- Aclvancea
 Techniques in

DATASHARE

A Simplified User’s Guide

DATAPOINT CORPORATION

Page

Errata Sheet
Advanced Techniques in DATASHARE
A Simplified User’s Guide

Revision

11

12

22

29

DATASHARE does not allow yvou to specify an
extension to the physical file name in OPEN
or PREPARE statements. The extension for a
data file is assumed to be, and must be,
J/TXT.

SEQ should be initialized with a FORM
statement at the beginning of the program

“to —1-

The third line in the example should be:
MATCH "ACE CARDS" TO NAME

In both examples, the
SEQ INIT "-1"
statements should be changed to
SEQ FORM "-1"

The key used for indexed access must be
character data, defined by a DIM or INIT
statement, and not numeric data (defined by
a FORM statement).

The PI instruction cannot be used to
prevent interrupts when a KEYIN, DISPLAY,
CONSOLE, or PRINT instruction must be
executed.

Advanced
Techniques in

DATASHARE

A Simplified User's Guide

Manual No. 50049-00 November, 1975

The "D" logo, Datapoint, Datashare, Dataform, Databus, and Scribe
are trademarks of Datapoint Corporation registered in the U.S. Patent Office.

Copyright Datapoint Corporation 1975 Printed in U.S.A.

Table of Contents

CHAPTER ONE - IntroducCtiOn sseceecececececsss chececsecacseenn cece e 1
Prerequisites ceeeees. ceceerecaccanaa c et eceaean ceecaesesan .1
CHAPTER TWO - Effective Data File Utilizationeeceecesecceeececes. 3
Introduction e 6 e 006000000000 0c00s00e 00 . 3
The Three Types Of Data FileS cececececcoccecccccaaannaneas 3
Physically Sequentia@l ACCESS cccceseecccacccansacncasssssscs 4
Applications e««--. t e et e e cccceactecceeeeesaceecennoe ...4
What is @ ReCord? eceeeecececccans c e eecccecsecteeaacens 4
Physical Records «.c..... T, D, .4
Logical ReCOordS ceeeeeeeas ceeeas c et es s ecacsesscssansacns 5
Space COMPreSSiON ceeeeeeeesecoseesosasssasasscascasssss 5

The Physical File NAGME ¢ cveeeeeeeceeccencacaaansnceans 6
Logical File NamesS cceeeeacae teeecreeanen cececcacacans 7
Positioning and ACCESSIiNg ¢ v eeeeeecascescccscscossosas 8
Physically Sequential WRITE Statements ceeeeeeeeeeeess 8
Writing the End-of-File Mark c e et eesecseeseane 10
Physically Sequential READ Statements «.eeeeeeeeeeeen 10

A Few Hints About Rea@dinNg ¢e.ceeeeeccesccccess P i
Physically Sequential Program EX@mMPlesS cceeceeeeeeesss 12
Physically RAGnNAOM ACCESS ceeeeccecseccasosccsacsassscannscsaes 13
ApPPlicCAtioNnsS it ieeeeeeeeacecsacacososacscsconsas ceeee.13
What is @ ReCoOrd? vieueeeeeeenenennas c et escesceascnaas 13
Physical Records ...eeeeunn. c e e ccteseesaeaas ceeeean 13
Logical ReECOTAS i.uieeeeeeeeeeeeeeenennnanes et 14
Carefully Structure YoUur FilesSeeeeeeeeeen ce...14
Space CoOMPreSSioN [..iueieeeeeeeeeeeeneocaoeoneonanans 15

The Physical File NAGMeE ¢ ceeeeeeeeecccosacssssnsasssnas 15
Logical File NAGMES ¢ ceeeeecocccscscsocccces ceeean cee..lb
Positioning and ACCESSING «cceerescscsccscansnnnns .17

READ and WRITE Statement S cececececccccccscccsocososas 18

The WRITAB INStrUCtiON eeeeececececcscccsssscsassssssld
Writing the End-of-File MarK cceeececececeeccccnncnnans 19
Random Access Program Examples R ceeeaeaa. 19
INAEXEA ACCEOSS e cceecececescsccsscscsssscssscsecsccsaes ceeseaaae 21
Indexing is Based ON KEYS ceeeeeecencecncsaccnnnaanns 22

The INDEX Utility cceeeccececoscnccasas ceeeceseaan eee22

The Five Indexed OpEratiONsS ceeeeeeecseeceoceacocacns .23
Logical and Physical File@S ececceeccecccccncccs ceeeacsas 23
Indexed READ StatementS cecesesesesesesanans .24

The READKS Instruction ¢.ceeee.. c et esccescssssencanas 25
Indexed WRITE Statements c et ececcecscsasecen o ...25
UPDATE Modifies the Most Recent Record T

INSERT Updates Other INAeXeS ccceveeeeeneeccacaconnas 27

DELETE Deletes a Record.............................27
Writing the End-of-File MarK e veececeececcccocanncceell

Indexed Program EXample cceeeeeeececes ceccccssesceasedld
Common File Access ConsiderationS.eeceeeese ceecececcncsesesl8
The REFORMAT Utility ceeeecococecs T 11

How to Use REFORMAT..... cecccecscscnns ceeeen ceeoee ..30

REFORMAT MeSSAJES ceceeseccccsns ceceaccancnn ceessessall
Helpful Hints....... e e e cececccccsscsccscannas cesesssscaes 31

Close the File Properly ccieeeececeeccecens B §

Group I/0 Into One Statement ¢c.ceeeeeeceocsss ceeceacesal2

Use REFORMAT to Reorganize YouUr FileS...cceeeeeees..32
Write EOF at End-Of=File vcveeeeereosnscoccaoasacnnseealdl

CHAPTER THREE - Providing System Security seeecsececccecacsnn ..35

IntroduCtion ceeeeeeeeeesceceenonsse cececcan ceeesecssseeseslb
Separate Programs for Each Port........ P 11
Consider YOUr SYSTEOM ceceacccsscoccocosaccscses ceecessanes 36
The ANSWER PrOgYam «ceeeeseaceocses P —]
The User Must Satisfy the ANSWER Program ee....36
A Simple ANSWER Program ...ceeeees R 1 <1
A More Advanced EXAmMPle cvceveeececosenocacsseasacssoeesldl
The MASTER PYrOQYaAM ¢ ceeececssssoscossocssosscssscscsccsancascas 38
A Simple MASTER PrOQram «ceeceeecccccsacssaoaccsscesesld
A More Advanced Example ceeececcencanos ceeeecessal9

.
.
.
.
=Y
=

CHAPTER FOUR - Virtual memory Programming Considerations

INtYOAUCLION e veececceccncossossonaceascncnsnnnssas P §
What is Virtual Memory? seeecececess cetecceseracetcaecaane .41
DATASHARE Manages the Memory Allocation s-+-sssss....41
DATASHARE Code is Never Modified -eeceececccsssecse...42
Program Code is Accessed Often eeeeececcccsccsecsces.42
Virtual Memory IMPlimeNntatiOn ececeecececcscesncoaasocassssssd2
Code is Divided INtO PAgesS eeeeccccccossscaascsacces .42
The Disk Limits the Number of Pages s+eeeeceessn ceee..43
Where Are the Page BoUndaries? seceeeccccccecccecss..4d
Programming Hint s cveeeeeeeeeeeececcescessosasccsssonnesssld
Repeat Code Rather than Call Subroutines .«..e.......45
Carefully StruUCtUre LOOPS secceecececsscccnonnaaanesssd5
Use the TABPAGE Instruction.........................45
A Bad EXAMPLE « eeeeeccssoscanscaasssonnascassanscosssdb
A Good EXampPle ecceceeeccecenns XY

CHAPTER FIVE - Printing «.cccccceeec.. - ¥

INtrOAUCEION ¢ evveeeeeceecoacceacasossssoscsscesosanennssesd
How System Printing iS DONE cceeececoccsccsnssnacocecesassd?
Remember to RELEASE the System Printer! «eeceec.......48
Managing the Printer «veeeeceececceces Y- 33
Write to a Data File, Then Print eeceeeeeececcesass...48
Use One Port to Print All System Print Files :¢:......49

CHAPTER SIX = ROLLOUT Gnd CHATIN e coevececesoeacencnecnacennns ..51

IntrodUCtion ¢ veeeeeececceccaccncese ceeene ceeean ceeseesanas 51
ROLLOUT Must be Configured.«eceeeeeeeeeens ceeeseeesebl

How ROLLOUT WOYKS e s e ceececcosscocsoccssccsss c e ceesessesssc e 51
All Other Programs are Suspended «+cecscccesccccccacs 51

When to Use ROLLOUT « e e eeeecesascsacccsascecancsasnanscesns 52
ROLLOUT Inconveniences Other USerS eecesscsccoscaccsas 52
ROLLOUT Precautions see«e. -« ceeceeeenn ceeececcccceaccenes 52

The CHAIN FILE ceceeeeoes e e sececanse . e eeeeeecessabl
The CHAIN COMMANGA ¢ ¢ o oo oceceoccscscsocccscsccccsses e...53

The CHAIN File ContentsS.eeececeeececececons D I |
APPENDIX A - Instruction SUMMAYY «ceesececcscccscccees ceeseessdd

APPENDIX B = ASCII CharacCter Set eceeeececcesscscscscscscss ce.e.bl

CHAPTER ONE

Introduction

DATASHARE is Datapoint’s timesharing system that provides
for the simultaneous execution of up to 16 DATABUS programs.
The DATABUS 1language 1is a very simple and direct high-level
business-oriented computing language that is easily suited to a
variety of business applications.

All Datapoint languages run under sophisticated, vyet
easy-to-use operating systems that create standard file formats.
Datapoint systems have completely dynamic user-oriented files
that eliminate the traditional complexity associated with
creating files and managing them. This book explains how to use
those files efficiently along with other topics-.

This book contains an in-depth coverage of several
DATASHARE features, including:

l. Data file access methods (physically sequential,
physically random, and indexed).

2. The ANSWER and MASTER control programs.

3. Virtual memory programming considerations.

4. Printing facilities.

5. ROLLOUT procedures and CHAIN files for the execution
of DOS commands.

Helpful hints are interjected throughout this book to help
you make your DATASHARE system run smoothly, efficiently, and
economically.

Prerequisites

This book assumes a basic familiarity with the DATABUS
language and the DATASHARE system. But don’t be scared off.
All of the concepts discussed are carefully illustrated so that
even a novice programmer can pick up useful skills that can be
incorporated into a DATASHARE operating environmente.

This book does not fully explain the DATABUS programming
language. For information about the DATABUS language, consult
the DATABUS Simplified User’s Guide and the DATABUS User’s
Guide. Appendix A of this book contains an abbreviated listing
of all DATABUS instructions.

\The details of how to set up and use your DATASHARE system
are explained in the DATASHARE User’s Guide.

CHAPTER TWO

Effective Data File Utilization

Introduction

All programs that can be executed under DATASHARE must be
written in the DATABUS programming language. The DATABUS
language lets you create data files on disk and later access the
stored data in many ways that will fit your ©particular
application. This chapter will show you how data is organized in
those files and how the data can be accessed. Helpful hints
will be interjected so you can efficiently use your data files
and, consequently, increase the speed of your DATASHARE system.

You should already have an elementary knowledge of how to
use data files. However, many DATASHARE users do not know about
several simple techniques that can make their programs run
faster and make more efficient and effective use of the data in
the files. This chapter will show you how to wuse these
techniques. Read on to find out how easy it is to improve the
way your DATASHARE programs use data files.

One thing that we’re sure you’ll discover as you learn how
to use data files is just how easy data files are to use. The
file access methods are all specifically designed to incorporate
speedy access and efficiency of disk space utilization with a
minimal amount of programming.

This chapter delves into many details of exactly how the
data is written to disk and read from disk. This discussion is
essential to a clear understanding of how you, the user, can
optimize your file access applications.

The Three Types of Data Files
Data can be arranged in data files in three basic ways:

1. PHYSICALLY SEQUENTIALLY - the data 1is read in
exactly the same order as it is written into the
files. This is used in applications where data is to
be accessed in chronological (first to last) order.)

2. PHYSICALLY RANDOMLY - the groups of data are
numbered, beginning at 0, and any group can be read
by specifying its number. This is used in
application where a number can easily identify the
group of data you want to access.

3. INDEXED SEQUENTIALLY - each group of data 1is
accessed by a unique field of information in that
group. This is used when a unique field of
information can specify the group of data that you
want to access.

