Programmer’s Library
Reference Manual

 SR-0113D



Copyright ©® 1986, 1989 Cray Research, Inc. Portions of the TCP/IP documentation
Copyright © 1986 The Wollongong Group, Inc. All Rights Reserved. This manual or
parts thereof may not be reproduced in any form unless permitted by contract or by
written permission of Cray Research, Ine.

CRAY®, CRAY-18, CRAY Y-MP®, HSX®, SSD®, and UNICOS® are federally registered
trademarks and Autotasking™, CFT™, CFT77™, CFT2™, CRAY X-MP™, COS™,

Cray Ada™, CRAY-3™, CSIM™, Delivering the power ...™, IOS™, OLNET™, RQS™,
SEGLDR™, SUPERLINK™, and X-MP EA™ are trademarks of Cray Research, Inc.

DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
HYPERchannel and NSC are trademarks of Network Systems Corporation. IBM is a
trademark of International Business Machines Corporation. NFS and Sun
Workstation are trademarks and RPC and XDR are products of Sun Microsystems,
Inc. 0Sx and Pyramid are trademarks of Pyramid Technology Corporation.
Tektronix is a trademark of Tektronix Corporation. UNIX is a trademark of AT&T.
X Window System is a trademark of Massachusetts Institute of Technology.

The UNICOS operating system is derived from the AT&T UNIX System V operating
system. UNICOS is also based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California.

Requests for copies of Cray Research, Inc. publications should be sent to the
following address:

g{aiy lt}e.:earc(l:), I;lc. Order desk (612) 681-5907
istribution Center F ber (612) 681-
2360 Pilot Knob Road o number (612) 681-6920

Mendota Heights, MN 55120




C R AN

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0113

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center.
Comments about these publications should be directed to the following address:

CRAY RESEARCH, INC.

Technical Publications

1345 Northland Drive

Mendota Heights, Minnesota 55120

Revision

Description

March 1986

October 1986

June 1987

July 1988

SR-0113

Original printing. This manual and the System Library Reference Manual, CRI publi-
cation SM-0114, obsolete the Library Reference Manual, CRI publication SR-0014. This
manual supports the Cray operating system COS release 1.15 and the UNICOS release
1.0 running on CRAY X-MP and CRAY-1 computer systems.

This manual supports COS release 1.16 and UNICOS release 2.0 running on the CRAY
X-MP and CRAY-1 computer systems. Several routines are now available under
UNICOS as well as COS. These include the table management routines, Fortran [/O
routines, word-addressable I/O routines, multitasking routines, flowtrace routines, and
the machine characteristics routines. The manual style has changed to reflect UNICOS
on-line style. Miscellaneous technical and editorial changes are also included. All
trademarks are now documented in the record of revision.

This reprint with revision includes documentation to support the UNICOS release 3.0
and COS release 1.16 running on the CRAY X-MP and CRAY-1 computer systems. The
following routines are now available under UNICOS: VAX conversion routines, IBM
conversion routines, miscellaneous conversion routines, logical record I/O routines,
and additional miscellaneous routines. The multitasking barrier routines have been
added for UNICOS. A miscellaneous UNICOS libraries and routines section has been
added. TCP/IP routines have been removed and are now in the TCP/IP Network Library
Reference Manual, publication SR-2057. Specific changes made to the routines are
documented in the New Features section following the table of contents. Miscellane-
ous technical and editorial changes are also included.

This reprint with revision includes documentation to support the UNICOS 4.0 release
and the COS 1.17 release running on the CRAY Y-MP, CRAY X-MP, and CRAY-1 com-
puter systems. The Boolean arithmetic routines are now documented with their own
pages, as are three Fortran interfaces to C routines: GETENV, GETOPT, and UNAME.
A new set of routines (STARTSP, SETSP, CLOSEV and ENDSP) to handle tape volume
switching under COS replace the obsolete set (CONTPIO, CHECKTP, PROCBOV,
PROCEOV, SWITCHV, and SVOLPRC). The base set of Asynchronous Queued I/O
(AQIO) routines has been ported to UNICOS, and new routines have been added to the
base set on COS. Eleven new level 2 Basic Linear Algebra Subprograms (BLAS2)
have been added to the scientific library routines. The SYMDUMP and TSECND rou-
tines have been added to UNICOS, and the TRIMLEN and CALLCSP routines to COS.
Miscellaneous technical changes to existing routines and editorial changes to this
manual are also included.

iid



November 1989

SR-0113

This reprint with revision supports COS release 1.17.1 (while still supporting UNICOS
4.0) running on CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-1 compnter
systems. Several routines have been added to the I/O section: AQOPENDV,
GETWAU, PUTWAU, WCHECK, WCLOSEU, and WOPENU. 12 new level 2 Basic
Lincar Algebra Subprograms (BLAS 2) for unpacked data of type complex have been
added to the Linear Algebra section, as have 17 level 3 Basic Linear Algebra Subpro-
grams (BLAS 3). OSRCHM has been added to the Search routine section.

The new routines are available only to users of COS 1.17.1,

Manual pages for GETNAMEQ, IGETSEC, and SETPLIMQ, also documented in the
System Library Reference Manual, publication SM-0114, have been added to the Pro-
gramming Aid section of this manual for user convenience. Numerous technical
changes and additions have been made to existing man pages — mainly in the Math,
Linear Algebra, and Search routine sections.

iv D



PREFACE

The Programmer’s Library Reference Manual describes Fortran subprograms and functions available to
users of the Cray operating systems COS 1.17.1 and UNICOS 4.0 executing on CRAY Y-MP,

CRAY X-MP EA, CRAY X-MP, and CRAY-1 computer systems. It supplements the information con-
tained in the other manuals in the COS and UNICOS documentation sets.

The System Library Reference Manual, publication SM-0114, describes internal system subprograms,
Cray Assembly Language (CAL) subprograms, and Cray Pascal subprograms used by the Pascal com-
piler. For COS 1.17.1 users, the Cray C Library Reference Manual, publication SR-0136 5.0, describes
the C libraries available under COS (and UNICOS 5.0) on CRAY Y-MP, CRAY X-MP EA, CRAY X-MP,
and CRAY-1 computer systems. For UNICOS 4.0 users, the CRAY Y-MP, CRAY X-MP, and CRAY-1

C Library Reference Manual, publication SR-0136 C, describes the appropriate C library routines.

The following Cray Research, Inc. (CRI) manuals provide additional information about COS, UNICOS,
and related subjects. Unless otherwise noted, all publications referenced in this manual are CRI publi-
cations.

COS Manuals:
e Fortran (CFT) Reference Manual, publication SR-0009
e COS Reference Manual, publication SR-0011

e Macros and Opdefs Reference Manual for CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and
CRAY-1 Computer Systems, publication SR-0012

e Fortran (CFT) Internal Reference Manual, publication SM-0017

» CFT77 Reference Manual, publication SM-0018

o APML Assembler Reference Manual, publication SM-0036

e COS Message Manual, publication SR-0039

« Front-end Protocol Internal Reference Manual, publication SM-0042

e COS Operational Procedures Reference Manual, publication SM-0043

o Operational Aids Reference Manual, publication SM-0044

e COS Table Descriptions Internal Reference Manual, publication SM-0045
e JOS Software Internal Reference Manual, publication SM-0046

e I/O Subsystem (10S) Operator’s Guide for COS, publication SG-0051

= Pascal Reéference Manual, publication SR-0060

e Pascal Internal Reference Manual, publication SD-0061

e Segment Loader (SEGLDR) and Id Reference Manual, publication SR-0066
e Cray Simulator (CSIM) Internal Reference Manual, publication SM-0072
o Cray Simulator (CSIM) Internal Reference Manual, publication SM-0073

e CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-1 CAL Assembler Version 2 Ready
Reference, publication SQ-0083

e Symbolic Machine Instructions Reference Manual, publication SR-0085
s COS Dump Analysis Ready Reference, publication §Q-0096

e System Library Reference Manual, publication SM-0114

e Cray C Library Reference Manual, publication SR-0136

SR-0113 v D



e CAL Assembler Version 2 Reference Manual, publication SR-2003

e Cray C Reference Manual, publication SR-2024

o The Guest Operating System (GOS), publication SMN-7013

e Directory of Supercomputer Applications Software, publication ASD-86F

UNICOS manuals:

Introductory manuals:
e UNICOS Overview for Users, publication SG-2052
e UNICOS Primer, publication SG-2010
e TCP/IP Network User Guide, publication SG-2009
e UNICOS Text Editors Primer, publication SG-2050
e UNICOS Tape Subsystem User’s Guide, publication SG-2051
s UNICOS Source Code Control System (SCCS) User’s Guide, publication $G-2017

e UNICOS Index for CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-1 Computer
Systems, publication SR-2049

UNICOS reference manuals:
e UNICOS User Commands Reference Manual, publication SR-2011
e UNICOS User Commands Ready Reference, publication SQ-2056
e UNICOS System Calls Reference Manual, publication SR-2012
e UNICOS File Formats and Special Files Reference Manual, publication SR-2014
e Fortran (CFT) Reference Manual, publication SR-0009
e CFT77 Reference Manual, publication SR-0018
e« CAL Assembler Version 2 Reference Manual, publication SR-2003
e Cray C Reference Manual, publication SR-2024
e UNICOS vi Reference Card, publication SQ-2054
e UNICOS ed Reference Card, publication $Q-2055
e Network Library Reference Manual, publication SR-2057

CONVENTIONS

The following conventions are used throughout UNICOS documentation:

command(1) Refers to an entry in the UNICOS User Commands Reference Manual, publication
SR-2011.

command(1BSD) Refers to an entry in the UNICOS User Commands Reference Manual, publication
SR-2011.

command(1M)  Refers to an entry in the UNICOS Administrator Commands Reference Manual, publi-
cation SR-2022.

system call(2)  Refers to an entry in Volume 4: UNICOS System Calls Reference Manual, publication
SR-2012.

SR-0113 vi D



SR-0113

routine(3X) Refers to an entry in the appropriate CRI iibrary reference manual. The letter or
letters following the number 3 indicate that the routine is either COS-only or that the
routine belongs to a specific UNICOS library, as follows:

(M) UNICOS math library
(3sSCI) UNICOS scientific library
(3P UNICOS Fortran library
(310) UNICOS 1/O library
(3U) UNICOS utility library
(3DB) UNICOS debugging library
entry(4X) Refers to an entry in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014. The letter following the number 4 indicates the section refer-
ence.
entry(info) Refers to an entry in the info section, which contains topical information that is not

available in the UNICOS on-line manuals. The info man pages are not published in
hard-copy form.

All sections begin with an entry called intro, and the entries that follow the intro page are alphabet-
ized. Some entriecs may describe several routines. In such cases, the entry is usually alphabetized
under its major name.

In this manual, bold indicates all literal strings, including command names, directory names, file names,
path names, library routine names, man page entry names, options, shell or system variable code names,
system call names, C structures, and C reserved words.

Ttalic indicates variable information usually supplied by you and words or concepts being defined.

All entries are based on the following common format, however, most entries contain only some of
these parts:

NAME shows the name of the entry and briefly states its function.

SYNOPSIS presents the syntax of the routine. The following conventions are used in this sec-
tion:

Brackets [ ] around an argument indicate that the argument is optional.
DESCRIPTION discusses the entry in detail.
IMPLEMENTATION provides details for using the command or routine with specific machines
or operating systems; normally this will tell you under which operating system the routine is
implemented.
NOTES points out items of particular importance.
CAUTIONS describes actions that can destroy data or produce undesired results.

WARNINGS describes actions that can harm people, damage equipment, or damage system
software,

vii D



SR-0113

EXAMPLES shows examples of usage.

FILES lists files that are either part of the entry or related to it.

RETURN VALUE describes possible error retums.

MESSAGES describes the informational, diagnostic, and error messages that may appear.
BUGS indicates known bugs and deficiencies.

SEE ALSO lists entries that contain related information and specifies the manual title for each
entry.

All entries in this manual that are applicable to your Cray computer system are available on-line
through the man(1) command. To retrieve an entry, type the following, substimting the desired entry
name for entry:

man entry
If there is more than one entry with the same name, all entries with that name will be printed. To
retrieve the entry for a particular section, type the following, substituting the desired section name for
section and the desired entry name for entry:

man section entry

For further information on the man command, see man{1).

viii D



SR-0113

READER COMMENTS

If you have comments about the technical accuracy, content, or organization of this manual, please tell
us. You can contact us in any of the following ways:

¢ Call our Technical Publications department at (612) 681-5729,

« Send us electronic mail from a UNICOS or UNIX system, using one of the following UUCP mail
addresses:

uunet!cray!publications

sun! tundra!hall! publications

e Send us electronic mail from a UNICOS or UNIX system, using the following ARPAnet address:
publications@ cray.com

o Send a facsimile of your comments to the attention of "Publications” at fax number (612) 681-5602.

¢ Use the postage-paid Reader’s Comment form at the back of this manual.

= Write to us at the following address:
Cray Research, Inc,
Technical Publications Department
1345 Northland Drive
Mendota Heights, MN 55120

We value your comments and will respond to them prompily.

ix D






CONTENTS

PREFACE.......coiiiesieieesnesesanssnianns sassssssssensessrssserssssansnsrsrerestsssssn setarasssssasnsessas sesasssesssnensssessasssesssssnsesesasnssassasssssonssns A

1. INTRODUCTION

INTRO ...cccoeevetinienrirersererensssesessesssn seessssessessessassassnsssntosessestassasesessssastssessessvasssssesesssresanse ssbnsessassasesesas srassssesasarasensoses 1-1
2. COMMON MATHEMATICAL SUBPROGRAMS

INTRO ....cctreeceerenreencseietsacnescasasnss sasssssasesssssssasssssestasesssesessssses saseseresasesssssss sassesanssssasseseasssessasassesesssssessansasasarsssasesssns 2-1
ABS, IABS, DABS, CABS............ Computes absolute value tereerasnetssananeraiastentanarntansasersestranentas 2-7
ACOS, DACOS, acos ......ocvveerverernen. CompUuLes arcCOSINE ......cercsicrcmererceerassescossacanse . thesessenesasanarenses 29
AIMAG.........coevrerrerneneasrenraenene Computes imaginary portion of a complex number ..........c.coceeeen. 2-11
AINT, DINT . Computes real and double-preciSion trunCAtiON.........ccccervererseesmrarseeseersesaens 2-12
ALOG, DLOG, CLOG, log............ Computes natural Jogarithim.........ccceerevreisicreisneercnissssesssssresenssesssaseesssasans 2-13
ALOG10, DLOGI10, logl0.............. Computes common IoGarithin .........ccceevviecsicsiinnerrerseraessossasonsrsnssnssesassasesns 2-15
AND, . .. Computes logical product ........ccocveeeveesccnscrcenrerecseene ceteseanensestsssaeaneasase 2-17
ANINT, DNINT.....ccccevvrvrrrcrarenenes Finds nearest Whole NUIMDET ........c.ccoiieernereensiceiersnsissennressssassesassasaesersssssas 2-19
ASIN, DASIN, asin.......cccocruenremcenens COMPULES AICSINE .ecoreeemererersessomeacccreonossesssnseserssmnsesasssssasesersnssnsonssssansanssnesases 2-20
ATAN, DATAN, atan............cceur... Computes arctangent for single argument............... 2-22
ATAN2, DATAN2Z, atan2............... Computes arctangent for two arguments........... 2-24
CHAR..... ..... Converts integer to character and ViCe VErSa..........ccecvreersereressronarsaeseressssases 2-26
CMPLX ....ovvitirrenecresncessasiencnssesess CONVETLS O LYPE COMPIEX ...oviueeirercrerennincecinnasssnsassessisassssssassssossassssssssansonces 2-27
COMPL ... Computes logical COMPIEMENL...........ccoeverreerrrememesrerernserersnssesessersararseresesaseses 2-29
CONIG ...cocirrrererorerasssnsaneeriorsnsranssses Computes conjugate of a complex number..........ccocerne 2-31
COS, DCOS, CCOS, €OS....evueceues COMPULES COSINE .....ccrmererrerirercrnmsnsissaosessssassossasssseseses 2-32
COSH, DCOSH, cosh...........c.u..... Computes hyperbolic cosine ..........cccoruee.. . 2-34
COT, DCOT......cooeerrecrrecercanenccnene Computes cotangent ...... ceerenesersonsrenee e 2-36
dbl_prec - DASS, DASV, DAVS,

DAVV, DDSS, DDSV,

DDVS, DDVYV, DMSS,

DMSV, DMVS, DMVV,

DSSS, DSSV, DSVS, DSVV.... Performs double-precision arithmetic........... . . 2-37
DBLE, DFLOAT.......cccccecvcvreeveereneee Converts to type double PreCiSION .....c.cceeereeieicisennsenersisscssisssessessasasssssasese 2-39
DIM, IDIM, DDIM........ccccocureenrnrene Computes positive difference of two numbers ....... . 2-41
DPROD.......coounrerrrierarsnineiseasseresses Computes double-precision product of two real numbers..........oevevevccnenee 2-43
EQV Computes logical equivalence ................ vesssnsearanans eresasseseasesmeersesentebsssneneane w244
EXP, DEXP, CEXP, exp .....ccccvuuu.. Computes exponential function ...........ccouer... . 246
INDEX...ucoiirtrrenenrieesernennstreesessssons Determines indexX I0CAHON ........civoverercerscrmnsisnsessecsnsnssennas . 248
INT, IFIX, IDINT.......ccoerrereranenens Converts t0 tyPe IMEZET ....c.cvvrereercerrmrereensessssssoransarases 2-49
INT24, LINT ... Converts 64-bit integer t0 24-bit INEGET .......c.oevrerrerreeresesserercssessenssnseseress 2-50
ldiv - LDSS, LDSV,

LDVS, LDVV ...ticrerenenssesons Performs 64-bit integer divide................... 2-51
LEADZ.....ccovvcerinissirisnnnrneresesssssrosss Counts number of 1eading 0 DilS .......ccorimrececerrervsresesercnansessssinisossnsacsssssnaens 2-52
LEN Determines length of CharaCter SUANE ..........cuvcvmieinireenmeisenesessssnenesssssnsns 2-53
LGE .iicvninnnrescsisncsscarenansessnsasans Compares Strings 1EXiCALY .........curerereereennsssncsensrsasensecsnestessaasascacsssensessans 2-54
MASK...oimiiiincninrnrnneniosiasnennessanes Returns a bit Mask........cccceeeremcsrnsnscenrnecsisiesismsresismsaemsessssssssissrsess veseaseres 2-55
MOD, AMOD, DMOD................... Computes remainder of xllxz.... verreresasaerestsaenssene s sen s eananas 2-56
SR-0113 xi D



NEQV, XOR ....nereivrreecrcrrraren. Computes logical difference 2-58
NINT, IDNINT. Finds nearest integer 2-60
OR ...... Computes logical sum....... . v 2-61
POPCNT Counts number Of Dits SEL 10 1 .....ccccrvrreererisessrnssrensenmenscsnensansesisessensasssssseoss 2-63
POPPAR - Computes bit population PATILY ........ccvceererseeterionaserecniesianssesessossusssessssensasnss 2-64
power - CTOC, CTO], CTOR,

DTOD, DTOI, DTOR,

ITOI, RTOI, RTOR, pow.......... Raises base value to a power ...... reeens 2-65
ran - RANF, RANGET, RANSET. Computes pseudo-random numbers reeereennenss 2-60
REAL, FLOAT, SNGL.......ccccouuuunu. Converts to type real rerreeens 2-68
SHIFT . Performs a left circular shift..........cccoeeneinnnsinionnsisisssosiensesessennsssssnsssnesenns 2-70
SHIFTL Performs a left shift with zero fill cerneees 2-72
SHIFTR ... Performs a right shift with zero fill cernareneesenes 214
SIGN, ISIGN DSIGN .................... Transfers Sign Of NUMDETS ....ccirniiicieinmarncmansociiiesimenoeessmessisens 2-76
SIN, DSIN, CSIN, SiN.......cecccovverere. COMPULES thE SINE .eevrvrvriorereresssssnsseresscsssossssmssassssassossenssssssssssessasssssessencss 2-T
SINH, DSINH, sinh .....cccoccceicnuenenen Computes hyperbolic $INe ......ccveerecereerercerersesrerearnons 2-79
SNGLR ...oeiticienrerinsainsescsnoneseens Returns closest real approximation to double precision..........uecieesscanncacs 2-81
SQRT, DSQRT, CSQRT sqrt ... COMPULES SQUATE TOOL ....cvvererererserreressnsenssessosmsassosrmssane 2-82
TADD, TASS, TDIV, TDSS,

TMLT, TMSS, TSUB, TSSS.... Performs triple-precision arithmetic .......iieincceirennn 2-84
TAN, DTAN, tan ......ccccvverecreuerene. Computes tangent . 2-85
TANH, DTANH, tanh..............cu..... Computes hyperbolic tANZENL ........ccocinivriieerrcerniereseseeseessreressssressassesssasaes 2-87
3. COS DATASET MANAGEMENT SUBPROGRAMS
INTRO ottt sesseses sassssssessssseasensteressresesessessasssessssasessassssessstsesssses esastassssn e bases se et assasasssasssssnessenssessens 3-1
ADDLFT ....iririicmiccnrirccrseeranes Adds a name to the Loglcal File Table (LFT)... 34
CALLCSP.......cooveririnenecrerrinnsnssnens Executes @ COS cONol SLACMENL ........ccoorrirrerraceirereeresrenrensseenssssssasasesnnes 3-5
GETDSP ..... Searches for a Dataset Parameter Table (DSP) address.........oocveerervverevruenene 3-6
IFDNT veveeenennee. DEtErmines if a dataset has been accessed or created........onvveeeceenvecrennnerans 3-7
SDACCESS......ccoovevnrerrerererererrorsenes Allows a program to access datasets in the System Directory ... 3-8
4. LINEAR ALGEGRA SUBPROGRAMS
INTRO et nsetssss s isas s ssbssnssss s essssessassassessasasssasaessnssssarss sessasassse ans st asssn sos s s semenesssasssbssessasansassnssosanes 4-1
CGBMV......oorecteienrree s e ecnmna e Mulnphes a complex vector by a complex general band matrix ................ 4-10
CGEMM Multiplies a complex general matrix by a complex general matrix............. 4-13
CGEMMS....covicrinrssinrenrannansessaesass Multiplies a complex general matrix by a

complex general matrix using Strassen’s algorithm...........ocveerrvcemnen. 4-15
CGEMV ... Multiplies a complex vector by a complex general matrix................... e 4-18
CGERC Performs conjugated rank 1 update of a complex general matrix ............... 4-20
CGERU Performs unconjugated rank 1 update of a complex general matmix........... 4-22
CHBMV .. Multiplies a complex vector by a complex Hermitian band matrix............ 4-24
CHEMM..... ... Multiplies a complex general matrix by a complex Hermitian matrix ....... 4-26
CHEMV -...... Multiplies a complex vector by a complex Hermitian matrix ............ce.une... 4-29
CHER ... s Performs Hermitian rank 1 update of a complex Hermitian matrix........... 4-31
CHERZ? ......oereeeerreremernresarsrisisenes Performs Hermitian rank 2 update of a complex Hermitian matrix............ 4-33
CHER2K Performs Hermitian rank 2k update of a complex Hermitian matrix.......... 4-35
CHERK.......ccvvrrrnrrnrererrennsnrannnssenss Performs Hermitian rank k update of a complex Hermitian matrix............ 4-38
CROT Applies the complex plane rotation computed by CROTG ......cuoueeeeene.e 4-40
CROTG......ciecereneerecresansarsmscennerenes Constructs a Givens plane rotation ...........weerecsieenns 4-41
CSYMM Multiplies a complex general matrix by a complex symmcmc matrix....... 4-42
SR-0113 xii D



CSYR2K Performs symmetric rank 2k update of a complex symmetric matrix......... 445
CSYRK....ccoerrreencneerenraessesnessnennnes Performs symmetric rank k update of a complex symmetric matrix........... 4-48
CTBMV ...cccvvrirnerinscssesccenismsnosins Multiplies a complex vector by a complex triangular band matrix............. 4-50
CTBSYV .aercrcrnsneneiccsississasseonens Solves a complex triangular banded system of equations..........c.ceeecercciinenns 4-53
CTRMM . .......crrecncennernennrennnnsnses Multiplies a complex general matrix by a complex triangular matrix ........ 4-56
CTRMV ...uvireeecnnionenesnssnnnensssseas Multiplies a complex vector by a complex triangular matrix..........ecveveeeeee 4-58
CTRSM....cvirierirerinesesnanrsssosssssanns Solves a complex triangular system

of equations with multiple right-hand sides.......cc.c.ocovnreerenrercrccrcrcnsennes 4-60
CTRSY ovrrensensreecensesesssssesesnans Solves a complex triangular system of equations...........ccccvceecrrercscrnerencncnes 4-62
dot - SDOT, CDOTC, CDOTU...... Computes a dot product (inner product)

of twoO real Or COMPIEX VECIOLS......cccnuerernrcrcasensercsaesenserioresmsoresssossssansenss 4-64
EISPACK .....ccomrrrrrrcrcesacnnrernescnne Single-precision EISPACK TOULRES ..........cocoeverieremencnsesessnaenennenanesesssseneanes 4-65
FILTERG.......coorreeereeirirrerrneceacees Computes a correlation Of tWO VECIOTS .....cccvereeereeveereensirveenersnssnsssessesaesaesenas 4-69
FILTERS ..cretereecncenniarancesreessessane Computes a correlation of two vectors (symmetric coefficient) .................. 4-70
FOLR, FOLRP.........cccccovvreerrecnnane Solves first-order liNear TECUITENCES ........ccoeererecrrsarrsoecrecesrnseresasserssnssssssens 4-71
FOLR2, FOLR2P............ccccnuererernen- Solves first-order linear recurrences and writes NEw VectOr..........c.ceeerenen.e. 4-73
FOLRC .....cvetrvemerneeorcsnsnraceeenene Solves first-order linear recurrence with constant coefficient...........cccuue... 4-75
FOLRN .......ociteeereercneereseenansenees Solves for last term of first-order linear recurrence (Horner's method)...... 4-76
FOLRNP.... ... Solves for last term of a first-order linear TECUITENCE ......ccceceverivrrerscsrecnnnes 4-77
GATHER.......coverrrrrnrienrerinnsarosenens Gathers a vector frOM a SOUTCE VECLOT ........ccceecrerrrerererersessassensassesesnemssssesesens 4-78
LINPACK ..... Single-precision real and complex LINPACK routings..........cceceeceereeroveneease 4-79
MINV...eeecertccereereneneesessesesenee Solves systems of linear equations by inverting a square matrix................ 4-82
MXM....ccoirireennenrenesssseesseressemsssoese Computes matrix-times-matrix product (unit inCTEMENtS) ........eeeeerereeeesevas 4-86
MXMA ......oteermrnrirennssesesnrrareenes Computes matrix times matrix product (arbitrary increments) ..........cocvenue. 4-88
MXV o tctiernerenne s sssseseerssenones Computes matrix-times-vector product {unit inCIEMEnNts) ........c.oeveureeveecereens 4-92
MXVA...eeceteevrenisenesressessnaene Computes matrix-times-vector product (arbitrary increments) ................... 4-94
OPFILT.. e S0Ives Weiner-Levinson linear equations ............ooveeeeeereceeeesssensennrrnsessenes 4-98
RECPP......ooercirinianrannennnrsenensensaonens Solves a partial products PrOBIEM ..........cccorcrerenisrersssaerssessernonemsecesosssssesens 4-99
RECPS ... orninintntenenenimenesissarenns Solves a partial summation problem ..........cceeeccrenrveccenreeceescscnerenns 4-100
SASUM, SCASUM.......coveeeemneee. Sums the absolute value of elements in @ VECIOT ........ccoceeeerevemrecmerenrervenenes 4-101
SAXPY, CAXPY ...ccvveneerrreenenan Adds a scalar multiple of

a real or complex vector 10 another VECIOr..........cvueeiesensiresssrorsansarennens 4-102
scal - SSCAL, CSSCAL, CSCAL.. Scales a real Or COMPIEX VECIOT........c.cureererereaeervereessenssnssassssssesasseserasmssesase 4-103
SCATTER .....corrrerieirienrerearsennnas Scatters a vector into another vector............coeverennens 4-104
SCOPY, CCOPY............ ... Copies a real or complex vector into another VECOr .......c.cvvrvimreveereerereraenes 4-105
SGBMV .....ooviiommreirerennisenseneseenessns Multiplies a real vector by a real general band matriX .........cccceevevereeevennnen. 4-106
SGEMM........coivmmmrieneneenscennees Multiplies a real general matrix by a real general matrix..........cceeeveeceecruennn 4-108
SGEMMS ....covicoiirisinntrenenerrsssssosonns Multiplies a real gencral matrix by a

real general matrix using Strassen’s algorithm.........cccovveerceercercncnnne 4-110
SGEMV ....eeertecveeeecsreeeennaens Multiplies a real vector by a real general matrix ........ccoceecvveeeneiesenssecersens 4-113
SGER ....c..coerrerariectcnnrrnraneerissanssasnes Performs rank 1 update of a real general MatriX......c.cocveveecreserscrenccnecescesees 4-114
SMXPY ....ovreereieerecrererrrseessisssesaerans Multiplies a column vector by a matrix

and adds the result to another cOluMN VECIOL........cocoieneceeonenscvcsssassanses 4-115
SNRM2, SCNRM2........cccoouveererernne Computes the Euclidean norm Of @ VECIOT.........cccveeiereniesnnessescsnssesssaesesenneses 4-116
SOLR, SOLRN, SOLR3 wore. S0lves second-order LiNEAr TECUITEICES .....cccoererrerrarreresesaesensessasssnrassasesssoone 4-117
SPDOT, SPAXPY .....cocecvurversrersennes Performs Sparse VECtOr OPETAUONS .....eevreesemrmerensssresesssrmsiesassassssaencassesersnses 4-120
SROT ...cirerevtensssenc e ssnsnnsenasssasans Applies an orthogonal plane rotation .........c..cccuneernecsesireessenneessecseseones 4-121
SROTG ....ccovvierernerenrneensseranreneenasees Constructs a Givens plane rotation...........cceeeeereccsrsscsaseasaesasseesesssossasnsasnns 4-122
SROTM ... ...... Applies a modified Givens plane rOtAtION.....ccceveeeererisisissierniennsercssssosisssenss 4-124
SROTMG........ccoovurecrerenns Constructs a modified Givens plane rotation ...........cceccesnecurerceseesesssasanaaes 4-126
SSBMV.....coremirireererenrscorsannneneeee. Multiplies a real vector by a real symmetric band matrix.........cececruerevenenne 4-131
SSUM, CSUM......ccoceevmrrrrrrncrenrienns Sums the elements of a real Or COMPIEX VECLOT ......ccccveeceereerereraescrecsorencence 4-133
SSWAP, CSWAP......coevemrevecaaranee Swaps two rcal or COMPIEX ATTAYS ....ceereecrvereesaersererceecssssntrssvossrnsssssassarsensenis 4-134
SSYMM....cvviiirrennnerieneneenensssnnnnns Maultiplies a real general matrix by a real symmetric Matrix ........coeceeeennes 4-135
SR-0113 xiii D



SSYMV Leninesinnssirensencacnenns Multiplies a real vector by a real symmetric matrix ....... . 4-138
SSYR .. cveteeerensesrneressascansaenensens Performs symmetric rank 1 update of a real symmetric matrix .........ccceueee 4-139
SSYR2.... Performs symmetric rank 2 update of a real symmetric matrix .........ccooueee. 4-140
SSYR2K .. Performs symmetric rank 2k update of a real symmetric matrix ................ 4-141
SSYRK .... Performs symmetric rank k update of a real symmetric matrix ........oeunune 4-144
STBMV ...uiirienrecnneresnemrenseenene Maultiplies a real vector by a real triangular band matrix ........coceoeinineienn 4-146
STBSV .o nnesessesienasessnsone Solves a real triangular banded system of linear equations ...........c..ccceveueo.. 4-148
STRMM........... ... Multiplies a real general matrix by a real triangular MatriX......cveserisuesrane 4-150
STRMYV ...erreeenireniine et nannenns Multiplies a real vector by a real triangular matrix .........cceccvriernnnrcnnenanes 4-152
STRSM.......ooeevrrecerenrenersnsseesanesnns Solves a real triangular system of equations

with multiple right-hand sides 4-153
STRSV Solves a real triangular system of linear equations 4-155
SXMPY Multiplies a matrix by a row vector

and adds the result to anOther rOW VECIOT.........ccrveereerernecrnrreenes .. 4-156
5. FAST FOURIER TRANSFORM ROUTINES
INTRO.....coiereirereneerecarestmsasneseas seasassansas reeereresrarettbere st et s b s e stn s e rec R eRe e e HOR SO aRe 444400 P4 PAR SRS RRSE eesan s enebr RS ROYOEOR 5-1
CEFT2...coueeceeeiereeesesensreseeseeresnevans Applies a complex Fast Fourier Transform (FFT).....cccoeiieninnrnnverencisescsenns 5-3
CFFTMLT ......ccovenmamisnescsninnennanens Applies complex-to-complex Fast Fourier

Transforms (FFT) on multiple input VECIOTS ........ccovrvvimmieecenvsusresisanes 54
CRFFT2........... . Applies a complex-to-real Fast Fourier Transform (FFT)....cccccccoveveerreceenene 5-6
RCFFT2....ceeeeeevvenenerteeserasanannns Applies a real-to-complex Fast Fourier Transform (FFT)......c.ccoveeecrneneee 5-7
RFFTMLT ....... Applies complex-to-real and real-to-complex

Fast Fourier Transforms on multiple input vectors 5-8
6. SEARCH ROUTINES
INTRO ... veraerernvineonssnenenesnenans eeeesesrrsenaa s saenerese seasaarass e sRO RO RO aSESates e st ausae et sasERRE PO RSO R RR SRS A e 6-1
CLUSEQ, CLUSNE.........ccccerurueu. Finds index of clusters Withil @ VECIOT .........cceceiiiciecrernreesenssessessssesinssessnen 6-5
CLUSFLT, CLUSFLE,

CLUSFGT, CLUSFGE ............... Finds real CIUSLErS i @ VECIOT.........cccoreeenrasceersrsenarcnersesesassssonsansassssans sanses 6-6
CLUSILT, CLUSILE,

CLUSIGT, CLUSIGE................. Finds integer ClUSIEIS i @ VECIOT..........coceecsescesassassosrissoneeresssassesssessssasansense 6-7
IILZ, ILLZ, ILSUM....occcevemeecnnnne Retums number of occurrences of object in @ VECIOT .....eeeeecececeeccncescrnen. 6-8
INFLMAX, INFLMIN .................... Searches for the maximum or minimum value in a table.........c.crreresirsnsnns 6-9
INTMAX, INTMIN .........cccoovverennn Searches for the maximum or minimum value in an integer vector........... 6-10
ISAMAX, ICAMAX ...........u...... Finds first index of largest absolute value in VECIOTS........ccccerreerernereravsanenes 6-11
ISMAX, ISMIN, ISAMIN .............. Finds maximum, minimum, or minimum absolute value...........c.coecrvvreenan. 6-12
ISRCHEQ, ISRCHNE...........ccucuc... Finds array element equal or not equal 10 target..........ccoueeervrercnsicsisieninnennas 6-13
ISRCHFLT, ISRCHFLE,

ISRCHFGT, ISRCHFGE ............ Finds first real array element in relation to a real target ........ccoueueveerennnee 6-14
ISRCHILT, ISRCHILE,

ISRCHIGT, ISRCHIGE.............. Finds first integer array element in relation to an integer target................. 6-15
ISRCHMEQ, ISRCHMNE.............. Finds index of 1st occurrence equal or not equal to scalar in vector field. 6-16
ISRCHMLT, ISRCHMLE,

ISRCHMGT, ISRCHMGE.......... Searches vector for 10gical MAatCh .........ceveeremerereerimserecseseseneesensessesssssesaceesens 6-17
MAX0, AMAX1, DMAX1,

AMAXO, MAXI ......vvvniicnicne Returns the largest of all arguments v 6-18
MINO, AMIN1, DMIN1,

AMINO, MIN1 Retums the smallest of all arguments. 6-19
SR-0113 xiv D



OSRCHI, OSRCHEF............cccecsereree Searches an ordered array and returns index
of the first location that contains the target ...........ccceeeerersereereereerens 6-20
OSRCHM......ccoovmrnnierienaccnnsnennnnes Searches an ordered integer amray and returns index of
the first location that is equal to the integer target........cccocvverevevcrerreeranes 6-21
WHENEQ, WHENNE .................... Finds all array elements equal to or not equal to the target.........c.cccourenene. 6-22
WHENFLT, WHENFLE,
WHENFGT, WHENFGE............ Finds all real array elements in relation to the real target .........oceceverurnennne 6-23
WHENILT, WHENILE,
WHENIGT, WHENIGE ............. Finds all integer array elements in relation to the integer target................. 6-24
WHENMEQ, WHENMNE ............. Finds the index of occurrences equal or not equal
to a scalar within a field in @ VECIOT .....ccerereeerccicnrcrinnerenrencecssseenenne 6-25
WHENMLT, WHENMLE,
WHENMGT, WHENMGE ......... Finds the index of occurrences in relation to a scalar in a vector field...... 6-26
7. SORTING ROUTINES
INTRO....ccerrirececennecnsssssesensnsssns srsnssrssases verarrerereseereae et s re e e sesarsenasenetrasasaareneaens 7-1
ORDERS Sorts using internal, fixed-length record SOIt........cceververerseesennererneseeseresseeens 7-2
8. CONVERSION SUBPROGRAMS
INTRO ittt sisesisssess sessssasbostasansssssasrsstsesstsessetsssesessseressssase 1ore soassass ot shesassssssnsasssssssasssastsesasnarsnssssasstsssas 8-1
B20CT ...tverrreerinennrenenesesesssissasenes Places an octal ASCII representation ............ccceeruererreorerseseasesasacsrsrnsassaesesnans 8-5
BICONYV, BICONZ..........cccoeeunrmcnne Converts a specified integer to a decimal resesstesasrensas s sasssans 8-6
CHCONV .....coterreeennrnsteraensaenennsens Converts decimal ASCII NUMETALS ........cccccvveerereriesssrerneesnessenssaessssessessesssnsns 8-10
DSASC, ASCDC......coevereceemcenasenns Converts CDC diSplay COE.......coumeucrecerormssesscasacsnssossaossssssscersassaroresssassasseress 8-11
FP6064, FP6460.........cceevererereracacnns Converts CDC 60-bit single-precision numbers..... veennes 8-12
INT6E064 .......ccconrvncreraicrenrcrenrneanan Converts CDC 60-bit integers to Cray 64-bit integers 8-13
INTO460 ......c.coveereneerrrereerencnenenaensens Converts Cray 64-bit integers to CDC 60-bit integers.........uecveeemcerrerensrene 8-14
RBN, RNB ....covicieimnnmrensisisssacssanens Converts trailing blanks to nulls and vice versa...... .. 8-15
TR e ceeemeerrereresesssssnsasssesassssasnsserees Translates a string from one code to another .......... . 8-16
TRRUI ......ooeeirrerrereeraeransesesesaennersnens Translates characters stored one character per word... . 8-17
USCCTC, USCCTI.....coceererrenererenes Converts IBM EBCDIC data to ASCIL.....c.ccccerererernsecsessermnesersrassossaesessaress 8-18
USDCTC ......cceererrrerreinecrerenrenesesenns Converts IBM 64-bit floating-point NUMDETS........cccceveeeerereerererrenereenenssesesses 8-19
USDCTI....cooeeticretrceernanencaseerenens Converts Cray 64-bit single-precision, floating-point numbers.................... 8-20
USICTC, USICTL.......cccccrumrererrennnne Converts IBM INTEGER*2 and INTEGER*4 numbers..........cccececvceeivnnenn. 8-21
USICTP ...evvevreereeerecvaeseemsseenensene Converts a Cray 64-bit integer to IBM packed-decimal field.........ccccvvuennee 8-22
USLCTC, USLCTI ......cceveveerrereene. Converts IBM LOGICAL*I and LOGICAL*4 values.........cccovreeerneeeraennens 8-23
LURY 32 OF K G0 Converts a specified number of bytes of an IBM '
packed-decimal field to a 64-bit integer field .........cccoeevcrecncnne 8-24
USSCTC ... riierensanrnnnenrssesssasanens Converts IBM 32-bit floating-point numMbers..........ceceneeerenee 8-25
USSCTI ..o veererrnncaerereassennsnsnnenes Converts Cray 64-bit single-precision, floating-point numbers...........co.n.. 8-26
VXDCTC...corevevnerreriseresanseseseseses Converts VAX 64-bit D format NUMDETS..........ccccerererrrersessossenerecnsnsasassasens 8-27
VXDCT...ccoriermermnrenersiirasesersesensenses Converts Cray 64-bit single-precision, floating-point numbers........ccvueseeees 8-28
VXGCTC....coovecereeerrenrenecencsaersoneans Converts VAX 64-bit G format numbers. s 8-29
72, (€0} U Converts Cray 64-bit single-precision, floating-point numbers.............cce... 8-30
VXICTC ..ccr e reerenesseriesasassensssesanes Converts VAX INTEGER*2 or INTEGER™4...........coccioercrmreranrenscrecscsnsonses 8-31
VXICTL..oceeeeremmscsesrenenrensesnsasasessans Converts Cray 64-Dit INEZEIS ......ccciverermerercsrerescsncorcsssscssssorseronsnsassssssssasens 8-32
VXLCTC ..coveveirrnseesseseesenenasinens Converts VAX logical values to Cray 64-bit logical values...........cceverernee 8-33
VXSCTC ....oiivcemnnriscsessenenanensnsans Converts VAX 32-bit floating-point NUMDBETS.........ccevrerrenrencasesesssesnenssessssenes 8-34
VXSCTL.....ocoiieeerreeneerenemnissasissssnsansne Converts Cray 64-bit single-precision, floating-point.........cccoceveereererssssasancns 8-35
VXZCTC......... Converts VAX 64-bit complex numbers to Cray complex numbers........... 8-36
SR-0113 XV D



VXZCTI .ourrerereriersasassssisesssiases Converts Cray complex numbers to VAX complex numbers..........o.ccoc.. 8-37
9. PACKING ROUTINES

INTRO.....coeeeceinncsriscanes vernrrnneesescaresenernenes I=1
PACK .. CoMPresses SOTEd dAA........cccerirccssronmiensnsissarisiisisisisinsssesessessssansasssensasesns 9-2
P32, U32.....o oo vevrerermeesensarsrnensneneees PACKs/unpacks 32-bit words into or from Cray 64-bit words .........ccuenneees 9-3
P6460, UGDGA........coonveneeeererarsirinene Packs/unpacks 60-bit words into or from Cray 64-bit words ..........c.ccuunee. 9-4
UNPACK......... Expands Stored data...........coeeveereceeciecrercsnsesnisissssmsmisssssesrmsnsensesssrsaasasesesss 9-5
10. BYTE AND BIT MANIPULATION ROUTINES

INTRO ..o iecrenescnsniosiensnrerarercases sessssssasassssssnsasssastrsessesstsassasssas s ssssass sresssossssassesssassass snsananons 10-1
PUTBYT, IGTBYT ......................... Rep]aces abyteina vanable OF AN AITAY ..ococeeecrecemseremsensnsnsssessosersssesserseses 10-2
FINDCH... trererersensrennsesenenee. S€ATCHES @ variable or an array for an occurrence of a character string..... 10-3
KOMSTR ....... Compares specified bytes between variables Of arrays......ccoocvniniirucisissnnsns 104
STRMOV, MOVBIT ........ccccecrrene. Moves bytes or bits from one variable or array to another ............cccccevueee 10-5
MVC ..ot eerere e ssinssnss s sensssenes Moves characters from one memory area to another ... eveeeeeeereceesneans 10-6
TRIMLEN .....ccconnininmimincnmcseecnennee Returns the number of characters in a SING.......cocovevevcrnciiiniesccrisesesnninns 10-7
11. HEAP MANAGEMENT AND TABLE MANAGEMENT

INTRO ... coiueerermmsessanessssasasssssns sossssrsssosssssoscssssssssssosssssessesssssssnssssese asssssssnsassssssssven bresseseeusesnerneaseaneresessasessastesis 11-1
HPALLOC.......... Allocates a block of memory from the Reap .......cccecceciarennrenvercrcnnrnsasesenss 114
HPCHECK......cccorernrererereeseenessencsnsens Checks the integrity of the heap weeverssreresanee 11-5
HPCLMOVE ... Extends a block or copies block contents into a largcr block ..................... 11-6
HPDEALLC... Returns a block of memory to the list of available space .. eevsesereonennes 117
15134 018] 7 | Dumps the address and size of each heap block .. 11-8
HPNEWLEN........cccccvvrirerrrnernraereres Changes the size of an allocated heap block.... 119
HPSHRINK ......coeverreninceeccrnrencarenns Returns an unused portion of heap to the operating system ..........ceceveeeenene 11-10
THPLEN......ccrivrmrmrereriranns . Returns the length of a heap block 11-11
IHPSTAT ... Retumns statistics about the heap .................... Nevenensseassesenranensesnsrsatbatensareneras 11-12
TMADW .. Adds a word to a table seeresensasasesessenenenes 11213
TMAMU.....cocirrecenenrrenecrerensesenenne Reports table management operation SLatiStCS ...........eecerecsrcaercassossnsocsonsenen 11-14
TMATS....cocvvrirnrisiinnnreccssescssesssenss AlIOCAES 1ADIE SPACE.....vieveveerrereenercncnssisisrssnesssseninearsrenerevsasssstssssssssss 11-15
TMMEM. Requests additional MEMOIY ......ccconvveererrreressssnssonne 11-16
TMMSC......eeeeeneenenarrnerresnessensrans Searches the table with a mask to locate a specific field...........cooevierennanne 11-17
TMMVE . Moves memory (WOIAS) ....cc.cvrcereececneerencenscnccsenessssassorsesnssassassossssassassesroneas 11-18
TMPTS ...ooviremerrrnseraesassesesssssasnsssans Presets (able SPACE.....ccvevmcrerssirenssssstssessstssasssstonuensesssasssssesesasssssssasasencnesroness 11-19
TMSRC...coiininicereernrnereeseessesssnesens Searches the table wilh an optional mask to locate a specific field ............ 11-20
TMVSC . ..... Searches a vector table for the search argument..........ccoceceeennvcvinesnsnennes 11-21
12. YO ROUTINES

