
mamaoma

OpenVMS System Services
Reference Manual: GETQUl-Z

·Open VMS System Services
Reference Manual: GETQUl-Z
Order Number~ AA-QSBNA-TE

December 1995

This manual describes a set of routines that the Open VMS operating
system uses to control resources, to allow process communication, to
control 1/0, and to perform other such operating system functions.

This manual is in two parts. This second part contains the system
services from $GETQUI through Z.

Revision/Update Information: This manual supersedes the Open VMS
System Services Reference Manual
for Open VMS AXP Version 6.1 and
Open VMS VAX Version 6.1.

Software Version: Open VMS Alpha Version 7.0
Open VMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts .

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

©Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC Fortran,
DECdns, DECdtn, DECnet, DECnetJOSI, DECwindows, Digital, HSC, MASSBUS, MicroVAX,
MicroVAX II, MSCP, OpenVMS, RA, StorageWorks, TA, TMSCP, TURBOchannel, ULTRIX, VAX,
VAX C, VAX DOCUMENT, VAXcluster, VMS, VMScluster, VT, and the DIGITAL logo.

ZK6244

The following are third-party trademarks:

Oracle is a registered trademark, and Oracle CODASYL DBMS and Oracle Rdb are trademarks of
Oracle Corporation.

OSI is a registered trademark of CA Management, Inc.

This document is available on CD-ROM.

Contents

Preface . vii

System Service Descriptions

$GETQUI ·. SYS2-3
$GETQUIW . SYS2-46
$GET_REGION_INFO (Alpha Only) . SYS2-47
$GETSYI . SYS2-51
$GETSYIW : . SYS2-70
$GETTIM. SYS2-71
$GETUAI . SYS2-72
$GETUTC . SYS2-84
$GET_ALIGN_FAULT_DATA (Alpha Only) SYS2-85
$GET_ARITH_EXCEPTION (Alpha Only) SYS2-87
$GET_SECURITY ... SYS2-89
$GET_SYS_ALIGN_FAULT_DATA (Alpha Only) . SYS2-97
$GOTO_UNWIND (Alpha Only) SYS2-99
$GRANTID .. SYS2-101
$HASH_PASSWORD ... SYS2-105
$HIBER ... SYS2-108
$IDTOASC ... SYS2-110
$IEEE_SET_FP_CONTROL (Alpha Only) SYS2-113
$INIT_SYS_ALIGN_FAULT_REPORT (Alpha Only) SYS2-115
$INIT_VOL .. SYS2-118
$IO_CLEANUP (Alpha Only) SYS2-131
$IO_PERFORM (Alpha Only) SYS2-132
$IO_PERFORMW (Alpha Only) SYS2-135
$IO_SETUP (Alpha Only) SYS2-136
$LCKPAG ... SYS2-139
$LCKPAG_64 (Alpha Only) SYS2-142
$LKWSET ... SYS2-145
$LKWSET_64 (Alpha Only) SYS2-148
$MGBLSC ... SYS2-151
$MGBLSC_64 (Alpha Only) SYS2-157
$MGBLSC_GPFN_64 (Alpha Only) SYS2-163
$MOD_HOLDER .. SYS2-169
$MOD_IDENT .. SYS2-172
$MOUNT .. SYS2-176
$MTACCESS ... SYS2-191

iii

$NUMTIM ... SYS2-194
$NUMUTC ... SYS2-196
$PARSE_ACL ... SYS2-198
$PERM_DIS_ALIGN_FAULT_REPORT (Alpha Only) SYS2-201
$PERM_REPORT_ALIGN_FAULT (Alpha Only) SYS2-202
$PROCESS_AFFINITY (Alpha Only) SYS2-204
$PROCESS_CAPABILITIES (Alpha Only) SYS2-209
$PROCESS_SCAN ... SYS2-214
$PURGWS ... SYS2-227
$PURGE_ WS (Alpha Only) SYS2-229
$PUTMSG ... SYS2-231
$QIO ... SYS2-239
$QIOW .. SYS2-245
$READEF ... SYS2-246
$RELEASE_ VP (VAX Only) SYS2-248
$REM_HOLDER ... · . SYS2-249
$REM_IDENT .. SYS2-251
$RESCHED .. SYS2-253
$RESTORE_ VP _EXCEPTION (VAX Only) SYS2-254
$RESTORE_ VP _STATE (VAX Only) SYS2-256
$RESUME ... SYS2-258
$REVOKID .. SYS2-260
$RMSRUNDWN ... SYS2-264
$SAVE_ VP _EXCEPTION (VAX Only) SYS2-266
$SCAN_INTRUSION ... SYS2-268
$SCHDWK ... SYS2-273
$SCHED .. SYS2-276
$SETAST .. SYS2-281
$SETCLUEVT (Alpha Only) SYS2-282
$SETDDIR ... SYS2-285
$SETDFPROT .. SYS2-287
$SETEF ... SYS2-289
$SETEXV .. SYS2-290
$SETIME .. SYS2-292
$SETIMR .. SYS2-294
$SET_IMPLICIT_AFFINITY (Alpha Only) SYS2-297
$SETPRA .. SYS2-301
$SETPRI ... SYS2-303
$SETPRN .. SYS2-307
$SETPRT .. SYS2-308
$SETPRT_64 (Alpha Only) SYS2-311
$SETPRV .. SYS2-314
$SETRWM · SYS2-319
$SETSHLV ... SYS2-321
$SETSTK .. SYS2-323
$SETSWM ... SYS2-325
$SETUAI .. SYS2-327

iv

$SET_RESOURCE_DOMAIN ~ SYS2-339
$SET_SECURITY ... SYS2-344
$SHOW _INTRUSION .. SYS2-351
$SIGNAL_ARRAY_64 ... SYS2-356
$SNDERR ... SYS2-358
$SNDJBC .. SYS2-359
$SNDJBCW .. SYS2-417
$SNDOPR ... SYS2-418
$START_ALIGN_FAULT_REPORT (Alpha Only) SYS2-432
$START_TRANS ~ SYS2-435
$START_TRANSW ... SYS2-439
$STOP _ALIGN_FAULT_REPORT (Alpha Only) SYS2-440
$STOP _SYS_ALIGN_FAULT_REPORT (Alpha Only) SYS2-441
$SUBSYSTEM ... SYS2-442
$SUSPND ... SYS2-444
$SYNCH .. SYS2-447
$TIMCON ... SYS2-449
$TRNLNM , SYS2-451
$TSTCLUEVT (Alpha Only) , SYS2-456
$ULKPAG ... SYS2-458
$ULKPAG_64 (Alpha Only) SYS2-460
$ULWSET ... SYS2-463
$ULWSET_64 (Alpha Only) SYS2-465
$UNWIND ... SYS2-468
$UPDSEC ... SYS2-470
$UPDSEC_64 (Alpha Only) SYS2-475
$UPDSECW .. SYS2-480
$UPDSEC_64W (Alpha Only) SYS2-481
$VERIFY_PROXY ... SYS2-482
$WAITFR .. SYS2-487
$WAKE ... SYS2-488
$WFLAND .. ~ SYS2-490
$WFLOR .. SYS2-492

A Obsolete Services

Index

Tables

SYS2-1 Region Summary Buffer Format . SYS2-49
SYS2-2 Format of the IEEE Floating-Point Control Register (Alpha Only) ... SYS2-113
SYS2-3 Flags Used with $PROCESS_SCAN SYS2-222
SYS2-4 User Privileges ... SYS2-314
SYS2-5 CPU Time Limit Decision Table SYS2-382
SYS2-6 Working Set Decision Table SYS2-405

v

Preface

Intended Audience
This manual is intended for system and application programmers who want to
call system services.

System Services Support for OpenVMS Alpha 64-bit Addressing
As of Version 7.0, the Open VMS Alpha operating system provides support for
64-bit virtual memory addresses, which makes the 64-bit virtual address space
defined by the Alpha architecture available to the Open VMS Alpha operating
system and to application programs. In the 64-bit virtual address space, both
process-private and system virtual address space extend beyond 2 GB. By using
64-bit address features, programmers can create images that map and access
data beyond the previous limits of 32-bit virtual addresses.

New Open VMS system services are available, and many existing services have
been enhanced to manage 64-bit address space. The system services descriptions
in this manual indicate the services that accept 64-bit addresses. A list of
the Open VMS system services that accept 64-bit addresses is available in the
Open VMS Alpha Guide to 64-Bit Addressing.

This section briefly describes how 64-bit addressing support affects Open VMS
system services. For complete information about Open VMS Alpha 64-bit
addressing features, see the Open VMS Alpha Guide to 64-Bit Addressing.

64-Bit System Services Terminology
32-bit system service
A 32-bit system service is a system service that only supports 32-bit addresses
on any of its arguments that specify addresses. If passed by value on Open VMS
Alpha, a 32-bit virtual address is actually a 64-bit address that is sign-extended
from 32-bits.

64-bit friendly interface
A 64-bit friendly interface is an interface that can be called with all 64-bit
addresses. A 32-bit system service interface is 64-bit friendly if, without a change
in the interface, it needs no modification to handle 64-bit addresses. The internal
code that implements the system service might need modification, but the system
service interface will not.

64-bit system service
A 64-bit system service is a system service that is defined to accept all address
arguments as 64-bit addresses (not necessarily 32-bit sign-extended values). Also,
a 64-bit system service uses the entire 64 bits of all virtual addresses passed to it.

vii

_________ Use of the _64 Suffix ________ _

The 64-bit system services include the _64 suffix for services that accept
64-bit addresses by reference. For promoted services, this distinguishes
the 64-bit capable version from its 32-bit counterpart. For new services, it
is a visible reminder that a 64-bit wide address cell will be read/written.

Sign-Extension Checking
Open VMS system services that do not support 64-bit addresses and all user­
written system services that are not explicitly enhanced to accept 64-bit addresses
will receive sign-extension checking. Any argument passed to these services that
is not properly sign-extended will cause the error status SS$_ARG_GTR_32_BITS
to be returned. +

Document Structure
The Open VMS System Services Reference Manual is a two-part manual. The first
part contains information on A through $GETMSG; the second part contains
information on $GETQUI through Z.

Related Documents
The Open VMS Programming Interfaces: Calling a System Routine manual
contains useful information for anyone who wants to call system services.

High-level language programmers can find additional information about calling
system services in the language reference manual and language user's guide
provided with the Open VMS language.

The following documents may also be useful:

• Open VMS Programming Concepts Manual

• Guide to Open VMS File Applications

• Open VMS Guide to System Security

• DECnet for Open VMS Networking Manual

• Open VMS Record Management Services Reference Manual

e Open VMS I I 0 User's Reference Manual

• Open VMS Alpha Guide to 64-Bit Addressing

• Open VMS Alpha Guide to Upgrading Privileged-Code Applications

For a complete list and description of the manuals in the Open VMS document
set, see the Overview of Open VMS Documentation.

How To Order Additional Documentation

viii

Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Location

U.S.A.

Puerto Rico

Canada

International

Internal Orders

Call

DECdirect
800-DIGIT AL
800-344-4825

809-781-0505

800-267-6215

DTN: 264-4446
603-884-4446

Fax
Fax.:800-234-2298

Fax.:809-749-8300

Fax.:613-592-1946

Fax.:603-884-3960

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street, Suite 200
P.O. Box 11038
Metro Office Park
San Juan, Puerto Rico 00910-2138

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

ZK-7654A-GE

For additional information about Open VMS products and services, access the
Digital Open VMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader's Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet

Fax

Mail

Conventions

openvmsdoc@zko.mts.dec.com

603 881-0120, Attention: Open VMS Documentation, ZK03-4/U08

Open VMS Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

In this manual, every use of Open VMS Alpha means the Open VMS Alpha
operating system, every use of Open VMS VAX means the Open VMS VAX
operating system, and every use of Open VMS means both the Open VMS Alpha
operating system and the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
Alpha or to Open VMS VAX:

EMMI The Alpha icon denotes the beginning of information
specific to Open VMS Alpha.

ix

x

•

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS Alpha or to Open VMS
VAX.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for Open VMS software.

The following conventions are also used in this manual:

Ctrl/x

()

[]

{ }

boldface text

italic text

UPPERCASE TEXT

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an Open VMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, braces surround a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.-

Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (!PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. N ondecimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

xi

System Service Descriptions

System services provide basic operating system functions, interprocess
communication, and various control resources.

Condition values returned by system services may provide information; that is,
they do not indicate only whether the service completed successfully. The usual
condition value indicating success is SS$_NORMAL, but others are defined. For
example, the condition value SS$_BUFFEROVERF, which is returned when
a character string returned by a service is longer than the buffer provided to
receive it, is a success code. This condition value gives the program additional
information.

Warning returns and some error returns indicate that the service may have
performed some, but not all, of the requested function.

The particular condition values that each service can return are described in the
Condition Values Returned section of each individual service description.

Returns

Open VMS usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO.

$GETQUI

System Service Descriptions
$GETQUI

Get Queue Information

Format

Arguments

Returns information about queues and the jobs initiated from those queues.

The $GETQUI service completes asynchronously; for synchronous completion, use
the Get Queue Information and Wait ($GETQUIW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$GETQUI [efn] ,func [,context] [,itmlst] [,iosb] [,astadr] [,astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETQUI completes. The efn argument
is a longword containing this number; however, $GETQUI uses only the low-order
byte. The efn argument is optional.

When the request is queued, $GETQUI clears the specified event flag (or event
flag 0 if efn was not specified). Then, when the operation completes, $GETQUI
sets the specified event flag (or event flag 0).

func
Open VMS usage: function_ code
type: word (unsigned)
access: read only
mechanism: by value

Function code specifying the function that $GETQUI is to perform. The func
argument is a word containing this function code. The $QUIDEF macro defines
the names of each function code.

You can specify only one function code in a single call to $GETQUI. Most function
codes require or allow for additional information to be passed in the call. You
pass this information by using the itmlst argument, which specifies a list of one
or more item descriptors. Each item descriptor in turn specifies an item code,
which either describes the specific information to be returned by $GETQUI, or
otherwise affects the action designated by the function code.

You can use wildcard mode to make a sequence of calls to $GETQUI to get
information about all characteristics, form definitions, queues, or jobs contained
in the system job queue file. For information on using wildcard mode, see the
Description section.

SYS2-3

System Service Descriptions
$GETQUI

SYS2-4

context
Open VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Address of a longword containing the number of a context stream for this call
to the $GETQUI system service. If the argument is unspecified or 0, the service
uses the default context stream (#0).

To generate a new context stream, the specified longword must contain -1.
$GETQUI then modifies the longword to hold the context number for that stream
of operation. The context is marked with the caller's mode (user, supervisor,
executive, or kernel). Any attempt to use that context in successive calls is
checked and no call from a mode outside the recorded mode is allowed access.

To clean up a context, make a $GETQUI call using the QUI$_CANCEL_
OPERATION function code and specify the address of the context number as
the context argument.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list. The

· item list consists of one or more item descriptors, each of which contains an item
code. The item list is terminated by an item code of 0 or by a longword of 0. The
following diagram depicts the structure of a single item descriptor.

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buff er length

Definition

A word specifying the length of the buffer; the buffer
either supplies information to $GETQUI or receives
information from $GETQUI. The required length
of the buffer varies, depending on the item code
specified, and is given in the description of each
item code.

Descriptor Field

Item code

Buffer address

Return length· address

Definition

System Service Descriptions
$GETQUI

A word containing an item code, which identifies the
nature of the information supplied for $GETQUI or
which is received from $GETQUI. Each item code
has a symbolic name; the $QUIDEF macro defines
these symbolic names.

Address of the buffer that specifies or receives the
information.

Address of a word to receive the length of
information returned by $GETQUI.

The item codes' symbolic names have the following format:

QUl$_code

There are two types of item coqe:

• Input value item code. The $GETQUI service has only five input
value item codes: QU1$_SEARCH_FLAGS, QUI$_SEARCH_JOB_NAME,
QUI$_SEARCH_NAME, QUI$_SEARCH_NUMBER, and QU1$_SEARCH_
USERNAME. These item codes specify the object name or number for which
$GETQUI is to return information and the extent of $GETQUI's search for
these objects. Most function codes require that you specify at least one input
value item code. The function code or codes for which each item code is valid
are shown in parentheses after the item code description.

For input value item codes, the buffer length and buffer address fields of
the item descriptor must be nonzero; the return length field must be zero.
Specific buffer length requirements are given in the description of each item
code.

• Output value item code. Output value item codes specify a buffer for
information returned by $GETQUI. For output value item codes, the buffer
length and buffer address fields of the item descriptor must be nonzero; the
return length field can be zero or nonzero. Specific buffer length requirements
are given in the description of each item code.

Several item codes specify a queue name, form name, or characteristic name to
$GETQUI or request that $GETQUI return one of these names. For these item
codes, the buffer must specify or be prepared to receive a string containing from 1
to 31 characters, exclusive of spaces, tabs, and null characters, which are ignored.
Allowable characters in the string are uppercase alphabetic characters, lowercase
alphabetic characters (which are converted to uppercase), numeric characters, the
dollar sign ($), and the underscore(_).

See the Item Codes section for a description of the $GETQUI item codes.

iosb
Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block into which $GETQUI writes the completion status after the
requested operation has completed. The iosb argument is the address of the 1/0
status block.

SYS2-5

System Service Descriptions
$GETQUI

At request initiation, $GETQUI sets the value of the quadword I/O status block
to 0. When the requested operation has completed, $GETQUI writes a condition
value in the first longword of the I/O status block. It writes the value 0 into the
second longword; this longword is unused and reserved for future use.

The condition values returned by $GETQUI in the I/O status block are condition
values from the JBC facility, which are defined by the $JBCMSGDEF macro. The
condition values returned from the JBC facility are listed in the section Condition
Values Returned in the I/O Status Block section.

Though this argument is optional, Digital strongly recommends that you specify
it,. for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$GETQUI service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or
failure of the call to $GETQUI, you must check the condition values returned
in both RO and the I/O status block.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETQUI completes. The astadr
argument is the address of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$GETQUI.

astprm
Open VMS usage: user_parm
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

Function Codes

SYS2-6

This section lists each of the $GETQUI function codes, describes the function, and
lists the related item codes.

System Service Descriptions
$GETQUI

QUI$_ CANCEL_ OPERATION
This request terminates a wildcard operation that may have been initiated by
a previous call to $GETQUI by releasing the $GETQUI context block (GQC)
associated with the specified context stream.

A specific context stream can be selected and other streams are unaffected.

QUl$_DISPLAY _CHARACTERISTIC
This request returns information about a specific characteristic definition, or the
next characteristic definition in a wildcard operation.

A successful QUI$_DISPLAY_CHARACTERISTIC wildcard operation
terminates when the $GETQUI service has returned information about all
characteristic definitions included in the wildcard sequence. The $GETQUI
service indicates termination of this sequence by returning the condition value
JBC$_NOMORECHAR in the I/O status block. If the $GETQUI service does
not find any characteristic definitions, it returns the condition value JBC$_
NOSUCHCHAR in the I/O status block.

For more information on how to request information about characteristics, see the
Description section.

You must specify one of the following input value item codes; you can specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH_NUMBER

You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_CHARACTERISTIC_NAME
QUI$_CHARACTERISTIC_NUMBER

QUl$_DISPLAY _ENTRY
This request returns information about a specific job entry, or the next job entry
that matches the selection criteria in a wildcard operation. You use the QUI$_
SEARCH_NUMBER item code to specify the job entry number.

In wildcard mode, the QUI$_DISPLAY_ENTRY operation also establishes a
job context for subsequent QUI$_DISPLAY_FILE operations. The job context
established remains in effect until you make another call to the $GETQUI
service that specifies either the QUI$_DISPLAY_ENTRY or QUI$_CANCEL_
OPERATION function code.

A successful QUI$_DISPLAY_ENTRY wildcard operation terminates when the
$GETQUI service has returned information about all job entries for the specified
user (or the current user name if the QUI$_SEARCH_USERNAME item code
is not specified). The $GETQUI service signals termination of this sequence by
returning the condition value JBC$_NOMOREENT in the I/O status block. If
the $GETQUI service does not find a job with the specified entry number, or
does not find a job meeting the search criteria, it returns the condition value
JBC$_NOSUCHENT in the first longword of the I/O status· block.

You can specify the following input value item codes:

QUI$_SEARCH_FLAGS
QUI$_SEARCH_JOB_NAME

SYS2-7

System Service Descriptions
$GETQUI.

SYS2-8

QUI$_SEARCH_NUMBER
QUI$_SEARCH_USERNAME

You can specify the following output value item codes:

QUI$_ACCOUNT_NAME
QUI$_AFTER_TIME
QUI$_ASSIGNED_QUEUE_NAME
QUI$_CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI
QUI$_COMPLETED_BLOCKS
QUI$_ CONDITION_ VECTOR
QUI$_CPU_LIMIT
QUI$_ENTRY_NUMBER
QUI$_FILE_COUNT
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_JOB_COMPLETION_QUEUE
QUI$_JOB_COMPLETION_TIME
QUI$_JOB_COPIES
QUI$_JOB_COPIES_DONE
QUI$_JOB_FLAGS
QUI$_JOB_NAME
QUI$_JOB_PID
QUI$_JOB_RETENTION_TIME
QUI$_JOB_SIZE
QUI$_JOB_STATUS
QUI$_LOG_QUEUE
QUI$_LOG_SPECIFICATION
QUI$_NOTE
QUI$_0PERATOR_REQUEST
QUI$_PARAMETER_l through 8
QUI$_PENDING_JOB_REASON
QUI$_PRIORITY
QUI$_PROCESSOR
QUI$_ QUEUE_FLAGS
QUI$_QUEUE_NAME
QU1$_QUEUE_STATUS
QUI$_REQUEUE_QUEUE_NAME
QUI$_RESTART_QUEUE_NAME
QUI$_SUBMISSION_TIME
QUI$_UIC
QUI$_USERNAME
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUl$_DISPLAY _FILE
This request returns information about the next file defined for the current job
context. You normally make this request as part of a nested wildcard sequence
of queue-job-file operations or a nested wildcard sequence of entry-file operations;
that is, before you make a call to $GETQUI to request file information, you have
already made a call to the $GETQUI service to establish the job context of the job
that contains the files in which you are interested.

System Service Descriptions
$GETQUI

The $GETQUI service signals that it has returned information about all the
files defined for the current job context by returning the condition value JBC$_
NOMOREFILE in the I/O status block. If the current job context contains no
files, $GETQUI returns the condition value JBC$_NOSUCHFILE in the I/O
status block.

A batch job can make a call to the $GETQUI service to request information about
the command file that is currently executing without first making calls to the
service to establish a queue and job context. To do this, the batch job specifies the
QUI$V _SEARCH_THIS_JOB option of the QUI$_SEARCH_FLAGS item code.
The system does not save the queue or job context established in such a call.

For more information about how to request file information, see the Description
section.

·You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_FILE_COPIES
QUI$_FILE_COPIES_DONE
QUI$_FILE_FLAGS
QUI$_FILE_IDENTIFICATION
QUI$_FILE_SETUP _MODULES
QUI$_FILE_SPECIFICATION
QUI$_FILE_STATUS
QUI$_FIRST_PAGE
QUI$_LAST_PAGE

QUl$_DISPLAY _FORM
This request returns information about a specific form definition, or the next form
definition in a wildcard operation.

A successful QUI$_DISPLAY_FORM wildcard operation terminates when the
$GETQUI service has returned information about all form definitions included
in the wildcard sequence. The $GETQUI service signals termination of this
wildcard sequence by returning the condition value JBC$_NOMOREFORM in the
I/O status block. If the $GETQUI service finds no form definitions, it returns the
condition value JBC$_NOSUCHFORM in the I/O status block.

For more information on how to request information about forms, see the
Description section.

You must specify one of the following input value item codes. You can specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH_NUMBER

You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_FORM_DESCRIPTION
QUI$_FORM_FLAGS
QUI$_FORM_LENGTH
QUI$_FORM_MARGIN_BOTTOM

SYS2-9

System Service Descriptions
$GETQUI

SYS2-10

QUI$_FORM_MARGIN_LEFT
QUI$_FORM_MARGIN_RIGHT
QUI$_FORM_MARGIN_TOP
QUI$_FORM_NAME
QUI$_FORM_NUMBER
QUI$_FORM_SETUP _MODULES
QUI$_FORM_STOCK
QUI$_FORM_ WIDTH
QUI$_PAGE_SETUP _MODULES

\

QUl$_DISPLAY _JOB
This request returns information about the next job defined for the current queue
context. You normally make this request as part of a nested wildcard queue-job
sequence of operations; that is, before you make a call to $GETQUI to request job
information, you have already made a call to the $GETQUI service to establish
the queue context of the queue that contains the job in which you are interested.

In wildcard mode, the QUI$_DISPLAY_JOB operation also establishes a job
context for subsequent QUI$_DISPLAY_FILE operations. The job context
established remains in effect until another call is made to the $GETQUI service
that specifies the QUI$_DISPLAY_JOB, QUI$_DISPLAY_QUEUE, or QUI$_
CANCEL_OPERATION function code.

The $GETQUI service signals that it has returned information about all the jobs
contained in the current queue context by returning the condition value JBC$_
NOMOREJOB in the 1/0 status block. If the current queue context contains
no jobs, $GETQUI returns the condition value JBC$_NOSUCHJOB in the first
longword of the 1/0 status block.

A batch job can make a call to the $GETQUI service to request information about
itself without first making a call to the service to establish a queue context. To
do this, the batch job must specify the QUI$V _SEARCH_THIS_JOB option of the
QUI$_SEARCH_FLAGS item code. The system does not save the queue or job
context established in such a call.

For more information about how to request job information, see the Description
section.

You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_ACCOUNT_NAME
QUI$_AFTER_TIME
QUI$_ CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI
QUI$_COMPLETED_BLOCKS
QUI$_ CONDITION_ VECTOR
QUI$_CPU_LIMIT
QUI$_ENTRY_NUMBER
QUI$_FILE_COUNT
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_INTERVENING_BLOCKS
QUI$_INTERVENING_JOBS

System Service Descriptions
$GETQUI

QUI$_JOB_COMPLETION_QUEUE
QUI$_JOB_COMPLETION_TIME
QUI$_JOB_COPIES
QUI$_JOB_COPIES_DONE
QUI$_JOB_FLAGS
QUI$_JOB_NAME
QUI$_JOB_PID
QUI$_JOB_RETENTION_TIME
QUI$_JOB_SIZE
QUI$_JOB_STATUS
QUI$_LOG_ QUEUE
QUI$_LOG_SPECIFICATION
QUI$_NOTE.
QUI$_0PERATOR_REQUEST
QUI$_PARAMETER_l through 8
QUI$_PENDING_JOB_REASON
QUI$_PRIORITY
QUI$_QUEUE_NAME
QUI$_REQUEUE_QUEUE_NAME
QUI$_RESTART_QUEUE_NAME
QUI$_SUBMISSION_TIME
QUI$_UIC
QUI$_USERNAME
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUl$_DISPLAY _MANAGER
This request returns information about a specific queue manager, or the next
queue manager in a wildcard operation.

The $GETQUI service indicates that it has returned information about all the
queue managers contained in the current wildcard sequence by returning the
condition value JBC$_NOMOREQMGR in the I/O status block. If no queue
manager matching the name string is found, $GETQUI returns the condition
value JBC$_NOSUCHQMGR in the first longword of the I/O status block.

You must specify the following input value item code:

QUI$_SEARCH_NAME

You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_MANAGER_NAME
QUI$_MANAGER_NODES
QUI$_MANAGER_STATUS
QUI$_QUEUE_DIRECTORY
QUI$_SCSNODE_NAME

QUl$_DISPLAY _QUEUE
This request returns information about a specific queue definition, or the next
queue definition in a wildcard operation.

SYS2-11

System Service Descriptions
$GETQUI

SYS2-12

In wildcard mode, the QUI$_DISPLAY_QUEUE operation also establishes a
queue context for subsequent QUI$_DISPLAY_JOB operations. The queue
context established remains in effect until another call is made to the $GETQUI
service that specifies either the QUI$_DISPLAY_QUEUE or QUI$_CANCEL_
OPERATION function code.

The $GETQUI service indicates that it has returned information about all the
queues contained in the current wildcard sequence by returning the condition
value JBC$_NOMOREQUE in the I/O status block. If no queue is found,
$GETQUI returns the condition value JBC$_NOSUCHQUE in the first longword
of the I/O status block.

A batch job can make a call to the $GETQUI service to request information
about the queue in which it is contained without first making a call to the
service to establish a queue context. To do this, the batch job must specify the
QUI$V _SEARCH_THIS_JOB option of the QUI$_SEARCH_FLAGS item code.
The system does not save the queue context established in such a call.

For more information about how to request queue information, see the
Description section.

You must specify the following input value item code:

QUI$_SEARCH_NAME

You can specify the following input value item code:

QUI$_SEARCH_FLAGS

You can specify the following output value item codes:

QUI$_ASSIGNED_QUEUE_NAME
QUI$_BASE_PRIORITY
QUI$_CHARACTERISTICS
QUI$_CPU_DEFAULT
QUI$_CPU_LIMIT
QUI$_DEFAULT_FORM_NAME
QUI$_DEFAULT_FORM_STOCK
QUI$_DEVICE_NAME
QUI$_EXECUTING_JOB_COUNT
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_GENERIC_TARGET
QUI$_HOLDING_JOB_COUNT
QUI$_JOB_LIMIT
QUI$_JOB_RESET_MODULES
QUI$_JOB_SIZE_MAXIMUM
QUI$_JOB_SIZE_MINIMUM
QUI$_LIBRARY_SPECIFICATION
QUI$_0WNER_UIC
QUI$_PENDING_JOB_BLOCK_COUNT
QUI$_PENDING_JOB_COUNT
QUI$_PROCESSOR
QUI$_PROTECTION
QUI$_QUEUE_DESCRIPTION
QUI$_QUEUE_FLAGS
QUI$_QUEUE_NAME
QUI$_QUEUE_STATUS
QUI$_RETAINED_JOB_COUNT

Item Codes

System Service Descriptions
$GETQUI

QUI$_SCSNODE_NAME
QUI$_TIMED_RELEASE_JOB_COUNT
QUI$_ WSDEFAULT
QUI$_ WSEXTENT
QUI$_ WSQUOTA

QUI$_ TRANSLATE_ QUEUE
This request translates a logical name for a queue to the equivalence name
for the queue. The logical name is specified by QUI$_SEARCH_NAME. The
translation is_ performed iteratively until the equivalence string is found or the
number of translations allowed by the system has been reached.

You must specify the following input value item code:

QUI$_SEARCH_NAME

You can specify the following output value item code:

QUI$_QUEUE_NAME

QUl$_ACCOUNT _NAME
When you specify QUI$_ACCOUNT_NAME, $GETQUI returns, as a character
string, the account name of the owner of the specified job. Because the account
name can include up to 8 characters, the buffer length field of the item descriptor
should specify 8 (bytes).

(Valid for QUI$_DISPLAY_ENRY, QUI$_DISPLAY_JOB function codes)

QUl$_AFTER_ TIME
When you specify QUI$_AFTER_TIME, $GETQUI returns, as a quadword
absolute time value, the system time at or after which the specified job can
execute. However, if the time specified at submission has passed, the job executes
immediately and $GETQQU returns the system time at which the job was
submitted.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_ASSIGNED_QUEUE_NAME
When you specify QUI$_ASSIGNED_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the execution queue to which the logical queue
specified in the call to $GETQUI is assigned. Because the queue name can
include up to 31 characters, the buffer length field of the item descriptor should
specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_QUEUE function codes)

QUl$_AUTOSTART _ON
When you specify QUI$_AUTOSTART_ON for a batch queue, $GETQUI returns,
as a character string in a comma-separated list, the names of the nodes on which
the specified autostart queue can be run .. Each node name is followed by a double
colon(::).

When you specify QUI$_AUTOSTART_ON for an output queue, $GETQUI
returns, as a character string in a comma-separated list, the names of the nodes
and devices to which the specified autostart queue's output can be sent. Each
node name is followed by a double colon(::). Each device name may be followed
by the optional colon [:].

SYS2-13

System Service Descriptions
$GETQUI ,

SYS2-14

For more information on the autostart feature, see the Open VMS System
Manager's Manual.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_BASE_PRIORITY
When you specify QUI$~BASE_PRIORITY, $GETQUI returns, as a longword
value in the range 0 to 15, the priority at which batch jobs are initiated from a
batch execution queue or the priority of a symbiont process that controls output
execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CHARACTERISTIC_NAME
When you specify QUI$_CHARACTERISTIC_NAME, $GETQUI returns, as
a character string, the name of the specified characteristic. Because the
characteristic name can include up to 31 characters, the buffer length field of
the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_CHARACTERISTIC function code)

QUl$_CHARACTERISTIC_NUMBER
When you specify QUI$_CHARACTERISTIC_NUMBER, $GETQUI returns, as a
longword value in the range 0 to 127, the number of the specified characteristic.

(Valid for QUI$_DISPLAY_CHARACTERISTIC function code)

QUI$_ CHARACTERISTICS
When you specify QUI$_CHARACTERISTICS, $GETQUI returns, as a 128-bit
string (16-byte field), the characteristics associated with the specified queue or
job. Each bit set in the bit mask represents a characteristic number in the range
0 to 127.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY _
QUEUE function codes)

QUI$_ CHECKPOINT _DATA
When you specify QUI$_CHECKPOINT_DATA, $GETQUI returns, as a character
string, the value of the DCL symbol BATCH$RESTART when the specified batch
job is restarted. Because the value of the symbol can include up to 255 characters,
the buffer length field of the item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_CLI
When you specify QUI$_CLI, $GETQUI returns, as an Open VMS RMS file name
component, the name of the command language interpreter used to execute the
specified batch job. The file specification returned assumes the logical name
SYS$SYSTEM and the file type .EXE. Because a file name can include up to 39
characters, the buffer length field in the item descriptor should specify 39 (bytes).
This item code is applicable only to batch jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_COMPLETED_BLOCKS
When you specify QUI$_COMPLETED_BLOCKS, $GETQUI returns, as a
longword integer value, the number of blocks that the symbiont has processed for
the specified print job. This item code is applicable only to print jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

System Service Descriptions
$GETQUI

QUI$_ CONDITION_ VECTOR
When you specify QUI$_CONDITION_ VECTOR, $GETQUI returns, as a
longword condition value, the completion status of the specified job.

(Valid for QUI$_DISPLAY ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_CPU_DEFAULT
When you specify QUI$_CPU_DEFAULT, $GETQUI returns, as a longword
integer value, the default CPU time limit specified for the queue in 10-millisecond
units. This item code is applicable only to batch execution queues.

For more information about default forms, see the Open VMS System Manager's
Manual.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CPU_LIMIT
When you specify QUI$_CPU_LIMIT, $GETQUI returns, as a longword integer
value, the maximum CPU time limit specified for the specified job or queue in
10-millisecond units. This item code is applicable only to batch jobs and batch
execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_DEFAULT _FORM_NAME
When you specify QUI$_DEFAULT_FORM_NAME, $GETQUI returns, as a
character string, the name of the default form associated with the specified
output queue. Because the form name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

For more information about default forms, see the Open VMS System Manager's
Manual.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_DEFAULT _FORM_STOCK
When you specify QUI$_DEFAULT_FORM_STOCK, $GETQUI returns, as a
character string, the name of the paper stock on which the specified default
form is to be printed. Because the name of the paper stock can include up to 31
characters, the buffer length field of the item descriptor should specify 31 (bytes).

For more information on default forms, see the Open VMS System Manager's
Manual.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_DEVICE_NAME
When you specify QUI$_DEVICE_NAME, $GETQUI returns, as a character
string, the name of the device on which the specified output execution queue is
located. Because the device name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_ENTRY _NUMBER
When you specify QUI$_ENTRY_NUMBER, $GETQUI returns, as a longword
integer value, the queue entry number of the specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

SYS2-15

System Service Descriptions
$GETQUI

SYS2-16

QUl$_EXECUTING_JOB_COUNT
When you specify QUI$_EXECUTING_JOB_COUNT, $GETQUI returns, as
a longword integer value, the number of jobs in the queue that are currently
executing.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_FILE_COPIES
When you specify QUI$_FILE_COPIES, $GETQUI returns the number of times
the specified file is to be processed, which is a longword integer value in the range
1 to 255. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_COPIES_DONE
When you specify QUI$_FILE_COPIES_DONE, $GETQUI returns the number of
times the specified file has been processed, which is a longword integer value in
the range 1 to 255. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_COUNT
When you specify QUI$_FILE_COUNT, $GETQUI returns, as a longword integer
value, the number of files in a specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_FILE_FLAGS
When you specify QUI$_FILE_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified file. Each
processing option is represented by a bit. When $GETQUI sets a bit, the file is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names.

Symbolic Name

QUI$V _FILE_BURST

QUI$V _FILE_DELETE

QUI$V _FILE_DOUBLE_SPACE

QUI$V _FILE_FLAG

QUI$V _FILE_TRAILER

QUI$V _FILE_PAGE_HEADER

QUI$V _FILE_PAGINATE

QUI$V _FILE_PASSALL

Description

Burst and flag pages are to be printed
preceding the file.

File is to be deleted after execution of
request.
Symbiont formats the file with double
spacing.

Flag page is to be printed preceding the
file.

Trailer page is to be printed following the
file.
Page header is to be printed on each page
of output.

Symbiont paginates output by inserting
a form feed whenever output reaches the
bottom margin of the form.
Symbiont prints the file in PASSALL
mode.

(Valid for QUI$_DISPLAY_FILE function code)

System Service Descriptions
$GETQUI

QUl$_FILE_IDENTIFICATION
When you specify QUI$_FILE_IDENTIFICATION, $GETQUI returns, as a
28-byte string, the internal file-identification value that uniquely identifies the
selected file. This string contains (in order) the following three file-identification
fields from the RMS NAM block for the selected file: the 16-byte NAM$T_DVI
field, the 6-byte NAM$W _FID field, and the 6-byte NAM$W _DID field.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_SETUP _MODULES
When you specify QUI$_FILE_SETU:p _MODULES, $GETQUI 'returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before the specified file
is printed. Because a text module name can include up to 31 characters and is
separated from the previous text module name with a comma, the buffer length
field of the item descriptor should specify 32 (bytes) for each possible text module.
This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_SPECIFICATION
When you specify QUI$_FILE_SPECIFICATION, $GETQUI returns the fully
qualified Open VMS RMS file specification of the file about which $GETQUI
is returning information. Because a file specification can include up to 255
characters, the buffer length field of the item descriptor should specify 255
(bytes).

Note -----------­

The file specification is the result of an RMS file-passing operation that
occurs at the time you submit the job. If you renamed the file or created
the job as a result of copying a file to a spooled device, then you cannot
use this file specification to access the file through RMS. You use QUI$_
FILE_IDENTIFICATION to obtain a unique identifier for the file.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_STATUS
When you specify QUI$_FILE_STATUS, $GETQUI returns file status information
as a longword bit vector. Each file status condition is represented by a bit. When
$GETQUI sets the bit, the file status corresponds to the condition represented by
the bit. Each bit in the vector has a symbolic name. The $QUIDEF macro defines
the following symbolic names.

Symbolic Name

QUI$V _FILE_CHECKPOINTED

QUI$V _FILE_EXECUTING

Description

File is checkpointed.

File is being processed.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FIRST _PAGE
When you specify QUI$_FIRST_PAGE, $GETQUI returns, as a longword integer
value, the page number at which the printing of the specified file is to begin. This
item code is applicable only to output execution queues.

SYS2-17

System Service Descriptions
$GETQUI

SYS2-18

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FORM_DESCRIPTION
When you specify QUI$_FORM_DESCRIPTION, $GETQUI returns, as a
character string, the text string that describes the specified form. Because
the text string can include up to 255 characters, the buffer length field in the
item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_FLAGS
When you specify QUI$_FORM_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified form. Each
processing option is represented by a bit. When $GETQUI sets a bit, the form is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names.

Symbolic Name

QUI$V _FORM_SHEET_FEED

QUI$V _FORM_TRUNCATE

QUI$V _FORM_ WRAP

Description

Symbiont pauses at the end of each
physical page so that another sheet of
paper can be inserted.
Printer discards any characters that
exceed the specified right margin.

Printer prints any characters that
exceed. the specified right margin on
the following line.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_LENGTH
When you specify QUI$_FORM_LENGTH, $GETQUI returns, as a longword
integer value, the physical length of the specified form in lines. This item code is
applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_BOTTOM
When you specify QUI$_FORM_MARGIN_BOTTOM, $GETQUI returns, as a
longword integer value, the bottom margin of the specified form in lines.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_LEFT
When you specify QUI$_FORM_MARGIN_LEFT, $GETQUI returns, as a
longword integer value, the left margin of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_RIGHT
When you specify QUI$_FORM_MARGIN_RIGHT, $GETQUI returns, as a
longword integer·value, the right margin of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_MARGIN_ TOP
When you specify QUI$_FORM_MARGIN_TOP, $GETQUI returns, as a longword
integer value, the top margin of the specified form in lines.

System Service Descriptions
$GETQUI

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_NAME
When you specify QUI$_FORM_NAME, $GETQUI returns, as a character string,
the name of the specified form or the mounted form associated with the specified
job or queue. Because the form name can include up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

For more information about mounted forms, see the Open VMS System Manager's
Manual.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM, QUI$_DISPLAY_
JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FORM_NUMBER
When you specify QUI$_FORM_NUMBER, $GETQUI returns, as a longword
integer value, the number of the specified form.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_SETUP _MODULES
When you specify QUI$_FORM_SETUP _MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before a file is printed on
the specified form. Because a text module name can include up to 31 characters
and is separated from the previous text module name by a comma, the buffer
length field of the item descriptor should specify 32 (bytes) for each possible text
module. This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_STOCK
When you specify QUI$_FORM_STOCK, $GETQUI returns, as a character string,
the name of the paper stock on which the specified form is to be printed. Because
the name of the paper stock can include up to 31 characters, the buffer length
field of the item descriptor should specify 31 (bytes).

For more information about forms, see the Open VMS System Manager's Manual.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM, QUI$_DISPLAY_
JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FORM_WIDTH
When you specify QUI$_FORM_ WIDTH, $GETQUI returns, as a longword
integer value, the width of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUI$_ GENERIC_ TARGET
When you specify QUI$_GENERIC_TARGET, $GETQUI returns, as a comma­
separated list, the names of the execution queues that are enabled to accept work
from the specified generic queue. Because a queue name can include up to 31
characters and is separated from the previous queue name with a comma, the
buffer length field of the item descriptor should specify 32 (bytes) for each possible
queue name. A generic queue can send work to up to 124 execution queues. This
item code is meaningful only for generic queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

SYS2-19

System Service Descriptions
$GETQUI

SYS2-20

QUl$_HOLDING_JOB_COUNT
When you specify QUI$_HOLDING_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue being held until explicitly
released.

(Valid for QUI$_DISPLAY_QUEUE functioii code)

QUl$_1NTERVENING_BLOCKS
When you specify QUI$_INTERVENING_BLOCKS, $GETQUI returns, as a
longword integer value, the size (in blocks) of files associated with pending jobs
in the queue that were skipped during the current call to $GETQUI. These jobs
were not reported because they did not match the selection criterion in effect for
the call to $GETQUI.

The value of QUI$_INTERVENING_BLOCKS is 0 when (1) the job is not a
pending job, or (2) the job that matches the selection criterion is the first pending
job in the queue, or (3) the preceding pending job in the queue was reported in
the previous call to $GETQUI.

This item code applies only to output queues.

In a wildcard sequence of calls to $GETQUI using the QUI$_DISPLAY_JOB
function code, only information about jobs that match the $GETQUI selection
criteria is returned.

(Valid for QUI$_DISPLAY_JOB function code)

QUl$_1NTERVENING_JOBS
When you specify QUI$_INTERVENING_JOBS, $GETQUI returns, as a longword
integer value, the number of pending jobs in the queue that were skipped during
the current call to $GETQUI. These jobs were not reported because they did not
match the selection criterion in effect for the call to $GETQUI.

The value of QUI$_INTERVENING_JOBS is 0 when (1) the job is not a pending
job, or (2) the job that matches the selection criterion is the first pending job
in the queue, or (3) the preceding pending job in the queue was reported in the
previous call to $GETQUI. ·

This item code applies only to output queues.

In a wildcard sequence of calls to $GETQUI using the QUI$_DISPLAY_JOB
function code, only information about jobs that match the $GETQUI selection
criteria is returned.

(Valid for QUI$_DISPLAY_JOB function code)

QUl$_JOB_COMPLETION_QUEUE
When you specify QUI$_JOB_COMPLETION_QUEUE, $GETQUI returns, as
a character string, the name of the queue on which the specified job executed.
Because a queue name can include up to 31 characters, the buffer length of the
item descriptor should specify 31 (bytes).

This item code has a value only if the QUI$_JOB_RETAINED bit is set in the
QUI$_JOB_STATUS longword item code.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_COMPLETION_ TIME
When you specify QUI$_JOB_COMPLETION_TIME, $GETQUI returns, as a
quadword absolute time value, the system time at which the execution of the
specified job completed.

Symbolic Name

System Service Descriptions
$GETQUI

This item code has a value only if the QUI$_JOB_RETAINED bit is set in the
QUI$_JOB_STATUS longword item code.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_COPIES
When you specify QUI$_JOB_COPIES, $GETQUI returns, as a longword integer
value, the number of times the specified print job is to be repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_COPIES_DONE
When you specify QUI$_JOB_COPIES_DONE, $GETQUI returns, as a longword
integer value, the number of times the specified print job has been repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_FLAGS
When you specify QUI$_JOB_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified job. Each
processing option is represented by a bit. When $GETQUI sets a bit, the job is
processed according to the corresponding processing option. Each bit in the vector
has a symbolic name. The $QUIDEF macro defines the following symbolic names.

Description

QUI$V _JOB_CPU_LIMIT. CPU time limit for the job.
QUI$V _JOB_ERROR_RETENTION

QUI$V _JOB_FILE_BURST

QUI$V _JOB_FILE_BURST_ONE

QUI$V _JOB_FILE_FLAG

QUI$V _JOB_FILE_FLAG_ONE

QUI$V _JOB_FILE_PAGINATE

QUI$V _JOB_FILE_TRAILER

QUI$V _JOB_FILE_TRAILER_ONE

QUI$V _JOB_LOG_DELETE

QUI$V _JOB_LOG_NULL

QUI$V _JOB_LOG_SPOOL

QUI$V _JOB_LOWERCASE

The user requested that the job be retained in the queue,
if the job completes unsuccessfully. If the queue is set
to retain all jobs because the QUI$V_QUEUE_RETAIN_
ALL bit of the QUI$_QUEUE_FLAGS item code is set,
the job may be held in the queue even if it completes
successfully. For more information about user-specified
job retention, see the /RETAIN qualifier for the PRINT
or SUBMIT command in the Open VMS DCL Dictionary.

Burst and flag pages precede each file in the job.

Burst and flag pages precede only the first copy of the
first file in the job.
Flag page precedes each file in the job.

Flag page precedes only the first copy of the first file in
the job.
Symbiont paginates output by inserting a form feed
whenever output reaches the bottom margin of the form.

Trailer page follows each file in the job.

Trailer page follows only the last copy of the last file in
the job.

Log file is deleted after it is printed.

No log file is created.

Job log file is queued for printing when job is complete.

Job is to be printed on printer that can print both
uppercase and lowercase letters.

SYS2-21

System Service Descriptions
$GETQUI

Symbolic Name Description

QUI$V _JOB_NOTIFY Message is broadcast to terminal when job completes or
aborts.

QUI$V _JOB_RESTART

QUI$V _JOB_RETENTION

Job will restart after a system failure or can be requeued
during execution.

The user requested that the job be retained in the queue
regardless of the job's completion status. For more
information about user-specified job retention, see the
/RETAIN qualifier for the PRINT or SUBMIT command
in the Open VMS DCL Dictionary.

QUI$V _JOB_ WSDEFAULT

QUI$V _JOB_ WSEXTENT

QUI$V _JOB_ WSQUOTA

Default working set size is specified for the job.

Working set extent is specified for the job.

Working set quota is specified for the job. ·

SYS2-22

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_LIMIT
When you specify QUI$_JOB_LIMIT, $GETQUI returns the number of jobs that
can execute simultaneously on the specified queue, which is a longword integer
value in the range 1 to 255. This item code is applicable only to batch execution
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_NAME
When you specify QUI$_JOB_NAME, $GETQUI returns, as a character string,
the name of the specified job. Because the job name can include up to 39
characters, the buffer length field of the item descriptor should specify 39 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_PID
When you specify QUI$;...JOB_PID, $GETQUI returns the process identification
(PID) of the executing batch job in standard longword format.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_RESET _MODULES
When you specify QUI$_JOB_RESET_MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before each job in the
specified queue is printed. Because a text module name can include up to 31
characters and is separated from the previous text module name by a comma,
the buffer length field of the item descriptor should specify 32 (bytes) for each
possible text module. This item code is meaningful only for output execution
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_RETENTION_ TIME
When you specify QUI$_JOB_RETENTION_TIME, $GETQUI returns, as a
quadword time value, the system time until which the user requested the job be
retained in the queue. The system time may be. expressed in either an absolute
or delta time format.

System Service Descriptions
$GETQUI

For more information, see the /RETAIN qualifier for PRINT or SUBMIT in the
Open VMS DCL Dictionary.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_SIZE
When you specify QUI$_JOB_SIZE, $GETQUI returns, as a longword integer
value, the total number of disk blocks in the specified print job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JOB_SIZE_MAXIMUM
When you specify QUI$_JOB_SIZE_MAXIMUM, $GETQUI returns, as a
longword integer value, the maximum number of disk blocks that a print job
initiated from the specified queue can contain. This item code is applicable only
to output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_SIZE_MINIMUM
When you specify QUI$_JOB_SIZE_MINIMUM, $GETQUI returns, as a longword
integer value, the minimum number of disk blocks that a print job initiated
from the specified queue can contain. This item code is applicable only to output
execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JOB_STATUS
When you specify QUI$_JOB_STATUS, $GETQUI returns the specified job's
status flags, which are contained in a longword bit vector. The $QUIDEF macro
defines the following symbolic names for these flags.

Symbol Name

QUI$V _JOB_ABORTING

QUI$V _JOB_EXECUTING

QUI$V _JOB_HOLDING

QUI$V _JOB_INACCESSIBLE

Description

System is attempting to abort execution
of job.
Job is executing or printing.

Job will be held until it is explicitly
released.
Caller does not have read access to the
specific job and file information in the
system queue file. Therefore, the QUI$_
DISPLAY_JOB and QUI$_DISPLAY_
FILE operations can return information
for only the following output value item
codes:

QUI$_AFTER_TIME
QUI$_COMPLETED_BLOCKS
QUI$_ENTRY_NUMBER
QUI$_INTEVENING_BLOCKS
QUI$_INTEVENING_JOBS
QUI$_JOB_SIZE
QUI$_JOB_STATUS

SYS2-23

System Service Descriptions
$GETQUI

SYS2-24

Symbol Name

QUI$V _JOB_PENDING

QU1$V _JOB_REFUSED

QUI$V _JOB_RETAINED

QUI$V _JOB_STALLED

QUI$V _JOB_STARTING

QUI$V _JOB_SUSPENDED

QUI$V _JOB_TIMED_RELEASE

Description

Job is pending. See QUI$_PENDING_
JOB_REASON for the reason the job is in
a pending state.

Job was refused by symbiont and is
waiting for symbiont to accept it for
processing.

Job has completed, but it is being
retained in the queue.

Execution of the job is stalled because
the physical device on which the job is
printing is stalled.

The job has been scheduled for execution.
Confirmation of execution has not been
received.
Execution of the job is suspended because
the queue on which it is executing is
paused.

Job is waiting for specified time to
execute.

(Valid for QU1$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LAST _PAGE
When you specify QUI$_LAST_PAGE, $GETQUI returns, as a longword integer
value, the page number at which the printing of the specified file should end.
This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_LIBRARY _SPECIFICATION
When you specify QUI$_LIBRARY_SPECIFICATION, $GETQUI returns, as an
Open VMS RMS file name component, the name of the deVice control library for
the specified queue. The library specification assumes the device and directory
name SYS$LIBRARY and a file type of .TLB. Because a file name can include up
to 39 characters, the buffer length field of the item descriptor should specify 39
(bytes). This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_LOG_QUEUE
When you specify QUI$_LOG_QUEUE, $GETQUI returns, as a character string,
the name of the queue into· which the log file produced for the specified batch
job is to be entered for printing. This item code is applicable only to batch jobs.
Because a queue name can contain up to 31 characters, the buffer length field of
the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LOG_SPECIFICATION
When you specify QUI$_LOG_SPECIFICATION, $GETQUI returns, as an
Open VMS RMS file specification, the name of the log file to be produced for the
specified job. Because a file specification can include up to 255 characters, the

System Service Descriptions
$GETQUI

buffer length field of the item descriptor should specify 255 (bytes). This item
code is meaningful only for batch jobs.

The string returned is the log file specification that was provided to the $SNDJBC
service to create the job. Therefore, to determine whether a log file is to be
produced, testing this item code for a zero-length string is insufficient; instead,
you need to examine the QUI$V _JOB_LOG_NULL bit of the QUI$_JOB_FLAGS
item code.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_MANAGER_NAME
When you specify QU1$_MANAGER_NAME, $GETQUI returns, as a character
string, the queue manager name. Because a queue manager name can include up
to 31 characters, the buffer length field of the item descriptor should specify 31
(bytes).

(Valid for QUI$_DISPLAY_MANAGER function code)

QUl$_MANAGER_NODES
When you specify QUI$_MANAGER_NODES, $GETQUI returns, as a comma
separated list, the names of the nodes on which this queue manager runs.

(Valid for QUI$_DISPLAY_MANAGER function code)

QUl$_MANAGER_STATUS
When you specify QU1$_MANAGER_STATUS, $GETQUI returns the specified
queue manager's status flags, which are contained in a longword bit vector. The
$QUIDEF macro defines the following symbolic names for these flags.

Symbolic Name

QUI$V _MANAGER_FAILOVER

QUI$V _MANAGER_RUNNING
QUI$V _MANAGER_START_PENDING

QUI$V _MANAGER_STARTING

QUI$V _MANAGER_STOPPING

QUI$V _MANAGER_STOPPED

Description

Queue manager is in the process
of failing over to another node.

Queue manager is running.

Queue manager can start up
whenever a node on which it can
run is booted.

Queue manager is in the process
of starting up.

Queue manager is in the process
of shutting down.
Queue manager is stopped.

(Valid for QUI$_DISPLAY_MANAGER function code)

QUl$_NOTE
When you specify QU1$_NOTE, $GETQUI returns, as a character string, the
note that is to be printed on the job flag and file flag pages of the specified job.
Because the note can include up to 255 characters, the buffer length field of the
item descriptor should specify 255 (bytes). This item code is meaningful for batch
and output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

SYS2-25

System Service Descriptions
$GETQUI

SYS2-26

QUl$_0PERATOR_REQUEST
When you specify QUI$_0PERATOR_REQUEST, $GETQUI returns, as a
character string, the message that is to be sent to the queue operator before
the specified job begins to execute. Because the message can include up to 255
characters, the buffer length field of the item descriptor should specify 255
(bytes). This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_0WNER_UIC
When you specify QUI$_0WNER_UIC, $GETQUI returns the owner UIC as a
longword value in standard UIC format. ·

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PAGE_SETUP _MODULES
When you specify QUI$_PAGE_SETUP _MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules to be extracted from the
device control library and copied to the printer before each page of the specified
form is printed. Because a text module name can include up to 31 characters and
is separated from the previous text module name by a comma, the buffer length
field of the item descriptor should specify 32 (bytes) for each possible text module.
This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_PARAMETER_ 1 through QUl$_PARAMETER_8
When you specify QUI$_PARAMETER_l through QUI$_PARAMETER_8,
$GETQUI returns, as a character string, the value of the user-defined parameters
that in batch jobs become the value of the DCL symbols Pl through PS
respectively. Because these parameters can include up to 255 characters, the
buffer length field of the item descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PENDING_JOB_BLOCK_COUNT
When you specify QUI$_PENDING_JOB_BLOCK_COUNT, $GETQUI returns, as
a longword integer value, the total number of blocks for all pending jobs in the
queue (valid only for output execution queues).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PENDING_JOB_COUNT
When you specify QUI$_PENDING_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue in a pending state.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PENDING_JOB_REASON
When you specify QUI$_PENDING_JOB_REASON, $GETQUI returns, as a
longword bit vector, the reason that the job is in a pending state. The $QUIDEF
macro defines the following symbolic names for the flags.

Symbolic Name

QUI$V _PEND_CHAR_MISMATCH

QUI$V _PEND_JOB_SIZE_MAX

QUI$V _PEND_JOB_SIZE_MIN

QUI$V_PEND_LOWERCASE_MISMATCH

QUI$V _PEND_NO_ACCESS

QUI$V _PEND_QUEUE_BUSY

QUI$V _PEND_QUEUE_STATE

QUI$V _PEND_STOCK_MISMATCH

System Service Descriptions
$GETQUI

Description

Job requires characteristics
that are not available on the
execution queue.

Block size of job exceeds
the upper block limit of the
execution queue.

Block size of job is less than
the lower limit of the execution
queue.

Job requires lowercase printer.

Owner of job does not have
access to the execution queue.

Job is pending because the
number of jobs currently
executing on the queue equals
the job limit for the queue.

Job is pending because the
execution queue is not in
a running, open state as
indicated by QUI$_ QUEUE_
STATUS.

Stock type required by the job's
form does not match the stock
type of the form mounted on
the execution queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PRIORITY
When you specify QUI$_PRIORITY, $GETQUI returns the scheduling priority of
the specified job, which is a longword integer value in the range 0 through 255.

Scheduling priority affects the order in which jobs assigned to a queue are
initiated; it has no effect on the base execution priority of a job. The lowest
scheduling priority value is 0, the highest is 255; that is, if a queue contains a
job with a scheduling priority of 10 and a job with a scheduling priority of 2; the
queue manager initiates the job with the scheduling priority of 10 first.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PROCESSOR
When you specify QUI$_PROCESSOR, $GETQUI returns, as an Open VMS
RMS file name component, the name of the· symbiont image that executes print
jobs initiated from the specified queue. The file name assumes the device and
directory name SYS$SYSTEM and the file type .EXE. Because an RMS file name
can include up to 39 characters, the buffer length field of the item descriptor
should specify 39 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QU1$_DISPLAY_QUEUE function codes)

QUl$_PROTECTION
When you specify QUI$_PROTECTION, $GETQUI returns, as a word, the
specified queue's protection mask.

SYS2-27

System Service Descriptions
$GETQUI

SYS2-28

The following diagram illustrates the protection mask.

Protection value

World Group Owner System

OMS ROMS ROMS ROMS R

151413121110 9 8 7 6 5 4 3 2 1 0

ZK-3823A-GE

Bits 0 through 15 specify the protection value-the four types of access (read,
submit, manage, and delete) to be granted to the four classes of user (System,
Owner, Group, World). Set bits deny access and clear bits allow access.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE_DESCRIPTION
When you specify QUI$_QUEUE_DESCRIPTION, $GETQUI returns, as a
character string, the text that describes the specified queue. Because the text can
include up to 255 characters, the buffer length field of the item descriptor should
specify 255 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE_DIRECTORY
When you specify QUI$_QUEUE_DIRECTORY, $GETQUI returns a string
containing the device and directo.ry specification of the queue database directory
for this queue manager.

(Valid for QUI$_DISPLAY_MANAGER function code)

QUl$_QUEUE_FLAGS
When you specify QUI$_QUEUE_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified queue.
Each processing option is represented by a bit. When $GETQUI sets a bit,
the jobs initiated from the queue are processed according to the corresponding
processing option. Each bit in the vector has a symbolic name. The $QUIDEF
macro defines the following symbolic names.

Symbolic Name

QUI$V _QUEUE_ACL_SPECIFIED

QUI$V _QUEUE_AUTOSTART

QUI$V _QUEUE_BATCH

QUI$V _QUEUE_CPU_DEFAULT

QUI$V _QUEUE_ CPU _LIMIT

Description

An access control list has been
specified for the queue. You cannot
retrieve a queue's ACL through the
$GETQUI service. Instead, you must
use the $CHANGE_ACL service.

Queue is designated as an autostart
queue.
Queue is a batch queue or a generic
batch queue.

A default CPU time limit has been
specified for all jobs in the queue.

A maximum CPU time limit has been
specified for all jobs in the queue.

Symbolic Name

QUI$V _ QUEUE_FILE_BURST

QUI$V _ QUEUE_FILE_BURST_ ONE

QUI$V _QUEUE_FILE_FLAG

QUI$V _ QUEUE_FILE_FLAG_ ONE

QUI$V _QUEUE_FILE_PAGINATE

QUI$V _QUEUE_FILE_TRAILER

QUI$V _ QUEUE_FILE_TRAILER_ ONE

QUI$V_QUEUE_GENERIC

QUI$V _QUEUE_GENERIC_
SELECTION

QUI$V _ QUEUE_JOB_BURST

QUI$V _QUEUE_JOB_FLAG

QUI$V _QUEUE_JOB_SIZE_SCHED

QUI$V _QUEUE_JOB_TRAILER

QUI$V _QUEUE_PRINTER

QUI$V _QUEUE_RECORD_BLOCKING

QUI$V _ QUEUE_RETAIN_ALL

System Service Descriptions
· $GETQUI

Description

Burst and flag pages precede each
file in each job initiated from the
queue.

Burst and flag pages precede only
the first copy of the first file in each
job initiated from the queue.

Flag page precedes each file in each
job initiated from the queue.

Flag page precedes only the first copy
of the first file in each job initiated
from the queue.

Output symbiont paginates output
for each job initiated from this queue.
The' output symbiont paginates
output by inserting a form feed
whenever output reaches the bottom
margin of the form.
Trailer page follows each file in each
job initiated from the queue.

Trailer page follows only the last
copy of the last file in each job
initiated from the queue.
The queue is a generic queue.

The queue is an execution queue
that can accept work from a generic
queue.
Burst and flag pages precede each
job initiated from the queue.
A flag page precedes each job
initiated from the queue.

Jobs initiated from the queue are
scheduled according to size, with
the smallest job of a given priority
processed first (meaningful only for
output queues).
A trailer page follows each job
initiated from the queue.

The queue is a printer queue.

The symbiont is permitted to
concatenate, or block together, the
output records it sends to the output
device.

All jobs initiated from the queue
remain in the queue after they
finish executing. Completed jobs are
marked with a completion status.

SYS2-29

System Service Descriptions
$GETQUI

SYS2-30

Symbolic Name

QUI$V _QUEUE_RETAIN_ERROR

QUI$V _QUEUE_SWAP

QUI$V _QUEUE_TERMINAL

QUI$V _QUEUE_ WSDEFAULT

QUI$V _QUEUE_ WSEXTENT

QUI$V _QUEUE_ WSQUOTA

Description

Only jobs that do not complete
successfully are retained in the
queue.

Jobs initiated from the queue can be
swapped.
The queue is a terminal queue.

Default working set size is specified
for each job initiated from the queue.

Working set extent is specified for
each job initiated from the queue.

Working set quota is specified for
each job initiated from the queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_QUEUE function codes)

QUl$_QUEUE_NAME
When you specify QUI$_QUEUE_NAME, $GETQUI returns, as a character
string, the name of the specified queue or the name of the queue that contains
the specified job. Because a queue name can include up to 31 characters, the
buffer length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_QUEUE_STATUS
When you specify QUI$_QUEUE_STATUS, $GETQUI returns the specified
queue's status flags, which are contained in a longword bit vector. Some of these
bits describe the queue's state, others provide additional status information. The
$QUIDEF macro defines the following symbolic names for these flags.

Symbolic Name

QUI$V _ QUEUE_ALIGNING
QUI$V _QUEUE_AUTOSTART_
INACTIVE

QUI$V _QUEUE_AVAILABLE1

QUI$V _QUEUE_BUSY1

QUI$V _QUEUE_ CLOSED

QUI$V _ QUEUE_DISABLED1

QUI$V _QUEUE_IDLE1

Description

Queue is printing alignment pages.

Autostart queue is stopped due to failure
or manual intervention and needs to be
manually started.

Queue is processing work but is capable
of processing additional work.
Queue cannot process additional jobs
because of work in progress.

Queue is closed and will not accept new
jobs until the queue is put in an open
state.

Queue is not capable of being started or
submitted to.

Queue contains no job requests capable of
being processed.

1 Bit describes the current state of the queue. Only one of these bits can be set at any time.

Symbolic Name

QUI$V _QUEUE_LOWERCASE

QUI$V _QUEUE_PAUSED1

QUI$V _ QUEUE_PAUSING1

QUI$V _QUEUE_REMOTE

QUI$V _QUEUE_RESETTING
QUI$V _QUEUE_RESUMING1

QUI$V _QUEUE_SERVER

QUI$V _QUEUE_STALLED1

QUI$V _QUEUE_STARTING1

QUI$V _ QUEUE_STOP _PENDING

QUI$V _ QUEUE_STOPPED1

QUI$V _QUEUE_STOPPING1

QUI$V_QUEUE_UNAVAILABLE

System Service Descriptions
$GETQUI

Description

Queue is associated with a printer that
can print both uppercase and lowercase.
characters.

Execution of all current jobs in the queue
is temporarily halted.
Queue is temporarily halting execution.

Queue is assigned to a physical device
that is not connected to the local node.

Queue is resetting and stopping.
Queue is restarting after pausing.

Queue processing is directed to a server
symbiont.

Physical device to which queue is
assigned is stalled; that is, the device
has not completed the last I/O request
submitted to it.
Queue is starting.

Queue will be stopped when work
currently in progress has completed.

Qu~ue is stopped.
Queue is stopping.
Physical device to which queue is
assigned is not available.

1 Bit describes the current state of the queue. Only one of these bits can be set at any time.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_QUEUE function codes)

QUl$_REQUEUE_QUEUE_NAME
When you specify QUI$_REQUEUE_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the queue to which the specified job is reassigned.
This item code only has a value if the QUI$V _JOB_ABORTING bit is set in the
QUI$_JOB_STATUS longword, and the job is going to be requeued to another
queue. Because a queue name can include up to 31 characters, the buffer length
of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_RESTART _QUEUE_NAME
When you specify QUI$_RESTART_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the queue in which the job will be placed if the job
is restarted.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_RETAINED_JOB_COUNT
When you specify QUI$_RETAINED_JOB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue retained after successful
completion plus those retained on error.

(Valid for QUI$_DISPLAY_QUEUE function code)

SYS2-31

System Service Descriptions
$GETQUI

QUl$_SCSNODE_NAME
When you specify QUI$_SCSNODE_NAME, $GETQUI returns, as a character
string, the name of the node on which the specified execution queue or queue
manager is located. Because the node name can include up to 6 characters, the
buffer length field of the item descriptor should specify 6 (bytes).

(Valid for QUI$_DISPLAY_QUEUE, QUI$_DISPLAY_MANAGER function
codes)

QUl$_SEARCH_FLAGS
When you specify QUI$_SEARCH_FLAGS, an input value item code, it specifies a
longword bit vector wherein each bit specifies the scope of $GETQUI's search for
objects specified in the call to $GETQUI. The $QUIDEF macro defines symbols
for each option (bit) in the bit vector. The following table contains the symbolic
names for each option and the function code for which each flag is meaningful.

Symbolic Name Function Code Description

QUI$V _SEARCH_ QUI$_DISPLAY_JOB $GETQUI searches all jobs included in
ALL_JOBS the established queue context. If you

do not specify this flag, $GETQUI only
returns information about jobs that
have the same user name as the caller.

QUI$V _SEARCH_ QUI$_DISPLAY_ENTRY Selects batch queues.
BATCH QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_ QUI$_DISPLAY _ENTRY Selects executing jobs, or queues with
EXECUTING_JOBS QUI$_DISPLAY_JOB executing jobs.

QUI$_DISPLAY_QUEUE
QUI$V _SEARCH_ QUI$_DISPLAY_ Does not advance wildcard context on
FREEZE_ CONTEXT CHARACTERISTIC completion of this service call.

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY _FILE
QUI$_DISPLAY_FORM
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE
QUI$_DISPLAY_MANAGER

QUI$V _SEARCH_ QUI$_DISPLAY _ENTRY Selects generic queues.
GENERIC QUI$_DISPLAY_QUEUE
QUI$V _SEARCH_ QUI$_DISPLAY_ENTRY Selects jobs on unconditional hold, or
HOLDING_JOBS QUI$_DISPLAY_JOB queues with jobs on unconditional hold.

QUI$_DISPLAY_QUEUE

QUI$V _SEARCH_ QUI$_DISPLAY_ENTRY Selects pending jobs, or queues with
PENDING_JOBS QUI$_DISPLAY _JOB pending jobs.

QUI$_DISPLAY_QUEUE
QUI$V _SEARCH_ QUI$_DISPLAY_ENTRY Selects printer queues.
PRINTER QUI$_DISPLAY_QUEUE
QUI$V _SEARCH_ QUI$_DISPLAY_ENTRY Selects jobs being retained, or queues
RETAINED_JOBS QUI$_DISPLAY_JOB with jobs being retained.

QUI$_DISPLAY _QUEUE
QUI$V _SEARCH_ QUI$_DISPLAY _ENTRY Selects server queues.
SERVER QUI$_DISPLAY_QUEUE

SYS2-32

Symbolic Name Function Code

System Service Descriptions
$GETQUI

Description

QUI$V _SEARCH_
SYMBIONT

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE

Selects output queues.

QUI$V _SEARCH_
TERMINAL
QUI$V _SEARCH_
THIS_JOB

QUI$V _SEARCH_
TIMED _RELEASE_
JOBS
QUI$V _SEARCH_
WILD CARD

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_QUEUE
QUI$_DISPLAY _FILE
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_ENTRY
QUI$_DISPLAY_JOB
QUI$_DISPLAY_QUEUE
QUI$_DISPLAY_
CHARACTERISTIC
QUI$_DISPLAY _ENTRY
QUI$_DISPLAY_FORM
QUI$_DISPLAY_QUEUE

QUl$_SEARCH_JOB_NAME

Selects terminal queues.

$GETQUI returns information about
the calling batch job, the command file
being executed, or the queue associated
with the calling batch job. $GETQUI
establishes a new queue and job context
based on the job entry of the caller; this
queue and job context is dissolved when
$GETQUI finishes executing. If you
specify QUI$V _SEARCH_THIS_JOB,
$GETQUI ignores all other QUI$_
SEARCH_FLAGS options.
Selects jobs on hold until a specified
time, or queues with jobs on hold until
a specified time.
$GETQUI performs a search in
wildcard mode even if QUI$_SEARCH_
NAME contains no wildcard characters.

QUI$_SEARCH_JOB_NAME is an input value item code that specifies a 1- to
39-character string that $GETQUI uses to restrict its search for a job or jobs.
$GETQUI searches for job names that match the job name input value for the
given user name. Wildcard characters are acceptable.

(Valid for QUI$_DISPLAY_ENTRY function code)

QUl$_SEARCH_NAME
QUI$_SEARCH_NAME is an input value item code that specifies, as a 1- to
31-character string, the name of the object about which $GETQUI is to return
information. The buffer must specify the name of a characteristic, form, orf queue.

To direct $GETQUI to perform a wildcard search, you specify QUI$_SEARCH_
NAME as a string containing one or more of the wildcard characters (% or *).

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_FORM, QUI$_
DISPLAY_MANAGER, QUI$_DISPLAY_QUEUE, QUI$_TRANSLATE_QUEUE
function codes)

QUl$_SEARCH_NUMBER
QUI$_SEARCH_NUMBER is an input value item code, that specifies, as a
longword integer value, the number of the characteristic, form, or job entry about
which $GETQUI is to return information. The buffer must specify a longword
integer value.

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_ENTRY, QUI$_
DISPLAY_FORM function codes)

SYS2-33

System Service Descriptions
$GETQUI

SYS2-34

QUl$_SEARCH_USERNAME
QUI$_SEARCH_USERNAME is an input value item code that specifies, as a 1-
to 12-character string, the user name for $GETQUI to use to restrict its search
for jobs. By default, $GETQUI searches for jobs whose owner has the same user
name as the calling process.

(Valid for QUI$_DISPLAY_ENTRY function code)

QUl$_SUBMISSION_ TIME
When you specify QUI$_SUBMISSION_TIME, $GETQUI returns, as a quadword
absolute time value, the time at which the specified job was submitted to the
queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUI$_ TIMED _RELEASE_JOB_ COUNT
When you specify QUI$_TIMED_RELEASE_JOB_COUNT, $GETQUI returns, as
a longword value, the number of jobs in the queue on hold until a specified time.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_UIC
When you specify QUI$_UIC, $GETQUI returns, in standard longword format,
the UIC of the owner of the specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_USERNAME
When you specify QUI$_USERNAME, $GETQUI returns, as a character string,
the user name of the owner of the specified job. Because the user name can
include up to 12 characters, the buffer length field of the item descriptor should
specify 12 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_WSDEFAULT
When you specify QUI$_ WSDEFAULT, $GETQUI returns, in pages (on VAX
systems) or pagelets (on Alpha systems), the default working set size specified
for the specified job or queue, which is a longword integer in the range 1 through
65,535. This value is meaningful only for batch jobs and execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_WSEXTENT
When you specify QUI$_ WSEXTENT, $GETQUI returns, in pages (on VAX
systems) or pagelets (on Alpha systems), the working set extent for the specified
job or queue, which is a longword integer in the range 1 through 65,535. This
value is meaningful only for batch jobs and execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

QUl$_WSQUOTA
When you specify QUI$_WSQUOTA, $GETQUI returns, in pages (on VAX
systems) or pagelets (on Alpha systems), the working set quota for the specified
job or queue, which is a longword integer in the range 1 through 65,535. This
value is meaningful only for batch jobs and execution queues.

Description

System Service Descriptions
$GETQUI

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB, QUI$_DISPLAY_
QUEUE function codes)

The Get Queue Information service returns information about queues and the
jobs initiated from those queues. The $GETQUI and $SNDJBC services together
provide the user interface to the queue manager and job controller processes. See
the Descriptiqn section of the $SNDJBC service for a discussion of the different
types of jobs and queues.

The $GETQUI service completes asynchronously; that is, it returns to the caller
after queuing the request, without waiting for the operation to complete. For
synchronous completion, use the Get Queue Information and Wait ($GETQUIW)
service. The $GETQUIW service is identical to $GETQUI in every way except
that $GETQUIW returns to the caller after the operation has completed.

You can specify the following function codes to return information for the object
types listed.

Function Code

QUI$_DISPLAY_CHARACTERISTIC
QUI$_DISPLAY_FORM

QUI$_DISPLAY_QUEUE

QUI$_DISPLAY_MANAGER
QUI$_DISPLAY_JOB

QUI$_DISPLAY _FILE

QUI$_DISPLAY _ENTRY

Object Type

Characteristic
Form

Queue

Queue manager
Job within a queue context
File within a job context

Job independent of queue

When you call the $GETQUI service, the queue manager establishes an internal
GETQUI context block (GQC). The system uses the GQC to store information
temporarily and to keep track of its place in a wildcard sequence of operations.
The system provides any number of GQC blocks per process.

To allow you to obtain information either about a particular object in a single call
or about several objects in a sequence of calls, $GETQUI supports three different
search modes. The following search modes affect the disposition of the GQC in
different ways:

• Nonwildcard mode-$GETQUI returns information about a particular object
in a single call. After the call completes, the system dissolves the GQC.

• Wildcard mode-$GETQUI returns information about several objects of the
same type in a sequence of calls. The system saves the GQC between calls
until the wildcard sequence completes.

• Nested wildcard mode-$GETQUI returns information about objects defined
within another object. Specifically, this mode allows you to query jobs
contained in a selected queue or files contained in a selected job in a sequence
of calls. After each call, the system saves the GQC so that the GQC can
provide the queue or job context necessary for subsequent calls.

The sections that follow describe how each of the three search methods affects
$GETQUI's search for information; how you direct $GETQUI to undertake each
method; and how each method affects the contents of the GQC.

SYS2-35

System Service Descriptions
$GETQUI

SYS2-36

Nonwildcard Mode
In nonwildcard mode, $GETQUI can return information about the following
objects:

• A specific characteristic or form definition that you identify by name or
number.

• A specific queue that you identify by name.

• A specific queue manager that you identify by name.

• A specific batch or print job that you identify by job entry number or by name.

• The queue, job, or executing command procedure file associated with the
calling batch job. You invoke this special case of nonwildcard mode by
specifying the QUI$_SEARCH_THIS_JOB option of the QUI$_SEARCH_
FLAGS item code for a display queue, job, or file operation.

To obtain information about a specific characteristic or form definition, you call
$GETQUI using the QUI$_DISPLAY_CHARACTERISTIC or QUI$_DISPLAY_
FORM function code. You need to specify either the name of the characteristic or
form in the QUI$_SEARCH_NAME item code or the number of the characteristic
or form in the QUI$_SEARCH_NUMBER item code. The name string you specify
cannot include either of the wildcard characters(* or%). You can specify both the
QUI$_SEARCH_NAME and QUI$_SEARCH_NUMBER item codes, but the name
and number you specify must be associated with the same characteristic or form
definition.

To obtain information about a specific queue definition, you specify the QUI$_
DISPLAY_QUEUE function code and provide the name of the queue in the QUI$_
SEARCH_NAME item code. The name string you specify cannot include the
wildcard characters (* or %).

To obtain information about a specific queue manager, specify the QUI$_
DISPLAY_MANAGER function code and provide the name of the queue manager
in the QUI$_SEARCH_NAME item code. The name string you specify cannot
include the wildcard characters(* or%).

To obtain information about a specific batch or print job, specify the QUI$_
DISPLAY_ENTRY function code and provide the entry number of the job in the
QUI$_SEARCH_NUMBER item code.

Finally, the $GETQUI service provides an option that allows a batch job to obtain
information about the queue, job, or command file that the associated batch
job is executing without first entering wildcard mode to establish a queue or
job context. You can make a call from the batch job that specifies the QUI$_
DISPLAY_QUEUE function code to obtain information about the queue from
which the batch job was initiated; the QUI$_DISPLAY_JOB function code to
obtain information about the batch job itself; or the QUI$_DISPLAY_FILE
function code to obtain information about the command file for the batch job. For
each of these calls, you must select the QUI$V _SEARCH_THIS_JOB option of
the QUI$_SEARCH_FLAGS item code. When you select this option, $GETQUI
ignores all other options in the QUI$_SEARCH_FLAGS item code. .

Wildcard Mode

System Service Descriptions
$GETQUI

In wildcard mode, the system saves the GQC between calls to $GETQUI so
that you can make a sequence of calls to $GETQUI to get information about all
characteristics, forms, queues, jobs, or queue managers contained in the queue
database.

You can have several streams of operations open at one time. To use a stream,
specify a unique longword value for the context argument for every call
associated with that stream. If you do not specify the context argument, then
context #0 will be used.

To set up a wildcard search for characteristic or form definitions, specify the
QUI$_DISPLAY_CHARACTERISTIC or QUI$_DISPLAY_FORM function code
and specify a name in the QUI$_SEARCH_NAME item code that includes one or
more wildcard characters(* or%).

To set up a wildcard search for queues, use the QUI$_DISPLAY_QUEUE function
code and specify a name in the QUI$_SEARCH_NAME item code that includes
one or more wildcard characters(* or%). You can indicate the type of the queue
you want to search for by specifying any combination of the following options for
the QUI$_SEARCH_FLAGS item code:

QUI$V _SEARCH_BATCH
QUI$V _SEARCH_PRINTER
QUI$V _SEARCH_SERVER
QUI$V _SEARCH_TERMINAL
QUI$V _SEARCH_SYMBIONT
QUI$V _SEARCH_ GENERIC

For example, if you select the QUI$V _SEARCH_BATCH option, $GETQUI
returns information only about batch queues; if you select the QUI$V _SEARCH_
SYMBIONT option, $GETQUI returns information only about output queues
(printer, terminal, and server queues). If you specify none of the queue type
options, $GETQUI searches all queues.

To set up a wildcard search for queue managers, specify the QUI$_DISPLAY_
MANAGER function code and specify a name in the QUI$_SEARCH_NAME item
code that includes one or more wildcard characters (* or %).

To set up a wildcard search for jobs, specify the QUI$_DISPLAY_ENTRY function
code and the QUI$_SEARCH_ WILDCARD option of the QUI$_SEARCH_FLAGS
item code. When you specify this option, omit the QUI$_SEARCH_NUMBER
item code. You can restrict the search to jobs having particular status or to jobs
residing in specific types of queues, or both, by including any combination of the
following options for the QUI$_SEARCH_FLAGS item code:

QUI$V _SEARCH_BATCH
QUI$V _SEARCH_EXECUTING_JOBS
QUI$V _SEARCH_HOLDING_JOBS
QUI$V _SEARCH_PENDING_JOBS
QUI$V _SEARCH_PRINTER
QUI$V _SEARCH_RETAINED_JOBS
QUI$V _SEARCH_SERVER
QUI$V _SEARCH_SYMBIONT
QUI$V _SEARCH_TERMINAL
QUI$V _SEARCH_TIMED _RELEASE_JOBS

SYS2-37

System Service Descriptions
$GETQUI

SYS2-38

You can also force wildcard mode for characteristic, form, or queue display
operations by specifying the QUI$V _SEARCH_ WILDCARD option of the QUI$_
SEARCH_FLAGS item code. If you specify this option, the system saves the GQC
between calls, even if you specify a nonwildcard name in the QUI$_SEARCH_
NAME item code. Whether or not you specify a wildcard name in the QUI$_
SEARCH_NAME item code, selecting the QUI$V _SEARCH_ WILDCARD option
ensures that wildcard mode is enabled.

Once established, wildcard mode remains in effect until one of the following
actions causes the GQC to be released:

• $GETQUI returns a JBC$_NOMORExxx or JBC$_NOSUCHxxx condition
value on a call to display characteristic, form, queue, queue manager, or entry
information, where xxx refers to CHAR, FORM, QUE, QMGR, or ENT.

• You explicitly cancel the wildcard operation by specifying the QUI$_CANCEL_
OPERATION function code in a call to the $GETQUI service.

• Your process terminates.

Note that wildcard mode is a prerequisite for entering nested wildcard mode.

Nested Wildcard Mode
In nested wildcard mode, the system saves the GQC between calls to $GETQUI
so that you can make a sequence of calls to $GETQUI to get information about
jobs that are contained in a selected queue or files of the selected job. Nested
wildcard mode reflects the parent-child relationship between queues and jobs and
between jobs and files. The $GETQUI service can locate and return information
about only one object in a single call. However, queues are objects that contain
jobs and jobs are objects that contain files. Therefore, to get information about an
object contained within another object, you must first make a call to $GETQUI
that specifies and locates the containing object and then make a call to request
information about the contained object. The system saves the location of the
containing object in the GQC along with the location of the contained object.

Note that the context number specified in the context argument must remain
the same for each level of nesting.

Two of $GETQUI's operations, QUI$_DISPLAY_JOB and QUI$_DISPLAY_FILE,
can be used only in a nested wildcard mode, with one exception. The exceptional
use of these two operations involves calls made to $GETQUI from a batch job to
find out more information about itself. This exceptional use is described at the
end of the Nonwildcard Mode section.

You can enter nested wildcard mode from either wildcard display queue mode or
from wildcard display entry mode. To obtain job and file information in nested
wildcard mode, you can use a combination of QUI$_DISPLAY_QUEUE, QUI$_
DISPLAY_JOB, and QUI$_DISPLAY_FILE operations. To obtain file information,
you can use a combination of QUI$_DISPLAY_ENTRY and QUI$_DISPLAY_FILE
operations as an alternative.

To set up a nested wildcard search for job and file information, you first perform
one or more QUI$_DISPLAY_QUEUE operations in wildcard mode to establish
the queue context necessary for the nested display job and file operations. Next
you specify the QUI$_DISPLAY_JOB operation repetitively; these calls search the
current queue until a call locates the job that contains the file or files you want.
This call establishes the job context. Having located the queue and the job that
contain the file or files, you can now use the QUI$_DISPLAY_FILE operation
repetitively to request file information.

System Service Descriptions
$GETQUI

You can enter the nested wildcard mode for the display queue operation in
two different ways: by specifying a wildcard name in the QUI$_SEARCH_
NAME item code or by specifying a nonwildcard queue name and selecting the
QUI$V _SEARCH_ WILDCARD option of the QUI$_SEARCH_FLAG item code.
The second method of entering wildcard mode is useful if you want to obtain
information about one or more jobs or files within jobs for a specific queue and
want to specify a nonwildcard queue name but still want to save the GQC after
the queue context is established.

When you make calls to $GETQUI that specify the QUI$_DISPLAY_JOB function
code, by default $GETQUI locates all the jobs in the selected queue that have the
same user name as the calling process. If you want to obtain information about
all. the jobs in the selected queue, you select the QUI$V _SEARCH_ALL_JOBS
option of the QUI$_SEARCH_FLAGS item code.

After you establish a queue context, it remains m effect until you either change
the context by making another call to $GETQUI that specifies the QUI$_
DISPLAY_QUEUE function code or until one of the actions listed at the end
of the Wildcard Mode section causes the GQC to be released. An established job
context remains in effect until you change the context by making another call
to $GETQUI that specifies the QUI$_DISPLAY_JOB function code or $GETQUI
returns a JBC$_NOMOREJOB or JBC$_NOSUCHJOB condition value. While
the return of either of these two condition values releases the job context, the
wildcard search remains in effect because the GQC continues to maintain
the queue context. Similarly, return of the JBC$_NOMOREFILE or JBC$_
NOSUCHFILE condition value signals that no more files remain in the current
job context. However, these condition values do not cause the job context to be
dissolved.

To set up a nested wildcard search for file information for a particular entry, you
first perform one or more QUI$_DISPLAY_ENTRY operations in wildcard mode
to establish the desired job context. Next you call $GETQUI iteratively with the
QUI$_DISPLAY_FILE function code to obtain file information for the selected job.

When you make calls to $GETQUI that specify the QUI$_DISPLAY_ENTRY
function code, by default $GETQUI locates all jobs that have the same user name
as the calling process. If you want to obtain information about jobs owned by
another user, you specify the user name in the QUI$_SEARCH_USERNAME
item code.

You can use the QUI$_SEARCH_FREEZE_ CONTEXT option of the QUI$_
SEARCH_FLAGS item code in any wildcard or nested wildcard call to prevent
advancement of context to the next object on the list. This allows you to make
successive calls for information about the same queue, job, file, characteristic, or
form.

Required Access or Privileges
The caller must have manage (M) access to the queue, read (R) access to the job,
or SYSPRV or OPER privilege to obtain job and file information.

If the caller does not have the privilege required to access a job specified in a
QUI$_DISPLAY_JOB or QUI$_DISPLAY_FILE operation, $GETQUI returns a
successful condition value. However, it sets the QUI$V _JOB_INACCESSIBLE
bit of the QUI$_JOB_STATUS item code and returns information only for the
following item codes:

QUI$_AFTER_TIME
QUI$_COMPLETED_BLOCKS

SYS2-39

System Service Descriptions
$GETQUI

QUI$_ENTRY_NUMBER
QUI$_INTERVENING_BLOCKS
QU1$_INTERVENING_JOBS
QUI$_JOB_SIZE
QUI$_JOB_STATUS

Required Quota
AST limit quota must be sufficient.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUIW, $INIT_VOL, $MOUNT, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR, $TRNLNM

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_BADCONTEXT

SS$_BADPARAM

SS$_DEVOFFLINE
SS$_EXASTLM

SS$_ILLEFC

SS$_INSFMEM

SS$_MBFULL
SS$_IVLOGNAM

SS$_MBTOOSML

SS$_UNASEFC

The service completed successfully.
The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.
Context does not exist or must be called from a
more privileged mode.
The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.
The job controller process is not running.
The astadr argument was specified, and the
process has exceeded its ASTLM quota.
The efn argument specifies an illegal event flag
number.
The space for completing the request is
insufficient.
The job controller mailbox is full.
The device name string has a length of 0 or has
more than 63 characters.
The mailbox message is too large for the job
controller mailbox.
The efn argument specifies an unassociated
event flag cluster.

Condition Values Returned in the 1/0 Status Block

SYS2-40

JBC$_NORMAL
JBC$_INVFUNCOD
JBC$_INVITMCOD

The service completed successfully.
The specified function code is invalid.
The item list contains an invalid item code.

JBC$_INVPARLEN

JBC$_INVQUENAM

JBC$_JOBQUEDIS

JBC$_MISREQPAR

JBC$_NOJOBCTX

JBC$_NOMORECHAR

JBC$_NOMOREENT

JBC$_NOMOREFILE

JBC$_NOMOREFORM

JBC$_NOMOREJOB

JBC$_NOMOREQMGR

JBC$_NOMOREQUE

JBC$_NOQUECTX

JBC$_NOSUCHCHAR

JBC$_NOSUCHENT

JBC$_NOSUCHFILE

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHQMGR
JBC$_NOSUCHQUE

System Service Descriptions
$GETQUI

The length of a specified string is outside the
valid range for that item code.
The queue name is not syntactically valid.

The request cannot be executed because the
system job queue manager has not been started.

An item code that is required for the specified
function code has not been specified.

No job context has been established for a QUI$_
DISPLAY _FILE operation.

No more characteristics are defined, which
indicates the termination of a QUI$_DISPLAY_
CHARACTERISTIC wildcard operation.

There are no more job entries for the specified
user or current user name, which indicates
termination of a QUI$_DISPLAY_ENTRY
wildcard operation.

No more files are associated with the current
job context, which indicates the termination of a
QUI$_DISPLAY_FILE wildcard operation for the
current job context.

No more forms are defined, which ~ndicates
the termination of a QUI$_DISPLAY_FORM
wildcard operation.

No more jobs are associated with the current
queue context, which indicates the termination
of a QUI$_DISPLAY_JOB wildcard operation for
the current queue context.

No more queue managers are defined, which
indicates the termination of a QUI$_DISPLAY_
MANAGER wildcard operation.

No more queues are defined, which indicates
the termination of a QUI$_DISPLAY_QUEUE
wildcard ·operation.

No queue context has been established for a
QUI$_DISPLAY_JOB or QUI$_DISPLAY_FILE
operation.
The specified characteristic does not exist.

There is no job with the specified entry number,
or there is no job for the specified user or current
user name.

The specified file does not exist.

The specified form does not exist.

The specified job does not exist.

The specified queue manager does not exist.
The specified queue does not exist.

SYS2-41

System Service Descriptions
$GETQUI

Examples

SYS2-42

1. ! Declare system service related symbols
INTEGER*4 SYS$GETQUIW,
2 LIB$MATCH COND,
2 STATUS -
INCLUDE '($QUIDEF)'

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE
! Declare $GETQUIW item list and I/O status block
RECORD /ITMLST/ GETQUI LIST(4)
RECORD /IOSBLK/ IOSB -

! Declare variables used in $GETQUIW item list
CHARACTER*31
INTEGER*2
INTEGER*4
2

QUEUE NAME
QUEUE-NAME LEN
SEARCH FLAGS,
ENTRY NUMBER

! Initialize item list
GETQUI LIST(l).BUFLEN = 4
GETQUI-LIST(l).ITMCOD =QUI$ SEARCH FLAGS
GETQUI-LIST(l).BUFADR = %LOC(SEARCH-FLAGS)
GETQUI-LIST(l).RETADR = 0 -
GETQUI-LIST(2).BUFLEN = 4
GETQUI-LIST(2).ITMCOD =QUI$ ENTRY NUMBER
GETQUI-LIST(2).BUFADR = %LOC(ENTRY-NUMBER)
GETQUI-LIST(2).RETADR = 0 -
GETQUI-LIST(3).BUFLEN = 31
GETQUI-LIST(3).ITMCOD =QUI$ QUEUE NAME
GETQUI-LIST(3).BUFADR = %LOC(QUEUE-NAME)
GETQUI-LIST(3).RETADR = %LOC(QUEUE-NAME LEN)
GETQUI=LIST(4).END_LIST = 0 - -

SEARCH_FLAGS = QUI$M_SEARCH_THIS_JOB

System Service Descriptions
$GETQUI

! Call $GETQUIW service to obtain job information
STATUS= SYS$GETQUIW (,
2 %VAL(QUI$ DISPLAY JOB),,
2 GETQUI LIST, -
2 IOSB,,)
IF (LIB$MATCH COND (IOSB.STS, %LOC(JBC$ NOSUCHJOB))) THEN

! The search this job option can be-used only by
! a batch job to obtain information about itself
TYPE *, '<<<this job is not being run in batch mode>>>'

ENDIF
IF (STATUS) STATUS = IOSB.STS
IF (STATUS) THEN

! Display information
TYPE *, 'Job entry number= , , ENTRY NUMBER
TYPE *, 'Queue name= , , QUEUE NAME(l:QUEUE NAME LEN)

ELSE - - -
! Signal error condition
CALL LIB$SIGNAL (%VAL(STATUS))

ENDIF
END

This Fortran program demonstrates how a batch job can obtain information
about itself from the system job queue file by using the $GETQUIW system
service. Use of the QUI$M_SEARCH_THIS_JOB option in the QUI$_
SEARCH_FLAGS input item requires that the calling program run as a batch
job; otherwise, the $GETQUIW service returns a JBC$_NOSUCHJOB error.