With the DATABUS language, it is very easy to effectively
use all three of these types of data file structures. The next
three sections describe how to use these three types of data

files. If you are unsure of which type of arrangement you want
to use for your data, read the beginning of each of these
sections.

Physically Sequential Access

The most basic method for storing data 1is physically
sequentially. When data 1is written to a file physically
sequentially, each new record (or group of data) is written
immediately after the previous record. When data is read from a
file physically sequentially, the records are read in the exact
same sequential order that they were written. A special
character is inserted between each record to distinguish one
record from another.

Applications

Physically sequential access is ideal for many
applications. You can use it to keep a log file of each day’s
activities, such as sales orders, in chronological order. Or
you can use it to contain a list of names and addresses that are
used as labels for regular mailings.

In general, physically sequential access should be used for
any data that you want to insert and access in chronological
(first to last) order.

What is a Record?
A record is a group of related data. A file is a group of
related data records-

/ the dats file N

\\

JOHN JONES 7031 HIGH ST URBANA IL 6/801
N

Q\//,\;mmw“nﬁeﬁb

FILES ARE DIVIDED INTO RECORDS

There are two types of records. A physical record is
limited to a certain size (249 data characters) and corresponds
to a physical sector of the disk where it is stored. A logical
record corresponds to a grouping of data that is logically
related, regardless of size.

Physical Records

The most basic structure within a file is a physical
record. A physical record <can contain up to 249 data
characters. The end of each physical record is denoted by a 003
character. You do not have to put the 003 character at the end
of the physical record; it is automatically put there by
DATASHARE.

249 chorsters Z49 choracters 249 charackars 249 chovocters

rotord £0 ‘g’ record 4 | § record # 2 § record #3 g:

Cdm%gﬂnmadZWWMM%V
PHYSICAL RECORDS CONTAIN 249 CHARACTERS

With physically sequential access, you never need to pay
attention to physical record boundaries. What is important to
you are logical records.

Logical Records

The next 1level of structuring is the logical record. A
logical record is a grouping of data that is logically related.
WRITES and READS are based on logical record boundaries. There
is no limit to the length of a logical record. Logical records
are terminated by a 015 character. As with physical records,
DATASHARE supplies this character for you. ,

Physically sequential WRITES use Datapoint’s record
compressed file structure, where logical records span physical
record boundaries, as in the following illustration:

amziﬁfﬁmwd ZZu@

Al o | JoHN BROWN __ vA [oun A cop ¢

\
avieliap VAE 06BORN —F_ANDERSO |3

mfco/:'_':_ VA |"§ueu.95 GREEN __-—-

2D NEWBY s Leary ¢

WITH PHYSICALLY SEQUENTIAL WRITES, LOGICAL RECORDS SPAN PHYSICAL
RECORD BOUNDARIES

This record compressed structure conserves space by packing
the 1logical records closely together. Datapoint has another
technique for conserving space. This technique is called space
compression, and is also performed automatically for you.

Space Compression

When DATABUS finds two or more blank spaces in the data
that is to be written to a disk file, it uses space compression
to save space on the disk. For example, if it encounters
"123 JOHN ST.", it converts it to "123(011) (005)JOHN ST."
where (011) is the space compression indicator and (005) is the
number of spaces that are compressed. In this way, only two
bytes (character positions) are used to store the spaces instead
of five.

G wasted space

SUE SMITH 159 WUITE STREET
¢ compressed srace

sue smite §7 159 WHITE STReET

aecsegaj‘ L nomper of spices
Indicator ompressed

DON‘T WASTE DISK SPACE -- COMPRESS IT

Space compression 1is always turned on with physically
sequential writes unless you are also writing to the same
physical file using physically random or indexed insertion
writes. If you are mixing access methods within the same
physical file, you can make sure that space compression 1is
turned on with the "*+" control signal in the physically random
and indexed WRITE statements, as in the following illustration:

WRITE FILEl,KEY;*+,NAME,ADDRESS, CITY;
WRITE FILEA,SEQ;STATE,ZIP

IF YOU MIX ACCESS METHODS, YOU MUST TURN ON THE SPACE
COMPRESSION

You must turn on space compression with the "*+" signal in
every physically random or indexed insertion WRITE or space
compression will be turned off. All physically sequential READ
statements properly expand the space compressed notation.

NOTE: With other access methods, you should not do updates on
space compressed records because the total number of characters

may not be the same in one space compressed record as in
another.

The Physical File Name

The physical file name is the name that corresponds to the
actual name the data file has on disk. This name can be up to
eight characters long (the first character must be alphabetic)
and is followed by a slash and a three-character extension that
specifies the type of file that it is.

Data files usually have the extension of /TXT. This is the
same extension that is used for any file that has not yet been
processed by a compiler. Your DATABUS program source code (the
file you created with the DATABUS language instructions) also
has the extension of /TXT. When you compile your DATABUS
program, however, you get another file that is named the same as
the source file but has an extension.of /DBC. This /DBC file is
the one that is actually executed under DATASHARE. Each time
you recompile your program, you wipe out the old /DBC file and
cCreate a new one.

ORDERS/ TXT

el atersions slosh
the Ale name extension=;
Jfascj;am ﬂ;frd 3 charaters

THE PHYSICAL FILE NAME

DATABUS assumes that the extension for your physical data
file name will be /TXT. This means that if you do not include
an extension, /TXT is assumed. In other words, ORDERS/TXT and
ORDERS specify the same data file.

Logical File Names

The logical file name is the name that is associated with
the physical file name. It is used throughout the program to
reference the physical file specified in the OPEN or PREPARE
statement.

In every DATABUS program, the logical file name must be
declared to be a logical file name through the use of the FILE
statement. For example, to use the logical file name FILEL
throughout the program, you must include this FILE statement at
the beginning of the program:

FILEl FILE

Then the logical file name declared in the FILE statement must
be associated with a physical file name through the use of a
PREPARE (for new files) or OPEN (for existing files) statement.

For example, to create a new file named ORDERS/TXT and use
the logical name FILEl to access it, you have to use the
following two statements:

FILE1 FILE
PREPARE FILEl, "ORDERS"

(the /TXT extension specifies a text file and is assumed if not
included in the PREPARE or OPEN statement). Once the file is
created, it must be used with the OPEN statement. The following
statements reference the existing file ORDERS/TXT and associate
with it the logical name FILELl:

FILE1 FILE
OPEN FILEl, "ORDERS"

FILEl is the logical name that is used in all READ and
WRITE statements. Because the OPEN or PREPARE statements
associate this name with a physical file (ORDERS/TXT), DATASHARE
knows where to go to physically read or write the data-.

Why does DATABUS insist on two names, one logical and one
physical, for the same file? It is actually done as a
convenience to the programmer. I1f, for example, a different
physical file is used every month, yet the same program is used,
the programmer only has to change the physical name specified in
the OPEN or PREPARE statement. The logical file name can remain

the same. This saves a lot of time because the programmer does
not have to change every line in the program that refers to that
file.

Positioning and Accessing

The current position in a data file is defined by two
pointers, the physical record pointer (0 through the number of
records in the file) and the character pointer (1 through 249).
These pointers are kept internally by DATASHARE and are used by
all of the access methods.

record pointer points o 3
SPECIFIC Fecord /n the File —

L |

L charstzr pointer points & 3
Specitre charactar position in the record

RECORD AND CHARACTER POINTERS KEEP TRACK OF THE CURRENT LOCATION
IN THE FILE

When the file is opened (with an OPEN or PREPARE
statement), the physical record pointer is set to 0 and the
character pointer is set to 1.

All READ and WRITE operations sequentially increment the
character pointer as the individual characters are read or
written. If the physical record terminator (003) is reached
during a READ or if the 249th character is written during a
WRITE, the physical record pointer is incremented by one, the
character pointer is reset to 1, and the logical record is
continued on to the next physical record.

GONZALES DRWE (3] sajvavoNio TX |2
ond o physical S end of togria) 55

LOGICAL RECORDS SPAN PHYSICAL RECORD BOUNDARIES

Physically Sequential WRITE Statements

You have already learned that you have to declare a logical
and physical file name for your data file with the FILE and OPEN
or PREPARE statements. You have alsco learned how space 1is
compressed and records are compressed to save space on the disk.
And you have learned how DATABUS keeps track of the physical
position in a data file through record and character pointers.
Now you will learn how to write data into a file.

When you PREPARE or OPEN your file, you are positioned at
the first record. This is fine if it°s a new file, but if you
want to add data to an existing file, you must read to the
end-of-file and then write. Remember to do this or you may
overwrite valuable data.

READ 5 here. betore wriling or

C the disls Aile Gov will overwrite mething -
{ogical logical logical logical logical)
re;grd 3 mcoswl. 24 mc?rd 26 record 20 mc?rd 71 |6t #leork

I qov onty BEAD %
here, You may overwrite
3 (ogical records

BE CAREFUL NOT TO OVERWRITE VALUABLE INFORMATION

As we’ve stated before, physically sequential WRITE
statements pay no attention to physical record boundaries. Each
WRITE writes one logical record to disk unless a semicolon ends
the list of variables. In this case, the logical record is not
ended with that statement. The format for a physically
sequential WRITE is:

WRITE filename,SEQ;variables

where filename is the logical name of the file, SEQ should be
initialized at the beginning of the program to -1, and variables
are the data that should be written to disk. SEQ 1s the
variable that indicates that this is physically sequential
access. For example:

WRITE FILEl,SEQ;NAME,ADDRESS, CITY,STATE

writes the values of NAME, ADDRESS, CITY, and STATE as one
logical record in logical FILEl wherever the previous READ or
WRITE left off. After STATE is written, the 015 mark is written
denoting the end of the logical record. This logical record will
span as many physical records as necessary to hold the data-.

i the [sst READ or WRITE endaf here - /" the next write begins here.

(L62705

PHYSICALLY SEQUENTIAL WRITES SIMPLY PICK UP FROM WHERE THE LAST
READ OR WRITE ENDED

n~Q

To avoid writing the end of logical record mark at the end
of the list of variables, conclude the list with a semicolon (;)
in the following manner:

WRITE FILE1l,SEQ;NAME,ADDRESS,CITY,STATE;

Data from the next WRITE statement will then be included in
the same logical record as this data.

Under most circumstances, you should avoid wusing the
semicolon at the end of the WRITE statement. Try to get all of
the data for each logical record ready before you write it to
disk. More than one WRITE statement for a logical record wastes
time because the disk head must be positioned twice for the same

logical record.

You can include a 015 in the list of variables to signify
the end of a logical record if you want to write more than one
logical record with a single WRITE statement. Other control
characters include *ZF, which is used before numeric variable to
cause it to be right justified and zero filled on the left, or
*MP, to convert a numeric variable to a "minus over-punch”
format. For example:

WRITE FILEZ2, SEQ;A,B,C, 0151D'El *ZF,F

writes two 1logical records in as many physical records as
necessary. The first logical record consists of the values for
the variables A, B, and C. The second logical record contains
the values for D, E, and F. F must be a numeric variable
because it will be zero filled on the left.

Writing the End-of-File Mark

After you are done writing a physically sequential file,
you should write an end-of-file mark. Be sure you are
positioned at the end of the file (the last data record has just
been written) or you will write the end-of-file mark in the
middle of your data. The WEOF instruction, which will write the
mark, has the following format:

WEOF file,SEQ

where file is the name of the logical file.

Then wuse the CLOSE instruction to release any extra
allocated space.

If you later add data to your file, you must READ to
end-of-file, then WRITE your data. You should write another
end-of-file mark when you are done adding data to your file, and
then CLOSE it.

Physically Sequential READ Statements

To read a physically sequential file, the READ statement is
used. It works much the same as a WRITE statement. All READ
statements for a file must either come before the WRITE
statements for the file, or after the end-of-file mark has been
written, the file has been closed, and the file has been
reopened.

The READ statement reads from where the record and
character pointers are positioned to the end of the 1logical
record or until the list of variables is satisfied. Unless a
semicolon (;) ends the 1list of variables, the record and
character pointers are left pointing to the beginning of the
next logical record. Physical record boundaries are ignored,
for all practical purposes. Remember to initialize SEQ to -1 at
the beginning of the program to signify that you are using
physically sequential access. The following statements give
examples of physically sequential READS and explain how they
operate.

10

READ FILEl,SEQ:NAME,ADDRESS, CITY,STATE

NAME, ADDRESS, CITY, and STATE are read from logical FILEl.
The character pointers are 1left pointing to the following
logical record.

