
mama om a

OpenVMS Alpha Guide to 64-Bit
Addressing

Open VMS Alpha Guide to 64-Bit
Addressing
Order Number: AA-QSBCA-TE

December 1995

This new manual describes the Open VMS Alpha 64-bit virtual
addressing support provided in Open VMS Alpha Version 7 .0.

--------- DRAFT NOTICE ---------

This document contains preliminary information.

Revision/Update Information: This is a new manual.

Software Version: Open VMS Alpha Version 7.0

Digital Confidential
Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

This is a draft document. Digital believes that the information in this publication is accurate as of
its publication date; such information is subject to change without notice. Digital is not responsible
for any errors.

Digital makes no representation that the interconnection of products in the manner described in
this publication will not infringe on existing or future patent rights. The descriptions contained
herein do not imply the granting of any license to make, use or sell products constructed or
described.

Redistribution and use of this publication is permitted provided that: (1) any distribution
retains this entire copyright notice and comment, and (2) distributions include the following
acknowledgement: "This publication developed by Digital Equipment Corporation." in the
documentation or other materials provided with the distribution and in all advertising materials
mentioning features or use of this software.

The name of Digital Equipment Corporation may not be used to endorse or promote products
derived from use of this publication without specific prior written permission.

This publication is provided "as is" and without any express or implied warranties,
including, without limitation, the implied warranties of merchantability and fitness for a
particular purpose.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DECnet,
DECwindows, Digital, OpenVMS, VAX, VAX DOCUMENT, VMS, VMScluster, and the
DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6467

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . vii

1 Introduction
1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3

64-Bit Virtual Address Space Layout
Process Private Space
System Space

Page Table Space
Virtual Regions
Potential Uses for User-Defined Regions
Process Permanent Regions

2 System Services Support for 64-Bit Addressing
2.1
2.1.1
2.1.2
2.1.3
2.2

System Services Definitions ..
32-Bit System Service
64-Bit System Service
64-Bit Friendly Interface

64-Bit System Services

3 RMS Interface Enhancements for 64-Bit Addresses
3.1
3.2

The RAB64 Data Structure
Using the 64-Bit RAB Extension

4 OpenVMS Alpha Device Support for 64-Bit Addressing
4.1
4.2
4.3
4.4
4.4.1

$QIO Support for 64-Bit Addresses
Open VMS Drivers Supporting 64-Bit Addresses
Function Codes that Support 64-Bit Addresses
64-Bit 10$_DIAGNOSE Function for SCSI class Drivers

64-bit S2DGB Example

5 OpenVMS Alpha 64-Bit API Guidelines
5.1
5.2
5.3
5.4
5.5
5.6

Quadword/Longword Argument Pointer Guidelines
Alpha/VAX Guidelines
Style Guidelines .. .
Promoting an API from a 32-Bit API to a 64-Bit API
No new 64-bit MACR0-32 macros are available for system services
Example of a 32-bit routine and a 64-bit routine

Digital Confidential

1-1
1-3
1-4
1-4
1-5
1-5
1-5

2-1
2-1
2-1
2-1
2-2

3-2
3-3

4-1
4-2
4-4
4-5

4-10

5-1
5-6
5-7
5-8
5-9
5-9

iii

6 OpenVMS Alpha Tools and Utilities That Support 64-Bit Addressing

6.1
6.2
6.3
6.4
6.5
6.6

Open VMS Debugger
Open VMS Alpha System-Code Debugger
XDELTA .. .
LIB$ and CVT$ Facilities of the Open VMS Run-Time Library
Watchpoint Utility .. .
SDA

7 DEC C RTL Support for 64-Bit Addressing
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.5

Using the DEC C Run-Time Library
Obtaining 64-bit Pointers to Memory
DEC C Header Files .. .
Functions Affected .. .

No Pointer-Size Impact
Functions Accepting Both Pointer Sizes
Functions with 'l\vo Implementations
Restricted to 32-Bit Pointers

Reading Header Files .. .

8 MACR0-32 Programming Support for 64-Bit Addressing

8.1
8.2
8.3
8.3.1
8.3.1.1

8.3.2
8.4
8.4.1
8.5
8.5.1
8.6
8.7
8.8
8.9
8.10

Guidelines for 64-Bit Addressing
New and Changed Components for 64-Bit Addressing
Passing 64-Bit Values

Calls with a Fixed-Size Argument List
Usage Notes for $SETUP _CALL64, $PUSH_ARG64, and
$CALL64

Calls with a Variable-Size Argument List
Declaring 64-Bit Arguments

Usage Notes for QUAD_ARGS
Specifying 64-Bit Address Arithmetic

Dependence on Wrapping Behavior of Longword Operations
Sign Extending and Checking
Alpha Instruction Built-ins .
Calculating Page-Size Dependent Values
Creating and Using Buffers in 64-Bit Address Space
Coding for Moves Longer Than 64K Bytes

A 64-Bit Example Program

B MACR0-32 Macros for 64-Bit Addressing
8.1 Macros for Manipulating 64-Bit Addresses

$SETUP _CALL64 .. .
$PUSH_ARG64 .. .
$CALL64

8.2 Macro for Checking the Sign Extension
$IS_32BITS

Digital Confidential
iv

6-1
6-1
6-2
6-2
6-2
6-3

7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-5
7-6

8-1
8-1
8-2
8-2

8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-7

8-1
8-1
8-2
8-3
8-4
8-4

Index

Examples

4-1
4-2

Figures

1-1
1-2

Tables

2-1
4-1
4-2
4-3
7-1
7-2
7-3
8-1
8-2

OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout
OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout

32-Bit Virtual Address Space Layout
64-Bit Virtual Address Space Layout

64-Bit System Services
Drivers Supporting 64-Bit Addresses
Drivers Restricted to 32-Bit Addresses
64-Bit Capable 1/0 Functions
Functions with Dual Implementations
Functions restricted to 32-bit pointers
Callbacks that Pass Only 32-Bit Pointers
New and Changed Components for 64-Bit Addressing
Passing 64-Bit Values with a Fixed-Size Argument List

Digital Confidential

4-6
4-7

1-2
1-3

2-2
4-2
4-3
4-5
7-5
7-5
7-6
8-1
8-2

v

Preface

This guide describes Open VMS Alpha operating system support for 64-bit virtual
addressing.

The information in this document applies only to applications on Open VMS Alpha
systems; applications on Open VMS VAX systems are not affected.

Intended Audience
This information in this guide is intended for system and application
programmers. It presumes that its readers are familiar with the Open VMS
Alpha programming environment and concepts.

Document Structure
Chapter 1 presents an overview of the Open VMS Alpha 64-bit virtual address
space layout and the operating system tools and languages that support 64-bit
addressing. The following chapters contain more details about these topics.

Related Documents
This guide provides high-level descriptions of some of the topics covered in the
following manuals; refer to these books for more detailed information:

• Open VMS Programming Concepts Manual

• Open VMS Calling Standard

• Open VMS System Services Reference Manual: A-GETMSG and Open VMS
System Services Reference Manual: GETQUl-Z

• Open VMS Record Management Services Reference Manual

• Open VMS RTL Library (LIB$) Manual

• Open VMS Debugger Manual

• Open VMS Alpha System Dump Analyzer Utility Manual

• Open VMS Alpha Guide to Upgrading Privileged-Code Applications

If you have an application that links against the base system image
SYS$BASE_IMAGE.EXE, you might need to relink, recompile, or make
source-code changes for Open VMS Alpha Version 7.0. Refer to this manual
for more information about the changes that might affect privileged-code
applications and device drivers.

For additional information about Open VMS products and services, access the
Digital Open VMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

vii

Reader's Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet

Fax

Mail

openvmsdoc@zko.mts.dec.com

603 881-0120, Attention: Open VMS Documentation, ZK03-4/U08

Open VMS Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Location

U.S.A.

Puerto Rico

Canada

International

Internal Orders

Call
DECdirect
800-DIGITAL
800-344-4825

809-781-0505

800-267-6215

D1N: 264-4446
603-884-4446

Fax

Fax:800-234-2298

Fax:809-749-8300

Fax:613-592-1946

Fax:603-884-3960

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua,NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plmi, 1st Street, Suite 200
P.O. Box 11038
Metro Office Parle
San Juan, Puerto Rico 0091 ~2138

Digital Equipment of Canada, Ltd.
Box 13000
100 Hetzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidimy or
approved distributor

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03~3-1260

ZK-7654A-GE

Conventions

viii

The name of the Open VMS AXP operating system has been changed to
Open VMS Alpha. Any references to Open VMS AXP or AXP in this document are
synonymous with Open VMS Alpha or Alpha.

1
Introduction

The Open VMS Alpha operating system provides support for 64-bit virtual
memory addressing, which makes the 64-bit virtual address space defined by the
Alpha architecture available to the Open VMS Alpha operating system and to
application programs. In the 64-bit virtual address space, both process private
and system virtual address space can extend beyond 2 GB. By using 64-bit
addressing features, programmers can create images that map and access data
beyond the limits of 32-bit virtual addresses.

Many Open VMS Alpha tools and languages (including the Debugger, run-time
library routines, and DEC C) support 64-bit virtual addressing. Input and output
operations can be performed directly to and from the 64-bit addressable space by
means of RMS services, the $QIO system service, and most of the device drivers
supplied with Open VMS Alpha systems.

Underlying this are new system services, which allow an application to allocate
and manage the 64-bit virtual address space that is available for process private
use.

Note that in order to take advantage of 64-bit addressing features, nonprivileged
programs can optionally be modified. In other words, Open VMS Alpha 64-bit
virtual addressing does not affect nonprivileged programs that are not explicitly
modified to exploit 64-bit support. Binary and source compatibility of existing
32-bit nonprivileged programs is guaranteed.

This chapter describes the layout of the Open VMS Alpha 64-bit virtual memory
address space. For more information about using specific programming features
to take full advantage of 64-bit addressing support, refer to the remaining
chapters in this guide.

1.1 64-Bit Virtual Address Space Layout
The 64-bit virtual address space layout is designed to accommodate the current
and future needs of the Open VMS Alpha operating system and its users. The
64-bit design ensures upward compatibility of programs that currently execute
under Open VMS, while providing a flexible framework within which 64-bit
addresses can be used in many different ways to solve new problems.

The 64-bit address space layout is an extension of the traditional Open VMS
32-bit address space layout. Figure 1-1 illustrates the 32-bit virtual address
space layout design.

1-1

Introduction
1.1 64-Bit Virtual Address Space Layout

1-2

Figure 1-1 32-Bit Virtual Address Space Layout

(00000000.00000000
I
I
I

I
I

Process Private)
(2 GB) 1

I
I
I

L'" 00000000. 7FFFFFFF
00000000.80000000

FFFFFFFF.7FFFFFFF

_[

-·
.... -····· ·-r

l

PO Space

P1 Space

Unreachable space
(8 TB-4 GB)

I--

J--

(FFFFFFFF.80000000 1---------~
!

System Space _,,'!
(2 GB) '

SO/S1 Space

I
i
'- FFFFFFFF.FFFFFFFF .___ _______

.. -··· --
•• ••

__ ... ---··
1--i.····

.. .. . -.. --1--J.····

ZK-8383A-GE

Figure 1-2 illustrates the 64-bit virtual address space layout design. The sections
that follow briefly describe these areas.

Introduction
1.1 64-Bit Virtual Address Space Layout

Figure 1-2 64-Bit Virtual Address Space Layout

Process Private
(2 GB)

Process
Private

,,. 00000000.00000000

.l

'

00000000.?FFFFFFF
00000000.80000000

... -· ___ ... -·
_ .. -··· ___ .. -

..----------,.-·· ,,.. -.____ ______ _,,,, .. •
_ ... ,~·-----------·· ...__. ________ ...

PO Space

P1 Space

P2Space

-·-t·-·-·-·-·-~·-·-·-·-·-·-·-·-·-·-·i---~~P~TSpa~ce~~--t
I Shared

System Space
(2 GB)

I

I
I
I
I

I
I
I
I
I

.l
l
I
I

I
j
I
I
I
I

S2Space

FFFFFFFF.7FFFFFFF
FFFFFFFF.80000000 1----------1

SO/S1 Space

l'" FFFFFFFF.FFFFFFFF__ _______ _.

ZK-8384A-GE

The new address space consists of the following fundamental areas:

• Process private space

• System space

• Page table space

1.1.1 Process Private Space
Supporting process private address space is a focus of much of the memory
management design within the Open VMS operating system.

Process private space, or process space, is the portion of the entire 64-bit
virtual address range that is lower than that which contains PT Space. As shown
in Figure 1-2, the layout of process space is further divided into the PO, Pl, and
P2 spaces. PO space refers to the program region. Pl space refers to the control
region. P2 space refers to the default 64-bit program region.

The PO and Pl spaces are formally defined to equate to the PO and Pl regions
defined by DEC STD 032, VAX Architecture Standard. Together, they encompass
the traditional 32-bit process private region that ranges from 0.000000001s to
0. 7FFFFFFF16. P2 space encompasses all remaining process space that begins

1-3

Introduction
1.1 64-Bit Virtual Address Space Layout

just above Pl space, 0.8000000016, and ends just below the lowest address of PT
Space. In other words, P2 space is HUGE!

1.1.2 System Space
64-Bit system space refers to the portion of the entire 64-bit virtual address
range that is higher than that which contains PT_Space. As shown in Figure 1-2,
system space is further divided into the SO, Sl, and S2 spaces.

The SO and Sl spaces are formally defined to equate to the SO and Sl
regions defined by DEC STD 032, VAX Architecture Standard. Together
they encompass the traditional 32-bit system space region that ranges from
FFFFFFFF.8000000016 to FFFFFFFF.FFFFFFFF16• S2 space encompasses all
remaining system spaces between the highest address of PT_Space and the lowest
address of the combined SO/Sl space.

SO, Sl, and S2 are fully shared by all processes. SO/Sl space expands toward
increasing virtual addresses. In order to maximize the use of shared system page
tables, S2 space generally expands toward lower virtual addresses.

Addresses within system space can only be created and deleted from code that is
executing in kernel mode. However, page protection for system space pages can
be set up to allow any less privileged access mode read and/or write access.

System space base is controlled by a major SYSGEN parameter. The default
value is based on the sizes required by expected consumers of 64-bit (82) system
space. These known consumers are the PFN database and the global page table.

The global page table, also known as the GPT, and the PFN database reside
in the lowest-addressed portion of S2 space. Larger global sections expected in a
64-bit Open VMS Alpha system require a larger global page table that may not fit
easily into 32-bit system space.

Larger-memory systems expected in a 64-bit Open VMS Alpha system also require
a larger PFN database that may also not fit into 32-bit system space.

1.2 Page Table Space

1-4

In previous versions of the Open VMS Alpha operating system, page table
space, also known as PT Space, was addressable in more than one way. The
PALcode TB miss handler used addresses starting at 2.0000000016 to read PTEs,
while memory management code addressed the page tables primarily within
the traditional 32-bit system space. (The only exception was when process page
tables were paged out, and they had to be invalidated from both the address
space used by the PALcode TB miss handler and their location in traditional
32-bit system space.) The process page tables were within the process header
(PHD), and the system space page tables were located in the highest virtual
addresses, all within the traditional 32-bit system space.

As of Open VMS Alpha Version 7 .0, page tables are addressed primarily within
64-bit PT_Space. Page table references are to this virtual address range, which
is in process private address space-not in system shared address space. Process
page tables have been removed from 32-bit system space.

The dotted line in Figure 1-2 marks the boundary between process private space
and shared space. This boundary is in PT_space and marks the first Pl'E that
maps shared system space.

Introduction
1.2 Page Table Space

1.2.1 Virtual Regions
Allows for reserving address space=> "light weight" objects

Promotes application modularity

Allows address space to be used sparsely

Regions do not overlap

Addresses within regions expand in a "dense" manner (same as PO/Pl)

Regions are created as either ascending (like PO) or descending Gike Pl)

Regions are created within P2 space

Region base VA is fixed at creation

Region size is fixed at creation

Protection of user defined regions, owner mode/create mode:

• Owner mode specified at creation

• Owner mode or more privileged can delete region

• Create mode or mode privileged can map files/create address space within a
region

• Page protection applies to created address space

User-defined regions are deleted at image rundown.

1.2.2 Potential Uses for User-Defined Regions
Reserve address space: Guarantee virtually contiguous VAs

Regions for thread stacks

Memory mapped files may expand virtually contiguously

1.2.3 Process Permanent Regions
3 process permanent regions: Program, Control, 64-bit Program

• 64-bit Program Region= Default P2 Region

• Process permanent regions cannot be deleted.

• Process permanent regions encompass the entire address space up to first
user-defined region within that address space (PO, Pl or P2).

For example:

When user-defined region is created in P2 space => 64-bit program region
may be shrunk
When user-defined region is deleted in P2 space => 64-bit program region
may grow
At image rundown, 64-bit program region (default P2) is reset to
encompass all of P2 space.

