DATAFORM Il WITH
DOS SUPPORT
DF2DOSG

User’'s Guide
Version 2

March, 1976

Model Code No. 50052

DATAPOINT CORPORATION
The Leader in
Dispersed Data Processing

COPYRIGHT® 1976 BY DATAPOINT CORPORATION. PRINTED IN U.S.A

PREFACE

DATAFORM 2 provides a personalized data entry system for use
S ' :

on DATAPOINT processors. DF2DOSG is intended primarily to support

generation andAtesting of cassette compatible systems, although it

is also equally useful as a disk based data entry system.

"Forms" are created for display on the processor’s screen,
and the data entry operator then simply fills in the form. The
data is then recorded, and at any time may be retrieved and

revised using the same form to view and edit the recorded data.

Each "form" 1is custom désigned, and editing criteria are
assigned to the data fields on the form at the time the form is
generated. Programs written in the high level DATAFORM language
may also be assigned at this time. Forms and programs are then

combined and become a unigue DATAFORM system.

Four stages of development are involved in generating a
system: the editor and compiler are used to cfeate field programs;
the form generator is used to create forms; the configurator is
used to combine the forms into a "system"; and the data entry

interpreter is used to control data entry.

Since DATAFORM uses standardiied data recérd erma£s,‘further
processing Of_the data can proceed under aﬁy’DKTABUS, BASIC, or
RPG program. Additionally, any one of a number of available
communications programs or terminal emulétbrs (inCluding DATAPCLL'~'
and EM2780) may be used to transmit DATAFORM data‘files for

further processing at remote sites.

Chapter 1 should provide as much informatign:abdut DF2DOSG as
is necessary for those familiar with both the céséette version of
DATAFORM and DOS. Chapter 2 provides a more general description of
DATAFORM, and continuing chapters describe formshgeneraﬁion and |
data entry using the forms. The DOS User 's Guide;'model number

50127, provides more information about the DOS.

DF2DOSG is entirely DOS independent.

ii

Throughout this manual, a field appearing between pointed

brackets, as:
<filename>

denotes a required field; whereas, a field appearing between

square brackets, as:
[,filename]

denotes an optional field, whose use is explained in subsequent

discussion.
To convert DF2DOSG version 1 systems to DF2DOSG version 2

systems, each field program should be re-compiled, and each form

should be re-generated.

iii

l.

2.

3.

TABLE OF CONTENTS

A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEM

1.1 Installing the Disk DATAFORM 2 System
1.2 System Names
1.3 Program Generation

1.3.1 Program Source File Creation

1.3.2 Program Compilation
1.4 Form Generation
1.5 Form Testing and Data Entry
1.6 Generating Cassette Systems and UtllltleS
1.7 Transferring Cassette Systems to Disk
GENERAL DATAFORM TERMS AND CONCEPTS
2.1 what is a FORM?
2.2 What is a FIELD PROGRAM’
2.3 User Space and How It’'s Allocated
2.4 Some DATA ENTRY Features

THE FORM GENERATOR
Data Field
Keyin Only Field
User Space
Form Worksheet
The NEW Command
Repeat Key (KEYBOARD)
Cursor Movement Function Keys (2,4, 6 ;8)
Character Insert Function Key (7)
Character Remove Function Key (0)
Erase Function Keys (1,.,9)
Line Insert Function Key (3)
Duplicate Character Function Key (5)
Return To Monitor Function Key (CANCEL)
ignment of Edit Criteria
The TYPE Pass
1 Alphabetic (A)
2 Digit (D)
3 Numeric (N)
4 Mixed (M)
5
6
7

.

wWwwww
. L] . .

U W

w
L]
o)}
w WWwwwwwww

¢ HE OO U W N

[e) W< e Ne) M) o))
L]

. .

Left Justify and Zero Fill (L)
Right Justify and Zero Fill (R)
Right Justified and Blank Fill (B)
e REQUIRE Pass

1 Required (R)

2 Fill Controlled (F)

WWWwWwWwWwWwe NN e o o

o o Ne o o

| T B N e

n>wro§)w h‘HtrF‘h‘HFHP‘HF“Q
| |
S S NO Y S AU WNDNONNDE O

I

I WWWWWwWwWwWwwwwwuwwwwwwwwwww
|

1
|

|
VDWW OV OO OOVWOWOoOIIAAOTAA NV WN =

3.6.2.3 Requ1red and Fill Controlled (B)

3.6.2.4 Program Reserved (P)

3.6.2.5 Required and Program Reserved (S)
3.6.3 The SEMI-CONSTANT and CONSTANT Passes
3.6.4 The PROGRAM Pass
3.6.5 The LINK Pass

3.6.5.1 Setting a Manual Link

3.6.5.2 Setting an Auto Link

3.6.5.3 Clearing a Link
3.7 The 0UT Command
3.8 The REVISE Command
3.9 The OLD Command
3.180 The 0S Command

4, THE COMPILER

Labels

Field Program Names
Spaces

Comments '
Specification Statements
.5.1 DATA

2 WORK

3 COMMON

4 EQU

5 REDEFINE
.6

ec

1

P A)
Uds W N

FIELD
utable Statements
Transfers of Information
1.1 ALIGN
2 CONVERT
3 LOOKUP
.4 MOVE
5 SET
, Subtract, Divide, Multiply
tput Control
.1 BEEP
.2 CHAIN
.3 FORMSHOW
.4 MESSAGE
.5 SHOW
.6 WRITE
ansfers of Control
4 6.5.1 GOTO
4.6.5.2 CALL and RETURN
4.6.6 CHANGE and RESET
4.7 Pre-defined Labels
4.7.1 AGAIN

3-10

w W
=
vl

BB B B D D DD DD DD

L
1
HRQWOWWOWWOOI~INA D WNNNN

el ol ol ol o T T T N I U N N BN SN NS NN BN B
QW+

Editing a Source Program
Compiling a Source Program
Printing a Compilation Listing

an Existing Data File

4.7.2 CLOSE
4.7.3 END’
4.7.4 INPUT
4.,7.5 NEXT
4.7.6 NULL
4.7.7 OUTPUT
4,.7.8 RETRY
4.7.9 STORE

4.8 Program Generation
4.8.1
4.8.2
4.8.3
4.8.4 The Program File

4.9 Program Execution
4.9.1 Post-process Execution
4.9.2 Operator Tabbing
4.9.3 Pre-process Execution
4.9.4 Program Reserved Fields
4.9.5 Form Constants

5. THE INTERPRETER

5.1 The START Command

5.2 The ADD Command

5.3 The CONTINUE Command

5.4 The LOAD Command

5.5 The DATA Command

5.6 Revising
5.6.1 The MODIFY Command
5.6.2 The FIND Command

5.6.3 Rewriting Existing Records
5.7 The BACKSPACE Command
5.8 The REWIND Command
5.9 The END Command

5.19 The 0S Command
5.11 Data Entry Action

5.12 Interpreter Function Keys

5.12.1

5.12.2

5.12.3
5.12.4
5.12.5
5.12.6
5.12.7
5.12.8
5.12.9

The
The
The
The
The
The
The
The
The

Form Data
Load Next
Backspace
Return to
Form Data

Duplicate Function Key (9)
Form Function Key (1)
Field Function Key (3)
Monitor Function Key (4)
Erase Function Key (6)

Rewind Data File Function Key (7)

Backspace

Record Function Key (8)

Read Record Function Key (9)
Write Record Function Key (.)

6. THE CONFIGURATOR
6.1 The CAT Command

vi

4-21
4-21
4-21
4-22
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-25
4-25
4-25

o
[N MO O IO, O N, OO, O RO GG IO G T RO O O [
| [R T A A A B NN
DV OWOWOVOWOEIIINNNULE B S WWW Aoy oYUl

(G2}
[T T N S B

-

6.5.1
6.5.2
6.5.3

The IN Command

The DELETE Command

The CHOP Command

Creating a Cassette DF2 System Tape One

The DUP Command
The DUP ALL Command
The LGO Command

6.6 The 0S Command
6.7 Copying Data Files

6.7.1
6.7.2

Copying Disk Data Files
The COPY Command

6.8 The DPRINT Command
6.9 The FPRINT Command

7. INFORMATION FOR THE PROGRAMMER
7.1 System Structure of the Interpreter
7.2 The Edit Table

7.2.1

Edit Table Format

7.2.2 Work Area

7.2.3

Routines to Access the Edlt Table

7.3 Structure of the Form in Memory

NNNNN

e o e s o THoe o e o o [Ne e o

[S2NNE C NG L O]

~J ~J1
. .
Ut >
SINNN
BB RO WWW WWwW
s e [N = e o e o TJe e o
T W OO WN -

NN
ST WN O

°
. . o @

Appendix A.
Appendix B.
Appendix C.

Appendix D.

Pointers

Data Buffers

Form Image

Edit Criteria Table
Field Programs
Extended Interpreter

outines Available in the Interpreter

DOS Facilities Available
Keyboard Input Routine
Display Routine

Form and Data Access Routines
String Arithmetic Package

mbly Language Interfacing and Overlays

Program Base Address
External References
Returning to the Interpreter
Interpreter Data Areas
Loading the Assembly Language Program
DF2DOSG - DF2 Address Compatibility
SAMPLE PROGRAMS
COMMANDS
INTERPRETER FUNCTION KEYS

FORM GENERATOR FUNCTION KEYS

vii

I

N

R IO N R D R A A I B P |

[I |

1 T T T T T T T (S I N T IS TR R

1
= ! :
SR VOVUENNLJOANO VUV EBRWWWWNHREF CTUILEWWWWWN N NN -

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA
ALPHABETICAL LISTING OF STATEMENT TYPES
STATEMENTS REQUIRING THE EXTENDED INTERPRETER
INTERPRETER FLAG ADDRESSES

ERROR MESSAGES

USER SPACE REDUCTION TECHNIQUES

SAMPLE FORM GENERATION

viii

CHAPTER 1. A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEU

1.1 Installing the Disk DATAFORM 2 System

Disk DATAFORM 2 is released on a DMF cassette, listed in the
Software Catalog as DF2DOSG. The MIN utility program is required
to install the system. Installation is accomplished by entering:

MIN ;AO

When the cassette has been MIN’d, the following files will have
peen added to the disk directory:

DFEDIT/CMD DF2D0OSG program editor
/7 DFCMP/CMD DF2DOSG program compiler -
/bFGEN/CMD DF2DOSG form generator SRR
DFINT/CMD DF2DOSG interpreter
~DFCON/CMD DF2D0OSG configurator < 7

Also included are 15 files labeled DF2DXTND/OVA through /OVO,
which are the DF2D0OSG extended interpreter overlays.

Thus, 20 files will have been added to the disk.

If the DF2DOS5SG system is to be used to generate cassette
systems, the most current release of DF2 is also required. This
must be ordered separately, under model number 20304.

DF2 should be installed using the MIN utility as follows:
Ffile zero of tape one should be named DF2CCON/ABS; file one of

tape one should be discarded; and file two of tape one should be
named DF2CINT/ABS. '

Files zero and one of tape two of DF2SYS should be discarded.
Files two through sixteen of tape two should be named DFZCXTND/OVA
through DF2CXTND/OVO.

when DFZ2 and DF2DOSG have been lnstalled as outlined above,
installation is complete.

CHAPTER 1. A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEM 1-1

1.2 System Names

DF2DOSG utlllzes a concept called a. “System Name" (which is
abbreviated "SYSNAM"). SYSNAM is a one to six character alphabetic
name. All forms in a system, i.e. forms that are to be used :
together, should be assigned the same system name followed by a 2
digit number. Programs to be used with a particular form should be
assigned the same system name and number as the form. The program
source file (as created by DFEDIT) will have an extension of
"TXT", the compiled program object file (as created by DFCMP) will
have an extension of "DFP", and the form (as created by DFGEN)
will have an extension of "DFF" (SYSNAMnn/DFF). The data file (as
created by DFINT) will have the name and extension "SYSNAM/TXT".

The file extensions mentioned above are created and
maintained by the particular program being run (DFEDIT, DFCMP,
DFGEN, and DFINT). They should not be changed.

1.3 Program Generation

1.3.1 Program Source File Creation
To generate a program enter:
DFEDIT <SYSNAMnn>
where "SYSNAM" is the name of the system of forms and "nn" is the
2 digit number of the form with which the program(s) w111 be used.
A file named SYSNAMnn/TXT will be created.

When all program statements have been entered, and the DFEDIT
has been terminated by use of the ":E" command, the program
statements are recorded and the DOS is reloaded. See the chapter
on EDIT in the DOS User s Guide for EDIT commands and further EDIT
parameterization.

1.3.2 Program Compilation

To compile a program, enter:

DFCMP <SYSNAMnn>|[,objectfile] [;parameters]

The compiler identifies itself with the sign-on message:

DF2DOSG COMPILER 2.n -- ddmmmyy

bl—2 DATAFORM II WITH DOS SUPPORT

The compiled object code is placed in the [objectfile]. The
default [objectfile] name is the same as the name of the source
file. The default [objectfile] extension is "DFP". Parameters may
be entered at the time the compiler is executed. The parameters
are separated from the [objectfile] name (if a name is present) by
a semi-colon. If only a semi-colon is entered, the compiler
assumes that no listing is to be printed. If the letter "L"
appears after the semicolon, a listing without code will be
generated. If the letters "L" and "C" both appear after the
semicolon, a listing with code will be generated. If the letter
"P" appears after the semicolon, a printer image file will be
generated on the disk. If "P" and "C" appear, generated code will
be included in the printer image file. The printer image file will
be given the name "SYSNAMnn/PRT". This file may be printed or ,
viewed on the screen with the DOS LIST utility. See the chapter on
LIST in the DOS User ‘s Guide for LIST parameterization.

If no parameters are entered, and a printer is on line, the
messages:

LIST ON LOCAL/SERVO PRINTER?
and ’
LIST CODE TOQ?
must be answered.
1.4 Form Generation
To generate a form enter:
DFGEN <inputform>[,outputform][,objectptogram]
The generator identifies itself with the sign-on message:
DF2DOSG GENERATOR 2.n =-- ddmmmyy
The <inputform> name must be in "SYSNAMnn“ format. The
default [,outputform] name is the same as the <inputform> name.

The default [,objectprogram] name is the same as the [outputform]
name, but with a default extension of "DFP".

CHAPTER 1. A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEM 1-3

DF2DOSG DFGEN responds to the'following‘commands. Most are
the same as the cassette form generator's.

CONSTANT
LINK

NEW

OLD

0sS

ouT
PROGRAM
REQUIRE
REVISE
SEMI-CONSTANT
TYPE

When "OUT" is entered, if field programs are assigned, the
entire [objectprogram] file will be attached to the [outputform]
file. If the [outputform] name is different from the <inputform>
“name, the [outputform] name should appear on the command line.
Thus, when "OLD" is entered, <inputform> will be read; and when
"OUT" is entered, the form in memory will be written to
[outputform]. '

Entering "OUT" automatically reloads the DOS if the form
generation is successful. The DOS may be reloaded at any time
without writing the form by entering "OS".

1.5 Form Testing and Data Entry
To test the completed form, or to perfbrm data entry, enter:
DFINT <SYSNAMnn>[,datafile]
The interperter identifies itself with the sign-on meSsage:
DF2DOSG INTERPRETER 2.n -- ddmmmyy

The default extension of the data file is "TXT". If no

[datafile] name is entered, the default data file name is

"SYSNAM/TXT". Form "SYSNAMnn" is loaded, and the [datafile] is
opened.

1-4 DATAFORM II WITH DOS SUPPORT

The commands available in the DF2DOSG interpreter are:

ADD
BACKSPACE
CONTINUE
DATA

END

FIND
LOAD
MODIFY
0s :
REWIND
START

The "START", "ADD", "MODIFY", or "FIND" commands initiate
interpreter action. Execution is the same as for the cassette
interpreter with the exception that entering "END" both terminates
the data file and reloads the DOS.

The "0S" command reloads the DOS without terminating the data
file. ‘

1.6 Generating Cassette Systems and Utilitieé
To generate a cassette system tape enter:
-DFCON <SYSNAM>
The configurator identifies itself‘with‘the sign—on message:
DF2D0OSG CONFIGURATOR 2.n - ddmmmyy

NOTE: This is the only time the form number must not be included
in the name.

DFCON generates a disk file named "SYSNAM/CAT". The forms to
be written to tape must first be cataloged, using the "IN n"
command of the configurator. Only forms named "SYSNAMnn/DFF" may
be cataloged. '

CHAPTER 1. A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEM 1

1
(%3]

The commands available in the configurator areé

CAT
CHOP n
CcCoprPY

DEL n
DPRINT
DUP
DUP ALL
FPRINT n
FPRINT ALL
LGO

0s

To create a DF2 tape one on the frontfdeck with the forms
specified in the catalog enter either:

DUP ALL
or
LGO

*

The replacement of the disk extended interpreters by the
cassette extended interpreters is automatic when the LGO or DUP
ALL commands are used.

The configurator may be used to print dlSk data flles or
forms or to copy cassette data files.

NOTE: Deleting or chopping files from the DF2DOSG catalog does not
KILL that file in the disk directory.

1.7 Transferring Cassette Systems to Disk

The DOS MIN utility is required to transfer forms from DF2
tapes onto disk. MIN will display:

LGO TAPE FORMAT
LOAD FILE #06 (OBJECT) ?

Enter "N" until MIN reaches file #03 (this corresponds to form 1)
or greater. After entering "Y", MIN asks:

DOS FILE NAME ?
Enter the system name, followed by the file number minus 2 (to get

the proper form number), followed by "/DFF", as in the following
example (where responses to MIN displays are enclosed in guotation

1-6 DATAFORM II WITH DOS SUPPORT

marks) :

LOAD FILE #03 (OBJECT)? "¥"
DOS FILE NAME: "SYSNAM@1/DFF"
LOAD FILE #11 (OBJECT)? "Y"
DOS FILE NAME: "SYSNAM@9/DFF"

Continue for each of the forms on the tape.

NOTE: the file number displayed by the MIN command is an octal
number; the form number used by DF2DOSG is a decimal number. The
octal number on the cassette tape should be converted to a decimal
number for disk use.

Forms with programs requiring the extended interpreter will
have to be re-generated by DFGEN in order to be used by DFINT.

