
c:
RESEARCH, INC.

CRAY COMPUTER SYSTEMS

PASCAL REFERENCE MANUAL

SR-0060

Copyright© 1983, 1984, 1986 by CRAY RESEARCH, INC. This
manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

C=1'=li*""
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0060

Each time this m~nu~1 is r~vised and reprint~d, all changes issued against the previous version are incorporated into the new version
and the new version IS assigned an alphabetic level.

Every page chan~ed by a re~rint. with revisio~ has the revision level in the lower righthand corner. Changes to part of a page are noted
by ~ change. bar m the margm dm~ctly o~poslte the c~a!1ge. A change bar in the margin opposite the page number indicates that the
entire page IS new. If the manual IS rewntten, the revIsion level changes but the manual does not contain change bars.

Reql;lest.s for copies of C~ay Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
2520 Pilot Knob Road
Suite 310
Mendota Heights, Minnesota 55120

Revision

A

B

Description

September 1983 - Original printing.

September 1984 - This reprint with revision updates the manual
for Pascal release 2.0. It adds the VALUE definition; the
VIEWING statement; the IMPORTED, EXPORTED, COMMON, and STATIC
variable declarations; the LaC function under pointer types;
the SIZEOF function under DISPOSE; new compiler options; and
new messages. Material from appendix F in the initial release
is now incorporated in subsection 2.3. Miscellaneous
technical and editorial corrections were also made. This
manual obsoletes all previous printings.

January 1986 - This reprint with revision updates the manual
for Pascal release 3.0. Release 3.0 adds a set of array
processing constructs; automatic vetorization of FOR loops
that comply with Pascal vectorization rules; CPU targeting;
additional debugging and listing options; constant expressions
in constant definitions; the sharing of data in FORTRAN TASK
COMMON blocks; the 132 data type; conditional expressions; and
various changes for running under the Cray operating system
UNICOSt. Changes have been made to the Pascal syntax to
accommodate the changes and additions for this release. This
reprint also includes miscellaneous technical and editorial
corrections. This manual obsoletes all previous printings.

t UNICOS is derived from the AT&T UNIX system; UNIX is a trademark of
AT&T Bell Laboratories.

SR-0060 ii B

PREFACE

This publication is a reference manual for the Pascal programming
language as implemented by Cray Research, Inc. (CRI). It is not a
tutorial, although it does illustrate the use of Pascal with frequent
examples.

Many books that teach the language are available. The following
publications are frequently used descriptions of Pascal:

Cooper, Douglas. Standard Pascal User Reference Manual. New
York: W. W. Norton.

Grogono, Peter. Programming in Pascal. Addison-Wesley, 1978.

Jensen, Kathleen and Niklaus Wirth. Pascal User Manual and
Report. 3rd ed. New York: Springer-Verlag, 1985.

Wilson, Ian and Tony Addyman. A Practical Introduction to Pascal.
MacMillan and Springer-Verlag, 1978.

The book by Wilson and Addyman includes a complete description of the
International Standards Organization (ISO) Pascal standard, ISO/DIS
7185. The following CRI publications may also be helpful to the Pascal
programmer:

SR-0011
SR-0012
SD-0061
SR-0113
SM-0114
SR-2011
SR-2013
SR-2014

SR-0060

COS Version 1 Reference Manual
Macros and Opdefs Reference Manual
Pascal Internal Reference Manual
Programmer's Library Reference Manual
System Library Reference Manual
UNICOS Commands Reference Manual
CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual
UNICOS File Formats and Special Files Reference Manual

iii B

CONTENTS

PREFACE . • • • • • . • • • . • • • • • • • • • • • • • . • • • •• iii

1.

2.

3.

INTRODUCTION ••

1.1
1.2
1.3

EXTENSIONS
RESTRICTIONS •
CONVENTIONS

USING PASCAL ON A CRAY COMPUTER

2.1

2.2

2.3
2.4

2.5

USING PASCAL UNDER COS · · · · · ·
2.1.1 JCL file . . . · ·
2.1.2 COS PASCAL control statement · . .
USING PASCAL UNDER UNICOS · · · · . ·
2.2.1 UNICOS pascal command line . ·
COMPILER DIRECTIVES · · · ·
LISTABLE OUTPUT . . · · · · · ·
2.4.1
2.4.2
2.4.3
2.4.4

2.4.5
2.4.6

Page header lines •••• • .
Source statement listings
Error messages . • . • • • •
Cross-reference information • . . • • • •
2.4.4.1 Global identifier cross-reference
2.4.4.2 Procedure cross-reference
Procedure and function list
Identifier information ••••
2.4.6.1 Types and fields.
2.4.6.2 Constants
2.4.6.3 Local variables
2.4.6.4 Nonlocal identifiers.

2.4.7 Pseudo-CAL listing
CPU TARGETING • . . • • • • • • • • • • • • •

PASCAL VOCABULARY

3.1

3.2
3.3

SPECIAL SYMBOLS
3.1.1 Reserved words ••••••
3.1.2 Operators •••••••
3.1.3 Delimiters •••••••••
PREDEFINED IDENTIFIERS •
USER-DEFINED IDENTIFIERS •

SR-0060 v

. . .

1-1

1-2
1-4
1-5

2-1

2-1
2-2
2-3
2-5
2-6
2-7
2-15
2-16
2-16
2-16
2-17
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-20
2-20
2-20

3-1

3-1
3-1
3-2
3-4
3-5
3-6

B

3. PASCAL VOCABULARY (continued)

3.4 NUMBERS · · · · · · · · · · · · · · · 3-6
3.5 CHARACTER STRINGS 3-7
3.6 STATEMENT LABELS · · · · · 3-7
3.7 COMMENTS · · · · · · · · · · 3-8

4. PROGRAM ORGANIZATION · · 4-1

4.1 PROGRAM HEADING · · · · 4-2
4.2 DECLARATIONS SECTION · · · · · · · · · · · 4-3

4.2.1 Label declarations · · · · · 4-5
4.2.2 Constant definitions · · · · · 4-5
4.2.3 Type definitions · · · · · · 4-7
4.2.4 Variable declarations · · · · 4-8

4.2.4.1 VAR declaration · · · · 4-9
4.2.4.2 EXPORTED declarations 4-10
4.2.4.3 IMPORTED declaration · · · · · · · 4-11
4.2.4.4 STATIC declaration · · · · · 4-12
4.2.4.5 COMMON declaration · · · · · 4-13
4.2.4.6 TASKVAR declaration · · · · 4-14
4.2.4.7 CACHE declaration · · · · 4-15

4.2.5 Value definitions · · . · · · · · 4-17
4.2.6 Procedure and function declarations · · · · 4-21

5. DATA TYPES . . · · · · · · · · · · · · 5-1

5.1 REPRESENTATION OF SCALAR TYPES · · · · 5-2
5.2 INTEGER TYPE · · · · · · · · 5-2
5.3 I24 AND 132 TYPES · · · · · · · · · 5-4
5.4 REAL TYPE · · · · · · · · 5-5
5.5 BOOLEAN TYPE · · · · · · · · · · · · · 5-7
5.6 CHAR TYPE · · · · · · · · · · · · · 5-8
5.7 ENUMERATED TYPES · · · · · · · 5-9
5.8 SUB RANGE TYPES · · · · · · 5-10
5.9 ARRAY TYPE · · · · · · · · · · · · · 5-11

5.9.1 Packed arrays 5-12
5.9.2 Multidimensional arrays · · · · 5-14
5.9.3 Strings · · · · · · · · 5-15

5.10 TYPE ALFA · · · · · · · · · · · 5-16
5.11 RECORD TYPES · · · · · · · · · · · 5-17

5.11.1 Variant fields · · · · · 5-18
5.11.2 Packed records · 5-19
5.11.3 Accessing record fields 5-21

5.12 SET TYPES · · · · · · · · · · · 5-22
5.13 FILE TYPES · · · · · 5-24
5.14 POINTER TYPE · · · · 5-26

SR-0060 vi B

6. ARRAY PROCESSING · · · · · · · · · · · · · · · · · · 6-1

6.1 ARRAY EXPRESSIONS - BINARY AND UNARY OPERATORS · · · · · 6-1
6.2 REDUCTION FUNCTIONS · · · · 6-3
6.3 CONSTRUCTED ARRAYS · · · · · · · · · · 6-4

6.3.1 Array-valued subscripts · · · · 6-5
6.3.2 Slice index specification · · · · 6-5
6.3.3 Array-valued field and pointer accesses · · · · 6-7

6.4 ARRAY MERGES · · · · · · · · 6-7
6.5 RELATIONAL OPERATORS · · · · · · · · · · · · · 6-9

7. WITH AND VIEWING STATEMENTS · · · 7-1

7.1 WITH STATEMENT · · · · · · · 7-1
7.2 VIEWING STATEMENT · · · · · · · · 7-2

8. ASSIGNMENT STATEMENT AND PROGRAM CONTROL STATEMENTS · · · · · 8-1

8.1 COMPOUND STATEMENTS · · · · · · · · 8-1
8.2 ASSIGNMENT STATEMENT · · · · 8-2

8.2.1 Conditional expressions · · · · 8-4
8.3 IF STATEMENT · · · · · 8-4
8.4 CASE STATEMENT · 8-6
8.5 GOTO STATEMENT · · · · · · · · · · · · 8-7
8.6 FOR STATEMENT · · · · · · · · · 8-8
8.7 REPEAT STATEMENT · · · · · · · · · · 8-11
8.8 WHILE STATEMENT · · · · · · · · 8-11

9. PROCEDURES AND FUNCTIONS · · · · · · · · 9-1

9.1 PROCEDURES · · · · · · · · · · · · · · · · 9-1
9.2 FUNCTIONS · · · · · · · · 9-4
9.3 PARAMETERS · · · · · 9-5

9.3.1 Value and VAR parameters · 9-5
9.3.2 Procedure and function parameters · · · · 9-7
9.3.3 Conformant array parameters · · · · 9-9

9.4 PROCEDURE AND FUNCTION DIRECTIVES · · · · · 9-11
9.4.1 FORWARD directive · · · · 9-11
9.4.2 EXTERNAL directive · · · · 9-12
9.4.3 FORTRAN directive · · · 9-13
9.4.4 IMPORTED and EXPORTED directives · 9-14

9.5 RECURSIVE PROCEDURES AND FUNCTIONS · · · · · · 9-17
9.6 PREDEFINED PROCEDURES AND FUNCTIONS · · · · · · · · 9-18

10. INPUT AND OUTPUT · · · · · · · 10-1

10.1 PREDEFINED FILES INPUT AND OUTPUT · · · · 10-1

SR-0060 vii B

10. INPUT AND OUTPUT (continued)

10.2 BUFFER VARIABLE · . .
10.3 GET AND PUT
10.4 READ AND WRITE . · 10.5 READLN AND WRITELN . .
10.6 FORMATTING OUTPUT
10.7 CONNECT ·

· · · · . . · · · · · · · · · · · ·

. · ·
· ·

. · ·

.

.

.
10-2
10-2
10-3
10-5
10-7
10-9

11. DYNAMIC ALLOCATION •• 11-1

12. MODULES

13. VECTORIZATION AND OPTIMIZATION.

13.1 VECTORIZATION
13.2 OPTIMIZATION ••

APPENDIX SECTION

A.

B.

C.

D.

E.

F.

CHARACTER SET

PREDEFINED FUNCTIONS AND PROCEDURES

COMPILER ERROR MESSAGES

C.1
C.2

LISTING MESSAGES •
LOGFILE MESSAGES •

RUN-TIME MESSAGES

PASCAL SYNTAX

E.l
E.2

SYNTAX LISTING
INDEX OF SYNTAX COMPONENTS

DEBUG INFORMATION

F.l
F.2

D+ DEBUGGING INFORMATION .
BP+ DEBUGGING INFORMATION

SR-0060 viii

12-1

13-1

13-1
13-12

A-1

B-1

C-1

C-1
C-16

D-1

E-1

E-2
E-13

F-l

F-1
F-5

B

G. ERRORS NOT REPORTED BY CRAY PASCAL • • • • • • • • • • • • • •

H. IIO PROGRAMMING EXAMPLES • • • . • • • • • • • • • • • • • • •

FIGURES

2-1
4-1
5-1
5-2
5-3
5-4
5-5
5-6

5-7

TABLES

2-1
3-1
5-1
5-2
5-3
5-4
5-5
6-1
A-1
B-1
B-2

INDEX

A Typical Job Dataset . · · · · · · · · · · · · Sample Organization of a Pascal Program · · · · · Internal Representation of an Unpacked Array · · · .
Internal Representation of a Packed Array · Internal Representation of a String · · · · · · Internal Representation of a Packed Record · · · · .
Internal Representation of an Unpacked Record · ·
Internal Representation of a Pointer (CRAY X-MP and CRAY-1
Computer System)
Internal Representation
System)

Compiler Options
Pascal Operators

. . .
· · · · · · ·
of a Pointer

· · · · · · ·

Integer Operations ..•.
Real Number Operations
Boolean Operations
Str ing Operations . . .•
Set Operations •••.
Pascal Reduction Functions . . • .
ASCII Character Set . . •
Predefined Functions and Procedures .

· · · · ·
(CRAY-2 Computer ·
· · · · · · · · ·

Extensions to the Predefined Functions and Procedures .

SR-0060 ix

G-1

H-1

2-2
4-1
5-13
5-13
5-16
5-20
5-20

5-27

5-28

2-8
3-2
5-3
5-5
5-7
5-16
5-23
6-4
A-1
B-1
B-4

B

1. INTRODUCTION

Pascal is a high level, general purpose computer language designed in
1970 by Professor Niklaus Wirth of the Federal Institute of Technology at
Zurich, Switzerland. The language emphasizes the virtues of structure,
simplicity, and portability. Using Pascal, you can implement algorithms
and data structures in a high-level, machine-independent manner without
sacrificing efficiency.

The Cray Pascal Compiler transforms Pascal code into machine language
instructions that execute on CRAY-2, CRAY X-MP, and CRAY-1 Computer
Systems. The compiler and programs created by it run under the Cray

I operating systems COS and UNICOS.

I

Cray Pascal complies with the Level 1 requirements of standard ISO/DIS
7185, defined by the International Standards Organization (ISO), with
three restrictions. The restrictions, as well as Cray Research Inc.
(CRI) extensions to the standard, are described later in this section.
This manual notes all CRI extensions.

Section 2 describes the Pascal invocation statement, which tells the
operating system under which Pascal is operating to load and execute the
compiler. The compiler can be invoked with the UNICOS command line or
the COS control statement. The UNICOS Commands Reference Manual
describes UNICOS and its system commands in more detail. The COS Version
1 Reference Manual describes COS and its control statements in more
detail.

Sections 3 through 13 describe both the standard features of Pascal and
the CRI enhancements.

Section 3 provides general information on the language, including its
notation, vocabulary, and format. Commenting is also described.

Section 4 explains the organization of the program and defines the syntax
for the PROGRAM heading.

Section 5 describes Pascal data types and the statements associated with
them.

Section 6 describes the constructs that are available for array
processing.

Section 7 defines the WITH and VIEWING statements.

SR-0060 1-1 B

I

I

Section 8 explains program control statements, including the simple
assignment statement and more complex compound statements.

Section 9 describes procedures and functions, including how they are
invoked and how parameters are passed.

Section 10 explains I/O features available with Pascal.

Section 11 describes dynamic allocation and the associated NEW and
DISPOSE statements.

Section 12 describes compile units called modules that can be maintained
as library routines and called from Pascal programs or other modules.

Section 13 describes automatic vectorization of FOR loops and the
optimization of code by the use of specific parameters on the Pascal
invocation statement.

Appendixes give the ASCII character set, describe the predefined
procedures and functions available, list both compiler and execution
error messages, offer a summary of the syntax for Pascal statements,
describe debugging aids, list errors not detected by the compiler, and
give examples of I/O features.

1.1 EXTENSIONS

The CRI extensions to the ISO Level 1 Pascal standard include the
following:

• ALFA is a predefined type specified as an eight-member packed
array of characters.

• Array processing features allow operations on entire arrays as
follows:

Array expressions
Array merges
Array relational operators
Array valued field and pointer accesses
Slice index specifications

• BY clause allows you to specify an increment index with FOR loops.

• CACHEt declarations allow definition of common blocks residing
in Local Memory

t Available with CRAY-2 Computer Systems only

SR-0060 1-2 B

I

I

I

• COMMON declarations allow FORTRAN common blocks to share data
across compile units.

• Conditional expressions can be used on the right-hand side of an
assignment statement.

• Constant declarations allow constant expressions.

• $DEBUG is a predefined constant.

• EXTERNAL and FORTRAN procedure and function directives allow using
routines outside of a program.

• 124 is a predefined 24-bit integer data type.

• 132 is a predefined 32-bit integer data type.

• IMPORTED and EXPORTED procedures permit the use of previously
compiled modules and FORTRAN or Cray assembly language (CAL)
subroutines.

• IMPORTED and EXPORTED declarations allow sharing of variables
between compile units.

• MODULE compile units allow you to define Pascal procedures,
functions, and data without a PROGRAM module.

• Integers can be expressed in octal notation

• OTHERWISE label specifies the action to take when no other label
in a CASE statement is selected.

• Identifiers can include special characters ($ ~ @).

• STATIC declarations allow a local variable to keep its value
between calls to a routine.

• TASKVARt declarations allow TASK COMMON blocks to be specified.

• The predefined procedure and function list is expanded to include
the following:

ARCSIN and ARCCOS calculate the inverse of the sine and
cosine.

BAND, BOR, BXOR, and BNOT are bit-string Boolean functions
that accept integer arguments and return integers.

t Not available on CRAY-2 Computer Systems

SR-0060 1-3 B

I

I

CONNECT associates a COS local dataset or a UNICOS file with
a Pascal file.

HALT terminates the execution of a program when encountered.

LaC returns the address of a variable.

LOG calculates the common logarithms.

Reduction functions (ANY, ALL, MAXVAL, MINVAL, PRODUCT, and
SUM) reduce array expressions into simple values.

LSHIFT and RSHIFT shift an integer argument left or right by
a specified number of places.

SINH, COSH, and TANH are the hyperbolic functions.

SIZEOF gives the size of a dynamic variable.

TAN calculates a tangent.

• VALUE definitions initialize variables at compile time.

• VIEWING statement allows a variable to be used to see different
types.

1.2 RESTRICTIONS

Cray Pascal includes the following restrictions to the ISO Level 1 Pascal
standard.

• The commercial at sign (@) cannot be used as a substitute
character for the circumflex (A), as specified by the standard.
The @ is implemented as a valid character in an identifier (see
section 3, Pascal Vocabulary).

• The maximum line length for a text file is 140 characters. The
standard does not restrict the line length of a text file.

• Some errors specified by the standard are not detected. Appendix
G, Errors not Reported by Cray Pascal, details these errors.

SR-0060 1-4 B

I

1.3 CONVENTIONS

This manual observes the Backus-Naur Form (BNF) conventions in
representing the language's syntax. Any word not enclosed in quotation
marks is called a nonterminal symbol. Each nonterminal symbol in a BNF
construction is defined in turn; however, BNF descriptions are not
expanded fully in the text. For example, the terminal symbols for letter
and digit are not defined every time an identifier is required in the
syntax. See appendix E, Pascal Syntax, for a complete description of
Pascal syntax.

The following notation is used:

Symbol

xly

"x"

[x]

{x}

()

Description

Indicates that either x or y is valid

Indicates that x is a literal, or terminal, element to be
entered exactly as specified. The terminal elements
include reserved words and predefined identifiers, such as
PROGRAM in the program heading. (The reserved words and
predefined identifiers are listed in section 3, Pascal
Vocabulary.)

Indicates 0 or 1 occurrence of x is valid

Indicates 0 or more occurrences of x are valid

Indicates a grouping. Parentheses have no syntactic
significance of their own. For example:

id = (letterl"$"I"'%"I"@") { letterldigitl"_"I"$"I"'%"I"@" } •

Indicates the end of a description

In sample programs and programming examples, uppercase indicates reserved
words and predefined identifiers, and lowercase indicates identifiers
chosen by you.

This manual uses the conventional Pascal definition rather than the COS
definition of the word file. A Pascal file is the same thing as a COS
blocked dataset or a standard UNICOS file. Pascal does not support
multi-file datasets.

SR-0060 1-5 B

2. USING PASCAL ON A CRAY COMPUTER

The Pascal compiler runs under both Cray operating systems, COS and
UNICOS.

The source file of Pascal statements remains virtually the same
regardless of the operating system. The main differences between using
Pascal under COS and under UNICOS center around how the compiler is
invoked and how the job is executed, since COS is primarily a batch
operating system and UNICOS is primarily interactive.

2.1 USING PASCAL UNDER COS

A typical Pascal job on the COS operating system contains the following
files:

• A job control language (JCL) file of COS control statements
• A source file of Pascal statements
• One or more data files (optional)

End-of-file (EOF) indicators divide files from each other. An
end-of-dataset (EOD) indicator follows the last file. (The actual
representation of the end-of-fil"e and end-of-dataset indicators depends
on the front-end computer.) Together these files comprise a job dataset
named $IN by COS. Figure 2-1 shows a COS job dataset with one data file
in card deck format.

The dataset containing the job is typically submitted to the Cray
computer system for processing through a front-end computer. (The method
of submitting a job depends on the front-end computer.)

A job's output dataset (named $OUT by default) is returned to the
front-end computer when the job completes. The job's output dataset
includes a program listing (by default), any output created by the job
that is written to file OUTPUTt, and the job's logfile. The COS
Version 1 Reference Manual describes the logfile, which contains a
history of the job and other aspects of running a job on COS.

t Output written to any other file is not automatically returned.

SR-0060 2-1 B

2.1.1 JCL FILE

I <eod> \
I I
I 1\==--= =--_-_--= =--_--= = =\
I 11\- - - - - - - - - -\ \
I III \
I_I I I DATA FILE I

III I
I <eof> \ I
I I I
I 1\--= = =--_-_--= = =--_--= = \ _I
I 11\- - - - - - - - - - - - - - \
I_I I I PASCAL SOURCE FILE \

III I
I <eof> \ I
I I I
I 1_-_--= = =---= = = =--_--= - \ _I
I 11\- - - - - - - - - - - - -\
I_I I I I CONTROL STATEMENTS I

I I I I I JOB, IN =. · · \
Illl I I
\1 I 1 JCL CONTROL STATEMENT I
\1 I FILE I

I_I I
1---------------------------------_1

Figure 2-1. A Typical Job Dataset

A simple Pascal job may contain the following COS control statements in
its JCL file:

JOB,JN=TEST.
ACCOUNT,AC=
PASCAL.

I SEGLDR,GO.
lEaF

The JOB statement is a required statement that defines the job to COS.
At the minimum, it must contain a IN parameter to assign the job a name.

The ACCOUNT control statement presents the user's account number, which
may be required by a site before access is granted to the system.

SR-0060 2-2 B

I
The PASCAL statement causes the Pascal compiler to be loaded and
executed. Since no input dataset is specified as a parameter in this
example, the compiler looks for Pascal source statements following the
end-of-file indicator, IEOF. See the following subsection for a
description of the parameters available on the PASCAL control statement.
The result of the compilation in this example is an executable binary
program.

I The SEGLDR statement with the GO parameter loads and executes the binary
program. It also automatically accesses the Pascal run-time library,
$PSCLIB.

I

The COS Version 1 Reference Manual describes these and other control
statements.

2.1.2 COS PASCAL CONTROL STATEMENT

The PASCAL control statement invokes the Pascal compiler under COS. You
select compiler parameters either explicitly by listing them on the
control statement or implicitly by accepting the default values. All
parameters are optional and have default values. The format of the
PASCAL control statement is as follows:

PASCAL[,I=idn] [,L=ldn] [,B=bdn] [,O=list][,CPU=list].

I=idn

L=ldn

B=bdn

SR-0060

Specifies the dataset containing the Pascal source code.
idn is the name by which the source code is referenced in
COS. The default is $IN.

Specifies the dataset to receive the job's list output.
The default for Idn is $OUT. If L=O is specified, all
list output except fatal error messages is suppressed.
Fatal error messages are written to $OUT if L=O.

Specifies the dataset to receive the binary load modules
generated by the compiler. bdn is the name by which the
binary load modules are referenced in COS. The default is
$BLD.

2-3 B

I

O=list Specifies compiler options, separated by colons, in effect
at the beginning of the compilation. Compiler directives
placed inside comments in the Pascal program override the
initial settings. For more information about compiler
directives, see Compiler Directives later in this section.
As listed in table 2-1, defaults are as follows:

A-:BP-:BREG=B:BT-:C-:D+:DEBUG-:DMO:H2:H+24:L+:O+
A

:P-:P24:R+:RV-:S4:S+4:ST-:T+:TREG=B:U-:V+:X-:Z+

CPU=list Specifies the characteristics of the Cray Computer System
for which Pascal is to generate code. The format of the
CPU command is as follows:

SR-0060

CPU = [primary] { ":"characteristic }
primary can be one of the following:

Target
Machine Description

CRAY-X4 Generates code for a four-processor
CRAY X-MP

CRAY-X2 Generates code for a dual-processor
CRAY X-MP

CRAY-Xl Generates code for a single-processor
CRAY X-MP

CRAY-XMP Generates code for a single-processor
CRAY X-MP that also runs on four-processor
and dual processor CRAY X-MPs

CRAY-IM Generates code for a CRAY-1 Model M

CRAY-lS Generates code for a CRAY-l Model S

CRAY-IB Generates code for a CRAY-l Model B

CRAY-IA Generates code for a CRAY-l Model A

CRAY-l Generates code for a CRAY-l Model A that
also runs on CRAY-l Models B, S, and M

2-4 B

I

characteristic can be one of the following traits:

Trait ---
EMA

NOEMA

CIGS
NOCIGS

VPOP
NOVPOP

Description

Causes Pascal to generate 24-bit A register
immediate load instructions, where
necessary, and allows the use of common
blocks larger than 4 million words
Disables the generation of 24-bit A
register immediate load instructions and
disallows the use of common blocks larger
than 4 million words

Enables compressed index and gather/scatter
Disables compressed index and gather/scatter

Enables vector population and parity
Disables vector population and parity

READVL Enables vector length read instructions
NOREADVL Disables vector length read instructions

MEMSIZE The format of the MEMSIZE option is as
follows:

BDM
NOBDM

MEMSIZE = n ["K" I "Mil] •

MEMSIZE is n * 1024 words for nK and
n * 1048576 words for nM.

Enables bidirectional memory
Disables bidirectional memory

The CPU option cannot be specified with a CRAY-2 Computer
System. For more information about the CPU parameter, see
CPU Targeting later in this section.

2.2 USING PASCAL UNDER UNICOS

Since UNICOS is an interactive operating system, you need not include a
JCL file in with the Pascal source statements as is the case with COS.
In fact, UNICOS does not support multifile datasets. The source
statements and the data are each in separate files. Instead of the JCL
file, you enter the commands necessary to compile, load, and execute your
program as UNICOS commands at your terminal.

SR-0060 2-5 B

I

The following commands show how to run a Pascal program on UNICOS. (The
$ is the default UNICOS prompt.)

$ pascal -i test.p
$ ld a.o
$ a.out <test. data

The first command invokes the Pascal compiler, which compiles the source
statements found in the file test.p and generates an executable file with
the default file name a.o. If test.p is not in the current directory,
you can specify a path name.

The ld command loads the a.o file from the compilation and names it
a.out. The a.out command, with the data file test. data as input,
executes the binary program.

2.2.1 UNICOS PASCAL COMMAND LINE

The pascal command line invokes the Pascal compiler under UNICOS. You
select compiler parameters either explicitly by listing them on the
command line or implicitly by accepting the default values. All
parameters are optional and have default values. The format of the
pascal command line is as follows:

pascal -i idn -1 ldn -b bdn -0 list

-i idn Specifies the file containing the Pascal source code. When
idn is not a complete path name, the input file defaults

-1 ldn

-b bdn

-0 list

SR-0060

to a working directory. The default is stdin.

Specifies the file receiving the job's list output. If
-lOis specified, all list output is suppressed. The
default is stdout.

Specifies the file rece1v1ng the binary load modules
generated by the compiler; the default is a.o.

Specifies compiler options, separated by commas, in effect
at the beginning of the compilation. The compiler options
available under UNICOS are generally the same as the
compiler options available under COS. Table 2-1 notes
differences among CRAY-2, CRAY X-MP, and CRAY-1 Computer
Systems and between COS and UNICOS.

2-6 B

Compiler directives placed inside comments in the Pascal
program override the initial settings. The defaults on a
CRAY-1 or a CRAY X-MP Computer System running UNICOS are as
follows:

A-,BP-,BREG=8,BT-,C-,D+,DMO,L+,O+,P-,
P24,R+,RV+,ST-,T+,TREG=8,U-,V+,X-,Z+

The defaults on a CRAY-2 Computer System are as follows:

A-,BP-,BREG=8,BT-,C-,D+,DMO,L+,O+,P-,
P32,R+,RV+,ST-,T+,TREG=8,U-,V+,X-,Z+

2.3 COMPILER DIRECTIVES

Directives are issued to the Pascal compiler in two ways:

• As arguments to the 0 (options) parameter on the PASCAL control
statement

• Within comments in the Pascal source code (restricted for some
directives; see introduction to table 2-1)

The format of a comment directive is as follows:

comment-directive =
"(*4" directive { ":" directive } [.. " 'comment] "*)"

Text following the directive and preceding the symbol that closes the
comment is treated as a comment.

Examples of formats:

1. In the PASCAL control statement: PASCAL,O = X+:L+:BREG = 14.
2. In a comment: (*4X+:L+:BREG=14 *)

Table 2-1 describes all compiler options. In general, an option followed
by a plus sign enables that option, and an option followed by a minus
sign disables that option. Some directives included in source comments
are ignored if they appear after the keywords PROGRAM and MODULE.
Directives and comments following the final period in a compile unit are
attached to the next program or module, if any. Table 2-1 indicates

I directives that cannot be used within a program or module by an asterisk
(*) in the column labeled Res (restricted).

SR-0060 2-7 B

Table 2-1. Compiler Options

I
Option Res Default Action I

======~==~======~======================================I

A A-

BP BP-

BREG * BREG=8

BT BT-

SR-0060

I
A+ Aborts the job at the end of the I

compile step if compilation errors I
are found I

A- Continues the job even if errors are I
encountered in the compilation I

I
BP+ Enables breakpoint checking by I

calling run-time library routine P$DBPI
before every statement. (See I
appendix F, Debug Information.) I

BP- Disables breakpoint checking I

I
BREG=n Allocates n B registers to the I

BREG-

BT+

BT-

first n user variables declared with I
VAR in a program or module. Variables I
that can be allocated to B registers I
include pointers, 124, CHAR, and any I
other simple type that it can fit in a
24-bit B register, but not Boolean.
All available B registers not
allocated to program- or module-level
variables are reserved for use by
variables at innerscopes. The limit
to n depends on the number of
procedures and parameters; the
compiler grants as much of a request
as is available. BREG=O implies that
all B registers are reserved for
nonglobal use.
CRAY-2 Computer Systems use Band T
registers by mapping into local
common block LOCAL@CB. Up to 128 B
and T registers can be specified.
The default is eight global Band T
registers with the rest of the block
designated as nonglobal.

Uses no B registers for user variables

Generates calls to FLOWTRACE routines
to get a FLOWTRACE listing at the
normal program exit
Does not generate calls to FLOWTRACE
routines

2-8 B

I

Table 2-1. Compiler Options (continued)

Option Res Default

C * C-

D * 0+

DEBUG * DEBUG-

OM * DMO

t Deferred imp ementation

SR-0060

Action

C+ Enables pseudo-CAL listings
C- Disables pseudo-CAL listings

0+ Generates data for a dump if the
program aborts during execution

0- Does not generate data for a dump

DEBUG + Controls the value of the predefined
Boolean constant $DEBUG.
$DEBUG=TRUE only when DEBUG+ is
specified.

DEBUG- Specifies that $DEBUG=FALSE

DMn Sets the debug mode, which determines
which code addresses are recorded in
the Debug Symbol Table and how much
optimization, vectorization, and
scheduling can occur. Code addresses
are used by the postmortem dump tools
to identify where the program stopped.
With n>l, scalar optimization and
automatic vectorization are turned
off, scheduling is limited (since
there are more labels and scheduling
only occurs between labels), and dead
code and dead procedure elimination
are suppressed.

DMO

DM1

Suppresses the Debug Symbol Table

Provides minimal debug support in the
Debug Symbol Table: information about
types, variables, constants, the use
of nonlocal variables in procedures,
and addresses of user-defined labels
and procedure entry points.

Provides intermediate debug support in
the Debug Symbol Table: everything
included in minimal mode, plus
addresses of compiler-generated labels
in structured statements.

2-9 B

I

Table 2-1. Compiler Options (continued)

Option Res Default

F n/a

H H2

H+24

ISO * Off

L L+

F

Hn

ISO

L+
L-

Action

Provides full debug support in the
Debug Symbol Table: everything
included in intermediate mode, plus
the address of each statement.

Forces a page eject in the listing.
Cannot be used in the control
statement.

Sets the requirements for heap
(dynamic allocation) memory space in
addition to the heap space used for
the initial stack. n is specified
in octal units of 1000 words. The
default of H2 specifies 20008 (102410>
words in the heap memory space.

Increases heap memory in octal units
of 1000 words when the heap runs out
of free space and must request
additional memory from the operating
system. The default of H+24 specifies
that a minimum of 240008 (1024010)
words is requested for each heap
expansion. If the heap increment is
zero, a fatal error occurs when the
heap runs out of free space.
The H+n parameter cannot be specified
with a CRAY-2 Computer System.

Disables CRI extensions to the ISO
Level 1 Pascal standard and issues
error messages if extensions are
encountered. If ISO is not specified
(the default), extensions to the
standard are enabled.

Prints a source listing of the program I
Suppresses the source listing of the I
program. (If the L parameter on the I
PASCAL control statement is set to 0, I
O=L- is implied.) I

______ ~----~------~--_I
t Deferred imp ementation

SR-0060 2-10 B

Option Res

a *

P

P24 *

I P32 *

R

RA

RL

RP

SR-0060

Table 2-1. Compiler Options (continued)

Default

0+

P-

P24

P32

R+

RA+

RL+

RP+

0+
D
On

P+

p-

R+
R-

RA+
RA-

RL+

RL-

RP+

RPN

Action

Enables all optimizations
Disables all optimizations
Enables optimization with the tuning
factor specified by n (1 ~ n ~ 9).
High tuning factors increase
compilation time but can improve the
generated code.

Ejects a page before every routine so
that no single page contains more than
one routine
Does not eject a page before routines

Uses 24-bit pointers in packed
structures; the default for CRAY-1
and CRAY X-MP Computer Systems.

Uses 32-bit pointers in packed
structures; the default for CRAY-2
Computer Systems.

Generates code to do range checks
Does not generate code for range
checks
R+ is the same as RA+:RR+:RP+:RS+:RL+,
and R- is the same as
RA-:RR-:RP-:RS-:RL-.

Generates code to check array indexes
Does not generate array index checks

Generates code to check shape
compatibility (arrays must possess
the same number of dimensions and
corresponding dimensions must be the
same size) in array expressions at
run time.
Does not generate code to check shape
compatibility in array expressions

Generates code to perform full runtime
validity checks on pointer accesses
Generates code to check pointers only
for zero values at runtime

2-11 B

Option Res

RR

RS

RV

R*

S *

I

I

SR-0060

Table 2-1. Compiler Options (continued)

Default

RR+

RS+

RV-

n/a

n/a

S4

Action

RP- Does not generate code for pointer
checks

RR+
RR-

RS+
RS-

RV+

RV-

R~

R*

Sn

Generates subrange assignment checks
Does not generate subrange assignment

checks

Generates code to check set use
Does not generate set-checking code

Generates code to perform variant
checking
Does not generate code for variant
checking

Saves current settings of the R
options for restoring with R* option.
RA cannot appear on the control
statement.

Restores settings of the R options
with those previously saved with the
RA option. R* cannot appear on the
control statement.

Sets the requirements for stack memory
space. n is specified in octal units
of 1000 words. The default of S4
specifies 40008 (204810) words in the
stack memory space.
The S parameter cannot be specified
with a CRAY-2 Computer System.

Increases stack memory in octal units
of 1000 words. The default of S+4
specifies that when the stack becomes
full, an additional 40008 (204810)
words are added to the stack. If the
stack increment is zero, a stack
overflow causes a fatal error.
The S+n parameter cannot be specified
with a CRAY-2 Computer System.

2-12 B

Option Res

ST

T

TREG

u

SR-0060

Table 2-1. Compiler Options (continued)

Default

ST-

T+

TREG=8

U-

Action

ST= , string'
Includes a subtitle line containing
the first 72 characters of the
specified string as the second line
of the pageheader. The directive
performs no character editing (blank
suppression or conversion to
uppercase).

ST- Does not include a subtitle line in
the page header

T+ Generates code for stack overflow
check

T- Does not generate code for stack
check. If stack overflow checking is
disabled, the user stack does not
expand and may overwrite the heap.

TREG=n Allocates n T registers to the first

TREG-

u+

n user variables declared with VAR in
a program or module. Variables that
can be allocated to T registers
include integers, Booleans, and any
simple user-defined variable whose
type indicates it can fit in a 64-bit
T register. All available T registers
that are not allocated to program or
module level variables are reserved
for use by variables at inner scopes.
CRAY-2 Computer Systems use Band T
registers by mapping into local
common block LOCAL@CB. Up to 128 B
and T registers can be specified.
The default is eight global Band T
registers with the rest of the block
designated as nonglobal.

Uses no T registers for user
variables

Limits input to 72 significant
columns (UPDATE)

u- Limits input to 120 significant
columns

2-13 B

Option Res

v *

VI

VN

x *

I
XI *

XP *

xv

z *

SR-0060

Table 2-1. Compiler Options (continued)

Default

V+

n/a

n/a

X-

XI-

XP-

xv-

Action

Un Limits input source width to n
significant columns; values for n can
range from 1 to 140.

V+

V-

VI

VN

Attempts to vectorize FOR loops
automatically
Does not vectorize FOR loops

Ignores potential vector dependencies
while vectorizing the next FOR loop.
VI cannot appear on the control
statement.

Does not vectorize the next FOR loop.
VN cannot appear on the control
statement.

Collects global cross-reference
information

X- Does not collect cross-reference
information. X+ is the same as
XV+:XP+ and X- is the same as XV-:XP-.

XI+

XI-

XP+

Includes identifier information in
the listing
Does not include identifier informa
tion in the listing

Generates a global procedure cross-
reference

XP- Does not generate a global procedure
cross-reference

xv+ Generates a global name cross-
reference

xv- Does not generate a global name
cross-reference

z+
z-

Generates reentrant code
Generates code that is not necessarily
reentrant

2-14 B

Examples:

PASCAL,I=PASCJOB,L=LISTPAS,O=A+:D+:X+:P+:U+.

This statement tells the compiler that the source code is in the file
PASCJOB. The listing output goes to the file LISTPAS, while the binary
output goes to the default file $BLD. The compiler options specified by
the 0 parameter prevent the program from executing if a compilation error
is discovered, provide debug information for stack walkbacks, enable the
cross-reference listing, put a page break at the beginning of every
procedure and function, and restrict the input lines to 72 columns.
Default values are accepted for the remaining compiler options.

PASCAL,O=ISO:H+24:S+12:V+:Z+.

This statement accepts the default file names for the input dataset, the
listing dataset, and the binary dataset. The ISO argument to the a
parameter disables all extensions provided by CRI. The other compiler
options increase the heap memory space by 240008 words, increase the
stack size by 120008 words, enable automatic vectorization of FOR
loops, and enable the generation of reentrant code.

2.4 LISTABLE OUTPUT

Pascal produces a dataset that optionally includes the following:

• Page header lines
• Source statement listing
• Error messages
• Program cross-reference
• Procedure and function listing
• Information about identifiers used within a procedure
• Pseudo-CAL listing of the program or module

The Pascal invocation statement and compiler directives allow you to
control output and specify the receiving dataset. The actual information
included in the output dataset is dependent on the combination of
compiler options that are enabled or disabled on the Pascal invocation
statement. See table 2-1 for a list of the available options.

Listable output is divided into pages. Under COS, the number of lines
per page is controlled by the LPP parameter on the OPTION control
statement. See the COS Version 1 Reference Manual for more information
about the LPP parameter.

SR-0060 2-15 B

I

2.4.1 PAGE HEADER LINES

Each page of listable output contains a header line that includes the
following information:

• The compiler level

• The time and date compilation began

• The name of the program or module

• The name of the procedure or function being processed for the
source statement listing, or the listing title for special listing
options

• The global page number

An optional subtitle of up to 72 characters, requested through the ST
compiler option, appears on the line following the page header. The
current values of the compilation options are also written on this line.

2.4.2 SOURCE STATEMENT LISTINGS

The source statement listing is generated when the L+ list option is
selected. The listing is a record of all Pascal statements comprising
the program or module as they are sequentially read and interpreted from
the source input dataset. A line number is listed to the left of each
line identifying its position in the program or module.

The nesting level of a statement appears to the left of the line number.
This number reflects the nesting level at the beginning of the line. The
program body and each procedure or function body begins and ends with a
nesting level of zero.

2.4.3 ERROR MESSAGES

Errors encountered during the compilation of a statement are flagged by
lines subsequent to that statement, with error codes listed at the end of
the source statement listing. When no listing dataset has been
requested, statements with errors and the corresponding error messages
are written to the standard output dataset.

SR-0060 2-16 B

I

2.4.4 CROSS-REFERENCE INFORMATION

Compiler options X+, XV+, and XP+ provide cross-reference information in
the Pascal listing as follows:

• XV+ generates a global identifier cross-reference.

• XP+ generates a global procedure cross-reference.

• X+ generates a global identifier cross-reference and a global
procedure cross-reference and is the same as specifying XP+:XV+.

2.4.4.1 Global identifier cross-reference

The global identifier cross-reference lists the line numbers in which
each identifier appeared in the program or module along with a code
giving the type of use. The following codes are used in these references.

Code Significance

D Defined or declared

L Location of label in code

R Other reference

gR Referenced label in GOTO statement

wR WITH statement variable, pointer, or field

S Set to a new value

pS Pointer whose referenced variable is changed or passed as a
VAR parameter

vS Passed as a VAR parameter

Only the first 32 characters of an identifier are listed. The first 16
characters of the names of the procedures containing the line numbers
also appear in the cross-reference table.