1-5

2
System Services Support for 64-Bit Addressing

This chapter describes the Open VMS Alpha system services that support 64-bit
addressing. It explains the changes made to 32-bit services to support 64-bit
addresses, and it lists the new 64-bit system services.

For more information about Open VMS System Services that support Open VMS
Alpha 64-bit virtual addressing, see the Open VMS System Services Reference
Manual: A-GETMSG and Open VMS System Services Reference Manual:
GETQUl-Z.

2.1 System Services Definitions
The following system services definitions are used throughout this guide.

2.1.1 32-Bit System Service
A 32-bit system service is a system service that only supports 32-bit addresses
on any of its arguments that specify addresses. If passed by value, on Open VMS
Alpha a 32-bit virtual address is actually a 64-bit address that is sign-extended
from 32-bits.

2.1.2 64-Bit System Service
A 64-bit system service is a system service that is defined to accept all address
arguments as 64-bit addresses (not necessarily 32-bit sign-extended values). Also,
a 64-bit system service uses the entire 64 bits of all virtual addresses passed to it.

64-bit system services include the _64 suffix for services that accept 64-bit
addresses by reference. For promoted services, this distinguishes the 64-bit
capable version from its 32-bit counterpart. For new services, it is a visible
reminder that a 64-bit wide address cell will be read/written. This is also used
when a structure is passed which contains an embedded 64-bit address, IF the
structure is not self-identifying as a 64-bit structure. Hence, a routine name need
not include "_64" simply because it receives a 64-bit decriptor. Remember that
passing an arbitrary value by reference does not mean the suffix is required;
passing a 64-bit address by reference does.

2.1.3 64-Bit Friendly Interface
A 64-bit friendly interface is an interface that can be called with all 64-bit
addresses. A 32-bit system service interface is 64-bit friendly if, without a change
in the interface, it needs no modification to handle 64-bit addresses. The internal
code that implements the system service might need modification, but not the
system service interface.

The majority of Open VMS Alpha system services prior to Open VMS Alpha
Version 7.0 have 64-bit friendly interfaces for the following reasons:

2-1

System Services Support for 64-Bit Addressing
2.1 System Services Definitions

• The Open VMS Calling Standard defines arguments to standard routines to
be 64 bits wide. The caller of a routine sign-extends 32-bit arguments to be
64 bits.

• 64-bit string descriptors can be distinguished from 32-bit string descriptors at
run time. (See the Open VMS Calling Standard for more information about
64-bit descriptors.)

• User visible RMS data structures containing embeded type information such
that the RMS routines can tell whether a non-32-bit form of a structure is
being used. (See Chapter 3 for more details about RMS 64-bit addressing
support.)

Examples of routines with 64-bit unfriendly interfaces are most of the memory
management system services, such as $CRETVA, $DELTVA and $CRMPSC.
The INADR and RETADR argument arrays do not promote easily to hold 64-bit
addresses.

2.2 64-Bit System Services
Table 2-1 summarizes the Open VMS Alpha system services that support 64-bit
addresses. It includes system services from previous releases that have been
enhanced to handle 64-bit addresses as well as new Open VMS Alpha 64-bit
system services.

Although RMS system services provide some 64-bit addressing capabilities, they
are not listed in this table because they are not full 64-bit system services. See
Chapter 3 for more details.

Table 2-1 64-Bit System Services

Service

Alignment System Services

$INIT_SYS_ALIGN_FAULT_
REPORT

$GET_ALIGN_FAULT_DATA

$GET_SYS_ALIGN_FAULT_
DATA

$SAVE SYS ALIGN FAULT
DATA- - - -

$SAVE_ALIGN_FAULT_DATA

AST System Service

$DCLAST

2-2

Arguments

(match_table_64, buffer_size, flags)

(buffer_64, buffer_size, retum_size_64)

(buffer_64, buffer_size, retum_size_64)

(fault_pc0_64, fault_pc1_64, fault_ va0_64, fault_ va1_64, fault_bit_mask,
fault_ps_64)

(fault_pc0_64, fault_pc1_64, fault_va0_64, fault_va1_64)

(astadr_64, astprm_64, acmode)

(continued on next page)

System Services Support for 64-Bit Addressing
2.2 64-Bit System Services

Table 2-1 (Cont.) 64-Bit System Services

Service Arguments

Condition Handling System Services

$FAO

$FAOL

$FAOL_64

$GETMSG

$PUTMSG

$SIGNAL_ARRAY_64

Event Flag System Services

$READEF

1/0 System Services

$QIO(W)

$SYNCH

Locking System Services

$ENQ(W)

$DEQ

(ctrstr_64, outlen_64, outbuf_64, p1_64 ... pn_64)

(ctrstr_64, outlen_64, outbuf_64, long_prmlst_64)

(ctrstr_64, outlen_64, outbuf_64, quad_prmlst_64)

(msgid, msglen_64, bufadr_64, flags, outadr_64)

(msgvec_64, actrtn_64, facnam_64, actprm_64)

(mcharg, sigarg_64)

(efn, state_64)

(efn, chan, func, iosb_64, astadr_64, astprm_64, p1_64, p2_64, p3_64,
p4_64,p5_64,p6_64)

(efn, iosb_64)

(efn, lkrnode, lksb_64, flags, resnam_64, parid, astadr_64, astprm_64,
blkast_64, acmode)

Okid, vablk_64, acmode, flags)

(continued on next page)

2-3

System Services Support for 64-Bit Addressing
2.2 64-Bit System Services

Table 2-1 (Cont.) 64-Bit System Services

Service Arguments

Memory Management System Services

$CREATE_REGION_64

$DELETE_REGION_64

$GET_REGION_INFO

$EXPREG_64

$CRETVA_64

$CRMPSC_FILE_64

$CRMPSC_PFN_64

$UPDSEC_64(W)

$DELTVA_64

$CREATE_GFILE

$CREATE_GPFILE

$CREATE_GPFN

$DGBLSC

$MGBLSC_64

$MGBLSC GPFN 64 - -

$CRMPSC_GFILE_64

$CRMPSC_GPFILE_64

$CRMPSC_GPFN_64

2-4

(length_64, region_prot, flags, retum_region_id_64, retum_va_64,
retum_Iength_64, ...)

(region_id_64, acrnode, retum_ va_64, return_Iength_64)

(function_code, region_id_64, start_va_64, ,buffer_Iength, buffer_
address_ 64, retum_Iength_64)

(region_id_64, length_64, acrnode, flags, retum_ va_64, retum_Iength_
64)

(region_id_64, start_va_64, Iength_64, acrnode, flags, retum_va_64,
retum_Iength_64)

(region_id_64, file_offset_64, length_64, chan, acrnode, flags, retum_ va_
64, retum_Iength_64, ...)

(region_id_64, start_pfn, page_count, acrnode, flags, return_ va_64,
return_Iength_64, ...)

(start_va_64, Iength_64, acrnode, upd:flg, efn, iosa_64, return_va_64,
retum_Iength_64, ...)

(region_id_64, start_va_64, Iength_64, acrnode, retum_va_64, return_
Iength_64)

(gsdnarn_64, ident_64, file_offset_64, Iength_64, chan, acrnode, flags,
return_Iength_64, ...)

(gsdnarn_64, ident_64, prot, Iength_64, acmode, flags,)

(gsdnarn_64, ident_64, prot, start_pfn, page_count, acrnode, flags)

(flags,gsdnarn_64,ident_64)

(gsdnarn_64, ident_64, region_id_64, section_offset_64, Iength_64,
acrnode, flags, return_ va_64, retum_Iength_64, ...)

(gsdnarn_64, ident_64, region_id_64, relative_page, page_count, acmode,
flags, return_va_64, retum_Iength_64, ...)

(gsdnarn_64, ident_64, file_offset_64, Iength_64, chan, region_id_64,
section_offset, acrnode, flags, retum_va_64, return_Iength_64, ...)

(gsdnarn_64, ident_64, prot, Iength_64, region_id_64, section_offset_64,
acrnode, flags, retum_va_64, return_Iength_64, ...)

(gsdnarn_64, ident_64, prot, start_pfn, page_count, region_id_64,
relative_page, acrnode, flags, return_va_64, return_Iength_64, ...)

(continued on next page)

System Services Support for 64-Bit Addressing
2.2 64-Bit System Services

Table 2-1 (Cont.) 64-Bit System Services

Service Arguments

Memory Management System Services

$ADJWSL

$LKWSET_64

$ULWSET_64

$PURGE_WS

$LCKPAG_64

$ULKPAG_64

$CREATE BUFOBJ 64 - -

$DELETE_BUFOBJ

$SETPRT_64

Time System Services

$GETTIM

$SETIMR

$CANTIM

Other System Services

$CMEXEC_64

$CMKRNL_64

(pagcnt, wsetlm_64)

(start_va_64, length_64, acmode, return_va_64, return_length_64)

(start_va_64, length_64, acmode, return_va_64, return_length_64)

(start_ va_64, length_64)

(start_va_64, length_64, acmode, return_va_64, return_length_64)

(start_va_64, length_64, acmode, return_va_64, return_length_64)

(start_ va_64, length_64, acmode, flags, return_ va_ 64, return_length_64,
return_buffer_handle_64)

(buffer_handle_64)

(start_ va_64, length_64, acmode, prot, return_ va_64, return_length_64,
return_prot_64)

(timadr_64)

(efn, daytim_64, astadr_64, reqidt_64, flags)

(reqidt_64, acmode)

(routine_64, quad_arglst_64)

(routine_64, quad_arglst_64)

2-5

3
RMS Interface Enhancements for 64-Bit

Addresses

The RMS user interface consists of a number of control data structures (FAB,
RAB, NAM, XA.Bs) that are linked together with 32-bit wide pointers and contain
embedded pointers to user data buffers of various kinds, including file name
strings and item lists, as well as I/O buffers. RMS support for 64-bit addressable
regions allows 64-bit addresses for all of the current user I/O buffers, except for
the prompt buffer (pointed to by RAB$L_PBF), as follows:

• UBF - user record buffer

• RBF - record buffer

• RHB - fixed-length record header buffer (fixed portion ofVFC record format)

• KBF - key buffer containing the key value for random access

Specific enhancements to the RMS interface for 64-bit addressing are as follows:

• Data buffers in the P2 or S2 space exist for the following services:

Record I/O: $GET, $FIND, $PUT, $UPDATE

Block I/O: $READ, $WRITE

• The RAB structure points to the record and data buffers used by these
services.

• An extension of the existing RAB structure is used for 64-bit buffer pointers
and sizes.

• Changes to buffer size maximums:

Buffer size maximum for RMS block I/O services ($READ and $WRITE)
has been increased from 65535 bytes to 2**31-1 bytes, with two
exceptions:

For RMS journaling, a journaled $WRITE is restricted to the current
maximum (65535 minus 99 bytes of journaling overhead); an RSZ error is
returned (RAB$L_STS) if the maximum is exceeded.

Magnetic tape continues to be limited at the device driver level to 65535
bytes.

Buffer size maximums for RMS record I/O services ($GET, $PUT,
$UPDATE) have not changed. Prior RMS on-disk record size limits still
apply.

• The rest of the RMS interface is restricted to 32-bits at this time:

FAB, RAB, NAM, XABs, must continue to be allocated in 32-bit space.

Any descriptors or embedded pointers to file names, item lists, etc. must
continue to be 32-bit pointers.

3-1

RMS Interface Enhancements for 64-Bit Addresses

Any arguments passed to the RMS system services remain 32-bit
arguments. If a user attempts to pass a 64-bit argument, the error
SS$_ARG_GTR_32_BITS is returned.

3.1 The RAB64 Data Structure

I-

3-2

The RAB data structure has been extended as follows:

Existing 32-bit RAB 0 .

64-bit extension 56

ZK-8202A-GE

The extended RAB or RAB64 structure contains the following new fields:

RAB64$PQ_UBF

RAB64$Q_USZ

RAB64$PQ_RBF

RAB64$Q_RSZ

RAB64$PQ_KBF

RAB64$PQ_RHB

RAB64$Q_CTX

User buffer address ($GET, $READ). Extension
counterpart for RAB64$L_UBF

User buffer size. Extension counterpart for RAB64$W _
usz

Record buffer address ($PUT, $UPDATE, $WRITE).
Extension counterpart for RAB64$L_RBF

Record buffer size. Extension counterpart for
RAB64$W _RSZ

Key buffer address containing the key value for random
access ($GET, $FIND). Extension counterpart for
RAB64$L_KBF

Record header buffer address (fixed portion of VFC
record format). Extension counterpart for RAB64$L_
RHB

User context (extension counterpart for RAB64$L_CTX).
This cell is not used by RMS, but is available to the user.
It is analogous to the current RAB$L_CTX cell, which
is often used to contain a pointer. For asynchronous
1/0, it provides the user with the equivalent of an AST
parameter.

Note -----------­

The symbolic prefix RAB64 may be either RAB or RAB64 for MACRO or
BLISS and must be RAB64 for DEC C. The DEC C structure is rab64def.

RMS Interface Enhancements for 64-Bit Addresses
3.1 The RAB64 Data Structure

Buffered PQ fields can hold either 32-bit (sign-extended to 64-bits) or 64-bit
addresses. Therefore, you can use the new fields in all applications whether or
not you are using 64-bit addresses.

For most record 1/0 service requests, there is an RMS internal buffer between
the device and the user's data buffer. The one exception is the RMS service $PUT
in the case of a unit record device. If the device is a unit record device and it
is not a network file access, RMS passes the address of the user record buffer
(RBF) to the $QIO system service. If a user inappropriately specifies a record
buffer (RBF) allocated in 64-bit address space for a $PUT to a unit record device
that does not support 64-bit address space, the $QIO service will return SS$_
NOT64DEVFUNC. (See <REFERENCE>(drivers_chapt) for more information
about $QIO.) RMS will return an RMS error status (RMS-F-SYS, QIO System
Service Request Failed) and the SS$_NOT64DEVFUNC as the secondary status
value (RAB$L_STV).

3.2 Using the 64-Bit RAB Extension
Because RAB64 is an extension of the existing RAB, applications that do not
include the source changes required to use RAB64 can continue to use the same
RAB fields in the current RAB structure.

Only minimal source code changes are required for applications to use 64-bit
RMS support.

The 64-bit buffer address counterpart is used only if the following two conditions
are met:

• The extension is present; that is, the RAB$B_BLN (or RAB64$B_BLN) field
has been initialized to RAB$C_BLN64 (or RAB64$C_BLN64).

• The 32-bit address cell in the 32-bit portion of the RAB contains a value of -1.

The new quadword size cell is used if use of the new address cell is designated in
the 32-bit address cell. For example:

RAB64$L_UBF

RAB64$W _USZ

RAB64$PQ_UBF

RAB64$Q_USZ

-1

0

64-bit address

Buffer size

------------------------- Note ----------------------~
The symbolic prefix RAB64 may be either RAB or RAB64 for MACRO or
BLISS and must be RAB64 for DEC C. The DEC C structure is rab64def.

The 64-bit extension to the user RAB structure includes the following new
macros:

• MACR0-32 macros: $RAB64 and $RAB64_STORE

$RAB64 (counterpart to $RAB)

$RAB64_STORE (counterpart to $RAB_STORE)

The original longword 1/0 buffers are initialized to -1 and the USZ and
RSZ word sizes to 0. RAB$B_BLN is assigned the constant of RAB$C_
BLN64.

3-3

RMS Interface Enhancements for 64-Bit Addresses
3.2 Using the 64-Bit RAB Extension

Values specified using the UBF, USZ, RBF, RSZ, RHB, or KBF keywords
will be moved into the quadword cells for these keywords. (The $RAB and
$RAB_STORE macros move them into the longword (or word) cells for
these keywords.)

• BLISS macros: $RAB64, $RAB64_INIT, $RAB64_DECL

The following Bliss macros are available only in the STARLET.R64 library
because they use the QUAD keyword, which is available only to Bliss-64.
Thus, any Bliss routines referencing them must be compiled with the Bliss-64
compiler.

$RAB64 (counterpart to $RAB)

$RAB64_INIT (counterpart to $RAB_INIT)

The original longword 1/0 buffers are initialized to -1, and the USZ and
RSZ word sizes are initialized to 0. RAB$B_BLN is assigned the constant
of RAB$C_BLN64.

Values assigned to the keywords UBF, USZ, RBF, RSZ, RHB or KBF will
be moved into the quadword cells for these keywords. (The $RAB and
$RAB_INIT macros move them into the longword (or word) cells for these
keywords.)

$RAB64_DECL (counterpart to $RAB_DECL)

Allocation of block structure of bytes with length RAB$C_BLN64.

4
OpenVMS Alpha Device Support for 64-Bit

Addressing

Input and output operations can be performed directly to and from the 64-bit
addressable space by means of RMS services, the $QIO system service, and most
of the device drivers supplied with Open VMS Alpha systems.