CHAPTER 1. A QUICK GUIDE TO THE DISK DATAFORM 2 SYSTEM 1-7

1-8

FORM GENERATION AND
without programs

FORM GENERATION AND
with programs

> program e ——— > DFCMP ~--
source ‘
form
--> with -------> DFINT
program

DATAFORM II WITH DOS SUPPORT

TEST

TEST

v ——

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS

2.1 What is a FORM?

A "FORM" in this User s Guide refers to the processor’s
screen 1maqe. This screen image is created by the form generator.
It contains labeling information, defines the length and positions
of "data fields", and reserves space for "keyin only fields"

The amount of data, the number of fields and the amount of
constant information in the form image determine exactly how much
memory the form requires.

The form generator may also be used to assign edit criteria
to the data fields. The criteria are as31gned field-by-field in
separate passes over the form image.

These ériteria include the field type:

Alphabetic

Alphanumeric

Digit

Numeric left justified/blank filled
‘Numeric left justified/zero filled
Numeric right justified/blank filled
Numeric right justified/zero filled

entry restrictions:

Fill controlled

Program reserved
Required

Required/fill controlled
Reguired/no keyin

semi~-constant data; constant data; and automatic form control
(linking to other forms).

In addition, "field programs" may be assigned during form
generation. Up to twenty-six unique field programs may be
referenced in a single form. The same field program may be
assigned to more than one field.

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS 2-1

Special function keys, which are discussed in the chapter on‘
the form generator, enable cursor, character, line, and screen
manipulation.

The screen image, basic edit criteria and field programs, if
any, comprise the "form" wh1ch is subsequently 1nterpreted by the
DF2DOSG interpreter.

2.2 What is a FIELD PROGRAM?

If extended editing and basic computation are required in a
form, a program written and compiled in the DATAFORM 2 language is'
necessary. This language provides access to the entire data record
(on a character or field basis) and definition of working storage
variables, tables, messages, etc. COMMON storage is available to
pass information between forms. The DATAFORM 2 language provides
the following editing capabilities:

Arithmetic
Add
Subtract
* Divide
* Multiply

Data Manipulation
Align
Move
Set
* Convert
* Lookup

Data Entry Control
Change
Reset

Data Checking
In range
In table
'Not in range
Not in table
Null
Retry

Check Digits

* Ckl@
* Ckll

2-2 DATAFORM II WITH DOS SUPPORT

Compares '
Equal
Greater than
Greater than or equal
Less than
Less than or equal
Not equal

Branching
Again
Call
Change
Go to
Next
Return
Store

Output
Beep
Close
End
Formshow
Message
Show
Write

Data Definition
Common
Data
Equ
Field
Redefine
Work

Data Buffers
Input
Output

The subroutines to execute these commands are divided into
two groups: the interpreter and the extended interpreter. The
starred (*) commands in the preceeding list reqguire the extended
interpreter, which is discussed in a later section.

The field programs may be assigned to particular fields in a
pass of the form generator. When the form is written out, the
relocatable program will be converted to "absolute" code and
written to the form file.

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS - 2-3

During data entry, the field program is executed after the
operator enters data into the field where the program assignment
was made. The program is executed even if the operator bypasses
the field.

2.3 User Space and How It s Allocated

When a new form is being created, there are 1558 characters
of memory, called "user space", available. This "space", however,
encompasses all the following:

Common storage

Extended interpreter (if required)
Field programs (if requ1red)

Form image

Keyin data buffer

Writing data buffer

The form generator indicates the amount of free space as soon
as the form image has been defined. The program and, if necessary,
the extended interpreter must fit in the remaining free space.

2.4 Some DATA ENTRY Features

In conjunction with the DISPLAY key, the number pad keys can
provide the operator with the following functions:

‘Backspace field
Backspace record.
Form data duplication
Form data erase

Load next form

Return to read record
Monitor

Rewind data file
Write record

If semi-constant data is defined in the form it may be ,
accepted or overwritten by the data entry operator. Constant data
cannot be over-written, and is placed in the data record as is.

Forms may be loaded in any order under either program or
operator control.

Operator correction of previously generated data may be

accomplished at any time by either a manual, record-by-record, or
an automatic search, with re-writing in-place permitted.

2-4 DATAFORM II WITH DOS SUPPORT

Data may be added to the end of an existing data file
(positioning is automatic). :

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS 2-5

CHAPTER 3. THE FORM GENERATOR

A DATAFORM "form" is an image displayed on the processor’s
screen which contains form text (explanatory information for the
operator, not to be written to the data file), field definitions
(special characters which define a field to be filled 1n by the
operator and to be written on the data file) and keyin space
(special characters which define a field to be entered [but not
stored in the data record]). The processor s screen is 80
characters wide and 12 lines high and any of the 960 positions on
the screen may be used in the form.

Each form is contained in a file named "SYSNAMnn/DFF", where
"SYSNAM" is the name of a system of forms which may reference each
other and "nn" is a two digit number assigned to a particular
form. How to load the generator, the filenames required, and
default conditions for filenames required is discussed in chapter
one.

3.1 Data Field

A data field is part of the form image which starts at a
vertical bar (|) and is continued by carets (") or underscores
(). A field stops at the first non-caret or non-underscore
character or the right hand edge of the screen.

Each data field causes a corresponding number of positions to
be reserved in the two data areas (one used for entering and one
used for writing data), and each field generates a six character
set of edit criteria. Each field defined has a "field number"
corresponding to its relative position in the form (and pointing
to its entry in the edit criteria table). The uppermost, leftmost
field is number one. Fields are numbered from left to right, line
by line, from the top of the form down.

The construction "|"""" defines a four character data field;
"|" defines a single character field and "|||" defines three
adjacent single character fields. The differences between one
3-character field and three l-character fields are:

1) Only one set of edit criterié applies to the

3-character field whereas each l-character field may
be assigned different edit criteria.

CHAPTER 3. THE FORM GENERATOR 3-1

2) Since each set of edit criteria takes 6 characters,
the three l-character fields use more user space
than the single 3-character field.

3) Only one field program may be assigned to the
3-character field, whereas each l-character field
may have its own field program.

4) The single 3-character field may be rlght Justlfled
and/or zero filled.

Fields defined by carets will be "space compressed” in the form
image (BUT NOT IN THE DATA RECORD!). When the form is displayed,
space compressed fields will initially appear blank. As the cursor
enters the field, the appropriate number of underscores will be
displayed. Space compressed fields allocate less "user space" than
non-compressed fields.

Fields defined by underscores are not compressed. The
underscore characters are saved as part of the form image.

Constants and semi-constants are stored in the field
description area of the form image and therefore can be defined
only for fields initially defined by underscores.

The maximum number of characters in a single data field is 80
since the right hand edge of the screen always terminates a field
definition.

3.2 Keyin Only Field

A keyin only field, with the exception of the initial
character, is defined exactly as is a data field. Keyin only
fields begin withh a less than character "<" and are continued by
carets or underscores. They may appear anywhere in the form. Keyin
only fields create a six character set of edit criteria like other
fields and thus have a corresponding field number. However, no
space 1is reserved for these fields in the data record. A keyin
only field may be used as a verify field, or as a program message
field. Nothing in a keyln only field ever gets written to the
data file.

3-2 DATAFORM II WITH DOS SUPPORT

3.3 User Space

There is a fixed amount of space available which must contain
the form image, the data input/output areas, the edit criteria
table and field programs. This fixed area is called "user space".
There is no limit (other than the size of the screen) to the
amount of text one may include in a form. There is, however, a
limit to the number of field definitions (126) and to the number
of data characters (245) which can be defined. The total user
space available is 1550 characters.

The number of data characters, defined in the form image,
reserve two areas: the keyin data area and the writing data area.
In addition, each field (whether an actual data field or a keyin
only field) defined in the form image reguires a six character set
of edit criteria. The characters displayed in the form image, both
labeling information and field defining characters (excluding
carets) reserve user space. Spaces (and carets) in the form image
are "compressed", i.e., they are represented by a space
compression character followed by the number of spaces compressed
at that point. One terminator character is added to each line of
the form image; however, lines which are completely blank require
no space at all.

The amount of user space reserved for the data record, edit
criteria table and form image is subtracted from the total user
space and the amount remaining is indicated at the end of the form
image generation pass.

In addition to the data record, edit criteria table and form
image, user space may be allocated to field programs (which in
turn may require an extended interpreter). The length of a field
program is indicated on the listing and on the screen at the end
of program compilation. The size of the various extended
interpreters is listed in an APPENDIX. If an extended interpreter
is required, 100 characters of COMMON storage are also required.

When the form is written to the form file, the amount of user
space remaining (or the excess allocated, if any) is displayed on:
the screen. If an excess is allocated, either the form or (if
present) the field programs should be revised.

CHAPTER 3. THE FORM GENERATOR 3-3

3.4 Form Worksheet

To aid in the design of forms, a "DATAFORM Worksheet" is
available. This worksheet provides space for designing the screen
image and for recording the various edit criteria, constants, etc.
which will have to be assigned at form generation time. The
worksheet also serves as a record of the form and as a quick
reference for generator commands and function keys.

A printout of completed fbtms, 51m11arA1n‘f0rmat to the
worksheet, may be obtained using the prlnt utility of the
conflgurator.

3.5 The NEW Command
To generate a new.form, enter the:
NEW
command to clear the screen and enter the image gehération~ﬁode.

Titles and field definitions may be entered. Pressing the
ENTER key places the cursor at the beginning of the next line;
press1ng the ENTER key without entering text leaves a blank llne
in the form.

Additional form manipulation is available with the DISPLAY
key and the keys on the number pad. When the DISPLAY key is
pressed, the keys in the number pad to the right of the keyboard
(or the regular number keys) become a set of special function keys
enabling: the movement of the cursor up, down, left and right; the
insertion and deletion of characters; the deletion of words; the
insertion of lines; and the erasure of lines and portions of the
screen.

A key becomes a special function key if it is pressed
simultaneously with the DISPLAY key. That 1s, holding down the
DISPLAY key while pressing the desired number key turns the number

key into a special function key. '

3-4 DATAFORM II WITH DOS SUPPORT

The following is a summary of the function keys:

Character insert
Cursor up
Erase to end of screen
Cursor left
Duplicate character
Cursor right
Word remove
Cursor down
Line insert
Remove character

. Erase to end of line
CANCEL Return to monitor

VQWNHHEO UL OO

Additionally, the CANCEL key (not the CANCEL function key)
will erase an entire line. ,

3.5.1 Repeat Key (KEYBOARD)

The KEYBOARD key causes a character (and many functions) to
be repeated. That is, holding down the KEYBOARD key while pressing
a character causes the character to be repeated as long as the
KEYBOARD key is held down. Also, holding down the DISPLAY and
KEYBOARD keys while pressing a number pad key causes the special
function key to be repeated. ,

3.5.2 Cursor Movement Function Keys (2,4,6,8)

There are four cursor movement function keys which are
non-destructive; i.e., they pass over characters on the screen
without erasing them. The cursor down function key (2) moves the
cursor DOWN, the cursor up function key (8) moves the cursor UP,
the cursor right function key (6) moves the cursor RIGHT and the
cursor left function key (4) moves the: cursor LEFT.

The BACKSPACE key also moves the cursor to the LEFT in a
non-destructive manner. Backspacing will wrap around from column 1
of a line to column 80 of the preceding line, except, of course,
on the top line. .

The SPACE bar is destructive; i.e., it erases the characters
it passes over, and moves the cursor to the RIGHT.

All cursor movement function keys may be repeated.

CHAPTER 3. THE FORM GENERATOR 3-5

3.5.3 Character Insert Function Key (7)

The character insert function key (7), at the upper left of
the number pad, opens a space for character insertion wherever the
cursor is positioned on the screen. This function key may be
repeated. Characters at the right most edge of the screen are
truncated, not wrappeB around.

3.5.4 Character Remove Function Key (#9)

The character remove function key (@), at the lower left of
the number pad, causes the character at the cursor to be removed
and the remaining characters to be concatenated to the left. The
line is blank filled on the right. This function key may not be
repeated.

3.5.5 Erase Function Keys (1,.,9)

There are several keys available to erase all or part of the
screen image. These function keys may not be repeated. The word
remove function key (1) causes a word (that is, a group of
characters edged by spaces) to be removed. The line is
concatenated, and blank filled on the right. The cursor may be
placed anywhere in the word when the word remove function key is
pressed. ‘

The erase to end of line function key (.) causes the line to
be erased from the position of the cursor to the right hand edge
of the screen. .

The erase to end of screen function key (9) causes all
characters to be erased from the cursor to the end of the screen,
i.e., through line 12 character 86. This key could be used to
clear the entire screen, if the cursor were placed in the upper
left corner of the screen.

The CANCEL key (not the CANCEL function key) causes the
entire line that the cursor is cn to be erased, and places the
cursor in the first position of the line.

3.5.6 Line Insert Function Key (3)

The line insert function key (3) causes a blank line to be
inserted at the line where the cursor is blinking. The line at the
cursor and all lower lines are rolled down the screen one line.
The twelfth line will disappear. This function key may not be
repeated.

3-6 DATAFORM II WITH DOS SUPPORT

3.5.7 Duplicate Character Function Key (5)

The duplicate character function key (5) causes the character
immediately above the cursor to be duplicated in the current
cursor position. This function key may be repeated. It has no
effect when the cursor is placed on the top line of the screen.

3.5.8 Return To Monitor Function Key (CANCEL)

When the screen has the desired appearance, return to monitor
function key (CANCEL) returns control to the generator s monitor.
At this point the generator displays the message:

nnn DATA

- mmm BYTES LEFT
indicating the number of characters in the data record and the
number of characters remaining in the user space. If the number of
characters in the data record is greater than 245, the generator
displays the message:

MORE THAN 245 DATA
The form must immediately be revised to reduce the number of
characters. If more than 126 flelds are defined, the generator
displays the message:

MORE THAN 126 FIELDS

Again,kthe form must immediately be revised to reduce the number
of fields.

 If the combined space required by the form image, data areas
and edit criteria table exceeds the available user space, the
generator displays the message:
nnn BYTES OVER

The form should be revised to fit the user space available.
Suggestions on saving space are discussed in an APPENDIX.

CHAPTER 3. THE FORM GENERATOR 3-7

3.6 Assignment of Edit Criteria

When the form image has been generated, the form is still
only in memory and no edit criteria have been assigned. '

Edit criteria may be assigned to each field of a form.
Different kinds of edit criteria may be assigned in different
"passes" over the fields of a form. Each type of edit-defining
pass (TYPE, REQUIRED, SEMI-CONSTANT, CONSTANT, PROGRAM, LINK) must
be requested separately, and, finally, the form must be written to
the form file by use of the OUT command. The edit-defining passes
may be requested in any order. Any or all edit-defining passes may
be omitted, and passes may be repeated to review or to change the
criteria. .

During each pass, the form is redisplayed with the cursor at
the first field definition (i.e., the first vertical bar (|) or
less than (<) sign). Any one of the accepted edit criteria for
that pass may be assigned, the field may be bypassed without
changing or assigning the edit criteria (by pressing the ENTER
key), or the edit criteria may be cleared (by pressing the CANCEL
key) . ‘ ' ’

If a pass is re-executed, the current edit criteria will be
displayed as each field is reached. If no change is needed,
pressing the ENTER key proceeds from field to field.

The backspace field function key (B) may be pressed to
position back to the previous field. When the desired edit
criteria have been assigned, the return to monitor function key
{CANCEL) will return control to the monitor.

To reguest a pass, enter the name of the pass. Only the first
3 letters of a pass need to be entered to initiate the pass.

3.6.1 The TYPE Pass

The TYPE pass 1is entered tc set restrictions on the
characters which may be entered into a field; and, for numeric
fields, to indicate whether the entered characters should be left-
or right-justified, and blank- or zero-filled within a field. The
acceptable types for this pass are discussed below.

If no TYPE edit criteria is assigned to a field, any
character is acceptable in any position of that field.

3-8 DATAFORM II WITH DOS SUPPORT

3.6.1.1 Alphabetic (A)

The alphabetic edit criteria for the TYPE pass (A) indicates
that characters entered must be uppercase alphabetics (A through
Z) or space. Alphabetic fields are left justified and blank filled
on the right.

3.6.1.2 Digit (D)

The digit edit criteria for the TYPE pass (D) indicates that
characters entered must be strictly numeric (©-9). Digit fields
are left justified and blank filled on the right.

3.6.1.3 Numeric (N)

The numeric edit criteria for the TYPE pass (N) indicates
that characters entered must be of the set of: digits (8-9), a
decimal point, or a minus sign (plus signs are not allowed).
Numeric fields are left justified and blank filTed on the right.

During data entry, numeric fields are checked to contain one
decimal point at most. If a minus sign is present, it must be the
left most character. And, no more than twelve positions are
permitted to the left and four to the right of the decimal point.

©3.6.1.4 Mixed (M)

The mixed edit criteria for the TYPE pass (M) indicates that
characters entered must be of the set of: Alphabetics, space,
digits, decimal point, or minus sign. No other special characters
are allowed. Mixed fields are blank filled on the right.

3.6.1.5 Left Justify and Zero Fill (L)

The left justify and zero fill edit criteria for the TYPE
pass (L) has the same restrictions as the numeric edit criteria;
however, the field is left justified and zero filled on the right.

3.6.1.6 Right Justify and Zero Fill (R)

The right justify and zero fill edit criteria for the TYPE
pass (R) has the same restrictions as the numeric edit criteria;
however ,the field is right justified and zero filled on the left.

CHAPTER 3. THE FORM GENERATOR 3-9

3.6.1.7 Right Justified and Blank Fill (B)

The right justify and blank £fill edit criteria for the TYPE
pass (B) has the same restrictions as the numeric edit criteria;
however, the field is right justified and blank filled on the
left.

3.6.2 The REQUIRE Pass

The REQUIRE pass is entered to establish that a field may not
be bypassed (tabbed past without entering data) during data entry,
or that all characters must be entered, or that the field is not
to be filled by an operator but is to be filled by a field
program.

If no REQUIRE edit criteria is assigned to a field, the ENTER
key must be pressed somewhere in the field to proceed to the next
field. '

3.6.2.1 Required (R) {

The required edit criteria for the REQUIRE pass (R) indicates
that a field is required. This means that during data entry, at
least one character must be entered into the field.

3.6.2.2 Fill Controlled (F)

The fill controlled edit criteria for the REQUIRE pass (F)
indicates that a field is to be fill controlled. This means that
during data entry, the field must be completely filled by the
operator.

Fields whose edit criteria for the TYPE pass is R, B, or L
should not be fill controlled. For these fields, the interpreter
aligns the data after the ENTER key is pressed.

Fill controlled fields may b&¢ bypassed, however, if the ENTER
key is pressed in the first column of the field. The ENTER key is
an unacceptable key elsewhere in the field.

