2-11
assumed-size, (1)2-11
description, (1)2-10
dummy, (1)2-11, (1)2-15

SR-0009 Index-S

Declarator (continued)
format, (1) 2-10
types, (1) 2-11

dimension
description, (1)2-10
lower and upper bounds, (1)2-11

DECODE statement
description, E-9
format, E-7

Defined
entities, (1)2-21
initially, variable or array element,

(1)2-21
variable or array element, (1)2-21

Deleting a file, (2)5-3
Dependencies, (3)2-4
Dependency messages, informative, D-30
Descriptor

edit
A, (2)6-21
and data types when SEGLDR and the

EQUIV directive are used, (2)6-5
BN and BZ, (2)6-13
descr iption, (2) 6-3, E-9
dollar sign, (2)6-10.1
E, (2) 6-16
F, (2)6-14
G, (2) 6-17
H, (2) 6-8
I, (2)6-13
L, (2) 6-20
o (octal) (CFT extension), (2)6-19
obsolete, format, E-9
P, (2)6-11
R, (2) 6-23
s, SP, and SS, (2)6-13
slash, (2) 6-10
T, TL, TR, (2)6-8
with data types, (2)6-5
X, (2)6-8
Z (hexadecimal) (CFT extension),

(2) 6-20
nonrepeatable edit, format, (2)6-4
repeatable edit, format, (2)6-3

Design, entry block, F-l
Designator, substring

description, (1)2-18
format, (1) 2-18

Deviations from the ANSI standards, (1)1-2
DFI CAL instruction, (3)2-15
Differences, named common and blank common,

(2)2-15
Dimension

adjustable, (1)2-16
array, (1) 2-10
declarator

descr iption, (1) 2-10
lower and upper bounds, (1)2-11

DIMENSION statement
description, (2)2-2
format, (2) 2-2

Direct access
dataset position, (2)5-5
operations, (2)5-5

J-03

Direction of data transfer, (2)5-12
Directive

ALIGN
description, (3)1-37
format, (3) 1-37

array bounds checking (BOUNDS), (3)1-34
BL, (3) 1-33
BLOCK, (3) 1-36
BOUNDS, (3) 1-34
CODE

description, (3)1-23
format, (3) 1-23

compiler
description, (3)1-20, (3)1-21
line, (3) 1-21

control
integer (INT24, INT64) , (3)1-29
listable output, (3)1-22
vectorization, (3)1-24

CVL, (3) 1-39
DEBUG, (3) 1-39
debugging, (3)1-39
DYNAMIC

description, (3)1-34
format, (3) 1-34

dynamic common block (DYNAMIC)
description, (3)1-34
format, (3)1-34

EJECT
description, (3)1-22
format, (3) 1-22

EQUIV, (2) 6-5
FASTMD, (3) 1-30
FLOW, (3)1-30
flow trace (FLOW/NOFLOW), (3)1-30
INT24

description, (3)1-29
format, (3) 1-29

INT64
description, (3)1-29
format, (3) 1-29

integer control (INT24, INT64)
description, (3)1-29
format, (3) 1-29

IVDEP
description, (3)1-27
format, (3) 1-27

IVDMO
description, (3)1-27
format, (3) 1-27

line, compiler, (1)1-10, (3)1-21
LIST

description, (3)1-22
format, (3) 1-23

listable output control, (3)1-22
multiply/divide (FASTMD, SLOWMD) ,

(3)1-30
NEXTSCALAR

description, (3)1-28
format, (3) 1-28

NOBL, (3) 1-33
NOCODE

description, (3)1-23
format, (3) 1-23

SR-0009 Index-6

Directive (continued)
NOCVL, (3) 1-39
NODEBUG, (3)1-39
NOOOREP

description, (3)1-38
format, (3) 1-38

NOFLOW, (3)1-30
NOIFCON

description, (3)1-37
format, (3) 1-37

NOLIST
description, (3)1-23
format, (3) 1-23

NORECURRENCE
descr iption, (3) 1-26
format, (3) 1-26

NO SIDE EFFECTS
description, (3)1-36
format, (3) 1-36

NOVECTOR
description, (3)1-25
format, (3)1-25

optimization, (3)1-35
RES UMEDORE P

description, (3)1-38
format, (3) 1-38

RESUMEIFCON
description, (3)1-38
format, (3) 1-38

ROLL, (3) 1-39
SAFEIF, (3) 1-33
scheduler, (3)1-33
SHORT LOOP

description, (3)1-29
format, (3) 1-29

SLOWMD, (3) 1-30
UNROLL, (3) 1-39
UNSAFEIF, (3)1-33
VECTOR

description, (3)1-24
format, (3) 1-24

vectorization control, (3)1-24
VFUNCTION

description, (3)1-27
format, (3) 1-27

Disable, flow trace, (3)1-31
Disjunct, logical

form, (1) 3-16
value, (1) 3-16

Dollar sign
edit descriptor, (2)6-10.1
editing, (2)6-10.1

DO-loop
active, (2) 4-11
description, (2) 4-8
execution of the range, (2)4-13
extended range, E-15
inactive, (2)4-11
range, (2) 4-10
transfer into range, (2)4-14
unrolling, (3)1-9
vectorizable, (3)2-1

DO statement
execution, (2)4-11
format, (2) 4-8

J-03

DO statement (continued)
incrementation processing, (2)4-13
loop control processing, (2)4-13
range, (2) 4-10
terminal statement

description, (2)4-10
execution, (2)4-13

DO variable, (2)4-10
Double declaration

FUNCTION statement, format, E-I0
statement, E-I0
type statement, format, E-I0

Double-precision
constant

description, (1)2-6
range, nonzero, (1)2-6

data, (1) 2-5
editing, (2) 6-17
exponent, (1)2-6
expression, (1)3-6
type conversion, (1)3-9

DOUBLE PRECISION type statement, (2)2-7
Dummy

arguments
arrays, (1)4-12
association, (1)4-10
description, (1)4-9
procedures, (1)4-12
statement function, (2)7-3
type character, (1)4~11

undefined, (1)4-11
variables, (1)4-11

array
declarator, (1)2-11, (1)2-15
description, (1)2-15

procedure, symbolic name, (1)2-28
Dynamic common block directive (DYNAMIC)

description, (3)1-34
format, (3)1-34

DYNAMIC directive

E

description, (3)1-34
format, (3)1-34

edit descriptors, (2)6-16
editing, (2)6-16

Edit descriptor
A, (2)6-21
and data types when SEGLDR and the

EQUIV directive are used, (2)6-5
BN and BZ, (2)6-13
description, (2)6-3, E-9
dollar sign, (2)6-10.1
E, (2) 6-16
F, (2) 6-14
G, (2) 6-17
H, (2) 6-8
hexadecimal (Z) (CFT extension), (2)6-20
I, (2)6-13
L (logical), (2) 6-20
nonrepeatable, formats, (2)6-4
o (octal) (CFT extension), (2)6-19
obsolete, format, E-9