2. ! Declare system service related symbols
INTEGER*4 SYS$GETQUIW,
2 STATUS Q,
2 STATUS-J,
2 NOACCESS
INCLUDE '($QUIDEF)'

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $GETQUIW item lists and I/O status block
RECORD /ITMLST/ QUEUE LIST(4)
RECORD /ITMLST/ JOB LlST(6)
RECORD /IOSBLK/ IOSB

SYS2-43

System Service Descriptions
$GETQUI

SYS2-44

! Declare variables used in $GETQUIW item lists
CHARACTER*31
CHARACTER*31
CHARACTER*39
CHARACTER*l2
INTEGER*2
2
2
2
INTEGER*4
2
2

SEARCH NAME
QUEUE NAME
JOB NAME
USERNAME
SEARCH NAME LEN,
QUEUE NAME LEN,
JOB NAME LEN,
USERNAME-LEN
SEARCH FLAGS,
JOB SIZE,
JOB-STATUS

Solicit queue name to search; it may be a wildcard name
TYPE 9000
ACCEPT 9010, SEARCH_NAME_LEN, SEARCH_NAME

! Initialize item list for the display queue operation
QUEUE LIST(l).BUFLEN = SEARCH NAME LEN
QUEUE-LIST(l).ITMCOD = QUI$ SEARCH-NAME
QUEUE-LIST(l).BUFADR = %LOC(SEARCH-NAME)
QUEUE-LIST(l).RETADR = 0 -
QUEUE-LIST(2).BUFLEN = 4
QUEUE-LIST(2).ITMCOD = QUI$ SEARCH FLAGS
QUEUE-LIST(2).BUFADR = %LOC(SEARCH-FLAGS)
QUEUE-LIST(2).RETADR = 0 -
QUEUE-LIST(3).BUFLEN = 31
QUEUE-LIST(3).ITMCOD = QUI$ QUEUE NAME
QUEUE-LIST(3).BUFADR = %LOC(QUEUE-NAME)
QUEUE-LIST(3).RETADR = %LOC(QUEUE-NAME LEN)
QUEUE=LIST(4).END_LIST = 0 - -

! Initialize item list for the display job operation
JOB LIST(l).BUFLEN = 4
JOB-LIST(l).ITMCOD = QUI$ SEARCH FLAGS
JOB-LIST(l).BUFADR = %LOC(SEARCH-FLAGS)
JOB-LIST(l).RETADR = 0 -
JOB-LIST(2).BUFLEN = 4
JOB-LIST(2).ITMCOD = QUI$ JOB SIZE
JOB-LIST(2).BUFADR = %LOC(JOB-SIZE)
JOB-LIST(2).RETADR = 0 -
JOB-LIST(3).BUFLEN = 39
JOB-LIST(3).ITMCOD = QUI$ JOB NAME
JOB-LIST(3).BUFADR = %LOC(JOB-NAME)
JOB-LIST(3).RETADR = %LOC(JOB-NAME LEN)
JOB-LIST(4).BUFLEN = 12 - -
JOB-LIST(4).ITMCOD = QUI$ USERNAME
JOB-LIST(4).BUFADR = %LOC(USERNAME)
JOB-LIST(4).RETADR = %LOC(USERNAME LEN)
JOB-LIST(5).BUFLEN = 4 -
JOB-LIST(5).ITMCOD = QUI$ JOB STATUS
JOB-LIST(5).BUFADR = %LOC(JOB-STATUS)
JOB-LIST(5).RETADR = 0 -
JOB=LIST(6).END_LIST = 0

! Request search of all jobs present in output queues; also force
! wildcard mode to maintain the internal search context block after
! the first call when a non-wild queue name is entered--this preserves
! queue context for the subsequent display job operation
SEARCH FLAGS = (QUI$M SEARCH WILDCARD .OR.
2 - QUI$M-SEARCH-SYMBIONT .OR.
2 QUI$M=SEARCH=ALL_JOBS)

! Dissolve any internal search context block for the process
STATUS_Q = SYS$GETQUIW (,%VAL(QUI$_CANCEL_OPERATION),,,,,)

System Service Descriptions
$GETQUI

! Locate next output queue; loop until an error status is returned
DO WHILE (STATUS Q)

STATUS Q = SYS$GETQUIW (,
2 - %VAL(QUI$ DISPLAY QUEUE),,
2 QUEUE LIST I -

2 IOSB, ;)
IF (STATUS Q) STATUS Q = IOSB.STS
IF (STATUS-Q) TYPE 9020, QUEUE_NAME(l:QUEUE_NAME_LEN)
STATUS J =-1

! Get information on next job in queue; loop until error return
DO WHILE (STATUS Q .AND. STATUS J)

STATUS J = SYS$GETQUIW (, -
2 - %VAL(QUI$ DISPLAY JOB),,
2 JOB LIST,- -
2 IOSB, I)

IF (STATUS J) STATUS J = IOSB.STS
IF ((STATUS J) · .AND.-(JOB SIZE .GE. SOO)) THEN

NOACCESS = (JOB STATUS .AND. QUI$M JOB INACCESSIBLE)
IF (NOACCESS .NE. 0) THEN - -

TYPE 9030, JOB SIZE
ELSE -

TYPE 9040, JOB SIZE,
2 USERNAME(l:USERNAME LEN),
2 JOB_NAME(l:JOB_NAME=LEN)

END DO
END DO

9000
9010
9020
9030
9040

ENDIF
ENDIF

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
2
2
END

('Enter queue name to search: ', $)
(Q, A31)
('OQueue name=', A)
(' Job size=', IS, ' <no read access privilege>')
(' Job size=', IS,

Username = ', A, T46,
Job name = ', A)

This Fortran program demonstrates how any job can obtain information about
other jobs from the system job queue file by using the $GETQUIW system
service. This program lists all print jobs in output queues with a job size of
500 blocks or more. It also displays queue name, job size, user name, and job
name information for each job listed.

SYS2-45

System Service Descriptions
$GETQUIW

$GETQUIW
Get Queue Information and Wait

Format

SYS2-46

Returns information about queues and jobs initiated from those queues. The
$SNDJBC service is the major interface to the Job Controller, which is the queue
and accounting manager. For a discussion of the different types of job and queue,
see the Description section of $SNDJBC.

The $GETQUIW service completes synchronously; that is, it returns to the caller
with the requested information. For asynchronous completion, use the Get Queue
Information ($GETQUI) service; $GETQUI returns to the caller after queuing the
information request, without waiting for the information to be returned.

In all other respects, $GETQUIW is identical to $GETQUI. For more information
about $GETQUIW, refer to the description of $GETQUI in this manual.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$GETQUIW [efn] ,func [,context] [,itmlst] [,iosb] [,astadr] [,astprm]

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

$GET _REGION_INFO (Alpha Only)
Get Information About a Specified Virtual Region

Format

Arguments

On Alpha systems, gets information about a specified virtual region.

This service accepts 64-bit addresses.

SYS$GET _REGION_INFO function_code ,region_id_64 ,start_va_64 ,buffer_length
,buffer_address_64 ,return_length_64

function_ code
Open VMS usage: function code
type: longword (unsigned)
access: read only
mechanism: by value

Function code specifying how the information you are requesting should be looked
up. All function codes return region summary information in the return buffer in
the format of the Region Summary Buffer. The Region Summary Buffer format
is shown in Table SYS2-1. If less buffer space is specified than the length of the
Region Summary Buffer, only the amount of information requested is returned. If
more buffer space is specified than the length of the Region Summary Buffer, the
service will fill in the buffer. The return length will reflect the amount of useful
information written to the buffer, the size of the Region Summary Buffer.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each function code. The following
function codes are defined:

Symbolic Name

VA$_REGSUM_BY_ID

VA$_REGSUM_BY_ VA

Description

Return the region summary information
for the region whose ID is specified in the
region_id_64 argument.

Return the region summary information for
the region that contains the virtual address
specified in the start_ va_64 argument.

SYS2-47

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

SYS2-48

Symbolic Name

VA$_NEXT_REGSUM_BY_ VA

region_id

Description

Return the region summary information for
the region containing the starting address. If
the starting address is not in a region, return
the region summary information for the next
region with a starting address higher than the
specified address.
Note: For the VA$_NEXT_REGSUM_BY_ VA
function, Open VMS checks for a start_ va_64
argument in the inaccessible address range in
P2 space. If it finds one, Open VMS adjusts
the address to account for the discontinuity.
For more information about the layout of the
64-bit virtual address space, see the Open VMS
Alpha Guide to 64-Bit Addressing.
This function code can be used for wildcard
operations. See the description of the
start_ va_64 argument for information on
how to program a wildcard operation on
regions.

Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region about which information is requested.
This argument is read only if the function code VA$_REGSUM_BY_ID is specified.

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro in
STARLET.MLB define a symbolic name for each of the three default regions
in PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO

VA$C_Pl

VA$C_P2

Region

Program region

Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

start_ va_64
Open VMS usage: input address
type: quadword address
access: read only
mechanism: by value

Virtual address associated with region about which information is requested. This
argument is read only if the function_code argument is VA$_REGSUM_BY_ VA
or VA$_NEXT_REGSUM_BY_ VA.

Table SVS2-1

Field name

VA$L_FLAGS

System Service Descriptions
$GET_REGION_INFO (Alpha Only)

If the function_code argument is VA$_REGSUM_BY_VA, this argument is a
virtual address within the region about which you are requesting information.

To perform a wildcard search on all regions, specify VA$_NEXT_REGSUM...;..BY_
VA as the function code and begin with the start_ va_64 argument specified as
-1. For subsequent calls, specify start_va_64 as the sum of the previous region's
start address and length. Call the $GET_REGION_INFO service in a loop until
the condition SS$_NOMOREREG is returned.

~~~~~~~~~~~~ Note ~~~~~~~~~~~~ 

Before performing the lookup function, Open VMS sign-extends the 64-bit 
starting address so that it represents a properly formed virtual address 
for the CPU. 

buffer _length 
Open VMS usage: longword_ unsigned 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Length of the buffer into which information is returned. 

buffer _address_64 
Open VMS usage: varying_arg 
type: unspecified 
access: write only 
mechanism: by 32-bit or 64-bit reference 

The 32-bit or 64-bit virtual address of a quadword-aligned buffer into which to 
return information if the buffer_length argument is non-zero. 

This argument is ignored if the buffer_length argument is zero. 

Region Summary Buffer Format 

Field 
Field Size Offset 

Meaning (Bytes) (Decimal) 

Flags used when region was 4 8 
created 

VA$L_REGION_PROTECT Create and owner mode of region 4 12 

VA$Q_REGION_ID Region identifier 8 0 

VA$PQ_START_ VA Starting (lowest) virtual address 8 16 
of region 

VA$Q_REGION_SIZE Total length of region 8 24 

VA$PQ_FIRST_FREE_VA First free virtual address in 8 32 
region 

VA$C_REGSUM_LENGTH Length of Region Summary Buffer constant 40 

The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF MACRO in 
STARLET.MLB define the REGSUM structure. 

SYS2-49 



System Service Descriptions 
$GET _REGION_INFO (Alpha Only) 

Description 

return_length_64 
Open VMS usage: longword_ unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by 32-bit or 64-bit reference 

The 32-bit or 64-bit virtual address of a naturally aligned longword into which 
the service returns the length of the information in bytes. 

The Get Information About a Specified Virtual Region service is a kernel mode 
service that can be called from any mode. This service gets the requested 
information about the specified region or the next region in a wildcard search. 
If the returned value of this service is not a successful condition value, a value 
cannot be returned in the memory locations pointed to by the buffer_address_64 
or return_length_64 arguments. 

Required Privileges 
None 

Required Quota 
None. 

Related Services 
$CREATE_REGION_64, $DELETE_REGION_64 

Condition Values Returned 

SYS2-50 

SS$_NORMAL 

SS$_ACCVIO 

SS$_BADPARAM 

SS$_IVREGID 

SS$_NOMOREREG 

SS$_PAGNOTINREG 

The service completed successfully. 

The buffer_address_64 argument or the 
return_length_64 argument cannot be written 
by the caller. 

Unrecognized function code. 

Invalid region ID specified in conjunction with 
the VA$_REGSUM_BY_ID function code. 

No region at a higher address than specified in 
the start_ va_64 argument, which was specified 
in conjunction with the wildcard function code 
VA$_NEXT_REGSUM_BY_ VA. 

The value specified in the start_ va_64 
argument is not within a region and was 
specified in conjunction with the function code 
VA$_REGSUM_BY_ VA. 



$GETSYI 

System Service Descriptions 
$GETS YI 

Get Systemwide Information 

Format 

Arguments 

Returns information about the local system or about other systems in a 
VMScluster system. The $GETSYI service completes asynchronously; for 
synchronous completion, use the Get Systemwide Information and Wait 
($GETSYIW) service. 

For additional information about system service completion, refer to the 
Synchronize ($SYNCH) service. 

SYS$GETSYI [efn] ,[csidadr] ,[nodename] ,itmlst [,iosb] [,astadr] [,astprm] 

ef n 
Open VMS usage: ef_number 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Number of the event flag to be set when the $GETSYI request completes. The 
efn argument is a longword containing this number; however, $GETSYI uses only 
the low-order byte. 

Upon request initiation, $GETSYI clears the specified event flag (or event flag 0 
if efn was not specified). Then, when the request completes, the specified event 
flag (or event flag 0) is set. 

csidadr 
Open VMS usage: process_id 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

VMScluster system identification of the node about which $GETSYI is to return 
information. The csidadr argument is the address of a longword containing this 
identification value. 

The cluster-connection software assigns the VMScluster system identification 
of a node. You can obtain this information by using the DCL command SHOW 
CLUSTER. The value of the cluster system identification for a node is not 
permanent; a new value is assigned to a node whenever it joins or rejoins the 
cluster. 

You can also specify a node to $GETSYI by using the nodename argument. If 
you specify csidadr, you need not specify nodename, and vice versa. If you 
specify both, they must identify the same node. If you specify neither argument, 
$GETSYI returns information about the local node. However, for wildcard 
operations, you must use the csidadr argument. 

If you specify csidadr as -1, $GETSYI assumes a wildcard operation and returns 
the requested information for each node in the cluster, one node per call. In this 
case, the program should test for the condition value SS$_NOMORENODE 

SYS2-51 



System Service Descriptions 
$GETS VI 

SYS2-52 

after each call to $GETSYI and should stop calling $GETSYI when SS$_ 
NOMORENODE is returned. 

nodename 
Open VMS usage: process_name 
type: character-coded text string 
access: read only 
mechanism: by descriptor-fixed-length string descriptor 

Name of the node about which $GETSYI is to return information. The 
nodename argument is the address of a character string descriptor pointing 
to this name string. 

The node name string must contain from 1to15 characters and must correspond 
exactly to the node name; no trailing blanks or abbreviations are permitted. 

You can also specify a node to $GETSYI by using the csidadr argument. See the 
description of csidadr. 

itmlst 
Open VMS usage: item_list_3 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Item list specifying which information is to be returned about the node or nodes. 
The itmlst argument is the address of a list of item descriptors, each of which 
describes an item of information. The list of item descriptors is terminated by a 
longword of 0. The following diagram depicts a single item descriptor. 

31 15 0 

Item code I Buffer length 

Buffer address 

Return length address 

ZK-5186A-GE 

The following table defines the item descriptor fields. 

Descriptor Field 

Buffer length 

Definition 

A word containing a user-supplied integer specifying 
the length (in bytes) of the buffer in which $GETSYI 
is to write the information. The length of the buffer 
needed depends upon the item code specified in the 
item code field of the item descriptor. If the value 
of the buffer length field is too small, $GETSYI 
truncates the data. 



Descriptor Field 

Item code 

Buffer address 

Return length address 

Definition 

System Service Descriptions 
$GETS VI 

A word containing a user-supplied symbolic code 
specifying the item of information that $GETSYI is 
to return. The $SYIDEF macro defines these codes. 
A description of each item code is given in the Item 
Codes section. 
A longword containing the user-supplied address 
of the buffer into which $GETSYI is to write the 
information. 

A longword containing the user-supplied address of 
a word in which $GETSYI writes the length in bytes 
of the information it actually returned. 

See the Item Codes section for a description of the various $GETSYI item codes. 

iosb 
Open VMS usage: io_status_block 
type: quadword (unsigned) 
access: write only 
mechanism: by reference 

I/O status block to receive the final completion status. The iosb argument is the 
address of the quadword I/O status block. 

When you specify the iosb argument, $GETSYI sets the quadword to 0 upon 
request initiation. Upon request completion, a condition value is returned to the 
first longword; the second longword is reserved for future use. 

Though this argument is optional, Digital strongly recommends that you specify 
it, for the following reasons: 

• If you are using an event flag to signal the completion of the service, you can 
test the I/O status block for a condition value to be sure that the event flag 
was not set by an event other than service completion. 

• If you are using the $SYNCH service to synchronize completion of the service, 
the I/O status block is a required argument for $SYNCH. 

• The condition value returned in RO and the condition value returned in the 
I/O status block provide information about different aspects of the call to the 
$GETSYI service. The condition value returned in RO gives you information 
about the success or failure of the service call itself; the condition value 
returned in the I/O status block gives you information about the success or 
failure of the service operation. Therefore, to accurately assess the success or 
failure of the call to $GETSYI, you must check the condition values returned 
in both RO and the I/O status block. 

astadr 
Open VMS usage: ast_procedure 
type: procedure value 
access: call without stack unwinding 
mechanism: by reference 

AST service routine to be executed when $GETSYI completes. The astadr 
argument is the address of this routine. 

SYS2-53 



System Service Descriptions 
$GETSYI 

Item Codes 

SYS2-54 

If you specify astadr, the AST routine executes at the same access mode as the 
caller of the $GETSYI service. 

astprm 
Open VMS usage: user_arg 
type: longword (unsigned) 
access: read only 
mechanism: by value 

AST parameter to be passed to the AST service routine specified by the astadr 
argument. The astprm argument is the longword parameter. 

SVl$_ACTIVECPU_CNT 
When you specify SYI$_ACTIVECPU_CNT, $GETSYI returns a count of the 
CPUs actively participating in the current boot of the symmetric multiprocessing 
(SMP) system. The $GETSYI service returns this information for the local node 
only. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYl$_ARCHFLAG 
When you specify SYI$_ARCHFLAG, $GETSYI returns the architecture flags for 
the system. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SVl$_ARCH_NAME 
When you specify SYI$_ARCH_NAME, $GETSYI returns, as a character string, 
the name of the CPU architecture on which the process is executing. Currently, 
either of two strings is returned: "Alpha" for Alpha or ''VAX" for VAX. 

Because this name can include up to 15 characters, the buffer length field in the 
item descriptor should specify 15 (bytes). 

SVl$_ARCH_ TYPE 
When you specify SYI$_ARCH_TYPE, $GETSYI returns the type of CPU 
architecture on which the process is executing. SYI$_ARCH_TYPE returns 1 
on VAX or 2 on Alpha. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SVl$_AVAILCPU_CNT 
When you specify SYI$_AVAILCPU_CNT, $GETSYI returns the number of CPUs 
available in the current boot of the SMP system. The $GETSYI service returns 
this information for the local node only. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SVl$_BOOTTIME 
When you specify SYI$_BOOTTIME, $GETSYI returns the time when the node 
was booted. The $GETSYI service returns this information only for the local 
node; 



System Service Descriptions 
$GETS YI 

Because the returned time is in the standard 64-bit absolute time format, the 
buffer length field in the item descriptor should specify 8 (bytes). 

SYl$_CHARACTER_EMULATED 
When you specify SYI$_CHARACTER_EMULATED, $GETSYI returns the 
number 1 if the character string instructions are emulated on the CPU and the 
value 0 if they are not. The $GETSYI service returns this information only for 
the local node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 

SYl$_CLUSTER_EVOTES 
When you specify SYI$_CLUSTER_EVOTES, $GETSYI returns the number of 
votes expected to be found in the VMScluster system. The cluster determines 
this value by selecting the highest number from all of the following: each node's 
system parameter EXPECTED_ VOTES, the sum of the votes currently in the 
cluster, and the previous value for the number of expected votes. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_CLUSTER_FSYSID 
When you specify SYI$_CLUSTER_FSYSID, $GETSYI returns the system 
identification of the founding node, which is the first node in the VMScluster 
system to boot. 

The cluster management software assigns this system identification to the node. 
You can obtain this information by using the DCL command SHOW CLUSTER. 
Because the system identification is a 6-byte hexadecimal number, the buffer 
length field in the item descriptor should specify 6 (bytes). 

SYl$_CLUSTER_FTIME 
When you specify SYI$_CLUSTER_FTIME, $GETSYI returns the time when the 
founding node is booted. The founding node is the first node in the VMScluster 
system to boot. 

Because the returned time is in the standard 64-bit absolute time format, the 
buffer length field in the item descriptor should specify 8 (bytes). 

SYl$_CLUSTER_MEMBER 
When you specify SYI$_CLUSTER_MEMBER, $GETSYI returns the membership 
status of the node in the VMScluster system. The membership status specifies 
whether the node is currently a member of the cluster. 

Because the membership status of a node is described in a 1-byte bit field, the 
buffer length field in the item descriptor should specify 1 (byte). If bit 0 in the 
bit field is set, the node is a member of the cluster; if it is clear, then it is not a 
member of the cluster. 

SYl$_CLUSTER_NODES 
When you specify SYI$_CLUSTER_NODES, $GETSYI returns the number (in 
decimal) of nodes currently in the VMScluster system. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYS2-55 



System Service Descriptions 
$GETSYI 

•+m:• 

SYS2-56 

SYl$_CLUSTER_QUORUM 
When you specify SYI$_CLUSTER_QUORUM, $GETSYI returns the number 
(in decimal) that is the total of the quorum values held by all nodes in the 
VMScluster system. Each node's quorum value is derived from its system 
parameter EXPECTED_ VOTES. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_CLUSTER_ VOTES 
When you specify SYI$_CLUSTER_ VOTES, $GETSYI returns the total number 
of votes held by all nodes in the VMScluster system. The number of votes held by 
any one node is determined by that node's system parameter VOTES. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

SYl$_CONTIG_GBLPAGES 
When you specify SYI$_CONTIG_GBLPAGES, $GETSYI returns the maximum 
number of free, contiguous global CPU-specific pages. This number is the largest 
size global section that can be created. 

Because this number is a longword, the buffer length in the item descriptor 
should specify 4 (bytes). 

SYl$_CPU 
On VAX systems, when you specify SYI$_CPU, $GETSYI returns the CPU 
processor type, as represented in the processor's system identification (SID) 
register. 

For example, the integer 1 represents a VAX-11/780 system and the integer 6 
represents a VAX 8530, VAX 8550, VAX 8700, or VAX 8800 system. 

The $GETSYI service returns this information only for the local node. 

Because the processor type is a longword decimal number, the buffer length field 
in the item descriptor should specify 4 (bytes). 

The $PRDEF macro defines the following symbols for the processor types. 

Processor 

VAX-11/730 

VAX-11/750 
VAX-11/780, 785 

VAX.station II, II/GPX, and MicroVAX II 

VAX.station 2000/Micro VAX 2000 

VAX 8200, 8250, 8300, 8350 
VAX 8530, 8550, 8810 (8700), and 8820-N 
(8800) 

VAX 8600, 8650 
VAX 8820, 8830, 8840 

VAXft 3000 Model 310 

VAX.station, MicroVAX 3100 series 

Symbol 

PR$_SID_TYP730 

PR$_SID_TYP750 
PR$_SID_TYP780 

PR$_SID_TYPUV2 

PR$_SID_TYP410 

PR$_SID_TYP8SS 
PR$_SID_TYP8NN 

PR$_SID_TYP790 
PR$_SID_TYP8PS 

PR$_SID_TYP520 

PR$_SID_TYP420 



i§M&I 

EM.f 1 

EMMI 

Processor 

MicroVAX 3300, 3400, 3500, 3600, 3800, 
3900 
VAXstation 3520, 3540 

VAX 4000-300 

VAX 6000-200, 6000-300 series 

VAX 6000-400 series 

VAX 9000-200, 9000-400 series 

System Service Descriptions 
$GETS VI 

Symbol 

PR$_SID_TYP650 

PR$_SID_TYP60 

PR$_SID_TYP670 
PR$_SID_TYP9CC 

PR$_SID_TYP9RR 

PR$_SID_TYP9AQ+ 

On Alpha systems, when you specify SYI$_CPU, $GETSYI returns PR$_SID_ 
TYP _NOTAVAX. + 

For information about extended processor type codes, see the description for the 
SYI$_XCPU item code. 

SYl$_CPUTYPE 
On Alpha systems, when you specify SYI$_CPUTYPE, $GETSYI returns the 
processor type, as stored in the hardware restart parameter block (HWRPB). The 
value of 2 represents a DECchip 21064 processor. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_DECIMAL_EMULATED 
When you specify SYI$_DECIMAL_EMULATED, $GETSYI returns the number 
1 if the decimal string instructions are emulated on the CPU and the value 0 if 
they are not. The $GETSYI service returns this information only for the local 
node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 

SYl$_DECNET _FULLNAME 
When you specify SYI$_DECNET_FULLNAME, $GETSYI returns, as a character 
string, the DECnet for Open VMS full name of the node. 

Because the DECnet for Open VMS full name of a node can contain up to 255 
characters, the buffer length field in the item descriptor should specify 255 
(bytes). 

SYl$_D_FLOAT _EMULATED 
When you specify SYI$_D_FLOAT_EMULATED, $GETSYI returns the number 1 
if the D_floating instructions are emulated on the CPU and 0 if they are not. The 
$GETSYI service returns this information only for the local node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 

SYl$_DEF _PRIO_MAX 
On Alpha systems, when you specify SYI$_DEF_PRIO_MAX, $GETSYI returns 
the maximum priority for the default scheduling policy. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYS2-57 



System Service Descriptions 
$GETS VI 

(JM'fi 

SYS2-58 

SYl$_DEF _PRIO_MIN 
On Alpha systems, when you specify SYI$_DEF_PRIO_MIN, $GETSYI returns 
the minimum priority for the default scheduling policy. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_ERLBUFFERPAGES 
When you specify SYI$_ERLBUFFERPAGES, $GETSYI returns the number of 
pages (on VAX systems) o:r pagelets (on Alpha systems) in an error log buffer. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYl$_ERRORLOGBUFFERS 
When you specify SYI$_ERRORLOGBUFFERS, $GETSYI returns the number of 
system pages (on VAX systems) or pagelets (on Alpha systems) in use as buffers 
for the error logger. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_F _FLOAT _EMULATED 
When you specify SYI$_F _FLOAT_EMULATED, $GETSYI returns the number 1 
if the F _floating instructions are emulated on the CPU and 0 if they are not. The 
$GETSYI service returns this information only for the local node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 

SYl$_FREE_GBLPAGES 
When you specify SYI$_FREE_GBLPAGES, $GETSYI returns the current 
number of free global pages. The system parameter GBLPAGES sets the number 
of global pages that can exist systemwide. 

Because the current number is a longword, the buffer length in the item 
descriptor should specify 4 (bytes). 

SYl$_FREE_GBLSECTS 
When you specify SYI$_FREE_GBLSECTS, $GETSYI returns the current number 
of free global section table entries. The system parameter GBLSECTIONS sets 
the maximum number of global sections that can exist systemwide. 

Because the current number is a longword, the buffer length in the item 
descriptor should specify 4 (bytes). 

SYl$_G_FLOAT _EMULATED 
When you specify SYI$_G_FLOAT_EMULATED, $GETSYI returns the number 
1 if the G_:floating instructions are emulated on the CPU and the value 0 if they 
are not. The $GETSYI service returns this information only for the local node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 



E®·ii 
''IN• 

''®·'' 

System Service Descriptions 
$GETSYI 

SYl$_GH_RSRVPGCNT 
On Alpha systems, when you specify SYI$_GH_RSRVPGCNT, $GETSYI returns 
the number of pages covered by granularity hints to reserve for use by the Install 
utility after system startup has completed. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_H_FLOAT _EMULATED 
When you specify SYI$_H_FLOAT_EMULATED, $GETSYI returns the number 
1 if the H_floating instructions are emulated on the CPU and the value 0 if they 
are not. The $GETSYI service returns this information only for the local node. 

Because this number is a Boolean value (1 or 0), the buffer length field in the 
item descriptor should specify 1 (byte). 

SYl$_HW _MODEL 
When you specify SYI$_HW _MODEL, $GETSYI returns a small integer that can 
be used to identify the model type of the node. 

An integer greater than 1023 indicates an Alpha node.+ 

An integer less than or equal to 1023 indicates a VAX node.+ 

The $ALPHADEF and $VAXDEF macros in SYS$LIBRARY:STARLET define the 
model type integers. See the tables under the SYI$_HW _NAME item code for the 
VAX and Alpha model processor names and the corresponding model types. 

Because SYI$_HW _MODEL is a word, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_HW_NAME 
When you specify SYI$_HW_NAME, $GETSYI returns the VAX or Alpha model 
name string of the node. The model name is a character string that describes 
the model of the node (such as VAX 8800, MicroVAX II). The model name usually 
corresponds to the nameplate that appears on the outside of the CPU cabinet. 

Because SYI$_HW_NAME can include up to 31 characters, the buffer length field 
in the item descriptor should specify 31 (bytes). 

The following table lists the Alpha model processor names and the corresponding 
model types. 

Alpha Model Processor Name 

DEC 3000 400 

DEC 3000 4008 
DEC 3000 500 

DEC 3000 5008 

DEC 4000 610 

DEC 4000 620 

DEC 4000 630 
DEC 4000 640 

DEC 7000 Model 610 

DEC 7000 Model 620 

Alpha Model Type 

ALPHA$K_A3000_ 400W 

ALPHA$K_A3000_ 400S 

ALPHA$K_A3000_500W 
ALPHA$K_A3000_500S 

ALPHA$K_A4000_610 

ALPHA$K_A4000_620 

ALPHA$K_A4000_630 
ALPHA$K_A4000_640 

ALPHA$K_A7000_610 

ALPHA$K_A 7000_620 

SYS2-59 



System Service Descriptions 
$GETS YI 

Alpha Model Processor Name 

DEC 7000 Model 630 

DEC 7000 Model 640 

DEC 10000 Model 610 

DEC 10000 Model 620 

DEC 10000 Model 630 

DEC 10000 Model 640 

Alpha Model Type 

ALPIIA$K._A7000_630 

ALPIIA$K._A7000_640 

ALPIIA$K._A10000_610 

ALPIIA$K._A10000_620 

ALPIIA$K._Al0000_630 

ALPIIA$K._A10000_640 + 

The following table lists the VAX model processor names and the corresponding 
model types. 

SYS2-60 

VAX Model Processor Name 

VAX-11/730 

VAX-11/750 

VAX-11/780 

VAX-11/785 

MicroVAX II 

VAXstation II 

VAXstation 11/GPX 

VAXstation 2000 

MicroVAX 2000 

VAXstation 2000/GPX 

VAX 8200 

VAX 8250 

VAX 8300 

VAX 8350 

VAX 8530 

VAX 8550 

VAX 8600 

VAX 8650 

VAX 8810 (8700) 

VAX 8820-N (8800) 

VAX 8820, 8830, or 8840 with one CPU 
enabled 

VAX 8820 

VAX 8830 

VAX 8840 

VAXft 3000 Model 310 

VAXstation 3520 

VAXstation 3540 

VAX 4000-300 timeshare 

VAX Model Type 

VAX$K._ V730 

VAX$K._ V750 

VAX$K._ V780 

VAX$K._ V785 

VAX$K._ VUV2 

VAX$K._ VWS2 

VAX$K._ VWSD 

VAX$K._VWS2000 

VAX$K._ VUV2000 

VAX$K._ VWSD2000 

VAX$K._ V8200 

VAX$K._ V8250 

VAX$K._ V8300 

VAX$K._ V8350 

VAX$K._ V8500 

VAX$K._ V8550 

VAX$K._ V8600 

VAX$K._ V8650 

VAX$K._ V8700 

. VAX$K._ V8800 

VAX$K._ V8810 

VAX$K._ V8820 

VAX$K._ V8830 

VAX$K._ V8840 

VAX$K._ V520FT 

VAX$K._ V3520L 

VAX$K._ V3540L 

VAX$K._V670 



EM.fl 

VAX Model Processor Name 

VAX 4000-300 server 

VAX 6000-210 timeshare 

VAX 6000-220 timeshare 

VAX 6000-230 timeshare 

VAX 6000-240 timeshare 

VAX 6000-250 timeshare 

VAX 6000-260 timeshare 

VAX 6000-210 server 

VAX 6000-220 server 

VAX 6000-310 timeshare 

VAX 6000-320 timeshare 

VAX 6000-330 timeshare 

VAX 6000-340 timeshare 

VAX 6000-350 timeshare 

VAX 6000-360 timeshare 

VAX 6000-310 server 

VAX 6000-320 server 

VAX 6000-410 timeshare 

VAX 6000-420 timeshare 

VAX 6000-430 timeshare 

VAX 6000-440 timeshare 

VAX 6000-450 timeshare 

VAX 6000-460 timeshare 

VAX 6000-410 server 

VAX 6000-420 server 

VAX 9000-210 

VAX 9000-410 

VAX 9000-420 

VAX 9000-430 

VAX 9000-440 

SYl$_1TB_ENTRIES 

System Service Descriptions· 
$GETS YI 

VAX Model Type 

VAX$K_ V670_S 

VAX$K_ V6210_T 

VAX$K_ V6220_T 

VAX$K_ V6230_T 

VAX$K_ V6240_T 

VAX$K_ V6250_T 

VAX$K_ V6260_T 

VAX$K_ V6210_S 

VAX$K_ V6220_S 

VAX$K_ V6310_T 

VAX$K_ V6320_T 

VAX$K_ V6330_T 

VAX$K_ V6340_T 

VAX$K_ V6350_T 

VAX$K_ V6360_T 

VAX$K_ V6310_S 

VAX$K_ V6320_S 

VAX$K_ V9RR10_T 

VAX$K_ V9RR20_T 

VAX$K_ V9RR30_T 

VAX$K_ V9RR40_T 

VAX$K_ V9RR50_T 

VAX$K_ V9RR60_T 

VAX$K_ V9RR10_S 

VAX$K_ V9RR20_S 

VAX$K_ V9AR10 

VAX$K_ V9AQ10 

VAX$K_ V9AQ20 

VAX$K_ V9AQ30 

VAX$K_ V9AQ40+ 

On Alpha systems, when you specify SYI$_ITB_ENTRIES, $GETSYI returns the 
number of instruction stream translation buffer entries that support granularity 
hints to be allocated for resident code. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_MEMSIZE 
When you specify SYI$_MEMSIZE, $GETSYI returns the total number of pages 
of physical memory in the system configuration. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYS2-61 



System Service Descriptions 
$GETS YI 

SYS2-62 

SYl$_NODE_AREA 
When you specify SYI$_NODE_AREA, $GETSYI returns the DECnet area of the 
node. 

Because the DECnet area is a longword decimal number, the buffer length field 
in the item descriptor should specify 4 (bytes). 

SVl$_NODE_CSID 
When you specify SYI$_NODE_CSID, $GETSYI returns the VMScluster system 
ID (CSID) of the node. The CSID is a longword hexadecimal number assigned to 
the node by the cluster management software. 

Because the CSID is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYl$_NODE_EVOTES 
When you specify SYI$_NODE_EVOTES, $GETSYI returns the number of votes 
the node expects to find in the VMScluster system. This number is determined by 
the system parameter EXPECTED_ VOTES. 

Because the number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_NODE_HWVERS 
When you specify SYI$_NODE_HWVERS, $GETSYI returns the hardware 
version of the node. The high word of the buffer length contains the CPU type. 
The $VAXDEF and $ALPHADEF macros define the CPU types. 

Because the hardware version is a 12-byte hexadecimal number, the buffer length 
field in the item descriptor should specify 12 (bytes). 

SYl$_NODE_NUMBER 
When you specify SYI$_NODE_NUMBER, $GETSYI returns the DECnet for 
Open VMS number of the node. 

Because the DECnet for Open VMS number is a longword decimal number, the 
buffer length field in the item descriptor should specify 4 (bytes). 

SVl$_NODE_QUORUM 
When you specify SYI$_NODE_QUORUM, $GETSYI returns the value (in 
decimal) of the quorum held by the node. This number is derived from the node's 
system parameter EXPECTED_ VOTES. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SVl$_NODE_SWINCARN 
When you specify SYI$_NODE_SWINCARN, $GETSYI returns the software 
incarnation of the node. 

Because the software incarnation of the node is an 8-byte hexadecimal number, 
the buffer length field in the item descriptor should specify 8 (bytes). 

SVl$_NODE_SWTVPE 
When you specify SYI$_NODE_SWTYPE, $GETSYI returns the software type 
of the node. The software type indicates whether the node is a VAX system, an 
Alpha system, or an HSC storage controller. 

Because the software type is a 4-byte ASCII string, the buffer length field in the 
item descriptor should specify 4 (bytes). 



••lf,• 
EMMI 

SY1$_NODE_SWVERS 

System Service Descriptions 
$GETS YI 

When you specify SYI$_NODE_SWVERS, $GETSYI returns the software version 
of the node. 

Because the software version is a 4-byte ASCII string, the buffer length field in 
the item descriptor should specify 4 (bytes). 

SYl$_NODE_SYSTEMID 
When you specify SYI$_NODE_SYSTEMID, $GETSYI returns the system 
identification of the node. 

The VMScluster management software assigns this system identification to 
the node. You can obtain this information by using the DCL command SHOW 
CLUSTER. Because the system identification is a 6-byte hexadecimal number, 
the buffer length field in the item descriptor should specify 6 (bytes). 

SYl$_NODE_ VOTES 
When you specify SYI$_NODE_ VOTES, $GETSYI returns the number (in 
decimal) of votes held by the node. This number is determined by the node's 
system parameter VOTES. 

Because this number is a word in length, the buffer length field in the item 
descriptor should specify 2 (bytes). 

SYl$_NODENAME 
When you specify SYI$_NODENAME, $GETSYI returns, as a character string, 
the name of the node in the buffer specified in the item list. 

Because this name can include up to 15 characters, the buffer length field in the 
item descriptor should specify 15 (bytes). 

SYl$_PAGEFILE_FREE 
When you specify SYI$_PAGEFILE_FREE, $GETSYI returns the number of free 
pages in the currently installed page files. The $GETSYI service returns this 
information only for the local node. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYl$_PAGEFILE_PAGE 
When you specify SYI$_PAGEFILE_PAGE, $GETSYI returns the number of 
pages in the currently installed page files. The $GETSYI service returns this 
information only for the local node. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SYl$_PAGE_SIZE 
When you specify SYI$_PAGE_SIZE, $GETSYI returns the number of CPU­
specific bytes per page in the system. 

On VAX systems, when you specify SYI$_PAGE_SIZE, $GETSYI always returns 
512.+ 

On Alpha systems, CPU page size varies from system to system.+ 

On Alpha and VAX systems, because this number is a longword, the buffer length 
field in the item descriptor should specify 4 (bytes). 

SYS2-63 



System Service Descriptions 
$GETS YI 

JiMMI 

lijM.iji 

11m;;1 

iijM'fl 

SYS2-64 

SYl$_PROCESS_SPACE_LIMIT 
On Alpha systems, this item code returns the 64-bit virtual address succeeding 
the last available process private address. The value returned is the upper bound 
on the process private address space. The value returned is the same for every 
process on the system~ 

Because this number is a quadword, the buffer length field in the item descriptor 
should specify 8 (bytes~.+ 

SYl$_PSXFIFO_PRIO_MAX 
On Alpha systems, when you specify SYI$_PSXFIFO_PRIO_MAX, $GETSYI 
returns the maximum priority for the POSIX FIFO scheduling policy. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_PSXFIFO_PRIO_MIN 
On Alpha systems, when you specify SYI$_PSXFIFO_PRIO_MIN, $GETSYI 
returns the minimum priority for the POSIX FIFO scheduling policy. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_PSXRR_PRIO_MAX 
On Alpha systems, when you specify SYI$_PSXRR_PRIO_MAX, $GETSYI returns 
the maximum priority for the POSIX round-robin scheduling policy. · 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_PSXRR_PRIO_MIN 
On Alpha systems, when you specify SYI$_PSXRR_PRIO_MIN, $GETSYI returns 
the minimum priority for the POSIX round-robin scheduling policy. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes).+ 

SYl$_PT _BASE 
On Alpha systems, when you specify SYI$_PT_BASE, $GETSYI returns the 
64-bit virtual address of the base of the page tables. The value returned is the 
same for every process on the system. 

Because this number is a quadword, the buffer length field in the item descriptor 
should specify 8 (bytes).+ 

SYl$_REAL_CPUTYPE 
When you specify SYI$_REAL_CPUTYPE, $GETSYI returns the actual CPU type 
of the primary CPU of the system. 

SYl$_SCS_EXISTS 
When you specify SYI$_SCS_EXISTS, $GETSYI returns a longword value that is 
interpreted as Boolean. If the value is 1, the System Communication Subsystem 
(SCS) is currently loaded on the node; if the value is 0, the SCS is not currently 
loaded. 



i!iMMI SVl$_SHARED_ VA_PTES 

System Service Descriptions 
$GETS YI 

On Alpha systems, when you specify SYI$_SHARED_ VA_PTES, $GETSYI returns 
the 64-bit virtual address of the PTE that marks the boundary between process­
private PTEs and system-shared PTEs. The value returned is the same for every 
process on the system. 

Because this number is a quadword, the buffer length field in the item descriptor 
should specify 8 (bytes).+ 

SVl$_SID 
When you specify SYI$_SID, $GETSYI returns the contents of the system 
identification register of the node. The $GETSYI service returns this information 
only for the local node. 

On Alpha systems, SYI$_SID returns a value in which all fields are 0 except the 
CPU-type field, which always contains the value 256. + 

Because the value of this register is a longword hexadecimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 

SVl$_SWAPFILE_FREE 
When you specify SYI$_SWAPFILE_FREE, $GETSYI returns the number of free 
pages in the currently installed swapping files. The $GETSYI service returns this 
information only for the local node. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SVl$_SWAPFILE_PAGE 
When you specify SYI$_SWAPFILE_PAGE, $GETSYI returns the number of 
pages in the currently installed swapping files. The $GETSYI service returns this 
information only for the local node. 

Because this number is a longword, the buffer length field in the item descriptor 
should specify 4 (bytes). 

SVl$_SVSTEM_RIGHTS 
When you specify SYI$_SYSTEM_RIGHTS, $GETSYI returns the system rights 
list as an array of quadword identifiers. Each entry consists of a longword 
identifier value and the following longword identifier attributes. 

Bit Position 

KGB$V _DYNAMIC 

KGB$V _NOACCESS 

KGB$V _RESOURCE 

Meaning When Set 

Allows holders of the identifier to remove 
it from or add it to the process rights list 
using the DCL command SET RIGHTS_ 
LIST. 

Makes any access rights of the identifier 
null and void. This attribute is intended 
as a modifier for a resource identifier or 
the Subsystem attribute. 

Allows holders of an identifier to charge 
disk space to the identifier. It is used 
only for file objects. 

SYS2-65 



System Service Descriptions 
$GETS YI 

EMMI 

SYS2-66 

Bit Position 

KGB$V _SUBSYSTEM 

Meaning When Set 

Allows holders of the identifier to create 
and maintain protected subsystems by 
assigning the Subsystem ACE to the 
application images in the subsystem. 

Allocate a buffer that is sufficient to hold the system rights list, because $GETSYI 
returns only as much of the list as will fit in the buffer. 

SYl$_SYSTYP 
On Alpha systems, when you specify SYI$_SYSTYP, $GETSYI returns the name 
of the family or system hardware platform. For example, the integer 2 represents 
a DEC 4000 processor, the integer 3 represents a DEC 7000 or DEC 10000 
processor, and the integer 4 represents a DEC 3000 processor.+ 

SYl$_ VERSION 
When you specify SYI$_VERSION, $GETSYI returns, as a character string, the 
software version number of the Open VMS operating system running on -the node. 
The $GETSYI service returns this information only for the local node. 

Because, the version number is 8-byte blank-filled, the buffer length field in the 
item descriptor should specify 8 (bytes). 

SYl$_ VECTOR_EMULATOR 
When you specify SYI$_ VECTOR_EMULATOR, $GETSYI returns a byte, the 
low-order bit of which, when set, indicates the presence of the Vector Instruction 
Emulator facility (VVIEF) in the system. 

SYl$_ VP _MASK 
When you specify SYI$_ VP _MASK, $GETSYI returns a longword mask, the 
bits of which, when set, indicate which processors in the system have vector 
coprocessors. 

SYl$_VP _NUMBER 
When you specify SYI$_VP _NUMBER, $GETSYI returns an unsigned longword 
containing the number of vector processors in the system. 

SYl$_XCPU 
When you specify SYI$_XCPU, $GETSYI returns the extended CPU processor 
type of the node. The $GETSYI service returns this information only for the local 
node. 

You should obtain the general processor type value first by using the SYI$_ 
CPU item code. For some of the general processor types, extended processor 
type information is provided by the item code, SYI$_XCPU. For other general 
processor types, the value returned by the SYI$_XCPU item code is currently 
undefined. 

Because the processor type is a longword decimal number, the buff er length field 
in the item descriptor should specify 4 (bytes). 



Description 

System Service Descriptions 
$GETS YI 

On VAX systems, the $PRDEF macro defines the following symbols for the 
extended processor types. 

VAX 
Processor 
Type Symbol 

PR$_SID_TYPUV 

PR$_SID_TYPCV 

PR$_SID_TYP8NN 

PR$_SID_TYPRV 

SVl$_XSID 

Extended 
Processor 
Type 

MicroVAX II 
VAXstation II 

MicroVAX 2000 
VAXstation 2000 

MicroVAX 3300, 3400, 
3500, 3600, 3800, 3900 
series 

VAX 6000-200, 6000-
300 series 
VAXstation 3520, 3540 

VAXstation 3100 series 

VAXft 3000 Model 310 

VAX 8530 
VAX 8550 
VAX 8810 (8700) 

VAX 8820-N (8800) 

VAX 4000-300 
VAX 6000-400 series 

Extended 
Processor 
Symbol 

PR$_XSID_UV_UV2 

PR$_XSID_ UV_ 410 

PR$_XSID_CV _650 

PR$_XSID_CV _9CC 

PR$_XSID_CV _60 

PR$_XSID_CV _ 420 

PR$_XSID_CV _520 

PRS$_XSID_N8500 
PRS$_XSID_N8550 

PRS$_XSID_N8700 

PRS$_XSID_N8800 

PR$_XSID_RV _670 

PR$_XSID_RV _9RR+ 

When you specify SYI$_XSID, $GETSYI returns processor-specific information. 
For the Micro VAX II system, this information is the contents of the system 
type register of the node. The system type register contains the full extended 
information used in determining the extended system type codes. For other 
processors, the data returned by SYI$_XSID is currently undefined. 

Because the value of this register is a longword hexadecimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 

SVl$_xxxx 
When you specify SYI$_xxxx, $GETSYI returns the current value of the 
system parameter named xxxx for the node. The $GETSYI service returns 
this information only for the local node. 

The buffer must specify a longword into which $GETSYI writes the value of the 
specified system parameter. For a list and description of all system parameters, 
refer to the Open VMS System Manager's Manual. 

The Get Systemwide Information service returns information about the local 
system or about other systems in a VMScluster. 

Required Access or Privileges 
None 

SYS2-67 



System Service Descriptions 
$GETSYI 

Required Quota 
This service uses the process's AST limit quota (ASTLM). 

Related Services 
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, 
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, 
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $!NIT_ VOL, $MOUNT, 
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR 

Condition Values Returned 

SS$_NORMAL 
SS$_ACCVIO 

SS$_BADPARAM 
SS$_EXASTLM 
SS$_NOMORENODE 

SS$_NOSUCHNODE 

The service completed successfully. 
The caller cannot read the item list, cannot write 
to the buffer specified by the buffer address field 
in an item descriptor, or cannot write to the 
return length address field in an item descriptor. 
The item list contains an invalid item code. 
The process has exceeded its AST limit quota. 
You requested a wildcard operation, and 
$GETSYI has returned information about all 
available nodes. 
The specified node does not exist or is not 
currently a member of the VMScluster system. 

Condition Values Returned in the 1/0 Status Block 

Example 

SYS2-68 

Same as those returned in RO. 

! Declare system service related symbols 
INTEGER*4 SYS$GETSYIW, 
2 STATUS 
! External declaration is an alternative to including $SYIDEF 
EXTERNAL SY!$ VERSION, 
2 SYI$=NODENAME 

! Define item list structure 
STRUCTURE /ITMLST/ 

UNION 
MAP 

INTEGER*2 BUFLEN 
INTEGER*2 ITMCOD 
INTEGER*4 BUFADR 
INTEGER*4 RETADR 

END MAP 
MAP 

INTEGER*4 END LIST 
END MAP -

END UNION 
END STRUCTURE 

! Define I/O status block structure 
STRUCTURE /IOSBLK/ 
INTEGER*4 STS, RESERVED 
END STRUCTURE 

! Declare $GETSYIW item list and I/O status block 
RECORD /ITMLST/ GETSYI LIST(3) 
RECORD /IOSBLK/ IOSB -



System Service Descriptions 
$GETS YI 

! Declare variables used in $GETSYIW item list 
CHARACTER*8 VERSION 
CHARACTER*l5 NODENAME 
INTEGER*2 VERSION LEN, 
2 NODENAME LEN 

! Initialize item list 
GETSYI LIST(l).BUFLEN = 8 
GETSYI-LIST(l).ITMCOD = %LOC(SYI$ VERSION) 
GETSYI-LIST(l).BUFADR = %LOC(VERSION) 
GETSYI-LIST(l).RETADR = %LOC(VERSION LEN) 
GETSYI-LIST(2).BUFLEN = 15 -
GETSYI-LIST(2).ITMCOD = %LOC(SYI$ NODENAME) 
GETSYI-LIST(2).BUFADR = %LOC(NODENAME) 
GETSYI-LIST(2).RETADR = %LOC(NODENAME LEN) 
GETSYI=LIST(3).END_LIST = 0 -

! Display the system version number string 
STATUS= SYS$GETSYIW (,,,GETSYI LIST,IOSB,,) 
IF (STATUS) STATUS = IOSB.STS -
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS)) 

TYPE *, 'System version is 'I VERSION(l:VERSION LEN) 
END -

This Fortran program demonstrates how to use the $GETSYIW service to obtain 
the operating system version number string and the system's node name. 

SYS2-69 



System Service Descriptions 
$GETSYIW 

$GETSYIW 
Get Systemwide Information and Wait 

Format 

SYS2-70 

Returns information about the local system or about other systems in a cluster. 

The $GETSYIW service completes synchronously; that is, it returns to the caller 
with the requested information. For asynchronous completion, use the Get 
Systemwide Information ($GETSYI) service; $GETSYI returns to the caller 
after queuing the information request, without waiting for the information to 
be returned. In all other respects, these services are identical; refer to the 
documentation about $GETSYI for information about the $GETSYIW service. 

For additional information about system service completion, refer to the 
Synchronize ($SYNCH) service. 

SYS$GETSYIW [efn] ,[csidadr] ,[nodename] ,itmlst [,iosb] [,astadr] [,astprm] 

You must specify either the csidadr or the nodename argument, but not both. 
For wildcard operations, however, you must use the csidadr argument. 



$GETTIM 
Get Time 

Format 

Argument 

System Service Descriptions 
$GETTIM 

Returns the current system time in a 64-bit format. 

On Alpha systems, this service accepts 64-bit addresses. 

SYS$GETTIM timadr 

timadr 
· Open VMS usage: 

type: 
access: 
mechanism: 

date_time 
quadword (unsigned) 
write only 
by 32-bit or 64-bit reference (Alpha) 
by 32-bit reference (VAX) 

The 32-bit or 64-bit address (on Alpha systems) or the 32-bit address (on VAX 
systems) of a quadword to receive the current time in 64-bit format. 

Description 

14M;;+ 

The Get Time service returns the current system time in 64-bit format. The time 
is returned in 100-nanosecond units from the system base time. 

On Alpha systems, the frequency at which system time is updated varies, 
depending on the clock frequency of the Alpha processor.+ 

On VAX systems, system time is updated every 10 milliseconds.+ 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $NUMTIM, $SCHDWK, $SETIME, 
$SETIMR 

For additional information about the system time, see the Open VMS System 
Manager's Manual. 

Condition Values Returned 

SS$_NORMAL 

SS$_ACCVIO 

The service completed successfully. 

The quadword to receive the time cannot be 
written by the caller. 

SYS2-71 



System Service Descriptions 
$GETUAI 

$GETUAI 
Get User Authorization Information 

Format 

Arguments 

SYS2-72 

Returns authorization information about a specified user. 

SYS$GETUAI [nullarg] ,[contxt] ,usrnam ,itmlst ,[nullarg] ,[nullarg] ,[nullarg] 

nullarg 
Open VMS usage: null_arg 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Placeholding argument reserved to Digital. 

usrnam 
Open VMS usage: char_string 
type: character-coded text string 
access: read only 
mechanism: by descriptor-fixed length string descriptor 

Name of the user about whom $GETUAI returns authorization information. The 
usrnam argument is the address of a descriptor pointing to a character text 
string containing the user name. The user name string can contain a maximum 
of 12 alphanumeric characters. , 

itmlst 
Open VMS usage: item_list_3 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Item list specifying which information from the specified user's user authorization 
file (UAF) record is to be returned. The itmlst argument is the address of a list 
of one or more item descriptors, each of which specifies an item code. The item 
list is terminated by an item code value of 0 or by a longword value of 0. 

The following diagram depicts the structure of a single item descriptor. 



31 15 

Item code l 
Buffer address 

System Service Descriptions 
$GETUAI 

0 

Buffer length 

Return length address 

ZK-5186A-G E 

The following table defines the item descriptor fields. 

Descriptor Field 

Buffer length 

Item code 

Buffer address 

Return length address 

Definition 

A word specifying the length (in bytes) of the buffer 
in which $GETUAI is to write the information. The 
length of the buffer varies, depending on the item 
code specified in the item code field of the item 
descriptor, and is given in the description of each 
item code. If the value of the buffer length field is 
too small, $GETUAI truncates the data. 

A word containing a user-supplied symbolic code 
specifying the item of information that $GETUAI is 
to return. The $UAIDEF macro defines these codes. 

A longword containing the user-supplied address 
of the buffer in which $GETUAI is to write the 
information. 

A longword containing the user-supplied address 
of a word in which $GETUAI writes the length in 
bytes of the information it actually returned. 

The symbolic codes have the following format: 

$UAl_code 

See the Item Codes section for descriptions of the various $GETUAI item codes. 

contxt 
Open VMS usage: longword 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Longword used to maintain authorization file context. The contxt argument is 
the address of a longword to receive a $GETUAI context value. On the initial 
call, this longword should contain the value -1. On subsequent calls, the value of 
the contxt argument from the previous call should be passed back in. 

SYS2-73 



System Service Descriptions 
$GETUAI 

Item Codes 

SYS2-74 

UAl$_ACCOUNT 
When you specify UAI$_ACCOUNT, $GETUAI returns, as a blank-filled 32-
character string, the account name of the user. 

An account name can include up to 8 characters. Because the account name is a 
blank-filled string, however, the buffer length field of the item descriptor should 
specify 32 (bytes). 

UAl$_ASTLM 
When you specify UAI$_ASTLM, $GETUAI returns the AST queue limit. 

Because this decimal number is a word in length, the buffer length field in the . 
item descriptor should specify 2 (bytes). 

UAl$_BATCH_ACCESS_P 
When you specify UAI$_BATCH_ACCESS_P, $GETUAI returns, as a 3-byte 
value, the range of times during which batch access is permitted for primary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_BATCH_ACCESS_S 
When you specify UAI$_BATCH_ACCESS_S, $GETUAI returns, as a 3-byte 
value, the range of times during which batch access is permitted for secondary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_BIOLM 
When you specify UAI$_BIOLM, $GETUAI returns the buffered I/O count. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_BYTLM 
When you specify UAI$_BYTLM, $GETUAI returns the buffered I/O byte limit. 

Because the buffered I/O byte limit is a longword decimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 

UAl$_CLITABLES 
When you specify UAI$_CLITABLES, $GETUAI returns, as a character string, 
the name of the user-defined CLI table for the account, if any. 

Because the CLI table name can include up to 31 characters in addition to a 
size-byte prefix, the buffer length field of the item descriptor should specify 32 
(bytes). 

UAl$_CPUTIM 
When you specify UAI$_CPUTIM, $GETUAI returns the maximum CPU time 
limit (per session) for the process in 10-millisecond units. 

Because the maximum CPU time limit is a longword decimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 



UAl$_DEFCLI 

System Service Descriptions 
$GETUAI 

When you specify UAI$_DEFCLI, $GETUAI returns, as an RMS file name 
component, the name of the command language interpreter used to execute the 
specified batch job. The file specification returned assumes the device name and 
directory SYS$SYSTEM and the file type .EXE. 

Because a file name can include up to 31 characters in addition to a size-byte 
prefix, the buffer length field in the item descriptor should specify 32 (bytes). 

UAl$_DEFDEV 
When you specify UAI$_DEFDEV, $GETUAI returns, as a 1- to 31-character 
string, the name of the default device. 

Because the device name string can include up to 31 characters in addition to a 
size-byte prefix, the buffer length field in the item descriptor should specify 32 
(bytes). 

UAl$_DEFDIR 
When you specify UAI$_DEFDIR, $GETUAI returns, as a 1- to 63-character 
string, the name of the default directory. 

Because the directory name string can include up to 63 characters in addition to 
a size-byte prefix, the buffer length field in the item descriptor should specify 64 
(bytes). 

UAl$_DEF _PRIV 
When you specify UAI$_DEF _PRIV, $GETUAI returns the default privileges for 
the user. 

Because the default privileges are returned as a quadword value, the buffer 
length field in the item descriptor should specify 8 (bytes). 

UAl$_DFWSCNT 
When you specify UAI$_DFWSCNT, $GETUAI returns the default working set 
size in pages (on VAX systems) or pagelets (on Alpha systems). 

Because the default working set size is a longword decimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 

UAl$_DIOLM 
When you specify UAI$_DIOLM, $GETUAI returns the direct 1/0 count limit. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_DIALUP _ACCESS_P 
When you specify UAI$_DIALUP _ACCESS_P, $GETUAI returns, as a 3-byte 
value, the range of times during which dialup access is permitted for primary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. 
For each hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_DIALUP _ACCESS_S 
When you specify UAl$_DIALUP _ACCESS_S, $GETUAI returns, as a 3-byte 
value, the range of times during which dialup access is permitted for secondary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 

SYS2-75 



System Service Descriptions 
$GETUAI 

SYS2-76 

bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. 
For each hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_ENCRVPT · 
When you specify UAI$_ENCRYPT, $GETUAI returns one of the values shown 
in the following table, identifying the encryption algorithm for the primary 
password. 

Because the encryption algorithm is a byte in length, the buffer length field in 
the item descriptor should specify 1 (byte). 

Symbolic Name 

UAI$C_AD_II 

UAI$C_PURDY 

UAI$C_PURDY_V 

UAI$C_PURDY_S 

UAl$_ENCRVPT2 

Description 

Uses a CRC algorithm and returns a longword hash 
value. It was used in VAXNMS releases prior to Version 
2.0. 

Uses a Purdy algorithm over salted input. It expects 
a blank-padded user name and returns a quadword 
hash value. This algorithm was used during VAXNMS 
Version 2.0 field test. 

Uses the Purdy algorithm over salted input. It expects a 
variable-length user name and returns a quadword hash 
value. This algorithm was used in VMS releases prior to 
Version 5.4. 

Uses the Purdy algorithm over salted input. It expects a 
variable-length user name and returns a quadword hash 
value. This is the current algorithm that the operating 
system uses for all new password changes. 

When you specify UAI$_ENCRYPT2, $GETUAI returns one of the following 
values identifying the encryption algorithm for the secondary password: 

• UAI$C_AD_II 

• UAI$C_PURDY 

• UAI$C_PURDY_ V 

• UAI$C_PURDY_S 

Because the encryption algorithm is a byte in length, the buffer length field in 
the item descriptor should specify 1 byte. 

UAl$_ENQLM 
When you specify UAI$_ENQLM, $GETUAI returns the lock queue limit. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_EXPIRATION 
When you specify UAI$_EXPIRATION, $GETUAI returns, as a quadword 
absolute time value, the expiration date and time of the account. 

Because the absolute time value is a quadword in length, the buffer length field 
in the item descriptor should specify 8 (bytes). 



UAl$_FILLM 

System Service Descriptions 
$GETUAI 

When you specify UAI$_FILLM, $GETUAI returns the open file limit. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_FLAGS 
When you specify UAI$_FLAGS, $GETUAI returns, as a longword bit vector, the 
various login flags set for the user. 

Each flag is represented by a bit. The $UAIDEF macro defines the following 
symbolic names for these flags. 

Symbolic Name 

UAI$V_AUDIT 

UAI$V _AUTOLOGIN 

UAI$V _CAPTIVE 

UAI$V_DEFCLI 

UAI$V _DISACNT 
UAI$V _DISCTLY 

UAI$V _DISFORCE_PWD_CHANGE 

UAI$V _DISIMAGE 

. UAI$V _DISMAIL 

UAI$V _DISPWDDIC 

UAI$V _DISPWDHIS 

UAI$V _DISRECONNECT 
UAI$V _DISREPORT 

UAI$V _DISWELCOME 

UAI$V _GENPWD 

UAI$V _LOCKPWD 

UAI$V _NOMAIL 
UAI$V _PWD_EXPIRED 

UAI$V _PWD2_EXPIRED 

UAI$V _RESTRICTED 

UAl$_JTQUOTA 

Description 

All actions are audited. 

User can only log in to terminals defined by the 
Automatic Login facility (ALF). 

User is restricted to captive account. 

User is restricted to default command interpreter. 

User account is disabled. 
User cannot use Ctrl/Y. 

User will not be forced to change expired passwords at 
login. 

User cannot issue the RUN or MCR commands or use 
the foreign command mechanism in DCL . 

Announcement of new mail is suppressed. 

Automatic checking of user-selected passwords against 
the system dictionary is disabled. 
Automatic checking of user-selected passwords against 
previously used passwords is disabled. 

User cannot reconnect to existing processes. 

User will not receive last login messages. 
User will not receive the login welcome message. 

User is required to use generated passwords. 

SET PASSWORD command is disabled. 

Mail delivery to user is disabled. 
Primary password is expired. 

Secondary password is expired. 

User is limited to operating under a restricted account. 
(See the Security Guide for a description of restricted and 
captive accounts.) 

When you specify UAI$_JTQUOTA, $GETUAI returns the initial byte quota with 
. which the jobwide logical name table is to be created. 

Because this quota is a longword decimal number, the buffer length field in the 
item descriptor should specify 4 (bytes). · 

SYS2-77 



System Service Descriptions 
$GETUAI 

SYS2-78 

UAl$_LASTLOGIN_I 
When you specify UAI$_LASTLOGIN_I, $GETUAI returns, as a quadword 
absolute time value, the date of the last interactive login. 

UAl$_LASTLOGIN_N 
When you specify UAI$_LASTLOGIN_N, $GETUAI returns, as a quadword 
absolute time value, the date of the last noninteractive login. 

UAl$_LGICMD 
When you specify UAI$_LGICMD, $GETUAI returns, as an Open VMS RMS file 
specification, the name of the default login command file. 

Because a file specification can include up to 63 characters in addition to a 
size-byte prefix, the buffer length field of the item descriptor should specify 64 
(bytes). 

UAl$_LOCAL_ACCESS_P 
When UAI$_LOCAL_ACCESS_P, $GETUAI returns, as a 3-byte value, the range 
of times during which local interactive access is permitted for primary days. Each 
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to bit 23 as 
11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. For each 
hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_LOCAL_ACCESS_S 
When you specify UAI$_LOCAL_ACCESS_S, $GETUAI returns, as a 3-byte 
value, the range of times during which batch access is permitted for secondary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. 
For each hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_LOGFAILS 
When you specify UAI$_LOGFAILS, $GETUAI returns the count of login failures. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_MAXACCT JOBS 
When you specify UAI$_MAXACCTJOBS, $GETUAI returns the maximum 
number of batch, interactive, and detached processes that can be active at one 
time for all users of the same account. The value 0 represents an unlimited 
number. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_MAXDETACH 
When you specify UAI$_MAXDETACH, $GETUAI returns the detached process 
limit. A value of 0 represents an unlimited number. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_MAXJOBS 
When you specify UAI$_MAXJOBS, $GETUAI returns the active process limit. A 
value of 0 represents an unlimited number. 



System Service Descriptions 
$GETUAI 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_NETWORK_ACCESS_P 
When you specify UAI$_NETWORK_ACCESS_P, $GETUAI returns, as a 3-byte 
value, the range of times during which network access is permitted for primary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. 
For each hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_NETWORK_ACCESS_S 
When you specify UAI$_NETWORK_ACCESS_S, $GETUAI returns, as a 3-byte 
value, the range of times during which network access is permitted for secondary 
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m. to 
bit 23 as 11 p.m. to midnight. For each hour the bit is set to 0, access is allowed. 
For each hour the bit is set to 1, access is denied. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_0WNER 
When you specify UAI$_0WNER, $GETUAI returns, as a character string, the 
name of the owner of the account. 

Because the owner name can include up to 31 characters in addition to a size-byte 
prefix, the buffer length field of the item descriptor should specify 32 (bytes). 

UAl$_PBYTLM 
When you specify UAI$_PBYTLM, $GETUAI returns the paged buffer I/O byte 
count limit. 

Because the paged buffer I/O byte count limit is a longword decimal number, the 
buffer length field in the item descriptor should specify 4 (bytes). 

UAl$_PGFLQUOTA 
When you specify UAI$_PGFLQUOTA, $GETUAI returns the paging file quota in 
pages (on VAX systems) or in blocks (on Alpha systems). 

Because the paging file quota is a longword decimal number, the buffer length 
field in the item descriptor should specify 4 (bytes). 

UAl$_PRCCNT 
When you specify UAI$_PRCCNT, $GETUAI returns the subprocess creation 
limit. 

Because the subprocess creation limit is a longword decimal number, the buffer 
length field in the item descriptor should specify 4 (bytes). 

UAl$_PRI 
When you specify UAI$_PRI, $GETUAI returns the default base priority in the 
range 0 through 31. 

Because this decimal number is a byte in length, the buffer length field in the 
item descriptor should specify 1 (byte). 

UAl$_PRIMEDAYS 
When you specify UAI$_PRIMEDAYS, $GETUAI returns, as a longword bit 
vector, the primary and secondary days of the week. 

SYS2-79 



System Service Descriptions 
$GETUAI 

SYS2-80 

Each bit represents a day of the week, with the bit clear representing a primary 
day and the bit set representing a secondary day. The $UAIDEF macro defines 
the following symbolic names for these bits: 

UAI$V_MONDAY 
UAI$V _TUESDAY 
UAI$V _WEDNESDAY 
UAI$V_THURSDAY 
UAI$V_FRIDAY 
UAI$V _SATURDAY 
UAI$V_SUNDAY 

UAl$_PRIV 
When you specify UAI$_PRIV, $GETUAI returns, as a quadword value, the 
names of the privileges the user holds. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 

UAl$_PWD 
When you specify UAI$_PWD, $GETUAI returns, as a quadword value, the 
hashed primary password of the user. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 

UAl$_PWD_DATE 
When you specify UAI$_PWD_DATE, $GETUAI returns, as a quadword absolute 
time value, the date of the last password change. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 

A value of -1 indicates that the password is marked as preexpired. 

UAl$_PWD_LENGTH 
When you specify UAI$_PWD_LENGTH, $GETUAI returns the minimum 
password length. 

Because this decimal number is a byte in length, the buffer length field in the 
item descriptor should specify 1 (byte). 

UAl$_PWD_LIFETIME 
When you specify UAI$_PWD_LIFETIME, $GETUAI returns, as a quadword 
delta time value, the password lifetime. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 

A quadword of 0 means that none of the password mechanisms will take effect. 

UAl$_PWD2 
When you specify UAI$_PWD2, $GETUAI returns, as a quadword value, the 
hashed secondary password of the user. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 



System Service Descriptions 
$GETUAI 

UAl$_PWD2_DATE 
When you specify UAI$_PWD2_DATE, $GETUAI returns, as a quadword absolute 
time value, the last date the secondary password was changed. 

Because this value is a quadword in length, the buffer length field in the item 
descriptor should specify 8 (bytes). 

A value of -1 indicates that the password could be marked as preexpired. 

UAl$_QUEPRI 
When you specify UAI$_QUEPRI, $GETUAI returns the maximum job queue 
priority. 

Because this decimal number is a byte in length, the buffer length field in the 
item descriptor should specify 1 (byte). 

UAl$_REMOTE_ACCESS_P 
When you specify UAI$_REMOTE_ACCESS_P, $GETUAI returns, as a 3-byte 
valu.e, the range of times during which remote interactive access is permitted for 
primary days. Each bit set represents a 1-hour period, from bit 0 as midnight to 
1 a.m. to bit 23 as 11 p.m. to midnight. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_REMOTE_ACCESS_S 
When you specify UAI$_REMOTE_ACCESS_S, $GETUAI returns, as a 3-byte 
value, the range of times during which remote interactive access is permitted for 
secondary days. Each bit set represents a 1-hour period, from bit 0 as midnight 
to 1 a.m. to bit 23 as 11 p.m. to midnight. 

The buffer length field in the item descriptor should specify 3 (bytes). 

UAl$_SALT 
When you specify UAI$_SALT, $GETUAI returns the random password salt. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_SHRFILLM 
When you specify UAI$_SHRFILLM, $GETUAI returns the shared file limit. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_TQCNT 
When you specify UAI$_TQCNT, $GETUAI returns the timer queue entry limit. 

Because this decimal number is a word in length, the buffer length field in the 
item descriptor should specify 2 (bytes). 

UAl$_UIC 
When you specify UAI$_UIC, $GETUAI returns, as a longword, the user 
identification code (UIC). For the format of the UIC, see the Security Guide. 

UAl$_USER_DATA 
When you specify UAI$_USER_DATA, $GETUAI returns up to 255 bytes of 
information from the 'user data area of the system user authorization file 
(SYSUAF). 

SYS2-81 



System Service Descriptions 
$GETUAI 

Description 

You can read information written to the user data area from previous versions of 
the operating system as long as the information written adheres to the guidelines 
described in the Security Guide. 

UAl$_ WSEXTENT 
When you specify UAI$_ WSEXTENT, $GETUAI returns the working set extent, 
in pages (on VAX. systems) or pagelets (on Alpha systems), for the user of the 
specified queue or job. 

Because the working set extent is a longword decimal number, the buffer length 
field in the item descriptor should specify 4 (bytes). 

UAl$_WSQUOTA 
When you specify UAI$_WSQUOTA, $GETUAI returns the working set quota, in 
pages (on VAX. systems) or pagelets (on Alpha systems), for the specified user. 

Because this quota is a longword decimal number, the buffer length field in the 
item descriptor should specify 4 (bytes). 

The Get User Authorization Information service returns authorization 
information about a specified user. 

Required Access or Privileges 
Use the following list to determine the privileges required to use the $GETUAI 
service: 

• BYPASS or SYSPRV-Allows access to any record in the user authorization 
file (UAF). 

• GRPPRV-Allows access to any record in the UAF whose UIC group matches 
that of the requester. 

• No privilege-Allows access to any UAF record whose UIC matches that of 
the requester. 

You need read access to the UAF to look up any information other than your 
own. 

Required Quota 
None 

Related Services 
$SETUAI 

Condition Values Returned 

SYS2-82 

SS$_NORMAL 
SS$_ACCVIO 

SS$_BADPARAM 

The service completed successfully. 
The item list or input buffer cannot be read by 
the caller; or the return length buffer, output 
buffer, or status block cannot be written by the 
caller. 
The function code is invalid; the item list 
contains an invalid item code; a buffer descriptor 
has an invalid length; or the reserved parameter 
has a nonzero value. 



SS$_NOGRPPRV 

SS$_NOSYSPRV 

RMS$_RSZ 

System Service Descriptions 
$GETUAI 

The user does not have the privileges required to 
examine the authorization information for other 
members of the UIC group. 

The user does not have the privileges required to 
examine the authorization information associated 
with the user or for users outside of the user's 
UIC group. 

The UAF record is smaller than required; the 
caller's SYSUAF is probably corrupt. 

This service can also return Open VMS RMS status codes associated with 
operations on indexed files. For example, an inquiry about a nonexistent 
account returns RMS$_RNF, record not found status. For a description of 
RMS status codes that are returned by this service, refer to the Open VMS Record 
Management Services Reference Manual. 

SYS2-83 



System Service Descriptions 
$GETUTC 

$GETUTC 
Get UTCTime 

Format 

Arguments 

Description 

Returns the current time in 128-bit UTC format. 

SYS$GETUTC utcadr 

utcadr 
Open VMS usage: coordinated universal time 
type: utc_date_time 
access: write only 
mechanism: by reference 

The 128-bit time value to be returned. 

The Get UTC Time service returns the current system time in 128-bit UTC 
format. System time is updated every 10 milliseconds. 

On Alpha systems, the frequency at which system time is updated varies, 
depending on the clock frequency of the Alpha processor.+ 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
$ASCUTC, $BINUTC, $NUMUTC, $TIMCON 

·Condition Values Returned 

SYS2-84 

SS$_NORMAL 

SS$_ACCVIO 

The service completed successfully. 

The argument was not accessible for write in the 
mode of the caller. 



System Service Descriptions 
$GET _ALIGN_FAULT _DATA (Alpha Only) 

$GET _ALIGN_FAULT _DATA (Alpha Only) 
Get Alignment Fault Data 

Format 

Arguments 

Description 

On Alpha systems, obtains data from the user image alignment fault buffer if 
buffered user alignment fault data reporting has been enabled. 

This service accepts 64-bit addresses. 

SYS$GET _ALIGN_FAULT _DATA buffer ,buffer_size ,return_size 

buffer 
Open VMS usage: address 
type: longword (unsigned) 
access: read/write 
mechanism: by 32-bit or 64-bit reference 

The user buffer in which the alignment fault data is to be stored. The buffer is 
the 32-bit or 64-bit address of this user buffer. 

buffer_size 
Open VMS usage: byte count 
type: longword (signed) 
access: read 
mechanism: by value 

The size, in bytes, of the buffer specified by the buffer argument. 

return_ size 
Open VMS usage: longword_signed 
type: longword (signed) 
access: write 
mechanism: by 32-bit or 64-bit reference 

The amount of data, in bytes, stored in the buffer. The return_size argument is 
the 32-bit or 64-bit address of a naturally aligned longword into which the service 
returns the size of the buff er. The return_size is set to 0 if there is no data in 
the buffer. 

The Get Alignment Fault Data service obtains data from the user image 
alignment fault buffer if buffered user alignment fault data reporting has 
been enabled. 

When buffered user alignment fault data reporting is enabled, the operating 
system writes each alignment fault into a user-defined buffer. The user must poll 
this buffer periodically to read the data. 

The user must call the $START_ALIGN_FAULT_REPORT service to enable 
buffered user alignment fault data reporting. 

For more information about buffered user alignment fault data reporting, see the 
$START_ALIGN_FAULT_REPORT system service. 

SYS2-85 



System Service Descriptions 
$GET_ALIGN_FAULT_DATA {Alpha Only) 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
$GET_SYS_ALIGN_FAULT_DATA, $INIT_SYS_ALIGN_FAULT_REPORT, 
$PERM_DIS_ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, 
$START_ALIGN_FAULT_REPORT, $STOP _ALIGN_FAULT_REPORT, $STOP_ 
SYS_ALIGN_FAULT_REPORT 

Condition Values Returned 

SYS2-86 

SS$_NORMAL 

SS$_ACCVIO 

SS$_AFR_NOT_ENABLED 

SS$_BADPARAM 

The service completed successfully. 

The buffer named in the buffer argument is not 
accessible. 
Alignment fault reporting has not been enabled. 

The buffer size is smaller than the minimum 
defined by the AFR$K_ USER_LENGTH 
symbol. 



System Service Descriptions 
$GET _ARITH_EXCEPTION (Alpha Only) 

$GET _ARITH_EXCEPTION (Alpha Only) 
Get Arithmetic Exception Information 

Format 

Arguments 

Description 

On Alpha systems, returns information about the exception context for a given 
arithmetic exception. 

SYS$GET _ARITH_EXCEPTION sigarg ,mcharg ,buffer 

sigarg 
Open VMS usage: signal array 
type: vector_longword_signed 
access: read only 
mechanism: by reference 

Address of the signal array for the given arithmetic exception. 

mcharg 
Open VMS usage: mech array 
type: vector_quadword_unsigned 
access: read only 
mechanism: by reference 

Address of the mechanism array for the given arithmetic exception. 

buffer 
Open VMS usage: vector_quadword 
type: vector_quadword_unsigned 
access: write only 
mechanism: by descriptor 

Four-quadword buffer to receive additional exception context. The buffer 
argument is the address of a descriptor that points to this buffer. 

The Get Arithmetic Exception Information service returns, to the buffer specified 
by the buffer argument, the following information for a given arithmetic 
exception in an array of quadwords: 

• First quadword, the PC of the triggering instruction in the trap shadow 

• Second quadword, a copy of the triggering instruction 

• Third quadword, the exception summary 

• Fourth quadword, the register write mask 

Required Access or Privilege 
None 

Required Quota 
None 

SYS2-87 



System Service Descriptions 
$GET _ARITH_EXCEPTION (Alpha Only) 

Condition Values Returned 

SYS2-88 

SS$_NORMAL 

SS$_ACCVIO 

The service completed successfully. 

The specified buffer cannot be written. 



System Service Descriptions 
$GET _SECURITY 

$GET _SECURITY 
Get Security Characteristics 

Format 

Arguments 

Retrieves the security characteristics of an object. 

SYS$GET _SECURITY [clsnam] ,[objnam] ,[objhan] ,[flags] ,[itmlst] ,[contxt] 
,[acmode] 

clsnam 
Open VMS usage: char_string 
type: character-coded text string 
access: read only 
mechanism: by descriptor 

Name of the object class. The clsnam argument is the address of a descriptor 
pointing to a string containing the name of the object class. The following is a list 
of protected object class names: 

CAPABILITY 
COMMON_EVENT_CLUSTER 
DEVICE 
FILE 
GROUP _GLOBAL_SECTION 
LOGICAL_NAME_TABLE 
QUEUE 
RESOURCE_DOMAIN 
SECURITY_CLASS 
SYSTEM_GLOBAL_SECTION 
VOLUME 

objnam 
Open VMS usage: char_string 
type: character-coded text string 
access: read only 
mechanism: by descriptor 

Name of the protected object whose associated security profile is going to be 
retrieved. The objnam argument is the address of a descriptor pointing to a 
string containing the name of the protected object. 

The format of an object name is class specific. The following table lists object 
names and describes their formats. 

Object Class Object Name Format 

CAPABILITY A character string. Currently, the only 
capability object is VECTOR. 

COMMON_EVENT_CLUSTER Name of the event flag cluster, as defined in 
the Associate Common Event Flag Cluster 
($ASCEFC) system service. 

SYS2-89 



System Service Descriptions 
$GET _SECURITY 

SYS2-90 

Object Class Object Name Format 

DEVICE Standard device specification, described in the 
Open VMS User's Manual. 

FILE Standard file specification, described in the 
Open VMS User's Manual. 

GROUP _GLOBAL_SECTION Section name, as defined in the Create and Map 
Section ($CRMPSC) system service. 

LOGICAL_NAME_TABLE Table name, as defined in the Create Logical 
Name Table ($CRELNT) system service. 

QUEUE Standard queue name, as described in the Send 
to Job Controller ($SNDJBC) system service. 

RESOURCE_DOMAIN An identifier or octal string enclosed in 
brackets. 

SECURITY_CLASS Any class name shown in column 1, or a 
class name followed by a period(.) and the 
template name. Use the DCL command SHOW 
SECURITY to display possible template names. 

SYSTEM_GLOBAL_SECTION Section name, as defined in the Create and Map 
Section ($CRMPSC) system service. 

VOLUME Volume name or name of the device on which 
the volume is mounted. 

objhan 
Open VMS usage: object_handle 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Data structure identifying the object whose associated characteristics are going 
to be retrieved. The objhan argument is an address of a longword containing 
the object handle. You can use the objhan argument as an alternative to the 
objnam argument; for example, channel number clearly specifies the file open 
on the channel and can serve as an object handle. The following table shows the 
format of the object classes. 

Object Class 

COMMON_EVENT_CLUSTER 

DEVICE 

FILE 
RESOURCE_DOMAIN 

VOLUME 

Object Handle Format 

Event flag number 

Channel number 

Channel number 
Resource domain identifier 

Channel number 



flags 
Open VMS usage: flags 
type: mask_longword 
access: read only 
mechanism: by value 

System Service Descriptions 
$GET _SECURITY 

Mask specifying processing options. The flags argument is a longword bit vector 
wherein a bit, when set, specifies the processing option. The flags argument 
requires the contxt argument. The following table describes each flag. 

Symbolic Name 

OSS$M_RELCTX 

OSS$M_ WLOCK 

Description 

Release the context structure at the completion of this 
request. 

Maintain a write lock on the security profile at the 
completion of this request. $GET_SECURITY ignores 
the flag if the context has already been established. 

These symbolic names are defined in the $0SSDEF macro. You construct the 
flags argument by specifying the symbolic names of each flag. 

itmlst 
Open VMS usage: item_list_3 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Item list specifying which information about the process or processes is to be 
returned. The itmlst argument is the address of a list of item descriptors, each of 
which describes an item of information. The list of item descriptors is terminated 
by a longword of 0. 

With the item list, the user retrieves the protected object's characteristics. The 
user defines which security characteristics to retrieve. If this argument is not 
present, only the flags argument is processed. Without the itmlst argument, you 
can only manipulate the security profile lock or release contxt resources. 

The following diagram depicts a single item descriptor. 

31 15 0 

Item code l Buffer length 

Buffer address 

Return length address 

ZK-5186A-GE 

SYS2-91 



System Service Descriptions 
$GET _SECURITY 

SYS2-92 

The following table describes the item descriptor fields. 

Descriptor Field 

Buffer length 

Item code 

Buffer address 

Return length address 

contxt 
Open VMS usage: context 

Definition 

A word containing an integer specifying the length 
(in bytes) of the buffer in which $GET_SECURITY 
is to write the information. The length of the buffer 
needed depends upon the item code specified in the 
item code field of the item descriptor. If the value 
of buffer length is too small, $GET _SECURITY 
truncates the data. 
A word containing a symbolic code specifying the 
item of information that $GET_SECURITY is to 
return. The $0SSDEF macro defines these codes. 
A description of each item code is given in the Item 
Codes section. 
A longword containing the address of the buffer in 
which $GET_SECURITY is to write the information. 

A longword containing the address of a word in 
which $GET_SECURITY writes the length (in 
bytes) of the information it actually returns. 

type: longword (unsigned) 
access: modify 
mechanism: by reference 

Value used to maintain the processing context when dealing with a single 
protected object across multiple $GET_SECURITY/$SET_SECURITY calls. 
Whenever the context value is nonzero, the class name, object name, or object 
handle arguments are disregarded. An input value of 0 indicates that a new 
context should be established. 

Because an active context block consumes process memory, be sure to release the 
context block by setting the RELCTX flag when the profile processing is complete. 
$GET_SECURITY sets the context argument to 0 once the context is released. 

acmode 
Open VMS usage: access_mode 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Access mode to be used in the object protection check. The acmode argument is 
the address of a longword containing the access mode. The acmode argument 
defaults to kernel mode; however, the system compares acmode with the caller's 
access mode and uses the least privileged mode. The access modes are defined in 
the system macro $PSLDEF library. Digital recommends that this argument be 
omitted (passed as zero). 



Item Codes 

System Service Descriptions 
$GET _SECURITY 

The following table provides a summary of item codes that are valid in an item 
descriptor in the itmlst argument. Complete descriptions of each item code are 
provided after the table. 

Item Identifier 

OSS$_ACCESS_NAMES 

OSS$_ACCESS_NAMES_LENGTH 

OSS$_ACL_FIND_ENTRY 

OSS$_ACL_FIND _NEXT 

OSS$_ACL_FIND_TYPE 

OSS$_ACL_GRANT_ACE 

OSS$_ACL_LENGTH 

OSS$_ACL_POSITION_BOTTOM 

OSS$_ACL_POSITION_TOP 

OSS$_ACL_READ 
OSS$_ACL_READ_ENTRY 

OSS$_CLASS_NAME 

OSS$_FIRST_TEMPLATE 

OSS$_NEXT_OBJECT 

OSS$_NEXT_TEMPLATE 

OSS$_0BJECT_NAME 

OSS$_0WNER 

OSS$_PROTECTION 

OSS$_ACCESS_NAMES 

Description 

Returns access bitname translation table 
for the class. 
Returns the size (in bytes) of the access 
bitname translation table. 

Locates an access control entry (ACE). 

Positions to the next ACE. 

Locates an ACE of specified type. 
Locates an ACE that either grants or 
denies access. 

Returns the length of the access control list 
(ACL). 

Sets a marker that points to the end of the 
ACL. 

Sets a marker that points to the beginning 
of the ACL. 

Reads the entire ACL. 
Reads an ACE. 

Returns the full object class name. 

Returns the name of the first template 
profile of a Security_Class object. 
Returns the name of the next Security_ 
Class object. 

Returns the name of the next template 
profile of a Security_Class object. 
Returns the name of the object. The FILE 
class does not return an object name. 

Returns the UIC or general identifier of 
the object's owner. 
Returns the protection code of the object. 

When you specify OSS$_ACCESS_NAMES, $GET_SECURITY returns the access 
name translation table in the buffer pointed to by the buffer address field of the 
item descriptor. 

The access name translation table is a 32-quadword vector followed by a variable 
section containing the access names. Each bit in the vector represents a single 
access type. The contents of the quadword is a string descriptor that corresponds 
to the ASCII bitname string. Undefined access types have zero-length names. 
The return length, if present, returns the length of the table. 

SYS2-93 



System Service Descriptions 
$GET _SECURITY 

SYS2-94 

OSS$_ACCESS_NAMES_LENGTH 
When you specify 088$_ACCE88_NAME8_LENGTH, $GET_8ECURITY returns 
the length of the access name translation table. 

OSS$_ACL_FIND_ENTRV 
When you specify 088$_ACL_FIND_ENTRY, $GET_8ECURITY locates an ACE 
pointed to by the buffer address. 088$_ACL_FIND_ENTRY sets the position 
within the ACL for succeeding ACL operations; for example, for a deletion or 
modification of the ACE. If the buffer address is 0, it returns 88$_ACCVIO. 

OSS$_ACL_FIND_NEXT 
When you specify 088$_ACL_FIND_NEXT, $GET_8ECURITY advances the 
current position to the next ACE in the ACL. 

OSS$_ACL_FIND_ TVPE 
When you specify 088$_ACL_FIND_TYPE, $GET_8ECURITY returns an ACE 
of a particular type if there is one in the buffer pointed to by the buffer address. 
088$_ACL_FIND_TYPE sets the position within the ACL for succeeding ACL 
operations. If the buffer address is 0, it returns 88$_ACCVIO. 

OSS$_ACL_GRANT _ACE 
When you specify 088$_ACL_GRANT_ACE, $GET_8ECURITY returns the ACE 
in the object's ACL that grants or denies the user access to that object. 088$_ 
ACL_GRANT_ACE returns the ACE found in the buffer pointed to by the buffer 
address. 

OSS$_ACL_LENGTH 
When you specify 088$_ACL_LENGTH, $GET_8ECURITY returns the size (in 
bytes) of the object's ACL. The buffer address field points to a longword that 
receives the size. 

OSS$_ACL_POSITION_BOTTOM 
When you specify 088$_ACL_P08ITION_BOTTOM, $GET_8ECURITY sets the 
ACL position to point to the bottom of the ACL. 

OSS$_ACL_POSITION_ TOP 
When you specify 088$_ACL_P08ITION_TOP, $GET_8ECURITY sets the ACL 
position to point to the top of the ACL. 

· OSS$_ACL_READ 
When you specify 088$_ACL_READ, $GET_8ECURITY returns the portion of 
the object's ACL to the buffer pointed to by the buffer address. 

OSS$_ACL_READ_ENTRV 
When you specify 088$_ACL_READ_ENTRY, $GET_8ECURITY reads the ACE 
pointed to by the buffer address. 

OSS$_CLASS_NAME 
When you specify 088$_CLA88_NAME, $GET_8ECURITY returns the full object 
class name. 

OSS$_FIRST _TEMPLATE 
When you specify 088$_FIR8T_TEMPLATE, $GET_8ECURITY returns the 
name of the first template profile for the object named in the objnam argument. 
This item code is valid only for security class objects. If the clsnam is not 
8ecurity_Class, 88$_INVITMCL8 is returned. 



Description 

OSS$_NEXT_OBJECT 

System Service Descriptions 
$GET _SECURITY 

When you specify OSS$_NEXT_OBJECT, $GET_SECURITY returns the name 
of the next object. A return length of 0 indicates the end of the list. This item 
code is valid only for security class objects. If the clsnam is not Security_Class, 
SS$_INVITMCLS is returned. 

OSS$_NEXT_TEMPLATE 
When you specify OSS$_NEXT_TEMPLATE, $GET_SECURITY returns the 
name of the next template. This item code allows you to step through a list of an 
object's templates. A return length of 0 indicates the end of the list. This item 
code is valid only for security class objects. If the clsnam is not Security _Class, 
SS$_INVITMCLS is returned. 

OSS_OBJECT _NAME 
When you specify OSS$_0BJECT_NAME, $GET_SECURITY returns the name of 
the object. 

OSS$_0WNER 
When you specify OSS$_0WNER, $GET_SECURITY returns the owner of the 
object. 

OSS$_PROTECTION 
When you specify OSS$_PROTECTION, $GET_SECURITY returns the protection 
code of the object. 

The Get Security service returns information about security characteristics of a 
selected object. Security characteristics include such information as the protection 
code, the owner, and the access control list (ACL). The security management 
services, $GET_SECURITY and $SET_SECURITY, maintain a single master copy 
of a profile for every security object in a VMScluster environment. They also 
ensure that only one process at a time can modify an object's· security profile. 

There are different ways of identifying which protected object $GET_SECURITY 
should process: 

• Whenever the contxt argument has a nonzero value, $GET_SECURITY uses 
the context to select the object and ignores the class name, object name, and 
object handle. 

• With some types of objects, such as a file or a device, it is possible to select an 
object on the basis of its objhan and clsnam values. 

• If neither a nonzero contxt argument nor an objhan argument is provided, 
$GET_SECURITY uses an object's class name (clsnam) and object name 
(objnam) to select the object. 

When you call $GET_SECURITY, the service selects the specified protected object 
and fetches a local copy of the object's security profile. 

The context for a security management operation can be established through 
either $GET_SECURITY or $SET_SECURITY. Whenever the context is set 
by one service, the other service can use it, provided the necessary locks are 
being held. If you intend to modify the profile, you must set the write lock flag 
(0SS$M_ WLOCK) when you establish the context. 

SYS2-95 



System Service Descriptions 
$GET _SECURITY 

There are many situations in which the contxt argument is essential. By 
establishing a context for an ACL operation, for example, a caller can retain 
an ACL position across calls to $GET _SECURITY so that a set of ACEs can be 
read and modified sequentially. A security context is released by a call to $SET_ 
SECURITY or $GET_SECURITY that sets the OSS$M_RELCTX flag. Once the 
context is released, the user-supplied context longword is set to 0. 

Required Access or Privileges 
Read or control access to the objec~ is required. 

Required Quota 
None 

Related Services 
$SET_SECURITY 

Condition Values Returned 

SYS2-96 

SS$_NORMAL 

SS$_ACCVIO 

SS$_BADPARAM 

SS$_INSFARG 

SS$_INVITMCLS 

SS$_NOCLASS 
SS$_ OBJLOCKED 

The service completed successfully. 

The parameter cannot be read and the buffer 
cannot be written. 

You specified an invalid object, attribute code, or 
item size. 

The clsnam and objnam arguments are not 
specified, the clsnam and objhan arguments 
are not specified, or the contxt argument is not 
specified. 

The item code that you specified is not supported 
for the class. 

The named security class does not exist. 
The selected object is currently write locked. 



System Service Descriptions 
$GET_SYS_ALIGN_FAULT_DATA (Alpha Only) 

$GET_SVS_ALIGN_FAULT_DATA (Alpha Only) 
Get System Alignment Fault Data 

Format 

Arguments 

Description 

On Alpha systems, obtains data from the system alignment fault buffer if buffered 
system alignment fault data reporting has been enabled. 

This service accepts 64-bit addresses. 

SYS$GET _SYS_ALIGN_FAULT _DATA buffer ,buffer_size ,return_size 

buffer 
Open VMS usage: address 
type: longword (unsigned) 
access: read/write 
mechanism: by 32-bit or 64-bit reference 

The user buffer in which the alignment fault data is to be stored. The buffer 
argument is the 32-bit or 64-bit virtual address of this buffer. 

buffer _size 
Open VMS usage: byte count 
type: longword (signed) 
access: read 
mechanism: by value 

The size, in bytes, of the buffer specified by the buffer argument. 

return_ size 
Open VMS usage: longword_signed 
type: longword (signed) 
access: write 
mechanism: by 32-bit or 64-bit reference 

The amount of data, in bytes, stored in the buffer. The return_size argument is 
the 32-bit or 64-bit virtual address of a naturally aligned longword into which the 
service returns the amount of data, in bytes, stored in the buffer. The return_ 
size argument is set to 0 if there is no data in the buffer. 

The Get System Alignment Fault Data service obtains data from the system 
alignment fault buffer if buffered system alignment fault data reporting has been 
enabled. 

When buffered system alignment fault data reporting is enabled, the operating 
system writes each alignment fault into a system-allocated buffer. The user must 
poll this buffer periodically to read the data. 

The user must call the $INIT_SYS_ALIGN_FAULT_REPORT service to enable 
buffered system alignment fault data reporting. For more information, see the 
$1NIT_SYS_ALIGN_FAULT_REPORT service. 

SYS2-97 



System Service Descriptions 
$GET_SVS_ALIGN_FAULT_DATA (Alpha Only) 

Required Access or Privileges 
CMKRNL privilege is required. 

Required Quota 
None 

Related Services 
$GET_ALIGN_FAULT_DATA, $INIT_SYS_ALIGN_FAULT_REPORT, $PERM_ 
DIS_ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START_ 
ALIGN_FAULT_REPORT, $STOP _ALIGN_FAULT_REPORT, $STOP _SYS_ 
ALIGN_FAULT_REPORT 

Condition Values Returned 

SYS2-98 

SS$_NORMAL 
SS$_ACCVIO 

SS$_AFR_NOT_ENABLED 

SS$_BADPARAM 

The service completed successfully. 

The buffer named in the buffer argument is not 
accessible. 
Alignment fault reporting has not been enabled. 

The buffer size is smaller than the minimum 
defined by the AFR$K_ VMS_LENGTH or the 
AFR$K_EXTENDED_LENGTH symbol. 



System Service Descriptions 
$GOTO_UNWIND (Alpha Only) 

$GOTO_UNWIND (Alpha Only) 
Unwind Call Stack 

Format 

Arguments 

On Alpha systems, unwinds the call stack. 

SYS$GOTO_UNWIND target_invo ,target_pc ,[new_rO] ,[new_r1] 

target_invo 
Open VMS usage: invo_handle 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

The address of a location that contains a handle for the target invocation. 

If you do not specify the target_invo argument, or if the handle value is 0, an 
exit unwind is initiated. 

target_pc 
Open VMS usage: address 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

The address of a location that contains the address at which execution should 
continue in the target invocation. 

If the target__pc argument is omitted or the value is 0, a system-defined target 
PC is assumed and execution resumes at the location specified at the return 
address for the call frame of the target procedure invocation. 

new_ro 
Open VMS usage: quadword_ unsigned 
type: quadword (unsigned) 
access: read only 
mechanism: by reference 

The address of a location that contains the value to place in the saved RO location 
of the mechanism argument vector. The contents of this location are then loaded 
into the processor RO register at the time that execution continues in the target 
invocation. 

If the new _rO argument is omitted, the contents of the processor RO register at 
the time of the call to $GOTO_ UNWIND are used. 

new_r1 
Open VMS usage: quadword_ unsigned 
type: quadword (unsigned) 
access: read only 
mechanism: by reference 

Address of a location that contains the value to place in the saved Rl location 
of the mechanism argument vector. The contents of the location are then loaded 

SYS2-99 



System Service Descriptions 
$GOTO_UNWIND (Alpha Only) 

Description 

into the processor Rl register at the time that execution continues in the target 
invocation. 

If the new_rl argument is omitted, the contents of the processor Rl register at 
the time of the call to $GOTO_ UNWIND are used. 

-The Unwind Call Stack service provides the function for a procedure to unwind 
the call stack. 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
$UNWIND 

Condition Values Returned 

SYS2-100 

SS$_NORMAL 
SS$_ACCVIO 

The service completed successfully. 
The specified target_invo, target_pc, new _rO, 
or new _rl argument is not accessible. 



$GRANTID 

System Service Descriptions 
$GRANTID 

Grant Identifier to Process 

Format 

Arguments 

Adds the specified identifier record to the rights list of the process or the system. 

SYS$GRANTID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr] 

pidadr 
Open VMS usage: process_id 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Process identification (PID) number of the process affected when $GRANTID 
completes execution. The pidadr argument is the address of a longword 
containing the PID of the process to be affected. You use -1 to indicate the 
system rights list. When pidadr is passed, it is also returned; therefore, you 
must pass it as a variable rather than a constant. If you specify neither pidadr 
nor prcnam, your own process is used. 

prcnam 
Open VMS usage: process_name 
type: character-coded text string 
access: read only 
mechanism: by descriptor-fixed length string descriptor 

Process name on which $GRANTID operates. The prcnam argument is the 
address of a character string descriptor containing the process name. The 
maximum length of the name is 15 characters. Because the UIC group number 
is interpreted as part of the process name, you must use pidadr to specify the 
rights list of a process in a different group. If you specify neither pidadr nor 
prcnam, your own process is used. 

id 
Open VMS usage: rights_holder 
type: quadword (unsigned) 
access: modify 
mechanism: by reference 

Identifier and attributes to be granted when $GRANTID completes execution. 
The id argument is the address of a quadword containing the binary identifier 
code to be granted in the first longword and the attributes in the second longword. 

Use the id argument to modify the attributes of the identifier. 

Symbol values are offsets to the bits within the longword. You can also obtain 
the values as masks with the appropriate bit set using the prefix KGB$M rather 
than KGB$V. The following symbols for each bit position are defined in the macro 
library ($KGBDEF). 

SYS2-101 



System Service Descriptions 
$GRANTID 

Description 

SYS2-102 

Bit Position 

KGB$V _DYNAMIC 

KGB$V _NOACCESS 

KGB$V _RESOURCE 

KGB$V _SUBSYSTEM 

Meaning When Set 

Allows holders of the identifier to remove 
it from or add it to the process rights 
database using the DCL command SET 
RIGHTS_LIST. 

Makes any access rights of the identifier 
null and void. This attribute is intended 
as a modifier for a resource identifier or 
the Subsystem attribute. 

Allows holders of an identifier to charge 
disk space to the identifier. It is used 
only for file objects. 

Allows holders of the identifier to create 
and maintain protected subsystems by 
assigning the Subsystem ACE to the 
application images in the subsystem. 

You must specify either id or name. Because the id argument is returned as 
well as passed if you specify name, you must pass it as a variable rather than a 
constant in this case. 

name 
Open VMS usage: char_string 
type: character-coded text string 
access: read only 
mechanism: by descriptor-fixed length string descriptor 

Name of the identifier granted when $GRANTID completes execution. The name 
argument is the address of a descriptor pointing to the name of the identifier. 
The identifier is granted as it is created. You must specify either id or name. 

prvatr 
Open VMS usage: mask_longword 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Previous attributes of the identifier. The prvatr argument is the address of a 
longword used to store the attributes of the identifier if it was previously present 
in the rights list. If you added rather than modified the identifier, prvatr is 
ignored. 

The Grant Identifier to Process service adds the specified identifier to the rights 
list of the process or the system. If the identifier is already in the rights list, 
its attributes are modified to those specified. This service is meant to be used 
by a privileged subsystem to alter the access rights profile of a user, based on 
installation policy. It is not meant to be used by the general system user. 

The result of passing the pidadr or the prcnam argument, or both, to 
SYS$GRANTID is summarized in the following table. 



prcnam 

Omitted 

Omitted 

Omitted 

Specified 

Specified 

Specified 

pidadr 

Omitted 

0 

Specified 
Omitted 

0 

Specified 

Result 

System Service Descriptions 
$GRANTID 

Current process ID is used; process ID is not 
returned. 

Current process ID is used; process ID is 
returned. 

Specified process ID is used. 
Specified process name is used; process ID is not 
returned. 

Specified process name is used; process ID is 
returned. 
Specified process ID is used and process name is 
ignored. 

The result of passing the name or the id argument, or both, to SYS$GRANTID is 
summarized in the following table. 

name id Result 

Omitted Omitted Illegal. The INSFARG condition value is 
returned. 

Omitted Specified Specified identifier value is used. 

Specified Omitted Specified identifier name is used; identifier value 
is not returned. 

Specified 0 Specified identifier name is used; identifier value 
is returned. 

Specified Specified Specified identifier value is used and identifier 
name is ignored. 

Note that a value of 0 in either of the preceding tables indicates that the contents 
of the address specified by the argument is the value 0. The word omitted 
indicates that the argument was not supplied. 

Required Access or Privileges 
You need CMKRNL privilege to invoke this service. In addition, you need GROUP 
privilege to modify the rights list of a process in the same group as the calling 
process (unless the process has the same UIC as the calling process). You need 
WORLD privilege to modify the rights list of a process outside the caller's group. 
You need SYSNAM privilege to modify the system rights list. 

Required Quota 
None 

Related Services 
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_ 
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_ 
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $HASH_ 
PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, 
$PARSE_ACL, $REM_HOLDER, $REM_IDENT, $REVOKID 

SYS2-103 



System Service Descriptions 
$GRANTID 

Condition Values Returned 

SYS2-104 

SS$_WASCLR 

SS$_WASSET 

SS$_ACCVIO 

SS$_INSFARG 

SS$_INSFMEM 

SS$_IVIDENT 

SS$_IVLOGNAM 
SS$_NONEXPR 

SS$_NOPRIV 

SS$_NOSUCHID 

SS$_NOSYSNAM 

SS$_RIGHTSFULL 
RMS$_PRV 

The service completed successfully; the rights list 
did not contain the specified identifier. 

The service completed successfully; the rights list 
already held the specified identifier. 

The pidadr argument cannot be read or written; 
prcnam cannot be read; id cannot be read or 
written; the name cannot be read; or prvatr 
cannot be written. 
You did not specify either the id or the name 
argument. 

The process dynamic memory is insufficient for 
opening the rights database. 

The specified identifier name is invalid; the 
identifier name is longer than 31 characters, 
contains an illegal character, or does not contain 
at least one nonnumeric character. 

You specified an invalid process name. 
You specified a nonexistent process. 

The caller does not have CMKRNL privilege or 
is not running in executive or kernel mode, or 
the caller lacks GROUP, WORLD, or SYSNAM 
privilege as required. 

The specified identifier name does not exist 
in the rights database. Note that the binary 
identifier, if given, is not validated against the 
rights database. 
The operation requires SYSNAM privilege. 

The rights list of the process or system is full. 

The user does not have read access to the rights 
database. 

Because the rights database is an indexed file accessed with Open VMS RMS, 
this service can also return RMS status codes associated with operations on 
indexed files. For descriptions of these status codes, refer to the Open VMS 
Record Management Services Reference Manual. 



System Service Descriptions 
$HASH_PASSWORD 

$HASH_PASSWORD 
Hash Password 

Format 

Arguments 

Applies the hash algorithm you select to an ASCII password string and returns a 
quadword hash value that represents the encrypted password. 

SYS$HASH_PASSWORD pwd ,alg ,[salt] ,usrnam ,hash 

pwd 
Open VMS usage: 
type: 
access: 
mechanism: 

char_string 
character-coded text string 
read only 
by descriptor-fixed-length string descriptor 

ASCII password string to be encrypted. The pwd argument is the address of a 
character string descriptor pointing to the ASCII password. The password string 
can contain between 1 and 32 characters and use the uppercase characters A 
through Z, the numbers 0 through 9, the dollar sign($), and the underscore(_). 

alg 
Open VMS usage: byte_unsigned 
type: byte (unsigned) 
access: read only 
mechanism: by value 

Algorithm used to hash the ASCII password string. The alg argument is an 
unsigned byte specifying the hash algorithm. The operating system recognizes 
the following algorithms. 

Symbolic Name 

UAI$K_AD_II 

UAI$C_PURDY 

UAI$C_PURDY_ V 

UAI$K_PURDY_S 

Description 

Uses a CRC algorithm and returns a longword hash 
value. This algorithm was used in releases prior to 
VAX/VMS Version 2.0. 

Uses a Purdy algorithm over salted input. It expects 
a blank-padded user name and returns a quadword 
hash value. This algorithm was used during VAX/VMS 
Version 2. 0 field test. 

Uses the Purdy algorithm over salted input. It expects 
a variable-length user name and returns a quadword 
hash value. This algorithm was used in releases prior 
to VMS Version 5.4. , 

Uses the Purdy algorithm over salted input. It expects 
a variable-length user name and returns a quadword 
hash value. This algorithm is used to hash all new 
passwords in VMS Version 5.4 and later. 

SYS2-105 



System Service Descriptions 
$HASH_PASSWORD 

SYS2-106 

Symbolic Name Description 

UAI$C_PREFERED_ 
ALGORITHM1 

Represents the latest encryption algorithm that the 
operating system uses to encrypt new passwords. 
Currently, it equates to UAI$C_PURDY_S. Digital 
recommends that you use this symbol in source 
modules because it always equates with the most 
recent algorithm. 

1 The value of this symbol might be changed in future releases if an additional algorithm is 
introduced. · 

Values ranging from 128 to 255 are reserved for customer use; the constant 
UAI$K_CUST_ALGORITHM defines the start of this range. 

You can use the UAI$_ENCRYPT and UAI$_ENCRYPT2 item codes with the 
$GETUAI system service to retrieve the primary and secondary password hash 
algorithms for a user. 

salt 
Open VMS usage: 
type: 
access: 
mechanism: 

word_ unsigned 
word (unsigned) 
read only 
by value 

Value used to increase the effectiveness of the hash. The salt argument is an 
unsigned word containing 16 bits of data that is used by the hash algorithms 
when encrypting a password for the associated user name. The $GETUAI item 
code UAI$_SALT is used to retrieve the SALT value for a given user. If you do 
not specify a SALT value, $HASH_PASSWORD uses the value of 0. 

usrnam 
Open VMS usage: char_string 
type: character-coded text string 
access: read only 
mechanism: by descriptor-fixed-length string descriptor 

Name of the user associated with the password. The usrnam argument is the 
address of a descriptor pointing to a character text string containing the user 
name. The current password encryption algorithm (UAI$C_PURDY_S) folds the 
user name into the ASCII password string to ensure that different users with the 
same password produce different hash values. This argument must be supplied 
for all calls to $HASH_PASSWORD but is ignored when using the CRC algorithm 
(UAI$C_AD_II). 

hash 
Open VMS usage: quadword_ unsigned 
type: quadword (unsigned) 
access: write only 
mechanism: by reference 

Output hash value representing the encrypted password. The hash argument is 
the address of an unsigned quadword to which $HASH_PASSWORD writes the 
output of the hash. If you use the UAI$C_AD_II algorithm, the second longword 
of the hash is always set to 0. 



Description 

System Service Descriptions 
$HASH_PASSWORD 

The Hash Password service applies the hash algorithm you select to an ASCII 
password string and returns a quadword hash value that represents the 
encrypted password. 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
$GETUAI, $SETUAI. 

Use $GETUAI to get the values for the salt and alg arguments. Use $SETUAI to 
store the resulting hash using the item codes UAI$_PWD and UAI$_PWD2. 

For more information, see the appendix on implementing site-specific security 
policies in the Open VMS Programming Concepts Manual. 

Condition Values Returned 

SS$_NORMAL 

SS$_ACCVIO 

SS$_BADPARAM 

The service completed successfully. 

The input or output buffer descriptors cannot be 
read or written to by the caller. 

The specified hash algorithm is unknown or 
invalid. 

SYS2-107 



System Service Descriptions 
$HIBER 

$HIBER 
Hibernate 

Format 

Arguments 

Description 

SYS2-108 

Allows a process to make itself inactive but to remain known to the system so 
that it can be interrupted; for example, to receive ASTs. 

SYS$HIBER 

None. 

The Hibernate service allows a process to make itself inactive but to remain 
known to the system so that it can be interrupted; for example, to receive ASTs. 
A hibernate request is a wait-for-wake-event request. When you call the Wake 
Process from Hibernation ($WAKE) service or when the time specified with the 
Schedule Wakeup ($SCHDWK) service occurs, the process continues execution at 
the instruction following the Hibernate call. 

In VAX MACRO, you can call the Hibernate service only by using the $name_S 
macro. 

A hibernating process can be swapped out of the balance set if it is not locked 
into the balance set. 

An AST can interrupt the wait state caused by $HIBER if the access mode at 
which the AST is to execute is equal to or more privileged than the access mode 
from which the hibernate request was issued and the process is enabled for ASTs 
at that access mode. 

When the AST service routine completes execution, the system reexecutes the 
$HIBER service on behalf of the process. If a wakeup request has been issued 
for the process during the execution of the AST service routine (either by itself 
or another process), the process resumes execution. If a wakeup request has not 
been issued, it continues to hibernate. 

If one or more wakeup requests are issued for the process while it is not 
hibernating, the next hibernate call returns immediately; that is, the process 
does not hibernate. No count of outstanding wakeup requests is maintained. 

Although this service has no arguments, a Fortran function reference must use 
parentheses to indicate a null argument list, as in the following example: 

ISTAT=SYS$HIBER() 

Required Access or Privileges 
None 

Required Quota 
None 



Related Services 

System Service Descriptions 
$HIBER 

$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI, 
$GETJPIW, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN, $SETPRV, 
$SETRWM, $SUSPND, $WAKE 

Condition Values Returned 

SS$_NORMAL The service completed successfully. 

SYS2-109 



System Service Descriptions 
$1DTOASC 

$1DTOASC 
Translate Identifier to Identifier Name 

Format 

Arguments 

SYS2-110 

Translates the specified identifier value to its identifier name. 

SYS$1DTOASC id ,[namlen] ,[nambuf] ,[resid] ,[attrib] ,[contxt] 

id 
Open VMS usage: rights_id 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Binary identifier value translated by $IDTOASC. The id argument is a longword 
containing the binary value of the identifier. To determine the identifier names 
of all identifiers in the rights database, you specify id as -1 and call $IDTOASC 
repeatedly until it returns the status code SS$_NOSUCHID. The identifiers are 
returned in alphabetical order. 

namlen 
Open VMS usage: word_ unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

Number of characters in the identifier name translated by $IDTOASC. The 
namlen argument is the address of a word containing the length of the identifier 
name written to nambuf. 

nambuf 
Open VMS usage: char_string 
type: character-coded text string 
access: write only 
mechanism: by descriptor-fixed length string descriptor 

Identifier name text string returned when $IDTOASC completes the translation. 
The nambuf argument is the address of a descriptor pointing to the buffer in 
which the identifier name is written. 

res id 
Open VMS usage: rights_id 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Identifier value of the identifier name returned in nambuf. The resid argument 
is the address of a longword containing the 32-bit code of the identifier. 



attrib 
Open VMS usage: mask_longword 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

System Service Descriptions 
$1DTOASC 

Mask of attributes associated with the identifier returned in resid. The attrib 
argument is the address of a longword containing the attribute mask. 

Symbol values are offsets to the bits within the longword. You can also obtain the 
values as masks with the appropriate bit set using the prefix KGB$M rather than 
KGB$V. The following symbols for each bit position are defined in the system 
macro library ($KGBDEF). 

Bit Position 

KGB$V _DYNAMIC 

KGB$V _NAME_HIDDEN 

KGB$V _NOACCESS 

KGB$V _RESOURCE 

KGB$V _SUBSYSTEM 

contxt 
Open VMS usage: context 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

Meaning When Set 

Allows holders of the identifier to remove 
it from or add it to the process rights list 
using the DCL command SET RIGHTS_ 
LIST. 
Allows holders of an identifier to have it 
translated-either from binary to ASCII 
or vice versa-but prevents unauthorized 
users from translating the identifier. 

Makes any access rights of the identifier 
null and void. This attribute is intended 
as a modifier for a resource identifier or 
the Subsystem attribute. 
Allows holders of an identifier to charge 
disk space to the identifier. It is used 
only for file objects. 
Allows holders of the identifier to create 
and maintain protected subsystems by 
assigning the Subsystem ACE to the 
application images in the subsystem. 

Context value used when repeatedly calling $IDTOASC. The contxt argument 
is the address of a longword used while $1DTOASC searches for all identifiers. 
The context value must be initialized to the value 0, and the resulting context of 
each call to $IDTOASC must be presented to each subsequent call. After contxt 
is passed to $IDTOASC, you must not modify its value. 

SYS2-111 



System Service Descriptions 
$1DTOASC 

Description 

The Translate Identifier to Identifier Name service translates the specified binary 
identifier value to an identifier name. While the primary purpose of this service 
is to translate the specified identifier to its name, you can also use it to find all 
identifiers in the rights database. Owner or read access to the rights database 
is required. To determine all the identifiers, call $1DTOASC repeatedly until it 
returns the status code SS$_NOSUCHID. When SS$_NOSUCHID is returned, 
$IDTOASC has returned all the identifiers, cleared the context value, and 
deallocated the record stream. 

If you complete your calls to $1DTOASC before SS$_NOSUCHID is returned, use 
$FINISH_RDB to clear the context value and deallocate the record stream. 

When you use wildcards with this service, the records are returned in identifier 
name order. 

Required Access or Privileges 
None, unless the id argument is NAME_HIDDEN, in which case you must hold 
the identifier or have read access to the rights list. 

Required Quota 
None 

Related Services 
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_ 
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_ 
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID, 
$HASH_PASSWORD, $MOD_HOLDER, $MOD_IDENT, $MTACCESS, $PARSE_ 
ACL, $REM_HOLDER, $REM_IDENT, $REVOKID 

Condition Values Returned 

SYS2-112 

SS$_NORMAL 
SS$_ACCVIO 

SS$_INSFMEM 

SS$_IVCHAN 

SS$_IVIDENT 
SS$_NOIOCHAN 

SS$_NORIGHTSDB 
SS$_NOSUCHID 

The service completed successfully. 
The namlen, nambuf, resid, attrib, or contxt 
argument cannot be written by the caller. 
The process dynamic memory is insufficient for 
opening the rights database. 
The contents of the context longword are not 
valid. 
The specified identifier is of invalid format. 
No more rights database context streams are 
available. 
The rights database does not exist. 
The specified identifier name does not exist in 
the rights database, or the entire rights database 
has been searched if the ID is -1. 

Because the rights database is an indexed file that you access with Open VMS 
RMS, this service can also return RMS status codes associated with operations 
on indexed files. For descriptions of these status codes, refer to the Open VMS 
Record Management Services Reference Manual. 



System Service Descriptions 
$1EEE_SET _FP _CONTROL (Alpha Only) 

$1EEE_SET_FP _CONTROL (Alpha Only) 
Set IEEE Floating-Point Control Register 

Format 

Arguments 

On Alpha systems, modifies the software IEEE floating-point control register and, 
optionally, returns the previous register value. 

The service provides the mechanism to set the specified bits in the IEEE floating­
point control register, to clear the specified bits in the register, and to swap the 
values of the register. 

SYS$1EEE_SET _FP _CONTROL [clrmsk] ,[setmsk] ,[prvmsk] 

clrmsk 
Open VMS usage: mask_ quadword 
type: quadword (unsigned) 
access: read only 
mechanism: by reference 

Address of a quadword bit mask to be cleared in the IEEE floating-point control 
register. 

The $IEEEDEF macro defines symbols for the floating-point control register. 
Table SYS2-2 shows the symbols, their corresponding masks, and their meaning. 

Table SYS2-2 Format of the IEEE Floating-Point Control Register (Alpha Only) 

Symbol Mask 

IEEE$M_ TRAP _ENABLE_INV 2 
IEEE$M_TRAP _ENABLE_DZE 4 
IEEE$M_TRAP_ENABLE_OVF 8 
IEEE$M_TRAP _ENABLE_UNF 10 
IEEE$M_TRAP _ENABLE_INE 20 
IEEE$M_MAP _UMZ 4000 

IEEE$M_INHERIT 8000 

IEEE$M_STATUS_INV 20000 

IEEE$M_STATUS_DZE 40000 

IEEE$M_STATUS_ OVF 80000 

IEEE$M_STATUS_UNF 100000 
IEEE$M_STATUS_INE 200000 

setmsk 
Open VMS usage: mask_ quadword 
type: quadword (unsigned) 
access: read only 
mechanism: by reference 

Meaning 

Invalid operation 
Divide by 0 

Overflow 

Underflow 
Inexact 
Underflows are mapped to 0.0 

Inherit FP state on thread 
create 
Invalid operation 
Divide by 0 

Overflow 

Underflow 
Inexact 

SYS2-113 



System Service Descriptions 
$1EEE_SET_FP _CONTROL {Alpha Only) 

Description 

Address of a quadword bit mask to be set in the IEEE floating-point control 
register. 

Table SYS2-2 shows the format of the IEEE floating-point control register. 

prvmsk 
Open VMS usage: mask_ quadword 
type: quadword (unsigned) 
access: write only 
mechanism: by reference 

Address of a quadword to receive the previous value of the IEEE floating-point 
control register. 

The Set IEEE Floating-Point Control Register service updates the IEEE floating­
point control register, maintained by the operating system, with the values 
supplied by the calling program. 

The following steps are used to update the register: 

1. If the prvmsk argument is specified, $IEEE_SET_FP _CONTROL first reads 
the previous value of the IEEE floating-point control register. 

2. If the clrmsk argument is specified, $IEEE_SET_FP _CONTROL then clears 
the specified bit masks in the clrmsk argument. 

3. If the setmsk argument is specified, $IEEE_SET_FP _CONTROL then sets 
the specified bit masks in the setmsk argument. 

A program can swap the IEEE floating-point control register (that is, save the old 
value and specify a new value) by specifying the following: 

• The clrmsk argument with the address of a quadword of all ls 

• The setmsk argument with the address of a quadword that holds the new 
register value 

• The prvmsk argument with the address of a quadword-to save the old 
register value 

Required Access or Privilege 
None 

Required Quota 
None 

Condition Values Returned 

SYS2-114 

SS$_NORMAL 
SS$_ACCVIO 

The service completed successfully. 

The specified argument cannot be read or cannot 
be written. 



System Service Descriptions 
$1NIT _SYS_ALIGN_FAULT _REPORT {Alpha Only) 

$1NIT _SYS_ALIGN~FAULT _REPORT (Alpha Only) 
Initialize System Alignment Fault Reporting 

Format 

Arguments 

On Alpha systems, initializes system process alignment fault reporting. 

This service accepts 64-bit addresses. 

SYS$1NIT _SYS_ALIGN_FAULT _REPORT match_table ,buffer_size ,flags 

match_ table 
Open VMS usage: address 
type: longword (unsigned) 
access: read 
mechanism: by 32-bit or 64-bit reference 

Describes the system fault match table. The match_table argument is the 32-bit 
or 64-bit virtual address of an array of longwords describing the system fault 
match table. The first longword is the number of match entries; the remaining 
longwords are the match entries. 

The match table is used to restrict the number of alignment faults reported. Each 
entry in the table is a bit mask divided into three groups: mode bits, program 
counter (PC) space bits, and virtual address (VA) space bits. 

The following table lists the symbols that can be used to define these bits. 

Bit Type Symbols 

Mode bits AME$M_KERNEL_MODE 

AME$M_EXEC_MODE 

AME$M_SUPER_MODE 

AME$M_USER_MODE 

Program counter bits AME$M_ USER_PC 

AME$M_SYSTEM_PC 

Virtual address bits AME$M_SYSTEM_ VA 
AME$M_USER_ VA_PO 

AME$M_USER_ VA_Pl 

AME$M_USER_ VA_P2 

Kernel mode 

Executive mode 

Supervisor mode 

User mode 
PC in User space 

PC in System space 

VA in System space 
VA in User PO space 

VA in User Pl space 

VA in User P2 space 

The following diagram illustrates the data structure of the match table. 

SYS2-115 



System Service Descriptions 
$1NIT_SYS_ALIGN_FAULT_REPORT (Alpha Only) 

Description 

SYS2-116 

Length n 

Entry 0 

• • • 

Entry n 

ZK-4981A-GE 

When an alignment fault occurs, a fault bit mask is created with one bit set 
in each group. The alignment fault handler then compares this fault bit mask 
against each entry in the match table. If the fault bit mask is a subset of an 
entry in the match table, the fault is reported. 

buffer _size 
Open VMS usage: byte count 
type: longword (signed) 
access: read 
mechanism: by value 

The number of bytes to allocate, from nonpaged pool, to save the alignment fault 
data. The buffer you allocate must be sufficient to accommodate one data item of 
the size specified in the flags argument. 

flags 
Open VMS usage: mask_longword 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Flag bit mask specifying options for the $GET_SYS_ALIGN_FAULT_DATA 
operation. 

If the flags argument is 0, data items of size AFR$K_ VMS_LENGTH will be 
returned. If the flags argument is AFR$M_USER_INFO, the user name and 
image name are added to each data item and they are returned in a buffer of 
length AFR$K_EXTENDED_LENGTH. If the user name and image name are not 
available, an empty string is returned in the data item. 

The Initialize System Alignment Fault Reporting service initializes system 
alignment fault reporting. 

System alignment faults must be written to a buffer. The following diagram 
illustrates the format in which system alignment fault data is saved in the buffer. 



System Service Descriptions 
$1NIT _SYS_ALIGN_FAULT _REPORT (Alpha Only) 

63 0 

AFR$Q_FAULT_PC 

AFR$Q_FAULT_VA 

AFR$Q_RESERVED 

ZK-4982A-GE 

Only one user on a system can initialize system alignment fault reporting at any 
time. Subsequent calls will return SS$_AFR_ENABLED. 

System alignment fault reporting is disabled when the program that called the 
service completes. 

Required Access or Privileges 
CMKRNL privilege is required. 

Required Quota 
None 

Related Services 
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $PERM_DIS_ 
ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START_ALIGN_ 
FAULT_REPORT, $STOP _ALIGN_FAULT_REPORT, $STOP _SYS_ALIGN_ 
FAULT_REPORT 

Condition Values Returned 

SS$_NORMAL 
SS$_ACCVIO 
SS$_AFR_ENABLED 
SS$_BADPARAM 

SS$_NOPRIV 

The service completed successfully. 
The match table is not read accessible. 
The service was already called. 
The buffer_size argument is less than the 
minimum size ·required. If the flags argument 
is 0, AFR$K_VMS_LENGTH + 32 is required. If 
the flags argument is 1, AFR$K_EXTENDED_ 
LENGTH + 32 is required. 
The caller does not have CMKRNL privilege. 

SYS2-117 



System Service Descriptions 
$1NIT_VOL 

$1NIT_VOL 
Initialize Volume . 

Format 

Arguments 

SYS2-118 

Formats a disk or magnetic tape volume and writes a label on the volume. At the 
end of initialization, the disk is empty except for the system files containing the 
structure information. All former contents of the volume are lost. 

SYS$1NIT _VOL devnam, volnam [,itmlst] 

devnam 
Open VMS usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Name of the device on which the volume is physically mounted. The descriptor 
must point to the device name, a character string of 1 to 64 characters. The 
device name can be a physical device name or a logical name; if it is a logical 
name, it must translate to a physical name. 

The device does not have to be currently allocated; however, allocating the device 
before initializing it is recommended. 

volnam 
Open VMS usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 

Identification to be encoded on the volume. The descriptor must point to the 
volume name, a character string of 1 to 12 characters. For a disk volume name, 
you can specify a maximum of 12 ANSI characters; for a magnetic tape volume 
name, you can specify a maximum of 6 ANSI "a" characters. Any valid ANSI "a" 
characters can be used; these include numbers, uppercase letters, and any one of 
the following nonalphanumeric characters: 

! "%'()*+,-. /: ;<=> 

Digital strongly recommends that a disk volume name consist of only 
alphanumeric characters, dollar signs ( $ ), underscores ( _ ), and hyphens ( - ). 

itmlst 
Open VMS usage: item_list_3 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Item list specifying options that can be used when initializing the volume. 
The itmlst argument is the address of a list of item descriptors, each of which 
describes one option. The list of item descriptors is terminated by a longword of 
0. 



System Service Descriptions 
$1NIT_VOL 

The following diagram depicts the format of a single item descriptor. 

31 15 0 

Item code l Buffer length 

Buffer address 

Return length address 

ZK-5186A-G E 

The following table defines the item descriptor fields. 

Descriptor Field 

Buffer length 

Item code 

Buffer address 

Definition 

A word specifying the length (in bytes) of the buffer 
that supplies the information $INIT_ VOL needs to 
process the specific item code. The length of the 
buffer needed depends upon the item code specified 
in the item descriptor. 

A word containing an option for the initialize 
operation. These codes are defined by the 
$INITDEF macro. There are three types of item 
codes: 

Boolean item code 

Symbolic value item 
code 

Boolean item codes specify 
a true or false value. The 
form INIT$_code specifies 
a true value and the form 
INIT$_NO_code specifies 
a false value. For Boolean 
item codes, the buffer 
length and buffer address 
fields of the item descriptor 
must be 0. 

Symbolic value item codes 
specify one of a specified 
range of possible choices. 
The buffer length and 
buffer address fields of the 
item descriptor must be 0. 

Input value item code Input value item codes 
specify a value to be used 
by $INIT_VOL. The buffer 
length and buffer address 
fields of the item descriptor 
must be nonzero. 

A longword. containing the address of the buffer that 
supplies information to $INIT _VOL. 

SYS2-119 



System Service Descriptions 
$1NIT_VOL 

Item Codes 

SYS2-120 

Descriptor Field Definition 

Return length address This field is not used. 

INIT$_ACCESSED 
An input item code that specifies the number of directories allowed in system 
space on the volume. 

You must specify an integer between 0 and 255 in the input buffer. The default 
value is 3. 

The INIT$_ACCESSED item code applies only to Files-11 On-Disk Structure 
Level 1 disks. 

INIT$_BADBLOCKS_LBN 
An input item code that enables $INIT_ VOL to mark bad blocks on the volume; 
no data is written to those faulty areas. INIT$_BADBLOCKS_LBN specifies 
fatilty areas on the volume by logical block number and block count. 

The buffer from which $INIT_ VOL reads the option information contains an 
array of quadwords containing information in the following format. 

31 0 

Logical block number 

Count 

ZK-1590A-G E 

The following table describes the information to be specified for INIT$_ 
BADBLOCKS_LBN. 

Field 

Logical block 
number 

Count 

Symbol Name 

INIT$L_BADBLOCKS_LBN 

INIT$L_BADBLOCKS_ 
COUNT 

Description 

Specifies the logical block 
number of the first block to be 
marked as allocated. 

Specifies the number of 
blocks to be allpcated. This 
range begins with the first 
block, as specified in INIT$L_ 
BADBLOCKS_LBN. 

For example, if the input buffer contains the values 5 and 3, INIT_ VOL starts at 
logical block number 5 and allocates 3 blocks. 

The number of entries in the buffer is determined by the buffer length field in the 
item descriptor. 

All media supplied by Digital and supported on the operating system, except 
disks and TU58 cartridges, are factory formatted and contain bad block data. The 
Bad Block Locator utility (BAD) or the diagnostic formatter EVRAC can be used 
to refresh the bad block data or to construct it for the disks and TU58 cartridges. 
The INIT$_BADBLOCKS_LBN item code is necessary only to enter bad blocks 
that are not identified in the volume's bad block data. For more information, see 
the Open VMS Bad Block Locator Utility Manual. 



System Service Descriptions 
$1NIT_VOL 

The INIT$_BADBLOCKS_LBN item code applies only to disks. 

INIT$_BADBLOCKS_SEC 
An input item code that specifies faulty areas on the volume by sector, track, 
cylinder, and block count. $INIT_ VOL marks the bad blocks as allocated; no data 
is written to them. 

The input buffer must contain an array of octawords containing information in 
the following format. 

31 0 

Sector 

Count 

Track 

Cylinder 

ZK-1591A-GE 

The following table describes the information to be specified for INIT$_ 
BADBLOCKS_SEC. 

Field 

Sector 

Count 

Track 

Cylinder 

Symbol Name 

INIT$L_BADBLOCKS_ 
SECTOR 

INIT$L_BADBLOCKS_ 
COUNT 
INIT$L_BADBLOCKS_ 
TRACK 

INIT$L_BADBLOCKS_ 
CYLINDER 

Description 

Specifies the sector number of 
the first block to be marked as 
allocated. 

Specifies the number of blocks 
to be allocated. 

Specifies the track number of 
the first block to be marked as 
allocated. 

Specifies the cylinder number 
of the first block to be marked 
as allocated. 

For example, if the input buffer contains the values 12, 3, 1, and 2, INIT_ VOL 
starts at sector 12, track 1, cylinder 2, and allocates 3 blocks. 

The number of entries in the buffer is determined by the buffer length field in the 
item descriptor. 

All media supplied by Digital and supported on the operating system, except 
disks and TU58 cartridges, are factory formatted and contain bad block data. The 
Bad Block Locator utility (BAD) or the diagnostic formatter EVRAC can be used 
to refresh the bad block data or to construct it for the disks and TU58 cartridges. 
The INIT$_BADBLOCKS_SEC item code is necessary only to enter bad blocks 
that are not identified in the volume's bad block data. For more information, see 
the Open VMS Bad Block Locator Utility Manual. 

The INIT$_BADBLOCKS_SEC item code applies only to disks. 

INIT$_CLUSTERSIZE 
An input item code that specifies the minimum allocation unit in blocks. The 
input buffer must contain a longword value. The maximum size that can be 

SYS2-121 



System Service Descriptions 
$1NIT_VOLI 

SYS2-122 

specified for a volume is one-hundredth the size of the volume; the minimum size 
is calculated with the following formula: 

volume size in blocks 

255 * 4096 

The INIT$_CLUSTERSIZE item code applies only to Files-11 On-Disk Structure 
Level 2 disks (for Files-11 On-Disk Structure Level 1 disks, the cluster size is 1). 
For Files-11 On-Disk Structure Level 2 disks, the cluster size default depends on 
the disk capacity. 

• Disks that are 50,000 blocks or larger have a default cluster size of 3. 

• Disks smaller than 50,000 blocks have a default value of 1. 

INIT$_COMPACTION 
INIT$_NO_COMPACTION-Default 
A Boolean item code that specifies whether data compaction should be performed 
when writing the volume. 

The INIT$_COMPACTION item code applies only to TA90 drives. 

INIT$_DENSITY 
A symbolic item code that specifies the density value for magnetic tapes and 
diskettes. 

For magnetic tape volumes, the INIT$_DENSITY item co~e specifies the density 
in bytes per inch (bpi) at which the magnetic tape is written. Possible symbolic 
values for tapes are as follows: 

• INIT$K_DENSITY_800_BPI 

• INIT$K_DENSITY_1600_BPI 

• INIT$K_DENSITY_6250_BPI 

The specified density value must be supported by the drive. If you do not specify 
a density item code for a blank magnetic tape, the system uses a default density 
of the highest value allowed by the tape drive. If the drive allows 6250, 1600, 
and 800 bpi operation, the default density is 6250. If the drive allows only 1600 
and 800 bpi operation, the default density is 1600. If you do not specify a density 
item code for a magnetic tape that has been previously written, the system uses 
the previously set volume density. 

For diskettes, the INIT$_DENSITY item code specifies how the diskette is to be 
formatted. Possible symbolic values for diskettes are as follows: 

• INIT$K_DENSITY_SINGLE_DISK 

• INIT$K_DENSITY_DOUBLE_DISK 

• INIT$K_DENSITY_DD_DISK 

• INIT$K_DENSITY_HD_DISK 

For disk volumes that are to be initialized on RX02, RX23, or RX33 diskette 
drives, the following values specify how the disk is to be formatted: 

• INIT$K_DENSITY_SINGLE_DISK 

• INIT$K_DENSITY_DOUBLE_DISK 

• INIT$K_DENSITY_DD_DISK 



System Service Descriptions 
$1NIT_VOL 

• INIT$K_DENSITY_HD_DISK 

Diskettes are initialized as follows: 

• RX23 diskettes-DD or HD density 

• RX33 diskettes-double density only 

• RX02 dual-density diskette drives-single or double density 

If you do not specify a density item code for a disk, the system leaves the volume 
at the density at which it was last formatted. RX02 disks purchased from Digital 
are formatted in single density. 

Note -----------­

Disks formatted in double density cannot be read or written by the 
console block storage device (an RXOl drive) of a VAX-11/780 processor 
until they have been reformatted in single density. 

INIT$_DIRECTORIES 
An input item code that specifies the number of entries to preallocate for user 
directories. The input buffer must contain a longword value in the range of 16 to 
16000. The default value is 16. 

The INIT$_DIRECTORIES item code applies only to disks. 

INIT$_ERASE 
INIT$_NO_ERASE-Default 
A Boolean item code that specifies whether deleted data should be physically 
destroyed by performing the data security erase (DSE) operation on the volume 
before initializing it. The INIT$_ERASE item code applies to the following 
devices: 

• ODS-2 disk volumes 

• ANSI magnetic tape volumes on magnetic tape devices that support the 
hardware erase function, for example, TU78 and MSCP magnetic tapes 

For disk devices, this item code sets the ERASE volume attribute, causing each 
file on the volume to be erased when it is deleted. 

INIT$_EXTENSION 
An.input item code that specifies, by the number of blocks, the default extension 
size for all files on the volume. The extension default is used when a file increases 
to a size greater than its initial default allocation during an update. For Files-11 
On-Disk Structure Level 2 disks, the buffer must contain a longword value in the 
range 0 to 65535. For Files-11 On-Disk Structure Level 1 disks, the input buffer 
must contain a longword value in the range of 0 to 255. The default value is 5 for 
both Structure Level 1 and Structure Level 2 disks. 

The default extension set by this item code is used only if the following conditions 
are in effect: 

• No default extension for the file has been set 

• No default extension for the process has been set using the SET RMS 
command 

SYS2-123 



System Service Descriptions 
$1NIT_VOL 

SYS2-124 

INIT$_FPROT 
An input item code that specifies the default protection applied to all files on the 
volume. The input buffer must contain a longword protection mask that contains 
four 4-bit fields. Each field grants or denies read, write, create, and delete access 
to a category of users. Cleared bits grant access; set bits deny access. The 
following diagram depicts the structure of the protection mask on systems. 

World Group Owner System 

DCWRDCWRDCWRDCWR 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ZK-5893A-GE 

The INIT$_FPROT item code applies only to Files-11 On-Disk Structure Level 
1 disks and is ignored if it is used on an Open VMS system. Open VMS systems 
use the default file extension set by the DCL command SET PROTECTION 
/DEFAULT. 

INIT$_HEADERS 
An input item code that specifies the number of file headers to be allocated for 
the index file. The input buffer must contain a longword value within the range 
of 16 to the value set by the INIT$_MAXFILES item code. The default value is 
16. 

The INIT$_HEADERS item code applies only to disks. 

INIT$_HIGHWATER-Default 
INIT$_NO_HIGHWATER 
A Boolean item code that sets the file highwater mark (FHM) volume attribute, 
which guarantees that users cannot read data that they have not written. 

INIT$_NO_HIGHWATER disables FHM for a volume. 

The INIT$_HIGHWATER and INIT$_NO_HIGHWATER item codes apply only to 
Files-11 On-Disk Structure Level 2 disks. 

INIT$_HOMEBLOCKS 
Specifies where the volume's homeblock and spare copy of the homeblock are 
placed on disk. This item code applies only to Files-11 ODS-2 volumes. It can 
have the following values: 

• INIT$K_HOMEBLOCKS_GEOMETRY 

Causes the homeblocks to be placed at separate locations on disk, to protect 
against failure of a disk block. Placement depends on the reported geometry 
of the disk. 

• INIT$K_HOMEBLOCKS_FIXED 

Causes the homeblocks to be placed at separate fixed locations on the disk; 
this is the default. Placement is independent of the reported geometry of the 
disk. This caters for disks that report different geometries according to the 
type of controller to which they are attached. 

• INIT$K_HOMEBLOCKS_CONTIGUOUS 

Causes the home blocks to be placed contiguously at the start of the disk. This 
allows container file systems to maximize the amount of contiguous space on 
the disk, when used with the INIT$_INDEX_BEGINNING item code. 



System Service Descriptions 
$1NIT_VOL 

INIT$_1NDEX_BEGINNING 
A symbolic item code that places the index file for the volume's directory structure 
at the beginning of the volume. By default, the index is placed in the middle of 
the volume. 

This item code applies only to .disks. 

INIT$_1NDEX_BLOCK 
An input item code that specifies the location of the index file for the volume's 
directory structure by logical block number. The input buffer must contain a 
longword value specifying the logical block number of the first block of the index 
file. By default, the index is placed in the middle of the volume. 

The INIT$_INDEX_BLOCK item code applies only to disks. 

INIT$_1NDEX_END 
A symbolic item code that places the index file for the volume's directory structure 
at the end of the volume. The default is to place the index in the middle of the 
volume. 

This item code applies only to disks. 

INIT$_1NDEX_MIDDLE 
A symbolic item code that places the index file for the volume's directory structure 
in the middle of the volume. This is the default location for the index. 

This item code applies only to disks. 

INIT$_LABEL_ACCESS 
An input item code that specifies the character to be written in the volume 
accessibility field of the ANSI volume label VOLl on an ANSI magnetic tape. 
Any valid ANSI "a" characters can be used; these include numbers, uppercase 
letters, and any one of the following nonalphanumeric characters: 

! "%'()*+,-. /: ;<=> 

By default, the operating system provides a routine SYS$MTACCESS that checks 
this field in the fallowing manner: 

• If the magnetic tape was created on a version of the operating system 
that conforms to Version 3 of ANSI, this item code is used to override any 
character except an ASCII space. 

• If the magnetic tape conforms to an ANSI standard that is later than 
Version 3, this item code is used to override any character except an ASCII 1 
character. 

INIT$_LABEL_ VOLO 
An input item code that specifies the text that is written in the owner identifier 
field of the ANSI volume label VOLl on an ANSI magnetic tape. The owner 
identifier field can contain up to 14 valid ANSI "a" characters. 

INIT$_MAXFILES 
An input item code that restricts the maximum number of files that the volume 
can contain. The input buffer must contain a longword value between 0 and a 
value determined by the following calculation: 

volume size in blocks 

cluster factor+ 1 

SYS2-125 



System Service Descriptions 
$1NIT_VOL 

SYS2-126 

Once initialized, the maximum number of files can be increased only by 
reinitializing the volume. 

The default maximum number of files is calculated as follows: 

volume size in blocks 

(cluster factor+ 1) * 2 

The INIT$_MAXFILES item code applies only to disks. 

INIT$_0VR_ACCESS 
INIT$_NO_OVR_ACCESS-Default 
A Boolean item code that specifies whether to override any character in the 
accessibility field of the ANSI volume label VOLl on an ANSI magnetic tape. For 
more information, see the Open VMS System Manager's Manual. 

To specify INIT$_0VR_ACCESS, the caller must either own the volume or have 
VOLPRO privilege. 

INIT$_0VR_EXP 
INIT$_NO_OVR_EXP-Default 
A Boolean item code that specifies whether the caller writes to a magnetic tape 
that has not yet reached its expiration date. This item code applies only to the 
magnetic tapes that were created before VAX/VMS Version 4.0 and that use the 
D% format in the volume owner identifier field. 

To specify INIT$_0VR_EXP, the caller must either own the volume or have 
VOLPRO privilege. 

INIT$_0VR_ VOLO 
INIT$_NO_OVR_ VOLO-Default 
A Boolean item code that allows the caller to override processing of the owner 
identifier field of the ANSI volume label VOLl on an ANSI magnetic tape. 

To specify INIT$_0VR_VOLO, t~e caller must either own the volume or have 
VOLPRO privilege. 

IN IT$_ OWNER 
An input item code that specifies the UIC that will own the volume. The input 
buffer must contain a longword value, which is the UIC. The default is the UIC 
of the caller. 

For magnetic tapes, no UIC is written unless protection on the magnetic tape 
is specified. If the INIT$_ VPROT item code is specified but the INIT$_0WNER 
item code is not specified, the UIC of the caller is assigned ownership of the 
volume. 

INIT$_READCHECK 
INIT$_NO_READCHECK-Default 
A Boolean item code that specifies whether data checking should be performed for 
all read operations on the volume. For more information about data checking, see 
the Open VMS I I 0 User's Reference Manual. 

The INIT$_READCHECK item code applies only to disks. 

IN IT$_ SIZE 
An input item code that specifies the number of blocks allocated for a RAM disk 
with a device type of DT$_RAM_DISK. The input buffer must contain a longword 
value. 



System Service Descriptions 
$1NIT_VOL 

INIT$_STRUCTURE_LEVEL_ 1 
INIT$_STRUCTURE_LEVEL_2-Default 
Symbolic item codes that specify whether the volume should be formatted in 
Files-11 On-Disk Structure Level 1 or Structure Level 2. Structure Level 1 is 
incompatible with the following item codes: 

• INIT$_READCHECK 

• INIT$_ WRITECHECK 

• INIT$_CLUSTERSIZE 

The default protection for a Structure Level 1 disk is full access to system, owner, 
and group users, and read access to all other users. 

The INIT$_STRUCTURE_LEVEL_l item code applies only to disks. 

INIT$_USER_NAME 
An input item code that specifies the user name that is associated with 
the volume. The input buffer must contain a character string from 1 to 12 
alphanumeric characters, which is the user name. The default is the user name 
of the caller. 

INIT$_ VERIFIED 
INIT$_NO_ VERIFIED 
A Boolean item code that indicates whether the disk contains bad block data. 
INIT$_NO_ VERIFIED indicates that any bad block data on the disk should be 
ignored. For disks with 4096 blocks or more, the default is INIT$_ VERIFIED. 

INIT$_NO_ VERIFIED is the default for the following: 

• Disks with fewer than 4096 blocks 

• DIGITAL Storage Architecture (DSA) devices 

• Disks that are not last-track devices 

The INIT$_ VERIFIED item codes apply only to disks. 

INIT$_ VPROT 
An input item code that specifies the protection assigned to the volume. The 
input buffer must contain a longword protection mask that contains four 4-bit 
fields. Each field grants or denies read, write, create, and delete access to a 
category of users. Cleared bits grant access; set bits deny access. The following 
diagram depicts the structure of the protection mask. 

World Group Owner System 

DCWRDCWRDCWRDCWR 
1514131211109 8 7 6 5 4 3 2 1 0 

ZK-5893A-GE 

The default is the default protection of the caller. 

For magnetic tape, the protection code is written to a specific volume label. The 
system applies only read and write access restrictions; execute and delete access 
are ignored. Moreover, the system and the owner are always given read and write 
access to magnetic tapes, regardless of the protection mask specified. 

When you specify a protection mask for a disk volume, access type E (execute) 
indicates create access. 

SYS2-127 



System Service Descriptions 
$1NIT_VOL 

Description 

SYS2-128 

For Files-11 On-Disk Structure Level 2 volumes, an initial security profile is 
created from the VOLUME.DEFAULT profile, with the owner and protection as 
currently defined for INITIALIZE. 

You can use the $SET_SECURITY service to modify the security profile after the 
volume is initialized and mounted. 

The caller needs read, write, or control access to the device. 

INIT$_WINDOW 
The INIT$_ WINDOW item code specifies the number of mapping pointers to be 
allocated for file windows. The input buffer must contain a longword value in the 
range 7 to 80. The default is 7. 

When a file is opened, the file system uses the mapping pointers to access the 
data in the file. 

The INIT$_ WINDOW item code applies only to disks. 

INIT$_WRITECHECK 
INIT$_NO_WRITECHECK-Default 
A Boolean item code that specifies whether data checking should be performed for 
all read operations on the volume. For more information about data checking, see 
the Open VMS I I 0 User's Reference Manual. 

The INIT$_ WRITECHECK item code applies only to disks. 

The Initialize Volume system service formats a disk or magnetic tape volume and 
writes a label on the volume. At the end of initialization, the disk is empty except 
for the system files containing the structure information. All former contents of 
the volume are lost. 

A blank magnetic tape can sometimes cause unrecoverable errors when it is read. 
$1NIT_VOL attempts to read the volume unless the following three conditions are 
in effect: 

• INIT$_ OVR_ACCESS Boolean item code is specified. 

• INIT$_ OVR_EXP Boolean item code is specified. 

• Caller has VOLPRO privilege. 

If the caller has VOLPRO privilege, $1NIT_ VOL initializes a disk without 
reading the ownership information. Otherwise, the ownership of the volume 
is checked. 

A blank disk or a diskette with an incorrect format can sometimes cause a fatal 
drive error. Such a diskette can be initialized successfully by specifying the 
INIT$_DENSITY item code to format the diskette. 

Required Access or Privileges 
To initialize a particular volume, the caller must either have volume protection 
(VOLPRO) privilege or the volume must be one of the following: 

• Blank disk or magnetic tape; that is, a volume that has never been written 

• Disk that is owned by the caller's UIC or by the UIC [0,0] 

• Magnetic tape that allows write access to the caller's UIC or that was not 
protected when it was initialized 



Required Quota 
None 

Related Services 

System Service Descriptions 
$1NIT_VOL 

$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX, 
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI, 
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $MOUNT, $PUTMSG, $QIO, 
$QIOW, $SET_SECURITY, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR 

Condition Values Returned 

SS$_NORMAL 
SS$_ACCVIO 

SS$_BADPARAM 

SS$_IVSSRQ 

SS$_NOPRIV 

SS$_NOSUCHDEV 

The service completed successfully. 
The item list or an address specified in the item 
list cannot be accessed. 
A buffer length of 0 was specified with a nonzero 
item code or an illegal item code was specified. 
A concurrent call to SYS$INIT_ VOL is already 
active for the process. 
The caller does not have sufficient privilege. to 
initialize the volume. 
The specified device does not exist on the host 
system. 

The $INIT_ VOL service can also return the following condition values, which are 
specific to the Initialize Volume utility: 

INIT$_ALLOCFAIL 

INIT$_BADACCESSED 

INIT$_BADBLOCKS 
INIT$_BADCLUSTER 

INIT$_BADDENS 
INIT$_BADDIRECTORIES 

INIT$_BADEXTENSION 

INIT$_BADHEADERS 

INIT$_BADMAXFILES 

INIT$_BADOWNID 
INIT$_BADRANGE 

INIT$_BADVOL1 
INIT$_BADVOLACC 

INIT$_BADVOLLBL 

Index file allocation failure. 
Value for INIT$_ACCESSED item code out of 
range. 

, Invalid syntax in bad block list. 
Value for INIT$_CLUSTER_SIZE item code out 
of range. 
Invalid value for INIT$_DENSITY item code. 
Value for INIT$_DIRECTORIES item code out of 
range. 
Value for INIT$_EXTENSION item code out of 
range. 
Value for INIT$_HEADER item code out of 
range. 
Value for INIT$_MAXFILES item code out of 
range. 
Invalid value for owner ID. 
Bad block address not on volume. 

Bad VOLl ANSI label. 
Invalid value for INIT$_LABEL_ACCESS item 
code. 

Invalid value for ANSI tape volume label. 

SYS2-129 



System Service Descriptions 
$1NIT_VOL 

SYS2-130 

INIT$_BADWINDOWS 

INIT$_BLKZERO 
INIT$_CLUSTER 
INIT$_CONFQUAL 
INIT$_DIAGPACK 
INIT$_ERASEFAIL 
INIT$_FACTBAD 
INIT$_ILLOPT 

INIT$_INDEX 
INIT$_LARGECNT 
INIT$_MAXBAD 
INIT$_MTLBLLONG 

INIT$_MTLBLNONA 

INIT$_NOBADDATA 
INIT$_NONLOCAL 
INIT$_NOTRAN 
INIT$_NOTSTRUC1 

INIT$_UNKDEV 

Value for INIT.$_WINDOWS item code out of 
range. 
Block 0 is bad-volume not bootable. 
Unsuitable cluster factor. 
Conflicting options were specified. 
Disk is a diagnostic pack. 
Volume not complete_ly erased. 
Cannot read factory bad block data. 
Item codes not appropriate for the device were 
specified. 
Invalid index file position. 
Disk too large to be supported. 
Bad block table overflow. 
Magnetic tape label specified is longer than 6 
characters. 
Magnetic tape label specified contains non-ANSI 
"a" characters. 
Bad block data not found on volume. 
Device is not a local device. 
Logical name cannot be translated. 
Options not available with Files-11 On-Disk 
Structure Level 1. 

Unknown device type. 



System Service Descriptions 
$10_CLEANUP (Alpha Only) 

$10_CLEANUP (Alpha Only) 
Clean Up Fast 1/0 

Format 

Arguments 

Description 

On Alpha systems, returns all resources allocated by $IO_SETUP. 

This service accepts 64-bit addresses. 

SYS$10_CLEANUP fandle 

fandle 
Open VMS usage: fandle 
type: 64-bit integer (unsigned) 
access: read only 
mechanism: by value 

A fandle, passed by value, returned by a previous call to $IO_SETUP. 

The Clean Up Fast I/O system service returns various internal resources allocated 
by the $IO_SETUP system service. Buffer objects passed to $IO_SETUP cannot 
be deleted until every $IO_SETUP call has had a corresponding $IO_CLEANUP 
call. 

Image rundown executes any required $IO_CLEANUP operations on behalf of the 
process. 

Required Privileges 
None 

Required Quota 
None 

Related Services 
$IO_PERFORM(W), $IO_SETUP 

Condition Values Returned 

SS$_NORMAL 
SS$_BADFANDLE 

SS$_BUSY 

The service completed successfully. 

Argument was not a valid fandle. 
The fandle cannot be cleaned up because an I/O 
is in progress. Reissue the call to $IO_CLEANUP 
after the I/O has :finished. 

SYS2-131 



System Service Descriptions 
$10_PERFORM (Alpha Only) 

$10_PERFORM (Alpha Only) 
Perform Fast 1/0 

Format 

Arguments 

SYS2-132 

On Alpha systems, starts the Fast I/O operation. The $IO_PERFORM service 
completes asynchronously. For synchronous completion, use the Perform Fast I/O 
and Wait ($IO_PERFORMW) service. 

This service accepts 64-bit addresses. 

SYS$10_PERFORM fandle ,chan ,iosadr ,bufadr ,buflen ,porint 

fan die 
Open VMS usage: fandle 
type: 64-bit integer (unsigned) 
access: read only 
mechanism: by value 

A fandle returned by a previous call to $IO_SETUP. 

ch an 
Open VMS usage: channel 
type: word (unsigned) 
access: read 
mechanism: by value 

Software 1/0 channel number. 

iosadr 
Open VMS usage: address 
type: address 
access: read only 
mechanism: by value 

Address of the I/O Status Area (IOSA). This value cannot be O; that is, an IOSA 
is required. The iosadr must be aligned to a quadword boundary. 

bufadr 
Open VMS usage: char_string 
type: address 
access: read only 
mechanism: by value 

The process buffer address. Must be aligned on a 512-byte boundary. 

buflen 
Open VMS usage: byte count 
type: 64-bit integer 
access: read only 
mechanism: by value 

The byte count for the I/O. The buflen argument must be a multiple of 512 bytes. 
Drivers have further limitations on the maximum size of an I/O request. 



Description 

porint 
Open VMS usage: address 
type: pointer or integer 
access: read only 
mechanism: by value 

System Service Descriptions 
$10_PERFORM (Alpha Only) 

A hardware integer passed unchanged to the driver. For disk devices, this is the 
media address for the transfer; that is, the virtual block number (VBN) for virtual 
I/O functions or the logical block number (LBN) for logical I/O functions. This 
argument is ignored for tape devices. 

For drivers with complex parameters, porint would be the address of a descriptor 
or buffer specific to the device and function and would be documented with the 
driver. 

The Perform Fast I/O system service initiates an I/O operation on the channel 
number specified by the chan argument. The bytes specified by the buflen 
argument are transferred between the location (porint) on the device driver 
and the user's buffer starting at the process buffer address (bufadr). The byte 
count is read or written according to the function code previously specfied in the 
$IO _SETUP call associated with the fandle argument. 

Upon completion, the I/O status is written to the IOSA starting at the location 
specified by iosadr, and an AST is delivered to the astadr address supplied in 
the $IO_SETUP call associated with fandle. The IOSA address is passed to the 
AST as the AST parameter. 

Required Privileges 
None 

Required Quota 
None 

Related Services 
$IO_CLEANUP, $IO_SETUP, $IO_PERFORMW 

Condition Values Returned 

SS$_NORMAL 

SS$_BADBUFADR 

SS$_BADIOSADR 

SS$_FANDLEBUSY 

SS$_IVCHAN 

SS$_ UNALIGNED 

The service completed successfully. 

The data buffer does not reside within the 
bounds of the data buffer object for the fandle. 

The IOSA does not reside within the bounds of 
the IOSA buffer object for this fandle. 

The operation using this fandle is already in 
progress. 

An invalid channel number was specified; that is, 
a channel number of 0 or a number larger than 
the number of channels available. 
The buffer specified by bufadr or iosadr is not 
properly aligned. 

SYS2-133 



System Service Descriptions 
$10_PERFORM (Alpha Only) 

88$_ WRONGACMODE The request is invalid because the fandle was 
created from a more privileged access mode, or 
the channel was assigned from a more privileged 
access mode. 

Condition Values Returned in the 1/0 Status Block 

SYS2-134 

The Open VMS I I 0 User's Reference Manual lists these device-specific condition 
values for each device. 



System Service Descriptions 
$10_PERFORMW (Alpha Only) 

$10_PERFORMW (Alpha Only) 
Perform Fast 1/0 and Wait 

Format 

On Alpha systems, starts a Fast 1/0 operation. The $IO_PERFORMW service 
completes synchronously; that is, it returns to the caller after performing the Fast 
1/0 operation. 

In all other respects, $IO_PERFORMW is identical to $IO_PERFORM. For all 
other information about the IO_PERFORMW service, refer to the description of 
$IO_PERFORM in this manual. 

SYS$10_PERFORMW fandle ,chan ,iosadr ,bufadr ,buflen ,porint 

SYS2-135 



System Service Descriptions 
$10_SETUP (Alpha Only) 

$10_SETUP (Alpha Only) 
Set Up Fast 1/0 

Format 

Arguments 

SYS2-136 

On Alpha systems, allocates resources for Fast I/0. 

This service accepts 64-bit addresses. 

SYS$10_SETUP func ,bufobj ,iosobj ,astadr ,flags ,return_fandle 

func 
Open VMS usage: function_ code 
type: longword 
access: read only 
mechanism: by value 

I/O function code. Must be one of the following: 

• I0$_READVBLK 

• IO$_WRITEVBLK 

• I0$_READLBLK 

• IO$_WRITELBLK 

Various function modifiers are supported, depending on the device and driver. 
Disk drivers support IO$M_NOVCACHE and IO$M_DATACHECK. Some 
tape devices support IO$M_REVERSE. Illegal modifiers are detected by the 
$IO_PERFORM(W) service. 

bufobj 
Open VMS usage: buffer object 
type: vector longword (unsigned) 
access: read only 
mechanism: by 32-bit or 64-bit reference 

Handle describing the buffer object that contains the user's buffer. This identifier 
cannot be 0. 

iosobj 
Open VMS usage: object handle 
type: vector longword (unsigned) 
access: read only 
mechanism: by 32-bit or 64-bit reference 

Buffer object handle describing the buffer object that contains the I/O Status Area 
(IOSA). This may or may not be the same identifier as the bufobj argument. 
This identifier cannot be 0. 

astadr 
Open VMS usage: ast_procedure 
type: procedure value 
access: read only 
mechanism: by 32-bit or 64-bit reference 



Description 

System Service Descriptions 
$10_SETUP (Alpha Only) 

Completion AST routine address (0, if none). There is no AST parameter 
argument. When the AST routine is called, the AST parameter will be the 
address of the IOSA for the operation. Applications can store data in the IOSA at 
offset IOSA$IH_CONTEXT. 

flags 
Open VMS usage: mask_longword 
type: 64-bit integer (unsigned) 
access: read only 
mechanism: by value 

Flag mask. The flags argument is a bit vector in which each bit corresponds to a 
flag. Flags are defined in the module IOSADEF. The following table describes the 
flags that are valid for the $IO_SETUP service: 

Flag 

FIO$M_EXPEDITE 

FIO$M_AST_ 
NO FLOAT 

Description 

This is a high priority I IO; that is, it is to be given 
preferential treatment by the I/O subsystem. Use of 
this bit requires ALTPRI or PHY_IO privilege. 

The AST procedure does not use, or call any procedure 
that uses, any floating-point registers. This is a 
performance option. If set, AST delivery will neither 
save nor restore floating-point registers. Caution: 
Use of floating-point registers when FIO$M_AST_ 
NOFLOAT has been specified can cause unpredictable, 
difficult to detect, error conditions. 

All other bits in the flags argument are reserved for future use by Digital and 
should be specified as 0. 

return_fandle 
Open VMS usage: fandle 
type: 64-bit integer (unsigned) 
access: write only 
mechanism: by 32-bit or 64-bit reference 

Address of an aligned quadword to receive the fandle for this I/O operation. 

The Set Up Fast I/O system service allocates and initializes a number of internal 
objects based on the parameters supplied. Because these objects are then ready 
for use when a subsequent $IO_PERFORM or $IO_PERFORMW is issued, the 
I/O operation will require less CPU time and fewer multiprocessor steps. 

Required Privileges 
If you use the flags argument FIO$M_EXPEDITE, a process must have ALTPRI 
or PHY_IO privilege. 

Required Quota 
Byte count. 

Related Services 
$IO_CLEANUP, $IO_PERFORM(W) 

SYS2-137 



System Service Descriptions 
$10_SETUP {Alpha Only) 

Condition Values Returned 

SYS2-138 

SS$_NORMAL 

SS$_ACCVIO 

SS$_INSFMEM 

SS$_ILLIOFUNC 

SS$_ILLMODIFIER 

SS$_ UNALIGNED 

The service completed successfully. 

The fandle does not have 8 bytes of writability, 
or the two buffer objects do not have 8 bytes of 
readability each. 
There is no pool available from which to create a 
fandle vector, or the fandle vector is already full 
and an attempted expansion failed. 

The function code is not valid. 
The I/O function modifier is not permitted. 

The I/O Status Area (IOSA) or data buffer is not 
aligned on a quadword boundary. 



$LCKPAG 

System Service Descriptions 
$LCKPAG 

Lock Pages in Memory 

Format 

Arguments 

Locks a page or range of pages in memory. The specified virtual pages are forced 
into the working set and then locked in memory. A locked page is not swapped 
out of memory if the working set of the process is swapped out. These pages are 
not candidates for page replacement and in this sense are locked in the working 
set as well. 

SYS$LCKPAG inadr ,[retadr] ,[acmode] 

inadr 
Open VMS usage: address_range 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting and ending virtual addresses of the range of pages to be locked. The 
inadr argument is the address of a 2-longword array containing, in order, the 
starting and ending process virtual addresses. Only the virtual page number 
portion of each virtual address is used; the low-order byte-within-page bits are 
ignored. 

On VAX systems, if the starting and ending virtual addresses are the same, a 
single page is locked. + 

retadr 
Open VMS usage: address_range 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Starting and ending process virtual addresses of the pages that $LCKPAG 
actually locked. The retadr argument is the address of a 2-longword array 
containing, in order, the starting and ending process virtual addresses. 

acmode 
Open VMS usage: access_mode 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Access mode to be associated with the pages to be locked. The acmode argument 
is a longword containing the access mode. The $PSLDEF macro defines the four 
access modes. 

The most privileged access mode used is the access mode of the caller. For the 
$LCKPAG service to complete successfully, the resultant access mode must be 
equal to or more privileged than the access mode already associated with the 
pages to be locked. 

SYS2-139 



System Service Descriptions 
$LCKPAG 

Description 

em;;+ 

The Lock Pages in Memory service locks a page or range of pages in memory. The 
specified virtual pages are forced into the working set and then locked in memory. 
A locked page is not swapped out of memory if the working set of the process is 
swapped out. These pages are not candidates for page replacement and in this 
sense are locked in the working set as well. 

If more than one page is being locked and you need to determine specifically 
which pages were previously locked, the pages should be locked one at a time. 

If an error occurs while the $LCKPAG service is locking pages, the return array, 
if requested, indicates the pages that were successfully locked before the error 
occurred. If no pages are locked, both longwords in the return address array 
contain the value -1. 

On Alpha systems, if you are attempting to lock executable code, you should 
issue multiple $LCKPAG calls: one to lock the code pages and others to lock the 
linkage section references into these pages.+ 

Required Access or Privileges 
The calling process must have PSWAPM privilege to lock pages into memory. 

Required Quota 
None 

Related Services 
You can unlock pages locked in memory with the Unlock Pages from Memory 
($ULKPAG) service. Locked pages are automatically unlocked at image exit. 

For more information, see the chapter on memory management in the Open VMS 
Programming Concepts Manual. 

Condition Values Returned 

SS$_WASCLR 

SS$_WASSET 

SS$_ACCVIO 

SS$_LCKPAGFUL 

SS$_LDWSETFUL 

SYS2-140 

The service completed successfully. All of the 
specified pages were previously unlocked. 

The service completed successfully. At least one 
of the specified pages was previously locked. 

The input array cannot be read; the output array 
cannot be written; the page in the specified range 
is inaccessible or nonexistent; or an attempt to 
lock pages was made by a caller whose access 
mode is less privileged than the access mode 
associated with the pages. 

The system-defined maximum limit' on the 
number of pages that can be locked in memory 
has been reached. 

The locked working set is full. If any more pages 
are locked, not enough dynamic pages will be 
available to continue execution. 



SS$_NOPRIV 

SS$_PAGOWNVIO 

System Service Descriptions 
$LCKPAG 

The process does not have the privilege to lock 
pages in memory. 

The pages could not be locked because the access 
mode associated with the call to $LCKPAG was 
less privileged than the access mode associated 
with the pages that were to be locked. 

SYS2-141 



System Service Descriptions 
$LCKPAG_64 (Alpha Only) 

$LCKPAG_64 (Alpha Only) 
Lock Pages in Memory 

Format 

Arguments 

SYS2-142 

On Alpha systems, locks a range of pages in memory. The specified virtual pages 
are forced into the working set and then locked in memory. A locked page is not 
swapped out of memory if the working set of the process is swapped out. These 
pages are not candidates for page replacement and, in this sense, are locked in 
the working set as well. 

This service accepts 64-bit addresses. 

SYS$LCKPAG_64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64 

start_va_64 
Open VMS usage: address 
type: quadword address 
access: read only 
mechanism: by value 

The starting virtual address of the pages to be locked. The specified virtual 
address will be rounded down to a CPU-specific page boundary. 

length_64 
Open VMS usage: byte count 
type: quadword (unsigned) 
access: read only 
mechanism: by value 

Length of the virtual address space to be locked. The specified length will be 
rounded up to a CPU-specific page boundary so that it includes all CPU-specific 
pages in the requested range. 

acmode 
Open VMS usage: access_mode 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Access mode associated with the pages to be locked. The acmode argument is a 
longword containing the access mode. 

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in 
SYS$STARLET_C.TLB define the following symbols and their values for the 
four access modes: 

Value Symbolic Name Access Mode 

0 PSL$C_KERNEL Kernel 
1 PSL$C_EXEC Executive 
2 PSL$C_SUPER Supervisor 



Description 

Value Symbolic Name 

3 PSL$C_USER 

System Service Descriptions 
$LCKPAG_64 (Alpha Only) 

Access Mode 

User 

The most privileged access mode used is the access mode of the caller. For the 
$LCKPAG_64 service to complete successfully, the resultant access mode must 
be equal to or more privileged than the access mode already associated with the 
pages to be locked. 

return_ va_64 
Open VMS usage: address 
type: quadword address 
access: write only 
mechanism: by 32-bit or 64-bit reference 

The lowest process virtual address of the pages locked in memory. The 
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally 
aligned quadword into which the service returns the virtual address. 

return_length_64 
Open VMS usage: byte count 
type: quadword (unsigned) 
access: write only 
mechanism: by 32-bit or 64-bit reference 

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which 
the service returns the length of the virtual address range locked in bytes. 

The Lock Pages in Memory service locks a range of pages in memory. The 
specified virtual pages are forced into the working set and then locked in memory. 
A locked page is not swapped out of memory if the working set of the process is 
swapped out. These pages are not candidates for page replacement and, in this 
sense, are locked in the working set as well. 

If the condition value SS$:._ACCVIO is returned by this service, a value cannot 
be returned in the memory locations pointed to by the return_ va_64 and 
return_length_64 arguments. If a condition value other than SS$_ACCVIO 
is returned, the returned address and returned length indicate the pages that 
were successfully locked before the error occurred. If no pages were locked, 
the return_va_64 argument will contain the value -1, and a value cannot be 
returned in the memory location pointed to by the return_length_64 argument. 

Required Privileges 
A process must have PSWAPM privilege to call the $LCKPAG_64 service. 

Required Quota 
None. 

Related Services 
$LCKPAG, $ULKPAG, $ULKPAG_64 

SYS2-143 



System Service Descriptions 
$LCKPAG_64 {Alpha Only) 

Condition Values Returned 

SS$_WASCLR 

SS$_WASSET 

SS$_ACCVIO 

SS$_LCKPAGFUL 

SS$_LKWSETFUL 

SS$_NOPSWAPM 

SS$_PAGOWNVIO 

SYS2-144 

The service completed successfully. All of the 
specified pages were previously unlocked. 

The service completed successfully. At least one 
of the specified pages was previously locked in 
the working set. 

The return_va_64 argument or the 
return_length_64 argument cannot be written 
by the caller, or an attempt was made to lock 
pages by a caller whose access mode is less 
privileged than the access mode associated with 
the pages. 

The system-defined maximum limit on the 
number of pages that can be locked in memory 
has been reached. 
The locked working set is full. If any more pages 
are locked, not enough dynamic pages will be 
available to continue execution. 
The process does not have the privilege to lock 
pages in memory. 

The pages could not be locked because the access 
mode associated with the call to $LCKPAG_64 
was less privileged than the access mode 
associated with the pages that were to be locked. 



$LKWSET 

System Service Descriptions 
$LKWSET 

Lock Pages in Working Set 

Format 

Arguments 

Locks a range of pages in the working set; if the pages are not already in the 
working set, it brings them in and locks them. A page locked in the working set 
does not become a candidate for replacement. 

SYS$LKWSET inadr ,[retadr] ,[acmode] 

inadr 
Open VMS usage: address_range 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting and ending virtual addresses of the range of pages to be locked in 
the working set. The inadr argument is the address of a 2-longword array 
containing, in order, the starting and ending process virtual addresses. Only 
the virtual page number portion of each virtual address is used; the low-order 
byte-within-page bits are ignored. 

On VAX systems, if the starting and ending virtual addresses are the same, a 
single page is locked. • 

retadr 
Open VMS usage: address_range 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Starting and ending process virtual addresses of the range of pages actually 
locked by $LCKWSET. The retadr argument is the address of a 2-longword array 
containing, in order, the starting and ending process virtual addresses. 

acmode 
Open VMS usage: access_mode 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Access mode to be associated with the pages to be locked. The acmode argument 
is a longword containing the access mode. The $PSLDEF macro defines the four 
access modes. 

The most privileged access mode used is the access mode of the caller. For the 
$LKWSET service to complete successfully, the resultant access mode must be 
equal to or more privileged than the access mode already associated with the 
pages to be locked. 

SYS2-145 



System Service Descriptions 
$LKWSET 

Description 

The Lock Pages in Working Set service locks a range of pages in the working set; 
if the pages are not already in the working set, it brings them in and locks them. 
A page locked in the working set does not become a candidate for replacement. 

If more than one page is being locked and you need to determine specifically 
which pages were .previously locked, the pages should be locked one at a time. 

If an error occurs while the $LKWSET service is locking pages, the return array, 
if requested, indicates the pages that were successfully locked before the error 
occurred. If no pages are locked, both longwords in the return address array 
contain the value -1. 

Global pages with write access cannot be locked into the working set. 

On Alpha systems, if you are attempting to lock executable code, you should 
issue multiple $LKWSET calls: one to lock the code pages and others to lock the 
linkage section references into these pages.+ 

Required Access or Privileges 
None 

Required Quota 
None 

Related Services 
You can unlock pages locked in the working set with the Unlock Page from 
Working Set ($ULWSET) service. 

For more information, see the chapter on memory management in the Open VMS 
Programming Concepts Manual. 

Condition Values Returned 

SS$_WASCLR 

SS$_WASSET 

SS$_ACCVIO 

SS$_LKWSETFUL 

SYS2-146 

The service completed successfully. All of the 
specified pages were previously unlocked. 

The service completed successfully. At least one 
of the specified pages was previously locked in 
the working set. 

The input address array cannot be read; the 
output address array cannot be written; a page in 
the specified range is inaccessible or nonexistent; 
or an attempt was made to lock pages by a caller 
whose access mode is less privileged than the 
access mode associated with the pages. 
The locked working set is full. If any more pages 
are locked, not enough dynamic pages will be 
available to continue execution. 



SS$_NOPRIV 

SS$_PAGOWNVIO 

System Service Descriptions 
$LKWSET 

A page in the specified range is in the system 
address space, or a global page with write access 
was specified. 

The pages could not be locked because the access 
mode associated with the call to $LKWSET was 
less privileged than the access mode associated 
with the pages that were to be locked. 

SYS2-147 



System Service Descriptions 
$LKWSET _64 {Alpha Only) 

$LKWSET _64 (Alpha Only) 
Lock Pages in Working Set 

Format 

Arguments 

SYS2-148 

On Alpha systems, locks a range of virtual addresses in the working set; if 
the pages are not already in the working set, the service brings them in and 
locks them. A page locked in the working set does not become a candidate for 
replacement. 

This service accepts 64-bit addresses. 

SYS$LKWSET _64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64 

start_va_64 
Open VMS usage: address 
type: quadword address 
access: read only 
mechanism: by value 

The starting virtual address of the pages to be locked in the working set. The 
specified virtual address will be rounded down to a CPU-specific page boundary. 

length_64 
Open VMS usage: byte count 
type: quadword (unsigned) 
access: read only 
mechanism: by value 

Length of the virtual address space to be locked in the working set. The specified 
length will be rounded up to a CPU-specific page boundary so that it includes all 
CPU-specific pages in the requested range. 

acmode 
Open VMS usage: access_mode 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Access mode associated with the pages to be locked. The acmode argument is a 
longword containing the access mode. 

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in 
SYS$STARLET_C.TLB define the following symbols and their values for the 
four access modes: 

Value Symbolic Name Access Mode 

O' PSL$C_KERNEL Kernel 

1 PSL$C_EXEC Executive 

2 PSL$C_SUPER Supervisor 

3 PSL$C_USER User 



Description 

System Service Descriptions 
$LKWSET _64 (Alpha Only) 

The most privileged access mode used is the access mode of the caller. For the 
$LKWSET_64 service to complete successfully, the resultant access mode must 
be equal to or more privileged than the access mode already associated with the 
pages to be locked. 

return_ va_64 
Open VMS usage: address 
type: quadword address -
access: write only 
mechanism: by 32-bit or 64-bit reference 

The lowest process virtual address of the pages locked in the working set. The 
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally 
aligned quadword into which the service returns the virtual address. 

return_length_64 
Open VMS usage: byte count 
type: quadword (unsigned) 
access: write only 
mechanism: by 32-bit or 64-bit reference 

The length of the virtual address range locked in the working set. The 
return_length_64 argument is the 32-bit or 64-bit virtual address of a naturally 
aligned quadword into which the service returns the length of the virtual address 
range in bytes. 

The Lock Pages in Working Set service locks a range of pages in the working set; 
if the pages are not already in the working set, it brings them in and locks them. 
A page locked in the working set does not become a candidate for replacement. 

If the condition value SS$_ACCVIO is returned by this service, a value cannot 
be returned in the memory locations pointed to by the return_ va_64 and 
return_length_64 arguments. If a condition value other than SS$_ACCVIO 
is returned, the returned address and returned length indicate the pages that 
were successfully locked before the error occurred. If no pages were locked, 
the return_va_64 argument will contain the value -1, and a value cannot be 
returned in the memory location pointed to by the return_length_64 argument. 

Global pages with write access cannot be locked into the working set. 

Required Privileges 
None. 

Required Quota 
None. 

Related Services 
$LKWSET, $ULWSET, $ULWSET_64 

SYS2-149 



System Service Descriptions 
$LKWSET _64 (Alpha Only} 

Condition Values Returned 

SS$_WASCLR 

SS$_WASSET 

SS$_ACCVIO 

SS$_LKWSETFUL 

SS$_NOPRIV 

SS$_PAGNOTINREG 

SS$_PAGOWNVIO 

SYS2-150 

The service completed successfully. All of the 
specified pages were previously unlocked. 

The service completed successfully. At least one 
of the specified pages was previously locked in 
the working set. 
The return_ va_64 or return_length_64 
argument cannot be written by the caller, or 
an attempt was made to lock pages by a caller 
whose access mode is less privileged than the 
access mode associated with the pages. 

The locked working set is full. If any more pages 
are locked,· not enough dynamic pages will be 
available to continue execution. 
No privilege; global pages with write access 
cannot be locked into the working set. 

A page in the specified range is not within the 
specified region. 
The pages could not be locked because the access 
mode associated with the call to $LKWSET_64 
was less privileged than the access mode 
associated with the pages that were to be locked. 



$MGBLSC 

System Service Descriptions 
$MGBLSC 

Map Global Section 

Format 

Arguments 

Establishes a correspondence between pages (maps) in the virtual address space 
of the process and physical pages occupied by a global section. 

SYS$MGBLSC inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident] ,[relpag] 

inadr 
OpenVMS usage: address_range 
type: longword (unsigned) 
access: read only 
mechanism: by reference 

Starting and ending virtual addresses into which the section is to be mapped. 
The inadr argument is the address of a 2-longword array containing, in order, 
the starting and ending process virtual addresses. Only the virtual page number 
portion of each virtual address is used to specify which pages are to be mapped; 
the low-order byte-within-page bits are ignored for this purpose. 

The interpretation of the inadr argument depends on the setting of 
SEC$M_EXPREG in the flags argument and on whether you are using an 
Alpha or a VAX system. The two system types are discussed separately in this 
section. 

On Alpha systems, if you do not set the SEC$M_EXPREG flag, the inadr 
argument specifies the starting and ending virtual addresses of the region to 
be mapped. Addresses in system space are not allowed. The addresses must be 
aligned on CPU-specific pages; no rounding to CPU-specific pages occurs. The 
lower address of the inadr argument must be on a CPU-specific page boundary 
and the higher address of the inadr argument must be 1 less than a CPU-specific 
boundary, thus forming a range from lowest to highest address bytes. You can 
use the SYI$_PAGE_SIZE item code in the $GETSYI service to set the inadr 
argument to the proper values. 

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the 
mapping should take place using the first available space in a particular region, 
the inadr argument is used only to indicate the desired region: the program 
region (PO) or the control region (Pl). 

