
DATABUS 1100
DB11SYS 1.

Preliminary User's Guide

March 1975

Model Code No. 50138

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

COPYRIGHTC 1975 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

PREFACE

DATABUS 1100 is a high level business language compiler
designed for use with the Datapoint Diskette Operating System,
DOS.C. This User's Guide describes the characteristics and use of
the DATABUS 1100 Compiler.

i

TABLE OF CONTENTS

1. INTRODUCTION

2. STATEMENT STRUCTURES
2.1 Comments
2.2 Compiler Directives
2.3 File declarations and data definitions
2.4 Program execution
2.5 Ll.terals
2.6 The forcing character
2.7 A sample program

3. FILE DECLARATION AND DATA DEFINITION
3.1 File declaration
3.2 Data definition

3.2.1 Numeric string variables
3.2.2 Character string variables
3.2.3 Common data areas

4. PROGRAM CONTROL INSTRUCTIONS
4.1 GOTO
4.2 BRANCH
4.3 CALL
4.4 RETURN
4.5 STOP
4.6 CHAIN
4.7 TRAP
4.8 TRAPCLR
4.9 ROLLOUT
4.10 PI
4.11 TABPAGE

5. CHARACTER STRING HANDLING INSTRUCTIONS
5.1 MOVE
5.2 APPEND
5.3 MATCH
5.4 CMOVE
5.5 CMATCH
5.6 BUMP
5.7 RESET
5.8 ENDSET
5.9 LENSET
5.10 CLEAR
50ll EXTEND

ii

page
1-1

2-1
2-1
2-1
2-1
2-1
2-3
2-3
2-4

3-1
3-1
3-1
3-2
3-3
3-3

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-6
4-6
4-7
4-8

5-1
5-1
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7

5.12 LOAD
5.13 STORE
5.14 CLOCK
5.15 TYPE
5.16 SEARCH
5.1 7 REPLACE

5-7
5-7
5-8
5-9
5-9

5-10

6. ARITHMETIC INSTRUCTIONS 6-1
6.1 ADD 6-1
6.2 SUB or SUBTRACT 6-2
6.3 MULT or MULTIPLY 6-2
6.4 DIV or DIVIDE 6-2
6.5 MOVE 6-3
6.6 COMPARE 6-3
6.7 LOAD 6-3
6.8 STORE 6-3
6.9 CHECK11 6-4
6.10 CHECK10 6-5

7. INPUT/OUTPUT INSTRUCTIONS 7-1
7.1 KEYIN 7-1

7.1.1 Displaying with KEYIN 7-1
7.1.2 Erase Screen 7-2
7.1.3 KEYIN Continuous 7-2
7.1.4 BACKSPACE and CANCEL 7-2
7.1.5 Operator Interrupt Procedure 7-3
7.1.6 New Line 7-3
7.1.7 KEYIN Timeout and Pause 7-3
7.1.8 Echo Control 7-3
7.1.9 Special KEYIN Controls 7-4
7.1.10 Text Input 7-5

7.2 DISPLAY 7-5
7.3 BEEP 7-5
7.4 PRINT 7-5
7.5 Disk I/O 7-6

7.5.1 File structures 7-7
7.5.2 Positioning and accessing 7-9

7.5.2.1 Physically Random Access 7-11
7.5.2.2 Physically Sequential Access 7-11
7.5.2.3 Indexed Access 7-12
7.5.2.4 Physical Access to Indexed Files 7-12

7.5.3 PREP or PREPARE 7-13
7.5.4 OPEN 7-14
7.5.5 CLOSE 7-15
7.5.6 READ 7-16

7.5.6.1 Test for End Of File 7-17
7.5.7 READKS 7-22
7.5.8 WRITE 7-23

iii

7.5.9 WRITAB
7.5.10 UPDATE
7.5.11 INSERT
7.5.12 DELETE
7.5.13 WEOF

8. PROGRAM GENERATION
8.1 Preparing Source Files
8.2 Compiling Source Files
8.3 Compilation directives
8.4 Compilation diagnostics
8.5 Disk space requirements

9. SYSTEM OPERATION
9.1 System Loading

9.1.1 Loading From Cassette
9.1.2 Loading from Diskette

9.2 Program Execution

Appendix A. INSTRUCTION SUMMARY

Appendix B. INPUT/OUTPUT LIST CONTROLS

Appendix C. COMPILER ERROR CODES

Appendix D. INTERPRETER I/O TRAP CODES

iv

7-26
7-27
7-27
7-28
7-29

8-1
8-1
8-1
8-4
8-5
8-6

9-1
9-1
9-1
9-1
9-1

CHAPTER 1. INTRODUCTION

DATABUS 1100 is similar to the Datapoint DATASHARE 3
Multiple Terminal computer system. The primary difference is that
DATASHARE 3 operates under either the Cartridge Disk Operating
System, DOS.A or the Mass Storage Disk Operating System, DOS.B and
supports multiple remote terminals whereas DATABUS 1100 operates
under the Diskette Operating System, DOS.C and supports only the
processor console as an operator input/output device. DATABUS
1100 also handles a high-speed line printer or servo printer and
provides indexed~sequential as well as random and sequential file
accessing, thus providing a powerful data entry and processing
facility.

In addition, DOS.C with its variety of utility and higher
level language systems may be used alternately to DATABUS 1100,
enabling proceSSing of tasks not appropriate to the DATABUS
language.

Using virtual memory techniques, DATABUS 1100 allows programs
with a 16K byte area for executable statements. This, in
combination with the ability of the compiler to accommodate over
3400 labels, enables the user to create and use programs of over
one hundred pages (a very large high level language program). To
provide rapid program execution, the data area the executing
program is maintained in main memory and not swapped.

Any of the Datapoint system printers may be connected to the
DATABUS 1100 configuration. Printer output is buffered to allow
maximum program execution speed.

All program execution in DATABUS 1100 ocCUrs in the DATABUS
language. Console command interpretation is handled in a special
MASTER program which is provided with the system but may be
compiled like any other DATABUS program, enabling the user to
completely define his own console command and security system.

Program generation is performed under the Flexible Disk
Operating System, DOS.C using the general purpose DOS editor and
DATABUS 1100 compiler.

CHAPTER 1. INTRODUCTION 1-1

CHAPTER 2. STATEMENT STRUCTURES

There are five basic types of statements in DATABUS 1100:
comment, compiler directive, file declaration, data definition,
and program execution.

2.1 Comments

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program. Comments
are most useful in explaining program logic and subroutine
function and parameterization to enable someone reading through
the program to more easily understand it's logic. The comment
which begins with an asterisk will be printed at the top of the
next page if fewer than 12 lines are available at the bottom of
the current page. This allows comments to be presented on the
same page as the program statements without having to know where
the listing currently stands on the page. The comment which
begins with a plus sign will always be printed at the top of the
next page. This allow major sections of the program to be
started a t the top of a page. Use of the a sterisk a t the
beginning of each section or subroutine description is encouraged
since this greatly enhances program readability. Use of the plus
sign should be cautious since it can easily waste great quantities
of paper.

2.2 Compiler Directives

Compiler directives enable the programmer to include other
files in the current compilation and to define the absolute value
of a symbolic name for use in tab pOSitioning in file I/Q
statements and column positioning in I/O statements. The
inclusion directive allows one to break a large program into
several files for ease in editing. Another useful aspect is that
one can have a common set of subroutines or data definition blocks
which are included into a number of different programs.
Therefore, when a change is made in one of the routines or in the
definition of a data item, one need edit the change only once,
reducing both the amount of manual labor involved and the chance
for error. See Section 8 (Program Generation) for more complete
information on the use of compiler directives.

CHAPTER 2. STATEMENT STRUCTURES 2-1

2.3 File declarations and data definitions

File declaration and data definition statements must occur
before any program execution statements and are used for setting
up all of the logical files and data variables in the program.
All file declaration and data definition statements must have
labels. All compiler directive, file declaration, and data
definition statement labels must be unique among themselves.
Program execution statements must appear after any file
declaration or data definition statements and mayor may not have
labels. The labels on program execution statements may be the
same as labels on the compiler directive, file declaration, and
data definition statements. Program execution always begins with
the first executable statement.

2.4 Program execution

Labels for variables and executable statements can consist of
any combination of up to eight letters and digits beginning with a
letter. The following are examples of valid labels:

A
ABC
AIBC
B1234
ABCDEF
BIGLABEL

The following are examples of invalid labels:

HI,JK
4DOGS

(contains an invalid character)
(does not begin with a letter)

Statements other than comments consist of a label field, an
operation field, an operand field, and a comment field. The label
field is considered empty if a space appears in the first column
of the line. The operation field denotes the operation to be
performed on the following operands. In many operations, two
operands are required in the operand field. These operands may be
connected either by an appropriate preposition (BY, TO, OF, FROM,
IN, AMONG, WITH, ABOUT, or INTO) or a comma. One or more spaces
should follow each element in a statement except where a comma is
used, in which case the comma must be the terminating character of
the previous element and may be followed by any number (including
zero) of spaces. For example, the following are all examples of

2-2 DATABUS 1100

valid statements:

LABELl
LABEL2
LABEL3
LABEL4

ADD PCS TO TOTAL
ADD PCS OF TOTAL
ADD PCS, TOTAL
ADD PCS, TOTAL

THIS IS A COMMENT

Note that any preposition may be used even if it does not
make sense in English. The following are examples of invalid
statements:

LABELl
LABEL2

ADD PCS TOTAL
ADD PCS ,TOTAL

(missing connective)
(space before comma)

Certain DATABUS 1100 statements allow a list of items to
follow the operation field. In many cases, this list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that would
normally appear in the list with a colon and continuing the list
on the following line. For example, the two statements:

DISPLAY A,B,C,D:
E,F,G

DISPLAY A,B,C,D,E,F,G

will perform the same function.

2.5 Literals

In an effort to reduce the amount of data area needed by a
program, literals are allowed in certain statements which would
otherwise need constant data in the user's data area. The
instructions which can contain literals are: STORE, ROLLOUT,
CHAIN, MOVE, APPEND, MATCH, ADD, SUB, MULT, DIV, COMPARE, OPEN,
PREPARE, REPLACE, CHECK11, and CHECK10. In all except the program
control and I/O statements, the literal must be the first operand.
The literal is always enclosed within a pair of double quotes (see
the following section on the forcing character) and may be from 1
through 40 characters in length (excluding the quotes). When a
literal is used as a string variable, its formpointer is always
equal to one and its logical length always points to the last
character that is quoted. Examples of the statements which can
contain literals follow:

STORE
ROLLOUT
CHAIN

"APPLES" INTO X OF Sl,S2,S3
"CHAIN FIX22"
"NEXTPROG"

CHAPTER 2. STATEMENT STRUCTURES 2-3

OPEN
PREPARE
MOVE
MOVE
APPEND
MATCH
ADD
SUB
MULT
DIV
COMPARE

2.6 The forcing character

FILE1,"DATAFILE"
FILE1,"USERDATA"
"MESSAGE" TO M3442
"100.55" TO VALUE
"." TO STR1
"YES" TO ANSWER
"23.46" TO TOTAL
"1" FROM COUNT
".1" BY TAX
"33.3333" INTO FACTOR
"10" TO LINENUMB

The pound sign (#) is interpreted by the compiler as a
forcing character in any quoted item which can contain multiple
characters. The character immediately following the pound sign is
used in the quoted item simply as a character value regardless of
its significance to the compiler. Thus, the pound sign itself and
the quote (") may be used in DATABUS 1100 statements. For
example,

DISPLAY "CUSTOMER## SHOULD BE #"2222#""

would display exactly:

CUSTOMER# SHOULD BE 112222"

on the screen. Note carefully the wording used above to describe
the cases where the pound sign is used to denote a forcing
character. This wording excludes the cases of RESET, CMATCH, and
CMOVE s~nce those operations cannot have quoted items which
contain multiple characters. For example,

CMOVE """ TO STRING

would be used to move a double quote sign into the variable
STRING. However, the use ofa literal in a MOVE instruction would
require the use of the forcing character, even in a Single
character move, since the quoted item can be a mutiple character
quote. For example:

MOVE Itt"" TO STRING

would be used to move a double quote sign into the variable
STRING. The RESET, CMOVE, and CMATCH instructions are the only

2-4 DATABUS 1100

exceptions to the forcing character convention within quoted
items.

Examples:

RESET STRING TO "I"
CMOVE "I" TO STRING
CMATCH """ TO STRING

2.7 A sample program

START
LOOP

• PROGRAM TO DISPLAY A MULTIPLICATION TABLE

COUNT1
COUNT2
PROD
*

FORM
FORM
FORM

"0"
"0"
2

• HERE IS THE START OF THE EXECUTABLE CODE

DISPLAY
MOVE
MULT
DISPLAY
ADD
GOTO
DISPLAY
ADD
GOTO
STOP

*ES, "MULTIPLICATION TABLE:", *N
COUNT1 TO PROD
COUNT2 BY PROD
COUNT1, "X" , COUNT2 , "=" , PROD," ";
"1" TO COUNT2
LOOP IF NOT OVER
*N
"1" TO COUNT1
LOOP IF NOT OVER

CHAPTER 2. STATEMENT STRUCTURES 2-5

CHAPTER 3. FILE DECLARATION AND DATA DEFINITION

There are two types of statements in DATABUS 1100 which
cause space within the user's data area to be assigned. The first
is logical file declaration whare the space is used to store the
DOS system information about the file being used and the second is
data definition where the space is used to keep the variable
information within the DATABUS 1100 program.

3.1 File declaration

Two types of files can be declared in DATABUS 1100. The
first is a type that will be used for random or physically
sequential accessing. This type is declared using the FILE
statement:

INFILE FILE

The label INFILE is the label which will be used in all disk I/O
statements that are to use this particular logical file. This
statement causes 17 bytes of data area to be consumed. This area
stores the 15 bytes used in the DOS logical file table, a space
compression counter, and a flag indicating that this is a
physically random or sequential access only file. Note that since
logical file information is stored in the user's data area, the
user may have any number of logical files active at anyone time
providing his data area will contain all of the necessary
declaration information.

The second type of file declaration is used for
indexed-sequential file accessing. This type is declared using
the IFILE statement:

ISAMFILE IFILE

The label ISAMFILE is the label which will be used in all disk I/O
statements which are to use this particular logical file. This
statement causes 26 bytes of data area to be consumed. This area
stores the information that a FILE declaration stores plus three
three-byte pOinters for use in the access method. These pointers
pOint to the beginning of the last record accessed (for updating
operations), to the next sequential key (for sequ.ntial by key
accessing), and to information in the DOS R.I.B. of the index file
(used in all accessing operations).

CHAPTER 3. FILE DECLARATION AND DATA DEFINITION 3-1

3.2 Data definition

There are two types of data used within the DATABUS 1100
language. They are numeric strings and character strings. The
arithmetic operations are performed on numeric strings and string
operations are performed on character strings. There are also
operations allowing movement of numeric strings into character
strings and vice versa. Numeric strings have the following memory
format:

0200 1 2 3 0203

The leading character (0200) is used as an indicator that the
string is numeric. The trailing character (0203) is used to
indicate the location of the end of the string (ETX). Note that
the format of a numeric string is set at definition time and does
not change throughout the execution of the program. A numeric
string can be defined to contain at most 21 characters.

When a move into a number occurs from a string or differently
formatted number, reformatting will occur to cause the information
to assume the format of the destination number (decimal point
position and the number of digits before and after the decimal
point) with truncation occurring if necessary (rounding occurs if
truncation is to the right of the decimal point).

Character strings have the following memory format:

9 5 THE OUICK BROWN 0203

The first byte is called the logical length and points to the last
character currently being used in the string (K in the above
example). The second byte is called the formpointer and points to
a character currently being used in the string (0 in the above
example). The use of the logical length and formpointer in
character strings will be explained in more detail in the
explanations of each character string handling instruction.
Basically, however, these pointers are the mechanism via which the
programmer deals with individual characters within the string.

3-2 DATABUS 1100

The term physical length will be used to mean the number of
possible data characters in a string (15 in the above example).
The logical and physical lengths of string variables is limited to
127.

Whenever a data variable is to be used in a program, it must
be defined at the beginning by using either the FORM, INIT, or DIM
instructions. These instructions reserve the memory space
described above for the data variable whose name is given in the
label field. Note that all variables must be defined before the
first executable statement is given in the program and that once
an executable statement is given, no more variables may be
defined. NUmeric strings are created with the FORM instruction
while character strings are created with the INIT or DIM
instruction.

3.2.1 NUmeric string variables

Numeric variables are defined in one of two ways with the
FORM instruction as shown in the following illustration:

EMRATE FORM 4.2
XAMT FORM" 382.4 "

In this example, EMRATE has been defined as a string of
decimal digits which can cover the range from 9999.99 to -999.99.
The FORM instruction illustrated reserves spaces in memory for a
number with four places to the left of a decimal point and two
places to the right of a decimal point and initializes the value
to zero. When the number is negative, one of the places to the
left of the decimal point is used by the minus sign. XAMT, in the
example, is defined with four places to the left of the decimal
point and three to the right but with an initial decimal value of
382.400. The phYSical length of a numeric variable is limited to
21 characters (decimal point and sign included).

3.2.2 Character string variables

Character strings are defined with either a DIM or INIT
instruction. DIM reserves a space in memory for the given number
of characters but sets the logical length and formpointer to zero
and initializes all the characters to spaces. For example:

STRING DIM 25

A character string can also be defined with some initial value by
using the INIT instruction. For example:

CHAPTER 3. FILE DECLARATION AND DATA DEFINITION 3-3

TITLE INIT "PAYROLL PROGRAM"

initializes the strinq TITLE to the characters shown and qives it
a loqical lenqth of 15. The formpointer is set to one. Note that
in the case of strinqs, the actual amount of memory space reserved
is three bytes qreater than the number specified in the DIM or
quoted in the INIT instruction (TITLE occupies 18 bytes in memory,
15 of which hold characters).

Octal control characters (000 to 037) may be included when
initializinq a strinq. The control character is separated by
commas, without quotes, and is preceded bya zero. For example,

TITLE INIT "PAYROLL PROGRAM",015,"TEST1"

would initialize a strinq with a loqical and physical lenqth of 21
characters. The octal control character, 015, would appear after
the M in PROGRAM and before the first T in TEST1. It is the
responsibility of the proqrammer to remember that some of these
characters (000, 003, 011, and 015) are used for control purposes
in disk files. More importantly, these characters are used as
control characters in DISPLAY and KEYIN statements, and improper
use of these characters in such statements can result in invalid
proqram execution.

3.2.3 Common data areas

Since DATABUS 1100 has the provision to chain proqrams so
that one proqram can cause another to be loaded and run, it is
desirable to be able to carry common data variables from one
proqram to the next. The procedure for doinq this is as follows:

a. Identify those variables to be used in successive
proqrams and in each proqram define them in exaptly the
same order and way and preferably at the beqinninq of
each proqram. The point in this is to cause each common
variable to occupy the same locations in each proqram.
Stranqe results in proqram execution usually occur if a
common variable is misaliqned with respect to the
variable in the previous proqram.

b. For the first proqram to use the variables, define them
in the normal way. Then, for all succeedinq proqrams,
place an asterisk in each FORM, DIM, or INIT statement,
as illustrated below, to prevent those variables from
beinq initialized when the proqram is loaded into
memory.