SR-0009 Index-7

Edit descriptor (continued)
P, (2) 6-11
R, (2)6-23
repeatable, formats, (2)6-3
S, SP, and SS, (2)6-13
slash, (2) 6-10
T, TL, and TR, (2)6-8
with data types, (2)6-5
X, (2) 6-8
Z (hexadecimal) (CFT extension), (2)6-20

Editing
A (alphanumeric), (2)6-21
apostrophe and quotation mark, (2)6-7
BN and BZ, (2)6-13
colon, (2) 6-10
complex, (2)6-19
D, (2)6-17
data, (2)6-19
descr iption, (2) 5-1
dOllar sign, (2)6-10.1
E, (2) 6-16
F, (2)6-14
G, (2)6-17
H, (2) 6-8
hexadecimal (Z) (CFT extension), (2)6-20
I, (2)6-13
integer, (2)6-13
L (logical), (2)6-20
numeric (BN, BZ, S, SP, SS, I, F, E, D,

and G), (2) 6-12
o (octal) (CFT extension), (2)6-19
P, (2) 6-11
positional (T, TL, TR, and X), (2)6-8
R (right-justified) (CFT extension) ,

(2) 6-23
s, SP, and SS, (2)6-13
slash, (2) 6-10
T, TL, and TR, (2)6-9
X, (2) 6-9
Z (hexadecimal) (CFT extension), (2)6-20

Effect of ALLOC, SAVEALL, and BTREG on
variable allocation, (3)1-10

Efficiency, vectorization, (3)2-11
EFI CAL instruction, (3)2-15
EJECT directive, format, (3)1-22
Element

array
arrangement and reference, (1)2-14
data type, (1)2-2
defined, (1)2-21
definition, (1)2-10
initially defined, (1)2-21
invariant, description, (3)2-2.1
invariant, used in a reduction array

operation, (3)2-4
undefined, (1)2-21

name, array, (1)2-10, (1)2-12
order, array, (1)2-13

Elements of the CFT language, (1)1-3
ELSE-block, (2)4-7
ELSE IF-block, (2)4-6
ELSE IF statement

execution, (2) 4-7
format, (2)4-7

J-03

ELSE statement, (2)4-7
EMA (extended memory addressing), (1)4-15
Empty sequence, (1)1-5
Enable/disable, flow trace, (3)1-31
ENCODE statement

description, E-8
format, E-7

Endfile record, (2)5-2
ENDFILE statement

description, (2)5-17
format, (2) 5-16

END IF statement, (2)4-6
End-of-data (EOD) record, (2)5-2
End-of-file

condition, (2)5-15
(endfile) record, (2) 5-2

END statement, (2)4-16
Entities

associated
partially, (1)2-19
totally, (1)2-19

association of
description, (1)2-19
restrictions, (1)4-13

defined, (1)2-21
global, (1) 2-24
local, (1) 2-24
undefined, (1)2-22

Entity categories, (3)2-2.1
Entry

association in function subprograms,
(2)7-9

block design, F-1
procedure subprogram, referencing,

(2)7-9
ENTRY statement

description, (2)7-8
format, (2) 7-8
restrictions, (2)7-9

EOD, (2) 5-2
EOF, IOEF, and IOSTAT functions, E-16
EQUIV directive, (2)6-5
Equivalence, mathematical, (1)3-10
EQUIVALENCE statement

array
element names, (2)2-12

. names, (2) 2-12
association, (2)2-12
description, (2)2-11
format, (2)2-11
restrictions, (2)2-12, (2)2-15

Equivalenced arrays, (3)2-9
Error

and end-of-file conditions, (2)5-15
messages

description, D-l
during program execution, (3)1-11
fatal, (1) 4-15

recovery, I/O, (2) 5-34
traceback, F-l

Establishing a format, (2)5-13
Evaluation

arithmetic expressions, (1)3-10
character expression, (1)3-11

SR-0009 Index-8

Evaluation (continued)
expressions, (1)3-19
functions, order, (1)3-19
subscript, (1)2-16

Executable
program, (1) 1-10, (1) 1-11
statement, (1)1-8

Execution
arithmetic assignment statement, (2)3-1
arithmetic IF statement, (2)4-4
assigned GO TO statement, (2)4-3
ASSIGN statement, (2)3-3
block IF statement, (2)4-6
CALL statement, (2)7-5
character assignment statement, (2)3-2
CLOSE statement, (2)5-21
computed GO TO statement, (2)4-2
conditional block statement, (2)4-8
CONTINUE statement, (2)4-14
data transfer I/O statement, (2)5-12
DO-loop statement range, (2)4-13
DO statement, (2)4-11
ELSE IF statement, (2)4-7
external function references, (1)4-5
function references, (1)4-8
INQUIRE by dataset name statement,

(2)5-20
INQUIRE by unit statement, (2)5-20
logical

assignment statement, (2)3-2
IF statement, (2)4-5

OPEN statement, (2)5-20
program

description, (1)1-12
error messages, (3)1-11

RETURN statement, (2)7-7
sequence, normal, (1)1-12
statement function reference, (1)4-4
terminal statement, (2)4-13
unconditional GO TO statement, (2)4-2

Exponent
double-precision, (1)2-6
real, (1) 2-5

Exponential functions, B-3
Expressions

arithmetic
data type, (1)3-6
description, (1)3-1
evaluation, (1)3-10
forms, (1)3-5
relational, (1)3-12

arithmetic constant, (1)3-1
Boolean, (1) 3-6
Boolean (masking), (1)3-17
character

description, (1)3-11
evaluation, (1)3-11
relational, (1)3-13

complex, (1) 3-6
description, (1)3-1
double-precision, (1)3-6
evaluation, (1)3-19
Hollerith, E-4

J-03

Expressions (continued)
Hollerith relational

description, E-5
format, E-5

integer, (1) 3-6
interpretation of arithmetic operators,

(1)3-2
invariant, (3)2-2.1
logical

description, (1)3-14
form, (1) 3-14, (1) 3-16
interpretation, (1)3-15
value, (1) 3-16

parenthesized, (1)3-20
real, (1)3-6
relational, (1)3-12
types, (1) 3-1

Extended
memory

addressing (EMA) , (1)4-15
common blocks, (1)4-15

range of a DO-loop, E-15
External

function, (1)4-5
actual arguments, (1)4-5
execution, (1)4-5
references, (1)4-5
Symbolic name, (1)2-25

names, table, (3)1-19
routines, (3)1-40
unit

identifier, (2)5-6
specifier, format (2)5-18

EXTERNAL statement, format, (2)7-10

F

edit descriptor, (2)6-14
editing, (2)6-14

Factor
description, (1)3-4
logical

form, (1) 3-15
value, (1) 3-16

scale, (2)6-11
FASTMD directive, (3)1-30
Fatal error message, (1)4-15
Features

DATA statement, E-10
outmoded, E-1

Field
address, (3)1-16
block, (3) 1-17
definition, (2)6-7
main usage, (3)1-17
name, (3) 1-16
type, (3) 1-16
width, (2)6-7

File
creating, (2)5-3
deleting, (2) 5-3
description, (2)5-2
identifier, internal, (2)5-6
input/output, (2)5-2