~~~~~~~~~~~~- Caution ~~~~~~~~~~~~­

Mapping into the Pl region is generally discouraged, but, if done, must be
executed with extreme care. Since the user stack is mapped in Pl, it is
possible that references to the user stack may inadvertently read or write
the pages mapped with $MGBLSC.

SYS2-151

System Service Descriptions
$MGBLSC

SYS2-152

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, Pl is chosen. On Alpha systems, bit 31 (the most significant bit) of the first
inadr longword must be 0. To ensure compatibility between VAX and Alpha
systems when you choose a region, Digital recommends that you specify, for the
first inadr longword, any virtual address in the desired region.+

On VAX systems, if you do not set the SEC$M_EXPREG flag, the inadr argument
specifies the starting and ending virtual addresses of the region to be mapped.
Addresses in system space are not allowed. If the starting and ending virtual
addresses are the same, a single page is mapped.

Note

If the SEC$M_EXPREG flag is not set, Digital recommends that the
inadr argument always specify the entire virtual address range, from
starting byte address to ending byte address. This ensures compatibility
between VAX and Alpha systems.

If, on the other hand, you do set the SEC$M_EXPREG flag, indicating that the
mapping should take place using the first available space in a particular region,
the inadr argument is used only to indicate the desired region: the program
region (PO) or the control region (Pl).

Caution ____________ _

Mapping into the Pl region is generally discouraged, but, if done, must be
executed with extreme care. Since the user stack is mapped in Pl, it is
possible that references to the user stack may inadvertently read or write
the pages mapped with $MGBLSC.

When the SEC$M_EXPREG flag is set, the second inadr longword is ignored,
while bit 30 (the second most significant bit) of the first inadr longword is used
to determine the region of choice. If the bit is clear, PO is chosen; if the bit is
set, Pl is chosen. On VAX systems, bit 31 (the most significant bit) of the first
inadr longword is ignored. To ensure compatibility between VAX and Alpha
systems when you choose a region, Digital recommends that you specify, for the
first inadr longword, any virtual address in the desired region.+

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses into which the section was actually
mapped by $MGBLSC. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

System Service Descriptions
$MGBLSC

On Alpha systems, the retadr argument returns the starting and ending
addresses of the usable range of addresses. This may differ from the total
amount mapped. The retadr argument is required when the relpag argument
is specified. If the section being mapped does not completely fill the last page
used to map the section, the retadr argument indicates the highest address that
actually maps the section. If the relpag argument is used to specify an offset
into the section, the retadr argument reflects the offset.+

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector wherein a bit when set specifies the corresponding option.

The $SECDEF macro defines symbolic names for the flag bits. You construct
the flags argument by specifying the symbolic names of each desired option in a
logical OR operation. The following table describes each flag option.

Flag Option

SEC$M_WRT

SEC$M_SYSGBL

SEC$M_EXPREG

gsdnam

Description

Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_ WRT
is specified and the section is not copy-on-reference, write
access is required.

Map a system global section. By default, the section is a
group global section.

Map the section into the first available virtual address
range. By default, the section is mapped into the range
specified by the inadr argument.
See the inadr argument description for a complete
explanation of how to set the SEC$M_EXPREG flag.

Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the global section. The gsdnam argument is the address of a character
string descriptor pointing to this name string.

SYS2-153

System Service Descriptions
$MGBLSC

iljMMI

SYS2-154

For group global sections, the operating system interprets the group UIC as
part of the global section name; thus, the names of global sections are unique to
UIC groups. Further, all global section names are implicitly qualified by their
identification fields.

ident
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section, and, for
processes mapping to an existing global section, the criteria for matching the
identification. The ident argument is the address of a quadword structure
containing three fields.

The first longword specifies, in the low-order two bits, the matching criteria.
Their valid values, the symbolic names by which they can be specified, and their
meanings are as follows.

Value/Name

0 SEC$K_MATALL

1 SEC$K_MATEQU

2 SEC$K_MATLEQ

Match Criteria

Match all versions of the section.
Match only if major and minor identifications match.

Match if the major identifications are equal and the
minor identification of the mapper is less than or equal
to the minor identification of the global section.

The version number is in the second longword and contains two fields: a minor
identification in the low-order 24 bits and a major identification in the high-order
8 bits.

If you do not specify ident or specify it as the value 0 (the default), the version
number and match control fields default to the value 0.

relpag
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the section of the first page to be mapped. The
relpag argument is a longword containing this number.

On Alpha systems, the relpag argument is interpreted as an index into the
section. file, measured in pagelets for a file-backed section or CPU-specific pages
for a PFN-mapped section.+

On Alpha and VAX systems, if you do not specify relpag or specify it as the value
0 (the default), the global section is mapped beginning with the first virtual block
in a file-backed section or the first CPU-specific page in a PFN-mapped section.

Description

System Service Descriptions
$MGBLSC

The Map Global Section service establishes a correspondence between pages
(maps) in the virtual address space of the process and physical pages occupied by
a global section. The protection mask specified at the time the global section is
created determines the type of access (for example, read/write or read only) that a
particular process has to the section.

When $MGBLSC maps a global section, it adds pages to the virtual address
space of the process. The section is mapped from a low address to a high address,
whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the return address
array, if specified, indicates the pages that were successfully mapped when the
error occurred. If no pages were mapped, both longwords of the return address
array contain the value -1.

Required Access or Privileges
Read access is required. If the SEC$M_ WRT flag is specified, write access is
required.

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space when the $MGBLSC
service maps a section.

If the section pages are copy-on-reference, the process must also have sufficient
paging file quota (PGFLQUOTA).

This system service causes the working set of the calling process to be adjusted to
the size specified by the working set quota (WSQUOTA). If the working set size
of the process is less than quota, the working set size is increased; if the working
set size of the process is greater than quota, the working set size is decreased.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $PURGWS, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

For more information, see the chapter on memory management in the Open VMS
Programming Concepts Manual.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXQUOTA

The service completed successfully.
The input address array, the global section name
or name descriptor, or the section identification
field cannot be read by the caller; or the return
address array cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

SYS2-155

System Service Descriptions
$MGBLSC

SYS2-156

SS$_INSFWSL

SS$_IVLOGNAM

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOPRIV

SS$_NOSUCHSEC

SS$_PAGOWNVIO

SS$_TOOMANYLNAM

SS$_VASFULL

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The global section name has a length of 0 or has
more than 43 characters.

You set a reserved flag.
The match control field of the global section
identification is invalid.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller; or a page in the
input address range is in the system address
space.

The specified global section does not exist.

A page in the specified input address range is
owned by a more privileged access mode.
Logical name translation of the gsdnam string
exceeded the allowed depth.

The virtual address space of the process is full;
no space is available in the page tables for the
pages created to contain the mapped global
section.

System Service Descriptions
$MGBLSC_64 (Alpha Only)

$MGBLSC_64 (Alpha Only)
Map Global Disk or Page File Section

Format

Arguments

On Alpha systems, establishes a correspondence between pages in the virtual
address space of the process and the pages occupied by a global disk file or page
file section.

This service accepts 64-bit addresses.

SYS$MGBLSC_64 gs_name_64 ,ident_64 ,region_id_64 ,section_offset_64
,length_64 ,acmode ,flags ,return_va_64 ,return_length_64
[,start_va_64]

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name_64 argument is the 32-bit or 64-bit
virtual address of a naturally aligned 32-bit or 64-bit string descriptor pointing to
this name string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.

Match only if major and minor identifications
match.

Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

SYS2-157

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SYS2-158

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the private page frame
section. The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro
in STARLET.MLB define a symbolic name for each of the three default regions in
PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO
VA$C_Pl

VA$C_P2

Region

Program region

Control region
64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

section_offset_64
Open VMS usage: byte offset
type: quadword (unsigned)
access: read only
mechanism: by value

Offset into the global section at which to start mapping into the process's virtual
address space.

If a map to a global section is being requested, the section_offset_64 argument
specifies an even multiple of disk blocks. If a map to a global page file section is
being requested, the section_offset_64 argument specifies an even multiple of
CPU-specific pages. If zero is specified, the global section is mapped beginning
with the first virtual block of the disk file section.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the desired mapping of the global disk file section in bytes.

If a map to a global section is being requested, the length_64 argument specifies
an even multiple of disk blocks. If a map to a global page file section is being
requested, the length_64 argument specifies an even multiple of CPU-specific
pages. If zero is specified, the global section is mapped beginning with the first
virtual block of the disk file section. If zero is specified, the size of the disk file is
used.

System Service Descriptions
$MGBLSC_64 (Alpha Only)

Always refer to the return_length_64 argument to determine the resulting
length of the global disk file section.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller's mode. The condition value
SS$_IVACMODE is returned if the caller is less privileged than the create mode
for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the $MGBLSC_64 service.

Flag

SEC$M_GBL

SEC$M_EXPREG

SEC$M_SYSGBL

Description

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

Map the section into the first available space at the
current end of the specified region. If this flag is specified,
the start_ va_64 argument is not used.

Map a system global section. By default, the section is a
group global section.

SYS2-159

System Service Descriptions
$MGBLSC_64 {Alpha Only)

SYS2-160

Flag

SEC$M_WRT

Description

Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_ WRT
is specified and the section is not copy-on-reference, write
access to the section is required.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_IVSECFLG is returned if any
undefined bits are set or if an attempt is made to use the SEC$M_PAGFIL flag,
which applies only to the creation of a page-file backed section.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The process virtual address into which the global disk or page file section was
mapped. The return_ va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the virtual address.

Upon successful completion of this service, if the section_offset_64 argument
was specified, the virtual address returned in the return_ va_64 argument
reflects the offset into the global section mapped such that the virtual address
returned cannot be aligned on a CPU-specific page boundary. The virtual address
returned will always be on an even virtual disk block boundary.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the usable virtual address range mapped. The return_length_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range in bytes.

Upon successful completion of this service, the value in the return_length_64
argument might differ from the total amount of virtual address space
mapped. The value in the return_ va_64 argument plus the value in the
return_length_64 argument indicates the address of the first byte beyond the
end of the mapping of the global disk file section.

If the value in the section_offset_64 argument plus the value in the length_64
argument did not specify to map the entire global section, this byte can be located
at an even virtual disk block boundary within the last page of the mapping.

If the section being mapped does not completely fill the last page used to
represent the global disk file section, this byte can be mapped into your address
space; however, it is not backed up by the disk file.

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

Description

System Service Descriptions
$MGBLSC_64 (Alpha Only)

The starting virtual address to which to map the global section. The specified
virtual address must be a CPU-specific page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_ va_64 and return_length_64 arguments to
determine the usable range of virtual addresses mapped.

The Map Global Disk or Page File Section service establishes a correspondence
between pages in the virtual address space of the process and pages occupied by
a global disk or page file section. This service adds pages to the virtual address
space of the process. The section is mapped from low address to high address.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments. If a condition value other than SS$_ACCVIO
is returned, the returned address and returned length indicate the pages that
were successfully mapped before the error occurred. If no pages were mapped,
the return_va_64 argument will contain the value -1, and a value cannot be
returned in the memory location pointed to by the return_length_64 argument.

Required Privileges
Read access is required. If the SEC$M_ WRT flag is specified and the section is
not a copy-on-reference section, write access is required.

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

If the section pages are copy-on-reference, the process must also have sufficient
paging file quota (PGFLQUOTA).

Related Services
$CREATE_GFILE, $CREATE_GPFILE, $CREATE_REGION_64, $CRMPSC_
GFILE_64, $CRMPSC_GPFILE_64, $DELETE_REGION_64, $DELTVA_64,
$LCKPAG_64, $LKWSET_64, $MGBLSC, $MGBLSC_GPFN_64, $PURGE_ WS,
$ULKPAG_64, $ULWSET_64, $UPDSEC_64, $UPDSEC_64W

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXPGFLQUOTA

SS$_GBLSEC_MISMATCH

The service completed successfully.
The gs_name_64 argument cannot be read by
the caller, or the return_ va_64 argument or the
return_length_64 argument cannot be written
by the caller.

The process exceeded its paging file quota,
creating copy-on-reference pages.

Global section type mismatch. The specified
global section was found; however, it is not a
global disk or page file section.

SYS2-161

System Service Descriptions
$MGBLSC_64 (Alpha Only)

SYS2-162

SS$_INSFWSL

SS$_IVACMODE

SS$_IVLOGNAM

SS$_IVREGID

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_LEN_NOTBLKMULT

SS$_LEN_NOTPAGMULT

SS$_NOSUCHSEC

SS$_NOWRTACC

SS$_0FF _NOTPAGALGN

SS$_0FFSET_TOO_BIG

SS$_PAGNOTINREG

SS$_PROTVIO

SS$_PAGOWNVIO

SS$_REGISFULL

SS$_TOOMANYLNAM

88$_ VA_NOTPAGALGN

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The caller's mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.
An invalid region ID was specified. .

An invalid flag, a reserved flag, or an invalid
combination of flags was specified.
The match control field of the global section
identification is invalid.

The length_64 argument is not a multiple of
virtual disk blocks if a map to a global section
was requested (SEC$M_PAGFIL is clear in the
flags argument).

The length_64 argument is not a multiple of
CPU-specific pages if a map to a global page file
section was requested (SEC$M_PAGFIL is set in
the flags argument).

The specified global section does not exist.

The specified global section is not copy-on­
reference and does not allow write access.
The section_offset_64 argument is not CPU­
specific page aligned if a map to a global page file
section was requested (SEC$M_PAGFIL is set in
the flags argument).

The section_offset_64 argument specified is
beyond the logical end-of-file.

A page in the specified range is not within the
specified region.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped global section.
The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.
The start_va_64 argument is not CPU-specific
page-aligned. ·

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

$MGBLSC_GPFN_64 (Alpha Only)
Map Global Page Frame Section

Format

Arguments

On Alpha systems, establishes a correspondence between pages in the virtual
address space of the process and the pages occupied by a global page frame
section.

This service accepts 64-bit addresses.

SYS$MGBLSC_GPFN_64 gs_name_64 ,ident_64 ,region_id_64 ,relative_page
,page_count ,acmode ,flags ,return_va_64
,return_length_64 [,start_va_64]

gs_name_64
Open VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Name of the global section. The gs_name argument is the 32-bit or 64-bit virtual
address of a naturally aligned 32-bit or 64-bit descriptor pointing to this name
string.

ident_64
Open VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Identification value specifying the version number of a global section. The
ident_64 argument is a quadword containing three fields. The ident_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
that contains the identification value.

The first longword specifies the matching criteria in its low-order two bits. The
valid values, symbolic names by which they can be specified, and their meanings
are as follows:

Value

0

1

2

Symbolic Name

SEC$K_MATALL

SEC$K_MATEQU

SEC$K_MATLEQ

Match Criteria

Match all versions of the section.
Match only if major and minor identifications
match.
Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor identification
of the global section.

If you specify the ident_64 argument as 0, the version number and match control
fields default to 0.

SYS2-163

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

SYS2-164

The version number is in the second longword. The version number contains two
fields: a minor identification in the low-order 24 bits and a major identification
in the high-order 8 bits. You can assign values for these fields by installation
convention to differentiate versions of global sections. If no version number is
specified when a section is created, processes that specify a version number when
mapping cannot access the global section.

region_id_64
Open VMS usage: region identifier
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

The region ID associated with the region to map the private page frame
section. The file VADEF.H in SYS$STARLET_C.TLB and the $VADEF macro
in STARLET.MLB define a symbolic name for each of the three default regions in
PO, Pl, and P2 space. The following region IDs are defined:

Symbol

VA$C_PO
VA$C_Pl

VA$C_P2

Region

Program region
Control region

64-bit program region

Other region IDs, as returned by the $CREATE_REGION_64 service, can be
specified.

relative _page
Open VMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Relative CPU-specific page number within the global section to start mapping.

page_count
Open VMS usage: CPU-specific page count
type: longword (unsigned)
access: read only
mechanism: by value

Length of mapping in CPU-specific pages. If zero is specified, the global page
frame section is mapped to the end of the section.

acmode
Open VMS usage: access-mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access mode.
The $PSLDEF macro defines symbols for the four access modes.

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

The most privileged access mode used is the access mode of the caller. Address
space cannot be created within a region that has a create mode associated
with it that is more privileged than the caller's mode. The condition value
SS$_NACMODE is returned if the caller is less privileged than the create mode
for the region.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a longword
bit vector in which each bit corresponds to a flag. The $SECDEF macro and the
SECDEF.H file define a symbolic name for each flag. You construct the flags
argument by performing a logical OR operation on the symbol names for all
desired flags.

The following table describes each flag that is valid for the $MGBLSC_GPFN_64
service:

Flag

SEC$M_GBL

SEC$M_EXPREG

SEC$M_PERM

SEC$M_PFNMAP

SEC$M_PAGFIL

SEC$M_SYSGBL

SEC$M_WRT

Description

Pages form a global section. By default, this flag is always
present in this service and cannot be disabled.

Map the section into the first available space at the
current end of the specified region. If this flag is specified,
the start_ va_64 argument is not used.

Pages are permanent. By default, this flag is always
present in this service and cannot be disabled.

Pages form a page frame section. By default, this flag is
always present in this service and cannot be disabled.
Pages form a global page-file section. SEC$M_PAGFIL
also implies SEC$M_ WRT and SEC$M_DZRO.

Map a system global section. By default, the section is a
group global section.

Map the section with read/write access. By default, the
section is mapped with read-only access. If SEC$M_ WRT
is specified, write access is required.

All other bits in the flags argument are reserved for future use by Digital and
should be specified as 0. The condition value SS$_NSECFLG is returned if any
undefined bits are set or if an illegal combination of flags is set.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address into which the global page frame section was
mapped. The return_ va_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword that contains the virtual address.

SYS2-165

System Service Descriptions
$MGBLSC_GPFN_64 {Alpha Only)

Description

SYS2-166

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The 32-bit or 64-bit virtual address of a naturally aligned quadword into which
the $MGBLSC_GPFN_64 service returns the length of the virtual address range
in bytes.

start_va_64
Open VMS usage: address
type: quadword· address
access: read only
mechanism: by value

The starting virtual address to map the global section. The specified
virtual address must be a CPU-specified page-aligned address. If the flag
SEC$M_EXPREG is specified, the start_ va_64 argument must not be specified or
must be specified as 0. If SEC$M_EXPREG is set and the start_ va_64 argument
is non-zero, the condition value SS$_IVSECFLG is returned.

Always refer to the return_ va_64 and return_length_64 arguments to
determine the range of virtual addresses mapped.

The Map Global Page Frame Section service establishes a correspondence
between pages in the virtual address space of the process and pages occupied
by a global page frame section. It adds pages to the virtual address space of the
process.

Pages mapped to a global page frame section are not included in or charged
against the process's working set; they are always valid. Do not lock these pages
in the working set by using $LKWSET; this can result in a machine check if they
are in I/O space.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully mapped before
the error occurred. If no pages were mapped, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
Read ac~ess is required. If the SEC$M_ WRT flag is specified, write access is
required.

Required Quota
The working set quota (WSQUOTA) of the process must be sufficient to
accommodate the increased length of the process page table required by the
increase in virtual address space.

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

The page file quota (PAGFLQUOTA) of the process must be sufficient to
accommodate the increased number of process page tables required by the
increase in virtual address space. (Note that this service can return the SS$_
EXPGFLQUOTA.)

