
ji
,

I

^' -

ROS

' .J

RESIDENT OPERATING SYSTEM

CROMEMCO INCORPORATED

,1\<
-?L'|""'1'l""'

2)JOO Charleston Road, Mountain View, California

Copyright 1977

1

TABLE OF CONTENTS

CHAPTER l: INTRODUCTION

/1

CHAPTER 2: ROS COMMANDS . 12

Section l File Organization and File Commands
.

12

File Organization
12

File Naming .
12

Active File - Current File
12

CFIL .
13

LFIL , . . , . , , . . , . . , . .
14

CURR
. .

15

DFIL . i5
VFIL . i6
-MFIL .

17

Using File Commands
.

1?

Section 2 Text Editing Commands
. · · · · · · · 19

LIST . g . · · · 19
TEXT e . · · · · · 20
FoRy , G G · · · · · 2 1

NFOR · T · · · · · · · · 21
AUTO

. · % · · · · · · 21
RENU

. 0 · · · · · · · · 22
DELE

. · · · · 2Í3

Section 3 I/O - Input/Output Commands
. 2/t

LIOD . · ·
2/t

IODR
. uDIOD
. .

26

SYSI .
26

LEAD
. .

26

Read - Write Commands
. - . 27

WBIN
. .

28

RBIN .
29

WCBN
. 29

ECBN
. Z9

RCBN
. .

29
WCHX . 3(j
ECHX

. .
3Q

RCHX
. .

30

2

Section 4 Memory Access Commands
. . , ,

31

DUMP .
31

ENTE .
?1

MOVE .
32

VMEM . 33
PRAM

. 33
BANK . 33

Section 5 Custom Commands
. · · · · · · 35

ECUS
. - 35

LCUS
. 35

DCUS .
;J6

RENA . K
Section 6 Assembler Commands

. · · · · 37

PSTA
. 37

STAB .
37

ASMB
. .

JJ8

ASMO
. - . · 39

ASMU
. 41

Section 7 Miscellaneous Commands
. 42

EXEC . 42
PROM

. 42

CHAPTER 3: CONVENTIONS AND PSEUDO-OPS
. 4L

TITLE .
46

EJECT . 46
DEFS ..

46
DEFB

. ..
47

DEFW ..
47

ORG
. .

48
EQU

. .
48

END
. .

49

CHAPTER 4: USEFUL SYSTEM SUBROUTINES · 5Q

CHAPTER 5: WRITING I/O ROUTINES
. · · · · · 57

System Input Drivers - · · · · · · · · · 57
Assembler Input Drivers · · · · · · · · · 57
Output Drivers · · · · · · · 58

APPENDIX · · · · · · · · · · · · · 59

A. Custom Commands with Parameters . . . · · · · · " " " " 59

3

B. Using Parameters in the Command Line · ·
60

C. User Loading instructions · - ··
62

Includes: I/O
PROM
PAPER TAPE

D. Special Functions of Keys · · · · · ··
63

E. Error Messages · 64
F. Table Format . 66
G. System RAM . - . 67
H. Linkage to Common Routines · 6g

I. Paper Tape Loading Instructions
71

j. Glossary . · - · 73
K. Assembler Error Codes

76

4

CHAPTER I: INTRODUCTION

The Croníemco Resident Operating System (ROS) allows the user to

create and edit Z-8O source code, asseínb1e the source code, and

produce object code files. ROS resides in 8k bytes of memory space

from address AOOO to BFFF. hK bytes of system RAM are required

front address DODO to DFFF. User RAM niay reside anywhere else in
memory space.

ROS is available from Croinemco either on paper tape {model LA-PT)

or in PROM (model m-8o8). PROM may be used in the Cromemco

8k Bytesaver* memory board {model 8kbs) or in the Crornemco 1GC

PROM board (model l6KPR). Loading instructions for the paper tape

are given in Appendix I.

Since you are no doubt anxious to begin using ROS right away,

this chapter gives a detailed step-by-step example of the use

of ROS in the composition, assembly, and execution of a program.
Before attempting to use ROS be sure that you have RAM íneniory in

your computer from location DODO to DFFF (e.g. a Cromemco model

htcz ínernory board). This memory space is allocated for ROS system

use. You will also need additional RAM in your system for storing

your source code and the assembled object code. This is called

the user RAM. For the purposes of the example in this chapter it
is assumed that there is 4k of user RAM starting at location

zero in memory.

Once ROS is resident in your computer, begin program execution

at memory location AOOO. Next follow through the example given

in this chapter to learn how to use this powerful software system

for program development.

5

' AN ILLUSTRATIVE EXAMPLE

Now let's consider a specific example of writing a
Z-80 assembly language program, assembling the program,
and executing the resultant machine code.

The title of the program is "ECHO". The purpose of
the program is simply to input a character from a keyboard
and echo it to a display. The program assumes standard
Cromemco I/O convention of data exchange on I/O port lwith status information on input port O.

To begin we must execute the ROS program that begins
at location AOOO in memory. From the Cromemco Monitor
this is accomrñished by typing:

G AOOO

After executing ROS at location AOOO depress Carriage Return
on your console keyboard until the following response appears
on your display:

CROM.EMCO ROS V.2.l

Our assembly language source code will be stored
as a "file" in the computer's memory. We must give a name

to this file and snecify the memory addresses in which the

file resides. This is accomplished with the CFIL command.

Suppose that we name the file "ECHO" and wish to have
the file begin at address 0100 in memory and extend no

farther than location 09FF in memory. Such a file can be

created by now entering this instruction from the keyboard:

CFIL,ECHO,I00,9FF

After typing this and depressing carriage return on the
keyboard, ROS will respond by stating the beginning and
ending address of system memory now being used:

DODO DIEB

When entering our assembly language program from the
keyboard we probably would prefer to be prompted with line
numbers rather than manually type the line number of each
line of the program ourself. It is common to begin with
line number 10 and to increment each sucessive line number
by 10. For automatic prompting of line numbers we type:

AUTO,lO,l0
ROS will then prompt us with the first line number (a IQ)
and we can proceed to enter the assembly language program.
After each carriage return we will be prompted with the next
line number. This is shown in the example on the following
page.

6

CRCMEMCC RUS!
;G A(J0O

' CROMEMCO ROS V.2.l
CFILDECHQ»lCQj9FF
D(JC0 I)IEE3

AUTO»tCblO

DOlO :miis program echos the keyboard
O(J20 ;
0030 LE SP.OEOOH
0040 START: CALL INPUT
0050 CALL OUTPUT
C06C JP START
0070 ;
oci80 INPUT: IN A»C
OC90 BIT RDA)
0100 JR zoñNpUT

OllC IN ajj; INPUT CHARACTER
0120 RET
0130 $

0140 OUTPUTC PUSH AF; SAVE CHARACTER
DISC) IN ADÓ
0160 BIT TBE.üA
0170 JR LNUTPUT+I
0180 POP AFB RETRIEVE CHÁRACTER
0190 OUT IÓA
0200 JIET
0210 kDAt EQU 6
ci22cí TBEC EQU 7
0230

.

The above is a transcript of an actual session at
a keyboard using ROS. At this point we may wish to have
a formatted listing of our file. This can be done firstby depressing ESC or ALT-MODE on the terminal keyboard
to indicate that we are finished entering the assembly
language program. Then we type:

FORM

LIST

The resultant listing is shown on the next page.

7

FORM

LIST
COlO :niís program echos the keyboard
0020 ;
Olj3G LI) sptoEooH
0040 START: CALL INPUT
OC5(J CALL OUTPUT
006C JP START
0070 ;
(JOBO INPUT: IN A6(J
0090 BIT RDA.A
CilOO JR ZAINPUT

OliO IN A2Í ; INPUT CHARACTER

Ql20 RET
0130 ;
Cil40 OUTPUT: PUSH AF ; SAVE CHARACTER
Cl5b IN a»(j
0160 BIT TBE.A
Cl7(j JR ZJUTPUT+I
0!80 POP AF ; RETRIEVE CHARACTER

0!90 OUT IJÁ
ci20g RET
0210 RDAZ EQU 6
0220 TBE: EQU 7

This formatted Listing of the assembly language
source code is produced by ROS following the FORM and
LIST commands as shown.

8

The assembly language program shown on the preceding
page is composed in the following way. Each line of the
assembly language code is made up of as many as five separate
items. The first item is the line number. In AUTO mode
ROS automatically supplies sucessive line numbers as we

enter the program. The second item that may mpear on a

line is the label. If the line does have a label it is
always folIowe'dby a colon. The third item that may appear
is the instruction mnemonic. The mnemonics for the various
Z-80 instructions can be found in the Z-80 CPU TECHNICAL
MANUAL published by Nostek and Zilog.* The fourth item
that may appear on a line is the cmerand or operands of the
instruction. The first operanól to appear must be separated
from the instruction mnemonic by at least one space. Ifthere is more than one operand the operands must be separated
by commas. The last item that may aopear on a line is a
comment. A comment must always be preceded by a semi-colon.

Now that we have created a file and entered our
assembly language program we are ready to assemble the
program. We indicate to ROS that we are finished entering
the assembly language program by depressing the ESC or
ALT-MODE key on our terminal. To get a formatted assembly
output listing we type the command:

FORM

The command to assemble (ASMB) is followed by three paraijneters
to specify: l)the address at which the machine code is to be

executed, 2)the address at which the machine code is to
be put after assembly, and 3)an option code. (See Chapter 2

Section 6 ofROS manual for more details). Suppose we wish
to have the machine code that results from our assembly be

executable beginning at location O in memory. Suppose
we also wish to have the actual machine code stored at location
O in memory following assembly. And say we wish a full
assembly listing (option I). Then the command to assemble
our assembly language file is given by:

ASMB,0,O,I

After typing this command from our keyboard the assembly
will procecje, and an assembly listing will be produced as
shown on the following page.

* Note: Sorne manuals may show the fol.Lowing commands in this way:
ADC A,s; ADD A,n; ADD A,r; ADD A,{HL); ADD A,{lX+d); ADI) A,{lV+ci);
SBC A,s; IN A,{n); OUT {n),l\\. In ECG, shorter versions of them
commands are used as listed here: ADC s; ADD n; ADD r; ADD (IIL);
M)Í) {íX+á); ADD {1Y+á); SBC s; IN A,n; OUT n,A.

FORY 9
ASMB»CjOj I

CROMEMCO Z-80 ASSEMBLER V.2.C

OC/OO (JOJO ;THlS PROGRAM ECHOS THE KEYBOARD
CODO 0020 ;
GODO 31 (JO (JE cci30 LD SP.(JE(J0H
0003 CD QC (JO 0040 START: CALL INPUT '

0006 CD 15 (JÓ 0050 CALL OUTPUT
OC09 C3 03 ClO 0060 JP START
0CC)C 0070 ;
OOOC DE3 (JO 0080 INPUT: IN A»O
0Ó(JE CB 77 0090 BIT RDÉuA
COlO 28 FA 0100 JR Z»INPUT
00!2 DB Ol 0110 IN mí ; INPUT CHARACTER
(JOl4 C9 Cl20 RET
0015 0130 ;
cUis F5 0140 OUTPUT: PUSH AF ; SAVE CHARACTER
COl6 DB OG 0150 IN AjO
(JOl8 CB 7F 0160 BIT TE3E»A
OOÍA 28 FA C)l70 JR Z.JJUTPUT+1
cote FI 0180 POP AF ; RETRIEVE CHARACTER ·
OOID D3 Dl 0190 OUT L,A
0(JIF C9 0200 RET

0006 (j2ío RDA: EQU 6
0007 0220 TbE: EQU 7

ROS produces this assembly listing and stores the
machine code object file at the location in memory specified
by the ASMB command (in this case location O). There is a

great deal of information on each line of this assembly
listing as described on the next page.

10

- MEMORY ADDRESS

-MEMORY CONTENTS

"ERROR CODE

! -LINE NUMBER

—OP CODE MNEMONIC

- OPERAND

- CO'IMEN'F

0018 FI 0180 POP AF J RETRIEVE CHARACTER

This example line from the assembly listing on the
previous page shows that there are seven items of information
that can reside on each line of the assembly listing. Ifthe assembler detected an error in the composition,of the
line then an error code would be inserted in the line at
the position shown. The followinq error codes are used by
ROS:

Error Code Description
A Arcníment error
D Double definition
L Label error
,'1 Missing label
O Op-code error
P Phase error
R Range error
S Syntax errcr
U Undefined
V Value error

11

PROGRAM EXECUTION

After using the ASMB command to assemble this example prograín,
you may wish to execute the program. this can be done by using the ROS

command EXEC. Since we put the program at location zero in memory
when we used the ASMB command, we would type EXEC,0. This causes
an unconditional CALL to location zero saving the ROS return
address on the stack. So now let's execute the example program
and see if it works:

EXEC»0

THIS IS A TEST OF THE PROGRAM "ECHO". AS I TYPE ON THE

KEYBOARD IT IS ECHOEIJ ON THE DISPLAY!!!!

SUMMARY

Tn this Chapter we have given one example of the use of
Croinemco's ROS Assembler so that you can start using your copy
of ROS right away. The following chapters describe the commands
and conventions of ROS in much greater detail, and should
answer any questions you had as you worked through this firstexample.