SR-0009 Index-9

File (continued)
internal

description, (2)5-4
restrictions, (2)5-4

positions, (2)5-3
specifier, format, (2)5-18

FLODUMP utility, (3)1-31
FLOW directive, (3)1-30
FLOWLIM flow trace routine option, (3)1-33
FLOW/NOFLOW directives, (3)1-30
Flow trace

directives (FLOW/NOFLOW), (3)1-30
enable/disable, (3)1-31

Form
routine options, (3)1-32

arithmetic expression, (1)3-5
logical

disjunct, (1)3-16
expression, (1)3-14, (1)3-16
factor, (1) 3-15
term, (1) 3-15

Format
ALIGN directive, (3)1-37
arithmetic assignment statement, (2)3-1
arithmetic IF statement, (2)4-4
array

declarator, (1)2-10
element name, (1)2-12

assigned GO TO statement, (2)4-3
ASSIGN statement, (2)3-3
BACKSPACE statement, (2)5-16
BLOCK DATA statement, (2)7-11
block IF statement, (2)4-6
BUFFER IN (CFT extension), (2)5-31
BUFFER OUT (CFT extension), (2)5-31
CALL ENDRPV, 1-2
CALL SETRPV, I-I
CALL statement, (2)7-5
CFT control statement, (3)1-1
character assignment statement, (2)3-2
CHARACTER type statement, (2)2-8
CLOSE statement, (2)5-21
CODE directive, (3)1-23
COMMON statement, (2)2-13
computed GO TO statement, (2)4-2
CONTINUE statement, (2)4-14
control

information list (cilist), (2)5-9
positioning, (2)6-7

dataset identifier, (2)5-7
DATA statement, (2)2-5
DECODE statement, E-7
DIMENSION statement, (2)2-2
DO statement, (2)4-8
double declaration

FUNCTION statement, E-10
type statement, E-10

dynamic common block directive
(DYNAM[C), (3)1-34

DYNAMIC directive, (3)1-34
EJECT directive, (3)1-22
ELSE IF statement, (2)4-7
ELSE statement, (2)4-7
ENCODE statement, E-7

J-03

Format (continued)
END statement, (2)4-16
ENDFlLE statement, (2)5-16
END IF statement, (2)4-6
ENTRY statement, (2)7-8
EQUIVALENCE statement, (2)2-11
establishing a, (2)5-13
EXTERNAL statement, (2)7-10
external unit specifier, (2)5-18
file specifier, (2)5-18
format

identifier, (2)5-7
specification, (2)6-2

FORMAT statement, (2)6-1
function reference, (2)7-2
FUNCTION statement, (2)7-2
Hollerith relational expression, E-5
identifier, (2)5-7
IMPLICIT NONE statement (CFT extension)

(2)2-10
IMPLICIT statement, (2)2-9
implied-DO list, (2)5-11
indirect logical IF statement, E-6
input NAMELIST group record, (2)5-24
INQUIRE by dataset name statement,

(2)5-18
INQUIRE by unit statement, (2)5-18
INT24 directive, (3)1-29
INT64 directive, (3)1-29
integer control directives (INT24,

INT64), (3)1-29
INTRINSIC statement, (2)2-15
I/O, list-directed, (2)6-24
IVDEP directive, (3)1-27
IVDMO directive, (3)1-27
list-directed I/O, (2)6-24
LIST directive, (3)1-23
logical

assignment statement, (2)3-2
IF statement, (2)4-4

NAMELIST statement, (2)5-23
NEXTSCALAR directive, (3)1-28
NOCODE directive, (3)1-23
NODOREP directive, (3)1-38
NOIFCON directive, (3)1-37
NOLIST directive, (3)1-23
nonrepeatable edit descriptors, (2)6-4
NORECURRENCE directive, (3)1-26
NO SIDE EFFECTS directive, (3)1-36
NOVECTOR directive, (3)1-25
obsolete edit descriptors, E-9
OPEN statement, (2)5-20
output NAMELIST group record, (2)5-28
PARAMETER statement, (2)2-1
PAUSE statement, (2)4-15
POINTER statement, (2)2-3
PRINT statement, (2)5-8
PROGRAM statement, (2)7-1
PUNCH statement, E-ll
READ statement, (2)5-8
repeatable edit descriptors, (2)6-3
reprieve

initiation, 1-1
termination, 1-2

SR-0009 Index-IO

Format (continued)
RESUMEDOREP directive, (3)1-38
RESUMEIFCON directive, (3)1-38
RETURN statement, (2)7-6, (2)7-7
REWIND statement, (2)5-16
SAVE statement, (2)2-16
SHORTLOOP directive, (3)1-29
specification

description, (2)6-1
format, (2)6-2
Hollerith, E-6
interaction with I/O lists, (2)6-6
noncharacter arrays, E-15

statement function definition
statement, (2)7-3

STOP statement, (2)4-15
SUBROUTINE statement, (2)7-6
substring designator, (1)2-18
task common block, (1)4-15
two-branch arithmetic IF statement, E-6
type statement, (2)2-7
type statements with data length, E-ll
unconditional GO TO statement, (2)4-1
unit identifier, (2)5-6
VECTOR directive, (3)1-24
VFUNCTION directive, (3)1-27
WRITE statement, (2)5-8

FORMAT statement, (2)6-1
Formatted

data
assignment, E-7
transfer, (2)5-14

records, (2)5-1
FORTRAN

character set, (1)1-3, A-l
compiler, (1)1-1, (3)1-1, (3)2-1, D-l
intrinsic functions, B-1
language

definition, (1)1-1
elements, (1)1-3
specifications, (1)1-1
syntactic items, (1)1-5

programming, (3)2-1
statement, description, {l)1-8, (2)1-1
utility procedures, C-l

FORTRAN 77, (1)1-1
FTREF utility, J-l
Function

Boolean, B-5
character, B-4
data type, {l)2-2
definition statement format, statement,

(2)7-3
dummy argument, statement, (2)7-3
EOF, E-16
execution of references, (1)4-7
exponential, B-3
external

actual arguments, (1)4-5
description, (1)4-5
execution, references, {l)4-5
referencing, (1)4-5
symbolic name, (1)2-25

general arithmetic, B-2

J-03

Function (continued)
IEOF, E-16
intrinsic

description, {l)4-6, {l)2-2, B-1
names, (2)2-l6, B-1
referencing, {l)4-6
restrictions, {l)4-6
symbolic name, {l)2-28

IOSTAT, E-16
LENGTH (CFT extension), (2)5-34
logarithmic, B-3
maximum/minimum, B-4
miscellaneous, B-6
name, intrinsic, (2)2-l6
order of evaluation, {l)3-l9
reference, format, (2)7-2
references, execution, {l)4-8
referencing, {l)4-4, {l)4-8
restrictions, {l)4-7
statement

description, {l)4-3
execution, {l)4-4
referencing, {l)4-4
restrictions, {l)4-4
symbolic name, {l)2-28

subprogram
data type, {l)2-2
description, {l)4-3, (2)7-2
entry association, (2)7-9
restrictions, {l)4-7

time and date, B-5
trigonometric, B-3
type conversion, B-4
UNIT (CFT extension), (2)5-33
utility