2.4.4.2 Procedure cross-reference

The procedure cross-reference lists information about the program or
module and each procedure or function in alphabetical order by name. The
procedure cross-reference includes the following information:

• The line numbers of the declaration and body

• The relative address of the entry point

SR-0060 2-17 B

I

• The number of stack words for this procedure

• The static nesting level; the number of procedures in which this
procedure is enclosed (a program or module is at level zero)

• The name of the procedure in which this procedure was declared

• A list of procedures declared in this procedure

• A list of procedures called by this procedure

• A list of procedures that call this procedure

2.4.5 PROCEDURE AND FUNCTION LIST

A list of procedures and functions is provided whenever a source listing,
a procedure cross-reference, a pseudo-CAL listing, or identifier
information is requested. Procedures and functions are listed in
declaration order with the line number of the declaration. Each
procedure name is nested according to its static nesting level.

2.4.6 IDENTIFIER INFORMATION

Information about global and local identifiers is written to the listing
when the XI+ compiler option is specified. This information is broken
apart and st'ored in the following tables for each procedure or function:

• Types and fields
• Constants
• Local variables
• Nonlocal identifiers

Identifier information for each procedure appears with the procedure
cross-reference.

2.4.6.1 Types and fields

The type table contains the following information about each type defined
in the procedure:

• The first 32 characters of the name

• The size in words or bits of a variable of this type

SR-0060 2-18 B

I

• A list of fields within a record type that includes the following:

The first 32 characters of the field name
The range of words and bits from the record for this field
The first 16 characters of the name of the field's type

• A list of constants in an enumerated type with the ordinal value
of each constant

2.4.6.2 Constants

The constant table contains the following information about each constant
defined in the procedure:

• The first 32 characters of the name
• The size of the constant in words
• The value of the constant

2.4.6.3 Local variables

The local variable table contains the following information about each
variable declared in the procedure:

• The first 32 characters of the name

• The block or storage class; one of the following:

EXPORTED for exported variables
PARAM for formal parameters
STACK for local stack variables
STATIC for static variables
An external name for variables that are imported, in common
blocks, or in CACHEt

Static and exported variables are in a load block with the
external name of the program or module.

• Address (octal word offset within the stack frame, octal word
offset within the load block, or the formal parameter number); no
address is given for imported or common variables.

• The register to which a variable is assigned (the register field
can be blank)

• The size in words of the variable

• The first 16 characters of the name of the variable's type

t Available with CRAY-2 Computer Systems only

SR-0060 2-19 B

I

2.4.6.4 Nonlocal identifiers

The nonlocal identifier table includes an alphabetical listing of all
nonlocal identifiers, constants, and types referenced in the procedure
along with the names of the procedures in which they were declared or
defined.

2.4.7 PSEUDO-CAL LISTING

A pseudo-CAL listing of a Pascal program or module is written to the
listing dataset when the C+ option is specified on the invocation
statement. The CAL instructions displayed by the C+ option are
equivalent to the code generated for the program or module after all
optimization and scheduling have been performed.

Each statement in the pseudo-CAL listing is organized as follows:

• Relative address of the CAL instruction

• Octal equivalent of the CAL instruction

• The pseudo-CAL instruction generated

• The first 8 characters of the name of the procedure or function in
which the instruction appears

• The line number of the Pascal source statement that generated the
instruction

Symbolic names are used for compiler-generated labels and for externals.
Relative addresses are used for static and exported variables and for
literals. Symbolic names are shown added to @MAIN, a local pseudonym for
a load block having the external name of the program or module.

2.5 CPU TARGETINGt

The CPU parameter allows you to specify characteristics of the machine on
which the compiled program executes.

The Pascal compiler, by default, assumes that the compiled program
executes on the machine on which it is compiled. The CPU parameter
specifies a target machine that differs from the host machine or disables
certain characteristics of the host machine.

t Not available on the CRAY-2 Computer System

SR-0060 2-20 B

I

For a description of the target machines and their optional
characteristics, see the CPU parameter on the Pascal control statement in
this section.

SR-0060 2-21 B

I

I

3. PASCAL VOCABULARY

The Pascal vocabulary consists of the following elements:

• Special symbols

• Predefined identifiers

• User-defined identifiers

• Numbers

• Character strings

• Statement labels

• Comments

3.1 SPECIAL SYMBOLS

Special symbols in Pascal fall into three categories:

• Word symbols (also called reserved words)
• Operators
• Delimiters

3.1.1 RESERVED WORDS

Pascal reserves certain words for specific uses. These words cannot be
redefined by the user or used in any manner other than the ones for which
they are intended. The reserved words are as follows:

AND DOWNTO GOTO OR THEN
ARRAY ELSE IF OTHERWISE TO
BEGIN END IMPORTED PACKED TYPE
BY EXPORTED IN PROCEDURE UNTIL
CACHEt EXTERNAL LABEL PROGRAM VALUE
CASE FILE MOD RECORD VAR
COMMON FOR MODULE REPEAT VIEWING
CONST FORTRAN NIL SET WHILE
DIV FORWARD NOT STATIC WITH
DO FUNCTION OF TASKVARtt

t Available with CRAY-2 Computer Systems only
tt Available with CRAY-1 and CRAY X-MP Computer Systems only

SR-0060 3-1 B

The meaning of each reserved word is discussed in the context of the
statement in which it appears.

All words in the foregoing list are standard Pascal reserved words except
BY, CACHEt, COMMON, EXPORTED, EXTERNAL, FORTRAN, FORWARD, IMPORTED,
MODULE, OTHERWISE, STATIC, TASKVARtt, VALUE, and VIEWING. (In standard
Pascal, FORWARD is a directive and not a reserved word.)

3.1.2 OPERATORS

Table 3-1 lists the Pascal operators and gives a brief description of the
function of each. Some operators are used in more than one way.

Table 3-1. Pascal Operators

Operator Description

+ The + operator performs the following functions:

• Adds two numbers
• Identifies a number as positive
• Describes the union of two sets. (See section 5,

Data Types, for a description of sets.)

The - operator performs the following functions:

• Subtracts one number from another
• Inverts the sign of a number
• Describes the difference of two sets

* The * operator performs the following functions:

• Multiplies two numbers
• Describes the intersection of two sets

/ Divides one number by another without truncating the resultl

I
DIV Divides one integer by another and truncates the remainder I

I
Assigns a value to a variable I

________ ~---I
t Availab e with CRAY-2 Computer Systems only
tt Available with CRAY-1 and CRAY X-MP Computer Systems only

SR-0060 3-2 B

Table 3-1. Pascal Operators (continued)

Operator Description

MOD Gives the remainder resulting from one integer being
divided by another (modulo)

AND Gives the logical conjunction of two Boolean operands

OR Gives the logical disjunction of two Boolean operands

NOT Inverts the value of a Boolean operand

= Tests whether the first operand is equal to the second

< Tests whether the first operand is less than the second

> Tests whether the first operand is greater than the second

<= The <= combination of operators performs the following
functions:

• Tests whether the first operand is less than or equal
to the second

• Tests whether all set members of the first operand
are also set members of the second operand

• Denotes that the first Boolean operand implies the
second

>= The >= combination of operators perform the following
functions:

• Tests whether the first operand is greater than or
equal to the second

• Tests whether all set members of the second operand
are also set members of the first operand

<> The <> combination of operators perform the following
functions:

SR-0060

• Tests whether the first operand is not equal to the
second

• Gives the exclusive OR result of Boolean operands

3-3 B

Table 3-1. Pascal Operators (continued)

Operator Description

IN Tests whether the first operand is a member in the set of
the second operand

Indicates that the preceding variable is a pointer to a
value rather than a value itself

Operands of Boolean operators are evaluated from left to right, and in
Cray Pascal evaluation stops as soon as the expression is resolved as
TRUE or FALSE.

Example:

IF (i<>NIL) AND (t(j)=7) THEN •••

If i has a value of NIL in the above example, evaluation stops before
t(j)=7 is evaluated, since the expression could only resolve to FALSE.

3.1.3 DELIMITERS

Pascal recognizes the following delimiters:

Blank { } (* *) (. .) EOL

The (. and .) delimiters are alternate representations for [and],
respectively. Blanks, end-of-line (EOL) characters, semicolons, and
comments are separators. At least one separator must occur between
reserved words, identifiers, or values. A separator cannot occur within
a reserved word, identifier, or value.

SR-0060

NOTE

Cray Pascal does not support the @ character as an
alternate representation of the , as specified by the
ISO Level 1 Pascal standard.

3-4 B

I

I

I

A statement can cross line boundaries. Also, since Pascal source code is
free format, more than one statement can be placed on a single line. The
semicolon separates both simple and compound statements from each other.
A compound statement is a structure in which the reserved words BEGIN and
END delimit at least one simple statement.

The general form of a compound statement is as follows:

BEGIN statement { ";" statement} END

A semicolon need not appear after the final statement, because that
statement is followed by the reserved word END rather than another
statement. A semicolon would appear after the END if the compound
statement that it terminated was followed by another statement, either
simple or compound. If, however, a semicolon were placed after the final
statement, the compound statement would still execute as expected.
Pascal assumes the presence of a null statement following the semicolon
in such a case.

3.2 PREDEFINED IDENTIFIERS

Pascal predefines a set of identifiers to refer to data types, files,
constants, functions, and procedures. You can redefine these
identifiers. The predefined identifiers can be thought of as having been
defined in a hypothetical block that surrounds the program. The
predefined identifiers are as follows:

$DEBUG CHR INTEGER POP SQR
ABS CONNECT LN PRED SQRT
ALFA COS LOC PRODUCT SUCC
ALL COSH LOG PUT SUM
ANY DISPOSE LSHIFT READ TAN
ARCCOS EOF MAXI NT READLN TANH
ARCSIN EOLN MAXVAL REAL TEXT
ARCTAN EXP MINVAL RESET TRUE
BAND FALSE NEW REWRITE TRUNC
BNOT GET ODD ROUND UNPACK
BOOLEAN HALT ORO RSHIFT WRITE
BOR 124 OUTPUT SIN WRITELN
BXOR 132 PACK SINH
CHAR INPUT PAGE SIZEOF

In the previous list, the following are CRI extensions to the ISO
standard: ALFA, ALL, ANY, ARCCOS, ARCSIN, BAND, BNOT, BOR, BXOR,
CONNECT, COSH, $DEBUG, HALT, 124, 132, LOC, LOG, LSHIFT, MAXVAL, MINVAL,
POP, PRODUCT, RSHIFT, SINH, SIZEOF, SUM, TAN, and TANH.

SR-0060 3-5 B

3.3 USER-DEFINED IDENTIFIERS

A user-defined identifier cannot be the same as a reserved word; if it is
the same as a predefined identifier, it redefines that identifier.

Identifiers must begin with a letter and may be followed by any number of
letters and numbers. Both uppercase and lowercase letters can be used
interchangeably. Under extended Cray Pascal, identifiers can start with
a letter or any of the following characters:

$ ~ @

Subsequent characters can also include the underscore character under
extended Cray Pascal.

The following special characters for use in identifiers are CRI
extensions to the ISO Level 1 Pascal standard: $ % @

All characters in an identifier are significant; that is, the compiler
does not know an identifier only by its first n characters. An
identifier must not be continued, however, over two lines, because an
end-of-line (EOL) character will appear within it and separate it into
two identifiers. Thus, a Pascal identifier is effectively limited to the
maximum line size, which is 140 characters.

The following are valid identifiers:

x
$Pasc_task1
CrayComputerProcedureNumber2
return2beginning

Since the Pascal compiler does not distinguish between uppercase and
lowercase letters, all of the following refer to the same variable:

IsItTrue
ISITTRUE
isittrue
IsitTRUE

3.4 NUMBERS

Numbers in Pascal can be either decimal or octal. Octal numbers are
followed by B or b and are restricted to integers.

SR-0060 3-6 B

Numbers cannot contain commas and cannot be extended over a line
boundary, but they can be preceded by a plus or minus sign. A real
number must either have at least 1 digit on each side of the decimal
point or be written in scientific notation.

In scientific notation, the letter E (or e) followed by a scale factor
appears at the end of a number. The scale factor can be preceded by a +
or -; if neither is present, + is assumed. The E represents: times 10
to the power of. Thus, 2E6 is 2 times 10 to the power of 6, or 2,000,000.

The predefined identifier MAXINT specifies the largest valid positive
integer. The value of MAXINT on a Cray computer is 263 _1
(9,223,372,036,854,775,807 in decimal). -MAXINT is _2 63 _1.

The following are valid numbers:

1
+02
-0.6
0.3E-8

12e10
77B (* = 63 *)
-71B (* = -57 *)

Octal numbers are a CRI extension to the ISO Level 1 Pascal standard.

3.5 CHARACTER STRINGS

Strings contain one or more characters enclosed in apostrophes. An
apostrophe within a string is represented as two apostrophes.

The following examples are valid character strings:

'X'
'@'

'Part l'
'DON' 'T'

A string must be completely contained on a single line.

3.6 STATEMENT LABELS

A statement label serves as the target for a transfer of program control
initiated in a GOTO statement (see section 8, Assignment Statement and
Program Control Statements). Each label must be declared in the

SR-0060 3-7 B

declarations section of the program block in which it occurs (see section
4, Program Organization). A label is a sequence of 1 to 4 digits.

The following are valid labels:

5
75
o
9999
0001

3.7 COMMENTS

Comments contain explanatory information that does not generate
executable code. Comments are begun by either { or (* and closed by
either} or *).

Example:

(* This is a comment. *)

A CRI extension permits comments to be nested by requiring that a comment
be closed with the symbol corresponding to the one with which it was
opened. If the ISO compiler option is disabled (see section 2.3), a
comment opened with a { must be terminated with a }, and a comment opened
with a (* must be terminated with a *).

The ability to nest comments is a CRI extension of the ISO Level 1 Pascal
standard.

If the ISO compiler option is enabled, a comment that begins with a { can
be closed by a *)i likewise, a } can close a comment begun by a (*.

This manual uses the (* and *) form of commenting.

A comment beginning with (*# indicates a compiler directive. All
compiler directives occurring in the source program must appear in
comments. Subsection 2.3 describes compiler directives.

Example:

(*#L-*)

SR-0060 3-8 B

4. PROGRAM ORGANZZATIOH

A Pascal program consists of a program heading and a block of
statements. The main program block may contain other blocks, each of
which is either a function or a procedure called from the main program.
Each of these inner blocks, in turn, may contain blocks of its own.
Figure 4-1 is an example of the organization of a Pascal program.

Main Program Block

SR-0060

I
I
I
I
1
I
I
I
I

Block a

I
1
1
I

Block aa

1 _____ -

1
I
1
I

Block ab

1 _____ -

1 __ _

Block b
I
I
I Block ba Block bb Block bc
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I
I

Figure 4-1. Sample Organization of a Pascal Program

4-1 B

The organization of the main program consists of the following parts:

• Heading
• Declarations section
• BEGIN
• Executable statements section
• END.

When the reserved word END signals the end of the main program, it is
followed by a period. Comments can appear after the final END and before
the initial heading.

4.1 PROGRAM HEADING

The program heading is the first statement in a Pascal program, although
it can be preceded by comments. The program heading gives the program a
name and lists the optional program parameters (files). The format for
the program heading is as follows:

program-heading = "program" id ["(" program-parms ")"] •

program-parms = id-list •

Example:

PROGRAM sample (INPUT, OUTPUT);

In the example, the program named sample has two parameters. INPUT is a
predefined Pascal file. Its use as a parameter in the program heading of
a COS job indicates a file of input data as part of the $IN dataset. In
UNICOS, INPUT is associated with standard input. INPUT becomes the
default when an input file is referenced in the program without being
explicitly named.

When OUTPUT is named as a PROGRAM parameter of a COS job, a file is
created for the program's output and attached to the $OUT dataset. In
UNICOS, OUTPUT is associated with standard output. OUTPUT becomes the
default file name when an output file is referenced in the program
without being explicitly named.

SR-0060 4-2 B

If identifiers other than INPUT and OUTPUT are listed as program
parameters, they must be declared in the declarations section of the
program block. Such a file is bound to a COS local dataset or a UNICOS
file in the current directory of the same name. A COS dataset becomes
local to the program when it is named in an ACCESS, ACQUIRE, or ASSIGN
control statement in the job control language (JCL) file. (See section
2, Using Pascal on a Cray Computer, for a description of the JCL file.)
The predefined procedure CONNECT (see section 10, Input and Output)
permits a name other than the COS local dataset name or the name of a
UNICOS file in the current directory to be assigned to the file within
the scope of the Pascal program. The order in which the parameters are
listed is not relevant.

NOTE

Identifiers for program parameters are limited to 7
characters and cannot include the underscore character,
but can start with %, @, or $.

COS example:

ACCESS, DN=INFILE
ASSIGN, DN=OUTFILE •••
PASCAL.

IEOF
PROGRAM figure (infile, outfile);
VAR infile, outfile : FILE OF INTEGER;

The VAR declaration used in the example is described later in this
section.

4.2 DECLARATIONS SECTION

The declarations section contains declarations and definitions of
elements local to the block. These elements cannot be accessed outside
of the block in which they are declared, but they can be accessed in any
functions or procedures defined in the same block.

SR-0060 4-3 B

The declarations section follows the heading and precedes the reserved
word BEGIN, which separates the declarations from the executable
statements. The kinds of declarations are as follows:

• Labels

• Constants

• Types

• Variables
• Values

• Procedures and functions

The compiler allows constant, type, variable, and label sections to be
intermixed and repeated. For example, constant declarations can appear
both before and after type declarations. By reordering declarations, you
can place related items together. The following restrictions apply to
the reordering of declarations:

• The VALUE section, if present, must follow all constant, type,
variable, and label declarations, and precede all procedure and
function declarations.

• Procedure and function declarations must come last.

• Forward TYPE references occurring in pointer declarations must be
defined before the end of the TYPE section in which they are
referenced.

Example:

TYPE x = A b ;
b = RECORD

The declaration in the preceding example is valid because b is defined in
the same TYPE section as x, which references it. The declaration of x
would be invalid if a series of variable declarations separated it from
the declaration of b.

Intermixing declarations parts is a CRI extension to the ISO Level 1
Pascal standard.

SR-0060 4-4 B

4.2.1 LABEL DECLARATIONS

A label used in the executable statements section of a block as the
target of a GOTO statement must first be declared. The format of a label
declaration is as follows:

label-decl-part : ["label" label { "," label}

A valid label consists of 1 to 4 digits.

Example:

LABEL 10, 20;

4.2.2 CONSTANT DEFINITIONS

"." ,] .

A constant identifier assigned a value in the declarations section of a
block retains that value within the scope of the block. The compiler
substitutes the value whenever the constant identifier is encountered in
the block. The format of the constant definition section is as follows:

constant-def-part : ["const" constant-def ";" { constant-def
constant-def = id ":" (constant I constant-expression> •

I' • II , } J

A constant identifier can be any valid Pascal identifier (see section 3,
Pascal Vocabulary). The constant itself can be a number, a character

I string, another constant identifier, or a constant expression. If it is
a number, the constant can optionally be preceded by a sign.

Example:

CONST pi: 3.1415927;
maximum = +99999;
found : FALSE;

If the constant is a character string, it takes the following form:

character-string = " , " string-element { string-element } '" "

If an apostrophe is one of the elements in the string, it is represented
by two apostrophes.

Example:

CONST blank: ' ';
caution = 'Don' 't change mode at this point.';

SR-0060 4-5 B

I

The use of a constant expression in a constant definition allows a
constant identifier to be defined as a result of operations on other
constants that are already defined. A constant expression has the
following format:

constant-expression =

constant-subexression =

constant-subexpression I
("if" constant-subexpression
"then" constant-subexpression
"else" constant-subexpression) •

simple-constant-expression
[relational-operator
simple-constant-expression] •

simple-constant-expression = [sign] constant-term
{ adding-operator constant-term } •

constant-term = constant-factor

constant-set-constructor =

constant-member-designator =

constant-function-designator
constant-set-constructor I
("(" constant-expression ")"
("not" constant-factor) •

"[" [constant-member designator
{ "," constant-member designator}]
"]" .

constant-expression
constant-expression

[" " ..
] .

Along with allowing you to assign integer, real, Boolean, and string
constants, constant expressions let you define constant sets.

All of the predefined functions listed in appendix B, Predefined
Functions and Procedures, can be used in constant expressions with the
exception of LOC, SIZEOF, and those functions that return the status of
files. Function arguments must be constants that have already been
defined.

Example:

CONST max1 = 150;
max2 = 200;

SR-0060

maxsize = (maxl+max2)*5;
uppercase = ['A' .. 'Z'];
lowercase = ['a' .. 'z'];
letter = uppercase+lowercase;
ordO = ORO ('0 ') ;
size = IF max1<100 THEN 'big' ELSE 'small';
pi = ARCCOS(-1.0);

4-6 B

I
The use of constant expressions is a CRI extension to the ISO Level 1
Pascal standard.

4.2.3 TYPE DEFINITIONS

Data types are defined by the TYPE definition in the declarations section
of a Pascal program. (Section 5, Data Types, describes the data types
available.) A data type must be declared in the declarations section of
a program before it is referenced in an executable statement.

The format of the TYPE definition section is as follows:

type-def-part = ["type" type-def

type-def = id "=" type-denoter •

"." ,

type-denoter = type-id I new-type •

{ type-def "." , }] .

new-type = new-ordinal-type I new-structured-type I new-po inter-type .

Any of the following can be created with the TYPE definition:

• A new data type with the same characteristics as another data
type. For example:

TYPE oranges = INTEGER;
apples = INTEGER;

Types defined as integers are stored in 64 bits by default. You
can create 24- and 32-bit integers by using the I24 and I32 types,
which are eRI extensions (see section 5, Data Types). For example:

TYPE oranges = I24;
apples = 132;

• An enumerated type. For this type (described more fully in
section 5, Data Types), the identifiers in parentheses receive
ordinal values based on the order in which they are specified.
For example:

TYPE days = (sunday, monday, tuesday, wednesday, thursday,
friday, saturday);

In the example, sunday has the smallest value (an ordinal number
of O) and saturday the largest (an ordinal number of 6).

SR-0060 4-7 B

I

• A subrange of another type. For example:

TYPE cards lot = 1 •• 80;
workdays = monday •• friday;
letters = ·a· •• ·z·;

• A new structured type. For example:

TYPE lineimage = ARRAY [1 •. 80] OF CHAR;
crayword = PACKED ARRAY [1 .. 8] OF CHAR;
node = RECORD

last: INTEGER;
data: ALFA;
next: INTEGER

END;

• Pointer type to access dynamically allocated variables. For
example:

.....
TYPE link = node;

node = RECORD
data: INTEGER;
left, right: link

END;

4.2.4 VARIABLE DECLARATIONS

A variable declaration does the following:

• Associates a variable's identifier with a data type

• Reserves a space in memory for the variable

• Can create a new type without explicitly naming it, called an
anonymous type

The type denoter, when not a standard type, can be a list of values, a
subrange, a structured type, or a pointer type. In addition to the
ISO-standard VAR declaration, Cray Pascal supports the EXPORTED,
IMPORTED, STATIC, COMMON, TASKVAR,t and CACHEtt variable
declarations, which are described in the following subsections.

t Available with CRAY-! and CRAY X-MP Computer Systems only
tt Available with CRAY-2 Computer Systems only

SR-0060 4-8 B

4.2.4.1 VAR declaration

The VAR declaration associates the identifier for a variable with a data
type. Also, you can create new types in the variable declaration without
explicitly naming the type (an anonymous type). When the type denoter in
the VAR declaration is not a standard type, it can be a list of values, a
subrange, a structured type, or a pointer type.

VAR variables declared at the program or module level are allocated in
static storage; all other VAR variables are allocated on the run-time
stack.

The format of a VAR variable declaration section is as follows:

var-dcl-part = ["var" var-dcl ";" { var-dcl

var-dcl = id-list ":" type-denoter •

"." , }] .

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

Example:

VAR count, current, i INTEGER;
x, result : REAL:
done : BOOLEAN;
table: ARRAY [1 •• 1000] OF REAL;
day: (sunday, monday, tuesday, wednesday, thursday, friday,

saturday) ;
letter: 'a' •• 'z'

The last three declarations shown create new types. Variables declared
in a list (such as count, current, and i in the previous example) are
equivalent types. The value of one variable can always be assigned to
any other variable in the list. Structurally compatible variables that
appear in different declarations, however, are not equivalent.

Example:

VAR ap,bp,cp
dp

BEGIN

SR-0060

ap .- bp:
ap .- dp;

(* This assignment is valid *)
(* This causes a type mismatch error *)

4-9 B

4.2.4.2 EXPORTED declaration

EXPORTED and IMPORTED variable declarations allow different compilation
units to share variables. EXPORTED defines a variable and allows other
compilation units to access it with the IMPORTED declaration. Only one
unit can export a given variable, but any number of other units can
import it. Storage for a variable defined as IMPORTED is not allocated
in the importing module; references to the imported variable are set up
as external references and linked to the EXPORTED variable when the
loader is run. See section 10, Input and Output, for a description of
modules.

Exported variables are allocated in static storage by the compiler with
CAL-style entry names. If an alias is supplied, it is used as the
external name. If no alias is supplied, the variable name, which must be
8 characters or less, is used as an external name. Declaring an exported
variable in a recursive routine causes the routine always to access the
same memory words for the variable, regardless of which recursive scope
is active. Pascal allows exported variables in VALUE statements.

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

• The external name of the variable contains more than the maximum
number of characters permitted: 32 characters for CRAY-2
Computer Systems and 8 characters for CRAY X-MP and CRAY-1
Computer Systems.

• Two variables are exported with the same external names.

The format of an EXPORTED variable declaration section is as follows:

exported-var-dcl-part = [II EXPORTED " ext-var-dcl
{ ext-var-dcl "." ,

ext-var-dcl = id ["(" external-name ")"

}] .
"." ,

{ "," id ["(" external-name ")"] } type-denoter.

Example:

EXPORTED count (CNT), current(CURRENT), i(EYE)
done : BOOLEAN;

INTEGER;

SR-0060

table: ARRAY [1 •• 1000] OF REAL;
day : (sunday, monday, tuesday, wednesday, thursday, friday,
saturday) ;
letter : 'a' •• ' z '

4-10 B

I

In the previous example, the last three declarations create new types.
The variables count, current, and i will appear in the entry list under
the respective names CNT, CURRENT, and EYE. Done, table, day, and letter
will appear in the entry list as DONE, TABLE, DAY, and LETTER.

The EXPORTED variable is a CRI extension to the ISO Level 1 Pascal
standard.

4.2.4.3 IMPORTED declaration

IMPORTED allows a compile unit to access a variable that was previously
declared in another compilation unit as EXPORTED. The loader issues an
error message if an imported variable was never exported. Pascal does
not allow imported variables in VALUE statements.

Imported variables are not allocated by the compiler; instead a CAL-style
external name is associated with the variable. This name is used as the
label for the space allocated to the variable. The routine exporting the
variable allocates this space and labels it with the external name so
that the loader can resolve references to the name. If no alias is
supplied, the external name is the variable name; if an alias is
supplied, it is used as the external name.

Declaring an imported variable in a recursive routine causes the
routine's code to access the same memory words for the variable,
regardless of which recursive scope is active. Storage can be shared by
routines with disjoint scope by exporting a variable from one procedure
and importing where needed.

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

• The external name of the variable contains more than the maximum
number of characters permitted: 32 characters for CRAY-2 Computer
Systems and 8 characters for CRAY X-MP and CRAY-1 Computer Systems.

The format of an IMPORTED variable declaration section is as follows:

imported-var-dcl-part :::: "IMPORTED" ext-var-dcl
{ ext-var-dcl ";" } •

ext-var-dcl :::: id ["(" external-name ")"]

" • I,

{ "," id ["(" external-name ")"] }

SR-0060 4-11

type-denoter.

B

Example:

IMPORTED count (CNT), current(CURRENT), i(EYE)
done : BOOLEAN;
table: ARRAY [1 •• 1000] OF REAL;

INTEGER;

day: (sunday, monday, tuesday, wednesday, thursday, friday,
saturday) ;

letter : ' a' •• • z •

In the previous example, the variables count and current will appear in
the external list under the respective names CNT and CURRENT. Done,
table, day, and letter will appear in the external list as DONE, TABLE,
DAY, and LETl'ER.

Declaring x(EYE) and i(EYE) causes the same memory word (EYE in the
external list) to be used for both variables. Select unique external
names to prevent this FORTRAN-style equivalence. When equivalence is
desired, it is best done by declaring the variable as a variant record or
by using the VIEWING statement.

The IMPORTED variable is a CRI extension to the ISO Level 1 Pascal
standard.

4.2.4.4 STATIC declaration

A static variable keeps its value between calls to the procedure that
contains it; in this way it resembles a global variable, but it is known
only to the procedure in which it is declared. The compiler allocates
static variables in static storage. Declaring a static variable in a
recursive routine causes the routine's code always to access the same
memory words for the variable, regardless of which recursive scope is
active. Pascal allows static variables in VALUE statements, but only at
the program or module level.

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

The format of a STATIC variable declaration section is as follows:

static-var-dcl-part = ["STATIC" var-dcl

var-dcl = id-list ":" type-denoter .

SR-0060 4-12

II." , { var-dcl "." , }]

B

I

Example:

STATIC count, current, i
x, result : REAL;
done : BOOLEAN;

INTEGER;

table: ARRAY [1 •• 1000] OF REAL;
day : (sunday, monday, tuesday, wednesday, thursday, friday,

saturday);
letter : 'a' •• ' z'

The STATIC declaration is a CRI extension to the ISO Level 1 Pascal
standard.

4.2.4.5 COMMON declaration

The COMMON declaration allows the use of FORTRAN common blocks as a means
of sharing data across compile units. Each common variable is allocated
by the compiler as a named common block; Pascal does not support blank
COMMON. Common variables cannot appear in the VALUE section.

If no alias is supplied, the external common block name is a variable
name containing 8 or less characters. If an alias is supplied, it is
used as the common block name. Declaring a common variable in a
recursive routine causes the routine's code always to access the same
memory words for the variable, regardless of which recursive scope is
active.

The format of a COMMON variable declaration section is as follows:

common-var-dcl-part = ["COMMON" ext-var-dcl

ext-var-dcl = id ["(" external-name ")"]

" . " , { ext-var-dcl "." ,

{ "," id ["(" external-name ")"] } : type-denoter.

An error message is issued at compile time in the following cases:

}] .

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

• The external name of the variable contains more than the maximum
number of characters permitted: 32 characters for CRAY-2 Computer
Systems and 8 characters for CRAY X-MP and CRAY-1 Computer Systems.

• More than 125 common blocks are declared in a single program or
module.

SR-0060 4-13 B

I

Example:

COMMON count (CNT), current(CURRENT), i(EYE) INTEGER;
done : BOOLEAN;
table: ARRAY [1 •• 1000] OF REAL;
day : (sunday, monday, tuesday, wednesday, thursday, friday,

saturday) ;
letter : 'a' •• ' z '

The COMMON declaration is a CRI extension to the ISO Level 1 Pascal
standard.

4.2.4.6 TASKVAR declarationt

The TASKVAR declaration allows the use of FORTRAN TASK COMMON blocks as a
means of sharing data across compile units. TASKVAR variables cannot
appear in the VALUE section.

The format of a TASKVAR variable declaration section is as follows:

taskvar-var-decl-part = ["taskvar" ext-var-decl
{ext-var-decl ";" }] •

..... ,

If a variable name is not supplied, the external TASK COMMON block name
is the a-character variable name. If a variable name is supplied, it is
used as the TASK COMMON block name. Declaring a TASKVAR variable in a
recursive routine causes the routine's code always to access the same
TASK COMMON memory words for the variable, regardless of which recursive
scope is active.

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

• The external name of the variable contains more than a characters.

• More than 125 common blocks are declared in a single program or
module. If different block types are included in a single program
or module, the combined total of all blocks specified within the
program or module cannot exceed 125.

t Not available with CRAY-2 Computer Systems

SR-0060 4-14 B

I

Example:

TASKVAR
localarray(LA): ARRAY [1 •• 100] OF INTEGER;
taskno : INTEGER;
table: ·a· •• ·z';

The TASKVAR declaration is a Cray Research extension to the ISO Level 1
Pascal standard.

4.2.4.7 CACHE declarationt

The CACHE declaration allows you to make use of Local Memory, which is
available on CRAY-2 Computer Systems only. CACHE variables are allocated
by the compiler in FORTRAN-style common blocks. If no alias is supplied,
the externalized common block name is the variable name. If an alias is
supplied, it is used as the local common block name.

If a CACHE variable is declared in a recursive routine, the routine
always accesses the same memory words for the variable regardless of the
recursive scope that is currently active.

NOTE

CACHE variables cannot appear in VALUE statements, and
they cannot be passed as VAR parameters.

An error message is issued at compile time in the following cases:

• A variable is declared as one type and treated as another type in
an executable statement.

• A variable is used in an executable statement but is not declared.

• The external name of the variable contains more than 32 characters.

• A CACHE variable is passed as a VAR parameter to any procedure or
function.

t Available with CRAY-2 Computer Systems only

SR-0060 4-15 B

I

The format of a CACHE variable declaration section is as follows:

var-decl-part = ["cache" ext-var-decl ";" { ext-var-decl }] •

ext-var-decl = id ["(" external-name tI)"]
{ "," id ["(" external-name ")"] } type-denoter •

Example:

CACHE count(CNT), current(CURRENT), i(EYE)
x(EYE), result: REAL;
done : BOOLEAN;
table ARRAY [1 •• 1000] OF REAL;

INTEGER;

day : (sunday, monday, tuesday, wednesday, thursday, friday,
saturday);

letter : ' a ' •• ' z ' ;

In the previous example, the last two declarations create new types. By
declaring x(EYE) and i(EYE), the same memory word is used for both
variables. You should use unique common block names to prevent this
FORTRAN-style equivalence. If variables are intended to be equivalent,
they should be specified with the VIEWING statement or as variant records.

Variables declared in a list (for example, count, current, and i) are
equivalent types. The value of one variable can always be assigned to
any other variable in a list. Structurally compatible variables that
appear in different declarations are not, however, equivalent.

Example:

CACHE ap, bp, cp : A b ;
dp : A b ;

ep(VERYLONGEXTERNALNAME) A b ;
BEGIN

(* This assignment is valid *) ap .- bp;
ap .- dp; (* This assignment causes a type mismatch error *)

The CACHE declaration is a CRI extension to the ISO Level 1 Pascal
standard.

SR-0060 4-16 B

4.2.5 VALUE DEFINITIONS

The VALUE definition initializes data at compile time, so that explicit
initial assignments are not needed at run time. VALUE initializes
variables to the values supplied, but they are still variables; their
values can be changed by subsequent assignments.

The VALUE definition imposes the following restrictions:

• Only program-level or module-level variables can be initialized.
Variables declared in a procedure or function cannot be
initialized with VALUE.

• Partial initialization is not permitted. That is, an entire
structured variable must be initialized if any part of it is
initialized.

The VALUE definition must appear immediately after all program-level or
module-level declarations of constants, types, and variables. Because
VALUE is a Cray extension to Pascal, it is not accepted in ISO mode.

The format for VALUE is as follows:

value-def-part "value" value-def ";n { value-def

value-def = entire-var n=" value-spec •

entire-var = var-id •

value-spec = simple-value-spec
set-value-spec I
array-value-spec I
record-value-spec •

simple-value-spec = unsigned-constant
sign unsigned-number
sign constant-id.

set-id = id •

"." , } .

set-value-spec set-id I "[" [set-value-elt-list] "]") •

array-value-spec = [type-id]
"(" sub-value-spec { II II , sub-value-spec } ")" •

record-value-spec = [type-id]
"(" value-spec {

SR-0060 4-17

" " , value-spec} ")" •

B

set-value-elt= constant [" •• " constant] •

set-value-elt-list= set-value-elt { " " , set-value-elt } •

sub-value-spec = value-spec I
unsigned-integer "of" value-spec •

Simple value specifiers initialize variables of scalar, real, and string
types. Each simple value specifier uses the sarne format as a constant of
the s arne type.

Example:

PROGRAM exO (OUTPUT);

VAR
x INTEGER;
y REAL;
z (red, white, blue);
q PACKED ARRAY [1 •• 10] OF CHAR;

VALUE
x = 4;

Y = 129.375;
z white;
q = 'test1test2';

BEGIN
END.

Set value specifiers initialize variables of set types. The specifiers
look like constant sets.

Example:

PROGRAM ex1 (OUTPUT);

VAR
x SET OF 0 •• 63;
Y SET OF (red, orange, yellow, green, blue);

SR-0060

VALUE
x = [1, 4, 5 •• 8];
y = [red, orange];

BEGIN
END.

4-18 B

An array value specifier consists of an optional type name followed by
parentheses enclosing a comma-separated list of value specifiers. The
type name is array type, not the type of the elements of the array. One
value specifier is provided for each element of the array, in order from
lowest index to highest index. Because what serves as a two-dimensional
array in Pascal is actually an array whose elements are arrays,
multidimensional arrays should be value-initialized accordingly. Cray
Pascal supports the following notation as shorthand for a list of
identical value specifiers within an array value specifier:

unsigned-integer "of" value_spec

Example:

PROGRAM ex2 (output);

SR-0060

TYPE

VAR

t1 = ARRAY [1 •• 4] OF INTEGER;
t2 = ARRAY [1 •• 2] OF t1;

x : ARRAY [1 •• 4] OF CHAR;
xn : packed ARRAY [1 •• 4] OF CHAR;
y t2;
q : ARRAY [1 •• 555] OF INTEGER;

VALUE
Y = t2(t1(1, 2, 3, 4), t1(5, 6, 7, 8»;
xn = (' a', , b', , c " , d ') ;

(* Note that the above declaration could have been written
xn = 'abcd', since xn is a string, in agreement with the ISO
standard for denoting strings. Also, type names can
optionally be included in the VALUE statement. *)

x = ('a', 'b', 'c', 'd');

(* Note that the above declaration could not have been written
x = 'abcd';

since x is not a string, in agreement with the ISO standard
for denoting strings. *)

q = (427 of 0, 1, 72 of 4, 55 of 6);

BEGIN
END.

4-19 B

A record value specifier consists of an optional type name followed by
parentheses enclosing a comma-separated list of value specifiers. One
value specifier is provided for each field of the record, in declaration
order.

In the case of variant records, only one variant may be initialized. The
appropriate variant is selected by the compiler based o,n the values to
which the variant-selectors are initialized. Thus, appropriate values
must be provided for all variant-selectors on the desired path, even if
there is no corresponding tag field.

Example:

PROGRAM ex3 (OUTPUT);

VAR
qwert1, qwert2 RECORD

x, y : INTEGER;
q : RECORD

r1, r2 : BOOLEAN
END;

bleem : PACKED ARRAY [1 •• 4] OF INTEGER;
CASE BOOLEAN OF

END;

TRUE: (harvey CHAR);
FALSE: (max: REAL);

VALUE
qwert1
qwert2

= (1,
(5,

2 , (TRUE, FALSE), (5, 4 , 1, 3), TRUE, , x ') ;
9 , (TRUE, TRUE), (1, 9, 8, 7), FALSE, 1. 43) ;

BEGIN
END.

Example:

PROGRAM ex4 (OUTPUT);

SR-0060

CONST
one = 1.;
fone = 1.0;
shortstr = 'SHORT';
longstr = 'LONG(YES, LONG)';
seven = 7;
large = 655361435;

4-20 B

Example: (continued)

TYPE

VAR

settype = SET OF 0 •• 5;

int, out, bigtest : INTEGER;
bleem : 1 •• 6;
srt, swrng : REAL;
set1, set2, set3, set4 : settype;
x, y : PACKED ARRAY [1 .• 5] OF CHAR;

VALUE
int = -1;
out = seven;
bigtest = large;
bleem = one;
srt = fane;
swrng = 2.24536451;
setl = [0,1 .. 3,5]:
set2 = [one];
se-t3 = [1];
set4 = [5 .. 4];
X :: 'SILLY';

BEGIN
END.

The VALUE definition is a CRI extension to the ISO Level 1 Pascal
standard.

4.2.6 PROCEDURE AND FUNCTION DECLARATIONS

Procedures and functions invoked in the executable statements section of
a given block must be defined in the declarations section of that block.

The format for the procedure and function declarations section is as
follows:

procedure-and-function-declaration-part
{ (procedure-declaration} function-declaration) ";" } •

The organization of procedures and functions parallels that of the main
program. Section 9, Procedures and Functions, describes procedures and
functions more fully.

SR-0060 4-21 B

I

s. DATA TYPES

Pascal data types fall into the following three categories:

• Scalar, which includes the following:
Integer
124
132
Real
Boolean
Character
Enumerated
Subrange

• Structured, which includes the following:
Array
ALFA
Record
Set
File

• Pointer

I 124, 132, and ALFA are CRI extensions to the ISO Levell Pascal standard.

A scalar type is composed of an ordered group of constants. Because they
are ordered in sequence, constants of the same scalar type or of
equivalent types can be tested as to their relationships to each other.
One constant is always either equal to, greater than, or less than
another constant of the same scalar type.

A structured type is composed of scalar types or of other structured
types. Users can manipulate a structured type to store complex data in a
logical and convenient manner.

A pointer type accesses elements of a different type, including
dynamically allocated variables.

SR-0060 5-1 B

I

I

5.1 REPRESENTATION OF SCALAR TYPES

Variables of the standard Pascal scalar types are stored in one 64-bit
word, except when the qualification PACKED is included in the
declaration. (Packed structures are described later in this section.)

However, the data field width of integers, characters, and Boolean values
is by default 64 bits, 8 bits, and 1 bit, respectively. The data is
right-justified in the word.

The number of bits used to store each scalar data type in a packed
structure is as follows:

Data Type Number of Bits

Boolean 1
Character 8
Subrange (a •. b) n
Enumerated n
Integer 64
124 24
132 32
Real 64

In the previous list, n is the number of bits required to hold the
largest ordinal number in the data.type. An ordinal number is the
internal integer representation of that value. All scalar data types
except real have ordinal numbers.

5.2 INTEGER TYPE

The integer type includes all whole numbers within the closed range of
-MAXINT through MAXINT. (Section 3, Pascal Vocabulary, describes MAXINT
and numbers that qualify as valid integers.) The ordinal number of an
integer is the integer value itself.

Any integer variables used in a Pascal program must be declared in the
declarations section of the relevant block (see section 4, Program
Organization).

Table 5-1 describes the operations for integers. The variables x and y
are assumed to have been declared as integers and assigned values of 4
and 2, respectively. These operations are also valid if one or both
operands are of type 124 or 132 (described later).