INTRO . rereressesesares sttt sa e s s R e s as seransa st s seebenenanane st et 12-1
ACPTBAD................. Makes bad data available...........ccoeeveenrccrireceieissnnsscrenrinrnesessessesessansessoses 12-9
AQCLOSE.........ccorersertremreserennenees ClOSES an asynchronous queued 1/0 dataset or file 12-11
AQOPEN Opens a dataset or file for asynchronous queued I/O...... 12-12
AQOPENDYV .....cuveiiecsesennennnn.. Opens a dataset or filc for asynchronous queued I/O (size, location).......... 12-13
SR-0113 xvi D



AQREAD, AQREADC,

AQREADI, AQREADCI............ Queues a simple or compound asynchronous I/O read request................... 12-15
AQRECALL, AQRIR............c.cu...... Delays program execution during a queued I/O sequence...........ccccerceueuee.. 12-17
AQSTAT ... ecceevecrenrseaesenens Checks the status of asynchronous queued I/O requests........cccooeeecececnnne.. 12-19
AQSTORP............... Stops the processing of asynchronous queued I/O requests.......coeveennnnee 12-20
AQWAIT..........eecrcrrrerrnrcerrenes Waits on a completion of asynchronous queued I/O requests..................... 12-21
AQWRITE, AQWRITEC,

AQWRITEI, AQWRTECI.......... Queues a simple or compound asynchronous I/O write request.................. 12-22
ASYNCMS, ASYNCDR................. Sets I/O mode for random access routines to asynchronous..........c.ceecece.. 12-24
CHECKMS, CHECKDR ................ Checks status of asynchronous random access I/O operation...................... 12-25
CHECKTP...c.ccomrrrccrarensrarnsrssranranens Checks tape I/O SLALUS.......ccerereesariaererenensesnssssoressassaressssnssssorcasasesesasenssssases 12-26
CLOSEV...eereeienesacenssesensannesnes Begins user EOV and BOV PrOCESSING.......cccorererersnreserseresenseerassennsnrassassonse 12-27
CLOSMS, CLOSDR......ccccccmrerrnn. Writes master index and closes random access dataset..........ccccceeecerereeene. 12-28
CONTPIO.......oecrerecrrrieecnrnerrernnnenns Continues normal I/O Operations...........ceeeereceemreecesseresenns - 12-30
ENDSP.....cocvernmrrcvencccsarescerenannenneee. REQUESES notification at the end of a tape volume............oovenreeeeceeveennn. 12-31
FINDMS .....ccoviviiemeemrencciestsssssinsaens Reads record into data buffers.......coveieieerniverenceneennnrenneecsssscreseeseeserseressenes 12-32
FSUP, ISUP, FSUPC, ISUPC......... Output a value in an argument as blank or return to ordinary 1/O.............. 12-33
GETPOS, SETPOS ........ccovveevverne. Retumns the current position of interchange tape......c.ccoueveveeeererenencecrecene. 12-34
GETTP......ccovrrvrererecmiesscnsnssanes Receives position information about an opened tape dataset or file............ 12-36
GETWA, SEEK ...........cceuveeunen.... Synchronously and asynchronously reads data..........cooereerrvereeerencserereenene. 12-38
GETWAU.......covverrrnrrrnecnscersassessenes Asynchronously reads a number of words from the disk, directly to user.. 1240
OPENMS, OPENDR............ccu..... Opens a local dataset as a random access dataset... crereeresreresseoressonrases 12-42
PROCBOV .....cceeceeceerecncsnraenennes Allows special processing at beginning-of-volume (obsolele) ..................... 1244
PROCEOV.....eeeecccessreeravesannes Begins special processing at end-of-volume (EOV) (obsolete) ................... 1245
PUTWA, APUTWA.......ccceevevereene Writes to a word-addressable, random-access dataset..........c..cocevererceeee. 1246
PUTWAU.....cooeererreeinsanrencesasesnene Writes to a word-addressable, random-access dataset, unbuffered.............. 1247
READ, READP.........cucccvrrereraenene Reads words, full or partial record modes........c..cccenrerunrernrerercessesenesssasenns 12-49
READC, READCP.........ccccovceruvrenen Reads characters, full or partial record mode.................... ... 12-50
READIBM.........comimminereerenarasnesens Reads two IBM 32-bit floating-point Words ...........cecerernrrecrcrenreereesesreivenns 12-51
READMS, READDR.........cccceuunne Reads a record from a random-access dataset ...........ceevrerervenerereereerennsesensens 12-52
RNLFLAG, RNLDELM, RNLSEP,

RNLREP, RNLCOMM............... Adds or deletes characters recognized by NAMELIST .........ccocoeerenrecnnnane 12-54
RNLECHO.........cccoounrivvcreccrcarnene.... Specifies output unit for NAMELIST error messages..........coeeeeeueeerersveverns 12-55
RNLSKIP.......coevervreriecrerrreneioseanes Takes appropriate action with an undesired NAMELIST group ................. 12-56
RNLTYPE ......coiriimimrnnnnenecenenns Determines action if a type mismatch occurs on an input record ............... 12-57
SETSP..ocrererrreceinciessoresesssenssennsnnes Requests notification at the end of a tape volume..........ccccooeeverenvernnnennennns 12-58
SETTP ....coicierinecrcrnennensnnnneeneneeennas Positions a tape dataset OF file........ccceeevrenrencencncrinescesssesesnseeesescsennnas 12-59
SKIPBAD........cccovrvrntrmnecrererecnenssenes SKIPS Dad dALa........cccceeeereriiriirrneeresisicsestsssse e seeenaneseseste e ssasassassssessssnssssensane 12-61
STARTSP.....ocvcvcirirerenesinsseesenrennse. BEZINs user EOV and BOV ProCESSING.......vcecereererareeriessasssmsmsensssasasessseans 12-62
STINDX, STINDR.........cocerememrerenes Allows an index to be used as the current index ......c.cococevenreeveerreeeeesnncncn. 12-63
SVOLPRC......covimeerenererarnnnssraeceans Initializes/fterminates special BOV/EOV processing (obsolete) ................... 12-65
SWITCHV ... Switches tape VOIUME.........ccoueiriarercrernenennmcnrersssesecscsssssnnnssersssasasassessassasacserens 12-66
SYNCH......oooiertcrreresrnrecernreneeens Synchronizes the program and an opened tape dataset............c........... 12-67
SYNCMS, SYNCDR..........cccceeun... Sets I/O mode for random access routines to synchronous..........co.eeeuserene. 12-68
WAITMS, WAITDR........cvmererenne Waits for completion of an asynchronous I/O operation ............ccococereeeunuee. 12-69
WCHECK......oieerirecreessrereseneans Checks word-addressable file SIAMUS ........cccvereveesercrsmnenanensessuecsmesisessanosesenes 12-70
WCLOSE......ccoievrrernrnns ... Closes a word-addressable, random-access dataset ..........ccccererveerrccerenennnes 12-71
WCLOSEU......ccoeeeeierernrersanreresenenas Closes a word-addressable, unbuffered random-access dataset.................... 12-72
WNLFLAG, WNLDELM,

WNLSEP, WNLREP .................. Provides user control of QULPUL...........c.ccoceeiieinencnnrnrereesresnasinsesesenesesaens 12-73
WNLLINE........ceveeeereemrnessenronnns Allows each NAMELIST variable to begin on a new line.............cuu...... 12-74
WNLLONG.....cccoeneervrmrerencnennsanans Indicates output Hne 1ENgh........cccorrercerescnincssesinseresesneararercasseesessassossnens 12-75
WOPEN.......ooerccvermnnicnanrerinasecnsesans Opcns a word-addressable, random-access dataset ... eeveecccvisessesenrecnanens 12-76
WOPENU........ccooiercnrenrannnreeecaans Opens a word-addressable, random-access dataset, unbuffered................... 12-78

SR-0113 xvii D



WRITE, WRITEP..........ccccouerueene.. Writes words, full or partial record mode.........oceerveeecen.

12-80

WRITEC, WRITECP..........coeeeno... Writes characters, full or partial record mode..........ccceveveeecrmvinesnieninsnressnsas 12-81
WRITIBM ....ccoconvimmncnnnirncaroneinee. Writes two IBM 32-bit floating-point words ..........vvvesesivescsenisenes 12-82
WRITMS, WRITDR.......cccrcruerenenns Writes to a random-access dataset on disk 12-83
13. DATASET UTILITY ROUTINES

INTRO...cvreerersmisaessesrinsesssisssassssens sensassonsmssaseseses i etererereteastatastse s st aserareseserresenesenseenenerenesaenane 13-1
BACKFILE... Positions a dataset after the previous EOF ..........iinsininnviissinsnne 13-3
COPYR, COPYF, COPYD............. Copies records, files, Or @ QALASEL .........cccvereiesernscsinseensesnesesssnisasassassessrranses 134
CcorPYU Copies either specified sectors or all data to EOD..... 13-5
EODW ......coceteiemecereerensirenenenneneenene. L€ININALES @ dataset by writing EOD, EOF, and EOR1 .13-6
EOF, IEOF .......cccceneniicennnnennnneene. Retums real or integer value EOF status 13-7
JTONY 2 (N Retumns EOF and EOD Status ......ccoevereessencasanseseaes veeenrnennens 13-8
NUMBLKS.....ccocevrsrririencarreroeoreneons Retums the current size of a dataset in 512-word blocks ...coeieeeicecerinannes 139
SKIPD Positions a blocked dataset at EOD ...t ninssessiens 13-10
SKIPR, SKIPF........c..cccosmimcvrrerurans Skip records or files ....... eevereerenesnenmensnes 13-11
SKIPU Skips a specified number of sectors in @ dataset ..........ccvmvveiseresrmscsninesenes 13-13
14. MULTITASKING ROUTINES

INTRO ..ot crnerneseresesieannrasens cerene eevevesneneaertrasher s gae et e etataae et etk et e e ses e etk sanas e nrate e neeeearesanensrten 14-1
BARASGN.......oreverrerrersneersneraesesens Identifies an integer variable t0 use as @ bAITier.......cccovvererverrvrvensrsarersnerens 14.5
BARREL Releases the identifier assigned 10 @ DAITIET........ccovveeierienrianenrensermssisnesisanss 14-6
BARSYNUC .....coovverrerrenreneenrecreesenans Registers the arrival of a task at @ Darrier ..o 14-7
BUFDUMP...... ... Unformatted dump of multitasking history trace buffer.........c.ccocerrreeereene. 14-8
BUFPRINT......... Formatted dump of multitasking history trace buffer........ccerncricnncrrccnines 14-9
BUFTUNE....... Tune parameters controlling multitasking history trace buffer .................... 14-10
BUFUSER Adds entries to the multitasking history trace buffer ..........cccccocereeererrenene. 14-13
EVASGN Identifies an integer variable to be used as an event........c.cccnerncereierencenes 14-14
EVCLEAR Clears an event and returns control to the calling task.......c..eeveereereererenenne 14-15
EVPOST.....covvevereenrerrererrerserscerenans Posts an event and returns control to the calling task..... 14-16
EVREL.....ccocceen. Releases the identifier assigned to the task.........ocoveevrverenvererrerecrennsnsnnenns 14-17
EVTEST Tests an event to determine its posted State .........o.ccecevererene reseeresnensasasnrares 14-18
EVWALIT ....coverecrerernrrensereresssnerssrnnens Delays the calling task until the specified event is posted.........cccoeeeeuereenene. 14-19
JCCYCL ...t reerreseerencsnsenrasissens Retuns maching CyCle tME ... uiiuiisiomiioisisiiasisenessonsesessessescessassesrsresssnsns 14-20
LOCKASGN. ......ccovvmiamimrnenrraranirenes Identifies an integer variable intended for use as a locK.....ccccvevciiccransaranas 14-21
LOCKOFF......coeearmaieeneanenrirennans Clears a lock and retums control to the calling task....... 14-.22
LOCKON......ccoerrrereerenesaeserarieaennann Sets a lock and returns control to the calling task ........cocecveeveevevreencereeecennns 14-23
LOCKREL......coneciercreecreeeen Releases the identifier assigned t0 a I0CK .....coccvveevnncrcnennnsrennnescconensesesene 14-24
LOCKTEST...uvirreerineenneereesressenes Tests a lock to determine its state (locked or unlocked) ...vveveerverrvernvevnennes 14-25
MAXLCPUS .....ccommrnrensererrernsnsnrens Returns the maximum number of 10gical CPUS.....c.vvvvereninrerensserassersssscens 14-26
TSECND.....corirerenrenectemrereeeemes Returns elapsed CPU time for a calling task.........cccevrveesreressenessenerassereanasene 14-27
TSKSTART..... INGLALES @ LASK...cioiierininemsussanssisrecnetesesiaranses s onscmomreressessesessemsasansassassenemssnsas 14-28
TSKTEST ....ooieeeenneeeceeceneanrennes Retumns a value indicating whether the indicatcd task exists..........oevveeenen. 14-29
TSKTUNE.......cocevvniernieresssennensenens Modifies tuning parameters within the library scheduler.......cveveeveicevceenns 14-30
TSKVALUE......ieceneerccrencnnas Retrieves user identifier specified in task control array ..........cceeveeveereenns 14-31
TSKWAIT ..cocciciirnicrnseinnaean Waits for the indicatcd task to complete eXecBtion ..........ocvnemrveercrveennes 14232
SR-0113 Xviii D



15. TIMING ROUTINES

INTRO i isieeeresiestriensarnnneentesasiessss senrasassssesessassasareassessstessesmessstnssssssssaese sans sasss staseseerernsss saassasensasesesnesantassssnanrsesses 15-1
CLOCK......coimricrrcrnareenmsecssnsesssrenns Returns the current system-Clock tIME .......ccoieerercrncnneerescscssessssaserossscssseanes 15-3
DATE, JDATE.......cccovvvreeeeeeererenes Retumns the current date and the current Julian date.............ccooeereeerervrennens 154
DTTS . Converts ASCII date and time tO LME-SIAMP.......cccccreereerrerrererraresecesaassessens 15-5
RTC, IRTC..covrercciciriirerenennercsrsnns Returns real-time Clock VAIUES......oieveininiinciniisiennsresnssasssssensasarnersssesnassasses 15-6
SECOND. ...t ereerereneneeceeriererenaeaes Retums elapsed CPU time ........ccvverensrevnerenrencene 15-7
TIMEF .....cottiireercicvassenneneeerae e Returns elapsed wall-clock time since the call to 'I'IMEF ........................... 15-8
TREMAIN......coocvrrirreeereieeaenrearennes Returns the CPU time (in floating-point seconds) ..........cceerveeeeeerereraeccrenne- 159
TEDT et s sesesssaeenes Converts time-stamps to ASCII date and time SINES ........eceueveerececercererennee 15-10
TSMT, MTTS ....oooeereeererenecanes Converts time-stamp to a corresponding real-time value, and vice versa... 15-11
UNITTS ...t eererecrtserseeraerennnsrasanes Retumns time-stamp units in specified standard time units..........c.cceeveverernene 15-12

16. PROGRAMMING AID ROUTINES

INTRO ... cereccerterie st ceststssssesesnsons sesesasesssassnssosss sesssatssanesessesens saressssssess seseresssarassassssssssaresnsnsnsssasontassns ssesearserasssnsasen 16-1
CRAYDUMP.......cooevvrrrerrvremrrnenees Prints a memory dump to a specified dataset......ccceevverererenrereereraeseerernesesnnns 163
DUMP, PDUMP............cconecemnrerens Dumps memOory t0 FOUT ... coereiciereresenresesrecarsrsssssessssosseressesssssassasasesess 164
DUMPIJOB........ccovcereerrarrerrranscssarsanne Creates an unblocked dataset containing the user job area image ............. 16-5
FXPveveirerrcvemreeesivse e eenennense s Formats and writes the contents of the Exchange Package ..........ccccceeevneune 16-6
GETNAMEQ........ccceemreverierenerennenenes Retums name of the Caller.........oorirernercececeserrrereneeneseernseenessernesessssaeses 16-7
IGETSEC......cccicminerennenesiennsenans Retums the cycles charged to @ job .......coeveerevenenee. . verrerenes 16-8
PERF........ccccccevtrnrrrecrreessserrennennnennn. PTOVIAES an interface to the hardware performance monitor .............oeee... 169
SETPLIMQ......oeeivereereecceecenranene Initiates detailed tracing of every call and retum........c.cceccveirernevereencnscnnanne 16-12
SNAP........ovrteeecrrerresesrenesesensesnanee. COPi€S current register contents to $OUT.......c..oeveeevrererereseenresraresseresessenens 16-13
SYMDEBUG......cccccrenrersacanmsorororenes Produces a SymbOlC QUMD ...c.eercieeiecevrreenereencerenserenrscsnsississeesessessneressastsssase 16-14
SYMDUMP.....urerieerenenrenrressaraees Produces a snapshot dump of a running program .........ccccevevrereerreeeseresenne 16-16
TRBK ocvereverrreneereenreeeneeecvressenes Lists all subroutines active in the current calling sequence........ceeeeereereren. 16-20
TRBKLVL.....cvinirenenencnrenereecnennas Retums information on current level of calling sequence .........ooeeeeveercrecnene 16-21
XPEMT ......cccovniimnnnenmrssasasesnensnscans Produces a printable image of an Exchange Package ........coccreveecrreriececnnne. 16-22

17. SYSTEM INTERFACE ROUTINES

INTRO ... emttrescensnsensseesssesens sresbosssossssssnsassssssssasssassnsaesess setossnssansanass sossassassarassassssssssss 17-1
ABORT.........coerreecerenrenrernreererenens Requests abort with traceback. teereesnesebtesntantesnessrentesasssisaretarenssaesans 17-5
ACTTABLE ........cccoreeivrrvereseaccannnnne. Retumns the Job Accounting Table (JAT).....cccvrnciinisesanasennnnnssssssssossssanens 176
CCS..urrrrniinncasesionsserssnsmsossseseseses Cracks @ CONMIO] SIALEMENE .......cccerreserrnereeseesessaseseesssrsssessansasssesassassassessarsonses 17-7
CEXPR ....oveveirrrrereeerensnnnnenessesenesenes Cracks an EXPreSSiON.........ceeeesvueesecerersessuesesecersnsssoressssensnsrsaenssssssnsanasassrases 17-8
CLEARBT, SETBT ......ccoccveeverenen. Temporarily disables/enables bidirectional memory transfers .............c.c.... 179
CLEARBTS, SETBTS.................... Permanently disables/enables bidirectional memory transfers...............ce... 17-10
CLEARFI, SETHI ......ccccoeveverurcnaen Temporarily prohibits/permits floating-point intermupts.........cececevevererenrvennes 17-11
CLEAREFIS, SETFIS.......ccoocrurcmnenene Temporarily prohibits/permits floating-point intEITUPLS......c.ceveeeeeerernseiesencns 17-12
CRACK ..covvritiererrenseiissenennecensasses Cracks 2 IrECHVE...cieeeereereriorseressesssssssasessorssrsarossasssssnssasasssssessasnsssarssnarnsassasas 17-13
19):21 57, OO Do nothing for a fixed period of time..........cocieverrecinienieierennencessonsnesenes 17-14
DRIVER........ccuuirrennsremarereererassrenes Programs a Cray channel on an I/O Subsystem (IOS)......cccccevveeenrraenscneneane 17-15
ECHO.......cooeveeritreeerreeenenineenneeen. Tums o0 and off the classes of messages to the user logfile....................... 17-16
END, ENDRPV........ccocvuvrerrecriannen Terminates @ JOD SIEP ..cccviiiiiireiiininicseinrsisenenisecssie st sanensasissssassseans 17-17
ERECALL ......coccceerervesrseasaeeannenens Allows a job to suspend itself until selected events occur .........ecivencnnee 17-18
ERREXIT .....ccccvermrmececissancrensarncans REQUESES @DOM.........ecveiericecereenasssicceeencamsistssiss e sisassssssresossasssssessesesassesasases 17-20
EXIT ...iiiirenmrcscsnsnisinienenssssssnoseanns Exits from a FOrtran Program ...........ceecreesnecsccsescnscssssuonseresssssisssasscssessrenss 1721
GETARG. ... errerceninececenaenes Returns Fortran command-line argument................. rervreeseneaanensenenens 17-22

SR-0113 xix D



GETLPP veee REAUMS LINES PET PAGE...ociirieicnincrcrireninisersassenssinnsmasesassesnnsssseasssssssssssssssases
GETPARAM...........cccoererrerereernnnnnnne. GELS parameters .-
TARGC.......ccorverrerrrnerereererenseennnnense. REIUMS number of command line arguments ..............

ICEIL... Retumns integer ceiling of a rational NUMDBEY ...........cooeeerevnenicnisnesisenersinns
UCOM. Allows a job to communicate with another job.........c..ocuvmnsniniesisisenncrinees
ISHELL Executes a UNICOS shell command

JNAME... Returns the job name ........... ceressensessacnennes
ISYMSET, ISYMGET..........c.ccou.... Changes a value for a JCL symbol ...
LGO..... Loads an absolute program from a datasel ............curermmnnniniernnisnereserenes
LOC .iiiriiirisniencnscsssssssassssssssans Returns memory address of variable Or array............covcevcrecscnnessesensecncncnne
MEMORY ......ocovrirrercccrsuanamsascrsacne Manipulates a job’s memory alloCation ...........coocceuricecrcinsrcscensnsscsnareneens
NACSED......coererrrnrereresransesssnsesnss Returns the edition of a previously-accessed permanent dataset................
OVERLAY .....ocovvevmerenenncerennenranenes Loads an OVerlay ..........cccevvcrrenrecreraremasencessacesesaeresrasees

PPL ...t tcrccesnnensereasnases Processes keywords of a difECHVe.........cerveevniesinionenssinsese s rerseisassesseaens
REMARK?2, REMARK................... Enters a message in the user and system Jog files .......cccocervverrerrcrereersenns
REMARKEF........cccoeenecrnncnrsrmnerarsenaes Enters a formatted message in the user and system logfiles........................
RERUN, NORERUN........ccccceccrenn. Declares a job rerunnable/not rerunnable .........cccoveeveeevsrcceeriaresssnsnessssanes
SENSEBT Determines whether bidirectional memory transfer is enabled ...................
SENSEHFI ... Determines if floating-point interrupts are permitied .........ccoccoceerenseressaenes
SETRPV ....erctrirecnsisssenaressesesnans Conditionally transfers control to a specified routine............covverueresseresncsnas
SMACH, CMACH........cwcnceee. Returns machine epsilon, small/large normalized numbers ............cccecrenne
SSWITCH.......covvveicenrirrecrarcsascarees TESLS the SENSE SWILCH ...vvecueeerrcreniresiieiseseseccecnseevereasieneesitsasssasene
SYSTEM ..... Makes requests of the operating SyStem......cuvueeivivecerimuemmnreincesrsnsmmssasserssens

18. INTERFACE TO C LIBRARY ROUTINES

-------------------------------------------------------------------------------------------

.......................................... Gets an option letter from an argument VECIOT........cvocevvereresnenrerasissseseresnans
.......................................... Gets name of current Operating SYSIEM.........c.c.covereereereersarereensaesesesssasessasans

19. MISCELLANEOQUS UNICOS ROUTINES

INTRO Heeenenern b bt e st ses e s R s st et s e s st ar Rt see R st anter e enaR e e sh st sbetesenraens
CUISES c..comevemssesaesrernonsassassasarensensseseans Updates CRT SCIELNS ......ccorrcreeriesesessenrsrssensessassesresassens

xio -... Text interface to the X Window SySteMl.........cereeceisienrnrenrreinsserernssesensererens
D € 11+ OO ORI OO O C Language X Window System Interface Library .........cccccoevereeeeieververenene.
SR-0113 XX

18-1
184
18-5
18-8



INTRO(3X)

1. INTRODUCTION

SR-0113

INTRO(3X)

This manual describes Fortran programming subprograms provided in the standard COS libraries
$ARLIB, SFTLIB, $IOLIB, $SCILIB, $SYSLIB, and SUTLIB, and those subprograms supported by UNICOS
on the CRAY Y-MP, CRAY X-MP, and CRAY-1 computer systems. The Cray Assembly Language (CAL)
subprograms and subprograms called by code gencrated by the Cray Fortran compiler or the Cray Pas-
cal compiler are described in Volume 6: UNICOS Internal Library Reference Manual, publication
SM-2083, Routines generated in the form of in-line code are generally not included in this manual, but
they are described in the Fortran (CFT) Reference Manual, publication SR-0009, and the CFI77 Refer-
ence Manual, publication SR-0018.

The routines are divided into functional sections. A brief description of each section follows:

Section
1
2

10

11

12

13
14
15
16

17

Description
Introduction

Common Mathematical Subprograms - General arithmetic, exponentiation, loga-
rithmic, trigonometric, character, type conversion, and Boolean functions

COS Dataset Management Subprograms - COS Job Control Language (JCL) routines

Linear Algebra Subprograms - Basic linear algebra, linear recurrence, matrix inverse
and multiplication, filter, gather/scatter, and LINPACK/EISPACK routines

Fast Fourier Transform Routines - Computing Fourier analysis and Fourier synthesis
routines

Search Routines - Maximum and minimum search and vector search routines
Sorting Routines - ORDERS optimized sort routine

Conversion Subprograms - Foreign dataset conversion (IBM, CDC, and VAX),
numeric conversion, and miscellaneous conversion routines

Packing Routines - Packing and unpacking data routines

Byte and Bit Manipulation Routines - Routines for comparing, moving, and search-
ing at the element level

Heap Management and Table Management Routines - Routines for manipulating and
managing memory within heaps and tables

I/O Routines - Dataset positioning, auxiliary NAMELIST, logical record, random
access dataset, and output suppression routines

Dataset Utility Routines - Routines for positioning, copying, and skipping datasets
Muliitasking Routines - Task, lock, event, and history trace buffer routines
Timing routines - Time-stamp and time/date routines

Programming Aids Routines - Flowtrace, traceback, dump, Exchange Package pro-
cessing, and hardware performance routines

System Interface Routines - JCL symbol, control statement processing, job control,
floating-point interrupt, bidirectional memory transfer, and special purpose interface
routines



INTRO (3X) INTRO(3X)

Section Description

18 Interfaces to C Library Routines - C library interface routines available under
UNICOS and documented in the CRAY Y-MP, CRAY X-MP, and CRAY-1 C Library
Reference Manual, publication SR-0136 C, and the UNICOS System Calls Reference
Manual, publication SR-2012.

19 Miscellaneous UNICOS Routines - X Window System routines and libraries,

SUBPROGRAM CLASSIFICATION

Unless otherwise noted, all routines in this manual are described as Fortran subroutines or functions. In
some cases (e.g., SECOND), the routine may be called as either a subroutine or a function. The Fortran
compilers will, however, enforce consistency in any one compilation unit.

Programs written in C can call library functions intended for use by Fortran programs. The C program-
mer is responsible for passing arguments by address and not by value, as is the normal case in C.

C programs can also be written to accommodate Fortran users. Such programs must be written to
accept arguments passed by address rather than passed by value, as in the normal case in C.

Pascal programs can call library functions intended for use by Fortran programs. Similarly, Fortran
codes can invoke subroutines and functions written in Pascal. Unlike C, the Pascal compiler passes all
arguments by address, and supports several predefined conversion functions to facilitate communication
with Fortran routines. See the Pascal Reference Manual, publication SR-0060, for information regarding
parameter passing, data formats, and restrictions.

LINKAGE METHODS

SR-0113

The externally-callable library routines are accessed by one of two methods: call-by-address or call-by-
value. Subroutines are always called by address. Fortran accesses intrinsic library functions or user
functions named in a VFUNCTION directive in either call-by-address or call-by-value mode, depending
on Context.

In call-by-address mode, addresses of arguments are stored sequentially in memory. Functions return
their results in registers. Subroutines return results through their argument lists (for information on the
calling sequence, see the Macros and Opdefs Reference Manual for CRAY Y-MP, CRAY X-MP EA,
CRAY X-MP, and CRAY-1 Computer Systems, CRI publication SR-0012).

In call-by-value mode, arguments are loaded into either scalar (S) or vector (V) registers, and the func-
tion returns its result in S1 or V1. 82 or V2 is used for complex or double-precision functions. Vector
functions must also have the vector length present in the vector length (VL) register,

Linkage macros generate code to handle subprogram linkage between compiled routines and CAL-
assembled routines, These linkage macros and their uses follow.

Macro Description

CALL Provides linkage to call-by-address routines

CALLV Provides linkage to call-by-value routines

ENTER Reserves space for parameter addresses, saves
B and T registers, and sets up traceback linkage

EXIT Initiates a return from a routine to its caller and

restores any B or T registers not considered scratch

1-2 D



INTRO(3X) INTRO(3X)

SR-0113

Linkage macros should be used whenever possible to maintain compatibility with future CRI software.
See the Macros and Opdefs Reference Manual for CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and
CRAY-1 Computer Systems, CRI publication SR-0012), for detailed descriptions of linkage macros and
linkage conventions.

All Cray library subroutines can use any of the A, S, V, VL, VM, B70 through B77, and T70 through
T77 registers as scratch registers; therefore, the calling routine should not depend on any of these regis-
ters being preserved. These routines, however, preserve the contents of registers BO1 through B65 and
TOO through T67 (all registers are numbered in octal).

NOTE

CRI reserves the right to make future use of any of the

A, S, V, VL, VM, B66-B77, and T70-T77 registers in any
library subroutine. You cannot depend on the contents

of these registers being preserved in any library

routine.

CRI also reserves subroutine names beginning with the characters
100 for internal use only.

1-3 D






INTRO(3X) INTRO(3X)

2. COMMON MATHEMATICAL SUBPROGRAMS

SR-0113

The math library contains routines that are accessible to Cray Fortran (CFT and CFT77), Cray C, and
Cray Assembly Language (CAL).

This introductory section is divided into the following categories of mathematical routines:
* General arithmetic functions
» Exponential and logarithmic functions
o Trigonometric functions
e Character functions
e Type conversion functions
e Boolean functions

In this section, each category of routines is given a general introduction. The routines are then listed in
tabular form, displaying purpose, name, and manual entry (the name of the manual page containing
documentation for the routine).

Following this introductory section, the manual pages for the routines appear in alphabetical order, usu-
ally by generic function name.

Generic function names are function calls that cause the Fortran compiler to automatically compile the
appropriate data type version of a routine, based on the type of the input data. For example, a call to
the generic function LOG with type complex input data will compile as CLOG.

In general, real functions have no prefix, integer functions are prefixed with I, double-precision func-
tions are prefixed with D, and complex functions are prefixed with C (for example ABS, IABS, DABS,
and CABS). Arguments are given in their type: real, integer, complex, logical, Boolean, and double
(double precision); results are given as r, i, z, /, b, and d for real, integer, complex, logical, Boolean,
and double precision, respectively. Functions with a type different from their arguments are noted.
Real functions are usually the same as the generic function name.

The math routines available through the normal C calling sequence, identifiecd by lowercase names,
have the appropriatc declarations listed in the Synopsis section of their manual pages. To assure a clear
distinction between Fortran and C information, headings of "Fortran:" and "C:" are used in the Synopsis
and Notes sections of relevant manual pages — even when only one language is mentioned on a page.

The documentation for some of the most often used math library routines also contains information on
Cray Assembly Language (CAL) register usage.

For more information on calling library routines from various programming languages, see the Notes on
Calling Functions from Fortran, C, or Cray Assembly Language (CAL), in the Preface of this manual.



INTRO(3X) INTRO(3X)

General Arithmetic Functions

The general arithmetic functions are based upon ANSI standards for Fortran and C, with the exception
of the pseudo-random number routines (RANF, RANGET, and RANSET), which are CRI extensions,

In the routine descriptions, complex arguments are represented such that
X=x.+1* x;

where x, is the real portion and i * x; is the imaginary portion of the complex number. Arguments
and results are of the same type unless otherwise indicated.

Base values raised to a power and 64-bit integer division are implicitly called from Fortran.

The following table contains the purpose, name, and manual entry of each general arithmetic function.
The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

General Arithmetic Functions

Purpose Name Manual Entry
Compute absolute value for real, ABS ABS
integer, double-precision, and TABS
complex numbers DABS
CABS

Compute the imaginary portion of a AIMAG AIMAG
complex number

Compute real and double-precision AINT AINT
truncation - DINT

Compute the conjugate of a complex CONJG CONJG
number

Find the positive difference of DIM DIM
real, integer, or double-precision IDIM

numbers DDIM

Compute the double-precision product | DPROD DPROD
of two real numbers

Remainder of x/x, MOD MOD
for integer, real, and double- AMOD
precision numbers DMOD
Find the nearest whole number for ANINT ANINT
real and double-precision numbers DNINT
Find the nearest integer for real NINT NINT
and double-precision numbers IDNINT
Obtain and establish a pseudo- RANGET
random number seed RANSET
RAN

Obtain the first or next number in RANF
a series of pseudo-random numbers
Transfer the sign of a real, integer, SIGN SIGN
or double-preciston number ISIGN

DSIGN

SR-0113 22 D



INTRO(3X)

SR-0113

Exponential and Logarithmic Functions

INTRO(3X)

The CRI exponential and logarithmic functions are similar to the ANSI standard functions. Each func-
tion has variations for real, double-precision, and complex values except the common logarithm func-
tion, which only addresses real and double-precision values. Complex arguments are represented such

that

xX=x4+i*x

where x, is the real portion and i * x; is the imaginary portion of the complex number.

The following table contains the purpose, name, and manual entry of each exponential and logarithmic

function.

The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Exponential and Logarithmic Functions

Purpose Name Manual Entry

Compute the natural logarithm for ALOG LOG
real, double-precision, and DLOG
complex numbers CLOG
Compute the common logarithm for real | ALOG10 | LOGI0
and double-precision numbers DLOG10
Compute exponents for real, double- EXP EXP
precision, and complex numbers DEXP

CEXP
Compute the square root for real, SQRT SQRT
double-precision, and complex numbers | DSQRT

CSQRT




INTRO(3X) INTRO(3X)

Trigonometric Functions

The trigonometric functions are based on the ANSI standard for Fortran and C, except for the cotangent
function, which is a CRI extension.

The following table contains the purpose, name, and manual entry of each trigonometric function.
The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Trigonometric Functions
Purpose Name Manual Entry
Compute the arcsine for real and ASIN ASIN
double-precision numbers DASIN
Compute the arccosine for real and ACOS ACOS
double-precision numbers DACOS
Compute the arctangent with one ATAN ATAN
real or double-precision argument DATAN
Compute the arctangent with two ATAN2 ATAN2
real or double-precision arguments DATAN2
Compute the cosine for real, double- COS COS
precision, and complex numbers DCOS
CCOS
Compute the hyperbolic cosine for real COSH COSH
and double-precision numbers DCOSH
Compute the sine for real, double- SIN SIN
precision, and complex numbers DSIN
CSIN
Compute the hyperbolic sine for real SINH SINH
and double-precision numbers DSINH
Compute the tangent for real and TAN TAN
double-precision numbers DTAN
Compute the cotangent for real and CoT coT
double-precision numbers DCOT
Compute the hyperbolic tangent for real | TANH TANH
and double-precision numbers DTANH

SR-0113 2-4 D



INTRO(3X) INTRO(3X)

Character Functions

Character functions compare strings, determine the lengths of strings, and return the index of a sub-
string within a string. The character functions are ANSI standard functions.

The comparison functions return a logical value of true or false when two character arguments are com-
pared according to the ANSI collating sequence. These four functions are found under the entry
LGEQGF).

The routines for determining the length of a string and the index of a substring are found under the
entriecs LEN(3F) and INDEX(3F), respectively.

Type Conversion Functions

Type conversion functions change the type of an argument. The following table contains the purpose,
name, and manual entry of each type conversion routine.

The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

In the routine description, complex arguments are represented such that x =x,+1* x;, Arguments
and results are of the same type, unless indicated otherwise.

Type Conversion Routines
Purpose __ Name Manual Entry
Convert type character to integer ICHAR
CHAR
Convert type integer to character CHAR
Convert to type complex CMPLX | CMPLX
Convert to type double precision DBLE
DBLE
Convent integer to double precision | DFLOAT
Convert to type integer INT INT
IFIX
IDINT
Convert a 64-bit integer to a INT24
24-bit integer
INT24
Convert a 24-bit integer to a LINT
64-bit integer
Convert to type real REAL REAL
FLOAT
SNGL

SR-0113 25 D



INTRO(3X) INTRO(3X)

Boolean Functions
The Boolean functions perform logical operations and bit manipulations.

The scalar subprograms in the following table are extemal versions of Fortran in-line functions. These
functions can be passed as arguments to user-defined functions. They are all called by address; results
are returned in register S1, All Boolean functions are CRI extensions.

The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Boolean Arithmetic Routines
Purpose Name Manual Entry
Compute the logical product AND AND
Compute the logical complement COMPL | COMPL
Compute the logical equivalence EQV EQV
Count the number of leading 0 bits LEADZ | LEADZ
Return a bit mask MASK MASK
Compute the logical difference (same as XOR) NEQV NEQV
Compute the logical sum OR OR
Count the number of bits set to 1 POPCNT | POPCNT
Compute the bit population parity POPPAR | POPPAR
Perform a left circular shift SHIFT SHIFT
Perform a left shift with zero fill SHIFTL | SHIFTL
Perform a right shift with zero fill SHIFTR | SHIFTR
Compute the logical difference (same as NEQV) | XOR NEQV
SEE ALSO

Fortran (CFT) Reference Manual, publication SR-0009

CFT77 Reference Manual, publication SR-0018

Cray C Reference Manual, publication SR-2024

SR-0113 2-6 D



ABS(3M) ABS (3M)

NAME
ABS, 1ABS, DABS, CABS — Computes absolute value

SYNOPSIS

Fortran:

r = ABS(real)

i = TABS(integer)
DABS(double)
CABS(complex)

K
Il

CAL register usage:

Scalar IABS:

IABS% (call by register)

on entry (S1) = argument
on exit (81) = result
Scalar DABS:

DABS% (call by register)
on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
Scalar CABS: Vector CABS:
CABS% (call by register) %CABS% (call by register)
on entry (S1) and (S2) = argument on entry (V1) = argument vector 1 (real portion)
on exit (S1) = result (V2) = argument vector 2 (imaginary portion)
on exit (V1) = result vector
DESCRIPTION

These functions evaluate y =] x | , except for CABS, which evaluates
y=[ &+ x)?].

ABS retumns the real absolute value of its real argument.

IABS retumns the integer absolute value of its integer argument.

DABS returns the double-precision absolute value of its double-precision argument.
CABS recturns the real absolute value of its complex argument.

ABS is the generic function name.
ABS, IABS, DABS, and CABS are intrinsic for CFT and CFT77.

SR-0113 2.7 D



ABS (3M) ABS(3M)

ARGUMENT RANGE
ABS, IABS, DABS:

lx]<o (= 10%%)

CABS:
[xc | 4] % [< o0

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems,

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full

Code generation: ABS, IABS, DABS: In-line
CABS: External

RETURN VALUE
When the correct value would overflow, CABS aborts with a floating-point error.

SR-0113 2-8 D



ACOS(3M) ACOS(3M)

NAME
ACOS, DACOS, acos — Computes arccosine

SYNOPSIS
Fortran: C:
r = ACOS(real) #include <math.h>
d = DACOS(double) double acos(x)
double x;

CAL register usage:

Scalar ACOS: Vector ACOS:

ACOS% (call by register) %ACOS% (call by register)

on entry (S1) = argument on entry (V1) = argument vector

on exit (S1) = result on exit (V1) = result vector

Scalar DACOS: Vector DACOS:

DACOS% (call by register) %DACOS% (call by register)

on entry (S1) and (S2) = argument on entry (V1) and (V2) = argument vector

on exit (S1) and (S2) = result on exit (V1) and (V2) = result vector
DESCRIPTION

These functions evaluate y = arccos(x).

ACOS and acos (callable only from C programs) return the real arccosine of their real argument.
DACOS returns the double-precision arccosine of its double-precision argument.

ACOS is the generic function name.
ACOS and DACOS are intrinsic for CFT and CFT77.

ARGUMENT RANGE
[x|<10

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

SR-0113 29 D



ACOS (3M) ACOS(3M)

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemal

SR-0113 2-10 D



AIMAG(3M) AIMAG (3M)

NAME
AIMAG - Compuies imaginary portion of a complex number

SYNOPSIS
Fortran:
r = AIMAG(complex)

DESCRIPTION

This function evaluates
y=x.

AIMAG returns the imaginary portion of its complex argument.
AIMAG is intrinsic for CFT and CFT77.

ARGUMENT RANGE
|x,|,|xi|<oo (0'0'-"'-10 EED
EXAMPLE

PROGRAM AIMTEST
REAL RESULT
RESULT=AIMAG((1.0,2.0))
PRINT *, RESULT

STOP

END

The preceding program gives the imaginary portion of the complex number (1.0,2.0). After running the pro-
gram, RESULT=2.0.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

SR-0113 2-11 D



AINT (3M) AINT(3M)

NAME
AINT, DINT -~ Computes real and double-precision truncation

SYNOPSIS
Fortran:
r = AINT(real)
d = DINT(double)
DESCRIPTION

These functions evaluate y = | x] without rounding.

AINT truncates the fractional part of its real argument. The fractional part is lost (not rounded).
DINT truncates the fractional part of its double-precision argument. The fractional part is lost (not
rounded).

AINT is the generic function name.

AINT and DINT are intrinsic for CFT and CFT77.
ARGUMENT RANGE

AINT:

x| < 2%

DINT:
| x| < 2%

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full

Code generation: AINT: In-line
DINT: External

SR-0113 2-12 D



ALOG(3M)

NAME

ALOG(3M)

ALOG, DLOG, CLOG, log — Computes natural logarithm

SYNOPSIS
Fortran:

r = ALOG(real)
DLOG(double)
z = CLOG(complex)

CAL register usage:

Scalar ALOG:

ALOG% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DLOG:

DLOG% (call by register)

on enry (S1) and (S2) = argument

on exit (S1) and (S2) = result

Scalar CLOG:

CLOG% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = In(x).

C:

#include <math.h>
double log(x)
double x;

Vector ALOG:
%ALOG% (call by register)

on entry (V1) = argument vector
on exit (V1) = result vector
Vector DLOG:

%DLOG% (call by register)

on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector
Vector CLOG:

%CLOG% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

ALOG and log (callable only from C programs) return the real natural logarithm of their real argument.
DLOG returns the double-precision natural logarithm of its double-precision argument.
CLOG returns the complex natural logarithm of its complex argument.

LOG is the generic function name.

ALOG, DLOG, and CLOG are intrinsic for CFT and CFT77.

ARGUMENT RANGE

(e = 10%%%)

0<x <o

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113

2-13 D



ALOG(3M) ALOG (3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: Extemal

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 214 D



ALOGI10(3M) ALOG10(3M)

NAME
ALOG10, DLOG10, log10 — Computes common logarithm

SYNOPSIS
Fortran; C:
r = ALOG10(real) #include <math.h>
= DLOG10(double) double log10(x)
double x;

CAL register usage:

Scalar ALOG10: Vector ALOG10:

ALOG10% (call by register) %ALOG10% (call by register)

on entry (S1) = argument on entry (V1) = argument vector

on exit (S1) = result on exit (V1) = result vector

Scalar DLOG10: Vector DLOG10:

DLOG10%  (call by register) %DLOG10% (call by register)

on entry (S1) and (S2) = argument on entry (V1) and (V2) = argument vector

on exit (S1) and (S2) = result on exit (V1) and (V2) = result vector
DESCRIPTION

These functions evaluate y = log(x).

ALOG10 and logl0 (callable only from C programs) return the real common logarithm of their real
argument.
DLOGI10 retums the double-precision common logarithm of its double-precision argument.

LOG10 is the generic function name.
ALOG10 and DLOG10 are intrinsic for CFT and CFT77.

ARGUMENT RANGE
O<x <o (o= 10%%)

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

SR-0113 2-15 D



ALOG10(3M) ALOG10(3M)

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemnal

SR-0113 2-16 D



AND(3M)

NAME

AND - Computes logical product

SYNOPSIS
Fortran:

I = AND(logical logical)
b = AND(arg.arg)

DESCRIPTION

arg = CFT77:. type Boolean, integer, real, or pointer
CFT: type Boolean, integer, or real

AND(3M)

When given two arguments of type logical, AND computes a logical product and returns a logical result.
When given two arguments of type Boolean, integer, real, or pointer, AND computes a bit-wise logical
product and returns a Boolean result.

AND is intrinsic for CFT and CFT77.

The following tables show both the logical product and bit-wise logical product:

Logical Variable 1 | Logical Variable 2 | (Logical Variable 1) AND (Logical Variable 2)
T T T
T F F
F T F
F F F
Bit of Variable 1 | Bit of Variable 2 | (Bit of Variable 1) AND (Bit of Variable 2)
1 1 ]
1 0 0
0 1 0
0 0 0

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full
Code generation: In-line

SR-0113

2-17



AND (3M) AND (3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean resuit.

EXAMPLES

The following section of Fortran code shows the AND function used with two arguments of type
logical:

LOGICAL L1,L2, 13

L3 = AND(L1,L2)
The following section of Fortran code shows the AND function used with two arguments of type
integer. The bit pattemns of the arguments and result are also given. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER 11, 12, I3

I3 = AND(IL,I2)

lo]JofoJof1[1]o]o0]

I1

[oJojojof1fof1]0]

12

[oJoJofof1[ofofo]

I3

SR-0113 2-18 D



ANINT (3M) ANINT (3M)

NAME
ANINT, DNINT - Finds nearest whole number

SYNOPSIS
Fortran:
r = ANINT(real)
d = DNINT(double)
DESCRIPTION
These functions find the nearest whole number for real and double-precision numbers by using the fol-
lowing equations:
y=Llx+5] if x20
y=lx-5] if x<0
ANINT retumns the real nearest whole number for its real argument.
DNINT returns the double-precision nearest whole number for its double-precision argument.