LENGTH (CFT extension), (2)5-34
UNIT (CFT extension), (2)5-33

values, F-l
FUNCTION statement

G

double declaration, format, E-lO
format, (2) 7-2

edit descriptors, (2)6-l7
editing, (2)6-l7

General
arithmetic functions, B-2
guidelines for vectorization, (3)2-16

Generic and specific intrinsic function
names, B-7

GETPOS/SETPOS, E-13
Global entities, (l)2-24
GO TO statement

assigned
execution, (2)4-3
format, (2) 4-3

computed
execution, (2)4-2
format, (2) 4- 2

unconditional
execution, (2) 4-2
format, (2)4-l

SR-0009 Index-II

Group
name, NAMELIST, {l)2-29
record

input NAMELIST, format, (2)5-24
output NAMELIST, format, (2)5-28

Guidelines for vectorization, (3)2-16

H

edit descriptor, (2)6-8
edi ting, (2) 6-8

Header lines, page, (3)1-14
Hexadecimal

Boolean, constant, (l)2-8
(Z) editing, (2)6-20

High-level language, (I) 1-1
Hollerith

I

constants, E-2
expression, E-4
format specification, E-6
relational expression

description, E-5
format, E-5

edit descriptors, (2)6-l3
editing, (2)6-l3

Identifiers
dataset, format, (2)5-7
description, (2)5-6
format, format, (2)5-7
internal file, (2)5-6
unit

external, (2)5-6
format, (2) 5-6

Identifying a unit, (2)5-l3
IEOF funct~on, E-16
IF-block, (2)4-5
IF-levels and blocks, (2)4-9
IF statements

and vectorization, (3)2-2
arithmetic

execution, (2)4-4
format, (2) 4-4

block
execution, (2)4-6
format, (2) 4-6

END, format, (2)4-6
indirect logical

description, E-6
format, E-6

logical
execution, (2)4-5
format, (2) 4-4

two-branch arithmetic
description, E-6
format, E-6

IMPLICIT NONE statement (CFT extension)
description, (2)2-10
format, (2)2-l0

IMPLICIT statement
description, (2)2-9
format, (2) 2-9

J-03

Implied-DO list
description, (2)5-11
format, (2) 5-11
in a DATA statement, (2)2-5
range, (2)2-6, (2)5-12

Inactive DO-loop, (2)4-11
Incrementation

parameter, (2)4-11
processing, (2)4-13

Increment integer, constant (CII), (3)2-2.1
Index, compressed, references, (3)2-16
Indirect logical IF statement

description, E-6
format, E-6

Information
cross-reference, (3)1-19
list, control (cilist), (2)5-9

Informative dependency messages, 0-30
Initial

line, (1) 1-9
parameter, (2)4-11

Initialization statements, (2)2-1
Initially defined variable or array

element, (1)2-21
Initiation, reprieve

description, I-I
format, I-I

Input
list-directed, (2)6-24
list item, (2)5-10
NAMELIST

description, (2)5-24
group record, format, (2)5-24
physical record, (2)5-24

operations, random, E-13
processing, NAMELIST, (2)5-26
statement, (2)5-1
to CFT, (3) 1-11
variables, NAMELIST, (2)5-25

Input/output
error recovery, (2) 5-34
file, (2)5-2
list (iolist), (2)5-10
list-directed, (2)6-24
operations, random, E-13
records, (2)5-1
statements

description, (2)5-1
restrictions, (2)5-34

utility procedures, C-2, C-3
INQUIRE by dataset name statement

execution, (2)5-20
format, (2) 5-18

INQUIRE by unit statement
execution, (2)5-20
format, (2)5-18

INQUIRE statement
description, (2)5-17
restrictions, (2) 5-20

Inquiry specifiers and their meanings,
(2) 5-19

Instructions
CAL, EFI and DFI, (3)2-15
CMR (complete memory references) ,

(3) 2-18, (3) 2-19

SR-0009 Index-12

INT24 directive
description, (3)1-29
format, (3) 1-29

INT64 directive
descr iption, (3) 1-29
format, (3)1-29

Integer
constant, (1)2-3, (1)2-4
constant increment (CII), (3)2-2.1
control directives (INT24, INT64)

description, (3)1-29
format, (3) 1-29

data, (1) 2-3
data item, (1)2-3
edi ting, (2) 6-13
expression, (1)3-6
length conversion, B-4
quotient, (1)3-8
type conversion, (1)3-9

INTEGER type statement, (2)2-7
Interaction between I/O lists and format

specification, (2)6-6
Internal

code, ASCII, (1)1-3
file

description, (2)5-4
identifier, (2) 5-6
restrictions, (2)5-4

records, (2)5-4
representation, (2)6-7

Interpretation
arithmetic operators in expressions,

(1)3-2
logical expression, (1)3-14
rules, (1)3-20

Intrinsic function
data type, (1)2-2
definition, (1)4-6
description, B-1
examples, (1) 4-6
names, (2)2-16, B-7
referencing, (1)4-6
restrictions, (1)4-6
symbolic name, (1)2-28

INTRINSIC statement
description, (2)2-15
format, (2) 2-15

Invariant
array element

description, (3)2-2.1
used in a reduction array operation,

(3)2-4

I/O

description, (3)2-2.1
expression, (3)2-2.1

error recovery, (2)5-34
list-directed

description, (2)6-24
format, (2) 6-24

lists, interaction with format
specifications, (2)6-6

iolist (input/output list), (2)5-10
IOSTAT function, E-16

J-03

Items
data, integer, (1)2-3
list

description, (1)1-7
input, (2) 5-10
output, (2)5-11

syntactic, (1)1-5, (1)1-7
Iteration count, (2)4-12
IVDEP directive

description, (3)1-27
format, (3) 1-27

IVDMO directive
description, (3)1-27
format, (3) 1-27

Keyword, (1) 1-7

L
edit descriptor, (2)6-20
(logical) editing, (2)6-20

Label, statement, (1)1-6
Language

CFT
definition, (1)1-1
elements, (1)1-3

Cray FORTRAN, (1)1-1
high-level, (1)1-1

Len (length specification), (2)2-8,
(2)6-22

Length
data

type statement, E-11
type statements with, format, E-11
with data types, E-12

specification (Len), (2) 2-8, (2) 6-22
word, octal, with block names, (3)1-18

LENGTH function (CFT extension), (2)5-34
LENGTH, utility function, (2)5-34
Levels of messages, (3)1-2
Library routines