READ FILEl,SEQ;NAME,ADDRESS, CITY,STATE;

This is the same as above example except that the character
pointers are left pointing to the next character after STATE.

MMw%h&Mbwuknfz ﬂkaafﬂﬂohwu&w&

CA 92037 [{| F. SeorT FITzeeRALD

PHYSICALLY SEQUENTIAL READS SIMPLY PICK UP FROM WHERE THE LAST
READ ENDED

A Few Hints About Reading

Physically sequential data files are characterized by the
fact that to get any information out of the file, you must start
at the beginning and READ until you find it. The COMPARE and
MATCH instructions provide useful methods of checking to see if
you're reading the record that you need. COMPARE is used to
make sure that two numbers are the same and MATCH is used to
make sure that two character strings are the same. So, for
example, to check to see if you’re reading the record for the
Ace Cards Co., you could use the following statements:

LOOP READ FILE1l,SEQ;NAME,ADR,BILL
GOTO BAD IF OVER
MATCH NAME TO "ACE CARDS"
GOTO GOOD IF EQUAL

GOTO LOOP

BAD DISPLAY "**NO SUCH NAME**"
GOTO START

GOOD DISPLAY ADR,*N,"OWES:S$",BILL
GOTO START

Notice how we checked for the OVER condition. This is a
safeguard against not finding a match. If end-of-file 1is
reached, the OVER condition is set. By checking this condition,
you can tell if the entire file has been read and checked.

11

Physically Seguential Program Examples
The following DATASHARE program writes each account number,
name, and address to a disk file named ORDERS/TXT:

DONE INIT "0000O"
ACNT DIM 5
NAME DIM 20
ADR DIM 20
CITY DIM 15
STATE DIM 2
Z1IP DIM 5
SEQ INIT "-1"
AFILE FILE
PREPARE AFILE, "ORDERS"
LOOP KEYIN *ES,"ACCOUNT NUMBER:",ACNT:

*N, " ,NAME:" ,NAME, *N, "ADDRESS:" ,ADR:
*N,"CITY:",CITY,*N,"STATE:",STATE:
*N,"Z2IP:",ZIP

MATCH DONE TO ACNT

GOTO FIN IF EQUAL

WRITE AFILE,SEQ;ACNT,NAME,ADR, CITY,STATE, ZIP

GOTO LOOP

FIN WEOF AFILE, SEQ
CLOSE AFILE
STOP

This program asks the operator to fill in all the data
fields, one at a time. Note how one KEYIN statement is used to
collect all the data. It is more efficient to use one long KEYIN
or DISPLAY statement than many short ones because of the way
DATASHARE handles those instructions. All input and output
statements should be written this way, with one long statement
rather than several short ones.

The following program reads the SAMPLE data file and prints
it. Notice how the OVER condition is checked to see if the
end-of-file has been reached.

ACNT DIM 5
NAME DIM 20
ADR DIM 20
CITY DIM 15
STATE DIM 2
Z1P DIM 5
SEQ INIT "-1"
AFILE FILE
OPEN AFILE, "SAMPLE"
LOOP READ AFILE,SEQ;ACNT,NAME;ADR,CITY,STATE,ZIP

GOTO FIN IF OVER
PRINT *N, "ACCOUNT NUMBER",ACNT, *N, *10,NAME:
*N,*10,ADR, *N,*10,CITY,*37,STATE,*40,ZIP
FIN RELEASE
STOP

12

Physically Random Access

The fastest random access method available under DATASHARE
is physically random access- To perform a physically random
access, a number is used to point to the specific group of data
that you want to access. Physical random access is best if used
with groups of data (called records) that contain less than 249
characters.

Applications

Use physically random access for any grouping of data that
has a natural sequential numbering scheme to it. For example,
if a hardware store has parts that number from 1 to 137, each
part can be described in a separate record and accessed by part
number. Or, if you have orders that number from 900 to 1000,
you can put each order in a separate record and subtract 900
from the order number to get the record number.

What is a Record?
A record is a group of related data. A file is a group of
related data records.

5~6m¢%:ﬁ@

WRENCH 3984 998 342

tgnaumtﬂvﬂg+%b

FILES ARE DIVIDED INTO RECORDS

There are two types of records. A physical record is
limited to a certain size (249 data characters) and corresponds
to a physical sector of the disk where it is stored. A logical
record corresponds to a grouping of data that is 1logically
related, regardless of size.

Physical Records

The most basic structure within a file is a physical
record. A physical record can contain up to 249 data
characters. The end of each physical record is denoted by a 003
character. You do not have to put the 003 character at the end
of the physical record; it is automatically put there by
DATASHARE.

249 chorscters 249 chovaoters 247 chorectors 249 charsotors

0
record. | g recovd. 2 g

PHYSICAL RECORDS CONTAIN 249 CHARACTER

record. D record 3

noS

2
3
S

13

With physically random access, the physical record number
(numbering starts at zero) is specified in the READ or WRITE
statement to point to a record of data to be read or written.

NOTE: The physical record number never needs to be written in
the data file. Because all physical records are written
sequentially, DATABUS knows which record corresponds with a
particular physical record number-.

ond of Peres!

readra mark ="} “ 0] 2 Ygl 3 A n
3| 3]g‘h
o% Phyzcal record 2

A NUMBER POINTS TO THE PHYSICAL RECORD IN THE FILE

Logical Records

The next level of structuring is the logical record. A
logical record is a group of logically related data. For most
practical purposes, each logical record should contain 249 or
less characters so it will fit in one physical record. Logical
records are terminated by a 015 character.

Whatever space in the physical record is not taken up by
the logical record is wasted because the physically random
access methed relies on physical record boundaries. This means
that physically random files are NOT record compressed, as are
physically sequential files.

Poys108/ ro8Cord (249 chovetors)

“seoree vasNeTN VA ggf////////
N st record—— 7 O yssted gpee

Cinthis cose, |70 chsracters)

EXTRA PHYSICAL RECORD SPACE IS WASTED

Carefully Structure Your Files

Because the random records are accessed by a number
indicating the physical record in the file, it is important to
write the data so that logical records begin at physical record
boundaries. If you use the physically random WRITE statements,
you will automatically start each logical record at a physical
record boundary-. Do not use the REFORMAT utility on your data
file and put more than one logical record per physical record,
because when you later access the data it will not be in the
proper order and 1logical records will not begin on physical
record boundaries.

If, for some reason, your data file becomes record
compressed so that each logical record does not begin on a
physical record boundary, you can use the REFORMAT utility to
reblock your data (see the REFORMAT section of this chapter).
If you edit your physically random file using the DATASHARE

14

Editor or the DOS Editor, you will have to REFORMAT the file to
get it back to the proper format with logical records starting
at physical record boundaries.

Space Compression

Space compression (explained fully under Physically
Sequential Access) is automatically turned off for physically
random WRITE statements. This is Dbecause physically random
WRITAB and READ statements can use absolute tabbing, which does
not properly expand the space compressed notation. See the
WRITAB and READ sections for an explanation of absolute tabbing-.

th a8 ¥20 yo Lhink. but govve Jetval/
wﬁ%zw&ﬁ%%% uifﬂv——w ‘;'aégwmyﬁﬁy

0 0
JOHN HENRY | 9 RURAL ROUTE 2

ésme compresson notation

———

ABSOLUTE TABBING OPERATIONS DO NOT PROPERLY EXPAND SPACE
COMPRESSION

If you are sure that you will not want to use tabbing, you
can begin each WRITE statement with a "*+" control signal to
signifiy that space compression for that statement should be
turned on-. The following example illustrates how space
compression can be turned on for a physically random WRITE:

WRITE FILEZ2,NUM; *+,NAME,ADR

If you find that your file is space compressed and shouldn’t be,
you can use the REFORMAT utility to get rid of the space
compression (see the REFORMAT section of this chapter).

The Physical File Name

The physical file name is the name that corresponds to the
actual name the data file has on disk. This name can be up to
eight characters long (the first character must be alphabetic)
and is followed by a slash and a three-character extension that
specifies the type of file that it is.

All data files usually have the extension of /TXT. This is
the same extension that is used for any file that has not yet
been processed by a compiler. Your DATABUS program source code
(the file you created with the DATABUS language instructions)
also has the extension of /TXT. When you compile your DATABUS
program, however, you get another file that is named the same as
the source file but has an extension of /DBC. This /DBC file is
the one that is actually executed under DATASHARE. Each time
you recompile your program, you wipe out the old /DBC file and
cCreate a new one.

15

PARTS [Ii‘,L

The file nam@ the extensim — 3 s/ash
[B & chsracters 8na(3 fraoters

THE PHYSICAL FILE NAME

DATABUS assumes that the extension for your physical data
file name will be /TXT. This means that if you do not include
an extension, /TXT is assumed. In other words, ORDERS/TXT and
ORDERS specify the same data file.

Logical File Names

The logical file name is the name that is associated with
the physical file name. It is used throughout the program to
reference the physical file specified in the OPEN or PREPARE
statement.

In every DATABUS program, the logical file name must be
declared to be a logical file name through the use of the FILE
statement. For example, to use the lcgical file name FILEL
throughout the program, you must include this FILE statement at
the beginning of the program:

FILE1l FILE

Then the logical file name declared in the FILE statement must
be associated with a physical file name through the use of a
PREPARE (for new files) or OPEN (for existing files) statement.

For example, to create a new file named ORDERS/TXT and use
the 1logical name FILEl to access it, you have to use the
following two statements:

FILE1 FILE
PREPARE FILELl, "ORDERS"

(the /TXT extension specifies a text file and is assumed if not
included in the PREPARE or OPEN statement). Once the file is
created, it must be used with the OPEN statement. The following
statements reference the existing file ORDERS/TXT and associate
with it the logical name FILE1l:

FILE1l FILE
OPEN FILE1l, "ORDERS"

FILEl is the logical name that is used in all READ and WRITE
statements. Because the OPEN or PREPARE statements associate
this name with a physical file (ORDERS/TXT), DATASHARE Xknows
where to go to physically READ or WRITE the data. '

Why does DATABUS insist on two names, one logical and one
physical, for +the same file? It 1is actually done as a
convenience to the programmer. If, for example, a different
physical file is used every month, yet the same program is used;,
the programmer only has to change the physical name specified in
the OPEN or PREPARE statement. The logical file name can remain

16

the same. This saves a lot of time because the programmer does
not have to change every line in the program that refers to that
file.

Positioning and Accessing

The current position in a data file is defined by two
pointers, the physical record pointer (0 through the number of
records in the file) and the character pointer (1 through 249).
With physically random access, the physical record pointer
corresponds to the record pointer specified in the READ or WRITE
statement. These pointers are kept internally by DATASHARE and
are used by the access method.

record pointer points B 2
5paa.,¢,/a ne«c!;d " the Fle

S~

t/‘ The chardcler poiyter points
% a specific charaster /n the record.

RECORD AND CHARACTER POINTERS KEEP TRACK OF THE CURRENT LOCATION
IN THE FILE

When the file is opened (with an OPEN or PREPARE
statement), the record pointer is set to 0O and the character
pointer is set to 1.

All READ and WRITE operations sequentially increment the
pointers. If more than 249 characters are written with a single
WRITE statement, the record pointer is incremented by one and
the character pointer is reset to 1. All physically random
READs and WRITEs begin on physical record boundaries, with the
character pointer set at 1.

What if physical random records exceed 249 characters?
They are continued on to the next physical record. The
following random record will begin on the following physical
record boundary-. If this is the case for your random records,
be sure to recipricate for this by properly incrementing the
record number used in READs and WRITEs

recod wmbero + 4350122 COAT RED 10........ ..ociiinno... (003)

reswmt namber [~ CRAZZE COAT COMPANY | NEW YORIK, NY (015)(003) o
Peowed bt 2> 4350124 COAT BLVE IO «....... o .onn....... (003) 220
recod k-3 ERATTE COAT COMPANY | NEW, YORK, NY (015)(003)

red nomber 4, 4350125 COAT GREEN 10(003)

tesnd marber S T RAZZE CORT COMPANY, NEW YORK,, Ny (015)(003)

SAMPLE RANDOM FILE WITH TWO PHYSICAL RECORDS PER LOGICAL RECORD

For the above example, you would use every other physical
record number, starting at zero, to access the logical records.

