=R ANY"

RESEARCH, INC.|

CRAY® COMRUTER SYSTEMS

CRAY X-MP MULTITASKING
PROGRAMMER’'S REFERENCE MANUAL

SR-0222

Copyright® 1984, 1985, 1986, 1987 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

CRANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0222

Each time this manual is revised and reprinted, all changes issued against tha previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Evgry page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by'a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
" entire page is:new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
1345 Northland Drive
Mendota Heights, Minnesota 55120

Revision Description
February 1984 - Original printing.

A January 1985 - This rewrite brings the publication into
agreement with the Cray operating system COS version 1.14.
All previous versions are obsolete.

B March 1986 - This rewrite brings the publication into
agreement with the Cray operating system COS version 1.15. It
incorporates new material describing operation under the Cray
operating system UNICOS, release 1.0, and includes
microtasking, a new multitasking feature. All previous
versions are obsolete.

c October 1986 - This rewrite brings the manual into agreement
with COS version 1.16 and UNICOS version 2.0. All trademarks
are now documented in the record of revision. This printing
obsoletes all previous versions.

D July 1987 - This rewrite supports UNICOS version 3.0 and COS
version 1.16. The manual has been reorganized and
substantially rewritten for this release.

The UNICOS operating system is derived from the AT&T UNIX System V
operating system. UNICOS is also based in part on the Fourth Berkeley
Software Distribution undér license from The Regents of the University
of California.

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and APML, CFT,
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CSIM, IOS, SEGLDR, SID, and
SUPERLINK are trademarks of Cray Research, Inc.

UNIX is a registered trademark of ATST.

SR-0222 D

[y
[

PREFACE

St e

This manual is a guide for programmers and analysts who have an interest. - -
in producing software that can be multitasked during execution on Cray o
computer systems. It describes the multitasking features and associated ™~
concepts provided with the Cray operating systems COS and UNICOS on

CRAY X-MP computer systems. The manual tells you how to use the features
and how to produce executable programs that generate correct results.

It is assumed that you are familiar with the contents of the COS

Version 1 Reference Manual, publication SR-0011, or the UNICOS User
Commands Reference Manual, publication SR-2011. You are also expected to
be experienced in coding Cray Fortran, using either CFT or CFT77. The
Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77
Reference Manual, publication SR-0018, describe these two versions of
Fortran.

For multitasking on a CRAY-2 computer system, see the CRAY-2 Multitasking
Programmer's Manual, publication SN-2026.

The following Cray Research, Inc. (CRI) publications also contain
information useful to programmers developing multitasking software on
Cray computer systems:

SR-0000 CAL Assembler Version 1 Reference Manual

SR-0012 Macros and Opdefs Reference Manual

SG-0056 Symbolic Interactive Debugger (SID) User's Guide
SR-0060 Pascal Reference Manual

SR-0066 Segment Loader (SEGLDR) Reference Manual

SR-0113 Programmer's Library Reference Manual

SR-0146 COS Performance Utilities Reference Manual
SR-2003 CAL Assembler Version 2 Reference Manual

SR-2014 UNICOS File Formats and Special Files Reference Manual
SG-2016 UNICOS Support Tools Guide
SR-2040 UNICOS Performance Utilities Reference Manual

E e ST IELT 0N e vy
Ty L LRl Rt

ERC RN

SR-0222 D iii

CONTENTS

PREFACE . 4 & &+ ¢ o iii

1. INTRODUCTION o ¢ ¢ ¢ ¢ o o o ¢ ¢ o o o o o o o o o o o o o o 1-1

1.1 MULTITASKING TRADE-OFFS . . . & & v ¢ ¢ ¢ o o o« o o o 1
1.2 MULTITASKING OVERVIEW . . . ¢ ¢ ¢ ¢ ¢ o o o o o o o o & 1
1.2.1 COS v v o e e e e e e e e e e e e e e e e e 1-
1.2.2 UNICOS ¢ ¢ ¢ ¢ ¢ o o ¢ s o o o o o o o o o o o 1
1.3 CONVENTIONS . & ¢ & ¢ ¢ o o o o o s o o o o o o o« o o 1
1.4 READER COMMENTS . ¢ ¢ o ¢ ¢ o o o s o o o o o o o o o 1