3-4 DATABUS 1100

Examples:

MIKE FORM *4.2
JOE DIM *20
BOB INIT *"THIS STRING WONT BE LOADED"

File declarations may not be made common between programs. The
reasoning behind this restriction is that mis-alignment in file
declarations could easily cause catastrophic destruction of the
file structure under DOS.C. Therefore, whenever a program is
loaded, all logical files are initialized to being closed and
must be opened before any file I/O can occur. When chaining
between programs, one should always close all files in which new
space could have been allocated and then re-open the files in the
next program.

Untrapped errors (those causing DATABUS 11~0 error messages
followed by a CHAIN to the MASTER program) cause the first 20 or
so bytes of common area to be destroyed. Since the MASTER
program is always reloaded open, COMMON should be initialized
there.

CHAPTER 3. FILE DECLARATION AND DATA DEFINITION 3-5

CHAPTER 4. PROGRAM CONTROL INSTRUCTIONS

DATABUS 1100 normally executes statements in a sequential
fashion. The program control instructions allow this flow to be
altered depending on the state of the condition flags. There are
five condition flags in DATABUS 1100: OVER, LESS, EQUAL, ZERO,
and EOS. EQUAL and ZERO are two names for the same flag. Only
the numeric and character string manipulating instructions, the
READ 1nstruction, and the READKS instruction alter the states of
these flags. Reference should be made to the individual
instruction explanations for the meanings of the flags.

4.1 GOTO

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to the instruction labeled CALC.

The GOTO instruction may be made conditional by following
the label by the preposition IF and one of the condition flag
names. For example:

GOTO CALC IF OVER

will transfer control to the instruction labeled CALC if an
overflow occurred in the last arithmetic operation. Otherwise,
the instruction following the GOTO is executed.

The sense of the condition can be reversed by inserting the
word NOT before the condition flag name as follows:

GOTO CALC IF NOT OVER

meaning control is transferred only if the overflow did not
occur.

CHAPTER 4. PROGRAM CONTROL INSTRUCTIONS 4-1

4.2 BRANCH

The BRANCH instruction transfers control to a statement
specified by an index. For 'example:

BRANCH N OF START,CALC,POINT

causes control to be transferred to the label in the label list
pOinted to by the index N (i.e. START if N = 1, CALC if N = 2,
and POINT if N = 3). If N is negative, zero, or larger than the
number of labels in the list, control continues with the
following statement. The index is truncated to no decimal places
before it 1S used (1.7 = 1).

The BRANCH instruction statement may be continued to the
next line by the use of a colon in place of one of the varia hIe
delimiting commas. For example:

BRANCH N OF LOOP, START, READ!, WRITE1:
WEOF!,STOP

4.3 CALL

The CALL instruction is very similar to the GOTO instruction
except that when a RETURN instruction is encountered after a
transfer, control is restored to the next instruction following
the CALL instruction. CALL instructions may be nested up to 8
deep. That is, up to eight CALL instructions may be executed
before a RETURN instruction is executed. Be1ng able to call
subroutines eliminates the need to repeat frequently used groups
of statements. Note, however, that in DATABUS 1100 the space
allowed for a program is very large and that, due to the virtual
nature of this space, calling a subroutine is considerably more
time consuming than executing the code in line if a page swap is
invoked by the subroutine call. Therefore, in many cases it is
much better to put some code in line instead of making it a
subroutine, especially if the amount of code is quite small (say,
less than a dozen lines). This is a trade-off which shoUld be
considered when one is dealing with code that will be executed
very often (for instance, code that is executed every time a data
item is entered). CALL instructions may be made conditional like
the GOTO instruction. For example:

CALL FORMAT
CALL XCOMP IF LESS

4-2 DATABUS 1100

4.4 RETURN

The RETURN instruction is used to transfer control to the
location indicated by the top address on the subroutine call
stack. This instruction has no operand field but may be made
conditional. For example:

RETURN
RETURN IF ZERO

4.5 STOP

The STOP instruction causes the program to terminate and
return to the MASTER program. This instruction has no operand
field but may be made conditional. For example:

STOP
STOP IF NOT EQUAL

Execution of the STOP instruction in the MASTER program
returns control back to DOS.C.

4.6 CHAIN

The CHAIN instruction causes the program, whose DOS name
(with extension DBC) is in the literal or specified string, to be
loaded and for control to be passed to its first executable
statement. The characters used for the name start from under the
formpointer of the specified string variable (or with the first
quoted character in the case of a literal) and continue until
either the logical end of the string has been reached or eight
characters have been obtained. If the end of the string is
reached before eight characters are obtained, the rest of the
characters are assumed to be spaces. All DATABUS 1100 program
object files are of extension DBC. The character after the 8th
in the name variable (or the character after the logical length
if the name is less than 8 characters long) is used as the drive
number specification for the file. If the characters is not an
ASCII 0, 1, 2, or 3 or no character physically exists past the
name, no drive specification is assumed and all drives starting
with drive zero are searched when looking for the program name in
the DOS directory (or directories). Otherwise, only the
specif1ed drive is searched for the name. For example, if in the
following example NXTPGM's formpointer was 4 and logical length
was 6, the CHAIN command would try to load the program named

CHAPTER 4. PROGRAM CONTROL INSTRUCTIONS 4-3

"ROL/Dll" from drive 1.

NXTPGM INIT "PAYROLl"
,

CHAIN NXTPGM

In the following example, however, the CHAIN command would try to
load the program named "PAYROL1/DBC" off of any drive starting
from the zeroth.

CHAIN "PAYROLl"

To make the CHAIN command try to load the program named
"PAYROL/DBC" from drive one, one would have to execute the
statement:

CHAIN "PAYROL 1"

since the 1 would appear after the eighth character in this case.

4.7 TRAP

TRAP is a unique instruction because, rather than taking
action at the time it is executed, it specifies the location to
which a transfer of control (via the CALL mechanism) should occur
if a specified event occurs during later execution. For example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction. The
control transfer is performed in a manner similar to the CALL
instruction. Therefore, in the above example, if the parity
error occurred during a disk READ instruction, the effect would
be to insert a CALL EMSG instruction between the READ and the
instruction immediately following it.

If an event occurs and the trap corresponding to that event
has not been set, the message:

* ERROR * LLLLL X * or
* ERROR * LLLLL X * Q

appears on the line currently pOSitioned to on the console
display. The first form appears for all traps except I/O traps.
In the event of an I/O trap, a qualification letter is given

4-4 DATABUS 1100

where a "0" is shown in the example (explained below under the
"10" trap). The LLLLL is the current value of the program
counter and the X is an error letter. In most cases, LLLLL
points to the instruction following the one that caused the
problem. However, in certain I/O errors, LLLLL will point after
the list item where the problem occurred. The following error
letters can appear:

P - parity failure
R - record number out of range
F - record format error
C - chain failure
I - I/O error
B - illegal operation code
U - call stack underflow
A - interruptions already prevented

Note that the last three items shown above cannot be trapped.
The B error will only show up if somehow an invalid object file
is executed or if the system is failing. The U error will happen
if the programmer forgets to perform a call or in some other
fashion manages to execute a RETURN instruction without a
correspond~ng CALL having been previously executed. The A error
will happen if a PI instruction is executed while interrupts are
currently prevented.

The events that may be trapped are shown below. The
capitalized name is the one used in the TRAP statement.

PARITY - d~sk CRC error during READ or disk CRC error
during write verification (the DOS retries an
operation up to 5 times to get a good CRC
before giving up and causing this event).

RANGE - record number out of range (an access was made
that was off the physical end of the file, a
record was read which was never written, or a
WRITAB was used on record which was never
written)

FORMAT - non-numeric data read into number (the read
stops at the list item in error so the rest of
the list items will not be changed)

CFAIL - the specified program was not in the DOS
directory or a ROLLOUT was attempted with one
of the necessary system files missing

10 - there is only one trap for all of the
following conditions. Usually, however, the
trap is used only for detecting whether a file

CHAPTER 4. PROGRAM CONTROL ,INSTRUCTIONS 4-5

exists or not. It is a good idea keep this
trap clear whenever it is not be~ng used
specifically to detect the presence of a file
to prevent confusion if one of the other
conditions occurs. If the trap is not set
then one of the following qualification
letters indicates the nature of the I/O
problem:

A - an access sequentially by key was attempted
before any indexed sequential access was made
using the logical file.

B - the READ mechanism ran off the end of a sector
without encountering a physical end of record
character (003).

C - an operation on a closed logical file was
attempted.

D - a WRITE or INSERT indexed sequential operation
was attempted where the specified key already
exists in the index.

E - an EOF mark without at least four zero's was
encountered.

I - the index file specified in an OPEN statement
does not exist on the specified drive(s).

J - the index file found by the OPEN statement
does not reside in the correct physical
location on the disk (index files may never be
moved, they must always be re-created).

K - a null key was supplied in an operation where
the key may not be null.

M - the data file specified in the OPEN statement
does not exist on the specified drive(s).

N - the data file name specified in the OPEN or
PREPARE statement was null.

o - the index file name specified in the OPEN
statement was null.

P - the file specified in the PREPARE statement
had some type of DOS protection (either write,
delete, or both).

T - the tab value in the READ or WRITAB statement
was off the end of the sector.

U - an EOF mark was encountered while a record was
being deleted in the indexed sequential file.

V - one of the indexed sequential access overlays
could not be loaded by the DOS loader.

W - an index file pointer sector could not be
read.

4-6 DATABUS 1100

x - an index file header sector could not be read.
Y - the R.I.B. of the data file pointed to by the

index file could not be read. (VWXY errors
can be caused by parity errors, the drive
being switched off line, or the disk cartridge
being swapped with another while an operation
is taking place.)

Note that the trap locations are cleared whenever a CHAIN occurs.
Therefore, each program must initialize all of the traps it
wishes to use. Also, whenever a certain event is trapped, the
trap location for that event is cleared, which implies that, if
the event is to be trapped again, its location must be reset by
the trap routine.

4.8 TRAPCLR

This instruction will clear the specified trap. For
example:

TRAPCLR PARITY

will clear the parity trap previously set.

4.9 ROLLOUT

The ROLLOUT feature allows the execution of the DATABUS 1100
system to be temporarily suspended while certain fUnctions are
performed under DOS.C. When a ROLLOUT occurs, the program
ROLLOUT/SYS will be run which writes system status and memory in
a file called ROLLFILE/SYS. A beep is sounded at the console to
alert the operator when a ROLLOUT is initiated. Clicks are
sounded as ROLLFILE/SYS is created and another beep occurs when
the file creation is completed. The DOS is then brought up at
the console by the loading of SYSTEMO/CMD. The ROLLOUT/SYS
program then supplies the characters in the string specified by
the Databus ROLLOUT instruction as if they were keyed in from the
console (this will usually call the CHAIN program). When the DOS
functions are completed, the DOS file DBBACK/CMD may be executed
to restore the DATABUS 1100 system to its previous status (this
is usually the last program specified in the CHAIN file).
DBBACK/CMD re-initializes the screen and then loads the
ROLLFILE/SYS object file. This returns the DATABUS 1100 program
to the pOint of execution when the ROLLOUT occurred. ROLLOUT/SYS
is provided with the DATABUS 1100 System.

ROLLOUT is initiated by a DATABUS 1100 program w1th the

CHAPTER 4. PROGRAM CONTROL INSTRUCTIONS 4-7

following instruction,

ROLLOUT (string variable) or
ROLLOUT (string literal)

The string variable or literal specifies what function is
initially to be executed under DOS and should be a command line
acceptable to the DOS command handler. The string used is that
in the variable from under the formpointer up to before a
character that has a value less than 040 (octal), is a vertical
bar (0174 octal), or has its sign bit set. In the normal case,
this means the string used will be 'that from under the
formpointer up through the physical length of the string. If it
is desired for less than through the physical end of the string
to be used, one should store a vertical bar in the position after
the last character to be used in the DOS command line string. A
CFAIL trap will occur if the string variable is null. For
example, the string~s contents could be

CHAIN DBCFILE

When DOS is brought up by the ROLLOUT, the first thing to occur
would be a chain to DSCFILE. The commands found in DSCFILE would
then be executed (see the DOS Program User's Guide for additional
information concerning the DOS CHAIN command). DSCFILE could
consist of these commands:

SORT AFILE,BFILE
SORT CFILE,DFILE
DBBACK

By using the CHAIN command, several DOS functions can be
performed and the system automatically restored with the DBBACK
command. If DBBACK is not included in the chain file, if the
CHAIN aborted for some reason, if DOS was booted during the
CHAIN, or if the string specified in the ROLLOUT consisted of a
DOS fUnction other than CHAIN, the DATABUS 1100 system will have
to be restored by the operator keying in DBBACK at the console.

The ROLLOUT feature is particularly useful when a file needs
to be sorted with the DOS SORT command or an indexed file needs
to be re-indexed using the DOS INDEX command. Note that the time
clock will be put behind however long the DATABUS 1100 system is
not executing.

There are a number of precautions which must be observed
during the use of ROLLOUT. The fUnctions performed while under

4-8 DATABUS 1100

the DOS must not effect any of the operations that were taking
place under the DATABUS 1100 system. For example, the MASTER
program must not be changed and files that are open and in use
must not be modified or deleted. The reason behind this is that
when the DATABUS 1100 operation is restored, certain items in
memory reflecting the state of the DOS file structure will also
be restored. If these items are no longer accurate in their
reflection due to the fact that the file structure has been
changed, terrible things can happen to the DATABUS 1100 system.
Operations to be watched in particular include the changing of
the object code of any program that is running, the changing of
any files that are open, and the re-arrangement of any disks with
files in use w1thin a multi-drive system.

4.10 PI

This instruction (Prevent Interruptions) enables the
programmer to prevent his program from being interrupted for up
to 20 Databus instruction executions. This instruction has no
effect upon the foreground one millisecond interrupt which
performs the printer I/O.

Normally, background execution can be interrupted through
execution of the Interrupt procedure at the console. By
executing the PI instruction, the programmer can postpone this
interruption for a specified number of instructions (up to a
maximum of 20).

The number of instructions specified in the PI instruction
is always a fixed deci~l number (it may not be a numeric
variable). For example:

PI
READ
SUB
GOTO
UPDATE

4
F,KEY;PN,OTYONH,LOD
OTY FROM OTYONH
NOTNUFF IF LESS
F;PN,OTYONH,LOD

Interruptions will be prevented from the PI instruction through
the UPDATE instruction. Note that the number supplied to the PI
instruction denotes the number of instructions after the PI
instruction.

If a DISPLAY, KEYIN, or PRINT instruction is executed while
interruptions are prevented, the effect of the PI instruction is
canceled. If a PI instruction is executed while interruptions
are currently prevented, execution of the program is aborted with

CHAPTER 4. PROGRAM CONTROL INSTRUCTIONS 4-9

an error 'A' message. This prevents a program from being able to
prevent interruptions for more than 20 instruction executions.

Note that when devising systems with complex data file
structures one must always be prepared for his program being
interrupted at any point in its execution without harming the
file structuring beyond repair. One can use the PI instruction
to prevent the operator from causing such a disturbance.
However, this should not be used by the programmer as a panacea
for the interruption problem since interruptions can still be
caused by power failures or the system operator restarting the
processor. The PI can be very useful in preventing the operator
from causing a situation which could require extensive recovery
effort but the precautions which allow recovery in the event of
an interruption at any pOint in the program must still be built
in to allow recovery in the other less likely but still possible
interrupt~on cases.

4.11 TABPAGE

This instruction allows the programmer to improve the
execution speed of his program by letting him force sections of
his program into certain pages of object code. Execution speed
can be enhanced in this way because of the way the virtural
storage mechanism for the object code works. The instruction
consists only of the verb TABPAGE and has no operands (a label
may be placed on a TABPAGE instruction line, however). Execution
of the TABPAGE instruction causes control to be transferred to
the first byte of the next page.

4-10 DATABUS 1100

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS

Each string instruction, except LOAD and STORE, requires
either one or two character string variable names following the
instruction. (Note that the MOVE instruction is capable of
moving strings to numbers, numbers to strings, and numbers to
numbers, as well as moving strings to strings. See the following
section and Section 6.5 for the entire description of the MOVE
instruction. Also note that APPEND can move numbers into strings
as well as strings into strings.) In the following sections, the
f~rst variable will be referred to as the source string and the
second variable will be referred to as the destination string.
In some cases, the source may be a literal. When it is, the
formpointer always pOints to the first physical character in the
string and the logical length always pOints to the last physical
character in the string.

5.1 MOVE

MOVE transfers the contents of the source string into the
destination string. Transfer from the source string starts with
the character under the formpointer and continues through the
logical length of the source string. Transfer into the
destination string starts at the first physical character and
when transfer is complete, the formpointer is set to one and the
logical length points to the last character moved. The EOS flag
is set if the ETX in the destination string would have been
overstored and transfer stops with the character that would have
overstored the ETX.

The MOVE instruction can also move character strings to
numeric strings and vice versa. (The movement of nUmeric strings
to numeric strings is covered in section 6.5.) A character
string will be moved to a numeric string only if the character
string from the formpointer through the logical length is of
valid numeric format (only digits, spaces, a leading minus sign,
and one decimal point allowed). Otherwise, the numeric string is
not changed. Note that only the part of the character string
starting with the formpointer is considered in the validity check
and transferred if the string is of valid nUmeric format. The
number in the character string will be reformatted to conform to
the format of the numeric string. Rounding occurs if the number
in the character string is too large to fit into the format of
the numeric string (see Section 6 for rounding rules followed).

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS 5-1

The TYPE instruction is available to allow checking the character
string for valid numeric format before using the MOVE
instruction.

When a nUmeric string is moved to a character string, all
characters of the numeric item (unless the ETX in the destination
string would be overstored) are transferred starting with the
physically first character in the destination string. When the
operation is completed, the logical length is set to point to the
last character transferred. The EOS condition is left true if
the ETX of the destination string would have been overstored. In
th1s case, transfer stops with the character before the one that
would have overstored the ETX and the logical length is left
pOinting to the physical end of the string (which contains the
last character transferred).

In the following examples, the logical length, formpointer,
and content of each variable is shown before the statement is
executed, the statement is shown and the contents of the variable
that is changed by the execution of that statement is shown. The
~ denotes a space in the contents of a variable.

Contents

STRING! 4 2 ABCDXLM ETX

STRING2 6 3 DOGCAT ETX

MOVE STRINGI TO STRING2

STRING2 3 1 BCDCAT ETX

STRING2 6 3 DOGCAT ETX

MOVE "HELLO" TO STRING2

STRING2 5 ! HELLOT ETX

5-2 DATABUS 1100

STRING1 9 3

NUMBER 0200

AB100.327

-39.00

MOVE STRING! TO NUMBER

NUMBER 0200 100.33

NUMBER 0200 100.33

STRING1 9 3 ABIOO.327

MOVE NUMBER TO STRING1

STRING1 6 1 100.33327

Note that in the statement:

MOVE "ABC" TO NUMBER

ETX

ETX

ETX

ETX

ETX

ETX

the comp1ler will give an E error flag since it knows that this
cannot be a valid operation (the move will not occur because the
literal is not of valid numeric format). In the statement:

MOVE "2.3" TO STRING1

the compiler will generate a string to string move rather than a
numeric to string move.