3.6.2.3 Required and Fill Controlled (B)
The required and fill controlled edit criteria for the

REQUIRE pass (B) indicates that a field is both required (R) and
fill controlled (F). The ENTER key is an unacceptable key.

3-10 DATAFORM II WITH DOS SUPPORT

3.6.2.4 Program Reserved (P)

The program reserved edit criteria for the REQUIRE pass (P)
indicates that a field will be filled by a field program. No
operator keyin is permitted in this field.

This edit criteria may also be set in a keyin only field to
reserve it as an alternate message display area. :

3.6.2.5 Required and Program Reserved (S)

The required and program reserved edit criteria for the
REQUIRE pass (S) indicates that a field is both program reserved
(P) and required (R). This will prevent writing of the data record
if data has not been entered into the program reserved field by a
field program.

3.6.3 The SEMI-CONSTANT and CONSTANT Passes

The SEMI-CONSTANT or CONSTANT pass is entered to set
semi-constants or constants into a field in a form. Semi-constants
and constants are characters set into a data field in the form
image. During data entry the operator has the option to accept or
over-write data set by the SEMI-CONSTANT pass; whereas, data set
by the CONSTANT pass automatically becomes part of the data record
and cannot be rejected by the operator. Both commands cause the
form to be displayed with the cursor in the first field capable of
accepting constant or semi-constant information.

Semi-constants and constants may only be set in fields
initially defined at image generation time by underscores.

In the CONSTANT pass, the SPACE bar does not set constant
spaces into the field but permits movement tc the desired position
within the data field. If constant spaces are required, the caret
key (") must be used. In addition, neither constant nor
semi-constant underscores (), vertical bars (|) or carets (") can
be set within the field. The CANCEL key will clear any constant
field previously set. The BACKSPACE key positions back one
character and erases the last character entered.

During the CONSTANT pass, no editing is performed on
constants entered. Unacceptable constants will cause the
interpreter to hang beeping during data entry. Unacceptable
semi-constants will be displayed. This feature may be useful for
presenting prompting information to the operator, e.g., a date
field may have the unacceptable semi-constant "YYMMDD" set to

CHAPTER 3. THE FORM GENERATOR 3-11

guide the operator.

Also, an entire form of constant data should not be prepared;
at least one position must be left for the operator - so that the
form may be viewed and/or written to the data file. All-constant
forms (or forms with no fields) will cause the interpreter to hang
clicking at data entry time.

Partial semi-constants at the beginning or in the middle of a
field are meaningless since the operator will have to enter data
over them to enter the remainder of the field.

Once semi-constants or constants have been set, they will
always appear when the form is displayed (e.g., during the TYPE or
REQUIRE pass). Semi-constants and constants are not destroyed by
assigning edit criteria during other passes. '

Semi-constants and constants should be cleared before
executing the REVISE command since their presence will change the
field definitions.

3.6.4 The PROGRAM Pass

The PROGRAM pass is entered to assign field program names to
fields. Field programs are written in the DATAFORM 2 language,
which is discussed in a later chapter. Each program is identified
by a single alphabetic character (A - Z). A program is assigned to
a field by entering the appropriate program letter in any field
where a special processing program will be written.

The same field program may be assigned to several fields,
e.g., a year and month range check could be used for any date
field. Up to twenty-six unique field programs may be assigned in
one form.

3.6.5 The LINK Pass

The LINK pass is entered to assign a "link" to another form
so that the operator need never bea concerned with a form number.
Each form in a DATAFORM 2 system may have a pointer, called a
"link", to the next form to be used. This pointer must be defined
at form generation time. If the data entry system being generated
is a cassette system, form links should be planned so that
cassette motion is minimized. That is, forms which are linked
should be close to each other in the catalog. If the data entry
system being generated is a disk based system, form links should
be planned carefully so that forms are accessed in a manner most
convenient to the operator.

3-12 DATAFORM II WITH DOS SUPPORT

NOTE: LINKed forms must have the same SYSNAM.

A form link may be either of two types: a manual link or an -
automatic link. The operator must press a special function key to
load a manual linked form after the data record has been written.
An auto linked form is automatically loaded whenever a data record
is written. '

When the LINK pass :is entered, the message:
NEXT FORM nnn:

will appear (where nnn is the number of the current linked form in
octal, initially 0@0). The current linkage information may be
viewed by entering the LINK pass and then simply pressing the
ENTER key to leave the value unchanged.

3.6.5.1 Setting a Manual Link

To set a manual link, enter the number of the form (followed
by the ENTER key) which is to be displayed when the operator
presses the form load function key.

3.6.5.2 Setting an Auto L1nk

One data entry transaction may require several DATAFORM 2
"forms", e.g. forms 1, 2 and 3 (PAYQl, PAY@2 and PAY@3) may make
up one payroll transaction. In order to fill in form 1 once, then
form 2 once, then form 3, the operator would have to use the write
function (to write out the data) and then the form load function
(to load the next form).

To facilitate use of multiple page forms (i.e. sets of forms
to be completed in sequence and then reused), the next form links
can be set at form generation time to auto-load a new form
whenever data is written.

To set an auto-link precede the form number with a minus
sign. Thus, when generating form one in the multi-page example
above, enter "-2" as the auto link for form 1l; enter "-3" as the
auto link for form two; and "-1" as the auto link for form 3
(which makes form three wrap around to form one).

CHAPTER 3. THE FORM GENERATOR 3-13

3.6.5.3 Clearing a Link

‘ To clear a form link, enter a zero when the "NEXT FORM"
message is displayed.

3.7 The 0OUT Command
During the entire form generation time the form is only in

memory. To record the form and its associated edit criteria in the
form file, enter the:

ouT

command. If no errors have been detected (e.g. too many fields,
too long a data record), the form will be written. If programs
have been specified, the proram file (see chapter 1 for a
discussion of where the program file name originates) will be
opened and searched for all referenced programs. If the file or
any of the programs are missing, an error message is displayed and
the form is written without field programs. ,

At the completion of the form writing process, the generator
displays either the message:

PROGRAM BASE ADDRESS mmmm

nnn BYTES LEFT
and reloads the DOS or the message:

nnn BYTES OVER
This message means that the form image plus the data record plus
the field program is too large to be contained in available user
space. Either the form or the field programs must be revised to
fit into the user space. All numbers displayed here including the
address are decimal.

When the new form has been written, it may be tested by
running DFINT specifying the newly created form.

NOTE: To interpret a form using DF2DOSG, the form does not need to
be cataloged with the configurator. It only needs to be in the
disk directory.

3-14 DATAFORM II WITH DOS SUPPORT

3.8 The REVISE Command-

If an error in the form image is discovered after the image
has been generated, the: ' ‘

REVISE

command places the generator in the image generation mode with the
current form intact. All edit criteria are cleared which means
that all passes have to be re-executed after the form has been
revised. T T

If the form is not in memory, the OLD command must be entered
before the REVISE command to load the old form into memory.

NOTE: If constants had already been set into the form, it is best
to enter the CONSTANT pass and clear (using the CANCEL key) all
constant fields (since constants destroy the field definition
characters) before entering the REVISE command. '

3.9 The OLD Command

Once a form has been recorded it may be retrieved and
modified. The:

OLD
command loads the form into memory. Any pass of the generator may
be executed; however, note that the REVISE command will clear all
edit criteria. :

If the field programs associated with a form have changed,
simply enter OLD, to reload the form, and OUT, to attach the new
version of the programs. Any time a form is read via the OLD
command, all field programs required must be re-attached to the
form.

3.10 The 0SS Command

The:

0s

command reloads the DOS without writing the current form in memory
to the form file.

CHAPTER 3. THE FORM GENERATOR 3-15

TYPE
assign

edit

criteria

16

GENERATING A NEW FORM

"NEW
-make form image

REQ SEMI CON "PRO
assign define define assign
edit semi- constants program
criteria constant letters

|

|

|

|

|

|
out

write form to form file

DATAFORM II WITH DOS SUPPORT

LINK

set manual
or auto
link

CHAPTER 4. THE COMPILER

The DF2DOSG interpreter provides field editing capabilities
on a character-for-character basis. Field programs written in the
DATAFORM 2 language provide much greater field editing
capabilities. The DATAFORM 2 language is a high level programming
language, similar in structure to DATABUS and other high level
languages. A field program can perform almost any kind of field
(and even character) manipulation: check digit, range, and table
checks; complete arithmetic processing; inter-form communication;
complex data record movement; code-set conversions; etc.

The DATAFORM 2 language is concise, yet powerful. The basic
ingredients of the language are, as in any programming language,
statements which describe data (called "specification" statements
in the DATAFORM 2 language), and statements which manipulate data
(called "executable" statements). '

4.1 Labels

Any DATAFORM 2 statement may have a label, and some must have
a label. ™ "label" begins in column one and consists of up to
eight alphanumeric characters (actually, the label may consist of
any number of alphanumeric characters, although all characters
after the first eight are ignored).

Labels have three uses: first, to name data items; second, to
provide a means for branching and subroutine calls within a
DATAFORM 2 program; and third, to name field programs: (that is, to
associate program code segments to specific fields in the form
image).

At most 95 labels may be defined in a DATAFORM compilation.
The following are examples of acceptable labels:

A

2765

FIELD17
LABELSTATEMENT (truncated to LABELSTA)

CHAPTER 4. THE COMPILER 4-1

4.2 Field Program Names

The form generator uses a label called a "field program name"
to associate a specific starting address of a DATAFORM 2 program
segment with a specific field of a form. A field program name is a
label which is terminated by a star (or asterisk) "*", and there
are no blanks between the label and the star. Since only the first
character of a field program name is passed to the form generator,
it is pointless (and probably could be confusing) to name field
programs with labels which are longer than one character. In
addition, the generator requires an alphabetic field program name.
It is important to note that the compiler does not check for
duplicate field program names; if there are duplicates, it passes
both to the generator. ‘

The following are examples of program names:

E*
7*

4.3 Spaces

The DATAFORM 2 compiler is a "free-form" compiler -- that is,
the space character () is by and large ignored by the compiler.
Multiple spaces are treated as a single space, and a single space
is ignored except as a field separator. Spaces may be included as
desired to improve readability.

4.4 Comments
Comments, too, are ignored by the DATAFORM 2 compiler.

There are two kinds of comments -- comments which appear on a
code line after the code; and comments which appear on a line by
themselves. Comment lines must begin with a period (.) or a plus
(+) in column 1. If a listing ie nrinted, a comment that begins
with a plus causes a page to be e ected on the printer and the ,
comment line to be printed on the top line of the next page of the
listing. '

4.5 Specification Statements

As mentioned earlier, specification statements are statements
which describe data. The DATAFORM 2 language contains: the DATA
statement (used to access the output data record); the WORK
statement (used for data storage within a single form); the COMMON
statement (used for data communication between forms); the EQU

4-2 DATAFORM II WITH DOS SUPPORT

statement (used to describe absolute values); the REDEFINE
statement (used to associate a label with a previously defined
label); and the FIELD statement (used to describe fields of the
screen image form).

Every specification statement has associated with it an "item
length". The item length is the number of characters which make up
an individual item of that statement. The item length of each
specification statement below is the length of the entire
statement, unless otherwise indicated.

4.5.1 DATA

The DATA statement refers to specific columns of the OUTPUT
data record. The general format of the DATA statement is:

<label> DATA <n><,m>

where "n" and "m" are decimal numbers in the range 1-245. The
number "n" refers to an initial column of the OUTPUT data record,
and the number "m" refers to a terminal column of the OUTPUT data
record. The item length associated with the DATA statement is:
(m-n)+1. The columns defined by the DATA statement do not
necessarily correspond to specific fields of the form. Areas may
be redefined. The columns defined by a DATA statement may be:

1) Identical to fields on the form.

2) A sub-grouping of a large field into smaller fields.
3) A combination of smaller fields into a larger field.
4) An overlapping of fields on the form.

The following syntax restrictions apply to the DATA statement:
1) "n" and "m" must both be greater than zero but less
than 246. _
2) "m" must be greater than or equal to "n".
3) The DATA statement must have a label.
Examples of the DATA statement:

NAME DATA 1,29 multiple column field

IDCODE DATA 30,38 single column field
AMOUNT . DATA 31,39
- DOLLARS DATA 31,37 Sub-group of larger
~CENTS DATA 38,39 field

CHAPTER 4. THE COMPILER 4-3

4.5.2 WORK

The WORK statement is used to reserve space within a field
program. Space reserved may be uninltlallzed, or may contain ASCII
or octal constants (or tables). ~

To simply reserve uninitialized space within a field program,
the following format of the WORK statement is used:

<label> WORK <n>

where <n> is a decimal number in the rahge 1-245, The area to
which <label> refers has an item length of <n>.

Working storage may contain ASCII characters. The characters
are enclosed in double guotation marks, as in the following
example:

WORDS WORK "PRE-DEFINED CHARACTERS"

A special forcing character (#) may be used to "force" the
character immediately following it to be included in the string;
by using this character, the double quotation mark and the forcing
character may themselves appear in the character string:

NICKNAME WORK "I AM #"SHORTY#"."
NUMBER1 WORK "I AM ##1."

Each WORK statement that contains constants generates a code
segment. Normally, every constant working storage segment is
terminated with an additional, special end-of-table character, an
octal ze¢ro. This character is included in the over-all length of
the working storage segment, but is not included in the item
length. To conseive memory, it is possible to suppress the special
end-of-table character in a constant working storage segment by
following the last item of the vnrking storage segment with a
semicolon, as in the following e:ramples:

WORK1 WORK "DATA"
WORK2 WORK "DATA";

The first example will generate the following five octal
characters: 0104,0101,0124,0101,000. The second will generate the
following four octal characters: 08104,0101,06124,08101. The item
length of both statements above is four. Working storage may
contain tables as well. The item length of the table is determined
by the length of the first item in double quotation marks. Each

4-4 DATAFORM II WITH DOS SUPPORT

item in the WORK statement table must be the same length.
Individual items are separated by a comma.

~In the following examples:

TABLEl WORK lll"'“z"'||3ll,ll4l|'ll_5“’|l6ll
TABLE2 WORK "12","34","56""

TABLE3 WORK "123","456"

TABLE4 WORK "123456"

all of the working storage tables have the same table length (six
characters plus one special end-of-table character for a total
table length of seven), but the individual item lengths are
respectively 1, 2, 3, and 6. ’

Working storage items may be continued on more than one line
by using a colon, as in this example:

CONTINUE WORK "123456","789012":
, "345678":
"9(1234"

Working storage may contain octal constants. The first octal
constant (and only the first) is prefixed by the alphabetic letter
"O". Each octal constant generates only one character of working
storage. An octal constant may consist of any number of octal ,
digits; however, only the least significant eight bits are placed
in the octal character. Octal constants may be separated from one
another by a comma, and may be continued from one line to another
by use of the colon. Octal constants, like other constants, are
terminated with an octal zero; a semicolon after the last constant
will suppress the zero. The item length of an octal constant work
area is one. Octal constants and ASCII character strings may not
be mixed in the same WORK statement; WORK statements are either
octal or ASCII.

‘The following are examples of octal WORK statements:

OCTAL1 WORK 015;

OCTAL?2 WORK 015,16,17,20

OCTAL3 WORK 015,16,17,20:
25,26,27,30:
35

OCTAL4 WORK 0167

CHAPTER 4. THE COMPILER 4-5

The following syntax restrictions apply to the WORK statement:

1) The WORK statement must have a label.

2) If the WORK statement defines a table, all items in
the table must be of the same length.

3) A comment may appear on a WORK statement if ‘the
comment is preceeded by a period.

4) If the WORK statement merely reserves space (i. e.,
does not c¢ontain any constants), the amount of space
reserved must be in the range 1-245.

4.5.3 COMMON

The COMMON statement is used to assign labels and reserve .
space within the 100 character COMMON block. COMMON statements are
identical syntactically to WORK statements. Their main difference
is one of function. The COMMON area is used for transferal of
information between forms, or for the saving of information used
in one form only, although multiple forms are loaded. The format
of the COMMON statement is:

[label] COMMON <n>

The following example could be used to pass a six character
total from one form to another:

TOTAL COMMON 6

It is important for every program using information saved
through COMMON to have the same relative locations of areas inside
the COMMON block. References to COMMON data in second and
subseguent form’s programs must be in the same order. A dummy
COMMUN statement, such as:

DUMMY COMMON 6
should be used to skip over six unused characters inside the

COMMON block. if those characters are not referenced by the
current form, but are referenced by another form.

4-6 DATAFORM II WITH DOS SUPPORT

The following syntax restrictions apply to the COMMON statement:

1) A label is not required on a COMMON statement.

2) The maximum total length of the COMMON block is 100
characters.

3) A comment may appear on a COMMON statement if the
comment is preceeded by a period.

4.5.4 EQU

The EQU statement is used to associate an octal address value
with a label. Following the EQU is a string of octal digits,
denoting an absolute octal address. The initial character of the
string need not be a zero, although a zero will serve as a
reminder that the string is octal rather than decimal.

The minimum memory required for the DF2DOSG interpreter is
12K; the minimum memory required for the DF2SYS interpreter is 8K.
If the system has more memory available, this extra memory may
contain previously assembled assembly (as distinct from DATAFORM
2) language programs, which may be referenced by using the EQU
statement to define a label, and then transferring control to that
label (see later sections of this manual for transfer of control
statements. and for assembly language interfacing).

The following are examples of the EQU statement:

8K EQU 020000
12K EQU 30000

4.5.5 REDEFINE

The REDEFINE statement is used to associate a new label with
an elsewhere defined label.

The general format of the REDEFINE statement is:
<label2> REDEFINE <labell><,n><,m>
The value "n-1" is added to the previously defined initial value
for <labell> and becomes the initial value of <label2>. The item
length of <labell> is ignored, and the number "m" becomes the item
length for <label2>.

For example, suppose a table is defined as follows:

TABLE1 WORK “123456789@12"

CHAPTER 4. THE COMPILER 4-7

The item length of TABLEl is 12. Then consider:

TABLE?2 REDEFINE TABLEl,1,6
TABLE3 REDEFINE TABLEl,1l,4
TABLE4 REDEFINE TABLEl,1,3
TABLES REDEFINE TABLEl,3,2
TABLE6 REDEFINE TABLEl,7,1

The same memory locations are "re-grouped" under different labels,
so that the effect is the same as:

TABLEZ2 WORK "123456","789012"

TABLE3 WORK "1234","5678","9012"
TABLE4 WORK "123","456","789"."@12"
TABLES WORK "34","56","78","90","12"
TABLEG WORK "7"’"8“'“9"'"”“'"ll'.nzﬂ

The REDEFINE statement may redefine WORK and COMMON statements
(and the pre-defined label INPUT).