2. CONCEPTS . ¢ ¢ & o o o o o o o o o o o o o o o o s o o o« o o 2-1

PARALLELISM ¢ ¢ ¢« ¢ ¢ ¢ o v o o o o o o o o o o
MULTIPROGRAMMING . . . ¢ ¢ o ¢ o o o o o o o o o o o o
MULTIPROCESSING . . + ¢ ¢ ¢ ¢ ¢« o o o o o o o o o o o
TASK ¢ ¢ v ¢ ¢ 6 o o o o o o o s o & o e o o o o o s o s
MULTITASKING & v ¢ o o o o o o o o s o o o o s
SCOPE '+ v & ¢ v v v v v v e o o e o e e e e e e e e e
CRITICAL REGION & ¢ o v e ¢ o o o o o o s o o o o o o
REENTRANCY . . ¢ & ¢ ¢ ¢ v o o o o o o o o o o o o o o s
LOAD BALANCING . & & ¢ 4 o o o o o o o o o o o o o o o s
SYNCHRONIZATION . . . ¢ ¢ & o o o o o o o o o o o o o
DEADLOCK . . . ¢« « ¢ ¢ o ¢« o« o & . , . .
AMDAHL'S LAW AND THEORETICAL SPEEDUP 2-15
MEASURING TIME AND WORK . . « ¢ ¢ o v o v ¢ o« o o o o &

°

.

N NN DNDNNNNDNDNNNDN
O 0 N WN

NN NNNNNDNON
1
PP ONU D WWN e

.
o
= O
.
.
.
.
.
[N)
i
[S
»w N

NN
.

.

-
w N

N
N
)
-
(e

3. MULTITASKING BASICS . . . & v 4 ¢« v o o ¢ o o o o o o o o o = 3-1

GAINS WITH MULTITASKING . . « & &« ¢ o o o o o o o o o 3-1
COMPUTATIONAL AND STORAGE DEPENDENCE « . 3-1
3.2.1 Computational dependence . . .« + ¢ « « + « o + & 3-2
3.2.1.1 Data dependence ¢« ¢ + ¢ ¢ . 3-2

3-8

3-1

3-1

3.1
3.2

.

3.2.1.2 Control dependence « « ¢« « « .
3.2.2 Storage dependence ¢ ¢ ¢ 4 e s e e e
3.2.3 GeneralizationsS . . « 4 4 4 4 4 e 4 4 e e e e
SCOPE &« & ¢ v v v v v e« o s o o o o o o s s o 0 s 0 e s 3-12
DETERMINISM v ¢ ¢ v ¢ o @ o o o o o o o o o o 3-14
SPEEDUP FROM MULTITASKING+ + « & ¢ ¢ o o o o « & 3-16
3.5.1 Task granularity « « ¢ ¢ ¢ ¢ ¢ 4 4 e e 3-16
3.5.2 Load balancing . « « « « « « s « o o o o o o » 3-21

w W w
.
0w

SR-0222 D v

vi

MULTITASKING BASICS (continued)

3.6 PREDICTING PERFORMANCE . . o ¢ « o ¢ o o o o o o o o o o 3-26
3.6.1 Factors affecting performance, . 3-26
3.6.2 Manual performance prediction 3-26
3.7 CHOOSING VECTORIZATION OVER MULTITASKING 3-29
MICROTASKING . ¢ ¢ + o o o o o o o o o o o o o o o o o o« o o = 4-1
4.1 MICROTASKING TERMS AND CONCEPTS . . . « &« &« ¢ o o + o« & 4-2
4,2 ANALYZING A PROGRAM FOR MICROTASKING « « « o« . . 4-7
4.3 MICROTASKING PREPROCESSOR DIRECTIVES« .« « « .+ & 4-8
4.3.1 CMICS GETCPUS N1 o & « o o ¢ o o o o o o o o o 4-8
4.3.2 CMICS RELCPUS '« & & & v & o o o o o o o o o o 4-8
4.3.3 CMICS MICRO & ¢ v o o o o o o o o o o o o o o 4-9
4.3.4 CMICS PROCESS '« « ¢ o & o o o o o o o o o o o 4-9
4.3.5 CMICS ALSO PROCESS . « « ¢ v v o o & o o o o o & 4-9
4.3.6 CMICS END PROCESS . ¢ v v &« o ¢ o o o o o o o s 4-10
4.3.7 CMICS DO GLOBAL '+ v « o o & o o s o o o o o o « 4-10
4.3.8 CMIC$ DO GLOBAL LONG VECTOR . « &« + & & + o« & & 4-11
4.3.9 CMIC$ DO GLOBAL BY expression . . . « « « « .« . 4-11
4.3.10 CMIC$ DO GLOBAL FOR eXpression . . . « « « o« o 4-12
4.3.11 CMIC$ STOP ALL PROCESS . + v ¢ ¢ o & o o o o o & 4-13
4,3.12 CMICS GUARD N . « ¢ ¢ « v ¢ o o o o o o o o o @ 4-13
4.3.13 CMICS END GUARD NI' . ¢ & & « ¢ o o o o o « s o o 4-14
4,3.14 CMICS CONTINUE . & v ¢ ¢ o o o s o o o « o o o » 4-14
4.4 ACCESSING THE PREPROCESSOR . « « ¢ &« 4 o & o « o o o o & 4-15
4.4.1 Invoking PREMULT under COS . . . « + « « « o o & 4-16
4.4.2 Invoking PREMULT under UNICOS . . . « + « « « 4-18
4.4.3 Names reserved by PREMULT . . . ¢« . ¢« &« « & « & 4-19
4.5 RULES TO FOLLOW . ¢ ¢ ¢ o o« s o o o s o o o o o o o o 4-19
4.6 PERFORMANCE OF MICROTASKED PROGRAMS ¢« « « o« o & 4-28
4.7 LONGER EXAMPLES . &+ + ¢ « ¢ o o o o o o o o o s o o o 4-28
MACROTASKING o ¢ & « « o o ¢ o o o o o o o o o o o o s s o & 5-1
5.1 PARALLELISM AND TASKS . . ¢ & ¢ ¢ ¢ o s o « o o o o o 5-2
5.1.1 TasksS ¢ o o o o o o o o o o o o o o o o o o 40 5-3
5.1.2 Task states . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e 0 e e 5-3
5.1.3 Task relationships « ¢« ¢« o ¢« ¢« « . 5-3
5.1.4 Task control array . .« « « o« o « o « o o s o+ o 5-3
5.1.5 TSKSTART .+ &« « ¢ o o o o o o o o o o o o o o o & 5-5
5.1.6 TSKWAIT . ¢ ¢ ¢ o o o o o o o o s o o o s o o 5-6
5.1.7 TSKVALUE . ¢ & ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o o @ 5-7
5.1.8 TSKLIST . . . * e s e e s s & & e e s e o o 5-8