5.2 APPEND

APPEND appends the source string or number to the
destination string. A numeric item is treated exactly as if it
were a string with a formpointer pOinting to the first physical
character and a logical length pointing to the last physical
character in the number. The characters appended are those from
under the formpointer through under the logical length pointer of
the source string. The characters are appended to the
destination string starting after-~-formpointed-charakter in
the destination string. The source string pointers remain
unchanged, but the destination string pointers both point to the
last character transferred. The EOS condition will be set if the
new string will not fit physically into the destination string,
but all characters that will fit will be transferred.

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS 5-3

The following example shows two strings before the
operation, the operation, and the result in the second string
after the operation:

STRING1 8 6 ETX

STRING2 11 11 ETX

APPEND STRING1 TO STRING2

STRING2 14 14 ETX

The following example shows a destination string before the
operation, an operation appending a literal to the destination
string, and the destination string after the operation:

STRING2 8 9 ETX

APPEND ".XX.YY." TO STRING2

STRING2 15 15 ETX

The following example shows the use of APPEND to move a
numeric item into a string item:

NUMBER 0200 100.33 ETX

STRING 9 2 ABCDEFGHI ETX

APPEND NUMBER TO STRING

STRING 9 8 AB100.33I ETX

5.3 MATCH

MATCH compares two character strings starting at the
formpointer of each and stopping when the end of either operand's
string is reached. If either formpointer is zero before the
operation, the MATCH operation will result in only clearing the
LESS and EQUAL flags and setting the EOS flag. Otherwise, the
"length" of each string is calculated to be LENGTH-FORMPOINTER+l
and the LESS flag is set if the destination string length is less
than that of the source string- The two strings are then
compared on a character-for-character basis for the number of

5-4 DATABUS 1100

characters equal to the lesser of the two lengths. If all the
characters match, the EQUAL flag is set. Otherwise, the LESS
flag's meaning is changed to indicate whether the ASCII value of
the destination character is less than the ASCII value of the
source character (LESS flag set) or vice versa (LESS flag reset)
for the first pair of characters that do not match. Some
examples and their results follow:

SOURCE

ABCDE
ABC
ZZZ
ABC
ABCD

DESTINATION

ABCD
Z
AAA
ABC
ABCDE

RESULT

EQUAL, LESS
NOT EQUAL, NOT LESS
NOT EQUAL, LESS
EQUAL, NOT LESS
EQUAL, NOT LESS

Examples:

5.4 CMOVE

MATCH A TO B
MATCH STR1,STR2

CMOVE moves a character from the source operand to under the
formpointer in the destination string. The character from the
source operand may be a quoted alphanumeric (note that the
forcing character rule does not apply here), the character from
under the formpointer of 'a string variable" or an octal control
character (000 to 037). If either operand has a formpointer of
zero, an EOS condition and no transfer occurs.

Examples:

5.5 CMATCH

CMOVE XDATA TO YDATA
CMOVE "A" TO CAT
CMOVE X,Y
CMOVE 015,Y

CMATCH compares two characters, one taken from each of the
source and destination operands. The characters may be quoted
alphanumeric (note that the forcing character rule does not apply
here), from under the formpointer of a string variable, or octal
control characters (000 to 037). An EOS condition occurs if
either formpointer is zero, and no other conditions are set.
Otherwise, the EQUAL and LESS conditions are set appropriately.

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS 5-5

The LESS condition is set if the destination string character is
less than the source string character.

Examples:

5.6 BUMP

CMATCH XDATA TO YDATA
CMATCH "A",DOG
CMATCH CAT TO "B"
CMATCH 015,DOG

BUMP increments or decrements the formpointer of the first
operand if the result will be within the string (between 1 and
the logical length). If no parameter is supplied, BUMP
increments the formpointer by one. However, a positive or
negative literal value may be supplied to cause the formpointer
to be moved in either direction by any amount. The EOS flag will
be set and no change in the formpointer occurs if it would be
less than one or greater than the logical length after the
movement had occurred.

5.7 RESET

Examples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,-l

RESET changes the value of the formpointer of the source
string to the value indicated by the second operand. If no
second operand is given, the formpointer will be reset to one.
The second operand may be a quoted character, in which case the
ASCII value minus 31 (space gives one, ! two, " three, etc) will
be used for the value of the formpointer of the source string.
The second operand may also be a character string, in which case
the ASCII value minus 31 of the character under the formpointer
of that string will be used for the value of the formpointer of
the source string. The second operand may also be a numeric
string, in which case the value of the number will be used for
the formpointer of the source string.

The use of a string variable as the second operand in a
RESET instruction may not be obvious at first. One application
could be in doing code conversions where each character in the
string to be converted is used a s a formpointer va lue in a code

5-6 DATABUS 1100

conversion string from which is picked to corresponding converted
character to be used as the character in the converted string.
Another use is in the coding of item positions within a string
into a single character. For example, in a file one might want
to place an item in a variable location within the record. The
first character of the record could be a character which
corresponds to the column position within the record of the start
of the item. One could read the first character of the record
into a one character string variable and then the rest of the
record into a large string variable. The large string variable
could then have its formpointer reset to the position indicated
by the first character in the record and the item could then be
moved to another variable with the MOVE instruction.

RESET also has the capability of extending the logical
length of the f~rst operand. If the formpointer value specified
is past the logical length of the first operand, the logical
length will be extended until it will accommodate the formpointer
value. If this would cause the logical length to be past the
physical end of the string, the logical length and formponter
will both be left pointing to the last physical character in the
string. This feature is useful in extracting and inserting
information within a large string. The EOS condition will be set
if a change in the logical length of the first operand occurs.

Examples:

RESET XDATA TO 5
RESET Y
RESET Z TO NUMBER
RESET Z TO STRING

Note that the RESET instruction is very useful in code
conversions and hashing of character string values as well as
large string rna nipula tion.

5.8 ENDSET

ENDSET causes the operand's formpointer to point where its
logical length points.

Example:

ENDSET PNAME

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS 5-7

5.9 LENSET

LENSET causes the operand's logical length to point where
its forrnpointer points.

Example:

LENSET ONAME

5.10 CLEAR

CLEAR causes the operand's logical length and formpointer to
be zero. None of the data characters are changed.

Example:

CLEAR NBUFF

5.11 EXTEND

EXTEND increments the formpointer, stores a space in the
position under the new formpointer, and sets the logical length
to pOint where the new formpointer points if the new logical
length would not pOint to the ETX at the end of the character
string. Otherwise, the EOS flag is set and no other action is
taken.

Example:

EXTEND BUFF

5.12 LOAD

LOAD performs a MOVE from the character string pointed to by
the index numeric string, given as the second operand, to the
first character string specified. The instruction has no effect
if the index is negative, zero, or greater than the number of
items in the list. Note that the index is truncated to no
decimal places before it is used (e.g. 1.7 = 1).

Example:

LOAD AVAR FROM N OF NAME,TITLE,HEDING

5-8 DATABUS 1100

5.13 STORE

STORE performs a MOVE from the first character string
specified to a character string in a list specified by an index
numeric variable given as the second operand. The instruction
has no effect if the index is negative, zero, or greater than the
number of items in the list. Note that the index is truncated to
no decimal places before it is used (e.g. 1.7 = 1).

Examples:

STORE Y INTO NUM OF ITEM,ENTRY,ALINK
STORE RXX" INTO NUM OF Al,A2,A3

The LOAD and STORE instructions may be. continued to the next
line by the use of a colon:

Examples:

LOAD SYMBOL FROM N OF VAR,CONST,DEC:
COUNT,FLAG,LIST

STORE NAME INTO NUM OF A,B,C,D,E,F,G:
H,I,J,K,L,M

5.14 CLOCK

CLOCK enables the programmer to access the DATABUS 1100 time
clock. This interrupt is accurate to approximately 0.005 percent
or four seconds per day. There are three variables that the
CLOCK instruction can access. These are given the names TIME,
DAY, and YEAR. All are character strings with TIME being in the
format:

12:34:56

and ranging from 00:00:00 to 23:59:59, DAY being in the format:

123

and ranging from 001 to 365 (except to 366 on leap years), and
YEAR being in the format:

12

and ranging from 00 to 99, being the las'tO two digi ts of the year.

CaAPTER 5. CHARACTER STRING HANDLINGIN$TRUCTIONS 5-9

Note that when the TIME goes from 23:59:59 to 00:00:00, the day
is incremented. The new day value is not checked to be a valid
Julian date, however, implying that the system must be manually
reset at midnight at the end of the year. The CLOCK instruction
performs a character string to character string move with the
special variable in the source and the character string to
receive the information in the destination operand specification.
Note that the user's program may have variables called TIME, DAY,
and YEAR.

For example:

CLOCK
CLOCK
CLOCK

TIME TO TIME
DAY TO DAY
YEAR TO YEAR

would move the information in the system variables into user
defined variables called TIME, DAY, and YEAR also.

Note that the clock value is not allowed to be updated by
the foreground interrupt during the actual transfer of characters
from the system data into the user's data item. However, an
interrupt could occur between the time one clock item was moved
and the next, thereby necessitating a precaution if one is to
obtain both the time and the day figure. For example, if the
time was 23:59:59 and one moved the TIME into a variable and then
the foreground interrupted and caused the clock to be incremented
to the next second, the TIME would then read 00:00:00 and the DAY
would have been incremented. If one then obtained the DAY
figure, he would have the wrong day for the time he had gotten.
Therefore, when obtaining both the TIME and DAY, one must first
get the DAY, then get the TIME, and then go back and make sure
the DAY had not changed. For example:

CLOCK
CLOCK
CLOCK
COMPARE
GOTO
CLOCK

TIMEOK (etc)

DAY TO DAY
TIME TO TIME
DAY TO DAY2
DAY TO DAY2
TIMEOK IF EQUAL
DAY TO DAY

All CLOCK items are initiated to zero.

5-10 DATABUS 1100

5.15 TYPE

TYPE sets the EQUAL condition if the string contained from
the formpointer through the logical length of the specified
string variable is of valid numeric format (only leading minus,
one decimal point, and digits or spaces).

5.16 SEARCH

SEARCH compares one string of characters (a key) to a series
of contiguous variables (a list) and returns the positional
number (the index) of the matching item. The search starts at
the formpointer of the key variable and the first list variable.
Each compare through the list stops when the key length is
exhausted (the items do not have to be of equal length). If the
key matches the item, even though the item is longer, a match
will occur. If the list item is shorter than the key, no match
occurs. The instruction must include a numeric variable
containing the number of items in the list. The key will be
compared to each item in the list until the list length is
exhausted or a match occurs.

If a match is found, the number of the matching variable
(that is, it's position in the list) is stored in the numeric
variable specified as the Index and the EQUAL flag is set.

If no match is found, the Index variable is set to zero and
the OVER flag is set.

For example:

SEARCH
SEARCH

KEY IN LIST TO LISTEN OF INDEX
ACTNO ON VALIDACT TO TEN OF CLASSNO

The key and list may be of either numeric or string type.
However both the key and list must be of the same type.
Regardless of the type, only and ASCII compare (no alignment) is
performed.

5.17 REPLACE

The REPLACE (or REP) instruction allows anyone ASCII
character in a string variable to be replaced by any other ASCII
character. The first ~riable in the instruction contains
multiples of two characters1 each pair consisting of the

CHAPTER 5. CHARACTER STRING HANDLING INSTRUCTIONS 5-11

character to be replaced and the replacing character and the
second variable is the string to be modified •

REPLACE
REP

ABVAR IN SVAR
"AB" IN SVAR

The string SVAR will have any "A" character replaced by a
"B" character.

5-12 DATABUS 1100

CHAPTER 6. ARITHMETIC INSTRUCTIONS

All of the arithmetic instructions have certain
characteristics in common. Except for LOAD and STORE, each
arithmetic instruction is always followed by two numeric string
variable names. The contents of the first variable is never
modified and, except in the COMPARE instruction, the contents of
the second variable is always the result of the operation. For
example, in:

ADD XAMT TO YAMT

the content of XAMT is not changed, but YAMT contains the sum of
XAMT and YAMT after the instruction is executed.

Following each arithmetic instruction, the condition flags
OVER, LESS, and ZERO (or EQUAL) are set to indicate the results
of the operation. OVER indicates that the result of an operation
is too large to fit in the space allocated for the variable (a
result is still given with truncation at the left and rounding at
the right, however). LESS or ZERO (EQUAL) indicates respectively
that the content of the second variable is negative or ~ero
following the execution of the instruction (or would have been in
the case of COMPARE).

Whenever overflow occurs, the higher valued digits that do
not fit the variable are lost. For example, if a variable is
defined:

NBR42 FORM 2.2

and a result of 4234.67 is generated for that variable, NBR42
will contain only 34.67.

Whenever an operation produces lower order digits than will
fit in the destination variable, the result is rounded up if the
digit to the right of the last one that would fit is greater than
4 (standard rounding rules). A variable with the FORM 3.1 would
contain:

46.2
812.5

3.7
3.9

for 46.213
for 812.483
for 3.666
for 3.850

CHAPTER 6. ARITHMETIC INSTRUCTIONS 6-1

632.0 for 4632

with the OVER condition occurring for only the last result.

Note that if an OVER occurs during an ADD, SUB, or COMPARE
of two strings of different physical lengths, the result will not
and the LESS condition flag may not be correct.

6.1 ADD

ADD causes the content of variable one to be added to the
content of variable two:

Examples:

ADD X TO Y
ADD DOG,CAT
ADD lilli, LEN

6.2 SUB or SUBTRACT

The SUB instruction (the compiler will also accept a
mnemonic of SUBTRACT) causes the content of variable one to be
subtracted from the content of variable two.

Examples:

SUB RX350 FROM TOTAL
SUB "32.5" FROM RATE
SUBTRACT Z,TOTAL

6.3 MULT or MULTIPLY

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of variable two to be
multiplied by the content of variable one. The restrictions
mentioned in the introduction about the length of multiplication
operands are that the sum of the number of characters in the two
operands must be less than 32.

Examples:

MULT B BY A
MULT ".005" BY TOTAL
MULTIPLY W,Z

6-2 DATABUS 1100

6.4 DIV or DIVIDE

The DIV instruction (the compiler will also accept a
mnemonic of DIVIDE) causes the content of of the second variable
to be divided by the content of the first variable. The
restriction upon division operands is that the number of
characters in the dividend plus the number of characters in the
divisor plus two times the number of characters after the decimal
pOint in the divisor must be less than 32. Division by zero
results in the OVER condition being set and the destination
variable not being changed.

If the quotient cannot be represented fully in the
destination variable format, the quotient will be rounded to the
number of places in the destination variable if the divisor has
at least one digit place after the decimal point. If there are
no digit places after the decimal point in the divisor, the
quotient will be truncated (rounded down) to the number of places
in the destination variable.

6.5 MOVE

Examples:

DIV SFACT INTO XRSLT
DIV "3.0" INTO QUANTITY
DIVIDE X3,HOPRS

MOVE causes the content of variable one to replace the
content of variable two.

Examples:

6.6 COMPARE

MOVE FIRST TO SECOND
MOVE "0" TO COUNTER
MOVE A,B

COMPARE does not change the content of either variable but
sets the condition flags exactly as if a SUB instruction has
occurred.

Examples:

CHAPTER 6. ARITHMETIC INSTRUCTIONS 6-3

6.7 LOAD

COMPARE XFRM TO YFRM
COMPARE "100" TO LINENR
COMPARE TIME1,TIME2

The LOAD instruction selects the numeric string variable out
of a list based on a numeric index variable. It then performs a
MOVE operation from the contents of the selected variable into
the first operand. If the index is rounded to no decimal places
before it is used (e.g. 0.1=0).

Example:

LOAD CAT FROM N OF CAT, MULT, SPACE

6.S STORE

The STORE instruction selects a numeric string variable from
a list based on the value of a nUmeric index variable. It then
performs a MOVE operation form the contents of the first operand
into the selected variable. If the index is negative, zero, or
greater than the number of items in the list, the instruction has
no effect. Note that the index is rounded to no decimal places
before it is used (e.g. 0.1=0).

Example:

STORE X INTO NUM OF VAL,SUB,TOT

The LOAD and STORE instruction statements may be continued
to the next line by the use of a colon.

Examples:

LABEL LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6,N7,NS,N9

ENTRY STORE 112.3" INTO X OF N1 ,N2 ,N3

6.9 CHECK11

The CHECK11 (or CK11) instruction performs a check digit
calculation (modulo 11) on two numeric variables (or literals).
The first variable is the base number and the check digit to be
validated:

6-4 DATABUS 1100

I ! 2 3 4 171
BASE I CHECK DIGIT

The second variable is the weighting factor:

I 543 2

Note that the weighting
are of the same length.
the length of the base.
set and the instruction

factor and the base portion of the number
The weighting factor is assumed to have
If it is shorter, an EOS condition is

is not completed.

The calculation is performed starting at the form pointer of
each variable using the length - ! of the first variable. When
the check digit value has been computed, it is compared to the
last digit of the base. If they match, the EQUAL flag is set: if
the resultant check digit does not match, the OVER flag is set
and the EQUAL flag is cleared.

For example:

CHECK!!
CK!!

BASECK BY "7654327"
NMBR BY WEIGHT

The algorithm used to generate the modulo 11 check digit value
is:

1) Each digit in the base is multiplied by the corresponding
digit in the weighting factor.

2) The individual products are added.

3) The sum of the products is divided by eleven.

4) The remainder of the division is subtracted from eleven
giving the check digit.

5) A check digit with a value of 10 cannot be used and causes
the OVER flag to be set.

6.10 CHECK10

The CHECK10 (or CK10) conforms to the same restrictions and
is performed in the same manner as the CHECK11 instruction with
the exception of the algorithm used to compute the check digit.

For example:

CHAPTER 6. ARITHMETIC INSTRUCTIONS 6-5

CHECK10
CK10

ACTNO BY "21212"
A BY B

The algorithm for modulo 10 check digit computation is:

1) Each digit in the base number is multiplied by the
corresponding digit in the weighting factor.

2) The individual digits in these products are added.

3) The sum of the digits is divided by 10.

4) The remainder of the division is subtracted from 10 with the
result being the check digit.

6-6 DATABUS 1100

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS

The DATABUS 1100 statements that move data between the
program variables and the terminal, printer, or disk, allow a
list of variables to follow the operation mnemonic. This list
may be continued on more than one line with the use of a colon.

The I/O list may contain some special control information
besides the names of the variables to be dealt with. It may also
include octal control characters (000 through 037). Care must be
taken in the use of these special control characters as their use
can cause unpredictable results if the I/O device (such as the
Servo Printer) does not have provision of them. DATABUS 1100 has
no formatting information in its input and output operations
other than the list controls and that implied by the format of
the variables. The number of characters transferred is always
equal to the number of characters physically allocated for the
string (except in some special cases) allowing the programmer to
set up his formatting by the way he dimensions his data
variables.