ANINT is the generic function name.
ANINT and DNINT are intrinsic for CFT and CFT77.

ARGUMENT RANGE
ANINT:

| x | < 246

DNINT:
| x]< 2%

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full

Code generation: ANINT: In-line
DNINT: External

SR-0113 2-19 D



ASIN(3M)

NAME
ASIN, DASIN, asin — Computes arcsine

SYNOPSIS
Fortran:

r = ASIN(real)
d = DASIN(double)

CAL register usage:

Scalar ASIN:

ASIN%  (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DASIN:

DASIN%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = arcsin(x).

ASIN(3M)

C:

#include <math.h>
double asin(x)
double x;

Vector ASIN:

%ASIN% (call by register)
on entry (V1) = argument vector
on exit (V1) = result vector

Vector DASIN:

%DASIN% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

ASIN and asin (callable only from C programs) return the real arcsine of their real argument.
DASIN returns the double-precision arcsine of its double-precision argument.

ASIN is the generic function name.

ASIN and DASIN are intrinsic for CFT and CFT77.

ARGUMENT RANGE
[x|<10

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full
Code generation: External

SR-0113



ASIN(3M) ASIN(3M)

C:
ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemal

SR-0113 221 D



ATAN(3M)

NAME

ATAN(3M)

ATAN, DATAN, atan — Computes arctangent for single argument

SYNOPSIS
Fortran:

r = ATAN(real)
d = DATAN(double)

CAL register usage:

Scalar ATAN:

ATAN%  (call by register)
on entry (S1) = argument
on exit (S1) = result

Scalar DATAN:

DATAN% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = arctan(x).

C.

#include <math.h>
double atan(x)
double x;

Vector ATAN:
%ATAN% (call by register)

on entry (V1) = argument vector
on exit (V1) = result vector
Vector DATAN:

%DATAN% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

ATAN and atan (callable only from C programs) return the real arctangent of their real argument.
DATAN returns the double-precision arctangent of its double-precision argument.

ATAN is the generic function name.

ATAN and DATAN are intrinsic for CFT and CFT77.

ARGUMENT RANGE
(0 = 10%%)

| x| < oo

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full
Code generation: Extemal

SR-0113

2-22 D



ATAN(3M) ATAN(3M)

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemnal

SR-0113 2-23 D



ATAN2(3M)

NAME

ATAN2(3M)

ATAN2, DATAN2, atan2 — Computes arctangent for two arguments

SYNOPSIS
Fortran:

r = ATAN2(real real)
d = DATAN2(double,double)

CAL register usage:

Scalar ATAN2:

ATAN2% (call by register)
on eantry (S1) = argument 1
(S2) = argument 2

on exit (S1) = result

Scalar DATAN2:

DATAN2%  (call by register)
on entry (S1) and (S2) = argument 1
(S3) and (S4) = argument 2

on exit (S1) and (S2) = result

DESCRIPTION
These functions evaluate

y = arctan (x /x,).

C:

#include <math.h>
double atan2(x1,x2)
double x1,x2;

Vector ATAN2:

%ATAN2% (call by register)
on entry (V1) = argument vector 1
(V2) = argument vector 2

on exit (V1) = result vector

Vector DATAN2:

%DATAN2% (call by register)
on entry (V1) and (V2) = argument vector 1
(V3) and (V4) = argument vector 2

on exit (V1) and (V2) = result vector

ATAN2 and atan2 (callable only from C programs) return the real arctangent of the quotient of their

real arguments.

DATAN?2 returns the double-precision arctangent of the quotient of its double-precision arguments.

ATAN2 is the generic function name.

ATAN2 and DATAN2 are intrinsic for CFT and CFT77.

ARGUMENT RANGE

|x1],]x2]<o, |x;] and | x| are not both zero.

IMPLEMENTATION

(0o = lom)

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113



ATAN2(3M) ATAN2(3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: Extemnal

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-25 D



CHAR(3F) CHAR (3F)

NAME

CHAR, ICHAR - Converts integer to character and vice versa (Cray Fortran intrinsic function)

SYNOPSIS

ch=CHAR(integer)
ch=CHAR(boolean)

i=ICHAR(char)

DESCRIPTION

CHAR (inline Fortran code) and ICHAR are inverse functions. CHAR (type character) converts an
integer or Boolean argument to a character specified by the ASCII collating sequence. Type conversion
routines assign the appropriate type to Boolean arguments without shifting or manipulating the bit pat-
terns they represent. For example, CHAR() returns the ith character in the collating sequence. integer
must be in the range 0 to 255.

ICHAR (type integer) converts a character to an integer based on the character position in the collating
sequence.

IMPLEMENTATION

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

2-26 D



CMPLX (3M) CMPLX (3M)

NAME
CMPLX — Converts to type complex

SYNOPSIS
Fortran:
¢ = CMPLX(arg;,[,arg,])

DESCRIPTION
This function converts one or two arguments into type complex.

Complex and 24-bit integer arguments use a single argument.
Integer, Boolean, real, and double-precision arguments can use either one or two arguments,

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu-
lating the bit patterns they represent.

If two arguments are used, they must be of the same type.
The following cases represent the evaluation of CMPLX when using two arguments:

CMPLX(L,J) gives the value FLOAT(I)+i*FLOAT(J)
CMPLX(x,y) gives the complex value x +i*y

The following cases represent the evaluation of CMPLX when using one argument:
CMPLX(X) gives the value X+i*0
CMPLX() gives the value FLOAT(@)+i*0 _
CMPLX(C) where C is a complex number, gives the complex value x+i*y; that is,
CMPLX(C)=C.
CMPLX is intrinsic for CFT and CFT77.

ARGUMENT RANGE
Complex, real, double precision:

|x <o (o= 10%%)
Integer:

[x|< 2%

Integer (24-bit) (CFT only):

|x <22

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-27 D



CMPLX (3M) CMPLX (3M)

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

SR-0113 2-28 D



COMPL(3M) COMPL (3M)

NAME
COMPL - Computes logical complement

SYNOPSIS
Fortran:
1 = COMPL(logical)
b = COMPL(arg)

DESCRIPTION

arg = CFT: type Boolean, integer, or real
CFT77: type Boolean, integer, real, or pointer

When given an argument of type logical, COMPL computes a logical complement and returns a logical
result.

When given an argument of type integer, real, Boolean, or pointer, COMPL computes a bit-wise logical
complement and returns a Boolean result.

COMPL is intrinsic for CFT and CFT77.

The following tables show both the logical complement and bit-wise logical complement:

Logical Variable | COMPL (Logical Variable)
T F
F T

Bit of Variable | COMPL (Bit of Variable)
1 0
0 1

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

SR-0113 2-29 D



COMPL (3M) COMPL (3M)

EXAMPLES

The following section of Fortran code shows the COMPL function used with an argument of type
logical:

LOGICAL L1, L2

L2 = COMPL(L1)
The following section of Fortran code shows the COMPL function used with an argument of type
integer. The bit patterns of the argument and result are also given. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER 11, 12

12 = COMPL(I1)

[1ft]1[1]ofoo]o]
1l

loJoJoJofr[1]1]1]
’ 12

SR-0113 2-30 D



CONJG(3M)

NAME
CONJG — Computes conjugate of a complex number

SYNOPSIS
Fortran:
z = CONJG(complex)

DESCRIPTION

This function evaluates

y=x,—i% x;.

CONJG returns the complex conjugate of a complex number.
CONJG is intrinsic for CFT and CFT77.

ARGUMENT RANGE
[x: ], 1xi <o (0 =107

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

EXAMPLE

PROGRAM CONTEST
COMPLEX ARG, RESULT
ARG=(3.0,4.0)
RESULT=CONJG(ARG)
PRINT *RESULT

STOP

END

The preceding program gives RESULT = (3.,-4.).

SR-0113 2-31

CONJG(3M)



COS(3M)

NAME

COS, DCOS, CCOS, cos — Computes cosine

SYNOPSIS

Fortran:

COS(real)
DCOS(double)
CCOS(complex)

r
d

z

CAL register usage:

Scalar COS:

COS% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DCOS:

DCOS% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result

Scalar CCOS:

CCOS% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = cos(x).

COS (3M)

C:

#include <math.h>
double cos(x)
double x;

Vector COS:

%COS% (call by register)
on entry (V1) = argument vector
on exit (V1) = result vector

Vector DCOS:

%DCOS% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

Vector CCOS:

%CCOS% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

COS and cos (callable only from C programs) return the real cosine of their real argument.
DCOS retumns the double-precision cosine of its double-precision argument.
CCOS returns the complex cosine of its complex argument.

COS is the generic function name.

COS, DCOS, and CCOS are intrinsic for CFT and CFT77.

SR-0113

2-32 D



COS (3M) COS (3M)

ARGUMENT RANGE
COS:

| x| <2

DCOS:

|x|<2%

CCOS:
[x, |<2®, |x;]<2? * In2

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-33 D



COSH(3M)

NAME

COSH(3M)

COSH, DCOSH, cosh — Computes hyperbolic cosine

SYNOPSIS
Fortran:

r = COSH(real)
d = DCOSH(double)

CAL register usage:

Scalar COSH:

COSH% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DCOSH:

DCOSH%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (82) = result
DESCRIPTION

These functions evaluate y = cosh(x).

C:

#include <math.h>
double cosh(x)
double x;

Vector COSH:

%COSH% (call by register)
on entry (V1) = argument vector
on exit (V1) = result vector

Vector DCOSH:

%DCOSH% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

COSH and cosh (callable only from C programs) return the real hyperbolic cosine of their real argu-

ment.

DCOSH returns the double-precision hyperbolic cosine of its double-precision argument.

COSH is the generic function name.

COSH and DCOSH are intrinsic for CFT and CFT77.

ARGUMENT RANGE
|x|<2P* In2

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full
Code generation: External

SR-0113



COSH(3M) COSH(3M)

C:
ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemal

SR-0113 2-35 D



COT(3M)

NAME
COT, DCOT - Computes cotangent

SYNOPSIS
Fortran:
r = COT(real)
d = DCOT(double)

CAL register usage:

Scalar COT:

COT% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DCOT:

DCOT%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (52) = result
DESCRIPTION

These functions evaluate y = cot(x).

COT(3M)

Vector COT:
%COT% (call by register)

on entry (V1) = argument vector
on exit (V1) = result vector
Vector DCOT:

%DCOT% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

COT returns the real cotangent of its real argument.
DCOT returns the double-precision cotangent of its double-precision argument.

COT is the generic function name,

COT and DCOT are intrinsic for CFT and CFT77.

ARGUMENT RANGE

Ix|<2®

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full
Code generation: External

SR-0113



DBL_PREC(3M)

NAME

DBL_PREC (3M)

DASS, DASV, DAVS, DAVV, DDSS, DDSV, DDVS, DDVV, DMSS, DMSV, DMVS, DMVV, DSSS, DSSV,
DSVS, DSVV — Performs double-precision arithmetic

DESCRIPTION

Double-precision arithmetic routines include addition (D+D), division (D/D), multiplication (D*D), and
subtraction (D-D) functions. These routines are implicitly called by CFT and CFT77 programs to per-
form double-precision arithmetic.

The function of each routine follows:

DASS

DASV
DAVS
DAVV
DDSS

DDSV
DDVS
DDVV

Double-precision addition: Scalar + Scalar
Double-precision addition: Scalar + Vector
Double-precision addition: Vector + Scalar
Double-precision addition: Vector + Vector
Double-precision division: Scalar / Scalar
Double-precision division: Scalar / Vector
Double-precision division: Vector / Scalar
Double-precision division: Vector / Vector

DMSS — Double-precision multiplication: Scalar * Scalar

DMSV - Double-precision multiplication: Scalar * Vector
DMVS - Double-precision multiplication: Vector * Scalar
DMVV - Double-precision multiplication: Vector * Vector

DSSS - Double-precision subtraction: Scalar - Scalar
DSSV -~ Double-precision subtraction: Scalar - Vector
DSVS - Double-precision subtraction: Vector - Scalar

DSVV - Double-precision subtraction: Vector - Vector

CAL REGISTER USAGE

SR-0113

Double-precision addition: Scalar + Scalar

DASS% (call by register)

entry (S1) and (S2) = arg 1 words 1 and 2
(83) and (S4) = arg 2 words 1 and 2

exit (S1) and (S2) = result words 1 and 2

Double-precision addition: Vector + Scalar

DAVS% (call by register)

entry (V1) and (V2) = arg 1 (augend)
(S3) and (S4) = arg 2 (addend)

exit (V1) and (V2) = result vector (sum)

Double-precision division: Scalar / Scalar
DDSS% (call by register)

entry (S1) and (S2) = numerator words 1 and 2

(S3) and (S4) = divisor words 1 and 2
exit (S1) and (S2) = quotient words 1 and 2

2-37

Double-precision addition: Scalar + Vector

DASV% (call by register)

entry (S1) and (S2) = arg 1 (augend)
(V3) and (V4) = arg 2 (addend)

exit (V1) and (V2) = result vector (sum)

Double-precision addition: Vector + Vector

DAVV% (call by register)

entry (V1) and (V2) = arg 1 (augend)
(V3) and (V4) = arg 2 (addend)

exit (V1) and (V2) = result vector (sum)

Double-precision division: Scalar / Vector
DDSV% (call by register)

entry (S1) and (S2) = numerator words 1 and 2

(V3) and (V4) = divisor words 1 and 2
exit (V1) and (V2) = quotient words 1 and 2



DBL_PREC(3M)

Double-precision division: Vector / Scalar

DDVS% (call by register)

entry (V1) and (V2) = numerator words 1 and 2
(S3) and (84) = divisor words 1 and 2

exit (V1) and (V2) = quotient words 1 and 2

Double-precision multiplication: Scalar * Scalar

DMSS% (call by register)

entry (S1) and (S2) = arg 1 words 1 and 2
(S3) and (S4) = arg 2 words 1 and 2

exit (S1)and (S2) = result words 1 and 2

Double-precision multiplication: Vector * Scalar

DMVS% (call by register)

entry (V1) and (V2) = arg 1 words 1 and 2
(S3) and (S4) = arg 2 words 1 and 2

exit (V1) and (V2) = product words 1 and 2

Double-precision subtraction: Scalar - Scalar

DSSS% (call by register)

entry (S1) and (S§2) = arg 1 words 1 and 2
(83) and (S4) = arg 2 words 1 and 2

exit (S1) and (52) = result words 1 and 2

Double-precision subtraction: Vector - Scalar

DSVS% (call by register)

entry (V1) and (V2) = arg 1 (minuend)
(S3) and (S4) = arg 2 (subtrahend)

exit (V1) and (V2) = result vector (sum)

IMPLEMENTATION

DBL_PREC(3M)

Double-precision division: Vector / Vector

DDVV% (call by register)

entry (V1) and (V2) = numerator words 1 and 2
(V3) and (V4) = divisor words 1 and 2

exit (V1) and (V2) = quotient words 1 and 2

Double-precision multiplication: Scalar * Vector

DMSV% (call by register)

entry (S1) and (S2) = arg 1 words 1 and 2
(V3) and (V4) = arg 2 words 1 and 2

exit (V1) and (V2) = product words 1 and 2

Double-precision multiplication: Vector * Vector

DMVV% (call by register)

entry (V1) and (V2) = arg 1 words 1 and 2
(V3) and (V4) = arg 2 words 1 and 2

exit (V1) and (V2) = product words 1 and 2

Double-precision subtraction: Scalar - Vector

DSSV% (call by register)

entry (S1) and (S2) = arg 1 (minuend)
(V3) and (V4) = arg 2 (subtrahend)

exit (V1) and (V2) = result vector (sum)

Double-precision subtraction: Vector - Vector

DSVV% (call by register)

entry (V1) and (V2) = arg 1 (minuend)
(V3) and (V4) = arg 2 (subtrahend)

exit (V1) and (V2) = result vector (sum)

These routines are available to users of both the COS and UNICOS operating systems.

2-38



DBLE(3M) DBLE(3M)

NAME
DBLE, DFLOAT - Converts to type double precision

SYNOPSIS
Fortran;

d = DBLE(arg)
d = DFLOAT (integer)

DESCRIPTION

arg = type complex, integer, Boolean, real, or double precision

These functions convert specified types to type double precision.

DBLE returns the double-precision equivalent of its complex, integer, Boolean, real, or double-precision
argument.
DFLOAT returns the double-precision floating-point equivalent of its integer argument.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu-
lating the bit patterns they represent.

ARGUMENT RANGE

DBLE:
Real, double precision, Boolean:

|x|<oe (o= 10%%)

Complex:

[x,|<o  (for complex arguments x =x, +i * x;)

Integer:

| x| < 2%

Integer (24-bit) (CFT only):

[x|<2®

DFLOAT:

| x | < 2%

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-39 D



DBLE(3M) DBLE (3M)

NOTES
Fortran:
DBLE:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

DFLOAT:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full

Code generation: In-line

SR-0113 2-40 D



DIM (3M) DIM(3M)

NAME
DIM, IDIM, DDIM -~ Computes positive difference of two numbers

SYNOPSIS
Fortran:
DXM(real real)
i = IDIM(integer.integer)
d = DDIM(double double)

r

I

DESCRIPTION
These functions solve for:
y=x1—-x, if x;>x,
y=0 if x,<x,
DIM evalnates two real numbers and subtracts them. The result is a real positive difference.
IDIM evaluates two integers and subtracts them. The result is an integer positive difference.

DDIM evaluates two double-precision numbers and subtracts them. The result is a double-precision
positive difference.

DIM is the generic function name.

DIM, IDIM, and DDIM are intrinsic for CFT and CFT77.
ARGUMENT RANGE

[x1].]x2| <o (e0o=10%%)  Exception: IDIM for 64-bit integers: | x, |, | x2 | < 25
IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full

Code generation: DIM, IDIM: In-line
DDIM: External

SR-0113 241 D



DIM(3M) DIM (3M)

EXAMPLE

PROGRAM DIMTEST
INTEGER A,B,C,D,E
A=77
B=10
C=IDIM(A,B)
WRITE 1,A,B,C
1 FORMAT(I2,’POSITIVE DIFFERENCE ’ 12, EQUALS ’, 12)
D=IDIM(B,A)
WRITE 2,B,A,D
2 FORMAT(I2,"POSITIVE DIFFERENCE ’,12," EQUALS *,12)
STOP
END

The preceding program gives the following output:

77 POSITIVE DIFFERENCE 10 EQUALS 67
10 POSITIVE DIFFERENCE 77 EQUALS 0

SR-0113 2-42 D



DPROD(3M) DPROD(3M)

NAME
DPROD — Computes double-precision product of two real numbers

SYNOPSIS
Fortran:
d = DPROD(real real)

CAL register usage:

Scalar DPROD: Vector DPROD:

DPROD%  (call by register) %DPROD% (call by register)

entry (S1) = st argument (single precision) entry (V1) = 1st argument (single precision)
{S2) = 2nd argument (single precision) (V2) = 2nd argument (single precision)

exit (S1) and (S2) = result words 1 and 2 exit (V1) and (V2) = product words 1 and 2

DESCRIPTION
This function evaluates y = x1*x4 .
DPROD returns the double-precision product of its two real arguments.
DPROD is intrinsic for CFT and CFT77.

ARGUMENT RANGE

[x1],]x2] <00 (00 = 10%66)

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

EXAMPLE

PROGRAM DOUBT

REAL X,Y

DOUBLE PRECISION Z
=50

Y=6.0

Z=DPROD(X,Y)

PRINT*,Z

STOP

END

The preceding program gives Z to be the double-precision number 30.0 (or in Fortran, 30.D0).

SR-0113 243



EQV(3M)

NAME
EQV - Computes logical equivalence

SYNOPSIS
Fortran:

1 = EQV(logical logical)
b = EQV(arg,arg)

DESCRIPTION

arg = CFT: type Boolean or integer
CFT77. type Boolean, integer, real, or pointer

EQV(3M)

When given two arguments of type logical, EQV computes a logical equivalence and returns a logical

result,

When given two arguments of type Boolean, real, integer, or pointer, EQV computes a bit-wise logical
equivalence and returns a Boolean result.

EQYV is intrinsic for CFT and CFT77.

The following tables show both the logical equivalence and bit-wise logical equivalence:

Logical Variable 1 | Logical Variable 2 | (Logical Variable 1) EQV (Logical Variable 2)
T T T
T F F
F T F
F F T

Bit of Variable 1 | Bit of Variable 2

(Bit of Variable 1) EQV (Bit of Variable 2)

1

1

1

1
0
0

0
1
0

0
0
1

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full
Code generation: In-line

SR-0113

2-44



EQV(3M) EQV(3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES

The following section of Fortran code shows the EQV function used with two arguments of type
logical:

LOGICAL L1,L2,13

L3 = EQV(L1,L2)
The following section of Fortran code shows the EQV function used with two arguments of type
integer. The bit patterns of the arguments and result are also given. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER 11, 12, I3

13 = EQV{L2)

[o]JoJojo|1]1]o0]0]
11

[ojo]o]o[1]o]1]0]
2

[1]afrfefs]ofof1]
I3

SR-0113 2-45 D



EXP(3M)

NAME

EXP(3M)

EXP, DEXP, CEXP, exp — Computes exponential function

SYNOPSIS
Fortran:

EXP(real)
DEXP(double)
CEXP(complex) -

’
d

F4

CAL register usage:

Scalar EXP:

EXP% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DEXP:

DEXP% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result

Scalar CEXP:

CEXP% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S82) = result
DESCRIPTION

These functions evaluate y = e*.

C:

#include <math.h>
double exp(x)
double x;

Vector EXP:
%EXP% (call by register)

on entry (V1) = argument veclor
on exit (V1) = result vector
Vector DEXP:

%DEXP% (call by register)

on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector
Vector CEXP:

%CEXP% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

EXP and exp (callable only from C programs) return the real exponential function e* of their real argu-

ment.

DEXP returns the double-precision exponential function e* of its double-precision argument.
CEXP returns the complex exponential function e* of its complex argument.

EXP is the generic function name,

EXP, DEXP, and CEXP are intrinsic for CFT and CFT77.

ARGUMENT RANGE
EXP, DEXP: |x |<2B* In2
CEXP: |x,|<2B* 2, |x;|<2*®

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113



EXP(3M) EXP(3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 247 D



INDEX (3F) INDEX (3F)

NAME

INDEX - Determines index location of a character substring within a string (Cray Fortran intrinsic func-
tion)

SYNOPSIS
i=INDEX(string substring)

DESCRIPTION

The integer function INDEX takes Fortran character string arguments and returns an integer index into
that string. If substring is not located within string, a value of 0 is returned. If there is more than one
occurrence of substring, only the first index is returned. string and substring can be any legal Fortran
character string.

EXAMPLE

PROGRAM INDEX1
CHARACTER*23,A
CHARACTER*13,B

A="CRAY X-MP SUPERCOMPUTER’
B="SUPERCOMPUTER'’
I=INDEX(A,B)

PRINT *,1

STOP

END

The preceding program returns the index number of the substring SUPERCOMPUTER as I=11,

PROGRAM INDEX2
CHARACTER*20,A
CHARACTER*6,B

A='CRAY-1 SUPERCOMPUTER’
B="CRAY-I’

I=INDEX(A,B)

PRINT *, 1

STOP

END

The preceding program retumns the index number of the substring CRAY-1as I=1.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-48 D



INT(3M) INT (3M)

NAME
INT, IFIX, IDINT ~ Converts to type integer

SYNOPSIS
Fortran:
i = INT(arg)

i = IFIX(real)
i = IFIX(boolean)

i = IDINT (double)

DESCRIPTION

arg = type integer, complex, real, or Boolean

These functions convert specified types to type integer by truncating toward O (the fraction is lost).

INT returns an integer value for its integer, real, complex, or Boolean argument.
IFIX returns an integer value for its real or Boolean argument.
IDINT returns an integer value for its double-precision argument.

INT is the generic function name.
INT, IFIX, and IDINT are intrinsic for CFT and CFT77.
Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu-
lating the bit patterns they represent.
ARGUMENT RANGE

INT:
Real: [x|<oo (o0 = 10%%)

Complex: | x, | < 2%
Integer (24-bif) (CFT only): |x | <22
Integer, Boolean: | x | < 2%

IFIX: |x |<2%
IDINT: |x |<2®

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

SR-0113 249 D



INT24(3M) INT24 (3M)

NAME
INT24, LINT — Converts 64-bit integer to 24-bit integer and vice versa (CFT only)

SYNOPSIS
Fortran:

i24 = INT2A(integer)
i24 = INT24(boolean)

i = LINT(24-bit integer)
DESCRIPTION
i24 = 24-bit integer result.
INT24 converts a 64-bit integer or Boolean argument into a 24-bit integer.
LINT converts a 24-bit integer into a 64-bit integer.
ARGUMENT RANGE

|x|< 2B

IMPLEMENTATION
These routines are available 1o users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

SR-0113 2-50 D



LDIV(3M)

NAME

LDIV (3M)

LDSS, LDSV, LDVS, LDVV - Performs 64-bit integer divide

DESCRIPTION

The LDSS, LDSV, LDVS, and LDVV functions are called implicitly by CFT, CFT77, and C programs to

divide long integers.

These routines return a 64-bit integer quotient from two 64-bit arguments.

The function of each routine follows:

LDSS - Scalar / Scalar

LDSV - Scalar / Vector
LDVS - Vector / Scalar
LDVV - Vector / Vector

CAL REGISTER USAGE

Scalar / Scalar:

LDSS% (call by register)

onentry (S1) = numerator
(S2) = denominator

on exit (S1) = quotient
(S2) = remainder

Vector / Scalar:

LDVS% (call by register)

on entry (V1) = numerator
(82) = denominator

onexit (V1) = quotient
(V2) = remainder

NOTE

Scalar / Vector:

LDSV% (call by register)

on entry (S1) = numerator
(V2) = denominator

on exit (V1) = quotient
(V2) = remainder

Vector / Vector:

LDVV% (call by register)

on entry (V1) = numerator
(V2) = denominator

on exit (V1) = quotient
(V2) = remainder

LDSV, LDVS, and LDVV are pseudo-vector routines. They call the scalar version, LDSS, to perform the

divide.

SR-0113

2-51 D



LEADZ(3M) LEADZ(3M)

NAME
LEADZ - Counts number of leading O bits

SYNOPSIS
Fortran:
i = LEADZ(arg)

DESCRIPTION
arg = CFT: type Boolean, integer, real, or logical
CFT77: type Boolean, integer, real, or pointer

When given an argument of type integer, real, logical, Boolean, or pointer, LEADZ counts the number
of leading O bits in the 64-bit representation of the argument.

LEADZ is intrinsic for CFT and CFT77.

EXAMPLES

The following section of Fortran code shows the LEADZ function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also given. For clarity, a 16-bit
word is used instead of the actual 64-bit word.

INTEGER 11, 12

12 = LEADZ(1)

lojoloJoJofrl1]Jofo|1[t]1]0ofo[1]0]
n

The LEADZ function returns the value § to the integer variable 12,

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.

LEADZ(0) is equal to 64.

Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

SR-0113 2-52 D



LEN(3F) LEN(3F)

NAME
LEN - Determines the length of a character string (Cray Fortran intrinsic function)

SYNOPSIS
i = LEN(string)

DESCRIPTION

The integer function LEN takes Fortran character string arguments and returns an integer length. string
can be any valid Fortran character string. LEN is an in-line code function.

EXAMPLE

PROGRAM LENTEST
I=LEN(CL..+....1...+....2....+...3....+..")
PRINT *1

STOP

END

The preceding program returns the length of the character string; 1=37.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-53 D



LGE(3F) LGE(3F)

NAME
LGE, LGT, LLE, LLT ~ Compares strings lexically (Cray Fortran intrinsic function)

SYNOPSIS
! = LGE(stringl string2)
I = LGT(stringl string2)
| = LLE(stringl,string2)
! = LLT(stringl string2)

DESCRIPTION

Each of the these type logical functions takes two character string arguments and return a logical value.
stringl and string2 are compared according to the ASCII collating sequence, and the resulting true or
false value is returned. Arguments can be any valid character string. If the strings are of different
lengths, the function treats the shorter string as though it were blank-filled on the right to the length of
the longer string,

The defining equation for each function is as follows:

For LGE, logic = a, 2 a,.
For LGT, logic = a, > a».
For LLE, logic
For LLT, logic =a; < a,,

a,saj.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-54 D



MASK(3M) MASK(3M)

NAME
MASK — Returns a bit mask

SYNOPSIS
Fortran:
b = MASK(integer)

DESCRIPTION
MASK returns a bit mask of 1’s.
The integer argument must be in the range 0 < x < 128.

If the argument is in the range 0 < x < 63, a left-justified mask of x bits is returned.
If the argument is in the range 64 < x < 128, a right-justified mask of (128 — x) bits is returned.

MASK is intrinsic for CFT and CFT77.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

EXAMPLES
The following section of Fortran code shows the MASK function used with several different arguments.
The bit patterns of the results are given. The 64-bit word has been shortened to improve clarity.
INTEGER 11, 12, I3

11 = MASK(3)
12 = MASK(64)
I3 = MASK(127)

l1]1]1]ofofofJo] ... Jolo]o]
I

(111 [1] ... [1]1]1]1]
2

oJojolo| ... Jojofof1]
13

SR-0113 2-55 D



MOD(3M)

NAME

MOD, AMOD, DMOD — Computes remainder of x/x»
SYNOPSIS

Fortran:

i = MOD(integer.integer)
AMOD(real real)
DMOD(double,double)

r
d

DESCRIPTION
These functions evaluate y = x;—x 3] X,/x,} .

MOD returns the integer remainder of its integer arguments.
AMOD returns the real remainder of its real arguments.
DMOD returns the double-precision remainder of its double-precision arguments.

MOD is the generic function name.
MOD, AMOD, and DMOD are intrinsic for CFT and CFT77.

ARGUMENT RANGE
MOD:
|2 |<2%
0<|x,|<2%
278 | xy/x,] <28
AMOD:
[x1]<2¥
0<|xy|<2¥
279 < | xxp| <29
DMOD:
| %] <2%
0<|xy]<2%
2% < | xyxy| < 2%

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems,

SR-0113 2-56

MOD(3M)



MOD(3M) MOD(3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: MOD, AMOD: In-line
DMOD, MOD (long integer - CFT only): External

SR-0113 2-57 D



NEQV(3M) NEQV(3M)

NAME
NEQV, XOR - Computes logical difference

SYNOPSIS
Fortran:

| = NEQV(logical logical)
! = XORC(logical,logical)
b = NEQV(arg.arg)

b = XOR(arg.arg)

DESCRIPTION

arg = CFT: type Boolean, integer, or real
CFT77: type Boolean, integer, real, or pointer

NEQV and XOR are two names for the same routine.

When given two arguments of type logical, NEQV and XOR compute a logical difference and return a

logical result.
When given two arguments of type Boolean, integer, real, or pointer, NEQV and XOR compute a bit-
wise logical difference and return a Boolean result.

NEQV and XOR are intrinsic for CFT and CFT77.

The following tables show both the logical difference and bit-wise logical difference.
NEQYV is shown in the tables, but XOR produces identical results.

Logical Variable 1 | Logical Variable 2 | (Logical Variable 1) NEQV (Logical Variable 2)
T T F
T F T
F T T
F F F
Bit of Variable 1 | Bit of Variable 2 | (Bit of Variable 1) NEQV (Bit of Variable 2)
1 1 0
1 0 1
0 1 1
0 0 0

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-58 D



NEQV (3M) NEQV (3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line
CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES

The following section of Fortran code shows the NEQV function used with two arguments of type
logical. XOR is used in the same manner and produces the same results.

LOGICAL L1, 12, L3
L3 = NEQV(L1,L2)

The following section of Fortran code shows the NEQV function used with two arguments of type
integer. XOR is used in the same manner and produces the same results.

The bit patterns of the arguments and result are also given. For clarity, an 8-bit word is used instead of
the actual 64-bit word.

INTEGER I1, 12, I3

I3 = NEQV(ILI2)

fojojofoflrji]ofo]
Il

loJoJofo]J1]o]1]o0]
12

lotolofofof1[1]0]
13

SR-0113 2-59 D



NINT (3M) NINT (3M)

NAME
NINT, IDNINT - Finds nearest integer

SYNOPSIS
Fortran:
i = NINT(real)
i = IDNINT(double)
DESCRIPTION
These functions find the nearest integer for real and double-precision numbers, using the following
equations:
y = Lx+5] if x20
y = I_x-.5_| if x<0

NINT retumns the nearest integer for its real argument.
IDNINT returns the nearest integer for its double-precision argument.
NINT is the generic function name.

NINT and IDNINT are intrinsic for CFT and CFT77.

ARGUMENT RANGE

| x | < 2%

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full

Code generation: NINT: In-line
IDNINT: External

SR-0113 2-60 D



OR(3M)

NAME
OR - Computes logical sum

SYNOPSIS
Fortran:
I = OR(logical,logical)
b = OR(arg,arg)
DESCRIPTION
arg = CFT: type Boolean, integer, or real

OR(3M)

CFT77: type Boolean, integer, real, or pointer

When given two arguments of type logical, OR computes a logical sum and retums a logical result.
When given two arguments of type integer, real, Boolean, or pointer, OR computes a bit-wise logical

sum and returns a Boolean result.
OR is intrinsic for CFT and CFT77.

The following tables show both the logical sum and bit-wise logical sum:

Logical Variable 1 | Logical Variable 2 | (Logical Variable 1) OR (Logical Variable 2)
T T T
T F T
F T T
F F F
Bit of Variable 1 | Bit of Variable 2 | (Bit of Variable 1) OR (Bit of Variable 2)
1 1 1
1 0 1
0 1 1
0 0 0

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full
Code generation: In-line

SR-0113 2-61



OR (3M) OR(3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments., The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES
The following section of Fortran code shows the OR function used with two arguments of type logical:

LOGICAL L1, L2,L3

L3 = OR(L1,L2)
The following section of Fortran code shows the OR function used with two arguments of type integer.
The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER I1, 12, I3

13 = OR(I1,12)

lo[ofJoJof1f1]o]o0]
11

loJofofo]1]of1]o0]
12

[ofofofo[r[1]1]o0]
13

SR-0113 2-62 D



POPCNT (3M) POPCNT (3M)

NAME
POPCNT - Counts number of bits set to 1

SYNOPSIS
Fortran:
i = POPCNT(arg)

DESCRIPTION
arg = CFT: type Boolean, integer, real, or logical
CFT77: type Boolean, integer, real, or pointer
When given an argument of type integer, real, logical, Boolean, or pointer, POPCNT counts the number
of bits set to 1 in the 64-bit representation of the argument.
POPCNT is intrinsic for CFT and CFT77,

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.

Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

EXAMPLES
The following section of Fortran code shows the POPCNT function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also given. For clarity, a 16-bit
word is used instead of the actual 64-bit word.
INTEGER 11, 12

12 = POPCNT(I1)

[oJoJoJoJoJ1|rJojo[rf1fr][ofof1]o0]
11

The POPCNT function returns the value 6 to the integer variable I2.

SR-0113 2-63 D



POPPAR (3M) POPPAR (3M)

NAME
POPPAR - Computes bit population parity

SYNOPSIS
Fortran:
i = POPPAR(arg)

DESCRIPTION
arg = CFT: type Boolean, integer, real, or logical
CFT77: type Boolean, integer, real, or pointer

When given an argument of type integer, real, logical, Boolean, or pointer, POPPAR retums the value 0
if an even number of bits are set to 1 in the 64-bit representation of the argument or the value 1 if an
odd number of bits are set to 1 in the 64-bit representation of the argument.

POPPAR is intrinsic for CFT and CFT77.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

EXAMPLES

The following section of Fortran code shows the POPPAR function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also given. For clarity, a 16-bit
word is used instead of the actual 64-bit word.

INTEGER 11, 12

12 = POPPAR(I1)

loJoJoJofof1[s1folofr|r]r]ofof1]o]
I1

The POPPAR function returns the value 0 to the integer variable I2.

SR-0113 2-64 D



POWER (3M) POWER (3M)

NAME

CTOC, CTOI, CTOR, DTOD, DTOI, DTOR, ITOI, RTOI, RTOR, pow — Raises base value to a power

SYNOPSIS

C:
ffinclude <math.h>

double pow(x, y)
double x, y;

DESCRIPTION

SR-0113

These routines return the appropriate real or integer power function XY of their arguments.
CFT and CFT77 routines implicitly call these routines to raise a value to a power.

CTOC, CTOI, and CTOR raise a complex base to a complex power (C¢), an integer power (C’), or a
real power (C®), respectively.
The complex base cannot be (0.0, 0.0).

DTOD, DTOI, and DTOR raise a double-precision base to a double-precision power (DD), an integer
power (D), or a real power (D¥), respectively.

ITOI raises an integer base to an integer power (I').

RTOI and RTOR raise a real base to an integer power (R7) or a real power (R*), respectively.
Routine pow raises a real base to a real power (R*).

Base values in DTOD, DTOR, and RTOR must be positive.

2-65 D



RAN(3M) RAN(3M)

NAME
RANF, RANGET, RANSET — Computes pseudo-random numbers

SYNOPSIS
Fortran:
r = RANF()
b = RANGET(integer) (CFT)
b = RANGET(([integer]) (CFT77)
r = RANSET((integer) (CFT)
r = RANSET(arg) (CFT77)
DESCRIPTION

arg = type integer, real, or Boolean

These functions compute pseudo-random numbers and either set or retrieve a seed.
RANF:

e Obtains the first or next in a series of pseudo-random numbers, such that 0 < y < 1, in the form of
a normalized floating-point number,

e Uses a null argument. If an argument is supplied, it will be ignored. Parentheses are required in
the call, however.

RANGET:
¢ Obtains a seed.
o Can be called as a function or a subroutine in CFT,
» Has an optional integer argument for CFT77.
¢ Requires an integer argument for CFT.
If an argument is present, the result is also returned at the address of the argument.

RANSET:
o Establishes a seed such that y = x.
* Requires an integer argument in CFT.
* Requires an argument of type integer, real, or Boolean in CFT77.
The return value of the function is not meaningful (it returns the input value).
If no argument or a zero argument is supplied, the seed is reset to an initial default value.

If an argument is supplicd, the lower 48 bits are used as the random-number seed. The right-most bit
is always set to 1.

When the seed of the random number generator is reset, RANSET does not store the supplied argu-
ment as the first value in the buffer of the random number seeds.

RANF, RANGET, and RANSET are intrinsic for CFT and CFI77.

ARGUMENT RANGE
|x <o (e0=107%)

SR-0113 2-66 D



RAN(3M) RAN(3M)

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: RANF: Full
RANGET, RANSET: None

Code generation: External
The CRI random number generator uses static memory storage for the random number seed table,

Therefore, the functions RANF, RANSET, and RANGET must be protected (locked) when called from a
multitasked program.

EXAMPLES

DO 101=1,10
10  RANDOM()=RANF()

CALL RANGET((iseedl)

C or
iseed=R ANGET(ivalue)

CALL RANSET(ivalue)

C or
dummy=RANSET (ivalue)

SR-0113 2-67 D



REAL(3M) REAL(3M)

NAME
REAL, FLOAT, SNGL — Converts to type real

SYNOPSIS
Fortran:
REAL(arg)

1]

r

r

FLOAT((integer)

r = SNGL(double)
r = SNGL(boolean)
DESCRIPTION

arg = type complex, integer, or real

These functions convert specified types to type real, such that y = x (or y = x, for complex arguments).

REAL returns the real equivalent of its complex, integer, or real argument.
FLOAT returns the real equivalent of its integer argument.
SNGL returns the real equivalent of its double-precision or Boolean argument.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu-
lating the bit patterns they represent.

REAL is the generic function name,
REAL, FLOAT, and SNGL are intrinsic for CFT and CFT77.

ARGUMENT RANGE

REAL:
Real: |x [<oo (oo = 10%%)
Integer: |x [ < 2%
Complex: | x, | < %)
FLOAT:
Integer: |x [<2%
24-bit integer (CFT only): |x | < 23
SNGL:
Double precision: |x |< e  (in CFT77, | x| <2%)
Boolean: | x| < 2%
IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-68 D



REAL(3M) REAL(3M)

NOTES
Fortran:

ANSI Foriran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

SR-0113 2-69 D



SHIFT (3M) SHIFT (3M)

NAME
SHIFT — Performs a left circular shift

SYNOPSIS
Fortran:
b = SHIFT(argl arg2)

DESCRIPTION
argl = The value to be shifted
CFT77: type Boolean, integer, real, or pointer
CFT: type Boolean, integer, or real
arg2 = The number of bits to shift the value
— type integer
For arg2 in the range 0 < arg2 < 64, SHIFT performs a left circular shift of the 64-bit representation of
argl by arg?2 bits.

For arg2 2 65, a left circular shift is not performed. Instead, SHIFT is defined as follows when
arg2 2 65:

For arg2 in the range 65 < arg2 < 128, SHIFT(argl,arg2) is defined as SHIFTL(argl,arg2-64).
See SHIFTL(3M).

For arg2 in the range 129 < arg2 < 2%-1, SHIFT returns a value with all bits set to 0.
For arg2 in the range 2% < arg2 < 2%-1, SHIFT returns an undefined result.
SHIFT is intrinsic for CFT and CFT77.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.

Fortran:
ANSI Fortran 77 standard or Cray extension 1o standard: Cray extension
Level of vectorization: Full
Code generation; In-line

SR-0113 2-70 D



SHIFT(3M) SHIFT(3M)

EXAMPLES

The following section of Fortran code shows the SHIFT function used in the case where argl is of type
integer. For purposes of clarity, a 16-bit word is used instead of the actual 64-bit word. The bit pattern
of argl and the bit pattern of the result are also given.

INTEGER 11, 12, I3
12 =5
I3 = SHIFT(11,12)

lrJafrfrfrfifrfrfofoJoJoJofofo[o]
It {(argl)

[1]1]1fofoJofofoJoJoJo 1 |1]r[a]1]
13 (result)

SR-0113 2-71 D



SHIFTL(3M) SHIFTL (3M)

" NAME
SHIFTL - Performs a left shift with zero fill

SYNOPSIS
Fortran:
b = SHIFTL(argl.arg2)

DESCRIPTION
argl = The value to be shifted
CFT77: type Boolean, integer, real, or pointer
CFT: type Boolean, integer, or real
arg2 = The number of bits to shift the value
— type integer
For arg2 in the range 0 < arg2 < 2%-1, SHIFTL performs a left shift with zero fill of the 64-bit

representation of argl by arg2 bits. Note that when arg2 is in the range 64 < arg2 < 2%-1, SHIFTL
returns a value with all bits set to 0.

For arg2 in the range 2% < arg2 < 2%-1, SHIFTL returns an undefined result.
SHIFTL is intrinsic for CFT and CFT77.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.

Fortran:
ANSI Fortran 77 standard or Cray extension to standard: Cray extension
Level of vectorization: Full
Code generation: In-line

SR-0113 2-72 D



SHIFTL (3M) SHIFTL (3M)

EXAMPLES

The following section of Fortran code shows the SHIFTL function used in the case where argl is of
type integer. The bit pattern of argl and the bit pattern of the result are also given. For clarity, a 16-
bit value is used instead of a 64-bit value.

INTEGER 11,12, I3

D=5
I3 = SHIFTL(I1,12)

[1[1f1f1f1frf1]1]ofofofo]o]lo]o]q]
I1 (argl)

[1{1[1]ofofofoJofofo|o]o]o]o]o]o]
I3 (result)

SR-0113 2-73 D



SHIFTR (3M) SHIFTR(3M)

NAME
SHIFTR - Performs a right shift with zero fill

SYNOPSIS
Fortran:
b = SHIFTR(argl,arg2)

DESCRIPTION
argl = The value to be shifted
CFT77: type Boolean, integer, real, or pointer
CFT: type Boolean, integer, or real
arg2 = The number of bits to shift the value
— type integer
For arg2 in the range 0 < arg2 < 2%-1, SHIFTR performs a right shift with zero fill of the 64-bit

representation of argl by arg2 bits. Note that when arg2 is in the range 64 < arg2 < 2%-1, SHIFTR
returns a value with all bits set to 0.

For arg?2 in the range 2% < arg2 < 2%-1, SHIFTR returns an undefined result.
SHIFTR is intrinsic for CFT and CFI77.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual,
publication SR-0018.
Fortran;

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

SR-0113 2-74 D



SHIFTR (3M) ' SHIFTR (3M)

EXAMPLES

The following section of Fortran code shows the SHIFTR function used in the case where argl is of
type integer. The bit pattern of arg! and the bit pattern of the result are also given. For purposes of
clarity, a 16-bit value is used instead of a 64-bit value.

INTEGER 11, 12, I3

=5
13 = SHIFTR(11,12)

[tf1[afrfif1]rf1]ojofo]o]JoJo|o]o]
11 (argl)

loJoJoJoJofaftfafrt[afit[1]1]o]o]o0]
13 (result)

SR-0113 2-75 D



SIGN(3M) SIGN(3M)

NAME
SIGN, ISIGN, DSIGN — Transfers sign of numbers

SYNOPSIS
Fortran:

r = SIGN(realreal)
i = ISIGN(integer integer)
d = DSIGN(double double)

DESCRIPTION
This function evaluates one of the following equations, depending on the sign of the number:

y= x| if xo20
or
y=—|x| if x,<0

SIGN transfers the sign from one real number to another.
ISIGN transfers the sign from one integer to another.
DSIGN transfers the sign from one double-precision number to another.

SIGN is the generic function name.
SIGN, ISIGN, and DSIGN are intrinsic for CFT and CFT77.

ARGUMENT RANGE
[x1].]x2]<o0 (oo = 10%)

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANGSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: In-line

SR-0113 2-76 D



SIN(3M)

NAME

SIN, DSIN, CSIN, sin — Computes the sine

SYNOPSIS

Fortran:

SIN(real)
DSIN(double)
CSIN(complex)

r
d

4

CAL register usage:

Scalar SIN:

SIN% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DSIN:

DSIN%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result

Scalar CSIN:

CSIN% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S82) = result
DESCRIPTION

These functions evaluate y = sin(x).