12

CHAPTER 2: ROS COMMANDS

Section l
FILE ORGANIZATION AND FILE COMMANDS

File Organization

Under ROS, user information is organized into files. The files
are further subdivided into lines. The user is provided with a set of
very comprehensive commands to manipulate his files. Another set of
commands - the text editor - allows the user to reorganize the contents
of his file, e.g. delete, replace, or insert an individual line. Each
line in a memory file must be numbered. The lowest numbered line willalways be placed at the beginning of a file, and numbering will con-
tinue upward to the end of the file.

File Command Formats

In the formats given for each command the following conventions
are used. If an entire word is capitalized, it is a key word and must
be used. User supplied information is designated by lower case. A

brace { } indicates the user must make a choice. Optional items are
enclosed by brackets [] . The horizontal ellipsis ... allows the item
to be repeated.

Example:

. . . jending-file-address)'"CFIL, fi.le-name, begLnnLng-fI-le-addressT
file-length

File Naming

A file name consists of one to six characters and can be any char-
acter, (except a control character), for which a code exists. Thus, the

file name #@AB41 is legal; however, it is recommended that names descrip-
tive of the file content be used. An entry of a file name longer than
six characters results in the first six characters being accepted as
the file name. For example, an entry of MYNEWFILE gives !'1YNEWF as the
file name. The number of user files is theoretically only limited by
space available in the system RAM area.

Active File - Current File

If)

To avoid both the extra time involved in the user always having
to specify which file is being manipulated and the sYstem overhead in
searching the RAM area, the concept of a current user file is intro-
duced. Any file may be.rnade current by use of the CURR command. Files
are automatically current when they are created.

Optional I/O Drivers
Command, parameters, driver-name

The ROS commands listed below have optional drivers associated
with them. If the driver is omitted, then a default is made to sítsggg _

the system's I/O (console device).

DUMP LCUS LIST TEXT

ECBN LEAD RBIN WBIN

ECHX LFIL RCBN WCBN

ENTE LIOD RCHX WCHX

Example:

í-TS7tíQ,2O,TTY List on TTY

LIS'T.IO,2O,CRT2 List on CRT2

Create File
. . . .)ending-file-address)

CEIL, ftle-name, begLnnLng-fl-le-address .' fKLe-length

The created file is entered in the File Name Table, which resides
in the system RAM area. A newly created file becomes the current
(active) file. All file commands which do not specifically designate

a file default to the new file. After each file creation, the new
boundaries of the system RAM are indicated. This reflects an entry
into the File Name Table. An attempt to allocate previously assigned
memory to a new file will result in the message: "MEMORY ALREADY

ALLOCATED".

In several of the files created below some text will be entered.
Each text line will be numbered by entering a number followed by a

space. Variations on this procedure are given in the section on text
commands.

Example:

CFIL,A,1OOO,S1OOO
ljOOO D2C)B

i4

A is now the current file. It starts at lÓÓfS hex and is allotted
U00 hex locations; the limits of the file are UW0 to LFFF. The system
responds with the new RAM boundaries MOD D2QB. Next, a new file is
created. A is no longer current but remains in the File Name Table
and can have data entered at any convenient time by making it current.

Example:

CFIL.,AIR,2OÓO,2FFF
DOOO D217
JO FILE AIR BEGINS AT 2(JOO
20 ENDS AT 2FFF
30 SUBSTITUTION OF S1OOO FOR 2FFF
40 GIVES THE SAME RESULT

Now an attempt is made to create a new file that extends into a

previously allotted area.

cFIL,ToMcAT,25Qois3QQ
MFM1)RY ALREADY AL-LOCATED

The files previously aljotted are intact, and the file TOMCAT is
non-existent.

CFIL,1OMCATION,310O,31FF
DOQC) D223

The file TOMCAT is now current. The remaining letters ION are
ignored.

List File Names

LFIL, [driver-name]

a list of all the files in the File Name Table is provided by
entering LFIL. The first file listed is the current (active) file.
Each file name is followed by the beginning address of the file, the
ending address of the occupied area, and the end of the allocated area.
The user can inspect the list of file names to determine if a proposed
name is a duplicate. This command provides the user with a map of his
files so that the user can decide on future memory allocation via file
creates and moves.

15

t

Example:

· L.FIL
TLMCAT 31OC) 31OC) 3IFF
AIR 2000 2OFA 2FFF
A 1OOO 1OOO 1FFF

TOMCAT is the active file, but as yet it is empty. AIR contains
FB bytes of information, and its allocated area is from 2000 to 21FF.
a, which was allotted U90 bytes of memory by the swath command Sl000f
ends at IFFF.

Example:

i LFIL.CRTI Files will be listed on CRTI

Get Current File
CURR, file-to-be-made-current

Any file may be made current at any time the user is in the command

mode. By checking the first line of output from the List File command

LFIL, it can be determined which file is current. It usually is faster
just to make the desired file current. An attempt to make a non-existent
file current will give the message ERROR. After an error message, ifit is felt that the s'/ñtax of the command was correct, then use LFIL
to see if the file already exists.

Example:

CF"IL.zA,1C)OOeSlC)O A is the current fileDOOO D2í7
CFIL.Bi2OOCLS1OOO El is the current fileDOOO D223
CURR,A

.
A is now the current file

.

Delete File

DFIL, file-name

Any file may be deleted by the DFIL command. Files are deleted
one at a time. After a DFIL command is issued for the active file,there is no active file. Deletion of a non-existent file gives the

i6

message ERROR. Execution of the Delete File command is followed by the
system RAM boundaries.

Example:

Assume the files A, AIR, and TOMCAT exist, and that TOMCAT is the
current file.

DFIL,AIR
DOOO D203

. system ram boundaries
DFIL.TOMCAT current file is deleted
DOOO DÍF7
iO SSS can not enter text because
NO CURRENT FILE no file is current
CURR,A

io SSS

DFIL,A,AIR,TOMCAT only A is deleted
DOOO DIEB

Validate Zile

VFIL

The validate command performs the following operations:

l) It checks that all lines within a file have a length;
2) It verifies that each line ends with a carriage return;
3) It checks the beginning of each line for a 4 digit line
number followed by a space;
4) It certifies that no control characters are part of the
text.
When a file passes validation, the name of the file is returned

with its starting address, ending address of textual material within
the file, and end of the region allocated far the file. If the filecontains errors, the byte location of each error is given followed by
the message FILE ERROR. It is assumed that typically the user only
wishes to validate a current file; therefore, the VFIL is not followed
by an operand, a file name.

Example:

VFIL
AIR 2000 2072 2FFF File AIR is ok.

Assume at location 2001 the current file contains an error

17

\jj- II.
:'oot
PYLE ERROR

N

Move File
MFIL, f lie-name , beginning-address-of-receiving-area

An existing file may be moved to any existing memory location
providing the space is not occupied by another file or system informa-
tion . Attempts to move a file into another file' s area will be greeted
by MEMORY ALREADY ALLOCATED. After a move, the file will no longer
exist at its previous location. The file to be moved need not be active.

Example :

MfILtTOMCATiO The absence of an error message
following the move indicates a
sucee"=sful move.

CF IL., STAT, 2OQC), 300
1)OOO D2O3
P1F IL I

7 OMCAT, 2QOQ Cannot move TOMCAT into area
MEMORY ALREADY ALLOCATED that is occupied by STAT.

Using File Commands

A short. demonstration using file commands only follows.

CF·-1L.,A, 1OOO, S1OOO
POC)O DIF7 System ram boundaries
t- F IL.
P. lOOO 1OOO IFFF File is empty.
I' 2C)OO 2OOA 2FFF

bF j'L-í dÁ

IKKJO !J1EB system ram decreased by 12 bytes.
CFll,t1, 1OOO, S1OOO
J)OC)O MF7
CFJL, 13, 1OOO, S1QOC)

bliP. NAMES B was already defined.t f'"] L
A 1C)OQ lOOC) IFFF
u 2000 20OA 2FFF

CURRu A Make A the current file.bf'j!-, A

18

DOOO DIEB
i ABC
NU CURRENT FILE
CURR, B

i ABC Accepted because there is a current fileCF JL. B, 3C)OO, S2OQ

DUP. NAMES The file name was already defined
L-F" JL-

B 2000 20OA 2FFF

CF IL. TI, 3000, S2OC)

DOOO D1F7
MF II-, B, O

MFJL,TL1OOO B and TI are tidw [DntigUDU5 at Ichu memory
L-F IL.
7 1 lOOO 1OOO I1FF
Ft OOOO OC)QA C)FFF

19

Section 2

TEXT EDITING COMMANDS

After creation of a file, the text commands allow the user to
manipulate the contents of the file. In addition to adding or deleting
the lines of a file, each line can be automatically numbered as it enters.
Text lines can also be renumbered. Whether a listing will be formatted
or unformatted is controlled by a flag in the monitor using the FORM and
NFOR commands. To understand the effect of formatting using tabs see
the section on the LIST command. Examríles of assembly language will be
presented in this section. For assembly language conventions see the
section on assembly language.

List
LIST, [beginning-line-number], [ending-line-number], [driver-name]

In the absence of parameters the entire contents of the active file
are listed when the LIST command is used. If the formatting flag is set,
then the list is formatted according to tab settings for the I/O driver.
The section on I/O commands covers the setting of the tabs. when tabbing
is used in the example below, assume the conventions given below.

Examríle:

FIELD TYPE LABEL C1PERATC)R OPERANDS COMMENTS

COLUMN - i g 15 25
CONTENTS -

START: LD HL,START :LOAD HL

When LIST is followed by one line number only, the indicated lineis listed. If two parameters - line numbers - follow LIST, all the textlines from the first line number to the second line are listed.
Example:

CURR, B

j ::"Sz'
t- ISl
OOC)í SSS Noticéi left zero fill is automatic

20

CURR. AIR
I XYZEK) The presence of a non—numeric character
LIST Signals the end of a line number
OOOl XYZ8O

CURR. B

IQ LI) ArB
20 START: LD HL, START
:XJ JP START: JUMP TO START

LIST Assume no fromatting
oooí SSS
DOlO LD A, B
OQQO START: LD HL, START

(XKJQ JP START: JUMP TO START

FORK Turn on the formatting switch
LIST
OOOl SSS

DOlO LD A, B

0020 START: LD HL, START

QO3O JP START ; JUMP Tlj START

LIST) lO
DOlO

.
LD A, B

LIST, lOt IQ
QQIQ L-D A, B

LIST) it 20
OOOl SSS

DOlO LD Áb B

0020 START: LD HL, START

List Without Numbers

TEXT, [beginning-line-number], Lending-line-number] , [dr iver-name]

TEXT only differs from LIST in that line numbers are not printed.

Example :

TEXTc L 20 Assume no formatting
SSS
LD Ai B
START: L-D HL, START

21

FORM Turn on the formatting switch
TEXT,2O,3O
START: LD HL,START

JP START :JUMP TO START

Format Switch On

FORM

The FORM command turns on the format switch. This switch activates
the tabbing associated with each I/O driver. The FORM command affects
the LIST and TEXT commands and all assembler commands such as ASMB. The
tabs can be changed by using the IODR command. Other selected I/O
commands affect the tabbing by resetting tabs, e.g. SYSI. The FORM
command is regional, that is it remains in effect until the occurrence
of NFOR command. Further discussions of tabbing are covered under Assembly
Language commands and the LIST command.

Format Switch OFF

NFOR

The NFOR command deactivates the use of tabbing.

Examples of FORM and NFOR:

FDRM

L,ís7,4o,6c)
0040 BRNCHI: CALL START

0050 BRNCH2: JP START
OObO LD A,B :Z-E30

NFÜR
L- 1ST

0040 BRNCH1: CALL START

0050 EJRNCH2: JP START
OO&O L-D A,B: Z-8C)

Type Numbers Automatically
AUTO, [lowest-line-number], {increment], [maximum-line-number]

22

The AUTO command is provided to relieve the user of having to enter
line numbers. Four digit line numbers are automatically entered on the

left margin by the AUTO command. The user specifies the starting number,
the increment size, and the maximum line number. Any numeric value can
be entered for any of three parameters. The default parameters are one
for the starting number, one for the increment parameters, and 9999 for
maximum line number. If the start number exceeds the maximum line, only
one line will be printed and wrap around will not occur.

Example:

AUTD.3,7,2C)
OOQ3 LD A,B
DOlO START: LD HL,START
0017 JP START
AUTO MODE COMPLETE

The line numbers MOM mo, pp:n followed by a blank are printed
by the monitor; the user then enters the text.

Example:

AUTO,40,10,60
0040 CALL START

0050 JP START
OQ6Q LD AVB
AUTO MODE COMPLETE

Line number 60 was the limit given in the AUTO command so the monitor
message indicated completion. If you wish to leave the auto mode before
completion, press the ESC or ALT MODE key.

Renumber File

RENU, [starting-line-number], [increment-size]

Line numbers in the current file are renumbered by the RENU command.
The user specifies the starting number and the increment size. The

starting number is a line number from l to 9999, and the increment size
ranges from l to 25. When the renumbering reaches 9000, the increment
size is 1. Wrap around can occur when the line number reaches 9999;
the next line numbers then will be O, l, 2, etc. It is possible to have
two lines with the same number. Omission of either starting-line-number
or increment-size or both causes a default to l.