7.1 KEYIN

KEYIN causes data to be entered into either character or
numeric strings from the keyboard. A single KEYIN instruction
can contain many variable names and list control items. When
characters are being accepted from the keyboard, the flashing
cursor is on. At all other times the cursor is off.

When a numeric variable is encountered in a KEYIN statement,
only an item of a format acceptable to the variable (not too many
digits to the left or right of the decimal point and no more than
one sign or decimal point) is accepted. If a character is struck
that is not acceptable to the format of the numeric variable, the
character is ignored and a beep is returned to the console.
Note that if fewer than the allowable number of digits to the
left or right of the decimal point are entered, the number
entered will be reformatted to match the format of the variable
being entered. When the ENTER key is struck, the next item in
the instruction list is processed.

When a character string variable is encountered, the system
accepts any set of ASCII characters up to the limit of the
physical length of the string. The formpointer of the string

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-1

variable is set to one and characters are stored consecutively
starting at the physical beginning of the string. When the ENTER
key is struck, the logical length is set to the last character
entered and the next item in the keyin list is processed. If the
ENTER key is struck without any other characters having been
entered (a null string is entered), both the logical length and
form pointer of the string are set to zero. The program can
check for a variable with a null entry by checking for an EOS
condition after doing a RESET or CMATCH instruction on the
variable in question •

7.1.1 Displaying with KEYIN

Other than variable names, the KEYIN instruction may contain
quoted items, list controls, and octal control characters (000 to
037). Quoted items are simply displayed as they are shown in the
statement. The list controls begin with an asterisk and allow
such functions as cursor positioning and screen erasure. The
*P<n>:<m> control positions the cursor to horizontal position <n>
and vertical position <m>. Note that these numbers may either be
literals or numeric variables and both positions must always be
given in a *p command. The horizontal position is restricted by
the interpreter to be from 1 to 80 and the vertical position is
restricted to be from 1 to 12. Numbers outside this range have
the effective value of 1.

7.1.2 Erase Screen

The *ES control positions the cursor to 1:1 and erases the
entire screen, the *EF control erases the screen from the current
cursor position, the *EL control erases the rest of the line from
the current cursor position, the *C control causes the cursor to
be set to the beginning of the current line, the *L control
causes the cursor to be set to the following line in the current
horizontal position, the *N control causes the cursor to be set
to the first column of the next line, and the *R control causes
the screen to roll up.

Normally, the cursor is positioned to the start of the next
line at the termination of a KEYIN statement. However, placement
of a semicolon after the last item in the list will cause this
positioning to be suppressed, allowing the line to be continued
with the next KEYIN or DISPLAY statement. This feature is also
true of the PRINT command.

7-2 DATABUS 1100

Example:

KEYIN *ES, "NAME: ",NAME, *P35:1, "ACNT NR: ":
ACTNR," ADDRESS: ",STREET,*P10:3:
CITY,*PX:4,"ZIP: ",ZIP;

KEYIN "ABC",021,NVAR

7.1.3 KEYIN Continuous

During a KEYIN, any unrecognizable characters (not in the
printing ASCII set) sent in from the console will be ignored and
a beep returned. Also, a mode called keyin continuous is
available (turned on with list control *+ and turned off with
list control *- or the end of the statement) which causes the
system to react as if an ENTER key had been struck when the
operator enters the last character that will fit into a variable.
This mode allows the system to react in much the same way as a
keypunch machine with a control card.

7.1.4 BACKSPACE and CANCEL

While keying a given variable, the operator can strike the
BACKSPACE key and cause the last character entered to be deleted.
He may also strike the CANCEL key and cause all of the characters
entered for that variable to be deleted.

A circular input buffer allows the operator to send up to
seven characters from the keyboard before they are requested by
the system. Note that there is no feedback at this level as the
characters are fed back only as they are taken from the buffer.
This buffer allows the operator to continuously enter data
without having minor delays in the response of the system break
his stride.

7.1.5 Operator Interrupt Procedure

A special case of KEYIN is the interrupt procedure, entered
by keying CANCEL with both the KEYBOARD and DISPLAY keys
depressed on the system console. Normally, when the cursor is
not flashing, all characters will be ignored (not accepted from
the seven character circular input buffer) until input is
requested. The exception, however, is the interrupt character,
which may be keyed at any time (it will be postponed if a PI
instruction is in effect) and will result in an immediate CHAIN
to the MASTER program. Thus, the currently executing Program
will stop, the printer, if being used , will be RELEASED, and the

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7 .. 3

MASTER program will begin execution.

7.1.6 New Line

Another special case of KEYIN is the NEW LINE character,
which is the DEL or underline character on the system console.
If this key is struck during a KEYIN statement, the current
variable is terminated as if the ENTER key was struck and all
subsequent variables in the statement will be set to zero or
their formpointers and logical lengths set to zero depending on
whether they are numeric or string variables. Control will fall
through to the next DATABUS 1100 statement.

7.1.7 KEYIN Timeout and Pause

The list control, *T, may be included in the KEYIN statement
causing a time out if more than two seconds elapse between the
entry of two characters. The time out has the same results as if
the NEW LINE key had been struck.

The list control, *W, may be included in the KEYIN statement
causing a one second pause at that pOint in the list sequence.
This control is especially useful in programs which wish to
simply pause for a number of seconds. Any number of seconds of
pause may be achieved by simply putting in the required number of
*W controls in the list.

7.1.8 Echo Control

The list controls *EOFF and *EON may be included in the
KEYIN statement causing the echo of entered characters to be
inhibited or enabled respectively. When echo is inhibited, the
KEYIN statement causes only the characters specifically mentioned
in the list to be displayed on the console. Therefore, the
statement:

KEYIN *EOFF ,INLINE:

would allow the variable INLINE to be entered from the keyboard
with absolutely no characters being displayed at the console.
Since the cursor display at the console will not be enabled,
there will be no indication in this case that input is being
requested. This feature could be used where passwords are to be
entered and it is desired to suppress their display. In this
case, the statement:

KEYIN *EOFF, *P1 : 10, "ENTER PASSWORD: ":

7-4 DATABUS 1100

022,PASSWORD,024

could be used. Note that even though echo is inhibited, the
cursor positioning and literal characters are still displayed on
the console since they are specifically mentioned. Notice also
that the carriage return and line feed will be sent at the end of
the statement since a semi-colon is not supplied. The 022
character is a cursor on and the 024 is a cursor off for the
system console. The cursor controls must be specifically
mentioned since the echo inhibit prevents them from being sent
automatically. The echo is always enabled at the conclusion of
the KEYIN statement. Therefore, one must always inhibit the echo
at the start of each statement in which no echo is desired.

7.1.9 Special KEYIN Controls

Numeric and String variables in the KEYIN may be preceeded
by a format control function which can change the justification
and/or fill control normally performed during KEYIN.

The *JL control left-justifies Numeric input and zero-fills at
right if there is no decimal point entered.

KEYIN *JL,NVAR

The *JR control right-justifies String input and blank-fills at
left.

KEYIN *JR,SVAR

The *ZF control performs zero-filIon String entry.

KEYIN *ZF,SVAR

The combination of *ZF and *JR is valid.

KEYIN *ZF,*JR,SVAR

The *DE control can be used to restrict String input to digits
only (0-9). A non-digit will not be accepted at the keyboard.

KEYIN *DE,SVAR

The special KEYIN controls apply only to the variable
immediately following in the KEYIN statement.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-5

7.1.10 Text Input

The Keyboard input can be programmed for text input through
the use of the *IT and *IN controls. The control *IT is used to
tUrn-on the text input mode. This converts all alphabetic
characters to shift to upper case as on an office typewriter.
The Keyboard remains in the Text Input mode until the control *IN
returns the keyboard to normal mode.

KEYIN *IT,SVAR,,*IN

7.2 DISPLAY

DISPLAY follows the same procedure as KEYIN except that when
a variable name is encountered in the list following the
instruction, the variable's contents is sent to instead of being
requested from the console. ,~tleI.-S...'U.ing~a,~~_~ di splayed
.~ting with the first ph¥Sical character and cont~· through
the logical length. Spaces will be displayed -for---a:riy--cnaract-er------­
posTtIoffs-~exlst between the logical length and physical end
of the string unless the *+ mode (keyin continuous in the KEYIN
instruction) is active, in which case no more characters are put
out after the logical length. Numeric strings are always
displayed in total. Quoted strings, list controls, and octal
control characters may be included in the display instruction and
are handled in the same manner as described for the KEYIN
instruction. Note that the *T, *EON, and *EOFF controls will
simply be ignored in the DISPLAY statement.

Examples:

7.3 BEEP

DISPLAY *P5:1,"RATE: ",RATE:
*P5: 2, "AMOUNT: II ,AMNT

DISPLAY "ABC", 021 ,Sl ~

BEEP causes a beep to be sent to the console.

Example:

BEEP

7-6 DATABUS 1100

7.4 PRINT

DATABUS 1100 supports either one local printer or one servo
printer, depending on printer availability and initialization
options.

The PRINT instruction causes the contents of variables in
the list to be printed in a fashion similar to the way DISPLAY
causes the contents of variables to be displayed. The list
controls are much the same as DISPLAY except that cursor
positioning cannot be used, column tabulation is provided (*<n>
causes tabulation to column <n> unless that column has been
passed) and *F causes an advance to the top of the next form.
Octal control characters may also be included in the print
~nstruction. The PRINT statement may be continued on more than
one line by the use of a colon.

Examples:

PRINT DATE, *20, "TRANSACTION SUMMARY",*C,*L:
PNAME,*N,*10,RATE,*20,HOURS,*30:
AMT, *L

PRINT "ABC",021,S11

The control character, *ZF may be used before any numeric
variable to cause zero fill on the left, moving the sign to the
left if neccessary. The tabbing in the PRINT statement can move
the carriage in the reverse direction and any sequence of printer
controls will be executed in precisely the sequence specified.
For example, one could print 10 characters, tab back to column 5
and overprint that column, do one line feed, and print five
characters which would appear in columns 6 through 10 under the
first line. He could then do a form feed and print 10 more
characters which would appear in columns 11 through 20 at the top
of the next page. One must be careful not to do these things,
however, if he plans to use the same program with non-servo
printers.

If the servo printer is being used, the paper out condition
will be checked whenever a top of form control is given in a
PRINT statement. If, after the top of form function is
performed, the paper out condition is present, the console will
make a uniquely characteristic beeping sound to alert the system
operator that more paper must be placed in the printer. The

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-7

beeping sound will stop when the front cover of the printer is
swung out but will resume if the cover is replaced to its
original position with the paper out indicator still on. The
recommended procedure is to open the front cover, remove the last
form still in the printer, place new paper in the printer with
the top of the form aligned with the print head, and finally
close the front cover.

Another feature allowed with the servo printer is minor
vertical spacing (there are eight minor vertical spaces for one
standard line space). Control characters either given directly
in the PRINT statement or contained within a string variable can
cause the paper to be fed either up or down up to seven minor
vertical spaces. The characters zero through seven cause the
paper to be fed down the page (the normal spacing direction) a
corresponding number of minor spaces. The characters eight
through fifteen cause the paper to be fed up the page (opposite
to the normal spacing direction) zero through seven minor spaces
respectively. The characters sixteen through twenty-two cause
the carriage to move to the left seven through one column
positions respectively (horizontal minor positioning cannot be
performed). The character twenty-three causes no printer action.
The characters twenty-four through thirty one cause the carriage
to move to the right one through eight column positions
respectively. This feature on the servo printer allows different
kinds of underscoring and super- and/or sub-scripting in the
printed output.

7.5 Disk I/O

DATABUS 1100 allows a large variety of file structures and
access methods. The structures can be dependent upon the
physical sectoring of the disk, physically sequential, or
logically indexed. The access methods can be physically random,
physicallY,sequential, logically random, or logically sequential
with any mix of these being allowed on logically indexed files.
Th1S section will describe the various file structures that can
be created, how positioning is maintained within these
structures, and how access to desired information within the
structure can be achieved. It will then describe the various
operations that can be performed upon the information within the
file.

7-8 DATABUS 1100

7.5.1 File structures

The most basic structure within a file is a physical record.
A physical record can contain at most 249 data characters (note
that there is no decimal number compression within any of these
file structures so a number always occupies the number of
characters that are contained within the FORM which defines the
number). A physical record corresponds to exactly one physical
sector on the disk and is always terminated by a 003 character.

The next level of structuring is a logical record.
Depending upon the way the user structures his file there mayor
may not be an integral number of logical records within a
physical record. A logical record is terminated by a 015
character after which another logical record begins. Note that
logical records can extend across physical record boundaries
(terminated by 003 characters) so that a file with logical
records may appear in the first two physical records as follows
(the items in parenthesis are the logical and physical record
termination characters):

01128558382 AASDFQWERKFKDSKA (015) 1234848 (003)
8483 LAKSJDFLKASDFKKJ (015) 48828388483 KI (003)

Note that the f~rst logical record extends about two thirds of
the way through the first physical record and is then terminated
by the 015 character. The first seven characters of the second
logical record are also contained in the first physical record at
which point the first physical record is terminated. The rest of
the second logical record extends about half way through the
second physical record and is then terminated by the 015
character. At this point the third logical record starts and so
on.

Also note that there is no restriction upon the length of a
logical record (a single logical record may extend across many
physical records) but that it is a good idea to keep logical
records reasonably short to prevent them from becoming hard to
deal with. If one had wanted to keep only one logical record per
physical record he would have made the file appear as follows:

01128558382 AASDFQWERKFKDSKA (015) (003)
12348488483 LAKSJDFLKASDFKKJ (015) (003)
48828388483 KILKJLKJLKSJDFKD (015) (003)

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-9

Note that it took more disk space to store the same amount of
information in this case than in the previous case. It is
sometimes desirable to give up this space in return for the
capability of using the fastest accessing method of directly
accessing physical records. A structure which allows logical
records to cross physical record boundaries is called a record
compressed structure.

In some data files large numbers of contiguous spaces
appear. These files can be compressed even further than simple
use of record compression by the use of space compression (the
general purpose DOS editor, the DOS SORT program, a number of the
terminal emulator programs, the DATABUS 1100 compiler (listing
file output), and DATABUS 1100 programs can all generate space
compressed records). A space compressed structure appears much
like a record compressed structure except for the addition of the
011 control character. This control indicates that the next byte
is a positive 8-bit binary word which tells how many spaces were
replaced by the compression code character pair. This number
will never be less than 2 (since it is wasteful to expand one or
zero spaces into two characters) and may be as large as 255. In
addition, the 011 will never appear as the last character in a
physical record since the character indicating the number of
spaces will always appear after the 011 (otherwise the 003
indicating the end of the physical record and three spaces
compressed could not be differentiated). For example, in the
following a logical record is shown first without space
compression and then with space compression:

NOW IS THE TIME FOR (015)
NOW IS THE(011)(002)TIME(011) (007)FOR (015)

The second record is physically shorter than the first by six
characters. It may seem silly to compress two spaces into a two
character compression code but most programs do this because it
is logically Simpler to program. If more than 255 contiguous
spaces appear in the data record, multiple space compression
codes will appear. Space compressed records are most useful
where large numbers of spaces appear in the file (as in print
files) and where the records are not to be modified in place. If
the record is to be modified in place, space compression is
discouraged since the number of spaces could change and the
physical length of the logical record could change.

A file which can be accessed physically sequentially must
not have any physical records without the proper format between
the beginning of the file and an end of file mark. The end of

7-10 DATABUS 1100

file mark always starts at the beginning of a physical record and
contains exactly six 000 characters followed by the physical
record termination character (003). The rest of the characters
in the physical record are of no significance. Note that if
there are no physical records besides the one containing the end
of file mark, the file would be null (which is a valid condition
for a file).

A physically sequential data file can be logically indexed.
One cannot tell that a file is indexed by looking only at the
da ta file since the indexing informa tion is rna intai.ned in a
separate file called the index file (and usually of DOS extension
lSI). The index file contains the name and extension of the data
file which it indexes and a set of keys and pointers which relate
the key value of a logical record to its physical position within
the data file. DOS utilities exist for the creation of the index
file which must always be performed outside of the DATABUS 1100
interpreter.

The index file is a n-ary tree where n is determined by the
length of the key and where there are enough levels to make the
top node in the tree always fit within one disk sector (contain
at most n branches). One can conservatively estimate the number
of sectors that will be used in the index file by the following
method. The actual number used may be less because trailing
spaces in keys are discarded and more than the minimum number of
keys may fit in a sector.

To compute the index file length, divide 250 by the key
length plus 7 and discard the remainder (do not round up the
result). Thl.s number should then be divided into the number of
logical records to be indexed and the answer rounded up (if the
remainder is non-zero then add one to the answer and discard the
remainder). Save this number which is the number of sectors at
the lowest level of the index tree. Then divide 250 by the key
length plus 3 and discard the remainder. This number should then
be divided into the number saved before the previous step and the
answer rounded up. Save this number which is the number of
sectors at the next higher level of the index tree. If the
answer produced is greater than one, repeat the previous step
(dividing 250 divided by the key length plus 3 into the previous
answer). When the answer has been reduced to one, total all of
the numbers of sectors required for each level and the result
will be the total number of sectors required in the index file.

For example, assume that the data file contains 10000
logical records and the key is 10 characters long- The first

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-11

computation is 250/(10+7) = 14.71 or 14 discarding the remainder.
The next computation is 10000/14 = 714.29 or 715 rounding up.
Therefore, the lowest level of the index tree will require 715
sectors. The next computation is 250/(10+3) = 19.23 or 19
discarding the remainder. The next computation is 715/19 = 37.63
or 38 roundirig up. Therefore, the next higher le~l of the index
tree will require an additional 38 sectors. The next computation
is 38/19 = 2.00 or 2 rounding up. Therefore, the next higher
level of the index tree will require an additional 2 sectors.
The next computation is 2/19 = 0.11 or 1 rounding up. Since one
sector has been reached, the totals are made: 715+38+2+1 = 756
sectors for the entire index tree.

7.5.2 Positioning and accessing

In DATABUS 1100, all files are referenced by way of logical
files. These files are declared in the data area of the program
using the FILE and IFILE declarations. The declarations relate a
logical file to a certain physical file that is specified by the
OPEN or PREPARE statement performed upon the logical file. The
data space used by the declaration holds all of the physical
position information needed for that particular file. During
file operations, DATABUS 1100 establishes a position within the
file using a specified access method and then increments this
position based upon the operation specified.

For physically accessed files, a file position is defined by
a physical record number (0 through the maximum number of records
in the file) and a character pointer within this record (1
through 249). When the file is initially opened (with OPEN or
PREPARE), the physical record number is set to 0 and the
character pointer is set to 1. All read and write operations
sequentially increment the character pointer as the individual
characters are read or written. If the physical record
terminator (003) is reached during a read or the 249th character
is written during a write, the character pointer is reset to 1
and the physical record number is incremented (when writing, a
physical record terminator is automatically written after the
249th data character before the physical record is written out to
the disk and movement on to the next physical record is made).
If an end of f~le mark is written, the current physical record is
terminated, the physical record number is incremented (unless the
position was at the start of a physical record when the operation
was entered), the end of file mark is written in the first seven
characters of the new physical record, and the character pointer

7-12 DATABUS 1100

is left at 1.