SR-0060 5-2 B

Operation Result

x + y 6

x - y 2

x * y 8

x / Y 2.0

x DIV Y 2

x MOD Y o

x = y FALSE

x > y TRUE

x < y FALSE

X >= y TRUE

X <= y FALSE

x <> y TRUE

Table 5-1. Integer Operations

Description

Adds Y to x

Subtracts y from x

Multiplies x times y

Divides y into x, giving a real number for the
result. An error occurs if y is O. (Pascal
converts both operands to real numbers in-line
before executing this operation.)

Divides y into x, giving a truncated integer for
the result. An error occurs if y is o.

Returns the remainder after dividing y into x.
An error occurs if y is equal to or less than O.

Tests for x equal to y

Tests for x greater than y

Tests for x less than y

Tests for x greater than or equal to y

Tests for x less than or equal to y

Tests for x not equal to y

The following predefined Pascal functions return integer results. In the
following list, i and j represent variables or expressions of type
INTEGER, r represents a variable or expression of type REAL, and e
represents an element in any scalar type except type REAL.

Function Description

ABS(i) Returns the absolute value of i

BAND(i,j) Determines the logical product (AND) of i and j

BNOT(i) Determines the logical ones complement of i

SR-0060 5-3 B

Function Description

BOR(i,j) Determines the logical inclusive OR of i and j

BXOR(i,j) Determines the logical exclusive OR of i and j

LSHIFT(i,j) Shifts the word i left j bit positions

POP(i) Returns the population count (number of bits set to
in the word i

RSHIFT(i,j) Shifts the word i right j bit positions.

ORD(e) Returns the ordinal number of the element e

PRED(i) Returns the integer preceding the integer i (i - 1)

ROUND(r) Rounds r to the nearest integer

SQR(i) Squares i (i * i)

SucC(i) Returns the integer succeeding the integer i (i + 1)

TRUNC(r) Truncates the fractional part of r and returns an
integer

1)

BAND, BNOT, BaR, BXOR, LSHIFT, POP, and RSHIFT are CRI extensions to the
ISO Level 1 Pascal standard.

5.3 I24 AND I32 TYPES

The I24 and I32 data types store integers in 24 and 32 bits, respectively,
rather than the 64 bits used by type INTEGER. Multiplication and
division operations are significantly faster with operands of type I24
and type I32 than with operands of type INTEGER. While both I24 and I32
are available on all machine lines, I24 offers the best speedup on the
CRAY X-MP and the CRAY-l Computer Systems and I32 on CRAY-2 Computer
System.

Types I24 and I32 are CRI extensions to the ISO Level 1 Pascal standard.

SR-0060 5-4 B

The types 124 and 132 are defined as a subrange, as in the following
declarations:

TYPE 124 = -8388607 •• 8388607;
TYPE I32 -2147483647 •• 2147483647;

If a value outside of these ranges is assigned to an I24,or 132 variable
and if run-time error checking is enabled, the program aborts with an
error message. No constant corresponding to MAXINT exists for the
maximum value for variables of type 124 or 132.

The same operations available to operands of type INTEGER can be used
when one or both operands are of type 124 or 132. Table 5-1 describes
these operations.

5.4 REAL TYPE

Data elements of type REAL are represented either in scientific notation
(as in 8E5) or with a decimal point. (See section 3, Pascal Vocabulary,
for examples of both types.) A number written in scientific notation is
considered a real number whether or not a decimal point is present.

A variable must be declared as type REAL in the declarations section of a
block before it can be used in the executable statements section.

The range of valid numbers of type REAL is from 2-8191 to 28191 _1.
Real numbers are precise up to 48 binary digits (approximately 14 decimal
digits).

Table 5-2 describes the arithmetic operations for real numbers. The
variables x and yare assumed to have been declared as type REAL and
assigned values of 4.8 and 2.4, respectively.

Operation Result

x + y 7.2

x - y 2.4

x * y 11.52

x / Y 2.0

SR-0060

Table 5-2. Real Number Operations

Description

Adds Y to x

Subtracts y from x

Multiplies x times y

Divides y into x. A fatal error occurs if y is
0.0.

5-5 B

Relational operators (>, (, <>, (=, and >=) can be applied to operands of
type REAL just as to operands of type INTEGER (see table 5-1). For
example, assuming the same values for x and y as in table 5-2, the
following operations both yield TRUE as a result:

x >= y
x <> y

NOTE

Comparing real variables for exact equality (x=y) may
not always yield the expected result, since most values
can only be represented approximately. Errors in
representation and computation of real numbers may
cause a comparison to fail for variables that are
approximately equal.

The following predefined functions return values of type REAL. r
represents a real variable or expression.

Function Description

ABS(r) Returns the absolute value of r
ARCCOS(r) Calculates the inverse of the cosine of r
ARCSIN(r) Calculates the inverse of the sine of r
ARCTAN(r) Calculates the arctangent of r
COS(r) Calculates the cosine of r
COSH(r) Calculates the hyperbolic cosine of r
EXP(r) Calculates the exponential function of r
LN(r) Determines the natural logarithm of r
LOG(r) Calculates the common logarithm of r
SIN(r) Calculates the sine of r
SINH(r) Calculates the hyperbolic sine of r
SQR(r) Squares r
SQRT(r) Calculates the square root of r
TAN(r) Calculates the tangent of r
TANH(r) Calculates the hyperbolic tangent of r

LOG, TAN, ARCSIN, ARCCOS, SINH, COSH, and TANH are CRI extensions to the
ISO Level 1 Pascal standard.

SR-0060 5-6 B

5.5 BOOLEAN TYPE

The Boolean data type has two constants: TRUE and FALSE. They are
ordered such that TRUE, with an ordinal number of 1, is greater than
FALSE, with an ordinal number of o. Variables that take on Boolean
values in the executable statements section of a block must be declared
as type BOOLEAN in the declarations section of that block.

All operations involving relational operators «, >, <>, <=, and >=.)
yield Boolean results. The operands can be scalar types in all cases and
pointer or set types in some cases. See the descriptions of types
POINTER and SET in this section and the description of operators in
section 3, Pascal Vocabulary, for information on valid operations.

Table 5-3 lists the operations that take Boolean operands and yield
Boolean results. Variables x and yare assumed to have been declared as
Boolean variables and assigned values of TRUE and FALSE, respectively.

Operation Result

x~y FALSE

x OR Y TRUE

NOT x FALSE

Table 5-3. Boolean Operations

Description

Finds the logical conjunction of x and y.
Both operands must be TRUE to yield a result
of TRUE.

Finds the logical disjunction of x and y. If
either operand is TRUE, the result is TRUE.

Returns the value that is the opposite of the
value of x

The following predefined functions return values of type BOOLEAN. i
represents an integer and fn represents a file name.

Function

EOF(fn)

EOLN(fn)

SR-0060

Description

Returns a value of TRUE if an end-of-file condition
exists for fn

Returns a value of TRUE if an end-of-line condition
exists for fn

5-7 B

Function Description

ODD(i) Returns a value of TRUE if the integer is an odd number

PRED(TRUE) Returns a value of FALSE

SUCC(FALSE) Returns a value of TRUE

5. 6 CHAR TYPE

The constants in the character (CHAR) data type are the characters, both
printable and nonprintable, in the ASCII character set (see appendix A,
Character Set).

A character is designated as a member of type CHAR by surrounding it with
apostrophes. When the character to be designated is an apostrophe, it is
represented by two apostrophes.

Examples:

'x'
'8 '
, , "

Constants of type CHAR are always single characters. Constructs
containing multiple characters surrounded by apostrophes are called
strings. String data types are described later in this section.

The character constants are mapped to a consecutive series of ordinal
numbers. The ordering relationship between any two characters is the
same as between their ordinal numbers. For instance, the ordinal numbers
for 'A' and 'B' are 65 and 66, respectively. The ordinal numbers for
constants of type CHAR are specified in decimal and appear in appendix A,
Character Set, under the ASCII decimal code column.

Operands of type CHAR can be used with relational operators in the same
manner as integers (see table 5-1). In the following example,_ the
variable ch is assumed to have been declared as type CHAR. If both
operations yield a result of TRUE, the value of ch is an uppercase
letter. (The ASCII character set is assumed in this example. If these
tests were made using an EBCDIC character set, the value of ch would not
necessarily be an uppercase letter.)

Examples:

ch >= 'A'
ch <= 'Z'

SR-0060 5-8 B

The following predefined functions return values or accept parameters of
type CHAR. c represents a character variable or expression and i
represents an integer variable or expression. (The ASCII character set
is assumed.)

Function

CHR(i)

ORD(C)

PRED(C)

SUCC(c)

Description

Returns the character mapped to the ordinal number i.
For example, the following function call returns a value
of 'A':

CHR(65)

A run-time error message is issued if i is less than 0
or greater than 127 and run-time checking is enabled.

Returns the ordinal number for the character C. For
example, the following function call returns a value of
65:

ORD('A')

Returns the character that is the predecessor of c in
type CHAR ordering. For example, assuming the variable
ch has a value of 'B', the following function call
returns 'A':

PRED(ch)

If run-time checking is enabled and c is the first
element in the type, a run-time error message is issued.

Returns the character that succeeds c in the type CHAR
ordering. For example, assuming the variable ch has a
value of 'A', the following function call returns 'B':

SUCC(ch)

If run-time checking is enabled and c is the last
element in the type, a run-time error message is issued.

5.7 ENUMERATED TYPES

An enumerated type contains constants defined by you. This type can
either be defined explictly in a TYPE definition or implicitly in a VAR
declaration (see section 4, Program Organization). The TYPE definition
assigns a name to the enumerated type, while the VAR declaration does not.

SR-0060 5-9 B

An enumerated type is defined as follows:

enumerated-type = "(" id-list ")" •

The constants receive ordinal numbers, beginning with 0, in the order
they are listed.

Example:

TYPE directions = (east, west, north, south);
VAR compass: directions;

In this example, east receives the ordinal number 0, west 1, north 2, and
south 3. The variable compass is declared to be of type directions and
can be assigned any of the enumerated constants. The relational
operators and the ORD, PRED, and SUCC functions can refer to these
constants as follows:

compass = north
ORD(south)
PRED(north)
SUCC(east)

The Pascal compiler checks assignments made to variables of enumerated
types. If a program attempts to assign a. value of the wrong type to such
a variable, the compiler flags an error.

5.8 SUBRANGE TYPES

As the name implies, a subrange type is composed of constants that are a
subrange of any previously defined scalar type except REAL. You
designate these constants. As with enumerated types, a new subrange type
can either be'defined explicitly in a TYPE definition or implicitly in a
VAR declaration (see section 4, Program Organization).

A subrange type is defined as follows:

subrange-type = constant " •• " constant.

The first constant specifies
constant specifies the last.
constants in the ordering of
the new type.

SR-0060

the first element in the type and the second
All elements that lie between the named

the previously defined type are included in

5-10 B

Example:

TYPE degrees = -45 •• 120;
VAR temperature: degrees;

In the example, the new type degrees is defined as a subset of integers
from -45 to 120. If a value outside the subrange is assigned to the
variable temperature and run-time checking is enabled, the program aborts
with an error message.

The relational operators and the PRED and SUCC functions can refer to
variables or expressions of subrange types.

Example:

SUCC(temperature)

5.9 ARRAY TYPE

An array permits you to treat multiple elements of the same type as a
single structure, using a single name. The format for an array
declaration in a TYPE definition is as follows:

array-type = "array" "[" index-type {
"of" component-type •

index-type = ordinal-type •

component-type = type-denoter •

It " , index-type} "]"

The index-type specifies the ordinal, or subscript, data type by which
individual elements are accessed and gives the size of the array. (The
maximum array size is 224_1 words, which is 16,777,215 decimal.) If
you specify two or more index-types, the array is multidimensional. The
index-type is most frequently a subrange of integers. However, it could
be any scalar type, or a subrange of any scalar type, except REAL.

The component-type specifies the type of the data held in the array. If
a program attempts to enter data of a different type, an error message is
issued.

Example:

TYPE
VAR

SR-0060

token = ARRAY [1 •• 10] OF CHAR;
x: token;

ch: CHAR;
i: INTEGER;

5-11 B

I

In the example, an array type named token is defined to be 10 elements of
type CHAR. The variable x is declared to be of type token. To access
one of the elements, the form x[i] is used, where i is an integer from 1
through 10 inclusive. After the following assignment statement
(described in section 7, WITH and VIEWING Statements), element i in the
array x contains the value of variable ch:

x[i] := ch;

The following example uses an enumerated type as an index:

TYPE days = (sunday, monday, tuesday, wednesday, thursday, friday,
saturday) ;

pettycash = ARRAY [days] OF REAL;
VAR balance: pettycash;

An element in the array defined in the example is accessed as follows:

balance [monday]

Internally, each element of any unpacked array of a predefined type uses
one 64-bit word of memory in the Cray computer system. Returning to the
first example, figure 5-1 represents how array x is stored when its first
five elements contain the character A and the second five contain the
character B.

5.9.1 PACKED ARRAYS

Rather than storing one array element in each 64-bit word, memory can be
used more efficiently if the array is defined as a packed array. The
same array depicted in figure 5-1 can be defined as follows:

TYPE token = PACKED ARRAY [1 .. 10] OF CHAR;
VAR x: token;

ch: CHAR;

If the first five elements in the array are set to the character A and
the last five are set to B, the packed array is then represented
internally as in figure 5-2.

The next element in a packed structure begins on the next available bit
unless the element is 64 bits or longer. Elements of 64 bits or more are
word-aligned.

SR-0060 5-12 B

I

I

o 8 16 24 32 40 48
Xl I11
x2 I11
x3 I11
x4 I11
x5 111
x6 I11
x7 111
x8 111
Xg 111
x10111

56
A
A
A
A
A
A

B
B
B
B

Figure 5-1. Internal Representation of an Unpacked Array

63

o 8 16 24 32 40 48 56 63
I A
I B

A I A I A I A I B I B I B I
B I11

Figure 5-2. Internal Representation of a Packed Array

NOTE

While a packed array is smaller in size, more complex
code may be generated to access its elements. This
could slow program execution and increase the size of
the code necessary to process the packed data. Also,
Pascal does not vectorize operations on packed arrays.
Making the decision of whether or not to pack a given
array may require experimentation to determine if the
reduction in array memory space offsets the increase in
total code size and execution time. (The summary
message at the end of the program listing gives the
amount of memory used by the program.) In general, an
unpacked structure is more efficient for an array that
is small and frequently accessed. A large array that
is seldom accessed may be more efficiently stored in a
packed structure.

The contents of an unpacked array can be copied into a packed array and
vice versa by predefined procedures PACK and UNPACK, respectively. (See
appendix B, Predefined Functions and Procedures, for descriptions of all
predefined functions and procedures.)

SR-0060 5-13 B

Function

PACK(U,i,p)

Description

Takes the elements from the unpacked array (u),
beginning at the specified index position (i),
and copies them into the packed array (p),
beginning at the first position.

UNPACK(p,u,i) Takes the elements from the packed array (p),
beginning at the first position, and copies them
into the unpacked array (u), beginning at the
specified index position (i).

5.9.2 MULTIDIMENSIONAL ARRAYS

Arrays of more than one dimension are defined by adding more than one
index-type to the declaration. The following example defines a
two-dimensional array:

TYPE twodimen = ARRAY [1 •• 10,1 •• 10] OF INTEGER;
VAR matrix: twodimen;

i, j: 1 •• 10;

The two-dimensional array can then be accessed through the use of
variables i and j or by integer constants in the range of 1 through 10.

Examples:

matrix[i,j]
matrix[5,9]

The PACKED declaration applies only to one level of an array unless it is
repeated to apply to a second level. For instance, only the 80-element
array is a packed array in the following declaration:

VAR deck
i, j

ARRAY [1 •• 4096] OF PACKED ARRAY [1 •• 80] OF CHAR;
INTEGER;

The following declarations are alternate methods of packing both arrays:

VAR deck
VAR deck

PACKED ARRAY [1 •• 4096] OF PACKED ARRAY [1 .. 80] OF CHAR;
PACKED ARRAY [1 •• 4096, 1 •• 80] OF CHAR;

Elements in the array deck are accessed in either of the following ways:

deck[i,j]
deck[i][j]

SR-0060 5-14 B

Similarly, the following declaration sets up an array of 4 words. Each
of the words contains a 2-bit packed array in its leftmost bits:

VAR small: ARRAY [1 •• 4] OF PACKED ARRAY [1 •. 2] OF BOOLEAN;

5.9.3 STRINGS

A string is a packed array of characters. The individual characters are
taken as a whole and treated as a single object. A string is delimited
by apostrophes. An apostrophe is represented by two apostrophes when
appearing in a string.

Examples:

'string'
'don"t'

The first example might have been defined as follows:

TYPE words = PACKED ARRAY [1 •• 6] of CHAR;
VAR x: words;

x := 'string';

All strings can be accessed by reference to the variable (x in this case)
rather than to the individual array elements.

When a value is assigned to a string variable, the number of characters
assigned to the string variable must match the declared size of the
variable. If a READ statement reads a string that contains less
characters than the number of characters declared for a string variable,
the number of blanks equal to the difference between the declared size of
the string variable and the size of the string are added to the right of
the last character read. (See section 10, Input and Output, for a
description of the READ statement and reading a string.)

Example:

VAR word: PACKED ARRAY [1 •• 8] OF CHAR;

word := 'Cray

SR-0060

.. ,

5-15 B

Figure 5-3 illustrates the internal representation of this example.

o 8 16 24 32 40 48 56 63
� ___ C ____ ~I ___ r __ ~I __ ~a ___ I~~y __ ~I~ ______ ~I ________ ~I ______ ~I ______ I

Figure 5-3. Internal Representation of a String

Strings of the same type can be compared using the relational operators.
The order is based on the collating sequence of the elements in the
strings. (Appendix A, Character Set, gives the collating sequence for
type CHAR.) Table 5-4 lists the relational operations for use on
strings. In table 5-4, string variable x has a value of 'xxx', and
string variable y has a value of 'yyy'.

Table 5-4. String Operations

Operation Result Description

x = y FALSE Tests for x equal to y

x > Y FALSE Tests for x greater than y

x < Y TRUE Tests for x less than y

x >= Y FALSE Tests for x greater than or equal to y

x <= Y TRUE Tests for x less than or equal to y

x <> Y TRUE Tests for x not equal to y

5.10 TYPE ALFA

Type ALFA is a predefined string. ALFA is equivalent to the following
definition:

TYPE ALFA = PACKED ARRAY [1 .• 8] OF CHAR;

Values are assigned to variables of type ALFA just as to any other packed
array of characters.

SR-0060 5-16 B

Example:

VAR x: ALFA;

x := 'Cray .. ,
Operands of type ALFA can be used in the operations described earlier in
table 5-4. Both operands must be of the same type, however. If an
operand of type ALFA is compared to an operand of another string type,
even if that type has the same characteristics as ALFA, an error message
is generated. Variables x and y in the following example, for instance,
are not equivalent:

VAR x
Y

ALFA;
PACKED ARRAY [1 •• 8] OF CHAR;

Type ALFA is a CRI extension to the ISO Level 1 Pascal standard.

5.11 RECORD TYPES

The record goes a step beyond an array by permitting you to treat
multiple elements of different types as 'a single structure with a single
name. The parts that make up a record, called fields, can each be of
any scalar, structured, or pointer type.

The format of a record definition is as follows:

record-type = "record" field-list "end" •

field-list = [((fixed-part [
[";"]] .

'I • " , variant-part]) I variant-part)

fixed-part = record-section { ";" record-section} •

variant-part = "case" variant-selector "of" variant { ";" variant} •

variant-selector = [tag-field ":"] tag-type.

tag-field = identifier •

tag-type = ordinal-type-id •

variant = case-constant-list ":" "(" field-list ")" •

SR-0060 5-17 B

The maximum size of a record is 224_1 words (16,777,215 decimal).

Example:

TYPE personnel = RECORD
name: PACKED ARRAY [1 •• 18] OF CHAR;
empnumber, age: INTEGER;
sex: (male, female);
salary: REAL;
vested: BOOLEAN

E~;

In this example, the record named personnel has six fields. The fields
number and age are both of type INTEGER. The field sex is an enumerated
type containing the two constants listed.

You can also define more complex record structures. For example, a
record can be defined within a record:

TYPE personnel = RECORD
name: PACKED ARRAY [1 •• 18] OF CHAR;
address: RECORD

street, city: PACKED ARRAY [1 •• 20] OF
CHAR;

state: PACKED ARRAY [1 •• 2] OF CHAR;
zip: INTEGER

END;

vested: BOOLEAN
END;

5.11.1 VARIANT FIELDS

A record can be defined with variant fields. A variant field mayor
may not be selected, depending on the result of a condition specified in
a CASE clause. (See section 8, Assignment Statement and Program Control
Statements, for a description of the CASE statement.) Continuing with
the previous example of a record, the field vested could be set up with
variant fields as follows:

TYPE personnel = RECORD

SR-0060

CASE vested: BOOLEAN OF

END;

TRUE: (amount, percentage: REAL);
FALSE: ()

5-18 B

I

In the previous example, the CASE clause tests the value of the field
vested (called the tag field). The possible values of the tag field
vested, which is of type BOOLEAN, are TRUE and FALSE. If the value is
TRUE, the field variables amount and percentage are declared as type
REAL. If vested has a value of FALSE, no variables are declared. Thus,
if an array of the above records was defined, some records might contain
the variables amount and percentage and some might not.

The data type for a tag field must be a scalar type other than REAL.

5.11.2 PACKED RECORDS

A packed record is declared in the same manner as an unpacked record,
with the addition of the reserved word PACKED in front of the word RECORD.

Example:

TYPE personnel = PACKED RECORD

In a packed record, most data items are allocated the exact number of
bits required. The exceptions to this rule are as follows:

• Items longer than 1 word (64 bits) are begun on a word boundary
rather than in the middle of a word.

• A data item of 64 bits or less is never split across a word
boundary.

• The fields in the last word of a multiword packed record are
right-justified rather than left-justified.

Since an unpacked record is given at least 1 word for each data item, the
following record uses 6 fewer words than its unpacked equivalent:

TYPE savespace = PACKED RECORD

SR-0060

i, j, k: CHAR;
bool1, boo12: BOOLEAN;
t: 124;
status: (first, middle, last)

END;

5-19 B

Figure 5-4 shows how a variable of type savespace is stored.

o 8 16 24 32 40 48 56 63
o 1 ___ i __ ~ ___ j ______ ~k~~ __ I~I~ ______ t~ __________ ~I __ I_I_II_I_1_1_1_1_1_1_1_/1

f f f
boo11 boo12 status

Figure 5-4. Internal Representation of a Packed Record

Figure 5-5 shows the storage for the same record declared as an unpacked
structure.

o 8 16 24 32 40 48 56 63
o II~/IIIIIII1111I i 1
1 I11I j 1
2 I11I k I
3 I111 l~boo11

4 I11I l~boo12

5 I111 t I
6 I11I I~status

Figure 5-5. Internal Representation of an Unpacked Record

A significant amount of memory' may not always be saved, however, as the
following records illustrate:

TYPE twowdrec = PACKED RECORD
i, j, k: 124

END;
TYPE biggerec = PACKED RECORD

x, y: 124;
zl, z2: twowdrec

END;

The packed record twowdrec occupies 2 words, with i and j in the first
word and k in the second. However, the packed record biggerec occupies 5
words. Since zl and z2 are longer than 1 word, they both begin on word
boundaries. Thus, x and y occupy the first word, zl.i and zl.j the
second, zl.k the third, z2.i and z2.j the fourth, and z2.k the fifth.

SR-0060 5-20 B

As with a packed array, a packed record may require the
generation of more complex code to access its
elements. This could slow program execution and
increase the code size necessary to access the packed
data. Making the decision of whether or not to pack a
given record may require experimentation to determine
if the reduction in record memory space offsets the
increase in total code size and execution time. (The
summary message at the end of the program listing gives
the amount of memory used by the program.) In general,
an unpacked structure is more efficient for a record
that is small and frequently accessed. A large record
that is seldom accessed may be more efficiently stored
in a packed structure.

5.11.3 ACCESSING RECORD FIELDS

To access fields of a record, variables are declared and associated with
the record type.

Example:

VAR worker: personnel;

Often an array of records is desirable, in which case the variable is
defined as an array.

Example:

CONST totemployees = 637;
TYPE personnel = RECORD

END;
VAR employee: ARRAY [l •. totemployees] OF personnel;

In either case, a record field is accessed using the following form:

record-variable field

SR-0060 5-21 B

Examples:

worker.empnumber
employee[l].salary

The data type POINTER (described in this section) and the WITH structure
(described in section 7, WITH and VIEWING Statements) are also frequently
used in accessing record fields.

5.12 SET TYPES

A set type contains elements specified by you. Unlike an array or a
record, a set allows you to treat the elements as a group rather than as
individual entities. A set type is defined as follows:

set-type = "set" "of" base-type .
base-type = ordinal-type .
ordinal-type = new-ordinal-type ordinal-type-id

The base type of a set must be one of the following:

• An enumerated type of as many as 128 elements

• A subrange of type INTEGER or type BOOLEAN with a maximum range of
o through 127

• A subrange of type CHAR

Examples:

= SET OF ' ' •. ' z ' ;
= SET OF 'A' •• 'Z';

TYPE all
caps
days = SET OF (sunday, monday, tuesday, wednesday, thursday,

friday, saturday);

Set variables are declared in the VAR declaration.

Examples:

VAR w: SET OF 'a' •• 'z';
x, y: caps;

The assignment statement assigns values to set variables. (Section 8,
Assignment Statement and Program Control Statements, describes the
assignment statement.)

SR-0060 5-22 B

Examples:

x · - ['A' •• '0']; · -
y · - ['L' •• 'Z']; .-
z · - ['W']; .-

Table 5-5 describes the operations for sets. The variables x and yare
assumed to have been declared and assigned values as in the previous
examples.

Operation Result

x + y 'A' •• 'Z' ,

x - y 'A' •• 'K'

x ." Y 'L' •• '0'

FALSE

x <> y TRUE

X <= y FALSE

x >= y FALSE

'W' IN Y TRUE

SR-0060

Table 5-5. Set Operations

Description

Creates a new set that is the union of the two
sets specified as operands. All elements in
either x or yare included in the new set.

Creates a new set that is the symmetric
difference of the two sets specified as
operands. Only those elements in set x that
are not also elements in set yare included
in the new set.

Creates a new set that is the intersection of
the two sets specified as operands. All
elements that are in both sets are included
in the new set.

Tests for set equality. The result is TRUE
if both sets contain the same elements.

Tests for set inequality. The result is TRUE
if the two sets do not contain the same
elements.

Tests for set inclusion. The result is TRUE
if every element in x is also an element in y.

Tests for set inclusion. The result is TRUE
if every element in y is also an element in x.

Tests for set membership. The result is TRUE
if the element specified by the first operand
is a member of the set specified by the second
operand.

5-23 B

I

5.13 FILE TYPES

A file contains elements of the same type that are accessed
sequentially. A file type is declared as follows:

file-type = "file" "of" component-type •

The component type cannot be FILE. Any other data type in Pascal can be
the component type, although restrictions may apply to some. For
instance, a file of pointers may be invalid if the file is saved and read
back into memory at a later time. The component type can be array if the
array type has been defined in the declarations section of the block.

Example:

TYPE stats = FILE OF INTEGER;
names = FILE OF CHAR;

Records and arrays can have files as components. The following example
creates an array of six files. Unless a file is listed as a PROGRAM
heading parameter, Pascal creates an internal name for the file.

VAR filegroup : ARRAY[O •• 5] OF FILE OF INTEGER;
WRITE (filegroup[i],i); (* Write filei with i *)

A file is accessed sequentially through a buffer variable, which
permits access to the file elements one at a time. The position of the
buffer variable in the file may be thought of as a window through which
the data becomes accessible. The window advances through the file
element by element to allow data to be read from, or written to, each
file position. When an element of data is read from the window position
in a file, it is entered into the buffer variable; from there it can be
assigned to an element in an array, for instance. For a write operation,
the data is first assigned to the buffer variable and then written to the
window position at the end of the file.

A buffer variable of the same type as the file is created implicitly for
each file declared. The buffer variable is referenced using the
following form:

file-name " "

The following predefined functions and procedures operate on files. fn
represents a file name and ldn represents a local dataset name.

SR-0060 5-24 B

Function or
Procedure

EOF(fn)

EOLN(fn)

RESET(fn)

REWRITE (fn)

GET(fn)

PBT(fn)

CONNECT(fn,ldn)

Description

Returns a value of TRUE if an end-of-file
condition exists for fn. The end-of-file
condition exists if the window is past the last
element in the file. The predefined file INPUT
is the default if fn is not specified.

Returns a value of TRUE if the window is
currently positioned on an end-of-line
character. The predefined file INPUT is the
default if fn is not specified.

Moves the window to the first element in fn
and, unless the file is empty, sets the
end-of-file condition to FALSE. Any file that is
to be read, except the standard file INPUT, must
be reset first.

Clears fn and sets the end-of-file condition to
TRUE. Any file that is to be written, except the
standard file OUTPUT, must be cleared first.

Moves the window to next element of fn and
assigns the value of that element to the buffer
variable. If the next element is the
end-of-file, the buffer variable is undefined,
and the end-of-file condition is set to TRUE.

Writes the contents of the buffer variable to the
window position at the end of file fn

Associates the Pascal file fn with the COS
local dataset Idn

Section 10, Input and Output, describes these predefined functions and
procedures, the standard text files INPUT and OUTPUT, and the predefined
procedures READ, WRITE, READLN, and WRITELN in more detail.

The predefined function EOLN can only be used with the standard file type
TEXT. A text file is composed of lines of printable characters. Each
line ends with an end-of-line indicator.

If a text file other than the standard files INPUT and OUTPUT is used in
a program, it must be named in a VAR declaration and be included as a
parameter in the program heading.

SR-0060 5-25 B

Example:

PROGRAM test (infile, outfile, OUTPUT);

VAR infile, outfile: TEXT;

NOTE

A line in a text file cannot exceed 140 characters.
This limit is an implementation restriction to the ISO
Level 1 Pascal standard, which does not limit the size
of a line in a text file.

Cray Pascal supports datasets in the blocked format for COS. Blocked
datasets are described in the COS Version 1 Reference Manual. Unblocked
datasets are supported only through FORTRAN library routines described in
the Programmer's Library Reference Manual. When using these FORTRAN
routines on unblocked datasets, you are responsible for buffer
management. (Section 8, Assignment Statement and Program Control
Statements, describes how to call FORTRAN library routines.)

Cray Pascal supports standard UNICOS files, which are described in the
CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual. If blocked
files are specified, you are responsible for all buffer management. The
UNICOS File Formats and Special Files Reference Manual describes the
format for blocked files.

Files cannot be compared using the relational operators.

5.14 POINTER TYPE

A pointer value contains the address of a value rather than the value
itself. The pointer type gives Pascal the facility for creating
dynamically allocated variables, as opposed to variables allocated during
the compile pass. (Section 11, Dynamic Allocation, describes dynamic
allocation.)

A pointer variable is declared as being of the pointer type. The pointer
type is defined as follows:

SR-0060 5-26 B

pointer-type = new-po inter-type I pointer-type-id •

new-pointer-type = " domain-type •

domain-type = type-id •

pointer-type-id = type-id •

Examples:

TYPE pointer = INTEGER;
VAR p: pointer;

TYPE ptr = "'node;
node RECORD

data
next node

END;

INTEGER;
ptr

In the first example, pointer is declared as a pointer type bound to
type INTEGER. Thus, any variables of type pointer can be used only with
integers. If the program attempts to use such variables with any other
data type, an error message is generated. The identifier p is declared
as a variable of type pointer. p points to a dynamic variable when one
is created. The p'" form accesses the value of that dynamic variable.

In the second example, ptr is declared as a pointer type bound to the
user-defined type node. The type node can be defined after it is
referenced in the declaration of ptr. Such a forward reference is valid,
but node must be defined in the same TYPE declaration in which it is
referenced. If the definition of node were separated from the definition
of ptr by another kind of declaration, such as a VAR declaration, the
forward reference to node in the ptr definition would be invalid.

A pointer contains the address of the value to which it points, stored
right-justified in a 64-bit word. Figures 5-6 and 5-1 show the internal
representation for the pointer p in the first example.

o 8 16 24 32 40 48 56 63
I~/~/~/~/~//~/_/~/_//_/_/_/_/_/_/_/_/_/~I~ __________ p ___________ 1

SR-0060

Figure 5-6. Internal Representation of a Pointer
(CRAY X-MP and CRAY-1 Computer Systems)

5-21 B

o 8 16 24 32 40 48 56 63
I~/~/~/~//~//~'/~/~/~I ______________ .P ______________ I

Figure 5-7. Internal Representation of a Pointer
(CRAY-2 Computer System)

Except for the special value NIL, pointers can be assigned values only
from other pointers or through the predefined functions NEW and DISPOSE
(see section 11, Dynamic Allocation). A pointer containing the value NIL
points to nothing. Pointers can only be compared for equality (=) and
inequality «».

The following procedures and functions accept parameters or return
results of type pointer.

Function or
Procedure

NEW(X)
(procedure)

DISPOSE(X)
(procedure)

LOC(X)
(function)

Description

Defines a dynamically allocated variable pointed to by
x. NEW is passed a VAR parameter that is a pointer
variable. A dynamic variable of the type pointed to
by x is allocated, and x is set so that it points
to the dynamic variable. Thus x

A

becomes defined.

Deallocates the dynamically allocated variable pointed
to by x. DISPOSE is called by an expression of type
pointer. The dynamic variable pointed to is
deallocated; x

A

thus becomes undefined.

Returns the address of x; this address is type
compatible with pointers. Use of the LOC function
inhibits assignment of any user variables to the Band
T registers for the entire compile unit.

Section 11, Dynamic Allocation, discusses NEW and DISPOSE more fully.

The LOC function returns a pointer for the specified variable; this
pointer is assignment-compatible with all types of pointers. LOC uses
one VAR parameter, which cannot be an element of a packed structure or
tagfield.

LOC escapes strong data typing. Strong typing is fundamental to Pascal;
circumventing it tends to make programs more difficult to maintain.

Because LOC can generate pointers to data on the stack or in static or
common storage, allocation of variables to B or T registers is disabled
in programs or modules that use LOC. This precaution prevents the
creation of binary programs that load variable values from B or T
registers after their values have been modified by pointers set by the
LOC function.

SR-0060 5-28 B

Because the pointer returned by the LOC function fails full run-time
pointer checking, use one of the following methods in programs or modules
that use the LaC function:

• Disable pointer checking with (*#RP- *) •

• Enable null pointer checking with (*#RPN *).

The LaC function can acquire the address of its own argument in the
following way:

The LaC function, and the capability of taking the ORD of a pointer, are
CRI extensions to the ISO Level 1 Pascal standard.

For manipulating a variable varl of type typea as if it were of type
typeb, a pointer pi can be declared to be of type Atypeb and the
following code can be executed:

(*#RPN turn off pointer checkinq *)
pl := LOC(varl);
(* manipulate pl as required *)
(*#RP+ turn pointer checking back on *)

SR-0060 5-29 B

I

6. ARRAY PROCESSING

Cray Pascal supports a set of explicit array processing constructs.
These language features allow operations on arrays to be described with a
notation that is simple and intuitive. Since array processing operations
are easily vectorized, the execution time of a program is decreased. The
types of array processing constructs are as follows:

• Array expressions constructed with binary and unary operators
• Reduction functions
• Constructed arrays
• Array merges
• Relational operators

NOTE

Array bounds range checking, which is enabled by
default, inhibits the vectorization of array processing
operations. Operations which use PACKED arrays are
also not vectorized.

6.1 ARRAY EXPRESSIONS - BINARY AND UNARY OPERATORS

The binary ("+", "_", "*", "/", DIV, MOD, AND, and OR) and unary ("+",
"_", and NOT) operators operate on arrays as well as on simple values.
If one operand of a binary operator is an array and the other is a simple
value, the simple value is expanded into an array of the same shape as
the array operand.

If both operands of a binary operator are arrays, they must be of the
same shape; that is, both arrays must possess the same number of
dimensions, and corresponding dimensions must be the same size (although
they need not have the same upper and lower bounds).

SR-0060 6-1 B

I

For example, suppose the variables a, b, c, and d are declared with the
following:

VAR
a, b: ARRAY [1 •• 10, 1 •• 5] OF REAL;
c: ARRAY [1 •• 5, 1 •• 10] OF REAL;
d: ARRAY [3 •• 7, 11 •• 20] OF REAL;

The following assignment is valid, because array a has the same shape as
array b:

a := b;

The following assignment is invalid, because array a does not have the
same shape as array c. A compiler error is generated as a result.

a := c;

The following assignment is valid. Although the upper and lower bounds
of arrays c and d are different, the shape of the arrays is the same:

c := d;

Suppose the variables a, b, ana c are declared with the following:

VAR
a, b: ARRAY [1 •• 10, 1 •• 10] OF REAL;
c: ARRAY [0 •• 9, 0 •• 9] OF INTEGER;

The following statement adds array a to array b on an element-by-element
basis and assigns the resulting array to a:

a := a + b;

The following statement multiplies array a and array c (whose elements
are implicitly converted from integers to real numbers) on an
element-by-element basis and assigns the resulting array to a:

a := a * c;

The following statement doubles each element of array a:

a := a * 2.0;

Arrays and array expressions may be used as arguments to the following
predefined functions:

ABS
ARCCOS
ARCSIN
ARCTAN

SR-0060

LN
LOG
ORn
POP

6-2 B

I

BAND
BNOT
BaR
BXOR
CHR
cos
COSH
EXP

PRED
SIN
SINH
SQR
SQRT
SUCC
TAN
TANH

NOTE

ABS, ARCCOS, ARCSIN, ARCTAN, BAND, BNOT, BaR, BXOR,
CHR, COS, COSH, EXP, LN, LOG, ORO, POP, PRED, SIN,
SINH, SQR, SQRT, SUCC, TAN, and TANH are the only
procedures or functions (other than the array
expression reduction functions described in this
section) to which an array expression can be passed as
an actual parameter.

The result of an array expression can be assigned to any array variable
of the same size. If a simple value is assigned to an array, the simple
value is assigned to every element in an array. For example:

a := 0.0;

assigns 0.0 to every element in array a.

Expressions that operate on entire arrays are a CRI extension to the ISO
Level 1 Pascal standard.

6.2 REDUCTION FUNCTIONS

The standard reduction functions (ALL, ANY, MAXVAL, MINVAL, PRODUCT, and
SUM) reduce array expressions into simple values. Each of the reduction
functions takes one argument, which can be an array of any shape, and
combines all of the argument's elements into a simple value. Table 6-1
lists and briefly describes the Cray Pascal reduction functions.

SR-0060 6-3 B

I

Table 6-1. Pascal Reduction Functions

Argument Result
Function Type Type Description

ALL Boolean Boolean Returns TRUE if all of the elements
are TRUE

ANY Boolean Boolean Returns TRUE if any one of the
elements is TRUE

MAXVAL Any scalar Same as Returns the element with the
type argument highest value

MINVAL Any scalar Same as Returns the element with the
type argument lowest value

PRODUCT Real or Same as Calculates the product of all of
integer argument the elements

SUM Real or Same as Calculates the sum of all of the
integer argument elements

Reduction functions (ALL, ANY, MAXVAL, MINVAL, PRODUCT, and SUM) are CRI
extensions to the ISO Level 1 Pascal standard.

6.3 CONSTRUCTED ARRAYS

Arrays can be constructed from other arrays in several ways. Each method
builds a new array from the elements of another. A constructed array can
be used as an operand in an array expression or as the target variable of
an assignment statement. Constructed arrays include the following
constructs that are described later in this subsection:

• Array-valued subscripts
• Slice index specification
• Array-valued field and pointer accesses

SR-0060 6-4 B

I

6.3.1 ARRAY-VALUED SUBSCRIPTS

An array can be subscripted by an array expression whose element type is
compatible with the index type of the array. The result has the same
shape as the index expression and is constructed from the elements of the
original array. The order in which array elements are accessed is not
defined.

Examples:

VAR
a: ARRAY [1 •• 10] OF REAL;
b: ARRAY [1 •• 5] of 1 •• 10;
c: ARRAY [1 •• 2, 1 •• 2] OF INTEGER;

a [b] is of the type ARRAY [1 .• 5] OF REAL and contains the following:

a [b [1]]
a [b [2]]
a [b [3]]
a [b [4]]
a [b [5]].

a [c] is of type ARRAY [1 •• 2, 1 •• 2] OF REAL and contains the following:

a [c [1,1]]
a [c [1,2]]
a [c [2,1]]
a [c [2,2]]

6.3.2 SLICE INDEX SPECIFICATION

An array can be constructed from some of the elements of another array
using a slice index specification. The syntax of the slice index
specification is as follows:

slice = II II I expression II expression [" •• " expression].

A slice can be specified in three forms. The first form is specified as
follows:

slice =

Form 1 selects all of the elements in the array. Form 2 is specified as
follows:

slice = beginning It "ending

SR-0060 6-5 B

I

Form 2 selects a sequence of elements, beginning at the element indexed
by the first expression and ending at the element indexed by the second.
Form 3 is specifed as follows:

slice = beginning " •• " ending " stride

Form 3 includes a stride value that specifies the distance between
selected elements. The first and second expressions must be compatible
with the index type of the array; the third expression must be compatible
with the type of INTEGER and must be nonzero.

Examples:

VAR
a, b: ARRAY [1 •• 10] OF REAL;
c: ARRAY [1 •• 5, 1 •• 5] OF REAL;

The statement (a [1 .. 5] := 0.0) makes the following assignments:

0.0 to a [1]
0.0 to a [2]
0.0 to a [3]
0.0 to a [4]
0.0 to a [5]

The statement (a [1 •• 9 •• 2] . -.- b [1 •• 5]) makes the following assignments:

b [1] to a [1]
b [2] to a [3]
b [3] to a [5]
b [4] to a [7]
b [5] to a [9] •

The following statement assigns the third column of array c to the
initial elements of array a:

a [1 •• 5] := c [•• , 3]

The following statement reverses the elements in array a:

a [1 •• 10] := a [10 •• 1 •• -1]

When slice indexes are specified, it is often impossible to determine the
size of the resulting array until run time. Compatibility of operands
cannot be fully checked when the program is compiled. The RL option
controls the run-time compatibility check. If the RL option is on (RL+),
code is generated to ensure that operands have the same shapes.

SR-0060 6-6 B

I

Slice index specification is a CRI extension to the ISO Level 1 Pascal
standard.

6.3.3 ARRAY-VALUED FIELD AND POINTER ACCESSES

An array can be constr~cted from another array by specifying a field or
pointer access with an array as the base variable. The result is an
array of the same shape as the base variable.