This chapter explain the $QIO system service support for 64-bit addresses,
describes the Open VMS Alpha device drivers that support 64-bit addresses and
those that do not, and lists the Open VMS Alpha disk and tape driver function
codes that support 64-bit addresses.

Device drivers can be modified to support 64-bit addresses, but this support is not
required in all drivers. For information about how to modify a customer-written
device driver to support 64-bit addressing, refer to the Open VMS Alpha Guide to
Upgrading Privileged-Code Applications. To see an example of a device driver
that supports 64-bit addressing, refer to the LRDRIVER device driver that is
available in the SYS$EXAMPLES directory. This device driver has been modified
to support a 64-bit buffer address in all of its functions.

_______________________________________ lmponant ---­

Open VMS Alpha Version 7 .0 includes significant changes to Open VMS
Alpha privileged interfaces and data structures. As a result of these
changes, all device drivers from previous versions of Open VMS Alpha
(including field test versions of Open VMS Alpha Version 7.0) must be
recompiled and relinked to run correctly on Open VMS Alpha Version 7.0.

For more details about Open VMS Alpha Version 7.0 changes that may
require source changes to customer-written drivers, see the Open VMS
Alpha Guide to Upgrading Privileged-Code Applications.

4.1 $QIO Support for 64-Bit Addresses
The $QIO service takes the following parameters:

$QIO[W] efn,chan,func,iosb,astadr,astprm,
pl,p2,p3,p4,p5,p6

• Existing $QIO and $SYNCH system services have been enhanced by taking
advantage of the Alpha architecture and Open VMS Alpha calling standard.

• $QIO uses 64-bits of the iosb, astadr, and astprm parameters.

• $QIO checks 64-bit pl to determine whether the caller needs 64-bit support
in the driver.

• Drivers can declare support for 64 bit addressing on a function-by-function
basis using ini_fdt_act (C), FDT_64 (MACRO), and FDTAB FDT_64 (BLISS).

4-1

OpenVMS Alpha Device Support for 64-Bit Addressing
4.1 $QIO Support for 64-Bit Addresses

• The maximum size of an 1/0 initiated by $QIO is still limited by a 32-bit byte
length parameter.

4.2 OpenVMS Drivers Supporting 64-Bit Addresses

4-2

A device driver declares support for 64-bit addresses individually by 1/0 function
code. Disk and tape device drivers support 64-bit addresses for data transfers to
and from disk and tape devices on the virtual, logical, and physical read and write
functions. For example, the Open VMS SCSI disk class driver, SYS$DKDRIVER,
supports 64-bit addresses on the I0$_READVBLK and IO$_ WRITEVBLK
functions, but not on the I0$_AUDIO function.

Open VMS Alpha device drivers that support 64-bit adresses include the following:

• All disk and tape drivers

• All port drivers below disk and tape drivers

• LAN drivers

• Mailbox driver

• ISA parallel port driver (LRDRIVER.C)

Table 4-1 lists the Open VMS Alpha device drivers that support for 64-bit
addresses on at least some functions.

Table 4-1 Drivers Supponing 64-Bit Addresses

Driver Description

SYS$DADDRIVER Local area client disk

SYS$DKDRIVER SCSI disk class driver

SYS$DQDRIVER Mannequin simulator disk

SYS$DUDRIVER DSA disk class driver

SYS$DVDRIVER Intel 83077 AA Floppy disk

SYS$ECDRIVER LANCE PMAD LAN, TC

SYS$ERDRIVER DE422 LAN, EISA

SYS$ESDRIVER LANCE LAN

SYS$EWDRIVER TULIP LAN, PCI

SYS$EXDRIVER DEMNA LAN, XMJ

SYS$EZDRIVER SGEC/INECtrGEC LAN

SYS$FADRIVER FDDI for Futurebus

SYS$FCDRIVER DEFZA, DEFTA LAN, TC

SYS$FRDRIVER DEFEA LAN, EISA

SYS$FXDRIVER DEMFALAN,XMI

SYS$GKDRIVER SCSI generic class driver

SYS$HCDRIVER OTTO class ATM

SYS$ICDRIVER TMS380 LAN, TC

SYS$1RDRIVER TMS380 EISA Token Ring

(continued on next page)

OpenVMS Alpha Device Support for 64-Bit Addressing
4.2 OpenVMS Drivers Supporting 64-Bit Addresses

Table 4-1 (Cont.) Drivers Supporting 64-Bit Addresses

Driver Description

SYS$LADDRIVER Local Area Disk

SYS$LASTDRIVER Local Area System Trans

SYS$LRDRIVER VL82C106 parallel printer driver

SYS$MADDRIVER Local area client tape

MB DRIVER Mailbox driver

SYS$MKDRIVER SCSI tape class driver

NLDRIVER Null device driver

SYS$PADRIVER SHAC Cl and DSSI port driver

SYS$PDDRIVER RAM disk

SYS$PEDRIVER NI SCS port driver

SYS$PIDRIVER NCR 53C710 DSSI port

SYS$PKCDRIVER SCSI NCR 53C94 Port

SYS$PKEDRIVER NCR 53C810 SCSI port

SYS$PKJDRIVER ADAPTEC 17 42A SCSI port

SYS$PKSDRIVER SIMport TC-SCSI port

SYS$PKTDRIVER NCR 53C710 SCSI port

SYS$PKZDRIVER XZA SCSI Port

SYS$PNDRIVER NPORT SCS port

SYS$PUDRIVER Laser KDM DSA/SCS port

SYS$SHDRIVER Volume shadowing

SYS$TUDRIVER MSCP/DSA tape class

SYS$WPDRIVER Watchpoint driver

Table 4-2 lists the Open VMS Alpha device drivers that do not support 64-bit
addresses in Open VMS Alpha Version 7.0.

Table 4-2 Drivers Restricted to 32-Bit Addresses

Driver

SYS$CTDRIVER

SYS$FBDRIVER

SYS$FTDRIVER

SYS$FYDRIVER

SYS$GQADRIVER

SYS$GTADRIVER

SYS$GXADRIVER

SYS$GYADRIVER

SYS$GYBDRIVER

SYS$IEDRIVER

Description

CTERM driver

Terminal fallback driver

Psuedo terminal driver

DUP DSA protocol class driver

QVISION driver

DECwindows TX driver for Flamingo

Flamingo CX'furbo (aka SFB, aka HX.) driver

SFB+ aka HX.+, aka FFB driver

Driver for TGA graphics on the PCI bus

DECwindows extension

(continued on next page)

4-3

OpenVMS Alpha Device Support for 64-Bit Addressing
4.2 OpenVMS Drivers Supporting 64-Bit Addresses

Table 4-2 (Cont.) Drivers Restricted to 32-Bit Addresses

Driver

SYS$IKBDRIVER

SYS$IKDRIVER

SYS$IMBDRIVER

SYS$IMDRIVER

SYS$1NDRIVER

SYS$LTDRIVER

ND DRIVER

NE TD RIVER

SYS$RTl'DRIVER

SYS$SODRIVER

SYS$TTDRIVER

DECW$XTDRIVER

SYS$YRDRIVER

SYS$YSDRIVER

Description

DECwindows PCXAL keyboard

DECwindows LKxxx keyboard

DECwindows PCXAS (PS2) mouse

DECwindows VS:xxx mouse

DECwindows input driver

LAT terminal driver

DECnet Phase IV DLE (MOP support)

DECnet Phase IV

Remote DECnet terminal driver

AMD79C30A Audio/ISDN driver

Terminal class driver

X Terminal class driver

Z85C30 SCC terminal port driver

PC87312 terminal port driver

Some notable points about the drivers that are restricted to 32-bit buffer
addresses include the following:

• The terminal drivers do not support 64-bit addresses.

• The drivers that are used by the DECwindows MOTIF software do not
support 64-bit addresses.

• The DECnet Phase IV drivers do not support 64-bit addresses. NETDRIVER
uses chained CXBs to perform buffered 1/0. The code in NETDRIVER is
complex and depends significantly on the 32-bit addressability of data via
CXBs.

4.3 Function Codes that Support 64-Bit Addresses

4-4

Table 4-3 lists the Open VMS Alpha 1/0 function codes that support 64-bit
addresses. Table 4-3

OpenVMS Alpha Device Support for 64-Bit Addressing
4.3 Function Codes that Support 64-Bit Addresses

Table 4-3 64-Bit Capable 1/0 Functions

Driver Type Function Code 64-Bit Addresses

Disk

I0$_READLBLK Pl

IO$_READPBLK Pl

10$_READVBLK Pl

10$_ WRITECHECK Pl

10$_ WRITELBLK Pl

10$_ WRITEPBLK Pl

I0$_WRITEVBLK Pl

Magnetic Tape

I0$_READLBLK Pl

IO$_READPBLK Pl

10$_READVBLK Pl

10$_ WRITELBLK Pl

10$_ WRITEOF Pl

IO$_WRITEPBLK Pl

I0$_WRITEVBLK Pl

Mailbox

I0$_READLBLK Pl

I0$_READPBLK Pl

I0$_READVBLK Pl

10$_WRITELBLK Pl

10$_ WRITEPBLK Pl

IO$_WRITEVBLK Pl

Local Area Network
(LAN)

I0$_READLBLK Pl,P5

I0$_READPBLK Pl,P5

10$_READVBLK Pl,P5

10$_ WRITELBLK Pl,P4,P5

10$_ WRITEPBLK Pl,P4,P5

I0$_WRITEVBLK Pl,P4,P5

4.4 64-Bit 10$_DIAGNOSE Function for SCSI class Drivers
The $QIO IO$_DIAGNOSE function has been enhanced to support 64-bit
addressing for the following SCSI class drivers: GKDRIVER, DKDRIVER, and
MKDRIVER. This means that the virtual addresses specified within the S2DGB
may now be 64-bit virtual addresses if the user application so requests it.

4-5

OpenVMS Alpha Device Support for 64-Bit Addressing
4.464-Bit10$_DIAGNOSE Function for SCSI class Drivers

The $QIO 10$_DIAGNOSE parameters are still as follows:

Parameter Use

Pl S2DGB base address

P2 S2DGB length

P3 Reserved, should be zero

P4 Reserved, should be zero

P5 Reserved, should be zero

P6 Reserved, should be zero

The SCSI Diagnose Buffer (S2DGB) defined in STARLET now allows two formats,
one for 32-bit addressing and one one for 64-bit addressing. The 32-bit format
is identical to the one supported on Open VMS Alpha Version 6.2. Example 4-1
shows the 32-bit S2DGB format. Example 4--2 shows the 64-bit S2DGB format.

Example 4-1 OpenVMS SCSl-2 Diagnose Buffer (S2DGB) 32-Bit Layout

+---+
I S2DGB$L OPCODE I : 00
+----------------------=---------------------------+
I S2DGB$L FLAGS I :04
+----------------------=---------------------------+
I S2DGB$L 32CDBADDR I :08
+----------------------=---------------------------+
I S2DGB$L_32CDBLEN I :OC
+---+
I S2DGB$L 32DATADDR I :10
+----------------------=---------------------------+
I S2DGB$L_32DATLEN I :14
+---+
I S2DGB$L_32PADCNT I :18
+---+
1 s20GB$L 32PHSTMO 1 :le
+----------------------=---------------------------+
I S2DGB$L_32DSCTMO I :20
+---+
I S2DGB$L 32SENSEADDR I :24
+----------------------=---------------------------+
I S2DGB$L_32SENSELEN I :28
+---+
I I :2C
+-- --+
I Reserved I : 30
+-- --+
I Should Be Zero I : 34
+-- --+
I I :38
+---+

OpenVMS Alpha Device Support for 64-Bit Addressing
4.4 64-Bit 10$_DIAGNOSE Function for SCSI class Drivers

Example 4-2 OpenVMS SCSl-2 Diagnose Buffer (S2DGB) 64-Bit Layout

+---+
I S2DGB$1 OPCODE I : 00

+----------------------=---------------------------+
I S2DGB$1 FLAGS I : 04

+----------------------=---------------------------+
I S2DGB$PQ_64CDBADDR I :08
+-- --+
I I
+---+
I S2DGB$PQ 64DATADDR I : 10
+- - -+
I I
+---+
I S2DGB$PQ 64SENSEADDR I :18
+-- - --+
I I
+---+
I S2DGB$L 64CDBLEN I : 20

+----------------------=---------------------------+
I S2DGB$L 64DATLEN I :24

+----------------------=---------------------------+
I S2DGB$1 64SENSELEN I : 28

+----------------------=---------------------------+
I S2DGB$L 64PADCNT I : 2C

+----------------------=---------------------------+
I S2DGB$1 64PHSTMO I : 30

+----------------------=---------------------------+
I S2DGB$1 64DSCTMO I : 34

+----------------------=---------------------------+
I Reserved. Should be Zero I :38

+---+

A user application must specify which one of the two S2DGB formats is to be
used by passing a format value in S2DGB$L_OPCODE. Specifically, S2DGB$L_
OPCODE must be assigned a value of either OP _XCDB32 (= 1) to request 32-bit
format, or OP _XCDB64 (= 2) to request 64-bit format. Once the value of OP_
XCDB64 has been specified, the user application is obligated to use the 64-bit
S2DGB format and, in particular, to use the 64-bit names for S2DGB fields as
described below. Likewise, an opcode value of OP _XCDB32 obligates the user
application to use the 32-bit names for the fields.

The correct length of the structure is defined by the constant S2DGB$K_
XCDB32_LENGTH (value: 60-decimal), as well as by the constant S2DGB$K_
XCDB64_LENGTH (value: 60-decimal).

The fields in the S2DGB are in the sections that follow. Whenever a field has
two different names for the 32-bit and 64-bit cases, the 32-bit name is given first,
and the 64-bit name is given after it in parentheses. Also, except for fields which
contain addresses, all fields are unsigned longwords.

S2DGB$L_OPCODE
This field should contain either S2DGB$K_OP _XCDB32 or S2DGB$K_OP _
XCDB64, depending on whether the user application intends to supply 32-bit
virtual addresses or 64-bit virtual addresses, respectively, in the other fields of
the S2DGB.

4-7

Open VMS Alpha Device Support for 64-Bit Addressing
4.4 64-Bit 10$_DIAGNOSE Function for SCSI class Drivers

S2DGB$L_FLAGS
This field should contain the bit fields shown in the following table. Note
that these bit definitions start at bit 0 and omit no bits. This is required for
compatibility with the 10$_DIAGNOSE interface available in Open VMS Alpha
Version 6.1 and earlier.

S2DGB$V _READ

S2DGB$V _DISCPRIV

S2DGB$V _SYNCHRONOUS

S2DGB$V_OBSOLETE1

S2DGB$V _TAGGED_REQ

This bit should be 1 if the operation being
performed is a read. If the operation is a write,
this bit should be 0.

This bit should contain the DiscPriv bit value to
be used in the IDENTIFY message sent with this
operation. If S2DGB$V _TAGGED_REQ is 1, then
this bit should be ignored. Note that this bit may
be ignored by some ports.

This bit is ignored since its value is beyond the
control of the user in SCSI-2 drivers.

This bit is ignored. In previous releases, it
represented the disabling of command retries,
which is now beyond the control of the user in
SCSI-2 drivers.

When this bit is 1, the operation is processed as
using tagged command queuing and S2DGB$V _
TAG should define the tag value to be used. When
this bit is 0, the operation is processed without
benefit of tagged command queuing. Ports that
do not support tagged command queuing always
behave as if this bit is 0. Note that some ports
simulate untagged operations using appropriately
tagged operations. one of the following coded
constant values:

S2DGB$K_SIMPLE indicates that the
command is to be sent with the SIMPLE
queue tag.

S2DGB$K_ORDERED indicates that the
command is to be sent with the ORDERED
queue tag.

S2DGB$K_EXPRESS indicates that the
command is to be sent with the HEAD OF
QUEUE queue tag.

If S2DGB$V _TAGGED_REQ is 0, then this
field is ignored. Ports that do not support
tagged command queuing always ignore the
S2DGB$V _TAG field and send all commands
as untagged operations.

Note that automatic contingent allegiance
processing is not accessible through the
IO$_DIAGNOSE function. Also, even though
this is a 3-bit field, only 2 bits are currently
being utilized. That is, the 3 constants above
represent values, not bit positions.

OpenVMS Alpha Device Support for 64-Bit Addressing
4.4 64-Bit 10$_DIAGNOSE Function for SCSI class Drivers

S2DGB$V _AUTOSENSE When this bit is 1, S2DGB$L_32SENSEADDR and
S2DGB$L_32SENSELEN should contain a valid
sense buffer address and length. If a CHECK
CONDITION or COMMAND TERMINATED
status is returned, REQUEST SENSE data will
be returned in the buffer defined by S2DGB$L_
32SENSEADDR and S2DGB$L_32SENSELEN.