23

Example:

l)Sl
oooti L-D A, B

oo: m JP AGA I N

DOM' CALL SUBX

RE- NUMB ER, 20, 1 5

· i lSíi
OO: .'O L.D A,B
C)(KJ5 JP AGAIN

OOSX) CALL SUI3X

Delete Lines

DELE
, beginning-line-number, ending-line-number

with the DELE command all lines are deleted from the first line
number to the second line number, inclusively.

Example:

m EíTí:, 35, '?5 THE LINES FRCítl 35 TCí '?5 INCLUSIVE
HILL BE DELETED

LiELF, É'O LINE NUMBER 2C) HILL BE DELETED

M-IF, :'CJ, !5 NO LINE HILL BE DELETED

24

Section 3

I/O - INPUT/OUTPUT COMMANDS

The majority of commands in this section are related to routines
called drivers. These routines contain instructions that allow data
to be transferred in or out of the computer memory. The user is able
to change selected parameters relating to drivers. The input and out-
put addresses can be modified. The display of text through tabs and
page size is alterable by the user.

Three types of data representation are provided for, namely l)
an unmodified binary representation of memory contents, 2) INTEL
hexadecimal, and 3) INTEL binary. In many of the examples given below
reference is made to the I/O Driver Table and its parameters. These
parameters are covered in some detail under LIOD - List I/O Drivers.

List I/O Drivers

LIOD, [driver-name]

A table of I/O assignments is kept in the system RAF!! area, some-
times referred to as the I/O Driver Table. An entry of LIOD willproduce a listing of the table of I/O as"signments. The example below
explains each parameter.

LIOD

sYs0g0 6F36 6F3F 0 60 6 9 15 25

(l) (2) (3) (4) (5) (6) (7) (8) (9)

{l) Driver name; in the example SYSM0 is the system driver.
(2) Input driver address.
{3) Output driver address.
{4) Number of nulls between each line. This allows time ifneeded for a line feed to take place before printing the next
character on a hard copy device, e.g. teletype.
(5) Number of lines per page - uSed for assembler paging.
(6) Number of lines between pages - used for assembler paging.
If this number is 0, a form feed is issued to advance to the top
of the next page; otherwise, this is the number of line feeds
that are issued to advance to the top of the next page.
(7) Beginning column number of operation instruction, pseudo-op,
etc. See explanation under LIST command.

u

(8) Beginning column number of operand.
(9) Beginning column number of comment.

Further examples of LIOD are shown under IODR and SYSI commands.

Define I/O Drivers

IODR, see LIOD for complete description of parameters

Drivers may be either added or modified by the IODR command. Driver
names may be from one to six alphanumeric characters. Omitted parameters
are indicated by two adjacent commas or terminating the driver defini-
tion before all parameter positions are indicated. Immediately follow-
ing the I/O driver assignment the boundaries of the sYstem RAM are
given; this occurs because the assignment of a new driver will expand
the system RAM area.

Example :

l 'i t-n
' 3Y"íOOO AF313 AF41 O 6Q 6 '? i 5 25

IÜDR, DISKI, 8FOO
DOOO D22B

i" new driver DISKI is defined in the example above. The input
driver address is 8FC)O. The absence of parameters between the commas

indicates defaulting to the system output driver cAjress of AF41. The
number cjf 21u": Zs after a line feed is five. All. tj"í¿: remaining parameters
will be that lil the system. To verif'i' the asq[j í7rE!hE3nt the I/O assignments
are l-istec! bei.:¿}"Ñ.

Example :

l l{i!g
5YSCK)O AF38 AF41 O áC) 6 '? i 5 25

bí5KI 8FOO AF41 O bO b g I 5 25
I ÜI)Rs I TY Assign I/C) driver TTY, default all
T)OOO D23E parameters to system - SYSOOC).

L. j{jj)
SíYSOOO AF3E3 AF41 O bO 6 g 15 25
bISKí 8FOC) AF4Í C) bO 6 g 15 25
17 Y AF38 AF41 C) bC) 6 '? 15 25

26

Delete I/O Driver Name

DIOD, driver name

The DIOD command deletes one driver from the I/O driver table each
time it is used. sys000 cannot be deleted. The system RAM boundaries
are given after each successful deletion.

Change SYSIO .t.o. Name

SYSI, [driver name]

The system I/O driver - the console device whose logical name is
SYS000 - will have its parameters changed to the I/O driver name follow-
ing the command SYSI. An entry of oñiY SYSI returns the system I/O
driver to the parameters stored in the PROM. The examples given below
are a continuation of the results in previous section on Define T/O
Drivers.

Example:

SYSIJTTY SYSOOO will have the same parameters as TTY

IOWÁTTYttttj Change number of lines between pages frcm
6 to O for TTY. In affect delete the line
feeds and substitute a fown feed.

LIDD
SYSOOO AF38 AF41 O 60 6 g 15 25
DISKI 8FOO AF41 O 6Q 6 9 15 25
TTY AF38 AF41 O 60 O g 15 25

Note difference between SYSOOO and TTY.

SYSI,TTY
LIOD
SYSOOO AF38 AF41 O 60 O g 15 25
DISKI 8FOO AF41 O 60 éj 9 15 25
TTY AF38 AF41 O 60 O 9 15 25

There is now no difference.

SYSI Reset SYSC)OO to parameters in the prom.
LIDD
SYSOOO AF38 AF41 O 60 6 g 15 25
IJISKI 8FQC) AF41 O 60 h 9 15 25
TTY AF38 AF41 O bO O g 15 25

Write Leader

LEAD, {driver-name]

2?

Following the issuing OE the LEAD command, there is a five or ten
second wait, which allows time to turn on the punch; then 60 characters
of leader are punched. The wait is five seconds at four magahertz and

ten seconds at two megahertz. After punching the leader, control
transfers immediately to the system. The user is advised to turn off
the punch unit to avoid punching unwanted characters, such as control
instructions, on the tape.

Read and Write Commands

In reading a tape the operator places the first character to be
read directly over the read sprocket. At the conclusion of all reads
the teletype may generate extra characters. These characters can be
prevented from becoming a part of a memory file by pressing control X

of the teletype.

A five or ten second wait occurs after entry of any write command.
This allows the operator time to turn on the punch. The wait is five
seconds at four megahertz and ten seconds at two megahertz.

Tape Formats

There are three tape formats: I) binary without a checksum, 2)

binary with a checksum, and 3) hexadecimal. One frame on a binary tape
represents one byte from memory; thus, a frame contain3 two hexadecimal
characters. The contents of a binary tape can be read directly into
memory and used without conversion. A hexadecimal tape uses two frames
per byte OE memory. The hexadecimal tape is in ASCII format and can be
interpret-eel! off-line by a hard copy device. The contents of this tape
cannot be used by a computer without conversion tCz hexadecimal.

The data on a hexadecimal tape is blocked into dir"cretc records,
each record containing record length, record type, memory address, and
checksum information in addition to data. A frame-by-frame description
is as follows:

Frame O Record Mark: Signals the start of
a record. The ASCII character colon
(": " HEX 3A) is used as the record
mark.

Frames l, 2 Record Length: Two ASCII characters
(0-9, A-F) representing a hexadecimal number in

the range of O to 'FF' (O to 255).
This is the count of actual data
bytes in the record type or check-
sum. A record length of O indicates
end of file.

Frames 3 to 6 Load Address: Four ASCII characters
that represent the initial memory
location where the data following

,0'.*
r

" 7 'u , ..Wq-- · % ·wi.ll be .] o: "í::zeci *
': '"-'- " '! ' !" " '

. '1 ' "'

Ó. >byte .j-s Stüt oíl lÁ'i ;-,'í.t" i ['"':1" : " jr,m

pointed to Ly ttit' : :,'t; ii. :P ' '" ,.': ·

'Ysucceed ling' elata b'..'t i.': ': ¿jj": - .: : "t, : !

into ascending ¿jí".i a"c: s9j! "
,.

E"' r: 'jí; ?'-"'-,
'7

,
g Record Type: T'^'(.'! .-'i ::; ·.:.: "T. ";" '" ' l'i .i

..
·.í '::: i; · .:' g,;

,.

'"""urrently, all- rí: '!¿:-'F 4!: ',; :j :.1"' '. .';: 'ii '
-4

Tnis field is Üest-: 4rz'e:ji. fui." :.",..tí':..:.:

exr")arísion.
$-.

Fra2!]esq 9 to 9+2" Data : Each 8 bit m¿?I!',or: 'j
.'s'í:")L¿.'? i-s

.4(RE3c¿""'jr!: 'l Leng t-h) _
L represented by two framez: {.';: :;!í!. :z1 !Ün'"j

the ASCII cha"t- acter°s {i") tu " , A " i"'

F) to rept: í-zsent a he'µ: a{íf,?c:. ':'!,?.! v 'i, :. '.li '
Lap-

C) to ' FF ' FI t t") to 255! .

.Frar?es3 9+2* (R[?{:::{)r{:í Checksum: The c:Qí2c:'F{,ii.7-¡í:"i :, t: É--:ie
Ls£?i'!c¿ t-h] to 9+2* t Reí: 'ord negative of the su:ti -m' ¿z;-j ' b i. !-,

..~
"Li:ñcit !'.1) +'"1 bytes in the record :q'in¿?¿íi. "f...!'u'í' ;;"iz". -'::á

..
ma rk ("" : ") (," va .I u. a 't e É'i "mo cI! 'i-j, I.. t:i g; "¿Ií:i 2")'·

.,

Tnat i s , i if you a d :.)! t. c) t;;"e 'f ""' '.'·'-'i:" a :í. iE 3 e ·, ·-the 8 b :i- 't ijYt. es ,
;. un o "r i ñ i":7' ."i

-
.L ca ;" t" .'.-.t;-.":

,,.e

out of an B-bit s,i"r:",, t.het ': '
!""1 i'.. I"! "'

'rhccksürn, t he "," iP s '· ¶ '- : q z 13 Y":"';
.. d b. L..:+^ 4... -.L ^+ ,,,.' x-.' >

'k ? e~· * T ' " W P "" "St':—""'",-,·-·· ·"?Fo! ':7 ;x.; unrri.Le , .l l 'ne mo r y I-ocatí-ons ")ñp tg?rQ"cj"n "t-.!a: :í:?e Ct';i: Uz t..!"! 1 .i :- ' y'; !.' . ,je ~6

the f[:)rí!'1a t :"rf ü"x: i hex file produced wnen these locat Íoñ3 :":1rr'z :f!'.}!":,sT.l"1'·' ! :. ::; :

:cm001005"3F8Et:c5

A 't-.;:[«j)Í4.'i'.": y.cc' birLary 'tape "Ñi. "t. h check' sum .i-s the s a me a s t':- !'í e '! !. ':.-9."'.a í'k'-t ;:.: :1 :':úiz]..

-Pl.
g "'? ' r « 'b X 4 v . "cape t7t?Sí,'T i-i .'ea arx)ve e>:ce?t'. , dS mt"nt í-onect , e íícFí rr,[ut"!í: ! ¿:':;ri:-. ; :'z. s ·:;".'7'"!t;"

*memo rv !J\,7 :".e".:
4-t ..b

Z'!"ie f"": }:!lo'b7in¿? re a(1—í\'r i,.tcÉ comrnancls are g cQul?': 2cí a s f7C) i. 1 t;st.·. e". :'
..

a'!?';'í3 jj'¿ i B]-}"]ary Fc.rrm-at \Ñ'CB?'I i
í3"í¢"!¿-i}"""' 3'""(:.:)·:!."l"l'3,.iZí"

R.FJ IN ! wi tl'íou"' chec:k sur, 2CB"-i , , ,
:

, , ., . ,
"

,

L

RCBN
i w: U:á c:"!ec;·::,;:w!í?;

{;'¡7': : !-! "Ik', ,!
S

?ciíu: -Intel !"iexadecímal
r's" íj Y

\
,tí'.... t L ¿i.

'&9 it.e !3i.i"Éí·í¿L"v Tape.a.
P"

""' " " ' ' "' q z, —
" r '\Y

(e nil .i.-n a" '_ me mc' .t:"'v """'a í.:'l jj'] ':·"":;jj' zi: í·; i i ·t;'i..:í:' "!. '.,:' ,:-i y' _
g ,.e · 3....Nts j;n¿

,
?;t.{:¿I:t.ít'!'g"a{-l(1Í:(2,- :' ;', n _memo - : ' 'i S l-etíu th i " ":'24·?.:í! :-:1

"

' ' · '"" "k ' ' ' , " '
i! -:: : C·' ' ." ': t" ¢'.;¿ j,jr" "' "" ""'" s- p'-zty-$-·.tmr'" '"' jí" a L "" ' "t ' · . -' ' ': ,.·'T--· r"" · · :..· . :" '; :" ' · ·: :' i .°"t':' "· .··: ":"" .'". - 1 "P ' i ; 1i ; ; . .(,, ' & u -··-. '>y..Va~ . ' ·.. · '.--... :. ? C.,.,^ ·..,, · --, ~ .. -.r C ..-
""' ' " {"j i;; :., S

_a.b_d :: :,.1 Y ,b.,..}t:. .e, t... ..- m 7 ~. 4-mb:j :2 1~_
" t n. r).4 ,{ A 't"' ', \ d'>r'5 ·1"t"""':"""'. "' " ""Xt '" """ "-'"" '

. '·. mg».de,. 'Ir - " ' ..- k..< L.m. . . l ' T ' ' ·" ·' .,· · · :.. '
,. L .,É 4,'.".'ri't t: '::,i:ñ t.";;;"j t.:ár.'C };j'.,7 the- vá: 'ím'i command

.
"z.a: ¿.::h :::j}.'a!'n!.:.l í;;í ::i t: i":' e t' ¿}: ..'¿;·j 'i.';' i-.,. L ;..Ut.;· as ',

untnod :- f" i i"'í!. i. ?j'}"q.cíe {") f eac': li L")',í" t.e f rom me'mo r :"
.