Examples:

VAR
a: ARRAY [1 .. 10] OF RECORD

f1: INTEGER
END;

b: ARRAY [1 •• 10] OF INTEGER;
c: ARRAY [1 .. 5] OF - RECORD

f2: INTEGER
END;

The statement b := a.f1; is equivalent to the following:

FOR i := 1 TO 10 DO
b[i] := a[i].f1;

The statement (a [1 .• 5].f1 := c
A

.f2) is equivalent to

FOR i := 1 TO 5 DO
a[i] := c[i]" .f2

Array-valued field and pointer accesses are a CRI extension to the ISO
Level 1 Pascal standard.

6.4 ARRAY MERGES

A conditional expression has the following form:

"IF" subexp "THEN" subexp "ELSE" subexp.

SR-0060 6-7 B

I

When the first subexpression of the conditional expression is an array
expression, the conditional expression denotes an array merge operation.

The second and third subexpressions must be simple values or array
expressions whose results are the same shape as the first subexpression.
The result of the conditional expression is an array, of the same shape
as the first subexpression, whose elements contain the results of the
second and third subexpressions.

The source of each element in the result is controlled by the value of
the first subexpression. When an element of the result of the first
subexpression is TRUE, the element in the result of the merge is the
corresponding element in the result of the second subexpression;
similarly, when an element of the result of the first subexpression is
FALSE, the element in the result of the merge is the corresponding
element in the result of the third subexpression.

Example 1:

The following assignment statement replaces all negative elements of a
with 0.0:

VAR a, b: ARRAY [l •. N] OF REAL;
a := IF a < 0.0 THEN 0.0 ELSE a

The assignment statement (a := IF a < 0.0 THEN 0.0 ELSE a) causes each
element of array a to be compared with 0.0. If the element being
evaluated is less than 0.0, it is replaced with 0.0.

For a description of the way relational operators function within
expressions that contain both array variables and scalar variables, see
Relational Operators later in this section.

Example 2:

The following statement negates all of the odd elements in array a:

VAR a, b: ARRAY [l •. n] OF REAL;
a := IF ODD(a) THEN -a ELSE a

Array merges are a eRI extension to the ISO Level 1 Pascal standard.

SR-0060 6-8 B

I

6.5 RELATIONAL OPERATORS

The following rules determine the meanings of relational operators «,
<=, =, <>,)=, » in array expressions:

• If both operands of a relational operator are whole arrays (that
is, neither operand is the result of an array expression, slice
index specification, array-valued subscript, or array-valued base
variable), the result is a simple Boolean value containing the
outcome of the comparison. For example, the following expression
returns a simple Boolean value:

s = 'FRED'

• Otherwise, the result is a Boolean array of the same shape as the
operands whose elements are the outcomes of comparing
corresponding elements of the operands. If a simple Boolean
result is needed, the result of the relational operator can be
reduced with the standard function ALL. For example, the
following expression returns a four-element Boolean array:

s [1 •• 4] = 'FRED'

The difference between s = 'FRED' and s [1 •• 4] = 'FRED' preserves the
meanings of relational operators for string expressions in standard
Pascal programs while allowing element-by-element comparisons in array
expressions.

Example 1:

Example 1 shows how relational operators function within expressions that
contain both array variables and scalar variables:

VAR a, b: ARRAY [l •• n] OF REAL;
a := IF a < 0.0 THEN 0.0 ELSE a

The assignment statement (a := IF a < 0.0 THEN 0.0 ELSE a) causes each
element of a to be compared with 0.0. If the element being evaluated is
less than 0.0, it is replaced with 0.0.

Example 2:

The following expression returns an n-element Boolean array that contains
the results of an element-by-element comparison of array b and array a:

VAR a, b: ARRAY [l •• n] OF REAL;
b [••]) a [••]

SR-0060 6-9 B

I

TRUE is returned for every element of array b that is greater than its
corresponding element in array a. FALSE is returned for every element of
b that is less than or equal to its corresponding element in array a.
The assignment statement could also have been specified as follows:

a := IF b [••] > a THEN b ELSE a

or as

a := IF b > a [••] THEN b ELSE a

Example 3:

The following expression returns a simple Boolean result when array band
array a are compared.

VAR a, b: ARRAY [l •• n] OF REAL;
b > a

When array b is compared to array a, a simple Boolean result is returned
for the entire array. If the expression b > a is true for every element
in array b when it is compared to its corresponding element in array a,
the expression is TRUE. If the expression b > a is not true for every
element in array b when it is compared to its corresponding element in
array a, the expression is FALSE.

Example 4:

Example 4 scales an array of any shape.

a := (a - MINVAL (a» / (MAXVAL (a) - MINVAL (a»;

Scaling an array reduces every element in an array to a value such that
O~array element~l. If, for example, array a was a 10-element array with
5.0, 6.0, 3.0, 10.0, -1.0, 0.0, 4.0, 3.0, 19.0, and 1.0 as its elements,
evaluating the expression produces the following scale values:

Element Scale Value

a [1] = 5.0 0.3
a [2] = 6.0 0.35
a [3] = 3.0 0.2
a [4] = 10.0 0.55
a [5] = -1.0 0.0
a [6] = 0.0 0.05
a [7] = 4.0 0.25
a [8] 3.0 0.2
a [9] = 19.0 1.0
a [10] = 1.0 0.1

SR-0060 6-10 B

I

Example 5:

Example 5 produces the dot product of two vectors (arrays).

dot := SUM (a [••] * b [••]);

Example 6:

Example 6 performs matrix multiplication.

FOR i := i TO m DO
FOR j := i TO n DO

o [i,j] := SUM (a [i, ..] * b [•• ,j]);

Example 7:

Example 7 performs matrix multiplication more efficiently than example 6.

o := 0.0
FOR i .- 1 TO m DO

FOR j := 1 TO n DO
o [i, ..] := 0 [i, ..] + a [i,j] * b[j, ••];

Example 8:

Example 8 sets up a checkerboard bit map.

bits .. - 0; . -
bits [1 •• m •• 2, 2 •• n •• 2] . - 1;
bits [2 •• m •• 2, 1 •• n •. 2] . - 1;

Example 9:

Example 9 places a limit on the elements of an array.

a := IF a) max THEN max ELSE a

Example 10:

Example 10 finds all of the primes from 2 to 1,000,000 using the sieve of
Erastosthenes.

SR-0060 6-11 B

I

PROGRAM sieve (OUTPUT);
CONST

size = 1000000;
TYPE

flagarray = ARRAY [2 •• size] OF BOOLEAN;
VAR

flags: flagarray;
i: INTEGER;

BEGIN
flags := TRUE;
FOR i := 2 TO TRUNC(SQRT(size» DO

IF flags[i] THEN
flags[i+i •• size •• i] := FALSE;

WRITELN (' End vectorized Pascal sieve;
SUM (ORD(flags»:O. ' Primes found. ')

END.

Array comparisons are a CRI extension to the ISO Level 1 Pascal standard.

SR-0060 6-12 B

7. WITH AND VIEWING STATEMENTS

The WITH and VIEWING statements alter the scopes and types, respectively,
of identifiers.

7.1 WITH STATEMENT

The WITH statement offers a shorthand method of referring to record
fields. The record structure is named once in a WITH statement.
Thereafter, all statements within the scope of the WITH statement can
omit the structure name and the period, referring to record fields as if
they were simple variables. The form of the WITH statement is as follows:

with-statement = "with" record-var-list "do" statement •

Example:

CONST totemployees = 637;
TYPE personnel = RECORD

name: PACKED ARRAY [1 •. 18] OF CHAR;
empnumber, age: INTEGER;
sex: (male, female);
salary: REAL:
vested: BOOLEAN

END:
VAR employee: ARRAY [l .. totemployees] OF personnel:

i: 1 .• totemployees:

WITH employee[i] DO

SR-0060

BEGIN

END;

name := 'Doe John
empnumber := 211;
age := 36:
sex := male:
salary := 18191.54;
vested := TRUE

7-1

, . ,

B

The values of variables in the record-var-list are determined during the
evaluation of the record-var-list, and modifications within the scope of
the WITH statement have no effect on those values. For instance, the
subscript variable i in the preceding example could be increased by an
increment inside the WITH statement, but doing so would not affect the
array element accessed.

Using the WITH statement for multiple references to the same variables
normally results in more efficient object code.

7.2 VIEWING STATEMENT

The VIEWING statement allows escape from the strict typing rules of
standard Pascal. Within the range affected by the VIEWING statement,
viewed variables take on new types. The form of the VIEWING statement is:

viewing-statement = "viewing" id-list ":" type-id "do" statement.

If the statement following the reserved word DO is a compound statement,
it is delimited by the reserved words BEGIN and END.

An error message is issued at compile time in the following cases:

• A conformant array appeared in a VIEWING id-list.

• The new type of the variable is larger than the old type. For
purposes of use by VIEWING, simple variables of types CHAR,
BOOLEAN, INTEGER, 124, REAL, and pointer require one word.

Example:

TYPE iarr
rarr
rec1

rec2

SR-0060

ARRAY [1 •• 10] OF INTEGER;
ARRAY [1 •. 11] OF REAL;
RECORD

a : INTEGER;
c : rarr;

END;
RECORD

d : rarr;
e : INTEGER;

END;

7-2 B

VAR
i,j,k INTEGER;
r,s,t REAL;
flag BOOLEAN;
ia iarr;
ir rarr;
r1 reel;
r2 ree2;

BEGIN
VIEWING i,j,k REAL DO

VIEWING flag REAL DO
VIEWING ir REAL DO

VIEWING r1 : REAL DO
VIEWING r2 : REAL DO

BEGIN
i .-
j : =
k .-
flag
ia .-
ir .-
r1 .
r2 : =

END;
VIEWING r1

r1 := r2;
VIEWING ia :

ia := ir;
VIEWING ir :

ia := ir;
END;

r;
s;
t; . - r*s/t; . -
flag + 1.0;
k - 1.0;
j+k+i+ 1.0;
SQRT(i);

ree2 DO
(*

rarr DO (*

iarr DO (*
(*

(* only first word of ia altered *)
(* only first word of ir altered *)
(* only first word of r1 altered *)
(* only first word of r2 altered *)

all 12 words of r2 copied to r1 *)
error .. rarr is larger than iarr *)

ok •• iarr is smaller than rarr *)
only first 10 words copied *)

The VIEWING statement is a CRI extension to the ISO Level 1 Pascal
standard.

SR-0060 7-3 B

8. ASSIGNMENT STATEMENT AND PROGRAM CONTROL STATEMENTS

Statements that manipulate data include the simple assignment statement,
conditional branching statements such as the IF and CASE statements, an
unconditional branching statement (GOTO), and looping statements such as
the REPEAT, FOR, and WHILE statements.

8.1 COMPOUND STATEMENTS

Many of the statements discussed in this section involve the use of the
compound statement. The WITH and VIEWING statements (see section 7,
WITH and VIEWING Statements) may also contain a compound statement. The
form of a compound statement is as follows:

compound-statement = "begin" statement-sequence "end" .

The reserved words BEGIN and END define the scope of a compound
statement. Any number of valid Pascal statements can appear within that
scope.

The compound statement is treated as a unit and must conform to the rules
for other statements. For instance, a semicolon must separate the
compound statement from the statement that follows it.

The final statement in the scope of a compound statement need not end in
a semicolon, since it is followed by the reserved word END rather than
another statement. Placing a semicolon before the END is not, however,
an error. The Pascal compiler assumes that such a semicolon separates
the preceding statement from a null (empty) statement. For example, the
semicolon after the final statement in the following compound statement
is superfluous but is not an error:

statement;
WITH •••

BEGIN
statement;

statement;
END;

SR-0060 8-1 B

I

I

8.2 ASSIGNMENT STATEMENT

The assignment statement assigns values to variables. The form of the
assignment statement is as follows:

assignment-statement = (var-access I function-id) ":=" expression.

If the variable on the left side of the assignment statement identifies a
function, the assignment must occur within the scope of that function.
Section 9, Procedures and Functions, describes functions.

Any variable on the left side must be assignment compatible with the
expression on the right side. If the variable is not assignment
compatible, the compiler issues an error message.

A variable and an expression are assignment compatible if any of the
following are true:

• The variable and the expression are of the same type (other than
type FILE).

• The variable is of type REAL and the expression is of type INTEGER.

• The variable and the expression are sets that are compatible
types, and all the elements of the expression have been declared
as members of the base type of the variable.

• The variable and expression are compatible string types.

Two types are compatible if any of the following are true:

• They are the same type (other than type FILE). Variables of
anonymous types are compatible only if they are declared in the
same list.

• One is a subrange of the other, or both are subranges of the same
type.

• They are set types of compatible base types, and either both are
packed or neither is packed.

• They are string types with the same number of elements.

• They are arrays of the same shape. See section 6, Array
Processing, for a description of the shape of an array.

The variable can be any of the following:

• A simple variable
• An element in a structured variable (such as an array or record)
• A pointer variable

SR-0060 8-2 B

• A buffer variable (of the form: file-var"".)
• A string variable
• A set variable

The expression on the right side of the assignment statement can include
any of the following:

• Constant or variable operands
• Operators
• Function identifiers
• Pointers
• Conditional tests

When a function identifier appears on the right side of an assignment
statement, that function is invoked.

Examples:

ch : = 'a';
x := 5.3;
y := SQR(x);
count := count + 1;
bool := x > y;
alphanumerics := letters + ['0' .• '9'];
root := p~.link;
table[j,k] := coord.z;

Variables of different subranges but of the same underlying type can
appear in the same assignment statement as long as the value assigned
occurs within both subranges.

Example:

VAR var1: 1 •• 18;
var2: 10 .• 30;

var1 := var2;

The preceding assignment statement is valid if var2 only contains
elements between 10 and 18. If var2 contains an element outside the
range of varl and run-time checking is enabled, a run-time error message
is issued.

The value of one string variable can be assigned to another if both
strings are the same length.

SR-0060 8-3 B

Example:

VAR stringl: PACKED ARRAY [1 •• 8] OF CHAR;
string2: ALFA;

stringl .- 'maniacal';
string2 .- stringl;

8.2.1 CONDITIONAL EXPRESSIONS

A conditional expression permits an IF-THEN-ELSE structure on the right
side of an assignment statement and in other places where expressions are
valid. The following is a conditional expression if x is a Boolean
expression:

IF x THEN Y ELSE z

The types of expressions y and z must be compatible. The result of the
conditional expression is y, if x is TRUE; otherwise, the result is z.
For example, the following statement writes the string 'Pass' if a is
equal to b and 'Fail' if a is not equal to b:

WRITELN (IF a=b THEN 'Pass' ELSE 'Fail');

The following statement sets MAX to the larger of a and b:

MAX := IF a>b THEN a ELSE b

Conditional expressions are a CRI extension to the ISO Level 1 Pascal
standard.

8.3 IF STATEMENT

The IF statement permits the execution of code within its scope when a
specified condition is true. If the optional ELSE clause is present,
either of two sections of code are executed depending on whether the
condition is true or false. The form of the IF statement is as follows:

if-statement = "if" boolean-expression "then" statement [else-part] .
else-part = "else" statement •

SR-0060 8-4 B

The statement in both the THEN clause and the ELSE clause can be either a
simple or a compound statement. Whenever the statement is compound, it
is delimited by BEGIN and END.

Example:

IF count < max THEN
BEGIN

a[count] := 1;
count := count + 1

END
ELSE

a[count] := 0;

In this example, the condition count < max is tested. If it is true, the
statements in the THEN clause are executed and the statement in the ELSE
clause is not. If the condition is false, the statements in the THEN
clause are not executed but the statement in the ELSE clause is. When
the ELSE clause is not present and the condition is false, none of the
statements within the scope of the IF statement are executed.

Normally, a superfluous semicolon causes a harmless null statement in a
Pascal program. In the preceding example, however, a semicolon between
the END and the ELSE causes an error. When the statement in the THEN
clause is compound and the ELSE clause is present, a semicolon must not
follow the reserved word END at the end of the THEN clause.

IF statements can be nested. In nested IF statements, an ELSE clause is
always paired with the nearest preceding unpaired THEN clause.

Examples:

IF x <= Y THEN
IF (a b) OR (c = d) THEN

BEGIN

SR-0060

IF i = k THEN
BEGIN

END
ELSE

END;

8-5 B

IF a (0 THEN
BEGIN

END
ELSE IF a = 0 THEN

BEGIN

END
ELSE (*If a > 0 *)

BEGIN

END;

8.4 CASE STATEMENT

As with the IF statement, the CASE statement provides for the conditional
execution of a simple or compound statement. Rather than testing only a
Boolean expression, however, the CASE statement tests an expression of
any scalar type except REAL. If a label in the CASE statement is equal
to the value of the expression, the statement following that label is
executed.

The form of the CASE statement is as follows:

case-statement = "case" case-index "of"
case-list-element { ";" case-list-element }
[[";"] "otherwise" [":"] statement]

"end" •

case-index = expression •

case-list-element = case-constant-list ":" statement.

A CRr extension, the OTHERWISE clause, serves as a label that receives
control if none of the other labels match the value of the case-index, or
selector. The statement in the OTHERWISE clause can be the null
statement. If the OTHERWISE clause is not specified and no labels match
the value of the selector, and if run-time checking is enabled, a
run-time error occurs.

SR-0060 8-6 B

The OTHERWISE clause is a CRI extension to the ISO Level 1 Pascal
standard.

The selector is an expression that must resolve to a value of the same
type as the labels. More than one label can be used to refer to the same
executable statement, as the following example shows:

CASE octal_digit OF
0, 1, 2 low:= low + 1;
3, 4, 5 medium:= medium + 1;

6, 1 high:= high + 1;
OTHERWISE valid:= FALSE
END;

The statement following a label may also be a compound statement, as in
the following example:

CASE ch OF
, a', 'e', • i " , 0', , u ': BEGIN

'y'

vowelcnt := vowelcnt + 1;
previousch := vowel

END;
CASE previousch OF

nonvowel : BEGIN
vowelcnt := vowelcnt + 1;
previousch := vowel

END; (* of nonvowel label *)
vowel previousch := nonvowel

END; (* of inner CASE statement *)
OTHERWISE previousch := nonvowel
END; (* of outer CASE statement *)

8.5 GOTO STATEMENT

The GOTO statement provides an unconditional branch to a statement
label. The format of the GOTO statement is as follows:

"goto" label .

The statement label consists of from 1 to 4 digits (a number from 0 to
9999). The label must be declared in the declarations section of the
block in which it appears (see section 4, Program Organization). When it
appears in the executable statements section of a program, the label is
followed by a colon.

SR-0060 8-7 B

Example:

LABEL 10;

GOTO 10;

10 statement

NOTE

The GOTO statement usually produces undesirable results
when used to transfer control into a structured
statement (for instance, a CASE, IF, REPEAT, WHILE, or
FOR statement).

Example:

IF x = 0 THEN
BEGIN

10: statement
END;

GOTO 10;

8.6 FOR STATEMENT

The FOR statement enables a simple or compound statement to be executed a
specified number of times. The format for the FOR statement is as
follows:

for-statement = "for" control-var ":=" initial-value
("to" I "downto") final-value
["by" increment-value]
"do" statement •

SR-0060 8-8 B

I

The control variable determines how many times the statement (either
simple or compound) following the reserved word DO is executed. The
control variable, which must be declared in the declarations section of
the block to which it is local, begins with the initial value and
increases by an increment value or decreases by a decrement value (or 1
if no BY clause is present) at the end of each iteration. The control
variable can be of any scalar type except REAL, and the initial and final
values must be assignment-compatible with that type; the increment value,
if present, must evaluate to a positive integer.

The BY clause is a Cray Research extension of the ISO Level 1 Pascal
standard.

The reserved words TO and DOWNTO increase and decrease the control
variable, respectively. The value of the control variable is tested each
time the FOR statement executes. If the test reveals that the control
variable is greater than the final value (when using TO) or less than the
final value (when using DOWNTO), control passes to the statement
following the FOR statement.

Pascal evaluates the values controlling iteration in the following order:

1. Initial vaLue
2. Final value
3. Increment value (if present)
4. Assignment to the control variable

NOTE

The value of the control variable cannot be changed
within the scope of the FOR statement.

The initial value and final value must be the same type as the control
variable. Any scalar type except REAL is valid.

Examples:

FOR i := 1 TO 10 BY 2 DO
x[i] := 0;

SR-0060 8-9 B

FOR slot := 1 TO linesize DO
BEGIN

READ(ch) ;
IF EOLN OR EOF THEN

BEGIN
FOR rest := linesize DOWNTO slot DO

line[rest] .- ' ';
GOTO 100

END
ELSE

line[slot] := ch
END;

If the initial value is greater than the final value and TO is specified,
or if the initial value is less than the final value and DOWNTO is
specified, the loop is not executed. No error message is issued.

The value of the control variable (i, slot, and rest in the preceding
examples) is undefined once control exits the FOR statement unless the
statement is exited by a GOTO statement. An undefined variable must be
reinitialized, either explicitly in an assignment statement or implicitly
in another FOR statement, before it can be used again. If the FOR
statement is exited through a GOTO statement, as may be the case in the
second example, the control variable retains the last value it was
assigned.

The following restrictions apply to the control variable in the block in
which it is used:

• It cannot be on the left side of an assignment statement.

• It cannot be passed as a VAR parameter in a procedure or function
call.

• It cannot appear as a parameter in a READ or READLN statement.

• It cannot be the control variable for more than one nested FOR
statement.

Example:

If i is a FOR loop control variable, the following statement generates an
error:

READ(i);

However, the following statement does not generate an error, because i is
being used to select a variable and is not a variable itself:

READ(line[i]);

SR-0060 8-10 B

I
If the V option is enabled (V+), Pascal attempts to generate code for the
FOR statement that exploits the vector processing capabilities of the
hardware. See section 13, Vectorization and Optimization, for a
description of the types of FOR statements that vectorize.

8.7 REPEAT STATEMENT

The REPEAT statement executes a sequence of statements until a specified
condition is true. The form of the REPEAT statement is as follows:

repeat-statement = "repeat" statement-sequence
"until" boolean-expression.

Since the Boolean expression is tested at the end of the REPEAT
statement, the statement sequence always executes at least once. As long
as the Boolean expression is FALSE, the statement sequence continues to
execute. The REPEAT statement is exited when the value of the Boolean
expression is TRUE.

Although the statement sequence may be a compound statement, the BEGIN
and END keywords need not be specified. The presence of BEGIN and END
does not constitute an error.

Example:

slot := 1;
REPEAT

IF EOLN THEN ch := '
ELSE READ(ch);
line[slot] := ch;
slot := slot + 1

UNTIL slot > 80;
READLN;

8.8 WHILE STATEMENT

The WHILE statement executes a sequence of statements as long as a
specified condition is true. The test for the condition comes before the
statements are executed. The statements within the scope of the WHILE
statement, therefore, do not execute at all if the first test of the
condition results in a value of FALSE. The form of the WHILE statement
is as follows:

while-statement = "while" boolean-expression "do" statement •

SR-0060 8-11 B

If the statement following the reserved word DO is a compound statement,
it is delimited by the reserved words BEGIN and END.

Example:

slot := 1;
WHILE slot <= 80 DO

BEGIN-
IF EOLN THEN ch :=
ELSE READ(ch);
line[slot] := ch;
slot := slot + 1

END;
READLN;

SR-0060 8-12 B

9. PROCEDURES AND FUNCTIONS

Procedures and functions are subprograms within a Pascal program. By
using them, you can divide a program into logical components and give it
a comprehensible structure.

Procedures and functions can be either internal (coded as part of the
program) or external (a routine outside the program, such as a library
routine). Although this section deals primarily with internal procedures
and functions, external subprograms are also described. Appendix B,
Predefined Functions and Procedures, details the predefined Pascal
external procedures and functions. The System Library Reference Manual
contains information on other external functions and procedures available
in the Pascal run-time library. Routines not in the Pascal run-time
library are available if compatible parameter passing sequences are used.

Internal procedures and functions are defined in the declarations section
of the block to which they are local. They are invoked within the
executable statements section of the same block. (See section 4, Program
Organization, for a description of the organization of a Pascal program.)

Procedures and functions can be nested within other procedures and
functions to a nesting depth of 25.

9.1 PROCEDURES

A procedure is a subroutine that permits a program to be divided into
logical parts.

Its form is basically the same as that of a program. Both have a
heading, a declarations section, and an executable statements section
delimited by the keywords BEGIN and END. The differences between the two
are as follows:

• The END that terminates the executable statements section of a
procedure is followed by a semicolon rather than a period.

• The forms of the headings are different.

SR-0060 9-1 B

A procedure declaration takes the following form:

procedure-dcl = (procedure-heading ";" directive) I
(procedure-identification ";" procedure-block) I
(procedure-heading ";"

[directive-alt ";"]
procedure-block) •

procedure-heading = "procedure" id [formal-parm-list] •

formal-parm-list = "(" formal-parm-section
{ ";" formal-parm-section } ")" •

formal-parm-section = value-parm-spec I
var-parm-spec I
procedural-parm-spec
functional-parm-spec
conformant-array-parm-spec •

directive-alt = "exported" ["(" external-name ")"] •

directive = "forward" [";n "exported" ["(" external-name ")"]]) I
("exported" [n(" external-name ")"] [";" "forwardn]) I
"fortran" I
"external" I
("imported" [n(" external-name n)"]) •

Directives for both procedures and functions are described later in this
section.

A procedure can use any variables declared in the block to which it is
local. For example, if procedure x is declared in procedure y, x can
access any variables also declared in procedure y. Variables defined in
the main program segment are global; that is, they can be accessed from
anywhere in the program block.

Variables declared in the declarations section of a procedure are local
to the procedure and are undefined when the procedure is invoked.
Variables declared in procedure y, for example, cannot be accessed by the
main program that invokes y. The main program and procedure y could both
declare variables of the same name. An integer variable i, for instance,
could be declared in both. In such a case, the value of the variable i
in procedure y is not affected by any assignments to the other variable i
in the main program, and vice versa. If procedure x is declared in
procedure y and references the variable i, the reference is to the
variable i in procedure y rather than in the main program segment.

SR-0060 9-2 B

While using variables defined outside of a procedure is valid, the
practice is not always desirable. Assignments to such variables are
called side effects. Side effects, besides inhibiting readability, may
prevent the compiler from optimizing.

Side effects can be avoided by passing variables as parameters. The
variables to be passed appear in the statement that invokes the
procedure. Each of these parameters (called actual parameters) is
matched by position to a formal parameter in the procedure heading.
Parameter passing is described more fully later in this section.

The statement that invokes a procedure has the following form:

procedure-statement = procedure-id
[([actual-parm-list] I

read-parm-list I
readln-parm-list
write-parm-list I
writeln-parm-list)] •

The following is an example of using procedures to divide a program into
logical parts:

PROGRAM data (INPUT, OUTPUT);
PROCEDURE inputdata;
BEGIN

END; (* inputdata *)

PROCEDURE processdata;
BEGIN

END; (* processdata *)

PROCEDURE outputdata:
BEGIN

END: (* outputdata *)

BEGIN (* data *)
inputdata:
processdata:
outputdata

END.

SR-0060 9-3 B

9.2 FUNCTIONS

A function is a subprogram that returns a value. A function is defined
in the declarations section of the block to which it is local and is
invoked when its name is encountered in the executable statements section
of that block.

At least one assignment statement must appear within the scope of the
function. That assignment statement gives the function name a value.
When the function completes, control returns to the statement from which
the function was invoked. The function name in that statement then takes
on the value assigned to it in the function.

The form of a function definition is as follows:

function-del = (function-heading ";" directive) I
(function-identification ";" function-block) I
(function-heading ";"
[directive-alt ";"]

function-block) .

The organization of a function is basically the same as that of a program
or a procedure. It has a heading, a declarations section, and an
executable statements section delimited by the reserved words BEGIN and
END. The directives are the same for both functions and procedures;
directives are described later in this section.

The heading of a function is slightly different from both a program
heading and a procedure heading:

function-heading = "function" id [formal-parm-list
":" result-type.

The value returned by a function must be of the result type specified in
the function heading. The result type can be a scalar, subrange, or
pointer type.

Example:

FUNCTION found (symbols: SYMTAB; currentch: CHAR; last: INTEGER):
BOOLEAN;

(* found determines if the current character is in the array called
symbols *)

VAR i: INTEGER;
found!: BOOLEAN;

SR-0060 9-4 B

BEGIN
i := 1;
REPEAT

found1 := symbols[i] = currentch;
i := i + 1

UNTIL (i) last) OR found1;
found .- found1

END; (* of function found *)

A function is invoked with a function designator of the following form:

function-designator = function-id [actual-parm-list] •

The appearance of the function name in the following executable statement
invokes the function in the preceding example:

IF NOT found(symbolarray, ch, lastentry) THEN
BEGIN

lastentry := lastentry + 1;
symbolarray[lastentry] := ch

END;

As with the procedure, any variable appearing in the declarations section
of a function is local to that function. Side effects and the loss of
compiler optimization may result if a value is assigned to a global
variable within a function.

9.3 PARAMETERS

Side effects are avoided by communicating data to and from a procedure or
function through parameters. Each formal param~ter listed in the heading
corresponds, by position, to an actual parameter in the statement that
invokes the subprogram. The following kinds of parameters can be passed:

• Value parameters
• Variable (VAR) parameters
• Procedure parameters
• Function parameters
• Conformant arrays

9.3.1 VALUE AND VAR PARAMETERS

Value and VAR parameters represent two methods of passing variable values
to a procedure or function.

SR-0060 9-5 B

With a value parameter, the value of the corresponding actual parameter
is copied to a second memory location when the procedure or function is
invoked. The value of the value parameter is not copied back to the
original memory location when the procedure or function completes. Thus,
even if the parameter is assigned a new value during the execution of the
procedure or function, the actual parameter remains unchanged.

An assignment to a VAR parameter during the execution of a procedure or
function does change the value of the corresponding actual parameter.
When a procedure or function is invoked, the address of the actual
parameter is placed in the memory location reserved for a VAR parameter.
Thus if a value is assigned to the VAR parameter during the execution of
the procedure or function, the actual parameter itself is changed.

Since value parameters are copied for use in a procedure or function,
passing large structures such as arrays or records as VAR parameters
saves memory space and execution time.

Components of a packed array, components of a packed record, selectors of
I record variants, and CACHE variables cannot be passed as VAR parameters.

When a file is passed, however, it must be passed as a VAR parameter.

The reserved word VAR precedes the variable parameters in the formal
parameter list to distinguish variable parameters from value parameters.
Value and VAR parameter specifications take the following forms:

value-parm-spec = id-list ":" type-id •

var-parm-spec = "var" id-list ":" type-id

Example:

PROCEDURE x (i : INTEGER; VAR n, m : INTEGER);

Three formal parameters are declared for procedure x in the preceding
example. The variable i is a value parameter, while nand mare VAR
parameters.

The only restriction on the order in which the parameters appear is that
the actual parameters must correspond to the positions of the formal
parameters. Value and VAR parameters, as well as parameters of different
types, can be interspersed as in the following example:

PROCEDURE Y (i : INTEGER; VAR a : REAL; b,c : REAL; VAR j : INTEGER);

The statement that invokes a procedure or function must contain the same
number of parameters listed in the procedure or function declaration, and
those parameters must be of the same corresponding types. The actual
parameter list in the calling statement takes the following form:

SR-0060 9-6 B

actual-parm-list = "(" actual-parm
{ "," actual-parm } ")" •

actual-parm = expression I
var-access I
procedure-id
function-id .

An actual parameter being passed as a value parameter can be an
expression, as the syntax demonstrates. An expression cannot be passed,
however, as a VAR parameter. The following statement invokes procedure x
of the preceding example, passing three integer parameters:

x (maxsize - 1, current, previous);

An actual parameter being passed as a value parameter must be assignment
compatible with the formal parameter that corresponds to it. (Section 8,
Assignment Statement and Program Control Statements, describes assignment
compatibility.) An actual parameter being passed as a VAR parameter must
be of the same type as the corresponding formal parameter.

NOTE

The CACHEt variable cannot be passed as a VAR
parameter. CACHE variables that are larger than 1 word
are copied to Common Memory when they are passed by
value.

9.3.2 PROCEDURE AND FUNCTION PARAMETERS

Procedure and function names can be passed as parameters to permit
procedures and functions to invoke each other without multiple
definitions. In the following example, for instance, procedure
processtoken calls one of three functions, depending on the contents of
the array token. Which function it calls is decided in the main program
and communicated to the procedure through a function parameter.

PROGRAM example (INPUT, OUTPUT);
TYPE tokenarray = ARRAY [1 •• 10] OF CHAR;
VAR token : tokenarray;

t Available with CRAY-2 Computer Systems only

SR-0060 9-7 B

FUNCTION wordcheck
BEGIN

BOOLEAN;

END; (* wordcheck *)

FUNCTION numbercheck : BOOLEAN;
BEGIN

END; (* numbercheck *)

FUNCTION delimcheck : BOOLEAN;
BEGIN

END; (* delimcheck *)

PROCEDURE processtoken (VAR token
BOOLEAN);

BEGIN

IF valid THEN ..•

END; (* processtoken *)

BEGIN (* main program *)

tokenarray; FUNCTION valid

IF token[l] IN identifiers THEN
processtoken (token, wordcheck)

ELSE IF token[l] IN number THEN
processtoken (token, nurnbercheck)

ELSE IF token[l] IN delimiter THEN
processtoken (token, delimcheck)

ELSE

END. (* of program *)

Predefined procedures and functions cannot be passed as parameters.

SR-0060 9-8 B

9.3.3 CONFORMANT ARRAY PARAMETERS

Conformant array parameters permit a procedure or function to operate on
arrays of different sizes. The declaration of a conformant array
parameter in a procedure or function heading is called a conformant
array schema, which is defined as follows:

conformant-array-schema = packed-conformant-array-schema
unpacked-conformant-array-schema .

unpacked-conformant-array-schema = "array" "[" index-type-spec
{ ";" index-type-spec} "]"
"of" (type-id I
conformant-array-schema) •

packed-conformant-array-schema = "packed" "array"
"[" index-type-spec "]"
"of" type-id •

index-type-spec = id " .• " id ":" ordinal-type-id

The identifiers that specify the lower and upper bounds of the array
receive values at run time from the array that appears as an actual
parameter in the function or procedure call.

Example:

PROGRAM conformant (OUTPUT);
TYPE indextype = 0 •• 10;
VAR array1 ARRAY [1 •. 5] OF INTEGER;

array2 : ARRAY [2 .• 7] OF INTEGER;

PROCEDURE proc (x : ARRAY [low .. high: indextype] OF INTEGER);
BEGIN

WRITELN (OUTPUT, low, high)
END;

BEGIN
proc (array1);
proc (array2)

END.

In this example, the identifiers low and high receive values of 1 and 5,
respectively, when proc is invoked the first time. On the second
invocation, low and high become 2 and 7, respectively. The identifiers
low and high are not proper variables and cannot be assigned values or be
used to initialize constants.

SR-0060 9-9 B

An actual array must be conformable to the conformant array schema to
be successfully passed as a parameter. An array and a schema are
conformable if they meet the following criteria:

• The index types of the actual array and the schema must be
compatible. (Section 8, Assignment Statement and Program Control
Statements, defines type compatibility.)

• The smallest and largest index values of the actual array must lie
within the range specified by the low and high bounds of the
schema.

• The component types of the actual array and the schema must either
be the same or be conformable. (This allows multidimensional
conformant arrays, which are, strictly speaking, arrays of arrays.)

• The actual array and the schema must either be both packed or both
unpacked. (In the case of a multidimensional array, only the
innermost dimension can be packed.)

A conformant array formal parameter can also be passed as an actual
parameter, as the following example shows:

PROGRAM test1 (OUTPUT);

TYPE xx = 1~.10;
VAR q : ARRAY [1 •• 7] OF INTEGER;

PROCEDURE p1 (VAR x : ARRAY [low1 .. high1: xx] OF INTEGER);
BEGIN

END;

PROCEDURE p2 (VAR Y
BEGIN

p1(y)
END;

BEGIN

END.

ARRAY[low2 •. high2: xx] OF INTEGER);

When a conformant array formal parameter is passed as an actual
parameter, that array cannot be passed by value. In this example, for
instance, the conformant array schema ~ is preceded by the VAR reserved
word.

SR-0060 9-10 B

I

The following procedure heading contains a conformant array schema that
illustrates a frequent source of error in using conformant arrays.

PROCEDURE sample (x, y : ARRAY [lbd •• hbd: indextype] OF INTEGER);

The two actual parameters passing values to x and y in this example
schema must have exactly the same type.

CACHEt variables cannot be passed as either VAR or VALUE conformant
array parameters.

9.4 PROCEDURE AND FUNCTION DIRECTIVES

Directives supply the compiler with information on the location or the
characteristics of a procedure or function. The syntax for a valid
procedure or function directive is as follows:

directive = [("forward"
]) I

"." , "exported" ["(" external-name ")"]

("exported"
) I
"fortran" I
"external" I

"(" external-name ")"] [... " ,

("imported" ["(" external-name ")"])] .

directive-alt = ["exported" ["(" external-name ")"]] .

9.4.1 FORWARD DIRECTIVE

"forward"]

The FORWARD directive is useful when a procedure or function calls
another procedure or function that is defined in the same scope.
Normally, a procedure or function must be declared before the statement
that invokes it, but FORWARD allows a procedure or function to invoke
another that is declared after the calling subprogram.

The complete heading of the subprogram to be invoked, including the
parameter descriptions, is followed by the FORWARD directive and placed
before the subprogram invoking it. Parameters for the forward-referenced
subprogram are not repeated in the actual declaration heading.

t Available with CRAY-2 Computer Systems only

SR-0060 9-11 B

Example:

PROCEDURE callee (VAR x , y : INTEGER); FORWARD;

PROCEDURE caller (a, b : REAL);
BEGIN

cal lee (i, k);

END; (* of caller *)

PROCEDURE callee;
BEGIN

END; (* of callee *)

The presence of the forward reference in this example enables procedure
caller to invoke procedure callee. The parameters are not repeated in
the declaration heading of callee.

9.4.2 EXTERNAL DIRECTIVE

The EXTERNAL directive enables a Pascal program to access routines
outside of the program. EXTERNAL can be used for any routine written in
Pascal or for a routine written in any other language if a compatible
calling sequence is used. (See the Macros and Opdefs Reference Manual
for a description of the calling sequence.) The heading of the procedure
or function followed by the EXTERNAL directive replaces the declaration
of the subprogram.

The EXTERNAL directive is a CRI extension to the ISO Level 1 Pascal
standard.

In the following example, P$LOGMSG is the external name used by the
loader.

SR-0060 9-12 B

PROGRAM sample (INPUT, OUTPUT);
TYPE lyne = PACKED ARRAY [1 .• 80] OF CHAR;

PROCEDURE P$LOGMSG (VAR sl: lyne); EXTERNAL;
BEGIN (* main program *)

P$LOGMSG (param);

END. (* of main program *)

Predefined procedures and functions (described in appendix B, Predefined
Functions and Procedures) need not be referenced before they are used in
a Pascal program.

9.4.3 FORTRAN DIRECTIVE

FORTRAN routines can be invoked from a Pascal program by using the
FORTRAN directive. A heading with a FORTRAN directive is the same as a
heading with an EXTERNAL directive, except that the word FORTRAN is used.

The FORTRAN directive is a eRI extension to the ISO Level 1 Pascal
standard.

Example:

FUNCTION f (i : INTEGER; VAR r : REAL) : REAL; FORTRAN;

As the example indicates, value parameters can be passed to FORTRAN
subprograms.

Problems may arise when calling FORTRAN routines because of
incompatibilities between Pascal and FORTRAN. The following are
potential difficulties:

• Arrays are stored differently in FORTRAN than in Pascal. Passing
multidimensional arrays such as the following may cause confusion:

VAR a : ARRAY [0 .• 10, 1 .. 20] OF INTEGER;

SR-0060 9-13 B

This declaration must be interpreted by the FORTRAN routine as
follows:

INTEGER A (20, 0:10)

An array accessed as A[I, J, K] in Pascal is referenced as
A(K, J, I) in a FORTRAN routine. Either the Pascal program or the
FORTRAN routine must transpose such arrays.

• The FORTRAN type COMPLEX can be declared as a record with two
fields of type REAL. The result of a FORTRAN function, however,
cannot be COMPLEX, because Pascal does not allow function results
of type RECORD. Thus, a Pascal program cannot call FORTRAN
functions of type COMPLEX but can pass VAR parameters of type
COMPLEX if they are first declared as records.

• Pascal procedures and functions cannot be passed as parameters in
a FORTRAN declaration. But external FORTRAN subroutines and
functions can be declared as procedure and function parameters.

• The Pascal compiler does not test for inappropriate parameter
types when calling FORTRAN routines. INTEGER, REAL, COMPLEX,
ARRAY, SUBROUTINE, and FUNCTION are types generally suitable for a
FORTRAN routine called from a Pascal program. (Other types can be
passed if you know how storage is allocated by both the Pascal
compiler and the FORTRAN compiler and can perform any necessary
conversions.)

• Pascal conformant arrays cannot be passed to FORTRAN routines.

• FORTRAN variable-length characters arguments cannot be passed from
Pascal procedures.

9.4.4 IMPORTED AND EXPORTED DIRECTIVES

The IMPORTED and EXPORTED directives enable a Pascal program to share
procedures and functions defined in separate compile units. (Section 12,
Modules, describes module compile units, including examples of IMPORTED
and EXPORTED directives.)

The IMPORTED and EXPORTED directives are CRI extensions to the ISO Level
1 Pascal standard.

SR-0060 9-14 B

The EXPORTED directive appears in the heading of the procedure or
function to be accessed. Exported routines are normally library
routines. The IMPORTED directive appears in the program or module that
will use the routine. Only the procedure or function heading and the
IMPORTED directive can appear in a program importing a routine. The
routine is executed when the procedure or function name is encountered in
the executable statements section of the program.

The syntax for the IMPORTED directive is as follows:

"imported" ["(" external-name ")"] •

The EXPORTED directive identifies a procedure or function to be used
outside the compile unit in which it is defined. A procedure or function
can only be EXPORTED from the outermost nesting level of a module or
program. Inner level procedures and functions can be called by an
exported routine but cannot themselves be exported.

The syntax for the EXPORTED directive is as follows:

"exported" ["(" external-name It)"] •

The external name in an IMPORTED directive is, if specified, the name by
which the loader knows a routine. The name must be within the loader
limitation of 8 characters for CRAY X-MP and CRAY-l Computer Systems and
32 characters for CRAY-2 Computer Systems. If no external name was
assigned to an IMPORTED or EXPORTED procedure or function, the name of
the routine is used with truncation where the name exceeds the external
name limitations.