SIN(3M)

C:

#include <math.h>
double sin(x)

double x;

Vector SIN:

%SIN% (call by register)
on entry (V1) = argument vector
on exit (V1) = result vector

Vector DSIN:
%DSIN% (call by register)

on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector
Vector CSIN:

%CSIN% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

SIN and sin (callable only from C programs) retum the real sine of their real arguments.
DSIN returns the double-precision sine of its double-precision argument.
CSIN returns the complex sine of its complex argument.

SIN is the generic function name.

SIN, DSIN, and CSIN are intrinsic for CFT and CFT77.

ARGUMENT RANGE

SIN: |x |<2®
DSIN: |x | <2

CSIN: | x,|< 2%, |x;|<2®* In2

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113

2-77



SIN(3M) SIN(3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-78 D



SINH (3M) SINH(3M)

NAME
SINH, DSINH, sinh — Computes hyperbolic sine

SYNOPSIS
Fortran: C
r = SINH(real) #include <math.h>
d = DSINH(double) double sinh(x)
double x;

CAL register usage:

Scalar SINH: Vector SINH:

SINH% (call by register) %SINH% (call by register)

on entry (S1) = argument on entry (V1) = argument vector

on exit (S1) = result on exit (V1) = result vector

Scalar DSINH: Vector DSINH:

DSINH%  (call by register) %DSINH% (call by register)

on entry (S1) and (S2) = argument on entry (V1) and (V2) = argument vector

on exit (S1) and (S2) = result on exit (V1) and (V2) = result vector
DESCRIPTION

These functions evaluate y = sinh(x).

SINH and sinh (callable only from C programs) return the real hyperbolic sine of their real argument.
DSINH returns the double-precision hyperbolic sine of its double-precision argument.

SINH is the generic function name.
SINH and DSINH are intrinsic for CFT and CFT77.

ARGUMENT RANGE
|x|<2B* In2

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

SR-0113 2-79 D



SINH(3M) SINH(3M)

C:
ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-80 D



SNGLR (3M) SNGLR(3M)

NAME
SNGLR - Returns closest real approximation to double precision

SYNOPSIS
Fortran:
r = SNGLR(double)

DESCRIPTION

SNGLR returns the closest real approximation to its double-precision argument.
The double-precision argument is rounded to a single word, using the high-order bit of the second word.

SR-0113 2-81



SQRT(3M)

NAME

SQRT(3M)

SQRT, DSQRT, CSQRT, sqrt — Computes square root

SYNOPSIS

Fortran:

SQRT(real)
DSQRT(double)
CSQRT(complex)

r
d

b4

CAL register usage:

Scalar SQRT:

SQRT%  (call by register)
on entry (S1) = argument
on exit (S1) = result

Scalar DSQRT:

DSQRT%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result

Scalar CSQRT:

CSQRT%  (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = x 2.

C:

#include <math.h>
double sqrt(x)
double x;

Vector SQRT:

%SQRT% (call by register)
on entry (V1) = argument vector
on exit (V1) = result vector

Vector DSQRT:

%DSQRT% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

Vector CSQRT:

%CSQRT% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

SQRT and sqrt (callable only from C programs) return the real square root of their real argument.
DSQRT returns the double-precision square root of its double-precision argument.
CSQRT returns the complex square root of its complex argument.

SQRT is the generic function name.

SQRT, DSQRT, and CSQRT are intrinsic for CFT and CFT77.

ARGUMENT RANGE
SQRT, DSQRT: 0 <x < oo
CSQRT: x|, |x;| <o

IMPLEMENTATION

(”2107/%66)

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113



SQRT(3M) SQRT (3M)

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: Extemal

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-83 D



TADD (3M)

NAME

TADD(3M)

TADD, TASS, TDIV, TDSS, TMLT, TMSS, TSUB, TSSS ~ Performs triple-precision arithmetic

DESCRIPTION

TADD, TASS - Triple-precision addition
TDIV, TDSS — Triple-precision division

TMLT, TMSS - Triple-precision multiplication

TSUB, TSSS - Triple-precision subtraction

Triple-precision arithmetic results are stored in three contiguous 64-bit computer words. In the first
word, the high-order 16 bits contain the exponent, and the low-order 48 bits contain the first part of the
value, The rest of the value is contained in the low-order 48 bits of the second and third words. The
high-order 16 bits of the second and third words must be 0. If these routines are called from Fortran,
the arguments must be passed in 3-word arrays.

EXAMPLES

SR-0113

Fortran:

REAL C(3),D(3),RSLT(3)

C(1) = 0 53210 4567012345670123B
C(2) = 0 00000 0123456701234567B
C(3) = 0 00000 7654321076454321B
(1) = 1 53266 7245435774406773B
D(2) = 0 00000 0227373374570723B
D(3) = 0 00000 0326757726541757B
CALL TADD(C,D,RSLT)

CAL: (Call by address)

CALL TASS,(C1,C2,C3,D1,D2,D3)

CAL: (Call by value)

S1 C1,0
S2 C20
S3 C3,0
S4 DLO
S5 D2,0
S6 D3,0
CALLV TASS%
C1 CON
C2 CON
C3 CON
D1 CON
D2 CON
D3 CON

0’0532104567012345670123
0’0000000123456701234567
0’0000007654321076454321
0’1532667245435774406773
0’0000000227373374570723
00000000326757726541757

The results are returned in registers S1, S2, and S3.



TAN(3M)

NAME
TAN, DTAN, tan — Computes tangent

SYNOPSIS
Fortran:

r = TAN(real)
DTAN(double)

H

CAL register usage:

Scalar TAN:

TAN% (call by register)

on entry (S1) = argument

on exit (S1) = result

Scalar DTAN:

DTAN% (call by register)

on entry (S1) and (S2) = argument

on exit (S1) and (S2) = result
DESCRIPTION

These functions evaluate y = tan(x).

TAN(3M)

C:

#include <math.h>
double tan(x)
double x;

Vector TAN:
%TAN% (call by register)

on entry (V1) = argument vector
on exit (V1) = result vector
Vector DTAN:

%DTAN% (call by register)
on entry (V1) and (V2) = argument vector
on exit (V1) and (V2) = result vector

TAN and tan (callable only from C programs) return the real tangent of their real argument.
DTAN returns the double-precision tangent of its double-precision argument.

TAN is the generic function name.

TAN and DTAN are intrinsic for CFT and CFT77.

ARGUMENT RANGE
[x|<2%

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full
Code generation: Extemal

SR-0113

2-85 D



TAN(3M) TAN(3M)

ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: External

SR-0113 2-86 D



TANH(3M) TANH (3M)

NAME
TANH, DTANH, tanh — Computes hyperbolic tangent

SYNOPSIS

Fortran: C:

r = TANH(real) #include <math.h>

d = DTANH(double) double tanh(x)

double x;

CAL register usage:
Scalar TANH: Vector TANH;
TANH%  (call by register) %TANH% (call by register)
on entry (S1) = argument on entry (V1) = argument vector
on exit (S1) = result on exit (V1) = result vector
Scalar DTANH: Vector DTANH:
DTANH%  (call by register) %DTANH% (call by register)

on entry (S1) and (S2) = arg words 1 and 2 on entry (V1) and (V2) = argument vector
on exit (S1) and (S2) = result words 1 and 2 on exit (V1) and (V2) = resunlt vector

DESCRIPTION

These functions evaluate y = tanh(x).

TANH and tanh (callable only from C programs) return the real hyperbolic tangent of their real argu-
ment.
DTANH returns the double-precision hyperbolic tangent of its double-precision argument.

TANH is the generic function name.
TANH and DTANH are intrinsic for CFT and CFT77.

ARGUMENT RANGE
|x]|<2?* In2
IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

NOTES
Fortran:
ANSI Fortran 77 standard or Cray extension to standard: ANSI standard
Level of vectorization: Full
Code generation: External

SR-0113 2-87 D



TANH(3M) TANH(3M)

C:
ANSI C standard or Cray extension to standard: ANSI standard
Level of vectorization: None
Code generation: Extemal

SR-0113 2-88 D



INTRO(3X) INTRO(3X)

3. COS DATASET MANAGEMENT SUBPROGRAMS

Dataset management subprograms provide the user with the means of managing COS permanent
datasets; creating, staging, and releasing datasets; and changing dataset attributes. These routines are
grouped into two subsections:

e COS control statement type subprograms
e COS dataset search type subprograms

IMPLEMENTATION
The dataset management routines are available only under COS.

COS CONTROL STATEMENT TYPE SUBPROGRAMS

A control-statement-type subprogram resembles Cray job control language (JCL) statements in name and
purpose. A subprogram, however, can be called from within Fortran or CAL programs while a JCL
statement cannot. See the COS Reference Manual, publication SR-0011, for a description of control
statements, parameters and keywords, and JCL error codes.

The following is an example of a Fortran call to a control-statement-type subprogram:
EXAMPL="EXAMPL’L
IDC="PR’L
CALL ASSIGN(rtc, DN'L,EXAMPL,’U’L,'MR’L,'DC’L,IDC)

Variable irrc is an integer that contains a status code upon return. A status code of 0 indicates no errors.

This type of subprogram requires call-by-address subroutine linkage with the following calling
sequence:

CALL SUBROUTINE NAME(stat keyl key2,....keyn)

stat Returned status code
key Keyword/value combinations in one of the following formats (must be entered in
uppercase):

’KEYWORD'’L,"VALUE'L
or
’KEYWORD’L

When the keyword can accept multiple parameter values, the values must be passed as an array: one
parameter per word, terminated by a zero word. For example, the COS control statement
MODIFY (DN=DATASET,PAM=R:W) would be coded as follows:

INTEGER PAM(3)

DATA PAM/R’L, 'W'L, 0/
CALL MODIFY(ISTAT, 'DN'L, 'DATASET'L, 'PAM’L, PAM)

SR-0113 3-1 D



INTRO(3X) INTRO(3X)

SR-0113

Permanent Dataset Management routines access the COS Permanent Dataset Manager (PDM) and
return the status of the operation in stat. The value is 0 if an error condition does not exist and nonzero
if an error condition does exist. The nonzero error codes correspond to the PMST codes defined in the
COS Reference Manual. The following is a list of the PDM routines and their functions.

Control Statement Function

ACCESS Associates a permanent dataset with the job

ADJUST Expands or contracts a permanent dataset

DELETE Removes a saved dataset. The dataset remains available to the job until

it is released or the job terminates. DELETE with PDN parameter
requires special privilege SCRDSC (read Dataset Catalog).

MODIFY Changes the permanent dataset characteristics
PERMIT Specifies the user access mode to a permanent dataset
SAVE Makes a dataset permanent and enters the dataset’s identification and

location into the Dataset Catalog (DSC)

Dataset staging routines stage datasets to or from a front-end processor or to the Cray input queue.
The transfer aborts and an error code is returned if an error occurs. The error codes correspond to the
PMST codes in the COS Reference Manual. The following is a list of dataset staging routines and their
functions.

Control Statement Function

ACQUIRE Obtains a front-end resident dataset, stages it to the Cray mainframe, and
makes it permanent and available to the job making the request

DISPOSE Directs a dataset to the specified front-end processor or designates it to a
scraich dataset

FETCH Brings a front-end resident dataset to the Cray mainframe and makes the
dataset available to the job

SUBMIT Places a job dataset into the Cray input queue. When called as an integer

function, the value of the function is the job sequence number of the sub-
mitted job, if successful.

Definition and control routines allow dataset attributes to be changed and datasets to be created and
released. They return the status of the operation in stat. The value of the stat is 0 if no error condition
exists and nonzero if an error condition exists. ASSIGN returns a three-digit code that corresponds to
log file message codes that begin with SL. Thus, a return code of 020 from ASSIGN corresponds to the
following log file message:

SL020 - INVALID DATASET NAME OR UNIT NUMBER

All of the SL messages and descriptions of their meanings can be found in the COS Message Manual,
publication SR-0039.



INTRO(3X) INTRO(3X)

The following is a list of definition and control routines.

Control Statement Function

ASSIGN Opens a dataset for reading and writing and assigns characteristics to it

OPTION Changes the user-specified options, such as lines per page and dataset
statistics, for a job

RELEASE Closes a dataset, releases I/O buffer space, and renders it unavailable to
the job

COS DATASET SEARCH TYPE SUBPROGRAMS
Dataset search subprograms add information to or return information about a dataset.
The following table contains the purpose, name, and heading of each dataset search type routine.

COS Dataset Search Type Subprograms

Purpose Name Heading |
Add a name to the Logical File ADDLFT | ADDLFT |
Table (LFT)
Search for a Dataset Parameter GETDSP GETDSP
Table (DSP) address
Determine if a dataset has been IFDNT IFDNT
accessed or created
Allow a program to access datasets SDACCESS | SDACCESS
in the System Directory

SR-0113 33 D



ADDLFT (3COS) ADDLFT(3COS)

NAME
ADDLFT - Adds a name to the Logical File Table (LFT)

SYNOPSIS
CALL ADDLFT(dndsp)

DESCRIPTION

dn Name to add to the LFT

dsp Dataset Parameter Table (DSP) address for the name specified by dn
IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-0113 34 D



CALLCSP(3COS) CALLCSP(3COS)

NAME
CALLCSP - Executes a COS control statement

SYNOPSIS
CALL CALLCSP(string)

DESCRIPTION

string A valid COS ICL statement, either packed into an integer array and terminated by a null
byte or specified as a literal string.

The control statement specified in the string is executed as if it had been found next in the job stream.
For example, the following call invokes the NOTE utility, which writes HIGH, THEIR! to the $OUT
dataset:

CALL CALLCSP(CNOTE,TEXT="HIGH, THEIR!".")
Control does not return from the CALLCSP routine.

NOTE
In general, use CALLCSP instead of LGO.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

SR-0113 ' 35 D



GETDSP(3COS) GETDSP(3COS)

NAME

GETDSP - Searches for a Dataset Parameter Table (DSP) address
SYNOPSIS

CALL GETDSP(unit dsp.ndsp.dn)
DESCRIPTION

unit Dataset name or unit number

dsp DSP address

ndsp Negative DSP offsct relative to the base address of DSPs, or DSP address if the DSP is below

JCHLM.

dn Dataset name (ASCI, left-justified, blank-filled)

GETDSP scarches for a DSP address. If none is found, a DSP is created.
IMPLEMENTATION

This routine is available only to the users of the COS operating system,

SR-0113 3-6 D



IFDNT (3COS) IFDNT (3COS)

NAME
IFDNT - Determines if a dataset has been accessed or created

SYNOPSIS
stat=IFDNT(dn)

DESCRIPTION
stat -1 (TRUE) if dataset was accessed or opened; otherwise 0 (FALSE).
dn Dataset name (ASCII, left-justified, zero-filled)

NOTE

IFDNT and stat must be declared LOGICAL in the calling program.

EXAMPLE
IF (NOT. IFDNT('MYFILE'L)) CALL ACCESS(ISTAT,'DN'L,"MYFILE'L)
If you access MYFILE twice in a program, the system aborts the job. IFDNT allows you to test for its
having been previously accessed.
IMPLEMENTATION

This routine is available only to the users of the COS operating system.
The function of IFDNT can be achieved through the Fortran INQUIRE routine, which is available under
both COS and UNICOS.

SR-0113 3-7 D



SDACCESS (3COS) SDACCESS (3CO0S)

NAME
SDACCESS - Allows a program to access datasets in the System Directory

SYNOPSIS
CALL SDACCESS(istat.dn)

DESCRIPTION
istat An integer variable to receive the completion status (0 or 1).
0 The dataset is a system dataset and has been accessed.
1 The dataset is not a system dataset and has not been accessed.
dn Name of the system dataset 10 be accessed

This function has no corresponding control statement. Datasets accessed in this manner are automati-
cally released at the end of the job step.

EXAMPLE

PROGRAM SDTEST
CHARACTER*7 NAME
INTEGER X
READ*, NAME
=IFDNT(NAME)
IF (X.EQ.0) THEN
PRINT*,"***DATASET ' \NAME, "WAS NOT LOCAL****
CALL SDACCESS(STAT,NAME)
IF (STAT.NE.O) THEN
PRINT*,"***DATASET ' NAME,' NOT AVAILABLE’
CALL ABORT
ELSE
PRINT*,"***DATASET 'NAME,” ACCESSED BY SDTEST"
ENDIF
ELSE
PRINT*,"DATASET ' ,NAME,” ALREADY LOCAL’
ENDIF
END

IMPLEMENTATION
This routine is available only to the users of the COS operating system.

SR-0113 3-8 D



INTRO (3X) INTRO(3X)

4. LINEAR ALGEBRA SUBPROGRAMS

The linear algebra subprograms are written to run optimally on Cray computer systems. These subpro-
grams use call-by-address convention when called by a Fortran, C, or CAL program.
The linear algebra subprograms include the following:

e Basic linear algebra subprograms

e Linear recurrence routines

e Matrix inverse and multiplication routines

» Filter routines

o Gather-scatter routines

e LINPACK and EISPACK routines

Basic Linear Algebra Subprograms

The Cray computer user has access to the Basic Linear Algebra Subprograms (BLAS), the level 2 BLAS
(BLAS 2), and the level 3 BLAS (BLAS 3). The level 1 package is described first, and is followed by
descriptions of the level 2 and level 3 packages.

BLAS
The level 1 BLAS is a package of CAL-coded routines and their extensions. BLAS routines are
used for basic vector operations. The package includes only the single-precision and complex
versions. The following operations are available:

» A constant times a vector plus another vector

¢ Dot products

¢ Euclidean norm

» Givens transformations

¢ Sum of absolute values

e Vector copy and swap

e Vector scaling

SR-0113 4-1 D



INTRO(3X)

SR-0113

INTRO(3X)

Each BLAS routine has a real version and a complex version. There are several frequently used
variables that must be declared in your program. The following table lists common variables and
their Fortran type declaration and dimensions, in generalized terms.

Linear Algebra Variables
Variable Description Fortran Type and Dimension
SX Primary real array or vector REAL SX(mx)
SY Secondary real array or vector REAL SY(my)
SA Real scalar REAL SA
CX Primary complex array or vector COMPLEX CX(mx)
CY Secondary complex array or vector COMPLEX CY(my)
CA Complex scalar COMPLEX CA
INCX Increment between elements
in SX or CX INTEGER INCX
INCY Increment between elements
in 8Y or CY INTEGER INCY
N Number of elements in vector to compute INTEGER N

The minimum dimensions of the preceding arrays are as follows: mx=1+(N-1)*[INCX| and
my=1+(N-1)*/INCY]|, respectively; where N is the length of each vector operand. In all routines,
if N <0, inputs and outputs return unchanged.

The Fortran type declaration for complex functions is especially important; declare them to avoid
type conversion to zero imaginary parts. Fortran type declarations for function names follow:

Type Function Name
REAL SASUM, SCASUM, SDOT, SNRM2, SCNRM2
COMPLEX CDOTC, CDOTU

Negative incrementation - For routines managing noncontignous elements in a one-dimensional
array, the parameters incx and incy specify increments. An increment value of 1 or -1 indicates
contiguous elements.

Given an n-element array A consisting of A(1), A(2), A(3),...,A(n), for positive increments (incx >
0

e The managed array elements are as follows:
A1), A(1+incx), A(1+2*incx), A(1+3*incx)y..., A(1+(p-1)*incx),

where p is the number of array elements to be processed.

e Forn MODULO incx >0, p < 14+—2—. Otherwise, p < L
incx incx



INTRO(3X)

SR-0113

Given the previous array and a negative increment (incx < 0):

The managed array elements are as follows:

A(1+(p-1)*ABS(incx)),
A(1+(p-2)*ABS(incx)), A(1+(p-3y*ABS(incx)),
A(L+(p-4)*ABS(incx)),...,A(1+(p-p)* ABS(incx)),

where p is the number of array elements to be processed.

n
ABS(incx)

n

, < o
For n MODULO incx > 0, p < 1+ ABS(inca)

. Otherwise, p <

EXAMPLE - The real function ISAMAX returns the relative index of I such that
ABS(A(D)) = MAX ABS(A(1+(J-1)*INCX)) for J=1,2,3,...p.

The call from Fortran is as follows:
RELINDEX = ISAMAX(p.array,incx)
Assume A(1)=2.0, A(2)=4.0, A(3)=6.0,...,A(20)=40.0 (the number of elements n=20).

With a positive increment (incx=3), the number of elements processed p=7
(since 20 MODULO 3 > 0, p = 1+nfincx = 1420/3 = 146 = 7).

Therefore, the function is evaluated as follows:

ISAMAX(7,A,3)=
rel. index of MAX(2.0,8.0,14.0,20.0,26.0,32.0,38.0)

= relative index of 38.0
=7

With a negative increment incx=-3, the number of elements processed p=7
(since 20 MODULO ABS(-3) > 0, p = 1+n/ABS(incx) = 1420/3 = 146 = 7.

Therefore, the function is evaluated as follows:

ISAMAX(7,A,-3)=
rel. index of MAX(38.0,32.0,26.0,20.0,14.0,8.0,2.0)

= relative index of 38.0
=1

4-3

INTRO(3X)



INTRO(3X) INTRO(3X)

The following table contains the purpose, name, and manual entry of each level 1 BLAS routine.
The "manual entry” is the name of the manual page containing documentation for the routine(s)

listed.
Level 1 BLAS
Purpose Name Manual Entry
Sum the absolute values of a real or SASUM SASUM
complex vector SCASUM
Add a scalar multiple of a real or SAXPY SAXPY
complex vector to another vector CAXPY
Copy a real or complex vector into SCOoPY SCOPY
another vector CCOPY
Apply a complex Givens plane rotation CROT CROT
Compute a complex Givens plane rotation matrix | CROTG CROTG
Compute a dot product of two real SDOT DOT
or complex vectors CDOTC
CDOTU
Scale a real or complex vector SSCAL SCAL
CSSCAL
CSCAL
Compute the product of a column vector SMXPY SMXPY
and a matrix and add to another column
vector
Compute the product of a row vector and a SXMPY SXMPY
matrix and add to another row vector
Compute the Euclidean norm or SNRM2 SNRM2
{, norm of a real or complex SCNRM2
vector
Compute a sparse dot product of two SPDOT SPDOT
real vectors or add a scalar multiple SPAXPY
of a vector to a sparse vector
Apply an orthogonal plane rotation SROT SROT
Construct a Givens plane rotation SROTG SROTG
Apply a modified Givens plane SROT™™ SROTM
rotation
Construct a modified Givens plane SROTMG | SROTMG
rofation
Sum the elements of a real or SSUM SSUM
complex vector CSUM
Swap two real or two complex arrays SSWAP SSWAP
CSWAP

SR-0113 4-4 D



INTRO (3X)

SR-0113

INTRO(3X)

BLAS 2

The Basic Linear Algebra Subprograms, level 2 (BLAS 2), consist of CAL routines for unpacked
data of type real and complex. They handle matrix-vector operations. The following table
describes these routines. The "manual entry” is the name of the manual page containing docu-
mentation for the routine(s) listed. NOTE: Routines for type complex data (beginning with "C")
are available only to COS users.

Level 2 BLAS

Purpose Name Manual Entry
Multiply a real vector by a real general SGBMY | SGBMY
band matrix
Multiply a complex vector by a complex general CGBMY | CGBMY
band matrix
Multiply a real vector by a real general matrix SGEMV [ SGEMV
Multiply a complex vector by a complex general CGEMV | CGEMV
matrix
Perform rank 1 update of a real general SGER SGER
matrix
Perform conjugated rank 1 update of a complex CGERC | CGERC

| general matrix

Perform unconjugated rank 1 update of a complex CGERU | CGERU
| general matrix

Multiply a real vector by a real symmetric SSBMV | SSBMV
band matrix

Multiply a complex vector by a complex Hermitian | CHBMYV | CHBMYV
band matrix

Multiply a real vector by a real symmetric matrix SSYMV | SSYMV
Multiply a complex vector by a complex Hermitian | CHEMV | CHEMY

matrx

Perform symmetric rank 1 update of a real SSYR SSYR
symmetric matrix

Perform Hermitian rank 1 update of a complex CHER CHER
Hermitian matrix

Perform symmetric rank 2 update of a real SSYR2 SSYR2
symmetric matrix

Perform Hermitian rank 2 update of a complex CHER2 | CHER2
Hermitian matrix

Multiply a real vector by a real triangular STBMV | STBMV
band matrix

Multiply a complex vector by a complex triangular | CTBMV | CTBMV
band matrix

Solve a real triangular banded system STBSV STBSY
of equations

Solve a complex triangular banded system CTBSV CTBSV
of equations

Multiply a real vector by a real triangular matrix STRMV | STRMV
Multiply a complex vector by a complex triangular | CTRMV | CTRMV

matrix
Solve a real triangular system of equations STRSV STRSV
Solve a complex triangular system of equations CTRSV | CTRSV

4-5 D



INTRO(3X)

SR-0113

INTRO(3X)

Level 2 BLAS routines for packed data are also available, but they are written in unoptimized
Fortran and CRI does not recommend their use. They will be optimized in a future release.

BLAS 3

The Basic Linear Algebra Subprograms, level 3 (BLAS 3), consist of CAL routines for unpacked
data of type real and complex. They handle matrix-matrix operations. The following table
describes these routines. NOTE: These routines are available only to COS users.

The "manual entry” is the name of the manual page containing documentation for the routine(s)
listed.

The last two routines in this table, SGEMMS and CGEMMS, are Cray extensions to the standard
set of BLAS 3 routines.

Level 3 BLAS (COS only)

Purpose Name Manual Entry
Multiply a real general matrix by SGEMM SGEMM
a real general matrix
Multiply a complex general matrix by CGEMM CGEMM
a complex general matrix
Multiply a real general matrix by SSYMM SSYMM
a real symmetric matrix
Multiply a complex general matrix by CSYMM CSYMM
a complex symmetric matrix
Multiply a complex general matrix by a CHEMM CHEMM
complex Hermitian matrix
Perform symmetric rank k opdate of a SSYRK SSYRK
real symmetric matrix
Perform symmetric rank k update of a CSYRK CSYRK
complex symmetric matrix
Perform Hermitian rank k update of a CHERK CHERK
complex Hermitian matrix
Perform symmetric rank 2k update of a SSYR2K SSYR2K
real symmeitric matrix
Perform symmetric rank 2k update of a CSYR2K CSYR2K
complex symmetric matrix
Perform Hermitian rank 2k update of a GHER2K CHER2K
complex Hermitian matrix
Multiply a real general matrix by a STRMM STRMM
real triangular matrix
Multiply a complex general matrix by a CTRMM CTRMM
complex triangular matrix
Solve a real triangular system of equations STRSM STRSM
with multiple right-hand sides
Solve a complex triangular system of equations | CTRSM CTRSM
with multiple right-hand sides
Multiply a real general matrix by a SGEMMS | SGEMMS
real general matrix using a variation
of Strassen’s algorithm
Multiply a complex general matrix by a CGEMMS | CGEMMS
complex general matrix using a variation
of Strassen’s algorithm

4-6




INTRO(3X) INTRO (3X)

Linear Recurrence Routines

Linear recurrence routines solve first-order and some second-order linear recurrences. A linear
recurrence uses the result of a previous pass through the loop as an operand for subsequent passes
through the loop, thereby preventing vectorization. Therefore, these routines can be used to optimize
Fortran loops containing linear recurrences.

The following table contains the purpose, name, and manual entry of each linear recurrence routine,
The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Linear Recurrence Subroutines
Purpose Name Manual Entry
Solve first-order linear recurrences, FOLR FOLR
overwriting input vector FOLRP
Solve first-order linear recurrences FOLR2 FOLR2
and write the solutions to a new vector FOLR2P
Solve special first-order linear recurrences | FOLRC FOLRC
Solve for the last term of a first-order FOLRN FOLRN
linear recurrence using Homer’s method
Solve for the last term of a FOLRNP | FOLRNP
first-order linear recurrence
Solve second-order linear recurrences SOLR SOLR
SOLRN
SOLR3
Compute partial products RECPP RECPP
Compute partial sums RECPS RECPS

Matrix Inverse and Multiplication Routines

The matrix inverse subroutine, MINV, solves systems of linear equations by inverting a square matrix,
using Gauss-Jordan elimination. MXM and MXMA are two optimized matrix multiplication routines.
MXV and MXVA are similar to MXM and MXMA; however, MXV and MXVA handle the special case of
matrix times vector multiplication.

The following table contains a summary of the matrix inverse and multiplication routines.

The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Matrix Inverse and Multiplication Routines
Purpose Name Manual Entry

Solve systems of linear equations MINV | MINV
by inverting a square matrix
Multiply a matrix by another matrix MXM MXM
(unit increments)
Multiply a matrix by another matrix MXMA | MXMA
(arbitrary increments)
Multiply a matrix and a vector MXV | MXV
(unit increments)
Multiply a matrix and a vector MXVA | MXVA
(arbitrary increments)

SR-0113 4-7 D



INTRO(3X)

INTRO(3X)

Filter Routines

The filter routines are used for filter analysis and design. They also solve more general problems. For
detailed descriptions, algorithms, performance statistics, and examples, see Linear Digital Filters for
CFT Usage, CRI publication SN-0210.

The following table contains a summary of the filter routines.
The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Filter Routines
Purpose Name Manual Entry |
Compute a correlation of two vectors | FILTERG | FILTERG

Compute a correlation of two vectors | FILTERS | FILTERS
(assuming the filter coefficient
vector is symmetric)

Solve the Weiner-Levinson linear OPFILT OPFILT
equations

Gather-Scatter Routines

The GATHER and SCATTER routines gather a vector from a source vector or scatter a vector into
another vector, given a vector of indices specifying which elements of the source or target vector are 1o
be accessed or changed.

LINPACK and EISPACK Routines

LINPACK routines solve systems of linear equations and compute the QR, Cholesky, and singular value
decompositions. EISPACK routines solve eigenvalue problems; they also compute and use singular
value decompositions.

SR-0113

Single-precision Real and Complex LINPACK Routines

LINPACK is a package of Fortran routines that solve systems of linear equations and compute the
QR, Cholesky, and singular value decompositions. The original Fortran programs are documented
in the LINPACK User’s Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart,
published by the Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1979,
Library of Congress catalog card number 78-78206 (available through Cray Research as publica-
tion S1-0113).

Each single-precision version of the LINPACK routines has the same name, algorithm, and calling
sequence as the original version. Optimization of each routine includes the following:

e Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT
with in-line Fortran code vectorized by Cray Fortran compilers
o Removal of Fortran IF statements where the result of either branch is the same

« Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in modified DO
loops. See the LINPACK User’s Guide for further descriptions. The complex routines have been
added without extensive optimization.



INTRO (3X)

SR-0113

INTRO(3X)

Single-precision EISPACK Routines

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing
and using the singular value decomposition.

The original Fortran versions are documented in the Matrix Eigensystem Routines - EISPACK
Guide, second edition, by T. B. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C,
Klema, and C. B, Moler, published by Springer-Verlag, New York, 1976, Library of Congress
catalog card number 76-2662 (available through Cray Research as publication $2-0113); and in the
Matrix Eigensystem Routines - EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, I. J.
Dongarra, and C. B. Moler, published by Springer-Verlag, New York, 1977, Library of Congress
catalog card number 77-2802 (available through Cray Research as publication $3-0113).

Each libsci version of the EISPACK routines has the same name, algorithm, and calling sequence
as the original version. Optimization of each routine includes the following:

e Use of the BLAS routines SDOT, SASUM, SNRM2, ISAMAX, and ISMIN when applica-
ble

¢ Removal of Fortran IF statements where the result of either branch is the same
« Unrolling complicated Fortran DO loops to improve vectorization

o Use of the Foriran compiler directive CDIR$ IVDEP when no dependencies preventing
vectorization exist

These modifications increase vectorization and, therefore, reduce execution time. Only the order
of computations within a loop is changed; the modified version produces the same answers as the
original versions unless the problem is sensitive to small changes in the data.



CGBMYV (3CO0S) CGBMV (3CO0S)

NAME
CGBMYV — Multiplies a complex vector by a complex general band matrix

SYNOPSIS
CALL CGBMV (trans,m,nkl ku.alpha,alda x,incxbetay,incy)

DESCRIPTION
CGBMY performs one of the following matrix-vector operations:

y := alpha*a*x+beta*y,
or y := alpha*a’ *x+beta*y,
or y := alpha*conjg(a’ )*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n band matrix, k! is a number
of subdiagonals, ku is 2 number of superdiagonals, and a’ is the transpose of a.

trans  Type character*1,
On entry, trans specifies the operation to be performed:

If trans = "N’ or 'n’, y := alpha*a*x+beta*y.
If trans =T or ’t’, y := alpha*a’*x+beta*y.
If trans = °C’ or °’c’, y := alpha*conjg(a’ j*x+beta*y.

On exit, trans is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least 0.
On exit, m is unchanged.
n Type integer.
On entry, n specifies the number of columns in matrix a.

Argument n must be at least 0.
On exit, n is unchanged.

ki Type integer.
On entry, ki specifies the number of subdiagonals of matrix a.
Argument k! must satisfy O.LE.kl
On exit, kI is unchanged.

ku Type integer.
On entry, ku specifies the number of superdiagonals of matrix a.
Argument ku must satisfy O.LE.ku.
On exit, ku is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha,
On exit, alpha is unchanged.

SR-0113 4-10 D



CGBMYV (3COS)

lda

incx

beta

incy

SR-0113

Type complex.
Array of dimension (lda, n).

CGBMYV (3COS)

Before entry, the leading (kl+ku+1)-by-n part of array a must contain the matrix of coefficients,
supplied column by column, with the leading diagonal of the matrix in row (ku+1) of the array,
the first superdiagonal starting at position 2 in row ku, the first subdiagonal starting at position
1 in row (ku+2), and so on. Elements in array a that do not correspond to elements in the band

matrix (such as the top left ku-by-ku triangle) are not referenced.

The following program segment will transfer a band matrix from conventional full matrix

storage to band storage:

DO 20,J=1,N
K=KU+1-J
DO 10, I = MAX(1, J - KU), MIN(M, J + KL)
A(K + 1, T) = MATRIX(, J)
10 CONTINUE
20 CONTINUE

On exit, a is unchanged.
Type integer.

On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.

Argument /da must be at least (kl+ku+1).
On exit, Ida is unchanged.

Type complex.
Array of dimension at least:

14(n-1)*|incx| when trans = 'N’ or 'n’,

14+(m-1)*|incx| otherwise.

Before entry, the incremented array x must contain vector x.

On exit, x is unchanged.

Type integer.

On entry, incx specifies the increment for the elements of x.

Argument incx must not be 0.
On exit, incx is unchanged.

Type complex.

On entry, beta specifies the scalar beta.

When beta is supplied as 0, y need not be set on input.
On exit, beta is unchanged.

Type complex.
Array of dimension at least:

1+(m-1)*|incy| when trans = "N’ or 'n’,

14(n-1)*|incy| otherwise.

Before entry, the incremented array y must contain vector y.

On exit, y is overwritten by updated vector y.
Type integer.

On entry, incy specifies the increment for the elements of y.

Argument incy must not be 0.
On exit, incy is unchanged.

4-11



CGBMY (3COSs) ' CGBMYV (3COS)

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE
CGBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-12 D



CGEMM (3COS) CGEMM (3COS)

NAME
CGEMM - Multiplies a complex general matrix by a complex general matrix

SYNOPSIS
CALL CGEMM(transa,transb,mn.k.alpha.alda,b,ldb.beta,c,ldc)

DESCRIPTION
CGEMM performs one of the matrix-matrix operations:

¢ = alpha*op(a)*op(b)+beta*c

where op(x) is one of the following:
op(x) = x,

or op(x)=1x,

or op(x) = conjg(x’)

Arguments alpha and beta are scalars, a, b, and ¢ are matrices, op(a) is an m-by-k matrix, op(b) is a
k-by-n matrix, and c is an m-by-n matrix.

transa Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:
If transa ='N’ or 'n’, op(a) = a.
If transa =T or 't’, op(a) =a’.
If transa = °C’ or ’c’, op(a) = conjg(a’).
On exit, transa is unchanged.
transb Type character*1.
On entry, transb specifies the form of op(b) to be used in the matrix multiplication as follows:
If transb = °N’ or ’n’, op(b) = b.
If transb =T or °’t’, op(b) =b'.
If transb = °C’ or ’c’, op(b) = conjg(b’).
On exit, transh is unchanged.
m Type integer.
On entry, m specifies the number of rows in matrix op(a) and in matrix c.

Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix op(b) and in matrix c.
Argument a1 must be at least 0.
On exit, » is unchanged.

k Type integer.
On entry, k specifies the number of columns of matrix op(a) and the number of rows of matrix

op(b).
Argument k£ must be at least 0.
On exit, £ is unchanged.

SR-0113 4-13 D



CGEMM (3COS) CGEMM (3COS)

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (/da, ka).
Argument ka is k when transa = "N’ or ’n’, and is m otherwise.

Before entry with transa = "N’ or 'n’, the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.
On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program,
When transa = "N’ or 'n’, lda must be at least max(1l, m).
Otherwise, lda must be at least max(1, k).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (Idb, kb).
Argument kb is n when transb = "N’ or 'n’, and is k otherwise.

Before entry with transb = "N’ or 'n’, the leading k-by-n part of array b must contain matrix b.
Otherwise, the leading n-by-k part of array & must contain matrix b.
On exit, b is unchanged.
ldb Type integer.
On entry, Idb specifies the first dimension of b as declared in the calling (sub)program.
When ¢ransb = "N’ or 'n’, Idb must be at least max(1, k).
Otherwise, Idb must be at least max(1, n).
On exit, Idb is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as O, ¢ need not be set on input.
On exit, beta is unchanged.

¢ Type complex.
Array of dimension (ldc, n).

Before entry, the leading m-by-n part of array ¢ must contain matrix ¢, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array ¢ is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*c).

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument /dc must be at least max(1, m).
On exit, ldc is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CGEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SEE ALSO
CGEMMS(3COS)

SR-0113 4-14 D



CGEMMS (3COS) CGEMMS (3COS)

NAME
CGEMMS - Multiplies a complex general matrix by a complex general matrix using Strassen’s algo-
rithm

SYNOPSIS
CALL CGEMMS(transaransb,mnn k,aipha,alda,b,ldb beta,cldc,work)

DESCRIPTION

Routine CGEMMS is functionally equivalent to CGEMM, except for the additional parameter, work.
The primary difference is that CGEMMS is implemented using Winograd’s variation of Strassen’s algo-
rithm for matrix multiplication, which is significantly faster for large matrices.

Strassen’s algorithm for matrix multiplication is a complex, recursive algorithm that performs the multi-
plication in a manner completely different from the usual inner product method. While the inner pro-
duct method regires a number of operations on the order of n® (where n is the dimension of the
matrices), Strassen’s algorithm requires, in theory, a number of operations on the order of n%%, The tra-
deoff is that Strassen’s algorithm requires a work array in memory of size 2.34*n%  Specifically,
CGEMMS requires a complex array, work, supplied by the calling program, of size at least

2.34*max(m, ky*max(k, n)
(or equivalently, a real array of twice this dimension).
The work array is overwritten, and no diagnostic is given if the supplied array is too small.

Numerical results from CGEMMS may differ slightly from those of CGEMM, owing to a very different
order of operations carried out by Strassen’s algorithm.

CGEMMS can be called for any values of the parameters that are legal for CGEMM. A performance
improvement over CGEMM would not be expected, however, unless the minimum of the array dimen-
sions is at least 128. For small dimensions, performance is approximately the same as CGEMM.
CGEMMS performs one of the matrix-matrix operations:

¢ = alpha*op(a)*op(b)+beta*c

where op(x) is one of the following:

op(x) = x,
or op(x)=x,
or  op(x) = conjg(x’)

Arguments alpha and beta are scalars, a, b, and ¢ are matrices, op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix, and ¢ is an m-by-n matrix.

SR-0113 4-15 D



CGEMMS (3COS) CGEMMS (3COS)

SR-0113

transa

transb

alpha

lda

Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa = "N’ or 'n’, op(a) = a.
If transa ="T or ’t’, op{a) =ad'.
If transa = ’C’ or ’¢c’, op(a) = conjg(a’).

On exit, transa is unchanged.
Type character*1.
On entry, transb specifies the form of op(b) to be used in the matrix multiplication as follows:

If transb = °N’ or 'n’, op(b) = b.

If ransb ="T" or 't’, op(b) =b’.

If transb = ’C’ or ’c’, op(b) = conjg(d).

On exit, fransb is unchanged.

Type integer.

On entry, m specifies the number of rows in matrix op(a) and in matrix c.

Argument m must be at least 0.
On exit, m is unchanged.

Type integer.

On entry, n specifies the number of columns in matrix op(b) and in matrix c.

Argument n must be at least 0.

On exit, n is unchanged.

Type integer.

On entry, k specifies the number of columns of matrix op(e) and the number of rows of matrix
op(b).

Argument k must be at least 0.

On exit, k is unchanged.

Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

Type complex.
Array of dimension (/da, ka).
Argument ka is k£ when transa = "N’ or 'n’, and is m otherwise.

Before entry with transa = N’ or ’n’, the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array @ must contain matrix a.

On exit, a is unchanged.

Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.

When transa = N’ or 'n’, lda must be at least max(1, m).

Otherwise, Ida must be at least max(1, k).

On exit, /da is unchanged.

Type complex.

Array of dimension (Idb, kb).

Argument kb is n when transb = "N’ or *n’, and is k otherwise.

Before entry with transh = "N’ or ’n’, the leading k-by-n part of array b must contain matrix b.
Otherwise, the leading n-by-k part of array b must contain matrix b.

On exit, b is unchanged.

4-16 D



CGEMMS (3COS) CGEMMS (3COS)

ldb Type integer.
On entry, ldb specifies the first dimension of & as declared in the calling (sub)program.
When transb = N’ or 'n’, ldb must be at least max(1, ).
Otherwise, Idb must be at least max(1, n).
On exit, Idb is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as O, ¢ need not be set on input.
On exit, beta is unchanged.

c Type complex.
Array of dimension (/dc, n).
Before entry, the leading m by n part of array ¢ must contain matrix ¢, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array c is overwritten by the m by n matrix (alpha*op(a)*op(b)+beta*c).

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument Idc must be at least max(1, m).
On exit, Idc is unchanged.

work  Type complex.
Array of dimension 2.34*max(m, k)*max(k, n).
Used for scratch storage.
On exit, work is overwritten.

IMPLEMENTATION

NOTES

This routine is available only to users of the COS operating system.

CGEMMS is a CRI extension to the standard level 3 Basic Linear Algebra Subprograms (BLAS 3),

SEE ALSO
CGEMM(3COS)

SR-0113

4-17 D



CGEMYV (3COS)

NAME

CGEMYV (3COS)

CGEMYV — Multiplies a complex vector by a complex general matrix

SYNOPSIS
CALL CGEMV(trans,m,n.alpha,a,lda x,incx,beta,y,incy)

DESCRIPTION

SR-0113

CGEMY performs one of the following matrix-vector operations:

y := alpha*a*x+beta*y,

or y := alpha*a’ *x+beta*y,

or y := alpha*conjg(a’y*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n matrix, and @’ is the tran-
spose of a.

{rans

alpha

lda

Type character*1.
On entry, trans specifies the operation to be performed:

If trans =N’ or 'n’, y := alpha*a*x+beta*y.
If trans =T or 't’, y := alpha*a’*x+beta*y.
If trans = °C’ or °¢’, y := alpha*conjg(a’Y*x+beta*y.

On exit, trans is unchanged.

Type integer.

On entry, m specifies the number of rows in matrix a.
Argument m must be at least 0.

On exit, m is unchanged.

Type integer.

On entry, n specifies the number of columns in matrix q.
Argument n must be at least 0.

On exit, n is unchanged.

Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

Type complex.

Array of dimension (/da, n).

Before entry, the leading m-by-n part of array a must contain the matrix of coefficients.
On exit, a is unchanged.

Type integer.

On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least max(1, m)

On exit, /da is unchanged.

4-18 D



CGEMYV (3COS) CGEMV (3COS)

x Type complex.
Array of dimension at least:

14+(n-1)*|incx| when trans = "N’ or ’n’,
14(m-1)*|incx| otherwise.

Before entry, the incremented array x must contain vector x.
On exit, x is unchanged.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, y need not be set on input.
On exit, beta is unchanged.

y Type complex.
Array of dimension at least:

1+(m-1)*|incy| when trans = N’ or 'n’,
1+(n-1)*|incy| otherwise.

Beforc cntry, with beta non-zcro, the incremented array y must contain vector y.
On exit, y is overwritten by updated vector y.

incy  Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be 0.
On e¢xit, incy is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CGEMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-19 D



CGERC(3COS) CGERC(3COS)

NAME
CGERC - Performs conjugated rank 1 update of a complex general matrix

SYNOPSIS
CALL CGERC(m,n,alphax.incx,y,incy.a,lda)

DESCRIPTION
CGERC performs the rank 1 operation:

a := alpha*x*conjg(y’ )+a

Argument alpha is scalar, x is an m element vector, y is an n element vector, and g is an m-by-n

matrix.

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.

On entry, n specifies the number of columns in matrix a.
Argument n must be at least 0.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

X Type complex.
Array of dimension at least:

14(m-1)*|incx|.
Before entry, the incremented array x must contain the m element vector x.
On exit, x is unchanged.
incx  Type integer.
On entry, incx specifies the increment for the elements of x.

Argument incx must not be 0,
On exit, incx is unchanged.

y Type complex.
Array of dimension at least:
1+(n-1)*|incy|.
Before entry, the incremented array y must contain the n element vector y.
On exit, y is unchanged.

incy  Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be 0.
On exit, incy is unchanged.