.,G

29

Example:

WBIN,IOOO,S2O Write 2C)H bytes from memory
starting at location 1OOOH.

Read Binary Tape

. .
ending-memory-address} [driver-

RBIN, startimg-address-im-memory,
)

S length ' name]

A tape written by the WBIN command is read by the Read Binary Tape
command. The contents of each frame will be read directly into memory
without modification.

Example:

RBIN,2OOOs2O4F Read in 5OH bytes starting at
memory location 2O4F.

Write Checksummed Binary Tape

' ?jj s ' b
(ending-memory-address [driver-T^'C!3N, startLnq-aazres.--Ln-memor'' ' Is length

}'
name]

The WCBP'" czommañcí allows the user to place a checksum at the end of
a binary tape. The checksum 13 generated by summing up all the frames

after the record mark.

Write EOF on Checksummed Binary Tape

ECBN, [driver-name]

After the WCBN command, an end-of-file is written by ECBN. The
message ":" will be typed. A binary end-of-file cannot be intermreted
for hard copy.

Read Checksummed Binary Tape

'

j
' ¡ending-memory-address {driver-RCBN, starttnc-address-im-memory, !S length

)' name]

The RCBN command allows the user to validate the contents of a

binary tarxn A tape is validated by summinq all the frames after the
record mark; carries are ignored. This sum is compared to the checksum
written previously at the end of the tape. If the two sums do not match,

30

Write Checksum Hex Tape

. . ending-memory-address [driver-WCHX, startimg-address-tn-memory,)
S length)' name]

The WCHX command will write an Intel hexadecimal tape with a check-
sum. The checksum is generated by summing up all the frames after the
record mark. The sum ignores carries and is written as the last frame
in the record.

Example:

«W,ÍOOO.S2O

Thirty-two bytes (2C)H) starting at location 1QQC)H are written onto
a tape. The contents are reformatted into Intel hex code.

Write EOF on Checksummed Hex Tape

ECHX, [driver-name]

After the execution of the WCHX command, an end-of-file is written
by ECHX. The message ":M" (which is an end-of-file command in hex) willbe typed.

Example:

ECHX
:00

t

Read Checksummed Hex Tape

. ending-memory-address [driver-RCHX, startLng-address-Ln-memoryY js
length

)' name]

The RCHX command allows the user to validate the contents of an
Intel Hexadecimal tape. A tape is validated by summing all the frames
after the record mark; carries are ignored. This sum is compared to the
checksum written previously at the end of the tape. If the two sums do
not match, the message "CS" is printed on the system I/O device.

in

Section 4

MEMORY ACCFSS COMMANDS

Commands which enter, move, delete, or report on the contents of
memory without regard to files or lines are classified as memory access
commands.

DuÍrLp Memory

jending-memory-addressj {driver-
DUMP, begtnntng-memory-address, . bj,s- length)' name]

The result of a dump is listed in hexadecimal byte by byte. Each
printed line contains a maximum of 16 bytes and is preceded by the
memory address of the first byte. The two allowable command formats are
demonstrated in the example below.

Example:

IiUMP.CLS1O Dump 16 bytes of memor"g starting at
location C).

OOOO: 02 OO Ol AB FE C3 F8 FE OO 7B FE 5F 54 41 32 54

bUMPtC), ID Dump 1DH bytes of memory

OOOO: OZ QC) 01 AB FE C3 F8 FE 0(1 713 FE 5F 54 41 32 54
C)OJO: 20 OO OO 80 44 52 49 56 45 52 3F 6F E3C) QC)

Enter Memory

ENTE, beginning-memory-address, [driver-name]

The Enter Memory command allows the user to enter hexadecimal data
starting at any memory location. A carriage control does not terminate
the Enter Memory mode; thus, the user can continue to enter data lineafter line. The entry of a one to four digit number followed by colon
will enter a new memory starting address. An attempt to enter an
illegal byte will be reported as an ERROR after a line feed. All bytes
up to the incorrect byte will be accepted. When using this command end the
áata iuput with a "/".

32

Single digit entries are filled with a zero on the left side while
an entry of more than two digits results in having the two rightmost
digits accepted.

Example:

ENTEvO Start entering data at address zero.
12 2 1415/

.,OOOO: 12 02 15 The 2 has had a left zero MdUt and
15 was entered in the third byte.

ENTE,O
í2 2 1415
23 44
6 3OQQ: 17 20 i7 and 2C) will be entered in 3OOQ and 3001.
/
ENTE,ÍOOO
t2 23 24 55 ig 23 44 55
ERROR 1G is an illegal entry
DUFP,1OOO,S8

lOOt): 12 23 24 55 OO OO QC) (JO

55 was the last legal byte
K

Move Memory

. ending-address) beginning-MOVE, begLnnLng-sendLng-addressv IS
length of move ' receiving-

address

The MOVE command moves a byte at a time. If either the sending or
receiving field exceeds the highest memory location, wrap around will
occur to memory location zero. Any character may be propagated through
a section of memory having the receiving address one greater than the
address location. After a move, the VNIEM command is called automatically.

Examples:

'
HOVE,OtS2OCL1OOO Move 2OC)H hytes from location O to location 1()Qoh.

ENTE,O Enter 3OH at location C).

f

=,O,6,1 Propragate contents of location O for t bytes

33

DUMP. C), El
.

OOOC): 30 30 30 3C) 30 30 30 FEI FE

Verify Memory

. . . íending-addresst beginning-VMEM, begLnnLng-sendLng-address V "l S length ! ' receiving-
address

The VMEM command matches the contents of a series of locations on
a byte by byte basis. Whenever a mismatch occurs, the first location
is given followed by its contents; followed by the contents of the
second location followed by its address. At the conclusion of a MOVE

the \7MEM command is invoked automatically.

Example:

MÜVE:
,

C), S iooo, 1OOO

V*-l1t O, SlOOO, 1OOO

ENIF, 444 Change value of 2 bytem now areas should not verif?3 45/ y

VMEtl, O, S1C)OQ, 1QC)O

0444 ?3 FF !444 Errar in validation.0445 45 ES !445

Print System RAM Area

PPAM

The bounds of the system RAM area are printed the PRAM command.

Example:

PRAM
DOOO D23B

Select Bank(s)

BANK, value

g

One or more banks on Cromemco memory boards can be selected with
the BANK command. {When ROS is initialized, bank 0 is selected). Bank
selection can be altered either with the BANK command or by outputting
a byte to port 40l6. A particular bank n is selected by entering a byte
with bit n high as shown in the table below.

BANK Output byte or value
0 A
l Q2

2 M
3 Yl8

4 lg
5 2Yl

6 4g

7 80

More than one bank may be selected at the same time by adding the
values for the banks.

Example:

BANCó8C) Bank 7 is now Oñt all others are off
BANKó88 Banks 3 and 7 are on

35

0

Section 5

CUSTOM COMMANDS

Customizing allows the user to use his own set of mnemonic names.
Those names may be one to four characters long. The user can equate
any allowable name to a memory location. This name, when entered,
becomes a command to begin execution at the designated memory location.
Either a user routine or a system routine can be evoked. Customizing
also allows the user to add his own name to call a monitor command.
The list of custom names is dynamic and may be added to or contracted
at any time.

Enter Custom Name

ECUS, custom-name, memory-address = transfer address

ECUS and RENA are the two commands that add custom names. ECUS is
used to equate a one to four character custom name to a memory location.
Whenever a successful entry is made, the system responds with the new
system RAM boundaries.

Example:

6

ECUSoGUIT,AOOC AOQC is the reenter address.
DOOO D24í
(9UIT When GUIT is now typed iñt ROS now transfers to AOCJC.

ECUStPROCESpiOOO The user has a process control program starting at
DOOO D247 location IOOOH.

PROCE3S The process control program is entered at 1OOO.

List Custom Name Table

LCUS, [driver·-name]

The LCUS command will list the names in the custom command table.Each name is followed by the transfer address associated with the name.
For examples of LCUS see the section on DCUS.

Y

Delete Custom Name

DCUS, custom-name

The DCUS command deletes one custom name from the custom table each
time it is used. The system RAM boundaries are given each successful
deletion.

Example:

LCUS

WIT AOOC PROC 1000
DCUS,PROCES

.
DOOO D241
LCUS

QUIT AOOC
ECUS,AP,15OC)

DOOO D247
ECUS,HATHX,2OOQ

DOOO D24D
DCUSkSUM
ERROR SUM was not in the table.

Rename SYstem Command

RENA, system-command, custom-name

A duplicate custom name for a system command is obtained by using
the RENA command. The RENA command is particularly useful when used
to shorten the name of a frequently evoked routine.

Example:

RENAPLDUMP,D Two names now exist for DUMP
IXJOO D253
DtirS2 D now produces a dump.

oooi: 30 55

RENAPf.DUMP,# Special characters are excepted.
DOOO D259 There are now three command that will dump
«j3KS2 memory - DUMPi D, and #.

OOQ3: 45 98 ·

37

Section 6

ASSEMBLER COMMANDS

Assembler system commands enable the user to allocate memory for
the symbol table and to coñtrcil assembly options. An assembly with
options allows the user to define the location of his source code and
the destination of his object code.

Three assembly options ASMB, ASMO, and ASMU have the same format.
The format is: Command, Parameter l, Parameter 2, Parameter 3. While
Parameter l is the origin address of the assembly, Parameter 2 is the
actual memory location for the assembled code, and Parameter 3 is an
assembly ooticm indicated by a digit l to 4.

The options available under Parameter 3 are indicated by the follow-
ing numbers. Option l gives a complete assembled listing. Option 2

will list errors only. Option 3 will print a symbol table after the

listing. Option 4 provides a cross reference table in addition to
assembly listing. The commands FORM and NFOR are used in conjunction
with the formatting of an assembled listing.

Print S'.'mhol Tatñe Allocation-—=——

PSTA

The PSTA command lists the beginning and end of the symbol table.
At the beginning of a program the symbol table is initializeá to start
at the end of the system RAM. The upper boundary is at address DFFF.
Examples of PS'I'A are given under the STAB command.

Define Symbol Table Location
STAB

The STAB command can reallocate the symbol table in any memory area
not occupied by a file. The first parameter following the command is
the new beginning address of the symbol table. If the first parameter
is omitted, the beginning address will default to the next memory loca-
tion after the system RAM. The second parameter must always be given
and is either the amount of memory allocated or the upper address.

Example:

JR3

PRAM Print system ram boundaries.
!)OO0 D1EB
PS) A Print symbol table boundries.
L)1EC DFFF
STAB. O, 4FFF
MEMORY ALREADY ALLOCATED
S7AB, O, SlOOO
OOOO OFFF This area available for symbol table.STABc t DFFF Default of f irst parameter is end
DIEC DFFF end of system ram.

Assemble

ASMB, assembly-origin-addr, addr-assembly-code , assembly-option

The ASMB command assembles without user interaction with respect
to the source or object allocation. However, the user does have the
option of choosing four types of assembly listing. These options are
described in the beginning of this section.

Example :

ASMBt lOOO, 4C)OO, I Complete assembler listing.
CRHMEMCO Z-80 ASSEMBLER V. 2. O

iooo 78 . C)Q1O L-D A, B

lOOl Ell C)O20 ADD C

ioo? C3 05 10 ÓO3C) LAB I: JP LAB3

ioo5 CD 02 10 OC)4Q LAB3: CALL LAB1

IOOE3 21 Ob OC) OOSO L-D HL, S

IOOB 21 Ob OO OObO LD HL, 6H

t\SMH,)000, 4000, 2 List eTrors enly
cRñMEMccj Z-80 ASSEMBLER V. 2. O

{

É\SNF1, i OOO, 4000, 3 Assembler listing and s'jmboi table
(: f{[lK1F.rÍco Z-ElC) ASSEMBLER V. 2. C)

39

iooo 78 c)Qio LD A, B

IC)C)I í31 O(J2Q ADD C ·

1002 C3 05 10 QO3C) LAB I: JP LAB3
10()5 CD 02 10 0040 LAB3: CALL LABÍ
IOOB 21 06 OO OOSC) L-D Hi-t b

1OOB 21 06 OO 0060 L-D HL, 6H

SYNBLII TABLE

t- AIli 1002 LAB3 1005

c'\SMB, 1OO(jt 4C)OO, 4 Assembler listing and crossreference
CRIRIEMCO Z-80 ASSEMBLER V. 2. O

JODO 7(3 C)O1O LD Ai 13

iOOí Ell 0O2C) ADD C

!O(J2 C3 OS 10 QO3C) LAB i : JP LAB3
lC)O5 CD 02 10 OC)4C) LAB2: CAL-L LABI
IOOB Ell Ob OO 0050 LD HL, 6

IOOB 21 C)6 OO OObO LD HL, 6H

CROSS REFERENCE

L AIU 1002 OC)4O
L AB2 1005 OC)3O

Assemble with Options
ASMO, assembly-origin-addr, addr-assembly-code , assembly-option

The ASMO command allows the user to specify devices (drivers) for
the assembly listing, the assembly source code, and the output driver.
The user also specifies the form of the output to a device. The chart
on the next page indicates the choices available to the user. The
defaults for several options are given below.

i

Option Default

LIST= SYS000

read= sYs0gg
PUNCE1= The driver specified

by LIST.