Example:

In program a:

PROCEDURE cat (i
PROCEDURE dog (j

In module b:

INTEGER); IMPORTED (fred);
INTEGER); IMPORTED (joe);

PROCEDURE turkey (k: INTEGER); EXPORTED (fred);

PROCEDURE joe (n INTEGER); EXPORTED;

SR-0060 9-15 B

In this example, the external name fred matches in procedures cat and
turkey. The loader uses the name fred to execute the procedure, while
the Pascal program continues to know the routine as cat. When cat is
encountered in the executable statements section of the program, the
loader begins execution on the routine known to it as fred. The exported
procedure joe has no external name and must therefore be matched by joe
in the IMPORTED directive in the program. If the name joe were josephine
instead, it would be truncated to the 8 characters josephin for use by

I the loader on a CRAY-l or CRAY X-MP Computer System.

If the external name is missing from the IMPORTED directive, the
procedure or function name is used. The procedure or function name must
then match the name by which the loader knows the exported routine.

I Again, if the name is longer than 8 characters on a CRAY-l or CRAY X-MP,
it is truncated to 8 characters for use by the loader.

The capability of renaming an imported routine within the scope of the
program makes using the same routine under two different names possible.
In the following example, routine ISRCHEQ in $SCILIB is referenced in two
procedures:

PROCEDURE vsearch int

PROCEDURE vsearch real

VAR limit,
firstelement,
step,
target: INTEGER); IMPORTED(ISRCHEQ);

VAR limit : INTEGER;
VAR firstelement : REAL;
VAR step : INTEGER;
VAR target: REAL); IMPORTED(ISRCHEQ);

By declaring ISRCHEQ in both ways, both real and integer vectors can be
searched without argument type conflicts.

The level to which procedures and functions are nested within a program
is not affected by imported routines. For instance, if a procedure at a
nesting level of 10 in a program imports a module with three levels of
procedures, the nesting level of the program remains at 10 despite the
imported module.

The FORWARD directive can be used with the EXPORTED directive by
inserting the following either before or after the EXPORTED directive:

FORWARD;

When using procedures or functions with both EXPORTED and FORWARD
directives, the rules for FORWARD procedures and functions must be
followed when establishing the actual block containing the code for the
routine. (The FORWARD directive is described earlier in this section.)

SR-0060 9-16 B

9.5 RECURSIVE PROCEDURES AND FUNCTIONS

A Pascal procedure or function can invoke itself. Such an invocation is
termed a recursive call.

Example:

FUNCTION factorial (current_value
BEGIN

IF current value 0 THEN
factorial .- 1

ELSE

INTEGER): INTEGER;

factorial .- factorial (current_value - 1) * current value
END

END;

This is an example of direct recursion; the function factorial contains
its own invocation. The following example is an instance of indirect
recursion; procedure recurl invokes procedure process_partial, which
contains a call to recur1. A FORWARD directive (described earlier in
this section) is required for recur1.

PROCEDURE recur1 (pram1 : REAL); FORWARD;

PROCEDURE process_partial (pram2 : REAL);

recur1(running_total);
END;

PROCEDURE recur1;

IF ••• THEN process_partial(partial_total);

END;

Each recursive call must be contained within a conditional structure that
avoids infinite recursion by preventing the execution of the call at some
point.

Information on recursive techniques is available in Pascal textbooks such
as Peter Grogono's, Programming in Pascal.

SR-0060 9-17 B

9.6 PREDEFINED PROCEDURES AND FUNCTIONS

Predefined Pascal procedures and functions need not be declared in a
Pascal program before they are invoked. Appendix B, Predefined Functions
and Procedures, describes the predefined procedures and functions.

You can redefine any of these procedures and functions, using the same
name. The routine you supply is executed when invoked instead of the
predefined routine.

SR-0060 9-18 B

I

10. INPUT AND OUTPUT

Input and output statements move data between local files or external
devices, such as disks, and data structures within a Pascal program.
These statements read data from and write data to file types, which must
be declared (see section 5, Data Types) unless they are predefined types.

Pascal provides two predefined text files, INPUT and OUTPUT, that must be
named as parameters in the program heading (see section 4, Program
Organization) before they are used.

Data is passed between files and internal data structures through a
buffer variable (see section 5, Data Types). The predefined I/O
procedures GET and PUT read or write a single component into or from the
buffer variable. Higher level I/O procedures (READ, READLN, WRITE, and
WRITELN) move data directly between a file and a variable.

Pascal does not directly support tape I/O. However, FORTRAN-callable
library routines to perform tape I/O can be invoked using the FORTRAN
directive. (Section 9, Procedures and Functions, describes the FORTRAN
directive.)

10.1 PREDEFINED FILES INPUT AND OUTPUT

INPUT and OUTPUT are predefined text files. (Text files are described in
section 5, Data Types.)

The presence of INPUT as a parameter in the program heading indicates
that the $IN (COS) or stdin (UNICOS) dataset includes a text file of
data. OUTPUT specifies that a file of output data will be included in
the $OUT (COS) or stdout (UNICOS) datasets.

As text files, INPUT and OUTPUT must contain constants of type CHAR and
end-of-line indicators. Unlike other text files, INPUT and OUTPUT do not
require the use of predefined procedures RESET and REWRITE,
respectively. (RESET and REWRITE are described later in this section
with the GET and PUT procedures.)

INPUT is the default file in the READ and READLN statements as well as in
the EOF and EOLN functions. OUTPUT is the default file in the WRITE and
WRITELN statements. The READ, READLN, WRITE, and WRITELN statements are
described later in this section.

SR-0060 10-1 B

10.2 BUFFER VARIABLE

A file is accessed sequentially through a buffer variable, into which
file elements are read or written one at a time.

The position of the buffer variable in the file may be thought of as a
window (see section 5, Data Types). The window advances through the file
element by element to allow data to be read from or written to each file
position. When an element of data is read from the window position in a
file, it is read into the buffer variable; from there it can be assigned
to an element in an array, for instance. For a write operation, the data
is first assigned to the buffer variable and then written to the window
position at the end of the file.

A buffer variable of the same type as the file is created implicitly for
each file declared. The buffer variable is referenced using the
following form:

file-name " "

The following statement, for example, assigns the value of the variable x
to the buffer variable for the file outfile:

outfile := x;

10.3 GET AND PUT

The GET and PUT procedures combine the operations of advancing the window
of a text file and reading from or writing to the buffer variable.

GET moves the window to the next element of the file specified as the
parameter and assigns the value of that element to the buffer variable.
If the next element is the end-of-file, the buffer variable is undefined
and the end-of-file condition is set to TRUE.

PUT writes the contents of the buffer variable to the window position at
the end of the file specified as the parameter. The end-of-file
condition must be true before PUT is executed; if the end-of-file
condition is not true, a run-time error occurs.

The GET and PUT procedures are invoked with statements of the following
form:

"get" "(" file-var ")" .
"put" "(" file-var ")" •

SR-0060 10-2 B

Before using GET or PUT on any file except INPUT or OUTPUT, the file is
prepared for reading or writing by one of the predefined procedures for
that purpose, RESET or REWRITE. Using RESET on OUTPUT or REWRITE on
INPUT causes an error.

RESET sets the window at the beginning of the specified file before
reading from that file. The end-of-file condition is set to FALSE and
the value of the first element in the file is assigned to the buffer
variable, unless the file is empty.

REWRITE deletes the contents of the specified file before writing to that
file. The end-of-file condition is set to true.

The following example copies the contents of a file called source into a
file called target:

RESET (source);
REWRITE (target);
WHILE NOT EOF(source) DO
BEGIN

target := source;
PUT(target);
GET(source)

END; (* WHILE loop *)

10.4 READ AND WRITE

READ and WRITE are predefined procedures that go a step further than the
GET and PUT procedures by eliminating any explicit reference to the
buffer variable. READ moves data directly between an external file and
variables internal to a Pascal program. WRITE moves data in the other
direction, from variables to a file.

A READ(source,x) statement is equivalent to the following statements:

x := source
GET(source)

Similarly, the following sequence represents a WRITE(target,x) statement:

target .- x;
PUT(target)

A file name must be specified in a READ or WRITE procedure call only if
the predefined files INPUT and OUTPUT are not used. INPUT is the default
file for READ and OUTPUT for WRITE.

SR-0060 10-3 B

"read" "(" [file-var ","] var-id { "," var-id } ")" •

"write" "(" [file-var ","] element { "," element} ")" •

Input and output items (var-id on a READ and element on a WRITE) must
match the data type of the file unless the file is type TEXT. Data of
any type can be read from or written to a text file; Pascal converts the
data to or from its text representation.

As with GET and PUT, READ and WRITE must employ the RESET or REWRITE
procedure before beginning 1/0 with any file other than INPUT or OUTPUT.

Example:

RESET (source);
REWRITE (target);
READ(source,ch);
WRITE(target,ch);

READ variables are associated with data according to position; that is,
the first data element encountered is read into the first variable, the
second element into the second variable, and so on. With the exception
of elements of type CHAR, data elements being read must be separated by
at least 1 non-numeric character (such as a blank). The exception is
possible because elements of type CHAR are known to be 1 character in
length.

The type of variable appearing in a READ or WRITE statement must agree
with the type of the data being read or written. If the types do not
agree and run-time checking is enabled, the program aborts with an error
message. The following line of data in the INPUT file would be read
correctly by a READ(i, x, ch, b) statement if i is declared as type
INTEGER, x as type REAL, ch as type CHAR, and b as type BOOLEAN:

36 3.14 A TRUE

Variables i, x, ch, and b are assigned values of 36, 3.14, A, and TRUE,
respectively.

If the READ statement contains more variables than the line has input
items, the READ procedure skips to the next line to find the extra
values. If, for example, the statement READ(x, y, z) is used on the
following input file, x has a value of 6, y of 9, and z of 44:

6 9
44 13

String variables can also be specified with the READ statement. In such
instances, as many characters as necessary are read to fully define the
variable. If EOLN is encountered before the string has been fully
defined, the remaining elements in the variable are filled with blanks.

SR-0060 10-4 B

Data to be written with a WRITE statement can be represented in either of
the following forms:

• As a literal. An element delimited by apostrophes is written to
the output file exactly as specified. If an apostrophe is part of
the literal, it is represented by two apostrophes. The following
statement writes the characters abc followed by a blank:

WRITE ('abc ');

• As an expression, the most simple form of wnlcn is a variable.
The following statement writes two valid values, assuming the
variables involved are properly declared:

WRITE (ch, x * 2);

10.5 READLN AND WRITELN

The READLN and WRITELN procedures are variants of the READ and WRITE
procedures for use with files containing end-of-line designators. The
syntax is the same for READ and READLN and for WRITE and WRITELN.

Cray Pascal supports COS blocked format (single-file datasets) when
executing under COS. Blocked datasets are described in the COS Version 1
Reference Manual. Unblocked (multiple-file) datasets are supported only
through FORTRAN library routines described in the System Library
Reference Manual. When using these FORTRAN routines on unblocked
datasets, you are responsible for buffer management. (Section 9,
Procedures and Functions, describes how to call FORTRAN library routines.)

Cray Pascal supports UNICOS unblocked files when executing under UNICOS.
Unblocked files are described in the CRAY-2 UNICOS Libraries, Macros and
Opdefs Reference Manual, publication SR-2013. If blocked files are
specified, you are responsible for all buffer management. The UNICOS
File Formats and Special Files Reference Manual describes the format for
blocked files.

READLN reads values for the variables specified as parameters and moves
the window to the next line when complete. READ does not move the window
to the next line after a completed operation unless it has just read the
last element in a line. Assume, for example, the following lines of
integers on an input file:

1
17

SR-0060

3
19

5
21

7
23

9
25

11
27

13
29

10-5

15
31

B

The following statements will read part of the preceding data, assuming
the variables have been declared as type INTEGER:

READLN (intI, int2, int3);
READLN (int4, int5, int6);

These statements assign the variables the following values:

intI 1
int2 3
int3 5
int4 17
int5 19
int6 21

The same variables contain different values if read by equivalent READ
statements such as the following:

READ (intI, int2, int3);
READ (int4, int5, int6);

These READ statements do not advance the window to the next line. The
values of the variables are as follows:

intI 1
int2 3
int3 5
int4 7
int5 9
int6 11

The following example uses both READ and READLN to read a text file and
process its characters:

RESET (infile);
WHILE NOT EOF(infile) DO

BEGIN
WHILE NOT EOLN (infile) DO

BEGIN
READ (infile, ch);
process (ch)

END;
READLN (infile)

END;

WRITELN writes an end-of-line designator to the output file, terminating
the present line.

SR-0060 10-6 B

Example:

position := 1;
REWRITE (outfile);
FOR lines := 1 TO maxlines DO

BEGIN
FOR position := 1 TO 80 DO

WRITE (outfile, line[position]);
WRITELN (outfile)

END;

10.6 FORMATTING OUTPUT

Formatting specifications are available with the WRITE and WRITELN
statements that permit the appearance of Pascal output to be
manipulated. The form of an output element for a real number is as
follows:

element = 'constant' I expression
[":" field-width ":" [decimal-places]] .

The following form is used for integers and other scalar data types:

element = 'constant' expression [":" field-width] .

The field width is a decimal number specifying the minimum number of
spaces to be filled by the output. If fewer spaces are required than the
number specified, the output is padded with leading blanks.

When a character string or packed array of characters requires more
output spaces than the number specified, only the number of characters
that fit in the specified space are written. If, however, an output item
other than a character string or packed array of characters is larger
than the specified output space, the entire value is printed.

The decimal-places specification determines how many places to the right
of the decimal point are represented for a real number. Unless the
decimal-places specification is included, a real number is represented by
a coefficient and a scale number (such as 5E-8).

Example:

WRITELN (' The value of "x" is', x:6:2, '.');

SR-0060 10-7 B

Assuming the value of x is 8.9, the output line for the preceding example
appears as follows:

1 5 • 10

~ ~ The ~ val u e ~ 0 f I

15 • 20 • 25 •

I x i s ~ ~ 8 9 0

If the field-width is not specified, output elements are assigned default
field width values as follows:

~ Output Width

Boolean 10

Character 1

Integer 10

Real 22, in the following format (position 1 is the leftmost
position) :

Bit Description

1 Minus sign or blank
2 One digit
3 Decimal point

4-16 13 digits
11 E
18 Plus or minus sign

19-22 Four digits

Example:

O.1932192849915E-0006

String or packed array of characters
Length of string or number of elements in array

The predefined procedure PAGE (see appendix B, Predefined Functions and
Procedures) writes an end-of-line and puts the carriage control character
that forces a page break into the output file.

SR-0060 10-8 B

10.7 CONNECT

Files appearing as parameters in the program heading are bound to COS
local datasets or UNICOS files of the same name. Files not appearing as
parameters in the program heading are bound to unique temporary (scratch)
datasets. The CONNECT procedure overrides these bindings and permits you
to specify a file name other than the local dataset name.

CONNECT is a CRI extension to the ISO Level 1 Pascal standard.

(A COS dataset is made local to a job when it is referenced in a job
control statement such as ACCESS or ACQUIRE. See the COS Version 1
Reference Manual for more information on local datasets and the ACCESS
and ACQUIRE control statements.)

The form of a call to the CONNECT procedure is as follows:

"connect" "(" file-var " " , "'" local-dataset-name "'" ")"

For COS, the local dataset name is passed to an 8-character packed
array. Thus, the name must appear left-justified and padded with blanks
in the procedure call. The file can contain data of any valid type.

For UNICOS, the file name can be of any length but must be left-justified
if blanks are used. File names that are not full path names default to
the local directory. File names must be terminated with a least one
blank character, which is not considered as part of the file name.

If you specify file names $IN, $OUT, and $LOG, you connect to the UNICOS
standard input, output, and error files, respectively.

COS example:

CONNECT (infile,'FRED ");

SR-0060 10-9 B

I

The Pascal file variable infile, which must first be declared in a VAR
statement, represents the local dataset FRED after the above statement is
executed. Data can subsequently be read from or written to FRED. Before
I/O can begin, however, the file must be prepared for reading or writing
by one of the predefined procedures, either RESET or REWRITE. In the
following example, for instance, data cannot be read from the local
dataset GEORGE until a second RESET statement appears. Any statements
that read from infile following the second CONNECT statement would
continue to read from the local dataset FRED until a second RESET
statement appears.

CONNECT(infile, 'FRED I);
RESET(infile);

CONNECT(infile, 'GEORGE I);

UNICOS examples:

CONNECT(france, 'gaul I);

CONNECT(england, 'dearoldalbion I);

SR-0060 10-10 B

11. DYNAMIC ALLOCATION

Pascal permits the allocation of memory for a variable either at the time
a program is being compiled or dynamically during the execution of the
program.

Variables declared in a VAR statement are allocated memory when the
program is compiled. Dynamically allocated variables are not allocated
memory, however, until the executing program requests them through the
predefined procedure NEW. The variables become active following the
execution of the NEW procedure, and they remain active until the
executing program deal locates their space by calling the predefined
procedure DISPOSE. The deallocated space is then available for reuse by
subsequently allocated variables.

You do not supply a name by which to reference a dynamically allocated
variable. The variable is referenced indirectly through a pointer, which
is assigned the memory address of a dynamically allocated variable when
that variable is allocated. Before a dynamically allocated variable is
defined or after it is deallocated, the pointer that references it has an
undefined value. The special value NIL, which corresponds to no memory
address, can also be assigned to a pointer. Section 5, Data Types,
describes the declaration of a pointer variable.

Procedures NEW and DISPOSE allocate and deallocate variables. (p
represents a pointer variable.) Function SIZEOF gives the size of a
dynamic variable. A description follows:

Function or
Procedure

NEW(p)
(procedure)

Description

Defines a dynamically allocated variable pointed to by
p. The dynamically allocated variable is of the
type to which p is bound.

NEW(p, tag-field-valuel' tag-field-value2' ••• tag-field-valuen)
(procedure) Defines a dynamic record with variants pointed to by

p. Space allocated for the variant fields depends

SR-OQ60

on the tag field values listed. The tag field values
must be listed in the order declared, and the list
must be contiguous. The first tag field value must
correspond to the first tag field declared, but the
last tag field value in the list need not be the last
tag field declared.

11-1 B

Function or
Procedure Description

DISPOSE(p)
(procedure)

Deallocates the dynamically allocated variable pointed
to by p. P retains the same value, but pA becomes
undefined.

SIZEOF(p, tag-field-value1' tag-field-value2' ... tag-field-valuen)
(function) Returns the size (in Cray words) of a dynamic

variable: that is, the integer number of words that a
call to NEW allocates when called with the same
parameter list. SIZEOF takes a variable number of
parameters and works exactly like NEW used as a
function. The value of pointer p is returned
unaltered.

The SIZEOF function is a CRI extension to the ISO Level 1 Pascal standard.

Example:

TYPE pntr = Apersonnel;
personnel = RECORD

link: pntr;

END;
VAR p1, p2, first: pntr;

This example declares a pointer type named pntr and three pointer
variables named p1, p2, and first that are bound to the record type named
personnel. The record itself contains a pointer variable named link.
The first record is dynamically allocated in the foliowing manner:

NEW(first);
firstA.link := NIL;

The first statement dynamically allocates one record of type personnel
and sets the pointer first to point to it. The second statement accesses
the link field of that record through the pointer and assigns the value
NIL to it. A second record can be dynamically allocated and linked to
the first as follows:

p2 := first;
NEW(p1);
p1

A

.link ._ p2
A

.link;
p2

A

.link .- p1;

SR-0060 11-2 B

The list of records is linked through the link fields. Records are added
in the middle of such a list by the following steps:

1. Determine the record after which the new record is to be added,
traversing the list by means of the link field pointers.

2. Set the pointer p2 to point to that record.

3. Use the following statements to dynamically allocate and insert
the new record:

NEW(p1);
p1

A

.link ._ p2
A

.link;
p2

A

.link .- p1;

To delete a record, pointer p2 is again set to point to the record that
precedes the one to be deleted. The following statements delete the
record while maintaining the list in order:

p2
A

.link := p1
A

.link;
DISPOSE(p1);

The second form of the NEW statement operates in the same way as the
first form, but it also permits tag field values to be specified for
variant records.

Example:

TYPE pntr = personnel;
personnel = RECORD

link: pntr;

CASE pension: vested OF
unvested;
partvest
fullvest :

END
VAR p1, p2, first: pntr;

(pmoney, percentage: REAL);
(fmoney: REAL;
yearvested: INTEGER);
CASE retired: BOOLEAN OF

FALSE ();
TRUE (pension_monthly_amt: REAL);

A record for a fully vested, currently active employee is allocated as
follows:

NEW(p1, fullvest, FALSE);

SR-0060 11-3 B

A record for a fully vested, retired employee is reallocated as follows:

NEW(p1, fullvest, TRUE);

A record including the fields fmoney, yearvested, and pension_montly_amt
is allocated by the above statement. The variant for a record allocated
by this form of the NEW statement cannot be changed later in the
program. The above record, for instance, cannot be changed later to
contain the fields designated by the tag field value partvest.

If a variant record is dynamically allocated by the first form of the NEW
statement (specifying no tag field values), enough space is allocated to
accommodate the largest possible requirements.

SR-0060 11-4 B

I

12. MODULES

The Pascal compiler accepts two types of compilation units: program and
module. A module is a stand-alone routine, such as a library routine,
that can be accessed and executed by other modules and programs. A
module allows the separate compilation of encapsulated code and data.

The module compile unit is a CRI extension to the ISO Level 1 Pascal
standard.

Modules are normally defined as library datasets. For information on
generating and maintaining library datasets under COS, see the
description of BUILD in the COS Version 1 Reference Manual. The ar
command creates libraries under UNICOS. (When using the UNICOS link
editor ld, specify the library containing modules with the -L option
rather than the -1 option.)

In structure, a module is similar to a program, except that a module has
no program parameters and no main program block delimited by the reserved
words BEGIN and END. A module contains a series of internal procedures
and functions and also accepts external routines referenced from programs
or other modules.

The syntax of a module is as follows:

module:: "module" id ";" module-block

module-block :: {

}

constant-def-part
type-def-part
common-dcl-part
imported-dcl-part
exported-dcl-part
static-dcl-part
var-dcl-part

[value-def-part]

" ..

{ procedure-and-function-dcl-part } .

SR-0060 12-1 B

A module cannot be directly referenced by a caller. Rather, the
procedures and functions at the outermost level in a module can be
exported and thereby referenced (as imported) by other modules and
programs. (See section 9, Procedures and Functions, for imported and
exported routines.) Procedures and functions that are not at the
outermost level can be referenced by exported procedures and functions
but cannot be exported themselves.

Data is communicated between modules and programs strictly through
parameters. A module called from a program cannot make use of global
variables declared in the program unless they are passed as parameters.
The constants and types defined at the module level allow the user to
pass structured parameters, such as records.

NOTE

No type checking is performed between modules. Hence,
you must ensure type compatibility between modules and
programs by using some method of common TYPE
declarations.

Variables declared at the module level are global within the module.
This allows the normal scope rules to apply within the module but hides
module variables from routines outside the module. Since module
variables are allocated in static fashion (not on the run-time stack),
the variables retain their values from call to call.

Modules do not support the predefined text files INPUT and OUTPUT. You
must pass these files in as parameters. In the following example, a
hidden stack is used to hold tokens for evaluation. If more than one
stack is needed, the stacks can be declared in the program and the code
modified to pass the desired stack to the STK$ routines.

PROGRAM pushpop(INPUT,OUTPUT);
TYPE token = PACKED ARRAY[1 •. 8] OF CHAR;
VAR t,t1,r : token;

PROCEDURE push(t : token);IMPORTED(stk$push);
PROCEDURE pop (VAR t : token);IMPORTED(stk$pop);
PROCEDURE stackinit;IMPORTED(stk$init);
FUNCTION empty: BOOLEAN;IMPORTED(stk$mt);
FUNCTION full: BOOLEAN;IMPORTED(stk$full);
PROCEDURE gettok(VAR t : token;

VAR fromfile:TEXT); IMPORTED(token);
PROCEDURE crunch(VAR t1,t2,t3 : token); IMPORTED(doittoit);

SR-0060 12-2 B

PROCEDURE error(i : INTEGER);IMPORTED;
BEGIN (*Main program code *)

stackinit; (*Initialize the stack*)
gettok(t,INPUT);
WHILE t () , , DO

BEGIN
IF t = '(
THEN push(t)
ELSE IF t = ')

THEN BEGIN
pop(tl);
crunch(t,tl,r);
push(r)

END
ELSE error(l); (*Token ignored*)

gettok(t,INPUT);
END;

IF NOT empty
THEN error(2) (* Token stack not empty at end*)
ELSE WRITELN(' The answer is : ',r);

END.

The procedures used in this program could be coded in a module such as
the following. This module declares some of the routines mentioned in
the program and references others through the IMPORTED directive.

SR-0060

MODULE stk;
TYPE token = PACKED ARRAY[1 .• 8] OF CHAR;

astack = RECORD
stackptr : INTEGER;
stack: ARRAY[l .• 1024] OF token;

END;
VAR thestack : astack;

PROCEDURE stk$init; EXPORTED;
BEGIN

thestack.stackptr := 0;
END;

FUNCTION stkfull:BOOLEAN; EXPORTED(stk$full);
BEGIN

stkfull := thestack.stackptr) 1024;
END;

PROCEDURE stkempty : BOOLEAN;EXPORTED(stk$mt);
BEGIN

stkempty := thestack.stackptr = 0;
END;

PROCEDURE error(i INTEGER); IMPORTED;

12-3 B

PROCEDURE push (t
BEGIN

token); EXPORTED(stk$push);

IF stkfull
THEN BEGIN (* WHOOPS! *)

error(2);
HALT;

END
ELSE WITH thestack DO

BEGIN
stackptr := stackptr + 1;
stack [stackptr] := t;

END;
END;

PROCEDURE pop(VAR t
BEGIN

token); EXPORTED(stk$pop);

END.

SR-0060

IF stkempty
THEN BEGIN (* WHOOPS! *)

error(3);
HALT;

END
ELSE WITH thestack DO

BEGIN
t := stack[stackptr];
stackptr := stackptr - 1;

END;

12-4 B

I

13. VECTORIZATIOH AND OPTXMIZATIOH

This section describes the following:

• Vectorization:

How Pascal vectorizes code
Constructs that prohibit vectorization

• Optimization:

High- and low-level
Enabling and disabling optimization using the Pascal
invocation statement

13.1 VECTORIZATION

The Pascal compiler converts some FOR loops into sequences of vector
operations. At run time, vectorized FOR loops use the vector registers
and functional units of the Cray hardware to greatly reduce execution
time. Vectorization is enabled by the V+ compiler option, which can
appear on the Pascal invocation statement or in a compiler directive
appearing between compilation units. (Vectorization is enabled by
default.)

While the Pascal compiler attempts to vectorize every FOR loop, not every
FOR loop can be vectorized. Some loops, if vectorized, produce results
that differ from those generated by scalar code; other loops contain
operations that cannot be performed in vector mode. The Pascal compiler
performs a detailed analysis of each FOR loop and does not vectorize
loops for which the scalar-to-vector transformation cannot be safely
guaranteed.

The following constructs inhibit vectorization within a FOR loop:

• Procedure calls, including standard lID procedures such as READ
and WRITE

• Function calls other than calls to the standard mathematical
functions

SR-0060 13-1 B

I

• Any statement other than an assignment statement, an IF statement,
or a compound statement containing only assignments and IF
statements

• Run-time array bounds checking (enabled by default)

• Any operand that does not fall into one of the following
categories:

Category

Constant

Invariant

Description

A literal constant

VAR
a : ARRAY [l •• n] OF REAL;
i, n : INTEGER;

BEGIN
FOR i := 1 TO n DO
a [i] .- 0.0;

In the previous example, 0.0 is a constant.

An invariant is defined as follows:

• A variable that is not assigned within the
loop

VAR
a : ARRAY [l .. n] OF REAL;
i, n : INTEGER;
x : REAL;

BEGIN
FOR i .- 1 TO n DO
a [i] .- a [i] + x;

In the previous example, x is the invariant.

SR-0060

• A pointer dereferencing (an access of a
variable identified by a pointer) or field
access whose base variable is not assigned
within the loop

VAR
a : ARRAY [l .. n
i, n : INTEGER;
p : ARRAY [l .. n
r : ARRAY [l .. n

f, g : INTEGER;
BEGIN

FOR i .- 1 TO n DO
a [iJ .- P + r.f;

13-2

OF REAL;

OF INTEGER;
OF RECORD

B

I SR-0060

Category Description

In the previous example p and r.f are the
invariants, because neither is altered within
the loop.

• An array element access whose subscript
expression and base variable are not assigned
within the loop

VAR
a, b
i, n

BEGIN

ARRAY [1 .• n] OF REAL;
INTEGER;

FOR i .- 1 TO n DO
a [i] .- b [10];

In the previous example, b [10] is invariant,
because an element is accessed whose
subscript is not assigned within the loop.

• An expression containing operations on only
constants and operands not assigned within
the loop

VAR
a : ARRAY [1 .. n
i, n : INTEGER;
p : ARRAY [1 •. n
x : REAL;

BEGIN
FOR i .- 1 TO n DO

OF REAL;

OF INTEGER;

a [i] ._ a [i] * (x + pA);

In the previous example, x, pA, and (x + pA)
are invariant, because x is not assigned
within the loop, pA is a pointer access not
assigned within the loop, and (x + pA) is an
expression that contains only invariants.

Loop control A FOR loop control variable

VAR
a : ARRAY [1 .• n] OF REAL;
i, n : INTEGER;

BEGIN
FOR i .- 1 TO n DO
a [i] .- 0.0;

In the previous example, i is the loop control
variable.

13-3 B

I SR-0060

Category Description

Vector definition
A vector definition is defined as follows:

• An array subscript containing only the FOR
loop control variable and constant operands
(and invariant operands if the VI option is
placed in a directive preceding the loop)

VAR
a, b
i, n

BEGIN

ARRAY [1 •• n] OF REAL;
INTEGER;

FOR i := 1 TO n DO
a [i] := b [i - 10];

In the previous example, b [i - 10] is a
vector definition, because it contains only
the FOR loop control variable (i) and a
constant (10).

• A pointer dereferencing or field access whose
base variable is a vector definition

VAR
a : ARRAY [1 •. n OF REAL;
i, n : INTEGER;
p : ARRAY [1 •. n] OF INTEGER;
r : ARRAY [1 •. n] OF RECORD

f, 9 : INTEGER;
BEGIN

FOR i .- 1 TO n DO
a [i] .- p [i] * r [i].f;

In the previous example, p [i] and r [i].f
are vector definitions, because p [i] is a
pointer dereferencing and r [i].f is a field
access whose base variable (r [i]) is a
vector definition.

• An array element access whose subscript
expression is invariant and whose base
variable is a vector definition

13-4 B

I SR-0060

Cateqory Description

VAR
a : ARRAY [I •• n] OF REAL;
i, n : INTEGER;
x : REAL;
p : ARRAY [I •• n OF INTEGER;

BEGIN
FOR i := 1 TO n DO
a [i] .- a [i] + x + p [i]A;

In the previous example, a [i] and p [i] are
vector definitions, because a [i] is a vector
definition (an array element access with an
invariant subscript) and p filA is a pointer
dereferencing whose base variable (p [i]) is
a vector definition.

Vector expression
A vector expression is an expression containing
operations on constant, invariant, vector
definition, and vector expression operands

VAR
a : ARRAY [1 •. n] OF REAL;
i, n : INTEGER;
x : REAL;
r : ARRAY [1 .. n OF RECORD

f, 9 : INTEGER;
BEGIN

FOR i := 1 TO n DO
a [i] .- r [i].g + x

In the previous example, r [i].g is a vector
expression because r [i].g is a field access whose
base variable is a vector definition.

Vector assignment
A vector assignment is an assignment statement
whose left side is a vector definition and whose
right side is a constant, an invariant, a vector
definition, or a vector expression

VAR
i, n : INTEGER;
r : ARRAY [1 .. n] OF RECORD

f, 9 : INTEGER;
BEGIN

FOR i := 1 TO n DO
r [i].f := 1

13-5 B

Category

Vector IF

Reduction

Search

I SR-0060

Description

In the previous example, r [i].f := 1 is a vector
assignment, because r [il.f is a vector definition
and 1 is a constant.

A vector IF is an IF statement whose conditional
expression is a vector definition or a vector
expression and whose THEN and ELSE parts contain
only vector assignments

VAR
a : ARRAY [1 .. n
i, n : INTEGER;
p : ARRAY [1 .. n

BEGIN
FOR i := 1 TO n DO
IF P [i] = NIL THEN

a [iJ := 0.0
ELSE

a [i] := p [i(';

OF REAL;

OF INTEGER;

A reduction is an assignment statement that is the
only statement in the loop and has the following
form:

var • - ([var] [op] [exp 1)

VAR

var is a simple variable

op is one of the following: +, *, , AND, or
OR

exp is a vector expression or a vector
definition

a : ARRAY [1 •. n] OF REAL;
i, n : INTEGER;
x : REAL;

BEGIN
FOR i := 1 TO n DO
x .- x + a [i];

Search is an IF statement whose condition is a
vector expression or vector definition containing
only a GOTO statement.

13-6 B

I

Category Description

VAR
a : ARRAY [1 •• n] OF REAL;
i, n : INTEGER;
x : REAL;

BEGIN
FOR i := 1 TO n DO
IF a [i] = x THEN

GOTO 1;

• Vector dependencies may exist in a loop if vectorization does one
of the following:

SR-0060

Overwrites a word of memory before using it
Uses a word of memory before storing a value into it

Vector dependencies arise in one of four ways:

1. Negative offset before a store in an incrementing loop:

FOR i := 2 TO n DO
a [i] := a [i-1];

2. Positive offset after a store in an incrementing loop:

FOR i := 1 TO n-1 DO
BEGIN

a [i] .- 0;
b [i] :=a [i+1]

END;

3. Positive offset before a store in a decrementing loop:

FOR i := n-1 DOWNTO 1 DO
a [i] := a [i+1];

4. Negative offset after a store in a decrementing loop:

FOR i := n DOWNTO 2 DO
BEGIN

a [i] .- 0;
b [i] :=a [i-1]

END;

Pascal analyzes each FOR statement for explicit or potential
dependencies prior to vectorizing the loop unless the VI compiler
option is used in a comment immediately preceding the loop.

13-7 B

I

Dependencies are detected by comparing every vector definition on
the left side of an assignment statement to every other vector
definition in the loop. A dependency exists if the following
conditions exist:

1. Both vector definitions could refer to the same array

2. The offsets used in the subscript expressions could produce
one of the four dependencies described previously

Pascal assumes a dependency may exist if the subscripts or base
variables are ambiguous. If there is any possibility that a
dependency exists, Pascal does not vectorize a FOR statement.
Pascal does not vectorize the following FOR statements, because
dependencies may exist within the loops:

FOR i := 1 TO n DO
a [i] : = a [i +b] ;

FOR

P

i := 1 TO n DO
[i] := q'" [i-1];

FOR i := 1 TO n DO
a [i+n] := a [i];

FOR i := 1 TO n DO
a [i] : = a [b [i]];

(* b could be less than 0 *)

(* P could equal q *)

(* n could be greater than 0 *)

(* b [i] could be anything *)

Example:

VAR
a : ARRAY [1 .. n] OF REAL;
i, n : INTEGER;
x REAL;
p : ARRAY [l •• n] OF INTEGER;
r : ARRAY [1 •• n] OF RECORD

f, g : INTEGER;
END;

BEGIN
FOR i . - 1 TO n DO .-

BEGIN
a [i] . - 100.0; . -
IF P [i] = NIL THEN

r[i].f . - r[l] .g .-
ELSE

r[i].f .- r[i].f * p[i] . -
END;

END;

SR-0060 13-8

(* Line 1 *)
(* Line 2 *)
(* Line 3 *)
(* Line 4 *)
(* Line 5 *)
(* Line 6 *)
(* Line 7 *)
(* Line 8 *)

B

I

In the previous example, the operands in the loop are classified as
follows:

Line
Number Class Operand

I
2
3
3
4
4
4-7

5
5
5
5
7
7
7
7

Loop control
Constant
Vector definition
Vector assignment
Vector definition
Vector expression
Vector IF

Constant
Invariant
Vector definition
Vector assignment
Vector definition
Vector definition
Vector expression
Vector assignment

i
100.0
a [i]
a [i] : = 100.0
P [i]
P [i] = NIL

1

IF P [i] = NIL THEN
r [i].f := r [l].g

ELSE
r [i].f := r [i].f * p [i]

r [l].g
r [i].f
r [i].f .- r [l].g
p [i]"
r [i].f
r [i].f * p [i]
r [i].f := r [i].f * P [i]

NOTE

FOR loops that contain IF statements, array-valued
subscripts (indirect addressing of arrays), and
array-valued pointer dereferencing vectorize only if
the CIGS attribute (specifying compressed index and
gather/scatter) is present on the CPU parameter of the
Pascal invocation statement, either explicitly or as a
default attribute of the target machine.

If the VI directive is present in a comment prior to a FOR statement,
Pascal ignores ambiguous subscripts and other potential dependencies when
analyzing the loop.

The examples of vectorizable FOR loops that follow assume these
declarations:

SR-0060 13-9 B

I

CONST
n = 1000;

VAR
a, b: ARRAY [l •• n] OF REAL;
c: ARRAY [1 •. 10] OF 1 •• n;
d: ARRAY [1 •• n] OF

PACKED RECORD
f: A ARRAY [1 •• 10] OF INTEGER;
g: 124

END;
dot: REAL;

BEGIN

Example 1, a vectorizable FOR loop:

FOR i := 1 TO n DO BEGIN
a [i] := 0.0;
b [i] : = SQR (b [i]) + 1

END;

Example 2, a FOR loop that shifts array elements:

FOR i := 1 TO n - 1 DO
a [i] := a [i + 1];

Example 3, a FOR loop that produces the dot product of two
vectors:

dot := 0.0;
FOR i := 1 TO n DO

dot := dot + a [i] * b [i];

Example 4, complex addressing:

FOR i := 1 TO n DO
d [i].f

A

[l] := d [i].g;

Example 5, indirect indexing that requires gather/scatter
hardware for vectorization:

FOR i := 1 TO 10 DO
a [c [ill := b [c [ill;

SR-0060 13-10 B

I

Example 6, safe division:

FOR i := 1 TO n DO
IF a [i] <> 0 THEN

a [i] := 1 / a [i];

Example 7, an IF statement that requires gather/scatter hardware
for vectorization:

FOR i .- 1 TO n DO
IF a [i] > b [i] THEN

b [i] . - 0
ELSE

a [i] .- b [i];

Example 8, the program sieve, is an example of a program with
several vectorizable loops. Another version of this program
that uses array proces.sing operations instead of FOR loops
appears in section 6, Array Processing:

PROGRAM sieve (OUTPUT);

CONST

TYPE

VAR

BEGIN

SR-0060

size = 1000000;

flagarray = array [2 •• size] OF BOOLEAN;

flags: flagarray;
i,j: integer;

FOR i := 2 TO size DO
flags[i] := TRUE;

FOR i:= 2 TO TRUNC(SQRT(size» DO
IF flags[i] THEN

FOR j := i+i TO size BY i DO
flags[j] := FALSE;

j:=O;
FOR i := 2 TO size DO

j := j + ORO (flags[i]);
WRITELN (' End vectorized Pascal sieve;

j:O, , Primes found. ')
END.

13-11 B

I

13.2 OPTIMIZATION

High-level optimizations are performed before the code is
generated for a Pascal program. The following types of
optimizations are considered high-level optimizations:

• Propagation of variable definitions

• Common subexpression elimination

• Compile-time expression evaluation

• Register residency prediction

• Loop invariant expression detection

Low-level optimizations are performed after the code has been generated.
The following types of optimizations are considered low-level
optimizations:

• Reordering of instructions (scheduling)

• Dead instruction elimination

• Register transfer elimination

All optimizations are controlled by the 0 compiler option. Optimizations
are enabled by 0+ and disabled by 0-. Since optimizations decrease
execution time while increasing compilation time, use 0- while developing
a program and 0+ for production runs.

The 0 compiler option can be followed with a number to fine-tune the
instruction scheduler; the 0+ option is equivalent to the 03 option. The
number determines how much time the scheduler uses in its search for the
optimal instruction schedule. The number specified has a direct affect
on the time required for compilation with large numbers increasing
compilation time and small numbers decreasing compilation time.

Although small numbers decrease compilation time, specifying a number
that is too small can cause poorly scheduled code. The effect of
instruction scheduling varies from one Pascal program to another.
Experimenting with various numerical values in your program may be
necessary to produce the best medium between compilation and execution
time.

SR-0060 13-12 B

APPENDIX SECTION

A. CHARACTER SET

The ASCII character set contains the 128 control and graphic characters
shown in table A-1.

The letters that appear in parentheses following the descriptions ~n the
fifth column indicate the following control character usage.