SR-0113 4-20 D



CGERC (3CO0S) CGERC(3COS)

a Type complex.
Array of dimension (lda, n).
Before entry, the leading m-by-n part of array a must contain the matrix of coefficients.
On exit, ¢ is overwritten by the updated matrix.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument lda must be at least max{l, m).
On exit, Ida is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CGERC is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-21 D



CGERU(3COS) CGERU(3COS)

NAME
CGERU - Performs unconjugated rank 1 update of a complex general matrix

SYNOPSIS
CALL CGERU(m,n,alphax,incx,y incy,alda)

DESCRIPTION
CGERU performs the rank 1 operation;

a := alpha*x*y’ +a

Argument alpha is scalar, x is an m element vector, y is an n element vector, and a is an m-by-n

matrix.

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.

On entry, n specifies the number of columns in matrix a.
Argument n must be at least 0.
On exit, 7 is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

X Type complex.
Array of dimension at least:

1+(m-1)*|incx|.
Before entry, the incremented array x must contain the m element vector x.
On exit, x is unchanged.
incx  Type integer.
On entry, incx specifies the increment for the elements of x.

Argument incx must not be 0,
On exit, incx is unchanged.

y Type complex.
Array of dimension at least:
1+(n-1)*|incy|.
Before entry, the incremented array y must contain the » element vector y.
On exit, y is unchanged.

incy  Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be 0.
On exit, incy is unchanged.

SR-0113 4-22 D



CGERU(3COS) CGERU (3COS)

a Type complex.
Array of dimension (lda, n).
Before entry, the leading m-by-n part of array ¢ must contain the matrix of coefficients.
On exit, a is overwritten by the updated matrix.

lda Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least max(1, m).
On exit, lda is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CGERU is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-23 D



CHBMV (3COS) CHBMYV (3COS)

NAME
CHBMYV - Multiplies a complex vector by a complex Hermitian band matrix

SYNOPSIS
CALL CHBMYV(uplo,nk.alpha,aldaxincx,betay incy)

DESCRIPTION
CHBMYV performs the following matrix-vector operation:

y := alpha*a*x+beta*y

Arguments alpha and beta are scalars, x and y are n element vectors, a is an n-by-n Hermitian band
matrix, and k is a number of superdiagonals.

uplo  Type character*1.

On entry, trans specifies whether the upper or lower triangular part of band matrix a is being
supplied as follows:

If uplo = 'U’ or ’v’, the upper triangular part of a is being supplied.
If uplo =L’ or ’I’, the lower triangular part of a is being supplied.
On exit, uplo is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.
Argument 2 must be at least 0.
On exit, 7 is unchanged.
k Type integer.
On entry, k specifies the number of superdiagonals of matrix a.

Argument k must satisfy O.LE.k.
On exit, & is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha,
On exit, alpha is unchanged.

a Type complex.
Array of dimension (/da, n).
Before entry with uplo = U’ or ’v’, the leading (k+1)-by-n part of array a must contain the
upper triangular band part of the Hermitian matrix, supplied column by column, with the lead-
ing diagonal of the matrix in row (k+1) of the array, the first superdiagonal starting at position
2 in row £, and so on. The top left k-by-k triangle of array a is not referenced.

The following program segment will transfer the upper triangular part of a Hermitian band
matrix from conventional full matrix storage to band storage:

DO 20,J=1,N
M=K+1-]
DO 10,1 =MAX(1,J-K),J
A(M+1,J)=MATRIX(LJ)
10 CONTINUE
20 CONTINUE

SR-0113 4-24 D



CHBMV (3COS) CHBMV (3COS)

Before entry with uplo = 'L’ or °'T’, the leading (k+1)-by-n part of array a must contain the
lower triangular band part of the Hermitian matrix, supplied column by column, with the lead-
ing diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in
row 2, and so on. The bottom right k-by-k triangle of array a is not referenced.

The following program segment will transfer the lower triangular part of a Hermitian band
matrix from conventional full matrix storage to band storage:

DO20,J=1,N
M=1-]
DO 10,1=J, MIN(N,J +K)
A(M+1L7J)=MATRIX(LJ)
10 CONTINUE
20 CONTINUE

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0.
On exit, g is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least (k+1).
On exit, lda is unchanged.

x Type complex.
Array of dimension at least:

14+(n-1)*|incx).

Before entry, the incremented array x must contain vector Xx.
On exit, x is unchanged.

incx  Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

y Type complex.
Array of dimension at least:

14+(n-1)*|incy|.

Before entry, the incremented array y must contain vector y.
On exit, y is overwritten by updated vector y.

incy  Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be 0.
On exit, incy is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CHBMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-25 D



CHEMM (3COS) CHEMM (3COS)

NAME
CHEMM - Multiplies a complex general matrix by a complex Hermitian matrix

SYNOPSIS
CALL CHEMM(side,uplo,m.n,alpha,aldab.ldbbeta,cldc)

DESCRIPTION
CHEMM performs one of the following matrix-matrix operations:

¢ .= alpha*a*b+beta*c
or ¢ = alpha*b*a+beta*c

Arguments alpha and beta are scalars, g is a Hermitian matrix, and b and ¢ are m-by-n matrices.

side Type character*1.

On entry, side specifies whether the Hermitian matrix g appears on the left or right in the
operation as follows:

If side = 'L’ or 'l’, ¢ := alpha*a*b+beta*c

If side = 'R’ or ’r’, ¢ := alpha*b*a+beta*c

On exit, side is unchanged.
uplp  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of the Hermitian matrix is to
be referenced as follows:

If upio = *U’ or 'u’, only the upper triangular part of the Hermitian matrix is to be referenced.
If uplo = 'L’ or °T’, only the lower triangular part of the Hermitian matrix is to be referenced.

On exit, uplo is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix c.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix c.
Argument n must be at least 0.
On exit, n is unchanged.

alpha Type complex
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 4-26 D



CHEMM (3COS) CHEMM (3COS)

a Type complex.
Array of dimension (Ida, ka).
ka is m when side = 'L’ or ’I’, and is n otherwise.

Before entry with side = 'L’ or 'I’, the m-by-m part of array @ must contain the Hermitian
matrix, such that:

If uplo = U’ or "u’, the leading m-by-m upper triangular part of array a must contain the upper
triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.

If uplo = L’ or 'I’, the leading m-by-m lower triangular part of array a must contain the lower
triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side = 'R’ or ’r’, the n-by-n part of array a must contain the Hermitian
matrix, such that:

If uplo = U’ or 'v’, the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the Hermitian matrix.

The strictly lower triangular part of a is not referenced.

If uplo = 'L’ or 'l’, the leading n-by-n lower triangular part of array g must contain the lower
triangular part of the Hermitian matrix.

The strictly upper triangular part of a is not referenced.

Note that the imaginary parts of the diagonal elements need not be set. They are assumed to
be 0.
On exit, a is unchanged.
lda Type integer.
On entry, lda specifies the first dimension of @ as declared in the calling (sub)program.
When side = 'L’ or ’l’, lda must be at least max(1, m).
Otherwise, Ida must be at least max(1, n).
On exit, lda is unchanged.

b Type complex.
Array of dimension (ldb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry, Idb specifies the first dimension of b as declared in the calling (sub)program.
Argument [db must be at least max(1, m).
On exit, Idb is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, ¢ need not be set on input.
On exit, beta is unchanged.

c Type complex.
Array of dimension (ldc, n).

Before entry, the leading m-by-n part of array ¢ must contain matrix ¢, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array ¢ is overwritten by the m-by-n updated matrix.

SR-0113 4-27 D



CHEMM (3COS) CHEMM (3COS)

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument Idc must be at least max(1, m).
On exit, ldc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE
CHEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-28 D



CHEMY (3COS) CHEMYV (3COS)

NAME
CHEMYV - Multiplies a complex vector by a complex Hermitian matrix

SYNOPSIS
CALL CHEMV(uplo,n,alpha,a.ldaxincx.betay,incy)

DESCRIPTION
CHEMYV performs the following matrix-vector operation:

y := alpha*a*x+beta*y

Arguments alpha and beta are scalars, x and y are n element vectors, and a is an »n-by-n Hermitian
matrix.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array a is to be refer-
enced as follows:

If uplo="U’ or "v’, only the upper triangular part of a is to be referenced.
If uplo= "L’ or ', only the lower triangular part of a is to be referenced.

On exit, uplo is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.

Argument n must be at least 0,
On exit, » is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (/da, n).

Before entry with uplo = 'U’ or ’'w’, the leading n-by-n upper triangular part of array @ must
contain the upper triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L’ or 'I’, the leading n-by-n lower triangular part of array a must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0.
On exit, g is unchanged.

lda Type integer.
On entry, Ida specifies the first dimension of @ as declared in the calling (sub)program.
Argument lda must be at least max(1, n).
On exit, lda is unchanged.

SR-0113 4-29 D



CHEMYV (3COS)

incx

beta

incy

Type complex.
Array of dimension at least:

14+(n-1)*|incx|.

Before entry, the incremented array x must contain the n element vector x.

On exit, x is unchanged.

Type integer.

On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.

On exit, incx is unchanged.

Type complex.

On entry, beta specifies the scalar beta.

If bera is supplied as 0, y need not be set on input.
On exit, beta is unchanged.

Type complex.
Array of dimension at least:

1+(n-1y*lincy|.

Before entry, the incremented array y must contain n element vector y.
On exit, y is overwritten by updated vector y.

Type integer.

On entry, incy specifies the increment for the elements of y.

Argument incy must not be 0.

On exit, incy is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE

SR-0113

CHEMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-30

CHEMY (3COS)



CHER (3COS) CHER (3COS)

NAME
CHER - Performs Hermitian rank 1 update of a complex Hermitian matrix

SYNOPSIS
CALL CHER(uplo,n,alphax,incx.alda)

DESCRIPTION
CHER performs the following Hermitian rank 1 operation:

a = alpha*x*conjg(x' H+a

Argument alpha is a real scalar, x is an n element vector, and a is an n-by-n» Hermitian matrix.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array a is to be refer-
enced as follows:

If uplo="U’ or ’u’, only the upper triangular part of a is to be referenced.
If uplo="L’ or 'I’, only the lower triangular part of a is to be referenced.

On exit, uplo is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least 0.
On exit, »n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

x Type complex.
Array of dimension at Jeast:
1+(n-1)*|incx|.
Before entry, the incremented array x must contain the n element vector x.
On exit, x is unchanged.

incx  Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.

SR-0113 4-31 D



CHER (3COS) CHER (3CO0S)

a Type complex.
Array of dimension (Ida, n).

Before entry with uplo = 'U’ or 'u’, the leading n-by-n upper triangular part of array a must
contain the upper triangular part of the Hermitian matrix.

The strictly lower triangular part of a is not referenced.

On exit, the upper triangular part of array a is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L’ or 'I’, the leading n-by-n lower triangular part of array @ must
contain the lower triangular part of the Hermitian matrix.

The strictly upper triangular part of a is not referenced.

On exit, the lower triangular part of array a is overwritten by the lower triangular part of the
updated matrix,

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0. On exit, they are set to 0.

lda Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least max(1, »).
On exit, Ida is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CHER is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-32 D



CHER2(3COS) CHER2(3COS)

NAME
CHER? - Performs Hermitian rank 2 update of a complex Hermitian matrix

SYNOPSIS
CALL CHER2(uplo.n,alphax.incx,y,incy,a,lda)

DESCRIPTION
CHER?2 performs the following Hermitian rank 2 operation:

a := alpha*x*conjg(y’ )+conjg(alpha)*y*conjg(x')+a

Argument alpha is a scalar, x and y are n element vectors, and a is an n-by-n Hermitian matrix.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array a is to be refer-
enced as follows:

If uplo="U’ or ’v’, only the upper triangular part of a is to be referenced.
If uplo= "L’ or ’I’, only the lower triangular part of a is to be referenced.

On exit, uplo is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.

Argument n must be at least 0.
On exit, n is unchanged.
alpha Type complex.

On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

X Type complex.
Array of dimension at least:

1+(n-1)*|incx|.
Before entry, the incremented array x must contain the 2 element vector x.
On exit, x is unchanged.

incx  Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.

y Type complex.
Array of dimension at least:
1+(n-1)*|incy|.

Before entry, the incremented array y must contain the n element vector y.
On exit, y is unchanged.

incy  Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be 0.
On exit, incy is unchanged.

SR-0113 4-33 D



CHER2(3COS) CHER2(3COS)

a Type complex.
Array of dimension (/da, n).

Before entry with uplo = U’ or 'u’, the leading n-by-n upper triangular part of array a must
contain the upper triangular part of the Hermitian matrix.

The strictly lower triangular part of g is not referenced.

On exit, the upper triangular part of array g is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = "L’ or 'I', the leading n-by-n lower triangular part of array a must
contain the lower triangular part of the Hermitian matrix.

The strictly upper triangular part of a is not referenced.

On exit, the lower triangular part of array a is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0. On exit, they are set to 0.

lda Type integer. .
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least max(1, n).
On exit, /da is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE
CHER?2 is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-34 D



CHER2K (3COS) CHER2K (3COS)

NAME
CHER2K - Performs Hermitian rank 2k update of a complex Hermitian matrix

SYNOPSIS
CALL CHER2K(uplo,trans,n.k.alpha.a.lda,b,idbbeta,c ldc)

DESCRIPTION
CHER2K performs one of the following Hermitian rank 2k operations:

¢ := alpha*a*conjg(b’)+conjg(alpha)*b*conjg(a’ H+beta*c
or
¢ := alpha*conjg(a’Y*b+conjg(alpha)*conjg(b’ Y*a+beta*c.

Arguments alpha and beta are scalars with beta real, and ¢ is an n-by-n Hermitian matrix, Arguments
a and b are n-by-k matrices in the first operation listed previously, and k-by-n matrices in the second.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array ¢ is to be refer-
enced as follows:

If uplo = "U’ or 'v’, only the upper triangular part of c is to be referenced.
If uplo = 'L’ or 'I’, only the lower triangular part of ¢ is to be referenced.

On exit, uplo is unchanged.

trans  Type character*1.
On entry, trans specifies the operation to be performed as follows:

If trans = 'N’ or 'n’,

¢ := alpha*a*conjg(b")+conjg(alpha)*b*conjg(a’ )+beta*c.
If trans = 'C’ or ’¢’,

¢ = alpha*conjg(a’)*b+conjg(alpha)*conjg(b’)*a+beta*c.
On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument n must be at least 0.
On exit, n is unchanged.

k Type integer.

On entry with trans = "N’ or 'n’, k specifies the number of columns of matrices a and b.
On entry with trans = C’ or °c’, k specifies the number of rows of matrices a and b.

Argument k& must be at least 0.
On exit, & is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 4-35 D



CHER2K (3COS) CHER2K (3COS)

a Type complex.
Array of dimension (Ida, ka).
Argument ka is k if trans = "N’ or ’n’, and is n otherwise.

Before entry with trans = "N’ or ’n’, the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array @ must contain matrix a.

On exit, a is unchanged.

ida Type integer.
On entry, Ida specifies the first dimension of g as declared in the calling (sub)program.

If trans = "N’ or ’'n’, Ida must be at least max(1, n).
Otherwise, lda must be at least max(1, k).

On exit, /da is unchanged.

b Type complex.
Array of dimension (Idb, kb)
Argument b is k if trans = N’ or ’n’, and is n otherwise.

Before entry with trans = N’ or 'n’, the leading n-by-k part of array b must contain matrix .
Otherwise, the leading k-by-n part of array b must contain matrix b.

On exit, b is unchanged.

idb Type integer.
On entry, Idb specifies the first dimension of b as declared in the calling(sub) program.
If trans = "N’ or 'n’, ldb must be at least max(1, n).
Otherwise, Idb must be at least max(1, k).
On exit, Idb is unchanged.

beta  Type real.
On entry, beta specifies the scalar beta,
On exit, beta is unchanged.

c Type complex.
Array of dimension (ldc, n).

Before entry with uplo = 'U’ or "u’, the leading »n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the Hermitian matrix.

The strictly lower triangular part of ¢ is not referenced.

On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix,

Before entry with uple = 'L’ or 'I’, the leading n by r lower triangular part of array ¢ must
contain the lower triangular part of the Hermitian matrix.

The strictly upper triangular part of ¢ is not referenced.

On exit, the lower triangular part of array ¢ is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0. On exit, they are set to 0.

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument Idc must be at least max(1, n).
On exit, ldc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

SR-0113 4-36 D



CHER2K (3COS) CHER2K (3COS)

NOTE
CHERZ2K is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-37 D



CHERK (3COS)

NAME

CHERK (3COS)

CHERK - Performs Hermitian rank k update of a complex Hermitian matrix

SYNOPSIS
CALL CHERK(uplo,trans,nk,alpha.aldabeta,c,ldc)

DESCRIPTION

SR-0113

CHERK performs one of the following Hermitian rank k operations:

¢ := alpha*a*conjg(a’)+beta*c

or

¢ = alpha*conjg(a’Y*a+beta*c.

Arguments alpha and beta are real scalars, and ¢ is an n-by-n Hermitian matrix. Argument a is
an n-by-k matrix in the first operation listed previously, and a k-by-n matrix in the second.

uplo

trans

alpha

Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array ¢ is to be refer-
enced as follows:

If uplo = *U’ or "u’, only the upper triangular part of ¢ is to be referenced.
If uplo = 'L’ or 'I’, only the lower triangular part of ¢ is 10 be referenced.

On exit, uplo is unchanged.

Type character*1.
On entry, trans specifies the operation to be performed as follows:

If trans = °'N’ or 'n’,

¢ := alpha*a*conjg(a’)+beta*c.
If trans = °C’ or 'c’,

¢ := alpha*conjg(a’Y*a+beta*c.
On exit, trans is unchanged.

Type integer.

On entry, n specifies the order of matrix c.
Argument 7 must be at least 0.

On exit, n is unchanged.

Type integer.

On entry with trans = 'N’ or 'n’, k specifies the number of columns of matrix a.
On entry with trans = "C’ or ’c’, k specifies the number of rows of matrix a.

Argument k must be at least 0.
On exit, £ is unchanged.

Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-38 D



CHERK (3COS )

lda

beta

lde

CHERK (3COS)

Type complex.
Array of dimension (/da, ka).
Argument ka is k if trans = "N’ or 'n’, and is n otherwise.

Before entry with trans = *N’ or 'n’, the leading n-by-k part of array @ must contain matrix a.
Otherwise, the leading k-by-n part of array @ must contain matrix a,

On exit, a is unchanged.

Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
If trans = N’ or ’n’, lda must be at least max(1, »).

Otherwise, Ida must be at least max(1, k).

On exit, lda is unchanged.

Type real.
On entry, beta specifies the scalar beta,
On exit, beta is unchanged.

Type complex.
Array of dimension (ldc, n).

Before entry with uplo = U’ or ’u’, the leading n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the Hermitian matrix.

The strictly lower triangular part of ¢ is not referenced.

On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = "L’ or 'l’, the leading n-by-n lower triangular part of array ¢ must
contain the lower triangular part of the Hermitian matrix.

The strictly upper triangular part of ¢ is not referenced.

On exit, the lower triangular part of array c¢ is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
0. On exit, they are set to 0.

Type integer.

On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.

Argument /dc must be at least max(1, n).
On exit, ldc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE

CHERK is a fevel 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113

4-39 D



CROT (3SCI) CROT(35CI)

NAME
CROT - Applies the complex plane rotation computed by CROTG

SYNOPSIS
CALL CROT(n,cx,incx,cy,incy,sc,cs)

DESCRIPTION
n Number of vector elements on which to apply rotation (input)
cx Complex array of length at least 1+(n-1)*|incx| containing vector to be modified
(input/output)
incx Increment between vector elements in ¢x (input)
cy Complex vector to be modified, of length at least 1+(n-1)*|incy| (input/output)
incy Increment between vector elements in cy (input)
sc Real cosine of rotation (computed by CROTG) (input)
cs Complex sine of rotation (computed by CROTG) (input)

CROT applies the following complex plane rotation to row vectors cx and cy:

51 [ 21 ]
Yy —CCS  SC 'y
where cxx and cyy are the resuiting complex row vectors, overwriting cx and cy, and ccs is the complex

conjugate of cs.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
CROTG(35CI), SROT(35CT)

SR-0113 4-40 D



CROTG(3SCI) CROTG (3SCI)

NAME
CROTG - Constructs a Givens plane rotation

SYNOPSIS
CALL CROTG(ca,ch,sc,cs)

DESCRIPTION
ca First complex element of the two-element vector that determines the angle of rotation
(input/output)
cb Second complex element of the two-element vector that determines the angle of rotation
(input/output)
SC Real cosine of the rotation (output)
cs Complex sine of the rotation (output)

CROTG computes the elements of a complex Givens plane rotation matrix such that:
[cca] _ [ sc cs] [ca]
0 1 l-ccs sci leb
where cca overwrites ca, cb remains unchanged, and ccs is the complex conjugate of cs.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
CROT(3SCI), SROT(3SCI)

SR-0113 4-41 D



CSYMM (3COS) CSYMM(3COS)

NAME
CSYMM - Multiplies a complex general matrix by a complex symmetric matrix

SYNOPSIS
CALL CSYMM(side,uplo,m,nalpha,a,ldab,ldb beta,c ldc)

DESCRIPTION
CSYMM performs one of the following matrix-matrix operations:

¢ := alpha*a*b+beta*c
or c := alpha*b*a+beta*c

Arguments alpha and beta are scalars, a is a symmetric matrix, and b and ¢ are m-by-n matrices.

side Type character*1.

On entry, side specifies whether the symmetric matrix a appears on the left or right in the
operation as follows:

If side = 'L’ or 'l’, ¢ := alpha*a*b+beta*c

If side = 'R’ or ', ¢ := alpha*b*a+beta*c

On exit, side is unchanged.
uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of the symmetric matrix a is
to be referenced as follows:

If uplo = *U’ or 'u’, only the upper triangular part of the symmetric matrix is to be referenced.
If uplo = 'L’ or 'I’, only the lower triangular part of the symmetric matrix is to be referenced.

On exit, uplo is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix c.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix c.
Argument n must be at least 0.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 442 D



CSYMM (3COS) CSYMM(3COS)

a Type complex.
Array of dimension (Ida, ka).
Argument ka is m when side = "L’ or 'l’, and is n otherwise.

Before entry with side = 'L’ or 'I’, the m-by-m part of array a must contain the symmetric
matrix, such that:

If uplo = 'U’ or 'u’, the leading m-by-m upper triangular part of array @ must contain the upper
triangular part of the symmetric matrix.
The strictly lower triangular part of a is not referenced.

If uplo = L’ or ’I’, the leading m-by-m lower triangular part of array a must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side = 'R’ or 'r’, the n-by-n part of array a must contain the symmetric
matrix, such that:

If uplo = "U’ or 'u’, the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.

The strictly lower triangular part of a is not referenced.

If uplo = 'L’ or ', the leading n-by-n lower triangular part of array a must contain the lower

triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

On exit, a is unchanged.

ida Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L’ or ’I’, lda must be at least max{1, m).
Otherwise, Ida must be at least max(1, n).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (/db, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry, Idb specifies the first dimension of b as declared in the calling (sub)program.
Argument /db must be at least max(1, m).
On exit, ldb is unchanged.

beta  Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, ¢ need not be set on input.
On exit, beta is unchanged.

c Type complex.
Array of dimension (ldc, n).
Before entry, the leading m-by-n part of array ¢ must contain matrix c, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array ¢ is overwritten by the m-by-n updated matrix.

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.

Argument /dc must be at least max(1, m).
On exit, ldc is unchanged.

SR-0113 4-43 D



CSYMM(3COS) CSYMM (3COS)

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE
CSYMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-44 D



CSYR2K (3COS) CSYR2K(3COS)

NAME
CSYR2K - Performs symmetric rank 2k update of a complex symmetric matrix

SYNOPSIS
CALL CSYR2K(uplo,trans,n.k,alpha,a,lda,b.ldb.beta.c ldc)

DESCRIPTION
CSYR2K performs one of the following symmetric rank 2k operations:

¢ = alpha*a*b’ +alpha*b*a’ +beta*c
or
¢ := alpha*a’ *b+alpha*b’*a+beta*c

Arguments aglpha and beta are scalars, and c is an n-by-n symmetric matrix, Arguments g and b
are n-by-k matrices in the first operation listed previously, and k-by-n matrices in the second.

uplo Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array ¢ is 10 be refer-
enced as follows:

If uplo = "U’ or 'u’, only the upper triangular part of c is to be referenced.
If uplo = 'L’ or ’1’, only the lower triangular part of ¢ is to be referenced.

On exit, uplo is unchanged.

trans  Type character*1.
On entry, trans specifies the operation to be performed as follows:

If trans = "N’ or 'n’,

¢ := alpha*a*b’ +alpha*b*a’ +beta*c
If trans =T or 't’,

¢ := alpha*a’ *b+alpha*b’*a+beta*c
On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument » must be at least 0.
On exit, n is unchanged.

k Type integer.
On entry with trans = "N’ or 'n’, k specifies the number of columns of matrices g and b.
On entry with trans = T’ or 't’, k specifies the number of rows of matrices a and b.
Argument k£ must be at least 0.
On exit, k£ is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 4-45 D



CSYR2K(3COS)

lda

ldb

beta

lde

CSYR2K(3COCS)

Type complex.
Array of dimension (Ida, ka).
Argument ka is k if trans = "N’ or 'n’, and is n otherwise.

Before entry with trans = "N’ or 'n’, the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array @ must contain matrix a.

On exit, a is unchanged.
Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.

If trans = N’ or 'n’, lda must be at least max(1, n).
Otherwise, /da must be at least max(1, k).

On exit, Ida is unchanged.

Type complex.
Array of dimension (Idb, kb)
Argument kb is k if frans = "N’ or ’n’, and is n otherwise.

Before entry with frans = N’ or 'n’, the leading n-by-k part of array b must contain matrix b.
Otherwise, the leading k-by-n part of array b must contain matrix b.

On exit, b is unchanged.

Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.

If trans = "N’ or 'n’, ldb must be at least max(1, »n).
Otherwise, Idb must be at least max(1, k).

On exit, Idb is unchanged.

Type complex.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

Type complex.
Array of dimension (ldc, n).

Before entry with uplo = U’ or 'u’, the leading n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the symmetric matrix.

The strictly lower triangular part of ¢ is not referenced.

On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L’ or ’I’, the leading n-by-n lower triangular part of array ¢ must
contain the lower triangular part of the symmetric matrix.

The strictly upper triangular part of ¢ is not referenced.

On exit, the lower triangular part of array c is overwritten by the lower triangular part of the
updated matrix.

Type integer.

On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument /dc must be at least max(1, n).

On exit, /dc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

SR-0113

4-46 D



CSYR2K(3COS) CSYR2K(3COS)

NOTE
CSYR2K is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-47 D



CSYRK(3COS) CSYRK (3COS)

NAME
CSYRK - Performs symmetric rank k update of a complex symmetric matrix

SYNOPSIS
CALL CSYRK({uplo,trans.n.kalpha.a,ldabeta,c,ldc)

DESCRIPTION
CSYRK performs one of the following symmetric rank k operations:

¢ = alpha*a*d’ +beta*c
or
¢ := alpha*a'*a+beta*c

Arguments alpha and beta are scalars, and c is an n-by-n symmetric matrix. Argument g is an n-by-k
matrix in the first operation listed previously, and a k-by-n matrix in the second.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array c is to be refer-
enced as follows:

If uplo = "U’ or ’v’, only the upper triangular part of ¢ is to be referenced.
If uplo = "L’ or 'I’, only the lower triangular part of ¢ is to be referenced.

On exit, uplo is unchanged.

trans  Type character*1,
On entry, trans specifies the operation to be performed as follows:

If trans = 'N’ or 'n’,

¢ := alpha*a*a’ +beta*c.

If trans = 'T or 't’,

¢ := alpha*a’ *a+beta*c.
On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument n must be at least 0.
On exit, » is unchanged.

k Type integer.

On entry with trans = "N’ or ’n’, k specifies the number of columns of matrix a.
On entry with trans = 'T” or ’t’, k specifies the number of rows of matrix a.

Argument k must be at least 0.
On exit, k is unchanged.

alpha  Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 4-48 D



CSYRK(3COS)

lda

beta

ldc

CSYRK (3COS)

Type complex.
Array of dimension (lda, ka).
Argument ka is k if trans = "N’ or 'n’, and is n otherwise.

Before entry with trans = N’ or 'n’, the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array @ must contain matrix 4.

On exit, @ is unchanged.

Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
If trans = "N’ or ’n’, lda must be at least max(1, n).

Otherwise, Ida must be at least max(1, k).

On exit, Ida is unchanged.

Type complex.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

Type complex.
Array of dimension (/dc, n).

Before entry with uplo = U’ or ’u’, the leading n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the symmetric matrix.

The strictly lower triangular part of ¢ is not referenced.

On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L’ or 'I’, the leading n-by-n lower triangular part of array ¢ must
contain the lower triangular part of the symmetric matrix.

The strictly upper triangular part of ¢ is not referenced.

On exit, the lower triangular part of array ¢ is overwritten by the lower triangular part of the
updated matrix.

Type integer.

On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument /dc must be at least max(1, n).

On exit, ldc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTE

CSYRK is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113

4-49 D



CTBMV (3COS) CTBMY (3COS)

NAME
CTBMYV — Multiplies a complex vector by a complex triangular band matrix

SYNOPSIS
CALL CTBMV(uplo,trans.diagn.k.a.ldaxincx)

DESCRIPTION
CTBMY performs one of the following matrix-vector operations:

X = a*x
or x =a'*x
or x := conjg(a’Yx

Argument x is an n element vector, and g is an n-by-n unit, or non-unit, upper or lower triangular band
matrix, with (k+1) diagonals.

uplo  Type character*1.
On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:
If uplo = *U’ or "v’, a is an upper triangular matrix.
If uplo =L’ or 'I’, a is a lower triangular matrix.
On exit, uplo is unchanged.
trans  Type character *1.
On entry, trans specifies the operation to be performed as follows:
If trans = "N’ or ’'n’, x := a*x.
If trans = "T" or 't’, x := a’*x.
If trans = °C’ or ’c’, x := conjg(a’)*x.
On exit, trans is unchanged.
diag  Type character *1.
On entry, diag specifies whether or not a is unit triangular as follows:

If diag = 'U’ or ’v’, a is assumed to be unit triangular.
If diag = N’ or 'n’, a is not assumed to be unit triangular.
On exit, diag is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least 0.
On exit, n is unchanged.
k Type integer.
On entry with uplo = 'U’ or ’v’, k specifies the number of superdiagonals of matrix a.
On entry with uplo = 'L’ or ’I’, k specifies the number of subdiagonals of matrix a.

Argument k must satisfy 0.LE.k.
On exit, k is unchanged.

SR-0113 4-50 D



CTBEMYV (3COS) CTBMYV (3COS)

a Type complex.
Array of dimension (lda, n).
Before entry with uplo = U’ or 'u’, the leading (k+1)-by-n part of array a must contain the
upper triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (k+1) of the array, the first superdiagonal starting at posi-
tion 2 in row &, and so on. The top left £-by-k triangle of array a is not referenced.

The following program segment will transfer an upper triangular band matrix from conven-
tional full matrix storage to band storage:

DO 20,7 =1,N
M=K+1-J
DO 10,1=MAX(1,J-K),J
A(M+1,J)=MATRIX(L J)
10 CONTINUE
20 CONTINUE

Before entry with uplo = 'L’ or 'l’, the leading (k+1)-by-n part of array a must contain the
lower triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1
in row 2, and so on. The bottom right k-by-£ triangle of array a is not referenced.

The following program segment will transfer a lower triangular band matrix from conventional
full matrix storage to band storage:

DO 20,J=1,N
M=1-J
DO 10,I1=J, MIN(N, J +K )
A(M+1,7)=MATRIX(L J)
10 CONTINUE
20 CONTINUE

Note that when diag = 'U’ or 'u’, the elements of array a corresponding to the diagonal ele-
ments of the matrix are not referenced, but are assumed to be unity.

On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument /da must be at least (k+1).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

1+(n-1)*|incx|.

Before entry, the incremented array x must contain the n element vector x.
On exit, x is overwritten with the transformed vector x.

incx  Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 4-51 D



CTBMYV (3COS) CTBMV (3COS)

NOTE
CTBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-52 D



CTBSV(3COS) CTBSV (3COS)

NAME
CTBSV — Solves a complex triangular banded system of equations

SYNOPSIS
CALL CTBSV(uplorans,diag.nk,.aldax,incx)

DESCRIPTION
CTBSY solves one of the following systems of equations:

a*x=5H
or a*x=»b
or conjg(a)*x=b

Arguments x and b are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular
band matrix, with (k+1) diagonals.

uplo  Type character*1.
On entry, upio specifies whether the matrix is an upper or lower triangular matrix as follows:

If uplo = "U’ or ’v’, a is an upper triangular matrix.
If uplo =L’ or 'l’, a is a lower triangular matrix.

On exit, uplo is unchanged.
trans  Type character *1.
On entry, trans specifies the operation to be performed as follows:

If trans="N"or'n’,a*x=b
Iftrans="T or't’,a’*x=b
If trans = °C’ or ’c’, conjg(a’)*x = b

On exit, trans is unchanged.
diag  Type character *1.
On entry, diag specifies whether or not a is unit triangular as follows:
If diag = 'U’ or 'vw’, a is assumed to be unit triangular.
If diag = "N’ or ’'n’, a is not assumed to be unit triangular.
On exit, diag is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.
Argument 7 must be at least 0.
On exit, n is unchanged.
k Type integer.
On entry with uplo = U’ or 'u’, k specifies the number of superdiagonals of matrix a.
On entry with uplo = 'L’ or 'I’, k specifies the number of subdiagonals of matrix a.

Argument k must satisfy 0LE.k.
On exit, k is unchanged.

SR-0113 4-53 D



CTBSV(3COS) CTBSV(3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry with uplo = 'U’ or ’w’, the leading (k+1)-by-n part of array g must contain the
upper triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (k+1) of the array, the first superdiagonal starting at posi-
tion 2 in row k, and so on. The top left k-by-k triangle of array a is not referenced.

The following program segment will transfer an upper triangular band matrix from conven-
tional full matrix storage to band storage:

DO 20,J=1,N
M=K+1-J
DO 10,I1=MAX(1,]J-K),J
A(M+1,7)=MATRIX(LJ)
10 CONTINUE
20 CONTINUE

Before entry with uplo = °L’ or °I’, the leading (k+1)-by-n part of array a must contain the
lower triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1
in row 2, and so on. The bottom right k-by-k triangle of array a is not referenced.

The following program segment will transfer a lower triangular band matrix from conventional
full matrix storage to band storage:

DO20,J=1,N
M=1-]J
DO 10,1 =J, MIN(N, J +K )
A(M+1,7)=MATRIX(LJ)
10 CONTINUE
20 CONTINUE

Note that when diag = 'U’ or 'v’, the elements of array a corresponding to the diagonal ele-
ments of the matrix are not referenced, but are assumed to be unity.

On exit, g is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least (k+1).
On exit, lda is unchanged.

X Type complex.
Array of dimension at least:

14+(n-1)*|incx|.

Before entry, the incremented array x must contain the » element right-hand side vector .
On exit, x is overwritten with the solution vector x.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 4-54 D



CTBSV(3COS) CTBSV(3COS)

NOTES

No tests for singularity or near-singularity are included in CTBSV. Such tests must be performed before
calling this routine.

CTBSV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-55 D



CTRMM (3COS) CTRMM (3COS)

NAME
CTRMM - Multiplies a complex general matrix by a complex triangular matrix

SYNOPSIS
CALL CTRMM(side,uplo,transa,diag,m,n,alpha.aldab,db)

DESCRIPTION
CTRMM performs one of the matrix-matrix operations:

b := alpha*op(a)*b
or b := alpha*b*op(a)

Argument alpha is a scalar, b is an m-by-n matrix,
a is a unit, or non-unit, upper or lower triangular matrix,
and op(a) is one of the following:

op(a) = a,
or op{a)=a,

or op(a) = conjg(a’)

side  Type character¥1.
On entry, side specifies whether op(a) multiplies & from the left or right as follows:

If side = 'L’ or 'I’, b := alpha*op(a)*b.
If side = 'R’ or ', b := alpha*b*op(a).

On exit, side is unchanged.
uplo  Type character*1.
On entry, uplo specifies whether matrix (@) is an upper or lower triangular matrix as follows:

If uplo = 'U’ or 'v’, a is an upper triangular matrix.
If uplo = 'L’ or 'I’, a is a lower triangular matrix,

On exit, uplo is unchanged.
transa Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa = "N’ or ’n’, op(a) = a.
If transa = T or ’t’, op(a) = a’.
If transa = ’C’ or ’c’, op(a) = conjg(a’).

On exit, fransa is unchanged.
diag  Type character*l.
On entry, diag specifies whether or not g is unit triangular as follows:

If diag = 'U’ or 'u’, a is assumed to be unit triangular.
If diag = 'N’ or 'n’, a is not assumed to be unit triangular.

On exit, diag is unchanged.

SR-0113 4-56 D



CTRMM(3COS) CTRMM (3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least 0.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (/da, k).
Argument £ is m when side = 'L’ or 'I’, and is n when side = 'R’ or 'r’.

Before entry with uplo = U’ or "u’, the leading k-by-k upper triangular part of array a must

contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = "L’ or °’I', the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.

The strictly upper triangular part of a is not referenced.

Note that when diag = "U’ or ’u’, the diagonal elements of a are not referenced, but are

assumed to be unity,
On exit, 4 is unchanged.

lda Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L’ or °T’, Ida must be at least max(1, m).
When side = 'R’ or ’r’, Ida must be at least max(1, n).
On exit, lda is unchanged.

b Type complex.
Array of dimension (Idb, n).
Before entry, the leading m-by-n part of array b must contain matrix 5.
On exit, b is overwritten by the transformed matrix.

1db Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument Idb must be at least max(1, m).
On exit, /db is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CTRMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-57 D



CTRMV (3COS) CTRMV (3COS)

NAME

CTRMYV - Multiplies a complex vector by a complex triangular matrix
SYNOPSIS

CALL CTRMV(uplo,trans diag,n,aldax,incx)
DESCRIPTION

CTRMY performs one of the following matrix-vector operations:
x = a*x
or x =a*x
or x := conjg(a’)y*x

Argument x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular
matrix.

uplo  Type character*1.
On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:

If uplo = *U’ or ’'w’, a is an upper triangular matrix.
If uplo =L’ or ’I’, a is a lower triangular matrix.

On exit, uplo is unchanged.
trans Type character *1.
On entry, frans specifies the operation to be performed as follows:

If trans = "N’ or 'n’, x := a*x.
If trans = "T" or ’t’, x .= a'*x.
If trans = °C’ or ’c’, x := conjg(a’)*x.

On exit, trans is unchanged.
diag  Type character *1.
On entry, diag specifies whether or not a is unit triangular as follows:

If diag = U’ or ’v’, a is assumed to be unit triangular,
If diag = "N’ or ’n’, a is not assumed to be unit triangular.

On exit, diag is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument 7 must be at least 0.
On exit, n is unchanged.

SR-0113 4-58 D



CTRMYV (3COS) CTRMV (3COS)

a Type complex.
Array of dimension (lda, n).
Before entry with uplo = U’ or "u’, the leading n-by-n upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = L’ or °I’, the leading n-by-n lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = U’ or ’u’, the diagonal elements of a are also not referenced, and are
assumed to be unity.

On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least max(1, n).
On exit, lda is unchanged.

x Type complex.
Array of dimension at least:

1+(n-1)*|incx|.

Before entry, the incremented array x must contain the n element vector x.
On exit, x is overwritten with the transformed vector x.

incx  Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.
On exit, incx is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CTRMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-59 D



CTRSM (3COS)

NAME

CTRSM (3COS)

CTRSM - Solves a complex triangular system of equations with multiple right-hand sides

SYNOPSIS
CALL CTRSM(side,uplo.transadiag,m.n,alpha,a,ida,b,ldb)

DESCRIPTION

SR-0113

CTRSM solves one of the following matrix equations:

op(a)*x = alpha*b

or x*op(a) = alpha*b

Argument alpha is a scalar, x and b are m-by-n matrices, a is a unit, or non-unit, upper or lower tri-
angular matrix, and op(a) is one of the following:

or

or

op(a) = a,
op(a) =a’,

op(a) = conjg(a’)

Matrix x is overwritten on b.

side

uplo

transa

diag

Type character*1,
On entry, side specifies whether op(a) appears on the left or right of x as follows:

If side = 'L’ or ', op(a)*x = alpha*b
If side = 'R’ or 'r’, x*op(a) = alpha*b

On exit, side is unchanged.
Type character*1.
On entry, uplo specifies whether matrix (a) is an upper or lower triangular matrix as follows:

If uplo = "U’ or "u’, ais an upper triangular matrix.
If uplo =L’ or °I’, a is a lower triangular matrix.

On exit, uplo is unchanged.
Type character*1.
On entry, fransa specifies the form of op{a) to be used in the matrix multiplication as follows:

If transa = "N’ or 'n’, op(a) = a.
If transa =T’ or ’t’, op{a) = a’.
If transa = "C’ or ’¢’, op(a) = conjg(a’).

On exit, transa is unchanged.
Type character*1.
On entry, diag specifies whether or not g is unit triangular as follows:

If diag = *U’ or ’u’, a is assumed to be unit triangular.
If diag = "N’ or 'n’, a is not assumed to be unit triangular.

On exit, diag is unchanged.

4-60 D



CTRSM(3COS) CTRSM (3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least 0.
On exit, n is unchanged.

alpha  Type complex.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (lda, k).
Argument k is m when side = 'L’ or 'I’, and is n when side = 'R’ or 'r’.

Before entry with uplo = "U’ or ’u’, the leading k-by-k upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L’ or °'I’, the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = 'U’ or 'u’, the diagonal elements of a are not referenced, but are
assumed to be unity.
On exit, a is unchanged.

lda Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L’ or 'I’, lda must be at least max(1, m).
When side = 'R’ or 'r’, lda must be at feast max(1, n).
On exit, lda is unchanged.

b Type complex.
Array of dimension (/db, n).
Before entry, the leading m-by-n part of array b must contain the right-hand side matrix 5.
On exit, b is overwritten by the solution matrix x.

ldb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument /db must be at least max(1, m).
On exit, Idb is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE
CTRSM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).



CTRSV(3COS) CTRSV(3COS)

NAME
CTRSYV - Solves a complex triangular system of equations

SYNOPSIS
CALL CTRSV(uplo,trans.diag.n.a.ldax,incx)

DESCRIPTION
CTRSY solves one of the following systems of equations:

a*x=b
or a'*x=b
or conjg(a’)*x=b

Arguments b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular
matrix.

uplo  Type character*l.
On entry, uplo specifies whether the matrix is an upper or lowcr triangular matrix as follows:
If uplo = U’ or "W’, a is an upper triangular matrix.
If uplo =L’ or ’I’, a is a lower triangular matrix.
On exit, uplo is unchanged.
trans  Type character *1.
On entry, frans specifies the operation to be performed as follows:

If trans =N’ or 'n’, a*x = b
If rans="T or’t’, a’'*x=b
If trans = ’C’ or °c’, conjg(a’)*x = b

On exit, trans is unchanged.
diag  Type character *1.
On entry, diag specifies whether or not a is unit triangular as follows:
If diag = "U’ or ’v’, a is assumed to be unit triangular.
If diag = "N’ or 'n’, a is not assumed to be unit triangular.
On exit, diag is unchanged.
n Type integer.
On entry, n specifies the order of matrix a.

Argument n must be at least 0.
On exit, n is unchanged.

SR-0113 4-62 D



CTRSV (3COS)

lda

incx

CTRSV(3COS)

Type complex.

Array of dimension (/da, n).

Before entry with uplo = U’ or 'v’, the leading n-by-n upper triangular part of array a must
contain the upper triangular matrix.

The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L’ or ', the leading n-by-n lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = "U’ or 'u’, the diagonal elements of a are also not referenced, and are
assumed to be unity.

On exit, a is unchanged.
Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.

Argument /da must be at least max(1, n).
On exit, lda is unchanged.

Type complex.
Array of dimension at least:

14+(n-1)*|incx|.
Before entry, the incremented array x must contain the n element right-hand side vector b.
On exit, x is overwritten with the solution vector x.

Type integer.

On entry, incx specifies the increment for the elements of x.
Argument incx must not be 0.

On exit, incx is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTES

No tests for singularity or near-singularity are included in CTRSV. Such tests must be performed before
calling this routine.

CTRSY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113

4-63 D



DOT (38CI) DOT (3SCI)

NAME
SDOT, CDOTC, CDOTU -~ Computes a dot product (inner product) of two real or complex vectors

SYNOPSIS
dot = SDOT(n,sx,incx,sy,incy)
cdot = CDOTC(n,cx,incx,cy,incy)

cdot = CDOTU(n,cx,incx,cy,incy)
DESCRIPTION
n Number of elements in each vector (input)
sx Real vector operand of length at least 1+(n-1)*|incx| (input)
cx Complex vector operand of length at least 1-4(n-1)*|incx| (input)
incx Increment between elements of x in sx or cx (input)
5y Real vector operand of length at least 1+(n-1)*|incy| (input)
cy Complex vector operand of length at least 1+(n-1)*|incy| (input)
incy Increment between elements of sy or cy (input)

For contiguous elements, incy = 1

These real and complex functions compute an inner product of two vectors.

SDOT computes
n
dot = E X Y;
ot

where x; and y; are elements of real vectors.

CDOTC computes

cdot = 3, %;y;

i=1

where x; and y; are elements of complex vectors and X; is the complex conjugate of x;.

CDOTU computes

n
cdot = 3, x;y;

i=l

where x; and y; are elements of complex vectors.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-64 D



EISPACK (3SCI) ' EISPACK (3SCT)

NAME

EISPACK - Single-precision EISPACK routines

DESCRIPTION

SR-0113

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing and
using the singular value decomposition.

The original Fortran versions are documented in the Matrix Eigensystem Routines —~ EISPACK Guide,
second edition, by B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B, Moler, published by Springer-Verlag, New York, 1976, Library of Congress catalog card number
76-2662 (available through Cray Research as publicaton $2-0113); and in the Matrix Eigensystem Rou-
tines — EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, pub-
lished by Springer-Verlag, New York, 1977, Library of Congress catalog card number 77-2802 (avail-
able through Cray Research as publicaton §3-0113).