CLEARFI, (3) 2-15
SENSEFI, (3)2-15
SETFI, (3)2-15
S YMDEBUG, G-1

Lines
comment, (1) 1-9
compiler directive, (1)1-10, (3)1-21
continuation, (1)1-9

List

description, (1)1-8
initial, (1)1-9
order, (1) 1-13
page header, (3)1-14
terminal, (1)1-9, (1)1-10

control information (ciList), (2)5-9
description, (1)1-7
implied-DO

description, (2)5-11
range, (2) 2-6, (2) 5-12

input/output (ioList), (2) 5-10
I/O, interaction with format

specifications, (2)6-6

SR-0009 Index-13

List (continued)
item

description, (1)1-7
input, (2) 5-10
output, (2)5-11

Listable output
control directives, (3)1-22
description, (3)1-14

List-directed
input, (2) 6-24
I/O

description, (2)6-24
format, (2) 6-24

output, (2) 6-26
LIST directive

description, (3)1-22
format, (3) 1-23

Listings, source statement, (3)1-15
Load operation, (3)2-18, (3)2-19
Local

entities, (1)2-24
temporary variable reference, F-1

Logarithmic functions, B-3
Logfi1e messages, D-28
Logical

assignment statement
execution, (2)3-2
format, (2)3-2

constant
description, (1)2-7
representation, (1)2-7

data, (1) 2-7
disjunct

form, (1) 3-16
value, (1) 3-16

editing (L), (2)6-20
expression

description, (1)3-14
form, (1)3-16
form and interpretation, (1)3-14
value, (1)3-16

factor
form, (1) 3-15
value, (1) 3-16

IF statement
execution, (2)4-5
format, (2)4-4
indirect, format, E-6

interpretation, (1)3-15
operands, (1)3-15
operators, (1)3-14
primaries, (1)3-15
term

form, (1) 3-15
value, (1)3-16

Logical IF statement, (2)4-4
LOGICAL type statement, (2)2-7
Loop control processing, (2)4-13
Loops

encountered, table, (3)1-19
vector, conditional, (3)2-10
vectorizab1e, (3)2-17

Lower and upper bounds of dimension
dec1arators, (1) 2-11

Lowercase conversion, (1)1-5

J-03

Main
program

description, (1)1-12, (2)7-1
symbolic name, (1)2-26

usage field, (3)1-17
Mainframe

characteristics, (3)1-8
type, (3)1-8

Masking expression, Boolean, (1)3-17
Mathematical equivalence, (1)3-10
Maximum/minimum functions, B-4
Memory

allocation, (3)1-7
bidirectional, (3)2-17
extended

addressing (EMA), (1)4-15
common blocks, (1)4-15

Messages
BLOCK BEGINS, (3)1-15
CFT, 0-1
compile-time, 0-2
description, (3)1-20
error

description, 0-1
during program execution, (3)1-11
fatal, (1) 4-15

informative dependency, 0-30
levels, (3)1-2
logfi1e, 0-28
non-ANSI, (3)1-9

Miscellaneous functions, B-6
Modes

scalar, (3)2-4.1
vector, (3)2-4.1

Modifying a record under random access, E-15
Multiple stores, (3)2-18
Multiply/divide directives (FASTMD,

SLOWMD), (3)1-30

Name
array

definition, (1)2-10
in an EQUIVALENCE statement, (2)2-12
use of, (1)2-17

array element
definition, (1)2-10, (1)2-12
in an EQUIVALENCE statement, (2)2-12

block, table, (3)1-18
common block, (1)2-25
external, table, (3)1-19
field, (3)1-16
group, NAMELIST, (1)2-29
intrinsic function, (2)2-16, B-1, B-7
symbolic

array, (1) 2-26
block data subprogram, (1)2-26
classes, (1)2-25
common block, (1)2-25
constant, (1)2-27
description, (1)2-23
dummy procedure, (1)2-28
external function, (1)2-25
intrinsic function, (1)2-28

SR-0009 Index-14

Name (continued)
main program name, (1)2-26
scope, (1) 2-24
statement function, (1)2-28
SUbroutine, (1)2-26
variable, (1)2-27

var iab1e, (1) 2-27
Named common blocks, (1)4-1, (2)2-15
NAMELIST

group name, (1)2-29
input

description, (2)5-24
group record, format, (2)5-24
physical record, (2)5-24
processing, (2)5-26
variables, (2)5-25

output
description, (2)5-28
group record, format, (2)5-28

statement (CFT extension), format,
(2) 5-23

Names, symbolic
classes, (1)2-26
description, (1)1-6, (1)2-25
scope, (1)2-25

Names encountered, table, (3)1-16
NEXTSCALAR directive

description, (3)1-28
format, (3) 1-28

NOBL directive, (3) 1-33
NOCOOE directive

description, (3)1-23
format, (3) 1-23

NOCVL directive, (3)1-39
NOOEBUG directive, (3)1-39
NOOOREP directive

descr iption, (3) 1-3 8
format, (3)1-38

NOFLOW directive, (3)1-30
NOIFCON directive

description, (3)1-37
format, (3)1-37

NOLIST directive
description, (3)1-23
format, (3) 1-23

Non-ANSI
features, outmoded, E-1
messages, (3)1-9

Noncharacter arrays for format
specification, E-15

Non-executable statement, (1)1-8
Non-FORTRAN

procedures, creating, F-1
subprograms

creation of, F-1
description, (1) 4-9
programming, F-1

Nonrepeatab1e edit descriptors, formats,
(2)6-4

Nonzero
complex constant

descr iption, (1) 2- 7
range, (1) 2-7

J-03

Nonzero (continued)
double-precision constant

description, (1)2-6
range, (1) 2-6

real constan t
description, (1)2-5
range, (1) 2-5

NORECURRENCE directive
description, (3)1-26
format, (3) 1-26

Normal execution sequence, (1)1-12
NO SIDE EFFECTS directive

description, (3) 1-36
format, (3)1-36

Notation
syntax of FORTRAN statement forms,

(1)1-2
NOVECTOR directive

description, (3)1-25
format, (3)1-25

Numbers, table of statement, (3)1-15
Numeric editing, (BN, BZ, S, SP, SS, I, F,

E, 0, and G), (2)6-12

o (octal)
edit descriptor, (2)6-19
editing (eFT extension), (2)6-19

Obsolete edit descriptors, format, E-9
Octal

Boolean, constant, (1)2-8
(0) editing (eFT extension), (2)6-19
table of block names and lengths,

(3) 1-18
OPEN

specifiers and their meanings, (2)5-22
statement

Operand

execution, (2)5-20
format, (2) 5-20

arithmetic, (1)3-3
description, (1)3-1
logical, (1)3-15

Operations
chaining, (3)2-18
direct access, (2)5-5
load, (3) 2-18, (3) 2-19
random input/output, E-13
sequential access, (2)5-4
store, (3)2-18, (3)2-19

Operator
ar ithmetic

description, (1) 3-1, (1) 3-2
interpretation in expressions, (1)3-2
precedence, (1)3-3

description, (1)1-7
logical, (1)3-14
precedence, (1)3-18
relational, (1)3-12

Optimization
directives, (3)1-35
options, (3) 1-3

Optimized routines, (3)2-11
Optionally signed constant, (1)2-3

SR-0009 Index-IS

Options
ARGPLIMQ, (3)1-32
BOUNDS, (3) 1-3 4
eFT Z, G-l
compiler, (3)1-12, (3)1-20
FLOWLIM, (3)1-33
optimization, (3)1-3
routine, flow trace, (3)1-32
SETPLIMQ, (3)1-32
Z, G-l

Order
element, array, (1)2-13
evaluation of functions, (1)3-19
lines, (1) 1-13
statements, (1)1-13