SR-0222 D

5. MACROTASKING (continued)

5.2 SCOPES AND PROTECTION . . .
5.2.1 Shared data
5.2.2 TASK COMMON data . .
5.2.3 Private data . . .
5.2.4 Locks
5.2.5 LOCKASGN
5.2.6 LOCKON . . « + & « .
5.2.7 LOCKOFF . . « .+ « .
5.2.8 LOCKREL . . . + +

5.3 SYNCHRONIZATION

5.3.1 Events
5.3.1.1 EVASGN . .
5.3.1.2 EVWAIT . .
5.3.1.3 EVPOST . .
5.3.1.4 EVCLEAR .
5.3.1.5 EVREL

5.3.2 Barriers
5.3.2.1 BARASGN
5.3.2.2 BARSYNC .
5.3.2.3 BARREL .
5.3.2.4 Example of

5.4 TUNING « « « « 4 .
5.4.1 TSKTUNE
5.4.2
5.5 UNDERLYING ASSUMPTIONS . .

.
.

Overlays and segments

CFT77 and CFT optimiz
COS reprieve processi
COS IOAREA lock . .
Nonreentrant library
5.6 MULTITASKING EXAMPLE
General application
Initial task . .
Output task . . .
Processing tasks

COsS JCL.
Initial task code .
Output task code .
Processing task code

[SIRNC RS B BRSNS RS)

oo,
NO VA WN

. . .
. e -

.

-

OOV OV OV
-
00 N W

(S, BN CL RS IS IS RS R)

6. PROGRAM ANALYSIS AND CONVERSION .

CONDITIONAL MULTITASKING . .

[0 = I o))
« o o
w N -

FOR MULTITASKING

SR-0222 D

. . . e .

.

LDR and SEGLDR memory management

. 0 . .

COS and UNICOS assumptions . .

Extending blank common

ation . .
ng . . .

routines .

. -

.

MOVING FROM STATIC TO STACK ENVIRONMENT
THREE STEPS TO ANALYZING AND CONVERTING CODE

.

- . . .

using barriers . .

tunings

. . .

. . . .

vii

viii

6.3

THREE STEPS TO ANALYZING AND CONVERTING CODE
FOR MULTITASKING (continued)

6.3.1 Locating potential parallelism . . .
6.3.2 Verifying and creating independence
6.3.3 Writing multitasked code
MULTITASKING I/0 o e e e e e e
MINIMIZING MEMORY CONTENTION e e e e e

DEBUGGING « « &+ ¢ o « o ¢ o o o o o o o o o o o &

.

NN NN NNNNNNN
.
O 00N W

- O

°

-

.