The following syntax restrictions apply to the REDEFINE statement:

1)
2)
3)

4)

4.5.6 FIELD

Both <n> and <m> must be in the range 1-245.
The REDEFINE statement must have a label.
The field following <m> may be used as a comment

field.

The REDEFINE statement should immediately follow the
label that is being redefined (i.e., <labell> in the
general format of the REDEFINE above). The REDEFINE
statement is not flagged in error if it appears
elsewhere, but erroneous values may be generated if
the REDEFINE statement does not immediately follow
the label that is being redefined.

The FIELD statement is used to reference the OUTPUT fields of
the displayed form. The field re’erence may be absolute or
relative to the current field. The absolute field reference is
used to reference specific fields of the form.

The format of the absolute FIELD statement is:

<label> FIELD <n>

where "n" is a decimal number in the range 1-126.

4-8

DATAFORM II WITH DOS SUPPORT

The relative field reference is used to reference an offset
(either positive or negative) of the current field.

The format of the relative field statement is:
<label> FIELD <sign><n>

where <sign> is either a "+" or a "-", and "n" is a decimal number
in the range 1-126.

The following are examples of the FIELD statement:

FIELD7 FIELD 7
NEXTFLD FIELD +1
LASTFLD FIELD -1

The label appearing on a FIELD statement may be referenced in any
type of arithmetic or conditional statement, as in the following
example:

ADD LASTFLD TO INPUT GIVING NEXTFLD

4.6 Executable Statements

Executable statements are those statements concerning: 1)
transfers of information; 2) arithmetic; 3) comparisons; 4)
output; 5) transfers of control; and 6) current field assignment.
4.6.1 Transfers of Information

Data is moved from one location to another using one of five
possible statements: ALIGN, CONVERT, LOOKUP, MOVE, or SET.

4.6.1.1 ALIGN
The ALIGN statement format is: ,
[label] ALIGN <fieldl> TO <field2>
The ALIGN first checks both <fieldl> and <field2> for the presence
of a decimal point. If none exists, it is assumed to be at the
rightmost edge of the field. After determining the decimal point,

<fieldl> is moved to <field2>, with decimal points aligned. In
<field2>, either truncation or zero-fill or both may occur.

CHAPTER 4. THE COMPILER 4-9

In the following examples, the source fleld and the destlnatlon
field (both before and after the ALIGN) are shown:

MOVEIT ALIGN FIELD1 TO FIELD2
FIELD1 FIELD2 FIELD2
(before) (after)

190.1 0000. 0019.

190.1 - 00.00 10.19

19.1 0.000 0.100
1.234 0000 . go81.
1.234 - 00.00 91.23
12.34 00000 00012

NOTE: If <field2> is in the data area, the decimal format may be
initialized by setting (during form generation) semi~constant
zeros with a decimal point in the appropriate position.
4.6.1.2 CONVERT

The CONVERT statement format is:
[label] CONVERT <fieldl> BY <tablel> AND <table2> GIVING <field2>
The CONVERT statement will try to find <fieldl> in <tablel>. The
length of <fieldl> is used for the search. The correspondlng entry
in <table2> is moved to <field2>.
Given the following specification statements:

TABLEl WORK "MA", "NY","KS","MT",“TX"

TABLE2 WORK "BOSTON","ALBANY","TOPEKA":
"HELENA" ,"AUSTIN"

and the following executable statement:
CONVERT FIELD1 BY TABL:-.: AND TABLE2 GIVING FIELD2

the following will be the contents of FIELD2 if the contents of
FIELD]l are as indicated:

FIELD1 FIELD2
TX ‘ AUSTIN
MA BOSTON
KS TOPEKA

The item length of <table2> is used to determine the position

4-10 DATAFORM II WTTH DOS SUPPORT

of the corresponding element and the length of the move from
<table2> to <field2> (the item length of <field2> is also
checked); therefore, each separate item in <tab1e2> should be
enclosed in double guotation marks.

If the item is not found in <tablel>, no movement of data
takes place.-

The CONVERT statement should be used when the table has gaps,
or is randomly ordered.

NOTE: The CONVERT statement requires a portion of the extended
DATAFORM interpreter.

4.6.1.3 LOOKUP
The LOOKUP statement format 1is:

[label] LOOKUP <fieldl> IN <tablel> GIVING <field2>

The LOOKUP statement will use <fieldl> as an index into <tablel>.
The item thus selected will be moved to <field2>. If the index
value 1is greater than the length of the table, the value moved
into <field2> is indeterminate. The following is an example of the
LOOKUP ‘statement:

TABLE WORK "JAN","FEB","MAR","APR","MAY","JUN":
"JUL" ’ "A~UG" P llSEPll ' "OCT" ’ "NOV" ’ "DEC“
LOOKUP NUMBER IN TABLE GIVING NAME
The LOOKUP statement should be used when there are no "gaps"
in the table from which the data movement takes place. The LOOKUP
uses <fieldl> as an item by item index into the table, and hence"

will always find a match, even though it may be outside the range
of the table (if the index is too large).

NOTE: The LOOKUP statement requ1res a portlon of the extended
DATAFORM 2 interpreter.

4.6.1.4 MOVE
The move statement format is:
[label] MOVE <fieldl> TO <field2>
<fieldl> is moved, left justified, to <field2>. If the length of

<fieldl> is less than the length of <f1e1d2>, <fieldl> s length is
used in the move. Subsequent characters in <field2> are not

CHAPTER 4. THE COMPILER 4-11

changed; their values are as they were before'the MOVE. If the -
length of <field2> is less than the length of <fieldl>, <field2>’s
length is used, meaning that some characters may be truncated (or
lost). An example of the MOVE statement is:
MOVE TOTAL TO WORK1
4.601.5 SET
The SET statement format is:
[label) SET <fieldl> TO <field2>

The first character of <f1eld2> is spread throughout <fieldl> --
as for zeroing out a total, or blank filling a message.

The following example:

STAR WORK "*"
TOTAL WORK "00000008"
<label> SET TOTAL TO STAR

would set the entire 8 character TOTAL field to stars. The SET
statement should not be used to zero a field containing a decimal

point which is to be used as a destination for ALIGN or any
arithmetic statements, since the decimal, too, will be overstored.

4.6.2 Add, Subtract, Divide, Multiply

The standard arithmetic functions of add, subtract, multiply
and divide are provided. These statements must be in the following
formats (specifically, the connectives between <labell> and
<label2> must not vary):

[labell ADD <labell> TO <label2>

[label] SUBTRACT <labell> FROM <label2>
(SUBTRACT may be abbreviated SUB)

[label] MULTIPLY <iabell> BY <label2>
(MULTIPLY may be abbreviated MUL or MULT
or MPY)

[1labell DIVIDE <labell> INTO <label2>

(DIVIDE may be abbreviated DIV)

Alternatively, any of the above four may be modified by appending
the phrase [GIVING label3] to them. The result of this is that the
contents of the first two labels are not affected, but their sum
(difference, product, quotient) appears at the third label rather
than the second.

4-12 DATAFORM II WITH DOS SUPPORT

NOTE: A comment may appear on an arithmetic statement if the,
comment is preceeded by a period.

The following are examples of arithmetic statements:

ADD INPUT TO SUBTOTAL

SUB DISCOUNT FROM PURCHASE

MULTIPLY PRICE BY QUANTITY

DIVIDE TOTEST INTO TOTSCORE

ADD INPUT TO OLDBAL GIVING NEWBAL

DIV TOTEST INTO SCORE GIVING AVESCORE

If GIVING <label3> is appended to the arithmetic statement,
an "ALIGN <label2> TO <label3>" is generated prior to the
arithmetic statement.

NOTE: Significance may be lost with GIVING <label3> (before
computation) if <label3> has fewer places of significance than
<label2>.

The result of any arithmetic will be aligned to the decimal point.
in the result field. Truncation is performed at both ends of the
field and leading zeros are supplied in non-sequential leading
characters. In a field defined as right justified and blank
filled, performing an "ADD NULL TO <field>" will replace the
leading blanks by zeros.

NOTE: The MULTIPLY and DIVIDE statements require a portlon of the
extended DATAFORM interpreter.

4.6.3 IF

The general format of the IF statement is:
[labell] IF <fieldl><relation><field2> THEN <label2>

If <relation> is true. control is transfered to <label2>, which
may be a pre-defined label like STORE. If <relation> is false. the
next statement in the program is executed. Three types of
relations may be defined:

1) ASCII comparisons (EQ, EQU, EQUAL, GE, GEQ, GREATER,
GT, GTR, LE, LEQ, LESS, LESSTHAN, LT, NE, NEQ,
NOTEQUAL are all acceptable). The characters in
<fieldl> are compared. from left to right. to the
characters in <field2> (using the item length of
fieldl to terminate the compare). Differing lengths
do not cause unequal compares; however. if <fieldl>

CHAPTER 4. THE COMPILER 4-13

4-14

2)

3)

is longer than <f1eld2>, the results are
indeterminate.

Table lookup (INR, INRANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT,'NOTINTABLE) <fieldl> is ,
"looked-up" in the table deflned at <f1eld2>. The
item length of <fieldl> is used. ;

Check digit verification. <fieldl> is tested for
correctness of check digit with either a mod 18
("¥10) or a mod 11 (CK1ll) check performed. using the
contents of <field2> as a weighting factor. <fieldl>
should contain the check digit in the least
significant position <field2> is assumed to be one
character shorter than <fieldl>.

DATAFORM II WITH DOS SUPPORT

The following are examples of the usage of the IF statements:

AMOUNT FIELD 1
ACCOUNTNO DATA 21,27
MONTH DATA 1,2

DAY DATA 3,4
DAYTABLE WORK "@1","31"
MONTHTABLE WORK "@1","12"
ZERO WORK "000000"
WEIGHT1 WORK "212121"

. Check fieldl for strictly positive

A* IF AMOUNT GREATER ZERO THEN STORE
AGAIN

. Check for null input
B* IF NULL EQ INPUT THEN AGAIN
. Check for negative.

C* IF AMOUNT LT ZERO THEN STORE
AGAIN

. Check range using table

D* IF DAY NOTINRANGE DAYTABLE THEN AGAIN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

. Perform Modl@ check digit validation

E* IF ACCOUNTNO CK1l0 WEIGHT1 THEN STORE
AGAIN

NOTE: The CK10® and CK1ll forms of the IF statement require a
portion of the extended DATAFORM 2 interpreter.

4.6.4 Output Control

The BEEP statement provides an audible tone. The CHAIN
statement is used to load another form (in addition to the
auto-load and linking-load features of the interpreter) Three
statements are provided for displaying information on the
processor ‘s screen: FORMSHOW, MESSAGE, and SHOW; and the WRITE
statement is provided to -'rite out the data record under program

~“APTER 4. THE COMPILER 4-15

control.
4.6.4.1 BEEP

When the BEEP statement is exeoutedr the processor iesuesfa
single BEEP sound. The format of the BEEP statement is:

[label] BEEP
4.6.4.2 CHAIN

The CHAIN statement 1oads a spec1f1c form The format of the
CHAIN statement is:

[label] CHAIN <n>

where <n> is the decimal number of the form to be loaded (from 1
to 99). A file named "SYSNAMnn/DFF" is loaded. The current data
record is not written; however, the flag indicating data present
is cleared. The specified form is loaded and control is passed to
the interpreter at the first non-constant field of the new form.

A CHAIN to the form currently in memory reloads that form and
all its programs.

4.6.4.3 FORMSHOW
The FORMSHOW statement causes the current form to be
redisplayed. All data fields on the screen will be cleared. The
output record is not affected and the current field index 1s not
changed.
The format of the FORMSHOW statement is:
[label] FORMSHOW

In the following example:

WRITE
FORMSHOW

the last data record written is still in memory; however, it will
be erased from the screen and will appear only as each field is
reached by the operator.

NOTE: The INPUT field is destroyed when the FORMSHOW statement is
executed.

4-16 DATAFORM II WITH DOS SUPPORT

4.6.4.4 MESSAGE

The MESSAGE statement writes the specified messages on the
bottom line of the screen.

The format of the MESSAGE statement is:
[labell] MESSAGE <label2>
The following is an example of the MESSAGE statement:

ERR WORK "ACCOUNT IS OVERDRAWN"
[label] MESSAGE ERR

The MESSAGE statement always erases the bottom line of the form.
However, the message is only temporary and the bottom line of the
form will be restored when the operator writes the data record or
erases the current record. '

NOTE: The INPUT field is destroyed when the MESSAGE statement is
executed.

4.6.4.5 SHOW

The SHOW statement displays a message in the current field
area of the screen. '

The format of the SHOW statement is:
[labell] SHOW [label?2]

If no [label2] is indicated, the SHOW statement defaults to
the contents of the OUTPUT buffer corresponding to the current
field.

The following are examples of the SHOW statement:

SHOW
or SHOW TOTAL

CHAPTER 4. THE COMPILER 4-17

Thé SHOW may be used if computations or table'IO6kup conversions
were made to change the value of the current field, as in the
following example:

CRDRTAB WORK "CREDIT","DEBIT "

LSTFLD FIELD -1 ' .

CD ‘ WORK llCu wp"

MSG WORK " "

S* CONVERT LSTFLD BY CD AND CRDRTAB GIVING MSG
SHOW MSG
NEXT

Program "S" is assigned to a keyin only field (i.e. a field which
reserves no data space) which is set to "program reserved" (to
automatically execute the program with no operator intervention).
The program tests the preceding field and displays a message
corresponding to that value, for operator information.

NOTE: The INPUT field is destroyed when the SHOW statement is
executed.

4.6.4.6 WRITE

The WRITE statement writes the data record to the data file.
The format for the WRITE statement is:

[label] WRITE
Control is returned to the next statement in the field program.
The data area in memory is not cleared, and may be used for
further computation or for auto-duping selected data.
4.6.5 Tranzfers of Control

The three transfer of program control statements are the GOTO
statement, the CALL statement, and the RETURN statement.

4.6.5.1 GOTO

Control is immediately transferred to the label following the
GOTO:

GOTO <labell>

For the pre-defined labéls, the word GOTO is optional. For
programmer defined labels, it is mandatory.

4-18 DATAFORM II WITH DOS SUPPORT

The following are examples of the GOTO statement:
GOTO OVERDRAWN
GOTO NEXT
NEXT

4.6.5.2 CALL and RETURN

A single level of subroutine nesting is provided with the
CALL and RETURN statements. A program may contain more than one
set of CALL and RETURN statements -- but a CALLed subprogram may
not CALL another subprogram.

The statement formats are:

[label] CALL <subprogramname>
RETURN

If a RETURN is executed with no preceeding CALL (in the current
field program) a GOTO NEXT is executed.

4.6.6 CHANGE and RESET
The CHANGE statement is used to transfer the input pointer

from the current field (i.e., the sequence number of the field as
it appears in the form) to another field. The new field number or
displacement from the current field number is spec1f1ed
immediately after the CHANGE statement:

[label] CHANGE [sign]<n>
For example, after the statement:

CHANGE +1

is executed, INPUT still contains the entered data; howevér, the
current field number has been incremented by one and OUTPUT now

reflects the position in the data record corresponding to the new
field. After the statement:

CHANGE 1

is executed, however, the current field number has been changed to
the first field in the form, that is, field 1.

CHAPTER 4. THE COMPILER 4-19

When a fleld program is entered the number of the current fleld is
saved and may be restored at any time. The: :

[label] RESET

statement will reset the field pointer to the fleld current when
the program was entered : , :

4.7 Pre-defined Labels

The nine labels discussed in this section may not be defined
in DATAFORM 2 programs. They have specific meanlng to the DATAFORM
2 interpreter, and are included automatlcally in every DATAFORM 2
compilation.

The pre-defined labels INPUT, NULL, OUTPUT, and RETRY refer
to locations within the 1nterpreter. These four labels may be used
as source or destination operands in data movement and comparison
statements. Examples of the use of these labels are given below:

MOVE INPUT TO OUTPUT
IF NULL EQ INPUT THEN AGAIN
IF RETRY NE NULL THEN STORE

The pre-defined labels AGAIN, CLOSE, END, NEXT and STORE
cause a transfer of control from the field program back to the
DATAFORM 2 interpreter. These five labels may be used as the
destination address of comparison or GOTO 1nstruct10ns, as in the
example:

B* IF NULL EQ INPUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

C* ADD INPUT TO TOTAL

STORE
D* NEXT
E* CLOSE
F* END

AGAIN, CLOSE, END, NEXT and STORE are means of exiting a field
program. It is important to note that the interpreter does not
place data in the OUTPUT buffer before a field program is called.

4-20 DATAFORM II WITH DOS SUPPORT

It is the responsibility of the field program to do one of three
things:

1) MOVE INPUT TO OUTPUT

2) MOVE <somethingelse> TO OUTPUT (where
<{somethingelse> may or may not be based upon
INPUT)

3) Exit the field program through the interpreter
label STORE, which will automatically MOVE
INPUT TO OUTPUT and position to the next field
in the form.

4.7.1 AGAIN

This label returns control to the interpreter at a point
which indicates an error to the operator and re-requests the
current field. That is, the processor BEEPs and returns the cursor
to the first position of the field.

4.7.2 CLOSE

This label returns control to the interpreter at a point
which closes the data file; displays the message:

PROGRAM WRITTEN EOF
and reloads the DOS.

4.7.3 END

This label returns control to the interpreter at the point as
if the operator had pressed the write data function key.

4.7.4 INPUT

This label designates the contents of the keyin buffer
immediately prior to entering the field program. The data in INPUT
has not yet been stored in the OUTPUT buffer. It’'s length is the
length of the current field, and it has been validated according
to the edit criteria in the form itself prior to executing the
field program. '

CHAPTER 4. THE COMPILER 4-21

4.7.5 NEXT

. This label returns control to the interpreter at the point at
which the current field number is incremented. The cursor is moved
to the next sequential field. No data is stored. '

4.7.6 NULL

This label designates a location in the interpreter which
contains a binary zero. It may be used to determine if the
interpreter is in normal data entry mode or modify mode; or if
data is present in the output record (meaning that this field had
been entered before). The item length of NULL is always less than
the item length of any variable. Therefore, in comparisons, NULL
should be referenced first since the length of the first operand
is used for the comparison.