Outmoded features, E-l
Output

control directives, listable, (3)1-22
from eFT, (3) 1-14
listable, (3)1-14
list-directed, (2)6-26
list item, (2)5-11
NAMELIST, format, (2)5-28
operations, random, E-13
statement, (2)5-1

P
edit descriptor, (2)6-11
editing, (2)6-11

Package, symbolic debug, G-l
Page

header lines, (3)1-14
table, program unit, (3) 1-20

Parameter
incrementation, (2)4-11
initial, (2)4-11
terminal, (2)4-11

PARAMETER statement
description, (2)2-1
format, (2) 2-1

Parameters encountered, table, (3)1-18
Parentheses, (1)3-20
Parenthesized expression, (1)3-20
Partially associated entities, (1)2-19
PAUSE statement, format, (2)4-15
Physical record, input NAMELIST, (2)5-24
POINTER statement (eFT extension)

description, (2)2-3
format, (2)2-3

Position
dataset, before data transfer, (2)5-5
record and file, (2)5-3

Positional editing (T, TL, TR, and X),
(2) 6-8

Positioning
by format control, (2)6-7
while connected for random access

(GETPOS/SETPOS), E-13
Precedence

arithmetic operators, (1)3-3
operators, (1)3-18

J-03

Primary
character, (1)3-11
description, (1)3-4
logical, (1) 3-15

Print control characters, (2)5-15
Printing, (2)5-15
PRINT statement, format, (2) 5- 8
Procedures

dummy argument, (1)4-12
dummy, symbolic name, (1)2-28
non-FORTRAN, creating, F-l
utility, (1)4-6, C-l

Procedure subprograms
description, (1)4-2
referencing, (2)7-9

Processing
incrementation, (2)4-13
input, NAMELIST, (2)5-26
loop control, (2)4-13
reprieve, I-I

Program
control statements, (2)4-1
executable, (1)1-10, (1)1-11
execution

description, (1)1-12
error messages, (3)1-11

main, (1) 1-12, (2) 7-1
name, main, (1)2-26
subprogram, (1) 1-10, (1) 1-12, (2)7-1
unit

description, (1)1-10, (2)7-1
page table, (3)1-20
specification, (2)7-1

Programming, Cray FORTRAN, (3)2-1
PROGRAM statement, format, (2)7-1
Pseudo vector, (3)2-4
PUNCH statement

description, E-11
format, E-ll

Qualifications for vectorization, (3)2-1
Quotation mark editing, (2)6-7
Quotient, integer, (1)3-8

R

edit descriptor, (2)6-23
editing (right-justified) (CFT

extension), (2)6-23
Random

access
creating a dataset for, E-13
modifying a record under, E-15
positioning while connected for, E-13

input/output operations, E-13
Range

DO-loop
description, (2)4-10
execution, (2)4-13
extended, E-15
transfer into, (2)4-14

implied-DO list, (2)2-6, (2)5-12

SR-0009 Index-16

Range (continued)
nonzero

complex constant, (1)2-7
double-precision constant, (1)2-6
real constant, (1)2-5

READ statement, format, (2)5-8
Reading, (2)5-1
READMS/WRITMS routines, E-14
Real

constant
basic, (1)2-5
description, (1)2-4
nonzero, (1) 2-5

data, (1) 2-4
exponent, (1)2-5
expression, (1)3-6
type conversion, (1)3-9

REAL type statement, (2)2-7
Record

description, (2)5-1
end-of-data, (2)5-2
end-of-file (endfile), (2)5-2
formatted, (2)5-1
group

input NAMELIST, format, (2)5-24
output NAMELIST, format, (2)5-28

input/output, (2)5-1
internal, (2)5-4
modification under random access, E-15
physical, input NAMELIST, (2)5-24
positions, (2)5-3
unformatted, (2) 5-2

Recovery, I/O error, (2)5-34
Reference

array element, (1)2-14
compressed index, (3)2-16
description, (1)2-1
external function, execution, (1)4-5
function

execution, (1)4-8
format, (2) 7-2

local temporary variable, F-l
statement function, execution, (1)4-4
subroutine

actual arguments, (1)4-2
description, (2)7-5

vector array, (3)2-3
Referencing

external functions, (1)4-5
functions, (1)4-8
intrinsic functions, (1)4-6
procedure subprogram entry, (2)7-9
statement functions, (1)4-4

Register use
A, S, V, VL, and VM, F-l
Band T, F-l

Relational
expressions

arithmetic, (1)3-12
character, (1)3-13
description, (1)3-12
Hollerith, format, E-5

operators, (1)3-12
Repeat specification, (2)6-3

J-03

Repeatable edit descriptor, (2)6-3
Replacement statement, conditional, (3)2-13
Representation

internal, (2) 6-7
logical constant, (1)2-7

Reprieve
initiation

description, I-I
format, I-I

processing, I-I
termination

description, 1-2
format, 1-2

Required order of lines and statements,
(1)1-14

Restrictions
association of entities, (1)4-13
COMMON statement, (2)2-15
DATA statement, (2)2-6
ENTRY statement, (2)7-9
EQUIVALENCE statement, (2)2-12, (2)2-15
function subprogram, (1)4-7
input/output statements, (2)5-34
INQUIRE statement, (2)5-20
internal file, (2)5-4
intrinsic function, (1)4-6
statement functions, (1)4-4
subroutine subprogram, (1)4-3

RESUMEDOREP directive
description, (3)1-38
format, (3)1-38

RESUMEIFCON directive
description, (3)1-38
format, (3) 1-38

Retrieval, argument, F-l
Return, alternate, (2)7-7
RETURN statement

descr iption, (2) 7- 6
execution, (2)7-7
format, (2)7-6, (2)7-7

REWIND statement
description, (2)5-17
format, (2) 5-16

Right-justified (R) editing (CFT
extension), (2)6-23

ROLL/UNROLL directives, (3)1-39
Routines

external, (3)1-40
library

CLEARFI, (3)2-15
SENSEFI, (3)2-15
SETFI, (3) 2-15
SYMDEBUG, G-l

optimized, (3)2-11
options, flow trace, (3)1-32
READMS/WRITMS, E-14

Rules of interpretation, (1)3-20

SAFEIF directive, (3)1-33
SAVE statement

description, (2)2-16
format, (2) 2-16

SR-0009 Index-17

Scalar
mode, (3)2-4.1
temporary, (3) 2-3

Scale factor, (2)6-11
Scheduler directives, (3)1-33
Scope of symbolic name, (1)2-24
SEGLDR, (2)6-5
SENSEFI library routine, (3)2-15
Sequence

collating, (1)1-3
definition, (1)1-5
empty, (1) 1-5
normal execution, (1)1-12
storage

array, (1) 2-12.1, (1) 2-13
associated, (1)2-19
common block, (2)2-14
description, (1)2-19
size, (1) 2-19

Sequential access
dataset positions, (2)5-5
operations, (2)5-4

SETFI library routine, (3)2-15
SETPLIMQ flow trace routine option, (3)1-32
SETPOS, E-13
Sets, character