The character pOinter may be set directly by what is called
a tab operation in some disk I/O statements. WRITAB, UPDATE, and
all read operations may contain thes~ positioning operators.
When physical access is being made to the file, the tab position
given in the statement is relative to the beginning of the
physical record. When indexed access is being made to the file,
the tab position given in the statement is relative to the
beginning of the logical record. Note that when tabbing relative
to the start of a logical record, it is an illegal operation to
tab past the end of a physical record. Therefore, when using
tabs in indexed files, there should always be an integral number
of logical records per physical record to prevent tabbing past
the end of a physical record. Note that tabbing may not be used
when physical access is being made to a file declared as indexed.
If one needs to do tabbed physical accesses to the file as well
as indexed accesses, he must declare two logical files-to the
same data file. One will be used for physical accesses (having
been declared using the FILE directive) and the other will be
used for indexed accesses (having been declared using the IFILE
direct1ve).

When an indexed file is being used, two additional pointers
are kept for the logical file. The first is a physical record
number and character pointer to the first character of the last
logical record accessed using the index. The second is a pointer
to the next sequential key after the last key accessed using the
index. The first pointer enables re-reads and updates to be made
to the indexed file and the second pointer enables the indexed
file to be accessed sequentially by key. Note that neither of
these p01nters is changed when a physical access is made using
the logical file.

An additional counter maintained for all logical files is
the space compression counter. This counter is used in the
decompression of spaces during read, the compression of spaces
during write, and as a flag as to whether or not space
compression is to be performed during a write (decompression will
always be performed by the read). It is suggested that the
reader come back and read the following paragraph closely after
he feels he understands the disk read and write access methods
and operations since some of these ideas are referenced in the
following section. One must understand the following section to
be able to effectively deal with space compressed files.

When the space compression counter has a value of -1 during

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-13

write operations, spaces will not be compressed in the output.
The counter value is set to 0 when the file is initially opened
(using OPEN or PREPARE) and at the start of a physically random
or 1ndexed access read operation or when a *+ control in a write
operation statement is encountered. The counter value is set to
-1 when a physically random or indexed access write operation is
performed or when a *- control in a write operation statement is
encountered. Therefore, space compression will be on at the
beginning of a physically sequential write that occurs as the
next operation after the file has been opened or a read operation
of any kind has been performed, space compression will be off at
the beginning of any physically random or indexed access write
operation, and the status of space compression will not be
changed by any other operations. If the desired space
compression mode for a write operation is not obtained by the
above rules then the *+ and *- controls will have to be used to
get the desired mode. Note that these controls can erase the
memory of previously accumulated spaces if used after the
beginning of the statement list while space compression has been
on·

7.5.2.1 Physically Random Access

The fastest random access method available under DATABUS
1100 is physically random access. To perform a physically random
access, a numer1C variable containing a positive number is
supplied as the record specifier to the statement. Any
fractional part of this variable will be discarded and then the
physical record number will be set to its value. The character
pOinter will then be set to one and the read or write operation
will proceed. Unfortunately it is often hard to find a map from
a key value in the data records to a fairly contiguous set of
numbers, necessatating the use of an index structure. However,
if such a map can be found, physically random accessing imposes
lower overhead than the indexed accessing.

7.5.2.2 Physically Sequential Access

One can cause the read or write operation to simply pick up
where the physical record number and character pointer are
currently positioned by specifYing a numeric variable with a
negat1ve value in the record specifier. Usually, when a read or
write operation is finished, it leaves these pointers at the

7-14 DATABUS 1100

beginning of the next logical record. However, a read or write
operation can be parameterized (by placing a semi-colon at the
end of the variable list) such that it will simply leave the
pointers after the last character dealt with. In this case, the
physically sequential access can be used to continue a previous
operation from where that operation stopped. The previous
operation could have used any access method (including this one)
which implies that one can continue a logical record to any
length. However, it is often a good idea to keep logical records
reasonably short to prevent them from becomimg hard to deal with.
Note that the SORT and INDEX utilities require the key value to
be within the first 255 characters of a logical record.

7.5.2.3 Indexed Access

As described in the previous section, a data file may have
an associated index file which associates key values to physical
record number and character pOinter values. There are five basic
indexed operations: read a record of a given key value, read a
record of the next ASCII sequential key value, update the record
that was last accessed through the index, insert a new record of
a given unique key value, and delete a record of a given key
value. Since there can be any number of indexes into one data
file, the insertion and deletion operations will have to perform
key insertions and deletions upon all indexes. Therefore, these
operations will have to be performed once for each index that
pOints to the data file.

For the indexed read and write operations, once the indexed
access has been performed (the physical record number and
character pOinter ~lues have been set), the actual operation is
performed identically to the operation as performed for physical
accesses. The one exception is when a record is being inserted.
Since records are always inserted at the physical end of the
file, a new end of file mark must be written after the inserted
record has been written. In this case, a flag is set so that
when the write statement has been finished (and it has not been
specified that the write operation is to be continued), then the
end of file mark w1l1 automatically be written. This automatic
end of file mark writing operation will not be performed if the
wr1te operation is to be continued, thereby making it the
responsibility of the DATABUS 1100 program to write the end of
f11e mark when the record has finally been written in its
entirety.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-15

The indexed access using a given key value will cause at
least one disk sector to be read for each level in the index in
addition to whatever disk functions are required to perform the
actual read or write operation. If records have been inserted
into the index and the INDEX utility has not been run since then,
then additional d1sk sector reads may take place depending upon
the length and path of the linked list at the lowest level in the
index. Therefore, when many insertions are being performed the
INDEX utility should be run as often as is practical to keep the
access time from becoming overly large. Also, when a data base
is being initialized, it is not a good idea to build it from a
null indexed f11e doing insertions. It would be much more
efficient to build the data base physically sequentially as long
as 1ndexed accesses need not be made to it and then create the
index file on a reasonably large data file after which additional
insertions can then be made using the insertion facility.

7.5.2.4 Physical Access to Indexed Files

Both physically random and sequential accesses may be made
to indexed files. Therefore, one can index only on primary
records and then obtain the rest of the records using physically
sequential accesses. He may also have a file which is already
physically randomly accessed and add an index based on some other
key value for fast access to other aspects of the file. If the
file has been declared as indexed (using the IFILE directive)
then all access methods may be used upon it. However, if the
file has been declared as non-indexed (using the FILE directive)
then only physical access methods may be used upon it.

7.5.3 PREP or PREPARE

PREPARE (the compiler will also accept a mnemonic of PREP)
is used to create a new file under the DOS file structure. The
name used for the DOS file name is given in the string variable
or literal specified in the PREPARE instruction. The characters
used for the name start from under the formpointer of the
specified variable and continue until either the logical end of
the string has been reached or eight characters have been
obtained. (If the item is a literal, the formpointer is one and
the logical length points to the last character.) If the end of
the string is reached before eight characters are obtained, the
rest of the characters are assumed to be spaces. All data files

7-16 DATABUS 1100

used in DATABUS 1100 are of extension TXT. The character after
the 8th in the name variable or the character after the logical
length, if the name is less than 8 characters, is used as the
drive number for that file. If the character is not an ASCII 0,
1, 2, or 3 or no character physically exists past the name, no
drive specification is assumed and all drives starting with drive
zero are searched when looking for a name in the directory or
directories. Otherwise, only the drive specified is searched.

If a file by the name given already exists (and is not
delete or write protected), it is deleted and a new file created.
If the file has any protection or the drive specified is off
line, an 10 error P or M respectively will occur.

One always deals with "logical files" in DATABUS 1100 once
he has opened them with either the PREPARE or OPEN instructions.
Any number of logical files can be opened at one time, the
limitation being the amount of space the user has available to
devote to the data space needed by each logical file that is
declared. The logical files are declared using the FILE or IFILE
instructions (see Section 3.1). NOTE: The PREPARE instruction
can only create a file that has been declared as a FILE type.
The comp~ler will flag an attempt to PREPARE a file that has been
declared as an IFILE type. IFILE type files must be created by
use of the INDEX utility running under the DOS.

For example, let the following definitions be made:

FDECL FILE
FNAMEI INIT "FILElll
FNAME2 INIT IIFILE2 111
FNAME3 INIT "ASDFFILE32"

Let the formpointer and logical length of FNAMEI be land 5, that
of FNAME2 be 1 and 9, and that of FNAME3 be 5 and 9. Then if the
statement:

PREPARE FDECL, FNAMEI

were executed, the file FILEl/TXT would be prepared as logical
file FDECL on the first drive (beginning with drive 0) on which
space was available. If the statement:

PREPARE FDECL,FNAME2

were executed, the file FILE2/TXT would be prepared as logical
file FDECL on drive 1. If the statement:

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-17

PREPARE FDECL,FNAME3

were executed, the file FILE3/TXT would be prepared as logical
file FDECL on drive 2. If the statement:

PREPARE FD ECL, "ASDF"

were executed, the file ASDF/TXT would be prepared as logical
file FDECL on the first drive on which space was available. If
the statement:

PREPARE FDECL, "OWER 3"

were executed, the file OWER/TXT would be prepared as logical
file FDECL on drive 3.

If the logical file specified is already open (having been
specified in a previous PREPARE or OPEN instruction and not since
in a CLOSE instruction), the old file will be closed before the
new one is dealt with.

If the user plans to deal with a vary large file he should
run a program that writes a dummy record into the largest record
number he plans to use. This will cause the DOS to allocate all
records up through the one accessed in as physically contiguous a
manner as possible, thus increasing the speed with which the file
may be randomly accessed. Note that the use of the DOS implies
that a file must be contained on one drive. If the writing of
the dummy record tries to extend the file past the amount of
space available on the d1sk, an error R will occur.

Remember that space compression mode for writing is left on
by a PREPARE instruction •

7.5.4 OPEN

OPEN causes a DOS file already in existence to be prepared
for use by the DATABUS 1100 program. Except for the fact that it
deals only with files already in existence (giving an 10 error if
the name specified cannot be found and not killing the file if it
already exists), OPEN works in a fashion similar to PREPARE. In
addition, OPEN may specify a file that has been declared as an
IFILE type (indexed sequential). In the IFILE case, the
extension of the name supplied in the literal or string variable
is assumed to be lSI instead of TXT (the lSI file header contains
the name of the data file 1t indexes). The opening of the lSI
f1le automat1cally causes the data file indexed by the lSI file

7-18 DATABUS 1100

to be opened. If the data file is indexed by more than one index
file (lSI file) then each of the indicies must be opened using a
different logical file for each one. (When dealing with indexed
files, the data file itself is never explicitly specified since
it is automatically specified by the header of the lSI file that
is opened.) For example, if the following logical files were
declared:

FDECL1
FDECL2
FDECL3

FILE
IFILE
IFILE

and a data file FILE1/TXT existed and the lSI files FILE1/ISI and
FILE1A/ISI had been created using the INDEX utility as follows:

INDEX FILE1: 1-5
INDEX FILE1,FILE1A:6-10

and the following OPEN statements were executed:

OPEN
OPEN
OPEN

"FILE1"
FDECL1,
FD ECL2 , "FI LEl "
FDECL3, .. FILE1A"

then the logical file FDECLl would be opened to the normal
(physical access) file FILE1/TXT, the logical file FDECL2 would
be opened to the indexed file whose index name was FILE1/ISI and
whose data file name (as specified in the FILE1/ISI header) was
FILE1/TXT, and the logical file FDECL3 would be opened to the
indexed file whose index name was FILE1A/ISI and whose data file
name was FILE1/TXT. This would give physical access plus access
via two different indicies into the data file FILE1/TXT. Note
that an lSI file does not have to reside on the same disk as the
data file that it indexes.

Remember that space compression mode for writing is left on
by an OPEN instruction •

7.5.5 CLOSE

CLOSE closes the specified logical file. This insures that
any newly allocated space that was not used in the file will be
returned to the DOS for allocation to another file.

Example:

CLOSE FDECL

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-19

If only reads or updates were performed on the file, the CLOSE
instruction does not need to be used. Also, a CLOSE is
automatically performed when one opens or prepares a logical file
that is already open. When a CHAIN is performed, all files that
are currently open are automatically closed without space
deallocation being performed. Note that this means files cannot
be held open across program chains. Also, if the interrupt key
is struck or if the port goes off line a chain is automatically
invoked meaning that all files will be closed without space
deal location.

CLOSE is also used to delete a file from the DOS file
system. If a PREP is performed on a logical file and the next
operation performed upon the logical file is a CLOSE, the file
described by the logical file declaration will be deleted from
the DOS file system.

7.5.6 READ

READ performs all file data reads (physically random,
physically sequential, indexed random, tabbed or not) except for
indexed key sequential reads. The READ statement format consists
of a logical file declaration name, a record specifier variable
(numeric or string), and a list of variables to be filled by the
data from the record. The list may also contain tab indicators
which can specify that only certain portions of the data record
actually be read into the variables listed. Tabbing is a DATABUS
1100 feature which can eliminate unwanted data transfers from and
to the disk controller buffer and can allow the programmer to
save considerable space in his data area. It can only be used,
however, when the loqical records do not cross physical disk
sector boundaries. This condltion can usually be enforced
throuqh the use of the REFORMAT utility and careful use of the
DATABUS 1100 write instructions.

When data is transferred from the record into a nUmeric
variable that is specified in the READ statement list, the number
of characters corresponding to the length of the variable are
read in. Any non-leading spaces read will be converted to zeros
(e.g. s3s2s1, where s stands for a space, would be read as
s30201). If a non-numeric character other than a negative sign
as the first non-space character, decimal point, or space is
read, a FORMAT trap will occur. A FORMAT trap will also occur if
the variable is dimensioned to one and the character is a
negative siqn. A FORMAT trap occurs if the data does not match
exactly the format of the numeric variable to be read. For
example, if X was dimensioned to 4.2 and the characters read were

7-20 DATABUS 1100

7777877, a FORMAT trap would occur since the digit 8 appeared
where a decimal point appeared, in the variable. If a FORMAT trap
occurs during a read, the logical file pointers are left pOinting
at the current file position before the read was attempted.

If a nUmeric variable to be read includes a
"minus-overpunch" character, the variable is converted to the
normal nUmeric format with the minus sign preceeding the first
non-blank digit.

When a str1ng is read, the number of characters
corresponding to the physical length of the variable are read
into the variable. The formpointer is set to one and the logical
length is set to point to the last physical character in the
string.

If the end of the logical record is reached before all
variables in the list have been read in full, and the variable
which is being filled with data when the EOR is detected is a
string, it will have its logical length pointer set to the last
character entered before the EOR was reached and the rest of the
characters physically in the string padded with spaces. Note
that this fact can be used to advantage when reading sequential
space compressed files. Remember that the trailing spaces in
such file records are not written and that the DISPLAY and PRINT
statements can be forced to output Qnly up through the character
being pointed to by the logical length (using the *+ control).
These features can be combined to make listing sequential files
on the term.inal or printer much faster by the deletion of
trailing spaces.

The above discussion deals with the action taken when the
end of the logical record is reached while reading data into a
string variable. If the data is being read into a numeric
variable, the rest of the variable is padded with either spaces
or zeros as appropriate. Note that if one of these locations
within the variable is the decimal point, a FORMAT trap will
occur.

If the list contains more variables after the one being
filled when the end of the logical record is detected, these
variables will either be set to zero (if numeric) or have their
logical lengths and formpointers set to zero.

If the list is exhausted before the logical end of the
record is reached, two actions can take place. If a semicolon is
placed at the end of the list, the file pointers are simply left

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-21

after the last character read so a subsequent I/O operation will
pick up where the pointers were left. If a semicolon is not
placed at the end of the list, the file pointers are advanced
until they are pOinting after the next logical end of record
marker so a subsequent I/O operation will pick up at the start of
the next logical record.

A RANGE trap will occur and the logical file pointers will
not be changed if an attempt is made to read a record which has
never before been written. (Note that the DOS RANGE or FORMAT
traps will both cause a,DATABUS 1100 RANGE trap and that the
DATABUS 1100 FORMAT trap has nothing to do with the DOS FORMAT
trap.)

The following is a list of the different types of READ
statements. In the examples, the variable RN is a positive
numeric item, SEQ is a negative numeric item, KEY is a non-null
string item, NULL is a null string item, FNDECL is a FILE
declaration name, FIDECL is an IFILE declaration name, and FDECL
is either a FILE or IFILE declaration name.

7.5.6.1 Test for End Of File

Before discussing the READ operations, the end of file
indicator should be discussed. The OVER condition flag being set
indicates that a READ operation has run across an end of file
mark on physical accesses and has accessed a non-existent key on
indexed accesses. The test for the OVER condition should be made
after the READ statement. For example:

READ FDECL,SEQ;A,B,C
GOTO LABEL IF OVER

If an end of file is read on physical accesses, the variables in
the statement will be set to zero or have their logical lengths
and formpointers set to zero depending upon whether they are
numbers or strings respectively. Note that the OVER condition
will also be set if a semicolon appeared at the end of the READ
list. The way the READ mechanism works, whenever an end of file
mark is found the file pOinters "stick" at the beginning of the
mark and spaces are supplied for all characters requested to fill
variables. Therefore, if one continues to perform READ
operations ignoring the fact that the OVER condition flag is
being set, the READ operations will simply continue to set the
OVER condition flag and clear or zero all variables. This is

7-22 DATABUS 1100

also true of READ operations whose lists are terminated by
semicolons.

The OVER condition being set after an indexed READ operation
indicates that the KEY specified could not be found in the index.
For a READKS (read key sequential) operation, the OVER condition
being set indicates that the last record in the sequence has been
read and the current operation tried to read a non-existent
record. See the relevant sections that follow for fUrther
informat1on on indexed operations setting the OVER condition
flag.

READ FDECL,RNiA,B,C

This is a physically random access read. The physical
record pointer is set to the value of RN and the character
pOinter is set to the beginning of the physical record (any
digits after a decimal point in RN are ignored). Variables A, B,
and C are then read. Any remaining characters in the logical
record are discarded since the operation leaves the file pointers
pointing to the beginning of the following logical record.

READ FDECL,RNiA,B,Ci

This is similar to the above operation except that the file
pointers are left pointing to the character after the last one
read into the variable C. This enables another I/O operation
(write as well as read) to continue from the character after the
last one loaded into the variable C.

READ FDECL,SEQiA,B,C

This is a physically sequential access read. Variables A,
B, and C are read from logical file one beginning at the position
indicated by the current file pointer values. The file pOinters
are left pointing to the beginning of the following logical
record.

READ FDECL,SEQ;A,B,C;

This is similar to the above operation except that the file
pointers are left pointing to the character after the last one
read into variable C. This enables another I/O operation (wr i te
as well as read) to continue from the character after the last
one read into the variable C.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-23

READ FDECL,ZEROii

Assume that the numeric variable ZERO is defined to be a
zero in value. This operation would then cause the file pointers
to be positioned to the physical beginning of the file exactly as
if a PREPARE or OPEN instruction had just been performed. This
implies that space compression will be on if a WRITE is then
performed, and the user must turn off space compression if it is
not desired.