Each scientific library version of the EISPACK routines has the same name, algorithm, and calling
sequence as the original version. Optimization of each routine includes the following:

e Use of the BLAS routines SDOT, SASUM, SNRM2, ISAMAX, and ISMIN where applicable
¢ Removal of Fortran IF statements where the result of either branch is the same
e Unrolling complicated Fortran DO loops to improve vectorization

e Usc of the Fortran compiler dircctive CDIR$ IVDEP when no dependencics preventing vectori-
zation exist

These modifications increase vectorization and therefore reduce execution time. Only the order of com-
putations within a loop is changed; the modified versions produce the same answers as the original ver-
sions unless the problem is sensitive to small changes in the data,

The following summary provides a list of the routines giving the name, matrix or decomposition, and
the purpose for each routine.

Name Matrix or Decomposition Purpose
CG Complex general Find eigenvalues and eigenvectors
CH Complex Hermitian
RG Real gencral
RGG Real general
generalize (Ax = ABx)
RS Real symmetric
RSB Real symmetric band
RSG Real symmetric

generalize (Ax = ABx)

RSGAB Real symmetric
generalize (ABx = \x)

RSGBA Real symmetric
generalize (BAx = Ax)

RSP Real symmetric packed

4-65 D



EISPACK (3SCI)

SR-0113

Name
RST

RT

BALANC
CBAL

ELMHES
ORTHES
COMHES
CORTH

ELTRAN
ORTRAN

BALBAK
ELMBAK
ORTBAK

COMBAK
CORTB
CBABK2
REBAK
REBAKB

TRED1
TRED2
TRED3

TRBAK
TRBAK3

IMTQLV
IMTQLI1
IMTQL2

RATQR

TQLRAT

Matrix or Decomposition

Real symmetric
tridiagonal
Special real
tridiagonal

Real general

Complex general
Real general

Complex general

Real general

Real general

Complex general

Real symmetric

Real symmetric

Symmetric tridiagonal

Symmetric tridiagonal

Symmetric tridiagonal

EISPACK (38CI)

Purpose

Balance matrix and isolate
eigenvalues whenever possible

Reduce matrix to upper Hessenberg
form

Accumulate transformations used

in the reduction to upper
Hessenberg form done by ELMHES,
ORTHES

Form eigenvectors by back

transforming those of the

corresponding matrices

determined by BALANC, ELMHES,
ORTHES, COMMES, CORTH, and CBAL

Reduce to symmetric tridiagonal

Form eigenvectors by back
transforming those of the
corresponding matrices determined
by TRED1 or TRED3

Find eigenvalues and/or
eigenvectors by implicit QL
method

Find the smallest or largest
eigenvalues by rational QR
method with Newton corrections

Find the eigenvalues by rational
QL method



EISPACK (3SCI)

Name
TQL1
TQL2

BISECT
RIDIB
TSTURM
TINVIT

FIGI
FIGI2

BAKVEC

HQR
HQR2
COMQR
COMQR2

INVIT

CINVIT

BANDR

BANDYVY

BQR

MINFIT

SvD

SR-0113

Matrix or Decomposition

Symmetric tridiagonal

Nonsymmetric
tridiagonal

Nonsymmetric

Real upper Hessenberg

Complex upper
Hessenberg

Upper Hessenberg

Complex upper
Hessenberg

Real symmetric banded

Real symmetric banded

Real symmetric banded

Real rectangular

Real rectangular

4-67

EISPACK (3SCI)

Purpose

Find the eigenvalues and/or
eigenvectors by the rational QL
or QL method

Find eigenvalues and/or
eigenvectors that lie in a
specified interval using
bisection and/or inverse iteration

Reduce to symmetric tridiagonal
with the same eigenvalues

Form eigenvectors by back
transforming corresponding
matrix determined by FIGI

Find eigenvalues and/or
eigenvectors by QR method

Find eigenvectors corresponding
to specified eigenvalues

Reduce to a symmetric
tridiagonal matrix

Find those eigenvectors
corresponding to specified
eigenvalues using inverse iteration

Find eigenvalues using QR
algorithm with shifts of origin

Determine the singular value
decomposition A = USV7, forming

UTB rather than U.

Housecholder bidiagonalization and a variant
of the QR algorithm are used.

Determine the singular value
decomposition A = USVT.

Householder bidiagonalization

and a variant of the QR algorithm are used,



EISPACK (35CI) EISPACK (3SCI)

Name Matrix or Decomposition Purpose
HTRIBK  Complex Hermitian All eigenvalues and eigenvectors
HTRIB3
HTRIDI
HTRID3
QZHES Real generalized All eigenvalues and eigenvectors
QzITt eigenproblem (Ax = ABx)
QZVAL
QZVEC
COMLR Complex general Reduce matrix to upper Hessenberg
COMLR2
REDUC Real symmetric Transform generalized
(Ax = ABx) symmetric eigenproblems to
REDUC2  Real symmetric standard symmetric eigenproblems
(ABx = ABx
or BAx = ABx)
IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-68 D



FILTERG (3SCI) FILTERG (3SCI)

NAME
FILTERG - Computes a correlation of two vectors

SYNOPSIS
CALL FILTERG(a,m,d,n,0)

DESCRIPTION
a Vector of filter coefficients (input)
m Number of filter coefficients (input)
d Data vector (input)
n Number of data points (input)
o Resulting vector (output)

FILTERG computes a correlation of two vectors.

Given
@) i=1,.....m Filter coefficients

;) j=1,....n Daa

FILTERG computes the following:

m
0; = z a; d,'+j_1 i=1, .o n-m+l
j=1

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-69



FILTERS (3SCI) FILTERS (3SCI)

NAME
FILTERS ~ Computes a correlation of two vectors (symmetric coefficient)

SYNOPSIS
CALL FILTERS(a,m.dn,r)

DESCRIPTION

a Symmetric filter coefficient vector (input)
m is formally the length of vector g, but because a is symmetric

@ = apys1; i=1, ..., m), only ((m+1) div 2) elements of a are ever referenced (input)
d Data vector (input)
Number of data points (input)
r Resulting vector (output)
FILTERS computes the same correlation as FILTERG except that it assumes the filter coefficient vector
is symmetric.
Given

(c;) i=1,...., [mr2]
@) j=L....n

(Im2] = —'2’1 for m even, and 1%') for m odd. This is called the ceiling function.)

FILTERS computes the following when m is an odd number:
m—1)2 .
= Y 8% (digja+ i) + Amayz ¥ diygmenz  i=1,.. ., n-m+l
j=1
FILTERS computes the following when m is an even number:
mi2

rp= Z a; * (diyjo +diym-;) i=l,...,n-m+l
i=1

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
FILTERG(3SCI)

SR-0113 4-70 D



FOLR (3SCI)

NAME

FOLR, FOLRP - Solves first-order linear recurrences

SYNOPSIS

DESCRIPTION

Length of linear recurrence (input)
Vector of length at least 1+(n-1)*|inca| used for recurrence (the first element of g in the
recurrence is arbitrary) (input)

inca Increment between recurrence elements of the vector operand a (input)

b Vector of length at least 1+(n-1)*|inch| used as operand and for the result of the linear
recurrence (input/output)

inch Increment between recurrence elements of vector & (input)

CALL FOLR(n.a,inca,b,inch)
CALL FOLRP(n,a,inca,b,inch)

FOLR solves first-order linear recurrences as follows:
Equation 1:

by=b,
b,~=b,-—b,-_1*a,- for i=2,3...,n

The Fortran equivalent of equation 1 is as follows:

B(1)=B(1)
DO10I=2,N
B(D)=B()-B(-1)*A(D)
10 CONTINUE

FOLRP solves first-order linear recurrences as follows:
Equation 2:

by=b,
b,-=b,-+a,-b,-_l for i=2,3...,n

The Fortran equivalent of equation 2 is as follows:

B(1)=B(1)
DO10I=2N
B(D=BI)+A()*B(-1)
10 CONTINUE

IMPLEMENTATION

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

4-1

FOLR (3SCI)



FOLR (3SCI) FOLR (38CI)

CAUTIONS
Do not specify inca or inch as zero; doing so yields unpredictable results.

SR-0113 4-72 D



FOLR2(3SCI) FOLR2 (3SCI)

NAME
FOLR2, FOLR2P — Solves first-order linear recurrences without overwriting operand vector
SYNOPSIS
CALL FOLR2(n,a.incab,inch,c.incc)
CALL FOLR2P(n,a.inca,b,inch,c.incc)
DESCRIPTION
n Length of linear recurrence (input)
a Vector of length at least 1+(n-1)*|inca| used for recurrence (the first element of a in
recurrence is arbitrary) (input)
inca Increment between recurrence elements of vector a (input)
b Vector of length at least 1+(n-1)*|incb) used as operand of linear recurrence (input)
inch Increment between recurrence elements of vector b (input)
c Vecior of length at least 1+(n-1)*|incc| to contain resulting vector of linear recurrence
(output)
ince Increment between recurrence elements of vector ¢ (input)

FOLR?2 solves first-order linear recurrences as follows:

Equation 1:

cq1= bl

c; = b,~—a,- * Ciy fori= 2,3...n
The Fortran equivalent of equation 1 follows:
(given for case inca = inch = incc = 1)

C(1)=B(1)

DO 10 I=2)N

CM)=B(D)-AM*C{-1)
10 CONTINUE

FOLR2P solves first-order linear recurrences as follows:

Equation 2:

c1=b,
C; = b;+a,- * Ci1 fori=23,..,n

SR-0113 4-73 D



FOLR2(35Cl) FOLR2(3SCI)

The Fortran equivalent of equation 2 follows:
(given for case inca = incb = incc = 1)
C(1)=B(1)
DO 10 I=2N

C(D=BM+AM*Cd-1)
10 CONTINUE

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

CAUTIONS
Do not specify inca, inch, or incc as 0; doing so yields unpredictable results.

SEE ALSO
FOLR(35CI)

SR-0113 4-74 D



FOLRC(3SCI) FOLRC (3SCT)

NAME
FOLRC - Solves first-order linear recurrence with constant coefficient

SYNOPSIS
CALL FOLRC(n.x,incx,c,incc,coef)

DESCRIPTION
n Length of linear recurrence (input)
x Vector operand of length at least 1+(n-1)*|incx| (input/output)
incx Increment between recurrence elements of vector x (input)
c Vector operand of length at least 1+(n-1)*|incc| (input)
incc Increment between recurrence elements of vector ¢ (input)
coef Coefficient used for recurrence (input)

FOLRC solves a linear recurrence as in the Fortran equivalent below:

I=1

J=1

IF (INCX LT. 0) THEN
I = 1-(N-1*INCX

ENDIF

IF (INCC. LT. 0) THEN
J = 1-(N-1)*INCC

ENDIF

XM =Ccm

DO 10K=1,N
X(I+INCX) = COEF*X(I) + CJ+INCC)
J=J +INCC
I=1+INCX

10 CONTINUE

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS
Do not specify incx or incc as zero;, doing so yields unpredictable results.

SR-0113 4-75 D



FOLRN (35CI) FOLRN (3SCI)

NAME
FOLRN - Solves for the last term of first-order linear recurrence using Horner’s method

SYNOPSIS
result = FOLRN(n,a,inca,b,inch)

DESCRIPTION
n Length of the linear recurrence (input)
a Vector of length at least 1+(n-1)*|inca] used for recurrence (the first element of a in
recurrence is arbitrary) (input)
inca Increment between recurrence elements of the vector operand @ (input)
b Vector of length at least 1+(n-1)*|inch| used as operand for recurrence (input)
inch Increment between recurrence elements of the vector b (input)

FOLRN solves for r, of

r1=b1

r,~=b,--a,-r,-_1 i=2,3,...,n

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS
Do not specify inch as 0; doing so yields unpredictable results.

EXAMPLE
FOLRN allows for efficient evaluation of polynomials using Horner’s method as follows:

Letp(x)= Y, b x"
i=0

then p (@) = (...((box + by) x + by) x +...b,) by Homner’s rule.

The Fortran equivalent is as follows:

PA = B(0)
DO10I=1N
PA =PA * X + B(l)
10 CONTINUE
or
PA=FOLRN(N+1,-X,0,B(0),1)
SEE ALSO
FOLR(3SCI)

SR-0113 4-76 D



FOLRNP (3SCI)

NAME
FOLRNP - Solves for last term of a first-order linear recurrence

SYNOPSIS
result = FOLRNP(n,a,inca,b,inch)

DESCRIPTION
n Length of the linear recurrence (input)
a Vector of length at least 1+(n-1)*|inca| used for recurrence (input)
inca Increment between recurrence elements of the vector operand a (input)
b Vector of length at least 1+(n-1)*|inch| used for recurrence (input)
inch Increment between recurrence elements of the vector operand b (input)

FOLRNP solves a linear recurrence as in the following Fortran equivalent:

K=1

J=1

IF (INCX .LT. 0) THEN
K=1-(N-1) * INCX

ENDIF

IF (INCC .LT. 0) THEN
J=1-(N-1) * INCC

ENDIF

RESULT = B(J)

DO10I=2N
RESULT = A(K+INCA) * RESULT + B(J+INCB)
J=J+INCB
K=K + INCA

10 CONTINUE

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS
Do not specify inca or incb as 0; doing so yields unpredictable results.

SR-0113 4-77

FOLRNP (3SCT)



GATHER (3SCI) GATHER (3SCT)

NAME
GATHER - Gathers a vector from a source vector
SYNOPSIS
CALL GATHER(n,a,b,index)
DESCRIPTION
n Number of elements in vectors g and index (not in b) (input)
Resulting vector (output)
b Source vector (input)
index Vector of indices (input)

GATHER is defined in the following way:
a;=b;, wherei=1,...n

In Fortran:
DO 100 I=1,N

A(D=BINDEX(D))
100 CONTINUE

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS ope¢rating systems.

SR-0113 4-78 D



LINPACK (3SCI) LINPACK (3SCl)

NAME
LINPACK - Single-precision real and complex LINPACK routines

DESCRIPTION

LINPACK is a package of Fortran routines that solve systems of linear equations and compute the QR,
Cholesky, and singular value decompositions. The original Fortran programs are documented in the
LINPACK User’s Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, published by
the Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1979, Library of Congress
catalog card number 78-78206. This guide is available through Cray Research as publicaton $1-0113,
Each single-precision scientific library version of the LINPACK routines has the same name, algorithm,
and calling sequence as the original version. Optimization of each routine includes the following:

o Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT with
in-line Fortran code vectorized by the Cray Fortran compilers '
s Removal of Fortran IF statements where the result of either branch is the same

e Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in DO loops. See the
LINPACK User’s Guide for further descriptions. The complex routines have been added without much
optimization.

The following summary provides a list of the routines, giving the name, matrix or decomposition, and
the purpose for each routine. :

Name Matrix or Decomposition Purpose

SGECO Real general Factor and estimate condition
SGEFA Factor

SGESL Solve

SGEDI Compute determinant and inverse
CGECO Complex general Factor and estimate condition
CGEFA Factor

CGESL Solve

CGEDI Compute determinant and inverse
SGBCO Real general banded Factor and estimate condition
SGBFA Factor

SGBSL Solve

SGBDI Compute determinant

CGBCO Complex general banded Factor and estimate condition
CGBFA Factor

CGBSL Solve

CGBDI Compute determinant

SR-0113 4-79 D



LINPACK (3SCI)

SR-0113

Name

SPOCO
SPOFA
SPOSL
SPODI

CPOCO
CPOFA
CPOSL
CPODI

SPPCO
SPPFA
SPPSL
SPPDI

CPPCO
CPPFA
CPPSL
CPPDI

SPBCO
SPBFA
SPBSL
SPBDI

CPBCO
CPBFA
CPBSL
CPBDI

SSICO
SSIFA
SSISL
SSIDI

CSICO
CSIFA
CSISL
CSIDI

CHICO
CHIFA
CHISL
CHIDI

SSPCO
SSPFA
SSPSL
SSPDI

Matrix or Decomposition

Real positive definite

Complex positive
definite

Real positive definite
packed

Complex positive
definite packed

Real positive definite
banded

Complex positive
definite banded

Symmetric indefinite

Complex symmetric

Hermitian indefinite

Symmetric indefinite
packed

LINPACK (3SCI)

Purpose

Factor and estimate condition
Factor

Solve

Compute determinant and inverse

Factor and estimate condition
Factor

Solve

Compute determinant and inverse

Factor and estimate condition
Factor

Solve

Compute determinant and inverse

Factor and estimate condition
Factor

Solve

Compute determinant and inverse

Factor and estimate condition
Factor

Solve

Compute determinant

Factor and estimate condition
Factor

Solve

Compute determinant

Factor and estimate condition
Factor

Solve

Compute inertia, determinant,
and inverse

Factor and estimate condition
Factor

Solve

Compute determinant and inverse

Factor and estimate condition
Factor

Solve

Compute inertia, determinant,
and inverse

Factor and estimate condition
Factor

Solve

Compute inertia, determinant,
and inverse



LINPACK (3SCI) LINPACK (3SCI)

Name Matrix or Decomposition Purpose

CSPCO Complex symmetric Factor and estimate condition
CSPFA indefinite packed Factor

CSPSL Solve

CSPDI Compute inertia, determinant,

and inverse

CHPCO Hermitian indefinite Factor and estimate condition

CHPFA packed Factor

CHPSL Solve

CHPDI Compute inertia, determinant,
and inverse

STRCO Real triangular Factor and estimate condition

STRSL Solve

STRDI Compute determinant and inverse

CTRCO Complex triangular Factor and estimate condition

CTRSL Solve

CTRDI Compute determinant and inverse

SGTSL Real tridiagonal Solve

CGTSL Complex tridiagonal Solve

SPTSL Real positive definite Solve

tridiagonal

CPTSL Complex Solve

SCHDC Real Cholesky Decompose

SCHDD decomposition Downdate

SCHUD Update

SCHEX Exchange

CCHDC Complex Cholesky Decompose

CCHDD decomposition Downdate

CCHUD Update

CCHEX Exchange

SQRDC Real Orthogonal factorization

SQRSL Solve

CQRDC Complex Orthogonal factorization

CQRSL Solve

SSvDC Real Singular value decomposition

CSVDC  Complex

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS opcrating systems.

SR-0113 4-81 D



MINYV (3SCI) MINV (3SCI)

NAME
MINV — Solves systems of linear equations by inverting a square matrix

SYNOPSIS
CALL MINV(ab,n,ldab,scratch,det tol,m,mode)

DESCRIPTION
ab Auray containing the augmented matrix A:B. A is the square matrix to be inverted and B is
the matrix whose columns are the sources for the systems of linear equations to be solved.
(input)
A:B is overwritten by the solutions and (optionally) by the inverse of A. (output)
n Order of matrix A; that is, A is an n-by-» matrix. (input)

ldab Leading dimension of array ab. (input)
scratch  Array of at least 2*n elements used by MINV as a work space.
det Determinant of A, computed as the product of pivot elements. (output)

tol Lower limit for the determinant’s partial products. Matrix A is declared singular once the
partial product of pivot elements is less than or equal in magnitude to this parameter, which
should be positive. (input)

m Number of columns in B. This number may be 0. (input)

mode Parameter specifying whether or not the inverse of A is required.
In ab, A is overwritten by its inverse only if mode<>0. (input)

MINV can be used to solve systems of linear equations, compute the inverse of a square matrix, or
compute the determinant of the matrix.
If m>0, MINV solves
A*X =B
for the n-by-m matrix X, replacing B by X (that is, the solution overwrites B).
Thus, MINV solves m systems of linear equations:
A*XC)H =BGy, j=1,2,3,..m,
where X(:j) and B(:,j) denote the j-th columns of X and B, respectively.
If mode<>0, MINV replaces A by the inverse of A.
If mode=0, A is overwritten, but not by the inverse of A.
The effect of mode is independent of the value of m.

Regardless of the values of m and mode, MINV computes the determinant of A, subject to the restric-
tion imposed by ol (see CAUTIONS).

SR-0113 4-82 D



MINYV (3S8CI) MINV (3S8CI)

The following table summarizes the effect of different combinations of parameter values:

Parameter values Results returned by MINV
m=0, mode=0 det(A)
m=0, mode<>0 det(A), A¥*(-1)
m>0, mode=0 det(A), X=(A**(-1))*B
m>0, mode<>0 det(A), A¥*(-1), X=(A**(-1))*B

A**(-1) denotes the inverse of A.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems,

NOTES
MINYV solves linear equations using a partial pivot search (one unused row) and Gauss-Jordan reduction.

References:

1. W. P. Petersen, "Partial Pivoting Linear Equation Solver (MINV)", Cray Computer Systems Techni-
cal Note SN-0215 (1980).

2. D. E. Knuth, The Art of Computer Programming, Volume 1 (Fundamental Algorithms), (Addison-
Wesley, Reading, MA, 1973); pp. 301-302.

CAUTIONS

At each reduction step, MINV computes the partial product of pivot elements. MINV aborts computa-
tion if this product’s magnitude is less than or equal to tol. Therefore, if the value retumed in det is
less or equal in magnitude to the value input as tol, then MINV did not invert A or solve for X
(although A:B may have been overwritten); in this case, the value retumned in det may not be the deter-
minant of A.

EXAMPLES

Example 1.

The following program computes only the determinant of a square matrix, overwriting the matrix in the
process.

PROGRAM MINV1
DIMENSION A(4,4), SCRATCH(S)

DATA A/5.7.6.,5.7.,10.8..7..6.8.,10.9.,5..7.9.,10./
CALL MINV(A 4,4, SCRATCH,DET, 1E-12,0,0)
WRITE(®6, (/A F14.12)") 'Determinant = *, DET
END

Output:
Determinant = 1.000000000002

(The matrix is unimodular.)

SR-0113 4-83 D



MINYV (38CI) MINV (3SCT)

Example 2.
This program computes the inverse of the matrix whose determinant was computed in Example 1.

PROGRAM MINV2
DIMENSION A(4,4), AINV(4,4), SCRATCH(8), E(4.4), P(4 4)
DATA A/5.,7.,6.,5.,7.,10.,8.,7.,6.,8.,10.9.,5.,7..9.,10./
& E/1.4*%0.,1.4*0.,1.4%0.,1./
¢ copy A into AINV
AINV = A
CALL MINV(AINV 4,4 SCRATCH,DET,1E-12,0,1)
WRITE(6,902) ((A(1J),J=1,4), (AINV(1,])]J=14), I=14)
¢ compare A*¥AINV to E
CALL MXM(A 4,AINV 4P 4)
WRITE(6,903) (PAN)-E(1J)J=14),]=14)
902 FORMAT(4(/4F5.0,.9X ,4F5.0))
903 FORMAT(4(/1X 4(E10.4,5X)))

END
Qutput:

5. 7. 6 5. 68. -41. -17. 10.

7. 10. 8. 7. -41. 25. 10. -6.

6. 8. 10. 9. -17. 10. 5. -3.

5. 17 9. 10. 10. -6. -3. 2.
0.6821E-12 0.9095E-12 -.2274E-12 0.5684E-13
0.4093E-11 -.6821E-12 -.5684E-12 0.7958E-12
0.2274E-11 -.2274E-12 -.3411E-12 0.4547E-12
0.2274E-11 0.0000E+00 -.4547E-12 0.2274E-12

Though not printed, the determinant of the input matrix is available in the variable det after the call to
MINYV,

SR-0113 4-84 D



MINV (3SCI) MINYV (3SCI)

Example 3.
In the following program, MINV solves

A*X =B

for the two-column matrix X, where A is the same 4-by-4 matrix used for input in the previous exam-
ples.

PROGRAM MINV3
DIMENSION AB(4,6), SCRATCH(8)
DATA
& AB/5.7.6.5.7.,10.8.,7.6..8.,10.9.,5.,7..9.,10.,
c first column of B
& 0,123,
c second column of B
& 1.,2,1.2/
WRITE(6,904) ’input matrix A:B’, ((AB(1,J),J=1,6), I=1,4)
CALL MINV(AB,4,4,SCRATCH,DET,1E-10,2,0)
WRITE(6,904) ’output matrix’, ((AB(1,J),J=1,6), I=1,4)
904 FORMAT(/A/4(/6F5.0))
END

The solution matrix is stored in the last two columns of AB, as shown by the program’s output:

input matrix A:B

5. 7. 6 5. 0. 1.

7. 10. 8. 7. 1. 2.

6. 8. 10. 9. 2. 1.

s. 7. 9. 10. 3. 2.
output matrix

10. 68. -41. -17. -45. -11.
-6. -41. 25. 10. 27. 7.
-3. -17. 10. 5. 11. 2.
2. 10. -6. -3. -6. -1.

The first four columns of ab, which were occupied by A on input, have been overwritten.

SEE ALSO
SGEFA in LINPACK(3SCI)

SR-0113 4-85 D



MXM (3SCI) MXM (3S5CI)
NAME
MXM — Computes matrix-times-matrix product (unit increments)
SYNOPSIS
CALL MXM(a,nra,b,nca,c,nch)
DESCRIPTION
a Matrix A, the first factor (input)
nra Number of rows in A (input)
b Matrix B, the second factor (input)
nca Number of columns in A (input)
¢ Matrix C, the product A*B (output)
nch Number of columns in B (input)
MXM computes the nra-by-nch matrix product C=A*B of the nra-by-nca matrix A and the nca-by-nch
matrix B.

The following Fortran subroutine is equivalent to MXM:

110
120

210
220
230

SUBROUTINE MXMF(A ,NRA,B,NCA,C,NCB)
DIMENSION A(NRA NCA), B(NCANCB), CINRA NCB)
initialize product
DO 120 K=1, NCB
DO 110 I=1, NRA
C(I.X)=0
CONTINUE
CONTINUE
multiply matrices A and B
DO 230 K=1, NCB
DO 220 J=1, NCA
DO 210 I=1, NRA
C(1.X)=CIKM+AILI*BJ,K)
CONTINUE
CONTINUE
CONTINUE
RETURN
END

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.,

NOTES
MXM

is restricted to multiplying matrices whose elements are stored by columns in successive memory

locations. MXMA is a general subroutine for multiplying matrices that can be used to multiply matrices
that do not satisfy the requirements of MXM.

MXV is similar to MXM, but is specialized to the case of a matrix times a vector.

SR-0113

4-86 D



MXM (3SCI)

CAUTIONS

MXM(3SCT)

To be computed correctly, the product must not overwrite either factor. Thus, for example,

CALL MXM(ANRA,BNCA,ANCA)
will not (in general) assign the product A*B to A.

EXAMPLE

The following program multiplies a 4-by-4 matrix and a 4-by-3 matrix.

PROGRAM MXM1

DIMENSION A{4,4), B(4,3), C(4,3)

DATA A/3.2.7.,1.,6.,3.,1.,6.4.,6.4.2.,1..3.,7..5./
& B/5.6.4.3.2.,1.,-3.6.,1.5.,-4.4/

CALL MXM(A4,B4,C.3)
WRITE(6,901) ((A(1J),J=1,4), (B(L]).J=1,3),
& (CANJI=1,3),1=14)

901 FORMAT(4(/4F4.0,4X,3F4.0,9X,3F4.0))
END

Output:
3. 6. 4. 1. 5. 2. 1. 40. 6.
2. 3. 6. 3. 6. 1. 5. 41. 7.
7. 1. 4, 7. 4. -3. -4. 8. 45.
1. 6. 2. 5. 3. 6. 4. 54. 32.

SEE ALSO
MXMA(3SCI), MXV(3SCD)

SR-0113 4-87

21.

3.
24,
43,



MXMA (3SCI) MXMA (3S8CI)

NAME
MXMA - Computes matrix-times-matrix product (arbitrary increments)

SYNOPSIS
CALL MXMA(sa,iac iar,sb,ibc ibr,sc,icc,icr.nrp,m,ncp)

DESCRIPTION
sa Array containing matrix A, the first operand (input)
iac Increment in sa between adjacent elements in a column of A (input)
iar Increment in sa between adjacent elements in a row of A (input)
sb Array containing matrix B, the second operand (input)
ibc Increment in sb between adjacent elements in a column of B (input)
ibr Increment in sb between adjacent elements in a row of B (input)
sc Array receiving C, the product A*B (output)
icc Increment in sc between adjacent elements in a column of C (input)
icr Increment in sc between adjacent elements in a row of C (input)

nrp Number of rows in C (that is, the number of rows in A) (input)
m Middle dimension: number of columns in A and number of rows in B (input)

ncp Number of columns in the product (that is, the number of columns in the second operand B)
(input)

Let A denote the nrp-by-m matrix defined by iac and iar in array sa; and let B denote the m-by-ncp
matrix defined by ibc and ibr in sb.

MXMA returns the nrp-by-ncp matrix product C=A*B in elements of C specified by icc and icr.

SR-0113 4-88 D



MXMA (

NOTE

SR-0113

38CI) MXMA (3SCT)

The following Fortran subroutine is equivalent to MXMA:

SUBROUTINE
& MXMAF(SA,JACJAR,SB,IBC,IBR,SC,ICC,ICR,NRP,M,NCP)
DIMENSION SA(1), SB(1), SC(1)
¢ INITIALIZE PRODUCT
DO 120 K = 1, NCP
DO 110 I = 1, NRP
SC( 1 + (-1)*ICC + (K-1)*ICR ) = 0.

c (CIK):=0.)
110 CONTINUE
120 CONTINUE

¢ MULTIPLY MATRICES FROM SA AND SB

DO 230 K = 1, NCP
DO220J=1,M

DO 2101 = 1, NRP
SC( 1 + (I-1)*ICC + (K-1)*ICR )
= SC( 1 + (I-1)*ICC + (K-1)*ICR )
+SA( 1 + (-1)*IAC + (J-1)*IAR )
* SB( 1 + (J-1)*IBC + (K-1)*IBR )

¢ (CAK) :=C(IK) + A(LD*BU.K) )
210 CONTINUE
220  CONTINUE
230 CONTINUE

RETURN

END

R

This subroutine shows how nrp, m, ncp, and the six increments define the locations of the operands and
result in the arrays sa, sb, and sc.

Interchanging the arguments specifying column and row increments for one of the matrices involved in
the computation (A, B, or C) is equivalent to replacing that matrix by its transpose. Consider the first
operand: in the subroutine MXMAF (in the previous example), interchanging iac and iar replaces A(LJ)
with A(J,I).

Commonly, sa, sb, and sc are two-dimensional arrays. If they are defined to have leading dimensions
ldsa, ldsbh, and ldsc as follows:

DIMENSION SA(LDSANCP), SB(LDSB,NCP), SC(LDSC,NCP)

then
CALL MXMA(SA,IAC,LDSA,SB,IBC.LDSB,SC,ICC,LDSC,NRPNCP,NCP)

multiplies a submatrix of sa and a submatrix of sb, storing the product in a submatrix of sc, while
CALL MXMA(SA,JAC,LDSA,SB,LDSB,IBC,SC,JCC,LDSC,NRP,NCP,NCP)

computes the product of A and the transpose of B.

MXMA is a gencral subroutine for multiplying matrices. It can be used to compute a product of
matrices where one or more of the operands or the product must be transposed. MXMA can be used to
multiply any matrices whose elements are not stored by columns in successive memory locations, pro-
vided only that the elements of rows and columns are spaced by increments constant for each matrix.

4-89 D



MXMA (

35CI) MXMA (3SCT)

MXVA is a similarly general subroutine that computes the product of a matrix and a vector.

The product of matrices whose elements are stored by columns in successive memory locations can be
computed slightly faster using MXM.

The following subroutine calls are equivalent:
CALL MXMA(SA,1,NRP,SB,1,M,SC,1,NCP,NRP,M,NCP)
CALL MXM(SA,NRP,.SBM,SCNCP)

(The product elements computed by MXM are also stored by columns in successive memory locations).

CAUTION

To be computed correctly, the product must not overwrite either operand. Thus, if alpha is a one-
dimensional array,

CALL MXMA(ALPHA,3,9,BETA,1,2, AL PHA(2),1,3, 3,2,2)
correctly computes the product of the matrices defined in alpha and beta, whereas
CALL MXMA(ALPHA,39,BETA,1,2,ALPHA,1,3, 3,2,2)

does not (in general).

EXAMPLES

SR-0113

Example 1.
Suppose sa, sb, and sc are dimensioned as follows:

REAL SA(3,3), SB(4,3), SC(4,3)

then  CALL MXMA(SA,1,3,SB4,1,SC,3,8,2,3,2)

multiplies a 2-by-3 matrix operand A from sa times a 3-by-2 matrix operand B from sb, storing the 2-
by-2 matrix product C in sc.

Elements of the matrices A, B, and C are identified with elements of the arguments sa, sb, and sc,
respectively, as follows:
memory product

memory operand memory operand

sa(1,1) == A(L,D)

sb(1,1) == B(1,1)

sc(1,1) == C(1,1)

sa(2,1) = A(2,1) sb(2,1) == B(1,2) sc(2,1)

sa(3,1) sb(3,1) sc(3,1)

sa(1,2) == A(1,2) sb(4,1) sc(4,1) == C(2,1)

sa(2,2) == A(2,2) sb(1,2) == B(2,1) sc(1,2)

sa(3.2) sb(2,2) == B(2,2) sc(2,2)

sa(1,3) = A(1,3) sb6(3,2) 5¢(3,2)

sa(2,3) = A(2,3) sb(4,2) sc(4,2)

sa(3,3) sb(1,3) == B(3,1) sc(1,3) == C(1,2)
s6(2,3) == B(3,2) 5¢(2,3)
sb(3,3) 5¢(3,3)

sb(4,3)

sc(4,3) == C(2,2)



MXMA (35CI) MXMA (35CI)

The columns labeled "memory™ list all the elements of the arrays sa, sb, and sc in the order of their
storage addresses; the columns labeled "operand" show the role of these elements in the computation.
Note that B(i,j) = B(j,i): in this example, B is a submatrix of the transpose of sb.

Example 2. MXMA accepts non-positive increments.
Consider the following program:

PROGRAM MXMA2
DIMENSION A1(3,3), A2(3,3), B(3,3), C(3,2)
DATA Al1/1.,2.99.,3.4.99.,99.,99.,99./

& A2/4.3.99.,2.,1.,99.,99.,99.,99./

& BA.42,1.,1.42.2.3.42.5./
CALL MXMA(a1,13,5.23.c3,1.2.2.3)
WRITE(6,901) ((A1(13),J=1,3),

& (BINJ=13), (CIN.J=1,2), I=1,3)
CALL MXMA(A2(2,2),-1,-3,B,2,3,C,3,1,2,2,3)
WRITE(6,901) ((A2(1J)).)=1,3),

& (BANJ=13), (C(J)J=12), I=13)
901 FORMAT(3(/3F4.0,9X,3F4.0,9X 2F4.0))
END

which produces the following output:

1. 3. 099. 0. 1. 3. 3. 4.
2. 4.99. 42, 42. 42, 7. 10.
99. 99. 99. 1. 2. 5§, 18. 26.
4. 2.99. 0. 1. 3. 3. 4.
3. 1.99. 42. 42, 42, 7. 10.
99. 99. 99. 1. 2. 5. 18. 26.

This demonstrates that both calls to MXMA define the same first operand.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
MXM(3SCD, MXVA@3SCDH

SR-0113 491 D



MXV (3SCI)

NAME

MXV (35CT)

MXYV - Computes matrix-times-vector product (unit increments)

SYNOPSIS

CALL MXV(a,nra,b,nca.c)

DESCRIPTION
a Matrix factor (input)
nra Number of rows in the matrix (input)
b Vector factor (input)
nca Number of columns in the matrix (input)
c Vector product (output)

MXYV computes the nra-vector product C=A*B of the nra-by-nca matrix A and the nca-vector B.

The following Fortran subroutine is equivalent to MXV:

100

210
220

IMPLEMENTATION

SUBROUTINE MXVF(A,NRA,B,NCA,C)
DIMENSION A(NRA,NCA), B(NCA), C(NRA)
initialize product
DO 1001 =1, NRA
CO =0.
CONTINUE
multiply matrix A and vector B
DO 220J=1, NCA
DO 210I=1, NRA
CM =CO) + ALI*BQ)
CONTINUE
CONTINUE
RETURN
END

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

MXV is restricted to multiplying a vector occupying successive memory locations (in order) by a matrix
whose elements are stored by columns in successive memory locations. MXVA is a general subroutine
for multiplying a matrix and a vector, which can be used to multiply a vector by a matrix stored with

arbitrary column and row increments.

SR-0113



MXV (3SCI) MXYV (3SCI)

EXAMPLES
The following program multiplies a 3-by-4 matrix and a 4-clement vector:

PROGRAM MXVL

DIMENSION A(3,4), B(4), C(3)

DATA Ap.4.2.3.3.5.7.1.7.4..2.,2./B/1,,-2.,-1..3./

CALL MXV(A3,B,4,C)

WRITE(6,901) ((A(L]),J=1,4), B(I), C(D), I=1,3), B(4)
901 FORMAT\(3(/4F4.0,T20,F4.0,T30,F4.0)/T20,F4.0)

END
Output:
9. 3. 7. 4 1 8
4 3. 1. 2 2 3
2. S8 7. 2 -1. 9
3.
CAUTIONS

To be computed correctly, the product must not overwrite either factor. Thus, for example,
CALL MXV(AN,B,N,B)
will not (in general) assign to B the product A*B,

SEE ALSO
MXVA(3SCD)

SR-0113 4-93 D



MXVA(35CI) MXVA(3SCI)

NAME
MXVA - Computes matrix-times-vector product (arbitrary increments)

SYNOPSIS
CALL MXVAC(sa,iac iar,sb,ib,sc,ic,nra,nca)

DESCRIPTION
sa Array containing matrix A, the first operand (input)
iac Increment in sa between adjacent elements in a column of A (input)
iar Increment in sa between adjacent elements in a row of A (input)
sb Array containing vector B, the second operand (input)
ib Increment in sb between adjacent elements of B (input)
sc Array receiving C, the product A*B (output)
ic Increment in sc between adjacent elements of the product (input)
nra Number of rows in A (input)
nca Number of columns in A (input)

Let A denote the nra-by-nca matrix defined by iac and iagr in array sa; let B denote the nca-vector
defined by ib in sb. MXVA retumns the nra-vector product C=A*B in elements of sc specified by icc
and icr.

The following Fortran subroutine is equivalent to MXVA:

SUBROUTINE MXVAF (SA,IAC,IAR,SB,IB,SC,JC,NRA,NCA)
DIMENSION SA(1), SB(1), SC(1)
c initialize product
DO 100 I =1, NRA
SC( 1+ J-1D)*IC)=0.
c (CG@):=0.)
100 CONTINUE
multiply matrix from sa and vector from sb
DO 220 J =1, NCA
DO 2101=1, NRA
SC(1 + (-1)¥IC)
& =SC(1 + (I-1)*IC )
& + SA( 1 + (I-1)*IAC + (J-1)*IAR )
& * SB(1+(J-1)*IB)
c (CGi) = C(i) + AGJ*B() )
210 CONTINUE
220 CONTINUE
RETURN
END

This subroutine shows how iac, iar, ib, ic, nra, and nca define the locations of the operands and result
in the arrays sa, sb, and sc.

Interchanging the arguments specifying column and row increments for the matrix has the effect of
replacing the matrix by its transpose. In subroutine MXVAF (previous example), interchanging iac and
iar replaces A(i, j) by A(, i).

SR-0113 4.94 D



MXVA(3SCI) MXVA (35CI)

NOTES

Suppose sa is a two-dimensional array defined to have leading dimension ldsa as follows:
DIMENSION SA(LDSA,NCA)

Then
CALL MXVA(SA,JAC,LDSA,SB,IB,SCIC,NCA,NCA)

multiplies a submatrix A of sa times a vector from sb, storing the product in sc, while
CALL MXVA(SA,LDSAIAC,SB,IB,SCIC,NCA,NCA)

computes the product of the transpose of A times the same vector from sb.

MXVA is a general subroutine for multiplying a matrix and a vector, and is operationally similar to
MXMA. MXVA can be used to multiply a vector by any matrix whose elements are not stored by
columns in successive memory locations, provided only that the elements of rows and columns are
spaced by constant increments. The factor and product vector increments are independent and arbitrary.

The product of a matrix whose elements are stored by columns in successive memory locations and a
vector stored likewise can be computed somewhat faster using MXV. The following two subroutine

calls have the same result:

CALL MXVA(SA,1,NRA,SB,1,SC,1,NRA,NCA)
CALL MXV(SA NRA,SB,NCA,SC)

(The product elements computed by MXYV are also stored in successive memory locations.)

EXAMPLES

Example 1. Suppose sa, sb, and sc are dimensioned as follows:
REAL SAQ3,3), SB(9), SC(8)
Then
CALL MXVA(SA,1,3,5B,4,5C,3,2,3)
multiplies a 2-by-3 matrix operand A from sa times a 3-element vector operand B from sb, storing
the 2-element vector product C in sc. Elements of the matrix A and the vectors B and C are identified
with elements of the arguments sa, sb, and sc, respectively, as follows:

memory operand memory operand memory product

sa(1,1) == A(1,1) sb(1) == B(1) sc(1) == CQ)

sa2,1) = AQ2,1) sb(2) 5c(2)

sa(3,1) sb(3) sc(3)

sa(12) == A(1,2) sb(4) sc(4) == C(2)
sa2,2) = AQ2,2) sb(5)==B(2) sc(5)

sa(3,2) sb(6) sc(6)

sa(1,3) = A(1,3) s&7) sc(7)

sa(2,3) = A(2,3) sb(8) sc(8)

sa(3,3) sh(9) == B(3)

SR-0113 4-95 D



MXVA(3SCI) MXVA (38CI)

The columns labeled "memory" list all the elements of the arrays sa, sb, and sc in the order of their
storage addresses; the columns labeled "operand" show the role of these elements in the computation.

Example 2. In the following program, the first call to MXVA computes the product of the 3-by-5
matrix A and the 5-element vector B; the second call computes the product of the 5-by-3 wranspose of
A and the 3-element vector (B(1),B(2),B(3)):

PROGRAM MXVA2
DIMENSION A(3,5), B(5). C(5)
DATA A/1.2.,-5.,8.,-6.3.8.-7.,4.,1.,-5.0.,5.,6.,6./

& B/6.-1.2.8.4/

& C/5%0./
CALL MXVA(A,13,B,1,C,1,3,5)
WRITE(6,901) ((A(LD.J=15), BX), C), 1=1,3),

& B@, CA), 1=4,5)
CALL MXVA(A3,1,B,1,C,1,5,3)
WRITE(6,901) ((A(LJ),J=1,5), B(D), C(@), 1=1,3),

& B@, CD, I=4,5)

901 FORMAT(3(/5F4.0,T25,F4.0,T35,F4.0),2(/T25,F4.0,T35,F4.0)/)

END

The output of this program is as follows:

1. -8 8 1. & 6. 58.
2. 6. 1. -5 6 -1. -12.
5. 3. 4 0 6 2. -1.
8. 0.

4, 0.

1. -8 8 1. 5. 6 -6.
2. 6. -1. -5 6. -1 -36.
5. 3. 4 0. 6 2. 63.
8. 11.

4. 36.

Example 3. The following program multiplies a 2-by-3 matrix and a 3-element vector, storing the
product’s two elements in reverse order:

PROGRAM MXVA3

DIMENSION A(3,2), B(3), C(3)

DATA A2.9.8.4.3.,7./B/4.,-4.,1./C/3*0./

CALL MXVA(A3,1,B,1,C(3),-2,2,3)

WRITE(6,901) ((A(,1),J=1,2), B{I), C(D), I=1,3)
901 FORMAT(3(/2F4.0,4X,F4.0,9X,F4.0))

END
Output:
2. 4. 4. 11.
9. 3. 4. 0.
8 7 1 -20.

SR-0113 4-96 D



MXVA (3SCI) MXVA(3SCI)

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems,

CAUTIONS
To be computed correctly, the product must not overwrite either operand. Thus, for example,

CALL MXVA(SA,IAC,IAR,SB,IB,SB,IB,NRA,NCA)
will not (in general) compute correctly the product of the matrix in sa and the vector in sb.

SEE ALSO
MXV(3S8CD), MXMA(3SCD)

SR-0113 4.97 D



OPFILT (358CI) OPFILT (3SCT)

NAME
OPFILT - Solves Weiner-Levinson linear equations

SYNOPSIS
CALL OPFILT(m.a,b.c.r)

DESCRIPTION
m Order of the system of equations (input)
a Resulting vector of m filter coefficients (output)
b Information auto-correlation vector of length m (input)
c Scratch vector of length 2m
r Signal auto-correlation vector of length m (input)

OPFILT computes the solution to the Weiner-Levinson system of linear equations Ta=b, where T is a
Toeplitz matrix in which elements are described by the following:
t; =R (k) for |j=i|+ 1=k
andk=1,...,n

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

Although OPFILT solves this matrix equation faster than Gaussian elimination can, OPFILT does no
pivoting; therefore, it is less numerically stable than Gaussian elimination unless the matrix T is posi-
tive definite, or diagonally dominant.

EXAMPLES

The following system of linear equations can be solved with the call OPFILT (3,A,B,C,R). The vector
C has a length of at least six. (The #; elements show how the numbers for R are obtained.)