FREQUENT ERRORS . . « ¢ v ¢ v o o o« o o o &
PERFORMANCE ERRORS e v e e e e e
COS TASKS VERSUS USER TASKS e e e e e e
CONDITIONAL MULTITASKING
ELIMINATING OPERATING SYSTEM MULTITASKING .
FTREF - FORTRAN CROSS-REFERENCE
FLOWTRACE . .« ¢« ¢ ¢ « o o o o o o o o o o &
SPY v v v v e e e e e e e e e e e e e e
INTERPRETING TRACEBACKS « . .
DEADLOCK DETECTION . . ¢ & &« o« « o o & o o &
DEBUG . ¢ v ¢« ¢ 4 ¢ o ¢ ¢ o o o o o o o

7.11.1 DEBUG invocation statement
7.11.2 Multitasked Fortran program
7.11.3 DEBUG listing ¢« « ¢ « « o .
LIBRARY DEBUG ROUTINES « .« + .

MULTITASKING HISTORY TRACE BUFFER

8.1
8.2

DEBUG DISPLAY ¢ + v o o o o o o o &
USER-LEVEL ROUTINES « . ¢« ¢« « « .+ .

8.2.1 BUFTUNE: Select actions to be recorded
8.2.2 BUFPRINT: Formatted dump of trace . .
8.2.3 BUFDUMP: Unformatted dump of trace .
8.2.4 BUFUSER: Add user entries to trace .
8.2.5 MTDUMP: Examine trace dataset
8.2.5.1 COS format . . . + ¢« +« & o« .
8.2.5.2 UNICOS format«
8.2.5.3 Tips on combining parameters

COS and UNICOS
EXAMPLES + + ¢ ¢« v o ¢ o o o o o o o o o o o

8.3.1 FORMAT parameter . . « ¢ o « ¢ & o« o
8.3.1.1 Chronological display . .
8.3.1.2 Synchronization points . .
8.3.1.3 Logical CPU use
8.3.1.4 User task status
8.3.1.5 Summary display
8.3.2 EVENTS parameter . . « « « « o o o« &
8.3.3 TASKS parameter . . . ¢« « + « o 4«
8.3.4 ACTION parameter« « o« o o o &

[} [
= O O OV oo WM U Obd wpeE

NN NN SNNNNNNNNNaa
1

U
-
w O O

e}
!
[

U

c O 0 0 0 0 0 0 x©
]
= 00 00O UINN =

. 8-12
. 8-13
. 8-14
. 8-16
. 8-18
. 8-20
. 8-21
. 8-24
. 8-24
. 8-25

SR-0222 D

10.

11.

8.3 EXAMPLES (continued)

8.3.5 TASK parameter . . « « o ¢ ¢ o« o o &
8.3.6 DATA parameter . . . « « « « « o o o
8.3.7 INFO keyword . . « ¢ ¢ ¢ ¢ o o «

ADVANCED MACROTASKING IN FORTRAN

PARALLELISM . + ¢ ¢ ¢ v o o o o o o o o o &
SYNCHRONIZATION . . ¢ ¢ ¢ o« o o o o o o o &
COMMUNICATION . & & ¢« o o o o o o o o o o &
MONITOR . « & & ¢ ¢ o o o o o o o o o o o
SHARED AND PRIVATE VARIABLES
TASK COMMON . . o ¢ & o o o o o o o o o o «
DOALL « v & ¢« ¢ ¢ ¢ o o o o o o o o o o o &
COBEGIN . . . ¢ ¢ ¢ ¢ o o o o o o o o o o &
DOPIPE . . ¢« o ¢ ¢ ¢« ¢ o o o o o o o s o o &
CRITICAL REGION . ¢ ¢ ¢ ¢ ¢ ¢ o o v o o o &
SUMMATION AND OTHER REDUCTION CONSTRUCTS . .
FORK/JOIN . . . ¢ ¢« ¢« ¢ ¢ o ¢ o o v o o o

.

PO~ U b W

O WOV W YW WWYWO WYY O
. . . .
N 2O

MACROTASKING IN CAL « ¢ ¢ « o o v o o o« &

10.1 PROCESSOR CLUSTERING . . . & ¢ o « & o« o o &
10.1.1 Shared registers . . . « « ¢« &« « « &
10.1.2 Machine instructions

MACROTASKING WITH PASCAL . . « . ¢ ¢« « ¢ o« o« « « &

11.1 MULTITASKING PROCEDURES « .+ . &
11.2 TASK CONTROL STRUCTURE ¢« « « + .« « .

11.3 STORAGE OF TASK CONTROL STRUCTURES AND LOCK AND

EVENT VARIABLES . . . ¢ ¢« ¢ ¢ ¢ ¢ & « o« o &
11.4 ARGUMENTS PASSED TO A PROCEDURE HAVING A NEW
11.5 PASSING PROCEDURAL AND FUNCTIONAL PARAMETERS
TO A TASK . . . e e e s e e e e e e e e .