When S2DGB$V _AUTOSENSE is 0, the buffer
described by S2DGB$L_32SENSEADDR and
S2DGB$L_32SENSELEN is ignored. In such
case, the class driver saves the autosense data in
pool and returns it to the next 10$_DIAGNOSE, if
and only if that I0$_DIAGNOSE has a REQUEST
SENSE CDB.

All other bits in S2DGB$L_FLAGS should be zero.

S2DGB$L_32CDBADDR (S2DGB$PQ_64CDBADDR)
This field should contain the 32-bit (or 64-bit) virtual address of the SCSI
Command Data Block (CDB) to be sent to the target by this 10$_DIAGNOSE
operation.

Note that S2DGB$L_32CDBADDR is a pointer to a longword, while S2DGB$PQ_
64CDBADDR is a pointer to a quadword.

S2DGB$L_32CDBLEN (S2DGB$L_64CDBLEN)
This field should contain the number of bytes in the SCSI Command Data
Block (CDB) to be sent to the target by this I0$_DIAGNOSE operation. (Legal
values: 2 to 248. However, some ports may restrict CDBs to smaller lengths.
Recommended values: 2 to 16.)

S2DGB$L_32DATADDR (S2DGB$PQ_64DATADDR)
This field should contain the 32-bit (or 64-bit) virtual address of the DATAIN or
DATAOUT buffer to be used with this SCSI operation. If the CDB being sent to
the target does not use a DATAIN or DATAOUT buffer, then this field should be
zero.

Note that S2DGB$L_32DATADDR is a pointer to a longword, while S2DGB$PQ_
64DATADDR is a pointer to a quadword.

S2DGB$L_32DATLEN (S2DGB$L_64DATLEN)
This field should contain the number of bytes in the DATAIN or DATAOUT buffer
associated with this operation. If the CDB being sent to the target does not use a
DATAIN or DATAOUT buffer, then this field should be zero. (Legal values: 0 to
UCB$L_MAXBCNT. Recommended values: 0 to 65,536. All ports are required to
support at least 65,536 byte data transfers.)

S2DGB$L_32PADCNT (S2DGB$L_64PADCNT)
This field should contain the number of padding DATAIN or DATAOUT bytes
required by this operation. (Legal values: 0 to the maximum number of bytes in
a disk block on this system minus one. Current legal values: 0 to 511.))

S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO)
This field should contain the number of seconds that the port driver should
wait for a phase transition to occur or for delivery of an expected interrupt. If
S2DGB$V _ TAGGED_REQ is 1 or this field contains a 0 or 1, then the current
phase transition timeout setting will not be changed. (Legal values: 0 to 300 {5
minutes}.)

4-9

OpenVMS Alpha Device Support for 64-Bit Addressing
4.464-Bit10$_DIAGNOSE Function for SCSI class Drivers

S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO)
This field should contain the number of seconds that the port driver should wait
for a disconnected transaction to reconnect. If S2DGB$V _TAGGED _REQ is 1 or
this field contains a 0 or 1, then the current disconnect timeout setting will not be
changed. (Legal values: 0 to 65,535 {about 18 hours}.)

S2DGB$L_32SENSEADDR (S2DGB$PQ_64SENSEADDR)
If S2DGB$V _AUTOSENSE is 1, then this field should contain the 32-bit (or
64-bit) virtual address of the sense buffer to be used by this SCSI operation. If
S2DGB$V _AUTOSENSE is 0, this field will be ignored.

Note that S2DGB$L_32SENSEADDR is a pointer to a longword, while
S2DGB$PQ_64SENSEADDR is a pointer to a quadword.

S2DGB$L_32SENSELEN (S2DGB$L_64SENSELEN)
If S2DGB$V _AUTOSENSE is 1, then this field should contain the number of
bytes in the sense buffer associated with this operation. (Legal values: 0 to 255.
Note: a value of 0 instructs the class driver to discard any sense data received.
Recommended value: 18. Some ports may restrict the number of sense bytes to
18.) If S2DGB$V _AUTOSENSE is 0, this field will be ignored.

4.4.1 64-bit S2DGB Example
The following example shows how to set up a 64-bit S2DGB:

iinclude <s2dgbdef .h>
iinclude <far_pointers.h>

/* Define S2DGB */
/* Define VOID_PQ */

S2DGB diag_desc;

/* Set up some default S2DGB descriptor values */

diag desc.s2dgb$1 opcode = OP XCDB64 /* Use 64-bits */
diag-desc.s2dgb$1-flags = (S2DGB$M READ I /* Flags*/

- - S2DGB$M TAGGED REQ I
S2DGB$M-AUTOSENSE);

diag desc.s2dgb$v tag = S2DGB$K SIMPLE; /* SIMPLE que tag */
diag=desc.s2dgb$pq_64cdbaddr = (VOID_PQ) (&cdb[O]);/* Command addr */
diag desc.s2dgb$1 64cdblen = 6; /* Command length */
diag=desc.s2dgb$pq_64dataddr = (VOID_PQ) (&buf[O]);/* Data addr */
diag_desc.s2dgb$1_64datlen = 20; /* Data length */
diag desc.s2dgb$1 64padcnt = O; /* Pad length */
diag-desc.s2dgb$1-64phstmo = 20; /* Phase timeout */
diag-desc.s2dgb$1-64dsctmo = 10; /* Disc timeout */
diag=desc.s2dgb$pq_64senseaddr = (VOID_PQ) (&asn[O]);/* Autosense addr */
diag_desc.s2dgb$1_64senselen = 255; /* Sense length */
diag_desc.s2dgb$l_reserved_l = 0; /* Reserved */

status = sys$qiow(O, target chan, IO$ DIAGNOSE, &iosb, 0, 0,
&diag_desc, S2DGB$K_XCDB64_LENGTH, 0, 0, 0, 0);

4-10

If all parameters are valid, the class driver will invoke the necessary port
functions to send the CDB, transfer the data, and return, save or discard sense
data as defined by the input S2DGB. Upon completion, the return IOSB will have
the following format:

+----------------------------+-----------------------------+
I byte count <15: 0> I port VMS status I : 00
+-------------+--------------+-----------------------------+
I SCSI status I zero I byte count <31:16> I :04
+-------------+--------------+-----------------------------+

OpenVMS Alpha Device Support for 64-Bit Addressing
4.4 64-Bit 10$_DIAGNOSE Function for SCSI class Drivers

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers, which implement
other QIO functions, might intermix other tagged requests with I0$_DIAGNOSE
requests. The order in which requests are sent generally match the order in
which requests are presented to the driver. An exception to this ordering occurs
when the driver receives REQUEST SENSE for which autosense data previously
has been recovered and stored. In this case, the I0$_DIAGNOSE will complete
immediately and no command will be sent to the target.

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers permit only one
I0$_DIAGNOSE operation to be active (in the start 1/0 routine) at given time,
except as described in the next paragraph. However, applications must single
thread I0$_DIAGNOSE requests in order to properly detect the presence of sense
data and send the required REQUEST SENSE command. This is consistent with
the VAX. I0$_DIAGNOSE behavior. For example, if three reads are issued with
no waiting and the first read gets a CHECK CONDITION, the sense data will be
discarded by the target when the second read arrives.

The DKDRIVER, GKDRIVER, and MKDRIVER drivers permit more than one
I0$_DIAGNOSE operation to be active (in the start 1/0 routine) only when
all active operations have the S2DGB$V _AUTOSENSE flag equal to 1. Upon
encountering the first 10$_DIAGNOSE with S2DGB$V _AUTOSENSE equal to 0,
the class driver will apply the restrictions described in the previous paragraph.

4-11

5
OpenVMS Alpha 64-Bit API Guidelines

This chapter describes the guidelines used to develop 64-bit friendly interfaces
to support Open VMS Alpha 64-bit virtual addressing. Application programmers
who are developing their own 64-bit application programming interfaces might
find this information useful.

Note that these are recommendations, not hard and fast rules. Some of the
guidelines are examples of good programming practices, and many of them
address style issues.

5.1 Quadword/Longword Argument Pointer Guidelines
Because Open VMS Alpha 64-bit adressing support allows application programs
to access data in 64-bit address spaces, pointers that are not 32-bit sign-extended
values (64-bit pointers) will become more common within applications. Existing
32-bit APis will continue to be supported, and the existence of 64-bit pointers
creates some potential pitfalls that programmer must be aware 0£

For instance, addresses that are not 32-bit sign-extended values may be
inadvertently passed to a routine that can handle only a 32-bit address. Another
dimension of this would be a new API that embeds 64-bit pointers in data
structures. Such pointers might be restricted to point to 32-bit address spaces
initially, residing within the new data structure as a sign-extended 32-bit value.

All routines should guard against programming errors where 64-bit addresses
are being passed instead of 32-bit addresses. This type of checking is called
sign-extension checking, which means that the address is checked to ensure
that the upper 32 bits are all zeros or all ones, matching the value of bit #31.
This checking can be performed at the routine interface that is imposing this
restriction.

When defining a new routine interface, you must consider the ease of
programming a call to the routine from a 32-bit source module. And you must
consider calls written in all Open VMS programming languages, not just those
languages initially intending to support 64-bit addressing. To avoid promoting
awkward programming practices for the 32-bit caller of a new routine, you must
accommodate 32-bit callers as well as 64-bit callers.

Arguments passed by reference that are restricted to reside in a
32-bit address space (PO/P1/SO/S1) should have their reference
addresses sign-extension checked.
The Open VMS Calling Standard requires that 32-bit values passed to a routine ·
be sign-extended to 64-bits before the routine is called. Therefore, the called
routine always receives 64-bit values. A 32-bit routine cannot tell if its caller
correctly called the routine with a 32-bit address, unless the reference to the
argument is checked for sign-extension.

5-1

OpenVMS Alpha 64-Bit API Guidelines
5.1 Quadword/Longword Argument Pointer Guidelines

5-2

This sign-extension checking would also apply to the reference to a descriptor
when data is being passed to a routine by descriptor.

The called routine should return the error status SS$_ARG_GTR_32_BITS if the
sign-extension check fails.