E(DR(Z)RG)] E(l)‘ E(l)]
R(ZgR(l)R(Z) A2)| = [B(2)

(3) R(2) R(1) 3)J 3
ta hi tia| e bl1
ta ttn| (82| = |ba
t31 {32 133 a3 bs

SR-0113 4-98 D



RECPP (3SCI)

NAME

RECPP - Solves a partial products problem

SYNOPSIS

CALL RECPP(n,x,incx,c,incc)

DESCRIPTION

n
X
incx
¢

incc

Recurrence length (input)

Vector of length at least 1+(n-1)*|incx| (input/output)
Increment between recurrence elements in vector x (input)
Vector of length at least 14(n-1)*|incc| (input)

Increment between recurrence elements in vector ¢ (input)

RECPP solves a partial products problem as in the following Fortran equivalent:

I=1
J=1
IF (INCX .LT. 0) THEN
I = 1-(N-1)*INCX
ENDIF
IF (INCC. LT. 0) THEN
J = 1-(N-1*INCC
ENDIF
XD =CQ)
DO 10 I=2N
X(I+INCX) = CJ+INCCy*X(D)
J =J+INCC
I = I+INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113

RECPP (3SCI)



RECPS (35CI) RECPS (38CI)

NAME
RECPS - Solves a partial summation problem

SYNOPSIS
CALL RECPS(nx,incx,c,incc)

DESCRIPTION
n Recurrence length (input)
x Vector of length at least 1+(n-1)*|incx| (input/output)
incx Increment between recurrence elements in vector x (input)
c Vector of length at least 1+(n-1)*}incc| (input)
incc Increment between recurrence elements in vector ¢ (input)

RECPS solves a partial summation problem as in the following Fortran equivalent:

=1
J=1
IF (INCX .LT. 0) THEN
I = 1-(N-1*INCX
ENDIF
IF (INCC LT. 0) THEN
J = 1-(N-1)*INCC
ENDIF
X® =€)
DO 10 I=2N
X(I+INCX) = C+INCCH+X(I)
I = J+INCC
I = HINCX
10 CONTINUE

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-100 D



SASUM(3SCI) SASUM(3SCI)

NAME
SASUM, SCASUM - Sums the absolute value of elements in a vector

SYNOPSIS
sum = SASUM(n,sx,incx)
sum = SCASUM(n,cx,incx)
DESCRIPTION
n Number of ¢lements in the vector to be summed. If n < 0, SASUM and SCASUM return 0.
(input)
SX Real vector to be summed (input)
cx Complex vector to be summed (input)
incx Increment between elements of sx or cx. For contiguous elements, incx=1. (input)

SASUM and SCASUM sum the absolute values of the elements of a real or complex vector, respectively.

SASUM computes

n
sum =3, | Xy |
i=1

1+(i =1)(incx), incx>0

where k; = {1 +(n—i)|incx), incx <0 and where x;_is an element of a real vector.

SCASUM computes

sum =Y, [ |real (in)! + |imag ()]
i=1

where k; is as defined for SASUM. Xy, is an element of a complex vector.

Note that SASUM computes a true /; norm, but SCASUM does not.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

EXAMPLES

REAL SUM,SUMMER(10)

SUMMER(1)=0.0

DO 101=2,10

SUMMER(I)=SUMMER(-1)+1.0
10 CONTINUE

SUM=SASUM(5,SUMMER,?2)

PRINT *,SUM

STOP

END

In the preceding example, SUMMER(1)=0.0, SUMMER(2)=1.0, SUMMER(3)=2.0,...SUMMER(10)=9.0.
The printed result of SUM equals 20.0.

SR-0113 4-101 : D



SAXPY(3SCI) SAXPY (3SCI)
NAME
SAXPY, CAXPY — Adds a scalar multiple of a real or complex vector to another vector
SYNOPSIS
CALL SAXPY(n,sa,5x,incx,sy,incy)
CALL CAXPY(n,ca,cx,incx,cy,incy)
DESCRIPTION
n Number of elements in the vectors. If n < 0, SAXPY and CAXPY return without any compu-
tation. (input)
sa Real scalar multiplier (input)
ca Complex scalar multiplier (input)
SX Real vector to be scaled for sum (input)
cx Complex vector to be scaled for sum (input)
incx Increment between elements of sx or cx. For contiguous elements, incx+1. (input)
sy Real vector used in summation. It receives the resulting vector. (input/output)
cy Complex vector used in summation. It receives the resulting vector. (input/output)
incy Increment between elements of sy or cy. For contiguous elements, incy+1. (input)

These subroutines add a scalar multiple of one vector to another.

SAXPY computes
) 1+(i —1)(incx), incx >0 1+(i—1)Gncy), incy>0
Yy =%y + Yy i=loon where ki = 11,0 iyineyl, incx<0 @9 b = (14 (u—i)incyl, incy <0

where a is a real scalar multiplier and x,, and y, are elements of real vectors.

CAXPY computes
y,=axg +y, , i=l..,n andk; and I; are as defined for SAXPY.

where a is a complex scalar multiplier and xy, and y; are elements of complex vectors.

When n<0, sa=0, or ca=0+0i, these routines return immediately with no change in their arguments.

IMPLEMENTATION

SR-0113

These routines are available (0 users of both the COS and UNICOS operating systems.

4-102



SCAL(3SCI) SCAL (3SCI)

NAME
SSCAL, CSSCAL, CSCAL - Scales a real or complex vector

SYNOPSIS
CALL SSCAL(n,sa,sx,incx)
CALL CSSCAL(n,sa.cx,incx)
CALL CSCAL(n,ca,cx,incx)

DESCRIPTION
n Number of elements in the vector. If n < (0, SSCAL, CSSCAL, and CSCAL return without
any computation. (input)
sa Real scaling factor (input)
ca Complex scaling factor (input)
X Real vector to be scaled (input/output)
cx Complex vector to be scaled (input/output)
incx Increment between elements of sx or cx (input)

These subroutines scale a vector.

SSCAL computes
X =aX
where a is a real number and X is a real vector.

CSSCAL computes
X =aX
where a is a real number and X is a complex vector.

CSCAL computes
Y =aY
where a is a complex number and Y is a complex vector.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

CAUTIONS
Do not specify incx as zero; doing so yields unpredictable results.

SR-0113 4-103 D



SCATTER (3SCIl) SCATTER(3SCI)

NAME
SCATTER - Scatters a vector into another vector

SYNOPSIS
CALL SCATTER(n.a,index,b)

DESCRIPTION
n Number of elements in vectors index and b (not in a) (input)
a Resulting vector (output)
index Vector of indices (input)
b Source vector (input)

SCATTER is defined as follows:

aj‘,=b,- Whemi=1,...,n
In Fortran:
DO 100 I=1,N
A(INDEX(I))=B(I)

100 CONTINUE

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-104 D



SCOPY (3SCI) SCOPY (35CI)

NAME

SCOPY, CCOPY — Copies a real or complex vector into another vector

SYNOPSIS

CALL SCOPY(n,sx,incx,syincy)
CALL CCOPY(n,cx,incx,cy,incy)

DESCRIPTION
n Number of elements to be copied. If n < 0, SCOPY and CCOPY return without any compu-
tation. (input)
sx Real vector to be copied (input)
cx Complex vector to be copied (input)
incx Increment between ¢lements of sx or cx; for contiguous elements, incx =+ 1 (input)
sy Real result vector (output)
cy Complex result vector (output)
incy Increment between elements of sy or cy; for contiguous elements, incy =+ 1 (input)

These subroutines copy one vector into another.

SCOPY copies a real vector
y,‘, = x;.. , i= 1,...,’1
1+(i =1)(incx), incx>0 14+(i —1)(incy), incy >0
where & = 114 (n—i)incxl, incx<0 39 % = V14(n—i)|incyl, incy<0

and x; and y, are elements of real vectors.

CCOPY copies a complex vector
Y = X o 1= 1w

where k; and [; are as defined in the previous example, and X, and i, are elements of complex
vectors.

IMPLEMENTATION

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

4-105 D



SGBMYV (3SCIT) SGBMYV (3SCI)

NAME
SGBMYV — Multiplies a real vector by a real general band matrix

SYNOPSIS
CALL SGBMV(trans,m,nkl kualpha,alda.x,incx,betay.incy)

DESCRIPTION
SGBMY performs one of the matrix-vector operations

y =alpha*a*x+beta*y or y:=alpha*a’*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n band matrix, with &l subdiag-
onals and ku superdiagonals, and a’ denotes the transpose of a.

trans Character*1. On entry, trans specifies the operation to be performed. If trans="N’ or 'n’,
y = alpha*a*x+beta*y. If trans="T' or 't’, y := alpha*a’*x+beta*y. The trans argument is
unchanged on exit.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least zero.
The m argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix @. n must be at least zero.
The n argument is unchanged on exit.

ki Integer. On entry, kI specifics the number of subdiagonals of the matrix a. 4/ must satisfy
OLEkI. The kI argument is unchanged on exit.

ku Integer. On entry, ku specifies the number of superdiagonals of the matrix a. ku must satisfy
0.LEku. The ku argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry, the leading (ki+ku+1)-by-n part of the array a
must contain the matrix of coefficients, supplied column-by-column, with the leading diagonal
of the matrix in row (ku+1) of the array, the first superdiagonal starting at position 2 in row ku,
the first subdiagonal starting at position 1 in row (ku+2), and so on. Elements in the array a
that do not correspond to elements in the band matrix (such as the top left ku-by-ku triangle)
are not referenced. The following program segment will transfer a band matrix from conven-
tonal full matrix storage to band storage:

DO 20, J=1,N
K = KU+1-]J
DO 10, I=MAX(1,J-KU), MIN(M, J+KL)
A(K+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

The a argument is unchanged on exit.

lda Integer. On entry, lda specifies the first dimension of a as declared in the calling
(sub)program. /da must be at least (kl+ku+1). The lda argument is unchanged on exit.

x Real array of dimension at least 1+(n-1)*|incx| when trans="N’ or 'n’ and at least
14(m-1)*|incx| otherwise. Before entry, the incremented array x must contain the vector x.
The x argument is unchanged on exit.

SR-0113 4-106 D



SGBMYV (35CI) SGBMYV (3SCI)

incx  Integer. On entry, incx specifies the increment for the elements of x. The incx argument must
not be zero. The incx argument is unchanged on exit.

beta  Real. On entry, beta specifies the scalar beta. When beta is supplied as zero, y need not be set
on input. The beta argument is unchanged on exit.

y Real array of dimension at least 1+(m-1)*|incy| when trans="N’ or *n’ and at least
1+(n-1)*|incy| otherwise. Before entry, the incremented array y must contain the vector y. On
exit, y is overwritten by the updated vector y.

incy  Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems,

NOTE
SGBMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-107 D



SGEMM (3COS) SGEMM((3CO0S)

NAME
SGEMM — Multiplies a real general matrix by a real general matrix

SYNOPSIS
CALL SGEMM (transaransb,m,nk.alpha,a,ldabldbbeta,c,ldc)

DESCRIPTION
SGEMM performs one of the matrix-matrix operations:

¢ := alpha*op(ay*op(b)+beta*c

where op(x) is one of the following:
op(x) = x,

or op(x)=x

Arguments alpha and beta are scalars, a, b, and ¢ are matrices, op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix, and ¢ is an m-by-n matrix.

transa ‘Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:
If transa = N’ or 'n’, op(a) = a.
If ransa =T’ or 't’, op(a) = a’.
If transa ='C’ or ’c’, op(a) = a’.
On exit, transa is unchanged.
transb Type character*1.
On entry, transb specifies the form of op(d) to be used in the matrix multiplication as follows:

If transb = 'N’ or 'n’, op(b) = b.
If transb =T’ or 't’, op(b) = b'.
If transb =’C’ or °c’, op(b) = b'.
On exit, transb is unchanged.
m Type integer.
On entry, m specifies the number of rows in matrix op(@) and in matrix c.

Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix op(b) and in matrix c.
Argument n must be at least 0.
On exit, n is unchanged.
k Type integer.
On entry, k specifies the number of columns of matrix op(a) and the number of rows of matrix
op(b).
Argument k must be at least 0.
On exit, k is unchanged.

SR-0113 4-108 D



SGEMM (3COS)

alpha

lda

ldb

beta

lde

SGEMM{(3COS)

Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

Type real.
Array of dimension (lda, ka).
Argument ka is k when transa = "N’ or ’'n’, and is m otherwise.

Before entry with transa = N’ or 'n’, the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array @ must contain matrix a.

On exit, a is unchanged.

Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.

When transa = "N’ or 'n’, lda must be at least max(1, m).

Otherwise, lda must be at least max(1, k).

On exit, lda is unchanged.

Type real.
Array of dimension (Idb, kb).
Argument kb is n when transb = 'N’ or 'n’, and is k otherwise.

Before entry with transb = "N’ or 'n’, the leading k-by-n part of array & must contain matrix b.
Otherwise, the leading n-by-k part of array b must contain matrix b.

On exit, b is unchanged.

Type integer.

On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.

When transb = "N’ or 'n’, Idb must be at least max(1, k).

Otherwise, ldb must be at least max(1, »).

On exit, /db is unchanged.

Type real.

On entry, beta specifies the scalar beta,

When beta is supplied as 0, ¢ need not be set on input.
On exit, beta is unchanged.

Type real.
Array of dimension (Idc, n).

Before entry, the leading m-by-n part of array ¢ must contain matrix c, except when beta is 0,
in which case ¢ need not be set on entry.

On exit, array ¢ is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*c).

Type integer.

On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.

Argument /dc must be at least max(1, m).
On exit, Idc is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTES

SGEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SEE ALSO

SGEMMS(3COS)

SR-0113

4-109 D



SGEMMS (3COS) SGEMMS (3CO0S)

NAME
SGEMMS - Multiplies a real general matrix by a real general matrix using Strassen’s algorithm

SYNOPSIS
CALL SGEMMS(transa,transb,m,n.k,alpha,a lda,bldb.beta,c ldc ,work)

DESCRIPTION

Routine SGEMMS is functionally equivalent to SGEMM, except for an additional parameter, work. The
primary difference is that SGEMMS is implemented using Winograd's variation of Strassen’s algorithm
for matrix multiplication, which is significantly faster for large matrices.

Strassen’s algorithm for matrix multiplication is a complex, recursive algorithm that performs the multi-
plication in a manner completely different from the usual inner product method. While the inner pro-
duct method requires a number of operations on the order of n> (where n is the dimension of the
matrices), Strassen’s algorithm requires, in theory, a number of operations on the order of n2%, The tra-
deoff is that Strassen’s algorithm requires a work amay in memory of size 2.34* n2. Specifically, the
work array must be of size at least

2.34*max(m, ky*max(k, n).
The work array is overwritten, and no diagnostic is given if the supplied array is too small.

Numerical results from SGEMMS may differ slightly from those of SGEMM, due to a very different
order of operations carried out by Strassen’s algorithm.

SGEMMS can be called for any values of the parameters that are legal for SGEMM. A performance
improvement over SGEMM would not be expected, however, unless the minimum of the array dimen-
sions is at least 128. For small dimensions, performance is approximately the same as SGEMM,
although there is some slight overhead.

SGEMMS performs one of the matrix-matrix operations:
¢ := alpha*op(a)*op(b)+beta*c
where op(x) is one of the following:
op(x) = x,
or op(x)=x

Arguments alpha and beta are scalars, a, b, and ¢ are matrices, op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix, and c is an m-by-n matrix.

SR-0113 4-110 D



SGEMMS (3COS) SGEMMS (3COS)

SR-0113

transa

transb

alpha

lda

Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa = 'N’ or ’n’, op(a) = a.
If transa = 'T" or 't’, op(a) = a’.
If transa =°C’ or °c’, op(a) = a'.

On exit, transa is unchanged.
Type character*1.
On entry, transb specifies the form of op(b) to be used in the matrix multiplication as follows:

If transb = "N’ or 'n’, op(b) = b.

If transb =T’ or 't’, op{b) = b'.

If transb = 'C’ or °c’, op(b) = b’.

On exit, transh is unchanged.

Type integer.

On entry, m specifies the number of rows in matrix op{a) and in matrix c.

Argument m must be at least 0.
On exit, m is unchanged.

Type integer.

On entry, n specifies the number of columns in matrix op(d) and in matrix c.
Argument n must be at least 0.

On exit, n is unchanged.

Type integer.

On entry, k specifies the number of columns of matrix op(a) and the number of rows of matrix
op(b).

Argument & must be at least 0.

On exit, k is unchanged.

Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

Type real.
Array of dimension (Ida, ka).
Argument ka is k when transa = *N’ or ’n’, and is m otherwise.

Before entry with transa = "N’ or 'n’, the leading m-by-k part of array @ must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.

On exit, a is unchanged.

Type integer.

On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
When transa = "N’ or ’n’, Ida must be at least max(1, m).

Otherwise, Ida must be at least max(1, k).

On exit, Ida is unchanged.

Type real.

Array of dimension (Idb, kb).

Argument kb is n when transb = N’ or 'n’, and is £ otherwise.

Before entry with transb = "N’ or 'n’, the leading k-by-n part of array b must contain matrix b.
Otherwise, the leading n-by-k part of array b must contain matrix b.
On exit, b is unchanged.

4-111 D



SGEMMS (3COS) SGEMMS (3COS)

ldb Type integer.
On entry, Idb specifies the first dimension of b as declared in the calling (sub)program.
When transb = "N’ or 'n’, Idb must be at least max(1, k).
Otherwise, Idb must be at least max(1, n).
On exit, /db is unchanged.

beta  Type real.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, ¢ need not be set on input.
On exit, beta is unchanged.

c Type real.
Array of dimension (Idc, n).
Before entry, the leading m-by-n part of array ¢ must contain matrix c, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array ¢ is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*c).

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument /dc must be at least max(1, m).
On exit, ldc is unchanged.

work  Type real.
Array of dimension at least 2.34*max(m, k)*max(k, n).
Used for intermediate calculations.
On exit, work is overwritten.

IMPLEMENTATION

NOTES

This routine is available only to users of the COS operating system.

SGEMMS is a CRI extension to the standard level 3 Basic Linear Algebra Subprograms (BLAS 3).

SEE ALSO

SR-0113

SGEMM(@COS)

4-112 D



SGEMYV (35CI)

NAME

SGEMYV (3SCI)

SGEMYV — Multiplies a real vector by a real general matrix

SYNOPSIS

CALL SGEMV(trans,m,n.alpha,aldax,incx.betay incy)

DESCRIPTION

SGEMV performs one of the matrix-vector operations

:= alpha*a*x + beta*y, or y:=alpha*a'*x + beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n matrix, and a’ is the transpose of a.

trans  Character*1. On entry, trans specifies the operation to be performed.

If trans="N’ or 'n’, y := alpha*a*x + beta*y.
If trans="T’ or ’t’, y := alpha*a’ *x + beta*y.
The trans argument is unchanged on exit.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least 0. The m
argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least 0. The n
argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (Ida,n). Before entry, the leading m-by-n part of the array a must contain
the matrix of coefficients. The a argument is unchanged on exit.

ida Integer. On entry, lda specifies the first dimension of a as declared in the calling subprogram. lda
must be at least max(1,m). The lda argument is unchanged on exit.

x Real array of dimension at least 1+(n-1)*|incx| when trans="N" or 'n’ and at least 1+(m-1)*|incx|
otherwise. Before entry, the incremented array x must contain the vector x. The x argument is
unchanged on exit.

incx  Integer. On entry, incx specifies the increment for the elements of x. incx must not be 0. The incx
argument is unchanged on exit.

beta  Real. On entry, beta specifies the scalar beta. When beta is supplied as 0 then y need not be set on
input. The beta argument is unchanged on exit.

y Real array of dimension at least 1+(m-1)*|incy| when trans="N’ or 'n’ and at least 1+(n-1)*|incy|
otherwise. Before entry with beta nonzero, the incremented array y must contain the vector y. On
exit, y is overwritten by the updated vector y.

incy  Integer. On entry, incy specifies the increment for the elements of y. incy must not be 0. The incy
argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operaling systems.

NOTES

SGEMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113

4-113 D



SGER(3SCI) SGER(3SCI)

NAME
SGER - Performs rank 1 update of a real general matrix

SYNOPSIS
CALL SGER(m,n,alphax,incx,y,incy.a,lda)

DESCRIPTION
SGER performs the rank 1 operation

a:=alpha*x*y’ +a

where x is an m element vector, y is an 1 element vector, a is an m-by-n matrix, and y’ is the transpose of y.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least 0. Unchanged
on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least 0.
Unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. Unchanged on exit.

x Real. Array of dimension at least 1+(m-1)*|incx|. Before entry, the incremented array x must con-

tain the m element vector x. Unchanged on exit.

incx  Integer. On entry, incx specifies the increment for the elements of x. incx must not be 0.
Unchanged on exit.

y Real. Array of dimension at least 14(n-1)*|incy|. Before entry, the incremented array y must con-
tain the n element vector y. Unchanged on exit.

incy  Integer. On entry, incy specifies the increment for the ¢lements of y. incy must not be 0.
Unchanged on exit.

a Real array of dimension (Ida,n). Before entry, the leading m-by-n part of the array a must contain
the matrix of coefficients. On exit, a is overwritten by the updated matrix.

lda Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. ida
must be at least max(1,m). Unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
SGER is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-114 D



SMXPY (3SCI) SMXPY (3SCI)

NAME
SMXPY — Multiplies a column vector by a matrix and adds the result to another column vector

SYNOPSIS
CALL SMXPY(nl,yn2,ldmx,m)

DESCRIPTION
nl Number of elements in vector y and number of rows in matrix m (input)
y Real vector of length nl which is added to the product of m and x. It is overwritten by the
resulting vector. (input/output)
n2 Number of elements in vector x and number of columns in matrix m (input)
ldm Leading dimension of matrix m (input)
x Real vector of length n2 used in the matrix-vector product (input)
m nl-by-n2 matrix used in the matrix-vector product (input)

SMXPY performs the matrix-vector operation:
y:=y +m*x

where y is a vector of length n/, m is an nl-by-n2 matrix, and x is a vector of length n2.

SMXPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SMXPY(NL,Y ,N2LDM.X,M)
REAL Y(1), X(1), M(LDM,1)
DO 20 J=1,N2
DO 20 I=1,N1
YD=Y(®) + X({J) * M(1J)
20 CONTINUE
RETURN
END

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-115 D



SNRM2(3SCI)

NAME

SNRM2(3sCI)

SNRM2, SCNRM2 — Computes the Euclidean norm of a vector

SYNOPSIS
eucnorm

eucnorm
DESCRIPTION

n

sx

cx
incx

SNRM2(n,sx,incx)
SCNRM2(n,cx,incx)

Number of elements in vector x for which to compute norm. If 2 < 0, SNRM2 and SCNRM2
return without any computation. (input)

Real vector of length at least 1+(n-1)*|incx| containing operand vector x (input)

Complex vector of length at least 1+(n-1)*|incx| containing operand vector x (input)

Increment between elements of sx or cx (input)

These real functions compute the Euclidean or [, norm of vector x as follows:

SNRM2 computes

n
eucnorm = [Z x? ]
1

[Ny B

SCNRM2 computes

1
n -—
eucnorm = [E %5 X ]2

i=l

X; is the complex conjugate of x;.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113

4-116 D



SOLR(3SCI)

NAME

SOLR (3SCI)

SOLR, SOLRN, SOLR3 - Solves second-order linear recurrences

SYNOPSIS

CALL SOLR(n,sa,inca,sb,inch,sc,incc)
result = SOLRN(n,sa,inca,sb,inch,sc,incc)
CALL SOLR3(n,sa.inca,sb,inch,sc,incc)

DESCRIPTION

n

sa
inca
sb

inch

SC

incc

Length of linear recurrence. If n < 0, SOLR and SOLR3 return without any computation,
and SOLRN returns 0 (input)

Vector of length at least 1+(n-1)*|inca| containing vector operand a (input)
Increment between elements of vector sa (input)
Vector of length at least 1+(n-1)*|inch] containing vector operand b (input)
Increment between elements of vector sb (input)

Vector of length at least 1+(n-1)*|incc| containing resulting vector c.
Values for C(1) and C(2) are input to these routines. (input/output)

Increment between elements of vector s¢ (input)

SOLR solves a second-order linear recurrence.
SOLRN solves a second-order linear recurrence for the last term only.
SOLRS3 solves a second-order linear recurrence for three terms.

SOLR solves second-order linear recurrences as in the following equation:

Ci =a;3Ci1 + b"_z Cip fori=3,..,n

Note that ¢, and c, are input to this routine, and ¢, c4 . . ., c, are output.

SOLRN, a real function, solves for only the last term of a second-order linecar recurrence, as given
above for SOLR.

The Fortran loop

DO 10 I=3N

CM=AI-2y*C(I-1)+B(-2)*C(-2)

10 CONTINUE

RESULT=C(N)

could be solved as follows:

result = SOLRN(n,a,1,b,1,¢,1)

For SOLRN, even though only the last term is computed, vector ¢ is used to hold intermediate results
and is therefore overwritten.

SR-0113

4-117 D



SOLR (3SCI) SOLR (3SCI)

SOLR3 computes a second-order linear recurrence of three terms, as in the following:

C; =C; + g Ciy+b_pCig fori=3,...n

c1 and c, are input to this routine, and cj cq, . . ., ¢, are output.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do not specify inca, inch, or incc as zero; doing so yields unpredictable results.

EXAMPLES
Example 1 - SOLRN:

SOLRN might be used to find 7, of the calculation

) )b ) B - )

with the following call:
R2 = SOLRN(n,a,1,b,1,c,1)
The Fortran equivalent for example 1 is as follows:

R1=C(1)
R2=C(2)
DO 10 I=1,N-2
TEMP=R2
R2=A(D)*R2+B(I)*R1
R1=TEMP
10 CONTINUE

SR-0113 4-118 D



SOLR (35CI) SOLR (358CI)

Example 2 - SOLR3:

SOLRS3 solves a system of lower bidiagonal linear equations Lx=b. That is, since

(1000...... 0 ] [b1]
31100 ...... 0 X2 bz
f1e210 ..... 0 X3 b3
0f28310....0 X4 b4

Lx = 0f3e410...0 = = b
.......... 0
.......... 0
.......... 0 . .
L 000. .f,..ze,,..]l J r_xn, pn,

can be written as:

X1=b1

x2=b2—e1x1

xX; = b; — €;_1X;i —f""_zx"_z i=3,....n

this problem can be solved with the following Fortran:

DO 10 I=1,N-1

10 E(I)=-E())
DO 20 I=1,N-2

20 F()=-FQ)
B(2)=B)}+E(1)*B(1)
CALL SOLR3(N,E(2),1,F(1),1,B(1),1)

SR-0113 4-119



SPDOT (3SCI) SPDOT (35SCI)

NAME
SPDOT, SPAXPY — Performs sparse vector operations

SYNOPSIS
pdot = SPDOT(n,sy,index,sx)
CALL SPAXPY(n,sa,sx,sy.index)

DESCRIPTION

SPDOT:
Performs a sparse dot product (inner product) computation.

n Number of elements to be used in the computation (input)

sy Sparse real vector operand (input)

index  Vector of indices for elements of sy in ascending order (input)
X Real vector operand (input)

SPAXPY:
Performs an elementary vector operation by adding a scalar multiple of a vector to a sparse vector.

n Numbers of elements to be used in the computation (input)

sa Real scalar multiplier (input)

5X Real vector operand scaled for sum (input)

sy Sparse real vector used in summation and resulting vector (input/output)

index Vector of indices for elements of sy. All values in index should be unique and in ascending
order. (input)

SPAXPY executes an operation equivalent to the following Fortran code:

DO 10 I=1,N
SY(INDEX(1))=SA*SX(D+SY(ANDEX(D))
10 CONTINUE

SPDOT executes an operation equivalent to the following Fortran code:

PDOT=0.0
DO 10 I=I N
PDOT=PDOT+SY(INDEX(D)*SX(I)
10 CONTINUE
IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

RETURN VALUE
If n < 0, SPAXPY and SPDOT return without any computation.
If sa = 0, SPAXPY retums without any computation,

SR-0113 4-120 D



SROT (3SCI) SROT (3SCI)

NAME
SROT - Applies an orthogonal plane rotation

SYNOPSIS
CALL SROT(n,sx,incx,sy,incy,c,s)

DESCRIPTION
n Number of vector elements on which to apply rotation (input)
5X Real vector to be modified of length at least 1+(n-1)*|incx| (input/output)
incx Increment between elements of sx (input)
sy Real vector to be modified of length at least 1+(n-1)*|incy| (input/output)
incy Increment between elements of sy. For contiguous elements, incy = 1. (input)
c Real cosine of rotation. Normally calculated using SROTG. (input)
s Real sine of rotation, Normally calculated using SROTG. (input)

This subroutine applies a matrix plane rotation., If the coefficients ¢ and s satisfy c*c+s*s = 1.0, the
transformation is a Givens rotaton. The coefficients ¢ and s can be calculated from the elements of a
two-clement vector that determine the angle of rotation using SROTG.

SROT applies to each pair of elements x; and y; in the following plane rotation:
X | . c s, X; .
I:y"l = [—s c] L‘l fori=1,...,n

SROT returns without modifying any input parameters if ¢ = 1 and s = 0.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
SROTG(3SCD)

SR-0113 4-121 D



SROTG (38CI) SROTG (3SCI)

NAME
SROTG - Constructs a Givens plane rotation
SYNOPSIS
CALL SROTG(a,b,c,s)
DESCRIPTION
a First scalar element of the two-element vector that determines the angle of rotation
(input/output)
b Second scalar element of the two-eclement vector that determines the angle of rotation
(input/output)
c Cosine of rotation (output)
s Sine of rotation (output)

SROTG computes the elements of a rotation matrix such that:

bl=[c &) E]

The above call calculates the parameters 7, z, ¢, and s from input coordinates «, b as in the following:

sgn(a) if |a|>|b |
G = |sgn(p) if |a|<|b|

r = o(a+bH)*

airif r#0
C=N ifr=0
bir if r#0
S0 ifr=0

o is not needed in computing a Givens rotation matrix; however, its use permits later reconstruction of
¢ and s from just one number. For this reason parameter z is also calculated as follows:

s if [a|>]b|
z=11/c if |a|<|b] and ¢ #0
1 if ¢c=0

The subroutine uses parameters a and b and returns r, z, ¢, and s, where r overwrites a, and z
overwrites b,

SR-0113 4-122 D



SROTG (3SCI) SROTG (3SCI)

A later reconstruction of ¢ and s from z can be done as foliows:
Ifz=1, setc=0ands =1
Ifjz)<1, set ¢c=(1-z)%ands =z
Ifjz|>1, setc=UVzands = (l-c?)*

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
SROT(3SCI), CROT(3SCI)

SR-0113 4-123 D



SROTM (3SCI) SROTM (35CI)

NAME
SROTM - Applies a modified Givens plane rotation
SYNOPSIS
CALL SROTM(n,sx,incx,sy,incy,param)
DESCRIPTION
n Number of elements on which to apply rotation (input)
sx Real vector to be modified of length at least 1+(n-1)*|incx| (input/output)
incx Increment between elements of sx (input)
sy Real vector to be modified of length at least 1+(n-1)*|incy| (input/output)
incy Increment between elements of sy (input)

param  S-element vector containing rotation matrix information (input)

SROTM applies the modified Givens plane rotation constructed by SROTMG.
It computes

x| _ |huho| %] . .
L’i]— [hmhzz] [}'i cfori=1,...,n

where the parameters H11, H21, H12, and H22 are the elements of the rotation matrix H, and are passed
in the array PARAM according to the following schedule:

PARAM(1) is the key parameter having values 1.0, 0.0, -1.0, or -2.0.
Case for which PARAM(1)=1.0:

H11=PARAM(2)

H21=-1.0

H12=1.0

H22=PARAM(S)
and PARAM(3) and PARAM(4) are ignored.
Case for which PARAM(1)=0.0:

H11=1.0

H21=PARAM(3)

H12=PARAM(4)

H22=1.0

and PARAM(2) and PARAM(S) are ignored.
SR-0113 4-124 D



SROTM (3SCI) SROTM(3SCI)

Case for which PARAM(1)=-1.0 is rescaling case, so:
H11=PARAM(2)
H21=PARAM(3)
H12=PARAM(4)
H22=PARAM(S)
is a full matrix multiplication.
Case for which PARAM(1)=2.0 is H=I, namely:
H11=1.0
H21=0.0
H12=0.0
H22=1.0
and PARAM(2), PARAM(3), PARAM(4), and PARAM(S) are ignored.
If n <0, or if H is an identity matrix, SROTM returns with no operation on input arrays sx and sy.

If any other value for PARAM(]) is read (other than 1., O, -1., or -2.), SROTM aborts the job with the
following message appearing in the logfile:

SROTM CALLED WITH INCORRECT PARAMETER KEY

The array PARAM must be declared in a dimension statement in the calling program, as follows:
DIMENSION PARAM(S)

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

See the description of SROTMG(3SCI) for further details about the modified Givens transformation and
the array PARAM.

SR-0113 4-125 D



SROTMG (3SCI) SROTMG (35CI)

NAME

SROTMG - Constructs a modified Givens plane rotation

SYNOPSIS

CALL SROTMG(dy, d, by, by, param)

DESCRIPTION
dy, ds by, by Real quantities that define a 2-clement vector in partition form as given below
(input/output)
param 5-element vector containing rotation matrix information (output)

SR-0113

SROTMG computes the elements of a modified Givens plane rotation matrix.
SROTMG scts up the computed elements in param from inputs d |, d, b, and b,.
The algorithm for SROTMG is based on the observation that an application of the Givens plane rotation

1L 6108
01" Ls ¢ -

can be written in a form such that repeated applications rcquirc matrix multiplications by matrices con-
taining only two nonunit elements. Thus, row transformations require only 2N rather than 4N multipli-

cations. This application uses the input quantities d,, d,, b,, and b, to define a 2-element vector in
partitioned form as

- (7. )=~ B

where d, and d,, are scale factors, and the scaling upon each application of matrix G is updated.

Let H be a matrix
_ thn hy2
H = [’121 ha
such that

G T o b

X _ 2 1

[Y] =D H [bz]
1

where D’2 = diag{\ld 1, w]d’z} contains the updated scale factors; therefore, H is chosen according

to equation 3 or 4.

Equation 3:

4-126 D



SROTMG (3SCT) SROTMG (3SCI)

SR-0113

Equation 4:
Nd'1* hy N@L* k| | Ndic dps
VA2 * hy NdLR* hp|  |-Vdis djc

Coefficients ¢ and s are determined by equations 5 and 6.

Equation 5:
e e X _ __Ndb
Nx +y \Jdlbl +d2b§
Equation 6:
y Vdsb,
s = —

VxZy? NdbE + dibd

Equation 4 shows that the d's are going to be scaled by ¢ or s if two of the A’s are to be unity.

Two cases, |c¢ |>]s| and |s|2|c |, are considered so that the d’s are scaled down the least upon
repeated applications.

Case 1

If | ¢ | >|s | (which from equations S and 6 is the same as|d b |>|d,b#|), the solutions for equa-
tion 4 are determined by equation 7.

Equation 7:
hy=hp=1
Case 2:
If|s|2|c| (whichis|d,p}|2=]|db?|), equation 8 is chosen.
Equation 8:

hipa=~hy=1

Distinguishing the two cases | ¢ | > %2 or|s |2 71_5 is the updating factor. Then the complete solu-
1

tions for D’? and H are as follows:
Case 1:
Incase 1, where| ¢ | >| s | or|dbZ|>]|d,b2]|, the following solutions for H are chosen:

dy by
d, by

Ay =1 hiy =

4-127 D



SROTMG (3SCI) SROTMG (3SCI)

hy = B, hp =1

and scale factors d,, d, are updated to

d’y =dyJ u = c?d,
d’, = dof u = c%d,
where
d, b}

= det = 1-
u = det () d,b?

and x’ becomes b’y =bqu .

Case 2:

In case 2, where | s | >| ¢ |or|d b |<|d,b2], the following solutions for H are chosen:

dy b,
hy = dzbz hlz 1
hy = -1 ko=

Scale factors d; are updated to

d’, = dyu
d = d\u
with
¥ = det H) = 1 + 4 bf
dyb?

and the x’ factor becomes b’y =byu.

Case 3:

Let m = 4096, Whenever the parameters d; are updated to be outside the window
m)Y2<|d;|s(m)* fori=12

which preserves about 36 = 48 - 12 bits or 10 decimal digits of precision, all parameters are rescaled

such that the d;’s are within that window. If either of the d;’s is 0, however, no rescaling action is
taken.

SR-0113 4-128 D



SROTMG (3SCI) SROTMG (35CI)

Underflow:

If | d’; | < (m)7, the following rescaling is done:
dii=d;.my hii=h.m) Ry i=hn . (m)!
andifi =1, b’y :=b"y.(m)"

Overflow:

If| d’; | > (m)?, the following rescaling is done:
di:=d;.(m)y? Ryy:i=hTiy.(m) hii=hlp. (m)
andifi =1, b’y:=b".(m)

Thus, SROTMG modifies the input parameters D1, D2, and B1 and returns the array PARAM according
to the following cases:

Case S1:

If ABS(D1*B1*B1).GT.ABS(D2*B2*B2), then
PARAM(1)=0
PARAMQ3)=-B2/B1
PARAM(4)=D2*B2/D1*B1

and parameters D1, D2, and B1 are written over by
D1=D1/U
D2=D2/U
B1=B1*U

where
U=1..{(D2*B2*B2)/(D1*B1*B1).

Case S2:

If ABS(D2*B2*B2).GE.ABS(D1*B1*B1), then
PARAM(1)=1.
PARAM(2)=(D1*B1)/(D2*B2)
PARAM(5)=B1/B2

and parameters D1, D2, and B1 are written over according to the following sequence:
TEMP=D1/U
D1=D2/U
B1=B2*U

U=1.+«(D1*B1*B1)/(D2*B2*B2)

SR-0113 4-129 D



SROTMG (3SCI) SROTMG (3SCI)

Case S3:

If, in either case S1 or case $2, the updated parameters D1 and D2 have been rescaled below/above the
window

(m)**(-2).LE.ABS(D1).LE.(m)**2
(m)y**(-2).LE.ABS(D2).LE.(m)**2

then the parameters D1, H11, H12, B1 and D2, H21, H22, respectively, are rescaled up/down by factors of

m. Rescaling occurs as many times as necessary to bring D1 or D2 within the preceding window. If D1
and D2 are within the window on entry, rescaling occurs only once.

Output parameters are
PARAM(1)=-1.
PARAM(2)=H11
PARAM(3)=H21
PARAM((4)=H12
PARAM(5)=H22
and D1, D2, and B1 are written over by correctly scaled versions of case S2 or case S3.

If D1<0, the matrix H=0 is generated (that is, h,; = A2 = Ay = hyy = 0). PARAM(1)=-1, and the rest of
the elements of PARAM contain 0.

Case S4:

If D2*B2=0 on entry, then H=1,
Output is

PARAM(1)=-2.0 only.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
SROTG(3SCI)

SR-0113 4-130 D



SSBMV(3SCI)

NAME

SSBMV (35CI)

SSBMV — Multiplies a real vector by a real symmetric band matrix

SYNOPSIS

CALL SSBMV(uplo.nk.alpha,a,ldaxincx,beta,y,incy)

DESCRIPTION

SSBMYV performs the matrix-vector operation

y :=alpha*a*x+beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric band
matrix, with k superdiagonals. SSBMV has the following arguments:

uplo

alpha

SR-0113

Character*1. On entry, uplo specifies whether the upper or lower triangular part of the band
matrix a is being supplied. When uplo="U’ or "u’, only the upper triangular part of array q is
to be referenced. When uplo="L"’ or 'l’, only the lower triangular part of array a is to be refer-
enced. The uplo argument is unchanged on exit.

Integer. On enury, n specifies the order of the matrix a. The n argument must be at least 0.
The n argument is unchanged on exit.

Integer. On entry, k specifies the number of superdiagonals of the matrix a. k must satisfy
0.LEk. The k argument is unchanged on exit.

Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

Real array of dimension (/da,n). Before entry with uplo="U" or u’, the leading (k+1)-by-n part
of the array a must contain the upper triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k+1) of the array, the first
superdiagonal starting at position 2 in row k, and so on. The top left k-by-k triangle of the
array a is not referenced. The following program segment will transfer the upper triangular
part of a symmetric band matrix from conventional full matrix storage to band storage:

DO 20, J=1,N
M = K+1-7J
DO 10, I=MAX(1,J-K), J
A(M+I,J) = MATRIX(I,T)
10 CONTINUE
20 CONT INUE

4-131 D



SSBMV (3S8CI)

SSBMV(3SCI)

Before entry with uplo="L’ or ’l', the leading (k+1)-by-n part of the array a must contain the
lower triangular band part of the symmetric matrix, supplied column-by-column, with the lead-
ing diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in
row 2, and so on. The bottom right k-by-k triangle of the array a is not referenced. The fol-
lowing program segment will transfer the Iower triangular part of a symmetric band matrix
from conventional full matrix storage to band storage:

DO 20, J=1,N
M=1-1]
DO 10, I=J, MIN(N, J+K)
AM+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONT INUE

The a argument is unchanged on exit.

lda Integer. On entry, lda specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least (k+1). The lda argument is unchanged on exit.

x Real array of dimension at least 1+(n-1)*|incx| Before entry, the incremented array x must
contain the vector x. The x argument is unchanged on exit.

incx  Integer. On entry, incx specifies the increment for the elements of x. incx must not be 0. The
incx argnment is unchanged on exit.

beta  Real. On entry, beta specifies the scalar beta. The bezg argument is unchanged on exit.

y Real. Array of dimension at least 1+(n-1)*|incy|. Before entry, the incremented array y must
contain the vector y. On exit, y is overwritten by the updated vector y.

incy  Integer. On entry, incy specifies the increment for the elements of y. incy must not be 0. The
incy argument is unchanged on exit.

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS operating sysiems.

SSBMYV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-132



SSUM(3SCI) SSUM(3SCI)

NAME

SSUM, CSUM - Sums the elements of a real or complex vector

SYNOPSIS
SSUM(n,sx,incx)
sum = CSUM(n,cx,incx)

sum

DESCRIPTION

n Number of elements to be summed. If n < 0, SSUM and CSUM return 0. (input)
sx Real vector of length at least 1+(n-1)*|incx| containing elements to be summed (input)
cx Complex vector of length at least 1+(n-1)*|incx| containing elements to be summed (input)

incx Increment between elements of sx or cx (input)

SSUM computes the sum of the elements in a real vector (sx) specified by incx.

CSUM computes the complex sum of the elements in a complex vector (cx) specified by incx.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-133 D



SSWAP(3SCT) SSWAP(3SCI)

NAME
SSWAP, CSWAP — Swaps two real or complex arrays

SYNOPSIS
CALL SSWAP(n,sx,incx,sy,incy)

CALL CSWAP(n,cx,incx,cy,incy)

DESCRIPTION
n Number of eclements to be swapped (input)
If n < 0, SSWAP and CSWAP return without any computation
sx Real vector of length at least 1+(n-1)*|incx| (input/output)
cx Complex vector of length at least 1+(n-1)*|incx| (input/output)
incx Increment between elements of sx or cx (input)
5y Real vector of length at least 1+(n-1)*|incy| (input/output)
cy Complex vector of length at least 1+(n-1)*|incy| (input/output)
incy Increment between elements of sy or ¢y. For contiguous elements, incy=1. (input)

SSWAP exchanges two real vectors.
CSWAP exchanges two complex vectors.

IMPLEMENTATION
These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-134 D



SSYMM(3COS)

NAME

SSYMM (3COS)

SSYMM — Multiplies a real general matrix by a real symmetric matrix

SYNOPSIS
CALL SSYMM(side,uplo,m,n,alpha,alda,b,ldbbeta,c,ldc)

DESCRIPTION

SR-0113

SSYMM performs one of the following matrix-matrix operations:

¢ := alpha*a*b+beta*c

or c := alpha*b*a+beta*c

Arguments alpha and beta are scalars, a is a symmetric matrix, and b and ¢ are m-by-n matrices.

side

uplo

alpha

Type character*1.

On entry, side specifies whether the symmetric matrix a appears on the left or right in the
operation as follows:

If side = 'L’ or °l, ¢ := alpha*a*b+beta*c

If side = 'R’ or '’r’, ¢ := alpha*b*a+beta*c

On exit, side is unchanged.
Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of the symmetric matrix a is
to be referenced as follows:

If uplo = U’ or 'w’, only the upper triangular part of the symmetric matrix is to be referenced.
If uplo = "L’ or 'I’, only the lower triangular part of the symmetric matrix is to be referenced.

On exit, uplo is unchanged.

Type integer.

On entry, m specifics the number of rows in matrix c.
Argument m must be at least 0.

On exit, m is unchanged.

Type integer.

On entry, n specifies the number of columns in matrix c.
Argument n must be at least 0.

On exit, n is unchanged.

Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-135 D



SSYMM (3COS) SSYMM(3COS)

a Type real.
Array of dimension (/da, ka).
Argument ka is m when side = 'L’ or °I’, and is n otherwise.

Before entry with side = 'L’ or °I', the m-by-m part of array a must contain the symmetric
matrix, such that:

If uplo = "U’ or 'u’, the leading m-by-m upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.

The strictly lower triangular part of a is not referenced.

If uplo = 'L’ or 'I’, the leading m-by-m lower triangular part of array @ must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side = 'R’ or '1r’, the n-by-n part of array a must contain the symmetric
matrix, such that

If uplo = 'U’ or 'u’, the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.
The strictly lower triangular part of g is not referenced.

If uplo = 'L’ or °'I’, the leading n-by-n lower triangular part of array @ must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

On ¢xit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
When side =L’ or 'I’, lda must be at least max(1, m).
Otherwise, lda must be at least max(1, n).
On exit, lda is unchanged.

b Type real.
Array of dimension (ldb, n).
Before entry, the leading m-by-n part of array » must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument Idb must be at least max(1, m).
On cxit, ldb is unchanged.

beta  Type real.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, ¢ need not be set on input.
On exit, beta is unchanged.

c Type real.
Array of dimension (ldc, n).
Before entry, the leading m-by-n part of array ¢ must contain matrix ¢, except when beta is 0,
in which case ¢ need not be set on entry.
On exit, array ¢ is overwritten by the m-by-n updated matrix.

lde Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument ldc must be at least max(1, m).
On exit, Idc is unchanged.

SR-0113 4-136 D



SSYMM(3COS) SSYMM(3COS)

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTES
SSYMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-137 D



SSYMV (3SCI)

NAME

SSYMYV (3SCI)

SSYMYV — Multiplies a real vector by a real symmeiric matrix

SYNOPSIS

DESCRIPTION

CALL SSYMV(uplo,n,alpha,aldax,incx.betayincy)

SSYMV performs the matrix-vector operation

= alpha*a*x + beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric matrix.
SSYMV has the following arguments:

uplo

alpha

lda

incx

beta

y

incy

Character*1. On entry, uplo specifies whether the upper or lower triangular part of the band matrix
a is being supplied. When uplo="U’ or 'u’, only the upper triangular part of array a is to be refer-
enced. When uplo="L’ or ’I’, only the lower triangular part of array a is to be referenced. The uplo
argument is unchanged on exit.