Related Services
$CREATE_GPFN, $CREATE_REGION_64, $CRMPSC_GPFN_64, $DELETE_
REGION_64, $DELTVA_64, $MGBLSC, $MGBLSC_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_GBLSEC_MISMATCH

SS$_ILLRELPAG

SS$_INSFWSL

SS$_IVACMODE

SS$_IVLOGNAM

SS$_IVREGID

SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_NOSUCHSEC

SS$_NOWRTACC

SS$_PROTVIO

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_REGISFULL

The service completed successfully
The gs_name_64 argument cannot be
read by the caller, or the return_va_64 or
return_length_64 argument cannot be written
by the caller.
Global section type mismatch. The specified
global section was found; however, it is not a
global page frame section.

The specified relative page argument is either
larger than the highest page number within the
section or is not a valid 32-bit physical page
frame number.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The caller's mode is less privileged than the
create mode associated with the region.

The specified global section name has a length of
0 or has more than 43 characters.

Invalid region ID specified.
An invalid flag, a reserved flag, or an invalid
combination of flags was specified.
The match control field of the global section
identification is invalid.
The specified global section does not exist.

The specified global section is not copy-on­
reference and does not allow write access.

The file protection mask specified when the
global section was created prohibits the type of
access requested by the caller.
A page in the specified range is not within the
specified region.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.
The specified virtual region is full; no space is
available in the region for the pages created to
contain the mapped global section.

SYS2-167

System Service Descriptions
$MGBLSC_GPFN_64 (Alpha Only)

SS$_TOOMANYLNAM

88$_ VA_NOTPAGALGN

SYS2-168

The logical name translation of the gs_name_64
argument exceeded the allowed depth of 10.
The start_va_64 argument is not CPU-specific
page-aligned.

System Service Descriptions
$MOD_HOLDER

$MOD_HOLDER
Modify Holder Record in' Rights Database

Format

Arguments

Modifies the specified holder record of the target identifier in the rights database.

SYS$MOD_HOLDER id ,holder ,[set_attrib] ,[clr_attrib]

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder record is modified when $MOD_
HOLDER completes execution. The id argument is a longword containing the
identifier value.

holder
Open VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being modified when $MOD_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.

set_attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_HOLDER
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

SYS2-169

System Service Descriptions
$MOD_HOLDER

Description

SYS2-170

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

KGB$V _NOACCESS Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.

KGB$V _RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier.

KGB$V _SUBSYSTEM Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

clr_attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_HOLDER
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position

KGB$V _DYNAMIC

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

Meaning When Set

Allows holders of the identifier to remove it from or add
it to the process rights list by using the DCL command
SET RIGHTS_LIST.

Makes any access rights of the identifier null and void.
This attribute is intended as a modifier for a resource
identifier or the Subsystem attribute.
Allows the holder to charge resources, such as disk
bloc;ks, to the identifier.

Allows holders of the identifier to create and maintain
protected subsystems by assigning the Subsystem ACE
to the application images in the subsystem.

The Modify Holder Record in Rights Database service modifies the specified
holder record in the rights database. Identifier attributes can be added or
removed.

When you specify both the set_attrib and clr_attrib arguments, the attribute is
cleared first. Thus, if you specify the same attribute bit with each argument, the
result is that the bit is set.

Required Access or Privileges

System Service Descriptions
$MOD_HOLDER

Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CREATE_RDB,
$FIND_HELD, $FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC,
$MOD_IDENT, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFMEM

SS$_IVIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the
caller.
The specified attributes contain invalid attribute
flags.
The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.
The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS2-171

System Service Descriptions
$MOD_IDENT

$MOD_IDENT
Modify Identifier in Rights Database

Format

Arguments

SYS2-172

Modifies the specified identifier record in the rights database.

SYS$MOD_IDENT id ,[set_attrib] ,[clr_attrib] ,[new_name] ,[new_value]

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier whose identifier record is modified when $MOD_IDENT
completes execution. The id argument is a longword containing the identifier
value.

set_attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_IDENT
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position

KGB$V _DYNAMIC

KGB$V _HOLDER_HIDDEN

KGB$V _NAME_HIDDEN

Meaning When Set

Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET_
RIGHTS_LIST.
Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.

Allows holders of an identifier to have it
translated-either from binary to ASCII
or vice versa-but prevents unauthorized
users from translating the identifier.

Bit Position

KGB$V _NOACCESS

KGB$V _RESOURCE ·

KGB$V _SUBSYSTEM

clr_attrib
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$MOD_IDENT

Meaning When Set

Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

Bit mask of attributes to be disabled for the identifier when $MOD_IDENT
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Bit Position

KGB$V _DYNAMIC

KGB$V _HOLDER_HIDDEN

KGB$V _NAME_HIDDEN

KGB$V _NOACCESS

KGB$V _RESOURCE

Meaning When Set

Allows holders of the identifier to remove
it from or add it to the process rights
list by using the DCL command SET_
RIGHTS_LIST.

Prevents someone from getting a list of
users who hold an identifier, unless they
own the identifier themselves.
Allows holders of an identifier to have it
translated-either from binary to ASCII
or vice versa-but prevents unauthorized
users from translating the identifier.
Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.

SYS2-173

System Service Descriptions
$MOD_IDENT

Description

SYS2-174

Bit Position

KGB$V _SUBSYSTEM

new_name
Open VMS usage: char_string

Meaning When Set

Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

New name to be given to the specified identifier. The new_name argument is the
address of the descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including dollar
signs ($) and underscores (_), and must contain at least one nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

new_value
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

New value to be assigned to the specified identifier. The new_value argument
is a longword containing the binary value of the specified identifier. When the
identifier value is changed, $MOD_IDENT also changes the value of the identifier
in all of the holder records in which the specified identifier appears.

The Modify Identifier in Rights Database service modifies the specified identifier
record in the rights database. Identifier attributes can be added or removed. The
identifier name or value can be changed. When you specify both the set_attrib
and clr_attrib arguments, the attribute is cleared first. Thus, if you specify the
same attribute bit with each argument, the result is that the bit is set.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL
SS$_NOSUCHID

SS$_BADPARAM

SS$_DUPIDENT
SS$_DUPLNAM

SS$_INSFMEM

SS$_IVIDENT
RMS$_PRV

System Service Descriptions
$MOD_IDENT

The service completed successfully.
The specified identifier does not exist in the
rights database.
The specified attributes contain invalid attribute
flags.

The specified identifier value already exists.
The specified identifier name already exists in
the rights database.
The process dynamic memory is insufficient for
opening the rights database.
The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS2-175

System Service Descriptions
$MOUNT

$MOUNT
Mount Volume

Format

Argument

SYS2-176

Mounts a tape, disk volume, or volume set and specifies options for the mount
operation.

SYS$MOUNT itmlst

it mist
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying options for the mount operation. The itmlst argument is
the address of a list of item descriptors, each of which specifies an option and
provides the information needed to perform the operation.

The item list must include at least one device item descriptor and is terminated
by a longword value of 0.

The following diagram depicts the format of a single item descriptor.

31 15 0

Item code 1 Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Definition

A word specifying the length (in bytes) of the buffer
that supplies the information $MOUNT needs to
process the specified item code. The required length
of the buffer depends upon the item code specified
in the item code field of the item descriptor. If the
value of the buffer length is too small, $MOUNT
truncates the data.

A word containing a user-supplied symbolic code
that specifies an option for the MOUNT operation.
The $MNTDEF macro defines these codes.

Item Codes

Descriptor Field

Buffer address

Return length address

MNT$_ACCESSED

Definition

System Service Descriptions
$MOUNT

A longword containing the address of the buffer that
supplies information to $MOUNT.

This field is not used.

The MNT$_ACCESSED item code specifies the number of directories that will be
in use, concurrently, on the volume. The buffer must contain a longword integer
value in the range 0 to 255. This value overrides the number of directories
specified when the volume was initialized. To specify MNT$_ACCESSED, the
caller must have OPER privilege. The MNT$_ACCESSED item code applies only
to disks.

MNT$_BLOCKSIZE
The MNT$_BLOCKSIZE item code specifies the default block size for tape
volumes. The buffer must contain a longword integer value in the range 20 to
65,532 bytes for Open VMS RMS operations or 10 to 65,534 bytes for operations
that do not use RMS. The MNT$_BLOCKSIZE item code applies only to tapes.

If you do not specify MNT$_BLOCKSIZE, the default block size is 2048 bytes for
Files-11 tape volumes and 512 bytes for foreign and unlabeled tapes.

You must specify MNT$_BLOCKSIZE when mounting (1) tapes that do not have
ANSI HDR2 labels, (2) tapes to which data will be written from compatibility
mode, and (3) tapes that are to contain records whose size is larger than the
default value.

MNT$_COMMENT
The MNT$_COMMENT item code specifies text to be associated with an operator
request. The buffer must contain a character string of no more than 78
characters. This text will be printed on the operator's console if an operator
request is issued for the device being mounted.

MNT$_DENSITY
The MNT$_DENSITY item code. specifies the density at which data is to be
written to a foreign or unlabeled tape. The buffer must contain a longword value
that specifies one of the following legal densities: 800, 1600, or 6250 bpi. The
MNT$_DENSITY item code applies only to tapes.

The specified density will be used only if (1) the tape is foreign or unlabeled and
(2) the first operation is a write.

MNT$_DEVNAM
The MNT$_DEVNAM item code specifies the name of the device to be mounted.
The buffer must contain a character string of from 1 to 64 characters, which is
the device name. The device name can be a physical device name or a logical
name; if it is a logical name, it must translate to a physical device name.

The MNT$_DEVNAM item code must appear at least once in an item list, and
it can appear more than once. It appears more than once when a volume set
is being mounted, because, in this case, one device is being mounted for each
volume in the volume set.

SYS2-177

System Service Descriptions·
$MOUNT

Option

MNT$_EXTENSION
The MNT$_EXTENSION item code specifies the number of blocks by which files
will be extended. The buffer must contain a longword value in the range 0 to
65,535. The MNT$_EXTENSION item code applies only to disks.

MNT$_EXTENT
The MNT$_EXTENT item code specifies the size of the extent cache in units of
extent pointers. The buffer must contain a longword value, which specifies this
size. To specify MNT$_EXTENT, you need OPER privilege. The value 0 (the
default) disables caching. The MNT$_EXTENT item code applies only to disks.

MNT$_FILEID
The MNT$_FILEID item code specifies the size of the file-ID cache in units of file
numbers. The buffer must contain a longword value, which specifies this size. To
specify MNT$_FILEID, you need OPER privilege. The value 1 disables caching.
The MNT$_FILEID item code applies only to disks.

MNT$_FLAGS
The MNT$_FLAGS item code specifies a 2-longword bit vector wherein each bit
specifies an option for the mount operation. The buffer must contain a quadword,
which is the bit vector.

The $MNTDEF macro defines symbolic names for each option (bit) in the bit
vector. You construct the bit vector by specifying the symbolic names for the
desired options in a logical OR operation. In the first longword you logically
OR the MNT$M_ mask bits, and in the second longword you logically OR the
MNT2$M_ mask bits. The following table describes the symbolic names for each
option. The MNT2$M_ options are at the end of the table.

Description

MNT$M_CLUSTER The volume is to be mounted for clusterwide access; that is, every
VMScluster node can access the volume. $MOUNT mounts the
volume first on the caller's node and then on every other node in
the existing cluster.

MNT$M_FOREIGN

MNT$M_GROUP

SYS2-178

Only system or group volumes can be mounted clusterwide. If you
do not specify MNT$M_GROUP or MNT$M_SYSTEM, $MOUNT
mounts the volume as a system volume, provided the caller has
SYSNAM privilege. To mount a group volume clusterwide, the
caller must have GRPNAM privilege. To mount a system volume
clusterwide, the caller must have SYSNAM privilege.
MNT$M_CLUSTER has no effect if the system is not a member of
a cluster. MNT$M_CLUSTER applies only to disks.
The volume is to be mounted as a foreign volume; a foreign volume
is not Files-11 structured. If you specify MNT$M_FOREIGN, the
following item codes can each appear in the item list only once: the
caller must either own the volume or have VOLPRO privilege.
The logical name for the volume to be mounted is entered in
the group logical name table, and the volume is made accessible
to other users with the same UIC group number as that of the
calling process. To specify MNT$M_GROUP, the caller must have
GRPNAM privilege. MNT$M_GROUP applies only to disks.

Option

MNT$M_INCLUDE

MNT$M_INIT_CONT

MNT$M_MESSAGE

System Service Descriptions
$MOUNT

Description

Automatically reconstructs a shadow set to the state it was in
before the shadow set was dissolved (due to dismounting or system
failure). Use this option to mount a shadow set or a volume set
of shadow sets. You must specify the exact name of the original
virtual unit and the device name of at least one of the shadow
set members. The shadowing software reads the shadow set
membership information from the named device to determine
the membership of the original shadow set. You can include
the MNT$M_INCLUDE option in executable images to have a
shadow set reconstructed. Using MNT$M_INCLUDE prevents your
having to manually reinstate shadow sets after they have been
dismounted.
If you do not select this option, $MOUNT does not automatically
reconstruct the former shadow set.

Additional volumes in the volume set are to be initialized without
operator intervention. $MOUNT initializes new volumes with the
protections specified for the first magnetic tape of the volume set
and creates unique volume label names for up to 99 volumes in a
volume set.
If MNT$M_INIT _CONT is specified, you must allocate multiple
magnetic tape drives to the volume set. If $MOUNT switches to a
drive that has no magnetic tape loaded or has the wrong magnetic
tape loaded or if $MOUNT tries to read a magnetic tape that is not
loaded, it notifies the operator to load the correct magnetic tape.
$MOUNT will dismount and unload volumes as soon as they have
been read or written. The operator can load the next volume in the
volume set before the current reel of the volume set reaches the end
of the magnetic tape.
If writing to the volume set, $MOUNT automatically (1) switches
to the next magnetic tape drive, (2) initializes that magnetic tape
with the same volume name and protection as specified in the
volume labels of the first volume in the set, and (3) notifies the
operator that the switch has occurred. If reading the volume set,
$MOUNT generates the label for the next volume in the volume set
and reads that volume.

The label name that $MOUNT generates for each additional volume
in the volume set consists of six characters: the first four characters
are the same as the first four characters of the label name of the
previous volume; the fifth and sixth characters represent the
number of the volume in the volume set.
MNT$M_INIT_CONT applies only to magnetic tapes.

Messages will be sent to the caller's SYS$0UTPUT device.

SYS2-179

System Service Descriptions
$MOUNT

Option

MNT$M_MULTI_ VOL

MNT$M_NOASSIST

MNT$M_NOAUTO

MNT$M_NOCACHE

MNT$M_NOCOPY

MNT$M_NODISKQ

SYS2-180

Description

Specifies, for foreign or unlabeled magnetic tapes, that subsequent
volumes can be processed by overriding MOUNT's access checks.
You can use this option when a utility that supports multivolume
magnetic tape sets needs to process subsequent volumes, and
these volumes do not contain labels that MOUNT can interpret.
You need VOLPRO privilege to specify the MNT$M_MULTI_ VOL
option. MNT$M_MULTI_ VOL can only be used with the MNT$M_
FOREIGN option.
Digital recommends the use of this qualifier only when it is not
possible to alter the utility to explicitly perform MOUNT and
DISMOUNT operations on each reel in the set.

$MOUNT does not request operator assistance if errors are
encountered during the mount operation. If not specified, $MOUNT
requests operator assistance to recover from some error conditions.
Automatic volume labeling (AVL) and automatic volume recognition
(AVR) are to be disabled. If MNT$M_NOAUTO is specified, the
operator must enter commands from the console to process each
additional volume in a volume set. When a volume is finished
processing, the operator specifies the drive on which the next
volume is loaded and the label name of the next volume. You might
want to use MNT$M_NOAUTO to disable AVL and AVR when not
reading a volume set sequentially.
You can enable AVL and AVR by specifying MNT$M_INIT_CONT.
MNT$M_NOAUTO applies only to magnetic tapes.

All caching associated with the volume is turned off. Specifying
MNT$M_NOCACHE is equivalent to (1) specifying MNT$M_
WRITETHRU, (2) specifying a value of 1 for the item descriptor
MNT$_FILEID, and (3) specifying a value of 0 for the item
descriptors MNT$M_EXTENT and MNT$M_QUOTA..

Disables full copy operations on all physical devices being mounted
or added to a shadow set. This option provides you with the
opportunity to confirm the states of all of the devices or members
of a shadow set before proceeding with any full copy operation.
This prevents any accidental loss of data that could occur if an
unintended device is added to the shadow set.
If you do not select this option, $MOUNT automatically overwrites
the data on shadow set members that are not current. When you
select this option, a $MOUNT operation fails if any of the specified
potential shadow set members require full copy operations.

Disk quotas are not to be enforced for the volume to be mounted.
If not specified, disk quotas are enforced. To specify MNT$M_
NODISKQ, the caller must either own the volume or have VOLPRO
privilege. MNT$M_NODISKQ applies only to disks.

Option

MNT$M_NOHDR3

MNT$M_NOLABEL

MNT$M_NOMNTVER

MNT$M_NOREBUILD

MNT$M_NOUNLOAD

MNT$M_NOWRITE

System Service Descriptions
$MOUNT

Description

ANSI HDR3 and HDR4 labels are not to be written to magnetic
tapes as they are mounted. If not specified, ANSI HDR3 and HDR4
labels are written to all tapes. ·
Use MNT$M_NOHDR3 when writing to volumes that will be read
by a system, such as the RT-11 system, which does not process
HDR3 and HDR4 labels correctly. MNT$M_NOHDR3 applies only
to tapes.

The volume is to be mounted as a foreign volume; a foreign volume
is not Files-11 structured. If you specify MNT$M_NOLABEL, the
following item codes can each appear in the item list only once:
MNT$_DEVNAM, MNT$_ VOLNAM, and MNT$_LOGNAM. To
specify MNT$M_NOLABEL, the caller must either own the volume
or have VOLPRO privilege.

The volume is not marked as a candidate for automatic mount
verification. If not specified, the volume is marked as a candidate
for mount verification.

The volume to be mounted should be returned to active use
immediately, without performing a rebuild operation. This flag
defers the disk rebuild operation, so that the volume to be mounted
is returned to active use immediately. A rebuild operation can
consume a considerable amount of time, depending on the number
of files on the volume and on the number of different file owners (if
quotas are in use). The volume can be rebuilt later with the DCL
command SET VOLUME/REBUILD to recover the free space; for
more information, see the Open VMS DCL Dictionary.
If a disk volume is improperly dismounted, for example, during
a system failure, it must be rebuilt to recover any caching limits
that were enabled on the volume at the time of the dismount. By
default, $MOUNT attempts to rebuild.
When mounting a volume set, you must mount all members of the
set to reclaim all available free space.
MNT$M_NOREBUILD applies only to disks.

The volume to be mounted is not to be unloaded when it is
dismounted. Specifying MNT$M_NOUNLOAD causes the volume
to remain loaded when it is dismounted unless the dismount
explicitly requests that the volume be unloaded.
The volume to be mounted is software write locked. If not specified,
the volume is assumed to have read and write access.

SYS2-181

System Service Descriptions
$MOUNT

Option

MNT$M_OVR_ACCESS

MNT$M_OVR_EXP

MNT$M_OVR_IDENT

MNT$M_OVR_LOCK

MNT$M_OVR_SETID

MNT$M_OVR_SHAMEM

SYS2-182

Description

If the installation allows, this option overrides any character in
the accessibility field of the volume. The necessity of this option is
defined by the installation. That is, each installation has the option
of specifying a routine that the magnetic tape file system will use
to process this field. By default, the operating system provides a
routine that checks this field in the following manner:

• If the magnetic tape was created on a version of the operating
system that conforms to Version 3 of ANSI, then you must
use this option to override any character other than an ASCII
space.

• If a protection is specified and that magnetic tape conforms to
an ANSI standard that is higher than Version 3, then you must
use this option to override any character other than an
ASCII 1.

To specify MNT$M_OVR_ACCESS, the caller must either own the
volume or have VOLPRO privilege. MNT$M_OVR_ACCESS applies
only to tapes.
A tape that has not yet reached its expiration date can be
overwritten. To specify MNT$M_OVR_EXP, the caller must own
the volume or have VOLPRO privilege.

You can mount the volume without specifying the volume name (by
using the MNT$_VOLNAM item code). If specified, the following
options must not be specified: MNTM_GROUP, MNTM_SHARE,
and MNT$M_SYSTEM.

The software write lock that occurs when a volume has a corrupted
storage bit mask can be overridden.
Checks on the volume set identification are not to be performed
when subsequent reels in the volume set are mounted. MNT$M_
OVR_SETID applies only to tapes.

Allows you to mount former shadow set members outside of
the shadow set. If you do not specify this option, $MOUNT
automatically mounts the volume write-locked to prevent accidental
deletion of data. To specify this option, you must either own the
volume or have VOLPRO privilege.
When you use this option, the shadow set generation number is
erased from the volume. If you then remount the volume in the
former shadow set, $MOUNT considers it an unrelated' volume and
marks it for a full copy operation.

Option

MNT$M_OVR_ VOLO

MNT$M_READCHECK
MNT$M_SHARE

MNT$M_SYSTEM

MNT$M_TAPE_DATA_
WRITE

MNT$M_ WRITECHECK

MNT$M_ WRITETHRU

MNT2$M_CDROM

MNT2$M_COMPACTION

MNT2$M_DISKQ

MNT2$_DSI

Description

System Service Descriptions
$MOUNT

The volume label's owner identifier field is not to be processed.
$MOUNT reads volume owner and protection information from the
volume owner field of the volume labels.
The operating system requires that you specify MNT$M_OVR_
VOLO to process magnetic tapes when all of the following
conditions exist: (1) the volume was created on a Digital operating
system other than Open VMS; (2) the volume was initialized with a
protection specified; and (3) the volume conforms to the Version 3
ANSI label standard.
To specify MNT$M_OVR_VOLO, the caller must either have
VOLPRO privilege or own the volume. MNT$M_OVR_VOLO
applies only to tapes.

Read checks are to be performed following all read operations.
Volume is to be mounted shared and is therefore accessible to other
users. MNT$M_SHARE applies only to disks.
If the volume was previously mounted shared by another user and
MNT$M_SHARE is specified in the current call, all other options
specified in the current call are ignored.
If the caller allocated the device and specified MNT$M_SHARE in
the call to $MOUNT, $MOUNT will deallocate the device so that
other users can access the volume.

The logical name for the volume to be mounted is entered in the
system logical name table, and the volume is made accessible to
all other users, provided that UIC-based protection allows access
to the volume. To specify MNT$M_SYSTEM, the caller must have
SYSNAM privilege. MNT$M_SYSTEM applies only to disks.

Enables the tape controller's write cache for this device. Enabling
the write cache improves data throughput for write operations. By
default, the tape controller's write cache is disabled for the device.
This option applies only to tape systems that support a write cache.

Write checks are to be performed after all write operations.

Write-back caching is disabled so that file headers are written back
to disk with every write operation. If not specified, file headers
are cached until the file is closed. Caching file headers improves
performance at the risk of losing written data if the system fails.
MNT$M_ WRITETHRU applies only to disks.

Mounts a volume assuming the media to be ISO 9660 (or High
Sierra) formatted.

Enables data compaction for those magnetic tapes that support
data compaction (TA90, TA91, and others).
Controls whether quotas are to be enforced on the specified disk
volume.

Enables XAR permissions Owner and Group for XARs containing
Digital System Identifiers (DSI). For more information, see the
Open VMS Record Management Services Reference Manual.

SYS2-183

System Service Descriptions
$MOUNT

Option Description

MNT2$_INCLUDE Automatically reconstructs a former shadow set to the way it was
before the shadow set was dissolved. Applicable only if you have

MNT2$M_
NOCOMPACTION
MNT2$_0VR_LIMITED_
SEARCH

the volume shadowing option. For more information, see Volume
Shadowing for Open VMS.

Forces the density to no compaction for those magnetic tapes that
support data compaction (TA90, TA91, and others).

For disk type devices that do not provide for bad-block revectoring,
it is possible that the Files-11 homeblock has been placed
numerous I/Os from the start of the volume. To decrease the
failover time when accessing media which does not contain a valid
Files-11 homeblock, a limited-search algorithm was implemented.
This switch overrides the limited-search algorithm so that the
entire volume will be searched for a valid Files-11 homeblock.

MNT2$M_OVR_NOFE This bit mask is set to override those SCSI devices that do not
support forced error functionality. By overriding those SCSI devices
not supporting forced error capabilities, MNT2$M_OVR_NOFE
enables those devices to be mounted. Otherwise, the shadowing
code would report to $MOUNT that the device does not support
forced error, and the device would not be mounted.

MNT2$_0VR_SECURITY Enables you to continue mounting a volume if an error is returned
because the volume has an invalid SECURITY.SYS file. You must
have the VOLPRO privilege or own the volume to use this keyword.

MNT2$M_SUBSYSTEM Enables the processing of protected subsystem identifiers on the
volume. By default, subsystem identifiers are ignored on all but the
system disk. Requires SECURITY privilege.

MNT2$M_XAR Enables enforcement of the extended record attribute (XAR) access
controls. For more information about XAR, see the Open VMS
System Manager's Manual.

SYS2-184

MNT$_LIMIT
The MNT$_LIMIT item code specifies the maximum amount of free space in
the extent cache. The buffer must contain a longword value, which specifies the
amount of free space in units of tenths of a percent of the disk's total free space.
The MNT$_LIMIT item code applies only to disks.

MNT$_LOGNAM
The MNT$_LOGNAM item code specifies a logical name for the volume; this
logical name is equated to the device name specified by the first MNT$_DEVNAM
item code. The buffer must contain a character string from 1 to 64 characters,
which is the logical name.

Unless you specify MNT$M_GROUP or MNT$M_SYSTEM, the logical name is
entered in the process logical name table.

MNT$_0WNER
The MNT$_ OWNER item code specifies the UIC to be assigned ownership of the
volume. The buffer must contain a longword octal value, which is the UIC. If
the volume is Files-11 structured, the specified value overrides the ownership
recorded on the volume. You need either VOLPRO privilege or ownership of the
volume to assign a UIC to a Files-11 structured volume.

System Service Descriptions
$MOUNT

MNT$_PROCESSOR
For magnetic tapes and Files-11 On-Disk Structure Level 1 disks, MNT$_
PROCESSOR specifies the name of the ancillary control process (ACP) that is to
process the volume. The specified ACP overrides the default ACP associated with
the device.

For Files-11 On-Disk Structure Level 2 disks, MNT$_PROCESSOR controls block
cache allocation.

To specify MNT$_PROCESSOR, the caller must have OPER privilege.

The buffer must contain a character string specifying either the string UNIQUE,
a device name, or a file specification. Following is a description of the action
taken for each of these cases.

String

UNIQUE

ddcu

filespec

MNT$_QUOTA

Description

For magnetic tapes and Files-11 Structure Level 1 disks,
UNIQUE specifies that $MOUNT create a new process to execute
a copy of the default ACP image associated with the device
specified by the MNT$_DEVNAM item code.
For Files-11 Structure Level 2 disks, UNIQUE allocates a
separate block cache.

For magnetic tapes and Files-11 Structure Level 1 disks, ddcu
specifies that $MOUNT use the ACP process currently being used
by the device ddcu. The device specified must be in the format
ddcu, for example, DRA3.
For Files-11 Structure Level 1 disks, ddcu specifies that
$MOUNT take the block allocation from the specified device.

Specifies that $MOUNT create a new process to execute the ACP
image with the file specification filespec. Wildcard characters are
not allowed in the file specification. The file must be in the disk
and directory specified by the logical name SYS$SYSTEM. This
operation requires CMKRNL privilege.

The MNT$_QUOTA item code specifies the size of the quota record cache in units
of quota records. The buffer must contain a longword value, which is this size. To
specify MNT$_QUOTA, you need OPER privilege. The value 0 disables caching.
The MNT$_QUOTA item code applies only to disks.

MNT$_RECORDSIZ
The MNT$_RECORDSIZ item code specifies the number of characters in each
record and is used with MNT$_BLOCKSIZE to specify the data formats for
foreign volumes. The buffer must contain a longword value less than or equal to
the block size. The MNT$_RECORDSIZ item code applies only to tapes.

If you do not specify MNT$_RECORDSIZ, the record size is assumed to be equal
to the block size.

MNT$_SHAMEM
The MNT$_SHAMEM item code specifies the name of a physical device to be
mounted into a shadow set. The MNT$_SHAMEM descriptor is a 1- to 64-
character string containing the device name. The string can be a physical device
name or a logical name; if it is a logical name, it must translate to a physical
device name. An item list must contain at least one item descriptor specifying

SYS2-185

. System Service Descriptions
$MOUNT

SYS2-186

a member; this item descriptor must appear after the MNT$_SHANAM item
descriptor.

Volume Shadowing for Open VMS automatically performs a copy or a merge
operation, if necessary, when it mounts the disk into the shadow set.

MNT$_SHAMEM_COPY
The MNT$_SHAMEM_COPY item code specifies the name of a device that will be
the target of a copy operation when it is mounted into a shadow set. The buffer
is a 1- to 64-character string containing the device name. The string can be a
physical device name or a logical name; if it is a logical name, it must translate
to a physical device name. The device will become a member of the shadow set
represented by the virtual unit name specified in the MNT$_SHANAM item
descriptor.

Volume Shadowing for Open VMS automatically performs a copy operation on the
device specified with the MNT$_SHAMEM_COPY item code.

Caution ------------­

When adding a device with the MNT$_SHAMEM_COPY item code,
specify only those members that require a copy operation.

MNT$_SHAMEM_MGCOPY
The MNT$_SHAMEM_MGCOPY item code specifies the name of a device that
will be a merge member of the shadow set. The device will merge with members
of the shadow set represented by the virtual unit specified in the MNT$_
SHANAM item descriptor. The buffer is a 1- to 64-character string containing the
device name. The string can contain a physical device name or a logical name; if
it is a logical name, it must translate to a physical device name.

Volume Shadowing for Open VMS automatically performs a merge operation on
the device specified with the MNT$_SHAMEM_MGCOPY item code. Therefore,
you should use MNT$_SHAMEM_MGCOPY when the information on the disks is
correct except for possible data inconsistencies.

MNT$_SHANAM
The MNT$_SHANAM item code specifies the name of the virtual unit to be
mounted. The buffer is a 1- to 64-character string containing the device name.
The virtual unit name may be a logical name; if it is a logical name, it must
translate to a virtual unit name.

Because every shadow set is represented by a virtual unit, you must include
at least one MNT$_SHANAM item descriptor in the item list that you pass to
$MOUNT to create and mount the shadow set. If you are mounting a volume set
containing more than one shadow set, you must include one MNT$_SHANAM
item descriptor for each virtual unit included in the volume set.

The relative position of the item descriptors in the item list determines the
membership of the shadow set. That is, it indicates which members should be
bound to a specific virtual unit to form the shadow set. You must first specify
the virtual unit by using the MNT$_SHANAM item code. Then, you can specify
any number of members that are to be represented by that virtual unit by using
one of the following item codes: MNT$_SHAMEM, MNT$_SHAMEM_COPY,
or MNT$_SHAMEM_MGCOPY. If you specify one shadow set and want to
specify a second, specify a second virtual unit item descriptor. The members you

System Service Descriptions
$MOUNT

specify subsequently are bound to the shadow set represented by the virtual unit
specified in the second virtual unit item descriptor.

MNT$_UCS
The MNT$_UCS item code specifies a descriptor containing a Universal Character
Sequence (UCS) defined by ISO 2022 and used when mounting an ISO 9660
CD-ROM. For more information, see the Open VMS System Manager's Manual.

MNT$_UNDEFINED_FAT
The MNT$_UNDEFINED_FAT item code specifies the default file attributes to
be used for the records on ISO 9660 media for which no record format has been
specified.

The buffer contains a 32-bit structure that defines a file's record format, record
attributes, and maximum record size.

The following diagram depicts the structure of the Undefined File Attributes
buffer.

31 24 23 16 15 0

UNFAT$B_RFM I UNFAT$B_RAT UNFAT$W_MRS

ZK-6644A-GE

The following table defines the buffer fields.

Buffer Field

UNFAT$W _MRS

UNFAT$B_RAT

. UNFAT$B_RFM

MNT$_VOLNAM

Definition

Maximum record size; specifies the maximum record
size for all records in a file: 0 to 32767. Applies only
to FIXED or STREAM formats.
Record attributes; specifies the attributes for all
records in a file: NONE, CR, FTN, PRN, NOBKS.
Applies only to non-STREAM record formats .

Record format; specifies the format for all records in
a file: FIXED, VARIABLE, STREAM, STREAM_
LF, STREAM_CR, LSB_VARIABLE, or MST_
VARIABLE.

The MNT$_VOLNAM item code specifies the name of the volume to be mounted
on the device. The number of characters allowed in a volume name depends on
the type of device, as follows:

Device Type

Magnetic tape

Files-11 disk

ISO 9660 disk

Number of Characters in Label

0-6

1-12

1-32

The operating system requires disk volume labels to be unique in the first 12
characters within a given domain.

SYS2-187

System Service Descriptions
$MOUNT

SYS2-188

The MNT$_VOLNAM item code can appear more than once in an item list; it
appears more than once when a volume set is being mounted because, in this
case, one volume name is given to each volume in the volume set.

When a disk volume set is being mounted, you must specify MNT$_DEVNAM
and MNT$_ VOLNAM once for each volume of the volume set. The $MOUNT
service mounts the volume specified by the first MNT$_ VOLNAM item code on
the device specified by the first MNT$_DEVNAM item code in the item list; it
mounts the volume specified by the second MNT$_ VOLNAM code on the device
specified by the second MNT$_DEVNAM code, and so on for all specified volumes
and devices. Thus, there must be an equal number of these two item codes in the
item list.

When a tape volume set is being mounted, the number of MNT$_DEVNAM item
codes specified need not be equal to the number of MNT$_ VOLNAM item codes
specified, because more than one volume can be mounted on the same device.

MNT$_VOLSET
The MNT$_ VOLSET item code specifies the name of a volume set. The buffer
must contain a character string from 1 to 12 alphanumeric characters, which is
the volume set name. ·

An ISO 9660 volume set name can be from 1to128 characters in length.

Volume set names must be unique in the first 12 characters. In addition, if the
first 12 characters of the volume set name are the same as the first 12 characters
of any volume label, a lock manager deadlock will occur. To avoid this problem,
you must override either the volume label (by using the MNT$_ VOLNAM item
code) or the volume set name (by using the MNT$_ VOLSET item code).

When you specify MNT$_ VOLSET, volumes specified by the MNT$_ VOLNAM
item code are bound into a new volume set or added to an existing volume set,
depending on whether the name specified by MNT$_ VOLSET is a new or already
existing name.

When you specify MNT$_ VOLSET to add volumes to an existing volume set, the
root volume (RVNl) must either (1) already be mounted or (2) be specified first
(by the MNT$_DEVNAM and MNT$_ VOLNAM item codes) in the item list.

When you specify MNT$_ VOLSET to create a new volume set, the first volume
specified (by the MNT$_DEVNAM and MNT$_VOLNAM item codes) in the item
list becomes the root volume.

MNT$_VPROT
The MNT$_ VPROT item code specifies the protection to be assigned to the
volume. The buffer must contain a longword protection mask, which specifies the
four types of access allowed to the four categories of user.

The protection mask consists of four 4-bit fields. Each field grants or denies
read, write, logical, and physical access to a category of users. Cleared bits grant
access; set bits deny access. The following diagram depicts the structure of the
protection mask.

World Group Owner System

PLWRPLWRPLWRPLWR
151413121110 9 8 7 6 5 4 3 2 1 0

ZK-1715-GE

Description

System Service Descriptions
$MOUNT

If you do not specify MNT$_ VPROT or specify it as the value 0, the volume
receives the protection that it was assigned when it was initialized. To specify
MNT$_ VPROT for a Files-11 structured volume, the caller must either own the
volume or have VOLPRO privilege.

MNT$_WINDOW
The MNT$_ WINDOW item code specifies the number of mapping pointers to be
allocated for file windows. The buffer must contain a longword value in the range
7 to 80. This value overrides the default value that was applied when the volume
was initialized. The MNT$_ WINDOW item code applies only to disks.

When a file is opened, the file system uses the mapping pointers to access the
data in the file. To specify MNT$_ WINDOW, you need OPER privilege.

The Mount Volume service mounts a tape, disk volume, or volume set and
specifies options for the mount operation.

When a subprocess mounts a private volume without explicitly allocating the
device, the master process of the job becomes the owner of this device. This
provision is necessary because the subprocess can be deleted and the volum~
should remain privately mounted for this job.

When a subprocess explicitly allocates a device and then mounts a private volume
on this device, this subprocess retains the device ownership. In this case, only
subprocesses of the device owner, and processes with SHARE privilege, have
access to the device.

The $MOUNT service uses the following system resources to mount volumes with
group or systemwide access allowed:

0 Nonpaged pool

• Paged pool

When $MOUNT mounts a disk volume, the logical name DISK$volume-label
is always created. If you specify a logical name in the mount request that is
different from DISK$volume-label, there will be two logical names associated
with the device.

If the logical name of a volume is in a process-private table, then the name is not
deleted when the volume is dismounted.

Required Access or Privileges
To mount a volume on a device, you must have read, write, or control access to
that device.

To mount a particular volume, the caller must either own or have privilege to
access the specified volume or volumes. The privileges required depend on the
operation and are listed with the item codes that specify the operation.

The calling process must have TMPMBX or PRMMBX privilege to perform an
operator-assisted mount.

SECURITY privilege is required to enable protected subsystems.

Required Quota
None

SYS2-189

System Service Descriptions
$MOUNT

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $!NIT_ VOL, $PUTMSG, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-190

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPNAM
SS$_NOHOMEBLK
SS$_NOOPER

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSYSNAM

The service completed successfully.
The item list or an address specified in the item
list cannot be accessed.
A buffer length of 0 was specified with a nonzero
item code; an illegal item code was specified; or
no device was specified.
The caller does not have GRPNAM privilege.
Files-11 home block not found on volume.
The caller does not have the required OPER
privilege.
The caller does not have sufficient privilege to
access a specified volume.
The specified device does not exist on the host
system.
The caller does not have SYSNAM privilege.

The $MOUNT service can also return a condition value that is specific to the
Mount utility. The symbolic definition macro $MOUNDEF defines these condition
values.

System Service Descriptions
$MTACCESS

$MTACCESS
Magnetic Tape Accessibility

Format

Arguments

Allows installations to provide their own routine to interpret and output the
accessibility field in the VOLl and HDRl labels of an ANSI labeled magnetic
tape.

SYS$MTACCESS lblnam ,[uic] ,[std_version] ,[access_char] ,[access_spec] ,type

lblnam
Open VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

ANSI label to be processed. The lblnam argument is the address of a longword
containing the label. On input, the label passed is either the VOLl or HDRl
label read from the magnetic tape; on output of labels, the value of this field is 0.

. The type of label passed is determined by type.

uic
Open VMS usage:
type:
access:
mechanism:

uic
longword (unsigned)
read only
by value

UIC of the user performing the operation. The uic argument is a longword
containing the UIC.

std_ version
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Decimal equivalent of the ANSI standard version read from the VOLl label. The
std_ version argument is a longword containing the standard version number.

access_char
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Accessibility character specified by the user. The access_char argument is a
byte containing the accessibility character used for the output of labels.

access_spec
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

SYS2-191

System Service Descriptions
$MTACCESS

Description

SYS2-192

Value specifying whether the accessibility character passed in access_char was
specified by the user. The access_spec argument is a byte containing one of the
following values.

Value

MTA$K_CHARVALID
MTA$K_NOCHAR

Meaning

Yes
No

This argument is used only for the output of labels.

type
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of accessibility field to process. The type argument is a byte containing one
of the following values.

Value

MTA$K_INVOL1
MTA$K_INHDR1
MTA$K_OUTVOL1
MTA$K_OUTHDR1

Meaning

Input a VOL! label
Input a HDRl label
Output a VOLl label
Output a HDRl label

The Magnetic Tape Accessibility service allows installations to provide their own
routine to interpret and output the accessibility field in the VOL! and HDRl
labels of ANSI labeled magnetic tapes. The installation can override the default
routine by providing an MTACCESS.EXE executive loaded image.

The default installation routine first checks the ANSI standard version of the
label. For magnetic tapes with a version number of 3 or less, the routine outputs
either a blank or the character you specified. On input of these magnetic tapes,
the routine checks for a blank and returns the value SS$_FILACCERR if the field
is not blank.

For magnetic tapes with a version number greater than 3, the routine outputs
either the character specified by the access_char argument or an ASCII 1 if no
character was specified. On input of these magnetic tapes, the routine checks
for a blank. If the field is blank, RO is set to 0. In that case, you are given full
access and protection is not checked. If the field contains an ASCII 1, and the
VOLl Implementation Identifier field contains the system code, RO is set to
SS$_NORMAL. In that case, the protection is checked.

If the field is not blank and does not contain an ASCII 1, RO is set to SS$_
FILACCERR, which forces you to override accessibility checking and allows the
magnetic tape file system to check protection.

System Service Descriptions
$MTACCESS

The following table summarizes the results of label input check.

Contents of RO

SS$_NORMAL

0

SS$_FILACCERR

Result

Check the protection on the magnetic tape.

Give the user full access. protection is not checked.

Check for explicit override, then check protection.

Note that the default accessibility routine does not output SS$_NOVOLACC or
SS$_NOFILACC. These statuses are included for the installation's use, and the
magnetic tape file system handles these cases.

The magnetic tape file system calls $MTACCESS to process the accessibility field
in the VOLl and HDRl labels. After a call to the system service, the magnetic
tape file system checks that the installation did not move the magnetic tape.
If the magnetic tape was moved, the magnetic tape file system completes the
current operation with an SS$_TAPEPOSLOST error. Finally, it processes the
remainder of the label according to the status returned by $MTACCESS.

Required Access or Privileges
Because accessibility is an installation-provided routine, the operating system
cannot determine which users have the authority to override the processing of
this field. However, the magnetic tape file system allows only operator class users
to deal with blank magnetic tapes so that a user must have both OPER and
VOLPRO privileges to initialize or mount blank magnetic tapes.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RDB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT, $PARSE_
ACL, $REM_HOLDER, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_FILACCERR

SS$_NOFILACC

SS$_NOVOLACC

The service completed successfully.

The accessibility characteristic in the HDRl
label is not blank and you cannot access the file
without overriding the field.

The user has no access to the file.

The user has no access to the volume.

SYS2-193

System Service Descriptions
$NUMTIM

$NUMTIM
Convert Binary Time to Numeric Time

Format

Arguments

SYS2-194

Converts an absolute or delta time from 64-bit system time format to binary
integer date and time values.

SYS$NUMTIM timbuf ,[timadr]

timbuf
Open VMS usage: vector_ word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Buffer into which $NUMTIM writes the converted date and time. The numtim
argument is the address of a 7-word structure. The following diagram depicts the
fields in this structure.

31 15 0

Month of year YearsinceO

Hour of day Day of month

Second of minute Minute of hour

Hundredths of second

ZK-1716-GE

If the timadr argument specifies a delta time, $NUMTIM returns the value 0 in
the year since 0 and month of year fields. It returns in the day of month field the
number of days specified by the delta time, which must be less than 10,000 days.

timadr
Open VMS usage: date_ time
type: quadword
access: read only
mechanism: by reference

The 64-bit time value to be converted. The timadr argument is the address of
a quadword containing this time. A positive-time value represents an absolute
time, while a negative time value indicates a delta time.

If you do not specify timadr, $NUMTIM returns the current system time.

If timadr specifies the value 0, $NUMTIM returns the base date (November 17,
1858).

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVTIME

System Service Descriptions
$NUMTIM

The service completed successfully.
The 64-bit time value cannot be read by the
caller, or the buffer cannot be written by the
caller.
The specified delta time is equal to or greater
than 10,000 days.

SYS2-195

System Service Descriptions
$NUMUTC

$NUMUTC
Convert UTC Time to Numeric Components

Format

Arguments

SYS2-196

Converts an absolute 128-bit binary time into its numeric components. The
numeric components are returned in local time.

SYS$NUMUTC timbuf ,[utcadr]

timbuf
Open VMS usage: vector_ word_unsigned
type: word
access: write only
mechanism: by reference

Buffer into which $NUMUTC writes the converted date and time. The timbuf
argument is the address of a 13-word structure containing time, inaccuracy of
time, and time differential factor. The time differential factor encoded in the
128-bit buffer is used to convert the UTC to its numerical components. Negative
values in the inaccuracy field indicate an infinite inaccuracy.

The following diagram depicts the fields in this structure.

31 15 0

Month of year Year since 0

Hour of day Day of month

Second of minute Minute of hour

lnaccdays Hundredths of second

lnacc minutes lnacc hours

lnacc hundredths of second lnacc seconds

TDF in minutes

ZK-4631A

utcadr
Open VMS usage: coordinated universal time
type: utc_date_time
access: read only
mechanism: by reference

The 128-bit UTC time value to be converted.

The utcadr argument is optional; if it is not used, $NUMUTC will use the
current time.

Condition Values Returned

SS$_NORMAL

SS$_INVTIME

System Service Descriptions
$NUMUTC

The service completed successfully.

The 128-bit UTC time is not valid.

SYS2-197

System Service Descriptions
$PARSE_ACL

$PARSE_ACL
Parse Access Control List Entry

Format

Arguments

SYS2-198

Parses the specified text string and converts it to the binary representation for an
access control entry (ACE).

SYS$PARSE_ACL aclstr ,aclent ,[errpos] ,[accnam] ,[nullarg]

aclstr
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Formatted ACE that is parsed when $PARSE_ACL completes execution. The
aclstr argument is the address of a string descriptor pointing to the text string to
be parsed.

aclent
Open VMS usage: char_string
type: character-coded text string
access: write only ·
mechanism: by descriptor-fixed length string descriptor

Description of the ACE that is parsed when $PARSE_ACL completes execution.
The aclent argument is the address of a descriptor pointing to the buffer in
which the ACE is written. The first byte of the buffer contains the length of the
ACE; the second byte contains a value that identifies the type of ACE, which in
turn defines the format of the ACE. For information about the ACE types and
their associated formats, see $FORMAT_ACL.

errpos
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters from aclstr processed by $PARSE_ACL. The errpos
argument is the address of a word that receives the number of characters actually
processed by the service. If the service fails, this count points to the failing point
in the string.

accnam
Open VMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when $PARSE_ACL is executing. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the name

Description

System Service Descriptions
$PARSE_ACL

of a bit. The first element names bit 0, the second element names bit 1, and so
on.

You can call LIB$GET_ACCNAM to retrieve the access name table for the class
of object whose ACL is to be formatted. If you omit accnam, the following names
are used.

Bit Name

Bit 0 READ
Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT_5
Bit 6 BIT_6

Bit 31 BIT_31

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserve~ to Digital.

The Parse Access Control List Entry service parses the specified text string and
converts it to the binary representation for an access control entry (ACE).

Required Access or Privileges
None

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CHANGE_ACL, $CHECK_
ACCESS, $CHKPRO, $CREATE_RDB, $ERAPAT, $FIND_HELD, $FIND_
HOLDER, $FINISH_RpB, $FORMAT_ACL, $FORMAT_AUDIT, $GRANTID,
$HASH_PASSWORD, $IDTOASC, $MOD_HOLDER, $MOD_IDENT,
$MTACCESS, $REM_HOLDER, $REM_IDENT, $REVOKID

SYS2-199

System Service Descriptions
$PARSE_ACL

Condition Values Returned

SYS2-200

SS$_NORMAL

SS$_ACCVIO

SS$_IVACL

SS$_NOSUCHID

The service completed successfully.

The string or its descriptor cannot be read by the
caller; the buffer descriptor cannot be read by the
caller; the buffer cannot be written by the caller;
or the buffer is too small to hold the ACL entry.

The format of the access control list entry is not
valid.
The specified identifier does not exist in the
rights database.

System Service Descriptions
$PERM_DIS_ALIGN_FAULT _REPORT (Alpha Only)

$PERM_DIS_ALIGN_FAULT_REPORT (Alpha Only)
Disable Alignment Fault Reporting

Format

Description

On Alpha systems, disables user process alignment fault reporting.

SYS$PERM_DIS_ALIGN_FAULT _REPORT

The Disable Alignment Fault Reporting service disables user process alignment
fault reporting.

See the description of the $PERM_REPORT_ALIGN_FAULT service for an
example of a program that can be used to enable and disable user process
alignment fault reporting.

Required Access or Privileges
None

Required Quota
None

Related Services
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $INIT_SYS_
ALIGN_FAULT_REPORT, $PERM_REPORT_ALIGN_FAULT, $START_ALIGN_
FAULT_REPORT, $STOP _ALIGN_FAULT_REPORT, $STOP _SYS_ALIGN_
FAULT_REPORT

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-201

System Service Descriptions
$PERM_REPORT _ALIGN_FAULT (Alpha Only)

$PERM_REPORT_ALIGN_FAULT (Alpha Only)
Report Alignment Fault

Format

Description

On Alpha systems, initializes user process alignment fault reporting.

SYS$PERM_REPORT _ALIGN_FAULT

The Report Alignment Fault service allows the user to permanently enable user
process alignment fault reporting for all subsequent images.

This service reports alignment faults only in exception mode. For more
information about reporting modes, see the $START_ALIGN_FAULT_REPORT
service.

Image alignment fault reporting takes precedence over process alignment fault
reporting. That is, if both image and process alignment fault reporting are
enabled, faults are reported to the image first.

Required Access or Privileges
None

Required Quota
None

Related Services
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $INIT_SYS_
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT_REPORT, $START_
ALIGN_FAULT_REPORT, $STOP _ALIGN_FAULT_REPORT, $STOP _SYS_
ALIGN_FAULT_REPORT

Condition Values Returned

Example

. SYS2-202

SS$_NORMAL The service completed successfully.

/**/
/* */
/* SET ALIGN REPORT.C */
/* - - *I
/* This program can be used to permanently turn on and off */
/* alignment fault reporting for a process. After creating the */
/* executable, do: */
/* */
/* $ align :== $dir:set align report.exe */
/* $ align on - - *I
/* $ run program ! will generate align faults on screen */
/* $ align off */
/* $ run program ! will not generate align faults */
/* */
/**/
#include <stdio>
#include <ctype>
#include <ssdef>

System Service Descriptions
$PERM_REPORT_ALIGN_FAULT (Alpha Only)

/* alignment fault reporting system services
extern sys$perm report align fault(),

sys$perm=dis_a1Ign_fault_report();

main(argc, argv)
int argc;
char *argv[];

int status;

/* check arguments */
if (argc < 2) {

}

printf ("Insufficient arguments\n");
return (40);

/* check if the argument is on or off */
if ((strcmp ("ON", argv[l]) == 0) I I (strcmp ("on", argv[l]) == 0))

/* on, turn alignment fault reporting on for this process */
status= sys$perm_report_align_fault ();

*/

else if ((strcmp ("OFF", argv[1]) == 0) 11 (strcmp ("off", argv[1]) == 0))
/* off, turn alignment fault reporting off for this process */
status= sys$perm_dis_align_fault_report ();

else
return (SS$_BADPARAM);

/* return status */
return (status);

This example shows a program that can be used to enable and disable alignment
fault reporting for a process.

SYS2-203

System Service Descriptions
$PROCESS_AFFINITY (Alpha Only)

$PROCESS_AFFINITY (Alpha Only)
Modify Process Affinity

Format

Arguments

SYS2-204

On Alpha systems, allows modification of the CPU affinity set for a specified
kernel thread.

This service accepts 64-bit addresses.

SYS$PROCESS_AFFINITY [pidadr] [,prcnam] [,select_mask] [,modify_mask]
[,prev_mask] [,flags]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Process identification (PID) of a kernel thread whose affinity mask is to be
modified or returned. The pidadr argument is the 32-bit or 64-bit address of a
longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user affinity mask of the initial thread of the current
calling process. The pidadr argument takes precedence over the prcnam
argument in any circumstances where both are supplied in the service call.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed length string descriptor

Process name of the process whose affinity mask is to be modified or returned.
The prcnam argument is the 32-bit or 64-bit address of a character string
descriptor pointing to the process name string. A process can be identified with
a 1- to 15-character string. The service operations are made to the user affinity
mask of the initial thread of the specified process.

If pidadr and prcnam are both specified, then pidadr is modified or returned
and prcnam is ignored. If neither argument is specified, then the context of the
initial thread of the calling process is modified or returned.

select_mask
Open VMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying which bits of the specified process" affinity mask are to be
modified. The select_mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding
CPU position in the mask is to be modified.

System Service Descriptions
$PROCESS_AFFINITV (Alpha Only)

The individual CPU bits in select_mask can be referenced by their symbolic
name constants, CAP$M_CPUO through CAP$M_CPU31. These constants (zero­
relative to match system CPU IDs) specify the position in the mask quadword
that correspond to the bit name. Multiple CPUs can be selected by ORing
together the appropriate bits.

modify _mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying the settings for those explicit affinities selected in the select_
mask argument. The modify _mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding CPU
is to be added to the specified process affinity set; when clear, the corresponding
CPU is to be removed from the specified process affinity set.

The bit constants CAP$M_CPUO through CAP$M_CPU31 can be used to modify
the appropriate bit position in the quadword pointed to by modify _mask.
Multiple CPUs can be added to the affinity set by ORing together the appropriate
bits.

To add a specific CPU to the affinity mask set, that bit position must be set in
both select_mask and modify _mask. To remove a specific CPU from the affinity
mask set, that bit position must be set in select_mask and clear in modify_
mask.

The constant CAP$K_ALL_CPU_ADD, when specified in modify_mask, indicates
that all CPUs specified in select_mask are to be added to the affinity mask set.
The constant CAP$K_ALL_CPU_REMOVE indicates that all CPUs in select_
mask are to be removed from the affinity mask set.

prev_mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Previous CPU affinity mask for the specified kernel thread before execution
of this call to $PROCESS_AFFINITY. The prev _mask argument is the 32-bit
or 64-bit address of a quadword into which $PROCESS_AFFINITY writes the
previous explicit affinity bit mask.

flags
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Options selected for affinity modification. The flags argument is a quadword bit
vector wherein a bit corresponds to an option. Only the bits specified below are
used; the remainder of the quadword bits are reserved and must be 0.

Each option (bit) has a symbolic name, which the $CAPDEF macro defines. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

SYS2-205

System Service Descriptions
$PROCESS_AFFINITV (Alpha Only)

Description

SYS2-206

Symbolic Name

CAP$M_FLAG_PERMANENT

CAP$M_FLAG_CHECK_CPU

CAP$M_FLAG_CHECK_CPU_
ACTIVE

Description

Indicates whether to modify the
permanent process affinities in addition
to the current image copy. If CAP$M_
FLAG_PERMANENT is set, then both
the permanent and current affinities are
modified. If the flag bit is clear or flags is
unspecified, then just the current image
process affinities are modified.
This bit also determines which of the
affinity masks are returned in prev _
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.
Determines whether the kernel thread
can be left in a non-runnable state under
some circumstances. No operation of
this service will allow a transition from
a runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK_
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure
it can safely run on one of the CPUs in
the active set; otherwise, any valid state
operations on kernel threads already in a
blocked state will be allowed.

Indicates whether a check is made to
verify that all CPUs in the select mask
that are about to be selected for affinity
binding are in the active set. This does
not apply to CPUs that are about to be
cleared from the current affinity set.
Unlike CAP$M_FLAG_CHECK_CPU
where only a single CPU has to be valid

. for the condition to pass, CAP$M_FLAG_
CHECK_CPU_ACTIVE requires that all
CPUs in the selected set must pass the
criteria.

The Modify Process Affinity system service, based on the arguments select_
mask and modify _mask, adds or removes CPUs from the specified kernel
thread's affinity mask sets. If specified, the previous affinity mask is returned in
prev _mask. With the modify _mask argument, multiple CPUs can be added or
removed from the process affinity mask set in the same system service call.

System Service Descriptions
$PROCESS_AFFINITV {Alpha Only)

Adding a specific CPU to the process affinity mask indicates that the kerenl
thread is able to execute only on that CPU or on the others specified in the
mask. Affinity scheduling takes effect as soon as the affinity mask becomes
nonzero, limiting the CPU selection for the kernel thread to what is specified and
available. Thread selection and execution is still subject to standard capability
requirements, but only the affinity CPU set is considered when looking for an
available site. When the affinity mask is cleared, all CPUs are again considered
available and affinity is deactivated.

Either modify _mask or prev _mask, or both, must be specified as arguments. If
modify _mask is specified, then select_mask must be specified as an argument.
If modify _mask is not specified, then no modifications are made to the affinity
mask for the specified kernel thread. In this case, select_mask is ignored. If
prev _mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG_CHECK_CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

Required Privileges
The caller must have the ALTPRI privilege to call SYS$PROCESS_AFFINITY to
modify its own affinity mask. To modify another process' affinity mask, the caller
must have:

ALTPRI-To modify any process with a matching UIC
ALTPRI and GROUP-To modify any process in the same UIC group
ALTPRI and WORLD-To modify any process

To call SYS$PROCESS_AFFINITY simply to retrieve the specific process or global
mask, the caller need only have the following privileges:

None-To retrieve the state of itself or any process with a matching UIC
GROUP-To retrieve the state of any process in the same UIC group
WORLD-To retrieve the state of any process

Related Services
$CPU_CAPABILITIES
$PROCESS_CAPABILITIES

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_NOPRIV

SS$_NOSUCHTHREAD

SS$_NONEXPR

SS$_IVLOGNAM

The service completed successfully.
One of more arguments has an invalid value.

The service cannot access the locations specified
by one or more arguments.
Insufficient privilege for attempted operation.

The specified kernel thread does not exist.
The specified process does not exist, or an invalid
process identification was specified.
The process name string has a length of 0 or has
more than 15 characters.

SYS2-207

System Service Descriptions
$PROCESS_AFFINITV {Alpha Only)

SS$_CPUCAP

SS$_INSFARG

SYS2-208

No CPU can run the specified process with new
affinities.
Fewer than the required number of arguments
were specified or no operation was specified.

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

$PROCESS_CAPABILITIES {Alpha Only)
Modify Process User Capabilities

Format

Arguments

On Alpha systems, allows modification of the user capability set for a specified
kernel thread, or for the global user capability process default.

This service accepts 64-bit addresses.

SYS$PROCESS_CAPABILITIES [pidadr] [,prcnam] [,select_mask] [,modify_mask]
[,prev_mask] [,flags]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Process identification (PID) of a kernel thread whose user capability mask is to
be modified or returned. The pidadr argument is the 32-bit or 64-bit address of
a longword that contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user capability mask of the initial thread of the
current calling process. The pidadr argument takes precedence over the prcnam
argument where both are supplied in the service call.

If the constant CAP$M_FLAG_DEFAULT_ONLY is specified in flags, then the
user portion of the default process user capability mask is modified or returned
instead, regardless of the values specified in pidadr.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Process name of the process whose user capability mask is to be modified or
returned. The prcnam argument is the 32-bit or 64-bit address of a character
string descriptor pointing to the process name string. A process can be identified
with a 1- to 15-character string. The service operations are made to the user
capability mask of the initial thread of the specified process.

You can use the prcnam argument only if the process identified by the descriptor
has the same UIC group number as the calling process. To obtain information
about processes in other groups, the pidadr argument must be used.

If pidadr and prcnam are both specified, then prcnam is ignored. If neither
argument is specified, then the context of the initial thread of the calling process
is modified or returned.

SYS2-209

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

SYS2-210

select_mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying which bits of the specified process's user capability mask are
to be modified. The select_mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding user
capability is to be modified.

The individual user capability bits in select_mask can be referenced by their
symbolic bit constant names, CAP$M_USER1 through CAP$M_USER16. These
constants (not zero-relative) specify the position in the mask quadword that
corresponds to the bit name. Multiple capabilities can be selected by ORing
together the appropriate bits.

Alternately, the constant CAP$K_ALL_USER, when specified as the select_mask
argument, selects all user capabilities.

modify _mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Mask specifying the settings for those capabilities selected in the select_mask
argument. The modify _mask argument is the 32-bit or 64-bit address of a
quadword bit vector wherein a bit, when set, specifies that the corresponding
user capability is to be added to the specified kernel thread; when clear, the
corresponding user capability is to be removed.

The symbolic bit constants CAP$M_USER1 through CAP$M_USER16 can be used
to modify the appropriate bit position in modify_mask. Multiple capabilities can
be modified by ORing together the appropriate bits.

To add a specific user capability to a kernel thread, that bit position must be set
in both select_mask and modify _mask. To remove a specific user capability
from a kernel thread, that bit position must be set in select_mask and clear in
modify _mask.

The symbolic constant CAP$K_ALL_USER_ADD, when specified in modify_
mask, indicates that all capabilities specified in select_mask are to be added
to the appropriate capability set. The symbolic constant CAP$K_ALL_USER_
REMOVE indicates that all specified capabilities are to be removed from the set.

prev_mask
Open VMS usage: mask_quadword
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Previous user capability mask for the specified process or thread before execution
of this call to $PROCESS_CAPABILITIES. The prev_mask argument is the
32-bit or 64-bit address of a quadword into which $PROCESS_CAPABILITIES
writes the previous bit mask. If CAP$M_FLAG_DEFAULT_ONLY is set in the
flags argument, then prev _mask will contain the user portion of the global
default capability mask.

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

flags
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Options selected for the user capability modification. The flags argument is
a quadword bit vector wherein a bit corresponds to an option. Only the bits
specified below are used; the remainder of the quadword bits are reserved and
must be zero.

Each option (bit) has a symbolic name, defined by the $CAPDEF macro. The
flags argument is constructed by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

Symbolic Name

CAP$M_FLAG_DEFAULT_ONLY

CAP$M_FLAG_PERMANENT

Description

Indicates that the specified operations
are to be performed on the global context
cell instead of on a specific kernel thread.
This bit supersedes any individual kernel
thread specified in pidadr or prcnam.
Specifying this bit constant applies the
service operations to the capabilities for
all newly created processes.
Indicates whether to modify the
permanent user process capabilities in
addition to the current image copy. If
CAP$M_FLAG_PERMANENT is set,
then both the permanent and current
user process capabilities are modified. If
this bit is clear or flags is unspecified,
then just the current image process
capabilities are modified.
This bit also determines which of the
capability masks are returned in prev_
mask. If set, the permanent mask, used
to reinitialize the current set at image
rundown, is returned. If the bit is clear
or the flags argument is not specified, the
current running mask is returned.

SYS2-211

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

Description

SYS2-212

Symbolic Name

C~$M_FLAG_CHECK_CPU

Description

Determines whether the kernel thread
can be left in a non-runnable state under
some circumstances. No operation of
this service will allow a transition from
runnable to blocked state; however, if
the kernel thread is already at a blocked
state, this bit determines whether the
result of the operation must leave it
runnable. If CAP$M_FLAG_CHECK_
CPU is set or flags is unspecified, the
kernel thread will be checked to ensure it
can safely run on one of the CPUs in the
active set; otherwise, any state operations
on kernel threads already in a blocked
state will be allowed.

The Modify Process User Capabilities system service, based on the arguments
select_mask and modify _mask, adds or removes user capabilities for the
specified kernel thread. If specified, the previous capability mask is returned in
prev _mask. With the modify _mask argument, multiple user capabilities for a
kernel thread can be added or removed in the same system service call.

Either modify_mask or prev_mask, or both, must be specified as arguments. If
modify _mask is specified, then select_mask must be specified as an argument.
If modify _mask is not specified, then no modifications are made to the user
capability mask for the specified kernel thread. In this case, select_mask is
ignored. If prev _mask is not specified, then no previous mask is returned.

No service changes will be allowed if the specified kernel thread will transition
from a runnable to blocked state. The CAP$M_FLAG_CHECK_CPU bit in the
flags argument requires that the final thread state be runnable regardless of
previous state; otherwise, interim changes that maintain a blocked state are
allowed if the thread is already in one.

If the symbolic bit constant CAP$M_FLAG_DEFAULT_ONLY is set in the flags
argument, the user capability modifications or the mask read requests are made
only to the global initialization cell regardless of what process selections values
are specified in the pidadr and prcnam arguments.

Required Access or Privileges
The caller must have the ALTPRI privilege to call SYS$PROCESS_
CAPABILITIES to modify its own user capability mask. To modify another
process" user capability mask, the caller must have:

ALTPRI-To modify any process with a matching UIC
ALTPRI and GROUP-To modify any process in the same UIC group
ALTPRI and WORLD-To modify any process

To call SYS$PROCESS_CAPABILITIES simply to retrieve the specific process or
global mask, the caller need only have the following privileges:

None-To retrieve the state of itself or any process with a matching UIC
GROUP-To retrieve the state of any process in the same UIC group

System Service Descriptions
$PROCESS_CAPABILITIES (Alpha Only)

WORLD-To retrieve the state of any process

Related Services
$CPU_CAPABILITIES

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_NOSUCHTHREAD

SS$_NONEXPR

SS$_IVLOGNAM

SS$_NOPRIV

SS$_CPUCAP

SS$_INSFARG

The service completed successfully.

One of more arguments has an invalid value.

The service cannot access the locations specified
by one or more arguments.

The specified kernel thread does not exist.

The specified process does not exist, or an invalid
process identification was specified.

The process name string has a length of 0 or
more than 15 characters.

Insufficient privilege for attempted operation.

No CPU can run the specified process with new
capabilities.
Fewer than the required number of arguments
were specified or no operation was specified.

SYS2-213

System Service Descriptions
$PROCESS_SCAN

$PROCESS_SCAN
Process Scan

Format

Arguments

SYS2-214

Creates and initializes a process context that is used by $GETJPI to scan
processes on the local system or across the nodes in a VMScluster system.

SYS$PROCESS_SCAN pidctx [,itmlst]

pidctx
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Context value supplied by $PROCESS_SCAN to be used as the pidadr argument
of $GETJPI. The pidctx argument is the address of a longword that is to receive
the process context longword. This longword normally contains 0 or a previous
context. If it contains a previous context, the old context is deleted. If it contains
a value other than 0 or a previous context, the old value is ignored.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying selection criteria to be used by the scan or to control the scan.

The itmlst argument is the address of a list of item descriptors, each of which
describes one selection criterion or control option. Within each selection criterion
you can include several item entries. The list of item descriptors is terminated by
a longword of 0.

The information in the item list is passed to the item descriptor in one of two
ways. If the item descriptor can always hold the actual value of the selection
criterion, the value is placed in the second longword of the item descriptor and
the buffer length is specified as 0. If the item descriptor points to the actual
value of the selection criterion, the address of the value is placed in the second
longword of the item descriptor and you must specify the buffer length for the
selection criterion. Each item code description specifies whether the information
is passed by value or by reference.

The following diagram depicts the format of an item descriptor that passes the
selection criterion as a value.

31 15

Item code J
Item value

Item-specific flags

System Service Descriptions
$PROCESS-' SCAN

0

0

ZK-0949A-GE

The following diagram depicts the format of an item descriptor that passes the
selection criterion by reference.

31 15 0

Item code I Buffer length

Buffer address

Item-specific flags

ZK-0948A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Definition

Buffer length is specified in a different way for the
two types of item descriptors.

Character string or
reference descriptors:

Immediate value
descriptors:

A word containing a
user-supplied integer
specifying the length
(in bytes) of the buffer
from which $PROCESS_
SCAN retrieves a selection
criterion. The length of the
buffer needed depends on
the item code specified in
the item descriptor.

The length of the buffer is
always specified as 0.

A word containing the selection criterion. These
codes are defined by the $PSCANDEF macro.
Each item code is described after this list of
descriptor fields.

SYS2-215

System Service Descriptions
$PROCESS_SCAN

Item Codes

SYS2-216

Descriptor Field

Item value

Buffer address

Item-specific flags

PSCAN$_ACCOUNT

Definition

A longword containing the actual value of the
selection criterion. When you specify an item code
that is passed by value, $PROCESS_SCAN searches
for the actual value contained in the item list.
See the description of the buffer address field for
information about item codes that are passed by
reference.

A longword containing the user-supplied address
of the buffer from which $PROCESS_SCAN
retrieves information needed by the scan. When
you specify an item code that is passed by reference,
$PROCESS_SCAN uses the address as a pointer
to the actual value. See the description of the item
value field for information about item codes that are
passed by value.

A longword that contains flags to help control
selection information. Item-specific flags, for
example EQL or NEQ, are used to specify how the
value specified in the item descriptor is compared to
the process value.
These flags are defined by the $PSCANDEF macro.
Some flags are common to multiple item codes;
other flags are specific to an individual item code.
See the description of each item code to determine
which flags are used.
For item codes that describe bit masks or character
strings, these flags control how the bit mask or
character string is compared with that in the
process. By default, they are compared for equality.
For item codes that describe integers, these flags
specify an arithmetic comparison of an integer
item with the process attribute. For example, a
PSCAN$M_GTR selection specifying the value 4
for the item code PSCAN$_PRIB finds only the
processes with a base priority above 4. Without one
of these flags, the comparison is for equality.

When you specify PSCAN$_ACCOUNT, $GET JPI returns information about
processes that match the account field.

If the string supplied in the item descriptor is shorter than the account field,
the string is blank-padded for the comparison unless the item-specific flag
PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed
by reference. The length of the buffer is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

System Service Descriptions
$PROCESS_ SCAN

Although the current length of the account field is 8 bytes, the PSCAN$_
ACCOUNT buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

PSCAN$_AUTHPRI
When you specify PSCAN$_AUTHPRI, $GETJPI returns information about
processes that match the authorized base priority field.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_CURPRIV
When you specify PSCAN$_CURPRIV, $GETJPI returns information about
processes that match the current privilege field. Privilege bits are defined by the
$PRVDEF macro.

Because the bit mask information is too long to be passed by value, the
information is passed by reference. The privilege buffer must be exactly 8
bytes, otherwise the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_GET JPl_BUFFER_SIZE
When you specify. PSCAN$_GETJPI_BUFFER_SIZE, you determine the size of a
buffer to be used by $GETJPI to process multiple requests in a single message.
Using this item code can greatly improve the performance of scans on remote
nodes, because fewer messages are needed. This item code is ignored during
scans on the local node.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0. The
buffer is allocated by $PROCESS_SCAN; you do not have to allocate a buffer.

If you use PSCAN$_GETJPI_BUFFER_SIZE with $PROCESS_SCAN, all calls to
$GETJPI using the context established by $PROCESS_SCAN must request the
same item code information. Because $GETJPI locates information for more than
one process at a time, it is not possible to change the item codes or the length of
the buffers used in the $GETJPI item list. $GETJPI checks each call and returns
the error SS$_BADPARAM if an attempt is made to change the item list during
a buffered process scan. However, the buffer addresses can be changed between
$GETJPI calls.

Because the locating and buffering of information by $GETJPI is transparent to a
calling program, you are not required to change the way $GETJPI is called when
you use this item code.

The $GETJPI buffer uses the process quota BYTLM. If the buffer is too large
for the process quota, $GETJPI (not $PROCESS_SCAN) returns the error 88$_
EXBYTLM. If the buffer specified is not large enough to contain the data for at
least one process, $GETJPI returns the error SS$_BADPARAM.

No item-specific flags are used with PSCAN$_GETJPl_BUFFER_SIZE.

PSCAN$_GRP
When you specify PSCAN$_GRP, $GETJPI returns information about processes
that match the UIC group number.

SYS2-217

System Service Descriptions
$PROCESS_ SCAN

SYS2-218

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the group number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_HW _MODEL
When you specify PSCAN$_HW_MODEL, $GETJPI returns information about
processes that match the specified CPU hardware model number.

The hardware model number is an integer, such as VAX$K_V8840. The VAX$
symbols are defined by the $VAXDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_HW _NAME
When you specify PSCAN$_HW_NAME, $GETJPI returns information about
processes that match the specified CPU hardware name, such as VAX-11/780,
VAX 8800, or VAXstation II/GPX.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

The PSCAN$_HW _NAME buffer can be up to 128 bytes in length. If the buffer
length is 0 or greater than 128, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_JOBPRCCNT
When you specify PSCAN$_JOBPRCCNT, $GETJPI returns information
about processes that match the subprocess count for the job (the count of all
subprocesses in the job tree).

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_JOBTYPE
When you specify PSCAN$_JOBTYPE, $GETJPI returns information about
processes that match the job type. The job type values include the following.

Value

JPI$K_LOCAL
JPI$K_DIALUP

JPI$K_REMOTE

JPI$K_BATCH

JPI$K_NETWORK

JPI$K_DETACHED

Description

Local interactive process
Interactive process accessed by a modem line

Interactive process accessed by using SET HOST

Batch process

Noninteractive network process

Detached process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_JOBTYPE are similar to PSCAN$_MODE values.

System Service Descriptions
$PROCESS_ SCAN

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_MASTER_PID
When you specify PSCAN$_MASTER_PID, $GETJPI returns information about
processes that are descendants of the specified parent process. The master
process is the first process created in the job tree. The PSCAN$_0WNER item is
similar, but the owner process is the process that created the target process (the
owner process might itself be a subprocess). Although all jobs in a job tree must
have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_MEM
When you specify PSCAN$_MEM, $GETJPI returns information about processes
that match the UIC member number.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. Because the value of the member number is a
word, the high-order word of the value is ignored. The buffer length must be
specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_MODE
When you specify PSCAN$_MODE, $GETJPI returns information about processes
that match the specified mode. Mode values include the following.

Value

JPI$K_INTERACTIVE

JPI$K_BATCH

JPI$K_NETWORK

JPI$K_OTHER

Description

Interactive process

Batch job

Noninteractive network job

Detached and other process

These values are defined by the $JPIDEF macro. Note that values checked by
PSCAN$_MODE are similar to PSCAN$_JOBTYPE values.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_NODE_CSID
When you specify PSCAN$_NODE_CSID, $GETJPI returns information about
processes on the specified nodes. To scan all nodes in a VMScluster system, you
specify a CSID of 0 and the item-specific flag PSCAN$M_NEQ.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

SYS2-219

System Service Descriptions
$PROCESS_SCAN

SYS2-220

PSCAN$_NODENAME
When you specify PSCAN$_NODENAME, $GETJPI returns information about
processes that match the specified node names.

To scan all of the nodes in a VMScluster system, specify the node name using an
asterisk wildcard (*) and the PSCAN$M_ WILDCARD item-specific flag.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the node name is 6 bytes, the PSCAN$_
NODENAME buffer can be up to 64 bytes in length. If the buffer length is 0
or greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_0WNER
When you specify PSCAN$_0WNER, $GETJPI returns information about
processes that are immediate descendants of the specified process. The PSCAN$_
MASTER_PID item is similar, but the owner process is the process that created
the target process (the owner process might itself be a subprocess). Although all
jobs in a job tree must have the same master, they can have different owners.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_PRCCNT
When you specify PSCAN$_PRCCNT, $GETJPI returns information about
processes that match the subprocess count (the count of all immediate
descendants of a given process). The PSCAN$_JOBPRCCNT item code is similar,
except that JOBPRCCNT is the count of all subprocesses in a job.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.
!

PSCAN$_PRCNAM
When you specify PSCAN$_PRCNAM, $GETJPI returns information about
processes that match the specified process names.

The process name string is blank-padded for the comparison unless the item­
specific flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the process name field is 15 bytes, the PSCAN$_
PRCNAM buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_PRI
When you specify PSCAN$_PRI, $GETJPI returns information about processes
that match current priority. Note that the current priority of a process can be
temporarily increased as a result of system events such as the completion of I/O.

System Service Descriptions
$PROCESS_ SCAN

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_PRIB
When you specify PSCAN$_PRIB, $GETJPI returns information about processes
that match base priority.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_STATE
When you specify PSCAN$_STATE, $GETJPI returns information about processes
that match the specified process state. State values, for example SCH$C_COM
and SCH$C_PFW, are defined by the $STATEDEF macro.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffe: length must be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_STS
When you specify PSCAN$_STS, $GETJPI returns information that matches the
current status mask. Without any item-specific flags, the match is for a process
mask that is equal to the pattern. Status bits, for example PCB$V _ASTPEN or
PCB$V _PSWAPM, are defined by the $PCBDEF macro.

This bit mask item code uses an immediate value descriptor; the selection value
is placed in the second longword of the item descriptor. The buffer length must
be specified as 0.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_ TERMINAL
When you specify PSCAN$_TERMINAL, $GETJPI returns information that
matches the specified terminal names. The terminal name string is blank-padded
for the comparison unless the item-specific flag PSCAN$M_PREFIX_MATCH is
present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the terminal name field is 8 bytes, the PSCAN$_
TERMINAL buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_UIC
When you specify PSCAN$_UIC, $GETJPI returns information about processes
that match the UIC identifier. To convert an alphanumeric identifier name to the
internal identifier, use the $ASCTOID system service before calling $PROCESS_
SCAN.

This integer item code is passed by value; the value is placed in the second
longword of the item descriptor. The buffer length must be specified as 0.

SYS2-221

System Service Descriptions
$PROCESS_ SCAN

The flags that can be used with this item code are listed in Table SYS2-3.

PSCAN$_USERNAME
When you specify PSCAN$_USERNAME, $GETJPI returns information about
processes that match the specified user name.

The user name string is blank-padded for the comparison unless the item-specific
flag PSCAN$M_PREFIX_MATCH is present.

Because the information is a character string, the selection value is passed by
reference. The length of the selection value is placed in the first word of the item
descriptor and the address of the buffer is placed in the second longword.

Although the current length of the user name field is 12 bytes, the PSCAN$_
USERNAME buffer can be up to 64 bytes in length. If the buffer length is 0 or
greater than 64, the SS$_IVBUFLEN error is returned.

The flags that can be used with this item code are listed in Table SYS2-3.

Item-Specific Flags

Table SYS2-3 lists the flags and the item codes that can be used together. The
flags are described in the section following the table.

Table SYS2-3 Flags Used with $PROCESS_SCAN

Item-Specific Flag

PSCAN$M_BIT_ALL

PSCAN$M_BIT_ANY

PSCAN$M_CASE_
BLIND
PSCAN$M_EQL

PSCAN$M_GEQ

PSCAN$M_GTR

PSCAN$M_LEQ

PSCAN$M_LSS

Description

All bits set in pattern set in target

Any bit set in pattern set in target

Match without regard to case of
letters
Match value exactly (the default)

Match if value is greater than or
equal to

Match if value is greater than

Match if value is less than or equal
to

Match if value is less than

PSCAN$M_NEQ Match if value is not equal

PSCAN$M_OR Match this value or the next value

PSCAN$M_PREFIX_ Match on leading substring
MATCH

SYS2-222

Common to the Following
$PROCESS_SCAN Item Codes

_CURPRIV

_STS

_ACCOUNT

All except
_BUFFER_SIZE

_AUTHPRI

_GRP

_JOBPRCCNT

_PRI

_PRIB

All except
_BUFFER_SIZE

All except
_BUFFER_SIZE
_HW_NAME

(continued on next page)

System Service Descriptions
$PROCESS_SCAN

Table SVS2-3 (Cont.) Flags Used with $PROCESS_SCAN

Item-Specific Flag Description
Common to the Following
$PROCESS_SCAN Item Codes

PSCAN$M_
WILD CARD

Match a wildcard pattern

PSCAN$M_BIT _ALL

_NODENAME
_PRCNAM
_TERMINAL
_USERNAME

If the PSCAN$M_BIT _ALL flag is used, all bits set in the pattern mask specified
by the item descriptor must also be set in the process mask. Other bits in the
process mask can also be set.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ALL flag is used only with bit masks.

PSCAN$M_BIT _ANV
If the PSCAN$M_BIT_ANY flag is used, a match occurs if any bit in the pattern
mask is also set in the process mask.

For item codes that describe bit masks, such as privilege masks and status words,
this flag controls how the pattern bit mask specified by the item descriptor is
compared with that in the process. By default, the bit masks are compared for
equality.

The PSCAN$M_BIT_ANY flag is used only with bit masks.

PSCAN$M_CASE_BLIND
When you specify PSCAN$M_CASE_BLIND to compare the character string
specified by the item descriptor with the character string value from the process,
$PROCESS_SCAN does not distinguish between uppercase and lowercase letters.

The PSCAN$M_CASE_BLIND flag is used only with character-string item codes.
The PSCAN$M_CASE_BLIND flag can be specified with either the PSCAN$M_
PREFIX_MATCH flag or the PSCAN$M_ WILDCARD flag.

PSCAN$M_EQL
When you specify PSCAN$M_EQL, $PROCESS_SCAN compares the value
specified by the item descriptor with the value from the process to see if there is
an exact match.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$_BADPARAM error is
returned. If you want to specify that bits not set in the pattern mask must not be
set in the process mask, use PSCAN$M_EQL.

PSCAN$M_GEQ
When you specify PSCAN$M_GEQ, $PROCESS_SCAN selects a process if the
value from the process is greater than or equal to the value specified by the item
descriptor.

SYS2..;..223

System Service Descriptions
$PROCESS_SCAN

SYS2-224

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCAN$M_GTR
When you specify PSCAN$M_GTR, $PROCESS_SCAN selects a process if the
value from the process is greater than the value specified by the item descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCAN$M_LEQ
When you specify PSCAN$M_LEQ, $PROCESS_SCAN selects a process if the
value from the process is less than or equal to the value specified by the item
descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCAN$M_LSS
When you specify PSCAN$M_LSS, $PROCESS_SCAN selects a process if the
value from the process is less than the value specified by the item descriptor.

PSCAN$M_GEQ, PSCAN$M_GTR, PSCAN$M_LEQ, and PSCAN$M_LSS are
used with integer item codes only. Only one of these four flags can be specified; if
more than one of these flags is used, the SS$_BADPARAM error is returned.

PSCAN$M_NEQ
When you specify PSCAN$M_NEQ, $PROCESS_SCAN selects a process if the
value from the process is not equal to the value specified by the item descriptor.

PSCAN$M_EQL and PSCAN$M_NEQ are used with bit masks, character strings,
and integers to control how the item is interpreted. Only one of the flags can be
specified; if more than one of these flags is used, the SS$_BADPARAM error is
returned.

PSCAN$M_OR
When you specify PSCAN$M_OR, $PROCESS_SCAN selects processes whose
values match the current item descriptor or the next item descriptor. The next
item descriptor must have the same item code as the item descriptor with the
PSCAN$M_OR flag. Multiple items are chained together; all except the last item
descriptor must have the PSCAN$M_OR flag.

The PSCAN$M_OR flag can be specified with any other flag and can be used
with bit masks, character strings, and integers. If the PSCAN$M_OR flag is used
between different item codes, or if it is missing between identical item codes, the
SS$_BADPARAM error is returned.

PSCAN$M_PREFIX_MATCH
When you specify PSCAN$M_PREFIX_MATCH, $PROCESS_SCAN compares the
character string specified in the item descriptor to the leading characters of the
requested process value.

Description

System Service Descriptions
$PROCESS_ SCAN

For example, to find all process names that start with the letters AB, use the
string AB with the PSCAN$M_PREFIX_MATCH flag. If you do not specify
the PSCAN$M_PREFIX_MATCH flag, the search looks for a process with the
2-character process name AB.

The PSCAN$M_PREFIX_MATCH flag also allows either the PSCAN$M_EQL
or the PSCAN$M_NEQ flag to be specified. If you specify PSCAN$M_NEQ, the
service matches those names that do not begin with the specified character string.

The PSCAN$M_PREFIX_MATCH flag is used only with character string item
codes. The PSCAN$M_PREFIX_MATCH flag cannot be specified with the
PSCAN$M_ WILDCARD flag; if both of these flags are used, the SS$_BADPARAM
error is returned.

PSCAN$M_WILDCARD
When you specify PSCAN$M_ WILDCARD, the character string specified by
the item descriptor is assumed to be a wildcard pattern. Acceptable wildcard
characters are the asterisk (*), which allows the match to substitute any number
of character in place of the asterisk, and the percent sign(%), which allows the
match to substitute any one character in place of the percent sign. For example,
if you want to search for all process names that begin with the letter A and
end with the string ER, use the string A*ER with the PSCAN$M_WILDCARD
flag. If the PSCAN$M_ WILDCARD flag is not specified, the search looks for the
4-character process name A*ER.

The PSCAN$M_ WILDCARD is used only with character string item codes. The
PSCAN$M_ WILDCARD flag cannot be specified with the PSCAN$M_PREFIX_
MATCH flag; if both of these flags are used, the SS$_BADPARAM error is
returned. The PSCAN$M_NEQ flag can be used with PSCAN$M_ WILDCARD to
exclude values during a wildcard search.

The following restrictions apply to the flags above:

• Only one of the flags PSCAN$M_EQL, PSCAN$M_NEQ, PSCAN$M_BIT_
ALL, PSCAN$M_BIT_ANY can be specified

• PSCAN$M_CASE_BLIND item-specific flag also allows either the PSCAN$M_
EQL or the PSCAN$M_NEQ flag to be specified

• Only one of the flags PSCAN$M_EQL and PSCAN$M_ WILD_CARD can be
specified

The Process Scan system service creates and initializes a process context that is
used by $GETJPI to scan processes on the local system or across the nodes in
a VMScluster system. An item list is used to specify selection criteria to obtain
information about specific processes, for example, all processes owned by one user
or all batch processes.

The output of the $PROCESS_SCAN service is a process context longword
named pidctx. This process context is then provided to $GETJPI as the pidadr
argument. The process context provided by $PROCESS_SCAN enables $GETJPI
to search for processes across the nodes in a VMScluster system and to select
processes that match certain selection criteria.

SYS2-225

System Service Descriptions
$PROCESS_SCAN

The process context consumes process dynamic memory. This memory is
deallocated when the end of the context is reached. For example, when the
$GETJPI service returns SS$_NOMOREPROC or when $PROCESS_SCAN is
called again with the same pidctx longword, the dynamic memory is deallocated.
If you anticipate that a scan might be interrupted before it runs out of processes,
$PROCESS_SCAN should be called a second time (without an itmlst argument)
to release the memory. Dynamic memory is automatically released when the
current image terminates.

$PROCESS_SCAN copies the item list and user buffers to the allocated dynamic
memory. This means that the item lists and user buffers can be deallocated or
reused immediately; they are not referenced during the calls to $GETJPI.

The item codes referenced by $PROCESS_SCAN are found in data structures
that are always resident in the system, primarily the process control block (PCB)
and the job information block (JIB). A scan of processes never forces a process
that is swapped out of memory to be brought into memory to read nonresident
information.

Required Access or Privileges
None

Required Quota
See the description for the PSCAN$_GETJPI_BUFFER_SIZE item.

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $RESUME, $SETPRI, $SETPRN, $SETPRV, $SETRWM,
$SUSPND, $WAKE

Condition Values Returned

SYS2-226

SS$_NORMAL
SS$_ACCVIO

SS$_BADPARAM

SS$_IVBUFLEN

SS$_IVSSRQ

The service completed successfully.
The pidctx argument cannot be written by the
caller; the item list cannot be read by the caller;
or a buffer for a reference descriptor cannot be
read.
The item list contains an invalid item identifier,
or an invalid combination of item-specific flags is
present.

The buffer length field is invalid. For immediate
value descriptors, the buffer length must be
0. For reference descriptors, the buffer length
cannot be 0 or longer than the maximum for the
specified item code. This error is also returned if
the total length of the item list plus the length of
all of the buffer fields is too large to process.

The pidctx argument was not supplied, or the
item list is improperly formed (for example,
multiple occurrences of a given item code were
interspersed with other item codes).

$PURGWS

System Service Descriptions
$PURGWS

Purge Working Set

Format

Argument

Description

Removes a specified range of pages from the current working set of the calling
process to make room for pages required by a new program segment.

SYS$PURGWS inadr

inadr
Open VMS usage: address_range
type: loniword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be purged. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. The addresses are adjusted up
or down to fall on CPU-specific page boundaries. Only the virtual page number
portion of each virtual address is used; the low-order byte-within-page bits are
ignored.

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment. However, the Adjust Working Set Limit ($ADJWSL)
service is the preferred mechanism for controlling a process's use of physical
memory resources.

The $PURGWS service locates pages within the specified range and removes
them if they are in the working set.

If the starting and ending virtual addresses are the same, only that single page is
purged.

To purge the entire working set, specify a range of pages from 0 through
7FFFFFFF; in this case, the image continues to execute and pages are faulted
back into the working set as they are needed.

Required Access or Privileges
None

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $SETPRT, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

SYS2-227

System Service Descriptions
$PURGWS

Condition Values Returned

SYS2-228

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller.

System Service Descriptions
$PURGE_WS (Alpha Only)

$PURGE_WS (Alpha Only)
Purge Working Set

Format

Arguments

Description

On Alpha systems, removes a specified range of pages from the current working
set of the calling process to make room for pages required by a new program
segment.

This service accepts 64-bit addresses.

SYS$PURGE_WS start_va_64 ,length_64

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be purged from the working set. The
specified virtual address will be rounded down to a CPU-specific page boundary.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be purged from the working set. The
specified length will be rounded up to a CPU-specific page boundary so that it
includes all CPU-specific pages in the requested range.

The Purge Working Set service removes a specified range of pages from the
current working set of the calling process to make room for pages required by
a new program segment. However, the Adjust Working Set Limit ($ADJWSL)
service is the preferred mechanism for controlling a process's use of physical
memory resources.

The $PURGE_ WS service locates pages within the specified range and removes
them if they are in the working set. To purge the entire working set, specify a
range of pages from 0 through FFFFFFFF.FFFFFFFF (or to the highest possible
process private virtual address, available from $GETJPI); in this case, the image
continues to execute, and pages are faulted back into the working set.

Required Privileges
None

Required Quota
None.

Related Services
$ADJWSL, $LCKPAG_64, $LKWSET_64, $PURGWS, $ULKPAG_64, $ULWSET_
64

SYS2-229

System Service Descriptions
$PURGE_WS (Alpha Only)

Condition Values Returned

SS$_NORMAL

SYS2-230

The service completed successfully.

System Service Descriptions
$PUTMSG

.$PUTMSG
Put Message

Format

Arguments

Writes informational and error messages to processes.

On Alpha systems, this service accepts 64-bit addresses.

SYS$PUTMSG msgvec ,[actrtn] ,[facnam] ,[actprm]

msgvec
Open VMS usage:
type:
access:
mechanism:

cntrlblk
longword (unsigned)
read only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

Message argument vector specifying the message or messages to be written
and options that $PUTMSG is to use in writing the message or messages. The
msgvec argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of the message vector.

The message vector consists of one longword followed by one or more message
descriptors, one descriptor per message. The following diagram depicts the
contents of the first longword.

31 15 0

default message options argument count

ZK-1717-GE

The following table describes the message vector fields.

Descriptor Field

Argument count

Default message options

Definition

This word-length field specifies the total number of
longwords in the message vector, not including the
first longword (of which it is a part).

This word-length field specifies which message
component or components are to be written. The
default message options field is a word-length bit
vector wherein a bit, when set, specifies that the
corresponding message component is to be written.
For a description of each of these components, refer
to the Description section.

The following table shows the significant bit numbers. Note that the bit numbers
shown (0, 1, 2, 3) are the bit positions from the beginning of the word; however,
because the word is the second word in the longword, you should add the number
16 to each bit number to specify its exact offset within the longword.

SYS2-231

System Service Descriptions
$PUTMSG

SYS2-232

Bit Value Description

0 1 Include message text
0 Do not include message text

1 1 Include mnemonic name for message text
0 Do not include mnemonic name for message text

2 1 Include severity level indicator
0 Do not include severity level indicator

3 1 Include facility prefix
0 Do not include facility prefix

·Bits 4 through 15 must be 0.

You can override the default setting specified by the default message options field
for any or all messages by specifying different options in the new message options
field of any subsequent message descriptor. When you specify new message
options, the options it specifies become the new default settings for all remaining
messages until you specify new message options again.

The $PUTMSG service passes the default message options field to the $GETMSG
service as the flags argument.

If you specify the default message options field as 0, the default message options
for the process are used; you can set the process default message options by using
the DCL command SET MESSAGE.

The Description section shows the format that $PUTMSG uses to write these
message components.

Message Descriptors
Following the first longword of the message vector are one or more message
descriptors. A message descriptor can have one of four possible formats,
depending on the type of message it describes. There are four types of messages:

• User-supplied

• System

• OpenVMS RMS

• System exception

The following diagrams depict the message descriptors for each type of message.

Message Descriptor for User-Supplied Messages

31 15 0

Message code

New message options J FAQ parameter count

First FAQ parameter

Second FAQ parameter

~ I"'-

T T
ZK-1718-GE

Message Descriptor Field

Message code

FAO parameter count

New message options

FAO parameter

Definition

System Service Descriptions
$PUTMSG

Longword value that uniquely identifies the
message. The Description section discusses the
message code; the Open VMS Command Definition,
Librarian, and Message Utilities Manual explains
how to create message codes.

Word-length value specifying the number of
longword $FAO parameters that follow in
the message descriptor. The number of $FAO
parameters needed depends on the $FAO directives
used in the message text; some $FAO directives
require one or more parameters, while some
directives require none.

Word-length bit vector specifying new message
options for the current message. The contents
and format of this field are identical to that of the
default message options field.

Longword value used by an $FAO directive
appearing in the message text. The $FAO
parameters listed in the message descriptor must
appear in the order in which they will be used by
the $FAO directives in the message text.

Message Descriptor for System Messages

31 0

Message code

ZK-1719-GE

Message Descriptor Field Definition

Message code Longword value that uniquely identifies the
message. The facility number field in the message
code identifies the facility associated with the
message. A system message has a facility number
of 0. You cannot specify the FAO parameter count,
new message options, and FAO parameter fields.
Each longword following the message identification
field in the message vector will be interpreted as
another message identification.

Message Descriptor for Open VMS RMS Messages

31 0

Message code

RMS status value (STV)

ZK-1720-GE

SYS2-233

System Service Descriptions
$PUTMSG

SYS2-234

Message Descriptor Field

Message code

RMS status value

Definition

Longword value that uniquely identifies the
message. The facility number field in the
message code identifies the facility associated
with the message. An Open VMS RMS message
has a facility number of 1. You cannot specify the
FAO parameter count, new message options, and
FAO parameter fields. The longword following the
message identification field in the message vector
will be interpreted as a standard value field (STV).

Longword containing an STV for use by an RMS
message that has an associated STV value. The
$PUTMSG service uses the STV value as an $FAO
parameter or as another message identification,
depending on the RMS message identified by the
message identification field. If the RMS message
does not have an associated STV, $PUTMSG ignores
the STV longword in the message descriptor.

Message Descriptor for System Exception Messages

31 0

Message code

First FAQ parameter

Second FAQ parameter

"- r~

T T
ZK-1721-GE

Message Descriptor Field Definition

Message code Longword value that uniquely identifies the
message. The facility number field in the message
code identifies the facility associated with the
message. A system exception message has a facility
number ofO.
You cannot specify the FAQ parameter count
and new message options fields. The longword
or longwords following the message code field in
the message vector will be interpreted as $FAQ
parameters.

On Alpha systems, 64-bit message vectors can be used for applications that
require them. A 64-bit message vector begins with the same argument count
longword as the 32-bit message vector. After the argument count longword is
another longword containing the value SS$_SIGNAL64, which signals that a
64-bit message vector follows. Subsequent message vector elements have a layout
analogous to 32-bit message vectors but are 64-bits wide.

System Service Descriptions
$PUTMSG

For example, the following diagram depicts the format of a 32-bit message vector:

31 16 15 0

Message options I 7

SCA$_ OP EN ERR

Message options I 1

Pointer to file specification string description

:0

:4

:8

:12

:16

: 20

RMS$_FNF

RMS status value

ZK-8549A-GE

The 64-bit version of that same message vector would have the following format:

63 32 31

SS$_SIGNAL64 J Message options l
SCA$_0PENERR

MBZ J Message options l
Pointer to file specification string description

RMS$_FNF

RMS status value

7

1

0

:0

:8

:16

:24

: 32

: 40

ZK-8550A-GE

The $PUTMSG service accepts either the 32-bit or the 64-bit form of the message
vector on Alpha systems.+

actrtn
Open VMS usage:
type:
access:
mechanism:

procedure
procedure value
call without stack unwinding
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

User-supplied action routine to be executed during message processing. The
actrtn argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of this routine.

Note that the first argument passed to the action routine is the address of a
character string descriptor pointing to the message text; the parameter specified
by actprm is the second.

The action routine receives control after a message is formatted but before it is
actually written to the user.

The completion code in general register RO from the action routine indicates
whether the message should be written. If the low-order bit of RO is set (1), then
the message will be written. If the low-order bit is cleared (0), then the message
will not be written.