Alternately, if you want the called routine to accept the data being passed in a
64-bit location without error and if the sign-extension check fails, the data can be
copied by the called routine to a 32-bit address space. The 32-bit address space to
which the routine copies the data can be local routine storage (that is, the current
stack). If the data is copied to a 32-bit location other than local storage, memory
leaks and reentrancy issues must be considered.

~~~~~~~~~~~~- Note --~~~~~~~~~~~-

Copying to the stack may not be acceptable in future releases of Open VMS 
Alpha, because stacks are restricted to 32-bit address spaces only for the 
first release of Open VMS 64-bit support. This restriction might be lifted 
in a future release. Open VMS system services are examples of routines 
that rely on the stack being in a 32-bit address space. 

When new routines are developed, pointers to code and all data pointers passed 
to the new routines, should be accommodated in 64-bit address spaces where 
possible. This is desirable even if the data is a routine or is typically considered 
"static data", which the programmer, compiler, or linker would not naturally put 
in a 64-bit address space in this release. When code and static data is supported 
in 64-bit address spaces, this routine should not need additional changes. 

32-bit descriptor arguments should be validated to be 32-bit 
descriptors. 

Routines that accept descriptors should test the field that allow you to distinguish 
the 32-bit and 64-bit descriptor forms. If a 64-bit descriptor is received, the 
routine should return an error. 

Avoid passing pointers by reference. 

If passing a pointer by reference is necessary, as with certain memory 
management routines, the pointer should be defined to be 64-bit wide. 

Mixing 32-bit and 64-bit pointers can cause programming errors when the caller 
incorrectly passes a 32-bit wide pointer by reference when a 64-bit wide pointer is 
expected. 

If the called routine reads a 64-bit wide pointer that was allocated only a 
longword by the programmer, the wrong address could be used by the routine. 

If the called routine returns a 64-bit pointer, and therefore writes a 64-bit wide 
address into a longword allocated by the programmer, data corruption can occur. 

Existing routines that are passed pointers by reference require new interfaces 
for 64-bit support. Old routine interfaces would still be passed the pointer in a 
32-bit wide memory location and the new routine interface would require that the 
pointer be passed in a 64-bit wide memory location. Keeping the same interface 
and passing it 64-bit wide pointers would break existing programs. 



OpenVMS Alpha 64-Bit API Guidelines 
5.1 Quadword/Longword Argument Pointer Guidelines 

------------ Example ------------
The return virtual address in the new SYS$CRETVA_64 service. Virtual 
addresses created in PO and Pl space are guaranteed to have only 32 
bits of significance, however all 64 bits are returned. SYS$CRETVA_64 
can also create address space in 64-bit space and thus return a 64-bit 
address. The value that is returned must always be 64 bits because a 
64-bit address can be returned. 

Memory allocation routines should return the pointer to the data allocated by 
value (that is, in RO), if possible. The C allocation routines, malloc, calloc, and 
realloc are examples of this. 

New interfaces for routines that are not memory management routines should 
avoid defining output arguments to receive addresses. Problems will arise 
whenever a 64-bit subsystem allocates memory and then returns a pointer back 
to a 32-bit caller in an output argument. The caller may not be able to support or 
express a 64-bit pointer. Instead of returning a pointer to some data, the caller 
should provide a pointer to a buffer and the called routine should copy the data 
into the user's buffer. 

A 64-bit pointer passed by reference should be defined in such a way that a call 
to the routine can be written in a 64-bit language or a 32-bit language. It should 
be clearly indicated that a 64-bit pointer is required to be passed by all callers. 

Routines must not return 64-bit addresses unless they are 
specifically requested. 

It is extremely important that routines which allocate memory and return an 
address to their callers always allocate 32-bit addressable memory, unless it is 
known absolutely that the caller is capable of handling 64-bit addresses. This is 
true for both function return values and output parameters. This rule prevents 
64-bit addresses from "creeping in" to applications which do not expect them. As 
a result, programmers developing callable libraries should be particularly careful 
to follow this rule. 

Suppose an existing routine returns the address of memory it has allocated, as 
the routine value. If the routine accepts an input parameter which in some way 
allows it to determine that the caller is 64-bit capable, it is safe to return a 64-bit 
address. Otherwise, it MUST continue to return 32-bit sign-extended addresses. 
In the latter case, a new version of the routine could be provided, which 64-bit 
callers could invoke instead of the existing version if they prefer that 64-bit 
memory be allocated. 

Example: The routines in LIBRTL which manipulate string descriptors can 
be sure that a caller is 64-bit capable if the descriptor passed in is in the new 
64-bit format. As a result, it is safe for them to allocate 64-bit memory for string 
data, in that case. Otherwise, they will continue to use only 32-bit addressable 
memory. 

5-3 



OpenVMS Alpha 64-Bit API Guidelines 
5.1 Quadword/Longword Argument Pointer Guidelines 

5-4 

Avoid embedded pointers in data structures in public interfaces. 

If embedded pointers are necessary for a new structure in a new interface, 
provide storage within the structure for a 64-bit pointer (quadword aligned). The 
called routine, which may have to read the pointer from the structure, simply 
reads all 64 bits. 

If the pointer is constrained to be a 32-bit sign-extended address (for example, 
because the pointer will be passed to a 32-bit routine) a sign-extension check 
should be performed on the 64-bit pointer at the entrance to the routine. If the 
sign-extension check fails, the error status SS$_ARG_GTR_32_BITS may be 
returned to the caller, or the data found to reside in a 64-bit address space may 
be copied to a 32-bit address space. 

The new structure should be defined in such a way that a 64-bit caller or a 32-bit 
caller do not contain awkward code. The structure should provide a quadword 
field for the 64-bit caller overlaid with two longword fields for the 32-bit caller. 
The first of these longwords is the 32-bit pointer field and the next is a MBSE 
(must be sign-extension) field. For most 32-bit callers, the MBSE field will be 
zero because the pointer will be a 32-bit process space address. The key here is to 
define the pointer as a 64-bit value and make it clear to the 32-bit caller that the 
full quadword must be filled in. 

In the following example, both 64-bit and 32-bit callers would pass a pointer 
to the "block" structure and use the same function prototype when calling the 
function "routine". (Assume "data" is an unknown structure defined in another 
module.) 

ipragma required_pointer_size save 
ipragma required_pointer_size 32 

typedef struct block 
int blk$1 size; 
int blk$Cflags; 
union { -

ipragma required_pointer_size 64 
struct data *blk$pq_pointer; 

ipragma required_pointer_size 32 
struct { 

struct data *blk$ps_pointer; 
int blk$1 mbz; 
} blk$r long struct; 

} blk$r_pointer_union; 
} BLOCK; 

idefine blk$pq_pointer blk$r_pointer_union.blk$pq_pointer 
idefine blk$r_long_struct blk$r_pointer_union.blk$r_long_struct 
idefine blk$ps_pointer blk$r_long_struct.blk$ps_pointer 
idefine blk$l_mbz blk$r_long_struct.blk$l_mbz 

/* Routine accepts 64-bit pointer to the "block" structure */ 
ipragma required_pointer_size 64 
int routine(struct block*); 

ipragma required_pointer_size restore 

For an existing 32-bit routine specifying an input argument, which is a structure 
that embeds a pointer, you can use a different approach to preserve the existing 
32-bit interface. You can develop a 64-bit form of the data structure that is 
distinguished from the 32-bit form of the structure at run-time. Existing code 
that accepts only the 32-bit form of the structure should automatically fail when 
presented with the 64-bit form. 



OpenVMS Alpha 64-Bit API Guidelines 
5.1 Quadword/Longword Argument Pointer Guidelines 

The structure definition for the new 64-bit structure should contain the 32-bit 
form of the structure (for example, with an SDL union). Including the 32-bit 
form of the structure allows the called routine to declare the input argument as a 
pointer to the 64-bit form of the structure and cleanly handle both cases. 

1\vo different function prototypes must be provided for languages that provide 
type checking. The default function prototype should specify the argument as 
a pointer to the 32-bit form of the structure. The 64-bit form of the function 
prototype can be selected by defining a symbol, specified by documentation. 

Descriptors: 

The 64-bit versus 32-bit descriptor is an example of how this can be done. 

Example: In the following example, the state of the symbol FOODEF64 selects 
the 64-bit form of the structure along with the proper function prototype. If the 
symbol FOODEF64 is undefined, the old 32-bit structure is defined and the old 
32-bit function prototype is used. 

The source module that implements the function foo_print would define the 
symbol FOODEF64 and be able to handle calls from 32-bit and 64-bit callers. 
The 64-bit caller would set the field foo64$l_mbmo to -1. Foo_print would test the 
field foo64$l_mbmo for -1 to determine if the caller used the 64-bit form of the 
structure or the 32-bit form of the structure. 

ipragma required_pointer_size save 
ipragma required_pointer_size 32 

typedef struct f oo { 
short int foo$w flags; 
short int foo$w-type; 
struct data * foo$ps_pointer; 
} FOO; 

iifndef FOODEF64 

/* Routine accepts 32-bit pointer to "foo" structure */ 
int foo_print(struct foo * foo_ptr); 

iendif 

iifdef FOODEF64 

typedef struct f 0064 
union { 

struct { 
short int foo64$w flags; 
short int foo64$w=type; 
int foo64$1 mbmo; 

ipragma required_pointer_size 64 -
struct data * foo64$pq_pointer; 

#pragma required_pointer_size 32 
} f oo64$r foo64 struct; 

FOO foo64$r foo32; -
} f oo64$r f oo union; 

F0064; - -

idefine foo64$w flags foo64$r foo union.foo64$r foo64 struct.foo64$w flags 
fdefine foo64$w-type foo64$r=foo=union.foo64$r=foo64=struct.foo64$w=type 
#define foo64$1-mbmo foo64$r foo union.foo64$r foo64 struct.foo64$1 mbmo 
#define foo64$pCi_pointer foo64$r:foo=union.foo64$r:foo64=struct.foo64$p<i_pointer 
idefine foo64$r_foo32 foo64$r_foo_union.foo64$r_foo32 

/* Routine accepts 64-bit pointer to "foo64" structure */ 
ipragma required_pointer_size 64 
int foo_print(struct foo64 * foo64_ptr); 

5-5 



OpenVMS Alpha 64-Bit API Guidelines 
5.1 Quadword/Longword Argument Pointer Guidelines 

iendif 

ipragma required_pointer_size restore 

In the previous example, if the structures "foo" and "foo64" will be used 
interchangeably within the same source module, you can eliminate the symbol 
FOODEF64. The routine foo_print would then be defined as follows: 

int foo_print (void* foo_ptr); 

Eliminating the FOODEF64 symbol allows 32-bit and 64-bit callers to use the 
same function prototype, however less strict type checking is then available 
during the C source compilation. 

Context or User Data Arguments Should Be 64 Bits 
Often, arguments or data structure fields are intended to convey context back 
to the original caller when an AST is delivered or when an operation completes. 
Currently, a longword is the common size for these arguments. Examples include 
the AST parameter.arguments to many services or the user context field in 
RMS data structures. These fields should never be shorter than a quadword. 
Applications must be able to use a 64-bit address as a context argument. 

5.2 Alpha/VAX Guidelines 

5-6 

Only address, size, and length arguments should be passed as 
quadwords by value. 
Arguments passed by value are restricted to longwords on VAX. To be compatible 
with VAX APis, quadword arguments should be passed by reference instead of by 
value. However, addresses, sizes and lengths are examples of arguments which, 
because of the architecture, could logically be longwords on Open VMS VAX and 
quadwords on Open VMS Alpha. 

Even if the API will not be available on Open VMS VAX, this guideline should 
still be followed for consistency across all APis. 

Avoid pagelets, pages, VBNs, and LBNs. 
Arguments such as lengths and offsets should be represented in units that are 
page size independent, such as bytes. 

A pagelet is an awkward unit. It was invented for compatibility with VAX and is 
used on Open VMS Alpha within Open VMS VAX compatible interfaces. A pagelet 
is equivalent in size to a VAX page and should not be considered a page size 
independent unit, because it is often confused with a CPU-specific page on Alpha. 

Example: Length_64 argument in EXPREG_64 is passed as a quadword byte 
count by value. 

Naturally align all data passed by reference. 
The called routine should specify to the compiler that arguments are aligned, and 
the compiler can perform more efficient load and store sequences. If the data is 
not naturally aligned, users will experience performance penalties. 



OpenVMS Alpha 64-Bit API Guidelines 
5.2 Alpha/VAX Guidelines 

If the called routine executes incorrectly because the data passed by reference 
is not naturally aligned, the routine should do explicit checking and return an 
error if not aligned. For example, if a load/locked, store/conditional is being done 
internally in the routine on the data; and the data is not aligned, the load/locked, 
store/conditional will not work properly. 

Specify the arguments in a consistent order. 

Specify the argument order as follows: 

1. Input arguments 

2. Output arguments 

3. Optional input arguments 

4. Optional output arguments 

Not only is the order of the arguments easier to remember, this order more 
efficiently uses the Alpha calling standard's register arguments in the case 
where more than 6 arguments can be specified. Every argument after the sixth 
argument is presented to the called routine on the stack. If optional arguments 
are not specified, memory references can be saved. 

Do not use bytes and words. 

Although this is not necessarily a guideline, it is worth noting. 

Arguments that have less than or equal to 16 bits of significant data should be 
longwords or quadwords, not words or bytes. Reading and writing bytes and 
words from memory on Alpha systems is slower and can create word-tearing and 
synchronization problems. 

Example: Retum_prot in the SYS$SET_PRT_64 service. The returned 
protection is less than 32-bits, yet the argument is defined to be a longword. 

5.3 Style Guidelines 
Avoid documenting arguments passed by value as optional, unless 
they are at the end of the argument list. 

This is a problem because if the argument is omitted, the value zero will be 
passed. Simply specifying that zero is the default value is clearer than specifying 
it as optional. Also, there is no such thing as an optional argument passed by 
value in the middle of an argument list. 

An example of this problem is in the EFN argument to $QIO. In the 
documentation, it is listed as optional, yet if you do not specify it in the 
MACR0-32 macro, a zero is passed to the service. EFN #0 is used when the 
programmer might have thought that no EFN is used. Another instance where 
the programmer explicitly specified EFN #0 may trip over the inadvertent use of 
EFN #0. 

5-7 



OpenVMS Alpha 64-Bit API Guidelines 
5.3 Style Guidelines 

Keep similar arguments in the same relative order between 
routines within the same API. 
Example: 

SYS$EXPREG_64 (region_id,length,acmode,flags,return_ va,return_length) 
SYS$CRETVA_64 (region_id,start_ va,length,acmode,flags,return_ va,return_ 
length) 

Don't add null arguments to artificially keep arguments in matching argument 
positions. 

Avoid routine names that are too short and compact. 
Routine names that are too long are also not recommended. Watch out for actual 
limits on name lengths. If you must abbreviate routine names, be consistent so 
the caller can remember abbreviations for the same word in different routines. 

Example 1: $CRMPSC is too short. SYS$CREATE_AND_MAP _GLOBAL_ 
PAGE_FILE_SECTION is too long. SYS$CRMPSC_GPFILE_64 is okay. 

Example 2: The spelling of $SETIMR, $CANTIM, $GETTIM, $SETIME, etc., is 
difficult to remember because time and timer are abbreviated differently. 

Use the suffix "_64" when appropriate 
For system services, this suffix will be used for routines which accept 64-bit 
addresses by reference. For promoted routines, this distinguishes the 64-bit 
capable version from its 32-bit counterpart, and for new routines, it is a visible 
reminder that a 64-bit wide address cell will be read/written. This is also used 
when a structure is passed which contains an embedded 64-bit address, IF the 
structure is not self-identifying as a 64-bit structure. Hence, a routine name need 
not include "_64" simply because it receives a 64-bit decriptor. Remember that 
passing an arbitrary value by reference does not mean the suffix is required; 
passing a 64-bit address by reference does. 

This practice is recommended for other routines as well. 

Examples: 

SYS$EXPREG_64(region_id_64, length_64, acmode, return_ va_64, return_ 
length_64) 
SYS$CMKRNL_64(routine_64, quad_arglst_64) 

Don't pass two different types of data in the same argument, and 
avoid flags that determine how to interpret arguments or which 
arguments must be specified. 
This is confusing to the caller, as well as the documentation writer and the code 
maintainer. 

Example: Look at the documentation for $CRMPSC! 

5.4 Promoting an API from a 32-Bit API to a 64-Bit API 

5-8 

Promoting an API to support 64-bit addressing should not be viewed as an 
opportunity to improve the 32-bit design or add new functionality. Calling a 
routine within the new 64-bit API should be an easy programming task. 



OpenVMS Alpha 64-Bit API Guidelines 
5.4 Promoting an API from a 32-Bit API to a 64-Bit API 

64-bit routines should accept 32-bit forms of structures as well as 
64-bit forms. 

To make it easy to modify calls to an API, the 32-bit form of a structure should be 
accepted by the interface as well as the 64-bit form. 

Example: If the 32-bit API passed information by descriptor, the new interface 
should pass the same information by descriptor. 

64-bit routines should provide the same functionality as the 32-bit 
routines. 

An application currently calling the 32-bit API should be able to completely 
upgrade to calling the 64-bit API without having to preserve some of the old calls 
to the old 32-bit API just because the new 64-bit API is not a functional superset 
of the old API. 

Example: SYS$EXPREG_64 works for PO, Pl and P2 process space. Callers can 
replace all calls to SYS$EXPREG since SYS$EXPREG_64 is a functional superset 
of$EXPREG. 

5.5 No new 64-bit MACR0-32 macros are available for system 
services. 

The MACR0-32 caller will have to use the new AMACRO built-in EVAX_CALLG_ 
64. 

5.6 Example of a 32-bit routine and a 64-bit routine 
The following example illustrates a 32-bit routine interface that has been 
promoted to support 64-bit addressing. It handles several of the issues addressed 
in the guidelines. 

The C function declaration for an old system service SYS$CRETVA looks like the 
following: 

fpragma required_pointer_size save 
ipragma required_pointer_size 32 
int sys$cretva ( 

struct va range * inadr, 
struct -va-range * retadr, 
unsigned int acmode); 

ipragma required_pointer_size restore 

The C function declaration for a new system service SYS$CRETVA_64 looks like 
the following: 

ipragma required_pointer_size save 
ipragma required_pointer_size 64 
int sys$cretva 64 ( 

struct- generic 64 * region id 64, 
void * - - start va 64, 
unsigned int64 length 64, 
unsigned int acmode-; 
void ** return va 64, 
unsigned int64 * return-length 64); 

ipragma required_pointer_size restore -

The new routine interface for SYS$CRETVA_64 corrects the embedded pointers 
within the "_va_range" structure, passes the 64-bit region_id_64 argument by 
reference and passes the 64-bit length_64 argument by value. 

5-9 





6 
OpenVMS Alpha Tools and Utilities That 

Support 64-Bit Addressing 

This chapter briefly describes the following Open VMS Alpha tools that have been 
enhanced to support 64-bit virtual addressing. 

• Open VMS Debugger 

• System-code debugger 

• XDELTA 

• Watchpoint utility 

• SDA 

• LIB$ and CVT$ Facilities of the Open VMS Run-Time Library 

6.1 OpenVMS Debugger 
On Open VMS Alpha systems, the Debugger can access the extended memory 
made available by 64-bit addressing support. You can examine and manipulate 
data in the complete 64-bit address space. 

You can examine a variable as a quadword by using the new option Quad, which 