Integer. On entry, n specifies the order of matrix a. The n argument must be at least 0. The n argu-
ment is unchanged on exit.

Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

Real. Array of dimension (/da,n). Before entry with uplo="U’ or ’u’, the leading n-by-n upper tri-
angular part of array a must contain the upper triangular part of the symmetric matrix and the
strictly lower triangular part of a is not referenced. Before entry with uplo="L’ or 'I’, the leading

n-by-n part of the array @ must contain the lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced. The a argument is unchanged on exit.

Integer. On entry, lda specifies the first dimension of a as declared in the calling subprogram. lda
must be at least max(1,1). The Ida argument is unchanged on exit.

Real. Array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must con-
tain the » element vector x. The x argument is unchanged on exit.

Integer. On entry, incx specifies the increment for the elements of x. incx must not be 0. The incx
argument is unchanged on exit.

Real. On entry, beta specifies the scalar beta. When beta is supplied as 0, y need not be set on
input. The beta argument is unchanged on exit.

Real. Array of dimension at least 1+(n-1)*|incy|. Before entry, the incremented array y must con-
tain the n element vector y. On exit, y is overwritten by the updated vector y.

Integer. On entry, incy specifies the increment for the elements of y. incy must not be 0. The incy
argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SR-0113

SSYMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-138 D



SSYR(3SCI)

NAME

SSYR (3SCI)

SSYR - Performs symmetric rank 1 update of a real symmetric matrix

SYNOPSIS
CALL SSYR(uplo,n,alphax,incx,a,lda)

DESCRIPTION

SSYR performs the symmetric rank 1 operation

a =alpha*x*x’ + a

where alpha is a real scalar, x is an 7 element vector, and a is an n-by-n symmetric matrix.
SSYR has the following arguments:

uplo  Character*1. On entry, uplo specifies whether the upper or lower triangular part of array a is to be
referenced. When uplo="U’ or "w’, only the upper triangular part of array a is to be referenced.
When uplo="L’ or 'I’, only the lower triangular part of array a is to be referenced. The uplo argu-
ment is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. The n argument must be at
least 0. The n argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

x Real. Array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must con-
tain the n element vector x. The x argument is unchanged on exit.

incx  Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not be 0.
The incx argument is unchanged on exit.

a Real. Array of dimension (/da,n). Before entry, the leading n-by-n part of array g must contain the
matrix of coefficients. On exit, 4 is overwritten by the updated matrix.

lda Integer. On entry, lda specifies the first dimension of a as declared in the calling subprogram.
Argument /da must be at least max(1,n). The Ida argument is unchanged on exit.

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS opecrating systems.

SSYR is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-139 D



SSYR2(3SCI)

NAME

SSYR2(3SCI)

SSYR2 - Performs symmetric rank 2 update of a real symmetric matrix

SYNOPSIS

DESCRIPTION

CALL SSYR2(uplo,n,alphax,incx,y,incy.a,lda)

SSYR2 performs the symmetric rank 2 operation

a:= alpha*x*y +alpha*y*x’ +a

where alpha is a scalar, x and y are n element vectors, and a is an n-by-n symmetric matrix.
SSYR?2 has the following arguments:

uplo

alpha

incx

incy

lda

Character*1. On entry, uplo specifies whether the upper or lower triangular part of the band
matrix g is being supplied. When uplo="U’ or ’u’, only the upper triangular part of array a is
to be referenced. When uplo="L’ or 'l’, only the lower triangular part of array a is to be refer-
enced. The uplo argument is unchanged on exit.

Integer. On entry, n specifies the order of the matrix a. The r argument must be at least 0.
The n argument is unchanged on exit.

Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

Real. Array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must
contain the n element vector x. The x argument is unchanged on exit.

Integer. On entry, incx specifies the increment for the elements of x. incx must not be 0. The
incx argument is unchanged on exit.

Real, Array of dimension at least 1+(n-1)*{incy|. Before entry, the incremented array y must
contain the n element vector y. The y argument is unchanged on exit.

Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exit.

Real. Armay of dimension (l/da,n). Before entry with uplo="U’ or ’u’, the leading n-by-n
upper triangular part of the array a must contain the upper triangular part of the symmetric
matrix and the strictly lower triangular part of a is not referenced. On exit, the upper triangular
part of the array a is overwritten by the upper triangular part of the updated matrix. Before
entry with uplo="L’ or ’I’, the leading n-by-n lower triangular part of the array a must contain
the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is
not referenced. On exit, the lower triangular part of the array a is overwritten by the lower tri-
angular part of the updated matrix.

Integer. On entry, lda specifies the first dimension of a as declared in the calling
(sub)program. Ilda must be at least max(1,n). The /da argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SR-0113

SSYR2 is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-140 D



SSYR2K (3COS) SSYR2K (3COS)

NAME
SSYR2K - Performs symmetric rank 2k update of a real symmetric matrix

SYNOPSIS
CALL SSYR2K(uplo,trans,nk.alpha,alda,b,ldbbeta,c,ldc)

DESCRIPTION
SSYR2K performs one of the following symmetric rank 2k operations:

¢ := alpha*a*b’ +alpha*b*a’ +beta*c
or
¢ = alpha*a' *b+alpha*b' *a+beta*c

Arguments alpha and beta are scalars, and ¢ is an n-by-n symmetric matrix. Arguments a and b
are n-by-k matrices in the first operation listed previously, and k-by-n matrices in the second.

uplo  Type character*l.

On entry, uplo specifies whether the upper or lower triangular part of array c is to be refer-
enced as follows:

If uplo = "U’ or "u’, only the upper triangular part of c is to be referenced.
If uplo =L’ or ', only the lower triangular part of ¢ is to be referenced.
On exit, uplo is unchanged.

trans  Type character*1l.
On entry, trans specifies the operation to be performed as follows:

If rans =N’ or 'n’,

¢ := alpha*a*b’ +alpha*b*a’ +beta*c
If trans = T or 't’,

¢ := alpha*a’*b+alpha*b’ *a+beta*c
If trans = °C’ or ’c’,

¢ := alpha*a’' *b+alpha*b’ *a+beta*c
On exit, trans is unchanged.

n Type integer,
On entry, n specifies the order of matrix c.
Argument 7 must be at least 0.
On exit, n is unchanged.

k Type integer.

On entry with trans = "N’ or 'n’, k specifies the number of columns of matrices a and b.
On entry with trans =T, ’t’, ’C’, or ’c’, k specifies the number of rows of matrices a and b.

Argument k& must be at least 0.
On exit, k is unchanged.

alpha Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

SR-0113 4-141 D



SSYR2K(3COS) SSYR2K (3COS)

a Type real.
Array of dimension (lda, ka).
Argument ka is k if trans = "N’ or 'n’, and is n otherwise.

Before entry with trans = "N’ or 'n’, the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, g is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
If trans = "N’ or 'n’, lda must be at least max(1, n).
Otherwise, lda must be at least max(1, k).

On exit, lda is unchanged.

b Type real. :
Array of dimension (/db, kb)
Argument kb is k if trans = N’ or 'n’, and is n otherwise.

Before entry with trans = "N’ or 'n’, the leading n-by-k part of array b must contain matrix b,
Otherwise, the leading k-by-n part of array b must contain matrix b.

On exit, b is unchanged.

ldb Type integer.
On entry, Idb specifies the first dimension of & as declared in the calling (sub)program.

If trans = "N’ or 'n’, Idb must be at least max(1, n).
Otherwise, Idb must be at least max(1, k).

On exit, Idb is unchanged.

beta  Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

¢ Type real.
Array of dimension (ldc, n).

Before entry with uplo = "U’ or ’u’, the leading n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the symmetric matrix.

The strictly lower triangular part of ¢ is not referenced.

On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L’ or 'I’, the leading n-by-n lower triangular part of array ¢ must
contain the lower triangular part of the symmetric matrix.

The strictly upper triangular part of ¢ is not referenced.

On exit, the lower triangular part of array ¢ is overwritten by the lower triangular part of the
updated matrix.

lde Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program.
Argument ldc must be at least max(1, »).
On exit, ldc is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 4-142 D



SSYR2K (3COS) SSYR2K (3COS)

NOTES
SSYR2K is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-143 D



SSYRK (3COS) SSYRK (3COS)

NAME
SSYRK - Performs symmetric rank k update of a real symmetric matrix

SYNOPSIS
CALL SSYRK(uplotrans,n.k.alpha,a,lda.beta,c,ldc)

DESCRIPTION
SSYRK performs one of the following symmetric rank k operations:

¢ := alpha*a*a' +beta*c
or
¢ := alpha*a’ *a+beta*c

Arguments alpha and beta are scalars, and ¢ is an n-by-n symmetric matrix. Argument a is an n-by-k
matrix in the first operation listed previously, and a k-by-n matrix in the second.

uplo  Type character*1.

On entry, uplo specifies whether the upper or lower triangular part of array c is to be refer-
enced as follows:

If uplo = "U’ or ’u’, only the upper triangular part of ¢ is to be referenced.
If uplo =L’ or 'I’, only the lower triangular part of ¢ is to be referenced.

On exit, uplo is unchanged.

trans  Type character*1,
On entry, trans specifies the operation to be performed as follows:

If trans = N’ or ’'n’,

¢ = alpha*a*a’ +beta*c.

If rans =T or 't’,

¢ = alpha*a’*a+beta*c.

If trans = °C’ or ’¢’,

¢ := alpha*a’ *a+beta*c.
On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument n must be at least 0.
On exit, n is unchanged.
k Type integer.
On entry with trans = "N’ or 'n’, k specifies the number of columns of matrix a.
On entry with trans =T, ’t’, ’C’, or 'c’, k specifies the number of rows of matrix a.

Argument k must be at least 0.
On exit, k is unchanged.

SR-0113 4-144 D



SSYRK (3COS)

alpha

SSYRK(3COs)

Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type real.
Array of dimension (/da, ka).
Argument ka is k if trans = N’ or ’n’, and is n otherwise.
Before entry with trans = N’ or 'n’, the leading n-by-k part of array @ must contain matrix a.
Otherwise, the leading k-by-n part of array @ must contain matrix a.
On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
If trans = 'N’ or 'n’, lda must be at least max(1, n).
Otherwise, /da must be at least max(1, k).
On exit, Ida is unchanged.

beta  Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

c Type real.
Array of dimension (ldc, n).
Before entry with uplo = U’ or ’u’, the leading n-by-n upper triangular part of array ¢ must
contain the upper triangular part of the symmetric matrix.
The strictly lower triangular part of ¢ is not referenced.
On exit, the upper triangular part of array ¢ is overwritten by the upper triangular part of the
updated matrix.
Before entry with uplo = "L’ or °I', the leading n-by-n lower triangular part of array ¢ must
contain the lower triangular part of the symmetric matrix.
The strictly upper triangular part of ¢ is not referenced.
On exit, the lower triangular part of array ¢ is overwritten by the lower triangular part of the
updated matrix.

ldc Type integer.
On entry, ldc specifies the first dimension of ¢ as declared in the calling (sub)program,
Argument /dc must be at least max(1, n).
On exit, ldc is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTES

SSYRK is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113

4-145 D



STBMV (3SCI)

NAME

STBMYV (38CI)

STBMV — Multiplies a real vector by a real triangular band matrix

SYNOPSIS
CALL STBMV(uplo,trans,diag.n.k,a,ldax,incx)

DESCRIPTION

SR-0113

STBMY performs one of the matrix-vector operations

x:=a*x orx:=a'*x

where x is an n clement vector, and a is an n-by-n unit, or non-unit, upper or lower triangular band matrix,
with (k+1) diagonals,

STBMYV has the following arguments;

uplo

trans

diag

Character*1. On entry, uplo specifies whether matrix is an upper or lower triangular matrix. When
uplo="U’ or 'u’, a is an upper triangular matrix. When uplo="L’ or 'I’, a is a lower triangular
matrix. The uplo argument is unchanged on exit.

Character*1. On entry, trans specifies the operation to be performed. If trans="N’ or ’n’, x := a*x.
If trans="T" or’t’, x ;= a’*x. The trans argument is unchanged on exit.

Character*1. On entry, diag specifies whether or not g is unit triangular. If digg ="U’ or 'u’, a is
assumed to be unit triangular. If diag = "N’ or 'n’, a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

Integer. On entry, n specifies the order of the matrix a. The n argument must be at least 0. The n
argument is unchanged on exit.

Integer. On entry with uplo="U’ or ’u’, k specifies the number of superdiagonals of the matrix a.
On entry with uplo="L’ or 'I’, k specifies the number of subdiagonals of the matrix a. Argument k
must satisfy 0.LE.k. The k argument is unchanged on exit.

Real array of dimension (Ida,n ). Before entry with uplo="U’ or "u’, the leading (k+1)-by-n part of
the array a must contain the upper triangular band part of the matrix of coefficients, supplied
column by column, with the leading diagonal of the matrix in row (k+1) of the array, the first super-
diagonal starting at position 2 in row k, and so on. The top left k-by-k triangle of the array g is not
referenced. The following program segment will transfer the upper triangular band matrix from
conventional full matrix storage to band storage:

DO 20, J=1,N
M= K+1-1J
DO 10, I=MAX(1,J-K}, I
AM+1,J) = MATRIX(1,7)
10 CONTINUE
20 CONT INUE

Before entry with uplo="L’ or ’’, the leading (k+1)-by-n part of the array a must contain the lower
triangular band part of the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and
so on, The bottom right k-by-k triangle of the array « is not referenced. The following program seg-
ment will transfer a lower triangular band matrix from conventional full matrix storage to band
storage:

4-146 D



STBMYV (35CI) STBMV (3SCI)

DO 10, I=J, MIN(N, J+K)
A(M+I,J) = MATRIX(I,7)
10 CONTINUE
20 CONTINUE

Note that when diag="U’ or "u’ the elements of the array a corresponding to the diagonal clements
of the matrix are not referenced, but are assumed to be unity. The a argument is unchanged on exit.

lda Integer. On entry, lda specifies the first dimension of a as declared in the calling subprogram.
Argument /da must be at least (¢+1). The lda argument is unchanged on exit.

x Real array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must contain
the 2 element vector x. On exit, x is overwritten with the transformed vector x.

incx  Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not be 0.
The incx argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
STBMY is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-147 D



STBSV(3SCI)

NAME

STBSV (3SCI)

STBSV -- Solves a real triangular banded system of linear equations

SYNOPSIS

DESCRIPTION

SR-0113

CALL STBSV(uplo trans,diag,nk.a,ldaxincx)

STBSY solves one of the systems of equations

a*x=b or a'*x=>b

where b and x are n element vectors, and g is an n-by-n unit, or non-unit, upper or lower triangular band
matrix, with (k+1) diagonals.

No test for singularity or near-singularity is included in this routine. Such tests must be performed before
calling this routine.

uplo

trans

diag

Character*1. On entry, uplo specifies whether matrix is an upper or lower triangular matrix. When
uplo="U’ or 'u’, a is an upper triangular matrix. When uplo="L’ or ’I’, a is a lower triangular
matrix. The uplo argument is unchanged on exit.

Character*1. On entry, trans specifies the equation 10 be solved. If trans="N’ or 'n’, a*x = b. If
trans="T’ or ’’, a’*x = b. The trans argument is unchanged on exit.

Character*1. On entry, diag specifies whether or not g is unit triangular. If diag="U’ or 'u’, a is
assumed to be unit triangular. If diag="N" or ’'n’, a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

Integer. On entry, n specifies the order of matrix a. The n argument must be at least 0. The » argu-
ment is unchanged on exit.

Integer. On entry with uplo="U" or "v’, k specifies the number of superdiagonals of the matrix a.
On entry with uplo="L’ or ’I’, k specifies the number of subdiagonals of the matrix a. Argument &
must satisfy 0.LE.k. The k argument is unchanged on exit.

Real array of dimension (/da,n). Before entry with uplo="U" or "u’, the leading (k+1)-by-n part of
array a must contain the upper triangular band part of the matrix of coefficients, supplied column-
by-column, with the leading diagonal of the matrix in row (k+1) of the array, the first superdiagonal
starting at position 2 in row k, and so on. The top £-by-k triangle of array a is not referenced. The
following program segment will transfer an upper triangular band matrix from conventional full
matrix storage to band storage:

DO 20, J=1,N
M = K+1-7J
DO 10, I=MAX(1,J-K), J
A(M+1,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

4-148 D



STBSV(3S5CI)

lda

X

incx

STBSV(35CI)

Before entry with uplo="L’ or ’I’, the leading (k+1)-by-n part of array ¢ must contain the lower tri-
angular band part of the matrix of coefficients, supplied column-by-column, with the leading diago-
nal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right k-by-£ triangle of array a is not referenced. The following program segment will
transfer a lower triangular band matrix from conventional full matrix storage to band storage:

DO 20, J=1,N
M=1-17
DO 10, I=J, MIN(N, J+K)
AM+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

Note that when diag="U’ or ’u’, the elements of array a corresponding to the diagonal elements of
the matrix are not referenced, but are assumed to be unity. The a argument is unchanged on exit.

Integer. On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument lda must be at least (k+1). The /da argument is unchanged on exit.

Real array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must contain
the n element right-hand side vector 5. On exit, x is overwritten with the solution vector x.

Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not be 0.
The incx argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

STBSYV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113

4-149 D



STRMM (3COS) STRMM (3COS)

NAME
STRMM - Multiplies a real general matrix by a real triangular matrix

SYNOPSIS
CALL STRMM(side,uplo transa,diag,mn,alpha.alda,b,ldb)

DESCRIPTION
STRMM performs one of the matrix-matrix operations:

b := alpha*op(a)*b
or b := alpha*b*op(a)

Argument alpha is a scalar, b is an m-by-n matrix, g is a unit, or non-unit, upper or lower triangular
matrix, and op{a) is one of the following:

op(a) = a,

or opa)=a.

side  Type character*l.
On entry, side specifies whether op(a) multiplies b from the left or right as follows:

If side =L’ or °'I’, b := alpha*op(a)*b.
If side = 'R’ or 'r’, b := alpha*b*op(a).

On exit, side is unchanged.
uplo  Type character*1.
On entry, uplo specifies whether matrix (a) is an upper or lower triangular matrix as follows:

If uplo = *U’ or 'u’, a is an upper triangular matrix.
If uplo =L’ or ’I’, a is a lower triangular matrix.

On exit, uplo is unchanged.
transa Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa =N’ or 'n’, op(a) = a.
If transa =T’ or ’t’, op(@) = a’.
If transa = ’C’ or ’c’, op(a) = a’.

On exit, transa is unchanged.
diag  Type character*1.
On entry, diag specifies whether or not a is unit triangular as follows:

If diag = "U’ or "u’, a is assumed to be unit triangular.
If diag = "N’ or 'n’, a is not assumed to be unit triangular.

On exit, diag is unchanged.

SR-0113 4-150 D



STRMM(3COS) STRMM (3COS)

m Type integer.
On entry, m specifies the number of rows in b,
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least O.
On exit, n is unchanged.
alpha Type real.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and & need not be set before entry.
On exit, alpha is unchanged.

a Type real.
Array of dimension (Ida, k).
Argument k is m when side = 'L’ or ’l', and is n when side = 'R’ or '1’.

Before entry with uplo = 'U’ or 'u’, the leading k-by-k upper triangular part of aray a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L’ or °I’, the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = U’ or 'u’, the diagonal clements of a are not referenced, but are
assumed to be unity.,
On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L’ or 'I’, lda must be at least max(1, m).
When side = 'R’ or 'r’, lda must be at least max(1, n).
On exit, /da is unchanged.

b Type real.
Array of dimension (Idb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is overwritten by the transformed matrix.

ldb Type integer.
On entry, ldb specifies the first dimension of & as declared in the calling (sub)program.
Argument ldb must be at least max(1, m).
On exit, Idb is unchanged.
IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTES
STRMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-151 D



STRMV (3SCI)

NAME

STRMV (3SCI)

STRMYV - Multiplies a real vector by a real triangular matrix

SYNOPSIS
CALL STRMV(upIo;trans.diag.n.a,lda.x.incx)

DESCRIPTION

STRMV solves one of the matrix-vector operations

x:=a*x or x:=a"*x

where x is an n element vector, and g is an a-by-n unit, or non-unit, upper or lower triangular band

matrix.

uplo

trans

diag

{da

p 4

incx

Character*1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix.
When uplo="U’ or ’u’, a is an upper triangular matrix. When uplo="L’ or ’l’, a is a lower tri-
angular matrix. The uplo argument is unchanged on exit.

Character*1. On entry, trans specifies the equation to solved as follows: If trans="N’ or 'n’,
x:=a*x. If trans="T" or 't’, x:=a"*x. The trans argument is unchanged on exit.

Character*1. On entry, diag specifies whether or not ¢ is unit triangular as follows: If
diag="U’ or 'u’, a is assumed to be unit triangular. If diag="N’ or 'n’, a is not assumed to be
unit triangular. The diag argument is unchanged on exit.

Integer. On entry, n specifies the order of the matrix a. The »n argument must be at least 0.
The n argument is unchanged on exit.

Real array of dimension (Ida,n). Before entry with uplo="U" or ’u’, the leading n-by-n upper
triangular part of the array @ must contain the upper triangular matrix and the strictly lower tri-
angular part of a is not referenced. Before entry with uplo="L’ or °I’, the leading n-by-n lower
triangular part of the array g must contain the lower triangular matrix and the strictly upper tri-
angular part of a is not referenced. Note that when diag="U’ or 'v’, the diagonal elements of
a are not referenced either, but are assumed to be unity. The a argument is unchanged on exit.

Integer. On entry, lda specifies the first dimension of a as declared in the calling
(sub)program. Argument Ida must be at least max(1,n). The lda argument is unchanged on
exit,

Real array of dimension at least 14+(n-1)*|incx|. Before entry, the incremented array x must
contain the n element vector . On exit, x is overwritten with the transformed vector x.

Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not
be 0. The incx argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SR-0113

STRMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-152 D



STRSM(3COS) STRSM(3COS)

NAME
STRSM - Solves a real triangular system of equations with multiple right-hand sides

SYNOPSIS
CALL STRSM(side,uplo transa.diag,m.n.alpha,alda.b,ldb)

DESCRIPTION
STRSM solves one of the following matrix equations:

op(a)*x = alpha*b
or x*op(a) = alpha*b

Argument alpha is a scalar, x and b are m-by-n matrices, g is a unit, or non-unit, upper or lower tri-
angular matrix, and op(a) is one of the following:

op(a) = a,
or op(@)=a.

Matrix x is overwritten on b.

side  Type character*1.
On entry, side specifies whether op(a) appears on the left or right of x as follows:

If side = 'L’ or 'Y, op(a)*x = alpha*b
If side = "R’ or 'r’, x*op(a) = alpha*b

On exit, side is unchanged.
uplo  Type character*1.
On entry, uplo specifies whether matrix (@) is an upper or lower triangular matrix as follows:

If uplo = "U’ or 'W’, a is an upper triangular matrix.
If uplo =L’ or ’I’, a is a lower triangular matrix.

On exit, uplo is unchanged.
transa Type character*1.
On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa = "N’ or 'n’, op(a) = a.
If transa =T" or 't’, op(a) = a’.
If transa ='C’ or ’c’, op(a@) = a’.

On exit, fransa is unchanged.
diag  Type character*1.
On entry, diag specifies whether or not g is unit triangular as follows:

If diag = "U’ or ’u’, a is assumed to be unit triangular.
If diag = "N’ or 'n’, a is not assumed to be unit triangular,

On exit, diag is unchanged.

SR-0113 4-153 D



STRSM(3COS) STRSM(3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argument m must be at least 0.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least 0.
On exit, n is unchanged.

alpha Type real,
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type real.
Array of dimension (lda, k).
Argument k is m when side =L’ or 'l’, and is n when side = 'R’ or 'r’.

Before entry with uplo = U’ or 'u’, the leading k-by-k upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L’ or 'l’, the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = 'U’ or 'u’, the diagonal elements of a are not referenced, but are
assumed to be unity.
On exit, a is unchanged.

lda Type integer.
On entry, lda specifies the first dimension of g as declared in the calling (sub)program.
When side = 'L’ or 'I’, lda must be at least max(1, m).
When side = 'R’ or 'r’, lda must be at least max{1, n).
On exit, /da is unchanged.

b Type real.
Array of dimension (Idb, n).
Before entry, the leading m-by-n part of array & must contain the right-hand side matrix b.
On exit, b is overwritten by the solution matrix x.

ldb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument /db must be at least max(1, m).
On exit, Idb is unchanged.

IMPLEMENTATION
This routine is available only to users of the COS operating system.

NOTES
STRSM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-0113 4-154 D



STRSV(3SCI)

NAME

STRSV(3SCI)

STRSV — Solves a real triangular system of linear equations

SYNOPSIS
CALL STRSV(uplo,trans,diag,n,aldax,incx)

DESCRIPTION

STRSYV solves one of the systems of equations

a*x=b or a’*x=b

where b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

uplo

trans

diag

lda
x

incx

Character*1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix. When
uplo="U’ or *u’, a is an upper triangular matrix. When uplo="L’ or 'I’, a is a lower triangular
matrix. The uplo argument is unchanged on exit.

Character*1. On entry, trans specifies the operation to be performed. If trans="N’ or 'n’, a*x = b.
If trans="T' or ’t’, @’ *x = b. The trans argument is unchanged on exit.

Character*1. On entry, diag specifies whether or not g is unit triangular. If diag="U’ or *v’, a is
assumed to be unit triangular. If diag="N’ or ’n’, a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

Integer. On entry, n specifies the order of the matrix a. The n argument must be at least 0. The n
argument is unchanged on exit.

Real array of dimension ({da,n). Before entry with uplo="U’" or 'u’, the leading n-by-»n upper tri-
angular part of the array a must contain the upper triangular matrix and the strictly lower triangular
part of a is not referenced. Before entry with uplo="L’ or ’I’, the leading n-by-n lower triangular
part of the array @ must contain the lower triangular matrix and the strictly upper triangular part of a
is not referenced. Note that when diag="U’ or 'u’, the diagonal elements of a are not referenced
either, but are assumed to be unity. The g argument is unchanged on exit.

Integer. On entry, lda specifies the first dimension of a as declared in the calling subprogram.
Argument /da must be at least max(1,7). The lda argument is unchanged on exit.

Real array of dimension at least 1+(n-1)*|incx|. Before entry, the incremented array x must contain
the n element right-hand side vector . On exit, x is overwritten with the solution vector x.

Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not be 0.
The incx argument is unchanged on exit.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SR-0113

STRSYV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-155 D



SXMPY (3SCI)

NAME

SXMPY — Multiplies a matrix by a row vector and adds the result to another row vector

SYNOPSIS

CALL SXMPY(nl,ldy,y.n2,ldxx,ldm,m)

DESCRIPTION
nl Number of columns in matrix y (input)
ldy Leading dimension of matrix y (input)
y Matrix specifying row vector used in sum and for result (input/output)
n2 Number of columns in matrix x (input)
ldx Leading dimension of matrix x (input)
x Matrix specifying row vector used in product (input)
ldm Leading dimension of matrix m (input)
m Matrix used in product (input)

SXMPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SXMPY(N1,LDY,Y,N2 LDX,X,LDM,M)
REAL Y(LDY,1), X(LDX,1), M(LDM,1)
DO 20 J=1,N2
DO 20 I=1,N1
Y(LD=Y(LD + X(1,)) * M(.)
20 CONTINUE
RETURN
END

IMPLEMENTATION

SR-0113

This routine is available to users of both the COS and UNICOS operating systems.

4-156

SXMPY (3SCI)



INTRO (3X)

INTRO(3X)

5. FAST FOURIER TRANSFORM ROUTINES

These routines apply a Fast Fourier Transform. Each routine can compute either a Fourier analysis or a
Fourier synthesis. Detailed descriptions, algorithms, performance statistics, and examples of two of
these routines appear in Complex Fast Fourier Transform Binary Radix Subroutine (CFFT2), CRI publi-
cation SN-0203; and Complex to Real Fast Fourier Transform Binary Radix Subroutine (CRFFT2), CRI

publication SN-0206.

CFFT2, RCFFT2, and CRFFT2 have the same argument list: (initix,n,x,work,y).

Parameter

init
ix
n

x

work
y

Description
Initialization flag
Analysis/Synthesis flag
Size of transform

Input vector

‘Working storage vector
Result vector

The routines are called the first time with init=0 and n as a power of 2 to initialize the needed sine and
cosine tables in the working storage area work. Then for each input vector of length n (length (n/2)+1
for CRFFT2), each routine is called with init=0. The sign of ix determines whether a Fourier synthesis
or a Fourier analysis is computed: if the sign of ix is negative, a synthesis is computed; if the sign is
positive, an analysis is computed.

The following table shows the size and formats of x, y, and work for each routine.

Arguments for Fast Fourier Transform Routines
Argument CFFT2 RCFFT2 | CRFFT2
x Complex n | Real n Complex
(n/2)+1
work Complex Complex | Complex
(5/2)n @B/2n+2 | 3/2)n+2
y Complex n | Complex | Real n
(n/2)+1

CFFTMLT and RFFTMLT apply Fast Fourier Transforms on multiple input vectors. Refer to the docu-
mentation for each routine for details.

SR-0113

5-1



INTRO(3X) INTRO(3X)

The following table contains the purpose, name, and manual entry of each Fast Fourier Transform rou-
tine.

The "manual entry” is the name of the manual page containing documentation for the routine listed.

Fast Fourier Transform Routines

Purpose Name Manual Entry
Apply a complex Fast Fourier Transform { CFFT2 CFFT2
Apply multiple complex-to-complex CFFTMLT | CFFTMLT
Fast Fourier Transforms
Apply a complex-to-real Fast Fourier CRFFT2 CRFFT2
Transform
Apply a real-to-complex Fast Fourier RCFFT2 RCFFT2
Transform
Apply multiple complex-to-real and RFFTMLT | RFFTMLT
real-to-complex Fast Fourier Transforms

SR-0113 5-2 D



CFFT2(38CI) CFFT2(3SCI)

NAME
CFFT2 - Applies a complex Fast Fourier Transform (FFT)

SYNOPSIS
CALL CFFT2(init,ix,nx,work.y)

DESCRIPTION
init If non-zero, generates sine and cosine tables in work.
If zero, calculates Fast Fourier Transforms using sine and cosine tables of the previous call.
ix >0 Calculates a Fourier Analysis
<0 Calculates a Fourier Synthesis
n Size of the Fourier transform; 2™ where m > 3 for the CRAY Y-MP, CRAY X-MP, and
CRAY-2 computer systems, and m 2 2 for the CRAY-1 computer system.
x Input vector of n complex values.
Range of x:
2466
'r.;“- <\ x | < -lg"l— fori=12,..n.
Vector x can be equivalenced 1o the work vector. In this case the input values are
overwritten.
work Work storage vector of (-g- Jn complex values.
y Complex result vector of size n.
CFFT2 calculates:
nl 2nri .
Jjk)

Yi = Y, Xj exp(*
j=0 n

for k=0,1,....,n-1; where i% = -1,

The sign of the exponent is the same as the sign of ix.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
CRFFT2(35CI), RCFFT2(3SCI)

SR-0113 5-3 D



CFFTMLT (3SCI) CFFTMLT (3SCI)

NAME
CFFTMLT - Applies complex-to-complex Fast Fourier Transforms (FFT) on multiple input vectors

SYNOPSIS
CALL CFFTMLT(ar,ai,work trigs,ifax,inc jump.n,lotisign)

DESCRIPTION

ar Vector of n*lot real values.
On input, it contains the real part of the input data.
On ouput, it contains the real part of the transformed data.

ai Vector of n*lot real values.
On input, it contains the imaginary part of the input data.
On output, it contains the imaginary part of the transformed data.

work Work storage vector of 4*n*lot real values.

trigs  Input vector of 2*n real values. It must be initialized to contain sine and cosine tables.
This vector and ifax (following) can be initialized by the following call:

CALL CFTFAX(n,ifax,trigs).

(CFTFAX retumns in ifax(1) an error flag of —99 if » is not factorable as given below.)
ifax Input vector of at most 19 integer values. It has a previously prepared list of factors of n.
inc  The increment within each data vector.

jump The increment between the start of each data vector.
inc and jump apply to both the real and imaginary parts of the data.
To obtain best performance, jump should be an odd number.

n Length of the data vectors.
n must be factorable as:

n=72° % 34 * §
where p, g, and r are integers.
lot  The number of data vectors.

isign +1 for Fourier analysis
-1 for Fourier synthesis

CFFTMLT applies complex-to-complex Fast Fourier transforms on more than one input vector:

n-l1
(ar (inc*k +1),ai (inc*k +1)) = 3, exp (isign*iota* 2*pi* j*k /n )(ar (inc* j+1),ai (inc*j +1))
j=0

for k = 0,1,...,n-1.

This calculation is performed for each of the n-vectors in the input.
Vectorization is achieved by doing parallel transforms, with vector length = lot.

SR-0113 5-4 D



CFFTMLT (3SCI) CFFTMLT(3SCI)

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

In the division by n, the normalization used by CFFTMLT is different from that used by CFFT2,
CRFFT2, and RCFFT2.

SR-0113 5-5 D



CRFFT2(3S8CI) CRFFT2(35CI)

NAME
CRFFT2 - Applies a complex-to-real Fast Fourier Transform (FFT)

SYNOPSIS
CALL CRFFT2(init,ix,n.x,work.y)

DESCRIPTION
init If non-zero, generates sine and cosine tables in work.
If zero, calculates Fast Fourier Transforms using sine and cosine tables of the previous call,
ix >0 Calculates a Fourier Analysis
<0 Calculates a Fourier Synthesis
n Size of the Fourier transform; 2™ where m2 3
x Input vector of (%)H complex values.
n 1
Range of x: <|x < fori =1,2,...n.
g 102466 I i I ” v |
work Work storage vector of (%)n +2 complex values.
y Real result vector of n values.

CRFFT2 calculates the following equation:

al 2ni
M = Z X;j exp(x
i=0 n

Jjk)
for k=0,1,....n-1

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES

x; elements are complex and related by x; =X,_; for j = 1,2,...,(%).

Only the first (—;-)+l elements are stored in x.

SEE ALSO
CFFT2(3SCI), RCFFT2(3SCI)

SR-0113 5-6 D



RCFFT2(3SCI) RCFFT2(35CI)

NAME
RCFFT2 - Applies a real-to-complex Fast Fourier Transform (FFT)

SYNOPSIS
CALL RCFFT2(init,ix,nx,work,y)

DESCRIPTION
init If non-zero, generates sine and cosine tables in work.
If zero, calculates Fast Fourier Transforms using sine and cosine tables of the previous call.
ix >0 Calculates a Fourier Analysis
<0 Calculates a Fourier Synthesis
n Size of the Fourier transform; 2™ where m = 3.
x Input vector of n real values.
Range of x:
% <|x|< -l-zn— fori=12,...n.
work Work storage vector of (%)" + 2 complex values.
y Complex result vector of (-%) + 1 values.
RCFFT2 calculates:
nl 2ni .
Jk)

Y = 2 Z Xj CXp(Zt
j=0 r

for k=0,1,..., (%)

The sign of the exponent is the same as the sign of ix.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO
CFFT2(3SCI), CRFFT2(3SCI)

SR-0113 5-7 D



RFFTMLT (3SCI) RFFTMLT (3SCT)

NAME
RFFTMLT - Applies complex-to-real and real-to-complex Fast Fourier Transforms (FFT) on multiple
input vectors

SYNOPSIS
CALL RFFTMLT(a,work,trigs.ifax,inc jump n,lot isign)

DESCRIPTION

a When isign = -1, the n real input values for each data vector:
a(l), aQl+inc), a(2*inc+1), - - -, a{(n—1)*inc+1)
should be stored in vector a with stride = inc.
The computed output vector is:

a(2*inc*i+1), a(@*inc* G+1)+1), - - - fori = 1,2,..., -’21

The i-th Fourier coefficient is:
(a 2*inc*i+1), a 2*inc* (i+1)+1)).

When isign = +1, the input and output data formats are reversed.

It is important to note that for i = 1 and i = %, the imaginary parts of the complex input
numbers must be 0.
work Work storage vector of size 2*n*lot real values.

trigs  Input vector of 2*n real values. It must be initialized to contain sine and cosine tables. Vectors
trigs and ifax (following) can be initialized by the following call:

CALL FFTFAX(n.ifax.trigs).

(FFTFAX returns in irfax(1l) an error flag of —99 if n is not factorable as given below.)
ifax  Input vector of at most 19 integer elements, It has a previously prepared list of factors of ».
inc The increment within each data vector.

Jjump The increment between the start of each data vector. inc and jump apply to both real and ima-
ginary data. For the best performance, jump should be an odd number,

n Length of the data vectors.
n must be even and factorable as:

n=2° % 37 *x §
where p, ¢, and r are integers.
lot The number of data vectors

isign -1 to calculate real-to-complex Fourier transform
+1 to calculate complex-to-real Fourier transform

SR-0113 5-8 D



RFFTMLT (3S8CI) RFFTMLT (3SCI)

RFFTMLT applies complex-to-real and real-to-complex Fast Fourier transforms on more than one input
vector.

For isign = -1, RFFTMLT calculates the following:

a~-1
(ar (inc*k+1),ai (inc*k+1)) = Y, exp (<ota* 2*pi* j*k/nY*a (inc*j+1)/n
j=0
n
for k =0,1,..., 5

iota is the square root of —1.
The numbers on the left side of the equation are complex.

This calculation is performed for each of the n-vectors in the input.

For isign = +1, RFFTMLT calculates the following:

n—-1

a(inc*k+1) = 3, exp (iota* 2*pi*j*k/n)* (a(2*inc*j+1),a 2*inc*j+inc +1))
j=0

for k =0,1,....n.

iota is the square root of —1.

This calculation is performed for each of the n-vectors in the input.

Each input vector satisfies the relationship:
a (2*k*inc +1) = a(2* (n—k)*inc +1)
a(2* (k+1)*inc+1) = —a((2* (n—k)+1)*inc+1)

n
for k=0,1,..., >

Only the first (%)—H complex values are needed.

IMPLEMENTATION
This routine is available to users of both the COS and UNICOS operating systems.

NOTES
RFFTMLT uses a normalization different from the one used by CFFT2, CRFFT2, and RCFFT2.

Vectorization is achieved by doing parallel transforms, with vector length = Jot.

SR-0113 5-9 D






INTRO(3X) INTRO(3X)

6. SEARCH ROUTINES

SR-0113

The following search routines are written to run optimally on Cray computer systems. These subpro-
grams use the call-by-address convention when called by a Fortran or CAL program.

The subprograms are grouped as follows:
= Maximum/minimum element search routines
e Vector search routines

Maximum/Minimum Element Search Routines

The maximum and minimum element search routines find the largest or smallest element of a vector or
argument and return either the element or its index.

To return an index - ISMAX and ISMIN return the index of the maximum or minimum vector element,
respectively. ISAMAX, ICAMAX, and ISAMIN search for maximum or minimum absolute values in a
real vector and return the index. INTMAX and INTMIN are the corresponding maximum and minimum
search routines for an integer vector. INFLMAX and INFLMIN retumn the index of the maximum and
minimum value within a table. The type declaration for these routines is integer. For further details
regarding type and dimension declarations for variables occurring in these subprograms, see section 4,
Linear Algebra Subprograms.

To return an element - The following functions find the maximum or minimum elements of two or
more vector arguments: MAX0, AMAX1, DMAX1, AMAX0, MAX1, MINO, AMIN1, DMIN1, AMINO, and
MIN1. These functions differ mainly in their types for integer, real, and double-precision arguments.
In the description of these functions, the argument type does not always reflect the function type.

6-1 D



INTRO(

SR-0113

3X)

INTRO(3X)

The following table contains the purpose, name, and manual entry of each maximum/minimum element

search routine.

The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Maximum/Minimum Element Search Routines

Purpose Name Manual Entry
Find the first index of the largest ISAMAX ISAMAX
absolute value of the elements of a ICAMAX
real or complex vector
Return the index of the maximum value INFLMAX
in a table
INFLMAX
Return the index of the minimum value INFLMIN
in a table
Return the index of the integer vector INTMAX
element with maximum value
INTMAX
Return the index of the integer vector INTMIN
element with minimum value
Return the index of the vector element ISMAX
with maximum value
Return the index of the vector element ISMIN ISMAX
with minimum value
Return the index of the vector element ISAMIN
with minimum absolute value
Return the largest of all arguments MAXO0 MAX
AMAXI1
DMAX1
AMAXO
MAX1
Return the smallest of all arguments MINO MIN
AMIN1
DMINI1
AMINO
MIN1

Vector Search Routines

Vector search routines have one of the following functions:
» To return occurrences of an object in a vector
¢ To search for an object in a vector

To return occurrences of an object in a vector - These integer routines return the number of
occurrences of a given relation in a vector. The routines ILLZ and IILZ find the first occurrence.
ILSUM counts the number of such occurrences. All three of these functions are described under the

heading IILZ.

6-2



INTRO(3X) INTRO(3X)

To search for an object in a vector - ISRCH routines find the positions of an object in a vector. These
include the following: ISRCHEQ, ISRCHNE, ISRCHFLT, ISRCHFLE, ISRCHFGT, ISRCHFGE,
ISRCHILT, ISRCHILE, ISRCHIGT, ISRCHIGE, ISRCHMEQ, ISRCHMNE, ISRCHMLT, ISRCHMLE,
ISRCHMGT, and ISRCHMGE. These functions return the first location in an array that has a true rela-
tional value to the target.

The WHEN routines are similar to the ISRCH routines in that they return the locations of elements in an
array that have a true relational value to the target. However, all locations are returned in an indexed
array. The WHEN routines are WHENEQ, WHENNE, WHENFLT, WHENFLE, WHENFGT, WHENFGE,
WHENILT, WHENILE, WHENIGT, WHENIGE, WHENME, WHENNE, WHENMLT, WHENMLE,
WHENMGT and, WHENMGE.

The CLUS routines find the index of clusters that have a true relational value to the target. These rou-
tines are further divided into integer (CLUSILT, CLUSILE, CLUSIGT, CLUSIGT) and real (CLUSFLT,
CLUSFLE, CLUSFGT, and CLUSFGE) routines.

The OSRCHI and OSRCHF subroutines return the index of the location that would contain the target in
an ordered array. This is useful for sorting elements into a new array. Searching always begins at the
lowest value in the ordered array. The total number of occurrences of the target in the array can also
be returned. The OSRCHM routine returns the index of the first location equal to an integer target in an
ordered integer array. (OSRCHM is available only to COS users.)

The following table contains the purpose, name, and manual entry of each vector search routine.
The "manual entry” is the name of the manual page containing documentation for the routine(s) listed.

Vector Search Routines
Purpose Name Manual Entry
Retun the number of occurrences of an IILZ IILZ
object in a vector ILLZ
ILSUM
Find the index of clusters equal or CLUSEQ CLUSEQ
not equal to the target CLUSNE
Find the index of clusters of real elements CLUSFLT CLUSFLT
that are less than, less than or CLUSFLE
equal to, greater than, or greater CLUSFGT
than or equal to the target CLUSFGE
Find the index of clusters of integer elements | CLUSILT CLUSILT
that are less than, less than or CLUSILE
equal to, greater than, or greater CLUSIGT
than or equal to the target CLUSIGE
Find the first array element that ISRCHEQ ISRCHEQ
is equal or not equal to the target ISRCHNE
Find the first real array element ISRCHFLT | ISRCHFLT
that is less than, less than or ISRCHFLE
equal to, greater than, or greater ISRCHFGT
than or equal to the real target ISRCHFGE
Find the first integer array element ISRCHILT | ISRCHILT
that is less than, less than or ISRCHILE
equal to, greater than, or greater ISRCHIGT
than or equal to the integer target ISRCHIGE

6-3



INTRO(3X)

SR-0113

INTRO(3X)

Vector Search Routines (continued)

Purpose Name Manual Entry
Find the first array element that ISRCHMEQ ISRCHMEQ
is equal or not equal to the target ISRCHMNE
within a field
Find the first array element ISRCHMLT ISRCHMLT
that is less than, less than or ISRCHMLE
equal to, greater than, or greater ISRCHMGT
than or equal to the target within a ISRCHMGE
field
Search an ordered integer or real OSRCHI OSRCHI
array and retumn the index of the OSRCHF
first location that contains the
 target
Search an ordered integer array OSRCHM OSRCHM
and return index of the first location
that is equal to the integer target
(COS only)
Find all array elements that are WHENEQ WHENEQ
equal or not equal to the target WHENNE
Find all real array elements that WHENFLT WHENFLT
are less than, less than or eqnal to, WHENFLE
greater than, or greater than or WHENFGT
equal to the real target WHENFGE
Find all integer array elements that WHENILT WHENILT
are less than, less than or equal to, WHENILE
greater than, or greater than or WHENIGT
equal to the integer target WHENIGE
Find all array ¢lements that are WHENMEQ WHENMEQ
equal or not equal to the target WHENNME
within a field
Find all array elements that WHENMLT WHENMLT
are less than, less than or equal to, WHENMLE
greater than, or greater than or WHENMGT
equal to the target within a field WHENMGE




CLUSEQ(3SCI) CLUSEQ(3SCI)

NAME
CLUSEQ, CLUSNE - Finds index of clusters within a vector

SYNOPSIS
CALL CLUSEQ(n,array,inc target,index,nn)

CALL CLUSNE(n,array.inc.target,index,nn)

DESCRIPTION
n Number of elements to be searched; length of the array. Type integer.
array Real or integer vector to be searched
inc Increment between elements of the searched array. Type integer.
target Scalar to match logically. Type integer or real.
index Indexes in array where the cluster starts and stops (one based); index should be dimen-
sioned INDEX(2,n/2).
nn Number of matches found; length of index. Type integer.

These routines find the index o