ANSI FORTRAN, A-I
ASCII, A-I
Cray FORTRAN, A-I
description, (1) 1-3, A-I

SHORTLOOP directive
description, (3)1-29
format, (3) 1-29

Signed constant, (1)2-3
Size

array, (1) 2-12
common block, (2)2-14
storage sequence, (1)2-19

Slash
edit descriptor, (2)6-10
edi ting, (2) 6-10

SLOWMD directive, (3)1-30
Source

code, (3)1-11
statement listing, (3)1-15

Space Tables
stack, (3) 1-18
static, (3) 1-18

Special characters, (1)1-4
Specification

data, (2) 2-1
format

description, (2)6-1
format, (2) 6-2
Hollerith, E-6
interaction with I/O lists, (2)6-6
noncharacter arrays for, E-15

length (Len), (2)2-8
program unit, (2)7-1
repeat, (2) 6-3
subprogram, (1)4-1

J-03

Specifier
CLOSE, and their meanings, (2)5-23
external unit, format, (2)5-18
file, format, (2)5-18
inquiry and meanings, (2)5-19
OPEN, and their meanings, (2)5-22

S, SP, and SS
edit descriptors, (2)6-13
editing, (2) 6-13

Stack Space Table, (3)1-18
Standard, ANSI

conformance with, (1)1-1
deviations from, (1)1-2

Statement
arithmetic assignment

execution, (2)3-1
format, (2)3-1

arithmetic IF
execution, (2)4-4
format, (2) 4- 4

ASSIGN
execution, (2)3-3
format, (2) 3-3

assigned GO TO
execution, (2) 4- 3
format, (2) 4-3

assignment
description, (2)3-1
type conversion, (1)3-8

association, (2)2-11
BACKSPACE

description, (2)5-17
format, (2)5-16

BLOCK DATA, format, (2)7-11
block IF

execution, (2)4-6
format, (2)4-6

BUFFER IN (CFT extension)
description, (2) 5-29
format, (2)5-31

BUFFER OUT (CFT extension)
description, (2)5-29
format, (2) 5-31

CALL
execution, (2)7-5
format, (2)7-5

CFT control, format, (3)1-1
character assignment

execution, (2)3-2
format, (2)3-2

CLOSE
execution, (2)5-21
format, (2) 5-21

COMMON
description, (2)2-13
format, (2) 2-13
restrictions, (2)2-15

computed GO TO
execution, (2)4-2
format, (2) 4- 2

conditional, (3)2-13
conditional block

description, (2)4-5
execution, (2)4-8

SR-0009 Index-18

Statement (continued)
conditional replacement, (3)2-13
CONTINUE

execution, (2)4-14
format, (2) 4-14

DATA
description, (2)2-4
features, E-10
format, (2) 2-5
restr ictions, (2) 2- 6

data specification, (2)2-1
declaration, (2)2-1
DECODE

description, E-9
format, E-7

DIMENSION

DO

description, (2)2-2
format, (2) 2-2

execution, (2)4-11
format, (2) 4-8

double declaration
description, E-10
FUNCTION, format, E-10
type, format, E-10

ELSE, (2) 4-7
ELSE-block, (2) 4- 7
ELSE IF

execution, (2)4-7
format, (2) 4-7

ELSE IF-block, (2)4-6
ENCODE

description, E-8
format, E-7

END, format, (2)4-16
ENDFILE

description, (2)5-17
format, (2) 5-16

END IF, format, (2)4-6
ENTRY

description, (2)7-8
format, (2)7-8
restrictions, (2)7-9

EQUIVALENCE
description, (2)2-11
format, (2) 2-11
restrictions, (2)2-12, (2)2-15

executable, (1)1-8
EXTERNAL, format, (2)7-10
FORMAT, format, (2)6-1
FORTRAN, (1)1-8, (2)1-1
FUNCTION, format, (2)7-2
IF-block, (2)4-5
IMPLICIT

description, (2)2-9
format, (2)2-9

IMPLICIT NONE (CFT extension)
description, (2)2-10
format, (2)2-10

indirect logical IF
description, E-6
format, E-6

initialization, (2)2-1

J-03

Statement (continued)
input/output

description, (2)5-1
restrictions, (2)5-34

INQUIRE
description, (2)5-17
restrictions, (2)5-20

INQUIRE by dataset name
execution, (2)5-20
format, (2) 5-18

INQUIRE by uni t
execution, (2)5-20
format, (2) 5-18

INTRINSIC
description, (2)2-15
format, (2) 2-15

label, (1)1-6
logical assignmen t

execution, (2)3-2
format, (2) 3- 2

logical IF
execution, (2)4-5
format, (2) 4- 4

NAMELIST (CFT extension), format,
(2) 5-23

non-executable, (1)1-8
OPEN

execution, (2)5-20
format, (2) 5-20

order, (1) 1-13
PARAMETER

description, (2)2-1
format, (2) 2-1

PAUSE, format, (2)4-15
POINTER (CFT extension)

description, (2)2-2
format, (2) 2-2

PRINT, format, (2)5-8
PROGRAM, format, (2)7-1
program control, (2)4-1
PUNCH

description, E-11
format, E-1l

READ, format, (2)5-8
RETURN

description, (2)7-6
execution, (2)7-7
format, (2)7-6, (2)7-7

REWIND
description, (2)5-17
format, (2) 5-16

SAVE
description, (2)2-16
format, (2) 2-16

source, listings, (3)1-15
statement function definition, format,

(2)7-3
STOP, format, (2)4-15
SUBROUTINE, format, (2)7-6
terminal

description, (2)4-10
execution, (2)4-13

two-branch arithmetic IF
description, E-6
format, E-6

SR-0009 Index-19

Statement (continued)
type

CHARACTER, (2)2-8
COMPLEX, (2) 2-7
data length, E-l1
description, (2)2-7
double declaration, E-10
DOUBLE PRECISION, (2)2-7
format, (2)2-7
INTEGER, (2) 2-7
LOGICAL, (2) 2-7
REAL, (2)2-7
with data length, format, E-ll

unconditional GO TO
execution, (2)4-2
format, (2) 4-1

WRITE, format, (2)5-8
Statement function, (1)4-3

definition statement, format, (2)7-3
dummy argument, (2)7-3
execution, (1)4-4
referencing, (1)4-4
restrictions, (1)4-4
symbolic name, (1)2-28

Statement numbers, table, (3)1-15
Static calling tree, J-l
Static Space Table, (3)1-18
Status, vector, of subprograms, B-1
STOP statement, format, (2)4-15
Storage sequence

array, (1)2-12.1, (1)2-13
associated, (1)2-19
common block, (2)2-14
descr iption, (1) 2-19
size, (1)2-19