17

READ and WRITE Statements
To read or write a physically random access file, use the
following READ or WRITE statements:

READ filename,number;variables
WRITE filename,number;variables

where filename is the logical name of the file, number is a
variable containing the number of the physical record to be
accessed, and variables are the data to be read or written.

There are two control characters that are used in
physically random WRITES. These are *ZF, which is used before a
numeric variable to cause it to be right justified and =zero
filled on the left, or *MP, to convert a numeric variable to a
"minus over-punch" format.

Tabbing controls can be added to the list of variables to
be read so that selected character positions may be read from a
record without having to read all of the positions in the
record. To use tabbing, precede the column number or variable
containing the column number with an asterisk (*). For example,
*10 will tab to the tenth character position in a physical
record.

3148144121218 PiAIU]

; t/¢uw%W/U
*10 TABS TO THE TENTH CHARACTER POSITION IN A PHYSICAL RECORD

CAUTION: Tabbing will not properly expand space compressed
records.

The following examples show how to use the READ and WRITE
statements:

WRITE FILE3,NUM;NAME,NUMBER, CODE

This writes physical record number NUM. The values for NAME,
NUMBER, and CODE are written. An end of logical record mark
(015) and end of physical record mark (003) is written after
CODE.

WRITE FILE3,NUM;NAME, NUMBER, CODE;

This writes physical record number NUM. The values for NAME,
NUMBER, and CODE are written-. No end of record marks are
written. The next WRITE will continue to fill up the same
logical record.

READ FILE3,NUM;NAME, *4 0, CODE
This reads physical record number NUM. The values for NAME and

CODE are read. Any data between the end of NAME and column 40
is ignored-. File pointers then point to the beginning of the

18

next logical record.
READ FILE3,NUM;NAME, NUMBER;

This reads NAME and NUMBER from physical record number NUM.
File pointers are left pointing to the next character position
following NUMBER.

READ FILE3, ZERO; ;

Assume that the numeric variable ZERO is defined to be zero in
value. This statement causes the file pointers to be positioned
to the physical beginning of the file exactly as if an OPEN
statement had been executed.

The WRITAB Instruction

The WRITAB instruction allows you to write characters into
any character positions of a physical record without disturbing
the rest of the record. The record must already exist. To use
tabbing, precede the column number with an asterisk (*). The
following variable is written starting at the character position
specified. If no positioning is specified, the writing starts
at the beginning of the physical record. For example:

WRITAB FILE4,NUM;A,*70,B,*10,C, *NAME, "NAME"

writes the value for A at.- the beginning of the record, B at
column 70, C at column 10, and "NAME" at the position specified
by NAME. Note that WRITAB, like other random access WRITEs, does
not use space compressione. It will not properly expand the
character positions of space compressed records.

Writing the End-of-File Mark

After you have written your random access file, or if you
have added data to the file, you must add an end-of-file (EOF)
mark after the last record. To do this, increment the record
counter variable to one past the last record written, and then
use the WEOF instruction. The WEOF instruction has this format:

WEOF file,NUM

where file is the 1logical file name and NUM is the record
counter variable.

Then use the CLOSE instruction to close the data file.

To add data to the physically random file, increment the
record counter variable to one past the last record written
(this corresponds to the end-of-file record) and begin to write.
Because you’ve overwritten the end-of-file mark, a new one must
be written when you are done adding data to your file.

Random Access Program Examples

In the following DA TABUS program, all of the
characteristics of a company’s parts are inventoried in a

19

physically random file. Record 0 describes the file. This is a
particularly appropriate application for a physically random
file because the parts are numbered from 1 to 79.

This program creates a file named PARTS/TXT and writes the
first logical and physical record that describes the file. Then
the user 1is requested to keyin a description, price, and
quantity for each part in chronological order. Once the 79 part
descriptions have been entered, an end-of-file mark is written.
The variable PARTNO contains the number of the physical record
for each entry.

PARTNO FORM " 1"
ONE FORM "1"
ZERO FORM "O"
DESC DIM 15
PRICE FORM 3.2
QUAN FORM 5
NPART FORM "80"
PARTS FILE

PREPARE PARTS, "PARTS"
WRITE PARTS,ZERO; "PART INVENTORY"
LOOP DISPLAY *ES, "PART NUMBER",PARTNO
KEYIN *N,"DESCRIPTION:",DESC,*N,"PRICE:S"
PRICE, *N,"QUANTITY:",QUAN
WRITE PARTS, PARTNO; PARTNO,DESC, PRICE, QUAN
ADD ONE TO PARTNO
COMPARE PARTNO TO NPART
GOTO DONE IF EQUAL
GOTO LOOP
DONE DISPLAY *ES, "THANKS"
WEOF PARTS, PARTNO
CLOSE PARTS
STOP

This DATABUS program, when executed, creates a file named
PARTS/TXT. The first nine records might have been filled in to
resemble the following:

PART INVENTORY

IWRENCH 2.95 300
2WRENCH 3.95 300
3WRENCH 4.95 400
4WRENCH 6.50 100
SWRENCH 7.95 300
6WRENCH 9.95 400
7HAMMER 4.95 300
8HAMMER 6.95 600

To see what dgquantity of a specific part exists, and
possibly change that value, the following program was written.
This progam asks the user for the number of the part that he
wants checked. The program reads that record and displays the
quantity inventoried. The wuser 1is given the opportunity to
change the number of parts inventoried. Then the user is asked

20

if he is finished changing the file.

Note the use of the OVER condition check. If a record
cannot be found, the OVER flag is set. The checking of the OVER
flag is an easy way to check if the part number specified is
included in the file.

PARTNO FORM 2
QUAN FORM 3
CHANGE DIM 1
YES INIT "y"
DONE DIM 1
NQUAN FORM 3
PARTS FILE
OPEN PARTS, "PARTS"
LOOP KEYIN *ES, "QUANTITY CORRECTION PROGRAM":

*pP1:3,"PART NUMBER:"PARTNO
READ PARTS, PARTNO; *27,QUAN
GOTO ERROR IF OVER
DISPLAY *P1:5,"EXISTING QUANTITY IS",QUAN
KEYIN *P1:6,"DO YOU WANT TO CHANGE IT?"
CHANGE
MATCH CHANGE TO YES
GOTO FIX IF EQUAL
END KEYIN *pP1:8,"ARE YOU DONE?",DONE
MATCH DONE TO YES
GOTO FIN IF EQUAL
GOTO LOOP
ERROR DISPLAY *p1:9,"**BAD PART NUMBER**"
GOTO LOOP
FIX KEYIN *P1:7,"NEW VALUE:" ,NQUAN
WRITAB PARTS, PARTNO; *27,NQUAN;
GOTO END
FIN CLOSE PARTS
DISPLAY *P1:9,"THANKS"
STOP

Indexed Access

When you use indexed access, you use two files. One file
is the actual data file. The other file contains the index
structure. Because data files may be accessed in many different
-ways, a data file can have several index files associated with
it.

You can create the data file using physically sequential or
random access WRITE statements. Once the file is created, you
use the DOS INDEX command to create the index files. Because
indexing is based on fields in logical records, the data file
can be record and space compressed-. In this section, the word
record refers to a logical record. The data in each 1logical
record can be space compressed and the fields will be properly
interpreted.

Indexing is based on the standard ASCII collating sequence.
See Appendix B for a chart of ASCII values.

21

Indexing is Based on Keys

Indexing is based on a key. A key is a field of data in
each record. Each key must be unique. The key can be alphabetic
or numeric. In the following example, the first nine digits in
each field represent the person’s social security number and is
used as a key to that record.

347 460000JOHN Q. PUBLIC
49370211 | SUSAN SUNSHINE,...
289112091 JANE DOE....

ﬂexmﬂs”wﬂyamwawéwndag
an indexing key o the recora

A KEY IS A FIELD OF DATA

Before you write the data file, you should consider the
best arrangement for the data so the key choice can easily be
made. The key must be in the same position in each 1logical
record.

The INDEX Utility

To use the INDEX utility, you must ROLLOUT to DOS and issue
the INDEX command at the console or include it in a CHAIN file.
See Chapter Six for an explanation of ROLLOUT and examples of
its use. The INDEX command has this format:

INDEX input,output;key

where input is the name of the data file, output is the name of
the index file that INDEX will create, and key specifies the
field that is used as the index. If an output file name is not
specified, the input file name will be wused with an /ISI
extension.

For example, if the data file given in the previous example
is named CIASS1/TXT, then this command:

INDEX CLASS1;1-9

creates CLASS1/ISI, an index file containing the index structure

based on the social security numbers at the beginning of each
record.

the index e T e Aata 4le

CLASS1/ISI CLASSL/TXT
120359587 131218812
1321218812 390020509 ~nrrrr
203841579 348293750
3474¢A22] 1203595 BT s
244293750 203849(579
390020509 247469221

THE INDEX FILE CONTAINS POINTERS TO INDEX ENTRIES IN THE DATA
FILE

You can create several index files for the same data file
by using the INDEX utility on different fields and specifying
different output files. For example, these commands:

INDEX CLASS1,CLASS1A;1-9
INDEX CLASS1,CLASS1B;24-28

create two index files for the CIASS1 data file. CLASS1A/ISI
contains the index structure based on the characters in the
first nine positions in the data file. CILASS1B/ISI contains the
index structure for the data in positions 24 through 28. When
you want to read or write based on the key declared in
CLASSIA/ISI, you open CLASSIA/ISI, which automatically points to
CLASS1/TXT, the data file. When you want to use the index in
CLASS1B/ISI, you open CLASSIB/ISI, which also points to
CIASS1/TXT, the data file.

The Five Indexed Operations
Once the index is created for a data file, there are five

basic indexed operations you can perform on a file. These
operations are:

1. Reading a record of a given key value

2. Reading the record of the next sequential key value

3. Updating the record that was last accessed through the
index

4. Inserting a new record of a given unique key value

5. Deleting a record of a given key value

All of these operations are discussed in the following sections.
Logical and Physical Files
For indexed files, the IFILE declaration must be used to
declare that a file is an indexed file. The following statement
declares that FILEA is the logical name for an indexed file:
FILEA IFILE

To associate this 1logical file name with an existing
physical index file, you must use the OPEN statement. The

23

statement:
OPEN FILEA,"CODES"

associates the logical name FILEA with the existing index file
CODES/IS1I. (In this case, the /ISI extension is assumed if ‘an
extension 1is not specified because this is an index file
declaration). CODES/ISI is the index structure that points to
the CODES data file.

Indexed READ Statements
Indexed READ statements use this format:

READ file,key:;variables

where file is the logical file name (declared as an IFILE), key
is a variable containing the characters you are looking for in
the index, and variables are the list of data items. The index
file is searched for the key given in the string variable key.
The key is considered to match an item in the index file if both
have exactly the same number of characters and all of them match
or if all of the characters up through the length of the index
item match and then the rest of the characters in the Kkey
variable are spaces.

Remember that there are no trailing spaces in the index key
items. This means that even if the INDEX utility is told to
index on column 1 through 9, and if that field in a certain
record consists of only one character followed by eight spaces,
the index file key item would consist of that one character
followed by the key terminator character-.

If a match is found, the record containing the matched key
is read from the beginning, including the key value.

If no match is found, the OVER condition flag is set. It
is, therefore, a good idea to include a statement similar to the
following, which transfers control to label BAD, where an error
message is displayed:

GOTO BAD IF OVER

The following READ statements show how indexed reads can be
performed:

READ FILE,KEY;KEY,NAME,ADDRESS

This reads the record containing KEY, and since KEY is the first
variable in the record, reads KEY along with NAME and ADDRESS.

READ FILE, KEY;KEY,NAME,ADDRESS;

This is similar to the above operation, but saves time by not
scanning to the end of the logical record containing the KEY.

READ FILE,NULL;KEY,NAME, ADDRESS

24

Assuming that NULL is given a null value, this is an indexed
re-read. This re-reads the last 1logical record that was
accessed.

READ FILE,KEY;*20,NAME;

This reads the record containing KEY and reads data into the
variable NAME starting at character position 20. The semicolon
is used because it is not necessary to read any other data in
the record at this time.

CAUTION: The tabbing facility illustrated above, 1like all
DATASHARE tabbing facilities, will not properly expand space and
record compressed files.