CC
FE
IS

Character

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

SR-0060

Description

Communication control
Format effector
Information separator

Table A-1. ASCII Character Set

Octal
Code

000

001

002

003

004

005

006

007

010

011

Punched-card
Code

12-0-9-8-1

12-9-1

12-9-2

12-9-3

9-7

0-9-8-5

0-9-8-6

0-9-8-7

11-9-6

12-9-5

0-9-5

Decimal
Code

o

1

2

3

4

5

6

7

8

9

10

A-1

Description

Null

Start of heading (CC)

Start of text (CC)

End of text (CC)

End of transmission (CC)

Enquiry (CC)

Acknowledge (CC)

Bell (audible or
attention signal

Backspace (FE)

Horizontal tabulation (FE)

Line feed (FE)

B

Octal Punched-Card Decimal
Character Code Code Code Description

VT 013 12-9-8-3 11 Vertical tabulation (FE)

FF 014 12-9-8-4 12 Form feed (FE)

CR 015 12-9-8-5 13 Carriage return (FE)

SO 016 12-9-8-6 14 Shift out

SI 017 12-9-8-7 15 Shift in

DLE 020 12-11-9-8-1 16 Data link escape (CC)

DC1 021 11-9-1 17 Device control 1

DC2 022 11-9-2 18 Device control 2

DC3 023 11-9-3 19 Device control 3

DC4 024 9-8-4 20 Device control 4 (stop)

NAK 025 9-8-5 21 Negative acknowledge (CC)

SYN 026 9-2 22 Synchronous idle (CC)

ETB 027 0-9-6 23 End of transmission block
(CC)

CAN 030 11-9-8 24 Cancel

EM 031 11-9-8-1 25 End of medium

SUB 032 9-8-7 26 Substitute

ESC 033 9-9-7 27 Escape

FS 034 11-9-8-4 28 File separator (IS)

GS 035 11-9-8-5 29 Group separator (IS)

RS 036 11-9-8-6 30 Record separator (IS)

US 037 11-9-8-7 31 Unit separator (IS)

(Space) 040 (None) 32 Space (blank)

SR-0060 A-2 B

Octal Punched-card Decimal
Character Code Code Code Description

041 12-8-7 33 Exclamation mark

" 042 8-7 34 Quotation marks
(diaeresis)

it 043 8-3 35 Number sign

$ 044 11-8-3 36 Dollar sign (currency
symbol)

" 045 0-8-4 37 Percent

& 046 12 38 Ampersand

047 8-5 39 Apostrophe (single close
quotation)

050 12-8-5 40 Opening (left)
parenthesis

051 11-8-5 41 Closing (right)
parenthesis

* 052 11-8-4 42 Asterisk

+ 053 12-8-6 43 Plus

054 0-8-3 44 Comma (cedilla)

055 11 45 Minus (hyphen)

056 12-8-3 46 Period (decimal point)

/ 057 0-1 47 Slant (slash, virgule)

0 060 0 48 Zero

1 061 1 49 One

2 062 2 50 Two

3 063 3 51 Three

SR-0060 A-3 B

Octal Punched-card Decimal
Character Code Code Code Description

4 064 4 52 Four

5 065 5 53 Five

6 066 6 54 Six

7 067 7 55 Seven

8 070 8 56 Eight

9 071 9 57 Nine

072 8-2 58 Colon

. 073 11-8-6 59 Semicolon ,

< 074 12-8-4 60 Less than

= 075 8-6 61 Equal

> 076 0-8-6 62 Greater than

? 077 0-8-7 63 Question mark

@ 100 8-4 64 Commercial at-sign

A 101 12-1 65 Uppercase letter

B 102 12-2 66 Uppercase letter

C 103 12-3 67 Uppercase letter

D 104 12-4 68 Uppercase letter

E 105 12-5 69 Uppercase letter

F 106 12-6 70 Uppercase letter

G 107 12-7 71 Uppercase letter

H 110 12-8 72 Uppercase letter

I 111 12-9 73 Uppercase letter

SR-0060 A-4 B

Octal Punched-card Decimal
Character Code Code Code Description

J 112 11-1 74 Uppercase letter

K 113 11-2 75 Uppercase letter

L 114 11-3 76 Uppercase letter

M 115 11-4 77 Uppercase letter

N 116 11-5 78 Uppercase letter

0 117 11-6 79 Uppercase letter

p 120 11-7 80 Uppercase letter

Q 121 11-8 81 Uppercase letter

R 122 11-9 82 Uppercase letter

S 123 0-2 83 Uppercase letter

T 124 0-3 84 Uppercase letter

U 125 0-4 85 Uppercase letter

V 126 0-5 86 Uppercase letter

W 127 0-6 87 Uppercase letter

X 130 0-7 88 Uppercase letter

y 131 0-8 89 Uppercase letter

Z 132 0-9 90 Uppercase letter

133 12-8-2 91 Opening (left) bracket

\ 134 0-8-2 92 Reverse slant (backslash)

135 11-8-2 93 Closing (right) bracket

136 11-8-7 94 Circumflex

137 0-8-5 95 Underline

SR-0060 A-S B

Octal Punched-card Decimal
Character Code Code Code Description

140 8-1 96 Grave accent (single open
quotation)

a 141 12-0-1 97 Lowercase letter

b 142 12-0-2 98 Lowercase letter

c 143 12-0-3 99 Lowercase letter

d 144 12-0-4 100 Lowercase letter

e 145 12-0-5 101 Lowercase letter

f 146 12-0-6 102 Lowercase letter

g 147 12-0-7 103 Lowercase letter

h 150 12-0-8 104 Lowercase letter

i 151 12-0-9 105 Lowercase letter

j 152 12-11-1 106 Lowercase letter

k 153 12-11-2 107 Lowercase letter

1 154 12-11-3 108 Lowercase letter

m 155 12-11-4 109 Lowercase letter

n 156 12-11-5 110 Lowercase letter

0 157 12-11-6 111 Lowercase letter

p 160 12-11-7 112 Lowercase letter

q 161 12-11-8 113 Lowercase letter

r 162 12-11-9 114 Lowercase letter

s 163 11-0-2 115 Lowercase letter

t 164 11-0-3 116 Lowercase letter

u 165 11-0-4 117 Lowercase letter

SR-0060 A-6 B

Octal Punched-card Decimal
Character Code Code Code Description

v 166 11-0-5 118 Lowercase letter

w 167 11-0-6 119 Lowercase letter

x 170 11-0-7 120 Lowercase letter

y 171 11-0-8 121 Lowercase letter

z 172 11-0-9 122 Lowercase letter

{ 173 12-0 1231 Opening (left) brace

174 12-11 124 Vertical line

} 175 11-0 125 Closing (right) brace

176 11-0-1 126 Overline (tilde, general
accent)

DEL 177 12-9-7 127 Delete

SR-0060 A-7 B

B. PREDEFINED FUNCTIONS AND PROCEDURES

Table B-1 lists in alphabetic order predefined functions and procedures
available to a Pascal program executing on a CRAY-2, CRAY X-MP, or CRAY-1
Computer System. These functions and procedures are specified in the ISO
Level 1 Pascal standard. For more information on the mathematical
functions for CRAY X-MP and CRAY-1 Computer Systems using Cray Pascal,
see the equivalent routines in the Programmer's Library Reference
Manual. For more information about the mathematical functions for CRAY-2
Computer Systems using Cray Pascal, see the equivalent routines in the
CRAY-2 UNICOS Libraries, Macros, and Opdefs Reference Manual.

Table B-1 gives the subprogram name and parameters, indicates whether the
subprogram is a function (F) or procedure (P), specifies whether or not
the subprogram is in-line, and describes what the subprogram does.

Table B-1. Predefined Functions and Procedures

Call F or P In-line Description

ABS(x) F No Returns the absolute value of the
integer or real number x. The
result is of the same type as x.

ARCTAN(x) F No Returns the arctangent, a real
number, of the integer or real number
x.

CHR(X) F Yes Returns the ASCII character
corresponding to the ordinal number
x, which is an integer. A run-time
error results if x is less than 0 or
greater than 127.

COS(x) F No Calculates the cosine of the integer
or real number x. x must be less
than 224.

SR-0060 B-1 B

I

Table 8-1. Predefined Procedures and Functions (continued)

Call F or P

DISPOSE(X) P

EOF(X) F

EOLN(X) F

EXP(X) F

GET(X) P

LN(X) F

NEW(x) P

SR-0060

In-line Description

No Deallocates the dynamic variable
pointed to by x. x retains the
same value, but x

A

becomes
undefined.

No Returns a value of TRUE if
end-of-file is reached in file x

No

No

No

No

No

and FALSE if it is not. The
predefined file INPUT is the default
if x is not specified.

Returns a value of TRUE if
end-of-line is reached in file x
and FALSE if it is not. The
predefined file INPUT is the default
if x is not specified.

Raises e to a power of x
(e = 2.718218). x is either an
integer or real number, and the
result is always a real number. x
must be no greater than 5676.

Moves the window to the next element
of file x and assigns the value of
that element to the buffer variable.
If the next element is the
end-of-file, the buffer variable is
undefined and the end-of-file
condition is set to TRUE.

Determines the log base (e) of x.
x is either an integer or real
number greater than 0, and the
result is always a real number.

Allocates a dynamic variable pointed
to by x, which must be previously
declared as a pointer variable. The
dynamic variable is of the type to
which x is bound. (Section 11,
Dynamic Allocation, describes a
second form of the NEW procedure for
dynamically allocating variant
records.)

8-2 8

I

Table B-1. Predefined Procedures and Functions (continued)

Call F or P

ODD(X) F

ORD(X) F

PACK(a,i,x) P

PAGE(X) P

PRED(X) F

PUT(X) P

RESET(X) P

REWRITE(X) P

ROUND(X) F

In-line Description

Yes Returns a value of TRUE if x is an
odd integer and FALSE if it is not

Yes Returns the ordinal number of x.
x can be a variable of any scalar
type except REAL.

Yes Copies elements from unpacked array
a into packed array x, starting at
element i of a

No Causes the printer to skip to the
top of the next page when printing
text file X. If x is not specified,
the predefined file OUTPUT is the
default.

Yes Returns the element that precedes x
in an ordered type. x cannot be the
first element in the type.

No Writes the contents of the buffer
variable to the window position at
the end of file x. The end-of-file
condition must be TRUE before PUT is
executed.

No

No

Not
Yestt

Sets the window at the beginning of
file x before reading from that
file. Unless the file is empty, the
end-of-file condition is set to
FALSE and the value of the first
element in the file is assigned to
the buffer variable.

Deletes the contents of file x
before writing to that file and sets
the end-of-file condition to TRUE

Rounds the real number x to the
nearest integer value

t CRAY X-MP and CRAY-l Compute Systems
tt CRAY-2 Computer Systems

SR-0060 B-3 B

I

I

I

Table B-1. Predefined Procedures and Functions (continued)

Call F or P

SIN(X) F

SQR(x) F

SQRT(x) F

SUCC(x F

TRUNC(x) F

In-line

No

No

Not
Yestt

Yes

Not
Yestt

Description

Calculates the sine of the integer
or real number x, which must be less
than 224

Returns the square of the integer or
real number x

Returns the square root of the
integer or real number x, which must
be greater than or equal to 0

Returns the element that follows x
in an ordered type. x cannot be
the last element in the type.

Truncates the fractional part of the
real number x, returning it as an
integer

UNPACK(X,d,i) P Yes Copies elements from packed array x
into unpacked array d, starting at
element i of a

t CRAY X-MP and CRAY-l Compute Systems
tt CRAY-2 Computer Systems

The predefined functions and procedures in table B-2 execute on CRAY-2,
CRAY X-MP, and CRAY-l Computer Systems and are CRI extensions to those of
the ISO Level 1 Pascal standard. In these functions and procedures, x
and y represent operands of type INTEGER, type 124, or type 132, r is
an operand of type REAL, f is a file variable, dn is a dataset name,
and p is a pointer variable.

Call

Table B-2. Extensions to the Predefined Functions
and Procedures

F or P In-linel Description
I

I
ALL(X) F Yes I Returns TRUE if any array element is

I TRUE
I

SR-0060 B-4 B

I

Call

ANY(x)

ARCCOS(r)

ARCSIN(r)

BAND(X,y)

BNOT(X)

BOR(X,y)

BXOR(X,y)

Table B-2. Extensions to the Predefined Functions
and Procedures (continued)

F or P In-line

F Yes

F No

F No

F Yes

F Yes

F Yes

F Yes

Description

Returns TRUE if all of the array
elements are TRUE

Calculates the inverse of cosine r

Calculates the inverse of sine r

Determines the logical product
(AND) of x and y

Determines the logical ones
complement of x

Determines the logical inclusive OR
of x and y

Determines the logical exclusive OR
of x and y

CONNECT(f,dn) P No Associates the Pascal file variable
f with the dataset dn (see section
10, Input and Output)

COSH(r) F

HALT P

LOC(x) F

LOG(x) F

SR-0060

No

No

Yes

Yes

Calculates the hyperbolic cosine of r

Terminates the execution of the
Pascal program and generates a
walkback listing (see appendix F,
Debug Information, for debugging
purposes

Returns the address of x, which
must be passed as a VAR parameter.
This address is type-compatible with
pointers. LOC defeats strong data
typing and inhibits assignment of
any user variables to Band T
registers for the entire compile
unit.

Calculates the exponent of x

B-5 B

I

I

Table 8-2. Extensions to the Predefined Functions
and Procedures (continued)

Call F or P

LSHIFT(X,y) F

MAXVAL(X) F

MINVAL(X) F

POP(X) F

PRODUCT(X) F

RSHIFT(X,y) F

SINH(r) F

In-line Description

Yes Shifts the word X left y bit
positions. Bits shifted off the left
end are lost, and bit positions on
the right are zero-filled.

Yes

Yes

Yes

Yes

Yes

No

Returns the largest element of
array X

Returns the smallest element of
array X

Returns the population count (number
of bits set to 1) in the word x

Computes the product of all of the
elements in array x

Shifts the word x right y bit
positions. Bits shifted off the
right end are lost, and bit positions
on the left are zero-filled.

Calculates the hyperbolic sine of r

SIZEOF(p, tag-field-value1' tag-field-value2' ... tag-field-valuen)
Returns the size (in Cray words) of F No

SUM(X) F Yes

TAN(r) F No

TANH(r) F No

SR-0060

a dynamic variable: that is, the
integer number of words that a call
to NEW will allocate when called with
the same parameter list. SIZEOF
takes a variable number of parameters
and behaves exactly like NEW used as
a function. The value of pointer p
is returned unaltered.

Computes the sum of all of the
elements in array x

Calculates the tangent of r

Calculates the hyperbolic tangent
of r

B-6 B

C. COMPILER ERROR MESSAGES

The Pascal compiler issues the following error messages during the
compile pass. The generation of code is prevented by errors that cause
any of these messages to be issued.

C.l LISTING MESSAGES

2: Identifier expected
An identifier might be missing or misplaced. Check the syntax of the
statement indicated and supply an identifier in the correct place.

3: 'PROGRAM' OR 'MODULE' EXPECTED
The first symbol of a Pascal program must be either PROGRAM or MODULE.
(Comments are not symbols, so they can precede the PROGRAM or MODULE.)
Change and recompile the program.

4: I)' EXPECTED
A right parenthesis might be missing or an extra left parenthesis might
be present. Each left parenthesis must be balanced by a right
parenthesis.

5: ':' EXPECTED
A colon might be missing. Check the syntax for the statement indicated
and insert a colon.

6: INVALID SYMBOL
The program might include an invalid or missing symbol. Check that the
statement indicated is separated from the previous statement by a
semicolon. Also check the syntax of the statement to ensure that no
reserved words are missing.

7: ERROR IN PARAMETER LIST
The parameter list contains an error. Check to see that the number of
actual parameters agrees with the number of formal parameters and that
the corresponding actual and formal parameters are of the same type.
(See section 9, Procedures and Functions, for more information on
parameter passing.)

8: 'OF' EXPECTED
The reserved word OF might be missing from the indicated line. Check the
syntax of the statement involved and change the program accordingly.

SR-0060 C-l B

9: '(' EXPECTED
A left parenthesis might be missing or an extra right parenthesis might
be present. Each right parenthesis must be balanced by a left
parenthesis.

11: '[' EXPECTED
A left bracket might be missing. The left bracket is used to introduce a
subrange, an array index range, or a set. Check the syntax of the
indicated statement and change the program accordingly.

12: ']' EXPECTED
A right bracket might be missing.
subrange, an array index range, or
indicated statement and change the

13: 'END' EXPECTED

The right bracket is used to close a
a set. Check the syntax of the
program accordingly.

The reserved word END might be missing. An END must appear to balance
each BEGIN. Check the program for an equal number of BEGIN and END
reserved words and change it accordingly.

14: ';' EXPECTED
The program might be missing a semicolon. A semicolon is a separator
between statements. Check the program to see if a semicolon is needed to
separate run-together statements.

15: INTEGER EXPECTED
The data indicated should be of type INTEGER. The ISO Level 1 Pascal
Standard specifies that labels must be integers. Check the program to
make sure that all labels are integers, and that there are no missing or
extraneous symbols.

16: '=' EXPECTED
An equal sign might be missing. Check the syntax of the declaration
indicated and make the necessary change to the program. (Appendix E,
Pascal Syntax, contains the complete Pascal syntax.)

17: 'BEGIN' EXPECTED
The reserved word BEGIN might be missing. BEGIN must appear immediately
before the first executable statement in the main program segment and all
procedures and functions. It also appears at the beginning of a compound
statement. Check the syntax of the area of the program indicated and
make any necessary changes.

20: , , , EXPECTED
A comma might be missing. A comma separates most list items, such as
variables of the same type in a VAR declaration, actual parameters in a
procedure or function call, and input or output elements in a READ or
WRITE statement. Check the syntax for the statement indicated.

SR-0060 C-2 B

I

22: 'BEGIN' OR PROCEDURE DECLARATION EXPECTED
A procedure or function declaration was followed by something other than
another procedure or function declaration or the reserved word BEGIN.
Check the procedure declaration for an equal number of BEGIN and END
reserved words, or check for misplaced declarations following the
procedure declaration.

23: ';' OR '.' EXPECTED
A procedure or function declaration in the outer level of a module did
not end with a semicolon or period. Check the procedure declaration for
an equal number of BEGIN and END reserved words.

24:
, , . OR PROCEDURE DECLARATION EXPECTED

A procedure or function declaration in the outer level of a module was
followed by something other than another procedure or function
declaration or a period. Check the procedure declaration for an equal
number of BEGIN and END reserved words, or check for misplaced
declarations following the procedure declaration.

25: ARRAY PROCESSING NOT ALLOWED HERE
Array expressions, slices, array-valued subscripts, and array-valued base
variables can only appear in assignment statements or as arguments to
certain predefined functions. They can not appear in other contexts,
such as actual arguments to user procedures or functions. Correct the
program and recompile.

26: BASE VARIABLE MUST BE WHOLE
Array-valued subscript expressions cannot be applied to a base variable
that is the result of an array-valued subscript expression or an
array-valued base variable field or pointer access. Change the statement
and recompile the program.

27: TOO MANY RA DIRECTIVES
Ten R directives are specified without matching R* directives prior to
the indicated RA directive. Remove some RA directives or insert some R*
directives and recompile the program.

28: TOO MANY R* DIRECTIVES
The indicated R* directive does not have a matching RA directive. Remove
the R* directive or insert a RA directive and recompile the program.

29: 'ELSE' expected
The constant subexpression following the reserved word THEN in a
conditional expression was not followed by the reserved word ELSE as
expected.

40: VALUE PART ONLY ALLOWED IN MAIN PROGRAM
The VALUE statement is allowed only in the main program, not in nested
procedures or functions. Remove the statement and recompile the program.

SR-0060 C-3 B

41: TOO FEW VALUES SUPPLIED
An attempt was made to initialize a structured variable with a VALUE
statement, but too few data values were supplied to fully initialize the
variable. Change the statement and recompile the program.

42: TOO MANY VALUES SUPPLIED
An attempt was made to initialize a structured variable with a VALUE
statement, but too many data values were supplied to initialize the
variable. Change the statement and recompile the program.

43: ALREADY INITIALIZED
A variable was initialized twice in a VALUE statement. Variables must
not be initialized more than once in a VALUE statement. Remove one of
the initializations and recompile the program.

44: TYPE IS NEITHER ARRAY NOR RECORD
The VALUE statement syntax for initializing arrays or records was used
with a variable that is neither. Check the syntax of VALUE statements
carefully.

46: ERROR IN CONFORMANT ARRAY SCHEMA
An error was detected while trying to parse a conformant array schema.
Check the syntax of the schema (see section 9, Procedures and
Functions). This error can arise also if the reserved word ARRAY is used
as the type of a formal parameter. Only the name of a previously
declared type can be used as the type of a formal parameter.

47: VALUE OUT OF RANGE IN A VALUE STATEMENT
An out-of-range value was supplied to a variable in a VALUE statement.
Correct the value and recompile the program.

48: IMPORTED OR COMMON DATA CAN'T BE INITIALIZED
The VALUE statement cannot be used to initialize imported or common data.
Change and recompile the program.

51: ':=' EXPECTED
An assignment operator was expected. The equal sign alone is not the
assignment operator. Check the statement indicated and make any
necessary changes.

52: 'THEN' EXPECTED
The reserved word THEN was not found in the IF statement. The syntax of
the IF statement is as follows:

if-statement = "if" boolean-expression "then" statement [else-part] •

Change the statement and recompile the program.

SR-0060 C-4 B

53: 'UNTIL' EXPECTED
The keyword UNTIL might be missing from a REPEAT statement. Section 8,
Assignment Statement and Program Control Statements, describes the REPEAT
statement and gives its syntax. Check the syntax of the statement
indicated and make any necessary changes.

54: '00' EXPECTED
The reserved DO might be missing from a FOR, WHILE, or WITH statement.
Check the syntax of the statement indicated and change as necessary.

55: 'TO'/'DOWNTQ' EXPECTED
The reserved word TO or DOWNTO might be missing from a FOR statement.
Section 8, Assignment Statement and Program Control Statements, describes
the FOR statement and gives its syntax. Make any necessary changes and
recompile the program.

57: 'FILE' EXPECTED
The reserved word FILE might be missing from the declaration indicated.
Section 5, Data Types, describes the FILE type and gives examples of
declarations. Check the syntax of the declaration and make any necessary
changes.

58: ERROR IN FACTOR
An error was found while trying to parse a factor. Look for extraneous
characters in the source line, a misspelled variable, or a binary
operator with one of its operands missing.

59: ERROR IN VARIABLE
An error was found in the variable indicated. Check that the variable is
spelled correctly and that it is separated from surrounding words and
symbols by the proper delimiter.

60: ONLY INNERMOST DIMENSION MAY BE PACKED
The ISO Level 1 Pascal Standard specifies that only the innermost
dimension of a conformant array can be packed. Change the declaration of
the conformant array.

61: ERROR IN REAL CONSTANT: DIGIT EXPECTED
A real number is not correctly represented. A constant of type REAL must
have at least one digit on each side of the decimal point or be
represented in scientific notation. Section 3, Pascal Vocabulary,
describes the correct presentation of numbers.

62: STRING CONSTANT MUST NOT EXCEED SOURCE LINE
An invalid string was detected, or an extra apostrophe was found. A
string cannot cross line boundaries. An extra apostrophe on a line by
itself can also produce this message.

SR-0060 C-5 B

63: INTEGER OR REAL CONSTANT EXCEEDS RANGE
An integer or real number is outside of the range of valid numbers. The
largest valid integer on a Cray computer system is MAXINT, which has a
value of 264_1 (9,223,372,036,854,775,807 in decimal). The smallest
value is -MAXINT. The largest valid real number in a Pascal program is
102464 •

65: ' •• ' EXPECTED
While parsing a conformant array schema, a different token was found when
•• was expected. Check the syntax of the statement and correct the
source program.

66: PARAMETERS BOUND TO SAME CONFORMANT ARRAY SCHEMA HAVE DIFFERENT TYPES
When calling a procedure with conformant array parameters, two arrays of
different types were bound to the same conformant array schema. When two
arrays are passed to a single schema, both arrays must be of the same
data type. See the example in section 9, Procedures and Functions.
Check and correct the source program.

67: INDEX TYPES NOT COMPATIBLE
A procedure with a conformant array parameter was passed an array whose
index type was incompatible with that of the formal parameter. See
section 8, Assignment Statement and Program Control Statements, for a
definition of assignment compatibility. Check and correct the source
program.

68: ACTUAL INDEX TYPE NOT SUBSET OF FORMAL INDEX TYPE
A procedure with a conformant array parameter was called with an actual
parameter whose upper and lower bounds do not lie within the range of the
conformant array parameter's index type. Change the conformant array
schema to include the upper and lower bounds of the actual parameter.

69: CASE VALUE TOO LARGE OR TOO SMALL
Only values in the range -524287 to 524287 can be used in CASE
statements. Change and recompile the program.

70: TOO MANY NESTED SCOPES
The program has procedures or WITH statements nested too deeply. The
maximum depth of nested procedures or WITH statements is 20. Change and
recompile the program.

71: TOO MANY NESTED PROCEDURES AND/OR FUNCTIONS
The maximum nesting depth for procedures and functions was exceeded. The
maximum nesting depth is 25. Reorganize the program to decrease the
nesting level of subprograms.

72: TOO MANY PROCEDURES
The limit for procedure definitions has been exceeded. The limit is
1,000. Reorganize the program to cut down the number of procedures.

SR-0060 C-6 B

73: PROCEDURE/PROGRAM TOO LONG
A procedure, function, or the main body of the Pascal program exceeds the
maximum size for any of several possible reasons. Divide it into smaller
segments and recompile the program.

75: TOO MANY ERRORS ON THIS SOURCE LINE
More than 10 errors were found on this source line; not all of the errors
have been printed. Make the corrections suggested by the errors that
have been printed.

79: TOO MANY EXPRESSIONS
The procedure or function contains too many expressions. The number of
expressions in a procedure is limited and depends on the nature of the
expressions. Split the procedure or function into several pieces and
recompile the program.

80: DIVISION OR MOD BY 0
An attempt was made to DIV or MOD something by zero; this is
mathematically meaningless. Change and recompile the program.

85: CONFORMANT ARRAY FORMAL PARAMETER MUST NOT BE PASSED BY VALUE
The program attempted to pass a conformant array formal parameter as a
value parameter. Pass the conformant array formal parameter as a VAR
parameter.

86: COMPONENT OF PACKED STRUCTURE MUST NOT BE PASSED AS VAR PARAMETER
The ISO Level 1 Pascal standard does not permit components of packed
structures to be passed as VAR parameters. Components of packed
structures can be passed as value parameters. Correct and recompile the
program.

87: LOOP CONTROL VARIABLE ACTIVE IN ENCLOSING LOOP
The compiler encountered an attempt by nested looping structures to use
the same variable as a loop control variable. An inner loop cannot use
the same control variable as the loop surrounding it. Change the loop
control variable for one of the structures and recompile the program.

93: UNRECOGNIZED COMPILER DIRECTIVE
A string in a comment beginning with a pound sign, which the compiler
expected to be a compiler directive, was not a valid directive. If the
string is supposed to be a directive, correct it; otherwise, add one or
more spaces before it so it is ignored.

94: DIRECTIVE CANNOT BE USED WITHIN COMPILE UNIT
A compiler directive that can only be used before a PROGRAM or MODULE
statement appeared within a compile unit. Move the directive outside of
the compile unit or change it to a comment.

95: LABEL MUST BE ONE TO FOUR DIGITS
A label declaration included a label with more than 4 digits. Change the
label to have 4 or fewer digits.

SR-0060 C-7 B

I
96: USE OF TYPE IDENTIFIER IN ITS DEFINITION
Use of a type name in the definition of that type is valid only for
declaring a component of the type to be a pointer to the type. Change
and recompile the program.

97: NOT ISO STANDARD
The indicated statement is not supported under the ISO Level 1 Pascal
standard. If this program is to be run on a compiler that supports no
more than the ISO standard Pascal, the statement must be changed.

101: IDENTIFIER DECLARED TWICE
The same identifier was declared twice in the same program block. Remove
one of the declarations or rename one of the identifiers.

102: LOW BOUND EXCEEDS HIGH BOUND
The lower end of the specified range was given a larger value than the
upper end of the range. Change the range specification to give a larger
value to the upper bound or a lower value to the lower bound.

103: IDENTIFIER IS NOT OF APPROPRIATE CLASS
An identifier was used in an inappropriate context. For example, a
constant was used as the target of an assignment statement. Change the
statement to employ the correct kind of identifier.

104: IDENTIFIER NOT DECLARED
The identifier indicated might not have been declared in the declarations
section of the program, procedure, or function. If the identifier was
declared, check to see that it is spelled the same way in the executable
statement as in the declaration.

105: SIGN NOT ALLOWED
A plus or minus sign was used with a constant of the wrong sort; for
example, with a string constant. Remove the sign.

106: NUMBER EXPECTED
A number might be missing at the position indicated.
the statement to see if a number should be specified.
statement for a missing reserved word.

Check the syntax of
Also, check the

107: INCOMPATIBLE SUB RANGE TYPE
An attempt was made to define a subrange whose upper and lower limits
were not of the same type, or were not elements of a scalar type other
than real. Change the program accordingly and recompile it.

108: FILE NOT ALLOWED HERE
The data type FILE is not valid in the statement indicated. Change the
statement to avoid the invalid specification and recompile the program.

110: TAGFIELD TYPE MUST BE SCALAR OR SUB RANGE
The data type of the tagfield in a variant record might be incorrect.
The tagfield must either be a scalar or subrange type. Change the
statement and recompile the program.

SR-0060 C-8 B

111: INCOMPATIBLE WITH TAGFIELD TYPE
A record variant selector is incompatible with the type of the tagfield.
Correct and run the program.

112: INDEX TYPE MUST NOT BE REAL
The data type REAL was specified for an index. REAL is not a valid index
type. An index type can be any scalar type, or a subrange of any scalar
type, except REAL. Change the statement and recompile the program.

113: INDEX TYPE MUST BE SCALAR OR SUBRANGE
An invalid data type was specified for an index. An index type can be
any scalar type, or a subrange of any scalar type, except REAL. Change
the statement and recompile the program.

114: BASE TYPE MUST NOT BE REAL
The base type specified when defining a set was REAL. REAL is not a
valid base type. The base type can be BOOLEAN, an enumerated type of up
to 128 elements, a subrange of type INTEGER with a maximum range of 0
through 127, or a subrange of type CHAR. Change the SET declaration and
recompile the program.

115: BASE TYPE MUST BE SCALAR OR SUBRANGE
An invalid base type was specified when defining a set. The base type
can be BOOLEAN, an enumerated type of up to 128 elements, a subrange of
type INTEGER with a maximum range of 0 through 127, or a subrange of type
CHAR. Change the SET declaration and recompile the program.

116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER
The actual parameter passed to a standard procedure was of an invalid
type. If the actual parameter was passed as a value parameter, its
assignment must be compatible with the corresponding formal parameter.
(Section 8, Assignment Statement and Program Control Statements,
describes assignment compatibility.) If the actual parameter is passed
as a VAR parameter, it must be of the same type as the corresponding
formal parameter. Correct and recompile the program.

117: UNSATISFIED FORWARD REFERENCE
A FORWARD directive referenced a procedure or function that was not
found. Check that the spelling of the procedure or function is the same
in the heading that includes the FORWARD directive and in the actual
procedure or function heading.

118: UNSATISFIED FORWARD REFERENCE TYPE IDENTIFIER
One type was declared to be a pointer to another type, but the other type
was not declared. Declare the type in a TYPE statement and recompile the
program.

119: FORWARD DECLARED; REPETITION OF PARAMETER LIST NOT ALLOWED
The parameter list for a procedure or function referenced by a FORWARD
directive appeared in the actual procedure or function heading. The
parameter list is allowed only with the heading containing the FORWARD
directive. Remove the parameter list from the actual heading.

SR-0060 C-9 B

I

120: FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE, OR POINTER
A function was declared with an invalid result type. The valid types for
a function are INTEGER, 124, REAL, BOOLEAN, CHAR, an enumerated type, a
subrange, and pointer. Change the result type in the function heading
and the function itself to include one of these types.

121: FILE VALUE PARAMETER NOT ALLOWED
The program attempted to pass a file as a value parameter. A file can
only be passed as a VAR parameter. Change the procedure or function
heading to make the file a VAR parameter.

122: FORWARD DECLARED FUNCTION: REPETITION OF RESULT TYPE NOT ALLOWED
The result type for a function referenced by a FORWARD directive appeared
in the actual function heading. The result type is allowed only with the
heading containing the FORWARD directive. Remove the result type from
the actual heading.

124: FLOATING-POINT FORMAT FOR REALS ONLY
A WRITE or WRITELN statement applied an invalid format specification to a
nonrea1 variable or expression. An output format for a nonrea1 variable
or expression cannot contain a specification for the number of decimal
places. The syntax for an output specification for a nonreal variable or
expression is as follows:

element = 'constant' I expression [":" field-width] .

125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER
The actual parameter passed to a standard function is of an invalid
type. If the actual parameter is passed as a value parameter, its
assignment must be compatible with the corresponding formal parameter.
(Section 8, Assignment Statement and Program Control Statements,
describes assignment compatibility.) If the actual parameter was passed
as a VAR parameter, it must be of the same type as the corresponding
formal parameter. Correct and recompile the program.

126: NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION
The number of actual parameter passed to a procedure or function was not
the same as the number of formal parameters in the subprogram
declaration. Check the procedure or function declaration and change the
actual parameter list.

127: FUNCTION IS NOT A VALID CONSTANT FUNCTION
A function used in a constant definition cannot be used in a constant
expression. Check the list of functions that can be used in constant
expressions.

128: RESULT TYPE OF PARAMETER FUNCTION DOES NOT AGREE WITH DECLARATION
A function that appears as an actual parameter has a different result
type from the corresponding formal function parameter. Match the types
and recompile the program.

SR-0060 C-10 B

129: TYPE CONFLICT OF OPERANDS
Incompatible operands were detected. Operands of the same operation must
be assignment compatible. Section 8, Assignment Statement and Program
Control Statements, defines assignment compatibility. Change and
recompile the program.

131: TESTS ON EQUALITY ALLOWED ONLY
The program attempted an invalid comparison of pointers. Pointers can be
tested for equality but not for relative size «, >, <=, and >=).
Change and recompile the program.

132: STRICT INCLUSION NOT ALLOWED
The program attempted to determine if a set is strictly included within
another set (that is, if one set is a proper subset of another). The ISO
Level 1 Pascal standard permits tests for inclusion or equality «=) but
not for strict inclusion «). Change and recompile the program.

133: FILE COMPARISON NOT ALLOWED
A relational operator «, >,
more operands of type FILE.
recompile the program.

=, <=, >=, <>, and IN) was used with one or
Such an operation is not valid. Change and

134: INVALID TYPE OF OPERAND(S)
One or more operands of an invalid data type were found in an operation.
Section 5, Data Types, describes the data types valid for each
operation. Change and recompile the program.

135 : TYPE OF OPERAND MUST BE BOOLEAN
The indicated operand must be of type BOOLEAN. The operators AND and OR
require two Boolean operands, and the operator NOT requires a single
Boolean operand. Change the operation and recompile the program.

136: SET ELEMENT TYPE MUST BE SCALAR OR SUB RANGE
An attempt was made to use the IN operator with an operand whose type is
not a valid set base type. The base type of a set must be one of the
following: an enumerated type, a subrange of types INTEGER or 124, or a
subrange of type CHAR. Check the declaration of the first operand of the
IN operator to be sure that it is of one of those types, and recompile
the program.

137: SET ELEMENT TYPES NOT COMPATIBLE
An element of an incompatible data type was used with a set. Set element
types are compatible if they are the same type, if one is a subrange of
the other, or if both are subranges of the same type. In addition,
either both sets must be packed or neither must be packed. Change and
recompile the program.

138: TYPE OF VARIABLE IS NOT ARRAY
The program attempted to treat as an array a variable that was not
declared as an array. Check the declaration of the variable and the
statement indicated for inconsistencies.

SR-0060 C-11 B

139: INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
An index type other than the type specified in the declaration was used
with a structured data type. Check the declaration of the variable and
the statement indicated for inconsistencies.

140: TYPE OF VARIABLE IS NOT RECORD
The program attempted to treat as a record a variable that was not
declared as a record. Check the declaration of the variable and the
statement indicated for inconsistencies.

141: TYPE OF VARIABLE MUST BE FILE OR POINTER
The indicated variable must be of type FILE or POINTER. Change the
operation and recompile the program.

142: INVALID PARAMETER SUBSTITUTION
A formal parameter was passed an invalid actual parameter value.
the positions of the formal parameters with the positions of the
parameters for inconsistencies. Ensure that the parameters have
properly declared. Change and recompile the program.

Compare
actual
been

143: INVALID TYPE OF LOOP CONTROL VARIABLE
A loop control variable of an invalid type was discovered. The control
variable in a FOR loop must be of an ordinal type: that is, any scalar
type except REAL. The beginning and final values of the control variable
must be assignment-compatible with its type. Section 8, Assignment
Statement and Program Control Statements, describes assignment
compatibility and the FOR loop.

144: INVALID TYPE OF EXPRESSION
An expression resolving to an invalid type was discovered. The
expression must resolve to a value that is assignment compatible with the
variable to which it is assigned. (Section 8, Assignment Statement and
Program Control Statements, describes assignment compatibility.)

145: TYPE CONFLICT
A data type conflict was discovered. Check the description of assignment
compatibility and type compatibility in section 8, Assignment Statement
and Program Control Statements, and change the program.

146: ASSIGNMENT OF FILES NOT ALLOWED
A file name appeared as an operand in an assignment statement. A file
cannot be accessed directly in an assignment statement. The predefined
procedures READ, READLN, WRITE, WRITELN, GET, and PUT must be used to
move data to and from files. The buffer variable for a file can appear,
however, in an assignment statement. The form of a buffer variable is as
follows:

buffer-var = file-var " "

SR-0060 C-12 B

147: LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION
The data type of a label in a CASE statement or a record variant is
incompatible with the data type of the selector. Make sure the labels
are all of the same type. Also, check the declaration of any variables
in the selector expression and ensure that the selector resolves to a
constant of the same type as the labels.

148: SUBRANGE BOUNDS MUST BE SCALAR
The constants delimiting the range of a subrange are of an invalid type.
The constants specifying the subrange bounds must be elements in any
previously defined scalar type. Change the subrange specification and
recompile the program.

151: ASSIGNMENT TO FORMAL FUNCTION NOT ALLOWED
The program attempted to assign a value to a formal function parameter.
Such an assignment is not valid. Check the spelling of the assignment
target and change the statement.

152: NO SUCH FIELD IN THIS RECORD
The program referred to a field not named in the record declaration.
Check the spelling of the field name in the statement specified and in
the declaration for consistency. Correct and recompile the program.

155: CONTROL VARIABLE MUST BE NEITHER FORMAL NOR NONLOCAL
An invalid use or declaration of the control variable was discovered.
The control variable for a FOR statement must be declared in the
declarations section of the block in which it is used. In addition, the
control variable cannot be the target of an assignment statement, be
passed to a subprogram as a VAR parameter, appear as a parameter in a
READ or READLN statement, or be the control variable in more than one FOR
statement. Change the invalid use of the control variable as required.

156: MULTIDEFINED CASE LABEL
The same label was defined more than once in a CASE statement or in a
record variant. Each label must be unique. Change the label and
recompile the program.

157: TOO MANY CASES IN CASE STATEMENT
More than 600 case constants were supplied in a single CASE statement.
Break the CASE statement into pieces and recompile the program.

158: MISSING CORRESPONDING VARIANT DECLARATION
In a call to the predefined procedure NEW or SIZEOF, a case constant was
supplied that did not correspond to a variant of the record type in
question. Check the call and record type for consistency, or check if
the call to NEW or SIZEOF contains too many parameters.

160: PREVIOUS DECLARATION WAS NOT FORWARD
A procedure was found with a name that is already a valid identifier in
the current scope. Check the spelling of the procedure name.

SR-0060 C-13 B

162: PARAMETER SIZE MUST BE CONSTANT
In a call to the predefined procedure NEW or SIZEOF, a case constant was
supplied when the record type in question had no variants. Remove the
case constant from the call and recompile the program.

165: MULTIDEFINED LABEL
The same statement label appeared in more than one place. No statement
label can appear more than once in a Pascal program. Change the label
and recompile the program.

166: MULTI DECLARED LABEL
The same number was declared as a statement label more than once. No
statement label can be declared more than once in a Pascal program.
Change the label to a different number.

167: UNDECLARED LABEL
A statement label that was not declared appeared in the executable
statements section of a program. Each statement label must be declared
in a LABEL declaration in the declarations section of the block in which
it is used. Section 3, Pascal Vocabulary, describes statement labels.

168: UNDEFINED LABEL
A statement label was specified in a LABEL declaration but was not used
in the executable statements section of the block. Each statement label
declared must be used. Remove the label from the LABEL declaration if it
is not needed.

171: PREDEFINED FILE WAS REDECLARED
A predefined file (either INPUT, OUTPUT, or both) was specified in a
declaration. Predefined files cannot be declared in a program. Remove
the declaration and recompile the program.

172: UNDECLARED EXTERNAL FILE
The program attempted to access a file that was not declared. Except for
the predefined files INPUT and OUTPUT, all files must be declared in the
declarations section of the block in which they are used. Add the file
declaration and recompile the program.

175: MISSING FILE 'INPUT' IN PROGRAM HEADING
The predefined text file INPUT was accessed in the program without being
specified as a parameter in the PROGRAM heading. Add INPUT to the
PROGRAM heading and recompile the program.

176: .MISSING FILE 'OUTPUT' IN PROGRAM HEADING
The predefined text file OUTPUT was accessed in the program without being
specified as a parameter in the PROGRAM heading. Add OUTPUT to the
PROGRAM heading and recompile the program.

177: '.' EXPECTED
A period was expected. Check the indicated statement and make any
necessary changes.

SR-0060 C-14 B

178: EXTERNAL FILE NAME MUST BE 7 CHARACTERS OR LESS
The compiler encountered a proqram parameter (a parameter in the PROGRAM
declaration) longer than 7 characters. Chanqe and recompile the program.

179: LABEL SECTION NOT ALLOWED HERE
An attempt was made to declare a label in an invalid place. Change the
program and recompile the program.

184: CAN NOT EXPORT NESTED ROUTINES
Only routines declared at the outermost level of a program or module can
be exported. Chanqe the proqram and recompile the program.

185: COMPILER ERROR; SEND LISTING TO CRAY SUPPORT
An error has occurred in the execution of the Pascal compiler. Show a
program listing to a CRI analyst.

186: NO CASE LIST ELEMENTS IN CASE STATEMENT
A CASE statement was encountered with no case list elements that is, with
no case alternatives and corresponding statements. The ISO Levell
Pascal standard does not permit this situation. Either add case list
elements or remove the CASE statement.

187: SET ELEMENT OUT OF RANGE
The compiler encountered an element of a set whose value was less than 0
or greater than 127. Set elements must lie in the range of 0 through
127. Change and recompile the program.

188: BASE TYPE OF SET OUT OF RANGE
The compiler encountered a set TYPE declaration whose base type contained
elements less than 0 or greater than 127. Set elements must lie in the
range of 0 through 127. Change and recompile the program.

190: EXPORTED VARIABLE DECLARED TWICE
Two variables were exported with the same name; this is illegal. Change
one of the names and recompile the program.

191: EXTERNAL VARIABLE NAME MUST BE 8 CHARACTERS OR LESS
The external names of exported variables cannot be longer than 8
characters. Shorten the name and recompile the program.

192: VIEWED VARIABLE NEW TYPE> OLD TYPE
An attempt was made to view a variable of a new type that uses more space
than the old type. Variables can be viewed only with new types that are
the same size as or smaller than the old type. Change and recompile the
program.

193: CONFORMANT ARRAYS CAN NOT BE • VIEWED ,
Conformant arrays cannot be used in VIEWING statements. Change and
recompile the program.

SR-0060 C-15 B

195: GOTO INTO CONTROL STRUCTURE
An attempt was made to jump into a structured statement, such as the THEN
clause of an IF statement. Such a jump is illegal; change and recompile
the program.

196: STRING CONSTANT TOO LONG
A string constant longer than 140 characters was declared. Change and
recompile the program.