11.6 USE OF NONLOCAL VARIABLES « . o . .
11.7 INPUT AND OUTPUT IN MULTITASKED PASCAL o e e
11.8 TASK COMMON IN PASCAL

11.9 DECLARATIONS FOR MULTITASKING DATA TYPES AND
PROCEDURES . . « ¢ v ¢ ¢ v & o o o« s o o o &

APPENDIX SECTION

A,

MULTITASKING ON A SINGLE-PROCESSOR CRAY X-MP
COMPUTER SYSTEM . . ¢« ¢ ¢ ¢ o ¢ o ¢ o o o o o« o &

SR-0222 D

. . .

.

TASK

. . .

8-26
8-26
8-27

10-1
10-2

10-2
10-5

ix

B. MESSAGES . . « ¢ « &+ « + o o o o o o o o o o o o o o o o o o B-1

C. APPROXIMATE TIMINGS . . .« ¢ « & o o o o o o o o o o o o o o & Cc-1

D. MULTITASKING STATUS FEATURES . . ¢ « ¢ ¢ v ¢ o o ¢ o o o« o o & D-1

D.1 TSKTEST . . & & o & ¢ ¢ o o o o o o o o o o o o o o o D-1
De2 - LOCKTEST ¢ « o o o o o o o o o s o o o o o o o o o o o D-1
D.3 EVTEST . ¢ ¢ v ¢ o s o o o o o s o o o o o o o o o o o o D-2

E. BIBLIOGRAPHY . ¢ ¢ ¢ ¢ ¢« o o o o o s o o o o o s o o o o o o o E-1

)
|
U

F. DESIGN DESCRIPTION . . &« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o =

F.1 LIBRARY SCHEDULER . . ¢ ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o &
F.1l.1 Logical CPU & & ¢ & & o o o o o o o o o o o o
F.1.2 Queue management« . ¢ ¢ ¢ ¢ e e 6 e e o
F.2 KEY LIBRARY SUBROUTINES . . « ¢ ¢ ¢ ¢ ¢ ¢ o o« o o o o &
2.1 TSKSTART . . . o ¢ ¢ ¢ ¢ ¢ « o o o o o « o o
2.2 TSKWAIT & & & ¢« ¢ o ¢« o o« o o o o o o o o o o
2.3 LOCKON . & ¢« o o ¢ o o o o o « o o o o o o o o s
.2.4 LOCKOFE &« &« ¢ o o ¢ o o o o o o o o o o o o o =
2.5
2.6

EVWAIT . & ¢ ¢« o ¢ ¢ o o o s o o o o o o o o o o«
. EVPOST . ¢ o 4 o o o o o o s o o o o o o« o o o o«
F.2.7 EVCLEAR & ¢ v « o & o o o o o o o o s o o o o
STATE TRANSITIONS . &« ¢ « o o o o o s s o o s o o o o o
TASK COMMON . o ¢« 4 ¢ o o o o o o o o o o s o o o o o
MEMORY MANAGEMENT . . . & & ¢ s o o s o « o o s o o o
F.5.1 Heap . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o
F.5.2 SEACKS ¢ ¢ ¢ 4 6 4 4 e e 4 e e s e e e e e e e
F.5.3 Activation blocks . ¢« v ¢« ¢ v 6 4 4 4 e e e o

T mom
N s ow
[T T I |

o IR R B e BRC LC Ie BLe L B B B B I B I
[

]
O NO DU BB WWWWWWN

G. NOTES ON MULTITASKING . . . ¢ ¢ ¢ & o o o o o o o o o o s o

(2]
[}
'_I

-1 USING COS MULTITASKING MACROS « ¢ «¢ ¢ & o o o &
2 BATCH USE OF MULTITASKING . . . ¢« <« &« ¢ ¢ o v o o o o

Q@
QQ

FIGURES

2-1 Multiprogramming . « . « ¢ o ¢ ¢ o 4 e 4 o et e e e 0 4 e o e 2
2-2 Amdahl's Law CUurve . . . « o o o o ¢ o o ¢ o » o o o o « s o o 2-
3-1 Flow Dependence Permitting Vectorization or Multitasking . . . 3
3-2 Flow Dependence Prohibiting Vectorization or Multitasking . . 3
3-3 Changes in Scope Boundaries when Multitasking a Code

Segment . . . 4 . o i e 4 e 4 e 4 e e e e e e e e e e e e e 3-13

x SR-0222 D

FIGURES (continued)