4.7.7 OUTPUT

This label designates the contents of the data output buffer
for the current field. If no data has been stored, OUTPUT has the
value of binary zero (NULL). The length of OUTPUT is defined at
execution time by the length of the current field. OUTPUT is
undefined for keyin only fields. -

4.7.8 RETRY

This label designates a location in the interpreter which
contains a binary flag indicating whether the data file is in
modify or data entry mode. It can be checked by a field program by
comparing it to NULL. If RETRY equals NULL the data file is in
data entry mode. :

4.7.9 STORE
- This label returns control to the interpreter at the point
where the current contents of INFUT is transferred to the OUTPUT

buffer. That is, exiting a field program through STCRE is
eguivalent to:

MOVE INPUT TO OUTPUT
NEXT

4-22 DATAFORM II WITH DOS SUPPORT

4.8 Program Generation

Compilation of a program consists of two processes: using the
DATAFORM editor to create a new source program, or edit an
existing program; and using the DATAFORM compiler to compile a
new, newly edited, or old program.

4.8.1 Editing a Source Program
The DATAFORM editor, DFEDIT, is a special version of the
general purpose editor; its command structure is that of the
general purpose editor. The commands of the general purpose editor
are discussed in the chapter on EDIT in the DOS User s Guide.
DFEDIT displays a sign-on message:
DOSDF2G EBDITOR 2.n -- ddmmmyy

The name of the program file to be edited/created 1is
indicated on the initial command line:

DFEDIT <program>
Field program source file names should be in the "SYSNAMnn"
format. The DF2DOSG compiler and form generator all use the
"SYSNAMnn" convention, and distinguish among files by their
extensions.

4.8.2 Compiling a Source Program

When the source program has been edited, it should be
compiled. This is accomplished by entering: ' :

DFCMP <sourcefile>[,objectfile][;thions]
The compiler displays a sign-on message:
DF2DOSG COMPILER 2.n - ddmmmyy
The compiler makes a first pass thrcocugh the source file preparing

a symbol table. The actual code generation and listing production
take place on the second pass over the input file.

CHAPTER 4. THE COMPILER 4-273

At the completion of the compllatlon, some or all of these
messages are displayed on the screen:

STORAGE USED IN DECIMAL: ¢0000 RELOCATABLE, 00000 COMMON
EXTENDED INTERPRETER REQUIRED -
FIELD PROGRAMS:
A 00000
Z 0e000
END OF COMPILATION: NO ERRORS.
or END OF COMPILATION: n ERRORS.

These are descriptions of the program, telling the length of the
entire program, whether or not the extended interpreter is
required, and listing, in octal, the relocatable starting address
of each of the programs defined. The END message lists the number
of errors in decimal, if any occurred. After this the DOS is
reloaded. :

Any error messages are automatically displayed on the screen, with
a star indicating the part of the source line in error. The :
display may be stopped momentarily by pressing either the KEYBOARD.
or DISPLAY keys.

4.8.3 Printing a Compilation Listing

The first action of the compiler is to test whether a servo
or local printer is a part of the compiling system. If either of
them are, the message:

LIST ON SERVO PRINTER?
or LIST ON LOCAL PRINTER?

is displayed. A response of "Y" to this mesSage will result in a
printed listing of the program, as it is compiled. The listing
consists of three parts:

1) The line number. :
2) The initial address {either absolute or
‘relocatable) associated with the

statement line.
3) The line as it was input.

If a listing is to be printed, the message:
CODE TOO?

is displayed. A response of "Y" to this message will place
the code generated for each line (eight characters per

4-24 DATAFORM II WITH DOS SUPPORT

printed line, using as many lines as necessary for the
amount of code generated) on the listing.

These listing options may be specified in the [;options]
field of the DFCMP command line. A semicolon (;) alone
indicates that no listing is to be printed; a semicolon
followed by: an "L" indicates that a listing is to be
printed; a "P" indicates that the printer records are to be
placed in a disk printer-image file (whose name is
<sourcefile>/PRT) instead of on the printer; and a "C"
together with either the "L" or the "P" indicates that
generated code is to be included on the listing.

If a listing or print file is requested, a heading line may
be entered.

4.8.4 The Program File

When compilation is complete, a file of the name
"<sourcefile>/DFP" has been generated which contains the compiled
code. The compiled code file consists of a header record and both
relocatable and absolute object code records.

The header record contains the number of the extended interpreter
required (if any), the length of the relocatable object code, and
the names and starting addresses of all field programs in the
file.

4.9 Program Execution

4.9.1 Post-process Execution

Field programs are always executed as a "post-process" to
data entry; that is, the program is not executed until the data
has been entered, edited, and accepted by the interpreter. Thus,
alpha-numeric checks, right justification, etc., will already have
been performed on the input.

4.9.2 Operator Tabbing

If the operator chooses to bypass a field which is not
required, INPUT is NULL (binary zero). '

If the cursor enters a field during backward or forward tabbing

and no new data is entered, the data currently in the output
record (which may or may not be NULL) is passed to the field

CHAPTER 4. THE COMPILER 4-25

program. If however , new data is entered the new data is
presented to the field program in the INPUT area while prev1ously
~entered data is still available in the OUTPUT area. If the

previously entered data is cancelled by the operator, INPUT is
NULL. ,

4.9.3 Pre-process Execution

To execute a field program as a Fpre—process“, the
pre-process program should be assigned to a preceding field.

4.9.4 Program Reserved Fields

If a field is designated as a "program reserved" field, data
for that field is to be assigned by a field program. When the
field is entered, the field program is executed 1mmed1ately and
the area designated by INPUT is undefined.

4.9.5 Form Constants

Constants and semi-constants are set into the OUTPUT area
prior to data entry. However, fields containing constants will be
passed through the basic interpreter as if the constant characters
had been entered. They will be edited and passed to the field
program in the INPUT area. Unacceptable constants will cause the
interpreter to hang BEEPing during data entry.

4

26 DATAFORM II WITH DOS SUPPORT

CHAPTER 5. THE INTERPRETER

Data entry using DF2DOSG involves loading the interpreter,
then loading a form, and finally entering data into the fields
defined by the form. When the data has been entered on the screen
to the operator’s satisfaction, and the data record has been
written to the data file (by an operator function key or a field
program instruction) then the same form is cleared and redisplayed
with only constant and semi-constant data appearing.

The format for the DF2DOSG interpreter command line is:
DFINT <SYSNAM[nn]>[,datafile]

where SYSNAM is the name of the system of forms. The default form
number value [nn] is @1. The default [datafile] name is SYSNAM,
and the default [datafile] extension is TXT.

The interpreter displays a sign on message:
DF2DOSG INTERPRETER 2.n - ddmmmyy

The START and ADD commands place the data file in an "OPEN"
mode. The data file must be placed in the "CLOSED" mode (e.g., by
use of the END command), before another START or ADD command may
be entered.

‘The interpreter will respond to the commands discussed below.
A form number (in decimal) is optional in most of these commands;
if it is omitted, the current form will be assumed. An error may
occur if a form number is required and none is currently in use.

Only the first letter of a command is recognized; for
example, "START 2" may also be entered as "S 2".

CHAPTER 5. THE INTERPRETER 5-1

DATA ENTRY FLOW

DFINT <SYSNAM>

Enter START
Operator Command

Operator
Input

‘Enter END
Operator Command

SYSNAM/TXT

5-2 DATAFORM II WITH DOS SUPPORT

5.1 The START Command
The:
START [nn]

command causes data fo be placed at the beginning of the data
file. If a form number is specified on the command, or if a form
is currently in memory, that form is "entered" -- i.e., the form
is displayed with the cursor at the first non-constant field. If
there is no form in memory, control is returned to the
interpreter’s monitor.

NOTE:The START command does not check for possibly valid data in
the data file; care must be taken so that a possibly valid data
file is not overwritten.
5.2 The ADD Command
If the data file already exists, the:

ADD [nn]
command positions to the end of any data already in the file. If a
form is already loaded or a form number is specified in the
command, the form will be entered at the same time the data file

is being positioned. If there is no form in memory, control is
returned to the interpreter’s monitor.

5.3 The CONTINUE Command

If the data file is open, and the interpreter is positioned
in the midst of the file, the: :

CONTINUE [nn]
command backspaces the data file one logical record, and reads

forward until an end of file mark is found. Other action is
identical to the ADD command.

CHAPTER 5. THE INTERPRETER 5-3

5.4 The LOAD Command

The first form to be loaded may be specified along with the
system name on the interpreter command line, as indicated above.
If no number is supplied at that time, form number one is assumed
(SYSNAM@L1) . If any other form is to be loaded (replacing any form
currently in memory), the: '

LOAD <nn>

command loads form named "SYSNAMnn/DFF" into memory. if,a data
file has been opened, the form is entered. If no data file has
been opened, the message:

FILE CLOSED
is displayed and control is returned to the interpreter’s monitor.
New forms may be loaded without disthrbing the position of
the data file. Each data record contains the form number with
which it was created so that subsequent modification or other
processing can identify data generated on a particular form.

If the form is not on the disk, the message "BAD FORM" will
appear. '

5.5 The DATA Command

The:

DATA

command places the data file in the data entry mode initially, or
returns. to the data entry mode from the interpreter’s monitor. If
no form is in memory or if the data file is not open, an error
message is displayed and control returns to the interpreter's
monitor. Data currently in memory will not be disturbed and will
be displayed whenever the form is re-entered.

5.6 Revising an Existing Data File

5-4 DATAFORM II WITH DOS SUPPORT

5.6.1 The MODIFY Command

Any data record on a DF2DOSG generated data file can be
accessed for review or correction. The:

MOD [nn]

command enables the operator to manually access any data record
created by a specified form and to then either bypass or change
that record on the data file. The file is searched for the first
data record created by the current form. Once a record has been
found, the data file is in an "open" mode and may be searched in a
forward direction by pressing the read next record function key
(9), or, from the monitor mode, by entering another MOD command.
To access records already passed over, the rewind function key (7)
rewinds the data file (as does the initial MOD command).

If the data file is in the ADD/START mode, the MOD command
automatically writes an end of file mark on -the data file.

During modification, a new form may be loaded (without
disturbing the position of the data file) and that form will
subsequently be used for finding data records. Once a record has
been found by the MOD command, the contents of all fields will be
displayed in the form. Previously recorded data supercedes form
constants, thus, the actual data from the file will be displavyed,
overlaying the form’s constants (and changing its display, if
different). However, the form’s constants will be set into the
data record when the field is entered (as they are for new
records) . :

Data in a field may be changed at this time by entering new
data in the field. Pressing ENTER in the first column of a field
leaves the data unchanged. The edit criteria and field programs
associated with the fields are still in effect, and will be
re—-executed.

5.6.2 The FIND Command
If unigue data in the record to be corrected is known, the:
FIND [nn]
command may be used. This command loads the specified form (if
different from the current form) and displays the form so the

operator may enter characters into any fields to use as a key in
searching the file. All edit criteria are applied to fields

CHAPTER 5. THE INTERPRETER 5-5

(except field programs and required edlt criteria) when setting up
the match data.

When the data to be matched has been entered, the operator
must remember to press the ENTER key after data has been entered
in the last field of the search key before pressing the read
record function key (9) to start the search. The interpreter will
search the data file forward looking for the record generated by
the specified form and containing the specified data.

Once the matching data has been found, operation proceeds as
in the MOD command.

If a match is not found, the message:
END OF DATA
appears and control is returned to the interpreter’s monitor.

The search may be terminated by pressing both the KEYBOARD
and DISPLAY keys simultaneously. The operator may want to stop a
search if, for example, the wrong system name was specified, the
wrong form was specified, or the wrong match data was given for a
FIND. Control will be returned to the interpreter ‘s monitor.

5.6.3 Rewriting Existing Records

Data records are rewritten, in both FIND and MODIFY modes, by
the use of the write record function key (.). If the record was
fetched using the MOD command, the next data record will
automatically be read and dlsplayed If the record was fetched by
the FIND command, control is returned to the 1nterpreter ‘s
monitor.

If no field needs to be changed, the next record can be
fetched by pressing the read next record function key (9); note
that any modifications made will be destroyed by the read
function. The write record functicn key (.) must be used to cause
updating of the record (unless the write is executed by the field
program, in which case the field assigned the program must be
entered) .

5-6 DATAFORM II WITH DOS SUPPORT

5.7 The BACKSPACE Command
In the ADD/START mode, the
BACKSPACE |
command backspaces the data file one logical record after wrltlng
an end of file mark on the data file and placing the data file in
the MODIFY mode.

In the MODIFY mode, the BACKSPACE command backspaces twice
and reads forward once under form number control; that is, if the
record being read was not created by the current form, preceding
records will be read until a form number match is found.

The backspace record function key (8) also backspaces the
data file.

5.8 The REWIND Command
The:
REWIND

command rewinds the data file and positions to the flrst data
record created by the form currently loaded.

If the data file is in the ADD/START mode, the REWIND command
automatically writes an end of file mark on the data file.

If, while viewing records during modification, the operator
wants to rewind the file in order to view records already passed,
the rewind (7) function key may be used.

5.9 The END Command
The:
END
command is used to write an end of file mark on the data file.
Switching from START/ADD mode to MODIFY mode automatically writes

an end of ‘file mark on the data file. The END command 1is rejected
in the MODIFY mode.

|
~

CHAPTER 5. THE INTERPRETER 5

5.10 The 0S Command
The:
0s

command is used to terminate execution of DFINT. No file mark is
written on the data file. The DOS is reloaded. ; '

5.11 Data Entry Action

In the data entry mode, data set by a CONSTANT command at ,
form generation is displayed and the cursor is placed at the first
non-constant position on the form. Data set by the SEMI-CONSTANT
command at form generation time is displayed and the cursor is
placed in the the first position of the field (over the
semi-constant).

If partial constants are set at the right hand end of the
field, data must be entered up to the constants; otherw1se, the
constant data may be omitted in the output record.

During data entry, a CLICK sound is made for each accepted
character. If a character fails to pass the TYPE edit criteria for
the field (alpha, numeric or mixed) a BEEP is sounded and the
cursor does not advance. :

When entering data, pressing the ENTER key (or in
fill-controlled fields, entering the last character) causes the
field to be further edited (right justified, zero filled, checked
by program, etc.) and, if no errors are found, the cursor moves to
the next field. After the last field of a form is entered, the
cursor is placed back at the beginning of the first field awaiting
a write function {.) or other commands from the operator.

When the interpreter detects an error in a field, it places
the cursor at the beginning of the field just entered and causes
the processor to BEEP. The cursor does not advance to the next
field. The unacceptable data is not set in the data area in
memory, but still appears on the screen. If the operator decides
to tab past the field, the last accepted data (blank if none has
been entered) is displayed.

5-8 DATAFORM II WITH DOS SUPPORT

5.12 Interpreter Function Keys

The ENTER key is used as a forward tab key and the backspace
field function key (3) is used as a backward tab key. Forward
tabbing past required fields is not permitted. Note that
alpha/numeric editing occurs as data is being entered into the
field. When the field is complete, further editing is performed on
numeric and right justified fields to insure compliance with
format restrictions (e.g., minus sign must be to the left of the
field). Field programs are not executed until all other editing
has been performed successfully.

5.12.1 The Form Data Duplicate Function Key.(ﬂ)

Once a form has been completed, the data is transferred to
the OUTPUT buffer from which it is written to the data file. The
OUTPUT buffer is available to the operator for form data
duplication by means of the form data duplicate function key (0).
If no previous record has been written, or if the preceding record
was created by a different form, the results of pressing the form
data duplication (@) function key are undefined.

5.12.2 The Load Next Form Function Key (1)

The next form (specified by the linkage information in the
current form) will be brought into memory when the load next form
function key (1) is pressed. The current data record must be
recorded, either under program control, or by use of the write
record function key (.), prior to loading the next form, since
pressing the load next form function key (1) does not write the
data record, but instead clears any data in memory.

5.12.3 The Backspace Field Function Key (3)

The backspaée field function key (3) is used to retreat from
a field to the previous field. No indication is given to field
programs that the backspace field function has been executed.

5.12.4 The Return to Monitor Function Key (4)

Whenever it becomes necessary to execute one of the
interpreter "commands" while entering data into a form, the
operator must press the return to monitor function key (4) to
return control to the interpreter s monitor. Only then may the
command be executed.

CHAPTER 5. THE INTERPRETER 5-9

5.12.5 The Form Data Erase~Fun¢tion Key (6)

The form data erase function key (6) clears the entire data
area (without writing it to the file) and redisplays the cleared
form. No indication is given to field programs that the form data
erase function has been executed.

5.12.6 The Rewind Data File Function Key (7)

The rewind data file function key (7) rewinds the data file
and positions to the first data record created by the currently
loaded form. If the data file was in ADD/START mode, an end of
file mark is written on the dat file before the data file is
rewound; and the file is placed in the MODIFY mode.

5.12.7 The Backspace Record Function Key (8)

If the data file is in ADD/START mode, the backspace record
function key (8) causes the interpreter to write an end of file
mark on the data file, place the data file in MODIFY mode, and

display the next preceding data record written using the current
form.

If the data file is in the MODIFY mode, the backspace record
function key (8) causes the interpreter to display the next
preceding data record written using the current form.

5.12.8 The Read Record Function Key (9)

The read record function key (9) is acceptable only in MODIFY
iiode. It causes the interpreter to search forward in the data file
for the next record that was written by the current form.

5.12.9 The Write Record Function Key (.)

The write record function key (.) is used to write the
current data record to the data fiie. If one or more required
fields have not been completed when the write record function key
(.) is pressed, the processor BEEPs and the cursor is placed at
the first unfilled required field. No data is written to the file.
If all required fields are completed, a data record will be
written to the data file whenever the write record function key
(.) is pressed. The data record is written even if only
incomplete data has been entered. If an incomplete data record is
written, it will contain ASCII zeros in all fields defined as zero
filled (right justified, zero filled and left justified, zero
filled) and spaces (or constants, if any) in all other unfilled

‘ 5-10 DATAFORM II WITH DOS SUPPORT

fields.

After the current record has been written to the data file,
the form will be redisplayed with all data fields cleared to null
values (or to the form constants or semi-constants if any) ready
for re-entry of data from the beginning. If, however, an auto-link
is set when the write record function is executed, the data is
written out and the linked form is automatically loaded and

displayed.

CHAPTER 5. THE INTERPRETER 5-11

CHAPTER 6. THE CONFIGURATOR

The system name and form numbers provide an implicit
"catalog" of forms available to the DF2DOSG interpreter. However,
to generaté a cassette system, it is necessary to create a
cassette catalog file.