READ FNDECL,RNiA,*100,B,*NVAR,C,*50,D;

By including the tabbing controls in the read statement
12st, selected positions may be read from a record without having
to read all of the positions in the record. The list controls
*(numeric literal) or *(numeric variable) are used to position
the character pointer to the specified .character position in the
specified physical record and may appear anywhere in the list.
Reading for the rest of the list (unless another positioning
control is encountered) begins at the character position
specified by the positioning list control. Note that tabbing in
physically random access reads is allowed only upon logical files
that have been declared using the FILE directive (since the tab
values are biased by the starting point of the last index
accessed record on reads using a logical file that has been
declared uS1ng the IFILE directive).

Tab positioning in physically random access read operations
is calculated from the first data position of the physical record
specified. If the tab position is greater than 249 characters,
an 10 trap will occur. When reading is completed, the character
pointer is moved to the beginning of the next logical record if
the statement list is not terminated by a semicolon. If the list
is terminated by a semicolon, the character pointer is left
pointing one character position past the last character read.

Note that tab positioning in a physically random access read
operation will inhibit the ability of that operation to detect an
EOF mark that may be in the given sector. Either a non-tabbing
read can be performed first (to determine whether an EOF exists
in the sector in question) followed by the tabbing read if the
EOF was not found, or the programmer can invent his own EOF
marking convention (which will not require double reads).

The above example would set the physical record pOinter to
RN and the character pointer to one and variable A would be read.
The character pointer would then be set to one hundred and

7-24 DATABUS 1100

variable B would be read. The character pointer would then be
set to the value contained in the nUmeric variable NVAR and
var1able C would be read. The character pOinter would finally be
set to fifty and variable D would be read. The character pointer
would be left pointing after the last character read into
variable D since a semicolon appears at the end of the list.

Note that for physically random access reads, it is
generally a good idea to place a semicolon at the end of the list
if the next read will involve an access to a logical record other
than the one which appears next physically. The reason for this
is that there is no need to require the processor to scan the
rest of the logical record in an attempt to place the file
pointers at the beginning of the next logical record when that
placement will not be used. This is especially helpful if the
read does not leave the character pointer near the end of the
logical record as would often be the case where tabbing is being
used.

Note that using the read tab on physically sequential access
reads (where the record number specified is a negative value) is
possible but not advisable. Tab positioning on physical accesses
is always calculated from the first character position in the
current physical record. The program could obtain characters
from a previous or following logical record if tabbing is used in
a file where the relationship between logical and physical record
boundaries is not known.

READ FIDECL,KEYiA,B,C

This is an indexed access read. The index file is searched
for the key given in the string variable KEY starting with the
formpointed character and going through the character pointed to
by the logical length. The KEY is considered to match an item in
the index file if both have exactly the same number of characters
and all of them match orif all of the characters up through the
length of the index item match and then the rest of ' the
characters in the key variable are space s. Remember tha t there
are no trailing spaces in the index file key items. This means
that even if the INDEX utility was told to index on columns 1
through 10, if that field in a certain record consisted of an "A"
followed by 9 spaces, the index file key item would consist of an
"A" followed by the key terminator character.

If a match is found, the next key pointers are left pointing
to the following item in sequence in the index file, the physical
record and character pointers are obtained from the index file,

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-25

and the rest of the read proceeds precisely as if a physically
sequential read were being performed. When finished, the file
pointers are left at the start of the physically next logical
record in the f1le.

If no match is found, the OVER condition flag is set, all of
the variables in the list are left with the values they had
before the READ was attempted, and the next key pOinters are left
pointing to the next item in sequence in the index file.
Therefore, a read key sequential (see the section on READKS) can
be performed to obtain the first item by collating sequence
following the item that could not be found. This can be very
useful for obtaining lists of classes of items.

For example, one could have a file of serialized items with
model codes. One could index the file on the model code followed
by the serial number. He could then access a given model code
with a serial number of all spaces (spaces being lower in
collating value than zeros). The access would return with the
OVER condition flag set indicating that no such item existed in
the file. The program could then proceed to read sequential by
key obtaining a list of the serial number of all items of a given
model code by the collating sequence of the serial number- The
program would have to detect when the model code changed to
determine when the list of a given model code should be
terminated.

Another feature is that physically sequential accesses can
be made after an indexed access. The INDEX utility allows a file
to be indexed only upon what are called primary records (this is
a SORT utility option). For example, a file could consist of a
primary record followed by five secondary records followed by
another primary record followed another five secondary records
and so forth. If the index were built only on the primary
records, one could do an indexed access to the primary record and
then do five physically sequential accesses to read the five
secondary records.

An indexed access read takes approximately half a second
regardless of the size of the data file. This assumes that
relatively few insertions have been made upon the file and that
only one program is executing in the system. See the section
below on index insertions (WRITE) for a discussion on how
insertions can affect the indexed access timing.

7-26 DATABUS 1100

READ FIDECL,KEY:A,B,C:

This is similar to the above operation except that the
physical file pointers are left after the last character read
rather than at the beginning of the physically next logical
record. This is useful if one is not going to do a physically
sequent~al access afterwards since it saves time not scanning to
the end of the logical record. It is also useful if one wants to
read the rest of the record in a later READ operation or if he
wants to update the rest of the record by following the indexed
read by a physically sequential write.

READ FIDECL,NULL:A,B,C

This is an indexed re-read. If the index key supplied to
the READ operation is null (logical length and formpointer equal
to zero), then instead of accessing a given item based on the
key, the operation re-reads the last logical record that was
accessed us~ng the index specified by the given logical file.
Remember that physical accesses do not change the pointer to the
last record accessed using an indexed access.

This operation enables one to re-read an indexed record
without having to search the index file for a given key. An 10
error is given if there has not previously been a successful READ
performed using a non-null key on the specified logical file.
Otherwise, the operation proceeds exactly as in the normal
indexed access READ.

READ FIDECL,NULL:A,B,C;

This is similar to the above operation except that the
physical file pOinters are left after the last character read
into the variable C.

READ FIDECL,KEY:*25,B,*NVAR,C,*10,D:

This operation performs an indexed access, positions the
character pointer to column 25 relative to the beginning of the
logical record, reads the required number of characters into the
variable B, pOSitions the character pointer to the column
specified in the numeric variable NVAR relative to the beginning
of the logical record, reads the required number of characters
into the variable C, pOSitions the character pointer to column 10
relative to the beginning of the logical record, reads the
required number of characters into the variable 0, and leaves the
physical record pointers after the last character read. Note the

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-27

difference between using tabbing in physical accesses and indexed
accesses is that in indexed accesses the tab position specified
is made relative to the beginning of the logical record and not
to the beginning of the physical record. The reason for this is
that one may desire to have several logical records per physical
record in an indexed file and be able to use tabbing on the
accesses to that file. The problem is that when doing indexed
accesses, the program has no idea of where the logical record is
in the physical record so the system must make the tab values
relative to the beginning of the logical record to make tabbing
in indexed files useful. Remember that an attempt to cross a
physical record boundary with a tab results in an 10 error.

Note that once again it is usually advisable to use a
semicolon at the end of statements using tabs since it just
wastes time to cause the processor to scan to the beginning of
the next logical record if the next access to the file will not
be to the physically next logical record.

READ FIDECL,NULLi*25,B,*NVAR,C,*10,Di

This is similar to the above operation except that the last
key-accessed record in the given logical file is read instead of
a new index access being made.

7.5.7 READKS

This is a read key sequential operation. As mentioned in
Section 7.7.2, whenever an indexed access is made the access
routines update a pointer to point to the following key entry in
the lowest level of the index. When a READKS operation is
performed, instead of searching for a key of a given value, the
key pOinted to by the next key pointer is used (no key is
supplied to the READKS operation). READKS also bumps the pointer
to the next key in the index causing successive READKS operations
to obtain records in collating sequence. If the pointer to the
next key in the index is pointing past the last key in the index
(either a key larger than any existing was accessed in the last
indexed access or the last key sequential read obtained the last
record in the collating sequence) then execution of the READKS
operation causes the OVER condition flag to be set and all of the
variables in the list will have an indeterminant value. The
READKS instruction can appear as follows:

READKS FIDECLiA,B,C
READKS FIDECLi*25,A,*NVAR,B,*10,Ci

7-28 DATABUS 1100

Except for the access method, the functioning of READKS is
identical to the functioning of an indexed access READ (this is
in reference to the action taken once the desired logical record
is located).

7.5.8 WRITE

The write statement is used for physically random,
physically sequential, or indexed insertion writes. The write
statement consists of a logical file declaraction name and a
record specifier (a numeric variable for physical accesses and a
string variable for indexed insertions) followed by a list. The
list may include variable names, quoted characters, and octal
control characters (000 through 037). Note that tab positioning
is not allowed in the WRITE operations (the WRITAB operation must
be used to do tabbing in writing functions).

Each character string variable in the write list will be
written from its first physical character through the logical
length. Spaces will be written for any character positions
between the logical length po~nter and the physical end of
string. Each numeric item will be written in total. Note that
only the data in each variable is written and not any of the
control information (logical length, formpointer, 0200, or ETX).
The quoted items and octal control characters will be written
exactly as they appear in the list. For example, if the
following defin~tions were made:

TIME INIT "10:23"
TOTAL FORM "001~
FDECL FILE

and the statement:

WRITE FDECL,RN: "TIME: ",TIME, 015, "TOTAL: .. ,TOTAL

were executed, the file would be written with the characters:

TIME: 10:23(015)TOTAL: 001(015) (003)

where the (015) and (003) denote control characters. Remember
that certain control characters (OOO, 003, 011, and 015) mean
special things to the read operations and their use can cause
confusion. In the example above, two logical records were
written with the one write statement because of the 015 written
in the middle.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-29

The format control, *ZF may be used before any numeric
variable to cause zero-filIon the left, moving the sign to the
left if neccessary.

The format control *MP converts a numeric variable to a
"minus-overpunch" forma t, where, on negative numeric variables,
the minus sign is over-punched over the rightmost digit. The *ZF
and *MP are valid for the immediately following variable only.

WRITE FDECL,RNi*ZF,A,*MP,B,C

A negative overpunched zero converts to a right bracket "}" and
one thru nine convert to "J" thru "R".

The following is a list of the different types of write
statements. Although the following examples show lists with only
three variables, it should be remembered that all of the WRITE
operation lists can contain the various items shown in the above
example.

WRITE FDECL,RNiA,B,C

Th~s is a physically random access write. The physical
record pointer is set to the numeric value contained in RN and
the character pOinter is set to the beg~nning of the physical
record (any digits after a decimal point in RN are ignored).
Variables A, B, and C are then written followed by end of logical
record (015) and end of physical record (003) characters. The
character pOinter is left pointing to the 003 character. Note
that all WRITE statements are allowed on either FILE or IFILE
declared logical files.

WRITE FDECL,RN;A,B,C;

Th~s is similar to the above operation except that the 015
and 003 characters are not written after the last data character.
The character pOinter is left pOinting after the last character
written. This operation is useful for writing the first part of
a record where more of the record will be written later or for
updating part of a record where the 015 and 003 would, if they
were written, destory data characters that followed.

WRITE FDECL,SEQ;A,B,C

This is a physically sequential access write. Variables A,
B, and C are written beginning at the character position
currently being pOinted to by the logical file pointers. If the

7-30 OATABUS 1100

file had just been opened, the current position would be the
first character position in physical record zero of the specified
logical file. Otherwise, the file pointers would be positioned
according to the results of the last read or write operation
executed. End of logical record (015) and end of physical record
(003) characters are written after the last character in variable
C. The character pointer is left pOinting at the 003 character.
Remember that space compression mode will be on after the file is
opened which means if the file is to be opened and then written
sequentially but space compression is not to be used, one must
execute a write statement whose first list item is a *- control.
For example:

OPEN FDECL,"FILE"
WRITE FDECL,SE01*-,A,B,C

See Section 7.7.2 for a discussion of when space compression mode
is turned on or off.

WRITE FDECL,SEO;A,B,C;

This is similar to the above operation except that the 015
and 003 characters are not written after the last character in
the variable C. The character pointer is left pOinting after the
last character written.

WRITE FIDECL,KEY;A,B,C

This is an indexed access record insertion. The KEY
variable must not be null and the key specified must not already
exist in the index specified by the given logical file (either
condition will cause an 10 error). The search algorithm used to
determing that the key is not already in the index is identical
to that used in the indexed access READ operation.

The key whose value lies from the formpointer through the
logical length of the KEY variable is inserted in the index file
specified by the given logical file and the record is written at
the physical end of the data file. The record is always started
at the beginning of the physical record which contains the EOF
mark and then a new EOF mark is automatically written in the
physical record which physically follows the new record. Note
that this implies that for each record inserted into the data
file, at least one physical record will be used (even if the
record inserted is only 30 characters long). The record inserted
may be longer than one physical record, in which case an integral
number of physical records will be used for the inserted record.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-31

The reason the inserted record is always started at the beginning
of a physical record is that this insures that tabbed operations
can then be performed upon the new record in case they are
desired (assuming the new record will fit within one physical
record).

Insertions will take longer if many records very close
together in collating sequence are inserted together. When
~nserting items whose keys fall randomly within the collating
sequence one can usually insert a number of records equal to one
tenth of the total number of records in the file before the
insertions will start to take significantly longer. It is
generally a good idea to run the INDEX utility as often as
practical when many insertions and deletions are being performed
to keep the speed of insertions and indexed accesses as high as
possible.

WRITE FIDECL,KEY7A,B,Ci

This operation is also an indexed insertion write except
that the new EOF mark is not automatically written at the end of
the file. One could desire to finish writing the record with a
later operation and could do this by following the above
statement by physically sequential Write operations and then
writing the EOF mark at the end of the file himself. He must
make certain, however, that if he is going to do this that no
other program can try to do an insertion before the EOF is
written or the other program will get a RANGE trap since it will
not be able to find the EOF which it will want to overstore.

7.5.9 WRITAB

This operation is the write tab feature which requires a
different instruction mnemonic from the normal write operations.
With this feature, characters may be written into any character
position of a physical record without disturbing the rest of the
record. A RANGE trap will occur and the logical file pointers
will not be changed if a write tab is used on a record of the
file that has never been written before. The write tab can be
performed only upon logical files which have been delcared using
the FILE declaration. The UPDATE operation is used to do tabbed
writes into indexed files. The list controls *(numeric literal)
or *(numeric variable) are used to position the character pointer
to the specified character position in the current physical
record. Writing of the variable begins at the point specified by
the position control. If no positioning is specified, the
wr~ting of the first variable starts at the beginning of the

7-32 DATABUS 1100

physical record.

Tab positioning in physically random accessed writes is
calculated from the first position in the specified physical
record. If the tab position ·is greater than 249 characters, an
10 trap will occur. Only the quoted characters, octal control
characters, and variables appearing in the list are written. The
character pointer is left pointing one character past the last
character written (there is an implied semicolon at the end of
the WRITAB operation). For example,

WRITAB FNDECL,RN1A,*70,B,*10,C,*NVAR,"TIME"

would write variable A beginning with the first position in the
physical record specified by RN. Variable B would be written
beginning at position 70 in the physical record and variable C
would be written beginning at position 10 in the physical record.
The characters "TIME" would be written beginning at the position
specified by the numeric variable NVAR (any places after a
decimal pOint will be ignored) and the character pointer would be
left pointing one character past the "E" written for the quoted
characters "TIME". An 10 trap would occur and the record would
not be written if NVAR was greater than 249.

A word of caution is appropriate at this point in the
discussion. If in the above example NVAR had had a value of 248,
the letter "T" would have been written as the last character in
the physical record specified by RN. That physical record would
then be written and the following physical record would have been
read into the buffer. The letters "IME" would have then been
written into the first three positions of this new physical
record and the record then written back out. If more tab
positions had followed the writing of the characters "TIME",
these would have been in the new physical record, not in the one
specified by the contents of RN. This action would probably not
be that expected by the programmer and would all take place
without a wimper of an error message from the interpreter. Just
be careful about your tab positions!

Note that using WRITAB with a physically sequential access
(where RN contains a negative value) is possible but not
advisable. Tab positioning on physical accesses is always
calculated from the first character position in the current
physical record. The program could obtain characters from a
pervious or following logical record if tabbing is used in a file
where the relationship between logical and physical record
boundaries is not known.

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-33

7 • 5 • lOU PDA T E

This operation allows modification of the last record that
was accessed with a READ or READKS operation. Only the logical
f~le declaration name is supplied to this operation (no key is
supplied) but the list may have all of the items allowed in the
WRITAB list. For example,

UPDATE FIDECL1A, *20,B, *40, "ASDF" ,033

would read the last indexed accessed record in the logical file
FIDECL and would overstore the first characters in the logical
record with the contents of the variable A, would overstore the
characters starting with the 20th character in the logical record
with the contents of the variable B, and would overstore the
characters starting with the 40th character in the logical record
with the characters "ASDF" followed by the octal character 033.
The character pointer would be left pointing after the 033
character (the last character written from the list). Note that
as in indexed access reads using tab positioning, the tab
positions in the UPDATE operation are relative to the beginning
of the logical record (and not the beginning of the physical
record as in WRITAB). As in the WRITAB operation, the UPDATE has
an implied semicolon at the end of its list.

7.5.11 INSERT

This operation allows an index insertion into more than one
index file. The WRITE operation mentioned earlier is used to
physically insert the record into the data file and insert the
key into one index file. If more than one index is being used,
one INSERT operation must be performed for each additional index
into which an insertion is to be made. When the WRITE operation
performs the physical record insertion, a pointer is kept which
contains the physical location of the newly inserted record in
the data file. When the INSERT operation is performed, the
specified key (with a pointer to the remembered physical location
into the data file) is inserted into the specified index file.
Since only one of these insertion memory pointers is kept for
each program, one must make sure that he performs all insertions
necessary for a given record before performing the next WRITE to
~nsert the next record. For example, the sequence to insert two
records into two indicies would be WRITE INSERT WRITE INSERT and
not WRITE WRITE INSERT INSERT.

7-34 DATABUS 1100

The format of the INSERT statement is as follows:

INSERT FIDECL,KEY

where FIDECL is the name of the logical file declared for the
index being used and KEY is the string variable in which from the
formpointer through the logical length is contained the key to be
inserted in the index. An 10 error is given if KEY is null or if
the key specified already exists in the specified index file.
Otherwise, the key is simply inserted into the index. Note that
it is not necessary to prevent the program from being interrupted
between the WRITE and INSERT operations since the pointer to the
record which was inserted is kept for each program and even if
another program inserted a record in the same file or index
between the WRITE and INSERT of the program in question, all
insertions would be performed correctly.

7.5.12 DELETE

This operation allows a record to be physically deleted from
a data file and for its key to be deleted from the specified
index. The DELETE instruction is also used to delete keys from
other indicies which can index the data file. For example,

DELETE FIDECL,KEY

will delete the record specified by the key (whose value lies
from the formpointer through the logical length in the variable
KEY) in the data file specif1ed by the index file specified by
the logical file whose declaration name is FIDECL. The record is
physically deleted by having all of its characters up through the
logical end of record mark (015 character) overstored with 032
control characters. The 032 character does not appear to exist
when the record is read using the DATABUS 1100 read mechanism or
the REFORMAT ut1lity read mechanism since when these mechanisms
see such a character they simply bump the character pointer
(moving on to the next physical record if running off the end of
the currerit physical record) and try to fetch the next character.
Therefore, when DATABUS 1100 performs physically sequential reads
across records that have been physically deleted, the records no
not appear to exist. The REFORMAT utility eliminates these 032
characters to close up the deleted space in a file and to make
the file readable by other DOS utility programs such as SORT.