191: LOOP CONTROL VARIABLE CAN NOT BE PASSED AS VAR PARAMETER
Within a FOR loop, the loop control variable cannot be passed as a VAR
parameter. Change and recompile the program.

198: READ INTO LOOP CONTROL VARIABLE NOT ALLOWED
Within a FOR loop, the loop control variable cannot appear as the target
of a read. Change and recompile the program.

199: ASSIGMENT TO LOOP CONTROL VARIABLE NOT ALLOWED
Within a FOR loop, the loop control variable cannot appear as the target
of an assignment. Change and recompile the program.

200: TOO MANY PARAMETERS
The procedure or function has too many parameters. The number of
parameters permitted depends on their types. Change the procedure to use
fewer parameters; either break it into smaller procedures or pass
parameters implicitly by making nonlocal addresses.

201: ASSIGNMENT TO FUNCTION OUT OF SCOPE
An attempt was made to assign to a function result outside the scope of
the function. Change and recompile the program.

202: ASSIGNMENT TO FUNCTION POINTEE NOT ALLOWED
A function result variable cannot be accessed on the left side of an
assignment statement. Change the statement and recompile the program.

203: MULTIDEFINED VARIANT
The indicated variant value appears more than once within a record.
Change the variant and recompile the program.

C.2 LOGFILE MESSAGES

When executing the Pascal compiler under UNICOS, all of the logfile
messages go to standard error except the following: PSOOl, PS002, PS003,
and PSOOS.

PSOOI - [PASCAL] COMPILED s, n SOURCE LINES
The Pascal compiler has completed compilation of program module S,
which consisted of n source lines. Class, informative.

SR-0060 C-16 B

PS002 - [PASCAL] CODE: n OCTAL, DATA: m OCTAL
The Pascal compiler generated n (octal) words of code and m (octal)
words of static data for the current program module. Class, informative.

PS003 - [PASCAL] STACK: n OCTAL, HEAP: m OCTAL
At run time, the program compiled by the Pascal compiler initially
requests n (octal) words of stack space and m (octal) words of heap
space. Class, informative.

PS004 - [PASCAL] n ERRORS IN S, NO CODE GENERATED
Errors were detected by the Pascal compiler during the compilation of
program module Si no code was generated. The Pascal compiler aborts
the job step if the A+ option was on the compiler call line. Class,
fatal.

PSOOS - [PASCAL] NORMAL TERMINATION
The Pascal compiler terminated without errors. Class, informative.

PS006 - [PASCAL] SOURCE LINE TOO LONG, NO CODE GENERATED
The Pascal compiler detected a source line greater than 140 characters in
width. Compilation was aborted. Class, fatal.

PS007 - [PASCAL] PREMATURE EOF ON INPUT SOURCE FILE
The Pascal compiler detected an end of file on the input source file
prior to the end of the current program module. Compilation was
aborted. Class, fatal.

PSOOS - [PASCAL] PREMATURE EOD ON INPUT SOURCE FILE
The Pascal compiler detected an end of data on the input source file
prior to the end of the current program module. Compilation was
aborted. Class, fatal.

PS009 - [PASCAL] HARDWARE I/O ERROR ON INPUT SOURCE FILE
The Pascal compiler detected an unrecoverable hardware I/O error on the
input source file. Compilation was aborted. Class, fatal.

PS010 - [PASCAL] UNRECOGNIZED KEYWORD S ON COMMAND LINE IGNORED
The Pascal compiler does not recognize a keyword (s) on the command
line. Class, fatal.

PS011 - [PASCAL] INVALID INPUT FILE NAME S, COMPILE TERMINATED
The value specified for the I parameter on the Pascal call line is
invalid. Class, fatal.

PS012 - [PASCAL] INVALID LIST FILE NAME S, COMPILE TERMINATED
The value specified for the L parameter on the Pascal call line is
invalid. Class, fatal.

PS013 - [PASCAL] INVALID BLD FILE NAME S, COMPILE TERMINATED
The value specified for the B parameter on the Pascal call line is
invalid. Class, fatal.

SR-0060 C-17 B

PS014 - [PASCAL] INPUT FILE SPECIFIED TWICE, COMPILE TERMINATED
The I parameter has occurred more than once on the Pascal call line.
Class, fatal.

PS015 - [PASCAL] LIST FILE SPECIFIED TWICE, COMPILE TERMINATED
The L parameter has occurred more than once on the Pascal call line.
Class, fatal.

PS016 - [PASCAL] BLD FILE SPECIFIED TWICE, COMPILE TERMINATED
The B parameter has occurred more than once on the Pascal call line.
Class, fatal.

PS017 - [PASCAL] BLD FILE AND LIST FILE SAME, COMPILE TERMINATED
You specified the same dataset name for both the Band L parameters on
the Pascal call line. Class, fatal.

PS018 - [PASCAL] INPUT FILE AND LIST FILE SAME, COMPILE TERMINATED
You specified the same dataset name for both the I and L parameters on
the Pascal call line. Class, fatal.

PS019 - [PASCAL] INPUT FILE AND BLD FILE SAME, COMPILE TERMINATED
You specified the same dataset name for both the I and B parameters on
the Pascal call line. Class, fatal.

PS020 - [PASCAL] ABNORMAL TERMINATION
The Pascal compiler is unable to successfully complete compilation of the
current program module. Class, fatal.

PS021 - EXTENDED MODE RELOCATABLE GENERATED
The generated binary expects to be run in EMA (enhanced memory
addressing) mode. Class, informative.

PS022 - UNRECOGNIZED OPTION IN CONTROL STATEMENT: option
A string specified with the 0 parameter in the PASCAL control statement
was not a valid option. Class, fatal.

PS023 - CONTROL STATEMENT TOO LONG, COMPILE TERMINATED
The PASCAL control statement contained more than 300 nonblank
characters. Class, fatal.

PS024 - CONTROL STATEMENT TERMINATOR MISSING
A continuation line of the PASCAL control statement did not end with a
period or continuation character. Class, fatal.

PS025 - CONTROL STATEMENT CONTINUATION LINE NOT FOUND
The last line in the control statement file was a line from the PASCAL
control statement that ended with a continuation character. Class, fatal.

SR-0060 C-18 B

D. RUN-TIME MESSAGES

The messages described in this appendix are issued by routines that are
part of the Pascal run-time library. The message code indicates the type
of routine issuing the message as follows:

Message Code

RT10nn
RT30nn

Function of Routine

Memory management or range checking
Input/output

All run-time messages identify fatal errors that cause your program to
produce unpredictable results. The messages are as follows:

RT1000 - PROGRAM CALLED HALT
The program called the HALT procedure, which terminates the execution of
the program. From P$HALT.

RT1001 - HEAP SPACE EXAUSTED
All of the memory space set aside for dynamic allocation has been used.
From P$NEW.

RT1002 - DISPOSED AREA NOT IN HEAP
A DISPOSE statement attempted to deallocate a dynamic variable that was
not currently allocated. Check the program logic to ensure that each
DISPOSE statement is associated with a NEW statement to allocate the
dynamic variable. From P$DISP.

RT1003 - DISPOSED AREA HAS BAD LINKAGE WORD
The heap management linkage word has been altered. Either the pointer
being disposed has been stored indirectly with negative offset or the
allocated area prior to the disposed area has been stored indirectly past
its bounds. Turn on range checking, then recompile and rerun the
program. From P$DISP.

RT1004 - INTEGER OVERFLOW
An integer in the program has exceeded the highest possible value. If
the variable was declared as type 124 (a 24-bit integer), a larger value
can be accommodated by changing the declaration to type INTEGER (64
bits)~ MAXINT specifies the largest 64-bit integer value possible on a
machine. (The value of MAXINT on a Cray computer system is 264 -1.)
If MAXINT has been exceeded, the program must be modified. From any
Pascal routine.

SR-0060 D-1 B

RTI005 - STACK OVERFLOW
All slots in the run-time stack are full as a result of too many
recursive procedure or function calls. Check for the possibility of
infinite recursion. To increase the stack size, reset the value of the S
compiler directive (described in section 2, Using Pascal on a Cray
Computer). From any Pascal routine.

RTI006 - DIVISION BY ZERO
The program attempted to divide a number by O. Dividing by 0 is not a
valid operation. Change the program to avoid division by O. From any
Pascal routine with the division by 0 checking option on.

RTI007 - NO CASE PROVIDED FOR THIS VALUE
None of the labels in a CASE statement matched the value of the selector,
and the optional OTHERWISE clause was not specified. Add an OTHERWISE
clause (described in section 8, Assignment Statement and Program Control
Statements) to handle unmatched values. From any Pascal routine with the
CASE statement checking option on.

RTI008 - INDEX EXPRESSION OUT OF BOUNDS
The program attempted to access an element outside of the bounds of the
declared structure. Change the program to ensure that the index value
does not exceed the declared bounds. From any Pascal routine with the
index checking option on.

RTI009 - ASSIGNMENT OUT OF BOUNDS
In an assignment statement, the value on the right side was outside of
range of legal values for the variable on the left side. For example, a
value of -3 on the right side is out of bounds for a variable on the left
side with a declared range of -2 •• 4 .. Change the program to prevent such
an assignment. From any Pascal routine compiled with the assignment
checking option on.

RTIOIO - INVALID POINTER REFERENCE
The program attempted to use a pointer variable that did not point to a
valid item. Either the pointer was not initialized or the item to which
it pointed had been deallocated (using the predefined procedure
DISPOSE). Check these possible errors in the program and make
appropriate changes. From any Pascal routine compiled with the pointer
checking option on.

RTIOll - SUCC FUNCTION OUT OF BOUNDS
The SUCC function attempted to access an element outside of the declared
bounds of the type. If the last element in the type, for instance, is
specified as a parameter in the SUCC function call, the function attempts
to access an invalid element. Change the program to ensure a valid
parameter. From any Pascal routine with the SUCC function checking
option on.

SR-0060 D-2 B

I

RTI012 - PRED FUNCTION OUT OF BOUNDS
The PRED function attempted to access an element outside of the declared
bounds of the type. If the first element in the type, for instance, is
specified as a parameter in the PRED function call, the function attempts
to access an invalid element. Change the program to ensure a valid
parameter. From any Pascal routine with the PRED function checking
option on.

RTI013 - SET ELEMENT OUT OF BOUNDS
The program referenced an element that is outside of the bounds of the
specified set. Change the program to ensure that only elements included
in the set are referenced. From any Pascal routine with the SET checking
option on.

RTI015 - HEAP CHECKING CAUGHT DAMAGED HEAP
The heap data structure (used internally for dynamic allocation) was
corrupted. The point of corruption is indicated if the R+ option is
specified on the Pascal invocation statement.

RTI016 - DISPOSE OF UNALLOCATED AREA
A Pascal DISPOSE statement attempted to deallocate a dynamic variable
that was not currently allocated. Check the program to ensure that the
argument to the DISPOSE procedure is a valid pointer. From P$DISP.

RT1017 - CHR FUNCTION ARGUMENT OUT OF BOUNDS
The CHR function was called with an argument less than 0 or greater than
127. Change and rerun the program. From any Pascal routine with the CHR
function checking option set on.

RT1018 - MOD BY ZERO OR NEGATIVE
The program attempted to perform a MOD function with modulus less than or
equal to O. Change and rerun the program. From any Pascal routine with
the MOD checking option turned on.

RT1019 - FOR INDEX INITIAL VALUE OUT OF BOUNDS
The initial value of the index variable in a FOR loop is not a legal
value for that variable. Either change the variable's type or ensure
that the initial value is legal. From any Pascal routine compiled with
the range checking option on.

RT1020 - FOR INDEX FINAL VALUE OUT OF BOUNDS
The final value of the index variable in a FOR loop is not a legal value
for that variable. Either change the variable's type or ensure that the
final value is legal. From any Pascal routine compiled with the range
checking option on.

RT1021 - REPRIEVE PROCESSING INITIATED
The program enabled reprieve processing with the P$REPRV library routine,
and a reprievable error occurred. From P$REPRV.

SR-0060 D-3 B

RT1022 - WRONG VARIANT ACTIVE
A field was accessed when its variant was inactive. From any Pascal
routine with the variant checking option set on.

RT1023 - VALUE PARAMETER OUT OF RANGE
A value parameter is out of range. From any Pascal routine with range
checking set on.

RT1025 - UNCONFORMABLE ARRAYS

RT3001 - NAMED FILE DOES NOT EXIST
The file that was to be opened could not be located. Check the spelling
of the file name and ensure that a file of the same name is local to the
job. From P$RESET and P$REWRIT.

RT3004 - ATTEMPTED READ ON UNOPENED FILE
The file could not be read because it was not previously opened. Open
the file using the RESET standard procedure before attempting the read.
From any Pascal IIO routine.

RT3005 - ATTEMPTED WRITE TO AN UNOPENED FILE
The file could not be written because it was not previously opened. Open
the file using the REWRITE standard procedure before attempting the
write. From any Pascal IIO routine.

RT3006 - FUNCTION ATTEMPTED ON UNOPENED FILE
The file could not be used because it was not previously opened. Open
the file using the RESET or REWRITE standard procedures before attempting
the function. From any Pascal IIO routine.

RT3007 - ATTEMPTED READ PAST EOFIEOD
The program attempted to read beyond the end-of-file or the
end-of-dataset indicator. Ensure that EOF is not TRUE before doing a GET
or READ. From P$GET and P$RCH.

RT3009 - INPUT FORMAT ERROR ON INTEGER READ
The data to be read was not an integer. The type of the variable in the
READ or READLN statement must match the type of the input data. From
P$RI.

RT3010 - INPUT FORMAT ERROR ON REAL READ
The data to be read was not of type REAL. The type of the variable in
the READ or READLN statement must match the type of the input data. From
P$RF.

RT3011 - INPUT RECORD EXCEEDS BUFFER SIZE
If the program is reading a text file, the line length is too long. The
maximum line length is 140 characters. If the program is reading a
nontext file, the data is probably of the wrong type. Ensure that the
data is of the same type as the variable specified to contain that data.
From P$GET and P$RCH.

SR-0060 D-4 B

RT3012 - OUTPUT RECORD EXCEEDS BUFFER SIZE
The program tried to write more than 140 characters to a single line of a
text file. Write an end-of-line (using the WRITELN statement) before
reaching the 141st character. From P$PUT and P$WCH.

RT3013 - HARDWARE ERROR
A hardware error caused the program to fail. Attempt to run the program
again. If this message continues to appear, contact a CRI site analyst.
From any I/O routine.

RT3015 - ATTEMPTED EOLN ON NONTEXT FILE
The program invoked the EOLN function on a file other than a text file.
A nontext file does not contain end-of-line indicators, and the EOLN
function applies only to text files. Either remove the EOLN function or
declare the file as type TEXT. From P$EOLN.

RT3016 - ATTEMPTED EOF ON UNSTRUCTURED FILE
The program invoked the EOF function on an unblocked dataset. From P$EOF.

RT3017 - CANNOT RESET OUTPUT OR $OUT
The RESET function was invoked on an output file. RESET is for input
files only. Change RESET to REWRITE for an output file. From P$RESET.

RT3018 - CANNOT REWRITE INPUT OR $IN
The REWRITE function was invoked on an input file. REWRITE is for output
files only. Change REWRITE to RESET for an input file. From P$REWRIT.

RT3019 - EOLN ATTEMPTED AT EOF
The EOLN standard function was called on a file currently positioned at
the end of the file. EOLN is not defined when a file is at EOF. Change
the program to prevent an EOLN test at EOF. From P$EOLN.

RT3020 - RESET OF UNDEFINED FILE
The program attempted to RESET an undefined file. Ensure that the file
being RESET either exists before the program is run or has some data
written to it before the RESET is done. From P$RESET.

SR-0060 D-5 B

E. PASCAL SYltTAX

This appendix defines all syntactical terms used in Cray Pascal,
including those based on both the ISO standard and CRI extensions.
Syntax is shown in the Backus-Naur Form (BNF).

Any word not enclosed in quotation marks is called a nonterminal symbol.
Each nonterminal symbol in a BNF construction is defined in turn until
the level of terminal (literal) symbols is reached. This progression of
definitions from complex to simple is reversed in the index of syntax
components (subsection E.2), which shows the uses of each component
leading from simple to complex.

The following nonterminal symbols are defined but are not used to define
other symbols:

compile-unit
pointer-type
signed-number

simple-type
special-symbol

structured-type
signed-real

Directives, word-symbols, and identifiers disregard upper and lower
case. Other BNF conventions are as follows:

Convention Description

x I y Indicates that either x or y is valid

"x"

[x

{ x }

Boldface

()

SR-0060

Indicates that x is a literal, or terminal, element to be
entered exactly as specified. This includes reserved
words and standard identifiers, such as PROGRAM in the
program heading. (Section 3, Pascal Vocabulary, lists
the reserved words and standard identifiers.)

Indicates 0 or 1 occurrence of x is valid

Indicates 0 or more occurrences of x are valid

Indicates that the element is a CRI extension to the ISO
Level 1 Pascal standard.

Indicates a grouping.
significance of their

Parentheses have no syntactic
own. For example:

id = (letterl"s"I"'''I''@'') {letterldigitl"_"I"s"I"'''I''@''}.

Indicates the end of a description

E-l B

I

E.l SYNTAX LISTING

This subsection defines nonterminal symbols using the Backus-Naur Form.
Every component not enclosed by quotation marks is defined in turn until
the level of terminal symbols is reached, indicated by quotation marks.

actual-parm =

actual-parm-list =

adding-operator =

apostrophe-image =

array-type =

array-value-spec =

array-var =

assignment-statement

base-type =

block =

boolean-expression =

bound-id =

SR-0060

expression I
var-access I
procedure-id
function-id •

"(" actual-parm {"," actual-parm } ")" •

"+" I "-" I "or" •

" .. "
"array" "[" index-type {
"of" component-type •

[type-id]

" " , index-type} "]"

n(n sub-value-spec { n II , sub-value-spec } n)n •

var-access •

(var-access I function-id
":=" expression.

ordinal-type

{

}

label-dcl-part
constant-def-part
type-def-part
common-del-part
imported-del-part
exported-del-part
static-del-part
var-dcl-part

{ procedure-and-function-dcl-part }
statement-part •

expression

id •

E-2 B

buffer-var =

case-constant =

case-constant-list :

case-index =

case-list-element :

case-statement =

character-string :

common-dcl-part =
compile-unit =

file-var It It

constant •

case-constant { .. , .. case-constant} •

expression •

case-constant-list ":" statement.

"case" case-index "of"
case-list-element { ";" case-list-element }
";" "otherwise" [":"] statement
"end" •

" ... string-element { string-element}

"conunon" ext-var-dcl ";" { ext-var-dcl ";" }

(program I module { program I module } •

component-type = type-denoter •

component-var = indexed-var I field-designator •

compound-statement: "begin" statement-sequence "end"

conditional-statement : if-statement I case-statement .

conformant-array-parm-spec :
value-conformant-array-spec
var-conformant-array-spec •

conformant-array-schema :

constant =

constant-def =

constant-def-part :

constant-expression =

SR-0060

packed-conformant-array-schema
unpacked-conformant-array-schema •

([sign] (unsigned-number I constant-id)) I
character-string .

id ":" (constant I constant-expression) •

"const" constant-def ";" { constant-def ";" }

constant-subexpression I
("if" constant-subexpression
"then" constant-subexpression
"else" constant-subexpression) •

E-3 B

constant-factor = unsigned-constant I
constant-function-designator
constant-set-constructor I
("(" constant-expression ")")
("not" constant-factor) •

constant-function-designator =
constant-function-id [actual-pa~-list] .

constant-function-id = id

constant-id = id •

constant-member-designator =
constant-expression [" •• " constant-expression] .

constant-set-constructor =

constant-subexpression =

constant-term =

control-var =

digit =

digit-sequence =

directive =

directive-alt =

domain-type =

else-part =

empty-statement =

SR-0060

"[" constant-member-designator
{ "," constant-member-designator }] "]" .

simple-constant-expression
[relational-operator
simple-constant-expression] .

constant-factor
{ multiplying-operator constant-factor } •

entire-var •

"0" "1"
"5" "6"

"2"
"7"

digit { digit }

"3" "4"
"8" "9" .

(

[
(

"forward" [";" "exported"
"(" external-name ")"]])
"exported" ["(" external-name

[";" "forward"
"fortran" I
"external" I

]) I
")"]

("imported" ["(" external-name ")"]) •

"exported" ["(" external-name ")"]

type-id •

"else" statement •

E-4 B

I

I

I

entire-var =

enumerated-type =

exported-dcl-part =
expression =

ext-var-dcl =

extension-word-symbols =

external-name =

factor =

field-designator =

field-designator-id =

field-list =

field-specifier =

file-type =

var-id •

"(" id-list It)" •

"exported" ext-var-dcl ";" { ext-var-dcl ";" } •

["if" subexpression "then" subexpression
"else"] subexpression.

id ["(" external-name ")"]
{ "," id ["(" external-name ")"] }
":" type-denoter •

"chache" I "colmlon" I "imported" I
"external" I "fortran I "imported"
"otherwise" I "static" I "taskvar"
"viewing" .

id .

var-access
unsigned-constant
bound-id I
function-designator
set-constructor I
("(" expression ")"
("not" factor) •

"exported" ·1

1
"module"
"value" I

record-var "." field-specifier) I
field-designator-id .

identifier

fixed-part [
[";"] .

field-id .

"." , variant-part]) I variant-part

"file" "of" component-type .

file-var = var-access •

final-value =

fixed-part =

for-statement =

SR-0060

expression

record-section { ";" record-section} •

"for" control-var ":=" initial-value
("to" I "downto") final-value
["by" increment-value]
"do" statement •

E-5 B

formal-parm-list =

formal-parm-section =

fractional-part =

function-block =

function-del =

function-designator =

function-heading =

function-id =

"(" formal-parm-section
{ ";" formal-parm-section } ")" •

value-parm-spec I
var-parm-spec I
procedural-parm-spec
functional-parm-spec
conformant-array-parm-spec •

digit-sequence •

block •

(function-heading ";" directive) I
(function-identification It;" function-block) I
(function-heading ";"

[direetive-alt ";"]
function-block) •

function-id [actual-parm-list

"function" id formal-parm-list
":" result-type.

id •

function-identification = "function" function-id .

functional-parm-spec

goto-statement

id =

id-list =

identified-var =

if-statement =

imported-del-part =
increment-value =

index-expression =

index-type =

SR-0060

function-heading

"goto" label •

(letter
{ letter

I "$" I "0,,0" I "@")

I digit "_" I "$" I "0,,0" I "@" } •

id { "," id } •

pointer-var

"if" boolean-expression "then" statement
[else-part] •

"imported" ext-var-del

expression.

expression I " "I

11." , { ext-var-del "." , } .

[expression II "expression [" •. " expression]] .

ordinal-type •

E-6 B

index-type-spec =

indexed-var =

initial-value =

label =

label-dcl-part =

letter =

member-designator =

module =
module-block =

id id ":" ordinal-type-id •

array-var
.. [.. index-expression {

expression

digit-sequence •

.. .. , index-expression} "]" •

"label" label { "," label} ";"

"a"I"b"I"c"I"d"I"e"I"f"I"g"I"h"I"i"I"j"I"k"I"l"I"m"l
"n"I"o"I"p"I"q"I"r"I"s"I"t"I"u"I"v"I"w"I"x"I"y"I"z"l
"A"I"B"I"C"I"D"I"E"I"F"I"G"I"H"I"I"I"J"I"K"I"L"I"M"I
"N" 1"0" I"P"I "Q" I "R" I "S"I"T"I"U" I"V" I "W" I "X"I"Y" I"Z".

expression [" expression] •

"module" id , module-block

{

}

constant-def-part
type-def-part
common-del-part
imported-del-part
exported-del-part
static-del-part
var-dcl-part

[value-def-part]

.. II .

{ procedure-and-function-dcl-part } •

multiplying-operator = "." I "/" I "div" I "mod" I "and"

new-ordinal-type = enumerated-type subrange-type.

new-pointer-type =

new-structured-type =

new-type =

octal-digit =
octal-number =

ordinal-type =

ordinal-type-id =

SR-0060

" " domain-type

"packed"] unpacked-structured-type

new-ordinal-type I
new-structured-type
new-pointer-type •

'0'1'1'1'2'1'3'1'4'1'5'1'6'1'7' •

octal-digit { octal-digit} 'B'

new-ordinal-type I ordinal-type-id

type-id •

E-7 B

packed-conformant-array-schema =

pointer-type =

pointer-type-id =

pointer-var =

procedural-parm-spec

"packed" "array" "[" index-type-spec ftl"
"of" type-id •

new-pointer-type I pointer-type-id •

type-id •

var-access •

procedure-heading

procedure-and-function-dcl-part =

procedure-block =

procedure-dcl =

procedure-heading =

procedure-id =

{ (procedure-dcl I function-dcl)

block •

II.ft , } .

procedure-heading ";" directive) I
procedure-identification ";" procedure-block) I
procedure-heading ";"
[directive-alt ";"]
procedure-block) .

"procedure" id [formal-parm-list 1 •

id •

procedure-identification = "procedure" id .

procedure-statement =

program =

program-block =

SR-0060

procedure-id
[[actual-parm-list] I
read-parm-list I
readln-parm-list I
write-parm-list I
writeln-parm-list] .

program-heading "." ,

{

}

label-dcl-part
constant-def-part
type-def-part
common-del-part
imported-dcl-part
exported-dcl-part
static-del-part
var-dcl-part

[value-def-part]

program-block II " .

{ procedure-and-function-dcl-part }
statement-part •

E-8 B

I

program-heading =

program-parms =

read-parm-list =

readln-parm-list =

real-type-id =

record-section =

record-section-id =

"program" id ["(It program-parms It)"] •

id-list •

"(" [file-var ","]
var-access { "," var-access } ")" •

"(" (file-var I var-access
{ "," var-access } ")" •

type-id •

record-section-id-list ":" type-denoter •

id •

record-section-id-list = record-section-id { "," record-section-id } •

record-type = "record" field-list "end" •

record-value-spec = [type-id]
"(" value-spec { II II , value-spec} ")" •

record-var = var-access •

record-var-list = record-var {

relational-operator = "=" I "{>"

.. II , record-var }

"<" I ">" I "<="

repeat-statement = "repeat" statement-sequence
"until" boolean-expression •

repetitive-statement = repeat-statement I
while-statement I
for-statement •

">=" I "in" •

result-type = simple-type-id pointer-type-id •

scale-factor =

set-constructor =

set-id =

set-type =

set-value-elt =

set-value-elt-list =

SR-0060

signed-integer •

"[" [member-designator
{ "," member-designator}] "]" •

id •

"set" "of" base-type •

constant [" "constant] •

set-value-elt {

E-9

" " , set-value-elt } •

B

I

I

set-value-spec =

sign =

signed-integer =

signed-number =

signed-real =

set-id I "[" [set-value-elt-list] "]" •

"+" I "_" .

[sign] unsigned-integer

signed-integer I
signed-real I
([sign] octal-number) .

[sign] unsigned-real •

simple-constant-expression =

simple-expression =

simple-statement =

simple-type =

simple-type-id =

simple-value-spec =

special-symbol

statement

statement-part =

statement-sequence =

static-del-part =

string-character =

string-element =

SR-0060

[sign] constant-term
{ adding-operator constant-term } .

sign] term { adding-operator term } •

empty-statement
assignment-statement I
procedure-statement I
goto-statement •

ordinal-type real-type-id •

type-id .

unsigned-constant
sign unsigned-number
sign constant-id.

"+" I "_" I "*" I "/" I "=" I "~" I ">" I "[" I
"1" I "." I "," I ":" I ";" I " " I "(It I ")" I

"<>" 1"<=" ">=" I ":=" I II "I word-symbol.

[label ":"
(simple-statement structured-statement) •

compound-statement .

statement { ";" statement} •

["static" var-dcl ";" { var-dcl ";" }] •

one-of-a-set-of-the-printable-ascii-characters

apostrophe-image I string-character .

E-IO B

I

I

I

structured-statement = compound-statement I
conditional-statement I
repetitive-statement I
with-statement I
viewing-statement •

structured-type = new-structured-type I structured-type-id •

structured-type-id = type-id.

subexpression = simple-expression
[relational-operator simple-expression].

subrange-type =

sub-value-spec =

tag-field =

tag-type =

taskvar-var-dcl-part =

constant " .• " constant.

value-spec I
(unsigned-integer I constant-id)
"of" value-spec •

identifier .

ordinal-type-id •

["taskvar" ext-var-decl
{ ext-var-decl ";" }] .

"." ,

term = factor { multiplying-operator factor } •

type-def = id "=" type-denoter

type-def-part = "type" type-def ";" { type-def

type-denater = type-id I new-type •

type-id = id .

unpacked-confarmant-array-schema =
"array"

"." , } .

"[If index-type-spec { ";If index-type-spec } "]"
"of" (type-id I conformant-array-schema) •

unpacked-structured-type =

unsigned-constant

unsigned-integer =

SR-0060

array-type I record-type I set-type I file-type •

unsigned-number I
character-string I
constant-id I
"nil" •

digit-sequence

E-l1 B

unsigned-number =

unsigned-real =

unsigned-integer I unsigned-real I octal-number •

(unsigned-integer
fractional-part
["e" scale-factor]) I

(unsigned-integer "e" scale-factor) •

value-conformant-array-spec = id-list ":" conformant-array-schema •

value-def =

value-def-part =

value-parm-spec =

value-spec =

var-access =

entire-var "=" value-spec •

"value" value-def ";" { value-def

id-list ":" type-id

simple-value-spec I
set-value-spec I
array-value-spec I
record-value-spec .

entire-var I
component-var I
identified-var I
buffer-var •

"." , } .

var-conformant-array-spec = "var" id-list ":" conformant-array-schema •

var-dcl =

var-dcl-part

var-id =

var-parm-spec =

variant =

variant-part =

variant-selector =

viewing-statement =
while-statemerit =

with-statement =

SR-0060

id-list ":" type-denoter .

"var" var-dcl

id .

"." , { var-dcl

"var" id-list ":" type-id •

"." , } .

case-constant-list ":" "(" field-list ")" •

"case" variant-selector "of" variant
{ ";" variant} •

[tag-field ":" tag-type •

"viewing" var-access ":" type-id "do" statement

"while" boolean-expression "do" statement •

"with" record-var-list "do" statement •

E-12 B

word-symbol = "and" "array" "begin" "by"
"case" "const" "div" "do"
"downto" "else" "end" "file"
"for" "fortran" "forward" "function"
"goto" "if" "in" "label"
"mod" "nil" "not" "of"
"or" "packed" "procedure" I "program"
"record" "repeat" "set" I "then"
"to" "type" "until" I "var"
"while" "with"
extension-word-symbols •

write-parameter = expression [":" expression [":" expression]] •

write-parm-list =

writeln-parm-list =

"(" [file-var ","]
write-parm { "," write-parm } ")" •

["("

{ " " ,
(file-var I write-parm
write-parm } ")"] •

E.2 INDEX OF SYNTAX COMPONENTS

This subsection shows which BNF constructions use a given syntactical
component. This allows a study of the applications of a given concept in
Pascal. Literal symbols, indicated by quotation marks, are listed at the
end of the index.

actual-parm : actual-parm-list
actual-parm-list : function-designator, procedure-statement
adding-operator : simple-constant-expression, simple-expression
"and" : multiplying-operator, word-symbol
apostrophe-image : string-element
"array" : array-type, packed-conformant-array-schema, unpacked-

conformant-array-schema, word-symbol
array-type : unpacked-structured-type
array-value-spec : value-spec
array-var : indexed-var
ascii-characters : string-character
assignment-statement : simple-statement

base-type : set-type
"begin" : compound-statement, word-symbol
block : function-block, procedure-block
boolean-expression : if-statement, repeat-statement, while-statement
bound-id : factor
buffer-var : var-access
"by" : for-statement

SR-0060 E-13 B

"case" : case-statement, variant-part, word-symbol
case-constant : case-constant-list
case-constant-list : case-list-element, variant
case-index : case-statement
case-list-element : case-statement
case-statement : conditional-statement
character-string : constant, unsigned-constant
"common" : common-del-part, extension-word-symbols
common-del-part : block, module-block
component-type : array-type, file-type
component-var : var-access
compound-statement : statement-part, structured-statement
conditional-statement : structured-statement
conformant-array-parm-spec : formal-parm-section
conformant-array-schema : unpacked-conformant-array-schema, value-

conformant-array-spec, var-conformant-array-spec
"const" : constant-def-part, word-symbol
constant : case-constant, constant-def, set-value-elt, subrange-type
constant-def : constant-def-part
constant-def-part : block, program-block, module-block
constant-expression : constant-def, constant-factor,

constant-member-designator
constant-factor : constant-term
constant-function-designator : constant-factor
constant-function-id : constant-function-designator
constant-id : constant, unsigned-constant, simple-value-spec,

sub-value-spec, unsigned-constant

constant-set-constructor : constant-factor
constant-subexpression : constant-expression
constant-term : simple-constant-expression
control-var : for-statement

digit : digit-sequence, id
digit-sequence : fractional-part, label, unsigned-integer
directive : function-del, procedure-del
directive-alt : function-del, procedure-del
"div" : multiplying-operator, word-symbol
"do" : for-statement, viewing-statement, while-statement, with-statement,

word-symbol
domain-type : new-po inter-type
"downto" : for-statement, word-symbol

"else" : constant-expression, else-part, expression, word-symbol
else-part : if-statement
empty-statement : simple-statement
"end" : case-statement, compound-statement, record-type, word-symbol
entire-var : control-var, value-def, var-access
enumerated-type : new-ordinal-type
"exported" : directive-alt, directive, exported-del-part, extension-word

symbols

SR-0060 E-14 B

exported-dcl-part : block, program-block, module-block
expression : actual-parm, assignment-statement, boolean-expression, case

index, factor, final-value, increment-value, index-expression,
initial-value, member-designator, member-designator,
write-parameter

ext-var-dcl : common-dcl-part, exported-dcl-part, imported-del-part,
taskvar-var-dcl-part

extension-word-symbols : word-symbol
"external" : directive
external-name : directive, directive-alt, ext-var-dcl

factor : factor, term
field-designator : component-var
field-designator-id : field-designator
field-id : field-specifier
field-list : record-type, variant
field-specifier : field-designator
"file" : file-type, word-symbol
file-type : unpacked-structured-type
file-var : buffer-var, read-parm-list, readln-parm-list, write-parm-list,

writeln-parm-list
final-value : for-statement
fixed-part : field-list
"for" : for-statement, word-symbol
for-statement : repetitive-statement
formal-parm-list : function-heading, procedure-heading
formal-parm-section : formal-parm-list
"fortran" : directive
"forward" : directive
fractional-part : unsigned-real
"function" : function-heading, function-identification, word-symbol
function-block : function-del
function-del : procedure-and-function-dcl-part
function-designator : factor
function-heading : function-del, functional-parm-spec
function-id : actual-parm, assignment-statement, function-designator,

function-identification
function-identification : function-del
functional-parm-spec : formal-parm-section

"goto" : goto-statement, word-symbol
goto-statement : simple-statement

id or identifier : bound-id, constant-def, constant-function-id,
constant-id, ext-var-dcl, external-name, field-identifier-id,
function-heading, function- id, id-list, index-type-spec,
module, procedure-heading, procedure-id,
procedure-identification, program-heading, record-section-id,
set-id, tag-field, type-def, type-id, var-id

identified-var : var-access

SR-0060 E-15 B

id-list : enumerated-type, program-parms, value-conformant-array-spec,
value-parm-spec, var-conformant-array-spec, var-dcl,
var-parm-spec

"if" : constant-expression, expression, if-statement, word-symbol
if-statement : conditional-statement
"imported" : directive, extension-ward-symbols, imported-del-part
imported-del-part : block, program-block, module-block
"in" : relational-operator, word-symbol
increment-value : for-statement
index-expression : indexed-var
index-type : array-type
index-type-spec : packed-conformant-array-schema, unpacked-conformant

array-schema
indexed-var : component-var
initial-value : for-statement

"label" : label-dcl-part, word-symbol
label : goto-statement, label-del-part, statement
label-dcl-part : block, program-block
letter : id

member-designator : set-constructor
"mod" : multiplying-operator, word-symbol
"module" : extension-word-symbols, module
module : compile-unit
module-block : module
multiplying-operator : constant term, term

new-ordinal-type : new-type, ordinal-type
new-pointer-type : new-type, pointer-type
new-structured-type : new-type, structured-type
new-type : type-denoter
"nil" unsigned-constant, word-symbol
"not" : constant-factor, factor, word-symbol

octal-digit : octal-number
octal-number : unsigned-number, signed-number
"of" : array-type, case-statement, file-type, packed-conformant-array

schema, set-type, sub-value-spec, unpacked-conformant-array
schema, variant-part, word-symbol

one-of-a-set-of-the-printable-ascii-characters : string-character
"or" : adding-operator, word-symbol
ordinal-type : base-type, index-type, simple-type
ordinal-type-id : index-type-spec, ordinal-type, tag-type
"otherwise" : extension-word-symbols, case-statement

"packed" : new-structured-type, packed-conformant-array-schema,
word-symbol

packed-conformant-array-schema : conformant-array-schema
pointer-type-id : pointer-type, result-type
pointer-var : identified-var

SR-0060 E-16 B

procedural-parm-spec : formal-parm-section
"procedure" : procedure-heading, procedure-identification, w.ord-symbol
procedure-and-function-dcl-part : block, program-block, module-block
procedure-block : procedure-dcl
procedure-dcl : procedure-and-function-dcl-part
procedure-heading : procedural-parm-spec, procedure-dcl
procedure-id : actual-parm, procedure-statement
procedure-identification : procedure-dcl
procedure-statement : simple-statement
"program" : program-heading, word-symbol
program : compile-unit
program-block : program
program-heading : program
program-parms : program-heading

read-parm-list : procedure-statement
readln-parm-list : procedure-statement
real-type-id : simple-type
"record" : record-type, word-symbol
record-section : fixed-part
record-section-id : record-section-id-list
record-section-id-list : record-section
record-type : unpacked-structured-type
record-value-spec : value-spec
record-var : field-designator, record-var-list
record-var-list : with-statement
relational-operator : constant-subexpression, subexpression
"repeat" : repeat-statement, word-symbol
repeat-statement : repetitive-statement
repetitive-statement : structured-statement
result-type : function-heading

scale-factor : unsigned-real
"set" : set-type, word-symbol
set-constructor : factor
set-id : set-value-spec
set-type : unpacked-structured-type
set-value-elt : set-value-elt-list
set-value-elt-list : set-value-spec
set-value-spec : value-spec
sign: constant, signed-integer, signed-real, simple-constant-expression,

simple-expression, simple-value-spec
signed-integer : scale-factor, signed-number
simple-constant-expression : constant-subexpression
simple-expression : subexpression
simple-statement : statement
simple-type-id : result-type
simple-value-spec : value-spec
statement : case-list-element, case-statement, else-part, for-statement,

if-statement, statement-sequence, viewing-statement, while
statement, with-statement

SR-0060 E-17 B

statement-part : block, program-block
statement-sequence : compound-statement, repeat-statement
"static" : extension-word-symbols, static-del-part
static-del-part : block, program-block, module-block
string-character : string-element
string-element : character-string
structured-statement : statement
structured-type-id : structured-type
subexpression : expression
sub-value-spec : array-value-spec
subrange-type : new-ordinal-type

tag-field : variant-selector
tag-type : variant-selector
"taskvar" : taskvar-var-dcl-part
term : simple-expression
"then" : constant-expression, expression, if-statement, word-symbol
"to" : for-statement, word-symbol
"type" : type-def-part, word-symbol
type-def : type-def-part
type-def-part : block, program-block, module-block
type-denoter : component-type, ext-var-dcl, record-section, type-def,

var-dcl
type-id : array-value-spec, domain-type, ordinal-type-id, packed

conformant-array-schema, pointer-type-id, real-type-id,
record-value-spec, simple-type-id, structured-type-id, type
denoter, unpacked-conformant-array-schema, value-parm-spec,
var-parm-spec, viewing-statement

unpacked-conformant-array-schema : conformant-array-schema
unpacked-structured-type : new-structured-type
unsigned-constant: constant-factor, factor, simple-value-spec
unsigned-integer: signed-integer, sub-value-spec, unsigned-number,

unsigned-real
unsigned-number : constant, simple-value-spec, unsigned-constant
unsigned-real : signed-real, unsigned-number
"until" repeat-statement, word-symbol

"value" extension-word-symbols, value-def-part
value-conformant-array-spec : conformant-array-parm-spec
value-def : value-def-part
value-def-part : module-block, program-block
value-parm-spec : formal-parm-section
value-spec : record-value-spec, sub-value-spec, value-def
"var" : var-conformant-array-spec, var-dcl-part, var-parm-spec,

word-symbol
var-access : actual-parm, array-var, assignment-statement, factor,

file-var, pointer-var, read-parm-list, readln-parm-list,
record-var, viewing-statement

var-conformant-array-spec : conformant-array-parm-spec
var-dcl : static-del-part, var-dcl-part
var-dcl-part : block, program-block, module-block

SR-0060 E-18 B

var-id : entire-var
var-parm-spec : formal-parm-section
variant : variant-part
variant-part : field-list
variant-selector : variant-part
"viewing" : viewing-statement
viewing-statement : structured-statement

"while" : while-statement, word-symbol
while-statement : repetitive-statement
"with" : with-statement, word-symbol
with-statement : structured-statement
word-symbol : special-symbol
write-parm : write-parm-list, writeln-parm-list
write-parm-list : procedure~statement
writeln-parm-list : procedure-statement

"a" through "z" letter

"0" through "7" digit, octal-digit
"8" and "9" : digit

" .. id
buffer-var, identified-var, new-pointer-type,

"<" relational-operator, special-symbol
"<I" : relational-operator, special-symbol
"I" : relational-operator, special-symbol
"1=" : relational-operator, special-symbol
"<=" : relational-operator, special-symbol
"$" id
"'\.. : id
", .. : character-string
'" , .. : apostrophe-image

special-symbol

")" and "(" : actual-parm-list, array-value-spec, directive-alt,
directive, enumerated-type, ext-var-dcl, factor,
formal-parm-list, program-heading, read-parm-list,
readln-parm-list, record-value-spec, special-symbol, variant,

"."
"+"

write-parm-list, writeln-parm-list
multiplying-operator, special-symbol
adding-operator, sign, special-symbol

" " , actual-parm-list, array-type, array-value-spec, case-constant-list,
ext-var-dcl, id-list, indexed-var, label-dcl-part,
read-parm-list, readln-parm-list, record-section-id-list,
record-value-spec, record-var-list, set-constructor, set-value
elt-list, special-symbol, write-parm-list, writeln-parm-list

"_" : adding-operator, sign, special-symbol
"." : field-designator, module, program, special-symbol, unsigned-real
" : index-type-spec, member-designator, set-value-elt, special-symbol,

subrange-type
"/" : multiplying-operator, special-symbol

SR-0060 E-19 B

": '1

": =" :
" .. , ,

"="

"@"

case-list-element, case-statement, ext-var-dcl, function-heading,
index-type-spec, record-section, special-symbol, statement,
value-conformant-array-spec, value-parm-spec, var-conformant
array-spec, var-dcl, var-parm-spec, variant-selector, variant,
write-parameter

assignment-statement, for-statement, special-symbol
case-statement, common-dcl-part, eo~stant-def-part, directive,

exported-del-part, field-list, fixed-part, formal-parm-list,
function-dcl, imported-dcl-part, label-dcl-part, module,
proeedure-and-funetion-del-part, procedure-del, program,
special-symbol, statement-sequence, static-del-part,
taskvar-var-del-part, type-def- part,
unpaeked-conformant-array-schema, value-def-part, value
dcl-part, variant-part

constant-def, relational-operator, spec~al-symbol, type-def,
value-def

id
"l" and n[" : array-type, indexed-var, packed-conformant-

SR-0060

array-schema, set-constructor, set-value-spec, special-symbol,
unpacked-conformant-array-schema

E-20 B

I

I

I

F. DEBUG INFORMATION

Compiler options D+, DMn, and BP+ provide debugging information to help
locate problems in a Pascal source program. The D+ option generates a
walkback through the program when a fatal error or a HALT is
encountered. The DMn option, with n>l, allows DEBUG to write a
formatted dump of the program. The BP+ option provides for a data
breakpoint on a specified memory write. (See section 2, Using Pascal on
a Cray Computer, for descriptions of compiler options and directives.)