3-4 Time Line for a Two-CPU Multitasking Example
3-5 Speedup of a Multitasked Matrix Addition
3-6 An Unbalanced Multitasked Job
3-7 A Balanced Multitasked Job
3-8 Multitasked Code with N Iterations on P Processors .
3-9 Trade-offs in Selecting a Chunking Factor (K) . . .
5-1 Macrotasking with Dissimilar Subroutines
5-2 Macrotasking with a Common Subroutine
9-1 Pipelining . . . ¢ ¢ & ¢ ¢ ¢ e 4 e e e e e e e e e e
10-1 Clusters and Processors for a Four-processor CRAY X-MP
Computer System . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o
10-2 Shared Registers in a Cluster . . . ¢ ¢ o o+ « « o &
F-1 Transitions of User Tasks . . « « &« + « o o « o« o &
F-2 User Area in MEmMOTY . « ¢ « ¢ « o o o s o o o o« o o
F-3 Task Stacks in Managed Memory . . « « « ¢ « « & o« &
F-4 Activation Block Stack Frame
F-5 Division of Memory in the User Area
TABLES
2-1 Theoretical Speedup . . « « « ¢ « ¢ « + 4 s 4 4 o
3-1 Sample Tasks Containing Parallelis e e e e e e e
5-1 Summary of Loader Options + &« ¢ o o o & o &
GLOSSARY
INDEX

SR-0222 D

3-19
3-21
3-22
3-22
3-23
3-25
5-1

9-19

=P

2-17
3-18
5-26

xi

NEW FEATURES

This sheet describes the new features in CRAY X-MP multitasking for
UNICOS 3.0.

The mtdump program, which lets you display a log of events that occur
during the execution of a multitasked program and print them in any of
several formats, is now available under UNICOS as well as COS.

The barrier routines offer you another synchronization method for
macrotasking. For instance, a barrier can be set up in a subroutine that
is called by multiple tasks. Each task will stop when it reaches. the
barrier until all tasks have arrived at the same point. This feature is
not available under COS 1.16.

In microtasking, new DO GLOBAL directives let you both vectorize and
microtask an innermost DO loop. The facility automatically divides
groups of 64 iterations each among the available processors. This
feature is not available under COS 1.16.

The microtasking CMIC$ MICRO directive is no longer required in

subroutines that have either a PROCESS directive or a DO GLOBAL

directive. This is not the case under COS 1.16; the CMIC$ MICRO
directive is still required.

The estimated timings for multitasking routines have changed somewhat.
Appendix C details the new timings.

1. INTRODUCTION

This manual describes multitasking on CRAY X-MP computer systems under
COS and UNICOS. Multitasking is a mode of operation, in a multiprocessor
computer, that provides for execution of two or more parts of a single
program in parallel. An efficiently multitasked program executes in less
wall-clock time, when multiple processors are available, than a program
that is not multitasked.

As you will learn, Cray Research offers several techniques for making use
of multiple processors. When choosing among these techniques, you must
make trade-offs between the overall performance improvement that can be
achieved and the level of effort that you are willing to put into
modifying the application.

In general, the easiest way to multitask a program is at the level of a
Fortran DO loop, but the performance gains are limited to the scope of
that loop. The most efficient use of multitasking is at a very high
level within the program, but this requires a detailed understanding of
both the structure and algorithm of the candidate program. Fortunately,
you can combine techniques, which allows you to experiment or choose the
combination that best suits your application and resources.

This manual includes the following:
® Concepts related to multitasking
® Descriptions of features

® Procedures and advice for programmers producing multitasked code
from existing code

This document assumes that the code to be multitasked is running on a
CRAY X-MP computer system with multiple processors, although multitasked
code can be run on single-CPU systems for purposes of program development
and debugging. Appendix A provides information for running multitasked
code on single-processor CRAY X-MP and CRAY-1 computer systems. For
multitasking on a CRAY-2 computer system, see the CRAY-2 Multitasking
Programmer ‘s Manual.

SR-0222 D 1-1

1.1 MULTITASKING TRADE-OFFS

When multitasking a program, you surrender the overhead time incurred by
calls to the multitasking routines while gaining performance by applying
more than one processor to the program.

The theoretical gain that can be achieved from multitasking on a
dedicated system is the wall-clock time the program requires without
multitasking, divided by the number of processors. On a CRAY X-MP/4
computer system, with four processors, the greatest wall-clock speedup
due to multitasking is a factor of 4.

In practice, however, a speedup factor equal to the number of processors
is not quite attainable. 1In extreme cases, multitasking can actually
increase a program's execution time if the multitasking overhead
decreases performance more than parallel execution improves it. This is
a situation you will want to predict before investing too much time and
effort. There are some factors that limit the maximum improvement for a
program:

® Not all parts of a program can be divided into parallel tasks.
Many algorithms do not have a parallel structure or have only a
portion that is parallel.

e The parts that can be multitasked may have dependencies on one
another that result, at run time, in one or more tasks having to
wait until others complete some operation. During this wait time,
the waiting tasks do not contribute to parallel execution, and the
CPUs may not be readily available to other jobs in a
multiprogramming environment.