is on the Typecast menu of both the Monitor pull-down menu and the Examine 
dialog box. 

The default type for the debugger is longword, which is appropriate for debugging 
32-bit applications. It might be advisable to change the default type to quadword 
for debugging applications that utilize the 64-bit address space. To do this, the 
SET TYPE QUADWORD command. 

Note that hexadecimal addresses are now 16-digit numbers on Alpha. For 
example, 

DBG> EVALUATE/ADDRESS/HEX %hex 000004AO 
00000000000004AODBG> 

For more information about using the Open VMS Debugger, see the Open VMS 
Debugger Manual. 

6.2 OpenVMS Alpha System-Code Debugger 
The Open VMS Alpha system-code debugger accepts 64-bit addresses and uses full 
64-bit addresses to retrieve information. 

6-1 



OpenVMS Alpha Tools and Utilities That Support 64-Bit Addressing 
6.3 XDELTA 

6.3 XDELTA 
For more information about 64-bit addressing support for Delta/XDelta, see the 
Open VMS Delta I XDelta Debugger Manual. 

6.4 LIB$ and CVT$ Facilities of the OpenVMS Run-Time Library 
For more information about 64-bit addressing support for the LIB$ and CVT$ 
facilities of the Open VMS RTL library, refer to the Open VMS RTL Library (LIB$) 
Manual. 

6.5 Watchpoint Utility 

6-2 

The WATCHPOINT utility is a debugging tool that maintains a history of 
modification that are made to a particular location in shared system space by 
setting watchpoints on 64-bit addresses. It watches any system address, whether 
in SO, Sl, or S2 space. 

A $QIO interface to the WATCHPOINT supports 64-bit addresses. The 
WATCHPOINT command interpreter (WP) issues $QIO request to the 
WATCHPOINT driver (WPDRIVER) from commands that follow the standard 
rules of DCL grammar. 

Commands may be entered at the watchpoint> prompt to set, delete, and obtain 
information from watchpoints. Before invoking the WATCHPOINT command 
interpreter (WP), or loading the WATCHPOINT driver one must first set the 
SYSGEN MAXBUF dynamic parameter to 64000. This can be accomplished as 
follows: 

$ RUN SYS$SYSTEM:SYSGEN 
SYSGEN> SET MAXBUF 64000 
SYSGEN> WRITE ACTIVE 
SYSGEN> WRITE CURRENT 
SYSGEN> EXIT 

Before invoking the WATCHPOINT command interpreter (WP), the 
WATCHPOINT driver (WPDRIVER), must first be installed with SYSMAN. 
This can be accomplished as follows: 

$ RUN SYS$SYSTEM:SYSMAN 
SYSMAN> IO CONNECT WPA0/DRIVER=SYS$WPDRIVER/NOADAPTER 
SYSMAN> EXIT 

The WATCHPOINT command interpreter (WP) can then be invoked with the 
command: 

$ RUN SYS$SYSTEM:WP 

Commands may then be entered at the watchpoint> prompt to set, delete,and 
obtain information from Watchpoints. 

Some of the WP help screens as well as the output to the WP Utility are best 
viewed using a terminal with a character width of 132. This can be accomplished 
as follows: 

$ SET TERM/WID=132 



6.6 SDA 

OpenVMS Alpha Tools and Utilities That Support 64-Bit Addressing 
6.6 SDA 

For more information about using SDA 64-bit addressing support, see the 
Open VMS Alpha System Dump Analyzer Utility Manual. 

6-3 





7 
DEC C RTL Support for 64-Bit Addressing 

This chapter describes the 64-bit addressing support provided by the DEC C 
run-time library on Open VMS Alpha Version 7 .0 systems and higher. 

The DEC C run-time library includes the following features in support of 64-bit 
pointers: 

• Guaranteed binary and source compatibilicy of existing programs 

• No impact on applications that are not modified to exploit 64-bit support 

• Enhanced memory allocation routines that allocate 64-bit memory 

• Widened function parameters to accommodate 64-bit pointers 

• Dual implementations of functions that need to know the pointer size used by 
the caller 

• New information available to the DEC C Version 5.2 compiler or higher to 
seamlessly call the correct implementation 

• Ability to explicitly call either the 32-bit or 64-bit form of functions for 
applications that mix pointer sizes 

• A single shareable image for use by 32-bit and 64-bit applications 

7.1 Using the DEC C Run-Time Library 
The DEC C Run-Time library on OpenVMS Alpha Version 7.0 systems and higher 
can generate and accept 64-bit pointers. Functions that require a second interface 
to be used with 64-bit pointers reside in the same object libraries and shareable 
images as their 32-bit counterparts. No new object libraries or shareable images 
are introduced. Using 64-bit pointers does not require changes to your link 
command or link options files. 

The DEC C 64-bit environment allows an application to use both 32-bit and 
64-bit addresses. For more information about how to manipulate pointer sizes, 
see the /POINTER_SIZE qualifier and #pragma pointer size and #pragma 
required_pointer_size preprocessor directives in the DEC C User's Guide. 

The /POINTER_SIZE qualifier requires you to specify a value of 32 or 64. This 
value is used as the default pointer size within the compilation unit. As an 
application programmer, you can compile one set of modules using 32-bit pointers 
and another set using 64-bit pointers. Care must be taken when these two 
separate groups of modules call each other. 

Use of the /POINTER_SIZE qualifier also influences the processing of DEC C RTL 
header files. For those functions that have a 32-bit and 64-bit implementation, 
specifying /POINTER_SIZE enables function prototypes to access both functions, 
regardless of the actual value supplied to the qualifier. In addition, the value 

7-1 



DEC C RTL Support for 64-Bit Addressing 
7.1 Using the DEC C Run-Time Library 

specified to the qualifier determines the default implementation to call during 
that compilation unit. 

The #pragma pointer size and #pragma required pointer size preprocessor 
directives can be used to change the pointer size in effect within a compilation 
unit. You can default pointers to 32-bit pointers and then declare specific pointers 
within the module as 64-bit pointers. You would also need to specifically call the 
_ malloc64 form of malloc to obtain memory from the 64-bit memory area. 

7.2 Obtaining 64-bit Pointers to Memory 
The DEC C RTL has many functions that return pointers to newly allocated 
memory. In each of these functions, the application owns the memory pointed to 
and is responsible for freeing that memory. 

Functions that allocate memory are: 

malloc 
callee 
realloc 
strdup 

Each of these functions have a 32-bit and 64-bit implementation. When the 
/POINTER_SIZE qualifier is used, the following functions can also be called: 

malloc32, malloc64 
=calloc32,=calloc64 
_realloc32,_realloc64 
_strdup32,_strdup64 

When /POINTER_SIZE=32 is specified, all malloc calls default to malloc32. 

When /POINTER_SIZE=64 is specified, all malloc calls default to_ malloc64. 

Regardless of whether the application calls a 32-bit or 64-bit memory allocation 
routine, there is still a single free function. This function accepts either pointer 
size. 

Note that the memory allocation functions are the only ones that return pointers 
to 64-bit memory. All DEC C RTL structure pointers returned to the calling 
application (such as a FILE, WINDOW, or DIR) are always 32-bit pointers. This 
allows both 32-bit and 64-bit callers to pass these structure pointers within the 
application. 

7 .3 DEC C Header Files 

7-2 

The header files distributed with DEC C Version 5.2 and higher support 64-
bit pointers. Each function prototype whose signature contains a pointer is 
constructed to indicate the size of the pointer accepted. 

A 32-bit pointer can be passed as an argument to functions that accept either a 
32-bit or 64-bit pointer for that argument. 

A 64-bit pointer, however, cannot be passed as an argument to a function that 
accepts a 32-bit pointer. Attempts to do this are diagnosed by the compiler with a 
MAYLOSEDATA message. The diagnostic message IMPLICITFUNC means the 
compiler can do no additional pointer-size validation for calls to that function. 
If this function is a DEC C RTL function, refer to the reference section of this 
manual for the name of the header file that defines that function. 



DEC C RTL Support for 64-Bit Addressing 
7.3 DEC C Header Files 

You might find the following pointer-size compiler diagnostics useful: 

• %CC-IMPLICITFUNC 

A function prototype was not found before using the specified function. The 
compiler and run-time system rely on prototype definitions to detect incorrect 
pointer-size usage. Failure to include the proper header files can lead to 
incorrect results and/or pointer truncation. 

• %CC-MAYLOSEDATA 

A truncation is necessary to do this operation. The operation could be passing 
a 64-bit pointer to a function that does not support a 64-bit pointer in the 
given context. Or it could be a function returning a 64-bit pointer to a calling 
application that is trying to store that return value in a 32-bit pointer. 

• %CC-MAYHIDELOSS 

This message (when enabled) helps expose real MAYLOSEDATA messages 
that are being suppressed because of a cast operation. 

7.4 Functions Affected 
The DEC C RTL shipped with Open VMS Alpha Version 7.0 accommodates 
applications that use only 32-bit pointers, only 64-bit pointers, or combinations 
of both. To use 64-bit memory, you must, at a minimum, recompile and relink 
an application. The amount of source code change required depends on the 
application itself, calls to other runtime libraries, and the combinations of pointer 
sizes used . 

. With respect to 64-bit pointer support, the functions in the DEC C RTL fall into 
four categories: 

• Functions not impacted by choice of pointer size 

• Functions enhanced to accept either pointer size 

• Functions having a 32-bit and 64-bit implementation 

• Functions that accept only 32-bit pointers 

From an application developer's perspective, the first two types of functions are 
the easiest to use in either a single or mixed-pointer mode. 

The third type requires no modifications when used in a single-pointer 
compilation, but might require source code changes when used in a mixed-pointer 
mode. 

The fourth type requires careful attention whenever 64-bit pointers are used. 

7 .4.1 No Pointer-Size Impact 
The choice of pointer-size has no impact on a function if its prototype contains 
no pointer-related parameters or return values. The mathematical functions are 
good examples of this. 

Even some functions in this category that do have pointers in their prototype are 
not impacted by pointer size. For example, strerror has the prototype: 

char* strerror (int error_number); 

This function returns a pointer· to a character string, but this string is allocated 
by the DEC C RTL. As a result, to support both 32-bit and 64-bit applications, 
these types of pointers are guaranteed to fit in a 32-bit pointer. 

7-3 



DEC C RTL Support for 64-Bit Addressing 
7 .4 Functions Affected 

7 .4.2 Functions Accepting Both Pointer Sizes 
The Alpha architecture supports 64-bit pointers. The Open VMS Alpha calling 
standard specifies that all arguments are actually passed as 64-bit values. Before 
Open VMS Alpha Version 7.0, all 32-bit addresses passed to procedures were sign­
extended into this 64-bit parameter. The called function declared the parameters 
as 32-bit addresses, which caused the compiler to generate 32-bit instructions 
(such as LDL) to manipulate these parameters. 

Many functions in the DEC C RTL are enhanced to receive the full 64-bit address. 
For example, consider strlen: 

size_t strlen (const char *string); 

The only pointer in this function is the character-string pointer. If the caller 
passes a 32-bit pointer, the function works with the sign-extended 64-bit address. 
If the caller passes a 64-bit address, the function works with that address directly. 

The DEC C RTL continues to have only a single entry point for functions in 
this category. There are no source-code changes required to add any of the four 
pointer-size options for functions of this type. The Open VMS documentation 
refers to these functions as 64-bit friendly. 

7 .4.3 Functions with Two Implementations 

7-4 

There are many reasons why a function might need two implementations- one 
for 32-bit pointers, the other for 64-bit pointers. Some of these reasons include: 

• The pointer size of the return value is the same size as the pointer size of one 
of the arguments. If the argument is 32-bits, the return value is 32-bits. If 
the argument is 64-bits, the return value is 64-bits. 

• One of the arguments is a pointer to an object whose size is pointer-size 
sensitive. To know how many bytes are being pointed to, the function must 
know if the code was compiled in 32-bit or 64-bit pointer-size mode. 

• The function returns the address of dynamically allocated memory. The 
memory is allocated in 32-bit space when compiled for 32-bit pointers, and is 
allocated in 64-bit space when compiled for 64-bit pointers. 

From the application developer's point of view, there are three function prototypes 
for each of these functions. The <string .h> header file contains many functions 
whose return value is dependent upon the pointer size used as the first argument 
to the function call. For example, consider the memset function. The header file 
defines three entry points for this function: 

void* memset (void *memory_pointer, int character, size t size); 
void *_memset32 (void *memory_pointer, int character, size-t size); 
void *_memset64 (void *memory_pointer, int character, size=t size); 

The first prototype is the function that your application would currently call if 
using this function. The compiler changes a call to memset into a call to either 
_memset32 when compiled /POINTER_SIZE=32, or _memset64 when compiled 
/POINTER_SIZE=64. 

You can override this default behavior by directly calling either the 32-bit or the 
64-bit form of the function. This accommodates applications using mixed pointer 
sizes, regardless of the default pointer size specified with the /POINTER_SIZE 
qualifier. 



7.4.4 

DEC C RTL Support for 64-Bit Addressing 
7 .4 Functions Affected 

Note that if the application is compiled without specifying the /POINTER_SIZE 
qualifier, neither the 32-bit specific nor the 64-bit specific function prototypes are 
defined. In this case, the compiler automatically calls the 32-bit interface for all 
interfaces having dual implementations. 

Table 7-1 shows the DEC C RTL functions that have dual implementations 
in support of 64-bit pointer size. When compiling with the /POINTER_SIZE 
qualifier, calls to the unmodified function names are changed to calls to the 
function interface that matches the pointer size specified on the qualifier. 

Table 7-1 Functions with Dual Implementations 

basenarne rnalloc strpbrk wcsncat 
bsearch rnbsrtowcs strptirne wcsncpy 
callee rnernccpy strrchr wcspbrk 
cat gets rnernchr strsep wcsrchr 
cterrnid rnerncpy strstr wcsrtornbs 
cuserid rnernrnove strtod wcsstr 
dirnarne rnernset strtok wcstok 
f getnarne rnkternp strtol wcstol 
fgets mrnap strtoll wcstoul 
fgetws qsort strtoq WC SW CS 

full name realloc strtoul wrnernchr 
gcvt rind ex strtoull wrnerncpy 
get cap strcat strtouq wrnernrnove 
getcwd strchr tgetstr wrnernset 
getnarne strcpy trnpnarn 
gets strdup we scat 
index strncat wcschr 
longnarne strncpy wcscpy 

Restricted to 32-Bit Pointers 
Some functions in the DEC C RTL do not support 64-bit pointers. There are 
few of these. If you try to pass a 64-bit pointer to one of these functions, the 
compiler generates a %CC-W-MAYLOSEDATA warning. Applications compiled 
with /POINTER_SIZE=64 might need to be modified to avoid passing 64-bit 
pointers to these functions. 

Table 7-2 shows the functions restricted to using 32-bit pointers. The DEC C 
RTL offers no 64-bit support for these functions. You must ensure that only 32-bit 
pointers are used with these functions. 

Table 7-2 Functions restricted to 32-bit pointers 

at exit get opt rnodf set state 
execve iconv recvrnsg setvbuf 
execvp initstate sendrnsg 
fr exp ioctl setbuf 

7-5 



DEC C RTL Support for 64-Bit Addressing 
7 .4 Functions Affected 

Table 7-3 shows functions that make callbacks to user-supplied functions as part 
of processing that function call. The callback procedures are not passed 64-bit 
pointers. 

Table 7-3 Callbacks that Pass Only 32-Bit Pointers 

from vms 
ftw 

to vms 
tputs 

7.5 Reading Header Files 

7-6 

This section introduces the pointer-size manipulations used in the DEC C RTL 
header files. Use the following examples to become more comfortable reading 
these header files and to help modify your own header files. 

Examples 

1. 

f if INITIAL POINTER SIZE 0 
i ll-( VMS-VER < 70000000) 11 ! defined ALPHA f) 
i error "-Pointer size usage not pemitted before OpenVMS Alpha V7 .0" 
i endif 
i pragma _ _pointer_ size __ save 0 
i pragma _ _pointer - size 32 e 
iendif 

f if INITIAL POINTER SIZE 0 
i pragma _ _j)ointer_size 64 
iendif 

tif INITIAL POINTER SIZE Cit 
i pragma _ _j)ointer_size __ restore 
iendif 

All DEC C compilers that support the /POINTER_SIZE qualifier predefine 
the macro INITIAL POINTER SIZE. The DEC C RTL header files take 
advantage of the ANSI rule that if a macro is not defined, it has an implicit 
value of 0. 

The macro is defined as 32 or 64 when the /POINTER_SIZE qualifier is 
used. It is defined as 0 if the qualifier is not used. The statement shown as 
0 can be read as "if the user has specified either /POINTER_SIZE=32 or 
/POINTER_SIZE=64 on the command line". 

DEC C Version 5.2 and higher is supported on many Open VMS platforms. 
The lines shown as f) generate an error message if the target of the 
compilation is one that does not support 64-bit pointers. 

A header file cannot assume anything about the actual pointer-size context 
in effect at the time the header file is included. Furthermore, the DEC C 
compiler offers only the INITIAL POINTER SIZE macro and a mechanism to 
change the pointer size, but no way to determine the current pointer size. 

All header files that have a dependency on pointer sizes are responsible for 
saving 0, initializing 8, altering 0, and restoring 0 the pointer-size context. 



2. 

3. 

DEC C RTL Support for 64-Bit Addressing 
7 .5 Reading Header Files 

iifndef CHAR PTR32 0 
i define- CHAR PTR32 1 

typedef char *~-char _ptr32; 
typedef const char * ~-const_char_ptr32; 

iendif 

iif INITIAL POINTER SIZE 
i pragma _ _j)ointer_"Size 64 
iendif 

iifndef CHAR PTR64 f) 
:/J define- CHAR PTR64 1 

typedef char *-__ char _ptr64; 
typedef const char * __ const_char_ptr64; 

iendif 

Some function prototypes need to refer to a 32-bit pointer when in a 64-
bit pointer-size context. Other function prototypes need to refer to a 64-bit 
pointer when in a 32-bit pointer-size context. 

DEC C binds the pointer size used in a typedef at the time the typedef 
is made. The typedef declaration of char ptr32 0 is made in a 32-bit 
context. The typedef declaration of _=-yhar ytr64 f) is made in a 64-bit 
context. 

iif INITIAL POINTER SIZE 
i if-( VMS-VER < 70000000) I I !defined ALPHA 
i error "-Pointer size usage not permitted before OpenVMS Alpha V7.0" 
i endif 
:/J pragma _ _pointer_ size __ save 
i pragma _ _pointer_size 32 
fondif 

iif INITIAL POINTER SIZE f) 
i pragma _ _j)ointer_size 64 
iendif 

int abs (int __ j); e 
__ char_ptr32 strerror (int __ errnum); 8 

Before declaring function prototypes that support 64-bit pointers, the pointer 
context is changed f) from 32-bit pointers to 64-bit pointers. 

Functions restricted to 32-bit pointers are placed in the 32-bit pointer context 
section 0 of the header file. All other functions are placed in the 64-bit 
context section 8 of the header file. 

Functions that have no pointer-size impact (8 and 0) are located in the 
64-bit section. Functions that have no pointer-size impact, except for a 32-bit 
address return value 8, are also in the 64-bit section, and use the 32-bit 
specific typedefs previously discussed. 

7-7 



DEC C RTL Support for 64-Bit Addressing 
7.5 Reading Header Files 

4. 

7-8 

f if INITIAL POINTER SIZE 
i pragma _ _pointer_ size 64 
=IJ:endif 

f if INITIAL POINTER SIZE == 32 It 
i pragma _ _P"ointer_size 32 
iendif 

char *strcat (char * __ sl, __ const_char_ptr64 __ s2); f) 

f if INITIAL POINTER SIZE 
i pragma _ _P"ointer_size 32 

char * strcat32 (char * __ sl, __ const_char_ptr64 __ s2); 8 

i pragma _ _pointer_size 64 

char * strcat64 (char * __ sl, const char * __ s2); e 
iendif 

This example shows declarations of functions that have both a 32-bit and 
64-bit implementation. These declarations are located in the 64-bit section of 
the header file. 

The normal interface to the function f) is declared using the pointer size 
specified on the /POINTER_SIZE qualifier. Because the header file is in 64-
bit pointer context and because of the statements at 0, the declaration at f) 
is made using the same pointer size context as the /POINTER_SIZE qualifier. 

The 32-bit specific interface 8 and the 64-bit specific interface e are declared 
in 32-bit and 64-bit pointer-size context, respectively. 



8 
MACR0-32 Programming Support for 64-Bit 

Addressing 

This chapter describes the new 64-bit addressing support provided by the 
MACR0-32 compiler and associated components. The changes are primarily for 
argument passing and receiving and for address computations. 