)

.AsMo,l0g%,400Q,l

LIST = driver for.assembly listingI

RTYPE

(specify assembly source)

(source code is from an =:
input device)

· =M (source code from memory)

READ = driver for input
device

PTYPE

(disposition of assembler output)

=N =PI =

(ignore) (output to memory) {output is Intel
hexadecimal checksum =B (output istape)

Cromemco binary
checksum tape) -e,

PUNCH "- punch driver c'

41

An attempt to edter an undefined driver will result in the question
being repeated. When an output tape is requested by PTYPE, the assembly

listing is first listed on the LIST device followed by the punching of
the tape.

Example:

ASMC),40OO,1OOO,1

LI5T=TTH TTH has not been defined as a driveT
LISF=1TY TTY will be the driver for the listing
RTYPE=I Source will be read from I/O
READ =DISKI DISKI will he the source driver
2TYPE=N

.
Object code will not be generatU

Asm,iooo,4ooo,Í
L-.ZST ·"TTY
RTYPE=M Source code is in memory
PTYPE=H Produce Intel hex tape
PUNCH='TTY Punch output tape using driver TTY

Assemble 'jnnumbered I/O File

AS-4U, assembly-orioin-addr, addr-assemblj'-code, assembly-option

The ASNU command is identical to the ASMO command except that itwill list unnumbered I/O Elles. Only T/O files may be unnumbered. When

an unnumbered file is listed, numbers are placed at the beginning of
each line. Numbered files are listed without modification by ASMU.

/12

*

%

Section 7

MISCELLANEOUS COMMANDS

Execute at Given Address

EXEC, address

The EXEC command transfers CPU control to the given address by
executing an tinconditional CALL instruction. A simple return to ROS,

the resident operating system, may be made Lf the user at the end of
ÍÜS3 subroutine insures l) that the address popped onto the stack by
the CALL is pointed to by the stack pointer, and 2) that the last
instruction executed in the subroutine is a return, RET. Performance
of the above steps allows execution of the next instruction in the
main program.

Burn PROM

PROM, starting-address, jÉ"¿: ::ÉF"""| destination address

A 2708 is burned by the PROM command using the Cromemco Bytesaver
card. The starting address does not have to begin on a IK boundary.
The resident operating system, ROS, will burn FFl6 into unused areas.
The unused areas are defined to be areas outside of the addressed areas
but contained within a IK block. The FFl6 and the new data are written
to the selected PROM 360 times to insure good programming.

To program a PROM, type the command PROM but do not depress the
carriage return. Next, turn the program power switch on the Bytesaver
to ON and then type carriage return. The front panel lights will
count down. When the light pattern becomes stable, your PROM is pro-
grammed. ROS now verifies that the PRO.4 was correctly programned.
Incorrect programming is indicated by displaying the nonverifying
addresses and their content in the same format as the VMEM command.
Remember to turn the program power switch of the Bytesaver to OFF

upon completion of the PROM command.

Example:

t

PROH.IOOO,S4O,6O40 Burn 2708 prom

DLNP.6O3O,S6O

'u

~

6CK3O: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

6040: 30 30 30 30 30 30 30 30 53 OD OD 3C) 30 31 30 20
hO5O: 4C 44 20 41 2C 42 OD LEI 30 30 32 30 20 53 54 41

bObO: 52 54 3A 4C 44 20 48 4C 2C 53 54 41 52 54 OD ZD

6070: 30 30 33 30 2Q 4A SO 20 53 54 41 52 54 3B 4A 55

6OBO: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This listing shows that after the PROM command has been executed
the PROM memory IC does contain information from address 60)40 to

address 6U7F (since in the PROM command it was specified to
program a swath just Kc) bytes wide). The rest of the PROM has

not been programmed at all and thus reads "FF" in each address

location, which is the unprogrammed state.

.

44

CHAPTER 3: CONVENTIONS AND PSEUDO-OPS

Formats

The most encompassing assembler format is shown below:

Formal Label: Operation Operands ; Comment
Actual COMP25: LD HL,VALUEI ; Initialize FIL

The label must be followed by a colon. The colon may be followed
immediately by the operation or one or more blanks. Labels need not
start in column one.

The maximum accepted length of a label is six alphanumeric charac-
ters. All labels must start with an almhabetic character. All labels
in the label field must be followed by a colon. A label cannot be a

register name.

Correct Labels

Tl2345
Al
Tl23456 Last character is ignored

Incorrect Labels

A E SI? HL
B F AF IX
C H BC IY
D L DE R

I
4A5B Starts with a numeric character

An op-code may be preceded by a label. A space is not required be-
tween the label and the op-code. The op-code must be followed by at
least one space. The operands must be separated by commas. The length
is governed by the type of reference. A reference to a register pair
is typicalW two characters. A label as an operand is up to six almha-
numeric characters, and anumeric literal may not exceed FFFF hexadecimal.
The op-code of an unlabeled code line may start in column l.

Example:

LAKLI: LD HL,14263: 14623 IS BASE TEN AND LESS THAN OFFFFH

'l5

LE) HL.,14263: OPCODE (OPERATION) STARTS IN COLUMN 1

; NUMBER IS BASE TEN-DECIMAL

All comments must start with a semi-colon. Comments need not be

separated from the final operand by a space, although one or more spaces
are permitted.

Example:

PR14:DUT DATA,A: QUTPUT CONTENTS OF ACCUMULATOR

PR14: OUT DATA,A :SAME EFFECT AS LINE ABOVE

Data Representation

Any number is used in assembler code defaults to decimal in the
absence of a stated base. A number followed by an H is declared hexa-
decimal.

Example:

LD A,OFFH :LQAD MAXIMUM PERMITTED VALUE - OFFH
; INTO THE ACCUMULATOR

L-D A,255 :MAXIMUM PERMITTED VALUE IN DECIMAL
L-D HL,C)FFFFH :MAXIMUM PERMITTED VALUE FOR A

:REGISTER PAIR

If a two byte operand exceeds 65,535, then a value of modulus 65,536
is returned without an error flag. Arithmetic expressions are allowed
as operands. Computations are performed on both numbers and labels.
The operations of addition, subtraction, multiplication, and division
are allowed. The expression is evaluated from left to right, The
expression 2 + 6 * 2 will evaluate to 16.

Example:

L-D B,É!+6*2 load b with lb
LI) LLLQCI-LOC? If LOCI is twenty íocatiQñs higher

than LQC2 then A is loaded
with 2CL

46

A "$" references the address of the next instruction

LD HLt$ Load HL with address of SETBC

SE1BC: LO BC,$+15 Load BC with address of CQMP+15

Assembler Listing Controls

TITLE

Label Code Operand

optional: TITLE ASCII string
An operand of up to 80 characters will appear as a header on all

successive pages until the occurrence of another TITLE command. The
ASCII string is not enclosed in quotes. The label field in this command

has no effect. TITLE causes an immediate EJECT.

Example:

EJECT

Label Code Operand

optional: EJECT none

The EJECT command, which advances the paper to the top of the next
page, is used for clarity in an assembly listing. A routine can be
identified more clearly if preceded by an EJECT.

Data Structure
DEFS - Define Storage

Label Code ODerancís

optional: DEE'S expression
optional: DS expression

The define storage command reserves one or more bytes of storage.
The numeric value of the operand determines the number of bytes reserved.
Evaluation of the arithmetic expression is from right to left.

Example:

BUÍCKÁ: DEFS 20 :RESERVES 2C) BYTES
BLUCKI): OS 2OH :RESERVES 3É! BYTES

*

47

DEFS LAB1+2*4 iIF LABI IS EGUAL TO 20 THEN
:E)8 BYTES ARE RESERVED

DEFS LAB4-LAB3 :COMPUTE DIFFERENCE OF LAB4 AND LAB3

Define Storage (BYTE) DEFB

Label Code Operands

optional: DEFB expression
optional: DB expression

The define byte allows either a numeric expression or an ASCII

string to be generated. The numeric expression must be in the range
plus or minus 256. However, an ASCII string enclosed in quotes is
valid.

Example:

DB 'ABCDEF' ASCII string occupies á bytes
DB 'A'+3 The value 44H is generated
DEFB 'ABC"+3 IllegaL arithmetic result too large
DB 'ABC', 'x"+3 Several fields are allowed

Define Storage (WORD) DEFW

Label Code Operands

optional: DEFW expression
optional: DW expression

The define word allows a numeric expression or an ASCII string
to be defined. A numeric expression which exceeds 65,535 will be
evaluated modulus 65,536; overflow will be ignored. The ASCII string,
enclosed in quotes, is limited to one word (two characters). The entire
line may be filled with operands.

Example:

DW LABI,LAB2 Labels OK
DW $ Current value of the location counter

To clarify the action of the dollar sign, consider the code below:

DRG O

DB s$i The value of the location counter
is zero

P

48

DB 7,$ The second byte has a value of 2

Dbl 'AA' Evaluates to 4141H
DW 'A' Evaluates to ÓO41H

Dbl g, 'BD'cLAB4 More than one expression permitted
DW 'PDQ' Illegal, too long

Assembly Directives

ORG - Origin

Label Code Operand

optional: ORG arithmetic ex-
pression

The ORG instruction sets the assembler location counter. The
counter may be set to a value more than once during assembly.

Example:

ORG IOOH
:LOCATION COUNTER IS SET AT 1OC)H

ADD A :THIS INSTRUCTION ASSEMBLED AT 1C)OH

.
ORG 2OOH :THE LOCATION COUNTER IS NOW 2QOH

EQU - Equate

Label Code OperancÍ

label: EQU expression

The label field is equated to the operand. An EQU instruction must
have a label. The operand, if a label, should be a previously deTined
label. Any arithmetic expression is allowed. The EQU is global; once
a label is defined, it is defined for the entire program

Example:

LAB?: ENU LABI :CQRRECT IF LAB1 PREVIOUSLY DEFINED
' LABLE: EGU 12M317+4 :ARITHMETIC EXPRESEION ALLOWED

. r""\i.l. .,.,í

, · ' w :
z : .- ' t .:. i . .

:F'4.,=::-.',.','!'!i. ' '.

"I'i ~. 'i , "'· · "Y.· +jj r"j " \ ;—v'w ^ " t 7 l' i
L.YE.4 ¿..i'.. k.w·m.) LAEn i ,7 ?S-." Ir :i » ..L.-a." " ' " ' ' ·.-..p-·''-.,:L. "

.

;';;s;.; ': ,.2. :>::al : 'ii.: jq D r1: .:)ri """
. .

' '" ': ·
:""'í :"' : .:¿..)RU!?n ,íti!, ".; i-

.:':., L) : ,.',.' '.'g r't'""i S u. e a "Z:S t.?Í[l.i": }
l ",'

m A zsecon¿'.i. w a ',·" to it.)nd a
-«-. .A-

'" i }'" 1·, 7 "g" ': :" ' f "":, ?GÍÍ'"'fÍj "u "s Ggk? "" "·'' '" ':'": " e" h ,:: f"'í \ ': '"i t"")f :"í rer: 'r:, G""'"? f " "} S-: " :3 + Cj Y} I":t t"\, f' f ; } ¿;.i
- .· - .:. . " . ." .m ,..· :'\" .¿,t: up, ? ,,~G.-· 44 m·'. ' ' ; '. ' (·W,· .Ia ·.- ' }'. 'b—r'-L- 4~ Y N :K_ ..l. I: .~,

1 .J..G-. f '^ ii 4~l .Y'.a. 1~q'^. -h-.y..j. . e..e..L
f....i'? r::"."i ::...'iü.ú'i: <í.í¿..;Z!;c?:mEj".:.","., .';jj.. Uzi !,"tÍ '^' .v t-c' end a Dr(y77"'"a.ia cjccul"s Fa' i-.,t!'+ "¡;,-""C) f i lcs..+ & ·. -·'" Y
'¿"j1"¡: " i'"! '-:' "": T ,'"7'°) :;j i: " i ve r i. :2' '.' i r s t cal led, the carry'

t! L" 'G[.i. s s e t . The sett:i.nc
.~. ., ,../

ui" t?. { :-'1' t'}." ü.ái: .i.í1cíi(!¿: "ít-':'"; a iew.in': í cjf a file such. as a disk .f'ile. When
, % ". ' 1 ? " C'" ...~X U bL-fj: : L:r'!'."¿sr re: Fí'tne3 t-ñ: z ¿'.'ru: f ()t the t:i.l-e bei-ng processed, j-t returns a
C{"i.!'2 $"4""] :iv_":t. "Ue.' Z lila": :" (tero !"l.a{: l:)

. t9nen both che carri,' flag and the
.

zc ?"I"} .'"'.'! ¿g " i a re s e t ,
as;!4em}v'l'y' ¡'jj I I- be terniiríated ..«.