The READKS Instruction

All of the key pointers are stored sequentially, in ASCII
collating sequence, in the index file (see Appendix B for a list
of ASCII values). The READKS instruction is used to read the
record pointed to by the next sequential key entry in the index
file. The following illustration shows how READKS can be used:

6~ﬁkxﬁﬁ G dats Life
f This isthe i

JOHNSON W LONG~ the)
/85t key Q,Mf/a/
voed—_ 1, JONES e KELLY s [§ 70 eyt
this is the | s KELLY e JOUNSON A~
et /| LaneLy e SONES e WS ot

READKS READS THE SEQUENTIALLY NEXT KEY IN THE INDEX FILE
The READKS instruction follows this format:
READKS file;variables
where file is the name of the logical file and variables are the
data that is to be read.
For example, this READKS statement can be used:

READKS FILE; *20,NAME

This reads the variable NAME from the 20th character position in
the next sequential keyed record.

Indexed WRITE Statements
To do indexed insertion writes, use the WRITE statement,
which has this format:
WRITE file,key;variables

where file is the name of the logical file and variables are the

25

data that is to be written into the file. Key must not be null
and must not already exist in the index.

The key is inserted in the index file and the record is
written at the end of the data file. A new end-of-file mark is
automatically placed after the added record. If your data file
has more than one associated index file, use the INSERT
instruction to add the key values to the other indexes. See the
INSERT section for instructions on how to use this.

When inserting items whose keys fall randomly within the
collating sequence, you can usually insert a number of records
equal to one-tenth of the total number of records in the file
before the insertions will take significantly longer. It
generally is a good- idea to REFORMAT with record compression and
then rerun the INDEX utility as often as practical when many
insertions and deletions are being performed. This will keep the
speed of insertions and indexed accesses as high as possible.

The following examples show how indexed insertion WRITE
statements work:

WRITE FILE,KEY;KEY,NAME, ADDRESS

This writes a new record containing the values for KEY, NAME,
and ADDRESS at the end of the data file. An end-of-file mark is
automatically written after ADDRESS. The index is updated.

WRITE FILE,KEY;KEY,NAME, ADDRESS;

This also writes a new record, but does not write an end-of-file
mark at the end of the file. The index is updated. You could
use this if you wanted to finish writing the record physically
sequentially, and then write an EOF mark at the end of the file
yourself. You must be careful, however, that no other DATASHARE
user is going to do an insertion in that file before the EOF
mark is written, or they will get a RANGE trap error.

If you are going to add a lot of data to your file, it
often is a good idea to add it physically sequentially and then
Ccreate a new index structure by re-running the INDEX utility.

UPDATE Modifies the Most Recent Record

The UPDATE instruction allows you to modify the last record
that was accessed with a READ or READKS operation. You do not
supply the key because it knows which key to use. UPDATE has
the following format:

UPDATE file;variables

where file is the logical file name and variables are the data
that is to be overwritten. For example:

UPDATE FILE; *20,ADDRESS

reads the last indexed accessed record in FILE and overstores
the data in ADDRESS starting at the 20th character.

NOTE: Remember that tabbing instructions do not properly expand
space and record compressed notation.

INSERT Updates Other Indexes

Often you will have more than one index for a data file.
The indexed insertion WRITE statement only updates one index.
To update any other indexes, use the INSERT instruction. When
the INSERT operation is performed, the specified key is inserted
into the specified index file. This must be performed after the
associated indexed insertion WRITE and before another WRITE.
The format of the INSERT instruction is:

INSERT file,key

where file is the name of the logical index file and key is the
key that is to be inserted in the index.

DELETE Deletes a Record

DELETE allows a record to be physically deleted from a data
file and for its key to be deleted from the specified index.
The DELETE instruction is also used to delete keys from any
extra index files for that data file. The DELETE instruction
has this format:

DELETE file,key

where file is the name of the logical file and key is to be
deleted from the index-.

Assuming that the data file INVOICE has three associated
logical index files, INVOICEA, INOIVCEB, and INVOICEC, the
following instructions will delete the record pointed to by KEY
and delete the index entries in the three index files:

DELETE INVOICEA,KRKEY
DELETE INVOICEB,KEY
DELETE INVOICEC,KEY

Because the DELETE operation actually just overstores the
logical record with 032 delete characters, it does not release
any space. Therefore, it is a good idea to REFORMAT and then
re-index the file if you are doing a lot of deletions. REFORMAT
will release this extra space. See the REFORMAT section of this
chapter.

Writing the End-of-File Mark

When you create the data file, you wuse physically
sequential or random access methods and use the WEOF commande.
When you add data using indexed insertion WRITE statements, the
end-of-file mark is automatically written for you.

Indexed Program Example

The following example illustrates Jjust one application
suitable for indexed access. A company keeps information about
each employee based on that employee’s social security number.

27

A data file has been set up with the social security number in
the first nine character positions. An index was created based
on that field.

In this program, the user is asked to type in a social
security number. If the social security number is found, all
information about that person is displayed on the screen. If it
isn“t found, an error message is displayed. A social security
number of nine zeroes ends the program.

DONE INIT "000000000"
SS DIM 9
NAME DIM 20
ADR DIM 20
CITY DIM 15
STATE DIM 2
Z21P DIM 5
AFILE IFILE
OPEN AFILE, "CLASS1"
LOOP KEYIN *ES,"SOCIAL SECURITY NUMBER:",SS

READ AFILE, SS;SS,NAME,ADR,CITY,STATE, ZIP
GOTO BAD IF OVER
DISPLAY *P1l:3,NAME,*P1:4,ADR,*P1:5,CITY:

* ",STATE," ",2IP
GOTO LOOP
BAD MATCH SS TO DONE

GOTO FIN IF EQUAL
DISPLAY *P1l:3,"**BAD NUMBER**"
GOTO LOOP
FIN DISPLAY *P1:3,"THANKS"
STOP

Common File Access Considerations

Since DATASHARE is capable of executing several programs at
once, more than one program can access a single file at any
given time. There is no problem if these accesses are not
modifying the contents of the file or if they are modifying
different records in the same file. .

However, 1f a certain record may be modified by more than
one program at a time, a lockout mechanism is needed to allow
one program to finish its modification before another program
can starte.

28

READ FILEL, Num; PART, QuAN READ FILE1 NUM; PART, QUAN

mﬁ\& GQUAN To NGQUAN COMPARE gwe&TgA NQUAN
E IF EQUAL 6070 DONE (F L
WRITAB FILEL NUM; %20, NUM) WRITEB FILE 1, NUM; ¥20,NUM
. b
i Whioh wil! Ee—r
I chame ittiret 7
/am— 8 |

——

IF MORE THAN ONE USER TRIES TO MODIFY A RECORD, A PROBLEM CAN
DEVELOP

The Prevent Interruptions (PI) instruction enables a
programmer to prevent certain types of program activities from
being interrupted by another program for up to 20 instructions.
The number of instructions must always be a fixed decimal
number, not a numeric variable. The instructions included
cannot include KEYIN, DISPLAY, or CONSOLE. The following
example shows an effective use of the PI instruction:

PI 4

READ FILE, KEY ;NAME, QUAN, STOCK
SUB QTY FROM QUAN

GOTO NOTNUFF IF LESS

UPDATE FILE;NAME,QUAN,STOCK

Interruptions will be prevented from the PI instruction through
the UPDATE instruction.

If, the user, rather than the program, needs to make a
decision before a modification is made, the coding becomes more
elaborate. The PI instruction cannot be used to prevent
interrupts when a KEYIN, DISPLAY, or CONSOLE instruction must be
executed. First the value should be read in and displayed for
the user. Before a modification is made, however, the value
should be rechecked. The following instructions illustrate
this:

READ FILE, KEY;NAME, QUAN, STOCK
DISPLAY *ES,NAME, *N, QUAN, *N, STOCK
KEYIN *N, "CHANGE?",CHANGE

MATCH CHANGE TO "YES"

GOTO NO IF NOT EQUAL

KEYIN *N,"NEW QUANTITY:",NQUAN
PI 4

READ FILE, KEY;NAME, QUAN1,STOCK
MATCH QUAN1 TO QUAN

GOTO NE IF NOT EQUAL

UPDATE FILE,KEY ;NAME,NQUAN,STOCK

29

If the user wants to change the value, he supplies the new
value and the o0ld value is checked to see if it has been
changed. 1If it has been changed, control is switched to another
part of the program, which tells the user that the value has
been changed by someone else and asks the user if he still wants
to change the value.

The REFORMAT Utility

The DOS REFORMAT utility is used to change the internal
disk format of a data file. REFORMAT permits you to select
essentially three different output file formats:

1. Blocked files that are not space compressed.

2. Record compre ssed files that are not space
compressed.

3. Files that are both record compressed and space
compressed .

Record compression and space compression are explained in
the Physically Sequential Access section of this chapter.

Blocked files are used for physically random access, where
each logical record must be associated with a distinct physical
record. Often it is convenient to create a random file through
the use of the Editor, which record and space compresses its
output. REFORMAT can then reprocess the file into the correct
format for random access-.

Also, when a file 1is accessed with the indexed access
method, any additions or deletions result in an increase in the
physical size of the file. REFORMAT recovers vacated space and
releases extra allocated space-.

How to Use REFORMAT

REFORMAT must be run under DOS, and not under DATASHARE.
ROLLOUT must be used to access DOS (see Chapter Six). The
REFORMAT command has this format:

REFORMAT filel,file2;parameters

where filel is the input file, file2 is optional and specifies
the name output file which will contain a reformatted version of
filel (if this is omitted, filel will be reformatted in place),
and parameters include those listed below:

PARAMETER DESCRIPTION

Bn The output file will be blocked with n
logical records per physical record and
with no space or record compressione.
(You will usually want to use 1 as the
value for n.)

C The output file will be space and record
compressed. The number of 1logical

30

records per physical record will be
indeterminate.

R The output file will be record
compressed. The number of logical
records per physical record will be
indeterminate-

Ln The length of each logical record will
be adjusted to n characters. If the
logical record is shorter than n
characters, it will be padded with
blanks to the proper 1length. If the
logical record is longer than n
characters, the action taken depends on
the T or S parameter; which also must be
specified:

T Truncate the logical record if
necessary. All extra characters
will be lost.

S Segment the logical record into as
many logical records as necessary:
with each containing n characters,
padded if necessary.

D If reformatting is done in place and
this parameter is specified, any disk
space vacated by the reformatting
process 1is returned to the operating
system for reuse.

REFORMAT Me ssages :

Because there are so many error messages that REFORMAT can
display. and because those messages are explained in the DOS.
User’s Guide, refer to that book for an explanation of the
REFORMAT messages-.

Helpful Hints

Once you understand how to use data files, these hints will
help you use them even more effectively. These hints will help
your DATASHARE program execute faster and more efficiently.

Close the File Properly

The CLOSE instruction can mean the difference between a lot
of wasted space on a disk and the efficient use of the space on
a disk. When a file is created, file space is allocated in
segments. Under DOS.A each segment contains 192 physical
records. Under DOS.B each segment <contains 240 physical
records. When a CLOSE instruction 1is executed, all extra
physical records are given back to the operating system and can
be used to form another segment. Without the CLOSE instruction,

31

any extra physical records will still be allocated to your data
file.

reeont 572, | JOWN DOE - - - -

data
reoord 5627 (BMIO OF FILE)
H awEdwmmwgﬁgaMa#wz
Leot record in -
ﬂ@na¢—/&7[

USE CLOSE TO GET RID OF EXTRA SPACE

Group I/0 into One Statement

If you group all of your reads or writes for one logical
record into one statement, there will only be one physical disk
head movement. But because there may be other DATASHARE users
on the system and you may be using system routines, if you use
several small read or write continuous statements (ending in a
semicolon) the disk read/write head will have to reposition
several times. Obviously this takes more time, so if you have
the data area available to store one entire logical record, read
or write it all at once.

The following example requires three disk head movements
and wastes execution time:

READ AFILE, SEQ;NAME;

DISPLAY *ES,NAME

READ AFILE, SEQ;ADR,CITY,STATE, ZIP;
DISPLAY *N,ADR,*N,CITY,*N,STATE,* N,ZIP
READ AFILE, SEQ;NUM1,NUM2,NUM3

This requires only one disk head movement, efficiently uses
execution time, and accomplishes the same result.

READ AFILE,SEQ ;NAME,ADR,CITY,STATE:
ZIP,NUM1,NUM2,NUM3
DISPLAY *ES,NAME, *N,ADR,*N,CITY,* N, STATE, *N, 2IP

Use REFORMAT to Reorganize Your Files

If you are using indexed access, and add or delete records,
you should use the REFORMAT utility to release extra allocated
space. See the REFORMAT section of this chapter. After
REFORMAT, you must re-index your index file.