The DELETE operation will not try to overstore the record
being deleted with 032 characters if the first character already
contains a 032 character. Th1s allows the DELETE operation to be

CHAPTER 7. INPUT/OUTPUT INSTRUCTIONS 7-35

used to delete the key entries from all index files which index
the given data file. For example,

DELETE FIDECL1,KEY1
DELETE FIDECL2,KEY2
DELETE FIDECL3,KEY3

would be used to delete the record and keys out of the three
indicies which pointed to that record. The first DELETE would
actually overstore the logical record with 032 characters and
delete the key from the index file specified by the logical file
whose declaration name was FIDECL1. The other two DELETE
operations would only remove the keys from their respective index
files since it would be noted that the logical record already
contained a 032 character in its first position.

7.5.13 WEOF

Standard DOS end of file marks (000 000 000 000 000 000 003)
in the first seven character positions of a physical record) can
be written in DATABUS 1100. WEOF does not change the physical
record or character pointers for the given logical file. For
example,

WEOF FDECL ,RN .

will write an end of file mark in physical record RN while

WEOF FDECL,SEQ

will write an end of file mark in the next physical record after
the current physical record pointer. Note that the WEOF
operation may be performed upon logical records which have been
declared either FILE or IFILE but that the record is always
specified using a numeric variable for the record number. This
implies that one cannot write an end of file mark using an
indexed access.

7-36 DATABUS 1100

CHAPTER 8. PROGRAM GENERATION

8.1 Preparing Source Files

Files containing the source language for DATABUS 1100
programs are prepared using the general purpose editor running
under DOS.C and whose use is covered in a separate document. The
editor tab stops may be set to be suitable for keyin of DATABUS
1100 programs by using the :T command and setting two tabs, one
at 10 and the other at 20.

8.2 Comp1ling Source Files

DATABUS 1100 programs are compiled using the DATABUS 1100
compiler running under DOS.C. The DATABUS 1100 compiler is
parameterized in the following manner:

DB11CMP <source>[,<object>] [,<print>] [i<L><C><E><R><X><D>]

File Specifications:

The compiler may be parameterized with up to three file
specifications. These file specifications follow the standard
DOS conventions. Refer to the DOS User's Guide for further
information concerning DOS file specifications. A bad drive
specification for any of the files will result in the error
message:

BAD DEVICE SPECIFICATION

If any of the file specifications are identical, the message:

SOURCE AND OBJECT FILES THE SAME or
SOURCE AND PRINT FILES THE SAME or
OBJECT AND PRINT FILES THE SAME

will be displayed.

The source file contains the DATABUS 1100 program text
created with the editor. This file must always be specified. If
no extension is given on the souree file name, the extension TXT
is assumed. If the source file name is not supplied, the

CHAPTER 8. PROGRAM GENERATION 8-1

message:

NAME REQUIRED.

w111 be displayed. If the source file name does not exist in the
DOS directory, the message:

NO SUCH NAME.

will be d1splayed. If no drive is specified, all drives
beginning with drive 0 will be searched for the source file.

The object file will contain the object code generated by
the compiler from the specified source code. If the name of the
object code f11e is not given, the name of the source code file
with an extension of DBC will be used for the name of the object
code file. Note that DATABUS 1100 can run only those files with
extension DBC. If the source code file is specified without a
dr1ve number, the compiler will search all drives for the name
given. If the object code file name (with the extension
specified or the assumed extension DBC) is not found on any
drive, the object code file is placed on the same drive as the
source code file. If the object code file is found, it is killed
and re-opened on the same drive it was found on to assure a
maximally contiguous file space is available.

The print file specification is also optional. If it is
given, any print output requested will be written in this file
(in the standard GEDIT format) instead of being printed on the
local printer. Top of form will be indicated by the character
'1' in column one of the print line. Otherwise, column one is
always blank and the 11ne starts with column two (this is the
standard COBOL and FORTRAN print file format).

If no name is given for the print file specification, the
source file name will be assumed. If no extension is given, an
extension of PRT will be assumed. However, if the print file is
to be read under DATABUS 1100 it must have an extension of TXT
since all DATABUS 1100 data files must have that extension. If
no drive number is specified, the print file will be placed on
the same drive as the source file. A print file may be specified
simply by keying in a comma after the object file specification
or, if no object file is specified, by keying in two commas after
the source file specification. Note, however, that the extension
assumed in this case will be PRT.

8-2 DATABUS 1100

Output Parameters:

These parameters allow the user to specify what type of
output is wanted in addition to the object file. If a print file
is specified, any print output is written in that file instead of
being sent to the printer. If the semicolon but no parameters
are specified, the only output is the object file (if in this
case a print file was specified it would be null).

The DATABUS 1100 compiler can output to either a local or
servo printer. The compiler is self-configuring in this respect
and will output to whichever printer it finds connected to the
system I/O bus. Since the compiler looks first for a servo
prlnter, output will be to the servo printer if both a local and
servo printer are addressable by the system.

Any source code lines which have errors are displayed on the
screen during pass II, with the appropriate error flag.
Additionally, the compiler displays at the lower left corner of
the screen the current line number being compiled, for every 10th
line. Every 10th line is indicated because displaying the line
number for every line would slow down the compiler. No numbers
will be displayed if the program is fewer than 10 lines long.
This line number display is cleared when processing of included
files begins or ends, so the line number display will blink off
momentarily during compilation of source files using included
fi lese

To specify output options, a semicolon plus one or more of
the following should be placed after the last file specification:

L A listing of the compilation results is printed. Each line
of source code is numbered and the object code location
counter value for the first byte of code generated for the
line is listed to the left of each source code line. A '+'
appearlng as the first character of a line causes a new
print page to be started. The rest of the line following
the + may be used as a comment line. A '.' appearing as the
first character of a line causes a new print page to be
started if the current line is within two inches of the
bottom of the current page. A good way to improve the
readability of a program is to begin each section or routine
with a comment before which a line is entered which contains
a star in its first column. This will make sure the comment
appears on the same page as the first lines of the code to
which it is attached.

CHAPTER 8. PROGRAM GENERATION 8-3

C A listing of the compilation results is printed and the
generated object code is listed to the left of the source
code. Printing the object code usually makes the listing
about twice as long. If this option is given, the L option
is implied and need not also be given.

E The source code for lines with errors will be printed in
addition to being displayed on the screen. This parameter
has no meaning if the L or C options are given since
listings produced under those options will include error
flags anyway.

R The l1ne numbers for referenced labels in an operand string
will be printed at the right margin of the listing. The
llne number is the line on which the Referenced label was
defined. If the L, C, or E option is not also given, this
option has no effect. ThlS option may be given instead of
or in addition to the X option. The R option is especially
convenient with GOTO or CALL instructions in following the
logic path of a complex set of code. Note that for the R
option to be effective, a printer with at least 130 column
printing capability must be used.

X A cross-reference listing is printed at the end of the
compilation. There will actually be two cross-references:
one for the data labels and one for the executable labels.
Each cross-reference is sorted alphabetically. The data or
executable label is given preceded by the octal location
where the label was deflned and followed by a list of all
line numbers in which the item was defined or referenced.
An asterisk flags those line numbers which are definitions.
The SORT utllity is called by the compiler to do the actual
reference sorting, and the messages displayed on the screen
will be appropriate to the progress of the sort. A
cross-reference may be obtained regardless of whether a
listing was requested.

D A copy of the source code is displayed on the screen during
the compilation.

If a listing has been requested, the compiler will ask:

HEADING:

Th1S may be 70 characters long and is printed at the top of each
page. Indicating the time and date of the listing is helpful in
keeping l1stings in chronological order. The source file name is

8-4 DATABUS 1100

automatically listed to the left of the heading.

Examples:

DB11CMP PROGRAM

Th~s is the simplest compilation specification. The source
code found in file PROGRAM/TXT would be compiled with the object
code placed in file PROGRAM/DBC. No other output would be given
except for errors displayed on the screen.

DB11CMP CHECK,CHECKNO;CX

The source code in CHECK/TXT would be compiled and the
object code placed in CHECKNO/DBC. A listing would be printed on
the printer and consist of the source and object code with a data
and executable label cross-reference at the end.

DB11CMP FILE:DRO, ,FILELST/TXT:DR1;LX

The source code in FILE/TXT on drive 0 would be compiled and
the object code placed in FILE/DBC on drive O. A copy of the
source code and a data and label cross-reference will be written
in FILELST/TXT on drive 1.

The compiler may be stopped temporarily by depressing the
DISPLAY key. The DISPLAY light will be turned on and execution
will not be resumed until the DISPLAY key is depressed again (the
DISPLAY light will then be turned off). Compilation may be
aborted at any time before the cross-reference sort is begun by
depressing the KEYBOARD key. If the compilation is aborted in
this manner. the object file and the dictionary file are deleted,
as are the reference file and the print file if a cross-reference
list or pr~nt file was specified.

8.3 Compilation directives

Two directives are available in the DATABUS 1100 compiler as
mentioned in Section 2.2. One is the EQU statement which allows
a label to be a ssigneda decima 1 numeric va lue from 1 through
249. For example:

LM EQU 5

A label which is defined in this manner may be used as tab values
in disk I/O statements and as cursor positions in KEYIN and
DISPLAY statements. This is particularly useful when one defines

CHAPTER 8. PROGRAM GENERATION 8-5

a data base record format. If all item positions within the
record are defined using the EQU directive, then changes in item
positions can be achieved by simply changing the one directive
value. If the EQU were not used, the user would have to hunt
through all programs to change all disk I/O statements to change
the item position in the record.

The second compiler directive is INCLUDE (the compiler also
accepts a mnemonic of INC) which allows another text file to be
included at that point as if the lines actually existed in the
main file. For example:

INC RECDEFS

will cause the file RECDEFS/TXT to be scanned as if all of its
lines existed in the place of the INCLUDE line. The assumed
extension on included files is TXT but may be specified to be any
extension. If no drive is specified, all drives starting with
drive zero will be scanned for the file. Inclusions may be
nested up to four deep, with a maximum of 16 included files. The
INCLUDE directive can be used to include a file containing the
EQU directives and data variable definitions which define the
format of a data base file record. This can prevent the
programmer from having to keyin the data area (and common data
area) definitions over and over for each program to use a certain
data file. It also will make it much easier to update the data
area definition since the programmer would have simply to update
the one text file and then compile all the programs (which would
include the modified definition file) to update all programs to
the new data area definition.

8.4 Compilation diagnostics

The compiler pr1nts and displays diagnostic messages on the
listing to help the programmer debug syntatical errors in his
code. These messages take the form of an error code letter at
the left of the listing and an asterisk under the line at the
position of the scanning pointer when the error occurred. The
letters are E for an expression error (a generalized syntactical
error), U for an undefined variable or label, and I for an
undefined instruction. In the case of E errors a number is given
on the line with the asterisk pointing out the error position in
the source line. This number refers to the list of detailed
error explana tiOns in Appendix C of this document. I f any of
these flags appear, the compiler will flag the program as being
non-executable. If the faulty program is then executed, it will
return control to the MASTER program or to DOS.C.

8-6 DATABUS 1100

The DATABUS 1100 system uses the DOS logical file zero for
reading and writing all data to and from the disk. This implies
that a segment boundary may not be crossed by the object code
during a READ or WRITE statement (since fetching the statement
also involves disk I/O). For this reason, the DATABUS 1100
compiler will insert a TABPAGE instruction if it detects a READ
or WRITE statement crossing a segment boundary. Normally, this is
of no particular concern to the user, however, programs using
TABPAGE and doing extensive optimization should be aware that
this may occur.

8.5 Disk space reqUlrements

The DATABUS 1100 compiler maintains its label dlctionary on
disk in the file named DSCDICT/SYS. Moreover, this file is
always placed on the same drive as the output object file because
it is reasonably certain that that drive will not be write
protected. For these reasons, there may not be more than 254
files named (255 if the object file name already exists) on the
disk onto which the object file is to be written.

Further, if a cross reference is desired, there must be four
more file name places available among the drives on-line. One of
the file names that will be in use during the compilation is
DSCREF/SYS (the file onto which the compiler writes information
about each label reference). Three files will be generated by
SORT: *SORTMRG/SYS, *SORTKEY/SYS, and DSCREFT/SYS. The first of
the two files by SORT are scratch files, and the third is a
tag-file pOintlng back into the DSCREF/SYS file. At normal
completion of the compilation, all files mentioned above (except
the output object file) will have been deleted and the file space
again made available to the user.

CHAPTER 8. PROGRAM GENERATION 8-7

CHAPTER 9. SYSTEM OPERATION

This chapter discusses loading the DATABUS 1100 System on
Diskette under DOS.C and the use of the DATABUS 1100 Interpreter.
The use of the DATABUS 1100 Compiler is discussed in the previous
chapter.

9.1 System Loading

The DATABUS 1100 System is available on either Cassette or
Diskette media. The DOS files furnished with DATABUS 1100 are
the Interpreter, DBll/CMD and DB11/0Vl thru DBll/0V5: the
Compiler, DBI1CMP/CMD and DBI1CMP/OVO thru DB11CMP/OV2i and
ROLLOUT/SYS.

9.1.1 Loading From Cassette

The DATABUS 1100 compiler and interpreter system programs
are contained on one cassette. The cassette is in the DMF (DOS
Multiple File) format which includes a directory of the files on
the tape. To load the DATABUS 1100 files to Diskette, keyin:

MINiA

The MIN (Multiple IN) program will be activated and will
display the date of creation of the tape, the file names in the
tape directory, and each file name as the file is being loaded.
If the file already exists on the diskette, the MIN program will
ask if it is to be overstored. The operator can decide to
overstore the file or can tell it not to overstore the file in
which case MIN will allow the file to be stored under a different
name. Consult the DOS USER'S GUIDE for further information on
its operation.

The DATABUS 1100 interpreter system files can be re-named to
any name desired as long as the command file and all the overlays
have the same name. For example, if DB11/CMD was re-named
DB/CMD, then DB11/0V1 thru DB11/0V5 would have to be named DB/OVl
thru DB/OV5.

CHAPTER 9. SYSTEM OPERATION 9-1

9.1.2 Loading from Diskette

If the DATABUS 1100 System is obtained on Diskette media,
additional copies of the saystem should be generated for backup
purposes using the DOS.C commands, DOSGEN, COpy, and/or BACKUP.

9.2 Program Execution

If the OATABUS 1100 Interpreter is named DB11/CMD then a
DATABUS 1100 program can be executed by entering:

DB11 PROGA

The OATABUS program compiled and filed under the name PROGA/DBC
will begin execution. This program will continue executing until
an irrecoverable erro is detected or until a STOP instruction is
executed. At this time system control will return to DOS.C.

The general form for the DATABUS 1100 interpreter command
is:

OB11 [<object>] [i <S>]

If a DATABUS 1100 program is not specified, the Interpreter will
search for a special program cataloged as MASTER/DBC and begin
executing this program:

DB11

The MASTER program will continue execution until a STOP is
executed, at which time control will return to DOS.C.

The MASTER program can cause another DATABUS 1100 program to
begin execution through the use of the CHAIN instruction. In
this case, when this new program executes a STOP instruction,
control is transferred to the start of the MASTER program instead
of to DOS.C.

The printer option [is] is used to specify the configuration
of a Servo Printer. If a Local Printer is configured on the
system, OATABUS 1100 will automatically use this printer unless
the Servo Printer option is selected.

Other programs which should be on the system include the
INDEX, REFORMAT, and SORT Commands (provided with DOS.C) for the

9-2 DATABUS 1100

generation of index files.

CHAPTER 9. SYSTEM OPERATION 9-3

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character string

event

list

name

label

nvar

nval

nlit

svar

sval

sli t

The result of any arithmetic or string
operation: OVER, LESS, EQUAL, ZERO, or
EOS (EQUAL and ZERO are two names for
the same condition).

Any string of printing ASCII characters.

The occurrence of a program trap:
PARITY, RANGE, FORMAT, CFAIL, or 10.

A list of variables or controls
appearing in an input/output
instruction.

Any combination of letters (A-Z) and
digits (0-9) starting with a letter
(only the first eight characters are
used) •

A name assigned to a statement.

A name assigned to a statement defining
a numeric string variable.

A name assigned to an operand defining a
numeric string variable or an immediate
numeric va lue.

An immediate numeric value.

A name assigned to a statement defining
a character string variable.

A name assigned to an operand defining a
character string variable or a quoted
alphanumeric character.

An immediate character string, enclosed
in double quotes "

APPENDIX A. INSTRUCTION SUMMARY A-I

nlist

slist

RN

SEQ

KEY

NUL

A series of contiguous nUmeric
variables.

A series of contiguous string variables.

A positive record number (>= 0) used to
randomly READ or WRITE on a file.

A negative number (< 0) used to READ or
WRITE on a file sequentially.

A non-null string used as a key to
indexed accesses.

A null string used as a key to an
indexed read.

FOR THE FOLLOWING SUMMARY:

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive (one
or the other but not both must be used).