5()

CHAPTER E: USEFUL SYSTEM SUBROUTINES

Selected system subroutines can aid the user in his Droqramminq.
a list of useful system subroutines with short descriptions are given
below. Before using any of the routines, index register IX must be
loaded with the address of BASE. This address is found under Linkage
to Common Routines.

RESTRT

This routine will restart ROS. ROS will be initialized providing
that it was not initialized previously. The command mode is entered.
This routine does not RETURN.

REENTR

The system is reentered without restarting. This routine is used
when the user routines are ended. Itdoes not return to the caller.

CALINT

The resident operating system is initialized and a return is made

to the caller.

ACCES

This routine allows program access to all system commands. The
FIL register points to an input table. Each entry in the table is a
command string followed by a carriage return. A byte of zero ends the
table. If there is an error, this routine will not return to the caller.

The example below demonstrates a user routine containing two system
commands, IODR and EXEC.

Example:

C"RUMEMCO Z-80 ASSEMBLER V.2.O

?OOO 21 07 2C) oc)oí START: LD HL,TA!3LE

sn

2003 CD 12 AO 0002 CALL ACCES '

2006 C9 C)C)O3 RET

2007 OOQ4 ;

2007 49 4F 44 52 QOO5 TABLE: DB "IODR,DISKI,FCQO', 13

2C 44 4'? 53
4B 49? 2C 46
43 30 30 OD

2017 45 58 45 43 OOOb DB 'EXEC,AOOO',13
2C 41 30 3C)

30 OD

?c)?i OO C)OO7 DB O

2022 0008 i
AO12 OOOS' ACCES: EGU OAO12H

SYSOUT

This routine is the system output routine. To output a character
to the current system output device, load the B register with the
character to be sent. Only the AF registers will be altered. This
routine will not return if an ESCAPE is read from the input device.

SYSIN

This routine will get a character from the current system input
device. The character will Fe returned in the A and B registers. Only
the A, F, and B registers are altered. This routine does not return ifan ESCAPE is read from the input device.

'UFIEX
,

The contents of the HI, register are printed in hex on the system
output device. Only AF and BC are altered.

PIHEX

The contents of the A register are printed in hex on the system
output device. Only the AF and BC registers are altered.

e

P2HEXS

This routine calls P2HEX and then prints a space.

52
4

PIHEXS

This routine calls PIHEX and then prints a space.

PRTNUM

This routine will output characters to the system outrjut device.
The HL registers are to be loaded with the address of the characters
to be printed and the D register loaded with the number of characters
to be printed. Only the AF, B, and D registers are altered.

READLN

This routine will read one line from the system input device usincs
all editing features of ROS. The FIL register will return pointing to
the new line and BC registers will contain the length.

GNA.ME

This routine gets a six character name from the input line. This
routine is used with custom commands to retrieve a name parameter from
the inp'ít line. On input IY must point to the current position in the
command line. This register has already been loaded when the custom
command was executed. On output the Z flag will be set if there is a

default, DE will point to the six character name padded with blanks,
and IY will point to the new position in the line.

SIOTAB

This routine will search the I/O table. The name to be searched
for is to be loaded into the DE registers before execution OF SIOTAB.
On return from the routine the Z flag will be set if found and the III,
reqisters will point to the I/O parameters for the name found.

GTHEXM

This routine is u"ed with the custcñn comniands to retrieve a UEX
VALUE parameter from the input line. Before calling the routine, TY

must point "to the current position in the line. This register has
already been loaded when the custom command was executed. On return
the Z flag is set if default has occurred. The FIL register contains
the HEX VALUE. This routine cíioes not return on error.

GTDECM

This routine is the same as GTHEXM except the parameter in the
custom command is decimal.

53

ERROR

This routine prints the word ERROR on system output and then enters
the command mode. This routine does not return.

MSGOUT

This routine is used to output a message to the system outrmt device.
The FIL registers are to contain a pointer to the message. Characters are
Drinted until a carriage return is found. Only the AF, B, FIL registers
are altered.

PRNTTB

The table pcÁnted to by the HL registers is to be printed on the
system output device. The user may want to refer to the section on Table
Format.

COMPAR

The HL registers are to be loaded with a pointer to the first argu-
ment. The DE registers must point to the second argument. The length
of the compare is placed in the B register. When the routine returns,
the Z flag will be set if the two arguments were equal. If the first
argument was greater than the second argument, the carry flag will be
set.

SEARCH

This routine searches the table pointed to by the HL registers. The
DE registers point to the name to be found in the table. On return, ifthe name is found, the Z flag is set and HL points past the name to its
r)arameters. Otherwise, the Z flag is not set and the HL registers point
past the last entry in the table.

LOOK

This routine has the same function as SEARCH exceot that if the name

being sought is found, then HL points to the entry in the table.

FILL

Execution of FILL fills each byte in a specified area of memory with
the value in the A register. The number of bytes to be filled is given
by the value in the BC registers and the starting address is contained
in the DE registers.

54

CLEAR

This routine will clear a specified area of memory by loading
spaces into each byte. The number of bytes to be cleared is given by
the BC registers. The starting address is contained in the DE register
pair.

MBLNK

This routine will move the data starting at a ioCation pointed to
by the HL registers to the area minted to by the DE registers for a

length specified by BC or until a delimiter is encountered. The Z flag
will be set if a delimiter stops the move. System routine CDIL4 lists
the delimiters.

SBLNK

This routine increments the FIL registers until they do not point
to a space.

SCHAR

This routine increments the HL registers until a delimiter is en- .

countered. The delimiters are:
; Y : + " / *)

plus space and carriage return.

CMBLNK

This routine calls CLEAR and MBLNK.

CNUM

This routine checks the A register for a numeric character. The
carry is set if not numeric.

GETHEX

A hexadecimal number is fetched from memory and entered into regis-
ters DE. The first byte of the number is pointed to by registers BC

and the byte following the number is pointed to by registers HL. If
an error occurs, e.g. a number that is not a valid hexadecimal number
is encountered, the carry flag is set.

55

GDECM

A decimal number is fetched from memory and entered into registers
DE. The first byte of the number is pointed to by registers BC and

the byte following the number is pointed to }jy registers HL. If an
error occurs, e.g. a number that is not a valid decimal number is en-
countered, the carry flag is set.

LEADER

Seventy nulls are written to the system output device after a five
second wait.

EINTEL

In this routine an end of file is written for an INTEL format tarje.
Carry prime, in the auxiliary flag register - F', must be set for hex
taoe. If carry prime is not set, then a binary end of file will be
generated.

CHKCUR

This routine checks to see if a current input file is present. If
no input file is present, the message: "NO CURRENT FILE" will be typed,
and control will be returned to ROS. Otherwise, the routine will re-
turn to the user.

WINTEL

In this routine an Intel format taoe is written. On entry, regis-
ter D contains the record length, HL contains the address, IY points to
stored data, and carry rmime is set if hex data is used and reset, 0,

if binary data is used."

PRTONE

In this routine one line of data is printed using assembler tabs.
On entry HL points to the line. If the carry bit is set, the text with-
out a line number is printed. When the carry bit is reset, 0 line
numbers are printed with the text.

GTSTNG

In this routine a string of characters is obtained by callingCMBLNK. Refer to CLEAR and MBLNK for additional parameter information.
FIL is then incremented until pointing at a comma or carriage return.
Also, the routine puts the contents of HL in IY.

56

INTTAB

This routine initializes the routine GTENT. When entered, HL must
point to the table.

GTENT

In this routine an entry is obtained from a table whose position
is pointed to by HL. HL returns pointing to the next entry in the table.
The Z flag is set at the end of the table.

FUPACK

In this routine the four packed decimal digits in the DE registers
are unpacked into the area pointed t2 by the HL registers.

AFPACK

The four decimal digits in the DE register are added to the four
decimal digits in the HL registers. The result is left in HL and the
carry is set if the result is greater than 9999.

FPACK

The four decimal digits pointed to by the HL registers are packed
into the DE registers.

CDILM

This routine checks a specific byte to see if it is a delimiter.
The delimiters are:

; ,
: + — / *)

plus space and carriage return. HL is loaded with the pointer to the
character to be tested. The Z flag will be set if the character is a

delimiter.

ADDAHL

The A register is added to the HL registers. The result is leftin the HL reqisters, and the carry flag will be set if overflow occurred.

SPACnn

This set of routines will print nn spaces to the system outrmt
device. Only the AF and B registers are changed.

57

CHAPTER 5: WRITING I/O ROUTINES
H L

The IODR command may be used to change I/O drivers, The input
driver address and output driver address are the first and second
parameter3 following the driver name (see List I/O Drivers). By

changing the parameter addresses the user may reference his own
I/O drivers.

System Input Drivers
—

A standard input driver routine first checks to see if a char—

acter is ready to read. If a character is not available, the A

register is zeroed, the carry flag cleared, and the routine returns.
If there is a character available, it will be read into the A register
and the carry flag will be set. All registers except AF must be
preserved. a return is now made to the system. The example brlow
shows a system input driver.

.

AF3B OOOl ;

AF"3B OQO2 isTANDARD INPUT DRIVER
AF3E3 OC)O3 íoUTpUT - CARRY SET IF CHARACTER

AF38 OC)O4 i A CONTAINS CHARACTER
C\F38 OQC)5 j
AF3E3 DB (JO C)GQ'6 INPUT: IN A¥() igET STATUS
AF3A EÓ ao C)QO7 AND 4QH :CHECK FOR CHARACTER
AF3C C8 QGO8 RET Z :Nfj CHARACTER
AF3Ü DB 01 OCO9 IN A,! :INPUT CHARACTER
AF3F 37 C)O1O SCF :SAY GOT CHARACTER
AFáO C9 OOil RET

Assembler Input Drivers

An assembly input driver differs from a system input driver in
handling flags and in accepting input from an external device as de-
scribed below. If on entry to the input driver the carry flag is
found to be set, a rewind of the input file is to be executed. For
example, if the input file is paper tape, the tape will be started
over again. The input routine does not return until a character is
received. The character is read into the A register, then the Z flag
is cleared, and the routine returns. When an end of file is sensed,
the Z flag is set before a return. All registers must be preserved.

58

In the input example below a carry flag is not used. When using
the teletype, the operator knows where to start loading the tape; re-
winding is not possible on a teletype, so a flag is superfluous.
However, a set carry flag could have been used to display a message.
On the other hand, if the file were a disk file, the carry flag could
be used to rewind the file. In the example a conti:ol Z, IA hexadecimal,
is used to indicate the end of the file. If the END pseudo-op code is
used in the source code, a control Z is not necessary.

Example:

Z-80 ASSEMBLER V.2.C)

lOOO OOO1 i

iooo ' 0002 :TELETYPE INPUT DRIVER FOR ASSÉMBLER

IOOO 0003 iINpUT - CARRY SET TO REWIND FILE
1OOO 0004 :QUTPUT - A CONTAINS CHARACTER

1OO<) OCIOS i Z FLAG SET IF END OF FILE
1(jKx) QQO6 i
IOOO DB OO 0007 INTTY: IN A,O :GET STATUS

íoo2 E6 40 OOC)8 AND 4C)H :CHECK FOR CHARACTER

ioo4 28 FA 0009 JR ZQ INTTY iNoT READY

1006 DB oí OOIO IN A,i :GET CHARACTER '

.1008 FE IA (jOli CP IAH :CHECK FOR END OF FILE
ÍOOA C9 C)O12 RET

Output Drivers

The output driver expects the character to be written to be in
the B register. When the output driver returns, the A and B registers
should both contain the output character. All other registers rrtust be
preserved.

Example:

AF"41 OOO1 ;

AF41 0002 isTANDARD OUTPUT DRIVER
AF41 0003 :INPUT - B CONTAINS CHARACTER

AF41 OOQ4 ioUTpUT - A AND B CONTAIN CHARACTER
AF'41 C)OO5 i
AF41 DB OO QOO6 OUTPUT: IN A.O :GET STATUS

' AF43' E6 80 QC)Q7 AND 8OH :GET TBE

AF45 28 FA
,

C)OO8 JR Z,(JUTPUT :LOOP UNTIL READY
AF47 713' " 0009 LD A,B :GET CHARACTER

AF48 D3 oí QOIQ OUT Í,A ioUTpUT CHARACTER

AF4A C'? 0011 RET

59

APPENDIX A

Custom Commands with Parameters

Custom-name, [Parameter--l], [Parameter-2] . . . Input line
Before accessing the contents of the parameters listed above the

user first equates his custom-name to the entry point of a routine.
When the custom-name is executed, a call is made to the user routine,
and register IY will point to the first parameter in the input line.
The user may now call system subroutines (see Useful System Subroutines).
The system subroutines can perform tasks such a checking the existence
of the parametersor retrieving the contents of a parameter. Before
using any of the system subroutines, IX must point to BASE. The address
of BASE is obtained from Linkage to Common Routines (list is given in
Appendix G).

+

·
' <'7

60

APPENDIX B

Using Parameters in the Command Line

In the code shown below the user ultimately references a routine
EXAM which will receive parameters from the command line. EXAM uses
several system routines. The first routine attempts to find the loca-
tion of the parameters pointed to by the IY register. If the parameter
is not found, an error message routine is called. The third routine
retrieves the contents of the parameter. In the sequence of events
the user first loads, perhaps via paper tape, a routine PLOT into the
starting memory address i09M. Then the custom command PLOT is equated
to the location WÓYf.