If you do not specify actrtn or specify it as 0 (the default), no action routine
executes.

Because $PUTMSG writes messages only to SYS$ERROR and SYS$0UTPUT, an
action routine is useful when output must be directed to, for example, a file.

SYS2-235

System Service Descriptions
$PUTMSG

Description

SYS2-236

facnam
Open VMS usage:
type:

char_string
character-coded text string
read only access:

mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor
(Alpha)
by 32-bit descriptor-fixed-length string descriptor (VAX)

Facility prefix to be used in the first or only message written by $PUTMSG. The
facnam argument is the 32-bit or 64-bit address (on Alpha systems) or the 32-bit
address (on VAX systems) of a character string descriptor pointing to this facility
prefix.

If you do not specify facnam, $PUTMSG uses the default facility prefix associated
with the message.

actprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Parameter to be passed to the action routine. The actprm argument is a
longword value containing this parameter. If you do not specify actprm, no
parameter is passed.

In the operating system, a message is identified by a longword value, which is
called the message code. To construct a message code, you specify values for its
four fields, using the Message utility. The following diagram depicts the longword
message code.

31 27 15 2 0

I Cntl I Facility number I Message number I Sevj
ZK-1722-GE

Thus, each message has a unique longword value associated with it: its message
code. You can give this longword value a symbolic name using the Message
utility. Such a symbolic name is called the message symbol.

The Message utility describes how to construct a message symbol according to
the conventions for operating system messages. Basically, the message symbol
has two parts: (1) a facility prefix, which is an abbreviation of the name of the
facility with which the message is associated, and (2) a mnemonic name for the
message text, which serves to hint at the nature of the message. These two parts
are separated by an underscore character (_) in the case of a user-constructed
message and by a dollar sign/underscore ($_) in the case of system messages.

The message components written by $PUTMSG are derived both from the
message code and from the message symbol. For additional information about
both the message code and the message symbol, refer to the Open VMS Command
Definition, Librarian, and Message Utilities Manual.

System Service Descriptions
$PUTMSG

The $PUTMSG service writes the message components in the following format:

%FACILITY-L-IDENT, message text

where:

%

FACILITY

L

IDEN'!'

Is the prefix used for the first message written. The hyphen
(-) is the prefix used for the remaining messages.
Is the facility prefix taken from the message symbol. This
facility prefix can be overridden by a facility prefix specified in
the facnam argument in the call to $PUTMSG.
Is the severity level indicator. The severity level indicator is
taken from the message code.
Is a mnemonic name for the message text, taken from the
message symbol.

message text Is the message text specified in the message source file.

The $PUTMSG service does not check the length of the argument list and
therefore cannot return the SS$_INSFARG (insufficient arguments) condition
value. Be sure you specify the required number of arguments.

If an error occurs while $PUTMSG calls the Formatted ASCII Output ($FAQ)
service, $FAQ parameters specified in the message vector do not appear in the
output.

You cannot call the $PUTMSG service from kernel mode.

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT __ VOL, $MOUNT, $QIO,
$QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-237

System Service Descriptions
$PUTMSG

Example

SYS2-238

#include <ssdef .h>
#include <rmsdef .h>
#include <starlet.h>

main()
{

int msgvec[] {3,
SS$ ABORT,
RMS$ FNF,
O}; -

return (sys$putmsg(msgvec));

/* Arg count and message flags */
/* Message code */
/* RMS Message code */
/* RMS Status value */

/* Generate message */

$QIO

System Service Descriptions
$QIO

Queue 1/0 Request

Format

Arguments

Queues an I/O request to a channel associated with a device. This service
completes asynchronously; for synchronous completion, use the Queue I/O
Request and Wait ($QIOW) service.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

On Alpha systems, this service accepts 64-bit addresses.

SYS$QIO [efn] ,chan ,tune ,[iosb] ,[astadr] ,[astprm] ,[p1] ,[p2] ,[p3] ,[p4] ,[p5] ,[p6]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO is to set when the I/O operation completes. The efn
argument is a longword value containing the number of the event flag; however,
$QIO uses only the low-order byte.

If you do not specify efn, event flag 0 is set.

When $QIO begins execution, it clears the specified event flag or event flag 0 if
efn was not specified.

The specified event flag is set if the service terminates without queuing an I/O
request.

ch an
Open VMS usage: channel
type: longword (unsigned)
access: read only
mechanism: by value

I/O channel assigned to the device to which the request is directed. The chan
argument is a longword value containing the number of the I/O channel; however,
$QIO uses only the low-order word.

Specifying an invalid value for the chan argument will result in either SS$_
IVCHAN or SS$_IVIDENT being returned.

func
Open VMS usage: function_ code
type: longword (unsigned)
access: read only
mechanism: by value

Device-specific function codes and function modifiers specifying the operation to
be performed. The func argument is a longword containing the function code.

SYS2-239

System Service Descriptions
$QIO

SYS2-240

Each device has its own function codes and function modifiers. For complete
information about the function codes and function modifiers that apply to
the particular device to which the I/O operation is to be directed, refer to the
Open VMS I I 0 User's Reference Manual.

iosb
Open VMS usage:
type:

io_status_block
quadword (unsigned)
write only access:

mechanism: by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

I/O status block to receive the final completion status of the I/O operation. The
iosb argument is the address of the quadword I/O status block. The following
diagram depicts the structure of the I/O status block.

31 15 0

Transfer count J Condition value

Device-specific information

ZK-1723-GE

The following table defines the I/O status block fields.

Status Block Field Definition

Condition value Word-length condition value that $QIO returns
when the I/O operation actually completes.

Transfer count Number of bytes of data transferred in the I/O
operation. For information about how specific
devices handle this field of the I/O status block,
refer to the Open VMS 110 User's Reference Manual.

Device-specific information Contents of this field vary depending on the specific
device and on the specified function code. For
information on how specific devices handle this field
of the I/O status block, refer to the Open VMS I I 0
User's Reference Manual.

When $QIO begins execution, it clears the quadword I/O status block if the iosb
argument is specified.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$QIO service. The condition value returned in RO gives you information about
the success or failure of the service call itself; the condition value returned in
the I/O status block gives you information about the success or failure of the

Description

System Service Descriptions
$QIO

service operation. Therefore, to accurately assess the success or failure of the
call to $QIO, you must first check the condition value returned in RO. If RO
contains a successful value, then you must check the condition value in the
1/0 status block.

astadr
Open VMS usage:
type:
access:
mechanism:

ast_procedure
procedure value
call without stack unwinding
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

AST service routine to be executed when the 1/0 completes. The astadr argument
is the address of the AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm
Open VMS usage:
type:
access:
mechanism:

user_arg
quadword unsigned (Alpha); longword unsigned (VAX)
read only
by 64-bit value (Alpha)
by 32-bit value (VAX)

AST parameter to be passed to the AST service routine. On Alpha systems,
the astprm argument is a quadword value containing the AST parameter. On
VAX systems, the astprm argument is a longword value containing the AST
parameter.

p1 to p6
Open VMS usage:
type:
access:
mechanism:

varying_arg
quadword (unsigned) (Alpha); longword unsigned (VAX)
read only
by 32-bit or 64-bit reference or by 64-bit value depending on
the 1/0 function (Alpha)
by 32-bit reference or by 32-bit value depending on the 1/0
function (VAX)

Optional device-specific and function-specific 1/0 request parameters. For
example, the pl parameter usually specifies a buffer by reference. Other
parameters, such as the buffer size, disk block number, or carriage control
are often passed by value.

For more information about these parameters, see the Open VMS I I 0 User's
Reference Manual.

The Queue 1/0 Request service operates only on assigned 1/0 channels and only
from access modes that are equal to or more privileged than the access mode from
which the original channel assignment was made.

The $QIO service uses system dynamic memory to construct a database to queue
the 1/0 request and might require additional memory depending on the queued
device.

SYS2-241

System Service Descriptions
$QIO

For $QIO, you can synchronize completion (1) by specifying the astadr argument
to have an AST routine execute when the I/O completes or (2) by calling
the Synchronize ($SYNCH) service to await completion of the I/O operation.
The $QIOW service completes synchronously, and it is the best choice when
synchronous. completion is required.

For information about how to use the $QIO service for network operations, refer
to the DECnet for Open VMS Networking Manual.

Required Access or Privileges
LOG_IO or PHY_IO is required, depending upon the device type and the
requested operation. DIAGNOSE is required to issue a $QIO with an associated
diagnostic buffer. In addition, read or write access is generally required for the
device. For more information, see the Security Guide.

Required Quota
The $QIO service uses the following quotas:

• The process's quota for buffered I/O limit (BIOLM) or direct I/O limit (DIOLM)

• The process's buffered I/O byte count (BYTLM) quota

• The process's AST limit (ASTLM) quota, if an AST service routine is specified

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR, $IO_
CLEANUP, $IO_PERFORM, $IO_SETUP

Condition Values Returned

SYS2-242

SS$_NORMAL

SS$_ABORT

SS$_ACCVIO

SS$_CONNECFAIL

SS$_DEVOFFLINE

SS$_EXQUOTA

SS$_FILALRACC

The service completed successfully. The I/O
request was successfully queued.

A network logical link was broken.

Either the I/O status block cannot be written by
the caller, or the parameters for device-dependent
function codes are specified incorrectly.

The connection to a network object timed out or
failed.

The specified device is off line and not currently
available for use.
The process has (1) exceeded its AST limit
(ASTLM) quota, (2) exceeded its buffered I/O
byte count (BYTLM) quota, (3) exceeded its
buffered I/O limit (BIOLM) quota, (4) exceeded
its direct I/O limit (DIOLM) quota, or (5)
requested a buffered I/O transfer smaller than
the buffered byte count quota limit (BYTLM), but
when added to other current buffer requests, the
buffered I/O byte count quota was exceeded.

A logical link is already accessed on the channel
(that is, a previous connect on the channel).

SS$_ILLEFC

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVCHAN

SS$_IVIDENT

SS$_IVDEVNAM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_NOT64DEVFUNC

System Service Descriptions
$QIO

You specified an illegal event flag number.

The system dynamic memory is insufficient for
completing the service.

The access control information was invalid at the
remote node.

You specified an invalid channel number, that is,
a channel number of 0, or you failed to specify a
channel number.

You specified a channel number greater than the
number of channels assigned for the process.
The NCB has an invalid format or content.

The network partner task aborted the logical
link.

The network partner task disconnected the
logical link.

The network partner task was started, but
exited before confirming the logical link (that is,
$ASSIGN to SYS$NET).

No logical links are available. The maximum
number of logical links as set for the executor
MAXIMUM LINKS parameter was exceeded.

The specified channel does not exist or was
assigned from a more privileged access mode,
or the process does not have the necessary
privileges to perform the specified functions on
the device associated with the specified channel.

The specified node is unknown.
The network object number is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at
the remote node.

The remote node could not recognize the login
information supplied with the connection request.

On Alpha systems, this fatal condition value is
returned under the following circumstances: (1)
The caller has specified a 64-bit virtual address
in the Pl device dependent parameter but the
device driver does not support 64-bit addresses
with the requested I/O function. (2) The caller
has specified a 64-bit address for a diagnostic
buffer but the device driver does not support
64-bit addresses for diagnostic buffers. (3) Some
device drivers may also return this condition
value when 64-bit buffer addresses are passed
using the P2 through P6 parameters and the
driver does not support a 64-bit address with the
requested I/O function.

SYS2-243

System Service Descriptions
$QIO

SS$_PATHLOST

SS$_PROTOCOL

SS$_REJECT

SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TOOMUCHDATA

SS$_UNASEFC

SS$_UNREACHABLE

The path to the network partner task node was
lost.
A network protocol error occurred. This error is
most likely due to a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.
The logical link was terminated by a third party
(for example, the system manager).

The task specified too much optional or interrupt
data.
The process is not associated with the cluster
containing the specified event flag.

The remote node is currently unreachable.

Condition Values Returned in the 1/0 Status Block

SYS2-244

Device-specific condition values; the Open VMS I I 0 User's Reference Manual lists
these condition values for each device.

$QIOW

System Service Descriptions
$QIOW

Queue 1/0 Request and Wait

Format

The Queue I/O Request and Wait service queues an I/O request to a channel
associated with a device.

The $QIOW service completes synchronously; however, Digital recommends that
you use an IOSB with this service to avoid premature completion.

For asynchronous completion, use the Queue I/O Request ($QIO) service.

In all other respects, $QIOW is identical to $QIO. For more information about
$QIOW, refer to the description of $QIO.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

On Alpha systems, this service accepts 64-bit addresses.

SYS$QIOW [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p1] ,[p2] ,[p3]
,[p4] ,[p5] ,[p6]

SYS2-245

System Service Descriptions
$READEF

$READEF
Read Event Flags

Format

Arguments

Returns the current status of all 32 event flags in a local or common event flag
cluster and indicates whether the specified event flag is set or clear.

On Alpha systems, this service accepts 64-bit addresses.

SYS$READEF efn ,state

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag in the cluster whose status is to be returned. The
efn argument is a longword containing this number; however, $READEF uses
only the low-order byte. Specifying an event flag within a cluster requests that
$READEF return the status of all event flags in that cluster.

There are two local event flag clusters, which are local to the process: cluster
0 and cluster 1. Cluster 0 contains event flag numbers 0 to 31, and cluster 1
contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

state
Open VMS usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
write only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

State of all event flags in the specified cluster. The state argument is the 32-bit
or 64-bit address (on Alpha systems) or the 32-bit address (on VAX systems) of a
longword into which $READEF writes the state (set or clear) of the 32 event flags
in the cluster.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SYS2-246

The service completed successfully. The specified
event flag is clear.

The service completed successfully. The specified
event flag is set.

SS$_ACCVIO

SS$_ILLEFC

SS$_UNASEFC

System Service Descriptions
$READEF

The longword that is to receive the current state
of all event flags in the cluster cannot be written
by the caller.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS2-247

System Service Descriptions
$RELEASE_ VP (VAX Only)

$RELEASE_ VP (VAX Only)
Release Vector Processor

Format

Description

On VAX systems, terminates the current process's status as a vector consumer.

SYS$RELEASE_VP

The Release Vector Processor service terminates the current process's status
as a vector consumer. The $RELEASE_ VP service waits for all pending vector
instructions and vector memory operations to complete. It then declares that
the process no longer needs a vector-present processor. As a result, the process
relinquishes its use of the processor's vector registers and can be scheduled on
another processor in the system.

In systems that do not have vector-present processors but do have the VAX
Vector Instruction Emulation facility (VVIEF) in use, this service relinquishes the
process's use of VVIEF. VVIEF remains mapped in the process's address space.

Required Access or Privileges
None

Required Quota
None

Related Services
$RESTORE_ VP _EXCEPTION, $RESTORE_ VP _STATE, $SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-248

System Service Descriptions
$REM_HOLDER

$REM_HOLDER
Remove Holder Record from Rights Database

Format

Arguments

Description

Deletes the specified holder record from the target identifier's list of holders.

SYS$REM_HOLDER id ,holder

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder is deleted when $REM_HOLDER
completes execution. The id argument is a longword containing the identifier
value.

holder
Open VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being deleted when $REM_HOLDER completes execution.
The holder argument is the address of a quadword containing the UIC identifier
of the holder in the first longword and the value of 0 in the second longword.

The Remove Holder Record from Rights Database service removes the specified
holder record from the target identifier's list of holders.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $REM_IDENT, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO
The service completed successfully.
The holder argument cannot be read by the
caller.

SYS2-249

System Service Descriptions
$REM_HOLDER

SYS2-250

SS$_INSFMEM

SS$_IVIDENT

SS$_NORIGHTSDB

SS$_NOSUCHID

RMS$_PRV

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The rights database does not exist.

The specified identifier does not exist in the
rights database, or the specified holder identifier
does not exist in the rights database.

· The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

System Service Descriptions
$REM_IDENT

$REM_IDENT
Remove Identifier from Rights Database

Format

Argument

Description

Removes the specified identifier record and all its holder records (if any) from the
rights database.

SYS$REM_IDENT id

id
Open VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier deleted from rights database when $REM_IDENT
completes execution. The id argument is a longword containing the identifier
value.

The Remove Identifier from Rights Database service removes from the rights
database the specified identifier record, all its holder records (if any), and all
records in identifiers that the deleted identifier held.

Required Access or Privileges
Write access to the rights database is required.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $REM_HOLDER, $REVOKID

Condition Values Returned

SS$_NORMAL

SS$_INSFMEM

SS$_IVIDENT
SS$_NORIGHTSDB

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.
The rights database does not exist.

The specified identifier does not exist in the
rights database.

The user does not have write access to the rights
database.

SYS2-251

System Service Descriptions
$REM_IDENT

SYS2-252

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

System Service Descriptions
$RESCH ED

$RESCHED
Reschedule Process

Format

Arguments

Description

Requests reschedule of a process.

SYS$RESCHED

None.

The Reschedule Process service requests that the set of runnable processes on the
system be evaluated by their priority, with the potential result that the current
process may be descheduled and requeued.

$RESCHED is intended to allow a process running at priority n to voluntarily
relinquish the remainder of its run quantum to another process of the same
priority. When the set of all runnable processes is evaluated, one of the following
will occur:

1. The process executing $RESCHED will be descheduled, while another process
of equal or higher priority is selected to run. The descheduled process is ·
placed at the end of its priority queue and all other processes at that priority
will run before the process that called $RESCHED runs again. When the
process does run again, $RESCHED completes and returns control to the
application.

2. If, after the evaluation of all runnable processes, the process that executed
$RESCHED remains the highest-priority runnable process, that process
remains current and continues to run. In this case, $RESCHED returns
immediately.

Required Access or Privileges
None

Required Quota
None

Related Services
None

Condition Values Returned

SS$_NORMAL The service completed successfully.

SYS2-253

System Service Descriptions
$RESTORE_ VP _EXCEPTION (VAX Only)

$RESTORE_ VP _EXCEPTION (VAX Only)
Restore Vector Processor Exception State

Format

Argument

Description

SYS2-254

On VAX systems, restores the saved exception state of the vector processor.

SYS$RESTORE_ VP _EXCEPTION excid

excid
Open VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Internal ID of the exception state saved by $SAVE_ VP _EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Restore Vector Exception State service restores from memory the vector
exception state saved by a prior call to $SAVE_ VP _EXCEPTION. After a routine
invokes this service, the next vector instruction issued within the process causes
the restored vector exception to be reported.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the operating system saves the mainline routine's vector
state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine's
vector exception state across its own execution. It does so by using the $SAVE_
VP _EXCEPTION and $RESTORE_ VP _EXCEPTION services.

Used together, these services ensure that vector exceptions occurring as a result
of activity in the original routine are serviced by existing condition handlers
within that routine.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the function of
this service.

Required Access or Privileges
None

Required Quota
BYTLM

Related Services
$RELEASE_ VP, $RESTORE_ VP _STATE, $SAVE_ VP _EXCEPTION

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_NOSAVPEXC

System Service Descriptions
$RESTORE_ VP _EXCEPTION (VAX Only)

The service completed successfully. The service
also returns this status when executed in a
system that does not have vector-present
processors and that does not have the VAX
Vector Instruction Emulation facility (VVIEF)
loaded.
The caller cannot read the exception ID
longword.

No saved vector exception state exists for this
exception ID.

SYS2-255

System Service Descriptions
$RESTORE_ VP _STATE (VAX Only)

$RESTORE_ VP _STATE {VAX Only)
Restore Vector State

Format

Arguments

Description

On VAX systems, allows an AST routine or condition handler to restore the vector
state of the mainline routine.

SYS$RESTORE_VP_STATE

None.

The Restore Vector State service allows an AST routine or a condition handler to
restore the vector state of the process's mainline routine.

By default, when an asynchronous routine (AST routine or condition handler)
interrupts the execution of a mainline routine, the operating system creates
a new vector state when the routine issues its first vector instruction. At this
point, the vector state of the mainline routine is inaccessible to the asynchronous
routine. If the asynchronous routine must manipulate the vector state of the
mainline routine, it first calls $RESTORE_ VP _STATE to restore the mainline's
vector state.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

This service can be called only from a routine running in user mode.

Required Access or Privileges
None

Required Quota
None

Related· Services

$RELEASE_ VP, $RESTORE_ VP _EXCEPTION, $SAVE_ VP _EXCEPTION

Condition Values Returned

SYS2-256

SS$_NORMAL

SS$_BADSTACK

SS$_BADCONTEXT

The service completed successfully. Vector
state of the mainline has been restored. The
service also returns this status when executed
in a system that does not have vector-present
processors and that does not have the VAX
Vector Instruction Emulation facility (VVIEF)
loaded.
Bad user stack encountered.

The mainline vector state is corrupt.

88$_ WRONGACMODE

System Service Descriptions
$RESTORE_ VP _STATE (VAX Only)

The system service was called from an access
mode other than user mode.

SYS2-257

System Service Descriptions
$RESUME

$RESUME
Resume Process

Format

Arguments

Description

SYS2-258

Causes a process previously suspended by the Suspend Process ($SUSPND)
service to resume execution or cancels the effect of a subsequent suspend request.

SYS$RESUME [pidadr] ,[prcnam]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be resumed. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the VMScluster system.

You must specify the pidadr argument to delete processes in other UIC groups.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the process to be resumed. The prcnam argument is the address of a
character string descriptor pointing to the process name. A process running on
the local node can be identified with a 1- to 15-character string. To identify a
process on a particular node on a cluster, specify the full process name, which
includes the node name as well as the process name. The full process name can
contain up to 23 characters.

You can use the prcnam argument to resume only processes in the same UIC
group as the calling process, because process names are unique to UIC groups,
and the operating system uses the UIC group number of the calling process to
interpret the process name specified by the prcnam argument. You must use the
pidadr argument to delete processes in other UIC groups.

The Resume Process service (1) causes a process previously suspended by the
Suspend Process ($SUSPND) service to resume execution or (2) cancels the effect
of a subsequent suspend request.

If you specify neither the pidadr nor prcnam argument, the resume request is
issued on behalf of the calling process.

If the longword value at address pidadr is 0, the PID of the target process is
returned.

System Service Descriptions
$RESUME

If one or more resume requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is, the process is not
suspended. No count of outstanding resume requests is maintained.

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $RESUME:

• GROUP privilege to resume execution of a process in the same group unless
the process has the same UIC as the calling process

• WORLD privilege to resume execution of any process in the system

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $SETPRI, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$~ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The remote node is running an incompatible
version of the operating system.

The specified process name has a length of 0 or
has more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to resume
the execution of the specified process.

The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)
The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS2-259

System Service Descriptions
$REVOKID

$REVOKID
Revoke Identifier from Process

Format

Arguments

SYS2-260

Removes the specified identifier from the rights list of the process or the system.
If the identifier is listed as a holder of any other identifier, the appropriate holder
records are also deleted.

SYS$REVOKID [pidadr] ,[prcnam] ,[id] ,[name] ,[prvatr]

pidadr .
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $REVOKID
completes execution. The pidadr argument is the address of a longword
containing the PID of the process to be affected. You use -1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name on which $REVOKID operates. The prcnam argument is the
address of a character string descriptor containing the process name. The
maximum length of the name is 15 characters. Because the UIC group number
is interpreted as part of the process name, you must use pidadr to specify the
rights list of a process in a different group.

id
Open VMS usage: rights_id
type: quadword (unsigned)
access: modify
mechanism: by reference

Identifier and attributes to be removed when $REVOKID completes execution.
The id argument is the address of a quadword containing the binary identifier
code to be removed in the first longword and the attributes in the second
longword.

Symbol values are offsets to the bits within the longword. You can also obtain the
values as masks with the appropriate bit set using the prefix KGB$M rather than
KGB$V. The following symbols for each bit position are defined in the system
macro library ($KGBDEF).

Description

Bit Position

KGB$V _DYNAMIC

KGB$V _NOACCESS

KGB$V _RESOURCE

KGB$V _SUBSYSTEM

System Service Descriptions
$REVOKID

Meaning When Set

Allows unprivileged holders of the
identifier to remove it from or add it
to the process rights database by using
the DCL command SET RIGHTS_LIST.

Makes any access rights of the identifier
null and void. This attribute is intended
as a modifier for a resource identifier or
the Subsystem attribute.

Allows holders of an identifier to charge
disk space to the identifier. It is used
only for file objects.
Allows holders of the identifier to create
and maintain protected subsystems by
assigning the Subsystem ACE to the
application images in the subsystem.

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than a
constant in this case.

name
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the identifier removed when $REVOKID completes execution. The name
argument is the address of a descriptor pointing to the name of the identifier.

prvatr
Open VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes of the deleted identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier.

The Revoke Identifier from Process service removes the specified identifier from
the rights list of the process or the system. If the identifier is listed as a holder of
any other identifier, the appropriate holder records are also deleted.

The result of passing the pidadr or the prcnam argument, or both, to
$REVOKID is summarized in the following table.

Note that a value of 0 in either of the following tables indicates that the contents
of the address specified by the argument is the value 0. The word omitted
indicates that the argument was not supplied.

SYS2-261

System Service Descriptions
$REVOKID

SYS2-262

prcnam pidadr Result

Omitted Omitted Current process ID is used; process ID is not
·returned.

Omitted 0 Current process ID is used; process ID is
returned.

Omitted SpeCified Specified process ID is used.

Specified Omitted Specified process name is used; process ID is not
returned.

Specified 0 Specified process name is used; process ID is
returned.

Specified Specified Specified process ID is used and process name is
ignored.

The result of passing either the name or the id argument, or both, to
SYS$REVOKID is summarized in the following table.

name

Omitted

Omitted

Specified

Specified

Specified

id

Omitted

Specified

Omitted

0

Specified

Result

Illegal. The INSFARG condition value is
returned.

Specified identifier value is used.

Specified identifier name is used; identifier value
is not returned.

Specified identifier name is used; identifier value
is returned.

Specified identifier value is used and identifier
name is ignored.

Because the Revoke Identifier from Process service removes the specified
identifier from the rights list of the process or the system, this service is meant
for use by a privileged subsystem to alter the access rights profile of a user, based
on installation policy. It is not meant for use by the general system user.

Required Access or Privileges
You need CMKRNL privilege to invoke this service. In addition, you need GROUP
privilege to modify the rights list of a process in the same group as the calling
process (unless the process has the same UIC as the calling process). You need
WORLD privilege to modify the rights list of a process outside the caller's group.
You need SYSNAM privilege to modify the system rights list.

Required Quota
None

Related Services
$ADD_HOLDER, $ADD_IDENT, $ASCTOID, $CREATE_RDB, $FIND_HELD,
$FIND_HOLDER, $FINISH_RDB, $GRANTID, $IDTOASC, $MOD_HOLDER,
$MOD_IDENT, $REM_HOLDER, $REM_IDENT

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_INSFARG

SS$_INSFMEM

SS$_IVIDENT

SS$_IVLOGNAM
SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHID

SS$_NOSYSNAM

SS$_RIGHTSFULL
RMS$_PRV

System Service Descriptions
$REVOKID

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.
The pidadr argument cannot be read or written;
prcnam cannot be read; id cannot be read or
written; name cannot be read; or prvatr cannot
be written.
You did not specify either the id or the name
argument.

The process dynamic memory is insufficient for
opening the rights database.
The specified identifier name is invalid; the
identifier name is longer than 31 characters,
contains an illegal character, or does not contain
at least one nonnumeric character.

You specified an invalid process name.
You specified a nonexistent process.

The caller does not have CMKRNL privilege or
is not running in executive or kernel mode; or
the caller lacks GROUP, WORLD, or SYSNAM
privilege as required.
The specified identifier name does not exist
in the rights database. Note that the binary
identifier, if given, is not validated against the
rights database.
The operation requires SYSNAM privilege.

The rights list of the process or system is full.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with Open VMS RMS,
this service can also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the Open VMS
Record Management Services Reference Manual.

SYS2-263

System Service Descriptions
$RMSRUNDWN

$RMSRUNDWN
RMS Rundown

Format

Arguments

Description

SYS2-264

Closes all files opened by Open VMS RMS for the image or process and halts
I/O activity. This routine performs a $CLOSE service for each file opened for
processing.

SYS$RMSRUNDWN buf-addr ,type-value

buf-addr
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

A descriptor pointing to a 22-byte buffer that is to receive the device identification
(16 bytes) and the file identification (6 bytes) of an improperly closed output file.
The buf-addr argument is the address of the descriptor that points to the buffer.

type-value
Open VMS usage: byte_ unsigned
type: byte (unsigned)
access: read only
mechanism: by value

A single byte code that specifies the type of I/O rundown to be performed. The
type-value argument is the actual value used.

This type of code has the following values and meanings:

0 Rundown of image and indirect I/O for process permanent files.

1 Rundown of image and process permanent files. The caller's mode must
not be user.

2 Abort RMS I/O. The caller's mode must be either executive or kernel
(the system calls the I/O rundown control routine with this argument
for process deletion).

The RMS Rundown service closes all files opened by Open VMS RMS for the
image or process and halts I/O activity. This routine performs a $CLOSE service
for each file opened for processing. In addition to closing all files and terminating
I/O activity, the I/O rundown control routine releases all locks held on records
in shared files, clears buffers, and returns other resources allocated for file
processing. You should continue to call the rundown control routine until you
receive the success completion status code of RMS$_NORMAL.

Note that, prior to the execution of the $CLOSE ·service, the rundown control
routine cancels all outstanding file operations specified in a File Access Block
(FAB) or any QIO requests related to file operations (an Open, Create, or Extend
service, for example). It also cancels any read/write requests to nondisk devices
such as terminals or mailboxes prior to the execution of the $CLOSE service,

System Service Descriptions
$RMSRUNDWN

resulting in possible loss of data. All read/write requests of disk I/O buffers,
however, are allowed to complete, which guarantees that none of the data written
to disk files will be lost.

There is no predefined macro of the form $RMSRUNDWN_G or
$RMSRUNDWN_S to call this service.

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CLOSE,
$CREMBX, $DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU,
$GETDVI, $GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $!NIT_ VOL,
$MOUNT, $PUTMSG, $QIO, $QIOW, $SETDDIR, $SETDFPROT, $SNDERR,
$SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

RMS$_NORMAL

RMS$_CCF

RMS$_IAL

The service completed successfully.

The 1/0 rundown routine cannot close the file.

The argument list is invalid. An output file could
not be closed successfully, and the user buffer
could not be written.

SYS2-265

System Service Descriptions
$SAVE_ VP _EXCEPTION (VAX Only)

$SAVE_ VP _EXCEPTION (VAX Only)
Save Vector Processor Exception State

Format

Argument

Description

SYS2-266

On VAX systems, saves the pending exception state of the vector processor.

SYS$SAVE_ VP _EXCEPTION excid

excid
Open VMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Internal ID of the exception state saved by $SAVE_ VP _EXCEPTION. The excid
argument is the address of a longword containing this ID.

The Save Vector Processor Exception State service saves in memory any pending
vector exception state and clears the vector processor's current exception state.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, the operating system saves the mainline routine's vector
state, including its vector exception state. Any other routine that executes
synchronously with, or asynchronously to, currently executing vectorized code
and that performs vector operations itself must preserve the preempted routine's
vector exception state across its own execution. It does so by using the $SAVE_
VP _EXCEPTION and $RESTORE_ VP _EXCEPTION services. Used together,
these services ensure that vector exceptions occurring as a result of activity in the
original routine are serviced by existing condition handlers within that routine.

In systems that do not have vector-present processors but do have the VAX Vector
Instruction Emulation facility (VVIEF) in use, VVIEF emulates the functions of
this service.

Required Access or Privileges
None

Required Quota
None

Related Services
$RELEASE_ VP, $RESTORE_ VP _EXCEPTION, $RESTORE_ VP _STATE

Condition Values Returned

SS$_NORMAL

SS$_WASSET

SS$_ACCVIO

SS$_INSFMEM

System Service Descriptions
$SAVE_VP _EXCEPTION (VAX Only)

The service completed successfully. There were
no pending vector exceptions. The service also
returns this status when executed in a system
that does not have vector-present processors and
that does not have the VAX Vector Instruction
Emulation facility (VVIEF) loaded.

The service completed successfully. Pending
vector exception state has been saved.

The caller cannot write the exception ID
longword.

Insufficient system dynamic memory exists for
completing the service.

SYS2-267

System Service Descriptions
$SCAN_INTRUSION

$SCAN_INTRUSION
Scan Intrusion Database

Format

Arguments

SYS2-268

Scans the intrusion database for suspects or intruders during a login attempt,
audits login failures and updates records, or adds new records to the intrusion
database.

SYS$SCAN_INTRUSION logfail_status ,failed_user ,job_type ,[source_terminal]
,[source_node] ,[source_user] ,[source_addr]
,[failed_password] ,[parent_user] ,[parent_id] ,[flags]

logfail_status
Open VMS usage: status code
type: longword (unsigned)
access: read only
mechanism: by value

Reason why the user's login attempt failed. The logfail_status argument is a
longword containing the login failure status code.

The logfail_status argument can contain any valid message code. For example,
the value of the logfail_status argument is SS$_NOSUCHUSER if the user
name the user entered does not exist on the system.

If the logfail_status argument contains a failure status, the service performs
a suspect scan. Here, the service searches the intrusion database for intruder
suspects as well as intruders. If the value of the logfail_status argument is
a successful message, such as SS$_NORMAL, the service scans the database
only for intruders. For more information about how the database works, see the
Open VMS Guide to System Security.

failed_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

User name associated with the unsuccessful login attempt. The failed_user
argument is the address of a character-string descriptor pointing to the failed
user name.

A failed user name consists of 1 to 32 alphanumeric characters.

job_type
Open VMS usage: job type .
type: longword (unsigned)
access: read only
mechanism: by value

Type of job that failed. The job_type argument is a longword indicating the type
of job that failed.

System Service Descriptions
$SCAN_INTRUSION

The $JPIDEF macro defines the following values for the job_type argument:

• JPI$K_BATCH

• JPl$K_DETACHED

• JPI$K_DIALUP

• JPI$K_LOCAL

• JPI$K_NETWORK

• JPl$K_REMOTE

source_terminal
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Source terminal where the login attempt is occurring. The source_terminal
argument is the address of a character-string descriptor pointing to the device
name of the terminal from which the login attempt originates.

A source terminal device name consists of 1 to 64 alphanumeric characters,
. including underscores(_) and colons (:).

source_node
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the node from which the user's login attempt originates. The source
node argument is the address of a character-string descriptor pointing to the
source node name string.

A source node name consists of 1 to 1024 characters. No specific characters,
format, or case is required for a source node name string.

source_user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

User name associated with the login attempt. The source_user argument is the
address of a character-string descriptor pointing to the source user name string.

A source user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($)·and underscores (_).

source_addr
Open VMS usage: node address
type: descriptor
access: read only
mechanism: by reference

Source DECnet for Open VMS address from which the login attempt originates.
The source_addr argument is the address of a descriptor containing the source
node address.

SYS2-269

System Service Descriptions
$SCAN_INTRUSION

SYS2-270

failed_password
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Password the user entered for the login attempt. The failed_password
argument is the address of a character-string descriptor pointing to the plaintext
password the user entered in order to log in.

A failed password is a password of 0 to 32 characters that did not allow the user
to log in to the system. This argument is not stored in the intrusion database and
is only used for auditing during break-in attempts.

parent_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Parent process name of the failed login. The parent_user argument is the
address of a character-string descriptor pointing to the parent process name of
the failed login process.

A parent process name consists of 1 to 15 characters. This argument should be
specified only for failed spawn commands.

parent_id
Open VMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by value

Process identification of the parent process from which the login was attempted.
The parent_id argument is a longword containing the parent process
identification.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Operational instructions for the service. The flags argument is a longword bit
mask wherein each bit corresponds to an option.

Each flag option has a symbolic name. The $CIADEF macro defines the following
valid names for the $SCAN_INTRUSION service.

Symbolic Name

CIA$M_NOAUDIT

Description

If set, this flag indicates that the service should
instruct the security server to not audit the login
failure or the break-in attempt. If the flag is set,
you are expected to do your own auditing.

Description

Symbolic Name

CIA$M_IGNORE_RETURN

CIA$M_REAL_USERNAME

CIA$M_SECONDARY_
PASSWORD

Description

System Service Descriptions
$SCAN_INTRUSION

Specifies that the service should not wait for the
return status from the security server. No return
status from the server's function will be returned
to the caller.

If set, indicates that the user name passed as
the failed user name is read and known to the
system.

Indicates that the failed password passed to the
service was the secondary password. If the flag is
clear, the password is assumed to be the primary
password.

The Scan Intrusion service performs the following functions:

• Scans the intrusion database for intruders so that successful logins are
evaded if the system is taking evasive action.

• Adds login failures to the intrusion database.

• Changes records in the intrusion database from suspects to intruders when
the number of login failures by the specified user or from the specified source
reaches the value of the LGI_BREAK_LIM system parameter.

• Disables user accounts if the LGI_BRK_DISUSER flag is set and the number
of login attempts on a real user has reached LGI_BRK_LIM.

• Audits login failures or break-in attempts on behalf of the caller.

The information that $SCAN_INTRUSION stores in the intrusion database
is based on the setting of the LGI_BRK_TERM system parameter and the
information passed by the caller. For more information about how the intrusion
database functions and the use of the LGI system parameters, see the Open VMS
Guide to System Security.

Required Access or Privileges
$SCAN_INTRUSION requires the SECURITY privilege.

Required Quota
None

Related Services
$DELETE_INTRUSION, $SHOW _INTRUSION

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADPARAM

The service completed successfully.

One or more of the arguments were not readable.

The length of one or more of the specified
arguments is out of range.

An invalid flag was specified in the flags
argument.

SYS2-271

System Service Descriptions
$SCAN_INTRUSION

SS$_NOSECURITY The caller does not have SECURITY privilege.

This service can also return any of the following messages passed from the
security server:

SYS2-272

SECSRV$_INSUFINFO

SECSRV$_INTRUDER

SECSRV$_NOMATCH

SECSRV$_
SERVERNOTACTIVE

SECSRV$_SUSPECT

Not enough information is supplied to form an
intrusion record.
An intruder matching the information passed to
the service exists in the intrusion database.

No intruders or suspects exist that match the
information passed to the service.
The security server is not currently active. Try
the request again later.

A suspect matching the information passed to
the service exists in the intrusion database.

System Service Descriptions
$SCHDWK

$SCHDWK
Schedule Wakeup.

Format

Arguments

Schedules the awakening (restarting) of a process that has placed itself in a state
of hibernation with the Hibernate ($HIBER) service.

SYS$SCHDWK [pidadr] ,[prcnam] ,daytim ,[reptim]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be awakened. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the VMScluster system.

You must specify the pidadr argument to awaken processes in other UIC groups.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the process to be awakened. The prcnam is the address of a character
string descriptor pointing to the process name. A process running on the local
node can be identified with a string of from 1 to 15 characters.

To identify a process on a particular node on a cluster, specify the full process
name, which includes the node name as well as the process name. The full
process name can contain up to 23 characters.

You can use the prcnam argument to awaken only processes in the same UIC
group as the calling process because process names are unique to UIC groups,
and the operating system uses the UIC group number of the calling process to
interpret the process name specified by the prcnam argument. You must use the
pidadr argument to awaken processes in other UIC groups.

daytim
Open VMS usage: date_ time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time at which the process is to be awakened. The daytim argument is the
address of a quadword containing this time in the system 64-bit time format. A
positive time value specifies an absolute time at which the specified process is
to be awakened. A negative time value specifies an offset (delta time) from the
current time.

SYS2-273

System Service Descriptions
$SCHDWK

Description

SYS2-274

reptim
Open VMS usage: date_ time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time interval at which the wakeup request is to be repeated. The reptim
argument is the address of a quadword containing this time interval. The time
interval must be expressed in delta time format.

The time interval specified cannot be less than 10 milliseconds; if it is, $SCHDWK
automatically increases it to 10 milliseconds.

If you do not specify reptim, a default value of 0 is used, which specifies that the
wakeup request is not to be repeated.

The Schedule Wakeup service schedules the awakening of a process that has
placed itself in a state of hibernation with the Hibernate ($HIBER) service. A
wakeup can be scheduled for a specified absolute time or for a delta time and can
be repeated at fixed intervals.

If you specify neither the pidadr nor the prcnam argument, the wakeup request
is issued on behalf of the calling process. If the longword value at address pidadr
is 0, the PID of the target process is returned.

$SCHDWK uses the system dynamic memory to allocate a timer queue entry.

If you issue one or more scheduled wakeup requests for a process that is not
hibernating, a subsequent hibernate request by the target process completes
immediately; that is, the process does not hibernate. No count of outstanding
wakeup requests is maintained.

You can cancel scheduled wakeup requests that have not yet been processed by
using the Cancel Wakeup ($CANWAK) service.

If a specified absolute time value has already passed and no repeat time is
specified, the timer expires at the next clock cycle (within 10 milliseconds).

Required Access or Privileges
Depending on the operation, the calling process might need one of the following
privileges to use $SCHDWK:

• GROUP privilege to schedule wakeup requests for a process in the same
group unless it has the same UIC

• WORLD privilege to schedule wakeup requests for any other process in the
system

Required Quota
This service uses the process's timer queue entries (TQELM) quota. If you specify
an AST routine, the service uses the AST limit (ASTLM) quota of the calling
process to schedule a wakeup request.

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SETIME,
$SETIMR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_INCOMPAT

SS$_INSFMEM

SS$_IVLOGNAM

SS$_IVTIME

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

System Service Descriptions
$SCHDWK

The service completed successfully.

The expiration time, repeat time, process name
string, or string descriptor cannot be read by
the caller, or the process identification cannot be
written by the caller.
The process has exceeded its AST limit quota.

The remote node is running an incompatible
version of the operating system.
The system dynamic memory is insufficient for
allocating a timer queue entry.

The process name string has a length of 0 or has
more than 15 characters.
The specified delta repeat time is a positive
value, or an absolute time plus delta repeat time
is less than the current time.

The specified process does not exist, or an invalid
process identification was specified.
The process does not have the privilege to
schedule a wakeup request for the specified
process.

The process name refers to a node that is not
currently recognized as part of the VMScluster
system.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS2-275

System Service Descriptions
$SCH ED

$SCH ED
Affect Process Scheduling

Format

Arguments

Affects process scheduling. This service is intended for use by a class scheduler
process.

SYS$SCHED func ,p1 ,p2 ,p3

func
Open VMS usage: function_code
type: longword (unsigned)
access: write only
mechanism: by value

Function code specifying the action $SCHED is to perform. The func argument
is a longword containing this code.

See the Function Codes section for a list of valid function codes for $SCHED.

p1,p2,p3
Open VMS usage: longword
type: longword (unsigned)
access:
mechanism:

varies
varies

The meaning of the pl, p2, and p3 arguments depends on the function code
specified in the func argument, and is defined in the Function Codes section.

Function Codes

SYS2-276

This section defines each of the $SCHED function codes and describes the values
of the pl argument, p2 argument, and p3 argument for each function.

CSH$_READ_ALL
When you specify CSH$_READ_ALL, $SCHED returns a buffer containing
information, including an index, EPID, and priority, for all processes.

The format of the buffer is defined in the $CSHDEF macro and consists of a
series of CSHP fields.

The following table shows the pl argument, p2 argument, and p3 argument
values for the CSH$_READ_ALL function code.

Argument

pl

p2

p3

Access

Read

Read

Write

Description

Address of the buffer.

Address of the longword size of the buff er.

Address of the longword size of the per-process
entry.

CSH$_READ_NEW

System Service Descriptions
$SCH ED

When you specify CSH$_READ_NEW, $SCHED returns a buffer containing
information, including an index, EPID, and priority, for all processes for which a
class assignment has not been made.

The format of the buffer is defined in the $CSHDEF macro and consists of a
series of CSHP fields.

The following table shows the pl argument, p2 argument, and p3 argument
values for the CSH$_READ_NEW function code.

Argument Access

pl Read
p2 Read

p3 Write

Description

Address of the buffer.

Address of the longword size of the buffer.

Address of the longword size of the per-process
entry.

The following table describes the information returned in the buffer fields for both
CSH$_READ_ALL and CSH$_READ_NEW.

Buffer Field

CSHP$T_ACCOUNT

CSHP$L_CPUTIM
CSHP$L_EPID

CSHP$W_PIX

CSHP$B_PRI
CSHP$B_PRIB

CSHP$L_STATUS

CSH$_READ_QUANT

Definition

Account string from the user authorization file (first
eight characters).

Process CPU time used, in IO-millisecond ticks.
Process ID (PID). If CSHP information is
insufficient to determine the right class for a
process, the PID can be used with the $GETJPI(W)
system service to obtain additional detail.

A unique integer assigned to the process for its
duration. Applications may wish to use this value
to index arrays.

Current process priority.

Base process priority.

Undefined; reserved to Digital.

When you specify CSH$_READ_QUANT, $SCHED returns a buffer containing
information about how many ticks are left for each class. Data is returned in a
series of longwords, one longword per class, starting with class number 0.

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_READ_QUANT function code.

Argument

pl

p2

p3

Access

Read

Read

CSH$_SET_ATTN_AST

Description

Address of the buffer.

Address of the longword size of the buffer.

Unused.

Enables attention asynchronous system traps (ASTs).

SYS2-:-277

System Service Descriptions
$SCH ED

SYS2-278

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_ATTN_AST function code.

Argument

pl

p2

p3

Access

Read

Read

CSH$_SET_CLASS

Description

Address of an AST routine.

Access mode to deliver AST.
Unused.

Places processes in classes with or without windfall capability. The caller supplies
a buffer consisting of CSHC blocks.

The format of the buffer is defined in the $CSHDEF macro. The following table
describes the information contained in the buffer.

Buffer Field

CSHC$L_EPID

CSHC$W_CLASS

CSHC$W _WINDFALL

Definition

Process ID (PID) of the process to affect.

Class into which to place the process. Class 65535
(hexadecimal FFFF) has a special interpretation:
the associated process is not to be class scheduled
and will, therefore, never run out of class quantum.
The largest class number is 8191.

Determines whether the process is to share windfall.
A value of 1 permits the process to share windfall;
a value of 0 prevents the process from sharing
windfall. Values other than 0 and 1 are undefined
and may cause unpredictable behavior in future
releases of the operating system.

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_CLASS function code.

Argument

pl

p2

p3

Access

Read

Read

Read

CSH$_SET_NEW

Description

Address of the buff er.

Address of the longword size of the buffer.
Address of the longword size of the entry used.
Should be CSHC$K_LENGTH or equivalent.

Indicates to the class scheduler that the next READ_NEW will return information
about the calling pr<;>cess.

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_NEW function code.

Description

Argument

pl

p2

p3

Access

Read

CSH$_SET _QUANT

Description

Unused.

System Service Descriptions
$SCH ED

PID (by value).

Unused.

Establishes class quantum and enables class scheduling. The caller supplies a
buffer that allocates CPU ticks to classes, one longword per class, starting with
class number 0. Class-scheduled processes will have their quantum deducted
from the appropriate longword, and will be removed from execution if class
quantum is decremented to 0.

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_QUANT function code.

Argument

pl

p2

p3

Access

Read

Read

CSH$_SET _TIMEOUT

Description

Address of the buffer.

Address of the longword size of buff er.

Unused.

Establishes a nonstandard timeout. If the application does not issue a CSH$_
SET_QUANT within the timeout period, all class scheduling is stopped and
processes are returned to normal scheduling. The default value, 30 seconds,
should be suitable for most circumstances.

The following table defines the pl argument, p2 argument, and p3 argument
values when specifying the CSH$_SET_TIMEOUT function code.

Argument

pl

p2

p3

Access

Read

Description

Unused.
Time in seconds (by value).

Unused.

The Affect Process Scheduling service is used by class scheduler processes to
affect scheduling.

Use the func argument to specify which action $SCHED is to perform.

Required Access or Privileges
ALTPRI is required to affect processes. Group access is required to affect
processes in the same UIC group. World access is required to affect processes
in different UIC groups. SYSPRV is required to set the timeout value.

Required Quota
None

SYS2-279

System Service Descriptions
$SCH ED

Related Services
$GETJPI, $GETJPIW, $SETPRI

Condition Values Returned

SYS2-280

SS$_NORMAL

SS$_BADPARAM
SS$_ILLSER

The service completed successfully.

The function code is invalid.
The loadable image CLASS~SCHEDULER has
not been loaded. Refer to the SYSMAN command
SYS_LOADABLE in the Open VMS System
Management Utilities Reference Manual for
instructions.

$SETAST

System Service Descriptions
$SETAST

Set AST Enable

Format

Argument

Description

Enables or disables the delivery of asynchronous system traps (ASTs) for the
access mode from which the service call was issued.

SYS$SETAST enbflg

en bf lg
Open VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Value specifying whether ASTs are to be enabled. The enbflg argument is a byte
containing this value. The value 1 enables AST delivery for the calling access
mode; the value 0 disables AST delivery.

The Set AST Enable service enables or disables the delivery of ASTs for the
access mode from which the service call was issued.

Required Access or Privileges
When an image is executing in user mode, ASTs are always enabled for more
privileged access modes. If ASTs are disabled for a more privileged access mode,
the operating system cannot deliver ASTs for less privileged access modes until
ASTs are enabled once again for the more privileged access mode. Therefore, a
process that has disabled ASTs for a more privileged access mode must reenable
ASTs for that mode before returning to a less privileged access mode.

Required Quota
None

Related Services
$DCLAST, $SETPRA

Condition Values Returned

SS$_WASCLR

SS$_WASSET

The service completed successfully. AST delivery
was previously disabled for the calling access
mode.
The service completed successfully. AST delivery
was previously enabled for the calling access
mode.

SYS2-281

System Service Descriptions
$SETCLUEVT (Alpha Only)

$SETCLUEVT (Alpha Only)
Set Cluster Event

Format

Arguments

SYS2-282

On Alpha systems, establishes a request for notification when a VMScluster
configuration event occurs.

SYS$SETCLUEVT event ,astadr ,[astprm] ,[acmode] ,[handle]

event
Open VMS usage: event_ code
type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of cluster configuration event for which an AST is
to be delivered. The event argument is a value indicating which type of event is
of interest.

Each event type has a symbolic name. The $CLUEVTDEF macro defines the
following symbolic names.

Symbolic Name

CLUEVT$C_ADD

CLUEVT$C_REMOVE

astadr

Description

One or more Open VMS nodes have been added to
the VMScluster system.
One or more Open VMS nodes have been removed
from the VMScluster system.

Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Notification AST routine to receive control after a change in VMScluster
configuration occurs.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Optional AST parameter to be passed to the AST service routine. The astprm
argument is a longword value containing the AST parameter.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Description

System Service Descriptions
$SETCLUEVT (Alpha Only)

Optional access mode at which the configuration event AST is to execute. The
acmode argument is a longword containing the access mode.

Each access mode has a symbolic name. The $PSLDEF macro defines the
following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The value of the access mode must not be more privileged than the access mode
of the caller.

handle
Open VMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Optional identifier to receive a value that uniquely identifies this AST request.
$SETCLUEVT sets this handle to a unique value so that it can later be used to
identify the request in the $CLRCLUEVT and $TSTCLUEVT services.

The Set Cluster Event service establishes a request for notification when a cluster
configuration event occurs. The service establishes only one AST notification for
a configuration event. To receive AST notification for all cluster configuration
events, the $SETCLUEVT service must be reissued within the notification AST
routine. The service will verify that the input parameters specify a valid request,
allocate appropriate data structures to hold the request, and enqueue the request
for notification.

You must specify an event type and an AST address. You can specify an AST
parameter, the access mode, and an address into which to place the handle of this
request.

Errors will be returned in the following cases:

• If quotas are exceeded, an error identifying the specific quota will be returned.
It is important to note that this routine will return an error and will not retry
an attempt to get quota if quota is exhausted on the first attempt. See the
Condition Values Returned section for types of errors that may be returned.

• If the astadr argument is omitted, SS$_BADPARAM will be returned.

• If the event argument is omitted or incorrectly specified, SS$_BADPARAM
will be returned.

• If the access mode parameter is more privileged than the mode of the caller,
the mode of the caller will be used.

• If specified, the handle argument must be readable and writable from the
mode of the caller. SS$_ACCVIO is returned if this is not the case.

SYS2-283

System Service Descriptions
$SETCLUEVT {Alpha Only}

Required Access or Privileges
None

Required Quota
None

Related Services
$CLRCLUEVT,$TSTCLUEVT

Condition Values Returned

SYS2-284

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_INSFMEM

The service completed successfully.
Unable to process parameters for improper use.

The event was improperly specified.

The process exceeded its quota for outstanding
AST requests.

The system dynamic memory is insufficient to
complete the service.

$SETDDIR

System Service Descriptions
$SETDDIR

Set Default Directory

Format

. Arguments

Description

Allows you to read and change the default directory string for the process.

SYS$SETDDIR [new-dir-addr] ,[length-addr] ,[cur-dir-addr]

new-dir-addr
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

A descriptor of the new default directory. The new-dir-addr argument is the
address of the descriptor that points to the buffer containing the new directory
specification that RMS will use to set the new process-default directory. If the
default directory is not to be changed, the value of the new-dir-addr argument
should be 0.

length-addr
Open VMS usage: word_ unsigned
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the length of the current default directory. The length­
addr argument is the address of the word that will receive the length. If you do
not want this value returned, specify the value 0.

cur-dir-addr
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

A descriptor of a buffer that is to receive the current default directory string. The
cur-dir-addr argument is the address of the descriptor that points to the buffer
area that is to receive the current directory string.

The Set Default Directory service allows you to read and change the default
directory string for the process. You should restore the old default directory
string to its original status unless you want the changed default directory string
to last beyond the exit of your image. The new directory name string is checked
for correct syntax.

There is no predefined macro of the form $SETDDIR_G or $SETDDIR_S to call
this service.

Required Access or Privileges
None

SYS2-285

System Service Descriptions
$SETDDIR

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-286

RMS$_NORMAL
RMS$_DIR

RMS$_IAL

The service completed successfully.
The directory name contains an error.

The argument list is invalid.

System Service Descriptions
$SETDFPROT

$SETDFPROT
Set Default File Protection

Format

Arguments

Description

Allows you to read and write the default file protection for the process.

SYS$SETDFPROT [new-def-prot-addr] ,[cur-def-prot-addr]

new-def-prot-addr
Open VMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

A word that specifies the new default file protection specification. The new­
def-prot-addr argument is the address of the word that specifies the desired
protection. If you do not want the process-default file protection to be changed,
specify the value 0.

cur-def-prot-addr
Open VMS usage: file_protection
type: word (unsigned)
access; write only
mechanism: by reference

A word that is to receive the current default file protection specification. The
cur-def-prot-addr argument is the address of the word that receives the current
process-default protection. If you do not want _the current default file protection,
specify the value 0.

The Set Default File Protection service allows you to read and write the default
file protection for the process. You should restore the old default file protection
specification unless you want the changed default to last beyond the exit of your
image.

There is no predefined macro of the form $SETDEFPROT_G or
$SETDEFPROT_S to call this service.

Required Access or Privileges
None

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $GET_SECURITY, $!NIT_ VOL,
$MOUNT, $PUTMSG, $QIO, $QIOW, $SET_SECURITY, $SNDERR, $SNDJBC,
$SNDJBCW, $SNDOPR

SYS2-287

System Service Descriptions
$SETDFPROT

Condition Values Returned

SYS2-288

RMS$_NORMAL

RMS$_IAL

The service completed successfully.

The argument list is invalid.

$SETEF

System Service Descriptions
$SETEF

Set Event Flag

Format

Argument

The Set Event Flag service sets an event flag in a local or common event flag
cluster. The conditiOn value returned by $SETEF indicates whether the specified
flag was previously set or clear. After the event flag is set, processes waiting for
the event flag to be set resume execution.

SYS$SETEF efn

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set. The efn argument is a longword containing
this number; however, $SETEF uses only the low-order byte.

Two local event flag clusters are local to the process: cluster 0 and cluster 1.
Cluster 0 contains event flag numbers 0 to 31, and cluster 1 contains event flag
numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS2-289

System Service Descriptions
$SETEXV

$SETEXV
Set Exception Vector

Format

Arguments

SYS2-290

Assigns a condition handler address to the primary, secondary, or last chance
exception vectors, or removes a previously assigned handler address from any of
these three vectors.

SYS$SETEXV [vector] ,[addres] ,[acmode] ,[prvhnd]

vector
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Vector for which a condition handler is to be established or removed. The vector
argument is a longword value. The value 0 (the default) specifies the primary
exception vector; the value 1, the secondary vector; and the value 2, the last
chance exception vector.

add res
Open VMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Condition handler address to be established for the exception vector specified by
the vector argument. The addres argument is a longword value containing the
address of the condition handler routine.

If you do not specify addres or specify it as the value 0, the condition handler
address already established for the specified vector is removed; that is, the
contents of the longword vector is set to 0.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the exception vector is to be modified. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. Exception
vectors for access modes more privileged than the caller's access mode cannot be
modified.

Description

prvhnd
Open VMS usage: procedure value
type: longword (unsigned)
access: write only
mechanism: by reference

System Service Descriptions
$SETEXV

Previous condition handler address contained by the specified exception vector.
The prvhnd argument is the address of a longword into which $SETEXV writes
the handler's procedure value.

The Set Exception Vector service (1) assigns a condition handler address to the
primary, secondary, or last chance exception vectors or (2) removes a previously
assigned handler address from any of these three vectors. A process cannot
modify a vector associated with a more privileged access mode.

The operating system provides two different methods for establishing condition
handlers:

• Using the call stack associated with each access mode. Each call frame
includes a longword to contain the address of a condition handler associated
with that frame.

• On VAX systems, the RTL routine LIB$ESTABLISH establishes a condition
handler; the RTL routine LIB$REVERT removes a handler.+

• Using the software exception vectors (by using $SETEXV) associated with
each access mode. These vectors are set aside in the control region (Pl space)
of the process.

The modular properties associated with the first method do not apply to the
second. The software exception vectors are intended primarily for performance
monitors and debuggers. For example, the primary exception vector and the
last chance exception vector are used by the Open VMS Debugger for user mode
access, and DCL uses the last chance exception vector for supervisor mode access.

User mode exception vectors are canceled at image exit.

Required Access or Privileges
None

Required Quota
None

Related Services
$DCLCMH, $SETSFM, $UNWIND

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO
The service completed successfully.

The longword to receive the previous contents of
the vector cannot be written by the caller.

SYS2-291

System Service Descriptions
$SETI ME

$SETI ME
Set System Time

Format

Argument

Description

SYS2-292

Changes the value of, or recalibrates, the system time.

SYS$SETIME [timadr]

timadr
Open VMS usage: date_ time
type: quadword (unsigned)
access: read only
mechanism: by reference

New absolute time value for the system time, specifying the number of 100-
nanosecond intervals since 00:00 o'clock, November 17, 1858. The timadr
argument is the address of a quadword containing the new system time value. A
negative (delta) time value is invalid.

If you do not specify the value of timadr or specify it as 0, $SETIME recalibrates
the system time using the time-of-year clock.

The Set System Time service (1) changes the value of or (2) recalibrates the
system time which is defined by a quadword value that specifies the number of
100-nanosecond intervals since 00:00 o'clock, November 17, 1858.

System time is the reference used for nearly all timer-related software activities
in the operating system. After changing or recalibrating the system clock,
$SETIME updates the timer queue by adjusting each element in the timer queue
by the difference between the previous system time and the new system time.

The $SETIME service saves the new time (for future bootstrap operations) in the
system image SYS$SYSTEM:SYS.EXE. To save the time, the service assigns a
channel to the system boot device and calls $QIOW. You need the LOG_IO user
privilege to perform this operation.

Required Access or Privileges
To set system time, the calling process must have OPER and LOG_IO privileges.

Required Quota
None

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK,
$SETIMR

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_IVTIME

SS$_NOIOCHAN

SS$_NOPRIV

System Service Descriptions
$SETI ME

The service completed successfully.

The quadword that contains the new system time
value cannot be read by the caller.

The caller specified no time value or a negative
time value and an invalid processor clock was
found.

No I/O channel is available for assignment.

The process does not have the privileges to set
the system time.

SYS2-293

System Service Descriptions
$SETI MR

$SETI MR
Set Timer

Format

Arguments

SYS2-294

Sets the timer to expire at a specified time.

On Alpha systems, this service accepts 64-bit addresses.

SYS$SETIMR [efn] ,daytim ,[astadr] ,[reqidt] ,[flags]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag to be set when the timer expires. The efn argument is a longword
value containing the number of the event flag; however, $SETIMR uses only the
low-order byte. If you do not specify efn, event flag 0 is set.

When $SETIMR first executes, it clears the specified event flag or event flag 0.

daytim
Open VMS usage:
type:
access:
mechanism:

date_ time
quadword
read only
by 64-bit reference (Alpha)
by 32-bit reference (VAX)

Time at which the timer expires. The daytim argument is the 64-bit address (on
Alpha systems) or the 32-bit address (on VAX systems) of a quadword time value.
A positive time value specifies an absolute time at which the timer expires; a
negative time value specifies an offset (delta time) from the current time.

On Alpha systems, if a specified absolute time value has already passed, the
timer expires within 10 milliseconds.+

On VAX systems, if a specified absolute time value has already passed, the timer
expires at the next clock cycle, which is within 10 milliseconds.+

On Alpha and VAX systems, the Convert ASCII String to Binary Time ($BINTIM)
service converts an ASCII string time value to the quadword time value required
by $SETIMR.

astadr
Open VMS usage:
type:
access:
mechanism:

ast_procedure
procedure value
call without stack unwinding
by 64-bit reference (Alpha)
by 32-bit reference (VAX)

AST service routine that is to execute when the timer expires. The astadr
argument is the 64-bit address (on Alpha systems) or the 32-bit address (on VAX
systems) of the procedure value of this routine. If you do not specify the value of
astadr or specify it as 0 (the default), no AST routine executes.

Description

System Service Descriptions
$SETI MR

The AST routine, if specified, executes at the access mode of the caller.

reqidt
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Identification of the timer request. The reqidt argument is a longword value
containing a number that uniquely identifies the timer request. If you do not
specify reqidt, the value 0 is used.

To cancel a timer request, the identification of the timer request (as specified by
reqidt in $SETIMR) is passed to the Cancel Timer ($CANTIM) service (as the
reqidt argument).

If you want to cancel specific timer requests but not all timer requests, be sure to
specify a nonzero value for reqidt in the $SETIMR call; $CANTIM interprets an
identification value of 0 as a request to cancel all timer requests.

You can specify unique values for reqidt for each timer request or give the same
value to related timer requests. This permits selective canceling of a single timer
request, a group of related timer requests, or all timer requests.

If you specify the astadr argument in the $SETIMR call, the value specified by
the reqidt argument is passed as a parameter to the AST routine. If the AST
routine requires more than one parameter, specify an address for the value of
reqidt; the AST routine can then interpret that address as the beginning of a list
of parameters.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of bit flags for the set timer operation. Currently, only bit 0 is used for
the flags argument. When the low bit (bit 0) is set, it indicates that this timer
request should be in units of CPU time, rather than elapsed time. When bit 0
is clear (the default), the timer request is in units of elapsed time. The flags
argument is optional.

The Set Timer service sets the timer to expire at a specified time. When the
timer expires, an event flag is set and (optionally) an AST routine executes. This
service requires dynamic memory and executes at the access mode of the caller,
as does the AST routine if one is specified.

Required Access or Privileges
None

Required Quota
This service uses the process's timer queue entries (TQELM) quota. If you specify
an AST routine, the service uses the AST limit (ASTLM) quota of the process.

Related Services
$ASCTIM, $BINTIM, $CANTIM, $CANWAK, $GETTIM, $NUMTIM, $SCHDWK,
$SETIME

SYS2-295

System Service Descriptions
$SETI MR

Condition Values Returned

SYS2-296

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLEFC

SS$_INSFMEM

SS$_UNASEFC

The service completed successfully.

The expiration time cannot be read by the caller.

The process exceeded its quota for timer entries
or its AST limit quota; or the system dynamic
memory is insufficient for completing the request.

You specified an illegal event flag number.

The dynamic memory is insufficient for allocating
a timer queue entry.

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$SET _IMPLICIT _AFFINITY (Alpha Only)

$SET _IMPLICIT _AFFINITY (Alpha Only)
Modify Process Implicit Affinity

Format

Arguments

On Alpha systems, controls or retrieves the activation state for the implicit
· affinity system capability of a specific kernel thread or of the global process

default.

This service accepts 64-bit addresses.

SYS$SET _IMPLICIT _AFFINITY [pidadr] [,prcnam] [,state] [,cpu_id] [,prev_mask]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

Process identification (PID) of a kernel thread whose implicit affinity is to be
modified or returned. The pidadr argument is the 32-bit or 64-bit address of a
longword that ,contains the PID.

Process selection is made through a combination of the pidadr and prcnam
arguments. If neither are specified or if both have a zero value, the service
operations are made to the user capability mask of the initial thread of the
current calling process. The pidadr argument takes precedence over the prcnam
argument where both are supplied in the service call.

If the bit constant CAP$M_IMPLICIT_DEFAULT_ONLY is specified in the state
argument, then the implicit affinity state portion of the default capability mask is
modified or returned instead.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by 32-bit or 64-bit descriptor-fixed-length string descriptor

Process name of the process whose implicit affinity capability state is to be
modified or returned. The prcnam argument is the 32-bit or 64-bit address of a
character string descriptor pointing to the process name string. A process can be
identified with a 1- to 15-character string. The service operations are made to the
user capability mask of the initial thread of the specified process.

If pidadr and prcnam are both specified, then pidadr is modified or returned
and prcnam is ignored. If neither argument is specified, then the context of the
initial thread of the calling process is modified or returned.

state
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference

SYS2-297

System Service Descriptions
$SET _IMPLICIT _AFFINITY (Alpha Only)

SYS2-298

State options that can be selected for the affected thread's implicit affinity. The
state argument is a pointer to a quadword bit vector wherein a bit corresponds
to a requested state for the implicit affinity feature. Only the bits specified below
are used; the remainder of the quadword bits are reserved.

Each option (bit) has a symbolic name, defined in the $CAPDEF macro. The
state argument is constructed by performing a logical OR operation using the
symbolic names of each desired option. The following table describes the symbolic
name of each option.

Symbolic Name

CAP$M_IMPLICIT_DEFAULT_
ONLY

CAP$M_IMPLICIT _AFFINITY _SET

CAP$M_IMPLICIT _AFFINITY_
CLEAR

cpu_id
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Description

Indicates the specified operations are to
be performed on the global cell instead
of on a specific kernel thread. This
bit supersedes any individual kernel
thread specified in pidadr or prcnam.
Specifying this bit constant applies the
implicit affinity operations to all newly
created processes.

Indicates that the implicit affinity
capability bit is to be set for the specified
kernel thread. This is mutually exclusive
with CAP$M_IMPLICIT_AFFINITY_
CLEAR.
Indicates that the implicit affinity
capability bit is to be cleared for the
specified kernel thread. This is mutually
exclusive with CAP$M_IMPLICIT_
AFFINITY_SET.

Identifier of the CPU requested as the first CPU on which this kernel thread is
to execute. The cpu_id is a longword containing this number, which is in the
supported range of individual CPUs from 0 to SYI$_MAX_CPUS -1.

If no explicit CPU is needed, specifying a value of -1 in this argument indicates
the system is to select the initial association based on system dynamics and load
balancing.

Note that, regardless of what explicit CPU is supplied to this argument, it will
be taken only as a suggestion. This service will attempt to make the requested
association, but it will be superseded by another CPU if the system dynamics are
adversely affected by the operation.

prev_mask
Open VMS usage: mask_ quadword
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Description

System Service Descriptions
$SET _IMPLICIT _AFFINITY (Alpha Only)

Previous implicit affinity state mask for the specified kernel thread before
execution of this call to $SET_IMPLICIT_AFFINITY. The prev _mask argument
is the 32-bit or 64-bit address of a quadword into which $SET_IMPLICIT_
AFFINITY writes a bit mask specifying the implicit affinity state.

The current state of the kernel thread's current implicit affinity feature can
be determined by testing the returned mask with the symbolic bit definitions
deecribed for the state argument. These bit definitions are found in the
$CAPDEF macro.

The Modify Process Implicit Affinity system service modifies or returns the
implicit affinity state for the specified kernel thread or from the system default
process creation cell.

Setting a kernel thread's implicit affinity function indicates to the system that
it is to schedule the process in ways that will maximize the cache and TB
performance in the current symmetric multiple processor (SMP) configuration.
This might tend to bias the process towards specific CPUs more than the standard
scheduling algorithm would normally have allowed.

Required Access or Privileges
The caller must have the ALTPRI privilege to call SYS$SET_IMPLICIT_
AFFINITY to modify its own implicit affinity capability bit. To modify another
process' capability mask, the caller must have:

ALTPRI-To modify any process with a matching UIC
ALTPRI and GROUP-To modify any process in the same UIC group
ALTPRI and WORLD-To modify any process

To call SYS$SET_IMPLICIT_AFFINITY simply to retrieve the state of a specific
process or global bit, the caller need only have the following privileges:

None-To retrieve the state of itself or any process with a matching UIC
GROUP-To retrieve the state of any process in the same UIC group
WORLD-To retrieve the state of any process

Related Services
$CPU_CAPABILITIES, $PROCESS_CAPABILITIES, $PROCESS_AFFINITY

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_NOSUCHTHREAD

SS$_NONEXPR

SS$_IVLOGNAM

SS$_NOPRIV

The service completed successfully.

One of more arguments has an invalid value.

The service cannot access the locations specified
by one or more arguments.

The specified kernel thread does not exist.

The specified process does not exist, or an invalid
process identification was specified.

The process name string has a length of 0 or
more than 15 characters.
Insufficient privilege for attempted operation.

SYS2-299

System Service Descriptions
$SET _IMPLICIT _AFFINITY (Alpha Only)

SS$_CPUCAP

SS$_1NSFARG

SYS2-300

No CPU can run the specified process with new
capabilities.
Fewer than the required number of arguments
were specified or no operation was specified.

$SETPRA

System Service Descriptions
$SETPRA

Set Power Recovery AST

Format

Arguments

Description

Establishes a routine to receive control after a power recovery is detected.

SYS$SETPRA astadr ,[acmode]

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Power recovery AST routine to receive control when a power recovery is detected.
The astadr argument is the address of this routine.

If you specify astadr as the value 0, an AST is not delivered to the process when
a power recovery is detected.

The system passes one parameter to the specified AST routine. This parameter is
a longword value containing the length of time that the power was off, expressed
as the number of 1/lOOth-of-a-second intervals that have elapsed.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode at which the power recovery AST routine is to execute. The acmode
argument is a longword containing the access mode. The $PSLDEF macro defines
symbols for the access modes.

The most privileged access mode used is the access mode of the caller.

The Set Power Recovery AST service establishes a routine to receive control after
a power recovery is detected.

You can specify only one power recovery AST routine for a process. The AST
entry point address is cleared at image exit.

The entry and exit conventions for the power recovery AST routine are the same
as for all AST service routines.

Required Access or Privileges
None

Required Quota
One unit of quota is deducted from the process's ASTLM.

SYS2-301

System Service Descriptions
$SETPRA

Related Services
$DCLAST, $SETAST

For more information, see the chapter on AST services in the Open VMS
Programming Concepts Manual.

Condition Values Returned

SYS2-302

SS$_NORMAL
SS$_EXQUOTA

The service completed successfully.

The process exceeded its quota for outstanding
AST requests.

System Service Descriptions
$SETPRI

$SETPRI
Set Priority

Format

Arguments

Changes the base priority of the process. The base priority is used to determine
the order in which executable processes are to run.

SYS$SETPRI [pidadr] ,[prcnam] ,pri ,[prvpri] ,[nullarg] ,[nullarg]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process whose priority is to be set. The pidadr
argument is the address of the PID. The pidadr argument can refer to a process
running on the local node or a process running on another node in the cluster.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process whose priority is to be changed. The prcnam
argument is the address of a character string descriptor pointing to the process
name. A process running on the local node can be identified with a 1- to 15-
character string. To identify a process on a particular node on a cluster, specify
the full process name, which includes the node name as well as the process name.
The full process name can contain up to 23 characters.

You can use the prcnam argument only on behalf of processes in the same UIC
group as the calling process. To set the priority for processes in other groups, you
must specify the pidadr argument.

pri
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

New base priority to be established for the process. The pri argument is a
longword ,value containing the new priority. Priorities that are not real time are
in the range 0 through 15; real-time priorities are in the range 16 through 31.

If the specified priority is higher than the base priority of the target process, and
if the caller does not have ALTPRI privilege, then the base priority of the target
process is used.

SYS2-303

System Service Descriptions
$SETPRI

EMMI

SYS2-304

prvpri
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Base priority of the process before the call to $SETPRI. The prvpri argument is
the address of a longword into which $SETPRI writes the previous base priority
of the process.

policy
Open VMS usage: longword_ unsigned
type: longw.ord (unsigned)
access: read only
mechanism: by reference

On Alpha systems, address of a longword containing the new scheduling policy
for the process. The $JPIDEF macro defines the following symbols for the policy
argument.

Symbol

JPl$K_DEFAULT_POLICY

JPI$K_PSX_FIFO_POLICY

JPI$K_PSX_RR_POLICY

prvpol

Meaning

The normal scheduling policy. The priority
interval for this policy is defined as [0 .. n],
such that priorities [0 .. 15] are interactive
and priorities [16 .. n] are real time.

Posix FIFO scheduling policy. The priority
interval for this policy is defined as [n .. m]
real-time priorities.

Posix round-robin policy. The priority
interval for this policy is defined as [n .. m]
real-time priorities.+

Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

On Alpha systems, address of a longword into which the previous scheduling
policy for the process is written. If the policy argument is null, no change in
policy is requested and prvpol returns the current policy.

The valid priority intervals for specific scheduling policies may change in the
future. Applications should, therefore~ not use embedded numeric constants
for scheduling priority, but should use the appropriate $GETSYI item codes to
fetch the legal priority intervals. The application may then dynamically select a
priority value that is within the interval. The $GETSYI item codes are:

• SYl$_DEF _PRIO_MAX

• SYl$_DEF_PRIO_MIN

• SYl$_PSXFIFO_PRIO_MAX

• SYl$_PSXFIFO_PRIO_MIN

Description

System Service Descriptions
$SETPRI

• SYI$_PSXRR_PRIO_MAX

• SYI$_PSXRR_PRIO_MIN

See the Item Codes section of the $GETSYI service description for more
information about these item codes.+

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

The Set Priority service changes the base priority of the process or, optionally,
changes the scheduling policy of the process. The base priority is used to
determine the order in which executable processes are to run.

The scheduling policy denotes the following:

• The basic scheduling discipline (FIFO, round-robin, and so forth).

• The preemption/compensation rules by which a running process is
descheduled in favor of another process and, ultimately, rescheduled.

A source process may modify the priority or scheduling policy of a target process
if any of the following are true:

• The source and target processes are in the same job tree.

• The source and target processes have the same UIC.

• The source process has WORLD privilege enabled.

• The source and target processes are in the same process group.

The value to which the priority of a process may be set can be subject to
limitations. If the source has ALTPRI privilege enabled, the target may be
set to any valid priority. Otherwise, the priority value specified by the source
process is compared to the authorized priority of the target process and the
smaller of the two values is used as the new base priority of the target process.

If you specify neither the pidadr nor the prcnam argument, $SETPRI sets the
base priority of the calling process.

If the longword at address pidadr is the value 0, the PID of the target process is
returned.

The base priority of a process remains in effect until specifically changed or until
the process is deleted.

To determine the priority set by the $SETPRI service, use the Get Job/Process
Information ($GETJPI) service.

Required Access or Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $SETPRI:

• GROUP privilege to change the priority of a process in the same group, unless
the target process has the same UIC as the calling process.

SYS2-305

System Service Descriptions
$SETPRI

• WORLD privilege to change the priority of any other process in the system.

• ALTPRI privilege to set any process's priority to a value greater than the
target process's initial base priority. If a process does not have ALTPRI
privilege, the priority value specified by the source process is compared to the
authorized priority of the target process and the smaller of the two values is
used as the new base priority of the target process.

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRN, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SYS2-306

SS$_NORMAL

SS$_ACCVIO

SS$_ILLPOLICY

SS$_ILLPRIPOL

SS$_1NCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification or previous priority longword
cannot be written by the caller.
An invalid scheduling policy was specified.

Setting the process to the specified priority
and/or policy would result in an illegal
policy/priority combination. The illegal
combination may occur between the SETPRI
policy and priority parameters themselves, or it
may occur between either of the parameters and
the current policy and/or priority of the target
process.
The remote node is running an incompatible
version of the operating system.

The process name string has a length of 0 or has
more than 15 characters.
The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to affect
other processes.
The process name refers to a node that is not
currently recognized as part of the cluster.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

$SETPRN

System Service Descriptions
$SETPRN

Set Process Name

Format

Argument

Description

Allows a process to establish or to change its own process name.

SYS$SETPRN ~~nam]

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name to be given to the calling process. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. If you do not specify prcnam, the calling process is given no name.

The Set Process Name service allows a process to establish or to change its own
process name, which remains in effect until you change it (using $SETPRN) or
until the process is deleted. Process names provide an identification mechanism
for processes executing with the same group number. A process can also be
identified by its process identification (PID).

Required Access or Privileges
None

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRV,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_DUPLNAM

SS$_IVLOGNAM

The service completed successfully.
The process name string or string descriptor
cannot be read by the caller.
The specified process name duplicates one
already specified within that group.

The specified process name has a length of 0 or
has more than 15 characters.

SYS2-307

System Service Descriptions
$SETPRT

$SETPRT
Set Protection on Pages

Format

Arguments

SYS2-308

Allows a process to change the protection on a page or range of pages.

SYS$SETPRT inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages whose protection
is to be changed. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Addresses
are adjusted up or down to fall on CPU-specific page boundaries. Only the
virtual page number portion of each virtual address is used; the low-order
byte-within-page bits are ignored.

If the starting and ending virtual addresses are the same, the protection is
changed for a single page.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the range of pages whose protection
was actually changed by $SETPRT. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

If an error occurs while the protection is being changed, $SETPRT writes into
retadr the range of pages that were successfully changed before the error
occurred. If no pages were affected before the error occurred, $SETPRT writes
the value -1 into each longword of the 2-longword array. ·

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $SETPRT. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines symbols for
the access modes.

EMMI

System Service Descriptions
$SETPRT

The $SETPRT service uses whichever of the following two access modes is least
privileged: (1) the access mode specified by acmode or (2) the access mode
of the caller. To change the protection of any page in the specified range, the
resultant access mode must be equal to or more privileged than the access mode
of the owner of that page.

prot
Open VMS usage: page_protection
type: longword (unsigned)
access: read only
mechanism: by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits 4 to
31 are ignored.

The $PRTDEF macro defines the following symbolic names for the protection
codes.

Symbol

PRT$C_NA
PRT$C_KR

PRT$C_KW

PRT$C_ER

PRT$C_EW
PRT$C_SR

PRT$C_SW

PRT$C_UR
PRT$C_UW

PRT$C_ERKW

PRT$C_SRKW

PRT$C_SREW
PRT$C_URKW

PRT$C_UREW

PRT$C_URSW

Description

No access
Kernel read only

Kernel write

Executive read only

Executive write
Supervisor read only

Supervisor write

User read only

User write
Executive read; kernel write

Supervisor read; kernel write

Supervisor read; executive write
User read; kernel write

User read; executive write

User read; supervisor write

Open VMS Alpha systems convert PRT$C_NA to the next highest protection,
kernel-read.+

If you specify the protection as the value 0, the protection defaults to kernel read
only.

prvprt
Open VMS usage: page_protection
type: byte (unsigned)
access: write only
mechanism: by reference

Protection previously assigned to the last page in the range. The prvprt
argument is the address of a byte into which $SETPRT writes the protection of
this page. The prvprt argument is useful only when protection for a single page
is being changed.

SYS2-309

System Service Descriptions
$SETPRT

Description

The Set Protection on Pages service allows a process to change the protection on
a page or range of pages.

Required Access or Privileges
None

Required Quota
If a process changes the protection for any pages in a private section from read
only to read/write, $SETPRT uses the paging file (PGFLQUOTA) quota of the
process.

For pages in global sections, the new protection can alter only copy-on-reference
pages.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETSTK, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS2-310

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOTA

SS$_IVPROTECT

SS$_LENVIO

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully.

The input address array cannot be read by the
caller; the output address array or the byte to
receive the previous protection cannot be written
by the caller; or an attempt was made to change
the protection of a nonexistent page.

The process exceeded its paging file quota while
changing a page in a read-only private section to
a read/write page.

The specified protection code has a numeric value
of 1, less than 0, or greater than 15.

A page in the specified range is beyond the end
of the program or control region.

A page in the specified range is in the system
address space; an attempt was made to change
the protection of a valid global page, of an invalid
global noncopy-on-reference page, or a PFN
global or private page.

The process attempted to change the protection
on a page owned by a more privileged access
mode.

System Service Descriptions
$SETPRT _64 (Alpha Only)

$SETPRT _64 (Alpha Only)
Set Protection on Pages

Format

Arguments

On Alpha systems, allows a process to change the protection on a page or range
of pages.

This service accepts 64-bit addresses.

SYS$SETPRT _64 start_va_64 ,length_64 ,acmode ,prot ,return_va_64
,return_length_64 ,return_prot_64

start_ va_ 64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the range of pages whose protection is to be
changed. The specified virtual address will be rounded down to a CPU-specific
boundary.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space whose protection is to be changed. The
specified length will be rounded up to a CPU-specific page boundary so that it
includes all CPU-specific pages in the requested range.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $SETPRT_64. The acmode argument is
a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel
1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

SYS2-311

System Service Descriptions
$SETPRT _64 (Alpha Only)

Description

SYS2-312

The most privileged access 'mode used is the access mode of the caller. To change
the protection of any page in the specified range, the resultant access mode must
be equal to or more privileged than the access mode of the owner of that page.

prot
Open VMS usage: page_protection
type: longword (unsigned)
access: read only
mechanism: by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits 4 to
31 are ignored.

The $PRTDEF macro for MACR0-32 and the include file PRTDEF.H for C define
the symbolic names for the protection codes.

return_va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the range of pages whose protection was
actually changed. The return_ va_64 argument is the 32-bit or 64-bit virtual
address of a naturally aligned quadword into which the service returns the
virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range whose protection was actually changed.
The return_length_64 argument is the 32-bit or 64-bit virtual address of a
naturally aligned quadword into which the service returns the length of the
virtual address range in bytes.

return_prot_64
Open VMS usage: page_protection
type: longword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

Protection previously assigned to the last page in the range. The return_prot_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned longword
into which $SETPRT_64 writes the protection of this page. The return_prot_64
argument is useful only when protection for a single page is being changed.

The Set Protection on Pages service allows a process to change the protection on
a page or range of pages. For pages in a global section, the new protection can
alter only copy-on-reference pages.

System Service Descriptions
$SETPRT _64 (Alpha Only)

If the condition value SS$_ACCVIO is returned by this service, a value
cannot be returned in the memory locations pointed to by the return_ va_64,
return_length_64, and return_prot arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully changed before
the error occurred. If no pages were changed, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length~64 argument.

Required Privileges
None

Required Quota
If a process changes the protection for any pages in a private section from
read-only to read/write, $SETPRT_64 uses the paging file (PGFLQUOTA) quota
of the process.

Related Services
$CRETVA_64, $CRMPSC_FILE_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_
64, $EXPREG_64, $MGBLSC_64

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_EXPGFLQUOTA

SS$_IVPROTECT

SS$_LENVIO

SS$_NOSUCHPAG

SS$_PAGNOTINREG

SS$_PAGTYPVIO

SS$_PAGOWNVIO

The service completed successfully.
The return_ va_64 or the return_length_64
argument cannot be written by the caller.
The process exceeded its paging file quota while
changing a page in a read-only private section to
a read/write page.

The specified protection code has a numeric value
of 1 or is greater than 15.

A page in the specified range is not in process
private address space.

An attempt was made to change the protection
on a nonexistent page.

A page in the specified range is not within the
specified region.

A page in the specified range is not in process
private address space.

The process attempted to change the protection
on a page owned by a more privileged access
mode.

SYS2-313

System Service Descriptions
$SETPRV

$SETPRV
Set Privileges

Format

Arguments

SYS2-314

Enables or disables specified privileges for the calling process.

SYS$SETPRV [enbflg] ,[prvadr] ,[prmflg] ,[prvprv]

en bf lg
Open VMS usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the specified privileges are to be enabled or disabled.
The enbflg argument is a longword value. The value 1 indicates that the
privileges specified in the ·prvadr argument are to be enabled. The value 0 (the
default) indicates that the privileges are to be disabled.

prvadr
Open VMS usage: mask_privileges
type:. quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be enabled or disabled for the calling process. The prvadr argument
is the address of a quadword bit vector wherein each bit corresponds to a privilege
that is to be enabled or disabled.

Each bit has a symbolic name. The $PRVDEF macro defines these names. You
form the bit vector by specifying the symbolic name of each desired privilege in a
logical OR operation. Table SYS2-4 provides the symbolic name and description
of each privilege.

Table SYS2-4 User Privileges

Privilege Symbolic Name

ACNT PRV$M_ACNT

ALLSPOOL PRV$M_ALLSPOOL

ALTPRI PRV$M_ALTPRI

AUDIT PRV$V _AUDIT

BUGCHK PRV$M_BUGCHK

BYPASS PRV$M_BYPASS

CMEXEC PRV$M_CMEXEC

Description

Create processes for which no
accounting is done

Allocate a spooled device
Set (alter) any process priority

Generate audit records
Make bugcheck error lOg
entries

Bypass all protection

Change mode to executive
(continued on next page)

Table SVS2-4. (Cont.) User Privileges

Privilege Symbolic Name

CMKRNL PRV$M_CMKRNL
DETACH PRV$M_DETACH
DIAGNOSE PRV$M_DIAGNOSE
DOWNGRADE PRV$V _DOWNGRADE
EX QUOTA PRV$M_EXQUOTA

GROUP PRV$M_GROUP
GRPNAM PRV$M_GRPNAM

GRPPRV PRV$V_GRPPRV

IMPORT PRV$V _IMPORT

LOG_IO PRV$M_LOG_IO

MOUNT PRV$M_MOUNT
NETMBX PRV$M_NETMBX
OPER PRV$M_OPER
PFNMAP PRV$M_PFNMAP

PHY_IO PRV$M_PHY_IO

PRMCEB PRV$M_PRMCEB

PRMGBL PRV$M_PRMGBL

PRMMBX PRV$M_PRMMBX

PSWAPM PRV$M_PSWAPM
READ ALL PRV$V _READALL

SECURITY PRV$V _SECURITY

SETPRV PRV$M_SETPRV
SHARE PRV$M_SHARE

SHMEM PRV$M_SHMEM

SYSGBL PRV$M_SYSGBL

SYSLCK PRV$M_SYSLCK
SYSNAM PRV$M_SYSNAM

System Service Descriptions
$SETPRV

Description

Change mode to kernel
Create detached processes
May diagnose devices
May downgrade classification
May exceed quotas
Group process control
Place name in group logical
name table
Group access by means of
system protection field
Mount a nonlabeled tape
volume
Perform logical I/O operations
Issue mount volume QIO
Create a network device
All operator privileges
Map to section by physical
page frame number
Perform physical I/O
operations
Create permanent common
event flag clusters
Create permanent global
sections
Create permanent mailboxes
Change process swap mode

Possess read access to
everything
May perform security
functions
Set any process privileges
May assign a channel to a
nonshared device
Allocate structures in memory
shared by multiple processors
Create system global sections
Queue systemwide locks
Place name in system logical
name table

(continued on next page)

SYS2-315

System Service Descriptions
$SETPRV

Description

SYS2-316

Table SYS2-4 (Cont.) User Privileges

Privilege

SYSPRV

TMPMBX

UPGRADE

VOLPRO

WORLD

Symbolic Name

PRV$M_SYSPRV

PRV$M_TMPMBX

PRV$V_UPGRADE

PRV$M_VOLPRO

PRV$M_ WORLD

Description

Access files and other
resources as if you have a
system UIC
Create temporary mailboxes

May upgrade classification

Override volume protection

World process control

If you do not specify prvadr or assign it the value 0, the privileges are not
altered.

prmflg
Open VMS usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the privileges are to be affected permanently or
temporarily. The prmftg argument is a longword value. The value 1 specifies
that the privileges are to be affected permanently, that is, until you change
them again by using $SETPRV or until the process is deleted. The value 0 (the
default) specifies that the privileges are to be affected temporarily, that is, until
the current image exits (at which time the permanently enabled privileges of the
process will be restored).

prvprv
Open VMS usage: mask_privileges
type: quadword (unsigned)
access: write only
mechanism: by reference

Privileges previously possessed by the calling process. The prvprv argument is
the address of a quadword bit vector wherein each bit corresponds to a privilege
that was previously either enabled or disabled. If you do not specify prvprv or
assign it the value 0, the previous privilege mask is not returned.

The Set Privileges service enables or disables specified privileges for the calling
process.

The operating system maintains four separate privilege masks for each process:

• AUTHPRIV-Privileges that the process is authorized to enable, as
designated by the system manager or the process creator. The AUTHPRIV
mask never changes during the life of the process.

• PROCPRIV-Privileges that are designated as permanently enabled for the
process. The PROCPRIV mask can be modified by $SETPRV.

System Service Descriptions
$SETPRV

• IMAGPRIV-Privileges with which the current image is installed.

• CURPRIV-Privileges that are currently enabled. The CURPRIV mask can
be modified by $SETPRV.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents. Whenever a system service (other than $SETPRV) must
check the process privileges, that service checks the CURPRIV mask.

When a process runs an installed image, the privileges with which that image
was installed are enabled in the CURPRIV mask. When the installed image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

The $SETPRV service can set bits only in the CURPRIV and PROCPRIV mask,
but $SETPRV checks the AUTHPRIV mask to see whether a process can set
specified privilege bits in the CURPRIV or PROCPRIV masks. Consequently, a
process can give itself the SETPRV privilege only if this privilege is enabled in
the AUTHPRIV mask.

You can obtain each of a process's four privilege masks by calling the $GET JPI
(Get Job/Process Information) service and specifying the desired privilege mask
or masks as item codes in the itmlst argument. You construct the item code for
a privilege mask by prefixing the name of the privilege mask with the characters
JP!$_ (for example, JPI$_CURPRIV is the item code for the current privilege
mask).

The DCL command SET PROCESS/PRIVILEGES also enables or disables
specified privileges; refer to the Open VMS DCL Dictionary for details.

Required Access or Privileges
To set a privilege permanently, the calling process must be authorized to set the
specified privilege, or the process must be executing in kernel or executive mode.

To set a privilege temporarily, one of the following three conditions must be true:

• The calling process must be authorized to set the specified privilege.

• The calling process must be executing in kernel or executive mode.

• The image currently executing must be one that was installed with the
specified privilege.

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETRWM, $SUSPND, $WAKE

Condition Values Returned

SS$_NORMAL

SS$_NOTALLPRIV

The service completed successfully. All privileges
were enabled or disabled as specified.

The service completed successfully. Not all
specified privileges were enabled; see the
Description section for details.

SYS2-317

System Service Descriptions
$SETPRV

SS$_ACCVIO

SS$_IVSTSFLG

SYS2-318

The privilege mask cannot be read or the
previous privilege mask cannot be written by
the caller.

You specified a value other than 1 or 0 in either
the prmftg argument or the enblfg argument.

$SETRWM

System Service Descriptions
$SETRWM

Set Resource Wait Mode

Format

Argument

Description

Allows a process to specify what action system services should take when system
resources required for their execution are unavailable.

SYS$SETRWM [watflg]

watflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether system services should wait for required resources.
The watflg argument is a longword value. The value 0 (the default) specifies that
system services should wait until resources needed for their execution become
available. The value 1 specifies that system services should return failure status
immediately when resources needed for their execution are unavailable.

The operating system enables resource wait mode for all processes. You can
disable resource wait mode only by calling $SETRWM.

If resource wait mode is disabled, it remains disabled until it is explicitly
reenabled or until the process is deleted.

The Set Resource Wait Mode service allows a process to specify what action
system services should take when system resources required for their execution
are unavailable. When resource wait mode is enabled, system services wait for
the required system resources to become available and then continue execution.
When resource wait mode is disabled, system services return to the caller when
required system resources are unavailable. The condition value returned by
$SETRWM indicates whether resource wait mode was previously enabled or
previously disabled.

The following system resources and process quotas are affected by resource wait
mode:

• System dynamic memory

0 UNIBUS adapter map registers

• Direct I/O limit (DIOLM) quota

• Buffered I/O limit (BIOLM) quota

• Buffered I/O byte count limit (BYTLM) quota

Required Access or Privileges
None

Required Quota
None

SYS2-319

System Service Descriptions
$SETRWM

. Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SUSPND, $WAKE .

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SYS2-320

The service completed successfully. Resource
wait mode was previously enabled.

The service completed successfully. Resource
wait mode was previously disabled.

System Service Descriptions
$SETSHLV

$SETSHLV
Set Automatic Unshelving

Format

Arguments

Description

Controls whether a process automatically unshelves files.

SYS$SETSHLV [pidadr] ,[prcnam] ,[shlvflg]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process. The pidadr argument is the address
of the PID. The pidadr argument can only refer to a process running on the local
node. You cannot modify a process on a remote node.

You must specify the pidadr argument to modify a process whose DIC group
number is different from that of the calling process.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process. The prcnam argument is the address of a character
string descriptor pointing to the process name. You identify a process with a 1- to
15-character string.

You can only use the prcnam argument to modify a process in the same DIC
group as the calling process. To modify a process in another DIC group, you must
specify the pidadr argument.

shlvflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether automatic unshelving is to be turned on or off. The
shlvflg argument is a longword containing this value. The value 0 turns
automatic unshelving on. The value 1 turns automatic unshelving off.

The Set Automatic Dnshelving service controls whether a process automatically
unshelves files.

The pidadr and prcnam default to the current process. If the longword at
address pidadr is 0, the PID of the target process is returned.

The setting for automatic unshelving is inherited by subprocesses.

SYS2-321

System Service Descriptions
$SETSHLV

The DCL command SET PROCESS/[NOJAUTOUNSHELVE also controls
automatic unshelving for a process; refer to the Open VMS DCL Dictionary
for details.

Required Access or Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $SETSHLV:

• GROUP privilege to modify a process in the same group, unless the target
process has the same UIC as the calling process.

• WORLD privilege to modify any process in the system.

Required Quota
None

Related Services
$GETJPI

Condition Values Returned

SYS2-322

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_BADPARAM
SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_REMOTE_PROC

The service completed successfully. Automatic
unshelving was previously on.
The service completed successfully. Automatic
unshelving was previously off.

An argument was not accessible by the caller.

The shlvflg argument was invalid.
The prcnam argument was invalid. The process
name string had either 0 characters or more than
15 characters.
The specified process did not exist, or the
specified process identification was invalid.
The caller did not have the privilege to modify
other processes.

The specified process was not on the local node.
The service cannot modify a process on a remote
node.

$SETSTK

System Service Descriptions
$SETSTK

Set Stack Limits

Format

Arguments

Description

Allows a process to change the size of its supervisor, executive, and kernel stacks
by altering the values in the stack limit and base arrays held in Pl (per-process)
space.

SYS$SETSTK inadr ,[retadr] ,[acmode]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Range of addresses that express the stack's new limits. The inadr argument is
the address of a 2-longword array containing, in order, the address of the top of
the stack and the address of the base of the stack. Because stacks in Pl space
expand from high to low addresses, the address of the base of the stack must be
greater than the address of the top of the stack.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Range of addresses that express the stack's previous limits. The retadr
argument is the address of a 2-longword array into which $SETSTK writes,
in the first longword, the previous address of the top of the stack and, in the
second longword, the previous address of the base of the stack.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the stack to be altered. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines symbols for the four
access modes. The most privileged access mode used is the access mode of the
caller.

If acmode specifies user mode, $SETSTK performs no operation and returns the
SS$_NORMAL condition value.

The Set Stack Limits service allows a process to change the size of its supervisor,
executive, and kernel stacks by altering the values in the stack limit and base
arrays held in Pl (per-process) space.