Write EOF at End-of-File

The WEOF instruction does not automatically space to the
end of file to write an end-of-file mark. You must be
positioned at the end of the data file, or the EOF mark will be
written in the middle of your data area. If the EOF mark is
written in the middle of your data area, you will overwrite some
of your data. Also, if you are reading physically sequentially.
you will not be able to read past the EOF mark.

32

The WEOF instruction should not be

insertion WRITES Dbecause the
written after each write for you.

end-of-file

used
is

with indexed
automatically

33

CHAPTER THREE

PROVIDING SYSTEM SECURITY

Introduction

Before a DATASHARE system can be used, there must be an
ANSWER and a MASTER program for every port. The ANSWER program
allows you to force the user to give some sort of identification
before he is allowed to use the DATASHARE system. The ANSWER
program chains to the MASTER program, when the STOP instruction
is executed. The MASTER program usually requests the name of
the program that the user wants to execute.

The se programs, written in the DATABUS programming
language, are created under the DOS Editor and are compiled just
like any other DATASHARE program.

Separate Programs for Each Port

Because DATASHARE looks for an ANSWER and a MASTER program
for each port, the ANSWER and MASTER programs are named ANSWERL
and MASTER1 for port 1, ANSWERZ2 and MASTERZ2 for port 2, etc.

Typical Systemr Lontguration

EACH PORT CAN USE ITS OWN ANSWER AND MASTER PROGRAMS

If DATASHARE cannot find the ANSWER or MASTER program for a
port, it will look for programs named ANSWER or MASTER, and will
use those programs. If those programs do not exist, that port
will never become active even if it is configured into the
system.

You may want to use separate ANSWER and MASTER programs to
individualize the access procedure for each port. For example,
you could use a different ANSWER and MASTER program sequence for
the DATASHARE port you have in the accounting area than the
programs for the port in the shipping area.

Certain programs, including DSREMOT and the DATASHARE
Editor, need to know the port number associated with the port
from which they are executing. To use these programs, separate
MASTER programs- must be used for each port and the port number
must be the first data character of the MASTER program for that
port.

35

Consider Your System

The ANSWER and MASTER programs must be tailored to fit your
operating environment. Careful consideration will allow you to
provide personal access restrictions and to enforce file access
limitations.

The ANSWER Program

The ANSWER program can provide the opportunity to require
that the user identifies himself properly before he uses the
system. In an environment where security is important, this
feature becomes an essential safeguard.

The User Must Satisfy the ANSWER Program

When a user first signs on to the system and is executing
in the ANSWER program, he cannot escape identification requests
by striking the INTERRUPT Key. The user must satisfy the
requirements of the ANSWER program before he can be granted
access to the DATASHARE system.

The ANSWER program can contain whatever identification
sequence fits your operating environments. If you do not desire
to use any identification whatsoever, your ANSWER program can be
very short, possibly containing only an identifying message and
a STOP statement. Two examples of ANSWER programs follow.

One essential security measure to take for all ANSWER
programs 1is to make a backup copy of each ANSWER program on
cassette and then destroy the source file for those programs.
This insures that no one will use the Editor to list the program
and find the security codes.

A Simple Answer Program

The following example shows a very simple answer program
for port 3. First this program displays the port number on the
user’s display screen and displays its name on the console.
Then the program asks the DATASHARE user to supply an
identification ("ACCOUNTING"). If the identification matches, a
STOP statement is executed, which causes a chain to the MASTER
program. If the identification doesn’t match, an error message
is displayed and the user has to try again.

PORTN FORM "3"
ID DIM 10
IDCODE INIT "ACCOUNTING"

DISPLAY *ES,"DATASHARE PORT",PORTN
CONSOLE "ANSWER", PORTN
LOOP KEYIN *EOFF,"ID:",ID
MATCH ID TO IDCODE
GOTO GOOD IF EQUAL
DISPLAY "***INVALID ID ***"
GOTO LOOP

GOOD STOP
STOP

If you look closely at the KEYIN statement, you’ll notice
how a simple security measure was enforced. The *EOFF control
inhibits the display of all characters that are typed in by the
user. Because the echo is turned on after each KEYIN statement,
the *EOFF control must be included at the start of each
statement in which no echo is desired-

Because the input characters are not echoed back on the
display screen, no one can see the identification code that the
user is typing. Therefore, unauthorized people cannot see this
identification and use the DATASHARE system.

A More Advanced Example

The simple example used only two simple security measures:
an identification was requested and the echo was turned off
while the identification was typed in. There are several other
convenience and security measures that can be easily built into
any ANSWER programe.

One added security measure is to use the employee’s social
security number, or some other unique identifier, for
identification instead of just one identifier for the entire
group. This insures that only a select group of people can use
the system.

Another added security measure is to limit the number of
bad identifications allowed, so an unauthorized user can’t Kkeep
entering identifications to try to. break the system’s security.
After a certain number of tries, the ANSWER program can alert
the operator that someone who apparently does not know the
identification code is trying to access the system and prohibit
the user from entering a valid identification.

The following program incorporates both of these added
features. There are only five people that are allowed to use
this DATASHARE port. If the user does not enter an acceptable
number after three tries, the user is not allowed access to the
system even if he does enter a valid identification.

‘ Notice the use of the *W wait statements. Each *W causes a
one-second wait. Use the *W rather than a counter or closed
loop to cause a wait because the *W uses very little processor
time. A counter or a closed loop, on the other hand, uses a lot
of processor time and will slow down the entire DATASHARE
systeme.

PORTN FORM "3"

ID DIM 9

JANE INIT "342869387"
SALLY INIT "289374621"
BOB INIT "293872159"
JOHN INIT "359123572"
GEORGE INIT "381298724"
ZERO FORM "O"

CTR FORM "3"

ONE FORM "1"

DISPLAY *ES,"DATASHARE PORT",PORTN
CONSOLE "ANSWER", PORTN
LOOP KEYIN *EOFF,"ID:",ID

37

COMPARE CTR TO ZERO
GOTO WARN IF EQUAL
MATCH ID TO JANE
STOP IF EQUAL
MATCH ID TO SALLY
STOP IF EQUAL
MATCH ID TO BOB
STOP IF EQUAL
MATCH ID TO JOHN
STOP IF EQUAL
MATCH ID TO GEORGE
STOP IF EQUAL
DISPLAY "**BAD IDENTIFICATION**"
SUB ONE FROM CTR
GOTO WARN IF EQUAL

GOTO LOOP
WARN CONSOLE "NO ID FOR PORT",PORTN
BAD DISPLAY "**NO VALID ID ENTERED**", *N:
"**DORT EXECUTION STOPPED**",*W, *W, *W, *W
GOTO BAD

NOTE: A user could try to sign on to the system again after he
has been stopped by the above program by turning his port off by
the power switch and then turning it on again or redialing (if
he is using a dial-up port). If you know that a port is used as
a dial-up, you can revise the above program to disconnect the
port. A CHAIN "ANSWER" statement will disconnect a dial-up
terminal. Thus, the only change necessary to change this
program to disconnect a dial-up connection is to change the last
line of the program to read CHAIN "ANSWER".

When the terminal is reconnected to the DATASHARE system,
the user must again try to satisfy the ANSWER program requests.

The MASTER Program

After the DATASHARE user has satisfied the requirements of
the ANSWER program, the MASTER program is automatically
executed. The MASTER program usually requests the name of the
program that the user wishes to execute.

The DOS directory, which contains the 1list of programs
available, cannot be directly accessed by the MASTER program, SO
either the user must know which program names he wants or the
programmer must set up some way for the user to obtain the names
of the programs. This can easily be done by setting up a file
that contains the names of all of the programs. The MASTER
program can then display the name of the available programs by
reading this file.

Every STOP statement is actually considered to be a CHAIN
MASTER statement by DATASHARE. Therefore, after each program is
executed, control returns to the MASTER program for that port.

38

A Simple MASTER Program

This simple MASTER program merely requests the name of the
program that the user wants to execute. A CHAIN is executed to
that program, and if the program does not exist, an error
message is displayed. The RELEASE statement is included in case
the previously executing program for that port forgot to release
the printer.

PORTN FORM "3"
FILNAM DIM 8
RELEASE
CONSOLE "MASTER",PORTN
LOOP KEYIN *N,*EL, "PROGRAM NAME:",FILNAM

TRAP NONAME IF CFAIL
CHAIN FILNAM

NONAME DISPLAY "**NO SUCH PROGRAM**"
GOTO LOOP

A More Advanced Example

The simple example offers no help to the DATASHARE user who
does not remember the name of the program he wants to execute.
It also allows any user at any port to execute any DATASHARE
programe.

This more advanced example uses a file named HELP to
contain the names of the files that the user can access. The
user can request that these file names be listed for him, and

the program checks that the user enters only one of the file
names listed in the file.

PORTN FORM "3"

HELP INIT "HELP"

FILE DIM 8

HELPF FILE

NUM FORM 2

NAME DIM 8

ZERO FORM "O"

ONE FORM "1"
RELEASE

OPEN HELPF,"HELP"

CONSOLE "MASTER",PORTN

DISPLAY *ES, "MASTER PROGRAM FOR PORT",PORTN
LOOP KEYIN "TYPE HELP FOR HELP",*N, "PROGRAM NAME:",FILE

MATCH FILE TO HELP

GOTO LIST IF EQUAL

MOVE ZERO TO NUM
LOOP1 READ HELPF,NUM;NAME

GOTO BAD IF OVER

MATCH NAME TO FILE

GOTO OK IF EQUAL

ADD ONE TO NUM

GOTO LOOP1

39

40

BAD

LIST
LISTLP

OK

DISPLAY "**NO SUCH FILE**"
GOTO LOOP

MOVE ZERO TO NUM

READ HELPF,NUM;NAME

GOTO LOOP IF OVER

DISPLAY NAME

ADD ONE TO NUM

GOTO LISTLP

CHAIN FILE

CHAPTER FOUR

Virtual Memory Programming Considerations

~Introduction

DATASHARE uses virtual memory techniques to give each user
the illusion that there is more main memory available to him
than actually exists. Virtual memory allows users at several
ports to execute large programs that would otherwise overflow
the existing memory space.

Once you understand how virtual memory works, you'll find
that it may be easy to increase your program’s execution speed
by carefully structuring your programs. And since each program
affects the speed of the entire DATASHARE system, carefully
structured programs also help to increase the execution speed of
all other executing programs.

What is Virtual Memory?

One of the most important aspects of any computer system is
the main memory. Memory holds the information that tells the
computer what it is to do at any given time. Memory also holds
part of the data that the computer is going to work with.

Main memory space in any computer processor is limited.
Disks, cassettes, and magnetic tapes are among the devices that
are use to store the data., including information and
instructions, when the processor doesn’t immediately need it.
When the processor needs that information or instruction, it
must read it from the storage media into main memory, if it
isn“t there already.

Disk, I need

that dats, noaw!

OK, main mepnory, its
ming ,-,’;,y W'/

INFORMATION IS STORED ON DISK UNTIL IT IS NEEDED

DATASHARE Manages the Memory Allocaticn

The DATASHARE program, with the help of the Disk Operating
System (DOS), decides when new data must be read into main
memory. To do this, it employs virtual memory techniques that
allow DATASHARE to keep track of the memory or storage location
of all of the data.

DATASHARE tells the Datapoint processor where the
information is stored on the disk and where it should go in main
memory. Because it takes time to read data from disk to main
memory, DATASHARE tries to minimize the number of reads and
writes that are necessary.

41

DATASHARE Code is Never Modified

Datapoint’s DATASHARE system code is reentrant, which means
that it is never modified and can be shared by more than one
program at a time. Because it is never modified, the system
DATASHARE code must only be read from disk, and never written
back. This feature really saves the processor time because the
processor never needs to write the code back to disk.

Because it is reentrant, more than one DATASHARE port can
execute a section of DATASHARE system code at any one time.
This permits all the ports to share the memory space allocated
to the DATASHARE program itself.

DATASHARE system code is also very compact. A very few
instructions are capable of invoking a large amount of processor
activity. Therefore, only a small &dmount of new DATASHARE
system code must be read from the disk to main memory.