A form number (in decimal) is required'by most of the
commands discussed in this chapter.

On the disk the order of accessing forms makes no visible
difference to the operator; this is not true of the cassette
system. Forms are written in form number order; thus the system of
forms should be designed carefully to provide both the simplest
and fastest operation for data entry. DFCON records and
manipulates a DF2DOSG forms catalog.

Enter:

DFCON SYSNAM

to load the configurator and initialize or load the catalog file.
The configurator displays a sign on message:

DF2DOSG CONFIGURATOR 2.n - ddmmmyy
6.1 The CAT Command
A "catalog" file (SYSNAM/CAT) is maintained on the disk. It
identifies each form by a decimal number in the range 1-99
inclusive. The:

CAT

command is used to display the form numbers which are already
assigned in the catalog.

6.2 The IN Command
The:
IN <nn>

command is used to place the given form number in the forms
catalog (a disk file named SYSNAM/CAT). A form named SYSNAMnn/DFF

CHAPTER 6. THE CONFIGURATOR 6-1

must already have been created u51ng DFGEN before the IN command
can be used. ,

The catalog f11e corresponds to the cassette catalog and 1s
referenced by the DUP ALL and LGO commands.

6.3 The DELETE Command
To remove a form from the system catalog, enter:
DEL <nn> |

The file is not KILLed from the dlsk dlrectory, ‘but is deleted
from the SYSNAM/CAT file.

6.4 The CHOP Command
To remove multiple forms from the system cataIOg,‘enter:
CHOP <nn> | :
The CHOP command deletes the specified form number and all
subsequent (higher numbered) forms from the system catalog. Again,

the form files are not KILLed from the disk directory, but are
deleted from the SYSNAM/CAT catalog.

6.5 Creating a Cassette DF2 System Tape One

For the commands of thls section (DUP, DUP ALL, and LGO) , the
most current version of DF2 must be placed on the disk using the
procedure outlined in the section on the dlSk installation of the
cassette DF2 system. :

6.5.1 The DUP Command

Tc generate a DF2 tape one (conflgurator, ‘blank catalog and
interpreter) on the front deck, place a scratch tape in the front
deck and enter:

DUP

The new system tape one will have no forms in its catalog.

6-2 DATAFORM II WITH DOS SUPPORT

6.5.2 The DUP ALL Command

To generate a DF2 tape one complete with forms on the front
cassette deck, place a scratch tape in the front deck and enter:

DUP ALL

The DUP ALL writes the configurator, cataloq,'interpreter, and all
forms indicated in the catalog, onto the tape in the front
cassette deck.

6.5.3 The LGO Command

To generate a faster loading version of the interpreter and
its forms, place a scratch tape in the front deck and enter:

LGO

This command omits the configurator and catalog files. No form
manipulation (as discussed in the chapter on the configurator of
the DF2 user s guide) can be performed on the LGO version of the
system. All forms specified in the catalog are written to tape.

6.6 The 0S Command
To reload the DOS from the configurator simply enter:
0s

6.7 Copying Data Files

6.7.1 Copying Disk Data Files

For cassette compatibility, the DF2DOSG maintains a rewrite
number in every data record. Since the rewrite number on disk
based files is never incremented, there is no real need to have a
special copy facility. Disk based data files may be copied via the
DOS "SAPP" or "COPY" command; or, they may be renamed, via the
"NAME" command so that they will not be overwritten by the next
data entry session. (See the DOS User 's Guide for a discussion of
SAPP, COPY, and NAME.)

CHAPTER 6. THE CONFIGURATOR 6-3

6.7.2 The COPY Command

Data tapes may incur tape parity errors or partlcular data
records may reach the rewrite limit by bexgg modified the maximum
number of times. To copy a data tape, ente

Copry

This command resets the rewrite counter in each record back to
zero, and, if tape errors are encountered, provides the option of
omitting the record, terminating the copy, or attempting to copy
the bad data.

When the COPY command is executed, the message:

PLACE DATA TAPE IN FRONT DECK, BLANK TAPE IN REAR DECK
WHEN TAPE 1IN PLACE, PRESS ENTER

will appear. Once the ENTER key is pressed, the tape in the front
deck will be copied to the tape in the rear deck. If errors are
encounterd on the data tape in the front deck, the following
message will appear:

'PARITY ERROR ON DECK 2
COPY, OMIT OR END?

If "O" is entered, the bad record is bypassed and the copy
proceeds. If "E" is entered, the copy is terminated with an end of
file mark written on the tape in the rear deck. If "C" is entered,
the bad record will be written on the tape in the rear deck (the
copied record will have no parity error; however, the record will
probably be missing data or contain erroneous data) and the copy
will continue.

If the end of the tape is reached on the front deck and no
end of file mark has been detected, the COPY command will
automatically backspace the tape ir the rear deck twice and write
an end of file mark on it. The tare in the front deck is not
disturbed. Note that if this occurs, the final record count is
unreliable.

When the copy is completed, the following message is
displayed: '

nnn RECORDS COPIED

6-4 DATAFORM II WITH DOS SUPPORT

6.8 The DPRINT Command
To print a data file, enter:

DPRINT

This command prints each logical each record from the file named
SYSNAM/TXT, 8@ characters per line, on whichever printer (local or
servo) is available. If the data records contain an embedded 015,
it is interpreted as a carriage return. If the data record
contains an embedded @03, printing of the record terminates
prematurely at that point.

6.9 The FPRINT Command
To print a form image, enter:
FPRINT [nn]

where "nn" is an optional form number. If a number is entered,
only that form is printed. If no form number is entered, all
cataloged forms are printed in numerical order. Only forms which
are in the forms catalog, that is forms which have been IN’ed, may
be printed.

Forms will be printed twice; once as the total image would
appear to the operator and again, one line at a time, followed by
the size of the field and the TYPE, REQUIRED, and PROGRAM edit
criteria for each field. :

CHAPTER 6. THE CONFIGURATOR 6-5

CHAPTER 7. INFORMATION FOR THE PROGRAMMER

7.1 System Structure of the Interpreter

The DF2DOSG interpreter resides within a 12K DATAPOINT
processor. The 12K is divided as follows. The first 2.8K (from @
to #5377) is devoted to the DOS. The next page (from 05400-05777)
is for interpreter common area. Interpreter code is divided into
two parts -- the first part precedes the user area, and the second
part follows the user area. The user area contains the data area,
edit tables, form image, and, if necessary, field programs (which,
in turn, may required the extended interpreter). The following is
a memory map of the interpreter:

DOS drivers 0000 -05377

variable data 05400-06027

command handler 060303-11606

instruction interpreter 11607-13222

form pointers 14524-147490

user space 14741-17777

keyboard I/0

|

I

I

I

|

I

I

|

| string arithmetic
|

I

I

|

| 200800-21367
I

I

I
|
I
I
I
I
II
13244-14345 |
I
I
I
I
I
|
I
|

interpreter routines 21370-22370

7.2 The Edit Table

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-1

7.2.1 Edit Table Format

For each field defined by a form, a six character set of edit
criteria is generated. This entry describes the field in detail,
as follows:

Horizontal position
Vertical positon

Length of field

Position in output record
Edit key

Field program letter

The horizontal position (#-79) indicates the starting column of
the field in the screen image. The vertical position (@-11)
indicates the line of the screen image containing the field. The
information is used to display the field as well as to access data
stored in the form image for the field (i. e., constants).

The length of field is the number of characters the operator
may enter -- from 1 to 80. This number is associated at execution
time with the labels INPUT, OUTPUT and with field references in
field programs. :

The position in output record is actually an index (0-244)
into the OUTPUT buffer. If the field is a "keyin" field, i.e., no
data space is reserved, the position’s value is 0377. ‘

The edit key is a combination of bits indicating the edit
criteria set in the generator TYPE and REQUIRED passes. The b1ts
i the edit key have the following meanings:

T e TS5 T 4T3 T 2T IT08T
NN N N N\ N\ \ _ Alpha
NN N N N\ \ T Numeric Field

\ NN NN\ No Keyin
NN NN Right Justified

NN NN\ Zero Fill
N\ — ‘Numeric Digits
NN\ Fill Controlled

\ Required

The alpha and numeric digit bits are both set for the "mixed"
field type.

The field program letter is set to binary zero if no field

7-2 DATAFORM II WITH DOS SUPPORT

program is assigned; otherwise, the actual ASCII letter is stored
in this character. The number of the last field in the screen
image (the first is zero) is used to determine the length of the

edit table. In addition, there is an 0377 stored after the last
entry in the edit table.

7.2.2 Work Area

During data entry, the six character set of edit criteria for
the current field is moved to a work area in the data page for
ease of referenc1ng The variables:

COLUMN
LINE
LENGTH
PSN
EDTKEY
USER

contain the six character set of edit criteria. The location
"SAVFLD" contains the current field number.

7.2.3 Routines to Access the Edit Table

There are several subroutines available to access the set of
edit criteria. "EDTPNT" is the most basic subroutine. This
subroutine usés the value in the C-register to set the HL

registers to the address of the corresponding set of edit
criteria.

"MOVEDT" stores the field number at "SAVFLD", and moves the
corresponding set of edit criteria to the work area and into the
registers. It also positions the cursor to the field.

"NEXT" and "LAST" use the field number at "SAVFLD" to access
the next or the preceding field. Both subroutines call "MOVEDT".

7.3 Structure of the Form in Memory

7.3.1 Pointers
The form is defined by a fixed set of pointers:
Linked form number

Field program pointers
Maximum field number

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-3

Edit table pointer
Data-write buffer pointer
Length of data record

Form line pointers

The veriable "NEXTF" contains the number of the lihked fdrm
(000 if no link, linked form number +2 if a 1link is set), and the
variable "PAGE3" is the auto-link flag (8 or @377).

For each possible field program four characters are reserved
starting at the label "USERA". The four characters are zero if the
corresponding program letter is not present. 1If a program is
present, whether referenced or not, the first pair of characters
contains the "base address" to be used for all relative addresses
within the field program. The second pair of characters contains
the starting address of the program. (Note: All addresses are
stored MSB,LSB.) Unresolved program references contain an octal
377 in the first character.

The set of edit criteria is‘alwaYS referenced via the'addresS~
pointer "SEDIT"; the requested field is always checked against the
maximum field number, "EEDIT".

7.3.2 Data Buffers

‘The OUTPUT buffer is always in a fixed position "DATA" at the
end of all form pointers. Its length is defined by the variable
"LDATA". The OUTPUT buffer, to which the data is moved prior to
writing, is in a variable position. It is set at the end of the
data buffer, at a point defined by the length of the data
record+8. The address of the OUTPUT buffer is in "SMATCH". The
OUTFUT buffer is also used when performing FIND operations. The
data contained in the OUTPUT buffer is available to the operator
by means of the form data duplicate function key (9).

7.3.3 Form Image

The compressed form is stored beyond the two output buffers
and it is referenced indirectly through the pointers starting at
the label "LINES". If the address in the table of pointers
starting at "LINES", corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen.

7-4 DATAFORM II WITH DOS SUPPORT

7.3.4 Edit Criteria Table

The edit criteria table is generated beyond the compressed
form. The character immediately after the edit table terminator
(#377) is available for field programs.

7.3.5 Field Programs

When programs are attached to the form, blocks starting at
relocatable addresses are given absolute addresses based at the
first available space after the form edit table (the program base
address). Non-relocatable records from the field program (e.g.
COMMON) , are simply passed through to the form file.

7.3.6 Extended Interpreter

There are fifteen extended interpreters which contain all
possible combinations of four extended interpreter commands
(CONVERT and LOOKUP are combined as one command, as are CK1l0 and
CK1ll). Thus, extended interpreter 1 contains only check digits; 2
contains the multiply subroutine; 3 contains both check digits and
multiply; 4 contains divide; 5 contains divide and check digit; 6
contains multiply and divide; 7 contains multiply, divide and
check digits; 8 contains conversions; 9 contains conversions and
check digits; 1@ contains conversions and multiply; 11 contains
conversions, multiply and check digits; 12 contains conversions
and divide; 13 contains conversions, divide and check digits; 14
contains conversions, multiply and divide; and 15 contains all
extended functions. ’

The extended interpreters are all assembled so that they end
at an address 100 characters (plus 3 to 18 characters for jump
instructions) from the end of memory; thus leaving a maximum
amount of user space. Three to eighteen of the characters are
reserved for a jump table into the extended interpreter itself,
since the starting addresses of the subroutines change for each of
the fifteen levels of interpreter.

7.4 Subroutines Available in the Interpreter

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-5

7.4.1 DOS Faciiities Available

The DOS interrupt handler and disk I/O routines are
available. INCHL, DECHL and BLKTFR are also present. See the DOS
User s Guide for descriptions and locations of the various
routines. :

7.4.2 Keyboatd Input Routine

The interpreter contains its own keyboard input routine which
has two entry points. When the routine is entered at "KEYIN", the
edit type and length for the current field are applied to the
input. In addition, it is assumed that the corresponding area of
the form image is in the HL registers. This area is checked for
constants. If entered at "KEYINS$", parameters are provided to
permit keyin of twenty characters with no edit restrictions. The
input is always stored in TEMP. '

7.4.3 Display Routine

The display routine also has two entry points, "DSPLYS$" and
"DSPLY". If the display routine is entered at "DSPLY", the cursor
position will be set to the bottom line of the screen and the
screen will be rolled up after the message is displayed. The
message must be terminated by an #15. If the display routine is
entered at "DSPLYS$", the contents of DE will be used to position
the cursor and no rollup will take place at the end of the
display. .

There are two special characters permitted in the display
input message: @23, which may appear only at the beginning of the
message (causing the screen to rollup one line); and @11 followed
by a count, which may appear anywhere in the message (indicating
space compressionj. In addition, binary zeros are converted to
underscores and spaces are not displayed at all (i. e., the cursor
is simply positioned to the right). The message being displayed is
always expanded into TEMP.

The routine called "REWRT" redisplays the form (with no
data).

7-6 DATAFORM II WITH DOS SUPPORT

7.4.4 Form and Data Access Routines

The routine "GETADR" uses the contents of the variables "HP"
and "VP" to locate to positions in the form image corresponding to
the current field (this is where constants and semi-constants are
stored) .

"GETDAT" sets HL to the address in the data buffer

corresponding to the current field. The B-register contains the
length of the field. '

"MOVEDT" uses the value in the C-register to access the edit
table entry corresponding to that field and moves the six
character entry to a work area for easy referencing. It also saves
the field number in the variable "SAVFLD".

7.4.5 String Arithmetic Package

The string arithmetic package used in DATAFORM requires the
following parameters:

HL destination and field operated on
DE operator (i.e., divisor)

the length of HL is in BLEN

the length of DE is in ALEN

Only the add and subtract functions are available in the
basic interpreter. The addresses of multiply and divide change
depending on the particular level of extended interpreter being
used.

The entry point for add is ADD$ and for subtract is SUBS.

7.5 Assembly Language Interfacing and Overlays

7.5.1 Program Base Address

When the form generator outputs a form, it displays a
message: ‘

PROGRAM BASE ADDRESS mmmm
The value, mmmm, is the decimal starting address of the form’s

programs. This information is of particular interest if assembly
language programs are to be included with the form. The technigue

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-7

for utilizing this information is:

1. Generate a form and record the program base

© address. ‘ _

2. Generate and assemble the assembly language
program set at the program base address.

3. Compute the length (in decimal) of the
assembly language program.

4. Generate and compile the DATAFORM 2 program
with a labeled WORK statement the same size ,
as the assembly language program. (It may be
necessary to use two WORK statements since
the maximum reservable amount is 245
characters.)

5. Rerun the form generator. Enter OLD to
retrieve the form and OUT to write the form
with the DATAFORM 2 program attached.

6. Use the DOS "APP" command to attach the
assembly language program to the form:

APP <assembly>,<form>,<newform>
This form may now be used by the interpreter.

NOTE: The assembly program and DATAFORM form should always
be appended in this order, since, during conversion to
cassette systems, the extended interpreter and all
subsequent code are replaced by the cassette extended
interpreter.

7.5.2 External References

Facilities are provided in the DATAFORM 2 language to
reference points cutside the program, locations which may be
either in the interpreter itself or in a separately assembled
assembly language program.

The EQU instruction assigns an address to a label which may
then be referenced by any of the branching statements in DATAFORM
2 (GOTO, CALL, etc.). If this facility is used, the assembler
return instruction "RET" will return control to either the
statement after a CALL or to the NEXT point in the interpreter.

7-8 DATAFORM II WITH DOS SUPPORT

7.5.3 Returning to the Interpreter

A table of interpreter entry points is provided so that these
address may be accessed at the same point in future versions:

NEXTS EQU 95563
AGAINS EQU 05566
STORES = EQU P5571
ENDS EQU 5574
WEOF$ EQU 05577

To return to a field program after being called, the assembly
language should simply return, "RET". Otherwise, a jump to the
appropriate exit routine will return control to the interpreter.

7.5.4 Interpreter Data Areas

Various interpreter data areas may be needed by the assembly
language programs. The variable TEMP is the single item keyin
buffer and it is this area which is accessed when "INPUT" is
referenced in a field program. References to "INPUT" are compiled
as an address of 01000 and a length of zero. At execution time,
the length of the current field is substituted and the address is
converted to the DF2DOSG address 0540@0. OUTPUT, compiled as
address zero and length zero, is resolved at execution time. It is
converted to the length and address in the data buffer of the
current field. '

Labels defined in FIELD statements are compiled with lengths
of one and a special code in the MSB portion of the address. If
the MSB is 0370, the LSB represents an index to the field table
(i.e. the field number supplied by the programmer, minus one). If
the MSB is @375, the LSB represents a displacement which, at
execution time, is added to the current field number in order to
resolve the length and address information.

NOTE: Referencing a field other than the current field does not
change the number of the current field.

Several variables in the interpreter may be useful to the
DATAFORM 2 program. To access external data, i.e., data in the
interpreter or created by an assembly language routine, first EQU
a label, then REDEFINE the label, assigning it the proper length.
For example, the current field number (in binary, starting at
zero), is at location 01141 (remember cassette values are
converted automatically by the interpreter for DATAFORM 2
programs, but not assembly language programs). For example, to

'CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-9

test for field 5:

CURFLD EQU 1141

CURENT REDEFINE CURFLD,1,1

FLD5 WORK 04

TEST IF CURENT EQUAL FLD5 THEN XXXX

When the operator presses the ENTER key in the first position
of a field, the current data is at INPUT and is then passed to the
field program. The variable at location #1148, SAVNUM, contains a
flag which is @ if no data was entered, and is non-@ if data was
entered.