SYS2-323

System Service Descriptions
$SETSTK

Required Access or Privileges
The calling process can adjust the size of stacks only for access modes that are
equal to or less privileged than the access mode of the calling process.

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSWM, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SYS2-324

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller; the input range is invalid; or the return
address array cannot be written by the caller.

$SETS WM

System Service Descriptions
$SETS WM

Set Process Swap Mode

Format

Argument

Description

Allows a process to control whether it can be swapped out of the balance set.

SYS$SETSWM [swpflg]

swpflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the process can be swapped. The swpflg argument
is a longword value. The value 0 (the default) enables process swap mode,
meaning the process can be swapped. The value 1 disables process swap mode,
meaning the process cannot be swapped.

The Set Process Swap Mode service allows a process to control whether it can be
swapped out of the balance set.

When the process swap mode is enabled, the process can be swapped out; when
disabled, the process remains in the balance set until (1) process swap mode is
reenabled or (2) the process is deleted.

The $SETSWM service returns a condition value indicating whether process swap
mode was enabled or disabled prior to the call to $SETSWM.

Required Access or Privileges
To change its process swap mode, the calling process must have PSWAPM
privilege.

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $ULKPAG,
$ULWSET, $UPDSEC, $UPDSECW

To lock some but not necessarily all process pages into the balance set, use the
Lock Pages in Memory ($LCKPAG) service.

For more information, see the chapter on memory management in the Open VMS
Programming Concepts Manual.

SYS2-325

System Service Descriptions
$SETS WM

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_NOPRIV

SYS2-326

The service completed successfully. The process
was not previously locked in the balance set.

The service completed successfully. The process
was previously locked in the balance set.
The process does not have the necessary
PSWAPM privilege.

$SETUAI

System Service Descriptions
$SETUAI

Set User Authorization Information

Format

Arguments

Modifies the user authorization file (UAF) record for a specified user.

SYS$SETUAI [nullarg] ,[contxt] ,usrnam ,itmlst ,[nullarg] ,[nullarg] ,[nullarg]

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

contxt
Open VMS usage: longword
type: longword (unsigned)
access: modify
mechanism: by reference

A longword used to maintain authorization file context. The contxt argument is
the address of a longword to receive a $SETUAI context value. On the initial call,
this longword should contain the value -1. On subsequent calls, the value of the
contxt argument from the previous call should be passed back in.

usrnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the user whose UAF record is modified. The usrnam argument is
the address of a descriptor pointing to a character text string containing the
user name. The user name string can contain a maximum of 32 alphanumeric
characters.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information from the specified UAF record is to be
modified. The itmlst argument is the address of a list of one or more item
descriptors, each of which specifies an item code. The item list is terminated by
the item code 0 or by the longword 0.

The following diagram depicts the format of a single item descriptor.

SYS2-327

System Service Descriptions
$SETUAI

Item Codes

SYS2-328

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

Definition

A word specifying the length (in bytes) of the buffer
in which $SETUAI is to write the information. The
length of the buffer varies, depending on the item
code specified in the item code field of the item
descriptor, and is given in the description of each
item code. If the value of the buffer length field is
too small, $SETUAI truncates the data.

A word containing a user-supplied symbolic code
specifying the item of information that $SETUAI is
to set. The $UAIDEF macro defines these codes.

A longword address of the buffer that specifies the
information to be set by $SETUAI.

A longword containing the user-supplied address
of a word in which $SETUAI writes the length in
bytes of the information it actually set.

The symbolic codes have the following format:

UAl$_code

UAl$~ACCOUNT
When you specify UAI$_ACCOUNT, $SETUAI sets, as a blank-padded 32-
character string, the account name of the user.

An account name can include up to 8 characters. Because the account name is a
blank-filled string, however, the buffer length field of the item descriptor should
specify 32 (bytes).

UAl$_ASTLM
When you specify UAI$_ASTLM, $SETUAI sets the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BATCH_ACCESS_P
When you specify UAI$_BATCH_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for primary days. Each
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23 as
11 p.m. to midnight.

System Service Descriptions
$SETUAI

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BATCH_ACCESS_S
When you specify UAI$_BATCH_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BIOLM
When you specify UAI$_BIOLM, $SETUAI sets the buffered I/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BYTLM
When you specify UAI$_BYTLM, $SETUAI sets the buffered I/O byte limit.

Because the buffered I/O count limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_CLITABLES
When you specify UAI$_CLITABLES, $SETUAI sets, as a character string, the
name of the user-defined CLI table for the account, if any.

Because the CLI table name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_CPUTIM
When you specify UAI$_CPUTIM, $SETUAI sets the maximum CPU time limit
(per session) for the process in IO-millisecond units.

Because the maximum CPU time limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DEFCLI
When you specify UAI$_DEFCLI, $SETUAI sets, as an Open VMS RMS file
name component, the name of the command language interpreter used to execute
the specified batch job. The file specification set assumes the device name and
directory SYS$SYSTEM and the file type .EXE.

Because a file name can include up to 31 characters plus a size-byte prefix, the
buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDEV
When you specify UAI$_DEFDEV, $SETUAI sets, as a 1- to 31-character string,
the name of the default device.

Because the device name string can include up to 31 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDIR
When you specify UAI$_DEFDIR, $SETUAI sets, as a 1- to 63-character string,
the name of the default directory. ·

Because the directory name string can include up to 63 characters plus a size-byte
prefix, the buffer length field in the item descriptor should specify 64 (bytes).

SYS2-329

System Service Descriptions
$SETUAI

SYS2-330

UAl$_DEF _PRIV
When you specify UAI$_DEF _PRN, $SETUAI sets, as a quadword value, the
default privileges for the user.

Because the default privileges are set as a quadword value, the buffer length field
in the item descriptor should specify 8 (bytes).

UAl$_DFWSCNT
When you specify UAI$_DFWSCNT, $SETUAI sets, in pages (on VAX systems) or
pagelets (on Alpha systems), the default working set size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DIALUP _ACCESS_P
When you specify UAI$_DIALUP _ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which dialup access is permitted for primary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIALUP _ACCESS_S
When you specify UAI$_DIALUP _ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which dialup access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIOLM
When you specify UAI$_DIOLM, $SETUAI sets the direct I/O count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_ENCRYPT
When you specify UAI$_ENCRYPT, $SETUAI sets one of the values shown in the
following table to identify the encryption algorithm for the primary password.

Symbolic Name

UAI$C_AD_II

UAI$C_PURDY

UAI$C_PURDY_V

Description

Uses a CRC algorithm and returns a longword hash
value. It was used in VAXNMS releases prior to
Version 2.0.

Uses a Purdy algorithm over salted input. It expects
a blank-padded user name and returns a quadword
hash value. This algorithm was used during VAXNMS
Version 2.0 field test.

Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This algorithm was used in VMS releases
prior to Version 5.4.

Symbolic Name

UAI$C_PURDY_S

UAI$C_PREFERED_
ALGORITHM

Description

System Service Descriptions
$SETUAI

Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This is the current algorithm that the
operating system uses for all new password changes.

Represents the latest encryption algorithm that the
operating system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Digital
recommends that you use this symbol in source
modules.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 (byte).

UAl$_ENCRYPT2
When you specify UAI$_ENCRYPT2, $SETUAI sets one of the following values,
indicating the encryption algorithm for the secondary password. Refer to the
UAI$_ENCRYPT item code for a description of the algorithms.

UAI$C_AD _II
UAI$C_PURDY
UAI$C_PURDY_V
UAI$C_PURDY_S
UAI$C_PREFERED_ALGORITHM

UAl$_ENQLM
When you specify UAI$_ENQLM, $SETUAI sets the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_EXPIRATION
When you specify UAI$_EXPIRATION, $SETUAI sets, as a quadword absolute
time value, the expiration date and time of the account.

Because the absolute time value is a quadword in length, the buffer length field
in the item descriptor should specify 8 (bytes).

UAl$_FILLM
When you specify UAI$_FILLM, $SETUAI sets the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_FLAGS
When you specify UAI$_FLAGS, $SETUAI sets, as a longword bit vector, the
various login flags set for the user.

SYS2-331

System Service Descriptions
$SETUAI

SYS2-332

Each flag is represented by a bit. The $UAIDEF macro defines the following
symbolic names for these flags.

Symbol

UA1$V _AUDIT

UA1$V _AUTOLOGIN

UAl$V _CAPTIVE

UAl$V_DEFCLI

UAl$V _DISACNT
UAl$V _DISCTLY
UAl$V _DISFORCE_PWD_
CHANGE
UA1$V _DISIMAGE

UAl$V _DISMAIL

UAl$V _DISPWDDIC

UA1$V _DISPWDHIS

UAl$V _DISRECONNECT

UA1$V _DISREPORT
UA1$V _DISWELCOME

UA1$V_GENPWD

UAl$V _LOCKPWD
UAl$V_NOMAIL

UA1$V _PWD_EXPIRED

UA1$V _PWD2_EXPIRED

UAl$V _RESTRICTED

UAl$_JTQUOTA

Description

All actions are audited.

User can only log in to terminals defined by the
Automatic Login facility (ALF).

User is restricted to captive account.

User is restricted to default command interpreter.

User account is disabled.
User cannot use Ctrl/Y.

User will not be forced to change expired
passwords at login.

User cannot issue the RUN or MCR commands or
use the foreign command mechanism in DCL.

Announcement of new mail is suppressed.

Automatic checking of user-selected passwords
against the system dictionary is disabled.

Automatic checking of user-selected passwords
against previously used passwords is disabled.

User cannot reconnect to existing processes.

User will not receive last login messages.

User will not receive the login welcome message.

User is required to use generated passwords.

SET PASSWORD command is disabled.
Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

User is limited to operating under a restricted
account. Clear the CAPTIVE flag (UA1$V _
CAPTIVE), if set, before setting the RESTRICTED
flag. (See the Security Guide for a description of
restricted and captive accounts.)

When you specify UAI$_JTQUOTA, $SETUAI sets the initial byte quota with
which the jobwide logical name table is to be created.

Because this quota is a longword decimal number, the buffer length field in the
item descriptor should specify 4 (bytes).

UAl$_LASTLOGIN_I
When you specify UAI$_LASTLOGIN_I, $SETUAI sets, as a quadword absolute
time value, the date of the last interactive login.

UAl$_LASTLOGIN_N
When you specify UAI$_LASTLOGIN_N, $SETUAI sets, as a quadword absolute
time value, the date of the last noninteractive login.

System Service Descriptions
$SETUAI

UAl$_LGICMD
When you specify UAI$_LGICMD, $SETUAI sets, as an Open VMS RMS file
specification, the name of the default login command file.

Because a file specification can include up to 63 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 64 (bytes).

UAl$_LOCAL_ACCESS_P
When you specify UAI$_LOCAL_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which local interactive access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOCAL_ACCESS_S
When you specify UAI$_LOCAL_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which local interactive access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOGFAILS
When you specify UAI$_LOGFAILS, $SETUAI sets the count of login failures.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXACCT JOBS
When you specify UAI$_MAXACCTJOBS, $SETUAI sets the maximum number
of batch, interactive, and detached processes that can be active at one time for all
users of the same account. The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXDETACH
When you specify UAI$_MAXDETACH, $SETUAI sets the detached process limit.
The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXJOBS
When you specify UAI$_MAXJOBS, $SETUAI sets the active process limit. A
value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_NETWORK_ACCESS_P
When you specify UAI$_NETWORK_ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which network access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

SYS2-333

System Service Descriptions
$SETUAI

SYS2-334

UAl$_NETWORK_ACCESS_S
When you specify UAI$_NETWORK_ACCESS_S, $SETUAI sets, as a 3-byte
value, the range of times during which network access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to
bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_0WNER
When you specify UAI$_0WNER, $SETUAI sets, as a character string, the name
of the owner of the account.

Because the owner name can include up to 31 characters plus a size-byte prefix,
the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_PASSWORD
When you specify UAI$_PASSWORD, $SETUAI sets the specified plaintext string
as the primary password for the user and updates the primary password change
date. You must have SYSPRV privilege to set passwords for any user account
(including your own).

The UAI$_PASSWORD and UAI$_PASSWORD2 item codes provide the building
blocks for designing a site-specific SET PASSWORD utility. Note that if you
create such a utility, you should also set the LOCKPWD bit in the user
authorization file (UAF) to prevent users from using the DCL command SET
PASSWORD and to prevent the LOGINOUT process from forcing password
changes. If you create a site-specific SET PASSWORD utility, install the utility
with SYSPRV privilege.

You must adhere to the following guidelines when specifying a password with
UAI$_PASSWORD or UAI$_PASSWORD2:

• The password must meet the minimum password length defined for the user
account

• The password cannot exceed 32 characters in length

• The password must be different from the previous password.

To clear the primary password, specify the value 0 in the buffer length field.

UAl$_PASSWORD2
When you specify UAI$_PASSWORD2, $SETUAI sets the specified plaintext
string as the secondary password for the user and updates the secondary
password change date. You must have SYSPRV privilege to set passwords for any
user account (including your own).

To clear the secondary password, specify the value 0 in the buffer length field.

UAl$_PBYTLM
When you specify UAI$_PBYTLM, $SETUAI sets the paged buffer I/O byte count
limit.

Because the paged buffer I/O byte count limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PGFLQUOTA
When you specify UAI$_PGFLQUOTA, $SETUAI sets, in pages (on VAX systems)
or pagelets (on Alpha systems), the paging file quota.

System Service Descriptions
$SETUAI

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_PRCCNT
When you specify UAI$_PRCCNT, $SETUAI sets the subprocess creation limit.

Because this decimal number is a word in length, the buffer length field in the
. item descriptor should specify 2 (bytes).

UAl$_PRI
When you specify UAI$_PRI, $SETUAI sets the default base priority.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PRIMEDAYS
When you specify UAI$_PRIMEDAYS, $SETUAI sets, as a longword bit vector,
the primary and secondary days of the week.

Each bit represents a day of the week, with the bit clear representing a primary
day and the bit set representing a secondary day. The $UAIDEF macro defines
the following symbolic names for these bits:

UAI$V _MONDAY
UAI$V _TUESDAY
UAI$V _WEDNESDAY
UAI$V _THURSDAY
UAI$V _FRIDAY
UAI$V _SATURDAY
UAI$V _SUNDAY

UAl$_PRIV
When you specify UAI$_PRIV, $SETUAI sets, as a quadword value, the names of
the privileges that the user holds.

Because the privileges are set as a quadword value, the buffer length field in the
item descriptor should specify 8 (bytes).

UAl$_PWD
When you specify UAI$_PWD, $SETUAI sets, as a quadword value, the hashed
primary password of the user.

Because the hashed primary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_PWD_DATE
When you specify UAI$_PWD_DATE, $SETUAI sets, as a quadword absolute
time value, the date of the last password change.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A value of -1 indicates that the password could be marked as preexpired.

UAl$_PWD_LENGTH
When you specify UAI$_PWD_LENGTH, $SETUAI sets the minimum password
length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

SYS2-335

System Service Descriptions
$SETUAI

SYS2-336

UAl$_PWD_LIFETIME
When you specify UAI$_PWD_LIFETIME, $SETUAI sets, as a quadword delta
time value, the password lifetime.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A quadword of 0 means that none of the password mechanisms will take effect.

UAl$_PWD2
When you specify UAI$_PWD2, $SETUAI sets, as a quadword value, the hashed
secondary password of the user.

Because the hashed secondary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_PWD2_DATE
When you specify UAI$_PWD2_DATE, $SETUAI sets, as a quadword absolute
time value, the last date the secondary password was changed.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

A value of-1 indicates that the password could be marked as preexpired.

UAl$_QUEPRI
When you specify UAI$_QUEPRI, $SETUAI sets the maximum job queue priority
in the range 0 through 31.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specifY: 1 (byte).

UAl$_REMOTE_ACCESS_P
When you specify UAI$_REMOTE_ACCESS_P, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for primary days. Each
bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23 as
11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_REMOTE_ACCESS_S
When you specify UAI$_REMOTE_ACCESS_S, $SETUAI sets, as a 3-byte value,
the range of times during which batch access is permitted for secondary days.
Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m., to bit 23
as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_SALT
When you specify UAI$_SALT, $SETUAI sets the salt field of the user's record
to the value you provide. The salt value is used in the operating system hash
algorithm to generate passwords. $SETUAI does not generate a new salt value
for you.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

Description

System Service Descriptions
$SETUAI

By copying the item codes UAI$_SALT, UAI$_ENCRYPT, UAI$_PWD, UAI$_
PWD_DATE, and UAI$_FLAGS, a site-security administrator can construct a
utility that propagates password changes throughout the network. Note, however,
that Digital does not recommend using the same password on more than one node
in a network.

UAl$_SHRFILLM
When you specify UAI$_SHRFILLM, $SETUAI sets the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_TQCNT
When you specify UAI$_TQCNT, $SETUAI sets the timer queue entry limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_UIC
When you specify UAI$_UIC, $SETUAI sets, as a longword, the user
identification code (UIC). For the format of the UIC, see the Security Guide.

UAl$_USER_DATA
When you specify UAI$_USER_DATA, $SETUAI sets up to 255 bytes of
information in the user data area of the system user authorization file (SYSUAF).
This is the supported method for modifying the user data area of the SYSUAF.
Digital no longer supports direct user modification of the SYSUAF.

To clear all the information in the user data area of the SYSUAF, specify
$SETUAI with a buffer length field of 0.

UAl$_WSEXTENT
When you specify UAI$_ WSEXTENT, $SETUAI sets the working set extent, in
pages (on VAX systems) or pagelets (on Alpha systems), specified for the specified
job or queue.

Because the working set extent is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_WSQUOTA
When you specify UAI$_ WSQUOTA, $SETUAI sets the working set quota, in
pages (on VAX systems) or pagelets (on Alpha systems), for the specified user.

Because the working set quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The Set User Authorization Information service is used to modify the user
authorization file (UAF) record for a specified user.

Required Access or Privileges
The following list describes the privileges you need to use the $SETUAI service:

• BYPASS or SYSPRV-Allows modification of any record in the UAF (user
authorization file).

SYS2-337

System Service Descriptions
$SETUAI

• GRPPRV-Allows modification of any record in the UAF whose UIC group
matches that of the requester. Note, however, that you cannot change a UAF
record whose UIC matches exactly the requester's UIC. Group managers with
GRPPRV privilege are limited in the extent to which they can modify the
UAF records of users in the same group; values such as privileges and quotas
can be changed only if the modification does not exceed the values set in a
group manager's UAF record.

• No privilege-Does not allow access to any UAF record.

Required Quota
None

Related Services
$GETUAI

Condition Values Returned

SYS2-338

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPPRV

SS$_NOSYSPRV

RMS$_RSZ

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buff er, output
buffer, or status block cannot be written by the
caller.
The function code is invalid; the item list
contains an invalid item code; a buffer descriptor
has an invalid length; or the reserved parameter
has a nonzero value.

The user does not have the privileges required
to modify the authorization information for other
members of the UIC group.
The user does not have the privileges required to
modify the authorization information associated
with the user or for users outside of the user's
UIC group.

The UAF record is smaller than required; the
caller's SYSUAF is likely corrupt.

This service can also return Open VMS RMS status codes associated with
operations on inflexed files. For a description of RMS status codes that are
returned by this service, refer to the Open VMS Record Management Services
Reference Manual.

System Service Descriptions
$SET _RESOURCE_DOMAIN

$SET _RESOURCE_DOMAIN
Set Resource Domain

Format

Arguments

Controls the association between a calling process and resource domains.

SYS$SET _RESOURCE_DOMAIN func ,rsdm_id ,domain_number ,[nullarg]
,[access] ,[acmode].

func
Open VMS usage: function_ code
typo/ longword (unsigned)
access: read only
mechanism: by value

Function code specifying the action that $SET_RESOURCE_DOMAIN is to
perform. The func argument is a longword containing this function code. See the
Function Codes section for a description of $SET_RESOURCE_DOMAIN function
codes.

rsdm_id
Open VMS usage: longword
type: longword (unsigned)
access: write only to join, read only to leave
mechanism: by reference

Resource domain identification. The rsdm_id argument is the address of a
longword specifying the association of the calling process with the resource
domain.

The RSDM$_JOIN_DOMAIN function returns a resource domain identification.
The RSDM$_LEAVE function requires the rsdm_id argument as input to specify
which resource domain association the process is leaving.

The resource domain identification may be used as input to the $ENQ and
$ENQW system services.

domain_number
Open VMS usage: longword
type: longword (unsigned)
access: read only
mechanism: by value

Domain number that identifies the resource domain. The domain_number
argument is a longword value containing the resource domain number.

The domain_number argument is required for the RSDM$_JOIN_DOMAIN
function but ignored for the RSDM$_LEAVE function.

SYS2-339

System ServiCe Descriptions
$SET _RESOURCE_DOMAIN

SYS2-340

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholder reserved to Digital. You must specify 0.

access
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Types of access desired when using the lock management services within the
resource domain. The access argument is a longword bit mask specifying the
access types required; these can include read, write, and lock. The following table
lists the symbols that the $RSDMDEF macro defines, their descriptions, and the
lock management system services that may require each type of access.

Symbol

RSDM$M_READ

RSDM$M_ WRITE

RSDM$M_LOCK

Access Description

Read lock value blocks

Write lock value -blocks

Take locks

System Service

$DEQ, $ENQ, $ENQW,
$GETLKI, $GETLKIW

$DEQ, $ENQ, $ENQW,

$ENQ, $ENQW

The service grants the desired access, provided your process has the necessary
access rights to the resource domain. If you do not specify the access argument
or if you specify 0, $SET_RESOURCE_DOMAIN attempts to access the domain
in the following order:

1. Read, write, lock

2. Read, lock

3. Write, lock

4. Lock

The access attempt terminates with the first success.

The access argument defaults to 0. It is ignored for the RSDM$_LEAVE
function.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode requested for the . association to the resource domain. The most
privileged access mode granted is the access mode of the caller. Locks may not be
taken from access modes less privileged than the access mode of the association.

System Service Descriptions
$SET _RESOURCE_DOMAIN

The acmode argument is a longword containing the access mode. The $PSLDEF
macro defines the following symbols for the access modes.

Symbolic
Name

PSL$C_KERNEL
PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access
Mode

Kernel
Executive

Supervisor

User

Privilege
Rank

High

Low

The acmode argument is optional for the RSDM$_JOIN_DOMAIN function. If
you do not specify the acmode argument, the access mode is set to the access
mode of the calling process. The acmode argument is ignored for the RSDM$_
LEA VE function.

Function Codes

RSDM$_JOIN_DOMAIN
A process has the option of forming multiple associations with one or more
resource domains. Each association can have different access rights to the
resource domain, such as to read lock value blocks or to write lock value blocks.
·This request sets up a new association with a resource domain.

$SET_RESOURCE_DOMAIN verifies the desired access against the security
profile of the resource domain. If the desired access is allowed, a new association
to the resource domain is created, and a resource domain identification for the
association is returned.

This function code returns the following condition values:

SS$_NORMAL
SS$_BADPARAM
SS$_EXQUOTA
SS$_INSFMEM
SS$_NOOBJSRV
SS$_NOPRIV

RSDM$_LEAVE
This operation requests that a process end an association with a resource domain.
A process must leave a resource domain association in the same mode as, or in a
more privileged mode than, the mode in which it joined the resource domain.

Before a process can end its association with a resource domain, it must release
all locks taken using that association.

This function code returns the following condition values:

SS$_NORMAL
SS$_BADPARAM
SS$_IVMODE
SS$_RSDM_ACTIVE
SS$_RSDMNOTFOU

SYS2-341

System Service Descriptions
$SET _RESOURCE_DOMAIN

Description

The Set Resource Domain system service enables a process to use the lock
management system services $DEQ, $ENQ, $ENQW, $GETLKI, and $GETLKIW.

The lock management services enable processes with the appropriate access
rights to take and release locks on resource names and to perform other functions
related to lock management. Applications use resource names to represent
resources to which they want to synchronize access. A resource domain is a
namespace for resource names. A process must join a resource domain to take
and release locks and to read and write value blocks associated with resources in
that resource domain.

When a process requests to join a resource domain, $SET_RESOURCE_DOMAIN
performs an access check. After $SET_RESOURCE_DOMAIN verifies the desired
access to the resource domain, the service creates an association between the
resource domain and the calling process. The association is represented by a
resource domain identification. A process can request different types of access to
the same resource domain; the type of access is a characteristic of the association
with the resource domain. Each time a process joins a resource domain, a new
association is created. Processes use their resource domain identifications when
using $ENQ or $ENQW to request a new lock.

The service can grant the following three types of access to resource domains:

• The right to read lock value blocks

• The right to write lock value blocks

• The right to take and release locks

Required Access or Privileges
None

Required Quota
$SET_RESOURCE_DOMAIN uses system dynamic memory, which uses BYTLM
quota, for the creation of the resource domain data structures.

Related Services
$DEQ, $ENQ, $ENQW, $GETLKI, $GETLKIW

Condition Values Returned

SYS2-342

SS$_NORMAL
SS$_BADPARAM

SS$_EXQUOTA

SS$_INSFMEM

SS$_IVMODE

SS$_NOOBJSRV

The service completed successfully.
The func, the domain_number, or the rsdm_id
argument was specified incorrectly.

The caller has insufficient BYTLM quota.

There is insufficient memory to join the resource
domain.
An attempt was made to leave an association
created by a more privileged access mode.

The audit server process, which maintains the
security profile for resource domains, is not
running. The process access rights to the domain
cannot be determined, so access is denied.

SS$_NOPRIV

SS$_RSDM_ACTIVE

SS$_RSDMNOTFOU

System Service Descriptions
$SET _RESOURCE_DOMAIN

Access to the resource domain was denied.

Unable to leave the resource domain because
there are locks still associated with this resource
domain.

The resource domain was not found.

SYS2-343

System Service Descriptions
$SET _SECURITY

$SET _SECURITY
Set Security Characteristics

Format

Arguments

SYS2-344

Modifies the security characteristics of a protected object.

SYS$SET _SECURITY [clsnam] ,[objnam] ,[objhan] ,[flags] ,[itmlst] ,[contxt]
,[acmode]

clsnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the object class. The clsnam argument is the address of a descriptor
pointing to a string that contains the name of the object class. The following is a
list of the protected object class names:

CAPABILITY
COMMON_EVENT_CLUSTER
DEVICE
FILE
GROUP _GLOBAL_SECTION
LOGICAL_NAME_TABLE
QUEUE
RESOURCE_DOMAIN
SECURITY_CLASS
SYSTEM_ GLOBAL_SECTION
VOLUME

objnam
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

Name of the protected object whose associated security profile is going to be
retrieved. The objnam argument is the address of a descriptor pointing to a
string containing the name of the protected object.

The format of an object name is class specific. The following table lists object
names and describes their formats.

Object Class Object Name Format

CAPABILITY A character string. Currently, the only
capability object is VECTOR.

COMMON_EVENT_CLUSTER Name of the event flag cluster, as defined in
the Associate Common Event Flag Cluster
($ASCEFC) system service.

System Service Descriptions
$SET _SECURITY

Object Class Object Name Format

DEVICE Standard device specification, described in the
Open VMS User's Manual.

FILE Standard file specification, described in the
Open VMS User's Manual.

GROUP_GLOBAL_SECTION Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

LOGICAL_NAME_TABLE Table name, as defined in the Create Logical
Name Table ($CRELNT) system service.

QUEUE Standard queue name, as described in the Send
to Job Controller ($SNDJBC) system service.

RESOURCE_DOMAIN An identifier or octal string enclosed in
brackets.

SECURITY_CLASS Any class name shown in the Object Class
column of this table, or a class name followed
by a period(.) and the template name. Use the
DCL command SHOW SECURITY to display
possible template names.

SYSTEM_GLOBAL_SECTION Section name, as defined in the Create and Map
Section ($CRMPSC) system service.

VOLUME Volume name or name of the device on which
the volume is mounted.

objhan
Open VMS usage: object_handle
type: longword (unsigned)
access: read only
mechanism: by reference

Data structure identifying the object to address. The objhan argument is an
address of a longword containing the object handle. You can use the objhan
argument as an alternative to the objnam argument; for example, a channel
number clearly specifies the file open on the channel and can serve as an object
handle. The following table shows the format of the object classes.

Object Class Object Handle Format

COMMON_EVENT_CLUSTER Event flag number

DEVICE Channel number

FILE Channel number
RESOURCE_DOMAIN Resource domain identifier

VOLUME Channel number

SYS2-345

System Service Descriptions
$SET _SECURITY

SYS2-346

flags
Open VMS usage: flags
type: mask_longword
access: read only
mechanism: by value

Mask specifying processing options. The flags argument is a longword bit vector
wherein a bit, when set, specifies the corresponding option. The flags argument
requires the contxt argument. The following table describes each flag.

Symbolic Name

OSS$M_LOCAL

OSS$M_RELCTX

Description

Do not update the master profile for the specified
object. This flag allows you to call $SET_SECURITY
several times to modify a local copy of a profile; once
the modifications are satisfactory, you can clear the
OSS$M_LOCAL flag, set the OSS$M_RELCTX flag,
and have $SET_SECURITY update the master profile.
The flag applies only to calls made with the contxt
argument.

Release the context structure at the completion of this
request.

The $0SSDEF macro defines symbolic names for the flag bits. You construct the
flags argument by specifying the symbolic names of each desired option.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to be
modified. The itmlst argument is the address of a list of item descriptors, each of
which describes an item of information. The list of item descriptors is terminated
by a longword of 0.

With the item list, the user modifies the protected object's characteristics. The
user defines which security characteristics to modify. If this argument is not
present, only the flags argument is processed. Without the itmlst argument, you
can only manipulate the security profile locks or release contxt resources.

The following data structure depicts the format of a single item descriptor.

31 15 0

Item code I Buffer length

Buffer address

Return length address

ZK-5186A-GE

System Service Descriptions
$SET _SECURITY

The following table defines the item des<;!riptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

contxt
Open VMS usage: context

Definition

A word containing an integer specifying the
length (in bytes) of the buffer from which $SET_
SECURITY is to read the information. The length
of the buffer needed depends upon the item code
specified in the item code field of the item descriptor.
If the value of buffer length is too small, $SET_
SECURITY truncates the data.
A word containing a symbolic code specifying the
item of information that $SET_SECURITY is to
modify. The $0SSDEF macro defines these codes.
A description of each item code is given in the Item
Codes section.
A longword containing the address of the buffer
from which $SET_SECURITY is to read the
information.

Not used.

type: longword (unsigned)
access: modify
mechanism: by reference

Value used to maintain protected object processing context when dealing with a
single protected object across multiple $GET_SECURITY/$SET_SECURITY calls.
Whenever the context value is nonzero, the class name, object name, or object
handle arguments are disregarded. An input value of 0 indicates that a new
context should be established.

Because an active context block consumes process memory, be sure to release the
context block by setting the RELCTX flag when the profile processing is complete.
$SET _SECURITY sets the context argument to 0 once the context is released.

acmode
Open VMS ·usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the object protection check. The acmode argument is
the address of a longword containing the access mode. The acmode argument
defaults to kernel mode; however, the system compares acmode with the caller's
access mode and uses the least privileged mode. The access modes are defined in
the system macro $PSLDEF library. Digital recommends that this argument be
omitted (passed as zero).

SYS2-347

System Service Descriptions
$SET _SECURITY

Item Codes

SYS2-348

The following table provides a summary of item codes that are valid as an item
descriptor in the itmlst argument. The table lists the $SET_SECURITY item
codes and gives a corresponding description. Complete descriptions of each item
code are provided after the table.

Item Code

OSS$_ACL_ADD_ENTRY

OSS$_ACL_DELETE

OSS$_ACL_DELETE_ALL

OSS$_ACL_DELETE_ENTRY

OSS$_ACL_FIND_ENTRY

OSS$_ACL_FIND_NEXT

OSS$_ACL_FIND _TYPE

OSS$_ACL_MODIFY_ENTRY

OSS$_ACL_POSITION_BOTTOM

OSS$_ACL_POSITION_TOP

OSS$_0WNER

OSS$_PROTECTION

OSS$_ACL_ADD_ENTRY

Description

Adds an access control entry (ACE).

Deletes all unprotected ACEs in an ACL.

Deletes the ACL, including protected
ACEs.

Deletes an ACE.

Locates an ACE.

Positions the next ACE.

Locates an ACE of the specified type.

Replaces an ACE at the current position.

Sets a marker that points to the end of
the ACL.

Sets a marker that points to the
beginning of the ACL.

Sets the UIC or general identifier of the
object's owner.

Sets the protection code of the object.

When you specify OSS$_ACL_ADD_ENTRY, $SET_SECURITY adds an access
control entry (ACE) pointed to by the buffer address so that it is front of the
current ACE in the access control list (ACL). See OSS$_ACL_POSITION for more
information on explicit access control list positioning.

OSS$_ACL_DELETE
When you specify OSS$_ACL_DELETE, $SET_SECURITY deletes all unprotected
ACEs in an ACL.

OSS$_ACL_DELETE_ALL
When you specify OSS$_ACL_DELETE_ALL, $SET_SECURITY deletes an entire
ACL, including protected ACEs.

OSS$_ACL_DELETE_ENTRY
When you specify OSS$_ACL_DELETE_ENTRY, $SET_SECURITY deletes an
ACE pointed to by the buffer address or, if the buffer address is specified as 0, the
ACE at the current position.

OSS$_ACL_FIND_ENTRY
When you specify OSS$_ACL_FIND_ENTRY, $SET_SECURITY locates an ACE
pointed to by the buffer address. OSS$_ACL_FIND_ENTRY sets the position
within the ACL for succeeding ACL operations; for example, for a deletion or
modification of the ACE. If the buffer address is 0, it returns SS$_ACCVIO.

Description

OSS$_ACL_FIND_NEXT

System Service Descriptions
$SET _SECURITY

When you specify OSS$_ACL_FIND_NEXT, $SET_SECURITY advances the
current position to the next ACE in the ACL.

OSS$_ACL_FIND_ TYPE
When you specify OSS$_ACL_FIND_TYPE, $SET_SECURITY returns an ACE
of a particular type if there is one in the buffer pointed to by the buffer address.
OSS$_ACL_FIND_TYPE sets the position within the ACL for succeeding ACL
operations. If the buffer address is 0, it returns SS$_ACCVIO.

OSS$_ACL_MODIFY _ENTRY
When you specify OSS$_ACL_MODIFY_ENTRY, $SET_SECURITY replaces an
ACE at the current position with the ACE pointed to by the buffer address.

OSS$_ACL_POSITION_BOTTOM
When you specify OSS$_ACL_POSITION_BOTTOM, $SET_SECURITY sets the
ACL position to point to the bottom of the ACL.

OSS$_ACL_POSITION_ TOP
When you specify OSS$_ACL_POSITION_TOP, $SET_SECURITY sets the ACL
position to point to the top of the ACL.

OSS$_0WNER
When you specify OSS$_0WNER, $SET_SECURITY sets the owner UIC of the
selected object to the value in the buffer. The buffer size must be 4 bytes.

OSS$_PROTECTION
When you specify OSS$_PROTECTION, $SET_SECURITY sets the selected
object's protection code to the value in the buffer. The buffer size must be 2 bytes.

The Set Security service modifies the security characteristics of a protected
object. Security characteristics include such information as the protection code,
the owner, and the access control list (ACL). The security management services,
$SET_SECURITY and $GET_SECURITY, maintain a single master copy of a
profile for every protected object in a VMScluster system. They also ensure that
only one process at a time can modify an object's security profile.

When you call $SET_SECURITY, the service performs the following steps:

1. It selects the specified protected object.

2. It fetches a local copy of the object's security profile, unless the service is
operating on an existing context.

3. It modifies the local profile.

4. It updates the master copy of the profile if the local flag is clear and there
was no error.

5. It deletes the local copy of the profile and returns if RELCTX is specified or if
no context is specified.

There are different ways of identifying which protected object $SET_SECURITY
should process:

• Whenever the contxt argument has a nonzero value, $SET_SECURITY uses
the context to select the object and ignores the class name, object name, and
object handle.

SYS2-349

System Service Descriptions
$SET _SECURITY

• With some types of objects, such as a file or a device, it is possible to select an
object on the basis of its objhan and clsnam values.

• When the clsnam and objnam arguments are provided, $SET_SECURITY
uses an object's class name and object name to select the object.

The context for a security management operation can be established through
either $GET_SECURITY or $SET_SECURITY. Whenever the context is set by
one service, the other service can use it provided the necessary locks are being
held. A caller to $GET_SECURITY needs to set the write lock flag (OSS$M_
WLOCK) to inspect a profile value, maintain the lock on the object's profile, and
then modify some value through a call to $SET_SECURITY.

There are many situations in which the contxt argument is essential. By
establishing a context for an ACL operation, for example, a caller can retain
an ACL position across calls to $GET_SECURITY so that a set of ACEs can be
read and modified sequentially. A security context is released by a call to $SET_
SECURITY or $GET_SECURITY that sets the OSS$M_RELCTX flag. Once the
context is deleted, the user-supplied context longword is reset to 0.

Required Access or Privileges
Control access to the object is required.

Required Quota
None

Related Services
$GET_SECURITY

Condition Values Returned

SYS2-350

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFARG

SS$_INVBUFLEN

SS$_INVITMCLS

SS$_MMATORB

SS$_NOCLASS

SS$_0BJLOCKED

The service completed successfully

The parameter cannot be read and the buffer
cannot be written.

You specified an invalid object, attribute code, or
item size.

The clsnam and objnam arguments are not
specified, the clsnam and objhan arguments
are not specified, or the contxt argument is not
specified.

The buffer size for one of the i tern codes was
invalid.

The item code that you specified is not supported
for the class.

The attempted update cannot be performed. The
object profile was changed by another process.

The named object class does not exist.

The selected object is currently write locked.

System Service Descriptions
$SHOW _INTRUSION

$SHOW _INTRUSION
Show Intrusion Information

Format

Arguments

Searches for and returns information about records in the intrusion database
matching the caller's specifications.

SYS$SHOW_INTRUSION user_criteria ,intruder ,intruder_len ,breakin_block ,[flags]
,[context]

user_ criteria
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Description of intruder or suspect. The user_criteria argument is the address of
a character-string descriptor pointing to a buffer containing the user criteria to
match an intrusion record's user specification in the intrusion database.

The user_criteria argument is a character string of between 1and1058 bytes
containing characters to match the user specification on records in the intrusion
database.

A user specification is any combination of the suspect's or intruder's source node
name, source user name, source DECnet for Open VMS address, local failed user
name, local terminal, or the string UNKNOWN. The user specification for an
intrusion record is based on the input to the $SCAN_INTRUSION service and the
settings of the LGI system parameter. For more information, see the Open VMS
Guide to System Security.

Wildcards are allowed for the user_criteria argument. For more information
about using wildcards to scan the intrusion database, see the Description section.

intruder
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

User specification of the matched intruder or suspect record in the intrusion
database. The intruder argument is the address of a character-string descriptor
pointing to a buffer to receive the user specification of the matched record in the
intrusion database.

The intruder argument is a 1058-byte string that will receive the user
specification of a record in the intrusion database that matches the specifications
in the user_criteria and flags arguments.

intruder _len
Open VMS usage: string length
type: longword (unsigned)
access: write only
mechanism: by reference

SYS2-351

System Service Descriptions
$SHOW _INTRUSION

SYS2-352

Length of returned string in the intrusion buffer. The intruder_len argument is
the address of a longword to receive the length of the returned intrusion buffer.

The possible range of the intruder_len argument is 0 to 1058 bytes. If the
longword specified by the argument contains a 0 after the call to the service,
either the service did not find a record that matched the user criteria in the
intrusion database, or there are no more matching items in the intrusion
database.

breakin_block
Open VMS usage:
type:

access:
mechanism:

record
block of 2 words (unsigned), 1 longword (unsigned), and
1 quadword (unsigned)
write only
by reference

Block to receive various information in the intrusion database about a record
matching the user criteria. The breakin_block argument is the address of a
structure with the foll~wing format.

31 0

Flags l Type

Count

lime

ZK-6171 A-GE

The following table defines the break-in block fields.

Field

Type

Flags

Count

Time

Description

Unsigned word containing the type of the matched record.
The possible values for the type field are TERM_ USER,
TERMINAL, USERNAME, and NETWORK. These
constants are defined in $CIADEF in STARLET.

Boolean set to TRUE (1) if the matched record is an
intruder. If the value is set to FALSE (0), the matched
record is only a suspect.

Unsigned longword containing the number of login failures
or break-in attempts made by the specified intruder or
suspect.

Quadword time format indicating the time when the record
will expire.

flags

System Service Descriptions
$SHOW _INTRUSION

Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Type of records in the intrusion database about which information is to be
returned. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each option has a symbolic name. The $CIADEF macro defines the following
valid names.

Symbolic Name

CIA$M_ALL

CIA$M_INTRUDERS

CIA$M_SUSPECTS

Description

All records will be shown. If the flags argument
is omitted, this value is assumed.

Only intruder records matching the criteria
specified by the user_criteria argument will
be returned. The value of the flag field in the
break-in block will always be 1.

Only suspect records matching the criteria
specified by the user_criteria argument will
be returned. The value of the flag field in the
break-in block will always be 0.

Each of these options is mutually exclusive.

context
Open VMS usage: context
type: longword (unsigned)
access: write only
mechanism: by reference

Context information to keep between related calls to the $SHOW _ _INTRUSION
service. The context argument is the address of a longword that receives a
context from the service.

The initial value contained in the unsigned longword pointed to by the context
argument must be 0. The contents of the unsigned longword must not be changed
after the service has set its value. If the contents of the context argument are
changed between calls to the service, SS$_BADCONTEXT will be returned.

Contexts become invalid after one-half hour of non-use. This means that if you
call the $SHOW _INTRUSION service with a wildcard in the user_criteria
argument and do not call the service to get the next matching record within
one-half hour, the context becomes invalid. If the context has become invalid,
you must restart your search of the intrusion database from the beginning by
resetting the context to 0.

SYS2-353

System Service Descriptions
$SHOW _INTRUSION

Description

The Show Intrusion service returns information about records in the intrusion
database that match the criteria you specify.

You can retrieve information about multiple records in the intrusion database by
specifying wildcards for the user_criteria argument. For example, specifying
an asterisk (*) for the user_criteria argument and CIA$M_ALL_RECORDS for
the flags argument will return information about all records in the database.
Specifying TTA4* for the user_criteria argument and CIA$M_SUSPECTS_
ONLY for the flags argument will return information about all suspects who have
had failures on terminal TTA4.

If you specify a wildcard string for the user_criteria argument, you must also
include a context argument. Because the service can only return information
about one intrusion record at a time, you must call the service repeatedly to
retrieve information about more than one record. The service will return SS$_
NOMOREITEMS when information about all of the matching records has been
returned. No intrusion information is returned from the call that returns SS$_
NOMOREITEMS.

Required Access or Privileges
SECURITY privilege is required.

Required Quota
None

Related Services
$DELETE_INTRUSION, $SCAN_INTRUSION

Condition Values Returned

SYS2-354

SS$_NORMAL
SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADCONTEXT

SS$_BADPARAM

SS$_NOMOREITEMS

SS$_NOSECURITY

The service completed successfully.
The user_criteria or context argument cannot
be read, or the intruder, intruder_len,
breakin_block, or context argument cannot
be written.
The length of one of the specified arguments is
out of range.

The context argument did not contain a 0 on the
first call to the service. The context argument's
value changed between consecutive calls to the
service.
An invalid value was specified in the flags
argument, or mutually exclusive options were
specified in the flags argument.
All items matching the specified criteria have
been returned.

The caller does not have SECURITY privilege.

This service can also return any of the following messages passed from the
security server:

r

SECSRV$_
NOSUCHINTRUDER

SECSRV$_
SERVERNOTACTIVE

System Service Descriptions
$SHOW _INTRUSION

No records matching the specified criteria were
found in the intrusion database.
The security server is not currently active. Try
the request again later.

SYS2-355

System Service Descriptions
$SIGNAL_ARRAY _64

$SIGNAL_ARRAY _64
Signal Array

Format

Arguments

Description

SYS2-356

Returns the address of a 64-bit signal array. A 32-bit signal array and a
mechanism array are passed to a condition handler when it is called. $SIGNAL_
ARRAY_64 provides the address of the 64-bit signal array, which might be
required for programs that use 64-bit address space.

This service accepts 64-bit addresses.

$SIGNAL_ARRAY _64 mcharg, sigarg_64

mcharg
Open VMS usage: mechanism array
type: vector quadword (unsigned)
access: read only
mechanism: by 32-bit or 64-bit reference, array reference

The mechanism array. The mcharg argument is the 32-bit or 64-bit address of
this array, which was passed to the condition handler. $SIGNAL_ARRAY_64 uses
this structure to determine the 64-bit signal array address.

sigarg_64
Open VMS usage: 64-bit signal array
type: vector quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference, array reference

The 32-bit or 64-bit address of the 64-bit signal array is returned in this
argument.

$SIGNAL_ARRAY_64 provides the address of the 64-bit version of the signal
array for condition handlers that need it. It is normally needed only by
applications that use 64-bit address space and want to handle errors involving
addresses in that region.

For example, if an access violation occurs on a 64-bit address, the 32-bit signal
array passed to the handler will contain only the low 32 bits of the effective
address, since each entry is a longword. The 64-bit signal array, which can be
obtained using this service, contains quadword entries, so the 64-bit address can
be fully expressed.

Required Access or Privileges
None.

Required Quota
None.

Related Services
$PUTMSG, which accepts either a 32-bit or 64-bit signal array as an argument.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

System Service Descriptions
$SIGNAL_ARRAY _64

The service completed succesfully.
The sigarg_64 argument cannot be written.

The mcharg argument is not a mechanism array
in the expected format.

SYS2-357

System Service Descriptions
$SN DERR

$SN DERR
Send Message to Error Logger

Format

Argument

Description

Writes a user-specified message to the system error log file, preceding it with the
date and time.

SYS$SNDERR msgbuf

msgbuf
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Message to be written to the error log file. The msgbuf argument is the address
of a character string descriptor pointing to the message text.

The· Send Message to Error Logger service writes a user-specified message to the
system error log file, preceding it with the date and time. The $SNDERR service
requires system dynamic memory.

Required Access or Privileges
To send a message to the error log file, the calling process must have BUGCHK
privilege.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDJBC, $SNDJBCW, $SNDOPR

Condition Values Returned

SYS2-358

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_NOPRIV

The service completed successfully.

The message buffer or buffer descriptor cannot
be read by the caller.
The system dynamic memory is insufficient for
completing the service.

The process does not have the required BUGCHK
privilege.

$SN DJ BC

System Service Descriptions
$SN DJ BC

Send to Job Controller

Format

Arguments

Creates, stops, and manages queues and the batch and print jobs in those queues.
The $SNDJBC service completes asynchronously; to synchronize the completion
of most operations, use the Send to Job Controller and Wait ($SNDJBCW) service.

SYS$SNDJBC [efn] ,func [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $SNDJBC completes. The efn argument
is a longword containing this number; however, $SNDJBC uses only the low-order
byte.

When you queue the request, $SNDJBC clears the specified event flag (or event
flag 0 if efn was not specified). Then, when the operation completes, $SNDJBC
sets the specified event flag (or event flag 0).

func
Open VMS usage: function_ code
type: word (unsigned)
access: read only
mechanism: by value

Function code specifying the function that $SNDJBC is to perform. The func
argument is a word containing this function code. The $SJCDEF macro defines
the names of each function code.

You can specify only one function code in a single call to $SNDJBC. Most function
codes require or allow for additional information to be passed in the call. You
pass this information by using the itmlst argument, which specifies a list of
one or more item descriptors. Each item descriptor in turn specifies an item
code, which modifies, restricts, or otherwise affects the action designated by the
function code.

nullarg
Open VMS usage: null_arg
type: longword (unsigned)
access: read only
mechanism: by value

Placeholding argument reserved to Digital.

SYS2-359

System Service Descriptions
$SN DJ BC

SYS2-360

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list. The
item list consists of one or more item descriptors, each of which specifies an item
code. The item list is terminated by an item code of 0 or by a longword of 0. The
following diagram depicts the structure of a single item descriptor.

31 15 0

Item code 1 Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Item code

Buffer address

Return length address

Definition

A word specifying the length of the buffer; the
buffer either supplies information to be used by
$SNDJBC or receives information from $SNDJBC.
The required length of the buffer varies, depending
on the item code specified, and is given in the
description of each item code.

A word containing an item code, which identifies
the nature of the information supplied for use by
$SNDJBC or received from $SNDJBC. Each item
code has a symbolic name. The $SJCDEF macro
defines these symbol names.

A longword containing the address of the buffer that
specifies or receives the information.

A longword containing the address of a word to
receive the length (in bytes) of information returned
by $SNDJBC. If you specify this address as 0, no
length is returned.

The item codes' symbolic names have the following format:

SJC$_code

There are three types of item code:

• Boolean item code. Boolean item codes _specify a true or false value: the
form SJC$_code specifies a true value; SJC$_NO_code specifies a false value.
The default value for the Boolean item codes is false. For all Boolean item
codes, the buffer length, buffer address, and return length fields of the item
descriptor must be 0.

System Service Descriptions
$SN DJ BC

• Input value item code. Input value item codes specify an input value to be
used by $SNDJBC. The buffer length and buffer address fields of the item
descriptor must be nonzero; the return length field must be 0. Specific buffer
length requirements are given in the description of eac~ item code.

• Output value item code. Output value item codes specify a buffer for
information returned by $SNDJBC. The buffer length and buffer address
fields of the item descriptor must be nonzero; the return length field can be 0
or nonzero. Specific buffer length requirements are given in the description of
each item code.

Several item codes specify a queue name, form name, or characteristic name.
For these item codes, the buffer must specify a string containing from 1 to 31
characters, exclusive of spaces, tabs, and null characters, which are ignored.
Allowable characters in the string are uppercase alphabetic characters, lowercase
alphabetic characters (which are converted to uppercase), numeric characters, the
dollar sign ($), and the underscore (_).

iosb
Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block into which $SNDJBC writes the completion status after the
requested operation has completed. The iosb argument is the address of the I/O
status block.

At request initiation, $SNDJBC sets the value of the quadword I/O status block
to 0. When the requested operation completes, $SNDJBC writes a condition value
in the first longword of the I/O status block. It writes the value 0 into the second
longword; this longword is unused and reserved for future use.

The condition values returned by $SNDJBC in the I/O status block are usually
condition values from the JBC facility. These condition values are defined by the
$JBCMSGDEF macro. In some cases, the condition value returned by $SNDJBC
can be an error return from a system service or an Open VMS RMS service that is
used in executing the request. For the SJC$_SYNCHRONIZE_JOB request, the
condition value returned is the completion status of the requested job.

The condition values returned from the JBC facility are listed in the Condition
Values Returned iri the I/O Status Block section.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the service,
the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to the
$SNDJBC service. The condition value returned in RO gives you information
about the success or failure of the service call itself; the condition value
returned in the I/O status block gives you information about the success or
failure of the service operation. Therefore, to accurately assess the success or

SYS2-361

System Service Descriptions
$SN DJ BC

failure of the call to $SNDJBC, you must check the condition values returned
in both RO and the I/O status block.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $SNDJBC completes. The astadr
argument is the address of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$SNDJBC.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

Function Codes

SYS2-362

This section describes the various function codes that are applicable to the
$SNDJBC system service.

SJC$_ABORT _JOB
This request aborts the execution of the current job from an output execution
queue or the job you specified from a batch queue. By default, the job is deleted.
However, for a restartable job, you can requeue it to the same queue or to another
queue.

You must specify one of the following input value item codes:

SJC$_ENTRY_NUMBER
SJC$_QUEUE

You must specify the following input value item code for batch jobs:

SJC$_ENTRY_NUMBER

You can specify the following optional input value or Boolean item codes:

SJC$_DESTINATION_QUEUE

SJC$_HOLD

SJC$_PRIORITY

SJC$_REQUEUE

SJC$_ADD_FILE

SJC$_NO_HOLD

This request adds a file to the open job owned by the requesting process. You
use this operation as part of a sequence of calls to the $SNDJBC service to
create a job with one or more files. The first call in the sequence specifies the
SJC$_CREATE_JOB operation to create an open job. Each subsequent SJC$_
ADD_FILE request associates an additional file with the job. Finally, you make
an SJC$_CLOSE_JOB request to complete the batch or print job specification. To

System Service Descriptions
$SN DJ BC

create a job that contains only one file, you can make a single call to $SNDJBC
that specifies the SJC$_ENTER_FILE function code.

You must specify one of the following input value item codes:

SJC$_FILE_IDENTIFICATION
SJC$_FILE_SPECIFICATION

You can specify the following input value or Boolean item codes:

SJC$_DELETE_FILE
SJC$_DOUBLE_SPACE
SJC$_FILE_BURST
SJC$_FILE_COPIES
SJC$_FILE_FLAG
SJC$_FILE_SETUP _MODULES
SJC$_FILE_TRAILER
SJC$_FIRST_PAGE
SJC$_LAST_PAGE

SJC$_PAGE_HEADER
SJC$_PAGINATE

SJC$_PASSALL

SJC$_ALTER_JOB

SJC$_NO_DELETE_FILE
SJC$_NO_DOUBLE_SPACE
SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG
SJC$_NO_FILE_SETUP _MODULES
SJC$_NO_FILE_TRAILER
SJC$_NO_FIRST_PAGE
SJC$_NO_LAST_PAGE
SJC$_NO_PAGE_HEADER
SJC$_NO_PAGINATE
SJC$_NO_PASSALL

. This request alters the parameters of an existing job that is not currently
executing.

You must specify the following input value item code:

SJC$_ENTRY_NUMBER

You can specify the following input value or Boolean item codes:

SJC$_AFTER_TIME

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI
SJC$_CPU_LIMIT

SJC$_DESTINATION_QUEUE
SJC$_DOUBLE_SPACE
SJC$_FILE_BURST
SJC$_FILE_COPIES
SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES
SJC$_FILE_TRAILER
SJC$_FIRST_PAGE
SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_NO_AFTER_TIME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CHECKPOINT_DATA
SJC$_NO_CLI
SJC$_NO_CPU_LIMIT

SJC$_NO_DELETE_FILE

SJC$_NO_DOUBLE_SPACE
SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG
SJC$_NO_FILE_SETUP _MODULES

SJC$_NO_FILE_TRAILER
SJC$_NO_FIRST_PAGE

SYS2-363

System Service Descriptions
$SN DJ BC

SYS2-364

SJC$_HOLD

SJC$_JOB_COPIES
SJC$_JOB_DEFAULT_RETAIN

SJC$_JOB_ERROR_RETAIN

SJC$_JOB_NAME
SJC$_JOB_RETAIN

SJC$_JOB_RETAIN_TIME

SJC$_LAST_PAGE

SJC$_LOG_DELETE
SJC$_LOG_ QUEUE

SJC$_LOG_SPECIFICATION

SJC$_LOG_SPOOL

SJC$_LOWERCASE
SJC$_NOTE

SJC$_NOTIFY

SJC$_0PERATOR_REQUEST

SJC$_PAGE_HEADER

SJC$_PAGINATE
SJC$_PARAMETER_l through 8

SJC$_PASSALL
SJC$_PRIORITY

SJC$_QUEUE

SJC$_RESTART

SJC$_ WSDEFAULT
SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LOG_DELETE

SJC$_NO_LOG_SPECIFICATION

SJC$_NO_LOG_SPOOL

SJC$_NO_LOWERCASE
SJC$_NO_NOTE

SJC$_NO_NOTIFY

SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PAGE_HEADER

SJC$_NO_PAGINATE

SJC$_NO_PARAMETERS

SJC$_NO_PASSALL

SJC$_NO_RESTART

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

If you specify the SJC$_ QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before modifying the job.

SJC$_ALTER_QUEUE
This request alters the parameters of a queue. The execution of current jobs is
unaffected.

You must specify the following input value item code:

SJC$_QUEUE

You can specify the following input value or Boolean item codes:

SJC$_BASE_PRIORITY

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT

SJC$_CPU_LIMIT

SJC$_DEFAULT_FORM_NAME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT

SJC$_NO _CPU _LIMIT

SJC$_DEFAULT_FORM_NUMBER
SJC$_FILE_BURST
SJC$_FILE_BURST_ONE
SJC$_FILE_FLAG
SJC$_FILE_FLAG_ONE
SJC$_FILE_TRAILER
SJC$_FILE_TRAILER_ONE
SJC$_FORM_NAME
SJC$_FORM_NUMBER
SJC$_GENERIC_SELECTION
SJC$_JOB_BURST
SJC$_JOB_FLAG
SJC$_JOB_LIMIT
SJC$_JOB_RESET_MODULES
SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM
SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_TRAILER
SJC$_0PEN_QUEUE
SJC$_0WNER_UIC
SJC$_PAGINATE
SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION
SJC$_RECORD_BLOCKING
SJC$_RETAIN_ALL_JOBS
SJC$_RETAIN_ERROR_JOBS

SJC$_SWAP
SJC$_ WSDEFAULT
SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_ASSIGN_QUEUE

System Service Descriptions
$SN DJ BC

SJC$_NO _FILE_BURST

SJC$_NO _FILE_FLAG

SJC$_NO_FILE_TRAILER

SJC$_NO_GENERIC_SELECTION
SJC$_NO_JOB_BURST
SJC$_NO_JOB_FLAG

SJC$_NO_JOB_RESET_MODULES

SJC$_NO_JOB_SIZE_l\tIAXIMUM
SJC$_NO_JOB_SIZE_MINIMUM
SJC$_NO_JOB_SIZE_
SCHEDULING
SJC$_NO_JOB_TRAILER

SJC$_NO_PAGINATE

SJC$_NO_QUEUE_DESCRIPTION
SJC$_NO _RECORD _BLOCKING
SJC$_NO_RETAIN_JOBS

SJC$_NO_SWAP
SJC$_NO_ WSDEFAULT
SJC$_NO_ WSEXTENT
SJC$_NO_ WSQUOTA

This request assigns a logical queue to an execution queue. The SJC$_ QUEUE
item code specifies the logical queue; the SJC$_DESTINATION_QUEUE item
code specifies the execution queue.

You must specify the following input value item codes:

SJC$_DESTINATION_QUEUE
SJC$_QUEUE

SJC$_BATCH_CHECKPOINT
This request establishes a checkpoint in a batch job. No operation is performed if
the requesting process is not a batch process.

You must specify the following input value item code:

SJC$_CHECKPOINT_DATA

SYS2-365

System Service Descriptions
$SN DJ BC

SYS2-366

SJC$_CLOSE_DELETE
This request deletes the open job owned by the requesting process. No item codes
are allowed.

SJC$_CLOSE_JOB
This request completes the specification of the 9pen job owned by the requesting
process and places the job in the queue specified in the SJC$_ CREATE_JOB
request that opened the job. If the SJC$_CLOSE_JOB request completes
successfully, the job is no longer an open job; it becomes a normal batch or
print job.

You can specify the following output value item code:

SJC$_JOB_STATUS_OUTPUT

SJC$_CREATE_JOB
This request creates an open job for the requesting process. If the process already
owns an open job, that job is deleted.

An open job is a batch or print job that has not yet been completely specified.
After you make the SJC$_CREATE_JOB request to open the job, you can make
subsequent calls to $SNDJBC using the SJC$_ADD_FILE function code to specify
the files associated with the job. Finally, you can complete the job specification
with an SJC$_CLOSE_JOB request. If the SJC$_CREATE_JOB operation
completes successfully, the open job created is given an entry number; the job is
not assigned to the queue specified in the SJC$_CREATE_JOB operation until
the SJC$_CLOSE_JOB request completes successfully.

You must specify the following input value item code:

SJC$_QUEUE

You can specify the following input value or Boolean item codes:

SJC$_ACCOUNT_NAME
SJC$_AFTER_TIME

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER
SJC$_CLI
SJC$_CPU_LIMIT

SJC$_FILE_BURST
SJC$_FILE_BURST_ONE
SJC$_FILE_FLAG
SJC$_FILE_FLAG_ONE
SJC$_FILE_TRAILER
SJC$_FILE_TRAILER_ONE
SJC$_FIRST_PAGE
SJC$_FORM_NAME
SJC$_FORM_NUMBER
SJC$_HOLD
SJC$_JOB_COPIES
SJC$_JOB_DEFAULT_RETAIN

SJC$_NO_AFTER_TIME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CLI
SJC$_NO_CPU_LIMIT

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_HOLD

SJC$_JOB_ERROR_RETAIN
SJC$_JOB_NAME

SJC$_JOB_RETAIN
SJC$_JOB_RETAIN_TIME
SJC$_LAST_PAGE
SJC$_LOG_DELETE
SJC$_LOG_QUEUE
SJC$_LOG_SPECIFICATION
SJC$_LOG_SPOOL
SJC$_LOWERCASE
SJC$_NOTE
SJC$_NOTIFY
SJC$_0PERATOR_REQUEST
SJC$_PARAMETER_l through 8
SJC$_PRIORITY
SJC$_RESTART
SJC$_UIC
SJC$_USERNAME
SJC$_ WSDEFAULT
SJC$_ WSEXTENT
SJC$_ WSQUOTA

System Service Descriptions
$SN DJ BC

SJC$_NO_LAST_PAGE
SJC$_NO _LOG_DELETE

SJC$_NO_LOG_SPECIFICATION
SJC$_NO_LOG_SPOOL
SJC$_NO _LOWERCASE
SJC$_NO_NOTE
SJC$_NO _NOTIFY
SJC$_NO_OPERATOR_REQUEST
SJC$_NO_PARAMETERS

SJC$_NO _RESTART

SJC$_NO_ WSDEFAULT
SJC$_NO_ WSEXTENT
SJC$_NO_ WSQUOTA

You can specify the following output value item code:

SJC$_ENTRY_NUMBER_OUTPUT

SJC$_CREATE_QUEUE
This request creates a queue. If the queue already exists and is not stopped,
this request performs no operation. However, if the queue already exists and is
stopped, the request alters the parameters of the queue based on the item codes
specified in the request; if you specify the SJC$_CREATE_START item code, the
request starts the queue.

You must specify the following input value item code:

SJC$_QUEUE

You can specify the following input value or Boolean item codes:

SJC$_AUTOSTART_ON
SJC$_BASE_PRIORITY
SJC$_BATCH
SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER
SJC$_CLOSE_QUEUE
SJC$_CPU_DEFAULT
SJC$_CPU_LIMIT
SJC$_CREATE_START

SJC$_NO _BATCH
SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT

SJC$_NO_CPU_LIMIT

SYS2-367

System Service Descriptions
$SN DJ BC

SYS2-368

SJC$_DEFAULT_FORM_NAME

SJC$_DEFAULT_FORM_NUMBER
SJC$_DEVICE_NAME

SJC$_FILE_BURST
SJC$_FILE_BURST_ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ ONE

SJC$_FILE_TRAILER

SJC$_FILE_TRAILER_ONE
SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_QUEUE

SJC$_GENERIC_SELECTION
SJC$_GENERIC_TARGET

SJC$_JOB_BURST

SJC$_JOB_FLAG

SJC$_JOB_LIMIT
SJC$_JOB_RESET_MODULES
SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM

SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_TRAILER

SJC$_LIBRARY_SPECIFICATION

SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINATE
SJC$_PRINTER

SJC$_PROCESSOR

SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION
SJC$_QUEUE_MANAGER_NAME

SJC$_RECORD_BLOCKING
SJC$_RETAIN_ALL_JOBS

SJC$_RETAIN_ERROR_JOBS
SJC$_SCSNODE_NAME

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_TRAILER

SJC$_NO_GENERIC_QUEUE

SJC$_NO_GENERIC_SELECTION

SJC$_NO_JOB_BURST

SJC$_NO _JOB_FLAG

SJC$_NO_JOB_RESET_MODULES

SJC$_NO_JOB_SIZE_MAXIMUM

SJC$_NO_JOB_SIZE_MINIMUM
. SJC$_NO_JOB_SIZE_

SCHEDULING
SJC$_NO_JOB_TRAILER

SJC$_NO_LIBRARY_
SPECIFICATION

SJC$_NO_PAGINATE

SJC$_NO_PROCESSOR

SJC$_NO_QUEUE_DESCRIPTION

SJC$_NO_RECORD_BLOCKING
SJC$_NO_RETAIN_JOBS

System Service Descriptions
$SN DJ BC

SJC$_SERVER

SJC$_SWAP

SJC$_TERMINAL

SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_DEASSIGN_QUEUE

SJC$_NO_SWAP

SJC$_NO_TERMINAL

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

This request deassigns a logical queue from an execution queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_DEFINE_CHARACTERISTIC
This request defines a characteristic name and number and inserts this definition
into the queue file. The characteristic name can be up to 31 characters in length.
Each characteristic name must have a unique number in the range 0 to 127. If
the characteristic name is already defined, the request alters the definition of the
characteristic.

A job cannot execute on an execution queue unless the queue possesses all
the characteristics possessed by the job; the queue can possess additional
characteristics and the job will still execute.

You must specify the following input value item codes:

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERI~TIC_NUMBER

SJC$_DEFINE_FORM
This request defines a form name and number, as well as other physical attributes
of the paper stock used in printers, and inserts this definition into the system job
queue file. If the form name is already defined, this request alters the definition
of the form.

Forms are used only by output execution queues and print jobs. A print job
cannot execute unless the stock name of a form specified for the queue is the
same as the stock name specified for the job. The stock name of a form, which
you specify by using the SJC$_FORM_STOCK item code, specifies the paper stock
used by the printer. Other item codes specify printing parameters for a job such
as the margins, length of paper, and so on.

Each form must have a unique number. Numbers can range from 0 to 9999.
When a new queue file is created, the system supplies the definition of a form
named DEFAULT with number 0 and default characteristics.

You must specify the following input value item codes:

SJC$_FORM_NAME
SJC$_FORM_NUMBER

You can specify the following input value or Boolean item codes:

SJC$_FORM_DESCRIPTION

SJC$_FORM_LENGTH

SYS2-369

System Service Descriptions
$SN DJ BC

SYS2-370

SJC$_FORM_MARGIN_BOTTOM
SJC$_FORM_MARGIN_LEFT

SJC$_FORM_MARGIN_RIGHT

SJC$_FORM_MARGIN_TOP

SJC$_FORM_SETUP _MODULES

SJC$_FORM_SHEET_FEED

SJC$_FORM_STOCK

SJC$_FORM_TRUNCATE
SJC$_FORM_ WIDTH

SJC$_FORM_ WRAP

SJC$_PAGE_SETUP _MODULES

SJC$_DELETE_CHARACTERISTIC

SJC$_NO _FORM_SETUP _
MODULES

SJC$_NO_FORM_SHEET_FEED

SJC$_NO_FORM_TRUNCATE

SJC$_NO_FORM_ WRAP

SJC$_NO_PAGE_SETUP _
MODULES

This request deletes the definition of a characteristic name.

You must specify the following input value item code:

SJC$_CHARACTERISTIC_NAME

SJC$_DELETE_FORM
This request deletes the definition of a form name. There must be no queues or
jobs that reference the form.

You must specify the following input value item code:

SJC$_FORM_NAME

SJC$_DELETE_JOB
This request deletes a job from the system job queue file. If the job is currently
executing, it is aborted. If you specify the SJC$_QUEUE item code, the $SNDJBC
service verifies that the selected job entry exists on the specified queue before
deleting the job.

You must specify the following input value item code:

SJC$_ENTRY_NUMBER

You can specify the following input value item code:

SJC$_QUEUE

If you specify the SJC$_QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before deleting the job.

SJC$_DELETE_QUEUE
This request deletes a queue and all of the jobs in the queue. The queue must be
stopped, and there must be no other queues or jobs that reference the queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_DELETE_QUEUE_MANAGER
This request removes all references to the specified queue manager from the
shared master file. It also deletes the queue and journal files associated with the
queue manager. A queue manager must be stopped to be deleted.

System Service Descriptions
$SN DJ BC

You must specify the following input value item code:

SJC$_QUEUE_MANAGER_NAME

SJC$_DISABLE_AUTOSTART
This request disables autostart on a node. By default, SJC$_DISABLE_
AUTOSTART affects the requesting node. To disable autostart on a node
other than the node from which the $SNDJBC request is sent, use the SJC$_
SCSNODE_NAME item code to specify the affected node.

Disabling autostart on a node forces the appropriate queue manager to perform
these tasks:

• Prevent autostart queues from failing over to the node.

• Mark all of that queue manager's autostart queues on the node as "stop
pending" in preparation for a planned shutdown, allowing jobs currently
executing on the queues to complete.

• Force all autostart queues with failover lists to fail over to the next available
node in the queue manager's failover list on which autostart is enabled.
Each queue fails over when all jobs currently executing on any of that queue
manager's queues on the node have completed.

You can specify the following input value item codes:

SJC$_QUEUE_MANAGER_NAME
SJC$_SCSNODE_NAME

For more information, see the Open VMS System Manager's Manual.

SJC$_ENABLE_AUTOSTART
This request notifies the appropriate queue manager process that a node has
progressed sufficiently in its startup procedure that batch and print jobs should
execute. By default, SJC$_ENABLE_AUTOSTART affects the requesting node.
To enable autostart on a node other than the node from which the $SNDJBC
request is sent, use the SJC$_SCSNODE_NAME item code to specify the affected
node. Once autostart is enabled, the queue manager starts all autostart-active
queues on the appropriate node.

When a node reboots, autostart is disabled until the SJC$_ENABLE_
AUTOSTART request is entered.

You can specify the following input value item codes:

SJC$_QUEUE_MANAGER_NAME
SJC$_SCSNODE_NAME

For more information, see the Open VMS System Manager's Manual.

SJC$_ENTER_FILE
This request creates a job containing one file and places the job in the specified
queue. To create a job with more than one file, you must make a sequence of calls
to the $SNDJBC. service using the SJC$_CREATE_JOB, SJC$_ADD_FILE, and
SJC$_CLOSE_JOB function codes.

You must specify the following input value item code:

SJC$_QUEUE

You must specify one of the following input value item codes:

SJC$_FILE_IDENTIFICATION

SYS2-371

System Service Descriptions
$SN DJ BC

SJC$_FILE_SPECIFICATION

You can specify the following input value or Boolean item codes:

SYS2-372

SJC$_ACCOUNT_NAME

SJC$_AFTER_TIME

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI
SJC$_CPU_LIMIT

SJC$_DELETE_FILE
SJC$_DOUBLE_SPACE

SJC$_FILE_BURST

SJC$_FILE_COPIES

SJC$_FILE_FLAG
SJC$_FILE_SETUP _MODULES

SJC$_FILE_TRAILER

SJC$_FIRST_PAGE
SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_HOLD
SJC$_JOB_COPIES
SJC$_JOB_DEFAULT_RETAIN

SJC$_JOB_ERROR_RETAIN

SJC$_JOB_NAME

SJC$_JOB_RETAIN
SJC$_JOB_RETAIN_TIME

SJC$_LAST_PAGE

SJC$_LOG_DELETE

SJC$_LOG_ QUEUE
SJC$_LOG_SPECIFICATION

SJC$_LOG_SPOOL

SJC$_LOWERCASE
SJC$_NOTE

SJC$_NOTIFY
SJC$_0PERATOR_REQUEST

SJC$_PAGE_HEADER

SJC$_PAGINATE

SJC$_PARAMETER_l through 8

SJC$_PASSALL

SJC$_PRIORITY
SJC$_RESTART

SJC$_UIC

SJC$_NO_AFTER_TIME

SJC$_NO_CHARACTERISTICS

SJC$_NO_CLI

SJC$_NO_CPU_LIMIT

SJC$_NO_DELETE_FILE
SJC$_NO_DOUBLE_SPACE

SJC$_NO _FILE_BURST

SJC$_NO_FILE_FLAG
SJC$_NO_FILE_SETUP _MODULES

SJC$_NO_FILE_TRAILER

SJC$_NO_FIRST_PAGE

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LOG_DELETE

SJC$_NO_LOG_SPECIFICATION

SJC$_NO_LOG_SPOOL

SJC$_NO_LOWERCASE
SJC$_NO_NOTE

SJC$_NO_NOTIFY

SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PAGE_HEADER
SJC$_NO_PAGINATE

SJC$_NO_PARAMETERS

SJC$_NO_PASSALL

SJC$_NO_RESTART

System Service Descriptions
$SN DJ BC

SJC$_USERNAME

SJC$_ WSDEFAULT
SJC$_ WSEXTENT

SJC$_ WSQUOTA

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT

SJC$_NO_ WSQUOTA

You can specify the following output value item codes:

SJC$_ENTRY_NUMBER_OUTPUT
SJC$_JOB_STATUS_OUTPUT

SJC$_MERGE_QUEUE
This request requeues all jobs in the queue specified by the item code SJC$_
QUEUE to the queue specified by the item code SJC$_DESTINATION_QUEUE.
The execution of current jobs is unaffected.

You must specify the following input value item codes:

SJC$_DESTINATION_QUEUE
SJC$_QUEUE

SJC$_PAUSE_QUEUE
This request pauses the execution of current jobs in the specified queue and
prevents the starting of jobs in that queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_RESET_QUEUE
This request resets the specified queue by (1) terminating and deleting each
executing job that is not restartable, (2) terminating and requeuing each
executing job that is restartable, and (3) stopping the queue.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_START _ACCOUNTING
This request performs two functions. If you specify the SJC$_ACCOUNTING_
TYPES item code, the request enables recording of the specified types of
accounting records; if you do not specify SJC$_ACCOUNTING_TYPES, the
request starts the accounting manager and opens the system accounting file.

You can specify the following input value or Boolean item codes:

SJC$_ACCOUNTING_TYPES
SJC$_NEW _VERSION

SJC$_START _QUEUE
This request permits the starting of jobs in the specified queue. If the queue was
paused, current jobs are resumed.

You must specify the following input value item code:

SJC$_QUEUE

SYS2-373

System Service Descriptions
$SN DJ BC

You can specify the following input value or Boolean item codes:

SYS2-374

SJC$_ALIGNMENT_MASK
SJC$_ALIGNMENT_PAGES

SJC$_AUTOSTART_ON

SJC$_BASE_PRIORITY

SJC$_BATCH
SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE
. SJC$_CPU_DEFAULT

SJC$_CPU_LIMIT

SJC$_DEFAULT_FORM_NAME

SJC$_DEFAULT_FORM_NUMBER
SJC$_DEVICE_NAME

SJC$_FILE_BURST .

SJC$_FILE_BURST_ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ONE

SJC$_FILE_TRAILER

SJC$_FILE_TRAILER_ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_QUEUE

SJC$_GENERIC_SELECTION
SJC$_GENERIC_TARGET

SJC$_JOB_BURST

SJC$_JOB_FLAG

SJC$_JOB_LIMIT
SJC$_JOB_RESET_MODULES

SJC$_JOB_SIZE_MAXIMUM

SJC$_JOB_SIZE_MINIMUM

SJC$_JOB_SIZE_SCHEDULING

SJC$_JOB_TRAILER

SJC$_LIBRARY_SPECIFICATION

SJC$_NEXT_JOB
SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINATE
SJC$_PROCESSOR

SJC$_PROTECTION

SJC$_NO_BATCH
SJC$_NO_CHARACTERISTICS

SJC$_NO_CPU_DEFAULT
SJC$_NO _CPU _LIMIT

SJC$_NO_FILE_BURST

SJC$_NO_FILE_FLAG

SJC$_NO_FILE_TRAILER

SJC$_NO_GENERIC_QUEUE

SJC$_NO_GENERIC_SELECTION

SJC$_NO_JOB_BURST

SJC$_NO_JOB_FLAG

SJC$_NO_JOB_RESET_MODULES

SJC$_NO_JOB_SIZE_MAXIMUM

SJC$_NO_JOB_SIZE_MINIMUM
SJC$_NO_JOB_SIZE_
SCHEDULING
SJC$_NO_JOB_TRAILER

SJC$_NO_LIBRARY_
SPECIFICATION

SJC$_NO_PAGINATE
SJC$_NO_PROCESSOR

SJC$_QUEUE_DESCRIPTION

SJC$_RECORD_BLOCKING
SJC$_RELATIVE_PAGE

SJC$_RETAIN_ALL_JOBS

SJC$_RETAIN_ERROR_JOBS

SJC$_SCSNODE_NAME

SJC$_SEARCH_STRING

SJC$_SWAP

SJC$_TERMINAL
SJC$_TOP _OF _FILE

SJC$_ WSDEFAULT

SJC$_ WSEXTENT

SJC$_WSQUOTA

SJC$_START_QUEUE_MANAGER

System Service Descriptions
$SN DJ BC

SJC$_NO_QUEUE_DESCRIPTION

SJC$_NO_RECORD_BLOCKING

SJC$_NO_RETAIN_JOBS

SJC$_NO_SWAP

SJC$_NO_TERMINAL

SJC$_NO_ WSDEFAULT

SJC$_NO_ WSEXTENT
SJC$_NO_ WSQUOTA

This request starts the clusterwide queue manager for the batch and print
queuing system. It also opens the queue database.

The SJC$_START_QUEUE_MANAGER request has the following five uses:

• To create a queue database and initially start the queue manager, issue a
SJC$_START_QUEUE_MANAGER request with the SJC$_NEW_VERSION
item code. See the description of the SJC$_NEW _VERSION item code
for more information. Once the queue manager has been started, it will
remain running unless it is explicitly stopped with an SJC$_STOP _QUEUE_
MANAGER request.

• If an SJC$_STOP _QUEUE_MANAGER request has been specified, issue a
SJC$_START_QUEUE_MANAGER request to restart the queue manager.

• In a VMScluster environment, issue an SJC$_START_QUEUE_MANAGER
request with the SJC$_QUEUE_MANAGER_NODES item code to modify
the list of preferred nodes on which the queue manager can run. See the
description of the SJC_QUEUE_MANAGER_NODES item code for more
information.

• In a cluster, issue an SJC$_START_QUEUE_MANAGER request to ensure
that the queue manager process is executing on the most preferred, available
node. If the queue manager is not running on the most preferred, available
node, the queue manager will be moved to that node without interruption of
service. If you are using the default node list (*), the queue manager will
not move. For more information, see the description of the SJC$_QUEUE_
MANAGER_NODES item code.

• To create additional queue managers, issue an SJC$_START_QUEUE_
MANAGER request with the SJC$_ADD_QUEUE_MANAGER and SJC$_
QUEUE_MANAGER_NAME item codes. Note that the queue manager name
must be different from the name of any queue manager currently defined. For
more information about creating multiple queue managers, see the Open VMS
System Manager's Manual.

You can specify the following input value or Boolean item codes:

SJC$_ADD_QUEUE_MANAGER
SJC$_NEW _VERSION

SYS2-375

System Service Descriptions
$SN DJ BC

SYS2-376

SJC$_QUEUE_DIRECTORY
SJC$_QUEUE_MANAGER_NAME
SJC$_QUEUE_MANAGER_NODES

SJC$_STOP _ACCOUNTING
This request performs two functions. If you specify the SJC$_ACCOUNTING_
TYPES item code, the request disables recording of the specified types of
accounting records. If you do not specify SJC$_ACCOUNTING_TYPES, the
request stops the accounting manager and closes the system accounting file.

You can specify the following input value item code:

SJC$_ACCOUNTING_TYPES

SJC$_STOP_ALL_QUEUES_ON_NODE
This request stops all queues on a specific node. By default, all queues on the
requesting node are stopped. To stop all queues on a node other than the node
from which the $SNDJBC request is sent, use the SJC$_SCSNODE_NAME item
code to specify the affected node.

Besides stopping all queues on a specific node, this request aborts each job that is
currently executing. Aborted jobs that are restartable are requeued. Queues for
which an autostart list has been specified fail over to the first available node in
the list for which autostart is enabled. ·

You can specify the following input value item codes:

SJC$_QUEUE_MANAGER_NAME
SJC$_SCSNODE_NAME

SJC$_STOP _QUEUE
This request prevents the starting of jobs in the specified queue. The execution of
current jobs is unaffected.

You must specify the following input value item code:

SJC$_QUEUE

SJC$_STOP_QUEUE_MANAGER
This request shuts down the appropriate queue manager. It disables autostart on
all nodes; stops all queues; aborts each job that is currently executing, requeuing
those jobs that are restartable; and closes the files of the queue database.

You can specify the following input value item code:

SJC$_QUEUE_MANAGER_NAME

SJC$_SVNCHRONIZE_JOB
This request waits for the completion of a job, then sets the event flag, executes
the completion AST if you specified astadr, and returns the completion status of
the job to the 1/0 Status Block, provided you specified the iosb argument.

You must specify one of the following input value item codes:

SJC$_ENTRY_NUMBER
SJC$_QUEUE

If SJC$_QUEUE queue is specified, then you must also specify one of the
following:

SJC$_ENTRY_NUMBER

Item Codes

System Service Descriptions
$SN DJ BC

SJC$_JOB_NAME

SJC$_ WRITE_ACCOUNTING
This request writes an accounting record.

You must specify the following input value item code:

SJC$_ACCOUNTING_MESSAGE

SJC$_ACCOUNT _NAME
The SJC$_ACCOUNT _NAME item code is an input value item code. It specifies
the account name of the user on behalf of whom the request is made. The buffer
must specify a string from 1 to 8 characters. By default, the account name for
batch and print jobs is taken from the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_ACCOUNTING_MESSAGE
The SJC$_ACCOUNTING_MESSAGE item code is an input value item code. It
causes the contents of the buffer to be placed in a "user message" accounting
record. The buffer must specify a string from 1 to 255 characters.

(Valid for SJC$_ WRITE_ACCOUNTING function code)

SJC$_ACCOUNTING_ TYPES
The SJC$_ACCOUNTING_TYPES item code is an input value item code. It
enables or disables accounting-record types. When an accounting-record type is
enabled, the event designated by that type will be recorded in the accounting
record. The buffer must contain a longword bit vector wherein each bit set
specifies an accounting-record type. Undefined bits must be 0.

The $SJCDEF macro defines the symbolic names for the accounting-record types.
Following is a list of each accounting-record type and the system event to which
it corresponds.

Accounting-Record Type

SJC$V _ACCT_IMAGE

SJC$V _ACCT_LOGIN_FAILURE

SJC$V _ACCT_MESSAGE
SJC$V_ACCT_PRINT

SJC$V _ACCT_PROCESS

Corresponding System Event

Image terminations

Login failures

User messages sent
Print job terminations

Process terminations

The following accounting-record types, when enabled, provide additional
information about image and process termination; specifically, they describe
the type of image or process that has terminated.

Accounting-Record Type

SJC$V _ACCT_BATCH

SJC$V _ACCT_DETACHED

Type of Image or Process

Batch process

Detached process

SYS2-377

System Service Descriptions
$SN DJ BC

SYS2-378

Accounting-Record Type

SJC$V _ACCT_INTERACTIVE
SJC$V _ACCT_NETWORK

SJC$V_ACCT_SUBPROCESS

Type of Image or Process

Interactive process
Net'\Vork process

Subprocess

(Valid for SJC$_START_ACCOUNTING, SJC$_STOP _ACCOUNTING function
codes)

SJC$_ADD_QUEUE_MANAGER
The SJC$_ADD_QUEUE_MANAGER item code is a Boolean item code. It
specifies that a ne'\V queue manager process should be defined in the master file.
The operating system allo'\Vs no more than five queue managers in a cluster.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_AFTER_ TIME
SJC$_NO_AFTER_ TIME
The SJC$_AFTER_TIME item code is an input value item code. It specifies
that the job can execute only if the system time is greater than or equal to the
quad'\Vord time value contained in the buffer. The buffer must contain either an
absolute time value or a delta time value; $SNDJBC converts delta time values to
absolute time values by adding the current system time. The time value specified
must be in the future, or it 'W'ill be set to the current time.

The SJC$_NO_AFTER_TIME item code is a Boolean item code. It cancels the
effect of a SJC$_AFTER_TIME item code previously specified for the job; the job
can execute immediately. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_ALIGNMENT _MASK
The SJC$_ALIGNMENT_MASK item code is a Boolean item code. It is
meaningful only for output execution queues and only 'W'hen the SJC$_
ALIGNMENT_PAGES item code is also specified. The SJC$_ALIGNMENT_
MASK item code causes the data printed on form alignment pages to be masked:
all alphabetic characters are replaced 'W'ith the letter X and all numeric characters
'W'ith the number 9.

(Valid for SJC$_START_QUEUE function code)

SJC$_ALIGNMENT _PAGES .
The SJC$_ALIGNMENT_PAGES item code is an input value item code. It is
meaningful only for output execution queues. It specifies that the queue be
placed in form-alignment state and that a number of alignment pages be printed.
The buffer must contain a long'W'ord value in the range 1 to 20; this value specifies
ho'W' many alignment pages are to be printed.

(Valid for SJC$_START_QUEUE function code)

SJC$_AUTOSTART_ON
The SJC$_AUTOSTART_ON item code is an input value item code. For a batch
queue, it uses as its value a comma-separated list of the nodes on 'W'hich the
specified queue can be located. Each node name must be follo'W'ed by a double
colon(::).

System Service Descriptions
$SNDJBC

For an output queue, it uses as its value a comma-separated list of the names
of the nodes and devices to which the specified queue's output can be sent. Each
node name must be followed by a double colon, and each device name may be
followed by the optional colon [:].

By specifying this item code, you designate a queue as an autostart queue. If you
specify more than one node name (within a VMScluster environment), the queue
can automatically fail over if the node on which the queue is running is removed
from the cluster.

This item code cannot be used with the SJC$_SCSNODE_NAME and SJC$_
DEVICE_NAME item codes.

For more information, see the Open VMS System Manager's Manual.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_BASE_PRIORITY
The SJC$_BASE_PRIORITY item code is an input value item code. It is
meaningful only for execution queues. It specifies the base priority of batch
processes initiated from a batch execution queue or of a symbiont process
connected to an output execution queue. A symbiont process can control several
queues; however, the base priority of the symbiont process is established by the
first queue to which it is connected. The buffer must contain a longword value in
the range 0 to 15; this value specifies the base priority.

By default, the base priority is the value of the SYSGEN parameter DEFPRI.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_BATCH
SJC$_NO_BATCH
The SJC$_BATCH item code is a Boolean item code. It specifies that the queue
is a batch execution· queue or a generic batch queue, and thus can process only
batch jobs.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

The SJC$_NO_BATCH item code is a Boolean item code. It specifies that the
queue is not a batch queue but rather an output execution or generic output
queue, and thus can process only print jobs. It is the default.

For the SJC$_START_QUEUE function code, SJC$_BATCH and SJC$_NO_
BATCH are supported for compatibility with VAX/VMS Version 4.n, but may not
be supported in the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER
SJC$_NO_CHARACTERISTICS
The SJC$_CHARACTERISTIC_NAME and SJC$_CHARACTERISTIC_NUMBER
item codes are both input value item codes. Both specify characteristics for
jobs or queues, and they may be used interchangeably. The characteristics are
user-defined.

SYS2-379

System Service Descriptions
$SN DJ BC

SYS2-380

The SJC$_DEFINE_CHARACTERISTIC and SJC$_DELETE_
CHARACTERISTIC function codes include and delete, respectively, a specified
characteristic from the system job queue file. A job cannot execute on an
execution queue unless the queue possesses all the characteristics possessed by
the job; the queue may possess additional characteristics and the job will still
execute.

The SJC$_CHARACTERISTIC_NAME and SJC$_CHARACTERISTIC_NUMBER
item codes may appear as many times as necessary in a single call to $SNDJBC;
the set of characteristics so defined in the call completely replaces the set of
characteristics defined by a prior call. The SJC$_NO_CHARACTERISTICS item
code cancels all defined characteristics for the job or queue. By default, a queue
or job has no defined characteristics.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

For SJC$_CHARACTERISTIC_NUMBER, the buffer must contain a longword
value in the range 0 to 127. This number identifies a characteristic.

SJC$_NO_CHARACTERISTICS is a Boolean item code.

(The following function codes are valid for SJC_CHARACTERISTIC_NAME item
code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_DELETE_CHARACTERISTIC
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_CHARACTERISTIC_NUMBER
item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_ENTER_FILE
SJC$_START_QUEUE)

SJC$_CHECKPOINT _DATA
The SJC$_CHECKPOINT_DATA item code is an input value item code. It
specifies the value of the DCL symbol BATCH$RESTART for a batch job that is
restarted. The buffer must contain a string no longer than 255 characters; this
string is the value of the symbol BATCH$RESTART.

(Valid for SJC$_BATCH_CHECKPOINT function code)

SJC$_NO_CHECKPOINT _DATA

System Service Descriptions
$SN DJ BC

The SJC$_NO_CHECKPOINT_DATA item code is a Boolean item code. It
cancels a previous specification of the BATCH$RESTART symbol; the SJC$_
NO_CHECKPOINT_DATA item code also cancels a checkpoint in a print job so
that the entire job is reprinted. By default, the BATCH$RESTART symbol is
undefined.

(Valid for SJC$_ALTER_JOB function code)

SJC$_CLI
SJC$_NO_CLI
The SJC$_CLI item code is an input value item code. It is meaningful only for
batch jobs. It specifies that the command language interpreter to be executed is
SYS$SYSTEM:name.EXE, where name is a valid Open VMS RMS file name. The
buffer must specify a name string from 1 to 39 characters.

The SJC$_NO_CLI item code is a Boolean item code. It specifies that the
command language interpreter to be executed is the one specified in the user
authorization file. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_CLOSE_QUEUE
The SJC$_CLOSE_QUEUE item code is a Boolean item code. It specifies that
jobs cannot be entered in the queue. If the queue is closed, you can specify the
SJC$_0PEN_QUEUE item code to permit jobs to be entered in the queue. By
default, the queue is open.

Whether a queue is open or closed is independent of any other queue states (such
as paused, stalled, stopped).

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_CPU_DEFAULT
SJC$_NO_CPU_DEFAULT
The SJC$_CPU_DEFAULT item code is an input value item code. It is
meaningful only for batch execution queues. It specifies the default CPU time
limit in IO-millisecond units. The buffer contains this longword value. The value
0 specifies unlimited CPU time. You can specify a value that represents up to 497
days of CPU time.

The SJC$_NO_CPU_DEFAULT item code is a Boolean item code. It is meaningful
only for batch execution queues. It specifies that no default CPU time limit is to
apply to the job. It is the default.

A CPU time limit for the process is included in each user record in the system
user authorization file (UAF). You can also specify any or all of the following:
a CPU time limit for individual jobs, a default CPU time limit for all jobs in
a given queue, and a maximum CPU time limit for all jobs in a given queue.
Table SYS2-5 shows the action taken when you specify a value for SJC$_CPU_
DEFAULT.

SYS2-381

System Service Descriptions
$SN DJ BC

SYS2-382

Table SYS2-5 CPU Time Limit Decision Table

CPU Time Limit
Specified for
Job?

No

Yes

Yes

Yes

Yes

No

No

No

Default CPU Time
Limit Specified for
Queue?

No

No

Yes

No

Yes

Yes

No
Yes

Maximum CPU
Time Specified
for Queue?

No

No

No

Yes

Yes

Yes

Yes

No

Action Taken

Use UAF value

Use smaller of job's limit
and UAF value

Use smaller of job's limit
and UAF value

Use smaller of job's limit
and maximum
Use smaller of job's limit
and maximum

Use smaller of queue's
default and maximum
Use maximum

Use smaller of UAF
value and queue's
default

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_CPU_LIMIT
SJC$_NO_CPU_LIMIT
The SJC$_CPU_LIMIT item code is an input value item code. It is meaningful
only for batch execution queues and batch jobs. It specifies the maximum CPU
time limit for batch jobs in 10-millisecond units. The buffer must contain this
longword value. The value 0 specifies unlimited CPU time. You can specify a
value that represents up to 497 days of CPU time.

The SJC$_NO_CPU_LIMIT item code is a Boolean item code. It is meaningful
only for batch execution queues and batch jobs. It specifies that no maximum
CPU time limit is to apply to the job. It is the default.

For information about the action taken when you specify a value for SJC$_CPU_
LIMIT, refer to the description of the SJC$_CPU_DEFAULT item code and to
Table SYS2-5.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SJC$_CREATE_START
The SJC$_CREATE_START item code is a Boolean item code. It specifies that a
queue be started after it is created. By default, a queue remains stopped after it
is created.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_DEFAULT _FORM_NAME
SJC$_DEFAUL T _FORM_NUMBER

System Service Descriptions
$SN DJ BC

The SJC$_DEFAULT_FORM_NAME and SJC$_DEFAULT_FORM_NUMBER
item codes are input value item codes. They specify the default form for a specific
output queue by name and by number, respectively.

When you specify a default form for an output queue, the queue uses the queue­
specific default form, rather than the systemwide default form, to process any job
that does not explicitly specify a form.

For SJC$_DEFAULT_FORM_NAME, the buffer must specify a form name. The
string may contain uppercase or lowercase characters (lowercase are converted
to uppercase), numeric characters, dollar signs ($), and underscores (_). If
the string is a logical name, SYS$SNDJBC translates it iteratively until the
equivalence string is found or the number of translations allowed by the system
has been performed. The maximum length of the final character string is 31
characters; spaces, tabs, and null characters are ignored.

For SJC$_DEFAULT_FORM_NUMBER, the buffer must specify a longword
value. You should use only one of these item codes to identify a default form for
the queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_DELETE_FILE
SJC$_NO_DELETE_FILE
The SJC$_DELETE_FILE item code is a Boolean item code. It specifies that
a file should be deleted after the job completes. The file that is deleted is the
batch or print file submitted for execution. You cannot specify this item code
with the SJC$_ALTER_JOB function code, which alters the parameters for an
already existing job; you can make a file deletion request only when a job is first
submitted to the queue.

The SJC$_NO_DELETE_FILE item code is a Boolean item code. It specifies that
a file should not be deleted after execution of the job. It is the default. You can
specify this item code with the SJC$_ALTER_JOB function code; this makes it
possible to cancel a file deletion request that was made when the job was first
submitted to the queue.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_DESTINATION_QUEUE
The SJC$_DESTINATION_QUEUE item code is an input value item code. When
you specify the SJC$_ASSIGN_QUEUE function code, SJC$_DESTINATION_
QUEUE specifies the name of the execution queue to which the logical queue
is assigned. When you specify the SJC$_ABORT_JOB, SJC$_ALTER_JOB, or
SJC$_MERGE_QUEUE function code, SJC$_DESTINATION_QUEUE specifies
the name of the queue into which jobs are placed. By default, jobs remain in the
original queue.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

SYS2-383

System Service Descriptions
$SN DJ BC

SYS2-384

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_ASSIGN_QUEUE, and
SJC$_MERGE_QUEUE function codes)

SJC$_DEVICE_NAME
The SJC$_DEVICE_NAME item code is an input value item code. It specifies
the name of the device managed by the output execution queue. The buffer
must specify a string from 1 to 31 characters. In a VMScluster environment, the
SJC$_SCSNODE_NAME item code is used to specify the name of the node on
which the device is located.

This item code cannot be used with the SJC$_AUTOSTART_ON item code.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_DOUBLE_SPACE
SJC$_NO_DOUBLE_SPACE
The SJC$_DOUBLE_SPACE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that the symbiont should print the
file with double spacing.

The SJC$_NO_DOUBLE_SPACE item code is a Boolean item code. It specifies
that the symbiont should print the file with single spacing. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_ENTRY_NUMBER
The SJC$_ENTRY_NUMBER item code is an input value item code. It specifies
the entry number of the job on which to perform the function. The buffer must
contain this entry number.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_DELETE_JOB, SJC$_
SYNCHRONIZE function codes)

SJC$_ENTRY_NUMBER_OUTPUT
The SJC$_ENTRY_NUMBER_OUTPUT item code is an output value item code.
The buffer must specify a longword into which $SNDJBC will write the entry
number of a created job.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_FILE_BURST
SJC$_FILE_BURST _ONE
SJC$_NO_FILE_BURST
The SJC$_FILE_BURST item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that burst and flag pages are to be
printed preceding a file. If you specify SJC$_FILE_BURST for a job, it specifies
the default for all files in the job; if you specify it for an output execution queue,
it specifies the default for all jobs executed from that queue.

The SJC$_FILE_BURST_ONE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a hqrst page is to be printed
preceding a file. If you specify SJC$_FILE_BURST_ONEfor a job, this item code
specifies that a burst page is to be printed preceding only the first copy of the first
file in the job; if you specify SJC$_FILE_BURST_ONE for an output execution
queue, the item code specifies this behavior as the default for all jobs executed
from that queue.