ECUS, PLOT, UM
Eventually, the user executes the command PLOT

PLOT, X, Y

When PLOT is called, the IY register will point to the first para-
meter, X. The routine PLOT contains two calls to EXAM.

PLOT: CALL EXAM iiY POINTS TO COMMAND LINE
LD (SAVEX),HL :SAV'E VALUE FOR X

CALL EXAM
L-D (SAVEY),HL isAvE VALUE FOR Y

CALL DAZLER :PUT DOT ON DAZZLER

RET :RETURN TO ROS

The subroutine EXAM is given below. The circled numbers refer to
commentary about each instruction.

EXAM: CALL GNAME igET NAME PARAMETER I)
JR Z,ERROR :DID NOT FIND NAME E?)

CALL GTHEXM :GET HEX VALUE 3)

61

JR NZ,EXM3C)O ígQT HEX VALUE 4)
LO HL,O iDEFAULT VALUE S)

EXM3OO: LO (SAVE1),HLiSAVE VALUE 6)
RET 7)

I

SAVE1-: DS 2 isAvE AREA El)

GNAME: EQU OAO2DH :GET NAME ROUTINE 9)
ERROR: EGU OAO39H iERROR ROUTINE 10)
CTHE.XM: EQU OAO33H :GET HEX ROUTINE ii)

l) A call is made to the system routine GNAME. Before the
call the user equates 9) GNAME to the address found under
Linkage to Common Routines in appendix H. The GNAME sub-
routine, as described under Useful System Subroutines, will
attempt to find the address of the parameter pointed to by
IY. If the search is successful, DE will contain the address
of the parameter, and the IY pointer is advanced to the next
parametAr. An unsuccessful call is indicated by the Z flag.
2) When the Z flag is set, a jump is performed to the system
subroutine, ERROR. The ERROR subroutine prints or displays
the message "ERROR".

3) If a parameter is a hexadecimal value, the GTHEXM willplace this value in the HL register. Failure to return the
value is indicated by setting the Z flag.

4) jump to EXM300 if hexadecimal value is returned to HL.

5) A hex value was not returned to set HL to zero to signify
failure, to user.
6) The HL reqister is freed for other uses by transferring
the hexadecimal parameter to memory location SAVEI.

7) Return to caller.
9), 10), li) Establish address for all system routines used
by using the Linkage to Common Routines table.

62

APPENDIX C

User Loading Instructions

I/O

ROS has the unique feature of initializing the baud rate of your
I/O board. If you have a Cromemco TU-ART serial I/O board, ROS willinitialize your I/O for baud rates of 9600, 2400, WO, l5fl, or llj2f.
Other manufacturers have I/O boards which have software control of baud
rates, consult their user manual to find out if they have this capa-
bility. When ROS is initialized, hit the carriage return key several
times until the ROS message is printed. This allows ROS to determine
the correct baud rate. The I/O board which you use must conform to the
drivers which can be found in Chapter 4.

PROM

First load the eight PROMS into your Cromemco BYTESAVER, making
sure that you get the PROMS correctly placed. These PROMs have been
preprogrammed and contain the Resident Operating System, RO,". Address
your BYTESAVER at location 0A000H; this is done by using the DIP switch.
For technical details refer to the BYTESAVER instruction manual.

On your Cromemco ZPU card install a jumper wire connecting the
two pins marked "jump enable". Set the jump address switch to A. By
following the instructions in the next paragraph an automatic transfer
will be made to the ROS. The jump eÍiable section in your Cromemco ZPU

manual gives complete details on the automatic jump feature.

Insert the BYTESAVER and ZPU cards into the computer. Turn the
power on and depress the run switch. When either the power is applied
to the system or reset is depressed, control will be transferred to the
Cromemco ROS. Depress the carriage control several tiznes until the
message: "CROMEMCO ROS V.2.0." is displayed.

PAPER TAPE

Appendix I gives the full instructions for loading the Cromemco
ROS from a paper tape. The paper tape has been supplied in Cromemco's
binary checksummed tape format to insure high reliability.

63

APPENDIX D

Special Functions of Keys
.

ESCAPE When this key is dermessed during
either input or output, any I/O is
ceased and ROS enters the command

mode.

ALT -MODE This key has the identical function
as ESCAPE.

Control S This key only has an effect during
output. When depressed, the output
printing will be stopped. To resume
printing, depress any key.

RUBOUT This key deletes the previous charac-
ter when inputting. On a TTY a back
arrow will be printed. On some CRTS

an underline will be printed.

SHIFT O (back arrow) This key has the same function as
RUBOUT.

Control X This key will delete the line that
is being inputted. A carriage return
and a line feed will occur.

64

APPENDIX E

Error Messages

ERROR This is a general message for any
error condition not covered by more
specific error messages.

FILE ERROR This message is given by VFIL com-
mand to say that the file contains
an error.

Example:

3843
FILE ERROR

FILE FULL This message is given when the
current file cannot contain the new
line.

NO CURRENT FILE This message is given when an opera-
tion which automatically references
a current file is tried when no filehas been made current.

FILE TOO LARGE This message is given by the VFIL
command to indicate that the file
is larger than the space allocated
for it.

DUP. NAMES This message occurs when trying to
create a new file with a name al-
ready used by a previous file.

NO MORE ROOM This message is given when there is
no room left in the system RAM.

OK This message is received after the
paper tape is read correctly.

CS This is received when a checksum
error is detected from the paper
tape record.

65

m This message is received when a

memory error occurs while reading
checksummed tape.

SYMBOL TABLE FULL This message is given by the assembler
when no space remains for an entry in
the symbol table.

66

APPENDIX F

Table Format

Whenever a system subroutine uses a table, a particular format is
followed. It is important for the user to understand this format when
using a system subroutine. Some of these subroutines are PRNTTB, SEARCH,
LOOK, INTTAB, and GTENT. The first byte of! the table contains the length
of the compare argument. The second byte of the table contains the
length of an entire entry. The table is ended with a byte of zero.

Example:

TABLE: DB 7,8 l)
DB 'ENTRY 1',7 2)
DB 'ENTRY 2',8 3)

DB 0 4)

l) Each argument is seven bytes long, e.g. 'ENTRY l' is
seven bytes. Each entry is eight bytes. The seven adds one
byte.

2), 3) Two seven byte arguments and their corresponding
values seven and eight.

4) End of table.

67

*

APPENDIX G

System RAM

SYS7H1 RAM

Bf-FE 2443 ORG ODOC)OH

1)OOO 0040 2444 RAM: DEFS 64 :STACK AREA
DC)4C) 2445 STACK: EGU *
DO4O 2446 SYSRAl'í: EGU $:START OF SYSTEM RAM

!JC'4C) 0014 2447 TEMP: DEFS 2C) iTEMp AREA (LEAVE PRIOR TO RBUF
1)054 OC)C)5 244E! DEFS 5 iAREA FOR NUMBER OF LINE
DO5'? OC)53 2449 RBUFF: DEFS 83 :READ BUFFER

DOAC 245Q CURIO: EGU $:CURRENT I/O PARMS
DOAC OOC)2 2451 IDRIVE: DEFS 2 icURRENT INPUT DRIVER
DOAE 0002 2452 QDRIVE: DEFS 2 :CURRENT OUTPUT DRIVER
DOl9O OOOl 2453 NULLS: DEFS 1 :NUMBER OF NULLS
DOB1 oc)oí 2454 LINES: DEFS 1 :NUMBER OF LINES/PAGE
""c+m oc)oí 2455 TERMWD: DEFS 1 :TERMINAL HIDTH

JB3 OOO1 2456 TABI: DEFS 1 :TABS FOR ASSEMBLER
Í)OB4 OOO1 2457 TAB2: DEFS 1

DOB5 OOOl 2458 TAB3: DEFS 1

DOB6 OÓC)2 245'7 CURADR: DEFS 2 :CURRENT ADDRESS IN FILE
DOBE3 246(1 ;

DGlü3 OOC)2 2461 CURL-EN: DEFS 2 icURRENT LENGTH
f)(jÍ3Á 2462 ;

DQBA 2463 BASE: EGU $:BASE FOR IX
DOBA 2464 i

OOOO 2465 STATUS: EGU O :STATUS BYTE
DORA OOOl 2466 DEFS 1

DOBB 2467 i
(JOC)O 2468 BFORM: EGU C) iFoRM FLAG
OOOl 246'? CURFLE: EGU 1 :CURRENT FORM FLAG
OOC)2 247C) SYM: EQU 2 :SYMBOL TABLE FLAG

DOBB 2471 i

DOBB 2472 iUsER AREA
DOBB 2473 ;

DOBB OlOO 2474 USER: DEFS 256
DIBB 2475 i

DFFF 2476 ENDRAM: EQU ODFFFH iEND ÜF SYSTEM RAM
D1BB 2477 i

68

DÍBB 0002 24713 FLTBPT: DEFS 2 :PTR TO FILE TABLE
DIBD 0002 2479 IOTEÍPT: DEFS 2 :PTR TO I/D TABLE

DIBF 0002 2480 CUTBPT: DEFS 2 :PTR TO CUSTOMER TABLE

DiCk 0002 2481 SZTBPT: DEFS 2 :PTR TO ASSEMBLER SYMBOL TABLE

DlC3 0002 24El2 SZTEND: DEFS 2 :END OF ALLCJCATIDN, SYMBOL TABL

DlC5 0002 2483 TABEND: DEFS 2 :END (IF TABLES

Díc7 2484 ;

DIC7 0003 2485 FLTBST: DEFS 3 ; INITIAL FILE TABLE
DICA 0013 2486 IQTBST: DEFS 19 i INITIAL I/C) TABLE
DIDI) 0003 2487 CUTBST: DEFS 3 ; INITIAL CUSTOMER TABLE
DÍEO 0003 2488 SZTBST: DEFS 3 ; INITIAL ASSEMBLER SYMBOL TABLE
DLE3 2489 i

DÍE3 2490 ORG FLTBST+2 icURRENT FILE AREA
DIC'? OOOb 2491 CURUL: DEFS b ícURRENT FILE NAME
DICF 0002 2492 CFSADR: DEFS 2 :CURRENT FILE START ADDRESS

DIDI 0002 24'?3 CFLEND: DEFS 2 ícURRENT FILE END ADDRESS
D1IK3 0002 2494 CFLALL: DEFS 2 :CURRENT FILE ALLOCATIQN ADDRES

6g

APPENDIX H

Linkage to Common Routines

L)Nlt Ill SYETEM

PJ)F> 249L ;

PJP3 2497 ; LINKAGE TL) CWSTEM
PJ !)'> 24S?Á ;

mm 2'v?9 (jrg start
AC'(K) C)OÓ3 25OC) RE8TRT: IJEFS 3 ; RE"JART SYSTEM
r,(í(í: q OOCn 2501- t1·git: DEFS, g :INITIÁLIZE SYSTEM

M(jC DOCE) 25CQ REENTR: DEFS, 3 ; REENTER SYSTEM
A(í(9- 2503 i

ñ,D(if- 25C)4 :L.IN%.ÁCE TCl CCíFIMQN RIJU1"INES
Á\(j(3f- 250S ;

ACJ(Á· C)ÓO3 25c)í. CAL-INT DEFS 3 :C.ALL IK'IT ROUTINE

AU!? OC)03 25C)7 ACCES: DEFS 3 ; AC.CESq CCMMANDEFS

e\(ú gi C)OQ3 2508 SYSCIUT. DEFS 3 i SYSTEM OUTPUT ROUTINE

á(ü f'l OC)03 2509 SYSIW. DEFS 3 i M'STEM 7NPUT RciUTINE
f'Áíi¡4 C)C/O3 7510 PM-IEX- DER3 3 :?FUNT 2 HEX BYTES
f'.(íf{- OC)O.3 2511 PIHEX: DEFS 3 :PRINT i HEX BYTE
f1("i: 'j {-)go3 2.5z2 p2hex.í3: defs 3 :?rint 2 hex bytes ano space
A(ú'á cK)ci3 251.3 PZHEXS: DEFS 3 :PRINT 1 HEX BYTE AND SPACE
E',(í: '/ 0003 251A PATNUM: DEF" 3 :9'RINT CHARACTERS (# IN D)
c\(i7c', 00(13 2515 READLN DEFS 3 :READ 1 LINE OF INPUT
¢',(!¿'[1 ÜO03 2516 g"NAt·1E: DEF.S 3 igET A NAME PARM

MUD C)C)O 3 ?517 STOTAB: DEF'S 3 ,L-ÜOP'. UP IN I/'O TABLE
í',(<t3 Üoí): ? 2519 GTHEXÍ!' DEFS 3 i GET HEX PARM
f',(-jj¿'1 íjóc)3 E!5íw GTIJE'ft1. DÉFÍ3 3 :GET A DECIMAL PARP1

t\O3"? C)O()3 2.520 ERROR: DE FE 3 :ERRC?R ROUTINE
t',CktC C)(jñ3 2521 MSG'CIUT- DE9S 3 ; OUTPUT PIEESAG'E.