~~~~~~~~~~~~ Note ~~~~~~~~~~~~ 

When you use the latest version of the compiler, regardless of whether
you use the 64-bit addressing features, you must also use the latest
version of ALPHA$LIBRARY:STARLET.MLB. Make sure that the latest
version is installed on your system and that the ALPHA$LIBRARY logical
points to the correct directory.

8.1 Guidelines for 64-Bit Addressing
The following guidelines pertain to using 64-bit addressing in VAX MACRO code
that is compiled for Open VMS Alpha:

• Limit its use to code that you have ported to Open VMS Alpha.

For any new development on Open VMS Alpha, Digital recommends the use of
higher level languages.

• Make 64-bit addressing explicit in your code.

The 64-bit addressing macros, directives, built-ins, and qualifier produce code
that is more reliable and easier to maintain. (With an in-depth knowledge
of the Alpha calling standard, you can make 64-bit argument list references
without the new 64-bit address support, but such references are limited.)

8.2 New and Changed Components for 64-Bit Addressing
The new and changed components that provide MACR0-32 programming support
for 64-bit addressing are shown in Table 8-1.

Table 8-1 New and Changed Components for 64-Bit Addressing

Component

$SETUP _CALL64

$PUSH_ARG64

Description

New macro that initializes the call sequence

New macro that does the equivalent of argument
pushes

(continued on next page)

8-1

MACR0-32 Programming Support for 64-Bit Addressing
8.2 New and Changed Components for 64-Bit Addressing

Table 8-1 (Cont.) New and Changed Components for 64-Bit Addressing

Component

$CALL64

$1S_32BITS

QUAD=NO/YES

/ENABLE=QUADWORD

.CALL_ENTRY QUAD_
ARGS=TRUE I FALSE

.ENABLE QUADWORD
/.DISABLE QUADWORD

EVAX_SEXTL

EVAX_CALLG_64

$RAB64 and $RAB64_STORE

Description

New macro that invokes the target routine

New macro for checking the sign extension of the low
32 bits of a 64-bit value

New parameter for page macros to support 64-bit
virtual addresses

The QUADWORD parameter was extended to include
64-bit address computations

QUAD_ARGS=TRUE I FALSE is a new parameter
that indicates the presence (or absence) of quadword
references to the argument list

The QUADWORD parameter was extended to include
64-bit address computations

New built-in for sign extending the low 32 bits of a
64-bit value into a destination

New built-in to support 64-bit calls with variable-size
argument lists

New RMS macros for using buffers in 64-bit address
space

8.3 Passing 64-Bit Values
The method that you use for passing 64-bit values depends on whether the size
of the argument list is fixed or variable. These methods are described in the
following sections.

8.3.1 Calls with a Fixed-Size Argument List

8-2

For calls with a fixed-size argument list, use the new macros, as shown in the
steps in Table 8-2.

Table 8-2 Passing 64-Bit Values with a Fixed-Size Argument List

Step

Initialize the call sequence

"Push" the call arguments

Invoke the target routine

Use ...

$SETUP _CALL64

$PUSH_ARG64

$CALL64

An example of using these macros follows. Note that the arguments are pushed
in reverse order, which is the same way a 32-bit PUSHL instruction is used.

MOVL
$SETUP CALL64
$PUSH ARG64
$PUSH-ARG64
$PUSH-ARG64
$CALLG4

8(AP), RS
3
8 (RO)
RS
i8
some routine

fetch a longword to be passed
Specify three arguments in call
Push argument i3
Push argument f 2
Push argument :fl:1
Call the routine

MACR0-32 Programming Support for 64-Bit Addressing
8.3 Passing 64-Bit Values

The $SETUP _CALL64 macro initializes the state for a 64-bit call. It is required
before $PUSH_ARG64 or $CALL64 can be used. If the number of arguments
is greater than six, this macro creates a local JSB routine, which is invoked to
perform the call. Otherwise, the argument loads and call are inline and very
efficient. Note that the argument count specified in the $SETUP_CALL64 does
not include a number sign (#). (The JSB routine facilitates proper placement of
the stacked arguments, because the standard call sequence requires octaword
alignment of the stack and of the stack arguments at the top of the octaword
aligned stack.)

The inline option can be used to force a call with greater than six arguments to
be done without a local JSB routine. However, there are restrictions on its use
(see Appendix B).

The $PUSH_ARG64 macro moves the argument directly to the correct argument
register or stack location. It is not actually a stack push, but it is the analog of
the PUSHL instructions used in a 32-bit call.

The $CALL64 macro sets up the argument count register and invokes the target
routine. If a JSB routine was created, it ends the routine. It reports an error if
the number of arguments pushed does not match the count specified in $SETUP_
CALL64. Both $CALL64 and $PUSH_ARG64 check that $SETUP _CALL64 has
been invoked prior to their use.

8.3.1.1 Usage Notes for $SETUP _CALL64, $PUSH_ARG64, and $CALL64
Keep these points in mind when using $SETUP _CALL64, $PUSH_ARG64, and
$CALL64:

• The arguments are read as aligned quadwords. To pass a longword from
memory, move it to a register first, and then use that register in $PUSH_
ARG64, as shown in the example in Section 8.3.1. Similarly, if you know the
quadword you want to pass is unaligned, move the value to a register first.
Also, keep in mind that indexed operands, such as (R4)[RO], will be evaluated
using quadword indexing when used in $PUSH_ARG64.

• If the number of arguments is greater than six, so that a local JSB routine is
created, no SP or AP references are allowed between the $SETUP _CALL64
and $CALL64. The $PUSH_ARG64 and $CALL64 macros do report uses of
these registers in operands, but they are not allowed in other instructions
in this range either, and cannot be flagged. To pass an AP- or SP-based
argument in this case, move it to a register before the $SETUP _CALL64
invocation.

• If the number of arguments is greater than six, do not rely on values in
registers above R15 surviving the $SETUP _CALL64 invocation. Use a
nonscratch register as a temporary register instead. For example, suppose
you want to pass a value from a stack location, and the call has more than
six arguments. In this case, you need to move the value to a register. Rather
than using a scratch register such as R28, use a VAX register, .such as RO. If
all the VAX registers are in use, use R13, R14, or R15.

• It is safe to use the scratch registers above R16 within the range between the
$SETUP _CALL64 and the $CALL64. However, you must be careful not to use
an argument register that has already been loaded. The argument registers
are loaded in downward order, from R21 through R16. So, suppose a call
passes six arguments. It is not safe to use R21 after the first $PUSH_ARG64,
because that has loaded R21. The $PUSH_ARG64 macro checks for operands
which refer to argument registers that have already been loaded. If any are

8-3

MACR0-32 Programming Support for 64-Bit Addressing
8.3 Passing 64-Bit Values

found, the compiler reports a warning. The safest approach is to use registers
R22 through R28 when a temporary register is required.

~~~~~~~~~~~~- Note ~~~~~~~~~~~~ 

The $SETUP _CALL64, $PUSH_ARG64, and $CALL64 macros are 
intended to be used in an inline sequence. That is, you cannot branch into 
the middle of a $SETUP _CALL64/$PUSH_ARG64/$CALL64 sequence, 
nor can you branch around $PUSH_ARG64 macros, or branch out of the 
sequence to avoid the $CALL64. 

For more information about $SETUP _CALL64, $PUSH_ARG64, and $CALL64, 
see Appendix B. 

8.3.2 Calls with a Variable-Size Argument List 
For calls with a variable-size argument list, use the new EVAX_CALLG_64 
built-in, as shown in the following steps: 

1. Create an in-memory argument list 

2. Call a routine, passing the in-memory argument list, for example: 

EVAX_CALLG_64 (Rn), routine 

The argument list in the EVAX_CALLG_64 built-in is read as a series of 
quadwords, beginning with a quadword argument count. 

8.4 Declaring 64-Bit Arguments 

8-4 

You can use QUAD_ARGS=TRUE, a new .CALL_ENTRY parameter, to declare 
the use of quadword arguments in a routine's argument list. With the presence of 
the QUAD_ARGS parameter, the compiler behaves differently when a quadword 
reference to the argument list occurs. First, it does not force argument-list 
homing, which such a reference normally requires. (An argument list containing 
a quadword value cannot be homed, because homing, by definition, packs the 
arguments into longword slots.) Second, "unaligned memory reference" will not 
be reported on these quadword references to the argument list. 

Note that the actual code generated for the argument-list reference itself is not 
changed by the presence of the QUAD_ARGS clause, except when the reference is 
in a VAX quadword instruction, such as MOVQ. For the most part, QUAD_ARGS 
only prevents argument-list homing due to a quadword reference, and suppresses 
needless alignment messages. This suppression applies to both EVAX_ built-ins 
and VAX quadword instructions such as MOVQ. 

For VAX quadword instructions, the QUAD_ARGS clause causes the compiler 
to read the quadword argument as it does for EVAX_ builtins-as an actual 
quadword. Consider the following example: 

MOVQ 4(AP), 8(R2) 

If the QUAD_ARGS clause is specified, MOVQ stores the entire 64 bits of 
argument 1 into the quadword at 8(R2). If the QUAD_ARGS clause is not 
specified, MOVQ stores the low longwords of arguments 1 and 2 into the 
quadword at 8(R2). 



MACR0-32 Programming Support for 64-Bit Addressing 
8.4 Declaring 64-Bit Arguments 

~~~~~~~~~~~~- Note ~~~~~~~~~~~~-

Deferred mode argument list references, such as "@4(AP)", should be
avoided in routines that use QUAD_ARGS=TRUE, because the result
may not be what you expect. The indirection of this type of reference may
require the effective address to be loaded from the argument list, if the
argument is in memory. This is always performed as a longword load, not
a quadword load. (If the argument is in a register, it need not be loaded.)

8.4.1 Usage Notes for QUAD_ARGS
Keep these points in mind when using QUAD_ARGS:

• AP-based quadword argument-list references look strange because they
appear to overlap. You can improve this situation by defining symbolic names
for the argument-list offsets, for example, FIRST_ARG, SECOND_ARG, and
so forth. Users are encouraged to define meaningful symbolic names that
describe the uses of the arguments to make the source code more readable.
Alternatively, you can still use direct argument register references to refer to
the first six arguments. Either way, it is useful to declare QUAD_ARGS to
ensure that the argument list is not homed.

• Routines that share code must have the same setting for QUAD_ARGS. If
they do not, the compiler will report a warning message.

• JSB routines cannot refer to their caller's argument list if the caller has
QUAD_ARGS. References to AP within JSB routines require that the last
CALL_ENTRY have its argument list homed. HOME_ARGS and QUAD_
ARGS are mutually exclusive.

• QUAD_ARGS causes the $ARGn symbols, which the compiler places in the
debug symbol table, to be defined as quadwords rather than longwords. These
symbols allow easy access to received argument values and can be used in
place of register numbers or stack offsets when debugging with the symbolic
debugger.

8.5 Specifying 64-Bit Address Arithmetic
There are no explicit pointer-type declarations in MACR0-32. You can create a
64-bit pointer value in a register in a variety of ways. The most common are the
EVAX_LDQ built-in for loading an address stored in memory and the MOVAx for
getting the address of the specified operand.

After a 64-bit pointer value is in a register, an ordinary instruction will access
the 64-bit address. The amount of data read from that address depends on the
instruction used. Consider the following example:

MOVL 4(Rl), RO

The MOVL instruction reads the longword at offset 4 from Rl, regardless of
whether Rl contains a 32- or 64-bit pointer.

However, certain addressing modes require the generation of arithmetic
instructions to compute the effective address. For VAX compatibility, the
compiler computes these as longword operations. For example, 4 + <1@33> yields
the value 4, because the shifted value exceeds 32 bits. If quadword mode was
enabled, the upper bit would not be lost.

8-5

MACR0-32 Programming Support for 64-Bit Addressing
8.5 Specifying 64-Bit Address Arithmetic

The /ENABLE=QUADWORD qualifier (and the corresponding .ENABLE
QUADWORD and .DISABLE QUADWORD directives) were extended to affect
address computations. Prior to these extensions, the QUADWORD options only
affected the mode in which constant expression evaluations were performed.

By specifying /ENABLE=QUADWORD, addresses will be computed using
quadword instructions, such as SxADDQ and ADDQ. If you do not want
quadword operations applied to an entire code module but only to certain
sections, you can omit the /ENABLE=QUADWORD qualifier. Instead, use the
.ENABLE QUADWORD and .DISABLE QUADWORD directives to enclose the
sections where you want quadword operations performed.

There is no performance penalty when using /ENABLE=QUADWORD.

8.5.1 Dependence on Wrappi~g Behavior of Longword Operations
The compiler cannot use quadword arithmetic for all addressing computations,
because existing code may rely on the wrapping behavior of the 32-bit operations.
That is, code may perform addressing operations that actually overflow 32 bits,
knowing that the upper bits are discarded. Doing the calculation in quadword
mode will cause an incompatibility.

Before using /ENABLE to set quadword evaluation for an entire module, check
the existing code for dependence on longword wrapping. There is no simple way
to do this, but as a programming technique, it should be rare and may be called
out in the code.

The following example shows the wrapping problem:

MOVAL (Rl) [RO], R2

Suppose Rl contains the value 7FFFFFFF, and RO contains 1. The MOVAL
instruction generates an S4ADDL instruction. The shift and add result exceeds
32 bits, but the stored result is the low 32 bits, sign extended.

If quad arithmetic were used (S4ADDQ), the true quad value would result, as
shown in the following example:

S4ADDL RO, Rl, R2 => FFFFFFFF 80000003
S4ADDQ RO, Rl, R2 => 00000000 80000003

The wrapping problem is not limited to indexed mode addressing. Consider the
following example:

MOVAB offset(Rl), RO

If the symbol offset is not a compile-time constant, this instruction causes a value
to be read from the linkage section and added (using an ADDL instruction) to the
value in Rl. Changing this to ADDQ may change the result if the value exceeds
32 bits.

8.6 Sign Extending and Checking

8-6

A new built-in, EVAX_SEXTL (sign extend longword), is available for sign
extending the low 32 bits of a 64-bit value into a destination. This built-in makes
explicit the sign extension of the low longword of the source into the destination.

EVAX_SEXTL takes the low 32 bits of the 64-bit value, fills the upper 32 bits
with the sign extension (whatever is in bit 31 of the value), and writes the 64-bit
result to the destination.

MACR0-32 Programming Support for 64-Bit Addressing
8.6 Sign Extending and Checking

Neither operand must be a register. The following examples are all legal uses:

evax sextl rl,r2
evax-sextl rl, (r2)
evax=:sextl (r2), (r3) [r4]

A new macro, $IS_32BITS is available for checking the sign extension of the low
32 bits of a 64-bit value. It is described in Appendix B.

8.7 Alpha Instruction Built-ins
The compiler supports many Alpha instructions as built-ins. Many of these
built-ins (available since the compiler first shipped with Open VMS Alpha) can be
used to operate on 64-bit quantities. The function of each built-in and its valid
operands are documented in Migrating to an Open VMS AXP System: Porting
VAX MACRO Code. A full description of each Alpha instruction is documented in
the MACR0-64 Assembler for Open VMS AXP Systems Reference Manual.

8.8 Calculating Page-Size Dependent Values
A new parameter, QUAD=NO/YES, for supporting 64-bit virtual addresses is
available for each of the page macros, shown in the following list:

• $BYTES_TO_PAGES

• $NEXT_PAGE

• $PAGES_TO_BYTES

• $PREVIOUS_PAGE

• $ROUND_RETADR

• $START_OF _PAGE

These macros provide a standard, architecture-independent means for calculating
page-size dependent values. For more information about these macros, see
Migrating to an Open VMS AXP System: Porting VAX MACRO Code.

8.9 Creating and Using Buffers in 64-Bit Address Space
The $RAB and $RAB_STORE control block macros have been extended for
creating and using data buffers in 64-bit address space. The 64-bit versions are
named $RAB64 and $RAB64_STORE respectively. The rest of the RMS interface
is restricted to 32 bits at this time. For more information about $RAB64 and
$RAB64_STORE, see Chapter 3.

8.10 Coding for Moves Longer Than 64K Bytes
The MACR0-32 instructions MOVC3 and MOVC5 properly handle 64-bit
addresses but the moves are limited to a 64K bytes length. This limitation is
because MOVC3 and MOVC5 accept word-sized lengths.

For moves longer than 64K bytes, use OTS$MOVE3 and OTS$MOVE5.
OTS$MOVE3 and OTS$MOVE5 accept longword-sized lengths. (LIB$MOVC3
and LIB$MOVC5 have the same 64K byte length restriction as MOVC3 and
MOVC5.) An example of replacing MOVC3 with OTS$MOVE3 follows.

Code using MOVC3:

MOVC3 BUF$W_LENGTH(R5), (R6), OUTPUT(R7) Old code, word length

8-7

MACR0-32 Programming Support for 64-Bit Addressing
8.10 Coding for Moves Longer Than 64K Bytes

8-8

The equivalent 64-bit code with longword length:

$SETUP_CALL64 3 ; Specify three arguments in call
EVAX ADDQ R7, fOUTPUT, R7
$PUSH ARG64 R7 Push destination, arg f 3
$PUSH-ARG64 R6 ; Push source, arg 12
MOVL - BUF$L LENGTH(RS), R16
$PUSH ARG64 R16 - ; Push length, arg f 1
$CALLG4 OTS$MOVE3

MOVL
EVAX_ADDQ
EVAX_ADDQ

BUF$L LENGTH(RS), R16
R6, RIG, Rl ; MOVC3 returns address past source
R7, R16, R3 ; MOVC3 returns address past destination

Because MOVC3 clears RO, R2, R4, and R5, make sure that these side effects are
no longer needed.