® Use of the multitasking features incurs a certain amount of
overhead that increases the execution time but does not directly
increase the computation rate. The more these features are used,
the greater the overhead.

The initial implementation of multitasking at CRI, called macrotasking,
was directed toward long-running, large-memory programs running in a
dedicated environment. Macrotasked programs can be run in a batch
environment, but improvement in execution time can vary greatly from run
to run, depending on other activity in the system. Total system
throughput may decrease if the increased CPU time used by macrotasked
programs reduces the time available to other programs. (A batch job that
requires all of the memory available to a single user effectively
executes in a dedicated environment. In such a case, you should consider
multitasking to make use of all processors.)

Macrotasking can make programs difficult to test and debug. When two or
more parts of a program are executed simultaneously, timing errors can
arise. These errors may not be reproducible, and currently available
facilities to help analyze or prevent such timing errors are limited.

1-2 SR-0222 D

Converting a program for macrotasking requires more analysis than does
converting for vectorization. The CFT compiler and the CFT77 compiler
automatically perform vectorization, which can give performance
improvements over scalar code as good as, or better than, multitasking.
Modifications can increase the amount of code that can be vectorized, but
these tend to be small changes and, in the case of CFT, localized to
inner DO loops. The majority of the modifications to vectorized code are
safe; CPU time rarely increases, and answers remain correct.

Because macrotasking is a more recent and complex enhancement than
vectorization, there are fewer analysis aids .to assist you in producing
macrotasked code. Further, modifications for macrotasking may involve
larger segments of code than do vectorization modifications, because
macrotasking is often applied on a subroutine basis rather than a DO-loop
basis. You must appreciate the overhead costs of macrotasking and be
willing to enforce the rules necessary for producing correct results to
benefit from the significant performance improvements of macrotasking.

Following the implementation of macrotasking, other approaches to
multitasking were investigated. One of the most successful of these is
microtasking, described 'in section 4. Microtasking allows some of the
following improvements over macrotasking:

® Tasks can be much smaller (generally a set of nested loops),
simplifying the programmer's job of conversion.

® Processors are used for periods when other jobs are not using
them. This has the potential to increase total system throughput
in a batch production environment by using otherwise idle CPU
cycles.

e Synchronization overhead is very low. When run on a single
processor, code modified for microtasking runs nearly as fast as
the original code.

Microtasking is invoked with processor directives in Fortran source
code. The preprocessor, PREMULT, outputs the necessary library calls.
Microtasking and macrotasking can be used in the same application, if
appropriate. Many of the concepts and approaches described in this
manual apply to both.

The third multitasking technique is that of automatic partitioning by the
Fortran compiler, CFT77. With this feature, the compiler automatically
recognizes language constructs that lend themselves to be multitasked.

In addition, the compiler accepts directives, similar to those processed
by PREMULT, to provide user-controlled multitasking. The first
implementation of this feature will be in CFT77 version 2.0.

Multitasking is valuable in certain applications, and you should consider

it as a possible performance enhancement, evaluating the ratio of costs
to benefits for each application.

SR-0222 D 1-3

1.2 MULTITASKING QVERVIEW

Multitasking, with each of the three techniques, occurs completely within
a user job. The operating system, COS or UNICOS, allows a program to
create separate tasks that are then scheduled onto separate processors.
Code in library subroutines or generated by PREMULT or CFT77 manage the
tasks created by the program and make the necessary operating system
calls.

The multitasking techniques described here are supported on both COS and
UNICOS, and the user interface is identical on the two systems. The
changes made on one system for multitasking can be carried over to
another system.

Both operating systems support the same library routines and preprocesser
directives for multitasking. -However, because of timing differences
within the system, the efficiency of macrotasking may vary between the
two systems.

1.2.1 cCOs

COS provides for multitasking within job steps. Each control statement
in a job control language (JCL) file is a job step, although only a job
step that executes code compiled from a user program normally makes use
of multitasking. The job steps themselves are executed sequentially. A
program executing in a job step can create additional tasks, bringing
about multitasking. A multitasked job step is not complete until all
tasks within the job step are complete.

The following example shows the lifetimes of different tasks for a job
that builds and runs a program partitioned into three tasks. All but the
MTPROG job step use only one task; of course MTPROG probably requires the
most execution time. The MULTI control statement is required to access
the libraries necessary for multitasking.

Example:

Task 1 Task 2 Task 3

JOB,JJN=TMULT...
ACCOUNT,AC=...

MULTI.