7.5.5 Loading the Assembly Language Progrém;

Since the format of a form'and that of assembly code is the
same, an assembly language overlay may be loaded by assigning it a
name of SYSNAMnn/DFF and then entering "LOAD nn".

Once the form and program have been tested, there are several
ways to put the system together:

1) The assembly program may be cataloged as a separate
form and be loaded by either the operator or by a
field program.

2) The form and the assembly language program may be
appended together using_tggmﬁgcilities of the DOS.

7.5.6 DF2DOSG - DFZ Addregs‘Compatibility

The DF2DOSG interpreter performs a translation of addresses
in field programs. Since the base page of the cassette version 1s
91000 and that of the disk version is #5400, all absolute
references on the bhase page, e.g., INPUT, are translated to the
correct value by adding @4400. The addresses for processing points
in the interpreter, e.g., NEXT, END, STORE, etc., are also
translated via a new jump table.

Assembly language programs which reference absolute locations
in the disk version of the interpreter will not work when a
cassette system is created. To test the programs, the following
procedure is recommended. A label called "base" should be EQU’d to
#5400. All interpreter data page labels should be referenced as
<label>+BASE. When the program is debugged, BASE should be changed
to 01000 and the program should be re-assembled and re-attached to
the form for use with the cassette system.

7-10 DATAFORM II WITH DOS SUPPORT

APPENDIX A. SAMPLE PROGRAMS

< I I
SIZE 7 6 1
TYPE R
REQUIRED P P
PROGRAM S

SAMPLE PROGRAM - MOVE SIGN FROM LEFT END TO RIGHT END

INSIGN REDEFINE INPUT,1,1
INREST REDEFINE INPUT,2,6
NXTFLD FIELD +1

SIGN FIELD +2

SPACE WORK ",
MINUS WORK =",

. INPUT TO KEYIN ONLY FIELD; MOVE
. SIGN AND STORE IN NEXT FIELD

S* IF NULL NE INPUT THEN MOVE1l
IF ' NULL EQ NXTFLD THEN AGAIN
NEXT

MOVE1 MOVE INREST TO NXTFLD
MOVE INSIGN TO SIGN
IF MINUS EQ INSIGN THEN NEXT
MOVE SPACE TO SIGN
NEXT

APPENDIX A. SAMPLE PROGRAMS

SIZE
TYPE

REQUIRED

- PROGRAM

SAMPLE PROGRAM - ARITHMETIC OPERATIONS

O\ —

K

—

ON FIELDS WITH SIGN ON RIGHT

LFT WORK 7;

LFTSIGN REDEFINE LFT,1,1

LFTVALU REDEFINE LFT,2,6

MID WORK 13

MIDSIGN REDEFINE MID,1,1

MIDVALU REDEFINE MID,2,6

SUM WORK 7;

SUMSIGN REDEFINE SuM, 1,1

SUMVALU REDEFINE SUM,2,6

ADD WORK "N

SUB WORK "-v.

MPY WORK nkM.

DIV WORK A

SPACE WORK " v

ZED WORK "g";

VALU1 'FIELD 1

SIGN1 FIELD 2

oP FIELD 3

VALU2 FIELD 4

VALU3 FIELD 6

EIGN3 FIELD 7

K* MOVE INPUT TO OUTPUT
MOVE VALUl TO LFTVALU
MOVE SIGN1l TO LFTSIGN
MOVE VALU2 TO MIDVALU
MOVE INPUT TO MIDSIGN
IF OP EQ ADD THEN ADD1
IF OP EQ SUB THEN SUBl
IF OP EQ MPY THEN MPY1
IF OP EQ DIV THEN DIV1
CHANGE 3
AGAIN

ADD1 ADD MID TO LFT GIVING SUM
GOTO DONE

SUB1 SUB MID FROM LFT GIVING SUM

A-2 DATAFORM II WITH DOS SUPPORT

MPY1

DIV1
DONE

BLANK

GOTO
MPY
GOTO
DIV
MOVE
IF
MOVE
NEXT
MOVE
NEXT

DONE

MID BY LFT GIVING SUM
DONE

MID INTO LFT GIVING SUM
SUMVALU TO VALU3

SUMSIGN EQ ZED THEN BLANK
SUMSIGN TO SIGN3 ‘

SPACE TO SIGN3

APPENDIX A. SAMPLE PROGRAMS

A-3

SIZE
TYPE
REQUIRED
PROGRAM

—

SAMPLE PROGRAM TO COMPUTE CHECK DIGIT (MOD 10)

COMBO
CKWORK
CKDIG
NXTFLD
ONE
WEIGHT

C*

Cl

c2

A-4

WORK

REDEFINE
REDEFINE

FIELD
WORK
WORK

MOVE
SUB
IF
ADD
GOTO
MOVE
STORE

"0000000";
COMBO,1,6
COMBO,7,1
+1

lllll;
"121212";

INPUT TO CKWORK

CKDIG FROM CKDIG

COMBO CK1l0 WEIGHT THEN C2
ONE TO CKDIG

Cl

COMBO TO NXTFLD

DATAFORM II WITH DOS SUPPORT

SIZE
TYPE
REQUIRED
PROGRAM

@ oNTE
T N —

JULIAN
I_ |

2 3

P P

SAMPLE PROGRAM TO CONVERT TO JULIAN DATE

ADDER

LEAPYR
MONTH
DAY
HOLD
K1

K@2
INDAY
INMO
JYR
JDAY

G*

WORK

WORK
WORK
WORK
WORK
WORK
WORK
FIELD
FIELD
FIELD
FIELD

IF
STORE

IF
STORE

ALIGN
LOOKUP
ADD
MOVE
IF

IF

ADD
STORE

"goo","031","059","090","120","151":

"1i81","212","243","273","304","334"

"'76“ "80"'"84"'"88"'"92"'"96"

’
nglu’nlzn
nﬂlu'n31n

"poe";

”1";
nﬂzn;
-1

-2
+1
+2

INMO TO HOLD

INPUT NIR MONTH THEN AGAIN

INPUT NIR DAY THEN AGAIN

HOLD IN ADDER GIVING JDAY

INDAY TO JDAY
INPUT TO JYR

INPUT NIT LEAPYR THEN STORE
INMO LE K@2 THEN STORE

K1 TO JDAY

APPENDIX A.

SAMPLE PROGRAMS

< | l
SIZE 7 5 1
TYPE R
REQUIRED P P
PROGRAM M

SAMPLE PROGRAM TO CREATE MINUS OVERPUNCH TYPE CHARACTER

SIGN REDEFINE INPUT,1,1
VALU REDEFINE INPUT, 2,5
LAST REDEFINE - INPUT,7,1
NXTFLD FIELD +1
PUNCH FIELD +2
ZERO WORK "e";
MINUS WORK "ty
ZED WORK "{"; '
TABLE WORK lIJll’"KlI’lILll'"Mll'llNll=
‘"O","P","Q“,"R"
M* MOVE VALU TO NXTFLD
MOVE LAST TO PUNCH '
IF " SIGN NEQ MINUS THEN NEX
IF LAST EQ ZERO THEN PUNT ,
LOOKUP LAST IN TABLE GIVING PUNCH
NEXT -
PUNT MOVE ZED TO PUNCH
NEXT

A-6 DATAFORM II WITH DOS SUPPORT

SIZE
TYPE
REQUIRED
PROGRAM

SAMPLE PROGRAM ILLUSTRATING CHARACTER CONVERSION

IN1
INMOVE
ALLOUT
WK1
WKMOVE
ASCII

EBCDIC

SINGLE
K29
COUNT
K@9

K1l

C*
Cl

REDEFINE
REDEFINE
DATA
REDEFINE
REDEFINE
WORK

WORK

REDEFINE

WORK
WORK
WORK
WORK

MOVE
CONVERT
MOVE
MOVE
SUB

IF

NEXT

INPUT,1,1

INPUT,2,29

1,30

ALLOUT, 30,1

ALLOUT, 2,29
"ABCDEFGHIJKL":
"MNOPQRSTUVWX" :
"YZ0123456789"
0301,302,303,304,305,306:
307,310,311,321,322,323:
324,325,326,327,330,331:
342,343,344,345,346,347:
350,351,360,361,362,363:
364,365,366,367,370,371
EBCDIC,1,1

u29u;

||g0n;

ug@n;

"l“;

K29 TO COUNT

IN1 BY ASCII AND SINGLE GIVING WK1
INMOVE TO INPUT

WKMOVE TO ALLOUT

K1 FROM COUNT

K@@ NE COUNT THEN Cl

APPENDIX A. SAMPLE PROGRAMS

A-7

SHIPPED TO
SIZE
TYPE
REQUIRED
PROGRAM

ADDRESS
SIZE
TYPE
REQUIRED
PROGRAM

. DATE
SIZE
TYPE
REQUIRED
PROGRAM

SAMPLE PROGRAM ILLUSTRATING ENTERINGvFIELDS."OUT OF ORDER"

CALL
CHANGE
NEXT

CALL
CHANGE
NEXT

CALL
CHANGE
NEXT

MOVE
RETURN

DATAFORM

SAVE

+1

SAVE

SAVE

INPUT TO OUTPUT

II WITH DOS SUPPORT

SHIPPED FROM

ADDRESS

DATE

15

A

|

15

B
b1l
2 2 2

R R R

SIZE
TYPE
REQUIRED
PROGRAM

THIS IS THE FIELD

15

SAMPLE PROGRAM TO ILLUSTRATE

ONE
THREE
HOLD
COUNT

v*

TRY
OK

ATTEMPT

WORK
WORK
WORK
WORK

IF

IF
ADD
IF
MOVE
AGAIN
IF
MOVE
SUB
NEXT
SUB
AGAIN

lll";
ll3ll;

Ilﬂll;

RETRY
INPUT
ONE T
COUNT
INPUT

INPUT
INPUT
COUNT

COUNT

APPENDIX A. SAMPLE PROGRAMS

MODIFY MODE VERFICATION

-.

EQ NULL THEN STORE

EQ OUTPUT THEN OK
O COUNT

EQ THREE THEN TRY

TO HOLD

NE HOLD THEN ATTEMPT
TO OUTPUT
FROM COUNT

FROM COUNT

A-9

SIZE
TYPE
REQUIRED
PROGRAM

PN —

SIZE
TYPE
REQUIRED
PROGRAM

> NN —

SIZE
TYPE
REQUIRED
PROGRAM

> ™S

S1ZE
TYPE
REQUIRED
PROGRAM

P O —

SIZE
TYPE
REQUIRED
PROGRAM A

o~ —

0000.90
SIZE 7
TYPE
REQUIRED P
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (FIRST STYLE)

TOTAL FIELD 6

A* SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
STORE

A-10 DATAFORM II WITH DOS SUPPORT

SIZE
TYPE
REQUIRED
PROGRAM

SIZE
TYPE
REQUIRED
PROGRAM

SIZE
TYPE
REQUIRED
PROGRAM

SIZE
TYPE
REQUIRED
PROGRAM

SIZE
TYPE
REQUIRED
PROGRAM

TNd— ™ g~ —

s

~J —

0000 .00
7

P

SAMPLE PROGRAM - TOTAL ACCUMULATION (SECOND STYLE)

BLANK
SUM

F*

WORK
FIELD

SUB

ADD
MOVE
MESSAGE
MESSAGE
NEXT

5

OUTPUT FROM SUM
INPUT TO SUM
INPUT TO OUTPUT
BLANK : ’
SUM

APPENDIX A. SAMPLE PROGRAMS

SIZE
. TYPE
REQUIRED
PROGRAM

o~ —

N

SIZE
TYPE
REQUIRED
PROGRAM

< o~ —

SIZE
TYPE
REQUIRED
PROGRAM

XN —

SIZE
TYPE
REQUIRED
PROGRAM

000 .00

~N = = N —

SIZE
TYPE
REQUIRED
PROGRAM

vl

SAMPLE PROGRAM - TOTAL ACCUMULATION (THIRD STYLE)

ONE FIELD 1

TWO - FIELD 2

THREE FIELD 3

FOUR FIELD 4

FIVE FIELD 5

A ADD INPUT TO TWO GIVING FIVE
- GOTO EXIT1

Y* ADD ONE TO INPUT GIVING FIVE

EXITI1 ADD THREE TO FIVE
GOTO EXIT2

X* ADD ONE TO TWO GIVING FIVE

A-12 DATAFORM II WITH DOS SUPPORT

EXIT2

W*

ADD
ADD
STORE
ADD -
ADD
ADD
STORE

INPUT TO FIVE
FOUR TO FIVE

ONE TO TWO GIVING FIVE

THREE TO FIVE
INPUT TO FIVE

APPENDIX A. SAMPLE PROGRAMS

A-13

|
SIZE 7
TYPE., R
REQUIRED
PROGRAM 2
_ |
SIZE 7
TYPE R
REQUIRED
PROGRAM Q
I
SIZE 7
TYPE R
REQUIRED
PROGRAM R
I
SIZE 7
TYPE R
REQUIRED
PROGRAM S
0000 .00
STZE 7
TYPE
REQUIRED P
PROGRAM

SAMPLE PROGRAM TOTAL ACCUMULATION (FOURTH STYLE)

ONE FIELD 1

TWO FIELD 2

THREE FIELD 3

FOUR FIELD 4

FIVE FIELD 5

BLANK WORK " "

p* ADD INPUT TO TWO GIVING FIVE
GOTO EXIT1

Q* ADD ONE TO INPUT GIVING FIVE

EXIT1 ADD THREE TO FIVE

A-14 DATAFORM II WITH DOS SUPPORT

R*
EXIT2

S*

EXIT3

GOTO
ADD
ADD
ADD.
GOTO
ADD

ADD

ADD
MOVE
MESSAGE
MESSAGE
NEXT

EXIT2

ONE TO TWO GIVING FIVE
INPUT TO FIVE

FOUR TO FIVE

EXIT3 :
ONE TO TWO GIVING FIVE
THREE TO FIVE

INPUT TO FIVE

INPUT TO OUTPUT

BLANK

FIVE

APPENDIX A. SAMPLE PROGRAMS

A-15

0000.00

SIZE 7
TYPE R
REQUIRED
PROGRAM
0000.00
SIZE 7
TYPE R
REQUIRED
PROGRAM
| ~ 0000 .00
SIZE 7
TYPE R
REQUIRED
PROGRAM
0000.00
- SIZE 7
TYPE R
REQUIRED
PROGRAM
0000.00
SIZE 7
TYPE R
REQUIRED R
PROGRAM T

SAMPLE PROGRAM - TOTAL ACCUMULATION, CHECKING AGAINSTFKEYED IN TOTAL

FIRST FIELD 1

SECOND FIELD 2

THIRD FIELD 3

FOURTH FIELD 4

TEMP WORK "0000.00";

SILVER WORK "CORRECT";

GOLD WORK "NOT CORRECT; 0000.68 IS CORRECT"
SHINE REDEFINE GOLD, 14,7

T* ADD FIRST TO SECOND GIVING TEMP

A-16 DATAFORM II WITH DOS SUPPORT

GREEN

ADD

ADD

IF

MOVE
MESSAGE
AGAIN
MOVE
MESSAGE
NEXT

THIRD TO TEMP

FOURTH TO TEMP

TEMP EQ INPUT THEN GREEN
TEMP TO SHINE

GOLD

INPUT TO OUTPUT
SILVER

APPENDIX A. SAMPLE PROGRAMS

A-17

CONFIGURATOR
CATALOG
CHOP

COPY

DELETE
DPRINT
DUP

' DUP ALL

FPRINT
IN

LGO
0s

GENERATOR:

T CONSTANT
LINK

NEW

OLD

0s

OuT
PROGRAM
REQUIRE

REVISE

SEMI-CONSTANT

TYPE

INTERPRETER:
ADD

BACKSPACE

CONTINUE

DATA
END
FIND
LOAD
MODIFY

APPENDIX B. COMMANDS

SECTION
6.1
6.4

.
Ul W

N O] = O U1 OO
. =
N >

WWwWwLwwwwww
. o o o o

W W W
. L] L]
oo ®
° .
)

RGN
L[] L]
w N

o e

Lot ot v
L[] L N
A OYO WO
.
3

ACTION

display the forms in the catalog
delete specified form and all
subsequent forms '

copy a data tape and reset rewrite
counters to zero. .

delete the specified form

print data file

duplicate the main system with a
blank catalog

duplicate the entire system including
forms

print form

input a form assigning the specified
form number

~write faster loading interpreter

reload the DOS

set constants into the form

define next form linkage

clear the work area for a new form
load o0ld form from front deck
reload the DOS ’

write the current form to disk
assign program letters to fields
set required, fill controlled, or
program reserved edit criteria
revise the current form

set semi-constant data into the form
set alphabetic or numeric edit
criteria

add to the end of a data file
backspace the data file one record
add to the end of a data file

if the file is already open

switch to data entry mode

write an end of file on the data file
search for matching data record

load the specified form

modify data records

APPENDIX B. COMMANDS B-1

0Ss 5.10 reload the DOS
REWIND 5.8 rewind data file
START 5.1 initialize a data file

B-2 DATAFORM II WITH DOS SUPPORT

APPENDIX C. INTERPRETER FUNCTION KEYS

The interpreter has a set of special function keys available
in data entry and modify modes. When the DISPLAY key is pressed
simultaneously write a number pad key, the number pad key becomes
a special function key. The following functions are available:

Mode v Key Entered Function
All Data Entry ' . write record
0 form data
duplicate
1 load next form
3 backspace field
4 return to monitor
6 form data erase
Modify and Find Only 7 rewind data file
8 packspace record
9 ‘read record

APPENDIX C. INTERPRETER FUNCTION KEYS

(@]
!
f—

NUMBER PAD OVERLAY

Rewind
Data
File

Monitor

Load
Next
Form

Backspace
Record

7 8 9

) .

Record Delete (5)
Field Duplicate (0)

Read

Record

Erase
Form
Data

Back
Field "
Tab

Write
Data

DATAFORM Data Entry Functions - Use Display Key

C-2 DATAFORM II WITH DOS SUPPORT

S This overlay 13 actual

size. You can copy the

and et ovt the
’Z.’Lm. |

-

o || DispPLAY

DATA ENTRY COMMANDS VIA NUMERIC KEYBOARD

APPENDIX D. FORM GENERATOR FUNCTION KEYS

The form generator
in the image generation
pressed, the number pad
following functions are

VWNEFHEOWU & OO
I

CANCEL -

The BACKSPACE key
function. Backspacing £

has a set of special functions available
mode only. When the DISPLAY key is
characters become function keys. The
available:

character insert
cursor up ,
erase to end of screen
cursor left

character duplicate
cursor right

word remove

cursor down

form expand (downward)
character remove
erase to end of line
return to monitor

and cursor left function key have the same
rom column 1 back to column 8@ is

permitted. All cursor movement with the special function keys is

non-destructive.