COMPILER DIRECTIVES

FILE

DATA

EQU
EQUATE
INC
INCLUDE

DECLARATIONS

FILE
IFILE

DEFINITIONS

FORM
FORM
DIM
INIT
INIT
FORM

A-2 DATABUS 1100

10 (a label
100 (a label
fl.lename[/ext]
filename [/ext]

n.m
"456.23"
n
"character string"
"character string"
*n.m

is required)
is required)

CONTROL

FORM *"456.23"
DIM *n
INIT *"CHARACTER STRING"

GOTO
GOTO
GOTO
BRANCH
CALL
CALL
CALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT

(label)
(label) IF (condition)
(label) IF NOT (condition)
(nvar) OF (label list)
(label)
(label) IF (condition)
(label) IF NOT (condition)

IF (condition)
IF NOT (condition)

IF (condition)
IF NOT (condition)
(svar)
(slit)
(label) IF (event)
(event)
(svar)
(sli t)

CHARACTER STRING HANDLING

MATCH (svar) TO (svar)
MATCH (sl it) TO (eva r)
MOVE (svar) TO (svar)
MOVE (sl it) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nlit) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
APPEND (slit) TO (svar)
APPEND (nvar) TO (svar)
CMOVE (sva1) TO (svar)
CMATCH (sva 1) TO (sva 1)
BUMP (svar)
BUMP (svar) BY (nlit)
RESET (svar) TO (sva 1)
RESET (svar) TO (nvar)
RESET (svar)
ENDSET (svar)
LENSET (svar)

APPENDIX A. INSTRUCTION SUMMARY A-3

CLEAR
EXTEND
LOAD
STORE
STORE
CLOCK
CLOCK
CLOCK
TYPE
SEARCH
SEARCH
REPLACE
REPLACE

ARITHMETIC

ADD
ADD
SUB
SUB
SUBTRACT
MULT
MULT
MULTIPLY
DIV
DIV
DIVIDE
MOVE
MOVE
COMPARE
COMPARE
LOAD
STORE
STORE
CHECKll
CHECKll
CHECK10
CHECK10

INPUT /OUTPUT

KEYIN
DISPLAY
BEEP
PRINT
PREPARE
PREP

A-4 DATABUS 1100

(svar)
(svar)
(svar) FROM (nvar) OF (slist)
(svar) INTO (nvar) OF (slist)
(sl it) INTO (nvar) OF (slist)
TIME TO (svar)
DAY TO (svar)
YEAR TO (svar)
(svar)
(nvar) IN (nlist) TO (nvar)
(svar) IN (slist) TO (nvar)
(svar) IN (svar)
(sli t) IN (svar)

(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar)
(nlit) FROM (nvar)
(nlit!nvar) FROM (nvar)
(nvar) BY (nvar)
(nlit) BY (nvar)
(n 1 it! n va r) BY (n va r)
(nvar) INTO (nvar)
(nlit) INTO (nvar)
(nlit!nvar) INTO (nvar)
(nvar) TO (nvar)
(nlit) TO (nvar)
(n va r) TO (n va r)
(nlit) TO (nvar)

OF
OF

(nvar) FROM (nvar) OF (nlist)
(nvar) INTO (nvar) OF (nlist)
(nlit) INTO (nvar) OR (nlist)
(nvar) BY (nvar)
(nvar) BY (nlit)
(nvar) BY (nvar)
(nvar) BY (nlit)

(li st)
(list)

(list)
(file), (svar!slit)
(file),(svar!slit)

(nvar)
(nvar)

OPEN
CLOSE
WRITE
WRITAB
WEOF
UPDATE
READ
READKS
DELETE
INSERT

(filelifile), (svarlslit)
(filelifile)
(file I ifile) ,RN I SEO I KEY [; [(list)] [;]]
(file),RNISEO: (list) [;]
(filelifile),RNISEO
(ifile) [: [(list)] [;]]
(filelifile),RNISEOIKEYINUL: (: I (list[:]»
(ifile): (: I (list[:]»
(ifile), (svar)
(ifile), (svar)

APPENDIX A. INSTRUCTION SUMMARY A-5

APPENDIX B. INPUT/OUTPUT LIST CONTROLS

CONTROL USED IN FUNCTION

*P<m>:<n> KD Causes the cursor to be positioned
horizontally and vertically to the column
and line indicated by the numbers <m>
(horizontal 1-80) and <n> (vertical
1-12). These numbers may either be
literals or numeric variables.

*N KDP Causes the cursor or printer to be
positioned in Column 1 of the next line.

*EL KD Causes the line to be erased from the
current cursor position.

*EF KD Causes the screen to be erased from the
current cursor position to the end of the
line.

*ES KD Causes the cursor to be positioned at
horizontal position 1 of the top row of
the display and the entire display to be
erased.

*EOFF K Causes the echo during input operations
from the terminal to be defeated.

*EON K Causes the echo during input operations
*+ KDP Turn on Keyin Continuous for KEYIN or

space after logical length suppression
for DISPLAY and PRINT.

*+ W Turn on space compression during WRITE.

*- KDP Turn off Keyin Continuous (turned off at
the end of the statement) or the space
after logical length suppression.

*- W Turn off space compression during WRITE.

*<n> P Causes a horizontal tab on the printer to
the column indicated by the number <n>.

APPENDIX B. INPUT/OUTPUT LIST CONTROLS B-1

*<n>
* <nvar >

..

*F

*L

*C

*T

*W

*JL

*JR

*ZF

*DE

*IT

*IN

RW

No action occurs if the carriage is past
the column indicated by <n>.

Tab specification for READ or WRITAB
operations; the logical file pOinters are
moved to that character position relative
to the current physical record.

KDP Suppress a new line function when
occurring at the end of a list •

KDP Any characters appearing between quotes
are displayed or printed when encountered
(note that a quote itself cannot be
quoted) •

P Causes the printer to be positioned to
the top of form.

KDP Causes a linefeed to be displayed or
printed.

KDP Causes a carriage return to be displayed
or printed.

K Time out after 2 seconds for KEYIN
statement.

KD Pause for one second.

K Left-justify numeric variable and
zero-fill at right if there is no decimal
poin t.

K Right-justify string variable and
blank-fill at left.

KDPW Left zero-fill string variable.

K Restrict string input to digits (0-9)
only.

K TUrn-on Text Mode (invert alphabetic
input) •

K TUrn-off Text Mode.

B-2 DATABUS 1100

*MP w Convert nUmeric variable to
"Minus-overpunch" forma t.

APPENDIX B. INPUT/OUTPUT LIST CONTROLS B-3

APPENDIX C. COMPILER ERROR CODES

When an E code is given by the compiler at the left of a
line of code containing an error, the very next line will contain
an asterisk followed by an E code number and another asterisk
under the error line at the position of the scanning pOinter when
the error was detected. The E code number refers to the number
in the left column of the following table and the corresponding
error explination in the right column.

00001 The first operand of a CMATCH or CMOVE instruction was not
an octal number, a quoted character, or a string variable.

00002 The second operand of a CMATCH instruction was not an
octal number, a quoted character, or a string variable.

00003 The second operand of a MATCH or APPEND instruction was
not a string variable.

00004 The first operand of a MATCH or APPEND instruction was not
a string variable or a literal.

00005 The first operand of a RESET instruction was not a string
variable.

00006 The second operand of a RESET instruction was followed by
a character that was not a space, implying that there were
other operands following the second operand. RESET may
have only one or two operands.

00007 The first operand of a BUMP instruction was not a string
variable.

00010 The second operand of a BUMP instruction was not
terminated by a space, or had an absolute value of greater
than 127.

00011 The operand of a CHAIN or ROLLOUT instruction was not a
string variable or a literal.

00012 The first operand of a STORE instruction was not a string
variable or numeric variable or literal. The first
operand of a LOAD instruction was not a string variable or

APPENDIX C. COMPILER ERROR CODES C-l

numeric variable.

00013 The second operand of a STORE or LOAD instruction was not
a numeric variable.

00014 The second operand of a STORE or LOAD instruction was not
followed by either a space or a comma.

00015 One of the third thru Nth operands of a STORE or LOAD
instruction was not the same data type as the first
operand. If the first operand is a string or numeric
variable, then all operands after and including the third
operand must be a string or numeric variable,
respectively.

00016 The second operand of a MOVE instruction was not a string
variable or a numeric variable.

00017 The second operand of a MOVE instruction was not a string
variable or a numeric variable.

00020 The first operand of a MOVE instruction was not a string
variable or'a numeric variable or a literal.

00021 The second operand of a COMPARE, ADD, SUBTRACT, MULTIPLY,
or DIVIDE instruction was not a nUmeric variable.

00022 The second operand of a CMATCH, CMOVE, MATCH, APPEND,
CHAIN, ROLLOUT, COMPARE, ADD, SUBTRACT, MULTIPLY, or
DIVIDE instruction was not followed by a space (indicating
no more operands follow).

00023 The f~rst operand of a COMPARE, ADD, SUBTRACT, MULTIPLY,
or DIVIDE instruction was not a numeric variable or a
literal.

00024 The first operand of an instruction which may be followed
by a comma or a preposition was not immediately followed
by a comma or a space. If a comma follows the operand a
preposition is not looked for. If a space does follow the
operand then a preposition must be there.

00025 The first operand of a GOTO, CALL, or TRAP instruction was
not followed by a space.

00026 The first operand of a TRAP instruction was not followed
by " IF "

C-2 DATABUS 1100

00027 The condltional operand ([NOT] EOS, EQUAL, ZERO, etc.) of
a GOTO, CALL, or TRAP instruction was not followed by a
space.

00030 The conditional operand of a GOTO or CALL instruction was
not [NOT] EOS, EQUAL, ZERO, LESS, or OVER; or the
conditional operand of a TRAP instruction was not PARITY,
RANGE, FORMAT, CFAIL, or 10.

00031 The first operand of the TRAPCLR instruction was not
followed by a space.

00032 The first operand of the TRAPCLR instruction was not
PARITY, RANGE, FORMAT, CFAIL, or 10.

00033 An operand in a KEYIN or DISPLAY instruction was not a
string variable or a numeric variable. It was an EQU,
FILE, or IFILE variable.

00034 A control code (letter or letters following an asterisk)
in a KEYIN or DISPLAY instruction was not *C, *L, *N, *T,
*R, *p, *EL, *EF, *ES, *W, *EON, or *EOFF.

00035 A variable <N> in the *P<N>:<N> control code of a KEYIN or
DISPLAY instruction was not a number (did not have a first
character of 0-9) nor a numeric variable.

00036 A variable <N> in the *P<N>:<N> control code of a KEYIN or
DISPLAY instruction was a numeric literal with a value for
the first (horizontal position) <N> that was not 1 =< <N>
=< 80, or with a value for the second (vertical position)
<N> that was not 1 =< <N> =< 24.

00037 A literal in a KEYIN or DISPLAY instruction was not
followed by a comma, space, semicolon, or full colon.

00040 The last character in the operand string of a KEYIN,
DISPLAY, PRINT, READ, WRITE, or WRITAB instruction was not
a space, colon, or semicolon.

00041 The end-of-line was encountered before an operand string
terminator was encountered for a KEYIN, DISPLAY, PRINT,
READ, WRITE, WRITAB, WEOF, READKS, UPDATE, OPEN, PREPARE,
INSERT, or DELETE instruction, or

The character following the first <N> in the *P<N>:<N>
control code of a KEYIN or DISPLAY instruction was not a

APPENDIX C. COMPILER ERROR CODES C-3

colon, or

A quoted strinq or octal number was specified in the
operand strinq of a READ instruction.

00042 An EQUATE, FILE, or IFILE name was specified in the
operand list of a PRINT instruction.

00043 A character followinq an asterisk indicatinq a control
code in a PRINT instruction was not +, -, L, F, C, N, or a
number 0-9.

00044 The first operand of a READ, WRITE, WRITAB, or WEOF
instruction was not a FILE or IFILE name.

00045 The character followinq the first operand of a READ,
WRITE, WRITAB, or WEOF instruction was not a comma.

00046 The second operand of a READ, WRITE, WRITAB, or WEOF
instruction havinq an IFILE name as the first operand was
not a strinq variable name nor a numeric variable name.

00047 The second operand of a READ, WRITE, WRITAB, or WEOF
instruct10n havinq a FILE name as the first operand was
not a numeric variable.

00050 The character followinq the first operand of a READKS
instruction or the second operand of a READ instruction
was not a semicolon.

00051 The character followinq the first opernad of an UPDATE
instruction or the second operand of a WRITE instruction
was not a space or semicolon.

00052 An operand in the operand strinq of a READ or READKS
instruction was not a tab (*<number> or *<nvar> or
*<EQUname» nor numeric variable nor strinq variable, or

An oprand in the operand strinq of a WRITE or UPDATE
instruction was not a space compression control (*+ or *-)
or a quoted strinq or numeric variable or strinq variable,
or

An operand in the operand strinq of a WRITAB or UPDATE
instruction was not a tab (*<number> or *<EQUname» or
space compression control (*+ or *-) or quoted strinq or
numeric variable or strinq varible.

C-4 DATABUS 1100

00053 A tab operand (*<number> or *<EQUname> or *<nvar» was
used in a READ instruction that had an IFILE name as
operand one and an NVAR name as operand two.

00054 The character following the * control-indicator character
in a WRITE instruction was not a + or -. The compiler
will recognize only the *+ or *- control for the WRITE
instruction, use the WRITAB instruction to use tab control
(*<number> or *<nvar> or *<EQU'd label» for output to a
disk file. For an Index-Sequential file, to use tab
control to update a record in the file, use the UPDATE
instruction.

00055 The operand following an * control-indicator character was
a quoted item. Numeric literals may be used but they may
not be enclosed in double-quote "symbols. Numeric
literals, nUmeric variable names, or equated names may be
used to specify tab values in KEYIN, DISPLAY, CONSOLE,
READ, WRITAB, READKS, or UPDATE instructions.

00056 The operand following an * control-indicator character was
not an unquoted numeric literal, a nUmeric variable name,
or an equated name.

00057 The first operand of a READKS or UPDATE instruction was
not an IFILE name.

00060 A tab in a READ, WRITAB, READKS, or UPDATE instruction was
greater than 249.

00061 A tab in a READ, WRITAB, READKS, or UPDATE instruction was
zero. Note that if the value of an EQU'd tab is
incorrectly specified the compiler generates a value of
zero for the tab, and each use of that tab will generate
this error.

00062 A character following an operand in the operand string of
a READ, WRITE, WRITAB, READKS, or UPDATE instruction was
not a space, comma, semicolon, or colon. If the
instruction is a WRITAB or UPDATE instruction a semicolon
is assumed.

00063 The character following the second operand of a WEOF
instruction was not a space.

00064 The character following the second operand of a WRITAB
instruction was not a semicolon.

APPENDIX C. COMPILER ERROR CODES C-5

00065 The first operand of an OPEN instruction was not a FILE or
IFILE name or the first operand of a PREPARE instruction
was not a FILE name.

00066 The first operand of a PREPARE instruction was an IFILE
name·

There is no provision within the DATABUS 1100 INTERPRETER
for the creation of an indexed-sequential file. The file
must first exist and be indexed by means of the INDEX
program before the file may be opened by the OPEN
instruction and accessed, increased, or decreased by means
of the READ, WRITE, WRITAB, WEOF, READKS. UPDATE, and
DELETE instructions.

00067 The character following the first operand of an OPEN or
PREPARE instruction was not a comma.

00070 The character following the second operand of an OPEN or
PREPARE instruction was not a space.

00071 The second operand of an OPEN or PREPARE instruction was
not a string variable name or a literal.

00072 The end-of-line was encountered before a first operand was
encountered in a CLOSE instruction.

00073 The first operand of a CLOSE instruction was not a FILE or
IFILE name.

00074 The character following the operand of a CLOSE instruction
was not a space.

00075 A character following an operand in a STORE, LOAD, or
BRANCH instruction was not a comma, colon, or space.

00076 The first operand of a CLOCK instruction was not TIME,
DAY, or YEAR.

00077 A comma or the preposition TO was not used between the
first and second operands of the CLOCK instruction.

00100 The second operand of a CLOCK instruction was not a string
variable.

00101 The character follow~ng the second operand of a CLOCK
instruction was not a space.

C-6 DATABUS 1100

00102 The first operand of an INSERT or DELETE instruction was
not an IFILE name.

00103 The character following the first operand of an INSERT or
DELETE instruction was not a comma.

00104 The second operand of an INSERT or DELETE instruction was
not a string variable name·

00105 The character following the second operand of an INSERT or
DELETE instruction was not a space.

00106 An alphabetic character string where a preposition should
have been was not recognized as a preposition: BY, TO, OF,
FROM, or INTO, or

A numeric literal was used but was not enclosed in double
quote " symbols.

00107 An EQUATE directive was given after an executable
instruction was specified.

00110 An EQUATE directive was given but no label was specified.

00111 The first character of the operand of an EQUATE directive
was not 1 thru 9. A first character of a implies an octal
number which is not allowed in the EQUATE directive.

00113 The value specified for an EQUATE directive was not from 1
thru 249.

00114 The file specified in an INCLUDE directive was not found
on disk.

00115 The character after the first operand of a DIM instruction
was not a space.

00116 The operand value of a DIM instruction was greater than
127.

00117 For an INIT instruction or an instruction using a string
literal:

No operand was found, or

A character after a quoted string was not comma or space,
or

APPENDIX C. COMPILER ERROR CODES C-7

The end-of-line was encountered before the ending quote of
a quoted operand was encountered, or

The end-of-line was encountered immediately after a
forcing character # was given, or

A character following a comma following a quoted string or
an octal number was not a double-qoute symbol or a zero,
or

A quoted string of greater than 127 characters was
specified.

00120 For an INIT instruction or an instruction using a string
literal:

The character following the ending double-quote symbol of
a quoted string wa s not a comma or a space.

00121 For an instruction using a string literal: the literal was
over 40 characters long.

00122 The end-of-line was encountered before the first operand
(data item length specification) was encountered for the
DIM instruction.

00123 The end-of-line was encountered before the first operand
(numeric data format specification) was encountered, or
the numeric data was specified to be more than 22
characters long, for the FORM instruction.

00124 A closing double-quote symbol was not found for the
operand (numeric data format specification) of a FORM
instruction, or

A nUmeric literal was used but was not enclosed in double
quote II symbols.

00125 For the operand (numeric data format specification) of a
FORM instruction or for a numeric literal operand:

The following applies for the FORM instruction if a
integer-decimal length was specified:

The character after the first numeric string (specifying
the integer part length) was not a space or a decimal
point, or

C-8 DATABUS 1100

The character after the first nUmeric string was a decimal
point but no nUmeric string specifying the decimal part
length was found.

The following applies if a quoted string wa s specified:

There were more than 127 characters in the number
specification, or

There were no digits specified, or

There was a decimal point specified but no digits followed
it, or

The numeric literal was not enclosed in double quote"
symbol s.

00126 For the DIM, INIT, or FORM instructions: the end-of-line
was encountered before an operand was encountered.

00127 An operand was not a quoted item, a number, or a label.

00130 The second character after the opening double-quote symbol
in the operand of a CMOVE or CMATCH instruction was not a
double-quote symbol. The forcing character does not apply
in these two instructions because it is not necessary.

00131 For an instruction using a literal: the character after
the ending double-quote symbol was not a space or comma.

00132 An octal number was specified but the number was not in
the range 0 thru 037 inclusive.

00141 The operand of a PI instruction was not an unquoted
numeric literal with a value of 1 throuqh 20.

00142 The operand of a WEOF instruction was not an NVAR name·

APPENDIX C. COMPILER ERROR CODES C-9

APPENDIX D. INTERPRETER I/O TRAP CODES

A - an access sequentially by key was attempted before any
indexed sequential access was made using the logical file.

B - the READ mechanism ran off the end of a sector without
encountering a physical end of record character (003).

C - an operation on a closed logical file was attempted.
D - a non-READ non-DELETE indexed sequential operation was

attempted where the specified key already exists in the
index.

E - an EOF mark without at least four zero's was encountered.
I - the index file specified in an OPEN statement does not exist

on the specified drive(s).
J - the index file found by the OPEN statement does not reside in

the correct physical location on the disk (index files may
never be moved, they must always be re-created).

K - a null key was supplied in an operation where the key may not
be null.

M - the data file specified in the OPEN statement does not exist
on the specified drive(s).

N - the data file name specified in the OPEN or PREPARE statement
was null.

o - the index file name specified in the OPEN statement was null.
P - the file specified in the PREPARE statement had some type of

DOS protection (either write, delete, or both).
T - the tab value in the READ or WRITAB statement was off the end

of the sector.
U - an EOF mark was encountered while a record was being deleted

in the indexed sequential file.
V - one of the indexed sequential access overlays (DB11/0Vl,

DB11/0V2, or DB11/0V3) could not be loaded by the DOS
loader.

W - an index file pointer sector could not be read.
X - an index file header sector could not be read.
Y - the R.I.B. of the data file pOinted to by the index file

could not be read. (VWXY errors can be caused by parity
errors, the drive being switched off line, or the disk
cartridge being swapped with another while an operation is
taking place.)

APPENDIX D. INTERPRETER I/O TRAP CODES 0-1