For more debugging information, see the Symbolic Debugging Package
Reference Manual, CRI publication SR-Ol12.

F.I D+ DEBUGGING INFORMATION

When a run-time error or a call to the predefined procedure HALT is
encountered during the execution of a Pascal program, a library routine
takes control and performs the following functions:

• Prints the approximate line in the source program where the error
or call to HALT occurred

• Produces a stack walkback

The walkback is a listing of active procedures and functions, with the
most recently called listed first, and the approximate line in the source
program from which each was called.

If the program is compiled with the D+ option in effect, the unstructured
variables for each active procedure and function are also listed. Due to
the recursive possibilities of Pascal, a procedure or function may be
activated many times in the course of a program. Only the unstructured
variables for the three most recent activations are dumped, however.

The following program is followed by the debugging information available
through this facility:

SR-0060 F-l B

Cray Pascal (03.00) 15:41:13 08/21/85

1 program debug_example (output);
2
3 var
4 i, j: integer;
5 x, y: Boolean;

DEBUG EXAMPLE

6 a, b: (cat, mouse, frog, fruit_bat);
7 r, s: real;
8 t, u: * integer;
9 qwert: char;

10
11 procedure bozhemoi (i: integer);
12 var
13 b: integer;
14 a: Boolean;

1
2
1
2

15
16
17
18
19
20
21
22

begin

c: char;
bx: Boolean;
Trondheim_Hammer_Dance: real;

if i < 7 then
bozhemoi (i + 1)

else
halt

23 end;
24
25 begin (*debug_example*)
26

1 27
1 28
1 29
1 30
1 31
1 32
1 33
1 34
1 35
1
1
1

36
37
38

1 39

i · - 1;
j .- 2;
x .- true;
y .- false; .-
a · - mouse;
b · - frog;
r .- 3.02;
s · - -125; · -
new (t) ;
u := nil;
qwe rt : = ' X' ;
bozhOmoi (1)

40 end (*debug_example*).

**** **** No errors **** ****

SR-0060 F-2

Page 1

B

Cray Pascal (03.00) 15:41:13 08/21/85 DEBUG_EXAMPLE Page 2

**** **** COMMENT - 804 •• B14 reserved for parameter passing.
**** **** COMMENT - 815 •• 860 reserved for local variables of nested

procedures and functions.
**** **** COMMENT - 861 assigned to global variable A at @MAIN+000015
**** **** COMMENT - 862 assigned to global variable B at @MAIN+000016
**** **** COMMENT - 863 assigned to global variable T at @MAIN+000017
**** **** COMMENT - 864 assigned to global variable U at @MAIN+000020
**** **** COMMENT - 865 assigned to global variable OWERT at @MAIN+000021
**** **** COMMENT - TOO .• T07 reserved for parameter passing.
**** **** COMMENT - T10 •• T61 reserved for local variables of nested

procedures and functions.
**** **** COMMENT - T62 assigned to global variable I at @MAIN+000022
**** **** COMMENT - T63 assigned to global variable J at @MAIN+000023
**** **** COMMENT - T64 assigned to global variable X at @MAIN+000024
**** **** COMMENT - T65 assigned to global variable Y at @MAIN+000025
**** **** COMMENT - T66 assigned to global variable R at @MAIN+000026
**** **** COMMENT - T67 assigned to global variable S at @MAIN+000027

Procedure and function list, with declaration line numbers

1 DEBUG EXAMPLE (program)
11 : BOZHEMOI External and common block names

$END entry, imported
$STKOFEN entry, imported
DEBUG EX start, exported at 000410a relative
P$HALT entry, imported
P$NEW entry, imported
P$RUNTIM entry, imported

**** **** END PASCAL : 40 lines, 0 errors.

END:heap size 170388 words
END: allocated areas = 2
Initial runtime stack requested = 4K words
Runtime stack increment requested 4K words
Initial runtime heap requested = 2K words
Runtime heap increment requested = 20K words
IEOF

*** Runtime error RT1000: program called HALT Stack walkback begun in
P$HALT at 00001176d (line 41)

SR-0060 F-3 B

Cray Pascal (03.00) 15:41:13 08/21/85 DEBUG_EXAMPLE

P$HALT was called from BOZHEMOI at 00000554d (line 23)
BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)

A FALSE
B 0
BX
C
I
TRONDHE

FALSE
••

7
O.OOOOOOOOOOOOOE+OOOO

BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)
A FALSE
B
BX
C
I
TRONDHE

o
FALSE

6
O.OOOOOOOOOOOOOE+OOOO

BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)
A FALSE
B
BX
C
I

FALSE ..
o

5
TRONDHE O.OOOOOOOOOOOOOE+OOOO

BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)
A FALSE
B 0
BX FALSE
C
I 4
TRONDHE O.OOOOOOOOOOOOOE+OOOO

BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)
Only last 3 activations dumped.

BOZHEMOI was called from BOZHEMOI at 00000545a (line 20)
Only last 3 activations dumped.

BOZHEMOI was called from DEBUG_EX at 00000651d (line 38)
Only last 3 activations dumped.

DEBUG EX
A 1
B 2
I 1
J 2
QWERT 'X'
R 3.0200000000000E+0000
S -1.2500000000000E+0002
T 00067177
U 00000000
X TRUE
y FALSE

***End walkback.
*** Error RTI000 is fatal.

SR-0060 F-4

Page 3

B

F.2 BP+ DEBUGGING INFORMATION

Enabling the BP+ compiler option generates data breakpoints on specified
memory writes. If it is used to trace a variable, this option writes a
line of output each time a value is assigned to the variable.

To use this facility, the following procedure declaration must appear in
the declarations section of the main program:

PROCEDURE P$BREAK (VAR location: INTEGER; isvariable: BOOLEAN):
IMPORTED;

To watch the static variable k, the following must appear before the
first occurrence of k to be watched:

P$BREAK (k, TRUE)

Alternatively, the following could be specified to watch the absolute
address 1027:

K := 1027;
P$BREAK(k,FALSE);

A program containing both the P$BREAK declaration and one of the
preceding calls to P$BREAK is then recompiled with the BP+ option set. A
second recompile may be necessary when calling P$BREAK with
isvariable=FALSE, since the word being watched may move when breakpoint
code is inserted.

The BP+ option generates the following CAL code in front of every line of
Pascal code:

AO linenumber
R P$DBP

Procedure P$DBP checks the value of the location defined by the call to
P$BREAK and reports when it changes. P$DBP restores all registers except
BOO before returning.

This facility increases the size of compiled code by 1 word per user
statement and decreases the speed of execution by as much as 50 percent.

SR-0060 F-5 B

The following sample program writes the value of the variable i whenever
a new value is assigned to it:

CRAY PASCAL (03.00) 16:28:04 08/08/85
1 PROGRAM test105(OUTPUT);
2 VAR i,j,k : INTEGER;
3 PROCEDURE P$BREAK (VAR i INTEGER; isvar
4 BEGIN
5 P$BREAK(i,TRUE);
6 WRITELN(' RUNNING ••• ·);
7 FOR i := 1 TO 20 DO
8 BEGIN
9 j := 1;

10 END;
11 i: = 1;
12 WHILE i < 10 DO
13 i := i + 1;
14 REPEAT
15 i := i-I;
16 UNTIL i = 0;
17 IF i = 0
18 THEN i := 5
19 ELSE i := 6;
20 WRITELN(' ALL FINISHED, SIR.');
21 END.

**** **** NO ERRORS **** ****
EXTERNAL AND COMMON BLOCK NAMES

P$BREAK ENTRY, IMPORTED
P$DBP ENTRY, IMPORTED
P$PUT ENTRY, IMPORTED
P$RUNTIM ENTRY, IMPORTED
P$WSTR ENTRY, IMPORTED

PAGE 1

BOOLEAN); IMPORTED;

test105 START, EXPORTED AT 000311A RELATIVE
**** **** END PASCAL : 21 LINES, 0 ERRORS.
RUNTIME STACK REQUESTED = 20K WORDS
RUNTIME HEAP REQUESTED = 2K WORDS

RELOCATABLE LOAD
LOAD TRANSFER IS TO TESTI05 AT 511a)

DATASET BLOCK ADDRESS LENGTH DATE OS REV PROCSSR
VER. COMMENT

*SYSTEM 0 200
$BLD TESTI05 200 410 08/08/83 COS 1.12 PASCAL (01.00)
$PSCLIB P$DBP 610 1517 08/03/83 COS 1.12 CAL X.12 04/22/83

P$CALLR 2327 22 08/03/83 COS 1.12 CAL X.12 04/22/83
P$DEBUG 2351 1547 08/03/83 COS 1.12 CAL X.12 04/22/83
P$GET 4120 170 08/03/83 COS 1.12 CAL X.12 04/22/83
P$$$HPAD 4310 12 08/03/83 COS 1.12 CAL X.12 04/22/83
P$RUNTIM 4322 1101 08/03/83 COS 1.12 CAL X.12 04/22/83
P$OPEN 5423 207 08/03/83 COS 1.12 CAL X.12 04/22/83

SR-0060 F-6 B

$SYSLIB

$FTLIB

SR-0060

P$PUT
P$RESET
P$TRACE
P$WCH
P$WI
P$WSTR
P$MEMRY
P$NEW
P$EOF
$BKSP
$DSNDSP
GPOS
$GTDSP
$INSASCI
$MEMORY
$MEMAUTO
$MEMFLMX
$MEMUC20
PACK
$PBN
$PDD

$PRCW
$RCW
$SDSP
$SLERP
spas

5632
5762
6062
10334
10363
10476
10561
13643
14151
14310
14423
14451
14572
14710
15000
15324
15357
15433
15731
16000
16157

16163
16320
17171
17237
20321

$TRBK 20703
TRBKLVL% 21206
$UEOFTCL 21265
$WCW 21300
$BTD 22460
$BTO 22520
$DASS 22560
$DDSS 22660
$DMSS 22740
$GETPOS 23023
$IBMPACK 23056
$IBMTRAN 23224
$IOERP 24256
$IUO 26015
$NCON 26433
$NOCV 26626
$READ 27300
$SETPOS 27333
$UTIL 27370
$WFD 27554
$WUT 31622

130 08/03/83 COS 1.12 CAL X.12
100 08/03/83 COS 1.12 CAL X.12

2252 08/03/83 COS 1.12 CAL X.12
27 08/03/83 COS 1.12 CAL X.12

113 08/03/83 COS 1.12 CAL X.12
63 08/03/83 cos 1.12 CAL X.12

3062 08/03/83 cos 1.12 PASCAL
306 08/03/83 cos 1.12 PASCAL
137 08/03/83 cos 1.12 PASCAL
113 05/27/83 cos X.12 CAL X.12

26 05/27/83 cos X.12 CAL X.12
121 05/27/83 cos X.12 CAL X.12
116 05/27/83 cos X.12 CAL X.12

70 05/27/83 cos X.12 CAL X.12
324 05/27/83 cos X.12 CAL X.12

33 05/27/83 cos X.12 CAL X.12
54 05/27/83 cos X.12 CAL X.12

276 05/27/83 cos X.12 CAL X.12
47 05/27/83 cos X.12 CAL X.12

157 05/27/83 cos X.12 CAL X.12
4 05/27/83 cos X.12 CAL X.12

04/22/83
04/22/83
04/22/83

04/22/83
04/22/83
04/22/83

(01.00)
(01.00)
(01.00)

04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83
04/22/83

04/22/83
PDD TABLE

120 05/27/83 cos X.12 CAL X.12 04/22/83
651 05/27/83 cos X.12 CAL X.12 04/22/83

46 05/27/83 cos X.12 CAL X.12 04/22/83
1062 05/27/83 cos X.12 CAL X.12 04/22/83

362 05/27/83 cos X.12 CAL X.12 04/22/83
303 05/27/83 cos X.12 CAL X.12 04/22/83

57 05/27/83 cos X.12 CAL X.12 04/22/83
13 05/27/83 cos X.12 CAL X.12 04/22/83

1144 05/27/83 cos X.12 CAL X.12 04/22/83
37 06/21/83 cos X.12 CAL X.12 04/22/83
35 06/21/83 cos X.12 CAL X.12 04/22/83
74 06/21/83 cos X.12 CAL X.12 04/22/83
43 06/21/83 cos X.12 CAL X.12 04/22/83
63 06/21/83 cos X.12 CAL X.12 04/22/83
33 06/21/83 cos X.12 CAL X.12 04/22/83

146 06/21/83 cos X.12 CAL X.12 04/22/83
1032 06/21/83 cos X.12 CAL X.12 04/22/83
1537 06/21/83 cos X.12 CAL X.12 04/22/83

416 06/21/83 cos X.12 CAL X.12 04/22/83
173 06/21/83 cos X.12 CAL X.12 04/22/83
452 06/21/83 cos X.12 CAL X.12 04/22/83

33 06/21/83 cos X.12 CAL X.12 04/22/83
35 06/21/83 cos X.12 CAL X.12 04/22/83

164 06/21/83 cos X.12 CAL X.12 04/22/83
2046 06/21/83 cos X.12 CAL X.12 04/22/83
1052 06/21/83 cos X.12 CAL X.12 04/22/83

F-7 B

*** LOAD IMAGE STATISTICS ***
ABSOLUTE BINARY LENGTH: 13756(10), 32674(8) WORDS
PROGRAM IMAGE: FWA = 200(8), LWA = 33074(8)

DATA B.P.:ADDR=OOOOOOOO, CONTENTS= 0000000003267400000000
BETWEEN LINES 1 AND 9

P$BREAK :ADDR=00000215, CONTENTS= 0000000000000000000000
RUNNING •••
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000001

BETWEEN LINES 11 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000002

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000003

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

13 AND 13
CONTENTS= 0000000000000000000004
13 AND 13
CONTENTS= 0000000000000000000005
13 AND 13
CONTENTS= 0000000000000000000006
13 AND 13
CONTENTS= 0000000000000000000007
13 AND 13
CONTENTS= 0000000000000000000010

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000011

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000012

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000013

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000014

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000015

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000016

BETWEEN LINES 13 AND 13
DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000017

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES
DATA B.P.:ADDR=00000215,

BETWEEN LINES

13 AND 13
CONTENTS= 0000000000000000000020
13 AND 13
CONTENTS= 0000000000000000000021
13 AND 13
CONTENTS= 0000000000000000000022
13 AND 13
CONTENTS= 0000000000000000000023
13 AND 13

DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000024
BETWEEN LINES 13 AND 13

DATA B.P.:ADDR=00000215, CONTENTS= 0000000000000000000025
BETWEEN LINES 13 AND 15

SR-0060 F-8 B

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000001
BETWEEN LINES 15 AND 16

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000002
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000003
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000004
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000005
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000006
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000007
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000010
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000011
BETWEEN LINES 17 AND 17

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000012
BETWEEN LINES 17 AND 18

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000011
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000010
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000007
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000006
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000005
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000004
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000003
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000002
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000001
BETWEEN LINES 19 AND 19

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000000
BETWEEN LINES 19 AND 21

DATA B.P.:ADDR=00000215, CONTENTS = 0000000000000000000005
BETWEEN LINES 22 AND 25

ALL FINISHED, SIR.

SR-0060 F-9 B

G. ERRORS NOT REPORTED BY CRAY PASCAL

Errors listed here are specified in the ISO Level 1 Pascal standard but
are not reported by Cray Pascal. The error designation from appendix 0,
Run-time Messages, of the standard follows each error in parentheses:

• It is an error unless a variant is active for the entirety of each
reference and access to each component of the variant (D.2).

• It is an error to alter the value of a file-variable f when a
reference to the buffer variable fA exists (0.6).

• It is an error if the buffer-variable is undefined immediately
prior to any use of PUT (0.12).

• For NEW(p,c1, .•. ,cn), it is an error if a variant of a
variant-part within the new variable becomes active and a
different variant of the variant-part is one of the specified
variants (0.19).

• For OISPOSE(p), it is an error if the identifying-value had been
created using the form NEW(p,c1, •.. ,cn) (0.20).

• For OISPOSE(p,k1 •.• ,km), it is an error if the variable had been
created using the form NEW(p,c1, ... ,cn) and m is not equal to n
(0.21).

• For OISPOSE(p,k1, ••. ,km), it is an error if the variants in the
variable identified by the pointer value of p are different from
those specified by the case constants k1, .•• ,km (0.22).

• It is an error if a variable created using the second form of NEW
is accessed by the identified variable of the variable-access of a
factor, of an assignment-statement, or of an actual-parameter
(0.25).

• For PACK, it is an error if any of the components of the unpacked
array are both undefined and accessed (0.27).

• For UNPACK, it is an error if any of the components of the packed
array are undefined (0.30).

• An expression denotes a value unless a variable denoted by a
variable-access contained by the expression is undefined at the
time of its use, in which case that use is an error (0.43).

SR-0060 G-1 B

• It is an error if the result of an activation of a function is
undefined upon completion of the algorithm of the activation
(D.48).

• On writing to a textfile, the values of TotalWidth and FracDigits
are greater than or equal to 1; it is an error if either value is
less than 1 (D.58).

SR-0060 G-2 B

H. X/O PROGRAMMXNG EXAMPLES

The following programs provide examples to help familiarize users with
the nature of Pascal I/O.

Example 1:

PROGRAM intcpy(infil, OUTPUT);
(* THIS PROGRAM COPIES A TEXT FILE OF INTEGERS (1 PER LINE) FROM

COS LOCAL DATASET INFIL TO THE STANDARD OUTPUT FILE *)

VAR
i : INTEGER;
buffer, wdcnt, status
dsname : ALFA;
infil : TEXT;

BEGIN

RESET(infil);

WHILE NOT EOF(infil) DO
BEGIN

READLN(infil, i);

WRITELN(OUTPUT, i);

END;

END.

INTEGER;

Example 2:

PROGRAM strcpy(infil, outfil);

SR-0060

(* THIS PROGRAM COPYS LINES OF TEXT FROM COS LOCAL DATASET
INFIL TO COS LOCAL DATASET BLEEM. IF LOCAL DATASET BLEEM
ALREADY CONTAINS SOMETHING, IT IS OVERWRITTEN *)

VAR
str : ARRAY[1 •• 132] OF CHAR;
i, length: 0 •• 132;
infil, outfil : TEXT;

H-1 B

SR-0060

BEGIN

CONNECT (outfil, 'BLEEM I);
REWRITE (outfil);

RESET(infil);
(* NOTE THAT INFIL WAS AUTOMATICALLY CONNECTED WITH COS LOCAL

DATASET INFIL, SINCE IT APPEARED IN THE PROGRAM HEADER.

OUTFIL WOULD HAVE BEEN SIMILARLY CONNECTED HAD WE NOT
OVERRIDDEN THE CONNECTION WITH THE CONNECT PREDEFINED
PROCEDURE *)

WHILE NOT EOF(infil) DO
BEGIN

length .- 0;

WHILE NOT EOLN(infil) DO
BEGIN

READ(infil, str[length + 1]);
length := length + 1;

END;

READLN(infil);

FOR i := 1 TO length DO
WRITE(outfil, str [i]);

WRITELN(outfil);

END;

END.

H-2 B

INDEX

INDEX

ABS function, B-1
integer, 5-3
real, 5-6

Absolute value function
integer, 5-3
real number, 5-6

Accessing
files, 5-24
FORTRAN routines, 9-13
other compile units, 9-14
record fields, 5-21
record fields with WITH, 7-1
routines outside of the program, 9-12

Actual parameters, 9-3
ALFA type, 5-16
ALL function, 6-4, B-4
Allocating

storage for variables, 4-9
variables dynamically, 5-28
memory, dynamic, 11-1

AND operator, 3-3
Anonymous type, 4-9
ANY function, 6-4, B-5
A.o, default binary file, UNICOS, 2-6
A.out command, 2-6
Apostrophe

in string constant, 4-5, 5-15
with CHAR type, 5-8

ARCCOS functio~, 5-6, B-5
ARCSIN function, 5-6, B-5
ARCTAN function, 5-6, B-1
Arctangent function, 5-6
Array

bounds checking, inhibiting
vectorization, 13-2

constructed, 6-4
index checking option, 2-11
initializing with VALUE, 4-19
merges, 6-7
multidimensional, 5-14
of characters, packed, 5-15
of files, 5-24
packed, description, 5-12
passed from FORTRAN, 9-13
processing, 6-1
type, description, 5-11
memory allocation, 5-13

Array-valued
field and pointer accesses, 6-7
subscripts, 6-5

ASCII character set, A-1

SR-0060 Index-l

Assignment
compatibility

between actual and formal parameters,
9-7

definition, 8-2
statement, 8-2
vector, definition, 13-5

At sign, restriction on use, 1-2

B registers for variables, 2-8
Backus-Naur Form (BNF), 1-3, E-1
BAND function, 5-3, B-5
Base type of a set, description, 5-22
Bibliography, iii
Bidirectional memory, 2-5
Binary dataset, COS, 2-3
Binding pointers, 5-27
$BLD, default binary dataset, COS, 2-3
Blocked datasets and files, 10-5
Blocked files, UNICOS, 5-26
BNF, 1-3, E-1
BNOT function, 5-3, B-5
Books on Pascal, iii
Boolean

default output field width, 10-8
operations, 5-7
operators, evaluation, 3-4
type, description, 5-7

BOR function, 5-4, B-5
Bounds checking, array, inhibiting

vectorization, 13-2
BP+ debugging information, F-5
Breakpoint

checking, compiler option, 2-8
data, generating, F-5

Buffer variable, description, 10-2, 5-24
BXOR function, 5-4, B-5

CACHE
declaration, 4-15
variables, invalid as VAR parameters,

9-6
CAL listing

CASE

description, 2-20
option, 2-8

clause with variant fields, 5-18
statement, 8-6

CHAR type, description, 5-8

B

Character
default output field width, 10-8
string, definition, 3-7
valid in identifiers, 3-6

Character set, A-1
CHR function, 5-9, B-1
CIGS attribute, contributing to

vectorization, 13-9
Columns, number for input option, 2-13
Command line, pascal, under UNICOS, 2-6
Comments, 3-8
Common block LOCAL@CB on CRAY-2, 2-8, 2-13
COMMON declaration, 4-13
Common logarithm function, 5-6
Common subexpression elimination, 13-12
Comparing

pointers, 5-28
variables of type ALFA, 5-17

Compatible
assignment, 8-2
types, definition, 8-2

Compilation time, improving it, 2-11
Compile units

accessing others, 9-14
modules, 12-1

Compile-time expression evaluation, 13-12
Compiler

error messages, C-1
options, 2-7

COS defaults, 2-4
examples, 2-15
table of, 2-8
UNICOS defaults, 2-7

COMPLEX data from FORTRAN, 9-14
Compound statement

definition, 3-5
description, 8-1
in CASE statement, 8-7
with REPEAT, 8-11

Compressed index
characteristic, 2-5
contributing to vectorization, 13-9

Computer systems running Pascal, 1-1
Conditional

execution with CASE statement, 8-6
expressions

description, 8-4
with array processing, 6-7

Conformable arr~y, definition, 9-10
Conformant array

cannot be passed to FORTRAN, 9-14
parameters, 9-9

CONNECT procedure, B-5
description, 10-9
synopsis, 5-25

Constant
definitions, 4-5
expression, 4-6
sets, 4-6

Constants, listing of use, 2-19
Constructed arrays, 6-4
Control variable, FOR statement, 8-9
Conventions used in manual, 1-3
COS function, 5-6, B-1

SR-0060 Index-2

COS operating system
JCL file, 2-2
job, description of, 2-1
PASCAL control statement, format, 2-3
differences from UNICOS, 2-1

COSH function, 5-6, B-5
Cosine function, 5-6
CPU

parameter, COS, 2-4
targeting, description, 2-20

Creating a new data type, 5-9, 4-7
in VAR declaration, 4-9

Cross-reference
information, description, 2-17
option, 2-14
name, option, 2-14
procedure, option, 2-14

D+ debugging information, F-1
Data

breakpoints, generating, F-5
communication between programs and

modules, 12-2
file

UNICOS, 2-6
COS, 2-1

format for input, 10-4
sharing between compile units, 4-13
types, 5-1

definitions, 4-7
Dead instruction elimination, 13-12
Deallocating dynamically allocated

variables, 5-28
$DEBUG constant, setting, 2-9
Debug information, F-1
Debug Symbol Table, 2-9
Declaration

for using BP+ option, F-5
kinds, 4-4
section, 4-3

Delimiters, list, 3-4
Dependencies, vector, 13-7

option to ignore, 2-14
Difference of two sets, 5-23
Directives

compiler, 2-7
procedure and function, 9-11

DISPOSE procedure, 11-2, 5-28, B-2
DIV operator, 3-2
Division, fast, 5-4
Dump data, how to generate, 2-9
Dynamic allocation, 11-1

variable, defining and deallocating,
5-28

End-of-file
condition, with GET and PUT, 10-2
function, 5-7

End-of-line function, 5-7
Enumerated type, 5-9

as an array index, 5-12
defining, 4-7

EOF function, 5-7, B-2

B

EOLN function, 5-7, 8-2
use only with text file, 5-25

Equality
of real numbers, 5-6
test, set, 5-23

Equivalent variables, 4-9
Error messages

compiler, C-1
in listing file, 2-16

Errors not reported by Cray Pascal, G-1
Evaluation of Boolean operators, 3-4
Exclusive OR function, 5-4
EXP function, 5-6, 8-2
Exponential function, 5-6
EXPORTED

declaration, 4-10
directive, 9-14

Expression
array, 6-1
as a parameter, 9-7
conditional, description, 8-4
constant, 4-6
evaluation, compile-time, 13-12
in a WRITE statement, 10-5
vector, definition, 13-5

Extensions
to predefined functions and

procedures, B-4
to standard, disabling, 2-10
to standard, list, 1-2

EXTERNAL directive, 9-12

Field

File

accesses, array-valued, 6-7
accessing, 5-21
definition, 5-17
listing of use, 2-18
variant, 5-18
width

defaults, 10-8
on output, 10-7
scalar types, 5-2

access, 5-24
data, under COS, 2-1
types, 5-24
use of term, 1-3

FLOWTRACE compiler option, 2-8
FOR

loops, vectorization, 13-1
statement, 8-8

Formal parameters, 9-3
Format of data for input, 10-4
Formatting output, 10-7
FORTRAN

common blocks, 4-13
directive, 9-11, 9-13
routines, incompatibilities, 9-13
TASK COMMON, 4-14

Forward reference in pointer declaration,
5-27

Function
calls, inhibiting vectorization, 13-1
declarations, 4-21

SR-0060 Index-3

Function (continued)
description, 9-4
directives, 9-11
list in listing, 2-18
parameters, 9-7
predefined, 8-1
recursive, 9-17
reduction, 6-3

Gather/scatter
characteristic, 2-5
contributing to vectorization, 13-9

GET procedure, 5-25, 8-2
description, 10-2

Global cross-reference option, 2-14
GOTO

statement, 8-7
to exit FOR loop, 8-10

HALT procedure, 8-5
Hardware characteristics, 2-5
Header lines, page, 2-16
Heading

of a function, 9-4
of program, 4-2

Heap allocation, specifying, 2-10
Hyperbolic

cosine function, 5-6
sine function, 5-6
tangent function, 5-6

$IN dataset
default file for source code, 2-3
defined, 2-1
use with INPUT, 10-1

I/O programming examples, H-1
124 type, description, 5-4
132 type, description, 5-4
Identifier

cross-reference, description, 2-17
information

in listing, 2-18
option, 2-14

nonlocal, listing, 2-20
predefined, list, 3-5
user-defined, 3-6

IF statement
description, 8-4
that requires gather/scatter hardware

for vectorization, 13-11
IMPORTED

IN

declaration, 4-11
directive, 9-14

example with module, 12-2

operator, 3-4
with set, 5-23

Inclusion test, set, 5-23
Inclusive OR function, 5-4
Indirect indexing, as it affects

vectorization, 13-10
Inequality test, set, 5-23

B

Initializing data at compile time, 4-17
Input and output, 10-1
INPUT

in program heading, 4-2
not supported in modules, 12-2
predefined text file, 10-1

Instruction, reordering for optimization,
13-12

Integer
default output field width, 10-8
operations, summary, 5-3
type, description, 5-2

Intersection of two sets, 5-23
Invariant, definition, 13-2
Inverse

of cosine function, 5-6
of the sine function, 5-6

Invocation statement
COS, 2-3
UNICOS, 2-6

ISO standard

JCL

Job

Cray extensions, 1-2
Cray restrictions, 1-2
disabling Cray extensions, 2-10
for Pascal, 1-1

file for sample COS job, 2-1, 2-2

control language (JCL), 2-1
under COS, description, 2-1

Label
declarations, 4-5
in the CASE statement, 8-6
statement, 3-7
target of GOTO statement, 8-7

Language syntax, E-l
Ld command, 2-6
Library datasets and files, defining, 12-1
Line length, maximum, 1-2
Linking records using dynamic allocation,

11-2
List of procedures and functions, 2-18
Listable output, 2-15
Listing

messages, C~1

options, source, 2-10
source statement, 2-16

Literal data, writing, 10-5
LN function, 5-6, B-2
LaC function, 5-28, B-5
Local dataset, COS, 4-3

how made local to job, 10-9
Local Memory, using on CRAY-2, 4-15
Local variables, listing, 2-19
LOCAL@CB, common block on the CRAY-2, 2-8,

2-13
LOG function, 5-6, B-5
Logfile

messages, C-16
part of $OUT for COS, 2-1

SR-0060 Index-4

Logical
conjunction, 5-7
disjunction, 5-7
ones complement function, 5-3
product function, 5-3

Loop invariant expression detection, 13-12
Lowercase letters, 3-6
LSHIFT function, 5-4, B-6

MAXINT, value of, 3-7
MAXVAL function, 6-4, B-6
Membership test, set, 5-23
Memory

allocation
array, 5-13
packed

array, 5-13
record, 5-20

pointer
CRAY X-MP and CRAY-l, 5-27
CRAY-2, 5-28

string, 5-16
size option, 2-5
space

heap, specifying, 2-10
stack, specifying, 2-12

Merge, array, 6-7
Messages

compiler, C-l
in listing file, 2-16
run-time, 0-1

MINVAL function, 6-4, B-6
MOD operator, 3-3
Modules, description, 12-1
Multidimensional arrays, description, 5-14
Multiplication, fast, 5-4

Name cross-reference option, 2-14
Natural logarithm function, 5-6
Nested

comments, 3-8
IF statement, 8-5

Nesting
level, as it affects exporting

routines, 9-15
procedures and functions, 9-1

NEW procedure, 11-1, 5-28, B-2
NIL value for pointer, 5-28, 11-1
Nonlocal identifiers, listing, 2-20
NOT operator, 3-3
Numbers, 3-6

octal, 3-6
real, rules for, 3-7

a compiler option, 13-12
Octal numbers, 3-6
ODD function, 5-8, B-3
Operating systems running Pascal, 1-1
Operations

Boolean, 5-7
integer, 5-3
real numbers, 5-5

B

Operations (continued)
set, 5-23
string, 5-16

Operators
descriptions, 3-2
relational, with array expressions, 6-9

Optimization
control, 2-11
description, 13-12
turning off, 2-9

Options, compiler, 2-7

OR

COS defaults, 2-4
defaults for UNICOS, 2-7
examples, 2-15
table of, 2-8

functions, integer, 5-4
operator, 3-3

ORD function, B-3
CHAR, 5-9
integer, 5-4

Ordering declarations, 4-4
Ordinal ·number

arrays, 5-11
CHAR type, 5-8
enumerated type, 5-10
function

Boolean, 5-7
CHAR, 5-9

integer, 5-4
scalar types, 5-2

Organization of program, 4-1
OTHERWISE clause, 8-6
$OUT dataset

default output file, 2-3
·definition, 2-1
use with OUTPUT, 10-1

Output
and input, 10-1
formatting, 10-7
listable, 2-15

OUTPUT
in program heading, 4-2
not supported in modules, 12-2
predefined text file, 10-1

P$BREAK procedure, F-5
P$DBP procedure, F-5
PACK procedure, 5-14, B-3
Packed

array
description, 5-12
of characters, 5-15
memory allocation, 5-13

components, invalid as VAR parameters,
9-6

record
description, 5-19
memory allocation, 5-20

PACKED declaration with multidimensional
array, 5-14

Page eject
before each routine, 2-11
listIng, 2-10

SR-0060 Index-5

Page header lines, 2-16
PAGE procedure, 10-8, B-3
Parameters

actual and formal, 9-3
conformant array, 9-9
description, 9-5
procedure and function, 9-7
program, 4-2

Pascal
command line, UNICOS, 2-6
control statement, COS format, 2-3
syntax, E-1

Pointer
accesses, array-valued, 6-7
type

definition, 4-8
description, 5-26

used with dynamically allocated
variables, 11-1

using 24- and 32-bit, 2-11
POP function, B-6
Population, vector, 2-5
PRED function, Boolean, 5-8, integer, 5-4
Predefined

function
Boolean, 5-7
CHAR, 5-9
integer, 5-3
real numbers, 5-6
that accept arrays as arguments, 6-2

functions and procedures, B-1
files, 5-25
pointers, 5-28
redefining, 9-18

identifiers, list, 3-5
procedures for packing and unpacking

arrays, 5-14
string, ALFA, 5-16
text files, INPUT and OUTPUT, 10-1

Procedure
calls, inhibiting vectorization, 13-1
cross-reference

description, 2-17
option, 2-14

declaration, 9-2
declarations, 4-21
description, 9-1
directives, 9-11
list in listing, 2-18
parameters, 9-7
predefined, B-1
recursive, 9-17

PRODUCT function, 6-4, B-6
Program

control statements, 8-1
heading, 4-2
organization, 4-1

Propagation of variable definition,
$PSCLIB, run-time library, 2-3
Pseudo-CAL listing

description, 2-20
option, 2-9

PUT procedure, 5-25, B-3
description, 10-2

13-12

B

Range
checking option, 2-11
of real numbers, 5-5

READ
description, 10-3
used with string, 5-15

READLN, description, 10-5
Real

number
default output field width, 10-8
operations, 5-5
rules for, 3-7

type, description, 5-5
Record

fields, accessing with WITH, 7-1
initializing with VALUE, 4-20
packed, 5-19
types, description, 5-17

Recursion
with CACHE variable, 4-15
with common variable, 4-13
with imported variables, 4-11
with static variables, 4-12
with TASK COMMON data, 4-14

Recursive procedures and functions, 9-17
Redefining predefined procedures and

functions, 9-18
Reduction

definition, 13-6
functions, description, 6-3

Reentrant code, enabling and disabling
option, 2-14

Register
residency prediction, 13-12
transfer elimination, 13-12

Relational operators, with array
expressions, 6-9

Reordering of instructions, 13-12
REPEAT statement, 8-11
Representation of scalar types, 5-2
Reserved words, list, 3-1
RESET procedure, 5-25" B-3

with GET, 10-3
with READ, 10-4

Restrictions to the standard, list, 1-2
REWRITE procedure, 5-25, B-3

with PUT, 10-3
with WRITE, 10-4

RL option, with array processing, 6-6
ROUND function, 5-4, B-3
Routines outside of the program, accessing,

9-12
RSHIFT function, 5-4, B-6
Run-time

library, $PSCLIB, 2-3
messages, D-1

Scalar type
definition, 5-1
representation, 5-2

Scaling an array, 6-10
Schema, conformant array, 9-9
Scientific notation, 3-7
Scope of a compound statement, 8-1

SR-0060 Index-6

Search, definition with vectorization, 13-6
SEGLDR statement, 2-3
Selector

CASE statement, 8-7
of record variants, invalid as VAR

parameters, 9-6
Semicolon

use of, 3-5
with compound statement, 8-1
with THEN clause, 8-5

Separators, 3-4
Set

checking option, 2-12
constant, 4-6
operations, 5-23
types, 5-22
variables, initializing, 4-18

Shape
compatibility

checking option, 2-11
definition, 2-11

of array, definition, 6-1
Sharing variables between compile units,

4-10
Shift functions, integer, 5-4
Side effects, 9-3
SIN function, 5-6, B-4
Sine function, 5-6
SINH function, 5-6, B-6
SIZEOF function, 11-2, 8-6
Slice index specification, 6-5
Source

listing option, 2-10
statement listings, 2-16

Special symbols, categories, 3-1
SQR function, 5-4, 8-4

real number, 5-6
SQRT function, 8-4

real number, 5-6
Square function, real number, 5-6
Square root function, real number, 5-6
Stack

memory space, specifying, 2-12
overflow checking option, 2-13
variables, 4-9

Standard
Cray extensions, 1-2
Cray restrictions, 1-2
disabling Cray extensions, 2-10
ISO, for Pascal, 1-1

Statement
compound, definition, 3-5
labels, 3-7

GOTO statement, 8-7
rules for, 3-5

STATIC declaration, 4-12
Static

storage for exported variables, 4-10
variables, 4-9

Stdin
default input file, UNICOS, 2-6
use with INPUT, 10-1

Stdout
default output file, UNICOS, 2-6
use with OUTPUT, 10-1

B

Storage for variables, 4-9
Stride, definition, 6-6
String

default output field width, 10-8
definition, 3-7
description, 5-15
memory allocation, 5-16
operations, 5-16
variables

in assignment statement, 8-3
with READ, 10-4

Structured type, definition, 5-1
Subprograms, 9-1
Subrange

assignment checking option, 2-12
type

definition, 4-8
description, 5-10

variables in assignment statement, 8-3
Subscripts, array-valued, 6-5
Subtitle line, listing option, 2-13
SUCC function, 5-4, B-4

Boolean, 5-8
CHAR, 5-9

SUM function, 6-4, B-6
Symbols, special, categories, 3-1
Syntax of language, E-1
Systems, computer, running Pascal, 1-1

T registers for variables, 2-13
Tag field, description, 5-19
TAN function, 5-6, B-6
Tangent function, 5-6
TANH function, 5-6
Tape I/O, 10-1
TASKVAR declaration, 4-14
Text files, predefined, INPUT and OUTPUT,

10-1
Time, compilation, improving it, 2-11
TQNH function, B-6
Tracing a variable, F-5
TRUNC function, 5-4, B-4
Types, 5-1

anonymous, 4-9
compatible, 8-2
definitions, 4-7
table, listing, 2-18

Typing rules, escaping with VIEWING, 7-2

Unblocked datasets
and files, 10-5
COS, 5-26

Unconditional branch (GOTO), 8-7
UNICOS

differences from COS, 2-1
job, 2-5

example, 2-6
pascal command line, 2-6

Union of two sets, 5-23
UNPACK procedure, 5-14, B-4
Uppercase letters, 3-6
User-defined

identifiers, 3-6

SR-0060 Index-7

User-defined (continued)
types, 5-9

Using Pascal
under COS, 2-1
under UNICOS, 2-5

V+ compiler option, to enable
vectorization, 13-1

Validity checking on pointer accesses, 2-11
VALUE

definitions, description, 4-17
statement

CACHE variable invalid, 4-15
common variables invalid, 4-13

imported variables invalid, 4-11
Value

parameters, 9-5
returned by function, 9-4

Values, assigning to variables, 8-2
VAR

declaration, 4-9
parameters, 9-5

Variables
assigning values to, 8-2
declarations, 4-8
fast access, 2-8, 2-13
in modules, 12-2
local and global to procedures, 9-2
local, in listing, 2-19
of the same name in different program

blocks, 9-2
set, declaring, 5-22
sharing between compile units, 4-10

Variant
checking option, 2-12
fields, description, 5-18

Vector
assignment, definition, 13-5
definition, term defined, 13-4
dependencies, 13-7

option to ignore, 2-14
expression, definition, 13-5
IF, definition, 13-6
length read instructions, 2-5
population, 2-5

Vectorization
description, 13-1
enabling and disabling, 2-14
turning off, 2-9
with array processing, 6-1

VI compiler option, 13-7
VIEWING statement, description, 7-2
Vocabulary, 3-1

Walkback, debugging, F-1
WHILE statement, 8-11
Width, scalar types, 5-2
Window

position in a file, 10-2
buffer variable, 5-24

WITH statement, description, 7-1
WRITE, description, 10-3
WRITELN, description, 10-5

B

READER COMMENT FORM

Pascal Reference Manual SR-0060 B

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE _________________ _

FIRM ___________________________ _
RESEARCH, INC.

ADDRESS _________________ _

CITY _______________ STATE _____ ZIP ____ _

DATE ---

.---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH. INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

STAPLE

(")
C
-I
}>
r o
Z
G)

-I
I
en
r
Z
m

READER COMMENT FORM

Pascal Reference Manual SR-0060 B

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE __________________________________ _

FIRM ______________________________________ __
RESEARCH. INC.

ADDRESS ________________________________ __

CITY _________________ STATE _______ ZIP ______ _

DATE ---

.---~

IIIIII

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH, INC.

2520 Pilot Knob Road
Attention: Suite 350
PUBLICATIONS Mendota Heights, MN 55120

U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

STAPLE

n
c
-i
p
r o
z
G>
-i
I
Vi
r
Z
m