System Service Descriptions
$SN DJ BC

The SJC$_NO_FILE_BURST item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no burst page should be
printed. It is the default.

(The following function codes are valid for SJC$_FILE_BURST item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FILE_BURST_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC_CREATE_QUEUE
SJC_START_QUEUE)

SJC$_FILE_COPIES
The SJC$_FILE_COPIES item code is an input value item code. It is meaningful
only for output execution queues. It specifies the number of times a file is printed.
By default, a file is repeated once. The buffer must specify a longword value from
1 to 255; this value is the repeat count.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FILE_FLAG
SJC$_FILE_FLAG_ONE
SJC$_NO_FILE_FLAG
The SJC$_FILE_FLAG item code is a Boolean item code. It is meaningful only for
output execution queues. It specifies that a flag page is to be printed preceding
a file. If you specify SJC$_FILE_FLAG foi; a job, this item code indicates the
default for all files in the job; if you specify it for an output execution queue,
SJC$_FILE_FLAG indicates the default for all jobs executed from that queue.

The SJC$_FILE_FLAG_ONE item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a flag page is to be printed
preceding a file. If you specify SJC$_FILE_FLAG_ONE for a job, this item code
specifies that a flag page is to be printed preceding only the first copy of the first
file in the job; if you specify SJC$_FILE_FLAG_ONE for an output execution
queue, it indicates this behavior as the default for all jobs executed from that
queue.

The SJC$_NO_FILE_FLAG item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no flag page should be printed
by default for jobs within the queue.

(The following function codes are valid for SJC$_FILE_FLAG item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_ENTER_FILE

SYS2-385

System Service Descriptions
$SN DJ BC

SYS2-386

SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FLAG_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_START_QUEUE)

SJC$_FILE_IDENTIFICATION
The SJC$_FILE_IDENTIFICATION item code is an input value item code.
It specifies the file to be processed. The buffer contains a 28-byte value that
identifies the file to be processed. This value specifies (in order) the following
three file-identification fields in the Open VMS RMS NAM block: the 16-byte
NAM$T_DVI field, the 6-byte NAM$W_FID field, and the 6-byte NAM$W_DID
field. These fields occur consecutively in the NAM block.

If you specify SJC$_FILE_IDENTIFICATION, you must omit the SJC$_FILE_
SPECIFICATION item code.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_FILE_SETUP _MODULES
SJC$_NO_FILE_SETUP _MODULES
The SJC$_FILE_SETUP _MODULES item code is an input value item code. It
is meaningful only for output execution queues. It specifies that a list of text
modules should be extracted from the device control library and copied to the
printer before a file is printed. The buffer must contain a list of text module
names, with a comma separating each name.

The SJC$_NO_FILE_SETUP _MODULES item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that no text modules
should be copied before printing a file. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FILE_SPECIFICATION
The SJC$_FILE_SPECIFICATION item code is an input value item code. It
identifies the file to be processed. The buffer must contain the file specification
of the file to be processed. The $SNDJBC service converts the file specification
to the corresponding file identification and proceeds as if the SJC$_FILE_
IDENTIFICATION item code had been specified. If you specify SJC$_FILE_
SPECIFICATION, you must omit the SJC$_FILE_IDENTIFICATION item code.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_FILE_ TRAILER
SJC$_FILE_ TRAILER_ONE
SJC$_NO_FILE_ TRAILER
The SJC$_FILE_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be printed\
following a file. If you specify SJC$_FILE_TRAILER for a job, this item code
indicates the default for all files in the job; if you specify it for an output
execution queue, SJC$_FILE_TRAILER specifies the default for all jobs executed
on that queue.

System Service Descriptions
$SN DJ BC

The SJC$_FILE_TRAILER_ONE item code is a Boolean, item code. It is
meaningful only for output execution queues. It specifies that a trailer page
is to be printed following a file. If you specify SJC$_FILE_TRAILER_ONE for a
job, this item code indicates that a .trailer page is to be printed following only the
last copy of the last file in the job; if you specify it for an output execution queue,
SJC$_FILE_TRAILER_ONE indicates this behavior as the default for all jobs
executed on that queue.

The SJC$_NO_FILE_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that no trailer page should be
printed. It is the default.

(The following function codes are valid for SJC$_FILE_TRAILER item code:

SJC$_ADD_FILE
SJC$_ALTER_JOB
SJC$_ALTER_ QUEUE
SJC$_ CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FILE_TRAILER_ONE item code:

SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_ CREATE_ QUEUE
SJC$_START_QUEUE)

SJC$_FIRST _PAGE
SJC$_NO_FIRST _PAGE
The SJC$_FIRST_PAGE item code is an input value item code. It is meaningful
only for jobs queued to output execution queues. It specifies the page number at
which printing should begin. The buffer must contain a nonzero longword value
specifying this page number.

The SJC$_NO_FIRST_PAGE item code is a Boolean item code. It is meaningful
only for jobs queued to output execution queues. It specifies that printing should
begin with the first page. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_FORM_DESCRIPTION
The SJC$_FORM_DESCRIPTION item code is an input value item code. It
provides operator-supplied information describing the form. By default, the form
name is used. The buffer must specify a string of no more than 255 characters.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_LENGTH
The SJC$_FORM_LENGTH item code is an input value item code. It specifies the
physical length of the form in lines. The buffer must contain a nonzero longword
integer value. By default, the form length is 66 lines.

(Valid for SJC$_DEFINE_FORM function code)

SYS2-387

System Service Descriptions
$SN DJ BC

SYS2-388

SJC$_FORM_MARGIN_BOTTOM
The SJC$_FORM_MARGIN_BOTTOM item code is an input value item code. It
specifies the bottom margin of the form in lines. By default, the bottom margin is
6 lines.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_LEFT
The SJC$_FORM_MARGIN_LEFT item code is an input value item code. It
specifies the width of the left margin of the form in characters. By default, the
left margin is 0. The buffer must specify a longword value.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_RIGHT
The SJC$_FORM_MARGIN_RIGHT item code is an input value item code. It
specifies the width of the right margin of the form in characters. By default, the
right margin is 0. The buffer must specify a longword value.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_MARGIN_ TOP
The SJC$_FORM_MARGIN_TOP item code is an input value item code. It
specifies the top margin of the form in lines. By default, the top margin is 0.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_NAME
SJC$_FORM_NUMBER
The SJC$_FORM_NAME and SJC$_FORM_NUMBER item codes are input value
item codes. They specify a mounted form for the queue by name and by number,
respectively. For SJC$_FORM_NAME, the buffer must specify a form name. For
SJC$_FORM_NUMBER, the buffer must specify a longword value. You should
use only one of these two item codes to identify a form in queue and job related
function codes.

The SJC$_DEFINE_FORM and SJC$_DELETE_FORM function codes include
and delete, respectively, a specified form name and number from the system job
queue file. The mounted form indicates the stock type of the output queue. A job
cannot execute on an output queue unless the stock type of the form specified
(by name or number) for the job item code is the same as the stock type of the
mounted form specified for the queue. For more information about how the
stock type of a form affects job processing, see the Open VMS System Manager's
Manual.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(The following function codes are valid for SJC$_FORM_NAME item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_ CREATE_ QUEUE
SJC$_DEFINE_FORM

System Service Descriptions
$SN DJ BC

SJC$_DELETE_FORM
SJC$_ENTER_FILE
SJC$_START_QUEUE)

(The following function codes are valid for SJC$_FORM_NUMBER item code:

SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DEFINE_FORM
SJC$_ENTER_FILE
SJC$_START_QUEUE)

SJC$_FORM_SETUP _MODULES
SJC$_NO_FORM_SETUP _MODULES
The SJC$_FORM_SETUP _MODULES item code is an input value item code. The
buffer must specify one or more text module names, with a comma separatip.g
each name. This item code specifies that these modules should be extracted from
the device control library and copied to the printer before each file that is printed
on the form.

The SJC$_NO_FORM_SETUP _MODULES item code is a Boolean item code. It
specifies that no device control modules should be copied. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_SHEET_FEED
SJC$_NO_FORM_SHEET_FEED
The SJC$_FORM_SHEET_FEED item code is a Boolean item code. It specifies
that the symbiont should pause at the end of each physical page so that a new
sheet may be inserted.

The SJC$_NO_FORM_SHEET_FEED item code is a Boolean item code. It
specifies that the output symbiont should not pause at the end of every physical
page. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_STOCK
The SJC$_FORM_STOCK item code is an input value item code. It specifies a
name for the paper stock. The buffer must contain a string of 1 to 31 characters.
By default, the name of the paper stock is the form name.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_ TRUNCATE
SJC$_NO_FORM_TRUNCATE
The SJC$_FORM_TRUNCATE item code is a Boolean item code. It specifies
that the symbiont should truncate lines that extend beyond the right margin.
Specifying SJC$_FORM_TRUNCATE cancels SJC$_FORM_WRAP. The SJC$_
FORM_TRUNCATE item code is the default.

The SJC$_NO_FORM_TRUNCATE item code is a Boolean item code. It specifies
that the output symbiont should not truncate lines that extend beyond the right
margin.

(Valid for SJC$_DEFINE_FORM function code)

SYS2-389

System Service Descriptions
$SN DJ BC

SYS2-390

SJC$_FORM_WIDTH
The SJC$_FORM_ WIDTH item code is an input value item code. It specifies
the physical width of the form in characters. The buffer must contain a nonzero
longword integer. By default, the form width is 132 characters.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FORM_WRAP
SJC$_NO_FORM_WRAP
The SJC$_FORM_ WRAP item code is a Boolean item code. It specifies that the
symbiont should wrap lines that extend beyond the right margin. Specifying
SJC$_FORM_ WRAP cancels SJC$_FORM_TRUNCATE.

The SJC$_NO_FORM_ WRAP item code is a Boolean item code. It specifies that
the output symbiont should not wrap lines. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_GENERIC_QUEUE
SJC$_NO_GENERIC_QUEUE
The SJC$_GENERIC_QUEUE item code is a Boolean item code. It specifies that
a queue is a generic queue.

The SJC$_NO_GENERIC_QUEUE item code is a Boolean item code. It specifies
that a queue is not a generic queue. It is the default. By default, a queue is an
execution queue; see the Description section for a full discussion of the types of
queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_GENERIC_SELECTION
SJC$_NO_GENERIC_SELECTION
The SJC$_GENERIC_SELECTION item code is a Boolean item code. It specifies
that an execution queue can accept jobs from a generic queue. It is the default.
It is meaningful only for execution queues.

The SJC$_NO_GENERIC_SELECTION item code is a Boolean item code. It
specifies that an execution queue cannot accept jobs from a generic queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_GENERIC_ TARGET
The SJC$_GENERIC_TARGET item code is an input value item code. The buffer
must specify a queue name. This queue name identifies an execution queue
that can accept jobs from a generic queue. This item code is meaningful only for
generic queues.

This item code can appear up to 124 times in a single call to $SNDJBC. The set
of queues defined in a single call completely replaces the set defined by a prior
call.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string is
31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_HOLD
SJC$_NO_HOLD

System Service Descriptions
$SN DJ BC

The SJC$_HOLD item code is a Boolean item code. It specifies that a job cannot
execute and must enter a holding status.

The SJC$_NO_HOLD item code is a Boolean item code. It specifies that a job can
execute immediately when used with the SJC$_ALTER_JOB function code. It
makes the following types of job eligible for execution: (1) a job that is holding
because it was specified with the SJC$_HOLD item code, (2) a job that was
refused by the symbiont, and (3) a job that was retained after execution. It is
the default. SJC$_NO_HOLD does not release a job that is specified with the
SJC$_AFTER_TIME item code.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_
ENTER_FILE function codes)

SJC$_JOB_BURST
SJC$_NO_JOB_BURST
The SJC$_JOB_BURST item code is a Boolean item code. It specifies that burst
and flag pages are to be printed preceding each job. It is meaningful only for
output execution queues.

The SJC$_NO_JOB_BURST item code is a Boolean item code. It specifies that
a burst page is not to be printed preceding each job. It is meaningful only for
output execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_COPIES
The SJC$_JOB_COPIES item code is an input value item code. It specifies the
number of times that the entire print job is to be repeated. The buffer must
contain this nonzero longword integer value. By default, the print job is repeated
once.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_DEFAULT _RETAIN
The SJC$_JOB_DEFAULT_RETAIN item code is a Boolean item code. It specifies
that you want the job to be held in the queue as specified by the queue's retention
policy.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the Open VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_ERROR_RETAIN
The SJC$_JOB_ERROR_RETAIN item code is a Boolean item code. It
specifies that you want the job to be retained in the queue if the job completes
unsuccessfully. However, the job might be held in the queue even if it completes
successfully if the queue is set to retain all jobs because the QUI$V _QUEUE_
RETAIN_ALL bit is set in the QUI$_QUEUE_FLAGS item code.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the Open VMS DCL Dictionary.

SYS2-391

System Service Descriptions
$SN DJ BC

SYS2-392

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SCJ$_ENTER_FILE function
codes)

SJC$_JOB_FLAG
SJC$_NO_JOB_FLAG
The SJC$_JOB_FLAG item code is a Boolean item code. It specifies that a
flag page is to be printed preceding each job. It is meaningful only for output
execution queues.

The SJC$_NO_JOB_FLAG item code is a Boolean item code. It specifies that a
flag page is not to be printed preceding each job. It is meaningful only for output
execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_LIMIT .
The SJC$_JOB_LIMIT item code is an input value item code. It specifies the
maximum number of jobs that can execute simultaneously on a queue. The buffer
must contain a longword value in the range 1 to 255. It is meaningful only for
batch execution queues. By default, the job limit is 1.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes) ·

SJC$_JOB_NAME
The SJC$_JOB_NAME item code is an input value item code. It specifies the
name of a job. The buffer must specify a string from 1 to 39 characters.

For function codes SJC$_ENTER_FILE, SJC$_CREATE_JOB, and SJC$_ALTER_
JOB, SJC$_JOB_NAME specifies the identifying name of the job. By default, the
name used is the name of the first file in the job.

For function code SJC$_SYNCHRONIZE_JOB, SJC$_JOB_NAME specifies the
name of the job on which to operate. The job name is implicitly qualified by the
user name.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE, SJC$_
SYNCHRONIZE function codes)

SJC$_JOB_RESET _MODULES
SJC$_NO_JOB_RESET_MODULES
The SJC$_JOB_RESET_MODULES item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify the names
of one or more text modules, with a comma separating each name. This item code
specifies that these modules are to be extracted from the device control library
and copied to the printer before each print job.

The SJC$_NO_JOB_RESET_MODULES item code is a Boolean item code. It
specifies that no text modules should be copied to the printer. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_RETAIN
The SJC$_JOB_RETAIN item code is a Boolean item code. It specifies that you
want the job to be retained in the queue after it has executed, regardless of the
job's completion status ..

System Service Descriptions
$SNDJBC

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the Open VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_RETAIN_ TIME
The SJC$_JOB_RETAIN_TIME item code is an input value item code. It specifies
a quadword time value representing the length of time you want the job to be
retained in the queue.

If a delta time is provided, the delta begins when the job completes. However,
depending on the queue's job retention policy, the job may be retained indefinitely.

For more information about user-specified job retention, see the /RETAIN
qualifier for the PRINT or SUBMIT command in the Open VMS DCL Dictionary.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_JOB_SIZE_MAXIMUM
SJC$_NO_JOB_SIZE_MAXIMUM
The SJC$_JOB_SIZE_MAXIMUM item code is an input value item code. It is
meaningful only for output execution queues. It specifies that a print job can
execute only if its total size in blocks is less than or equal to the specified value.
The buffer specifies this nonzero longword value.

The SJC$_NO_JOB_SIZE_MAXIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_SIZE_MINIMUM
SJC$_NO_JOB_SIZE_MINIMUM
The SJC$_JOB_SIZE_MINIMUM item code is an input value item code. It is
meaningful only for output execution queues. It specifies that a print job can
execute only if its total size in blocks is greater than or equal to the specified
value. The buffer specifies this nonzero longword value.

The SJC$_NO_JOB_SIZE_MINIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes) ·

SJC$_JOB_SIZE_SCHEDULING
SJC$_NO_JOB_SIZE_SCHEDULING
The SJC$_JOB_SIZE_SCHEDULING item code is a Boolean item code. It
specifies that print jobs entered in an output queue should be scheduled according
to size, with the smallest job of a given priority processed first. It is the default.

The SJC$_NO_JOB_SIZE_SCHEDULING item code is a Boolean item code. It
specifies that print jobs of a given priority should not be scheduled according to
print size.

Changing the value of this item code for a queue while print jobs are pending on
any queue produces unpredictable results.

SYS2-393

System Service Descriptions
$SN DJ BC

SYS2-394

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_JOB_STATUS_OUTPUT
The SJC$_JOB_STATUS_OUTPUT item code is an output value item code.
When specified, $SNDJBC returns, as a character string, a textual message
describing the status of a submitted job. Because the message can include up to
255 characters, the buffer length field of the item descriptor should specify 255
(bytes).

(Valid for SJC$_CLOSE_JOB, SJC$_ENTER_FILE function codes)

SJC$_JOB_ TRAILER
SJC$_NO_JOB_ TRAILER
The SJC$_JOB_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be printed
following each job.

The SJC$_NO_JOB_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is not to be
printed following each job. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$~CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_LAST _PAGE
SJC$_NO_LAST_PAGE
The SJC$_LAST_PAGE item code is an input value item code. It is meaningful
only for jobs submitted to output execution queues. It specifies the page number
at which printing should end. The buffer specifies this nonzero longword value.

The SJC$_NO_LAST_PAGE item code is a Boolean item code. It specifies that
printing should end after the last page. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LIBRARY _SPECIFICATION
SJC$_NO_LIBRARY _SPECIFICATION
The SJC$_LIBRARY_SPECIFICATION item code is an input value item code.
It is meaningful only for output execution queues. It specifies that the device
control library for the queue is SYS$LIBRARY:name.TLB, where name is a valid
RMS file name. The buffer must specify the Open VMS RMS file name.

The SJC$_NO_LIBRARY_SPECIFICATION item code is a Boolean item code. It
specifies that the device control library is SYS$LIBRARY:SYSDEVCTL.TLB. It is
the default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_LOG_DELETE
SJC$_NO_LOG_DELETE
The SJC$_LOG_DELETE item code is a Boolean item code. It specifies that the
log file produced for a batch job is to be deleted. It is meaningful only for batch
jobs. It is the default.

The SJC$_NO_LOG_DELETE item code is a Boolean item code. It specifies that
the log file produced for a batch job is not to be deleted.

System Service Descriptions
$SN DJ BC

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOG_QUEUE
The SJC$_LOG_QUEUE item code is an input value item code. It is meaningful
only for batch jobs. It specifies the queue into which the log file produced for the
batch job is entered for printing. The buffer must specify the name of the queue.
By default, the log file is entered in queue SYS$PRINT.

The string can contain uppercase or lowercase characters (lowercase are converted
to uppercase), numeric characters, dollar signs ($), and underscores (_). If ,
the string is a logical name, SYS$SNDJBC translates it iteratively until the
equivalence string is found or the number of translations allowed by the system
has been performed. The maximum length of the final character string is 31
characters; spaces, tabs, and null characters are ignored.

If your system uses multiple queue managers to run batch queues on a separate
queue manager from output queues, certain checks that would otherwise be
performed for the SJC$_LOG_QUEUE item code of the $SNDJBC system service
are not performed.

When batch and print queues are managed by the same queue manager, the
queue manager checks to ensure that the queue specified with the SJC$_LOG_
QUEUE is an output queue and that the user has access to the output queue.
These checks are not made if the batch queue specified by the $SNDJBC service
and the output queue specified by the SJC$_LOG_QUEUE item code are managed
by different queue managers. If you explicitly specify an output queue for the
log file when submitting a batch job, be sure the queue you specify with the
SJC$_LOG_QUEUE is an output queue and not a batch queue. Also, be sure that
you have access to the printer queue.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOG_SPECIFICATION
SJC$_NO_LOG_SPECIFICATION
The SJC$_LOG_SPECIFICATION item code is an input value item code. It
is meaningful only for batch jobs. It specifies the file specification of the log
file produced for a batch job. The buffer must contain this Open VMS RMS file
specification. Omitted fields in the file specification are supplied from the default
file specification SYS$LOGIN:name.LOG, where name is the job name. By default
a log file is produced using this default file specification to generate the log file
name.

The SJC$_NO_LOG_SPECIFICATION item code is a Boolean item code. It
specifies that no log file should be produced for the batch job.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOG_SPOOL
SJC$_NO_LOG_SPOOL
The SJC$_LOG_SPOOL item code is a Boolean item code. It specifies that the log
file produced for a batch job is to be printed. It is meaningful only for batch jobs.
It is the default.

The SJC$_NO_LOG_SPOOL item code is a Boolean item code. It specifies that
the log file for a batch job is not to be printed.

SYS2-395

System Service Descriptions
$SN DJ BC

SYS2-396

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_LOWERCASE
SJC$_NO_LOWERCASE
The SJC$_LOWERCASE item code is a Boolean item code. It specifies that a
job can execute only on a device that has the LOWERCASE device-dependent
characteristic. It is meaningful only for jobs submitted to output execution
queues.

The SJC$_NO_LOWERCASE item code is a Boolean item code. It specifies
that a job can execute whether or not the output device has the LOWERCASE
device-dependent characteristic. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_NEW_VERSION
The SJC$_NEW _VERSION item code is a Boolean item code.

When used with the SJC$_START_QUEUE_MANAGER function code, it specifies
that a new (empty) version of the queue database is to be created, whether or not
the database files already exist. This item code is required when initially creating
and starting the queuing system, but it should be used with caution thereafter.

Caution -----------­

If you specify this item code and a queue database already exists, the
new master and queue files of the queue database supersede existing
version of those files. However, the journal files of the queue database are
deleted. Thus, jobs and other information are lost.

When used with the SJC$_START_ACCOUNTING function code, the
SJC$_NEW _VERSION item code specifies that a new version of the
system accounting file is to be created, whether or not the file already
exists.

(Valid for SJC$_START_ACCOUNTING, SJC$_START_QUEUE_MANAGER
function codes)

SJC$_NEXT _JOB
The SJC$_NEXT_JOB item code is a Boolean item code. It is meaningful only
for paused output execution queues. It specifies that the current job should be
aborted and that printing should be resumed with the next job.

(Valid for SJC$_START_QUEUE function code)

SJC$_NOTE
SJC$_NO_NOTE
The SJC$_NOTE item code is an input value item code. It is meaningful for
batch and output execution queues. It specifies a string to be printed on the job
flag and file flag pages. The buffer must specify this string.

The SJC$_NO_NOTE item code is a Boolean item code. It specifies that no string
is to be printed on the job flag and file flag pages. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_NOTIFY
SJC$_NO_NOTIFY

System Service Descriptions
$SN DJ BC

The SJC$_NOTIFY item code is a Boolean item code. It specifies that a message
is to be broadcast, at the time of job completion, to each logged-in terminal, of the
user who submitted the job.

The SJC$_NO_NOTIFY item code is a Boolean item code. It specifies that no
message is to be broadcast at the time of job completion. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_0PEN_QUEUE
The SJC$_0PEN_QUEUE item code is a Boolean item code. It specifies that jobs
can be entered in the queue. To specify that jobs cannot be entered in the queue,
use the SJC$_CLOSE_QUEUE item code. By default, the queue is open.

Whether a queue is open or closed is independent of any other queue states (such
as paused, stalled, stopped).

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_0PERATOR_REQUEST
SJC$_NO_OPERATOR_REQUEST
The SJC$_0PERATOR_REQUEST item code is an input value item code. It is
meaningful only for output execution queues. The buffer must contain a text
string. This item code specifies that, when a job begins execution, the execution
queue is to be placed in the paused state and the specified text string is to be
included in a message to the queue operator requesting service.

The SJC$_NO_OPERATOR_REQUEST item code is a Boolean item code. It
specifies that no message is to be sent to the queue operator. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_0WNER_UIC
The SJC$_0WNER_UIC item code is an input value item code. It specifies the
owner UIC of a queue. The buffer must specify the longword UIC. By default, the
owner UIC is [1,4].

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_PAGE_HEADER
SJC$_NO_PAGE_HEADER
The SJC$_PAGE_HEADER item code is a Boolean item code. It is meaningful
only for output execution queues. It ·specifies that a page heading is to be printed
on each page of output.

The SJC$_NO_PAGE_HEADER item code is a Boolean item code. It specifies
that no page heading is to be printed. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

SYS2-397

System Service Descriptions
$SN DJ BC

SYS2-398

SJC$_PAGE_SETUP _MODULES
SJC$_NO_PAGE_SETUP_MODULES
The SJC$_PAGE_SETUP _MODULES item code is an input value item code. The
buffer must specify one or more text module names, with a comma separating
each name. This item code specifies that these modules are to be extracted from
the device control library and copied to the printer before each page is printed.

The SJC$_NO_PAGE_SETUP _MODULES item code is a Boolean item code. It
specifies that no device control modules are to be copied. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_PAGINATE
SJC$_NO_PAGINATE
The SJC$_PAGINATE item code is a Boolean item code. It is meaningful only
for output execution queues and jobs submitted to output execution queues. It
specifies that the symbiont should paginate the output by inserting a form feed
whenever output reaches the bottom margin of the form. It is the default.

The SJC$_NO_PAGINATE item code is a Boolean item code. It specifies that the
symbiont should not paginate the output.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_
CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function codes)

SJC$_PARAMETER_ 1 through SJC$_PARAMETER_8
SJC$_NO_PARAMETERS
The SJC$_PARAMETER_l through SJC$_PARAMETER_8 item codes are input
value item codes; the last digit of the item code name is a number from 1 through
8. For each item code specified, the buffer must specify a string of no more than
255 characters. For batch jobs, the string becomes the value of the DCL symbol
Pl through PB, respectively, within the outermost command procedure.

For print jobs, the system makes the string available to the symbiont, though the
standard Open VMS print symbiont does not use this information. By default,
each of the eight parameters specifies a null string.

For function code SJC$_ALTER_JOB, if any SJC$_PARAMETER item is specified,
the value of each unspecified item is the null string.

The SJC$_NO_PARAMETERS item code is a Boolean item code. It specifies that
none of the SJC$_PARAMETER items are to be passed in the batch or print job.
It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_PASSALL
SJC$_NO_PASSALL
The SJC$_PASSALL item code is a Boolean item code. It is meaningful only for
jobs submitted to output execution queues. It specifies that the symbiont is to
print the file in PASSALL mode.

The SJC$_NO_PASSALL item code is a Boolean item code. It specifies that the
symbiont is not to print the file in PASSALL mode. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE function
codes)

System Service Descriptions
$SN DJ BC

SJC$_PRINTER
The SJC$_PRINTER item code is a Boolean item code. It is meaningful only for
output queues. It specifies that the queue being created is a printer queue. The
SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL item
codes are mutually exclusive. If none of these item codes are specified, the default
is SJC$_PRINTER.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_PRIORITY
The SJC$_PRIORITY item code is an input value item code. The buffer must
specify a longword value in the range 0 through 255. This value specifies the
scheduling priority of the job in a queue relative to the scheduling priority of
other jobs in the same queue.

By default, the scheduling priority of the job is the value of the SYSGEN
parameter DEFQUEPRI.

If you specify a value for SJC$_PRIORITY that is greater than the SYSGEN
parameter MAXQUEPRI and you do not have either ALTPRI or OPER privilege,
the system uses the greater of the following two values: DEFQUEPRI or
MAXQUEPRI. If you have either ALTPRI or OPER privilege, the system uses any
value you specify for SJC$_PRIORITY, even if it is included in the range between
MAXQUEPRI + 1 and 255. .

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_
ENTER_FILE function codes)

SJC$_PROCESSOR
SJC$_NO_PROCESSOR
The SJC$_PROCESSOR item code is an input value item code. The buffer must
specify a valid Open VMS RMS file name.

When specified for an output execution queue, SJC$_PROCESSOR specifies that
the symbiont image to be executed is SYS$SYSTEM:name.EXE, where name is
the RMS file name contained in the buffer.

When specified for a generic output queue, SJC$_PROCESSOR specifies that
the generic queue can place jobs only in server queues that are executing the
symbiont image SYS$SYSTEM:name.EXE, where name is the RMS file name
contained in the buffer.

The SJC$_NO_PROCESSOR item code is a Boolean item code. It specifies that
the symbiont image to be executed is SYS$SYSTEM:PRTSMB.EXE. It is the
default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_PROTECTION
The SJC$_PROTECTION item code is an input value item code. It specifies the
protection of a queue.

The buffer must specify a longword in the format shown in the following diagram.

SYS2-399

System Service Descriptions
$SN DJ BC

Value change enable Protection value

World Group Owner System World Group Owner System

DMSRDMSRDMSRDMSRDMSRDMSRDMSRDMSR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 111 0 9 8 7 6 5 4 3 2 1 0

SYS2-400

ZK-1724-GE

Bits 0 through 15 specify the protection value: the four types of access (read,
submit, manage, delete) to be granted to the four categories of user (System,
Owner, Group, World). Set bits deny access and clear bits allow access.

Bits 16 through 31 specify the protection enable mask: they identify which part
of the protection value (bits 0 through 15) is to be applied to queue protection.
If all bits are set in the enable mask, it means that all of the protection values
are to be applied. A value other than -1 in the protection enable mask means
that only those bits set will affect the corresponding bits in the protection value.
When a bit in the protection enable mask is clear, the corresponding bit in the
existing queue protection value is unchanged.

By default, the queue protection is (S:M,O:D,G:R,W:S).

Note that on VAX systems you can assign ACLs to queues using the $SET_
SECURITY system service.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_QUEUE
The SJC$_QUEUE item code is an input value item code. It specifies the queue
to which the operation is directed. The buffer must specify the name of the queue.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the maximum number of translations allowed
by the system has been performed. The maximum length of the final character
string is 31 characters; spaces, tabs, and null characters are ignored.

(The following function codes are valid for SJC$_QUEUE item code:

SJC$_ABORT_JOB
SJC$_ALTER_JOB
SJC$_ALTER_QUEUE
SJC$_CREATE_JOB
SJC$_CREATE_QUEUE
SJC$_DELETE_JOB
SJC$_DELETE_QUEUE
SJC$_ENTER_FILE
SJC$_START_QUEUE
SJC$_SYNCHRONIZE)

SJC$_ QUEUE_DESCRIPTION
SJC$_NO_QUEUE_DESCRIPTION
The SJC$_QUEUE_DESCRIPTION item code is an input value item code. It
provides operator-supplied information about the queue. The buffer must specify
a string of no more than 255 characters.

System Service Descriptions
$SN DJ BC

The SJC$_NO_QUEUE_DESCRIPTION item code is a Boolean item code. It
specifies that no description is associated with the queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_QUEUE_DIRECTORY
The SJC$_QUEUE_DIRECTORY item code is an input value item code. SJC$_
QUEUE_DIRECTORY specifies the directory location that contains the system
queue and journal files for the queue manager. The queue file has a file type
of QMAN$QUEUES and contains queue definitions. The journal file has a file
type of .QMAN$JOURNAL and contains job and other information allowing the
queue manager to return to its last known state should a system be stopped
unexpectedly. These files must reside together in the same directory.

The default location of the queue and journal files is SYS$COMMON:[SYSEXE].
The optional use of SJC$_QUEUE_DIRECTORY is for specifying an alternate
location for the queue and journal files. The specification must include at least
the device and directory name; wildcard characters are not allowed in the
directory specification. The directory specified must be available to all nodes that
can run the queue manager. If the directory specification is a concealed logical
name, it must be defined identically on all nodes in the cluster.

The location of the queue and journal files is stored in the master file of the queue
database. You do not have to respecify the directory location with subsequent use
of SJC$_START_QUEUE_MANAGER.

For more information, see the Open VMS System Manager's Manual.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_QUEUE_MANAGER_NAME
The SJC$_QUEUE_MANAGER_NAME item code is an input value item code.
It uniquely identifies the queue manager process that manages some segment
of the queues and jobs in the system. If it is not present, a default name of
SYS$QUEUE_MANAGER is used.

The maximum length of the final character string is 31 characters. As with queue
names, this may be a logical and will be resolved by the system. Once resolved,
the name provided will serve as the file name for the queue and journal files, the
process name, and the user name for the active process. Only the first 15 and 12
characters of the name are used for the process and user names, respectively.

(Valid for SJC$_CREATE_QUEUE, SJC$_DELETE_QUEUE_MANAGER, SJC$_
DISABLE_AUTOSTART, SJC$_ENABLE_AUTOSTART, SJC$_START_QUEUE_
MANAGER, SJC$_STOP _ALL_QUEUES_ON_NODE, SJC$_STOP _QUEUE_
MANAGER function codes)

SJC$_QUEUE_MANAGER_NODES
The SJC$_QUEUE_MANAGER_NODES item code is an input value item code.
In a VMScluster, SJC$_QUEUE_MANAGER_NODES specifies a list of nodes that
can run the queue manager. It also gives the explicit order of failover if the node
running the queue manager exits the cluster. The specified node list is stored in
the queue database.

SYS2-401

System Service Descriptions
$SN DJ BC

SYS2-402

The default value for the node list is an asterisk (*); it specifies that all nodes
in the cluster are eligible to run the queue manager. The asterisk may also be
specified as an element of the list. For example, a list may be specified as nodes
A, B, C, *. If the node on which the queue manager is running leaves the cluster,
the queue manager automatically fails over to any available node in the cluster;
that is, if nodes A, B, and C are unavailable, then the queue manager may run
on any other node. When establishing the node list, there is no validation of the
individual nodes. If, for example, a node name is misspelled, there is no error
status returned.

Anytime the SJC$_START_QUEUE_MANAGER function code is used, the job
controller checks the queue database to see if the node list is other than the
default (*). If the node list is other than the default and the queue manager
is running on a node other than the first available node of those specified, then
the queue manager process is moved from its current node and restarted on the
first available preferred node. When a current call includes the SJC$_QUEUE_
MANAGER_NODES item code, the job controller also updates the node list stored
in the database. Despite this transition, queues on the running nodes are not
stopped, and all requests to the queuing system complete as expected.

Note that because the specified node list is saved in the database, it is used every
time the SJC$_START_QUEUE_MANAGER function code is used, unless the
node list has been changed by a more recent call to $SNDJBC with the SJC_
$QUEUE_MANAGER_NODES item code.

For more information, see the Open VMS System Manager's Manual.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_RECORD_BLOCKING
SJC$_NO_RECORD_BLOCKING
The SJC$_RECORD_BLOCKING item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that the symbiont
can merge the output records it sends to the output device into a single I/O
request. For the standard Open VMS print symbiont, record blocking can have a
significant performance advantage over single-record mode. It is the default.

The SJC$_NO_RECORD_BLOCKING item code is a Boolean item code. It
specifies that the symbiont must send each record in a separate I/O request to the
output device.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_RELATIVE_PAGE
The SJC$_RELATIVE_PAGE item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a signed
longword integer. This item code specifies that printing should be resumed after
spacing forward (if the buffer value is positive) or backward (if the buffer value is
negative) the specified number of pages.

(Valid for SJC$_START_QUEUE function code)

SJC$_REQUEUE
The SJC$_REQUEUE item code is a Boolean item code. It specifies that a job is
to be requeued. By default, the job is deleted.

(Valid for SJC$_ABORT_JOB function code)

SJC$_RESTART
SJC$_NO_RESTART

System Service Descriptions
$SN DJ BC

The SJC$_RESTART item code is a Boolean item code. It specifies that a job
can restart after a system failure or can be requeued during execution. It is the
default for print jobs.

The SJC$_NO_RESTART item code is a Boolean item code. It specifies that a
job cannot restart after a system failure or after a requeue operation. It is the
default for batch jobs.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE function
codes)

SJC$_RETAIN_ALL_JOBS
SJC$_RETAIN_ERROR_JOBS
SJC$_NO_RETAIN_JOBS
The SJC$_RETAIN_ALL_JOBS item code is a Boolean item code. It specifies that
jobs are to be retained in the queue with a completion status after they have been
executed.

The SJC$_RETAIN_ERROR_JOBS item code is a Boolean item code. It specifies
that jobs are to be retained only if the job completed unsuccessfully (the job's
completion status has the low bit clear).

The SJC$_NO_RETAIN_JOBS item code is a Boolean item code. It specifies
that jobs are not to be retained in the queue after they have completed. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_SCSNODE_NAME
The SJC$_SCSNODE_NAME item code is an input value item code. It specifies
the name of the node for which the command is to execute. The buffer must
specify a 1- to 6-character string that matches the value of the SYSGEN
parameter SCSNODE in effect on the target node.

When used with the function codes of SJC$_STOP _ALL_QUEUES_ON_NODE,
SJC$_DISABLE_AUTOSTART, and SJC$_ENABLE_AUTOSTART, this item code
requests a function on a node other than the node from which the $SNDJBC
request is sent.

SJC$_SCSNODE_NAME is meaningful only for execution queues in a cluster
environment. By default, the queue executes on the node from which the queue is
first started. For an output execution queue, you use the SJC$_DEVICE_NAME
item code to specify the name of the device managed by the queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_DISABLE_AUTOSTART, SJC$_
ENABLE_AUTOSTART, SJC$_START_QUEUE, SJC$_STOP _ALL_QUEUES_
ON_NODE function codes)

SJC$_SEARCH_STRING
The SJC$_SEARCH_STRING item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a string of
no more than 63 characters. This item code specifies that printing is to resume at
the page containing the first occurrence of the specified string. The search for the
string proceeds in the forward direction.

(Valid for SJC$_START_QUEUE function code)

SYS2-403

System Service Descriptions
$SN DJ BC·

SYS2-404

SJC$_SERVER
The SJC$_SERVER item code is a Boolean item code. It is meaningful only for
output queues. It specifies that the queue being created is a server queue. The
term server indicates that a user-modified or user-written symbiont process is
controlling an output execution queue, or a generic queue has server execution
queues as its targets.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_SWAP
SJC$_NO_SWAP
The SJC$_SWAP item code is a Boolean item code. It is meaningful only for batch
execution queues. It specifies that jobs initiated from a queue can be swapped. It
is the default.

The SJC$_NO_SWAP item code is a Boolean item code. It specifies that jobs in
this queue cannot be swapped.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE, SJC$_START_
QUEUE function codes)

SJC$_ TERMINAL
SJC$_NO_ TERMINAL
The SJC$_TERMINAL item code is a Boolean item code. It is meaningful only
for output queues. It specifies that the queue being created is a terminal queue.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified, the
default is SJC$_PRINTER.

The SJC$_NO_TERMINAL item code is a Boolean item code. It designates the
queue type as printer rather than terminal. It is the default.

For the SJC$_START_QUEUE function code, SJC$_TERMINAL and SJC$_NO_
TERMINAL are supported for compatibility with VAX/VMS Version 4.n, but
may not be supported in the future. For SJC$_CREATE_QUEUE, SJC$_NO_
TERMINAL is supported for compatibility with VAX/VMS Version 4.n, and may
not be supported in the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_TOP _OF _FILE
The SJC$_TOP _OF _FILE item code is a Boolean item code. It is meaningful only
for output queues. It specifies that printing is to be resumed at the beginning of
the file.

(Valid for SJC$_START_QUEUE function code)

SJC$_UIC
The SJC$_UIC item code is an input value item code. This value specifies the
4-byte UIC of the user on behalf of whom the request is made. By default, the
UIC is taken from the requesting process.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_USERNAME

System Service Descriptions
$SN DJ BC

The SJC$_ USERNAME item code is an input value item code. It specifies the
user name of the user on behalf of whom the request is made. The buffer must
specify a string from 1 to 12 characters. By default, the user name is taken from
the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_WSDEFAULT
SJC$_NO_WSDEFAULT
The SJC$_ WSDEFAULT item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies, in pages (on VAX. systems)
or pagelets (on Alpha systems), the default working set size for batch jobs or
jobs initiated from a batch queue, or the default working set size of a symbiont
process connected to an output queue. A symbiont process can control several
output queues; however, the default working set size of the symbiont process is
established by the first queue to which it is connected. The buffer must contain a
longword integer value in the range 1 through 65,535.

The SJC$_NO_ WSDEFAULT item code is a Boolean item code. It specifies that
the system is to determine the working set default. It is the default.

For batch jobs, the default working set size, working set quota, and working
set extent (maximum size) are included in each user record in the system user
authorization file (UAF). You can specify values for these items for individual jobs
or for all jobs in a given queue, or for both. Table SYS2-6 shows the action taken
when you specify a value for SJC$_ WSDEFAULT.

Table SYS2-6 Working Set Decision Table

Value Specified
for Job?

No

No

Yes
Yes

Value Specified
for Queue?

No

Yes

Yes

No

Action Taken

Use UAF value

Use value for queue

Use lower of the two
Compare specified value with
UAF value; use lower

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SJC$_WSEXTENT
SJC$_NO_WSEXTENT
The SJC$_ WSEXTENT item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies, in pages (on VAX. systems)
or pagelets (on Alpha systems), the working set extent for batch jobs or jobs
initiated from a batch queue, or the working set extent of a symbiont process
connected to an output queue. A symbiont process can control several output
queues; however, the working set extent of the symbiont process is established
by the first queue to which it is connected. The buffer must contain a longword
integer value in the range 1 through 65,535.

SYS2-405

System Service Descriptions
$SN DJ BC

Description

SYS2-406

°The SJC$_NO_ WSEXTENT item ~ode is a Boolean item code. It specifies that
the system determine the working set extent. It is the default.

For information about the action taken when you specify a value for SJC$_
WSEXTENT for a batch job or batch queue, refer to the description of the SJC$_
WSDEFAULT item code and to Table SYS2-6.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

SJC$_WSQUOTA
SJC$_NO_WSQUOTA
The SJC$_ WSQUOTA item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies, in pages (on VAX systems)
or pagelets (on Alpha systems), the working set quota for batch jobs or default
WSQUOTA for jobs initiated from a batch queue, or the working set quota of a
symbiont process connected to an output queue. A symbiont process can control
several output queues; however, the working set quota of the symbiont process is
established by the first queue to which it is connected. The buffer must contain a
longword integer value in the range 1 through 65,535.

The SJC$_NO_ WSQUOTA item code is a Boolean item code. It specifies that the
system is to determine the working set quota. It is the default.

For information about the action taken when you specify a value for SJC$_
WSQUOTA for a batch job or batch queue, refer to the description of the SJC$_
WSDEFAULT item code and to Table SYS2-6.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$_ENTER_FILE, SJC$_START_QUEUE function
codes)

The Send to Job Controller service creates, stops, and manages queues and the
batch and print jobs in those queues. The $SNDJBC and $GETQUI (Get Queue
Information) services together provide the user interface to the queue manager
and job controller processes. See the description of the $GETQUI service for a
discussion of queues and jobs initiated from those queues.

$SNDJBC completes asynchronously; that is, it returns to the caller after queuing
the request, without waiting for the operation to complete.

To synchronize the completion of most operations, you use the Send to Job
Controller and Wait ($SNDJBCW) service. The $SNDJBCW service is identical
to $SNDJBC in every way except that $SNDJBCW returns to the caller after the
operation completes.

Types of Queues The VMS batch and print queuing system supports several
types of queues, which aid in the processing of batch and print jobs. The different
types of queues can be divided into three major categories according to the way
the system processes the jobs assigned to the queue. The three types of queues
are execution, generic, and logical. Execution queues schedule jobs for execution;
generic and logical queues transfer jobs to execution queues. Within these major
classifications, queue type is further defined by the kinds of job the queues can
accept for processing. Some types of execution and generic queues accept batch
jobs; other types accept print jobs. Logical queues are restricted to print jobs.

System Service Descriptions
$SN DJ BC

You create a queue by making a call to $SNDJBC specifying the SJC$_CREATE_
QUEUE function code. Item codes that you optionally specify in the call
determine the type of queue you create. The following list describes the various
types of execution, generic, and logical queues and indicates which item codes you
need to specify to create them:

• Execution queue. An execution queue schedules jobs for processing. In a
VMScluster environment, jobs are processed on the node that manages the
execution queue. There are two types of execution queues:

Batch execution queue. A batch execution queue can schedule only
batch jobs for execution. A batch job executes as a detached process that
sequentially runs one or more command procedures; you define the list
of command procedures as part of the initial job description. You create
a batch execution queue by specifying the SJC$_BATCH item code in the
call to the $SNDJBC service.

Output execution queue. An output execution queue schedules print
jobs for processing by an independent symbiont process associated with
the queue. The job controller sends the symbiont a list of files to process;
you define this list of files as part of the initial job description. As the
symbiont processes each file, it produces output for the device, such as a
printer or terminal, that it controls.

The standard print symbiont image provided by the operating system is
designed to print files on hardcopy devices. User-modified or user-written
symbionts also can be designed for this or any other file processing
activity managed by the batch and print queuing system. The symbiont
image that executes jobs from an output queue is specified by the SJC$_
PROCESSOR item code. If you omit this item code, the standard print
symbiont image, PRTSMB, is associated with the queue.

There are three types of output execution queue:

a. Printer execution queue. This type of queue typically uses the
standard print symbiont to direct output to a line printer. You can
specify a user-provided symbiont in the SJC$_PROCESSOR item
code. You create a printer execution queue by specifying the SJC$_
PRINTER item code when you create the output execution queue. A
printer execution queue is the default type of output execution queue.

b. Terminal execution queue. This type of queue typically uses the
standard print symbiont to direct output to a terminal printer. You
can specify a user-provided symbiont in the SJC$_PROCESSOR item
code. You create a,terminal execution queue by specifying the SJC$_
TERMINAL item code when you create the output execution queue.

c. Server execution queue. This type of queue uses the user-modified
or user-written symbiont you specify in the SJC$_PROCESSOR item
code to process the files that belong to jobs in the queue. You create
a server execution queue by specifying the SJC$_SERVER item code
when you create the output execution queue.

When you create an output execution queue, you can initially mark it
as either a printer, terminal, or server execution queue. However, when
the queue is started, the symbiont process associated with the queue
can change the queue type from the type designated at its creation to a
printer, terminal, or server execution queue, as follows:

SYS2-407

System Service Descriptions
$SN DJ BC

SYS2-408

a. When an output execution queue associated with the standard print
symbiont is started, the symbiont determines whether it is controlling
a printer or terminal. It communicates this information to the job
controller. If necessary, the job controller then changes the type
designation of the output execution queue.

b. When an output execution queue associated with a user-modified
or user-written symbiont is started, the symbiont has the option
of identifying the queue to the job controller as a server queue. If
the user-written or user-modified symbiont does not notify the job
controller that it wants to change the queue type designation, the
output execution queue retains the queue type designation it received
when it was created.

• Generic queue. A generic queue holds a job until an appropriate execution
queue becomes available to initiate the job; the job controller then requeues
the job to the available execution queue. In a cluster environment, a generic
queue can direct jobs to execution queues that are located on other nodes in
the cluster.

You create a generic queue by specifying the SJC$_GENERIC_QUEUE item
code in the call to the $SNDJBC service. You designate each execution queue
to which the generic queue can direct jobs by specifying the SJC$_GENERIC_
TARGET item code. Because a generic queue can direct jobs to more than one
execution queue, you can specify the SJC$_GENERIC_TARGET item code up
to 124 times in a single call to $SNDJBC to define a complete set of execution

·queues for any generic queue. If you do not specify the SJC$_GENERIC_
TARGET item code, the generic queue directs jobs to any execution queue
that is the same type of queue as the generic queue; that is, a generic batch
queue will direct a job to any available batch execution queue, and so on.
There is one exception: a generic queue will not direct work to any execution
queue that was created in a call to $SNDJBC that specified the SJC$_NO_
GENERIC_SELECTION item code.

There are two types of generic queue:

Generic batch queue. A generic batch queue can direct jobs only to
batch execution queues. You create a generic batch queue by specifying
both the SJC$_GENERIC_QUEUE and SJC$_BATCH item codes in the
call to the $SNDJBC service.

Generic output queue. A generic output queue can direct jobs to any
of the three types of output execution queue: printer, terminal, or server.
Creating a generic o~tput queue that directs jobs to any combination of
the three types of output execution queue is possible. Typically, however,
when you create a generic output queue, you specify a list of type-specific
target queues. This way, the generic output queue directs jobs to a
single type of output execution queue. Thus, you can control whether
the jobs submitted to the generic output execution queue are output on
a line printer or a terminal printer or are sent to a server symbiont for
processing. You create a generic output queue by specifying the SJC$_
GENERIC_QUEUE item code in the call to the $SNDJBC service.

• Logical queue. A logical queue performs the same function as a generic
output queue, except that a logical queue can direct jobs to only a single
printer, terminal, or server execution queue. A logical queue is only an output
queue that has been assigned to transfer its jobs to one execution queue.

System Service Descriptions
$SN DJ BC

To change an output queue into a logical queue, you make a call to the
$SNDJBC service while the output queue is in a stopped state. The call
must specify the SJC$_ASSIGN_QUEUE function code and the SJC$_
DESTINATION_QUEUE item code. You use the SJC$_DESTINATION_
QUEUE item code to specify the execution queue to which the logical queue
should direct jobs. When the logical queue is started, it automatically
requeues its jobs to the specified execution queue as that execution queue
becomes available. You can change a logical queue back to its original output
queue definition by specifying the SJC$_DEASSIGN_QUEUE function code in
a subsequent call to the $SNDJBC service.

Queue Protection This section describes UIC-based protection checking that is
performed by the $SNDJBC service to control access to queues. As an alternative
to this form of protection checking, you can associate ACLs with queues using the
appropriate security services. For example, the $CHANGE_ACL service allows
you to create or modify ACL identifiers and their protection masks.

There are two aspects to UIC-based queue protection:

• When you create a queue, you assign it a UIC by using the SJC$_0WNER_
UIC item code. If you do not specify this item code, the queue is given the
default UIC [1,4].

• You can assign a queue a protection mask by specifying the SJC$_
PROTECTION item code. This protection mask specifies read, submit,
manage, and delete access for the four categories of user: Owner, Group,
World, and System.

In addition, certain queue operations require the caller of $SNDJBC to have
certain privileges. The function codes that require privileges are listed in the
Privileges and Restrictions section.

When a job is submitted to a queue, it is assigned a UIC that is the same as the
UIC of the process submitting the job, unless the SJC$_UIC item code is specified
to supply a different UIC.

For each requested operation, the $SNDJBC service checks the UIC and
privileges of the requesting process against the UIC of the queue, protection
specified for the queue, and the privileges, if any, required for the operation. This
checking is performed in a way similar to the way that the file system checks
access to a file by comparing the owner UIC and protection of the file with the
UIC and privileges of the requester.

Operations that apply to jobs are checked against read and delete protection
specified for the queue in which the job is entered and the owner UIC of the job.
In general, read access to a job allows you to determine that the job exists; delete
access to a job allows you to affect the job.

Operations that apply to queues are checked against the submit and manage
protection specified for the queue and the owner UIC of the queue. In general,
submit access to a queue allows you to submit jobs to the queue; manage access
to a queue allows you to act as an operator for the queue, including the ability to
affect jobs in the queue, to affect accounting, and to alter queues. OPER privilege
grants manage access to all queues.

SYS2-409

System Service Descriptions
$SN DJ BC

SYS2-410

Privileges and Restrictions To specify the following function codes, the caller
must have both OPER and SYSNAM privilege:

SJC$_DELETE_QUEUE_MANAGER
SJC$_START_QUEUE_MANAGER
SJC$_STOP _QUEUE_MANAGER

To specify the following function codes, the caller must have OPER privilege:

SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_DEFINE_FORM
SJC$_DELETE_CHARACTERISTIC
SJC$_DELETE_FORM
SJC$_DELETE_ QUEUE
SJC$_START_ACCOUNTING
SJC$_STOP _ACCOUNTING

To specify the following function code, the caller can have OPER privilege or
manage access:

SJC$_DELETE_QUEUE

To specify the following function code, the caller must have OPER privilege,
execute access to the queue containing the specified job, or read access to the
specified job:

SJC$_SYNCHRONIZE_JOB

To specify the following function codes, the caller must have OPER privilege,
manage access to the specified queue, or submit access to the specified queue:

SJC$_ADD_FILE
SJC$_CLOSE_DELETE
SJC$_CLOSE_JOB
SJC$_CREATE_JOB
SJC$_ENTER_FILE

To specify the following function codes, the caller must have OPER privilege or
manage access to the specified queue or queues:

SJC$_ALTER_QUEUE
SJC$_ASSIGN_QUEUE
SJC$_DEASSIGN_QUEUE
SJC$_DISABLE_AUTOSTART
SJC$_ENABLE_AUTOSTART
SJC$_MERGE_QUEUE
SJC$_PAUSE_QUEUE
SJC$_RESET_ QUEUE
SJC$_START_QUEUE
SJC$_STOP _ALL_QUEUES_ON_NODE
SJC$_STOP _QUEUE

To specify the following function codes, the caller must have OPER privilege,
manage access to the queue containing the specified job, or delete access to the
specified job:

SJC$_ABORT_JOB
SJC$_ALTER_JOB
SJC$_DELETE_JOB

System Service Descriptions
$SN DJ BC

To specify the following function codes, no privilege is required:

SJC$_BATCH_CHECKPOINT
SJC$_ WRITE_ACCOUNTING

To specify a scheduling priority (using the SJC$_PRIORITY item code) higher
than the value of the SYSGEN parameter MAXQUEPRI, the caller needs OPER
or ALTPRI privilege.

To specify the following item codes, the caller must have OPER privilege:

SJC$_0WNER_UIC
SJC$_PROTECTION

To specify the following item codes, the caller must have CMKRNL privilege:

SJC$_ACCOUNT_NAME
SJC$_UIC
SJC$_USERNAME

Required Quota
To specify the astadr argument, the process must have sufficient ASTLM quota.

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBCW, $SNDOPR, $TRNLNM

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_ILLEFC

SS$_1NSFMEM

SS$_IVLOGNAM

SS$_MBFULL

The service completed successfully.

The item list or input buffer cannot be read by
the caller; or the return length buffer, output
buffer, or status block cannot be written by the
caller.

The function code is invalid; the item descriptor
contains an invalid buffer length value; a buffer
descriptor has an invalid length; or the reserved
parameter has a nonzero value.

The job controller process is not running.

You specified the astadr argument, and the
process has exceeded its ASTLM quota.

The efn argument specifies an illegal event flag
number.

Insufficient space exists for completing the
request.
Queue form or characteristic name is not a valid
logical name.

The job controller mailbox is full.

SYS2-411

System Service Descriptions
$SN DJ BC

SS$_MBTOOSML

SS$_SHELVED

SS$_UNASEFC

The mailbox message is too large for the job
controller mailbox.
The job controller attempted to access a shelved
file. The service does not automatically unshelve
files.

The efn argument specifies an unassociated
event flag cluster.

Condition Values Returned in the 1/0 Status Block

JBC$_NORMAL

· JBC$_AUTONOTSTART

JBC$_BUFTOOSMALL

JBC$_DELACCESS

JBC$_DUPCHARNAME

JBC$_DUPCHARNUM

JBC$_DUPFORM

JBC$_DUPFORMNAME

JBC$_EMPTYJOB

JBC$_EXECUTING

JBC$_INCDSTQUE

JBC$_INCFORMPAR

SYS2-412

The service completed successfully.
The queue is autostart active, but not started.
You have tried to start an autostart queue when
none of its available nodes has autostart enabled.

The request could not be completely satisfied due
to limited buffer size. The amount of information
retrieved in response to the query exceeds the
amount of data the queue manager can return in
response to a single request.

The file protection of the specified file, which was
entered with the delete option, does not allow
delete access to the caller.
The command specified a duplicate characteristic
name. Each characteristic must have a unique
name.

The command specified a duplicate characteristic
number. Each characteristic must have a unique
number.
The specified form number is invalid because it
is already defined; each form must have a unique
form number.

The command specified a duplicate form name.
Each form must have a unique name.
The open job cannot be closed because it contains
no files.

The parameters of the specified job cannot be
modified because the job is currently executing.
The type of the specified destination queue is
inconsistent with the requested operation.

The specified length, width, and margin
parameters are inconsistent; the value of the
difference between the top and bottom margin
parameters must be less than the form length,
and the difference between the left and right
margin parameters must be less than the line
width.

JBC$_INCOMPLETE

JBC$_INCQUETYP

JBC$_INTERNALERROR

JBC$_INVCHANAM

JBC$_INVDSTQUE

JBC$_INVFORNAM

JBC$_1NVFUNCOD
JBC$_INVITMCOD

JBC$_INVPARLEN

JBC$_INVPARVAL

JBC$_INVQUENAM

JBC$_ITMREMOVED

JBC$_JOBNOTEXEC

JBC$_JOBQUEDIS

JBC$_JOBQUEENA

JBC$_MISREQPAR

JBC$_NOAUTOSTART

JBC$_NODSTQUE
JBC$_NOOPENJOB

JBC$_NOPRIV

JBC$_NOQUESPACE

JBC$_NORESTART

JBC$_NOSUCHCHAR
JBC$_NOSUCHENT

JBC$_NOSUCHFORM

System Service Descriptions
$SN DJ BC

The requested queue management operation
cannot be executed because a previously
requested queue management operation has
not yet completed.
The type of the specified queue is inconsistent
with the requested operation.

An internal error caused loss of process status. A
system error prevented the queue manager from
obtaining the completion status of a process.

A specified characteristic name is not
syntactically valid.
The destination queue name is not syntactically
valid.

The form name is not syntactically valid.

The specified function code is invalid.

The item list contains an invalid item code.

The length of a specified string is outside the
valid range for that item code.

A parameter value specified for an item code is
outside the valid range for that item code.
The queue name is not syntactically valid.

The meaningless items were removed from the
request. One or more item codes not meaningful
to this command were specified. The command is
processed and the meaningless items are ignored.

The specified job is not executing.

The request cannot be executed because the
system job queue manager has not been started.

The system job queue manager cannot be started
because it is already running.
An item code that is required for the specified
function code has not been specified.

The node does not have the autostart feature
enabled.
The specified destination queue does not exist.

The requesting process did not open a job with
the SJC$_CREATE_JOB function.

The queue protection denies access to the queue
for the specified operation.
The system job queue file was full and could not
be extended.

The specified job cannot be requeued because it
was not defined as restartable.
The specified characteristic does not exist.
There is no job with the specified entry number.

The specified form does not exist.

SYS2-413

System Service Descriptions
$SN DJ BC

SYS2-414

JBC$_NOSUCHJOB

JBC$_NOSUCHMGR

JBC$_NOSUCHNODE

JBC$_NOSUCHQUE

JBC$_NOTALLREQUE

JBC$_NOTASSIGN

JBC$_NOTMEANINGFUL

JBC$_NOTSUPPORTED

JBC$_PRIOSMALL

JBC$_QMANNOTSTARTED

JBC$_QUEDISABLED

JBC$_QUENOTMOD

JBC$_ QUENOTSTOP

JBC$_REFERENCED

JBC$_STARTED

JBC$_STKNOTCHANGE

The specified job does not exist.

The specified queue manager does not exist.
The specified node does not exist.

The specified queue does not exist.

Not all jobs in the source queue could be
requeued to the target queue. Some of the
jobs specified were not suitable for execution on
the specified target queue.

The specified queue cannot be deassigned
because it is not assigned.
The specified item code is no longer meaningful.

The specified item code or function code is not
supported.

The scheduling priority has a smaller value than
requested. A user without ALTPRI or OPER
privilege specified a value for a job's priority
that exceeded the queue's maximum priority for
nonprivileged jobs. The job is entered in the
queue, but its scheduling priority is lower than
the value requested by the user.

The queue manager could not be started.

The disabled queue cannot be modified, nor can
jobs be submitted to it.
The modifications were not made because the
queue was not stopped.

The specified queue cannot be deleted because it
is not in a stopped state.
The specified queue cannot be deleted because of
existing references by other queues or jobs.

The specified queue cannot be started because it
is already running.

The stock associated with a form cannot be
changed.

JBC$_TOOMUCHINFO The size of the data in request exceeds system
constraints. The amount of data specified for a
record within the queue manager's database is
too large.

When you use the SJC$_SYNCHRONIZE_JOB function code, the return value is
the exit status of the specified job.

When you start a symbiont queue with the SJC$_START_QUEUE function code
or the SJC$_CREATE_QUEUE function code with the SJC$_CREATE_START
item code, any error encountered by the symbiont process will be returned in the
IOSB.

Example

System Service Descriptions
$SN DJ BC

! Declare system service related symbols
INTEGER*4 SYS$SNDJBCW,
2 STATUS
INCLUDE '($SJCDEF)'

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END LIST
END MAP -

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $SNDJBCW item list and I/O status block
RECORD /ITMLST/ SUBMIT LIST(6)
RECORD /IOSBLK/ IOSB -
! Declare variables used in $SNDJBCW item list
CHARACTER*9 QUEUE /'SYS$BATCH'/
CHARACTER*23 FILE SPECIFICATION /'$DISKl:[COMMON]TEST.COM'/
CHARACTER*l2 USERNAME /'PROJ3036 '/
INTEGER*4 ENTRY NUMBER

! Initialize item list for the enter file operation
SUBMIT LIST(l).BUFLEN = 9
SUBMIT-LIST(l).ITMCOD = SJC$ QUEUE
SUBMIT-LIST(l).BUFADR = %LOC(QUEUE)
SUBMIT-LIST(l).RETADR = 0
SUBMIT-LIST(2).BUFLEN = 23
SUBMIT-LIST(2).ITMCOD = SJC$ FILE SPECIFICATION
SUBMIT-LIST(2).BUFADR = %LOC(FILE-SPECIFICATION)
SUBMIT-LIST(2).RETADR = 0 -
SUBMIT-LIST(3).BUFLEN = 12
SUBMIT-LIST(3).ITMCOD = SJC$ USERNAME
SUBMIT-LIST(3).BUFADR = %LOC(USERNAME)
SUBMIT-LIST(3).RETADR = 0
SUBMIT-LIST(4).BUFLEN = 0
SUBMIT-LIST(4).ITMCOD = SJC$ NO LOG SPECIFICATION
SUBMIT-LIST(4).BUFADR = 0 - - -
SUBMIT-LIST(4).RETADR = 0
SUBMIT-LIST(S).BUFLEN = 4
SUBMIT-LIST(S).ITMCOD = SJC$ ENTRY NUMBER OUTPUT
SUBMIT-LIST(S).BUFADR = %LOC(ENTRY-NUMBER)
SUBMIT-LIST(S).RETADR = 0 -
SUBMIT=LIST(6).END_LIST = 0

! Call $SNDJBCW service to submit the batch job
STATUS= SYS$SNDJBCW (,
2 %VAL(SJC$ ENTER FILE),,
2 SUBMIT LIST, -
2 IOSB,, T
IF (STATUS) STATUS = IOSB.STS
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

This Fortran program demonstrates the use of the $SNDJBCW service to submit

SYS2-415

System Service Descriptions
$SN DJ BC

SYS2-416

a batch job that is to execute on behalf of another user. No log file is produced for
the batch job. This program saves the job's entry number. You need CMKRNL
privilege to run this program.

System Service Descriptions
$SNDJBCW

$SNDJBCW
Send to Job Controller and Wait

Format

The Send to Job Controller and Wait and $GETQUI services together provide the
user interface to the Job Controller (JBC) facility. The $SNDJBW service allows
you to create, stop, and manage queues and the jobs in those queues. Queues can
be generic, batch, execution, or output queues. Jobs can be batch or print jobs.

The $SNDJBCW service queues a request to the job controller. For most
operations, $SNDJBCW completes synchronously; that is, it returns to the
caller after the operation completes. However, if the requested operation is a
pause queue, stop queue, or abort job operation, $SNDJBCW returns to the caller
after queuing the request. There is no way to synchronize completion of these
operations. Also, $SNDJBCW does not wait for a job to complete before it returns
to the caller. To synchronize completion of a job, the caller must specify the
SJC$_SYNCHRONIZE_JOB function code.

The -$SNDJBCW service is identical to the Send to Job Controller ($SNDJBC)
service except that $SNDJBC completes asynchronously; the $SNDJBC service
returns to the caller immediately after queuing the request, without waiting for
the operation to complete.

For additional information about $SNDJBCW, refer to the documentation of
$SNDJBC.

The $SNDJBC and $SNDJBCW services supersede the Send Message to
Symbiont Manager ($SNDSMB) and Send Message to Accounting Manager
($SNDACC) services. You should write new programs using $SNDJBC or
$SNDJBCW, instead of $SNDSMB or $SNDACC. You should convert old
programs using $SNDSMB or $SNDACC to use $SNDJBC or $SNDJBCW, as
convenient.

SYS$SNDJBCW [efn] ,func [,nullarg] [,itmlst] [,iosb] [,astadr] [,astprm]

SYS2-417

System Service Descriptions
$SN DO PR

$SN DO PR
Send Message to Operator

Format

Arguments

SYS2-418

Performs the following functions:

• Sends a user request to operator terminals

• Sends a user cancellation request to operator terminals

• Sends an operator reply to a user terminal

• Enables an operator terminal

• Displays the status of an operator terminal

• Initializes the operator log file

SYS$SNDOPR msgbuf ,[chan]

msgbuf
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

User buffer specifying the operation to be performed and the information needed
to perform that operation. The msgbuf argument is the address of a character
string descriptor pointing to the buffer.

The format and contents of the buffer vary with the requested operation; however,
the first byte in any buffer is the request code, which specifies the operation to be
performed. The $0PCMSG macro defines the symbolic names for these request
codes. The following table shows each operation that $SNDOPR performs and the
request code that specifies that operation.

Request Code

OPC$_RQ_CANCEL

OPC$_RQ_LOGI

OPC$_RQ_REPLY

Corresponding Operation

Sends a user cancellation request to specified operator
terminals. You use this request code to notify one or
more operators that a previous request is to be canceled.
To specify OPC$_RQ_CANCEL, you must also specify
the chan argument.

Initializes the operator log file.

Sends an operator reply to a user who has made a
request. Operators use this request code to report the
status of a user request. The format of the message
buffer for this request is the format of the reply found in
the user's mailbox after the call to $SNDOPR completes.
All functions of $SNDOPR that deliver a reply to a
mailbox do so in the format described for this request
code.

Request Code

OPC$_RQ_RQST

OPC$_RQ_STATUS

OPC$_RQ_TERME

System Service Descriptions
$SNDOPR

Corresponding Operation

Sends a user request to operator terminals. This request
code is used to make an operator request. If you specify
a reply to the request (by using the chan argument),
the operator request is kept active until the operator
responds.
Reports the status of an operator terminal. Operators
use this request to display the operator classes for
which the specified terminal is enabled and a list of
outstanding requests.
Enables an operator terminal. You use this request to
enable a specified terminal to receive operator messages.

The following diagrams depict the message buffer for each of these request codes.
Each field within a diagram has a symbolic name, which serves to identify the
field; in other words, these names specify offsets into the message buffer. The
list following each diagram shows each field name and what its contents can or
should be. The $0PCDEF macro defines the field names, as well as any other
symbolic name that can be specified as the contents of a field.

Message Buffer Format for OPC$_RQ_RQST

31 7 0
OPC$B_MS_ TARGET I OPC$B_MS_ TYPE

OPC$B_MS_TYPE

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

OPC$L_MS_ TEXT

ZK-1725-GE

This 1-byte field contains the request code OPC$_RQ_
RQST.

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the request. The $0PCDEF macro defines symbolic
names for the operator terminal types. You construct
the bit vector by specifying the desired symbolic
names in a logical OR operation. Following is the
symbolic name of each operator terminal type:

SYS2-419

System Service Descriptions
$SN DO PR

OPC$L_MS_RQSTID

OPC$L_MS_TEXT

OPC$M_NM_CARDS
OPC$M_NM_CENTRL
OPC$M_NM_CLUSTER
OPC$M_NM_DEVICE

Card device operator
Central operator

VMScluster operator
Device status
information

OPC$M_NM_DISKS Disk operator

OPC$M_NM_NTWORK Network operator
OPC$M_NM_TAPES Tape operator
OPC$M_NM PRINT Printer operator
OPC$M_NM_SECURITY Security operator

OPC$M_NM_OPER1 System-manager-
through defined operator
OPC$M_NM_ OPER12 functions
This longword field contains a user-supplied longword
message code.
This variable-length field contains an ASCII string
specifying text to be sent to the specified operator
terminals. $SNDOPR uses the buffer size of the
device to which the message is being sent.

Message Buffer Format for OPC$_RQ_CANCEL

SYS2-420

31 7 0

OPC$B_MS_TARGET I OPC$B_MS_ TYPE

OPC$B_MS_TYPE

OPC$L_MS_RQSTID

ZK-1726-GE

This 1-byte field contains the request code
OPC$_RQ_CANCEL.

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

System Service Descriptions
$SNDOPR

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the cancellation request. The $0PCDEF macro
defines symbolic names for the operator terminal
types. You construct the bit vector by specifying the
desired symbolic names in a logical OR operation.
Following is the symbolic name of each operator
terminal type:

OPC$M_NM_CARDS

OPC$M_NM_CENTRL
OPC$M_NM_SECURITY

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_TAPES

OPC$M_NM_PRINT

Card device operator
Central operator
Security operator

VMScluster operator

Device status
information
Disk operator

Network operator

Tape operator

Printer operator
OPC$M_NM_OPER1 System-manager-
through defined operator
OPC$M_NM_ OPER12 functions

This longword field contains a user-supplied longword
message code.

Message Buffer Format for OPC$_RQ_REPLY

31 15 7 0

OPC$W_MS_STATUS l Reserved l OPC$B_MS_ TYPE

OPC$L_MS_RPL YID

1 OPC$W_MS_OUNIT

OPC$T _MS_ONAME

1
OPC$L_MS_OTEXT

J
ZK-1727-GE

SYS2-421

System Service Descriptions
$SNDOPR

OPC$B_MS_TYPE

Reserved
OPC$W _MS_STATUS

OPC$L_MS_RPLYID

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

OPC$L_MS_OTEXT

SYS2-422

This 1-byte field contains the request code
OPC$_RQ_REPLY.
This 1-byte field is reserved for future use.

This 2-byte field contains the low-order word of the
longword condition value that $SNDOPR returns in
the mailbox specified by the chan argument. You
can find a list of these longword condition values
under Condition Values Returned in the Mailbox. To
test the completion status, you need to extract the
low-order word from the longword condition value
and compare it to the contents of the OPC$W _MS_
STATUS field.

This 4-byte field contains a user-supplied message
code.

This 2-byte field contains the unit number of the
terminal to which the operator reply is to be sent.
To obtain the unit number of the terminal, you can
call $GETDVI, specifying the DVI$_FULLDEVNAM
item code. The information returned will consist of
the node name and device name as a padded string.
Because the unit number is found on the tail end of
the string, you must parse the string. One way to do
this is, starting from the tail end, to search for the
first alphabetic character; the digits to the right of
this alphabetic character constitute the unit number.
After extracting the unit number, count the
remaining characters in the string. Then, construct
a counted ASCII string and use this for the following
field, OPC$T_MS_ONAME.
This variable-length field contains a counted ASCII
string specifying the device name of the terminal that
is to receive the operator reply. The maximum total
length of the string is 14 bytes. See the preceding
field description (OPC$W _MS_OUNIT) to learn how
to obtain the device name.
This variable-length field contains an ASCII string
specifying operator-written text to be sent to the user
terminal. The length of the string must be in the
range 0 to 255 bytes. This field is optional.

System Service Descriptions
$SNDOPR

Message Buffer Format for OPC$_RQ_ TERME

31

-a--

T
OPC$B_MS_TYPE

OPC$B_MS_ENAB

OPC$B_MS_MASK

15 7 0

OPC$B_MS_ENAB l OPC$B_MS_ TYPE

OPC$L_MS_MASK

1 OPC$W_MS_OUNIT

-a--

OPC$T _MS_ONAME

J
ZK-1728-GE

This 1-byte field contains the request code
OPC$_RQ_TERME.

This 3-byte field contains a user-supplied value. The
value 0 indicates that the specified terminal is to
be disabled for the specified operator classes. Any
nonzero value indicates that the specified terminal is
to be enabled for the specified operator classes.

This 4-byte field contains a 4-byte bit vector that
specifies which operator terminal types are to be
enabled or disabled for the specified terminal. The
$0PCDEF macro defines symbolic names for the
operator terminal types. You construct the bit vector
by specifying the desired symbolic names in a logical
OR operation. Following is the symbolic name of each
operator terminal type:

OPC$M_NM_CARDS Card device operator

OPC$M_NM_CENTRL

OPC$M_NM_SECURITY

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_TAPES

OPC$M_NM_PRINT

OPC$M_NM_OPER1
through
OPC$M_NM_OPER12

Central operator

Security operator

VMScluster operator

Device status
information

Disk operator

Network operator

Tape operator

Printer operator

System-manager­
defined operator
functions

SYS2-423

System Service Descriptions
$SN DO PR

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

This 2-byte field contains the unit number of the
operator terminal to be enabled or disabled for the
specified operator terminal types. To obtain the unit
number of the terminal, you can call $GETDVI,
specifying the DVI$_FULLDEVNAM item code. The
information returned will consist of the node name
and device name as a padded string. Because the
unit number is found on the tail end of the string,
you must parse the string. One way to do this is,
starting from the tail end, to search for the first
alphabetic character; the digits to the right of this
alphabetic character constitute the unit number.
After extracting the unit number, count the
remaining characters in the string. Then, construct
a counted ASCII string and use this for the following
field, OPC$T_MS_ONAME.
This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal to be enabled or disabled for the specified
operator terminal types. The maximum total length
of the string is 16 bytes. See the preceding field
description (0PC$W_MS_OUNIT) to learn how to
obtain the device name.

Message Buffer Format for OPC$_RQ_STATUS

SYS2-424

31

OPC$B_MS_TYPE

Reserved

Reserved

15 7 0

Reserved I OPC$B_MS_ TYPE

Reserved

1 OPC$W_MS_OUNIT

-L..;

OPC$T _MS_ONAME

J
ZK-1729-GE

This 1-byte field contains the request code
OPC$_RQ_STATUS.
This 3-byte field is reserved for future use.

This 4-byte field is reserved for future use.

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

System Service Descriptions
$SNDOPR

This 2-byte field contains the unit number of the
operator terminal whose status is to be requested. To
obtain the unit number of the terminal, you can call
$GETDVI, specifying the DVI$_FULLDEVNAM item
code. The information returned will consist of the node
name and device name as a padded string. Because the
unit number is found on the tail end of the string, you
must parse the string. One way to do this is, starting
from the tail end, to search for the first alphabetic
character; the digits to the right of this alphabetic
character constitute the unit number.
After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T~MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal whose status is requested. The maximum
total length of the string is 14 bytes. See the preceding
field description (0PC$W_MS_OUNIT) to learn how to
obtain the device name.

Message Buffer Format for OPC$_RQ_LOGI

31

rL.,

T
OPC$B_MS_TYPE

15 7 0

Reserved I OPC$B_MS_ TYPE

OPC$W_MS_OUNIT

l OPC$L_MS_RQSTID

OPC$T _MS_ONAME

ZK-1730-GE

This 1-byte field contains the request code
OPC$_RQ_LOGI.

SYS2-425

System Service Descriptions
$SN DO PR

OPC$B_MS_TARGET

OPC$L_MS_RQSTID

OPC$W _MS_OUNIT

SYS2-426

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the cancellation request. The $0PCDEF macro defines
symbolic names for the operator terminal types. You
construct the bit vector by specifying the desired
symbolic names in a logical OR operation. Following is
the symbolic name of each operator terminal type:

OPC$M_NM_CARDS Card device operator

OPC$M_NM_CENTRL Central operator

OPC$M_NM_SECURITY Security operator
OPC$M_NM_CLUSTER VMScluster operator

OPC$M_NM_DEVICE Device status
information

OPC$M_NM_DISKS Disk operator

OPC$M_NM_NTWORK Network operator
OPC$M_NM_TAPES Tape operator

OPC$M_NM_PRINT Printer operator

OPC$M_NM_OPER1 System-manager-
through defined operator
OPC$M_NM_OPER12 functions

This longword field contains a user-supplied value.
The value 0 specifies that the current operator log file
is to be closed and a new log file opened with all classes
enabled (0PC$B_MS_TARGET is ignored).
The value 1 specifies that the current operator log file
is to be closed but no new log file is to be opened.
The value 2 specifies that the classes in OPC$B_MS_
TARGET are added to the current operator log file
classes. A log file is opened if necessary.
The value 3 specifies that the operator classes in
OPCB_MS_TARGET are to be removed from the
operator log file classes. If all classes are removed, the
log file is closed.

This 2-byte field contains the unit number of the
operator terminal that is making the initialization
request. To obtain the unit number of the
terminal, you can call $GETDVI, specifying the
DVI$_FULLDEVNAM item code. 'fhe information
returned will consist of the node name and device
name as a padded string. Because the unit number
is found on the tail end of the string, you must parse
the string. One way to do this is, starting from the
tail end, to search for the first alphabetic character;
the digits to the right of this alphabetic character
constitute the unit number.

Description

System Service Descriptions
$SN DO PR

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

OPC$T_MS_ONAME This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal that is making the initialization request. The
maximum total length of the string is 14 bytes. See
the preceding field description (OPC$W_MS_OUNIT)
to learn how to obtain the device name.

ch an
Open VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Channel assigned to the mailbox to which the reply is to be sent. The chan
argument is a longword value containing the number of the channel. If you do
not specify chan or specify it as the value 0 (the default), no reply is sent.

If a reply from the operator is desired, you must specify the chan argument.

The $SNDOPR service performs the following functions:

• Sends a user request to operator terminals

• Sends a user cancellation request to operator terminals

• Sends an operator reply to a user terminal

• Enables an operator terminal

• Displays the status of an operator terminal

• Initializes the operator log file

This system service requires system dynamic memory; it cannot be called from
kernel mode.

The general procedure for using this service is as follows:

1. Construct the message buffer and place its final length in the first word of the
buffer descriptor.

2. Call the $SNDOPR service.

3. Check the condition value returned in RO to make sure the request was
successfully made.

4. Issue a read request to the mailbox specified, if any.

5. When the read operation completes, check the 2-byte condition value in the
OPC$W _MS_STATUS field to make sure that the operation was performed
successfully.

SYS2-427

System Service Descriptions
$SN DO PR

The format of messages displayed on operator terminals follows:

%%%%%%%%%%% OPCOM dd-mmm-yyyy hh:rnrn:ss.cc
message specific information

The following example shows the message displayed on a terminal as a result of
a request to enable that terminal as an operator terminal:

%%%%%%%%%%% OPCOM 30-DEC-1994 13:44:40.37
Operator _NODE$LTA5: has been enabled, username HOEBLE

The following example shows the message displayed on an operator terminal as a
result of a request to display the status of that operator terminal:

%%%%%%%%%%% OPCOM 30-DEC-1994 12:11:10.48
Operator status for operator NODE$0PAO:
CENTRAL, PRINTER, TAPES, DISKS, DEVICES, CARDS, CLUSTER, SECURITY,
OPERl, OPER2, OPER3, OPER4, OPER5, OPER6, OPER7, OPER8, OPER9,
OPERlO, OPERll, OPER12

The following example shows the message displayed on an operator terminal as a
result of a user request:

%%%%%%%%%%% OPCOM 30-DEC-1994 12:57:32.25
Request 1285, from user ROSS on NODE NAME
Please mount device _NODE$DMAO: -

Required Access or Privileges
OPER privilege is required for the following functions:

• Enabling a terminal as an operator's terminal

• Replying to or canceling a user's request

• Initializing the operator communication log file

In addition, the operator must have SECURITY privilege to affect security
functions.

Required Quota
None

Related Services
$ALLOC, $ASSIGN, $BRKTHRU, $BRKTHRUW, $CANCEL, $CREMBX,
$DALLOC, $DASSGN, $DELMBX, $DEVICE_SCAN, $DISMOU, $GETDVI,
$GETDVIW, $GETMSG, $GETQUI, $GETQUIW, $INIT_ VOL, $MOUNT,
$PUTMSG, $QIO, $QIOW, $SNDERR, $SNDJBC, $SNDJBCW

Condition Values Returned

SYS2-428

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVNOTMBX

The service completed successfully.

The message buffer or buffer descriptor cannot
be read by the caller.

The specified message has a length of 0 or has
more than 986 bytes.

The channel specified is not assigned to a
mailbox.

SS$_INSFMEM

SS$_IVCHAN

SS$_MBFULL

OPC$_NOPERATOR

SS$_NOPRIV

System Service Descriptions
$SN DO PR

The service was called from kernel mode or
the system dynamic memory is insufficient for
completing the service.

You specified an invalid channel number. An
invalid channel number is one that is 0 or a
number larger than the number of channels
available.

The mailbox used to support communication is
full. Retry at a later time.

The service completed successfully; the Operator
Communications Manager (OPCOM) is not
running and the message will not be sent. Note
that OPC$_NOPERATOR is a success status and
must be tested for explicitly.

The process does not have the privilege to reply
to or cancel a user's request; the process does
not have read/write access to the specified
mailbox; or the channel was assigned from a
more privileged access mode.

Condition Values Returned in the Mailbox

Examples

OPC$_BLANKTAPE

OPC$_INITAPE

OPC$_NOPERATOR

OPC$_RQSTCMPLTE

OPC$_RQSTPEND

OPC$~RQSTABORT

OPC$_RQSTCAN

1. #include <ssdef .h>
#include <opcdef .h>
#include <string.h>
#include <descrip.h>
#include <starlet.h>
#include <lib$routines.h>

char input_buffer[256];

The service completed successfully; the operator
responded with the DCL command REPLY
/BLANK_ TAPE=n.

The service completed successfully; the operator
responded with the DCL command REPLY
/INITIALIZE_TAPE=n.

The service completed successfully; no operator
terminal was enabled to receive the message.

The service completed successfully; the operator
completed the request.

The service completed successfully; the operator
will perform the request when possible.

The operator could not satisfy the request.

The caller canceled the request.

/* Input buffer, if needed */

/* VMS descriptors: */
$DESCRIPTOR(input desc, input buffer);
$DESCRIPTOR(prompt desc, "Request> ");
struct dsc$descriptor req_desc;

.SYS2-429

System Service Descriptions
$SN DO PR

SYS2-430

main(int argc, char *argv[])
{

}

int status, /* Status of system calls */
length = O; /* Length of message text */

struct OPC request; /* Request message buffer */

/* Check for too many arguments on coIIUnand line */
if (argc > 2)

return (SS$_0VRMAXARG);

/*See if request string present on coIIUnand line ••. */
if (argc > 1)
{

/* It is. Compute length and copy pointer */
length= strlen(argv[l]);
input_desc.dsc$a_pointer = argv[l];

/* If no message present, prompt user for message text */
while (length == 0)
{

status= lib$get input(&input desc, &prompt_desc, &length);
if (status != SS$ NORMAL) -

return (status);
} ;

if (length > 128)
length = 128;

/* Limit message length */
/* to 128 characters */

/*Set up request buffer ••• */
request.opc$b ms type = OPC$ RQ RQST;
request.opc$b-ms-target = OPC$M-NM CENTRL;
request.opc$1-ms-rqstid = O; - -
memcpy(&request.opc$l_ms_text, input_desc.dsc$a_pointer, length);

/* Set up request buffer descriptor and send message */
req desc.dsc$w length = length + 8;
req-desc.dsc$a-pointer = (char *) &request;
return (sys$sndopr(&req_desc, O));

This example allows you to build an operator request and send the request to
the operator.

2. IMPLICIT NONE

1 Symbol definitions
INCLUDE '($DVIDEF)'
INCLUDE '($0PCDEF)'

System Service Descriptions
$SN DO PR

1 Structures for SNDOPR
STRUCTURE /MESSAGE/

UNION
MAP

BYTE TYPE,
2 ENABLE(3)

INTEGER*4 MASK
INTEGER*2 OUNIT
CHARACTER*l4 ONAME

END MAP
MAP

CHARACTER*24 STRING
END MAP

END UNION
END STRUCTURE
RECORD /MESSAGE/ 1 MSGBUF
! Length of MSGBUF.ONAME
INTEGER*4 ONAME LEN

! Status and routines
INTEGER*4 STATUS,
2 LIB$GETDVI,
2 SYS$SNDOPR

! Type
MSGBUF.TYPE = OPC$ RQ TERME
! Enable - -
MSGBUF.ENABLE(l) = 1
! Operator type
MSGBUF.MASK = OPC$M NM OPERl
! Terminal unit nurnber-
STATUS = LIB$GETDVI (DVI$ UNIT,
2 , -
2 I SYS$0UTPUT',
2 MSGBUF.OUNIT,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Terminal name
STATUS = LIB$GETDVI (DVI$_FULLDEVNAM,
2 ,
2 'SYS$0UTPUT' ,,
2 MSGBUF.ONAME,
2 ONAME LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Remove unit number from ONAME and set up counted string
ONAME LEN = ONAME LEN - 3
MSGBUF.ONAME(2:0NAME LEN+l) = MSGBUF.ONAME(l:ONAME LEN)
MSGBUF.ONAME(l:l) = CHAR(ONAME LEN) -
! Call $SNDOPR -
STATUS= SYS$SNDOPR (MSGBUF.STRING,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

This DEC Fortran for Open VMS program enables the current terminal to
receive OPERl operator messages.

SYS2-431

System Service Descriptions
$START_ALIGN_FAULT_REPORT (Alpha Only)

$START _ALIGN_FAULT _REPORT (Alpha Only)
Start Alignment Fault Reporting

Format

Arguments

Description

SYS2-432

On Alpha systems, initializes user image alignment fault reporting.

SYS$START _ALIGN_FAULT _REPORT report_method ,report_buffer ,buffer_length

report_method
Open VMS usage: longword_signed
type: longword (signed)
access: read
mechanism: by value

Method by which image alignment faults are to be reported. The following table
shows valid values for the report_method argument.

Value Meaning

AFR$C_BUFFERED Alignment fault PCs and fault addresses are saved in a
user-supplied buffer.

AFR$C_EXCEPTION Alignment faults are elevated to user mode exceptions.

report_buffer
Open VMS usage: address
type: longword (unsigned)
access: read
mechanism: by reference

The 32-bit address of the buffer into which to write the fault data. The report_
buffer argument is needed only if the value of the report_method argument is
AFR$C_BUFFERED.

buffer _length
Open VMS usage: byte count
type: longword (signed)
access: read
mechanism: by value

Length of the buffer specified in the report_buffer argument. The buffer must
have a minimum size of AFR$K_USER_LENGTH + 32. However, a larger buffer
allows for more information to be collected.

The Start Alignment Fault Reporting service initializes user image alignment
fault reporting.

The $START_ALIGN_FAULT_REPORT service allows the user to gather
alignment fault data for one image. Reporting is enabled for the life of the
image. When the image terminates, the alignment fault reporting is disabled.

System Service Descriptions
$START_ALIGN_FAULT_REPORT (Alpha Only)

User alignment fault data can be written to a buffer or broadcast as an
informational exception message.

If the AFR$C_BUFFERED value is given in the report_method buffer,
alignment fault PCs and fault addresses are saved in a user-supplied buffer.

The following diagram illustrates the format in which user alignment fault data
is stored in the buffer.

63 0

AFR$Q_FAULT_PC

AFR$Q_FAULT_VA

ZK-4983A-GE

If the AFR$C_EXCEPTION value is given in the report_method argument,
alignment faults are elevated to user mode exceptions. These exceptions can be
trapped in a handler. Otherwise, an informational exception message may be
broadcast and the program continues to execute.

Required Access or Privileges
None

Required Quota
None

Related Services
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $1NIT_SYS_
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT_REPORT, $PERM_
REPORT_ALIGN_FAULT, $STOP _ALIGN_FAULT_REPORT, $STOP _SYS_
ALIGN_FAULT_REPORT

Condition Values Returned

SS$_NORMAL
SS$_ACCVIO

SS$_AFR_ENABLED

SS$_ARG_GTR_32_BITS

SS$_ALIGN

SS$_BADPARAM

The service completed successfully.
The buffer specified in the report_buffer
argument is not accessible.
The service has already been called for this
image.
The report buffer's virtual address lies in 64-bit
virtual address space.
The buffer specified in the report_buffer
argument is not quadword aligned.
The buffer size is smaller than that defined by
the AFR$K_USER_LENGTH + 32 symbol.

SYS2-433

System Service Descriptions
$START _ALIGN_FAULT _REPORT (Alpha Only)

Example

SYS2-434

#include <afrdef>
#include <stdio>
#include <ssdef>

#define USER BUFFER ITEMS 10
#define GET BUFFER SIZE USER BUFFER ITEMS*AFR$K USER LENGTH
#define SAVE BUFFER SIZE 128+64 - - -- -
#define fault pc afr$1 fault pc 1
#define fault=va afr$l=fault=va=l

static int usr buff len;
static char *usr buff;
static int rep_method;

void
cause af()
{ -

}

int addr;
int *ptr;
int arr[2];

addr = (int) &arr[O];
ptr = (int *) ++addr;
ptr = 1; / cause alignment fault */

main()
{

}

int
char

i· ,
get buffer[GET BUFFER SIZE];

struct afrdef
int

*data item; - -
offset;

int status;
int return_size;

rep method = AFR$C BUFFERED;
usr-buff len = SAVE BUFFER SIZE;
usr-buff-= (char *)malloc (usr buff len);
if ((status = sys$start align fault-report(rep method, usr_buff,

usr buff len)) - - -
!= SS$_NORMAL) return(status);

for (i=O;i<USER BUFFER ITEMS;i++)
cause_af (); - -

while (((status= sys$get align fault data (get_buffer,
GET BUFFER SIZE, - -
&return size)) > 0) &&

(return size >-0)) {
/* got some data, print it */
offset = O;
while (offset < return size) {

data item= (struct afrdef *)(&get buffer[offset]);
printf ("Alignment fault at PC= %8.ax, VA= %8.8X\n",

data item->fault pc, data item->fault va);
offset-+= AFR$K~USER_LENGTHT -

return (status) ;

This example shows how to use the $START_ALIGN_FAULT_REPORT service to
initialize user image alignment fault reporting on Alpha systems.

System Service Descriptions
$START_ TRANS

$START_ TRANS
Start Transaction

Format

Arguments

Starts a new transaction.

SYS$START _TRANS [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[timout] ,[acmode]]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag that is set when the service completes. If this argument
is omitted, event flag 0 is set.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the service. The flags argument is a longword bit
mask in which each bit corresponds to an option flag. The $DDTMDEF macro
defines symbolic names for these option flags. The flags currently defined are
shown in the following table. All undefined bits must be 0. If this argument is
omitted, no flags are set.

Flag

DDTM$M_NONDEFAULT

DDTM$M_PROCESS

Description

Set this flag if you do not want the new
transaction to be the default transaction of
the calling process.
If this flag is clear, the new transaction
becomes the default transaction of the calling
process. An error is returned if this flag is
clear and the calling process already has a
default transaction.

Set this flag if you do not want the DECdtm
transaction manager to try to abort the
transaction if the current image terminates.
If this flag is clear, when the current image
terminates (normally or abnormally), the
DECdtm transaction manager will abort the
transaction if it has not already committed.
An error is returned if this flag is set and the
caller is in user mode.

SYS2-435

System Service Descriptions
$START_ TRANS

SYS2-436

Flag

DDTM$M_SYNC

iosb
Open VMS usage: io_status_block

Description

Set this flag to specify that successful
synchronous completion is to be indicated by
returning SS$_SYNCH. When SS$_SYNCH
is returned, the AST routine is not called, the
event flag is not set, and the I/O status block
is not filled in.

type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block in which the completion status of the serVice is returned as a
condition value. See the Condition Values Returned section.

The following diagram shows the structure of the I/O status block.

31 15 0

Reserved by Digital l Condition Value

Reserved by Digital

ZK-1224A-GE

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST routine that is executed when the service completes. The astadr argument
is the address of this routine. This routine is executed in the access mode of the
caller.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter that is passed to the AST routine specified by the astadr
argument.

tid
Open VMS usage: transaction_id
type: octaword (unsigned)
access: write only
mechanism: by reference

Address of an octaword in which the service returns the identifier of the new
transaction.

Description

System Service Descriptions
$START_ TRANS

timout
Open VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Timeout for the new transaction. This is the time at which the DECdtm
transaction manager is to abort the transaction if the transaction has not
already committed.

The time value is a binary number, in units of 100 nanoseconds.

A positive time value specifies an offset from the system base time. The system
base time is 00:00 hours November 17, 1858.

A negative time value specifies an offset from the current time to some time in
the future.

The transaction is aborted at the next timer interval if you specify either a zero
time value or any time in the past.

If this argument is omitted, the new transaction has no timeout.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

The least privileged access mode that the calling process must be in to end the
transaction by calling $END_TRANS. Note that the calling process can end the
transaction by calling $ABORT_TRANS from any access mode.

The access mode that the calling process must be in to end the transaction by
calling $END_ TRANS is whichever is the least privileged of the following:

• The access mode of the caller.

• The access mode specified by the acmode argument.

If the acmode argument is omitted, it defaults to the access mode of the caller.

The Start Transaction service starts a new transaction that is to be coordinated
by the DECdtm distributed transaction manager.

$START_TRANS creates a unique transaction identifier for the new transaction.
The same identifier can never be created by any other call to $START_TRANS on
any node.

Each process can have a default transaction. This is the transaction that is
assumed when the process:

• Invokes resource manager operations without specifying a transaction
identifier, for resource managers such as RMS Journaling that support
default transactions.

• Calls $END_TRANS or $ABORT_TRANS without specifying a tid argument.

By default, the new transaction becomes the default transaction of the calling
process. If you want to start a new transaction and the calling process already
has a default transaction, set the DDTM$M_NONDEFAULT flag.

SYS2-437

System Service Descriptions
$START_ TRANS

Required Access or Privileges
None

Required Quotas
ASTLM, BYTLM

Related Services
$ABORT_TRANS, $ABORT_TRANSW, $END_TRANS, $END_TRANSW,
$START_TRANSW

Condition Values Returned

SYS2-438

SS$_NORMAL

SS$_SYNCH

SS$_ACCVIO

SS$_ALCURTID

SS$_BADPARAM

SS$_CURTIDCHANGE

SS$_EXASTLM
SS$_EXQUOTA

SS$_ILLEFC

SS$_INSFARGS
SS$_INSFMEM

SS$_NOLOG

SS$_TPDISABLED

SS$_ WRONGACMODE

•\

If this was returned in RO, the request was
successfully queued. If it was returned in the I/O
status block, the service completed successfully.
The service completed successfully and
synchronously (returned only if the
DDTM$M_SYNC flag is set).

An argument was not accessible by the caller.

An attempt was made to start a default
transaction (the DDTM$M_NONDEFAULT
flag was clear) when the calling process already
had a default transaction.

Either the DDTM$M_NONDEFAULT flag was
set and the tid argument was omitted, or the
options flags were invalid.

The DDTM$M_NONDEFAULT flag was clear
and a call to change the default transaction of
the calling process was in progress.

The process AST limit (ASTLM) was exceeded.
The job buffered I/O byte limit quota (BYTLM)
was exceeded.

The event flag number was invalid.

Not enough arguments were supplied.
There was insufficient system dynamic memory
for the operation.

The local node did not have a transaction log.

The TP _SERVER process was not running on the
local node.

The DDTM$M_PROCESS flag was set and the
caller was in user mode.

System Service Descriptions
$START_ TRAN SW

$START_ TRAN SW
Start Transaction and Wait

Format

Starts a new transaction.

$START_TRANSW always waits for the request to complete before returning to
the caller. Other than this, it is identical to $START_TRANS.

SYS$START _ TRANSW [efn] ,[flags] ,iosb [,[astadr] ,[astprm] ,[tid] ,[timout]
,[acmode]]

SYS2-439

System Service Descriptions
$STOP _ALIGN_FAULT_REPORT (Alpha Only)

$STOP _ALIGN_FAULT _REPORT (Alpha Only)
Stop Alignment Fault Reporting

Format

Description

On Alpha systems, disables user image alignment fault reporting.

SYS$STOP _ALIGN_FAULT _REPORT

The Stop Alignment Fault Reporting service disables user image alignment fault
reporting.

The service returns SS$_AFR_NOT_ENABLED if user image alignment fault
reporting is not enabled. Otherwise, it returns success.