The CANCEL Kkey era

ses the entire line the cursor is on and

places the cursor at the beginning of the line.

The KEYBOARD key a
for most function keys.

The CANCEL functio

cts as a REPEAT key for all characters and

n key returns to the form generator’s

monitor. The ENTER key places the cursor at the beginning of the

next lower line.

APPENDIX D

. FORM GENERATOR FUNCTION KEYS D-1

D-2

NUMBER PAD OVERLAY

DATAFORM Form Generator Functions-UseDisplay Key

Keyboara Key Causes Repeat Function

iCursor(a)g
1 1
! Up 1 ! ‘z-#;is overlay is actval
P _”—Ej gize. ‘You can copy
|Duplicate | the psge and cuvt
iCharacter ovt the templste.
Char-
== Erase
acter 7 8 9 Frame
Insert
N
Cursor Cursor
Left 4‘ 5 6 Right
| - - - - ‘ -
Word j Form i ' i
Remove l I 2 3 Expand ' H §
e . L 1
¢ . Erase
Line KEYBOARD
=Character ; Cursor g ,
1 Remove Down '
! B @ DISPLAY

FORM GENERATOR COMMANDS VIA NUMERIC KEYBOARD

'DATAFORM II WITH DOS SUPPORT

APPENDIX E. FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA

TYPE MEANING
A Alpha (A - Z and space)
D Digit (8 - 9)
N Numeric (# - 9, decimal point and leading
minus)
M Mixed alpha and numeric
L Numeric, left justified/zero filled
R Numeric, right justified/zero filled
B Numeric, right justified/blank filled

CANCEL Clears edit criteria

Right justified fields are filled with leading zeros (R) or
blanks (B). During data entry, the field is justified and
re-displayed after the ENTER key is pressed. Numeric fields are
limited to 12 places of significance to the left and 4 places to
the right of the decimal point. '

REQUIRE MEANING

R Required (1 character necessary)

F Fill controlled (all characters
necessary)
(ENTER key allowed only to bypass
field)

B Both fill controlled and required

P Program reserved (no keyin)

S Required and program reserved

(field is checked prior to write)

APPENDIX E. FORM GENERATOR TYPE AND REQUIRE EDIT CRITERIA E-1

APPENDIX F. ALPHABETICAL LISTING OF STATEMENT TYPES

APPENDIX

NAME

ADD
AGAIN
ALIGN
BEEP
CALL
CHAIN
CHANGE
CLOSE
COMMON
CONVERT
DATA
DIVIDE
END

QU
FORMSHOW
FIELD
GOTO

IF CK1l@
IF CK1ll
IF INT
IF NIT
IF INR
IF NIR
IF EQ

IF NE

IF GE

IF LE

IF GREATER
IF LESS
INPUT
LOOKUP
MESSAGE
MOVE
MULTIPLY
NEXT
NULL
OUTPUT
REDEFINE
RESET
RETRY

F. ALPHABETICAL LISTING OF STATEMENT TYPES

e A O T S -~ SN Y -t A i kSR S Y ST - T s At N S I I R O~ Y i S i S

SECTION

+ 6 e e e e o e o o o
" ¢ o & o o & s e o o s e
e« o e
N NN -

.
(98]

L]] . . L] *
.
L]
—

® o o e o & o s o o e »
® & e o o s e e e e e e
NSOV NNHEBHEBWWWWWWWWWWWWUIaaEe S WNHFHFWNDODDUTESEFEEDN

e s s+ e
« o o o
¢« o e
b W

. . . .
. 0 . .

NOUINNNO O OO0 NNOUIOUNNIOONDNION

F-1

RETURN 4.6.5.2
SET 4.6.1.5
SHOW 4.6.4.5
STORE 4.7.9
SUBTRACT 4.6.2
WORK 4.5.2
WRLTE - 4.6.4.6

F-2 DATAFORM II WITH DOS SUPPORT

APPENDIX G. STATEMENTS REQUIRING THE EXTENDED INTERPRETER

ROUTINE

MULTIPLY

DIVIDE
+ CONVERT & LOOKUP
CK19 & CK11

*MUL/DIV OVERHEAD
EXTENDED INTERPRETER OVERHEAD
COMMON

DECIMAL
SIZE

83*
183*
- 83
161

56
18
100

(REQUIRED WITH EXTENDED INTERPRETER)

APPENDIX G. STATEMENTS REQUIRING THE EXTENDED INTERPRETER

G-1

LABEL

TEMP
COLUMN
LINE
LENGTH
PSN

EDTKEY

USER
SAVNUM

NEWOLD
FORMNO
CURI
NEXTF
PAGE3
BASE
NEXT$
 AGAINS
STORES
ENDS$
WEOF$
ERASES

APPENDIX H. INTERPRETER FLAG ADDRESSES

LOCATION

01000
01130
91131
01132
91133
01134
91135
91140

01143
01146
01201
014524
014525
01177
01147
61152
#1155
21160
01163
01166

APPENDIX

DESCRIPTION

"INPUT " buffer ‘

edit entry - horizontal position
vertical position
field length
position in QUTPUT
edit criteria
program letter

number of characters entered

(@ if ENTER pressed)

I/0 mode/status word

current form number +4 (in binary)

address of next DATAFORM instruction

linked form number +4 (in binary)

Auto 1link flag

program base address

transfer to NEXT

transfer to AGAIN

transfer to STORE

transfer to END

transfer to CLOSE

erase function key

H. INTERPRETER FLAG ADDRESSES H-1

APPENDIX I. ERROR MESSAGES

COMPILER MESSAGES:
NAME REQUIRED

The name of the program source file must be on the initial command
line. ' ‘

BAD LABEL INITIATOR

A character that was neither a decimal point nor a plus nor a
space nor alphanumeric appeared in column 1 of the input 1line.

INVALID OCTAL

The character string pointed to by the star contains a character
which is not in the set 0-7. '

ILLEGAL OPERATOR

Something other than the accepted statement types was the first
nonblank symbol after column 1 (or after the label, if one
exists).

NUMBER FROM 1-245 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the
specified range. »

COMMA EXPECTED

The symbol after the first number in a DATA statement was not a
comma.

FIELD2 IS LESS THAN FIELD1
In a DATA statement, the second field is less than the first.
LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

APPENDIX I. ERROR MESSAGES I-1

DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. If the double
guotation mark is not there, it is assumed. '

ILLEGAL LITERAL

In a table, every item enclosed in double guotation marks must be
of equal length. Those that are of different length than the
first item are in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from one line to another,
the following line must have a blank in column one, and the first
symbol on the line must be a double quotation mark. If either of
these is not the case, the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the nine pre-defined
labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled word is assumed
to be the one expected, and the next symbol is expected to be a
legal label. '

ILLEGAL CONDITION

The connective in an IF statement is not acceptable.

DUPLICATE LABEL

The label which begins the line listed is defined elsewhere in the
program (or it is one of the nine pre-defined labels). The second
(and any subsequent) definitions of the label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at

95, excluding the pre-defined labels. All labels after this
maximum is reached are ignored.

I-2 DATAFORM II WITH DOS SUPPORT

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 characters. Anything defined
as COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR
The program counter at the end of pass two does not egual the

program counter at the end of pass one. This is an internal
compiler error message.

APPENDIX I. ERROR MESSAGES I-3

COMMON SYSTEM ERRORS

FILE MISSING or FORM MISSING
The form number specified is not present as
*SYSNAMnn/DFF.

In the interpreter, this message may mean that

. the next form specified (in the current form’'s

link) is not present, or that a command assumes
that there is a form in memory (e.g. DATA) and

none is loaded.

NAME REQUIRED
The initial command line did not include the
system name or form name required by the
program,

ILLEGAL DEVICE SPECIFICATION
The initial command line included a disk drive
specification which was improperly formatted.

BAD NUMBER ’
The form number may have been omitted, out of
range (1-99), non-numeric, or, the form
specified is not in the disk directory as
SYSNAMnn/DFF. Note that if the form number is
omitted in a command which optionally accepts
form numbers (e.g. START [n]) the command line
cannot end with a space.

CONFIGURATOR ERRORS

BAD SYSTEM NAME
Name specified in the command line cannot
possibly be a system name since it is greater
than 6 characters.

ILLEGAL SYSTEM NAME
- During a DUP, DUP ALL or LGO command one of the
DATAFORM 2 cassette program files was not
found.

VERIFY FAILURE
During a DUP, DUP ALL or LGO command, while
re-reading the tape to verify it, a tape error
was encountered. :

PARITY ERROR ON DECK y

I-4 DATAFORM II WITH DOS SUPPORT

COPY, OMIT or END?
A parity error was encountered on a tape being
copied on deck y. Entering a "C" will copy the
erroneous record; entering an "O" will omit the
erroneous record; and entering an "E" will end
the copy at that point by writing an end of
file mark on the new tape.

INTERNAL ERROR x ON DECK y
This message indicates a tape or tape deck
failure. The "x" is replaced by a letter
indicating the error condition:

- parity error

- end of tape

end of file

- unfindable file
- write failure

NOQOm@oO
|

Generally these errors occur only if something
is severly wrong with the cassette. One cause
of error Z is trying to write on a cassette
whose write protect tab has been punched;
another cause of error Z is a cassette which is
improperly inserted in the deck. If error 2
occurs, and the cause is not apparent, a
hardware failure should be suspected.

The letter "y" in the message is replaced by
the number of the tape deck on which the error
occured (deck 1 is the rear deck, deck 2 is the
front).

END OF FILE MISSING .
End of tape reached during COPY - an end of
file mark is automatically written.

NUMBER IN USE
The form number spec1f1ed for an IN command has
already been assigned.

NO PRINTER
A DPRINT or FPRINT command was attempted with
no printer connected or turned on.

APPENDIX I. ERROR MESSAGES I-5

GENERATOR ERRO..S

I-6

BAD FORM NAME
The form name specified in the command line
must end with a two digit number.

BAD FORM
The form in memory cannot be written out, or
have any pass except REVISE executed, because
of some error condition.

NO FIELDS DEFINED
Every created form must have at least one field
‘(which may be a keyin only field).

NO ROOM FOR CONSTANTS
Constants and semi constants can only be
assigned to fields of a form which were
initially defined using the underscore (as
opposed to the caret). This messare is

MORE THAN 126 FIELDS
During image generation more than 126 data
fields were defined. The form must be revised
before it may be written out.

MORE THAN 245 DATA
During image generation more than 245 data
characters were defined. The form must be
revised before it may be written out.

XXX DATA

YYY BYTES LEFT
The messages appear immediately after the image
generation phase of form generation. They are
for information only.

YYY BYTES OVER
If this message appears after image generation,
the form image, data area and edit table have
combined to overflow the user space. Something
must be reduced.

EXTENDED INTERPRETER MISSING
The extended interpreters must be cataloged
exactly DF2DXTND/OVA through /OVO. If the file
is not present and an extended interpreter is
required, the message will appear.

DATAFORM II WITH DOS SUPPORT

PROGRAM x MISSING
A program specified in the program pass is not
contained in the program file (or there is no
program file at all).

APPENDIX I. ERROR MESSAGES I-7

INTERPRETER ERRORS

Continuous Beeping during data entry

: An illegal constant has been defined at form
generation time. The constant must be reset to
conform with the edit criteria before data
entry may proceed.

Continuous Clicking during data entry
An all constant form with no keyin field has
been loaded. The form must be corrected before
data entry may proceed.

SELECT DATA MODE
No START, ADD, MOD or FIND command has been
executed.

END OF DATA
'End of file has been reached on the data file.

DATA FILE OPEN
An open type operation was attempted with the
data file already open.

DATA FILE CLOSED
A close type operation was attempted with the
data file already closed.

NO FIELDS
A form with no fields has been generated.

NO LINK SET
The operator attempted to load a linked form
and no link was set.

BAD OP

An unacceptable op code was encountered durlng
the execution of a field program.

I-8 DATAFORM II WITH DOS SUPPORT

19.

11.

12.

13.

APPENDIX J. USER SPACE REDUCTION TECHNIQUES

Use carets (”) in field definitions (remember they are
compressed in the form image (but not the data record) whlle
underscores (_) are not).

Use COMMON instead of WORK if any extended interpreter 1is used
(190 characters of COMMON are reserved whether they are used
or not). If COMMON is used, it should be specified all at the
same time to prevent multiple short records from being written
in the form (this considerably slows down form loading).

Place semi-colons at the end of all non-table, non-range
variables to suppress the end-of-table character.

Use REDEFINE to create constants or tables which are subsets
of other constants or tables. This technigue may also be used
for computation or hold areas if the redefined variables are
not needed at the same time.

Use subroutines to perform repeated operations.

Use field displacement referencing to generalize programs used
with line-items (i.e., where the same set of fields is entered
several times within one form).

Use INPUT, OUTPUT and RESET to generalize programs and thus
avoid duplication of code.

Keep constants in the form itself (by defining them at form
generation time) instead of using a field program to set them.

Combine several fields into one wherever possible (each field
requires 6 additional characters of edit table).

Avoid extended interpreter functions when possible (by coding
multiplies using adds, etc.).

Use LOOKUP instead of CONVERT to save one of the tables.

Use data areas as work areas whenever possible, thus saving
intermediate hold areas.

Execute all programs on last field if possible, to save NEXT
and STORE instructions.

APPENDIX J. USER SPACE REDUCTION TECHNIQUES J-1

14. Avoid CHANGE/SHOW/CHANGE as a series of instructions. Keep in
mind that fields declared "program reserved" will show up on

the screen in their sequence although the operator cannot
keyin to them.

J-2 DATAFORM II WITH DOS SUPPORT

APPENDIX K. SAMPLE FORM GENERATION

Sample Form -- During NEW or REVISE Pass

[artist rersorm text, data, and keyin only field definitions are set in

either the NEW or REVISE pass. If no constants or
semi-constants are added, this is the way the form text will
look during data entry except that the carets will be
replaced by spaces.

Name

Hourly Rate $|

EMPLOYEE PAYROLL RECORD

o~

|~ArmAAnAAmAAAAAnAAARARAAnAAana
Title Code
1 - |

Dependents |~ State Code
Exempt/Nonexempt (0/1)

Married/Single (0/1) i
~~"~~ Amount Last Increase¢ $|

Sccial Security 177177777 |

1
Werkman's Compensation (0 to 9) |
Mcle/Female (0/1) |
""""" Date Last Increase $|

t~
]
1
[l
]

Anmana

AnnA~

Date Hired joonen Date Terminated |~°777 Date of Birth

State Tax jtoo e Disability Tax |°7°°° City Tax jonmn

Insurance pronnn Auto Insurance |°°°77 Life Insurance |~ ~°77
Advance | FICA Status (exempt=0, nonexempt=1) | Page 27 <

APPENDIX K. SAMPLE FORM GENERATION K-1

Sample Form -- During TYPE Pass

The fiéld type edit criteria are set in the TYPE pass. Edit
criteria will not be displayed during data entry.

EMPLOYEE PAYROLL RECORD

Name A Title Code D Dept D
Dependents D State Code D Social Security D D
Exempt/Nonexempt (0/1) D Workman's Compensation (0 to 9) D
Married/Single (0/1) D Male/Female (0/1) D
Hourly Rate $N Amount Last Increase $N Date Last Increase $D
Date Hired D Date Termirated D Date of Birth D
State Tax N Disability Tax N City Tax N
Insurance N Auto Insurence N Life Insurance N
Advance N FICA Status (exempt=0, nonexempt=1) D Page 27 A

K-2

DATAFORM II WITH DOS SUPPORT

Sample Form -- During SEMI-CONUTANT Pass

Several fields are preset to commonly entered values in the
SEMI-CONSTANT pass. These may be accepted or rejected by the
operator during data entry. The CONSTANT pass looks the
same; however, constants may not be rejected during data
entry.

EMPLOYEE PAYROLL RECCRD

i Title Code | Dept !

Name
Dependents | State Code 42 Social Security | |
Exempt/Nonexempt (0/1) 1 Workman's Compensation (0 to 9) |
Married/Single (0/1) 0 Male/Female (0/1) 1
Hourly Rate $| Amount Last Increase $| Date Last Increase $,
Date Hired { Date Terminated | : Date of Birth |
State Tax ! Disability Tax | City Tax !
Insurance] Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) 1 Page 27 <

i
w

APPENDIX K. SAMPLE FORM GENERATION K

Sample Form -~ During REQUIRED Pass

Required, fill controlled, and program reserved edit
criteria are set in the REQUIRED pass. Edit criteria will

not be displayed during data entry.

EMPLOYEE PAYROLL RECORD

Name R Title Code B

Dependents B State Code F
Exempt/Nonexempt (0/1) F
Married/Single (0/1) B
Hourly Rate $X
Date Hired B
State Tax %
|

Amount Last Increase $X
Date .Terminated F
Disability Tax R

Insurance Auto Insurance |

Advance

FICA Status (exempt=0, nonexempt=1) B

Dept B

Social Security R R
Workman's Compensation (0 to 9) F
Male/Female (0/1) B

Date Last Increase $F
Date of Birth F
City Tax R
Life Insurance |

Page 27 <

K-4 DATAFORM II WITH DOS SUPPORT

Sample Form -- During PROGRAM Pass

Field program names are set in the PROGRAM pass. Program "A"
checks range 0-1; "B" checks range 0-9; "D" checks for valid
dates; and "X" checks for a "Y" or “"N" to determine if
another form should be loaded. Program names will not be

displayed during data entry.

EMPLOYEE PAYROLL RECORD

Name | Title Code | Dept |
Dependents | State Code | Social Security | |
Exempt/Nonexempt (0/1) Iy Yorkman's Compensation (0 to 9) B
Married/Single (0/1) A 4ale/Female (0/1) A
Date Last Increase $D

Amount Last Increase $|

Hourly Rate $|
Date of Birth D

Date Hired D Pate Terminated D
State Tax ! Disability Tax ! City Tax |
Insurance | Auto Insurancze | Life Insurance | -
Advence | FICA Status {exempt=0, nonexempt=1) A Page 2? X
K-5

APPENDIX K. SAMPLE FORM GENERATION

DATAFOINT PRINTING SERVICES 76