Program Code is Accessed Often

DATABUS code for user programs is also reentrant, but the
code for your DATABUS program is used very differently from the
DATASHARE system code because it is accessed at a very high
rate. Sections of program code are constantly read into main
memory. Unless all the ports share one DATABUS program, several
DATABUS programs must often appear to be resident in main memory
for execution at various ports.

The next section discusses exactly how DATASHARE manages to
swap system and program code. There are many effective ways you
can structure your DATABUS programs to minimize the amount of
swapping that is necessary-.

Virtual Memory Implementation

Code is Divided Into Pages

DATABUS program code and DATASHARE system code is read into
main memory in chunks that are called pages. Each page contains
250 bytes (a byte is an executable unit, often a character).

Each time a byte of program code needs to be fetched by the
DATASHARE interpreter, a check is made to determine if that byte
is immediately available in memory or if the page containing the
byte must be read in from disk. DATASHARE s virtual memory
techniques determine when a page must be swapped from disk to
main memory. The page in main memory never needs to be written
back to disk because the program code is never modified. The
scheme used is based on pure demand, with the least recently
used page being overwritten to make space for the new page.

pagel ~ ((ODE FROM DRDERS PROGRAM)

pageZ ((COCE FROM MASTER PROGRAWM) E~/east-recently vsed poge

/8 ueranitten

Mav
MamorRy < pme 3 ~» (CODE FROM RECEIPTS PROGRAM)

page 4 ~ (COVE PROM DATASHARE PROGRAM)

THE LEAST RECENTLY USED PAGE IS OVERWRITTEN WHEN A NEW PAGE
NEEDS TO BE READ TO MAIN MEMORY

The Disk Limits the Number of Pages

The number of pages that can be resident in main memory at
one time is limited by the disk controller that you are using
with your DATASHARE system.

The 9350 series cartridge disk controller allows four pages
to be resident in main memory at a time. The DATASHARE system
code uses one page, leaving three pages for user programs.

DATASHARE vees pagel

vser programs vse the dther
3 poges

YOU CAN HAVE FOUR PAGES IN MEMORY IF YOU’RE USING A
CARTRIDGE DISK SYSTEM

The 9370 series mass storage disk controller allows 16
pages to be resident in main memory at a time. The DATASHARE
system code uses four of these pages, leaving 12 pages for user
programs.

43

YOU CAN HAVE 16 PAGES IN MEMORY IF YOU'RE USING A
MASS STORAGE DISK SYSTEM

Attaching more disk drives to your DATASHARE system will
not increase the number of pages allowed because one disk
controller controls all of the disk drives. More disks,
however, can increase the amount of supplementary storage
available to your system. The number of pages that can be
resident in main memory at any one time has serious implications
on your DATASHARE system performance. The more pages that are in
main memory, the fewer page swaps necessary.

Where are the Page Boundaries?

How can you tell if your code is crossing page boundaries?
It’s easy. Look carefully at the 5-digit octal number that is
printed at the left side of your DATABUS program when it is
compiled and listed on the printer. Whenever the middle digit
changes to a four, or back again to a zero, a page boundary has
been crossed.

In the following example, the page boundaries are marked:

01372 W4 SUB C1,X

01405 ADD C2,Y

01772 MOVE BASE,SIX

02005 RESET BASE TO 4

02372 SUB "1",MOVE

02413 GOTO CONT IF NOT ZERO

WHEN THE MIDDLE OCTAL DIGIT CHANGES TO A 4 OR A O,
A PAGE BOUNDARY HAS BEEN CROSSED

Programming Hints

Each time your DATABUS program code crosses a page
boundary, a new page will have to be read into main memory.
There are several effective ways you can minimize the amount of
page swapping in your programe.

Repeat Code Rather than Call Subroutines

One way to increase execution speed is to repeat small
sections o0of code as much as possible rather than call a
subroutine each time that code 1is needed. It is faster to
repeat short sections of instructions rather than to call a
subroutine each time those instructions are needed if the
subroutine is located in a different page from the location
where it is called.

2200 DATASHARE allows each program to use 16,000 bytes of
effective memory space. 5500 DATASHARE allows each program to
use 32,000 bytes of effective memory space. Because this limit
is much larger than most DATASHARE programs ever need to use,
repeating code usually will not enlarge a program beyond the
limit.

Carefully Structure Loops

Loops are sections of code that are repeated. If a loop
spans page boundaries, each page will have to be swapped back
and forth between main memory and the disk. Therefore, it is
best to keep loops small and compact.

Use the TABPAGE Instruction

The TABPAGE instruction forces sections of a program to
start at a new page boundary-. This instruction should only be
added after the program is completely debugged, and should be
used with caution.

You should never 1liberally scatter TABPAGE instructions
throughout your program. This wusually will result in an
increase in the number of pages that must be read into main
memory, which severely decreases execution speed-.

A TABPAGE instruction can also cause more harm than help in
another way. You may be able to increase the execution speed of
one part of your program, but actually decrease it in another
part of your program because the TABPAGE causes other sections
of instructions to cross page boundaries at different places.

The best wuse for a TABPAGE instruction 1is to force
often-repeated loops to reside entirely within one or two pages.
Look carefully at your program once it works and decide if the
TABPAGE instruction can really help you.

A Bad Example
The following section of instructions is a good
illustration of how NOT to structure a program:

LOOP KEYIN "NAME",NAME
MATCH NAME TO "“SALLY"
GOTO L1 IF NOT EQUAL
DISPLAY "SALLY’S IDENTIFICATION PROGRAM"
CALL SALLY
GOTO IDOK
L1l MATCH NAME TO "JANET"
GOTO L2 IF NOT EQUAL
DISPLAY "JANET’S IDENTIFICATION PROGRAM"
CALL JANET

45

GOTO IDOK
L2 MATCH NAME TO "BILL"
GOT L3 IF NOT EQUAL
DISPLAY "BILL’S IDENTIFICATION PROGRAM"

CALL BILL
GOTO IDOK

L3 DISPLAY "BAD IDENTIFICATION--TRY AGAIN"
GOTO LOOP

IDOK KEYIN "PROGRAM NUMBER:" ,NUM

There are two serious problems with this section of
instructions. The biggest problem stems from the CALL
statements. It°s very doubtful if the subroutines are really
necessary since control has to be transferred somewhere else
anyway. It would be better to .just transfer control to a
section of code that includes the instructions that would be in
the subroutines.

Subroutines should be universal in nature. Code should be
written in-line unless it is called from various places in the
programe. Because it does not appear that these subroutines
would be applicable to any other part of the program, it is best
to avoid using the subroutines.

The second problem has to do with the size of the main
loop. Loops should be kept as small as possible. The DISPLAY
statements should be outside of the loop.

A Good Example

Notice how small the main loop is in the following example.
No subroutines are called; instead, the instructions are
included in the main program. This makes sense because control
has to be transferred somewhere else anyway.

LOOP KEYIN "NAME:" ,NAME
MATCH NAME TO "SALLY"
GOTO SALLY IF EQUAL
MATCH NAME TO "JANET"
GOTO JANET IF EQUAL
MATCH NAME TO "BILL"
GOTO BILL IF EQUAL
DISPLAY "BAD IDENTIFICATION--TRY AGAIN"
GOTO LOOP
SALLY KEYIN "SALLY'S IDENTIFICATION PROGRAM" , *N:
"CODE WORD?",CODE

CHAPTER FIVE
Printing

Introduction

Each DATASHARE system can have one system printer attached
to it. This means that all ports have to share that one
printer. This can create problems if too many users want to
print at the same time. These problems can be circumvented,
however, by careful program planning-.

This chapter discusses the allocation of the system
printer, which is directly attached to the central processor.
Each port can have a terminal printer attached to it, however.
The Datapoint 9292 Belt Printer can be used as a terminal
printer.

To use the 9292 Serial Interface Belt Printer at a
DATASHARE terminal, all you have to do is include the printer
control characters in the DISPLAY statement. To turn on the
terminal printer, use the 020 control characters (with a 3360
terminal) or the 032 control characters (with a 3600 terminal).
To turn the terminal printer off, wuse the 024 control
characters. All variables 1listed between the on and off
characters will be printed. In the following example, NAME and
ADDRESS are listed on the printer from a 3600 terminal:

DISPLAY 032,NAME,ADDRESS, 024

DATASHARE can haye. one systemprinter

INAL Gnd 3 Taminal printer on €3ch Lerminal.

MCA PROCBSSOR
2200 or BEOD

TERMIN
PRINTH

TERMINAL AND SYSTEM PRINTER ILAYOUTS

How System Printing is Done

When a user executes the first PRINT instruction in a
program, DATASHARE checks to see if the printer is available.
If the printer is available, the program is given exclusive
control over the printer. That program retains control over the
printer until it executes a RELEASE instruction. If the printer
is not available, execution is halted until it becomes
available.

47

ports must

" w:/b‘ ﬂ print”
mz;"ﬁj / 7

o] L) @ Gystem printer

N

ONLY ONE PORT PRINTS AT A TIME

Remember to RELEASE the System Printer!

Once your program gets control of the printer, it has
control until it executes a RELEASE. If you forget to include a
RELEASE statement at the end of your printing operations in a
program, the printer will hang, waiting for that instruction.
Your other programs will not be able to use the printer, and
neither will anyone else’s programs.

One safeguard against a user forgetting to RELEASE the
printer 1is to include a RELEASE statement as the first
instruction in the MASTER program. Because a STOP instruction
in a DATASHARE system is actually a CHAIN MASTER statement,
control is passed to the MASTER program immediately after a
program 1s executed. Putting a RELEASE instruction at the
beginning of any other program will not solve the problem, since
DATASHARE ignores all releases except those belonging to the
program that is printing.

Managing the Printer

There are a few effective controls that you can implement
on your DATASHARE system to effectively utilize the one system
printer. Some of these ways are very simple to implement:;
others are rather complex. Remember that any method should be
tailored to your needs and requirements.

Write to a Data File, Then Print

Many users have found that it is more convenient to have
their programs write to a data file before it is printed. A
utility program can be written to read the data file and display
it on the user’s display screen. The user can check the file to
be sure that the output is correct before it is printed.

<lw&ﬂ57%§l%ﬁ4ﬂ?£%&(
CHECK /T
THEN BRNT 1T

Use One Port to Print All System Print Files

If you can afford to dedicate one DATASHARE port to
printing, you can write a queuing program for all print files on
the system printer that are written to disk. This one port
could constantly execute this queuing program.

This is the way this queuing program could work. Anytime a
user wants to enter the name of a data file into the queue that
is to be printed, he could execute a program that asks for the
name of the data file. The name of the data file is entered
into the queue file. When the print program, operating on the
dedicated port, is domne printing one file, it reads the queue
file for the next file name.

You can add some special features to each printout this
way . You could print a beginning and ending burst page with
each file. The burst page could contain the time, date, and
name of the file for easy identification.

49

CHAPTER SIX

ROLLOUT and CHAIN

Introduction

ROLLOUT allows a DATASHARE user to temporarily stop
DATASHARE execution at all of the ports and execute DOS
commands. Once the DOS commands have been executed, DATASHARE
can pbe restored to its previous status.

The DOS commands that are to be executed are contained in a
CHAIN file. The CHAIN file specifies the sequence of DOS
commands that are executed. The last instruction in the CHAIN
file usually should be DSBACK, which restores the DATASHARE
system to its previous status.

ROLLOUT is useful for compiling DATABUS programs, creating
an index for a file, or sorting a file. These are operations
that cannot be done under ordinary DATASHARE operation.

ROLLOUT Must be Configured

When you configure your DATASHARE system with the DSCON
program, you are asked if ROLLOUT is to be configured. If you
answer "YES", users will be able to execute ROLLOUT instructions
from their DATABUS programs. If you answer "NO", users will not
be able to use the ROLLOUT facilities.

If you are not sure if ROLLOUT has been configured for your
system, you can run the DSCON program again.

How ROLLOUT Works

ROLLOUT is initiated by the ROLLOUT instruction in a
DATABUS program. The ROLLOUT instruction has this format:

ROLLOUT string

where string specifies the function that is to be initially
executed by DOS. Usually the string is a CHAIN command. The
string can be initialized as a variable, as in this example:

ROLCMD INIT "CHAIN DOSFILE"
ROLLOUT ROILCMD

Or the string can be a quoted string in the command, as in this
example:

ROLLOUT "CHAIN DOSFILE"

See the CHAIN section of this chapter to see how to set up
the CHAIN file.