Required Access or Privileges
None

Required Quota
None

Related Services
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $INIT_SYS_
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT_REPORT, $PERM_
REPORT_ALIGN_FAULT, $START_ALIGN_FAULT_REPORT, $STOP _SYS_
ALIGN_FAULT_REPORT

Condition Values Returned

SYS2-440

SS$_NORMAL
SS$_AFR_NOT_ENABLED

The service completed successfully.
The $START_ALIGN_FAULT_REPORT service
has not been called.

System Service Descriptions
$STOP _SYS_ALIGN_FAULT_REPORT (Alpha Only)

$STOP _SYS_ALIGN_FAULT_REPORT (Alpha Only)
Stop System Alignment Fault Reporting

Format

Description

On Alpha systems, disables systemwide alignment fault reporting.

SYS$STOP _SYS_ALIGN_FAULT _REPORT

The Stop System Alignment Fault Reporting service disables systemwide
alignment fault reporting.

The service returns SS$_AFR_NOT_ENABLED if systemwide alignment fault
reporting is not enabled. Otherwise, it returns success.

Required Access or Privileges
CMKRNL privilege is required.

Required Quota
None

Related Services
$GET_ALIGN_FAULT_DATA, $GET_SYS_ALIGN_FAULT_DATA, $1NIT_SYS_
ALIGN_FAULT_REPORT, $PERM_DIS_ALIGN_FAULT_REPORT, $PERM_
REPORT_ALIGN_FAULT, $START_ALIGN_FAULT_REPORT

Condition Values Returned

SS$_NORMAL
SS$_NOPRIV
SS$_AFR_NOT_ENABLED

The service completed successfully.
The caller lacks sufficient privilege.
The $START_ALIGN_FAULT_REPORT service
has not been called.

SYS2-441

System Service Descriptions
$SUBSYSTEM

$SUBSYSTEM
Subsystem

Format

Argument

Description

SYS2-442

Saves or restores the process image rights for the current protected subsystem.

SYS$SUBSYSTEM enbflg

en bf lg
Open VMS usage: boolean
type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether the protected subsystem identifiers are to be saved or
restored. If the enbftg argument is set to 0, the active subsystem is saved. If it
is set to 1, the subsystem is restored.

A protected subsystem image is a main image that has in its access control
list a special type of ACE that names a set of identifiers and their attributes.
Whenever the operating system activates a main image that has protected
subsystem identifiers associated with it, these identifiers are automatically
granted to the process for the duration of the image.

In essence, a protected subsystem provides the same behavior as if the image had
been installed with the identifiers. Subsystem identifiers are sometimes referred
to as image rights, in contrast to process rights and system rights.

The Subsystem service provides an easy way for a protected subsystem image to
dynamically save and restore its subsystem identifiers. A protected subsystem
may choose to turn off its subsystem identifiers at certain times to temporarily
revoke the user's access to the objects comprising the protected subsystem. For
example, DCL uses the $SUBSYSTEM service to temporarily remove any image
identifiers from the process during CtrIN interrupt processing.

The image rights are saved in the process control region and automatically
deleted on image rundown ($RMSRUNDWN).

For more information about protected subsystems, see the Open VMS Guide to
System Security.

Required Access or Privileges
None

Required Quota
None

Related Services
None

Condition Values Returned

SS$_WASCLR

SS$_WASSET

System Service Descriptions
$SUBSYSTEM

The service completed successfully; protected
subsystem was not active.

The service completed successfully; protected
subsystem was active.

SYS2-443

System Service Descriptions
$SUSPND

$SUSPND
Suspend Process

Format

Arguments

SYS2-444

Allows a process to suspend itself or another process.

SYS$SUSPND [pidadr] ,[prcnam] ,[flags]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be suspended. The pidadr argument
is the address of the longword PID. The pidadr argument can refer to a process
running on the local node or a process running on another node in the VMScluster
system.

You must specify the pidadr argument to suspend a process whose UIC group
number is different from that of the calling process.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the process to be suspended. The prcnam argument is the address of
a character string descriptor pointing to the process name. A process running
on the local node can be identified with a 1- to 15-character string. To identify
a process on a particular node on a cluster, specify the full process name, which
includes the node name as well as the process name. The full process name can
contain up to 23 charac'ters.

A process name is implicitly qualified by its UIC group number. Because of this,
you can use the prcnam argument only to suspend processes in the same UIC
group as the calling process.

To suspend processes in other groups, you must specify the pidadr argument.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of bit flags specifying options for the suspend operation. Currently, only
bit 0 is used for the flags argument. When bit 0 is set, the process is suspended
at kernel mode and ASTs are not deliverable to the process.

\

Description

System Service Descriptions
$SUSPND

To request a kernel mode suspend, the caller must be in either kernel mode or
executive mode. The default (bit 0 is clear) is to suspend the process at supervisor
mode, where executive or kernel mode ASTs can be delivered to the process. If
executive or kernel mode ASTs have been delivered to a process suspended at
supervisor mode, that process will return to its suspended state after the AST
routine executes.

The Suspend Process service allows a process to suspend itself or another process.

A suspended process can receive executive or kernel mode ASTs, unless it is
suspended at kernel mode. If a process is suspended at kernel mode, the process
cannot receive any ASTs or otherwise be executed until another process resumes
or deletes it. If you specify neither the pidadr nor the prcnam argument, the
caller process is suspended.

If the longword value at address pidadr is 0, the PID of the target process is
returned.

The $SUSPND service requires system dynamic memory.

The $SUSPND service completes successfully if the target process is already
suspended.

Unless it has pages locked in the balance set, a suspended process can be removed
from the balance set to allow other processes to execute.

Note that a kernel mode suspend request can override a supervisor mode suspend
state, but a supervisor suspend request cannot override a kernel mode suspend
state.

The Resume Process ($RESUME) service allows a suspended process to continue.
If one or more resume requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is, the process is not
suspended. No count is maintained of outstanding resume requests.

Required Access or Privileges
Depending on the operation, the calling process may need one of the following
privileges to use $SUSPND:

• GROUP privilege to suspend another process in the same group, unless the
process to be suspended has the same UIC as the calling process

• WORLD privilege to suspend any other process in the system

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SETRWM, $WAKE

SYS2-445

System Service Descriptions
$SUSPND

Condition Values Returned

SYS2-446

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_INSFMEM

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_NOSUSPEND

SS$_REMRSRC

SS$_UNREACHABLE

88$_ WAIT_CALLERS_
MODE

The service completed successfully.
The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.
The remote node is running an incompatible
version of the operating system.

The system dynamic memory is insufficient for
completing the service.

The specified process name has a length of 0 or
has more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The target process was not created by the caller
and the calling process does not have GROUP
or WORLD privilege, or flag bit 0 was set from
outer mode.

The process name refers to a node that is not
currently recognized as part of the VMScluster
system.

The process was previously marked as not
suspendable by the PCB$V _NOSUSPEND flag.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

Bit 1 was used in the flags argument.

System Service Descriptions
$SYNCH

$SYNCH
Synchronize

Format

Arguments

Description

Checks the completion status of a system service that completes asynchronously.

On Alpha systems, this service accepts 64-bit addresses.

SYS$SYNCH [efn] ,[iosb]

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag specified in the call to the system service whose
completion status is to be checked by $SYNCH. The efn argument is a longword
containing this number; however, $SYNCH uses only the low-order byte.

iosb
Open VMS usage:
type:
access:
mechanism:

io_status_block
quadword (unsigned)
read only
by 32-bit or 64-bit reference (Alpha)
by 32-bit reference (VAX)

I/O status block specified in the call to the system service whose completion
status is to be checked by $SYNCH. The iosb argument is the address of this
quadword I/O status block.

The Synchronize service checks the completion status of a system service that
completes asynchronously. The service whose completion status is to be checked
must have been called with the efn and iosb arguments specified, because the
$SYNCH service uses the event flag and I/O status block of the service to be
checked.

This service performs a true test for the completion of an asynchronous service,
such as $GETJPI. $SYNCH operates in the following way:

1. When called, $SYNCH waits (by calling $WAITFR) for the event flag to be
set.

2. When the event flag is set, $SYNCH checks to see whether the I/O status
block is nonzero. If it is nonzero, then the asynchronous service has
completed, and $SYNCH returns to the caller.

3. If the I/O status block is the value 0, then the asynchronous service has not
yet completed and the event flag was set by the completion of an event not
associated with the completion of $GETJPI. In this case, $SYNCH clears the
event flag (by calling $CLREF) and waits again (by calling $WAITFR) for the
event flag to be set, repeating this cycle until the I/O status block is nonzero.

SYS2-447

System Service Descriptions
$SYNCH

The $SYNCH service always sets the specified event flag when it returns to the
caller. This ensures that different program segments can use the same event flag
without conflicting. For example, assume that calls to $GETJPI and $GETSYI
both specify the same event flag and that $SYNCH is called to check for the
completion of $GETJPI. If $GETSYI sets the event flag, $SYNCH clears the flag
and waits for $GETJPI to set it. When $GETJPI sets the flag, $SYNCH returns
to the caller and sets the event flag. In this way, the flag set by $GETSYI is not
lost, and another call to $SYNCH will show the completion of $GETSYI.

The $SYNCH service is useful when a program calls an asynchronous service
but must perform some other work before testing for the completion of the
asynchronous service. In this case, the program should call $SYNCH at that
point when it must know that the service has completed and when it is willing to
wait for the service to actually complete.

When a program calls an asynchronous service (for example, $QIO) and actually
waits in line (by calling $WAITFR) for its completion without performing any
other work, you could improve that program by calling the synchronous form of
that service (for example, $QIOW). The synchronous services such as $QIOW
execute code that checks for the true completion status in the same way that
$SYNCH does.

Required Access or Privileges
None

Required Quota
None

Condition Values Returned

SYS2-448

SS$_NORMAL

SS$_ACCVIO
SS$_ILLEFC
SS$_UNASEFC

The service completed successfully. The
asynchronous service has completed, and
the 1/0 status block contains the condition
value describing the completion status of the
asynchronous service.

The 1/0 status block cannot be read by the caller.

An illegal event flag was specified.
The process is not associated with the cluster
containing the specified event flag.

$TIM CON

System Service Descriptions
$TIM CON

Time Converter

Format

Arguments

Description

Converts 128-bit Coordinated Universal Time (UTC) format to 64-bit system
format or 64-bit system format to 128-bit UTC format based on the value of the
convert flag.

SYS$TIMCON [smnadr] ,[utcadr] ,cvtflg

smnadr
Open VMS usage: date_ time
type: quadword (unsigned)
access: read/write
mechanism: by reference

The 64-bit system format value that $TIMCON will use in the conversion. The
smnadr argument will be read from or written to based on the value of the
cvtfl.g argument. The smnadr is required when converting UTC time to 64-bit
system format.

utcadr
Open VMS usage: coordinated universal time
type: utc_date_time
access: read/write
mechanism: by reference

UTC time value that $TIMCON will use in the conversion. The utcadr argument
will be read from or written to based on the value of the cvtfl.g argument. The
utcadr argument is required when converting 64-bit system format to UTC time.

cvtflg
Open VMS usage: conversion flag
type: longword (unsigned)
access: read only
mechanism: by value

A longword indicating the direction of the conversion. If the cvtflg value is 0,
UTC time is converted to 64-bit system value. If the cvtfl.g value is 1, 64-bit
system format is converted to UTC time.

The Time Converter service converts 64-bit system format time to UTC format,
and vice versa.

When converting a 64-bit system format time to 128-bit UTC format time, the
time zone of the local system is used.

When converting a 128-bit UTC format time to a 64-bit system time, the time
zone differential factor encoded in the 128-bit buffer is used.

SYS2-449

System Service Descriptions
$TIM CON

Condition Values Returned

SYS2-450

SS$_NORMAL

SS$_INVTIME

The service completed successfully.

The input time cannot be converted because its
value is out of the legal range or is a delta time,
or the UTC is of an illegal format.

$TRNLNM

System Service Descriptions
$TRNLNM

Translate Logical Name

Format

Arguments

Returns information about a logical name.

SYS$TRNLNM [attr] ,tabnam ,lognam ,[acmode] ,[itmlst]

attr
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes controlling the search for the logical name. The attr argument is the
address of a longword bit mask specifying these attributes. Only bit 0 is used for
this argument.

Each bit in the longword corresponds to an attribute and has a symbolic name.
The $LNMDEF macro defines these symbolic names. To specify an attribute, use
its symbolic name or set its corresponding bit. All undefined bits in the longword
have the value 0.

If you do not specify this argument or specify it as the value 0 (no bits set), the
following attribute is not used.

Attribute Description

LNM$M_CASE_BLIND If set, $TRNLNM does not distinguish between
uppercase and lowercase letters in the logical name
to be translated.

tabnam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the table or name of a list of table names in which to search for the
logical name. The tabnam argument is the address of a descriptor pointing to
this name. This argument is required.

If the table name is not the name of a logical name table, it is assumed to be a
logical name and is translated iteratively until either the name of a logical name
table is found or the number of translations allowed by the system have been
performed. If the table name translates to a list of logical name tables, the tables
are searched in the specified order.

lognam
Open VMS usage: logical_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

SYS2-451

System Service Descriptions
$TRNLNM

SYS2-452

Logical name about which information is to be returned. The lognam argument
is the address of a descriptor pointing to the logical name string. This argument
is required.

acmode
Open VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the translation. The acmode argument is the address
of a byte specifying the access mode. The $PSLDEF macro defines symbolic
names for the four access modes.

When you specify the acmode argument, $TRNLNM ignores all names (both
logical names and table names) at access modes less privileged than the specified
access mode. The specified access mode is not checked against that of the caller.

If you do not specify acmode, $TRNLNM performs the translation without regard
to access mode; however, the translation process proceeds from the outermost to
the innermost access modes. Thus, if two logical names with the same name but
at different access modes exist in the same table, $TRNLNM translates the name
with the outermost access mode.

itmlst
Open VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list describing the information that $TRNLNM is to return. The itmlst
argument is the address of a list of item descriptors, each of which specifies or
controls an item of information to be returned. The list of item descriptors is
terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31 15 0

Item code l Buffer length

Buffer address

Return length address

ZK-5186A-GE

The following table defines the item descriptor fields.

Descriptor Field

Buffer length

Definition

A word specifying the number of bytes in the buffer
pointed to by the buffer address field.

Item Codes

Descriptor Field

Item code

Buffer address

Return length address

LNM$_ACMODE

Definition

System Service Descriptions
$TRNLNM

A word containing a symbolic code describing the
nature of the information currently in the buffer, to
be returned in the buff er, or to be returned by the
buffer pointed to by the buffer address field.
A longword containing the address of the buffer that
specifies or receives the information.

A longword containing the address of a word
specifying the actual length (in bytes) of the
information returned by $TRNLNM in the buffer
pointed to by the buffer address field.

When you specify LNM$_ACMODE, $TRNLNM returns the access mode that was
associated with the logical name at the time of its· creation. The buffer address
field in the item descriptor is the address of a byte in which $TRNLNM writes
the access mode.

LNM$_ATTRIBUTES
When you specify LNM$_ATTRIBUTES, $TRNLNM returns the attributes of
the logical name and the equivalence name associated with the current LNM$_
INDEX value.

The buffer address field of the item descriptor points to a longword bit mask
wherein each bit corresponds to an attribute. The $TRNLNM service sets the
corresponding bit for each attribute possessed by either the logical name or the
equivalence name.

The $LNMDEF macro defines the following symbolic names for these attributes.

Attribute

LNM$M_CONCEALED

LNM$M_CONFINE

LNM$M_CRELOG

LNM$M_EXISTS

LNM$M_NO_ALIAS

LNM$M_TABLE

Description

If $TRNLNM sets this bit, the equivalence name
at the current index value for the logical name is a
concealed logical name, as interpreted by Open VMS
RMS.
If $TRNLNM sets this bit, the logical name is
not copied from a process to any of its spawned
subprocesses. The DCL command SPAWN creates
subprocesses.
If $TRNLNM sets this bit, the logical name was
created using the $CRELOG system service.
If $TRNLNM sets this bit, an equivalence name with
the specified index does exist.

If $TRNLNM sets this bit, the name of the logical
name cannot be given to another logical name defined
in the same table at an outer access mode.

If $TRNLNM sets this bit, the logical name is the
name of a logical name table.

SYS2-453

System Service Descriptions
$TRNLNM

SYS2-454

Attribute

LNM$M_TERMINAL

LNM$_CHAIN

Description

If $TRNLNM sets this bit, the equivalence name
for the logical name cannot be subjected to further
(recursive) logical name translation.

When you specify LNM$_CHAIN, $TRNLNM processes another item list
immediately following the current item list. The LNM$_CHAIN item code
must be the last one in the current item list. The buffer address field of the item
descriptor points to the next item list.

LNM$_1NDEX
When you specify LNM$_1NDEX, $TRNLNM searches for an equivalence name
that has the specified index value. The buffer address field of the item descriptor
points to a longword containing a user-specified integer in the range 0 to 127.

If you do not specify this item code, the implied value of LNM$_INDEX is 0 and
$TRNLNM returns information about the equivalence name at index 0.

Because a logical name can have more than one equivalence name and each
equivalence name is identified by an index value, you should specify the LNM$_
INDEX item code first in the item list, before specifying LNM$_STRING, LNM$_
LENGTH, or LNM$_ATTRIBUTES. These item codes return information about
the equivalence name identified by the current index value, LNM$_INDEX.

LNM$_LENGTH
When you specify LNM$_LENGTH, $TRNLNM returns the length of the
equivalence name string corresponding to the current LNM$_INDEX value.
The buffer address field in the item descriptor is the address of the longword in
which $TRNLNM writes this length.

If an equivalence name does not exist at the current LNM$_INDEX value,
$TRNLNM returns the value 0 to the longword pointed to by the return length
field of the item descriptor.

LNM$_MAX_INDEX
Each equivalence name for the logical name has an index associated with
it. When you specify LNM$_MAX_INDEX, $TRNLNM returns a value equal
to the largest equivalence name index. The buffer address field in the item
descriptor is the address of a longword in which $TRNLNM writes this value. If
no equivalence names (and, therefore, no index values) exist, $TRNLNM returns
a value of-1.

LNM$_STRING
When you specify LNM$_STRING, $TRNLNM returns the equivalence name
string corresponding to the current LNM$_INDEX value. The buffer address field
of the item descriptor points to a buffer containing this string. The return length
address field of the item descriptor contains an address of a word that contains
the length of this string in bytes. _The maximum length of the equivalence name
string is 255 characters.

If an equivalence name does not exist at the current LNM$_INDEX value,
$TRNLNM returns the value 0 in the return length address field of the item
descriptor.

Description

LNM$_TABLE

System Service Descriptions
$TRNLNM

When you specify LNM$_TABLE, $TRNLNM returns the name of the table
containing the logical name being translated. The buffer address field of the item
descriptor points to the buffer in which $TRNLNM returns this name. The return
length address field of the item descriptor specifies the address of a word in which
$TRNLNM writes the size of the table name. The maximum length of the table
name is 31 characters.

The Translate Logical Name service returns information about a logical name.
You need read access to a shareable logical name table to translate a logical name
located in that shareable logical name table.

Required Access or Privileges
Read access is required.

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULWSET, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_BUFFEROVF

SS$_IVLOGNAM

SS$_IVLOGTAB

SS$_NOLOGNAM

SS$_NOPRIV

SS$_TOOMANYLNAM

The service completed successfully. An
equivalence name for the logical name has been
found.
The service cannot access the location or
locations specified by one or more arguments.
One or more arguments have an invalid value, or
a logical name table name or logical name was
not specified.
The service completed successfully. The buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The tabnam argument or lognam argument
specifies a string whose length is not in the
required range of 1 through 255 characters.

The tabnam argument does not specify a logical
name table.
The logical name was not found in the specified
logical name table or tables.
The caller lacks the necessary privilege to access
the specified name.
Logical name translation of the table name
exceeded the allowable depth (10 translations).

SYS2-455

System Service Descriptions
$TSTCLUEVT {Alpha Only)

$TSTCLUEVT (Alpha Only)
Test Cluster Event

Format

Arguments

SYS2-456

On Alpha systems, simulates the occurrence of a cluster configuration event to
test the functionality of the notification AST.

SYS$TSTCLUEVT [handle] ,[acmode] ,[event]

handle
Open VMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification of the AST to be canceled. The handle argument uniquely
identifies the request and is returned when the $SETCLUEVT service is called.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which a configuration event AST is to be triggered. The acmode
argument is a longword containing the access mode.

Each access mode has a symbolic name. The $PSLDEF macro defines the
following symbols for the four access modes.

Symbol

PSL$C_KERNEL
PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

event

Access Mode

Kernel
Executive

Supervisor

User

OpenVMS usage: event_code
type: longword (unsigned)
access: read only
mechanism: by value

Event code indicating the type of configuration for which an AST is to be
triggered.

Each event type has a symbolic name. The $CLUEVTDEF macro defines the
following symbolic names.

Description

Symbolic Name

CLUEVT$C_ADD

CLUEVT$C_REMOVE

Description

System Service Descriptions
$TSTCLUEVT (Alpha Only)

One or more Open VMS nodes have been added to
the VMScluster system.

One or more Open VMS nodes have been removed
from the VMScluster system.

The Test Cluster Event service simulates the occurrence of a cluster configuration
event to test the functionality of the notification ASTs. The service allows an
application to test itself and must be issued from within the same process as the
application being tested. $TSTCLUEVT does not affect other processes in the
cluster.

The service will allow one specific AST to be fired via the handle argument, or
all ASTs for a specific configuration event via the event argument. Specifying
both the event and the handle arguments will return an error.

If the handle argument is specified, the value of the acmode argument must not
be greater than the access mode of the caller and must match the mode specified
when the $SETCLUEVT service was called.

If the event argument is specified, those ASTs that match the value specified in
the acmode argument, or that match the caller's mode, will be triggered.

Required Access or Privileges
None

Required Quota
None

Related Services
$CLRCLUEVT,$SETCLUEVT

Condition Values Returned

SS$_NORMAL

SS$_BADPARAM

SS$_NOSUCHOBJ

The service completed successfully.

There is an unsatisfactory combination of
event and handle parameters, or the event
was specified incorrectly.

No request was found that matches the
description supplied.

SYS2-457

System Service Descriptions
$ULKPAG

$ULKPAG
Unlock Pages from Memory

Format

Arguments

SYS2-458

Unlocks pages that were previously locked in memory by the Lock Pages in
Memory ($LCKPAG) service. Locked pages are automatically unlocked and
deleted at image exit.

SYS$ULKPAG inadr ,[retadr] ,[acmode]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and ending process virtual addresses. Only the virtual page number portion of
each virtual address is used; the low-order byte-within-page bits are ignored. If
the starting and ending virtual addresses are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine specifically
which pages had been previously unlocked, you should unlock the pages one at
a time, that is, one page per call to $ULKPAG. The condition value returned by
$ULKPAG indicates whether the page was previously unlocked.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages actually unlocked by
$ULKPAG. The retadr argument is the address of a 2-longword array containing,
in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies those
pages that were successfully unlocked before the error occurred. If no pages were
successfully unlocked, both longwords in the retadr array contain the value -1.

a cm ode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

Description

System Service Descriptions
$ULKPAG

The Unlock Pages from Memory service unlocks pages that were previously
locked in memory by the Lock Pages in Memory ($LCKPAG) service. Locked
pages are automatically unlocked and deleted at image exit.

On Alpha systems, if you are attempting to unlock executable code, you should
issue multiple $ULKPAG calls: one to unlock the code pages and others to unlock
the linkage section references to these pages. +

Required Access or Privileges
To call the $ULKPAG service, a process must have PSWAPM privilege.

Required Quota
None

Related Services
For more information, see the chapter on memory management in the Open VMS
Programming Concepts Manual.

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked.

The input array cannot be read by the caller; the
output array cannot be written by the caller; or a
page in the specified range is inaccessible or does
not exist.

SYS2-459

System Service Descriptions
$ULKPAG_64 {Alpha Only)

$ULKPAG_64 (Alpha Only)
Unlock Pages from Memory

Format

Arguments

SYS2-460

On Alpha systems, unlocks pages that were previously locked in memory by the
Lock Pages in Memory ($LCKPAG_64) service.

This service accepts 64-bit addresses.

SYS$ULKPAG_64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be unlocked. The specified virtual
address will be rounded down to a CPU-specific page boundary.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be unlocked. The specified length will be
rounded up to a CPU-specific page boundary so that it includes all CPU-specific
pages in the requested range.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel
1 PSL$C_EXEC Executive
2 PSL$C_SUPER Supervisor
3 PSL$C_USER User

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

Description

return_ va_64
Open VMS usage: address
type: quadword address
access: write only

System Service Descriptions
$ULKPAG_64 {Alpha Only)

mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the unlocked virtual address range. The
return_ va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range unlocked. The return_length_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range in bytes.

The Unlock Pages from Memory service unlocks pages that were previously
locked in memory by the Lock Pages in Memory ($LCKPAG_64) service.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and

, return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully unlocked before
the error occurred. If no pages were unlocked, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
To call the $ULKPAG_64 service, a process must have PSWAPM privilege.

Required Quota
None.

Related Services
$LCKPAG_64, $ULKPAG

Condition Values Returned

SS$_WASCLR

SS$_WASSET

The service completed successfully. At least one
of the specified pages was previously unlocked.
The service completed successfully. All of the
specified pages were previously locked in the
working set.

SYS2-461

System Service Descriptions
$ULKPAG_64 (Alpha Only)

SS$_ACCVIO

SYS2-462

The return_va_64 or return_length_64 -
argument cannot be written by the caller, or
an attempt was made to unlock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.

$ULWSET

System Service Descriptions
$ULWSET

Unlock Pages from Working Set

Format

Arguments

Unlocks pages that were previously locked in the working set by the Lock Pages
in Working Set ($LKWSET) service.

SYS$ULWSET inadr ,[retadr] ,[acmode]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the starting
and ending process virtual addresses. Only the virtual page number portion of
each virtual address is used; the low-order byte-within-page bits are ignored. If
the starting and ending virtual address are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine specifically
which pages had been previously unlocked, you should unlock the pages one at
a time, that is, one page per call to $ULWSET. The condition value returned by
$ULWSET indicates whether the page was previously unlocked.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages that were actually
unlocked by $CRMPSC. The retadr argument is the address of a 2-longword
array containing, in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies those
pages that were successfully unlocked before the error occurred. If no pages were
successfully unlocked, both longwords in the retadr array contain the value -1.

a cm ode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

SYS2-463

System Service Descriptions
$ULWSET

Description

The Unlock Pages from Working Set service unlocks pages that were previously
locked in the working set by the Lock Pages in Working Set ($LKWSET) service.
Unlocked pages become candidates for replacement within the working set of the
process.

On Alpha systems, if you are attempting to unlock executable code, you should
issue multiple $ULKWSET calls: one to unlock the code pages and others to
unlock the linkage section references to these pages.•

Required Access or Privileges
None

Required Quota
None

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULKPAG, $UPDSEC, $UPDSECW

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_NOPRIV

SYS2-464

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked in the
working set.

The inadr argument cannot be read by the
caller; the retadr argument cannot be written
by the caller; or a page in the specified range is
inaccessible or does not exist.

A page in the specified range is in the system
address space.

System Service Descriptions
$ULWSET_64 (Alpha Only)

$ULWSET_64 (Alpha Only)
Unlock Pages in Working Set

Format

Arguments

On Alpha systems, unlocks a virtual address range that was previously locked in
the working set by the Lock Pages in Working Set ($LKWSET_64) service.

This service accepts 64-bit addresses.

SYS$ULWSET _64 start_va_64 ,length_64 ,acmode ,return_va_64 ,return_length_64

start_ va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be unlocked from the working
set. The specified virtual address will be rounded down to a CPU-specific page
boundary.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address space to be unlocked from the working set. The
specified length will be rounded up to a CPU-specific page boundary so that it
includes all CPU-specific pages in the requested range.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

1 PSL$C_EXEC Executive

2 PSL$C_SUPER Supervisor

3 PSL$C_USER User

SYS2-465

System Service Descriptions
$ULWSET_64 (Alpha Only)

Description

SYS2-466

l

The most privileged access mode used is the access mode of the caller. To unlock
any specified page, the resultant access mode must be equal to or more privileged
than the access mode of the owner of that page.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The lowest process virtual address of the unlocked virtual address range. The
return_va_64 argument is the 32-bit or 64-bit virtual address of a naturally
aligned quadword into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the virtual address range unlocked. The return_length_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the length of the virtual address range in bytes.

The Unlock Pages from Working Set service unlocks pages that were previously
locked in the working set by the Lock Pages in Working Set ($LKWSET_64)
service. Unlocked pages become candidates for replacement within the working
set of the process.

If the condition value SS$_ACCVIO is returned by this service, a value cannot
be returned in the memory locations pointed to by the return_ va_64 and
return_length_64 arguments.

If a condition value other than SS$_ACCVIO is returned, the returned address
and returned length indicate the pages that were successfully unlocked before
the error occurred. If no pages were unlocked, the return_ va_64 argument will
contain the value -1, and a value cannot be returned in the memory location
pointed to by the return_length_64 argument.

Required Privileges
None.

Required Quota
None.

Related Services
$LKWSET_64, $PURGE_ WS, $ULWSET

Condition Values Returned

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_PAGNOTINREG

System Service Descriptions
$ULWSET_64 (Alpha Only)

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked in the
working set.
The return_ va_64 or return_length_64
argument cannot be written by the caller, or
an attempt was made to unlock pages by a caller
whose access mode is less privileged than the
access mode associated with the pages.
A page in the specified range is not within
process private address space.

SYS2-467

System Service Descriptions
$UNWIND

$UNWIND
Unwind Call Stack

Format

Arguments

Description

SYS2-468

Unwinds the procedure call stack.

SYS$UNWIND [depadr] ,[newpc]

depadr
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Depth to which the procedure call stack is to be unwound. The depadr argument
is the address of a 'longword value. The value 0 specifies the call frame of the
procedure that was executing when the condition occurred (that is, no call frames
are unwound); the value 1 specifies the caller of that frame; the value 2 specifies
the caller of the caller of that frame,· and so on.

If depadr specifies the value 0, no unwind occurs and $UNWIND returns a
successful condition value in RO.

If you do not specify depadr, $UNWIND unwinds the stack to the call frame of
the procedure that called the procedure that established the condition handler
that is calling the $UNWIND service. This is the default and the normal method
of unwinding the procedure call stack.

newpc
Open VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by value

New value for the program counter (PC); this value replaces the current value
of the PC in the call frame of the procedure that receives control when the
unwinding operation is complete. The newpc argument is a longword value
containing the address at which execution is to resume.

Execution resumes at this address when the unwinding operation is complete.

If you do not specify newpc, execution resumes at the location specified by the
PC in the call frame of the procedure that receives control when the unwinding
operation is complete.

The Unwind Call Stack service unwinds the procedure call stack; that is,
it removes a specified number of call frames from the stack. Optionally, it
can return control to a new program counter (PC) unwinding the stack. The
$UNWIND service is intended to be called from within a condition-handling
routine.

System Service Descriptions
$UNWIND

The actual unwind is not performed immediately. Rather, the return addresses
in the call stack are modified so that, when the condition handler returns, the
unwind procedure is called from each frame being unwound.

Dtiring the actual unwinding of the call stack, $UNWIND examines each frame
in the call stack to see if a condition handler has been declared. If a handler
has been declared, $UNWIND calls the handler with the condition value SS$_
UNWIND (indicating that the call stack is being unwound) in the condition
name argument of the signal array. When you call a condition handler with
this condition value, that handler can perform any procedure-specific cleanup
operations that might be required. After the condition handler returns, the call
frame is removed from the stack.

Required Access or Privileges
None

Required Quota
None

Related Services
$DCLCMH, $SETEXV, $SETSFM

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INSFRAME

SS$_NOSIGNAL

SS$_ UNWINDING

The service completed successfully.

The call stack is not accessible to the caller.
This condition is detected when the call stack is
scanned to modify the return address.
There are insufficient call frames to unwind to
the specified depth.

No signal is currently active for an exception
condition.
An unwind operation is already in progress.

SYS2-469

System Service Descriptions
$UPDSEC

$UPDSEC
Update Section File on Disk

Format

Arguments

SYS2-470

Writes all modified pages in an active private or global section back into the
section file on disk. One or more I/O requests are queued, based on the number
of pages that have been modified.

SYS$UPDSEC inadr ,[retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb] ,[astadr] ,[astprm]

inadr
Open VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the pages that are to be written to the
section file if they have been modified. The inadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses. Addresses are adjusted up or down to CPU-specific pages. Only
the virtual page number portion of each virtual address is used; the low-order
byte-within-page bits are ignored.

$UPDSEC scans pages starting at the. address contained in the first longword
specified by inadr and ending at the address contained in the second longword.
Within this range, $UPDSEC locates read/write pages that have been modified
and writes them (contiguously, if possible) to the section file on disk. Unmodified
pages are also written to disk if they share the same cluster with modified pages.

If the starting and ending virtual addresses are the same, a single page is written
to the section file if the page has been modified.

The address specified by the second longword might be smaller than the address
specified by the first longword.

retadr
Open VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Addresses of the first and last pages that were actually queued for writing, in
the first $QIO request, back to the section file on disk. The retadr argument is
the address of a 2-longword array containing, in order, the addresses of the first
and last pages. Addresses always are adjusted up or down to fall on CPU-specific
boundaries.

If $UPDSEC returns an error condition value in RO, each longword specified by
retadr contains the value -1. In this case, an event flag is not set, no AST is
delivered, and the I/O status block is not written to.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

System Service Descriptions
$UPDSEC

Access mode on behalf of which the service is performed. The acmode argument
is a longword containing the access mode. The $PSLDEF macro defines the
symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. A page
cannot be written to disk unless the access mode used by $UPDSEC is equal to or
more privileged than the access mode of the owner of the page to be written.

updflg
Open VMS usage: longword_ unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Update specifier for read/write global sections. The updflg argument is a
longword value. The value 0 (the default) specifies that all read/write pages in
the global section are to be written to the section file on disk, whether or not they
have been modified. The value 1 specifies that (1) the caller is the only process
actually writing the global section, and (2) only those pages that were actually
modified by the caller are to be written to the section file on disk.

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag to be set when the section file on disk is actually updated. The
efn argument is a longword specifying the number of the event flag; however,
$UPDSEC uses only the low-order byte.

If you do not specify efn, event flag 0 is used.

When you invoke $UPDSEC, the specified event flag or event flag 0 is cleared;
when the update operation is complete, the event flag is set.

iosb
Open VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block to receive the final completion status of the updating operation.
The iosb argument is the address of the quadword 1/0 status block.

When you invoke $UPDSEC, the 1/0 status block is cleared. After the update
operation is complete, that is, when all I/O to the disk is complete, the 1/0 status
block is written as follows:

• The first word contains the condition value returned by $QIO, indicating the
final completion status.

SYS2-471

System Service Descriptions
$UPDSEC

Description

SYS2-472

• The first bit in the second word is set only if an error occurred during the I/O
operation and the error was a hardware write error. The remaining bits of
the second word are zeros.

• The second longword contains the virtual address of the first page that was
not written.

Though this argument is optional, Digital strongly recommends that you specify
it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you can
test the I/O status block for a condition value to be sure that the event flag
was not set by an event other than service completion.

• If you are using $SYNCH to synchronize completion of the service, the I/O
status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in the
I/O status block provide information about different aspects of the call to
$UPDSEC. The condition value returned in RO gives you information about
the success or failure of the service call itself; the condition value returned in
the I/O status block gives you information about the success or failure of the
service operation. Therefore, to accurately assess the success or failure of the
call to $UPDSEC, you must check the condition values returned in both RO
and the I/O status block.

astadr
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference-procedure reference or descriptor

AST routine to be executed when the section file has been updated. The astadr
argument is the address of this routine.

If you specify astadr, the AST routine executes at the access mode from which
the section file update was requested.

astprm
Open VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine. The astprm argument is this
longword parameter.

The Update Section File on Disk service writes all modified pages in an active
private or global section back into the section file on disk. One or more I/O
requests are queued, based on the number of pages that have been modified.

Proper use of this service requires the caller to synchronize completion of the
update request. You do this by first checking the condition value returned in RO
by $UPDSEC. If SS$_NOTMODIFIED is returned, the caller can continue. If
SS$_NORMAL is returned, the caller should wait for the I/O to complete and
then check the first word of the I/O status block for the final completion status.

System Service Descriptions
$UPDSEC

You can use the Synchronize ($SYNCH) service to determine whether the I/O
operation has actually completed.

On VAX systems, for a global section located in memory shared by multiple
processors, only processes running on the processor that created the section can
specify that global section in a call to $UPDSEC. Processes on another processor
that attempt to update the section file receive an error condition value indicating
that the request was not performed.+

Required Access or Privileges
None

Required Quota
$UPDSEC uses the calling process's direct I/O limit (DIRIO) quota in queuing the
I/O request and uses the calling process's AST limit (ASTLM) quota if the astadr
argument is specified.

Related Services
$ADJSTK, $ADJWSL, $CRETVA, $CRMPSC, $DELTVA, $DGBLSC, $EXPREG,
$LCKPAG, $LKWSET, $MGBLSC, $PURGWS, $SETPRT, $SETSTK, $SETSWM,
$ULKPAG, $ULWSET, $UPDSECW

Condition Values Returned

SS$_NORMAL

SS$_NOTMODIFIED

SS$_ACCVIO

SS$_EXQUOTA .

SS$_ILLEFC

SS$_IVSECFLG
tSS$_NOTCREATOR

SS$_NOPRIV

SS$_PAGOWNVIO

tSS$_SHMNOTCNCT

tVAX specific

The service completed successfully. One or more
I/O requests were queued.

The service completed successfully. No pages in
the input address range were section pages that
had been modified. No I/O requests were queued.

The input address array cannot be read by the
caller, or the output address array cannot be
written by the caller.

The process has exceeded its AST limit quota.

You specified an illegal event flag number.
You specified an invalid flag.
The section is in memory shared by multiple
processors and was created by a process on
another processor.

A page in the specified range is in the system
address space.
A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.
The shared memory named in the name
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
the failure to identify the multiport memory as
shared at system generation time.

SYS2-473

System Service Descriptions
$UPDSEC

SS$_UNASCEFC

SYS2-474

The process is not associated with the cluster
containing the specified event flag.

System Service Descriptions
$UPDSEC_64 (Alpha Only)

$UPDSEC_64 (Alpha Only)
Update Global Section File on Disk

Format ·

Arguments

On Alpha systems, writes all pages (or only those pages modified by the current
process) in an active private or global disk file section back into the section file on
disk. One or more I/O requests are queued to perform the write operation.

The $UPDSEC_64 service completes asynchronously. For synchronous
completion, use the Update Global Section File on Disk and Wait
($UPDSEC_64W) service.

This service accepts 64-bit addresses.

SYS$UPDSEC_64 start_va_64 ,length_64 ,acmode ,updflg ,efn ,iosa_64
,return_va_64 ,return_length_64 [,astadr_64 [,astprm_64]]

start_va_64
Open VMS usage: address
type: quadword address
access: read only
mechanism: by value

The starting virtual address of the pages to be written to the section file. The
specified virtual address is rounded down to a CPU-specific page boundary.

length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: read only
mechanism: by value

Length of the virtual address range to be written to the section file. The length
specified is rounded up to a CPU-specific page boundary so that it includes all
CPU-specific pages in the requested range.

acmode
Open VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the service is performed. The acmode argument
is a longword containing the access mode.

The $PSLDEF macro in STARLET.MLB and the file PSLDEF.H in
SYS$STARLET_C.TLB define the following symbols and their values for the
four access modes:

Value Symbolic Name Access Mode

0 PSL$C_KERNEL Kernel

SYS2-475

System Service Descriptions
$UPDSEC_64 (Alpha Only)

SYS2-476

Value

1

2

3

Symbolic Name

PSL$C_EXEC
PSL$C_SUPER

PSL$C_USER

Access Mode

Executive
Supervisor

User

The most privileged access mode used is the access mode of the caller. A page
cannot be written to disk unless the access mode used by $UPDSEC_64 is equal
to or more privileged than the access mode of the owner of the page to be written.

updflg
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The update specifier for read/write global sections. The updftg argument is a
longword value. The value 0 (the default) specifies that all read/write pages in
the global section are to be written to the section file on disk, whether or not they
have been modified. The value UPDFLG$M_WRT_MODIFIED specifies that the
caller is the only process actually writing the global section and that only those
pages that were actually modified by the caller are to be written to the section file
on disk.

Definitions for this flag can be found in the file SECDEF.H in SYS$STARLET_
C.TLB for C and in $SECDEF in STARLET.MLB for macro.

ef n
Open VMS usage: ef_number
type: · longword (unsigned)
access: read_ only
mechanism: by value

The event flag to be set when the section file on disk is actually updated. The efn
argument is a longword specifying the number of the event flag; however, this
service only uses the low-order byte. If you do not specify the efn, event flag 0 is
used.

When you invoke $UPDSEC_64, the specified event flag or event flag 0 is cleared.
When the update operation is complete, the event flag is set.

iosa_64
Open VMS usage: io_status_area
type: IOSA structure
access:
mechanism:

write only
by 32-bit or 64-bit reference

The I/O status area to receive the final completion status of the updating
operation. The iosa_64 argument is the 32-bit or 64-bit virtual address of the I/O
status area. The I/O status area structure is 32 bytes in length. The I/O status
area structure definition can be found in $IOSADEF in STARLET.MLB for macro
and in the file IOSADEF.H in SYS$STARLET_C.TLB for C.

When you call SYS$UPDSEC_64, the I/O status area is cleared. After the update
operation is complete (that is, when all I/Oto the disk is complete), the I/O status
block is written as follows:

• isoa$l_status (offset O)

System Service Descriptions
$UPDSEC_64 (Alpha Only)

The first word contains the condition value return by SYS$QIO, indicating
the final completion status. ·

The first bit in the second word is set only if an error occurred during the I/O
operation and the error was a hardware write error. The remaining bits of
the second word are zeros.

• iosa$l_resd (offset 4)

This field is reserved for future use by Digital. The value in this field is
unpredictable.

• iosa$q_count_q (offset 8)

This field is reserved for future use by Digital. The value in this field is
unpredictable.

• iosa$ph_upsec_nowrt_ va (offset 16)

This field contains the virtual address of the first byte in the first disk
block that was not written. In the case of an I/O error, this virtual address
indicates the disk block for which the error occurred.

• iosa$q_resq (offset 24)

This field is reserved for future use by Digital. The value in this field is
unpredictable.

return_ va_64
Open VMS usage: address
type: quadword address
access: write only
mechanism: by 32-bit or 64-bit reference

The process virtual address of the first page that was actually queued for writing
(in the first I/O request) back to the section file on the disk. The return_ va_64
argument is the 32-bit or 64-bit virtual address of a naturally aligned quadword
into which the service returns the virtual address.

return_length_64
Open VMS usage: byte count
type: quadword (unsigned)
access: write only
mechanism: by 32-bit or 64-bit reference

The length of the first I/O request to write modified pages back to the section file
on disk. The return_length_64 argument is the 32-bit or 64-bit virtual address
of a naturally aligned quadword into which 1the service returns the length of the
virtual address range, in bytes, written by the first I/O request.

astadr_64
Open VMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by 32-bit or 64-bit reference

The AST routine to be executed when the section file has been updated. The
astadr _64 argument is the 32-bit or 64-bit address of this routine. If you specify
the astadr_64 argument, the AST routine executes at the access mode from
which the section file update was requested.

SYS2-477

System Service Descriptions
$UPDSEC_64 {Alpha Only)

Description

astprm_64
Open VMS usage: user_arg
type: quadword
access: read only
mechanism: by value

The AST parameter to be passed to the AST routine. The astprm_64 argument
is a quadword argument that is passed to the AST routine.

The Update Global Section File on Disk service writes all pages in an active
private or global section back into the section file on disk. If the updftg argument
indicates that only modified pages are to be written back to the disk file, only
those global pages modified by the current process are queued to be written back
into the section file on disk.

Proper use of this service requires the caller to synchronize completion of
the update request. To do this, first check the condition value returned. If
SS$_NOTMODIFIED is returned, the caller can continue. If SS$_NORMAL is
returned, the caller should wait for the I/O to complete and then check the I/O
status for final completion status.

If any error is returned by this service, a value cannot be returned in
the memory locations pointed to by the iosb_64, return_ va_64, and
return_length_64 arguments.

Required Privileges
None

Required Quota
$UPDSEC_64 uses the calling process's direct I/O limit (DIRIO) quota in queuing
the I/O request and uses the calling process's AST limit (ASTLM) quota if the
astadr_64 argument is specified.

Related Services
$CRMPSC, $CRMPSC_FILE_64, $CRMPSC_GFILE_64, $CRMPSC_GPFILE_64,
$MGBLSC_64, $UPDSEC

Condition Values Returned

SYS2-478

SS$_NORMAL

SS$_NOTMODIFIED

SS$_ACCVIO

SS$_EXASTLM

SS$_EXBYTLM
SS$_ILLEFC

The service completed successfully. One or more
I/O requests were queued.
The service completed successfully. No pages in
the input address range were section pages that
had been modified. No I/O requests were queued.
The return_va_64, return_length_64, or
iosb_64 argument cannot be written by the
caller.

The process has exceeded its AST limit quota.

The process has exceeded the byte count quota.
An illegal event flag number was specified.

SS$_PAGNOTINREG

SS$_PAGOWNVIO

SS$_UNASCEFC

System Service Descriptions
$UPDSEC_64 (Alpha Only)

A page in the specified range is not within the
process private address space.
A page in the specified input address range is
owned by a more privileged access mode.

The process is not associated with the cluster
containing the specified event flag.

SYS2-479

System Service Descriptions
$UPDSECW

$UPDSECW
Update Section File on Disk and Wait

Format

SYS2-480

The Update Section File on Disk and Wait service writes all modified pages in an
active private or global section back into the section file on disk. One or more I/O
requests are queued, based on the number of pages that have been modified.

The $UPDSECW service completes synchronously; that is, it returns to the caller
after writing all updated pages.

For asynchronous completion, use the Update Section File on Disk ($UPDSEC)
service; $UPDSEC returns to the caller after queuing the update request, without
waiting for the pages to be updated.

In all other respects, $UPDSECW is identical to $UPDSEC. For all other
information about the $UPDSECW service, refer to the description of $UPDSEC.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$UPDSECW inadr [,retadr] [,acmode] [,updflg] [,efn] [,iosb] [,astadr] [,astprm]

System Service Descriptions
$UPDSEC_64W (Alpha Only)

$UPDSEC_64W (Alpha Only)
Update Global Section File on Disk and Wait

Format

On Alpha systems, writes all modified pages in an active private or global disk file
section back into the section file on disk. Zero or more I/O requests are queued,
based on the number of pages that have been modified.

The $UPDSEC_64W service completes synchronously; that is, it returns to the
caller after writing all updated pages.

In all other respects, $UPDSEC_64W is identical to $UPDSEC_64. For all
other information about the $UPDSEC_64W service, refer to the description of
$UPDSEC_64 in this manual.

This service accepts 64-bit addresses.

SYS$UPDSEC_64W start_va_64 ,length_64 ,acmode ,updflg ,efn ,iosa_64
,return_va_64 ,return_length_64 [,astadr_64 [,astprm_64]]

SYS2-481

System Service Descriptions
$VERIFY _PROXY

$VERIFY _PROXY
Verify a Proxy

Format

Arguments

SYS2-482

Verifies that a proxy exists and returns a valid local user for the caller to use to
create a local login.

SYS$VERIFY _PROXY rem_node ,rem_user ,[proposed_user] ,local_user
,local_user_length ,[flags]

rem_node
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote node name of the proxy to be verified. The rem_node argument is the
address of a character-string descriptor pointing to the remote node name string.

A remote node name consists of 1 to 1024 characters. No specific characters,
format, or case are required for a remote node name string. All node names are
converted to their DECnet for Open VMS full name unless the PRX$M_BYPASS_
EXPAND flag is set with the flags argument.

Wildcards are not recognized. If you specify a wildcard character in the rem_
node argument, it is ignored and assumed to be part of the requested node name.

rem_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Remote user name of the proxy to be verified. The rem_user argument is the
address of a character-string descriptor pointing to the user name string.

A remote user name consists of 1 to 32 alphanumeric characters, including dollar
signs ($), underscores (_), and brackets ([]). Any lowercase characters specified
are automatically converted to uppercase.

The rem_user argument can be specified in user identification code (UIC) format
([group, member]). Brackets are allowed only if the remote user name string
specifies a UIC. Group and member are character-string representations of octal
numbers with no leading zeros.

Wildcards are not allowed for the remote user specification. If wildcard characters
are present in the string specified by the rem_user argument, the service returns
SS$_BADPARAM.

proposed_ user
Open VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

System Service Descriptions
$VERIFY _PROXY

Local user the caller suggests be used for the proxy login. The proposed_user
argument is the address of a character-string descriptor pointing to the proposed
local user name.

The proposed local user consists of 1 to 32 alphanumeric characters, including
dollar signs ($) and underscores (_). Any lowercase characters specified are
automatically converted to uppercase.

See the Description section for information about the interaction of this argument
with the return value of the local_ user argument.

local_ user
Open VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed length string descriptor

Local user the caller must use for a proxy login. The local_user argument is the
address of a 32-byte character-string descriptor pointer to receive the local user
name the caller must use for a proxy login for the proxy with the remote node
name specified by the rem_node argument and the remote user name specified
by the rem_user argument.

A local user name is a 32-character blank padded string of alphanumeric
characters, including dollar signs ($) and underscores (_).

local_ user _length
Open VMS usage: output length
type: word (unsigned)
access: write only
mechanism: by reference

Length of the returned local user name in the local_user argument. The local_
user_length argument is the address of an unsigned word to receive the length,
in bytes, of the character string returned in the local_ user argument.

flags
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Functional specification for the service and type of user the local_user argument
represents. The flags argument is a longword bit mask wherein each bit
corresponds to an option.

Each flag option has a symbolic name. The $PRXDEF macro defines the following
symbolic name.

SYS2-483

System Service Descriptions
$VERIFY _PROXY

Description

Remote
User

rem_ user

rem_ user

rem_ user

rem_ user

rem_ user

SYS2-484

Symbolic Name

PRX$M_BYPASS_EXPAND

Description

The service should not convert the node name
specified in the rem_node argument to its
corresponding DECnet for Open VMS full name.
If this flag is set, it is the caller's responsibility
to ensure that the fully expanded node name is
passed into the service.

The Verify Proxy service verifies the existence of a proxy in the proxy database
and returns the local user name the caller must use for any proxy logins.

The following description shows how the service determines which local user
name the caller must use for proxy logins.

Proxies that match the remote node and remote user specified by the rem_node
and rem_user arguments, respectively, are searched in the following order if the
remote user name is not a UIC:

1. rem_node::rem_user

2. *::rem_user

3. rem_node::*

4. *"*

Proxies that match the remote node and remote user specified by the rem_node
and rem_user arguments, respectively, are searched for in the following order if
the remote user name is a UIC:

1. rem_node: :rem_ user

2. *::rem_user

3. rem_node::[group, *]

4. rem_node: :[*,member]

5. rem_node::[*,*]

6. *"*

The following table describes how the local user name the caller must use for any
proxy logins is determined if a matching proxy record is found by the search.

Proposed Proxy Proxy Local Returned Local
User Default User User Names User Name

null null n/a error

null default n/a default user
user

null * n/a rem_ user

prop_user default n/a prop_user
user

prop_user default prop_user prop_user
user

Remote
User

rem_ user

rem_ user

rem_ user

Proposed Proxy Proxy Local
User Default User User Names

prop_user default local user
user

prop_user default *
user

prop_user * local user

Required Access or Privileges
You must have SYSPRV privilege.

Required Quota
None

Related Services

System Service Descriptions
$VERIFY _PROXY

Returned Local
User Name

error

rem_user if it equals prop_user

rem_user if it equals prop_user

$ADD_PROXY, $DELETE_PROXY, $DISPLAY_PROXY

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADBUFLEN

SS$_BADPARAM

SS$_NOREADALL

The service completed successfully.
The rem_node, rem_user, or proposed_user
argument cannot be read by the service; or the
local_user or local_user_length argument
cannot be written by the service.
The length of the rem_node, rem_user,
proposed_user, or local_user argument was
out of range.
The rem_user or proposed_user argument
contains an invalid user name.

The caller does not have access to the proxy
database.

This service can also return any of the following messages passed from the
security server, or any Open VMS RMS error message encountered during
operations on the proxy database:
SECSRV$_ The local user name length is out of range.
BADLOCALUSERLEN
SECSRV$_ The node name length is out of range.
BADNODENAMELEN

SECSRV$_ The remote user name length is out of range.
BADREMUSERLEN

SECSRV$_NOSUCHPROXY

SECSRV$_NOSUCHUSER
SECSRV$_
PROXYNOTACTIVE

The proxy specified by the rem_node and rem_
user arguments does not exist in the proxy
database.
No valid user was found for the requested proxy.

Proxy processing is currently stopped. Try the
request again later.

SYS2-485

System Service Descriptions
$VERIFY """'"PROXY

SYS2-486

SECSRV$_
SERVERNOTACTIVE

The security server is not currently active. Try
the request again later.

$WAITFR

System Service Descriptions
$WAITFR

Wait for Single Event Flag

Format

Argument

Description

Tests a specific event flag and returns immediately if the flag is set. Otherwise,
the process is placed in a wait state until the event flag is set.

SYS$WAITFR efn

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag for which to wait. The efn argument is a longword
containing this number; however, $WAITFR uses only the low-order byte.

The Wait for Single Event Flag service tests a specific event flag and returns
immediately if the flag is set. Otherwise, the process is placed in a wait
state until the event flag is set. The wait state caused by this service can be
interrupted by an asynchronous system trap (AST) if (1) the access mode at
which the AST executes is equal to or more privileged than the access mode from
which the $WAITFR service was issued and (2) the process is enabled for ASTs
at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the operating system repeats the $WAITFR request on
behalf of the process. At this point, if the event flag has been set, the process
resumes execution.

Required Access or Privileges
None

Required Quota
None

Related Services
$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WFLAND,
$WFLOR

Condition Values Returned

SS$_NORMAL

SS$_ILLEFC
SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.
The process is not associated with the cluster
containing the specified event flag.

SYS2-487

System Service Descriptions
$WAKE

$WAKE
Wake Process from Hibernation

Format

Arguments

Description

SYS2-488

Activates a process that has placed itself in a state of hibernation with the
Hibernate ($HIBER) service.

SYS$WAKE [pidadr] ,[prcnam]

pidadr
Open VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be activated. The pidadr argument
is the address of a longword containing the PID. The pidadr argument can refer
to a process running on the local node or a process running on another node in
the VMScluster system.

prcnam
Open VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process to be activated. The prcnam argument is the
address of a character string descriptor pointing to the process name. A process
running on the local node can be identified with a 1- to 15-character string. To
identify a process on a particular node in a cluster, specify the full process name,
which includes the node name as well as the process name. The full process name
can contain up to 23 characters.

The process name is implicitly qualified by the UIC group number of the calling
process. For this reason, you can use the prcnam argument only if the process
to be activated is in the same UIC group as the calling process. To activate a
process in another UIC group, you must specify the pidadr argument.

The Wake Process from Hibernation service activates a process that has placed
itself in a state of hibernation with the Hibernate ($HIBER) service. If you
specify neither the pidadr nor the prcnam argument, the wake request is issued
for the calling process.

If the longword at address pidadr is the value 0, the PID of the target process is
returned.

If one or more wake requests are issued for a process not currently hibe!nating,
a subsequent hibernate request completes immediately; that is, the process does
not hibernate. No count of outstanding wakeup requests is maintained.

You can also activate a hibernating process with the Schedule Wakeup
($SCHDWK) service.

Required Access or Privileges

System Service Descriptions
$WAKE

Depending on the operation, the calling process may need one of the following
privileges to use $WAKE:

• GROUP privilege to wake another process in the same group, unless the
process has the same UIC as the calling process

• WORLD privilege to wake any other process in the system

Required Quota
None

Related Services
$CANEXH, $CREPRC, $DCLEXH, $DELPRC, $EXIT, $FORCEX, $GETJPI,
$GETJPIW, $HIBER, $PROCESS_SCAN, $RESUME, $SETPRI, $SETPRN,
$SETPRV, $SETRWM, $SUSPND

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_INCOMPAT

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_REMRSRC

SS$_UNREACHABLE

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.
The remote node is running an incompatible
version of the operating system.

The specified process name string has a length of
0 or has more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to wake
the specified process.

The process name refers to a node that is not
currently recognized as part of the VSMcluster
system.

The remote node has insufficient resources to
respond to the request. (Bring this error to the
attention of your system manager.)

The remote node is a member of the cluster but
is not accepting requests. (This is normal for a
brief period early in the system boot process.)

SYS2-489

System Service Descriptions
$WFLAND

$WFLAND
Wait for Logical AND of Event Flags

Format

Arguments

Description

SYS2-490

Allows a process to specify a set of event flags for which it wants to wait.

SYS$WFLAND efn ,mask

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLAND uses only
the low-order byte. Specifying the number of an event flag within the cluster
serves to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster 0 contains
event flag numbers 0 to 31, and cluster 1 contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

mask
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Event flags for which the process is to wait. The mask argument is a longword
bit vector wherein a bit, when set, selects the corresponding event flag for which
to wait.

The Wait for Logical AND of Event Flags service allows a process to specify a set
of event flags for which it wants to wait. The process is put in a wait state until
all specified event flags are set, at which time $WFLAND returns to the caller
and execution resumes.

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal to
or more privileged than the access mode from which the $WAITFR service was
issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the operating system repeats the $WFLAND request on
behalf of the process. At this point, if all the specified event flags have been set,
the process resumes execution.

Required Access or Privileges
None

Required Quota
None

Related Services

System Service Descriptions
$WFLAND

$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR,
$WFLOR

Condition Values Returned

SS$_NORMAL

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS2-491

System Service Descriptions
$WFLOR

$WFLOR
Wait for Logical OR of Event Flags

Format

Arguments

Description

SYS2-492

Allows a process to specify a set of event flags for which it wants to wait.

SYS$WFLOR efn ,mask

ef n
Open VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLOR uses only the
low-order byte. Specifying the number of an event flag within the cluster serves
to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster 0 contains
event flag numbers 0 to 31, .and cluster 1 contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster 2
contains event flag numbers 64 to 95, and cluster 3 contains event flag numbers
96 to 127.

mask
Open VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Event flags for which the process is to wait. The mask argument is a longword
bit vector wherein a bit, when set, selects the corresponding event flag for which
to wait.

The Wait for Logical OR of Event Flags service allows a process to specify a set
of event flags for which it wants to wait. The process is put in a wait state until
any one of the specified event flags is set, at which time $WFLOR returns to the
caller and execution resumes.

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal to
or more privileged than the access mode from which the $WFLOR service was
issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, the operating system repeats the $WFLOR request on behalf
of the process. At this point, if any of the specified event flags has been set, the
process resumes execution.

Required Access or Privileges
None

Required Quota
None

Related Services

System Service Descriptions
$WFLOR

$ASCEFC, $CLREF, $DACEFC, $DLCEFC, $READEF, $SETEF, $WAITFR,
$WFLAND

Condition Values Returned

SS$_NORMAL

SS$_ILLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS2-493

A
Obsolete Services

The following table lists the obsolete system services and the current services
that have replaced them. For descriptions of the obsolete services, see the
Open VMS Obsolete Features Manual.

Obsolete Service

$BRDCST

$CHANGE_ACL

$CNTREG

$CRELOG

$DELLOG

$GETCHN

$GETDEV

$INPUT

$OUTPUT

$SETSFM

$SETSSF

$SNDACC

$SNDSMB

$TRNLOG

Current Service

$BRKTHRU, $BRKTHRUW

$GET_SECURITY, $SET_SECURITY

$DELTVA

$CRELNM

$DELLNM

$GETDVI, $GETDVIW

$GETDVI, $GETDVIW

$QIO, $QIOW

$QIO, $QIOW

This service is still supported but its use is discouraged

This service is still supported but its use is discouraged

$SNDJBC, $SNDJBCW

$SNDJBC, $SNDJBCW

$TRNLNM

A-1

A
Aborting a transaction, SYS 1-3
$ABORT_TRANS system service, SYSl-3
$ABORT_TRANSW system service, SYSl-7
Absolute time

as input to $BINTIM, SYSl-62
as input to $BINUTC, SYSl-65
converting to numeric, SYS2-194

Access
checking, SYSl-84

Access modes
changing to executive, SYSl-110, SYSl-112
changing to kernel, SYSl-114, SYSl-116

Access protection
checking, SYSl-99

Accounting messages
format of, SYSl-177

ACII character set
converting strings to binary, SYSl-62

ACLs (access control lists)
formatting, SYSl-389

Adding holder records to rights database, SYSl-8
Adding identifiers to rights database, SYSl-11
Address space

creating virtual, SYSl-188
$ADD_HOLDER system service, SYSl-8
$ADD_IDENT system service, SYSl-11
$ADD_PROXY system service, SYSl-14
$ADJSTK system service, SYSl-18
$ADJWSL system service, · SYSl-20
Alignment fault data

getting for system process, SYS2-97
getting for user image, SYS2-85

Alignment fault reporting
disabling for user image, SYS2-440
disabling for user process, SYS2-201
enabling for user process, SYS2-202
initializing for system process, SYS2-115
starting for user image, SYS2-432

Allocating devices, SYSl-22
Allocation classes, SYSl-410
$ALLOC system service, SYSl-22
Arithmetic exceptions

getting information about, SYS2-87
$ASCEFC system service, SYSl-25

Index

ASCII character set
converting strings to UTC, SYSl-65

ASCII output
formatting character string, SYSl-351

ASCII strings
converting to binary, SYSl-62
converting to UTC, SYSl-65

$ASCTIM system service, SYSl-29
$ASCTOID system service, SYSl-32
$ASCUTC system service, SYSl-35
Assigning an I/O channel, SYSl-38
$ASSIGN system service, SYSl-38
ASTLM (AST limit) quota

effect of canceling wakeup on, SYSl-82
ASTs (asynchronous system traps)

declaring, SYSl-242
disabling, SYS2-281
enabling, SYS2-281
setting for power recovery, SYS2-301
setting timer for, SYS2-294

Asynchronous system traps
See ASTs

Audit event messages
· converting, SYSl-402

Auditing events, SYSl-43, SYSl-61
$AUDIT_EVENT system service, SYSl-43
$AUDIT_EVENTW system service, SYSl-61
Automatic unshelving

B

controlling, SYS2-321
determining, SYSl-442

Binary time
converting to ASCII string, SYSl-29
converting to numeric time, SIB2-194,

SYS2-196
Binary values

converting to ASCII string, SYSl-351
$BINTIM system service, SYSl-62
$BINUTC system service, SYSl-65
64-bit virtual addressing

system services support, vii
$BRKTHRU system service, SYSl-68
$BRKTHRUW system service, SYSl-76
Buffer object

creating, SYSl-122

lndex-1

Buffer objects
deleting, SYSl-249

BYTLM quota
using with $GETJPI buffers, SYS2-217

c
Call frames

removing from stack, SYS2-468
Call stacks

unwinding, SYS2-99
Canceling

exit handlers, SYSl-79
I/O requests, SYSl-77
timer requests, SYSl-80
wakeup requests, SYSl-82

$CANCEL system service, SYSl-77
$CANEXH system service, SYS1~79
$CANTIM system service, SYSl-80
$CANWAK system service, SYSl-82
Change mode handlers

declaring, SYSl-244
Channels

canceling I/O, SYSl-77
$CHECK_ACCESS system service, SYSl-84
$CHECK_FEN system service

on Alpha systems only, SYSl-92
$CHECK_PRIVILEGE system service, SYSl-93
$CHECK_PRIVILEGEW system service, SYSl-98
$CHKPRO system service, SYSl-99
Class scheduler processes, SYS2-279
Clearing an event flag, SYSl-109
$CLRCLUEVT system service

on Alpha systems only, SYSl-107
$CLREF system service, SYSl-109
Cluster events

clearing request for notification of, SYSl-107
requesting notification of, SYS2-282

$CMEXEC system service, SYSl-110
$CMEXEC_64 system service, SYSl-112
$CMKRNL system service, SYSl-114
$CMKRNL_64 system service, SYSl-116
Common event flag clusters

disassociating, SYSl-236
Compatibility mode handlers

declaring, SYSl-244
Control region

adding page to, SYSl-345
deleting page from, SYSl-265

Converting
ASCII string to binary time, SYSl-62
ASCII string to UTC format, SYSl-65
audit event message, SYSl-402
binary time to ASCII string, SYSl-29
binary time to numeric time, SYS2-194
64-bit system time to UTC time, SYS2-449
UTC format to ASCII, SYSl-35
UTC time to numeric time, SYS2-196

lndex-2

CPU affinity set
modifying, SYS2-204

CPU user capability net
modifying, SYSl-118

$CPU_CAPABILITIES system service, SYSl-118
$CREATE_BUFOBJ_64 system service, SYSl-122

description, SYSl-124
$CREATE_GFILE system service, SYSl-126

description, SYSl-129
$CREATE_GPFILE system service, SYSl-131

description, SYSl-133
$CREATE_GPFN system service, SYSl-135

description, SYSl-137
$CREATE_RDB system service, SYSl-139
$CREATE_REGION_64 system service, SYSl-141

description, SYSl-143
$CREATE_USER_PROFILE system service,

SYSl-145
Creating

disk file sections, SYSl-192
logical names, SYSl-149
logical name tables, SYSl-155
mailboxes, SYSl-161
processes, SYSl-168
rights databases, SYSl-139
user profiles, SYSl-145
virtual address space, SYSl-185

$CRELNM system service, SYSl-149
$CRELNT system service, SYSl-155
$CREMBX system service, SYSl-161
$CREPRC system service, SYSl-168
$CRETVA system service, SYSl-185

See also $EXPREG system service
$CRETVA_64 system service, SYSl-188

description, SYSl-190
$CRMPSC system service, SYSl-192
$CRMPSC_FILE_64 system service, SYSl-204

description, SYSl-207
$CRMPSC_GFILE_64 system service, SYSl-210

description, SYSl-215
$CRMPSC_GPFILE_64 system service, SYSl-218

description, SYSl-222
$CRMPSC_GPFN_64 system service, SYSl-225

description, SYSl-229
$CRMPSC_PFN_64 system service, SYSl-232

description, SYSl-234

D
$DACEFC system service, SYSl-236
$DALLOC system service, SYSl-238
$DASSGN system service, SYSl-240
$DCLAST system service, SYSl-242
$DCLCMH system service, SYSl-244
$DCLEXH system service, SYSl-247

Deallocating devices, SYSl-238
Deassigning an 1/0 channel, SYSl-240
DECdns names

converting, SYSl-303, SYSl-304, SYSl-305,
SYSl-307

converting full name, SYSl-303
DECdns objects

creating, SYSl-298
deleting, SYSl-299
enumerating, SYSl-301

Declaring an AST (asynchronous system trap),
SYSl-242

Default directories
setting, SYS2-285

Default file protection
setting, SYS2-287

Default form, SYS2-382
$DELETE_BUFOBJ system service, SYSl-249

description, SYSl-249
$DELETE_INTRUSION system service,

SYSl-250
$DELETE_PROXY system service, SYSl-252
$DELETE_REGION_64 system service,

SYSl-255
description, SYSl-256

Deleting
DECdns objects, SYSl-299
event flag clusters, SYSl-292
global sections, SYSl-279
intrusion records, SYSl-250
logical names, SYSl-258
mailboxes, SYSl-261
processes, SYSl-263
proxies, SYSl-252
virtual address space, SYSl-265

$DELLNM system service, SYSl-258
$DELMBX system service, SYSl-261
$DELPRC system service, SYSl-263
Delta time

as input to $BINTIM, SYSl-62
converting to numeric, SYS2-194

$DELTVA system service, SYSl-265
$DELTVA_64 system service, SYSl-267

description, SYSl-268
$DEQ system service, SYSl-270
Dequeuing lock requests, SYSl-270
Detached processes

creating, SYSl-180
Devices

allocating, SYSl-22
deallocating, SYSl-238
dual-pathed, SYSl-410
getting information asynchronously, SYS 1-406
getting information synchronously, SYSl-426
lock name, SYSl-414
scanning of across the cluster, SYSl-275
served, SYSl-418

$DEVICE_SCAN system service, SYSl-275
$DGBLSC system service, SYSl-279
Disk file sections

creating, SYSl-192
mapping, SYSl-192

Disks
initializing from within a program, SYS2-118

Dismounting a volume, SYSl-282
$DISMOU system service, SYSl-282
$DISPLAY_PROXY system service, SYSl-286
$DLCEFC system service, SYSl-292
$DNS system service

on VAX systems only, SYSl-294
$DNSW system service

on VAX systems only, SYSl-321

E
$END_TRANS system service, SYSl-322
$END_TRANSW system service, SYSl-327
$ENQ system service, SYSl-328
$ENQW system service, SYSl-340
Equivalence names

specifying, SYSl-149
$ERAPAT system service, SYSl-341
Error logger

sending message to, SYS2-358
Event flag clusters

associating with a process, SYSl-25
deleting, SYSl-292
disassociating, SYS 1-236
getting current status, SYS2-246

Event flags, SYSl-294
clearing, SYSl-109
getting current status, SYS2-246
setting, SYS2-289
waiting for entire set of, SYS2-490
waiting for one of set, SYS2-492
waiting for setting of, SYS2-487

Events
auditing, SYSl-43, SYSl-61

Exception vectors
setting, SYS2-290

Executive mode
changing to, SYSl-110, SYSl-112

Exit handlers
canceling, SYSl-79
control block, SYSl-247

deleting, SYSl-79
declaring, SYSl-247

Exits
forcing, SYSl-386

$EXIT system service, SYSl-344
issuing for specified process, SYSl-386

Expanding program/control region, SYSl-345
$EXPREG system service, SYSl-345

lndex-3

$EXPREG_64 system service, SYSl-348
description, SYSl-349

F
$FAOL system service, SYSl-351
$FAOL_64 system service, SYSl-371
$FAO system service, SYSl-351
$FAO system service directives

format of, SYSl-353
table of, SYSl-355

Files
getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46

$FILESCAN system service, SYSl-372
File specifications

parsing components of, SYSl-372
searching string for, SYSl-372

$FIND_HELD system service, SYSl-378
$FIND_HOLDER system service, SYSl-381
$FINISH_RDB system service, SYSl-384
Floating point

checking, SYSl-92
$FORCEX system service, SYSl-386

See also $DELPRC and $EXIT
Forcing an exit, SYSl-386
Formatting

ACL entry, SYSl-389
security audit messages, SYSl-402

$FORMAT_ACL system service, SYSl-389
$FORMAT_AUDIT system service, SYSl-402
Forms

getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46

Full.names
converting to string, SYSl-303

G
$GETDVI system service, SYSl-406
$GETDVIW system service, SYSl-426
$GETJPI system service, SYSl-427
$GETJPIW system service, SYSl-448
$GETLKI system service, SYSl-449
$GETLKIW system service, SYSl-461
$GETMSG system service, SYSl-462
$GETQUI system service, SYS2-3
$GETQUIW system service, SYS2-46
$GETSYI system service, SYS2-51
$GETSYIW system service, SYS2-70
$GETTIM system service, SYS2-71
$GETUAI system service, SYS2-72
$GETUTC system service, SYS2-84
$GET_ALIGN_FAULT_DATA system service.

on Alpha systems only, SYS2-85
$GET_ARITH_EXCEPTION system service

on Alpha systems only, SYS2-87

lndex-4

$GET_REGION_INFO system service, SYS2-47
description, SYS2-50

$GET_SECURITY system service, SYS2-89
$GET_SYS_ALIGN_FAULT_DATA system service

on Alpha systems only, SYS2-97
Global disk file section

creating, SYSl-126
creating and mapping, SYSl-210
mapping, SYS2-157

Global page file
Create, SYSl-131

Global page file section
creating and mapping, SYSl-218
mapping, SYS2-157

Global page frame section
creating and mapping, SYSl-225
mapping, SYS2-163

Global section file
updating on disk (asynchronously), SYS2-475
updating on disk (synchronously), SYS2-481

Global sections
creating, SYSl-192
deleting, SYSl-279
mapping, SYSl-192, SYS2-151

$GOTO_UNWIND system service
on Alpha systems only, SYS2-99

$GRANTID system service, SYS2-101

H
$HASH_PASSWORD system service, SYS2-105
$HIBER system service, SYS2-108

See also $WAKE
Holder records

adding to rights database, SYSl-8
modifying in rights database, SYS2-169
removing from rights database, SYS2-249

Holders of an identifier
finding, SYSl-381

Host
checking availability of, SYSl-410

1/0 channels
assigning, SYSl-38
deassigning, SYSl-240

1/0 devices
getting information asynchronously, SYSl-406
getting information synchronously, SYSl-426

1/0 requests
canceling, SYSl-77
queuing asynchronously, SYS2-239
queuing synchronously, SYS2-245

Identifier names
translating to identifier, SYSl-32

Identifiers
adding record to rights list, SYS2-101
finding, SYSl-378
modifying in rights database, SYS2-172
removing from rights database, SYS2-25 l
revoking from process, SYS2-260
translating value to identifier name, SYS2-110

$IDTOASC system service, SYS2-110
IEEE floating-point control register

setting, SYS2-113
$IEEE_SET_FP _CONTROL system service

on Alpha systems only, SYS2-113
Image exit, SYSl-344
Image rundown

forcing, SYSl-386
Initializing a volume

from within a program, SYS2-118
$INIT_SYS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-115

$INIT_VOL system service, SYS2-118
Intrusion records

deleting, SYSl-250
Intrusions

returning information about, SYS2-351
scanning for, SYS2-268

$IOSETUP system service, SYS2-136
$IO_CLEANUP system service, SYS2-131

description, SYS2-131
$IO _PERFORM system service, SYS2-132

description, SYS2-133
$IO_SETUP system service

description, SYS2-137

J
Job controllers

asynchronous, SYS2-359
synchronous, SYS2-417

Jobs

K

getting information asynchronously, SYSl-427,
SYS2-3

getting information synchronously, SYSl-448,
SYS2-46

Kernel mode
changing to, SYSl-114, SYSl-116

L
$LCKPAG system service, SYS2-139
$LCKPAG_64 system service, SYS2-142

description, SYS2-143
$LKWSET system service, SYS2-145

$LKWSET_64 system service, SYS2-148
description, SYS2-149

Lock database
in a VMScluster, SYSl-458

Lock requests
dequeuing, SYSl-270
queuing asynchronously, SYSl-328
queuing synchronously, SYSl-340

Locks
getting information asynchronously, SYSl-449
getting information synchronously, SYSl-461

Logical names
creating, SYSl-149
deleting, SYSl-258
getting information about, SYS2-451
translating, SYS2-451

Logical name tables
creating, SYSl-155
deleting, SYSl-258

M
Magnetic tapes

initializing from within a program, SYS2-118
Mailboxes

assigning channel to, SYSl-161
creating, SYSl-161
deleting permanent, SYSl-164, SYSl-261
deleting temporary, SYSl-164

Mapping disk file sections, SYSl-192
Memory

lOcking page into, SYS2-139
unlocking page from, SYS2-458

Messages
converting security message from binary to·

ASCII, SYSl-402
filtering sensitive information, SYSl-402
formatting and outputting, SYS2-231
obtaining text of, SYSl-462
sending to error logger, SYS2-358
sending to one or more terminals, SYSl-68,

SYSl-76
sending to operator, SYS2-418
writing to terminal, SYSl-68, SYSl-76

Message symbols, SYS2-236
$MGBLSC system service, SYS2-151
$MGBLSC_64 system service, SYS2-157

description, SYS2-161
$MGBLSC_GPFN_64 system service, SYS2-163

description, SYS2-166
$MOD_HOLDER system service, SYS2-169
$MOD_IDENT system service, SYS2-172
$MOUNT system service, SYS2-176
$MTACCESS system service, SYS2-191

lndex-5

N
Notification ASTs

testing functionality of, SYS2-456
$NUMTIM system service, SYS2-194
$NUMUTC system service, SYS2-196

0
Obsolete system services, A-1
Opaque names

converting to string, SYSl-303
Operators

sending messages to, SYS2-418

p
Page frame section

creating, SYSl-135
Page protection

setting, SYS2-311
Pages

locking into memory, SYS2-139
locking into working set, SYS2-145
removing from working set, SYS2-227
setting protection, SYS2-308
unlocking from memory, SYS2-458
unlocking from working set, SYS2-463

$PARSE_ACL system service, SYS2-198
Passwords

returning hash value, SYS2-105
$PERFORMW system service, SYS2-135
$PERM_DIS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-201

$PERM_REPORT_ALIGN_FAULT system service
on Alpha systems only, SYS2-202

PID numbers
using with $GETJPI to return information

about a process, SYSl-427
Power recovery

setting AST for, SYS2-301
Priority setting, SYS2-303
Private disk file section

create and map, SYSl-204
Private page frame

create and map, SYSl-232
Privileges

checking, SYSl-93
setting for process, SYS2-314

Processes
affecting scheduling of, SYS2-276
creating, SYSl-168
deleting, SYSl-263
getting information asynchronously, SYSl-427
getting information synchronously, SYSl-448
hibernating, SYS2-108

lndex-6

Processes (cont'd)
locating a subset of, SYS2-214
rescheduling, SYS2-253
resuming after suspension, SYS2-258
scanning, SYS2-214
scheduling wakeup for, SYS2-273
setting default protection for, SYS2-287
setting name of, SYS2-307
setting priority of, SYS2-303
setting privileges, SYS2-314
setting stack limits, SYS2-323
setting swap mode for, SYS2-325
suspending, SYS2-444
waiting for entire set of event flags, SYS2-490
waiting for event flag to be set, SYS2-487
waiting for one of set of event flags, SYS2-492
waking, SYS2-488
writing messages to, SYS2-231

Process identification numbers
See PID numbers

Process names
setting, SYS2-307
specifying processes by, SYS2-220
specifying processes with node name,

SYS2-219
Process scan, SYS2-214
Process scheduling

affecting, SYS2-276
Process user capability set

modifying, SYS2-209
$PROCESS_AFFINITY system service, SYS2-204
$PROCESS_CAPABILITIES system service,

SYS2-209
$PROCESS_SCAN system service, SYS2-214
Program regions

adding page to, SYSl-345
deleting page from, SYSl-265

Protection
of queues, SYS2-409
setting for page, SYS2-308

Proxies
adding, SYSl-14
deleting, SYSl-252
displaying, SYSl-286
modifying, SYSl-14, SYSl-252
verifying, SYS2-482

$PURGE_ WS system service, SYS2-229
description, SYS2-229

$PURGWS system service, SYS2-227
See also $ADJWSL

$PUTMSG system service, SYS2-231

Q
$QIO system service, SYS2-239
$QIOW system service, SYS2-245
Queues

R

creating and managing asynchronously,
SYS2-359

creating and managing synchronously,
SYS2-417

getting information asynchronously, SYS2-3
getting information synchronously, SYS2-46
protection, SYS2-409
types of, SYS2-406

$READEF system service, SYS2-246
Region

creating a virtual, SYSl-141
Regions

deleting, SYSl-255
$RELEASE_ VP system service

on VAX systems only, SYS2-248
$REM_HOLDER system service, SYS2-249
$REM_IDENT system service, SYS2-251
$RESCHED system service, SYS2-253
Resource wait mode

setting, SYS2-319
$RESTORE_ VP _EXCEPTION system service

on VAX systems only, SYS2-254
$RESTORE_ VP _STATE system service

on VAX systems only, SYS2-256
$RESUME system service, SYS2-258
$REVOKID system service, SYS2-260
Rights database context

terminating, SYSl-384
Rights databases

creating, SYSl-139
$RMSRUNDWN system service, SYS2-264

s
$SAVE_ VP _EXCEPTION system service

on VAX systems only, SYS2-266
Scanning

for devices, SYSl-275
intrusion database, SYS2-268
processes, SYS2-214

$SCAN_INTRUSION system service, SYS2-268
$SCHDWK system service, SYS2-273
$SCHED system service, SYS2-276
Section files

updating asynchronously, SYS2-4 70
updating synchronously, SYS2-480

Sections
creating, SYSl-192
deleting global, SYSl-279

Sections (cont'd)
mapping, SYSl-192
writing modifications to disk, SYS2-4 70,

SYS2-480
Security

auditing events, SYSl-43, SYSl-61
checking privileges, SYSl-93, SYSl-98
converting message from binary to ASCII,

SYSl-402
filtering sensitive message information,

SYSl-402
getting erase patterns, SYSl-341
hashing passwords, SYS2-105
modifying characteristics of an object,

SYS2-344
retrieving information about objects, SYS2-89

Security characteristics
modifying for an object, SYS2-344
retrieving for an object, SYS2-89

Sending a message to one or more terminals,
SYSl-68, SYSl-76

$SETAST system service, SYS2-281
$SETCLUEVT system service

on Alpha systems only, SYS2-282
$SETDDIR system service, SYS2-285
$SETDFPROT system service, SYS2-287
$SETEF system service, SYS2-289
$SETEXV system service, SYS2-290
$SETIME system service, SYS2-292
$SETIMR system service, SYS2-294
$SETPRA system service, SYS2-301
$SETPRI system service, SYS2-303
$SETPRN system service, SYS2-307
$SETPRT system service, SYS2-308
$SETPRT_64 system service, SYS2-311

description, SYS2-312
$SETPRV system service, SYS2-314
$SETRWM system service, SYS2-319
$SETSHLV system service, SYS2-321
$SETSTK system service, SYS2-323
$SETSWM system service, SYS2-325
Setting the resource wait mode, SYS2-319
$SETUAI system service, SYS2-327
$SET_IMPLICIT_AFFINITY, SYS2-297
$SET_RESOURCE_DOMAIN system service,

SYS2-339
$SET_SECURITY system service, SYS2-344
Shelving

See also Automatic unshelving
$SHOW _INTRUSION system service, SYS2-351
$SIGNAL_ARRAY system service, SYS2-356
Simple names

converting to opaque, SYSl-305
$SNDERR system service, SYS2-358
$SNDJBC system service, SYS2-359

lndex-7

$SNDJBCW system service, SYS2-417
$SNDOPR system service, SYS2-418
Stack limit

changing size of, SYS2-323
Stack pointer

adjusting, SYSl-18
$START_ALIGN_FAULT_REPORT system service

on Alpah systems only, SYS2-432
$START_TRANS system service, SYS2-435
$START_TRANSW system service, SYS2-439
$STOP _ALIGN_FAULT_REPORT system service

on Alpha systems only, SYS2-440
$STOP _SYS_ALIGN_FAULT_REPORT system

service
on Alpha systems only, SYS2-441

Strings
formatting output, SYSl-351
searching for file specification in, SYSl-372

Subprocesses
creating, SYSl-180

$SUBSYSTEM system service, SYS2-442
$SUSPND system service, SYS2-444
$SYNCH system service, SYS2-44 7
SYS$NUMUTC system service, SYS2-196
SYS$SYSTEM:LOGINOUT.EXE file

using as image to create new processes,
SYSl-168,SYSl-180

System alignment fault reporting
disabling for user image, SYS2-441

Systems
getting information asynchronously, SYS2-51
getting information synchronously, SYS2-70

System services, SYS2-131, SYS2-132,
SYS2-135,SYS2-136

Abort Transaction, SYS 1-3
Abort Transaction and Wait, SYSl-7
Add Holder Record to Rights Database,

SYSl-8
Add Identifier to Rights Database, SYSl-11
Add Proxy, SYSl-14
Adjust Outer Mode Stack Pointer, SYSl-18
Adjust Working Set Limit, SYSl-20
Affect Process Scheduling, SYS2-276
Allocate Device, SYSl-22
Assign 1/0 Channel, SYS 1-38
Associate Common Event Flag Cluster,

SYSl-25
Audit Event, SYSl-43
Audit Event and Wait, SYSl-61
Breakthrough, SYSl-68
Breakthrough and Wait, SYSl-76
Cancel Exit Handler, SYSl-79
Cancel 1/0 on Channel, SYSl-77
Cancel Timer, SYSl-80
Cancel Wakeup, SYSl-82
Change to Executive Mode, SYSl-110

with quadword argument list, SYSl-112
Change to Kernel Mode, SYSl-114, SYSl-116

lndex-8

System services (cont'd)
Check Access, SYSl-84
Check Access Protection, SYSl-99
Check Floating Point (Alpha only), SYSl-92
checking completion status of, SYS2-44 7
Check Privilege, SYSl-93
Check Privilege and Wait, SYSl-98
Clear Cluster Event (Alpha only), SYSl-107
Clear Event Flag, SYSl-109
Convert ASCII String to Binary· Time,

SYSl-62
Convert ASCII String to UTC Binary Time,

SYSl-65
Convert Binary Time to ASCII String,

SYSl-29
Convert Binary Time to Numeric Time,

SYS2-194
Convert UTC Time to Numeric Components,

SYS2-196
Convert UTC to ASCII, SYSl-35
Create and Map a Global Disk File Section,

SYSl-210
Create and Map Global Page File Section,

SYSl-218
Create and Map Global Page Frame Section,

SYSl-225
Create and Map Private Disk File Section,

SYSl-204
Create and Map Private Page Frame Section,

SYSl-232
Create and Map Section, SYSl-192
Create Global Page Frame Section, SYSl-135
Create Logical Name, SYSl-149
Create Logical Name Table, SYSl-155
Create Mailbox and Assign Channel, SYSl-161
Create Permanent Global Disk File Section,

SYSl-126
Create Permanent Global Page File, SYSl-131
Create Process, SYSl-168
Create Rights Database, SYSl-139
Create User Profile, SYSl-145
Create Virtual Address Space, SYSl-185,

SYSl-188
Create Virtual Region, SYSl-141
Deallocate Device, SYSl-238
Deassign 1/0 Channel, SYSl-240
Declare AST, SYSl-242
Declare Change Mode or Compatibility Mode

Handler, SYSl-244
Declare Exit Handler, SYSl-247
Delete a Virtual Region, SYSl-255
Delete Buffer Object, SYSl-249
Delete Common Event Flag Cluster, SYSl-292
Delete Global Section, SYSl-279
Delete Intrusion Records, SYSl-250
Delete Logical Name, SYSl-258
Delete Mailbox, SYSl-261
Delete or Modify Proxy, SYSl-252

System services (cont'd)
Delete Process, SYSl-263
Delete Virtual Address Space, SYSl-265,

SYSl-267
Dequeue Lock Request, SYSl-270
Disable Alignment Fault Reporting (Alpha

only), SYS2-201
Disassociate Common Event Flag Cluster,

SYSl-236
Dismount Volume, SYSl-282
·Display Proxy Information, SYSl-286
Distributed Name Service (DNS) Clerk (VAX

only), SYSl-294, SYSl-321
End Transaction, SYSl-322
End Transaction and Wait, SYSl-327
Enqueue Lock Request, SYSl-328
Enqueue Lock Request and Wait, SYSl-340
Exit, SYSl-344
Expand Program/Control Region, SYSl-345
Expand Virtual Address Space, SYSl-348
Find Holder of Identifier, SYSl-381
Find Identifiers Held by User, SYSl-378
Force Exit, SYSl-386
Format Access Control List Entry, SYSl-389
Format Security Audit Event Message,

SYSl-402
Formatted ASCII Output Services, SYSl-351
Formatted ASCI Output with List Parameter

for 64-Bit Memory, SYSl-371
Get Alignment Fault Data (Alpha only),

SYS2-85
Get Arithmetic Exception Information (Alpha

only), SYS2-87
Get DeviceNolume Information, SYSl-406
Get DeviceNolume Information and Wait,

SYSl-426
Get Information About a Specified Virtual

Region, SYS2-4 7
Get Job/Process Information, SYSl-427
Get Job/Process Information and Wait,

SYSl-448
Get Lock Information, SYS 1-449
Get Lock Information and Wait, SYSl-461
Get Message, SYSl-462
Get Queue Information, SYS2-3
Get Queue Information and Wait, SYS2-46
Get Security Characteristics, SYS2-89
Get Security Erase Pattern, SYSl-341
Get System Alignment Fault Data (Alpha only),

SYS2-97
Get Systemwide Information, SYS2-51
Get Systemwide Information and Wait,

SYS2-70
Get Time, SYS2-71
Get User Authorization Information, SYS2-72
Get UTC Time, SYS2-84
Grant Identifier to Process, SYS2-101
Hash Password, SYS2-105

System services (cont'd)
Hibernate, SYS2-108
Initialize System Alignment Fault Reporting

(Alpha only), SYS2-115
Initialize Volume, SYS2-118
Lock Pages in Memory, SYS2-139, SYS2-142
Lock Pages in Working Set, SYS2-145,

SYS2-148
Magnetic Tape Accessibility, SYS2-191
Map Global Disk or Page File Section,

SYS2-157
Map Global Page Frame Section, SYS2-163
Map Global Section, SYS2-151
Modify CPU User Capabilities, SYSl-118
Modify Holder Record in Rights Database,

SYS2-169
Modify Identifier in Rights Database,

SYS2-172
Modify Process Affinity, SYS2-204
Modify Process Implicit Affinity, SYS2-297
Modify Process User Capabilities, SYS2-209
Mount Volume, SYS2-176
obsolete, A-1
Parse Access Control List Entry, SYS2-198
Process Scan, SYS2-214
Purge Working Set, SYS2-227, SYS2-229
Put Message, SYS2-231
Queue 1/0 Request, SYS2-239
Queue 1/0 Request and Wait, SYS2-245
Read Event Flags, SYS2-246
Release Vector Processor (VAX only), SYS2-248
Remove Holder Record from Rights Database,

SYS2-249
Remove Identifier from Rights Database,

SYS2-251
Report Alignment Fault (Alpha only),

SYS2-202
Reschedule Process, SYS2-253
Restore Vector Processor Exception State (VAX

only), SYS2-254
Restore Vector State (VAX only), SYS2-256
Resume Process, SYS2-258
Revoke Identifier from Process, SYS2-260
RMS Rundown, SYS2-264
Save Vector Processor Exception State (VAX

only), SYS2-266
Scan for Devices, SYSl-275
Scan Intrusion Database, SYS2-268
Scan String for File Specification, SYSl-372
Schedule Wakeup, SYS2-273
Send Message to Error Logger, SYS2-358
Send Message to Operator, SYS2-418
Send to Job Controller, SYS2-359
Send to Job Controller and Wait, SYS2-417
Set AST Enable, SYS2-281
Set Automatic Unshelving, SYS2-321
Set Cluster Event (Alpha only), SYS2-282
Set Default Directory, SYS2-285

lndex-9

System services (cont'd)
Set Default File Protection, SYS2-287
Set Event Flag, SYS2-289
Set Exception Vector, SYS2-290
Set IEEE Floating-Point Control Register

(Alpha only), SYS2-113
Set Power Recovery AST, SYS2-301
Set Priority, SYS2-303
Set Privileges, SYS2-314
Set Process Name, SYS2-307
Set Process Swap Mode, SYS2-325
Set Protection on Pages, SYS2-308, SYS2-311
Set Resource Domain, SYS2-339
Set Resource Wait Mode, SYS2-319
Set Security, SYS2-344
Set Stack Limits, SYS2-323
Set System Time, SYS2-292
Set Timer, SYS2-294
Set User Authorization Information, SYS2-327
Show Intrusion Information, SYS2-351
Signal Array, SYS2-356
Start Alignment Fault Reporting (Alpha only),

SYS2-432
Start Transaction, SYS2-435
Start Transaction and Wait, SYS2-439
Stop Alignment Fault Reporting (Alpha only),

SYS2-440
Stop System Alignment Fault Reporting (Alpha

only), SYS2-441
Subsystem, SYS2-442
Suspend Process, SYS2-444
Synchronize, SYS2-44 7
Terminate Rights Database Context, SYSl-384
Test Cluster Event (Alpha only), SYS2-456
Time Converter, SYS2-449
Translate Identifier Name to Identifier,

SYSl-32
Translate Identifier to Identifier Name,

SYS2-110
Translate Logical Name, SYS2-451
Unlock Pages from Memory, SYS2-458,

SYS2-460
Unlock Pages from Working Set, SYS2-463
Unlock Pages in Working Set, SYS2-465
Unwind Call Stack, SYS2-468
Unwind Call Stack (Alpha only), SYS2-99
Update Global Section File on Disk, SYS2-475
Update Global Section File on Disk and Wait,

SYS2-481
Update Section File on Disk, SYS2-470
Update Section File on Disk and Wait,

SYS2-480
Verify Proxy, SYS2-482
Wait for Logical AND of Event Flags,

SYS2-490
Wait for Logical OR of Event Flags, SYS2-492
Wait for Single Event Flag, SYS2-487
Wake Process from Hibernation, SYS2-488

lndex-10

System Services
Create Buffer Object, SYSl-122

System time

T

See also Time
converting 64-bit time to UTC time, SYS2-449
setting, SYS2-292

Tapes
initializing from within a program, SYS2-118

Termination messages
format of, SYSl-177

$TIMCON system service, SYS2-449
Time

converting 64-bit system format to UTC,
SYS2-449

converting binary to ASCII string, SYSl-29
converting binary to numeric, SYS2-194
converting UTC to 64-bit system format,

SYS2-449
converting UTC to ASCII, SYSl-35
converting UTC to numeric components,

SYS2-196
getting current system, SYS2-71
setting 1system, SYS2-292

Timer requests
canceling, SYSl-80

Timers
setting, SYS2-294

TQELM (timer queue entry limit)
See TQELM process limit

TQELM process limit
effect of canceling timer request, SYS 1-80

Transactions
aborting asynchronously, SYS 1-3
aborting synchronously, SYSl-7
default, SYS2-437
ending asynchronously, SYSl-322
ending synchronously, SYSl-327
starting asynchronously, SYS2-435
starting synchronously, SYS2-439

Translating identifier name to identifier, SYSl-32
$TRNLNM system service, SYS2-451
$TSTCLUEVT system service

on Alpha systems only, SYS2-456

u
UAFs (user authorization files)

getting information about, SYS2-72
modifying, SYS2-327

$ULKPAG system service, SYS2-458
$ULKPAG_64 system service, SYS2-460

description, SYS2-461

$ULWSET system service, SYS2-463
$ULWSET_64 system service, SYS2-465

description, SYS2-466
Unlocking pages from memory, SYS2-460
Unlocking pages in the working set, SYS2-465
$UNWIND system service, SYS2-468
$UPDSEC system service, SYS2-4 70
$UPDSECW system service, SYS2-480
$UPDSEC_64 system service, SYS2-475

description, SYS2-4 78
$UPDSEC_64W system service, SYS2-481
User profiles

creating, SYSl-145
UTC Coordinated Universal Time

converting format to ASCII, SYSl-35
UTC format

v

converting to ASCII, SYSl-35
converting to numeric components, SYS2-196
getting, SYS2-84

Vector processors
releasing, SYS2-248
restoring the exception state of, SYS2-254
saving the exception state of, SYS2-266

Vector state
restoring, SYS2-256

$VERIFY _PROXY system service, SYS2-482
Virtual address space

adding page to, SYSl-185, SYSl-345
creating, SYSl-185
deleting page from, SYSl-265

Virtual Address Space
expanding, SYSl-348

Virtual address space, deleting, SYSl-267
Virtual I/O

canceling requests for, SYSl-77
Virtual region

getting information about, SYS2-4 7
Volumes

dismounting, SYSl-282
getting information asynchronously, SYSl-406
getting information synchronously, SYSl-426
initializing from within a program, SYS2-118
mounting, SYS2-176

w
$WAITFR system service, SYS2-487
$WAKE system service, SYS2-488

See also $HIBER
Wakeup requests

canceling, SYSl-82
$WFLAND system service, SYS2-490
$WFLOR system service, SYS2-492

Wildcard operations, SYSl-427
Wildcard searches

obtaining information about processes,
SYS2-214

Working set
purging, SYS2-229

Working sets
adjusting limit, SYSl-20
locking page into, SYS2-145
purging, SYS2-227
unlocking page from, SYS2-463

lndex-11

NOTES