Store operation, (3)2-18, (3)2-19
Stores, multiple, (3)2-18
Subprogram

block data
description, (1) 4-1, (2) 7-11
symbolic name, (1)2-26

description, (1)1-12, (1)4-1, (2)7-1
entry, procedure

referencing, (2)7-9
function

data type, (1)2-2
description, (1)4-3, (2)7-2
entry association, (2)7-9
restrictions, (1)4-7

non-FORTRAN, (1)4-9
procedure, (1)4-2
specification, (1)4-1
subroutine

description, (1)4-2
restrictions, (1)4-3

types, (1) 4-1
vector status of, B-1

Subroutine
actual arguments, (1)4-2
reference, (2)7-5
subprogram

description, (1)4-2
restrictions, (1)4-3

symbolic name, (1)2-26
user control, (2)5-26, (2)5-28

J-03

SUBROUTINE statement, format, (2)7-6
Subscript

evaluation, (1)2-16
values, (1) 2-15

Substring
character

actual argument, (1)4-11
description, (1)2-18

designator
description, (1)2-18
format, (1)2-18

Summary, rules of interpretation, (1)3-20
Symbolic debug package, G-l
Symbolic names

array, (1) 2-26
block data subprogram, (1)2-26
classes, (1)2-25
common block, (1)2-25
constant, (1)2-27
description, (1)1-6, (1)2-23
dummy procedure, (1)2-28
external function, (1)2-25
intrinsic function, (1)2-28
main program, (1)2-26
scope, (1) 2-24
statement function, (1)2-28
subroutine, (1)2-26
variable, (1)2-27

SYMDEBUG library routine, G-l
Syntactic items, (1)1-5, (1)1-7
Syntax, FORTRAN statement forms, (1)1-2
System utility procedures, C-2

T, TL, and TR
edit descriptors, (2)6-8
edi ting, (2) 6-9

Table
block names and lengths in octal,

(3) 1-18
external names, (3)1-19
loops encountered, (3)1-19
names encountered, (3)1-16
parameters encountered, (3)1-18
program unit page, (3)1-20
Stack Space, (3)1-18
statement numbers, (3)1-15
Static Space (3)1-18

Task common blocks
description, (1)4-15
format, (1) 4-15

Temporary
scalar, (3) 2-3
variable reference, local, F-l

Term
description, (1)3-5
logical

form, (1) 3-15
value, (1) 3-16

Terminal
line, (1)1-9, (1)1-10
parameter, (2)4-11
statement

description, (2)4-10
execution, (2)4-13

SR-0009 Index-20

Termination, reprieve, 1-2
Time and date functions, B-5
Time utility procedures, C-2
Totally associated entities, (1)2-19
Trace, flow

directives, (3) 1-30
enable/disable, (3)1-31
routine options, (3)1-32

Traceback, error, F-l
Transfer

data
dataset position before, (2)5-5
description, (2)5-12, (2)5-13
direction of, (2)5-12
execution, (2)5-12
formatted, (2)5-14
unformatted, (2)5-14

into range of a DO-loop, (2)4-14
Transmission, argument, F-l
Trigonometric functions, B-3
Two-branch arithmetic IF statement

description, E-6
format, E-6

Types
array declarator, (1)2-11
character, dummy argument, (1)4-11
conversion

assignment statements, (1)3-8
Boolean, (1)3-10
complex, (1)3-10
description, (1)3-9
double-precision, (1)3-9
functions, B-4
integer, (1) 3-9
real, (1) 3- 9

data, (1) 2-1
and edit descriptors when SEGLDR and

the EQUIV directive are used,
(2) 6- 5

array element, (1)2-2
edi t descr iptors with, (2) 6- 5
function, (1)2-2
function subprogram, (1)2-2
of arithmetic expression, (1)3-6

field, (3) 1-16
mainframe, (3)1-8
statement

CHARACTER, (2)2-8
COMPLEX, (2) 2-7
data length, E-11
description, (2)2-7
double declaration, format, E-I0
DOUBLE PRECISION, (2)2-7
format, (2)2-7
INTEGER, (2) 2-7
LOGICAL, (2)2-7
REAL, (2) 2-7
with data length, format, E-ll

Unblocked datasets, H-l
Unconditional GO TO statement

execution, (2)4-2
format, (2)4-1

J-03

Undefined
dummy argument, (1)4-11
entities, (1)2-22
variable or array element, (1)2-21

Unformatted
data transfer, (2)5-14
records, (2) 5-2

Unit
description, (2)5-6
identifier

external, (2)5-6
format, (2) 5-6

identifying, (2)5-13
program

description, (1)1-10, (2)7-1
page table, (3)1-20

specification, program (2)7-1
specifier, external, (2)5-18

UNIT
function (CFT extension), (2)5-33
utility function, (2)5-33

UNROLL directive, (3)1-39
Unrolling, DO-loop, (3)1-9
UNSAFEIF directive, (3)1-33
Unsigned constant, (1)2-3
Upper bounds of dimension dec1arators,

(1)2-11
Uppercase/lowercase conversion, (1)1-5
Use of

array names, (1)2-17
optimized routines by CFT, (3)2-12

User
control subroutine argument lists,

(2) 5-27
control subroutines, (2)5-26, (2)5-28

Using optimized routines, (3)2-11
Utility

FLODUMP, (3)1-31
FTREF, J-l
function

LENGTH, (2) 5-34
UNIT, (2)5-33

procedures

Values

debugging aids, C-3
description, (1) 4-6, C-1
input/output, C-2, C-3
system, C-2
time, C-2

function, F-l
logical

disjunct, (1)3-16
expression, (1)3-16
factor, (1) 3-16
term, (1) 3-16

subscript, (1)2-15
Value separators, (2)6-24
Variable

defined, (1)2-21
description, (1)2-9
DO, (2) 4-10
dummy arguments, (1)4-11

SR-0009 Index-21

Variable (continued)
initially defined, (1)2-21
name, (1) 2-27
NAMELIST input, (2)5-25
reference, local temporary, F-1
symbolic name, (1)2-27
undefined, (1)2-21
used in a reduction array operation,

(3)2-4
Vector

array reference, (3)2-3
loops, conditional, (3)2-10
mode, (3)2-4.1
pseudo, (3) 2-4
status of subprograms, B-1

VECTOR directive
description, (3)1-24
format, (3) 1-24

Vector izab1e
DO-loops, (3)2-1
loops, (3) 2-17

Vectorization
aids, B-6
and IF statements, (3)2-2
conditions inhibiting, (3)2-2
control directives, (3)1-24
efficiency, (3)2-11
guidelines, (3)2-16
qualifications, (3)2-1
with arrays, (3)2-10

VFUNCTION directive
description, (3)1-27
format, (3) 1-27

Width, field, (2)6-7
WRITE statement, format, (2)5-8
Writing, (2)5-1
WRITMS routine, E-14

x
edit descriptor, (2)6-8
edi ting, (2) 6-9

Z (hexadecimal)
edi t descr iptor, (2) 6-2 0
editing (CFT extension), (2)6-20

Z option, CFT, G-1

J-03

READERS COMMENT FORM

FORTRAN (eFT) Reference Manual SR-0009 J-03

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOBTITLE ________________________________ __

FIRM ______________________________________ _
RESEARCH. INC.

ADDRESS __________________________________ _

CITY ________________ STATE ____ ZI P ____ _

Attention:
PUBLICATIONS

IIIIII

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE Will BE f'AIO BY AnORESSEE

c: o:-t'
RESEARCH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

--- -----~
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I

-------------------------------------,

(")
c
~

»
r
a z
C)

~
J:
iii
C
z
m