All Other Programs are Suspended

When a DATABUS program running from any port executes a
ROLLOUT instruction, execution is temporarily suspended at all
other ports until a DSBACK command is executed. The system

status and memory 1is written out to a disk file named

51

ROLLFILE/SYS.

At the 2200 or 5500 console, a beep is sounded to alert the
operator that a ROLLOUT is initiated. DATASHARE is suspended
and DOS is initialized. The DATASHARE time clock is stopped
during ROLLOUT unless the DSBACKID command is executed. The
ROLLOUT program supplies the commands for DOS. When the DOS
functions are completed, the console is left at DOS level unless
a DSBACK command is executed to restore the DATASHARE
interpreter system to its previous status.

If the console is left at DOS level, DOS commands can be
entered at the console. A DSBACK command will return the system
to DATASHARE control.

When to Use ROLLOUT

The ROLLOUT feature is particularly useful when a file
needs to be sorted with the DOS SORT command or if an index file
needs to be made with the DOS INDEX command. Because DATABUS
programs must be compiled under DOS, ROLLOUT can be used for
DATABUS compilations. Examples of some of these functions are
given in the CHAIN description of this chapter.

ROLLOUT Inconveniences Other Users

ROLLOUT inconveniences other DATASHARE users because it
temporarily suspends the execution of their programs. They must
wait (hopefully patiently) until the ROLLOUT 1is over.
Therefore, you should use ROLLOUT with discretion and
consideration of other users.

Also, unless the other users are informed in some way that
a ROLLOUT is occurring, they will not know what is happening
when a ROLLOUT 1is executed. Since their terminals appear
inactive, they may think the system has gone down for some other .
reason.

ROLLOUT Precautions

There are a number of precautions which must be observed
during the use of ROLLOUT. The functions performed under DOS
must not affect any of the operations that were taking place
under DATASHARE. For example, any of the ANSWER or MASTER
programs must not be changed and files that are open and in use
must not be modified or deleted.

When control returns to DATASHARE, certain items in memory
reflecting the state of the DOS file structure are restored. If
these items are no longer the same, terrible things can happen
to the DATASHARE interpreter system. Operations to be watched
in particular include the changing of the object code of any
program that is running, the changing of any files that are
open, and the re-arrangement of any disks with files in use
within a multi-drive system.

Note that changing the DATASHARE configuration will not
have effect wuntil the next time the DATASHARE system 1is
initialized. Reinitializing the system after ROLLOUT will not
see the configuration change.

52

The CHAIN File

The CHAIN Command

The CHAIN command tells DOS to 1look at the disk file
specified for the list of DOS commands that are to be executed.
Basically, the CHAIN file takes the place of a user entering the
commands at the system consocle under DOS.

To specify the name of the file that contains the DOS
commands, specify that file name in the CHAIN command string, in
the following manner:

CHAIN DOSFILE

The CHAIN File Contents

The easiest way to create a CHAIN file is to use the
Editor. Each line in the CHAIN file contains an instruction for
DOS to execute. What you put in your CHAIN file, of course,
depends on your particular application. All CHAIN files should
end with the DSBACK command.

The following CHAIN file simply asks DOS to sort a file:

SORT AFILE,BFILE
DSBACK

This CHAIN file contains INDEX commands for indexed files:

INDEX CIASS1,CILASS1A;1-9
INDEX CLASS1,CLASS1B;10-15

DSBACK

CHAIN files can contain any DOS commands. Remember not to
include commands that change the state of the DOS file structure
(see the ROLLOUT Precautions section for a complete list of
precautions). See the DOS. User’s Guide for an explanation of
DOS commands-.

53

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character string

event

list

name

label

nvar

nval

nlit

svar

sval

slit

nlist

The result of any arithmetic or string
operation: OVER, LESS, EQUAL, ZERO, or
EOS (EQUAL and ZERO are two names for the
same condition).

Any string of printing ASCII characters.

The occurrence of a program trap: PARITY,
RANGE, FORMAT, CFAIL, or I0.

A list of variables or controls appearing
in an input/output instruction.

Any combination of letters (A-2Z) and
digits (0-9) starting with a letter (only
the first eight characters are used).

A name assigned to a statement.

A name assigned to a statement defining a
numeric string variable.

A name assigned to an operand defining a
numeric string variable or an immediate
numeric value.

An immediate numeric value.

A name assigned to a statement defining a
character string variable.

A name assigned to an operand defining a
character string variable or a gquoted
alphanumeric character.

An immediate character string, enclosed
in double quotes (").

A series of contiguous numeric variables.

55

slist A series of contiguous string variables.

rn A positive record number (>= 0) used to
randomly READ or WRITE on a file.

seq A negative number (< 0) used to READ or
WRITE on a file sequentially.

key A non-null string used as a key to
indexed accesses.

null A null string used as a key to an indexed
read.

FOR THE FOLLOWING SUMMARY:
Items enclosed in brackets [1 are optional.

Items separated by the | symbol are mutually exclusive (one
or the other but not both must be used).

COMPILER DIRECTIVES

label
label

EQU
EQUATE
INC
INCLUDE

FILE DECLARATIONS

label
label

FILE
IFILE

DATA DEFINITIONS

label
label
label
label
label
label
label
label

CONTROL

FORM
FORM
DIM

INIT
FORM
FORM
DIM

INIT

GOTO
GOTO
GOTO
BRANCH
CALL
CALL
CALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT

10

100
filenamel/ext]
filenamel[/extl]

nem

"456.23"

n

"character string"
*ne.m

*"456.23"

*n

*"CHARACTER STRING"

(label)

(label) IF (condition)
(label) IF NOT (condition)
(nvar) OF (label list)
(label)

(label) IF (condition)
(label) IF NOT (condition)

IF (condition)
IF NOT (condition)

IF (condition)

IF NOT (condition)
(sval)

(slit)

(label) IF (event)
(event)

(svar)

(slit)

57

CHARACTER STRING HANDLING

58

MATCH
MATCH
MOVE
MOVE
MOVE
MOVE
MOVE
APPEND
APPEND
APPEND
CMOVE
CMATCH
BUMP
BUMP
RESET
RESET
RESET
ENDSET
LENSET
CLEAR
EXTEND
LOAD
STORE
STORE
CLOCK
CLOCK
CLOCK
TYPE
SEARCH
SEARCH
REPLACE
REP

(svar)
(slit)
(svar)
(slit)
(svar)
(nlit)
(nvar)
(svar)
(slit)
(nvar)
(sval)
(sval)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)
(svar)

(svar)
(nvar)
(svar)
(svar)
(slit)

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

BY
TO
TO

(svar)
(svar)
(svar)
(svar)
(nvar)
(nvar)
(svar)
(svar)
(svar)
(svar)
(svar)
(sval)

(nlit)
(sval)
(nvar)

FROM (nvar) OF (slist)
INTO (nvar) OF (slist)
. (slit) INTO (nvar) OF (slist)
'TIME TO (svar)
DAY TO (svar)
YEAR TO (svar)

IN
IN
IN
IN

(nlist) TO (nvar) WITH (nvar)
(slist) TO (nvar) USING (nvar)
(svar)

(svar)

ARITHMETIC

ADD (nvar) TO (nvar)

ADD (nlit) TO (nvar)

SUB (nvar) FROM (nvar)

SUB (nlit) FROM (nvar)
SUBTRACT (nlit|nvar) FROM (nvar)
MULT (nvar) BY (nvar)

MULT (nlit) BY (nvar)
MULTIPLY (nlit|nvar) BY (nvar)
DIV (nvar) INTO (nvar)

DIV (nlit) INTO (nvar)
DIVIDE (nlit]jnvar) INTO (nvar)
MOVE (nvar) TO (nvar)

MOVE (nlit) TO (nvar)

COMPARE (nvar) TO (nvar)
COMPARE (nlit) TO (nvar)

LOAD (nvar) FROM (nvar) OF (nlist)
STORE (nvar) INTO (nvar) OF (nlist)
STORE (nlit) INTO (nvar) OR (nlist)
CHECK11 (svar) BY (svar)
CK1l1 (svar) BY (slit)
CHECK10 (svar) BY (svar)
CK10 (svar) BY (slit)
INPUT/OUTPUT
KEYIN (list)
DISPLAY (list)
BEEP
PRINT (list)
PREPARE (file) ,(svar|slit)
PREP (file) , (svar]slit)
OPEN (file|ifile),(svar|slit)
CLOSE (filelifile)
WRITE (file|ifile) ,rn|seqlkeyl: [(1list)] [;]]
WRITAB (file) ,rn|seq; (list) (;]
WEOF (filelifile) ,rn| seq
UPDATE (ifile) [[(1ist)] ;1]
READ (file|ifile) ,rn|seq|key|nul;: (;] (list[;1))
READKS (ifile)s (| (listl:1))
DELETE (ifile) ,(svar)
INSERT (ifile) s, (svar)

59

-101
-102
-103
-104
-105
-106
-107
-110
111
-112

-~ TIToOTMMmMmQgOO®>P>

K-113
L-114
M-115
N-116
0-117
P-120
Q-121
-122
-123
-124
-125
-126
W-127
X-130
Y-131
Z-132

<CHwvx

— - e - ® oo oo

N<X§<C’*""“DUODB“7\'

KEYBOARD CODING (ASCIt)

-141
-142
-143
-144
-145
-146
-147
-150
-151
-152

-153
-154
-155
-156
-157
-160
-161
-162
-163
-164
-165
-166
-167
-170
-171
-172

APPENDIX B.

0-060
1-061
2-062
3-063
4-064
5-065
6-066
7-067
8-070
9-071
Space-040

1-041
".042
043
$-044
2.045
&046
".047
(-050
)-051
*.052
+053
,-054
--055
.-056
/-057

Ao

| >—) — >y

@
{
\

-072
-073
-074
-075
-076
-077
-133
-176
-135
-136
-137

-100
-173
-134
-140
-174

} -175
Enter-015
Cancel-030
Backspace-010
Del-177

61

HOME OFFICE:

9725 Datapoint Drive

San Antonio, Texas 78284
SALES OFFICES:
Atlanta/(404) 458-6423
Boston/(617) 890-0440
Chicago/(312) 298-1240
Cincinnati/(513) 481-2600
Cleveland/(216) 831-0550
Dallas/(214) 661-5536
Denver/(303) 770-3921

Des Moines/(515) 225-9070
Detroit/(313) 478-6070
Greensboro/(919) 299-8401
Hartford/(203) 677-4551
Houston/(713) 688-5791
Kansas City/(913) 321-5802
Los Angeles/(213) 645-5400
Milwaukee/(414) 453-1425
Minneapolis/(612) 854-4054
New Orleans/(504) 522-5457
New York/(212) 736-3710
Orlando/(305) 896-1940
Philadelphia/(215) 667-9477
Phoenix/(602) 265-3909
Pittsburgh/(412) 931-3663
Portiand/(503) 223-2411
San Diego/(714) 460-2020
San Francisco/(415) 968-7020
Seattle/(206) 455-2044

St. Louis/(314) 878-6595
Stamford/(203) 359-4175

Tulsa/(918) 664-2295
Union/(201) 964-8761
Washington, D.C./(703) 790-0555
INTERNATIONAL:
Australia/Sydney/(2) 922-3100
Austria/Vienna/0222/36 21 41
Belgium/Brussels/3762030
Brazil/Rio de Janeiro/222-4611
Canada/Toronto/(416) 438-9800
Denmark/Copenhagen/(02)96 53 66
Ecuador/Guayaquil/394 844
England/London/(1) 903-6261
Finland/Helsinki/(90) 661 .991
France/Paris/(1) 657-13-31
Germany/Hannover/(0511) 634-011
Holland/Rotterdam/(10) 216244
Hong Kong/(5) 243-121
Iran/Tehran/8538857
Israel/Tel-Aviv/(03) 410565
Italy/Milan/316 333
Japan/Tokyo/(264) 6131
Lebanon/Beirut/(348) 340/1/2
Norway/Oslo/153490
The Philippines/Makati Rizal/877 294
Singapore/Singapore/911788
South Africa/Johannesburg/724-9301
Spain/Las Arenas/63 64 00
Sweden/Stockholm/(8) 188295
Switzerland/Lyss Berne/(32) 844240
Taiwan/Taipei/768-1114
USA/Los Angeles, Calif./(213) 475-6777

DATAPOINT CORPORATION

The Leader in Dispersed Data Processing

The text in this catalog was entered, edited and typeset using
a Datapoint 2200 with the SCRIBE text processing program
and a phototypesetter.