É',u;sP OC"lCf: 3 23?22 PRNTTE!: DEFS 3 :PR[NT TAZU_E

/',(-j-n: ' OCEY3 ?-'523 cct·1pAR' DEFS 13 ; CCJPIPARE

/'·(1/} 'Z oc$o""i 252'1 qpL,F?rH Fí7f"S 3 . CEÁRCH TAI'L E
í1(Míz O(JCC3 2525 L.(XJl'.. DE'FS :3 ; LCT)K THRU TABLE
í:(j¢·?!g ¿:)CbC)73 2IQ5 FILL.' DEFS 3 .; FILL AREA WITH VALUE
f',(1ÁÉ- C)C)'1) ; 252"7 CL-EAR DEFS 3 iFILL AREA WITH EPACEE

fí(tj íjC'C).3 25?2 i"tE1!--Nk', DEP"S 3 ; WCj'y'É UNTIL DELIMETER
c1r){}í1 f"C)Cü ?529 'm- Ni'.- PES"'3 2 ; W',ÍP ELA>#U4
í',(">"/ ÜOÜ3 752("t "Y"H,áR ' DU'S 3 ; "Y,ÍP Ll1f'M—t . =RS UNT IL t€l jí·íp
£'yi"!!>/', ooñ3 á'5?3! cp1í3L m- DEF)3 3 , CLEAR AND p1ÉLÑf'z

/',\""Át {3O[jI3 ?fí77 Ci'¿\l{·1 DEF'3 "3
, CHÉTK NUMP"RZC

r\CHA1 {j)oo3 2533 c.etheí. !YEF±r "3 : í,2fjT HEX 'jÁt_\jÉ

. .

70

>·

AOb3 C)OO3 2534 GDECM: DEFS 3 :GET DECIMAL VALUE
AO66 QOO3 2535 LEADER: DEFS 3 ilARITE LEADER
AO6'? 0003 2536 EINTEL: DEFS 3 iEND OF FILE INTEL TAPE
AObC 0003 2537 CHKCUR: DEFS 3 :CHECK CURRENT FILE
AO6F 0003 2538 HINTEL: DEFS 3 :HRITE INTEL FORMAT
AO72 QOC)3 253'? PRTONE: DEFS 3 :PRINT ONE LINE USING TABS
AC)75 O(JO3 2540 GTSTNG: DEFS 3 :GET A STRING
AO78 0003 2541 INTTAB: DEFS 3 i INITIALIZE GTENT
AO7B OQO3 2542 GTENT: LIEFS 3 igET AN ENTRY FROM TABLE
AO7E OOC)3 2543 FUPACK: DEFS 3 :UNPACK 4 BCD DIGITS
Ao8i OC)O3 2544 AFPACK: DEFS 3 iADD 4 BCD DIGITS
AO84 0003 2545 FPACK: DEFS 3 :PACK 4 BCD DIGITS
AO87 0003 2546 CDILI¶: DEFS 3 icHEcK FOR DELIHETER
AOBA 0003 2547 ADDAHL: DEFS 3 :ADD A TO HL
AO8D 2548 ;

AO8D OOQ3 2549 SPAC18: DEFS 3 :QUTPUT 113 SPACES

AO9O 0003 2550 SPAClb: DEFS 3 iQUTpUT j¿ SPACES

AO93 0003 2551 SPAC12: DEFS 3 :OUTPUT 12 SPACES

A(Y?6 OQO3 2552 SPACE6: DEFS 3 :QUTPUT ¿j SPACES

AO9'? 0003 2553 SPACE4: DEFS 3 :OUTPUT 4 SPACES

AO'7C 0003 2554 SPACE3: DEFS 3 :QUTPUT 3 SPACES

AOSF 0003 2555 SPACE2: DEFS 3 iClUTPUT 3 SPACES

AOA2 2556 SPACE: EáU $:QUTPUT A SPACE

j

71

APPENDIX I
Paper Tape Loading Instructions

CXUMEMCO Z-80 ASSEMBLER V.2.O

OOOO OQQI i
OOGK) OQO2 :TO LOAD YOUR PAPER TAPE COPY OF
OOOO C)OO3 :CROMEMCQ ROS, FOLLOW THESE STEPS:
OOOO 0004 ;

OGKX) OOC)5 ii) BE SURE YOU HAVE 8K OF RAM AT LOCATION OAOOOH
OOOO OOC)6 :2) BE SURE YOU HAVE RAM AT LOCATION O

OOOO (JQO7 i3) KEY IN THIS LOADER AT LOCATION Q

OOOO OOOB i4) MOUNT THE PAPER TAPE IN THE READER
OOOO OOC)9 :5) SET THE ADDRESS.SWITCHES TO O

OOQO OO1Q :6) PRESS STOP
OOOC) (lOll :7) PRESS EXAMINE
DOOO ooi2 i8) PRESS RUN
OOOO ooí3 :9) START THE PAPER TAPE READER ·

~K)O ooí4 ;

DO ooí5 :WHEN THE PAPER TAPE HAS FINISHED READING,
OOOO 0016 :CROMEMCO ROS WILL BE STARTED. DEPRSS
OOOO ooí7 iCARRIAGE RETURN UNTIL THE MESSAGE
OOOO OC)18 :'CROMEMCO RDS V.2.O' IS TYPED.
OOOO 0019 i
OOOO QO2O' :IF DURING READING THE PAPER TAPE, A CHECKSUM

0021 iERRQR OCCURS. A 'C' HILL BE TYPED.
(XX)O 0022 :START AGAIN AT STEP 4. IF THERE IS BAD MEMORY
OOOO 0023 :A 'M' HKLL BE TYPED: CHECK YOUR MEMORY!!
(KKK) 0024 :REPLACE ANY BAD PEMORY AND START AGAIN AT STEP 1.
OOOO 0025 i
OOOO 0026 iIF YOU ARE USING ~THER MANUFACTUREERS líO BOARD
OOOO 0027 iWHICH NEEDS INITIALIZINC. CHANGE THE INSTRUCTIONS
OOOO OO2B :AT THE I-ABLE INIT.
OOOO 0029 i
OOOO 0030 ORG O

OOOl 0031 TTY: EGU 1 :TELETYPE DATA PORT
OOOO 0032 TTS: EGU O :TELETYPE STATUS PORT

0040 0033 DTR: EQU 4OH :TELETYPE READY BIT
ODOO 0034 ;

OOOO 0035 ; INITIALIZE TELETYPE
OOOO 0036 ;

OOOO 97 0037 INIT: SUB A :SET TO DEVICE A ON CROMEMCQ TU

oooi D3 52 0038 OUT 54FLA
OOÓ3 3C 0039 INC A :RESET TU-ART

72

0004 D3 OZ OQ4O OUT 2,A
0006 D3 (JO QO41 OUT TTS,A i INIT BAUD RATE TO 110
0008 31 OO CK? OC)42 L-D SP,C)2C)OH ; INITIALIZE STACK POINTER
O(X)B 0043 ;

OOOB 0044 isTART READING TAPE
OOOB 0045 i

OOOB CD 43 OO C)O4b WAIT: CALL GCHAR :GET A CHARACTER
OOOE E6 7F 0047 AND 7FH
OOlO FE 3A óo4í3 CP ': ' :CHECK FOR A CGLC)N
OOl? 20 F7 0049 JR NZ,WAÍ1" :NC)T FOUND, WAIT FOR A COLON
(9oí4 CD 4C (JO (lOSO CALL GTBYT :GET COUNT OF CHARACTERS
ooi7 A7 DOSI AND A :CHECK FOR END OF TAPE
0018 CA OO AO 0(152 JP Z,OAOC)OH :FOUND
OOÍB 47 C)C)53 LD B,A :SAVE COUNT

OOlC 5F 0054 L-D E,A ; INITIALIZE CHECKSUM
OOID CD 4C QC) (JOSS CALL GTBYT igET HIGH BYTE OF ADDRESS

0020 67 0056 LD H,A
0021 CD 4C OO 0057 CALL GTBYT :GET LOW BYTE OF ADDRESS

0024 6F c'o5í3 LD L,A
0025 CD 4C OO (lOS'? CALL GTBYT :GET RESERVED BYTE

0028 CD 4C OC) 0060 L-ClOP: CALL GTBYT :GET DATA BYTE
ÓO2B 77 0061 LI) (HL),A :STORE BYTE
0O2C BE 0062 CP (HL) iMAKE SURE sTüRED
OOQD 20 OE C)O63 JR NZ,MERROR iMEMoRY ERROR
DQQF 23 0064 INC HL :PT TO NEXT MEMORY LOCATION

0030 IQ F6 C)O65 DJNZ LOOP :CC)UNT DOWN AND LOOP
DO32 CD 4C OO 0066 CALL CTBYT :GET CHECKSUM

0035 7B 0067 LD A,E
0036 A7 0068 AND A

0037 28 D2 C)Q6S? JR Z,WAIT :CHECKSUM OK
003'? 3E 43 0070 LO A, 'C' :CHECKSUM ERROR
OO3B 18 02 0071 JR CCIUT :CJUTPUT ERROR CODE
OÜ3D 0072 ;

OO3D 3E 4D 0073 MERROR: LD A, 'M' iMEMDRY ERROR
OO3F D3 01 0074 COUT: OUT TTY,A :OUTPUT ERROR cáDE

0041 18 FE 0075 JR $-2 :LOOP UNTIL USER STOPS

0043 0076 i
OQ43 DB QC) QQ77 GCHAR: IN A,TTS igET TTY STATUS

0045 E6 40 0078 ANP DTR

0047 28 FA 0079 JR Z,GCHAR :LOOP UNTIL CHARACTER
004'7 DB 01 0080 IN A,TTY :GET CHARACTER
OO4B C'? OC)81 RET
OO4C 0082 i
OO4C CD 43 OO 0083 GTBYT: CALL GCHAR igET A CHARACTER
OQ4F 4F 0084 LO C,A :SAVE CHARACTER
OOSO 83 0085 ADD E :ADD TO CHECKSUM

oost 5F QO8h LO E,A isAvE CHECKSUM

0052 7'? OC)87 LD A,C iREsTQRE CHARACTER

0053 C9 0088 RET

0089 END

73

APPENDIX J

Glossary

ASCII American Standard Code for Informa-
tion Interchange. A method of en-
coding bits to represent a character.

Carriage Return Character When using the teletype for output
and a byte containing 13 is sensed,
a carriage control will occur, i—e.
a return to column one.

Checksum The checksum is the negative of the
sum of all eight bit bytes in the
record after the record mark evalu-
ated modulus 256. In other words,

if all the eight bit bytes are added
together, ignoring carries out of an
eight bit sum, and then the checksum
is added, the result is zero.

Command String A series of characters set off by the
string symbol (') which contains a

system command arid its parameters.

Example:

'ExEc,AgM'

Control Characters All hexadecimal codes from 00 to IF
are considered available as control
characters, e.g. linefeed.

Delimiter Any character which will terminate
a parameter or string. Frequently,
a delimiter functions as a separator,
e.g. the comma in ExEc,Aggg separates
EXEC from MM.

Driver In order to use an Input/Output de-
vice, some body of code must: I)
check to see if the device is avail-
able, 2) connect the computer to the
device, 3) prepare the device for a

74

transfer of data, 4) properly dis-
connect the device at the termination
of the transfer of data. A driver
may do all of the above. A simple
device such as a teletyDe (TTY) has
a very simple driver. In contrast
a disk driver can be quite complex.

Initialization Basically, initialization clears all
the tables and sets SYSIO to its
standard setting.

Linefeed When using the teletype for output,
if a twte containing lÓ is sensed,
a paper advance of one line will
occur.

Memory boards A board on which semiconductor
memory modules can be mounted. This
board can plug into a master board
called a mother board.

Mnemonic Name A name which the user can easily
associate with a desired machine
language op-code.

Null On a paper tape, a null is a frame
that will not contain data.

object Code The machine readable code which was
translated from the user's source
code.

Preservation of Registers When a call is made to a subroutine,
the routine or the call may change
the contents of several registers.
The user may need to preserve the
contents of the registers by saving
them especially in the stack. Later
the registers can be restored from
the stack or whatever area they were
saved in.

PROM Programmable Read Only Memory. Once
information is written into a PROM

by a special burn corrunand, the PROM

contents cannot be easily changed.
A Cromemco PROM can be erased by
radiating the PROM with an ultra-
violet source.

Pseudo-op a command, typically to an assembler,
which will not produce any executable

75

code. For example, a TITLE command

will cause a page eject and place a

Title on the next page of an assembler

listing. A command like TITLE is not
like a load instruction which produces
code.

RAM Random Access Memory. An area in
main storage which can be both written
into and read from.

Region A logical partition, hunk of memory.
The user's file can be said to be
assigned the region from l%j2l0H to
l50gH in memory.

ROS The Cromemco Resident Operating
System once loaded needs no other
external routines to operate. In
contrast a disk based operating
system has a resident portion, the
nucleus, and the bulk of the system
on a disk.

Source Code The user written code.

Swath The number of bytes to be processed.

S length Swath length.
TTY A teletype.

?6

APPENDIX K

ASSEMBLER ERROR CODES

There are ten classes of programming errors that can
be detected by the Cromemco assembler. If a line of! code
is in error, this will be indicated by an error code letter
just to the left of the line number in the assembly listing.
The definitions of these ten error codes are given below:

A Argument error
D Double definition
L Lable error
M Missing lable
O Op-code error
p Phase error
R Range error
S Syntax error
U Undefined
V Value error