OTS$MOVE3 and OTS$MOVE5 are documented with other LIBOTS routines in
the Open VMS RTL General Purpose (0TS$) Manual.

A
64-Bit Example Program

This example program demonstrates the 64-bit region creation and deletion
system services. It uses SYS$CREATE_REGION_64 to create a region and
then uses SYS$EXPREG_64 to allocate virtual addresses within that region.
The virtual address space and the region are deleted by calling SYS$DELETE_
REGION_64.

/*

* * Copyright @ Digital Equipment Corporation, 1995 All Rights Reserved.
* Unpublished rights reserved under the copyright laws of the United States.
* * The software contained on this media is proprietary to and embodies the
* confidential technology of Digital Equipment Corporation. Possession, use,
* duplication or dissemination of the software and media is authorized only
* pursuant to a valid written license from Digital Equipment Corporation.
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
* Government is subject to restrictions as set forth in Subparagraph
* (c) (1) (ii) of DFARS 252.227-7013, or in FAR 52.227-19, as applicable.
*

/*
This program creates a region in P2 space using the region creation
service and then creates VAs within that region. The intent is to
demonstrate the use of the region services and how to allocate virtual
addresses within a region. The program also makes use of 64-bit
descriptors and uses them to format return values into messages with the
aid of SYS$GETMSG.

To build and run this program type:

$ CC/POINTER SIZE=SHORT/STANDARD=RELAXED/DEFINE=(" NEW STARLET=l") -
REGIONS.C -

$ LINK REGIONS.OBJ
$ RUN REGIONS.EXE

*/

iinclude
iinclude
iinclude
iinclude
iinclude
if include
Hnclude
iinclude
iinclude
iinclude
iinclude
ff include
iinclude
iinclude

<descrip.h>
<far_pointers.h>
<gen64def .h>
<iledef .h>
<ints.h>
<iosbdef .h>
<psldef .h>
<ssdef .h>
<starlet.h>
<stdio.h>
<stdlib.h>
<string.h>
<syidef .h>
<vadef .h>

/* Descriptor Definitions */
/* Long Pointer Definitions */
/* Generic 64-bit Data Type Definition */
/* Item List Entry Definitions */
/* Various Integer Typedefs */
/* I/O Status Block Definition */
/* PSL$ Constants *I
/* SS$ Message Codes */
/* System Service Prototypes */
/* printf */
/* malloc, free *I
/* memset */
/* $GETSYI Item Code Definitions */
/* VA Creation Flags and Constants */

A-1

64-Bit Example Program

/* Module-wide constants and macros.

:fl:def ine
:fl:define
tf:def ine
:ftdef ine

:fl:def ine

BUFFER SIZE
HW NAME LENGTH
PAGELET-SIZE
REGION SIZE

good_status(code)

/* Module-wide Variables

int
page_size;

$DESCRIPTOR64 (msgdsc, "");

/* Function Prototypes

int get_page_size (void);

132
32

512
128

((code) & 1)

static void print_message (int code, char *string);

main (int argc, char **argv)
{

int
i,
status;

uint64
length 64,
master-length 64,
return=length=64;

GENERIC 64
region_ id_ 64;

VOID PQ
master va 64'
return=va=64;

*I

*/

*I

/* Get system page size, using SYS$GETSYI. */

status= get_page_size ();
if (!good status (status))

return (status);

/* Get a buffer for the message descriptor. */

msgdsc.dsc64$pq_pointer = malloc (BUFFER_SIZE);
printf ("Message Buffer Address= %016LX\n\n", msgdsc.dsc64$pq_pointer);

/* Create a region in P2 space. */

A-2

length 64 = REGION SIZE*page size;
status-= sys$create region 64 (

length 64, - - /* Size of Region to Create */
VA$C REGION UCREATE UOWN, /* Protection on Region */
0, - - - /* Allocate in Region to Higher VAs *I
®ion id 64, /* Region ID *I
&master-va-64, /* Starting VA in Region Created */
&master-length 64); /*Size of Region Created */

if (!good_status (status))
{

print message (status, "SYS$CREATE_REGION_64");
return (status);

printf ("\nSYS$CREATE REGION 64 Created this Region: %016LX - %016LX\n",
master va 64, - -
(uint64) master_va_64 + master_length_64 - 1);

64-Bit Example Program

/* Create virtual address space within the region.

for (i = 0; i < 3; +ti)
{

status = sys$expreg 64 (
®ion_id_64, - /* Region to Create VAs In
page size, /* Number of Bytes to Create
PSL$C USER, /* Access Mode
0, - /* Creation Flags
&return va 64, /* Starting VA in Range Created
&return-length 64); /*Number of Bytes Created

if (!good_status (status))
{

}

print_message (status, "SYS$EXPREG_64");
return status;

printf ("Filling %016LX - %16LX with %0ds.\n",
return va 64,
(uint64) return va 64 + return length 64 - 1,
i); - - - -

mernset (return_va_64, i, page_size);

*/

*/
*I
*/
*/
*/
*/

/* Return the virtual addresses created within the region, as well as the
region itself. */

printf ("\nReturning Master Region: %016LX - %016LX\n",
master va 64,
(uint64) iiiaster_va_64 + master_length_64 - 1);

status = sys$delete region 64 (
®ion id 64, - /*-Region to Delete */
PSL$C USER:- /* Access Mode */
&return va 64, /* VA Deleted */
&return=length_64); /*Length Deleted */

if (good status (status))
printf ("SYS$DELETE REGION 64 Deleted VAS Between: %016LX - %016LX\n",

return va 64, - -

else
{

(uint64) return_va_64 + return_length_64 - 1);

print message (status, "SYS$DELTE_REGION_64");
return (status);

/* Return message buffer. */

free (msgdsc.dsc64$pq_pointer);

/* This routine obtains the system page size using SYS$GETSYI.
value is recorded in the module-wide location, page_size.

int get_page_size ()
{
int

status;

IOSB
iosb;

ILE3
item list [2];

/* Fill in SYI item list to retrieve the system page size.

The return
*/

*I

A-3

64-Bit Example Program

item list[O] .ile3$w length = sizeof (int);
item-list[O] .ile3$w-code = SYI$ PAGE SIZE;
item-list[O] .ile3$ps bufaddr =&page size;
item-list[O] .ile3$ps-retlen addr = 0; -
item-list[l] .ile3$w length - = 0;
itenClist[l] .ile3$w=code = 0;

/* Get the system page size.

status = sys$getsyiw
0,
0,
0,
&item list,
&iosb-;
0,
0);

if (!good_status (status))
{

}

print message (status, "SYS$GETJPIW");
return (status);

if (!good_status (iosb.iosb$w_status))
{

/* EFN
/* CSI address
/* Node name
/* Item list
/* I/O status block
/* AST address
/* AST parameter

print message (iosb.iosb$w status, "SYS$GETJPIW IOSB");
return (iosb.iosb$w_status);

return SS$_NORMAL;

/* This routine takes the message code passed to the routine and then uses
SYS$GETMSG to obtain the associated message text. That message is then

*I

*/
*/
*/
*/
*/
*/
*I

printed to stdio along with a user-supplied text string. */

ipragma inline (print message)
static void print message (int code, char *string)
{ -

A-4

msgdsc.dsc64$q_length = BUFFER_SIZE;
sys$getmsg (

code, /* Message Code */
(unsigned short *) &msgdsc.dsc64$q_length, /* Returned Length */
&msgdsc, /* Message Descriptor */
15, /* Message Flags */
0); /*Optional Parameter */

*(msgdsc.dsc64$pq_pointer+msgdsc.dsc64$q_length) = '\0';
printf ("Call to %s returned: %s\n",

string,
msgdsc.dsc64$pqJ:Jointer);

MACR0-32 Macros for Manipulating 64-Bit Addresses

B
MACR0-32 Macros for 64-Bit Addressing

This appendix describes the MACR0-32 macros for manipulating 64-bit addresses
and for checking the sign extension of the low 32 bits of 64-bit values.

These macros reside in the directory ALPHA$LIBRARY:STARLET.MLB
(generally synonymous with SYS$LIBRARY:STARLET.MLB) and can be used
by both application code and system code. The page macros have also been
enhanced for 64-bit addresses. The support is provided by a new parameter,
QUAD=NO/YES.

Note that you can use certain arguments to the macros described in this appendix
to indicate register sets. To express a register set, list the registers, separated by
commas, within angle brackets. For example:

<Rl,R2,R3>

If the set contains only one register, the angle brackets are not required.

B.1 Macros for Manipulating 64-Bit Addresses
This section describes the following macros, designed to manipulate 64-bit
addresses:

• $SETUP_CALL64

• $PUSH_ARG64

• $CALL64

$SETUP _CALL64

Initializes the call sequence.

Format

$SETUP _CALL64 arg_count, inline=true or false

Parameters

arg_count
The number of arguments in the call.

in line
Forces inline expansion, rather than creation of a JSB routine.

B-1

MACR0-32 Macros for Manipulating 64-Bit Addresses
$SETUP _CALL64

Description

This macro initializes the state for a 64-bit call. It must be used before using
$PUSH_ARG64 and $CALL64.

If there are six or fewer arguments, the code is always inline.

By default, if there are more than six arguments, this macro creates a JSB
routine which is invoked to perform the actual call. However, if the inline option
is specified as inline=true, the code will be generated inline. This option should
only be enabled if the code in which it appears has a fixed stack depth. A fixed
stack depth can be assumed if no RUNTIMSTK or VARSIZSTK messages have
been reported. Otherwise, if the stack alignment is not at least quadword, there
might be many alignment faults in the called routine and in anything the called
routine calls. The default behavior (inline=false) does not have this problem.

If there are more than six arguments, there can be no references to AP or SP
between a $SETUP _CALL64 and the matching $CALL64, because the $CALL64
code may be in a separate JSB routine. In addition, temporary registers (R16
and above) may not survive the $SETUP _CALL64. However, they can be used
within the range, except where of Rl6 through R21 interfere with the argument
registers already set up. In such cases, higher temporary registers should be used
instead.

------------------------ Note ------------------------
The $SETUP _CALL64, $PUSH_ARG64, and $CALL64 macros are
intended to be used in an inline sequence. That is, you cannot branch into
the middle of a $SETUP _CALL64/$PUSH_ARG64/$CALL64 sequence,
nor can you branch around $PUSH_ARG64 macros, or branch out of the
sequence to avoid the $CALL64.

$PUSH_ARG64

Format

Parameters

Description

B-2

Does the equivalent of argument pushes for a call.

$PUSH_ARG64 argument

argument
The argument to be pushed.

This macro pushes a 64-bit argument for a 64-bit call. The macro $SETUP_
CALL64 must be used before you can use $PUSH_ARG64.

Arguments will be read as aligned quadwords. That is, $PUSH_ARG64 4(RO) will
read the quadword at 4(RO), and push the quadword. Any indexed operations will
be done in quadword mode.

$CALL64

Format

Parameters

Description

MACR0-32 Macros for Manipulating 64-Bit Addresses
$PUSH_ARG64

To push a longword value from memory as a quadword, first move it into a
register with a longword instruction, and then use $PUSH_ARG64 on the
register. Similarly, to push a quadword value which you know is not aligned,
move it to a temporary register first, and then use $PUSH_ARG64.

If the call contains more than six arguments, this macro checks for SP or AP
references in the argument. If the call contains more than six arguments, SP
references are not allowed, and AP references are only allowed if the inline option
is used.

The macro also checks for references to argument registers that have already
been set up for the current $CALL64. If it finds such references, a warning is
reported to advise the user to be careful not to overwrite an argument register
before it is used as the source in a $PUSH_ARG64.

The same checking is done for AP references when there are six or fewer
arguments; they are allowed, but the compiler cannot prevent you from
overwriting one before you use it. Therefore, if such references are found, an
informational message is reported.

Note that if the operand uses a symbol whose name includes one of the strings
R16 through R21, not as a register reference, this macro might report a spurious
error. For example, if the invocation $PUSH ARG64 SAVED R21 is made after R21
has been set up, this macro will unnecessarily report an informational message
about overwriting argument registers.

Also note that $PUSH_ARG64 cannot be in conditional code. $PUSH_ARG64
updates symbols that keep track of argument count, and so forth. Attempting to
write code that branches around a $PUSH_ARG64 in the middle of a $SETUP_
CALL64/$CALL64 sequence will not work properly.

Invokes the target routine.

$CALL64 call_target

call_ target
The routine to be invoked.

This macro calls the specified routine, assuming $SETUP_ CALL64 has been used
to specify the argument count, and $PUSH_ARG64 has been used to push the
quadword arguments. This macro checks that the number of pushes matches
what was specified in the setup call.

The call target operand must not be AP- or SP-based.

B-3

MACR0-32 Macros for Manipulating 64-Bit Addresses
B.2 Macro for Checking the Sign Extension

B.2 Macro for Checking the Sign Extension

The macro in this section is used for checking the sign extension of the low 32
bits of a 64-bit value.

$1S_32BITS

Format

Parameters

Description

Example

B-4

Checks the sign extension of the low 32 bits of a 64-bit value and directs the
program flow, based on the outcome of the check.

$1S_32BITS quad_arg, leq_32bits, gtr_32bits, temp_reg=22

quad_arg
A 64-bit quantity, either in a register or in an aligned quadword memory location.

leq_32bits
Label to branch to if quad_arg is a 32-bit sign-extended value.

gtr_32bits
Label to branch to if quad_arg is greater than 32-bits.

temp_reg:22
Register to use as a temporary register for holding the low longword of the source
value-R22 is the default.

$IS_32BITS checks the sign extension of the low 32 bits of a 64-bit value and
directs the program flow, based on the outcome of the check.

$is_32bits R9, 10$

$is_32bits 4(R8), 20$, 30$, R28

In the first example, the compiler checks the sign extension of the low 32 bits of
the 64-bit value at R9, using the default temporary register, R22. Depending on
the type of branch and the outcome of the test, the program either branches or
continues inline.

In the second example, the compiler checks the sign extension of the low 32 bits
of the 64-bit value at 4(R8), using R28 as a temporary register, and, based on the
check, branches to either 20$ or 30$.

64-bit addresses and the debugger, 6-1
64-bit pointer support, 7-1
64-Bit Virtual Addressing

definition, 1-1

A
Addresses

passing 64-bit values, 8-2, B-1
specifying 64-bit computing, 8-5

Addressing guidelines
64-bit, 8--1

Argument list
fixed-size, 8--2
suppressing homing, 8--4
variable-size, 8--4

Arguments
declaring quadword, 8-4

Assembly language instructions
Alpha built-ins, 8-7

B
Built-ins

Alpha assembly language instructions, 8-7

c
$CALL64 macro, 8--1, B-3

passing 64-bit values, 8--2
.CALL_ENTRY directive

QUAD_ARGS parameter
declaring 64-bit values, 8-1, 8--4

D
Debugger

quadwords, 6-1
.DISABLE directive

QUADWORD option, 8-1

E
.ENABLE directive

QUADWORD option, 8-1
/ENABLE qualifier

QUADWORD option, 8-1
EVAX_CALLG_64 built-in

64-bit address support, 8-2, 8--4
EVAX_SEXTL built-in

Index

sign extension for 64-bit address support, 8--2,
8-6

Instructions
compiler built-ins for Alpha assembly language,

8-7
$IS_32BITS macro

checking sign extension, 8-1, 8-7, B-4

L
LIB$MOVC3 routine, 8-7
LIB$MOVC5 routine, 8-7
LIBOTS routines, 8--7

M
MOVC3 instruction, 8-7
MOVC5 instruction, 8-7

0
OTS$MOVE3 routine, 8-7
OTS$MOVE5 routine, 8--7

p
Page size

calculations based on, 8-1, 8-7
macro parameter for 64-bit addressing, 8-1,

8-7
Pointer-type declarations, 8--5

Digital Confidential
lndex-1

Pointers
64-bit support, 7-1

$PUSH_ARG64 macro, 8-1, B-2
passing 64-bit values, 8-2

Q
Quadword addresses

computing, 8-5
Quadword arguments

declaring, 8-4
passing, 8-2

lndex-2

R
$RAB macro, 8-7
$RAB64 macro, 8-2, 8-7
$RAB64_STORE macro, 8-2, 8-7
$RAB_STORE macro, 8-7
RMS macros

s

support for data buffers in 64-bit address space,
8-2,8-7

$SETUP_ CALL64 macro, 8-1, B-1
passing 64-bit values, 8-2

Sign extension
checking with $1S_32BITS macro, 8-7, B-4
using EVAX_SEXTL built-in, 8-6

Digital Confidential