CFT,ALLOC=STACK...
SEGLDR,CMD="'ABS=MTPROG"' .
ACCESS,DN=DATA,PDN=DATAL, ...
MTPROG.

SAVE,DN=0OUT, PDN=OUT1, ...

P X K N XK

1-4 SR-0222 D

No CRI software products or utilities have been internally multitasked.
Successive compilation steps, for example, do not execute in parallel.

A COS job that is multitasked can run on the same system with jobs that
are not multitasked. Although the wall-clock time and the order of
execution of tasks within the job may change, a properly multitasked job
should see no change in results.

1.2.2 UNICOS

UNICOS provides for multitasking within user programs. A user program
can create additional tasks within its own memory image, thus bringing
about multitasking. A multitasked user program is not complete until all
tasks within the program are complete.

1.3 CONVENTIONS

Throughout this manual, a variety of typefaces, special characters, and
formats are used to indicate special terms and their use. They are as
follows:

Convention Description
Italic Italic indicates the following:

® Within a syntax representation, italics represent
variable information to be supplied by you.

¢ In text, italics indicate either the first use of
a term being defined or that a word is being used
to represent itself rather than its meaning.

Boxes Boxes enclose syntax representations, usually
indicating a call to a library routine and often
including italicized variable names.

UPPERCASE | In text and in syntax representations, uppercase words
indicate Fortran keywords, such as COMMON and TASK
COMMON, or other words that appear in code, such as
MTPROG.

boldface In text, boldface identifies UNICOS commands,-
parameters, and files.

SR-0222 D 1-5

An additional convention regards the synonymous use of the terms
dataset and file in this publication. The COS term dataset usually
means the same thing as the UNICOS term file, except a dataset can
contain more than one file.

1.5 READER COMMENTS

If you have any comments about the technical accuracy, content, or
organization of this manual, please tell us. You have several options
that you can use to notify us:

¢ Call our Technical Publications department directly at
(612) 681-5729 during normal business hours

¢ Send us UNICOS or UNIX electronic mail at this address:
ihnp4!cray!publications or sun!tundra'hall!publications
¢ Use the Reader Comment form at the back of this manual
® Write to us at the following address:
Cray Research, Inc.
Technical Publications Department
1345 Northland Drive

Mendota Heights, Minnesota 55120

We value your comments and assure a prompt response.

1-6 SR-0222 D

2. CONCEPTS

This section defines the concepts and terminology of multitasking as they
are applied by CRI. -

These terms are far from standard within the industry. In fact, the
terminology differs somewhat between macrotasking and microtasking. The
concepts described here apply to both macrotasking and microtasking in
some degree, although macrotasking examples are used most often to
illustrate them. Terms specific to either microtasking or macrotasking
are treated in sections 4 and 5, respectively.

2.1 PARALLELISM

As used in this manual, parallel refers to the manner in which software
processes are executed on a computer. Jobs, job steps, programs, and
parts of programs are parallel if they are processed simultaneously (or
nearly so) rather than sequentially. Parallel processing is therefore
the simultaneous processing of two or more segments of code.

The types of software processes that are executed in parallel define the
levels of parallelism:

Level Software Process
1 Independent jobs, each job having a CPU
2 Job steps: related parts of the same job
3 Routines and subroutines
4 Loops
5 Statements

The higher the level number, the smaller the size or granularity of
tasks.

Vector processing is parallel processing of loop iterations (level 4).
CFT77 and CFT schedule generated instructions in a manner that exploits
the independence and different speeds of the hardware functional units;
this leads to parallel execution of different statements (level 5).

SR-0222 D 2-1

2.2 MULTIPROGRAMMING

Multiprogramming is a property of the operating system that permits
overlapping and interleaving the execution of more than one program.

Many computer systems use multiprogramming to make the most efficient use
of a single CPU. 1In this mode, several processes are ready to run, and
if I/0 delays one process, the system immediately schedules another
process to run on the CPU. In contrast, a system in dedicated mode has
only one process ready to run, and any delays leave the CPU idle. The
processor resource can consist of more than one CPU; each CPU could be
shared by several software processes.

Example:

COS and UNICOS are both multiprogramming operating systems. The
processor resource is one CPU, and the software processes are jobs. The
Job Scheduler manages sharing within the operating system by assigning
priorities to jobs and allocating CPU time, a slice at a time, to
different jobs. Figure 2-1 shows this type of multiprogramming.

Software Processes Processor Resources
S
|Job &| - - - - - > -
Cc
H
|Job B] - - - - - > -| E
D |- > - One
CPU
U
|gob c| - - - - - > -
L
. E
R
IJOb nl ————— y -

Figure 2-1. Multiprogramming

2-2 SR~0222 D

2.3 MULTIPROCESSING

Multiprocessing is a property of the hardwa